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Abstract

Flexural slip folds are distinctive of mixed continuous-discontinuous deformation in the

upper crust, as folding is accommodated by continuous bending of layers and localized, dis-

continuous slip along layer interfaces. The mechanism of localized, layer-parallel slip and

the stress and fluid pressure conditions at which flexural slip occurs are therefore distinctive

of shear localization during distributed deformation. In the Prince Albert Formation mud-

stone sequence of the Karoo Basin, the foreland basin to the Cape Fold Belt, chevron folds are

well developed and associated with incrementally developed bedding-parallel quartz veins with

slickenfibers oriented perpendicular to fold hinge lines, locally cross-cutting axial planar cleav-

age, and showing hanging wall motion toward the fold hinge. Bedding-parallel slickenfiber-

coated veins dip at angles from 18◦ to 83◦, implying that late increments of bedding-parallel

shear occurred along unfavorably oriented planes. The local presence of tensile veins, in mu-

tually cross-cutting relationship with bedding-parallel, slickenfiber-coated veins, indicate local

fluid pressures in excess of the least compressive stress.

Slickenfiber vein microstructures include a range of quartz morphologies, dominantly blocky

to elongate-blocky, but in places euhedral to subhedral; the veins are commonly laminated,

with layers of quartz separated by bedding-parallel slip surfaces characterized by a quartz-

phyllosilicate cataclasite. Crack-seal bands imply incremental slickenfiber growth, in incre-

ments from tens of micrometers to a few millimeters, in some places, whereas other vein layers

lack evidence for incremental growth and likely formed in single slip events. Single slip events,

however, also involved quartz growth into open space, and are inferred to have formed by

stick-slip faulting. Overall, therefore, flexural slip in this location involved bedding-parallel

faulting, along progressively misoriented weak planes, with a range of slip increments.
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1. Introduction1

Subgreenschist facies folding of sedimentary sequences is commonly achieved by flexural2

slip, where folding is accommodated by a combination of ductile buckling of layers and lo-3

calized slip along layer interfaces (e.g. Chapple and Spang, 1974; Ramsay and Huber, 1987;4

Tanner, 1989; Fowler, 1996). Typically, bedding-parallel slip associated with flexural slip fold-5

ing is recognized through the presence of slickenfibers or striations indicating (reverse) dip6

slip motion on bedding planes (Tanner, 1989; Fowler, 1996; Fowler and Winsor, 1997; Horne7

and Culshaw, 2001). Bedding-parallel veins, that can be demonstrated to have formed during8

folding, have been suggested to imply that locally and transiently, fluid pressures significantly9

in excess of hydrostatic were achieved (Cosgrove, 1993; Horne and Culshaw, 2001). Similarly,10

slickenfibers in other locations have also been suggested to record fluid pressure fluctuations11

(Renard et al., 2005) and fault slip at low effective stress (Fagereng et al., 2010). A hypothesis12

to consider is therefore that flexural slip is associated with frictional shear along weak and/or13

overpressured planes.14

Bedding-parallel veins in flexural slip folds have not exclusively been attributed to bedding-15

parallel shear during folding. Bedding-parallel veins may also form in sedimentary succes-16

sions by syn-sedimentary increases in fluid-pressure, caused by either thermal expansion or17

pore fluid expulsion during burial of low-permeability sediments (e.g. Nicholson, 1978; Fitches18

et al., 1986; Cosgrove, 1993). If burial is associated with vertical shortening and minor ap-19

plied horizontal stresses, these veins would generally be tensile, and reflect opening direction20

perpendicular to near-horizontal bedding. It is, however, possible that shear-related dilation21

occurs on syn-sedimentary veins, for example in submarine landslides or early, soft-sediment22

thrusting (Cosgrove, 1993). Pre-folding shear veins would, however, differ from shear veins as-23

sociated with flexural slip folding, in that flexural slip folding would tend to create veins with24

opposite shear sense either side of a fold hinge, and development of thickened veins (saddle25

reefs) at fold hinges (e.g. Ramsay, 1975; Fitches et al., 1986; Tanner, 1989; Cosgrove, 1993).26

Geometry and microstructure of vein systems reflect stress and fluid pressure conditions27

during the fracturing and sealing processes involved in vein formation (e.g. Oliver and Bons,28

2001; Collettini et al., 2006; Mittempergher et al., 2009; Bons et al., 2012; Fagereng et al.,29
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2014). Here, we consider the geometry of flexural slip folds and the microstructure of bedding-30

parallel slickenfiber veins to discuss the timing of vein formation and the conditions of flexural31

slip. Folds in the Prince Albert Formation mudstones in the foreland basin of the Cape32

Fold Belt provide a natural laboratory of well-exposed structures, on which our arguments33

are based. The folds formed at temperatures less than 200◦C (de Swart and Rowsell, 1974;34

Frimmel et al., 2001), and therefore record brittle-ductile deformation within the normally35

brittle, seismogenic crust (Sibson, 1984; Scholz, 1988). In the recently suggested continuum of36

fault behaviors, spanning slip velocities from aseismic creep to regular earthquakes (Peng and37

Gomberg, 2010), the mechanics of faulting during folding, a form of continuous-discontinuous38

behavior within the seismogenic zone, may be particularly useful to address the controls on39

localized versus distributed deformation in the upper crust.40

2. Geological Setting41

The Cape Fold Belt is generally thought to have formed in an Andean-type margin during42

subduction of the Paleo-Atlantic underneath the Gondwana supercontinent (du Toit, 1937;43

Lock, 1980; de Wit and Ransome, 1992), between approximately 300 and 180 Ma (Hälbich,44

1992). The late Carboniferous (Pennsylvanian) to Middle Triassic Karoo basin is situated45

inland of the Cape Fold Belt, and interpreted as the retroarc foreland basin formed landward46

of the Cape Fold Belt during subduction (Fig. 1)(Catuneanu et al., 1998, 2005). Within the47

Karoo Basin, the Karoo Supergroup clastic sedimentary sequence unconformably overlies the48

Cape Supergroup. Whereas the Cape Supergroup rocks predate the formation of the Cape49

Fold Belt, the Karoo Supergroup was deposited syntectonically (Catuneanu et al., 1998, 2005).50

Here, we focus on deformation of the Prince Albert Formation, which is part of the Ecca Group51

of the Karoo Supergroup.52

The Prince Albert Formation is the lowermost unit of the Ecca Group. The Ecca Group53

was deposited in the early Permian (Visser, 1990; Bangert et al., 1999), and in the southern54

section of the main Karoo Basin it overlies the Dwyka Group, a glacial diamictite and the55

oldest group of the Karoo succession (Catuneanu et al., 1998, 2005). The Whitehill Formation,56

a black, carbonaceous shale, overlies the Prince Albert Formation (Visser, 1992). The Prince57

Albert Formation is a greenish-grey, mudstone package between 40 and 300 m thick (Johnson58

et al., 2006), containing tuffaceous layers dated to 288 ± 3.0 Ma and 289 ± 3.8 Ma (Bangert59

et al., 1999). After the deposition of the Prince Albert Formation, the main Karoo Basin60

continued to fill concurrent with north-south shortening in the Cape Fold Belt (Hälbich, 1992;61
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Catuneanu et al., 2005), leading to burial and horizontal shortening of the Prince Albert62

Formation. Frimmel et al. (2001) investigated the metamorphic conditions in the Cape Fold63

Belt, and concluded that the Cape Supergroup did not experience temperatures in excess of64

300◦C. Because the Karoo sediments were deposited on top of the Cape Supergroup, it is65

likely that the Prince Albert Formation was deformed under peak low-grade metamorphic66

conditions between 150 and 200◦C (de Swart and Rowsell, 1974).67

The field area of this study is located approximately 12 km south of the town of Laings-68

burg, where the Prince Albert Formation crops out within the northern foreland of the Cape69

Fold Belt (Fig. 1). The folds in the Prince Albert Formation mudstones in this area have70

previously been briefly described by Fagereng (2012) who noted the presence of chevron folds71

and abundant bedding-parallel, slickenfiber-coated flexural slip faults (Fig. 2). Craddock et al.72

(2007) studied calcite twins within the Prince Albert Formation, and unraveled two distinct73

deformation events; one of bedding-parallel, north-south greatest shortening, and a second74

reflecting bedding-oblique, steeply northeast plunging greatest shortening. The first event is75

consistent with approximate bulk pure shear and associated upright to steeply inclined folding,76

whereas the second may reflect a subsequent episode of overthrusting (Craddock et al., 2007).77

3. Fold Geometry78

The Prince Albert Formation is characterized by chevron folding at wavelengths ranging79

from less than a meter to about hundred meters. Folds are defined by folded bedding and80

associated with an axial planar cleavage. Within the Prince Albert Formation, in the study81

area, bedding thicknesses are typically ∼ 30 cm, but range from thin laminations (< 1 cm) to82

thick beds (∼ 100 cm) (Fig. 2a). Beds are laterally continuous along strike for at least tens83

of meters, where they have not been truncated by local reverse faults. Beds can further be84

differentiated into more competent silt-rich, clay-poor units and more incompetent clay-rich,85

silt-poor units (e.g. Fig. 2b). Tuff layers are locally present and a few centimeters thick.86

Bedding surfaces predominantly dip to the north-northeast and south-southwest at angles87

ranging from 20◦ to 80◦, such that fold interlimb angles vary from open to tight (Fig. 3a).88

Fold hinge lines are sub-horizontal and plunge gently ESE and WNW (Fig. 3a). The regional89

fold axial plane is steeply inclined to the south-southwest, reflected by an axial planar cleavage90

that varies from subvertical to moderately inclined (Fig. 3a). In other words, the folds are91

upright to moderately inclined and approximately south verging. Pencil lineation, sub-parallel92

to fold hinge lines, is abundant in clay-rich layers, and formed by the intersection of bedding93
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and axial planar cleavage. This lineation therefore approximates the orientation of the fold94

hinge line, and also plunges gently both ESE and WNW (Fig. 3a). Fold hinges are commonly95

angular, forming chevron folds, although more rounded fold hinge zones exist in more clay-rich96

horizons (Fig. 2a,b). Slickenlines and slickenfibers (Fig. 2c) plunge north-northeast and south-97

southwest at angles between 20◦ and 80◦ (Fig. 3b), and are thereby approximately orthogonal98

to the average ESE and WNW trending fold hinge lines (Fig. 3b). Fault planes containing99

the slickenfibers are generally bedding-parallel (Figs. 2a,b,3b), although in places cut upwards100

through bedding, particularly near fold hinges (Fig. 2a). Slickenfiber steps indicate reverse101

shear sense (Fig. 2c), and reversal in shear sense across fold hinges as expected in flexural slip102

folds.103

4. Slickenfiber-Coated Veins104

Bedding-parallel faults are abundant in the Prince Albert Formation and are identified from105

the presence of bedding-parallel slickenfiber shear veins. These veins dip at angles between106

20◦ and 82◦ (Fig. 4). Some slickenfibre veins are bedding-discordant, and have dip angles in107

the range 18◦ to 83◦, with a median value of 45 - 60◦ (Fig. 4). Single slickenfiber veins can be108

traced along strike for at least tens of meters. Vein thicknesses are variable both along-strike,109

down-dip, and between veins, but typically range from 0.5 to 20 mm.110

Slickenfiber-coated veins are continuous across fold hinges of open folds with gently dipping111

limbs (e.g. Fig. 2b). A reverse shear sense consistent with flexural slip occurs on fold limbs112

on either side of fold hinges, i.e. the shear sense reverses across the hinge, and there is no113

sign of shear displacement at the hinge itself. Veins are commonly thickest in fold hinge114

zones, comparable to saddle reefs described in Horne and Culshaw (2001). Craddock et al.115

(2007) reported slickenfibers that do not change shear sense across the fold hinge, but we find116

only very rare, isolated examples of this. The examples we have found are associated with117

slickenfibre surfaces that cross-cut bedding, i.e. do not accommodate flexural slip folding.118

The distances between consecutive shear veins along an approximately 70 m long north-119

south oriented outcrop transect were measured perpendicular to bedding. Figure 5a shows120

that there are a few distinct spikes in the cumulative distance between consecutive shear veins,121

which compared with field observations do not relate to thicker beds. The mean distance122

between shear veins is 1.2 m (s.d. = 1.3 m, n = 65), but distances range from 10 cm up to123

7 m (Fig. 5b).124

Slickenfibers are made up of several macroscopic quartz laminations, and are typically125
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between 5 cm and 10 cm long (Fig. 2c,d). The generally accepted macroscopic model for126

forming such veins is dilation along irregularities in a fault surface, where dilational sites127

are filled by precipitation from a fluid (Durney and Ramsay, 1973; Gratier and Gueydan,128

2007; Fagereng et al., 2010; Bons et al., 2012)(Fig. 6a). The shear veins comprise detached129

wallrock (mudstone) fragments, solid and fluid inclusions and sheet silicates cemented in vein130

quartz and in places calcite (Figs. 6b,7). In places, thicker than average shear veins, or layers131

within shear veins, contain mm-scale angular wallrock fragments in a matrix of vein quartz132

(Fig. 2d). We interpret these layers as hydrothermal breccias, but cannot confidently define133

them as either implosion or hydrofracture breccias. The brecciated fragments have variable134

shapes and orientations, but in general high aspect ratio fragments have long axes orientated135

subparallel to the vein walls.136

5. Vein Microstructure137

Photomicrographs were taken of thin sections cut parallel to slickenfibers and perpendicu-138

lar to vein margins. In the following section, we discuss vein morphology and microstructure.139

Crack-seal band spacing, as defined by distinct bands of fluid and solid inclusions, and angles140

between crack-seal bands and inferred slip surfaces were measured on scaled digital photomi-141

crographs using ImageJ software.142

5.1. Internal Vein Geometry143

The slickenfiber shear veins are generally composed of multiple layers of quartz and minor144

calcite, separated by subparallel wallrock layers or one or more cataclastic shear surfaces that145

are also subparallel to bedding (and thereby the vein margin) (Figs. 2d, 6a,b, 7a-d). As such,146

the internal geometry is consistent with type B bedding-veins as described by Koehn and147

Passchier (2000). The cataclasites are tens of micrometers thick surfaces, continuous for up148

to tens of centimeters, and characterized by fine-grained, quartz and phyllosilicate material149

cross-cutting vein quartz (Fig. 7c,d). Because the veins reflect bedding-parallel shear, wallrock150

layers parallel to the vein margin (e.g. Fig. 7a) must have been the bedding surface at some151

point in time, and can therefore also be interpreted as a slip surface. Consequently, the vein152

margin-parallel surfaces that define the internal layering of the shear veins are interpreted as153

localised shear surfaces, and referred to as such. These shear surfaces are comparable to the154

‘micro-transforms’ defined by Fagereng et al. (2010) in slickenfiber veins from the Chrystalls155

Beach Complex.156
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The overall geometry of the slickenfiber veins is a laminated structure where laminae are157

separated by shear surfaces (Fig. 6). In the classic growth model for slickenfiber veins, this158

structure is achieved by slip on the shear surfaces, associated dilation in microscopic dilational159

jogs, and slickenfiber growth as the dilational sites fill with a precipitate, in this case mostly160

quartz with minor calcite (Fig. 6a). In the event that slip on the shear surfaces is episodic,161

crack-seal inclusion bands (Ramsay, 1980) may develop (Fig. 6a). Where crack-seal bands162

are clearly observed, those that lie along the same shear surface are subparallel and mimic163

the shape of the wallrock-slickenfibre interface at the end the shear surface. Shear surfaces164

are typically at an angle of 50◦ to 70◦ to crack-seal bands and extension veins (Figs. 6b,165

7a,b,d). Because crack-seal bands form during slickenfibre growth, this must be the original166

angle between shear surfaces and inclusion bands, and any subsequent rigid body rotation167

would not alter this angle. If the folds were unfolded, the inclusion bands would dip toward168

antiform hinges. This is consistent with a reverse shear sense of slickenfibre veins formed during169

flexural slip folding, as also inferred by Fowler (1996) in chevron folds in Bendigo-Castlemaine,170

Australia.171

The microscopic structure of individual vein layers is controlled by several parameters,172

including stress, fluid pressure, temperature, Peclet number (diffusive vs. advective material173

transport), fracture opening rate, precipitation rate, among others (e.g. Durney and Ramsay,174

1973; Oliver and Bons, 2001; Bons et al., 2012, and references therein). We therefore describe175

the quartz morphology within slickenfibers in the next subsection.176

5.2. Quartz Morphology177

Quartz is the dominant vein mineral, and quartz crystal sizes vary from < 10 µm to178

∼ 2 mm. The dominant crystal shape is blocky to elongate-blocky grains of variable size (Fig.179

7c-e), although ‘stretched’ crystals (sensu Bons et al., 2012) are significant in some places180

(Fig. 7f). Stretched and elongate-blocky crystals typically exceed 0.5 mm in their longest181

dimension, commonly have serrated grain boundaries and long axes oriented at low angles182

(< 45◦) to slip surfaces (Fig. 7f). The slickenfibers therefore do not have a fibrous (sensu183

Bons et al., 2012) microstructure, but are rather composed of smaller aspect ratio quartz184

crystals. Except locally in some vein layers (Fig. 7f), quartz long axes do not have a clear185

preferred orientation relative to the shear surface (Fig. 7c,e). As in bedding-veins described by186

Koehn and Passchier (2000), quartz crystals do therefore not necessarily track vein opening,187

although internal layering does.188

A range of quartz microstructures are exhibited in close proximity to each other, typically189
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separated by a shear surface or set of shear surfaces (Fig. 7c-f). In places, quartz laminae with190

different morphology are separated by a zone containing multiple shear surfaces enveloped by191

a thicker cataclastic damage zone (Fig. 7c). Such cataclastic zones also separate quartz- and192

calcite-dominated laminae (Fig. 7d).193

In places, quartz layers contain isolated wallrock fragments, which are bounded by irreg-194

ular surfaces (Fig. 7a,b), and enveloped by blocky vein quartz. Wallrock is also incorporated195

into veins along solid and fluid inclusion bands (Fig. 7b,c,f). In places, these wallrock frag-196

ments contain a cleavage, implying they were incorporated after formation of the axial planar197

cleavage. Where inclusion bands are present, they indicate a crack-seal microstructure, and198

are commonly associated with serrated grain boundaries (Fig. 7f). However, there are numer-199

ous examples of where inclusion bands, and thus a crack-seal structure, are not present (e.g.200

7d,e).201

5.3. Inclusion Band Geometry202

The inclusion bands are oriented at a high angle to wallrock cleavage, and mimic the shape203

of adjacent vein margins (Fig. 7a). Adjacent inclusion bands are subparallel, and inclined at204

between 30◦ and 80◦ (typically 50◦ to 70◦) to adjacent slip surfaces (Fig. 7b,c,f). Inclusion205

bands are straight in places, but also curve or turn (Fig. 7a,f), although inclusion bands along206

the same slip surface are typically parallel. Inclusion bands tend to be continuous across single207

quartz layers. In places, however, inclusion bands may be discontinuous and stop at a quartz208

grain boundary. Within the same vein, inclusion bands may be present in only parts of one209

or more vein laminae.210

The spacing between adjacent crack-seal inclusion bands is a measure of minimum vein211

opening in each crack episode (Ramsay, 1980; Renard et al., 2005; Fagereng et al., 2011). To212

quantify inclusion band spacing, spacings were measured along five transects, parallel to slip213

surfaces, in four vein samples (Fig. 8, Table 7). The number of adjacent inclusion bands214

varies from 17 to 165 in these transects, but it is common to find less than 17 adjacent bands215

in slickenfiber vein samples from flexural-slip folds in the Prince Albert Formation. The216

cumulative spacing between the inclusion bands reaches up to 17 mm, the entire length of a217

small slickenfiber (Fig. 8).218

For each transect, cumulative inclusion band spacing and inclusion band number (num-219

bered sequentially from one end of the transect to the other) show a near-linear relationship,220

although there are some clear steps in places (Fig. 8). The standard deviation of the inclusion221

band spacing is between approximately 50 and 100 % of the mean (Table 7), an effect of some222
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spacings being significantly larger than the mean, and observed as steps in the cumulative223

spacing plots (Fig. 8). The mean spacing ranges from 9 µm to 1 mm, a variation of over224

two orders of magnitude between five transects. Four out of five transects, however, have225

mean spacings in the range of 9 µm to 40 µm. All the transects considered have a posi-226

tively skewed frequency-spacing distribution (Fig. 8). These distributions also highlight some227

large deviations from the mean spacing, reflected in the significant standard deviations in all228

transects.229

6. Discussion230

6.1. Deformation History and Frictional Reactivation in the Prince Albert Formation231

Hinge lines plunging gently east and west, and steeply dipping fold axial planes indicate232

that the studied part of the Karoo foreland basin experienced horizontal north-south short-233

ening. Prevalent reverse dip-slip faulting on east-west striking faults indicates a regime of234

subhorizontal, north-south oriented, greatest compression. Assuming Andersonian mechanics,235

and defining the three principal compressive stresses as σ1 ≥ σ2 ≥ σ3, this deformation regime236

is associated with a subvertical σ3, and σ2 parallel to fold hinge lines. The presence of pencil237

lineation formed by cleavage-bedding intersection in clay-rich units, implies that temperature238

was not sufficient to allow shortening-related, axial planar cleavage to become a more devel-239

oped fabric than bedding (‘early deformation stage’ of Ramsay and Huber, 1983). This is240

consistent with temperature estimates by Frimmel et al. (2001), who suggest that metamor-241

phism in the foreland of the Cape Fold Belt did not exceed subgreenschist conditions.242

Slickenfiber-coated bedding-parallel veins in the Prince Albert Formation indicate that243

flexural slip occurred along bedding surfaces. The fact that slickenfibers trend north and south,244

show a reverse sense of shear, and are oriented subperpendicular to fold hinge lines implies that245

slickenfiber shear veins accommodated north-south shortening in the same kinematic regime246

as the folds. Moreover, in fold hinge zones the slickenfibre veins show a reversal in shear sense,247

no shear displacement at the hinge line, and significantly thickened veins, observations that248

put together support a syn-folding origin (cf. Fowler, 1996; Horne and Culshaw, 2001). Shear249

veins cross-cut wallrock cleavage (Fig. 7b), and therefore the timing of shear vein formation250

progressed into late stages of folding, coinciding with or post-dating the development of axial251

planar cleavage.252

The optimal angle for frictional reactivation of a cohesion-less plane is θ∗r = 0.5 tan−1(1/µs)253

(Sibson, 1985), measured from σ1 in the σ1σ3 plane, and where µs is the static coefficient of254
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friction. The Prince Albert Formation is composed primarily of quartz and clay minerals,255

and µs is therefore likely in the range 0.3 to 0.6 (Byerlee, 1978; Morrow et al., 1992). As a256

result, the optimal reactivation angle is between 30◦ and 37◦. The stress ratio σ1/σ3 required257

for reactivation is at its lowest when the angle θr between the plane to be reactivated and258

σ1 is equal to θ∗r (Sibson, 1985, 1990). The required σ1/σ3 ratio increases significantly at259

angles less or more than θ∗r , so that σ1/σ3 required for reactivation is ∼ 50 % greater at angles260

± 15◦ from θ∗r , compared to at θ∗r (Sibson, 1990). Thus, assuming σ1 is horizontal for reverse261

faulting along bedding planes in the Prince Albert Formation, flexural slip is most likely to262

occur along beds dipping at angles between 15◦ and 52◦. At θr greater than 2θ∗r , reactivation263

can only occur if σ′3 is less than zero, where σ′3 = σ3 − Pf and Pf is fluid pressure (Sibson,264

1985). Therefore, unless fluid pressure is elevated to values in excess of σ3, bedding-parallel265

slip cannot occur at dip angles greater than approximately 74◦.266

No faults dipping at less than 15◦ were observed in this study (Fig. 4). Combined with the267

observation that slickenfiber veins in places cross-cut axial planar cleavage, this may imply that268

folding by flexural slip initiated only after some steepening of bedding planes had occurred by269

other folding mechanisms. Alternatively, continued folding after initiation of flexural slip may270

have led to steepening of all flexural slip faults, such that no very gentle dip angles (< 15◦)271

have been preserved. These options are difficult to separate; however, it is mechanically easier272

to explain the evolution of flexural slip folds if at least a small amount of bending occur by273

early, gentle folding without bedding-parallel slip.274

The average dip angle of bedding-parallel slickenfiber veins accommodating flexural slip275

folding is 50◦ ± 14◦ (n = 58), greater than expected from the predicted optimal reactivation276

angle of 30◦ to 37◦ in a quartz and clay dominated sequence. Some bedding-parallel faults277

are also present at angles greater than the inferred lock-up angle of 2θ∗r = 74◦, reaching dip278

angles in excess of 80◦. Because bulk horizontal shortening will lead to steepening of planes279

striking perpendicular the direction of greatest shortening, i.e. bedding on fold limbs in rela-280

tively upright folds, it is possible that progressive folding led to steepening of bedding-parallel281

faults also after they stopped being active. For example, the formation of a subvertical, axial282

planar cleavage would have contributed to horizontal shortening and associated steepening of283

bedding planes. However, the prevalence of bedding-parallel fault dip angles greater than the284

optimal reactivation angle, the observation that steeply dipping bedding-parallel faults cross-285

cut cleavage, and lack of deformation of vein material in fold hinges, implies that flexural slip286

folding occurred during progressive flattening and was in later stages of folding accommodated287
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on faults that were steeper than the optimal reactivation angle. The range of preserved dip288

angles in bedding-parallel slickenfiber veins may therefore preserve a range of fault orientations289

from well oriented to severely misprinted, developed during progressive folding where tighter290

folds required slip on severely misprinted planes toward the end of folding.291

A likely deformation sequence involves initiation of flexural slip folding by slip on bedding292

surfaces after bulk shortening led to gentle folding and dip angles of ∼ 15◦. Continued folding293

caused tightening of folds, accommodated by slip on bedding-parallel faults at progressively294

steeper dip. The tightness of folds is then limited by the weakness of bedding planes, which295

determined the steepest angle at which fault slip was possible. This appears to be < 75◦ for296

most faults (Fig. 4), as expected from Andersonian mechanics with clay-rich fault planes, but297

a few steeper exceptions exist. Craddock et al. (2007) suggested that folding was followed298

by transport on discrete thrust faults with a top-to-the north shear sense. This is possible,299

and may have occurred as folds tightened to a point where slip on larger discrete faults,300

not observed in the field area but possibly present at the contacts between formations (e.g.301

Lindeque et al., 2011), became preferable. It is also possible that the folding in the Prince302

Albert Formation accommodates a relatively small component of shortening, compared to303

displacements on gently dipping thrusts that are not exposed, but have been inferred on304

geophysical profiles (Stankiewicz et al., 2007; Lindeque et al., 2011).305

Folding clearly dominates the deformation within the Prince Albert Formation, but ap-306

pears largely accommodated by localized bedding-parallel slip, with subsidiary bedding-discordant307

faults. Bedding-discordant faults have a similar frequency-distribution of dip angles as bedding-308

parallel faults, with prevalence of dip angles in the range 30◦ to 60◦, but with some faults309

dipping at more than 80◦. Some of the very steep faults are in fold hinges (e.g. Fig. 2a),310

and appear to have initiated as bedding-parallel, and cross-cut bedding where the dip angle311

is gentle near the fold hinge. Other steep faults are at relatively low (30◦ or less) angles to312

bedding, and may represent faults that occurred before folding, and were then rotated into313

their current orientation during folding. This interpretation, and the observation that there is314

little soft sediment deformation in the Prince Albert Formation, is important because it seems315

likely that the Prince Albert Formation was lithified and comprising rigid beds separated by316

weak bedding planes before north-south shortening occurred. This supports the suggestion of317

Tankard et al. (2009) that deformation in the Cape Fold Belt initiated in the Triassic (rather318

than the Permian or Carboniferous), after burial and diagenesis of Permian sediments.319
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6.2. Fault Spacing320

Distances between adjacent bedding-parallel shear veins are variable (0.1 - 7 m) and het-321

erogeneous (Fig. 5). Typically, shear surfaces in flexural slip folds are closer together in322

steeper dipping fold limbs to accommodate greater flexural slip, whereas in gently dipping323

fold limbs the relative amount of flexural slip is less and therefore shear surfaces are spaced324

further apart (Horne and Culshaw, 2001; Hayes and Hanks, 2008). However, the studied folds325

are relatively upright and do not vary greatly in interlimb angle, so that variation in limb dip326

is unlikely to be a major factor explaining the variation in slickenfiber vein spacing.327

Although the shear veins accommodating flexural slip are along bedding planes, they are328

spaced further apart than the typical bedding thickness of ∼ 0.3 m in the Prince Albert329

Formation. Fowler and Winsor (1997) argue that the formation of bedding-parallel shear330

veins occurs at interfaces between relatively competent and incompetent sedimentary layers331

during progressive folding, driven by a gradient in shear strain rate at such interfaces. This332

effect may have played a role in developing shear veins at the interface between massive (clay-333

poor) and cleaved (clay-rich) layers in the Prince Albert Formation; however, there are closely334

spaced shear veins also between clay-rich layers (e.g. Fig. 2a), where this explanation is not335

sufficient.336

Opening vein-filled fractures, particularly fractures filled by subhedral to euhedral quartz337

that indicates growth into a fluid filled crack (such as in Fig. 7c), requires elevated fluid338

pressure (Oliver and Bons, 2001; Bons et al., 2012). High fluid pressure assisting vein opening339

and growth may have been accentuated by the presence of relatively impermeable bedding340

layers within the Prince Albert Formation that could behave as seals (e.g. Sibson, 1990; Cox341

et al., 2001). This could result in localized areas of high fluid pressure and associated formation342

of bedding-parallel veins. Fold hinge zones are generally zones toward which material migrate343

during fluid-assisted deformation by pressure solution (Ramsay, 1977), and it is clear in Fig.344

2a that the density of slickenfiber-coated bedding-parallel veins, at least locally, increases in345

the fold hinge region. This may relate to decreased slip and increased bedding-perpendicular346

dilation in the hinge region, such that bedding-parallel veins become dominantly tensile. More347

tensile opening would require thicker veins or a greater density of veins. This is consistent348

with slickenfiber-coated bedding-parallel veins forming during flexural slip, because bedding-349

parallel displacement along fold limbs would need to be accompanied by bedding-normal350

displacement at the fold hinge, as testified by thickened veins and reversal in shear sense351

across hinge regions.352
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Although bedding-layer competency contrast is also likely to have an effect, fluid pressure353

variations may have been the primary control on the spacing of bedding-parallel veins in the354

Prince Albert Formation. This interpretation may be biased by the relatively easy preservation355

of bedding-parallel slickenfiber veins compared to any bedding-parallel slip surfaces along356

which no vein developed. It could be that the observed spacing of bedding-parallel slickenfiber357

veins differs from the actual spacing of shear surfaces during folding. An alternative to a358

fluid pressure controlled fault spacing is therefore that the fault spacing was controlled by359

competency contrasts (Fowler and Winsor, 1997), but as veins formed preferentially along360

high fluid pressure faults, slip surfaces from high fluid pressure zones have been preferentially361

preserved.362

6.3. Stress and Fluid Pressure Conditions During Flexural Slip363

Where developed, tensile fractures in the Cape Fold Belt, and in the Prince Albert For-364

mation, are commonly subhorizontal (Craddock et al., 2007), as expected for an Andersonian365

stress regime favoring reverse faulting. An exeption, however, is bedding-normal veins de-366

veloped in some fold hinges, where these veins accommodate local tensile stresses caused by367

bending of relatively rigid beds. In addition, inclusion bands developed within flexural slip368

shear veins are generally at 50◦ to 70◦ to vein margins dipping at 50◦ to 70◦, i.e. also roughly369

horizontal. These inclusion bands are developed by consecutive cracking and sealing (Ramsay,370

1980; Cox and Etheridge, 1983; Renard et al., 2005; Fagereng et al., 2010), and likely reflect371

the orientation of tensile fractures in a micro-dilational jog (Fig. 6a). Subvertical, pressure372

solution cleavage also supports a regime where σ1 is horizontal, and σ3 is vertical. For the373

following discussion, the assumption is therefore made that during flexural slip folding, σ1 was374

horizontal, and perpendicular to cleavage, i.e. north trending, and σ3 was vertical. We apply375

traditional Mohr-Coulomb mechanics and consider conditions of slip nucleation on existing376

weak surfaces within otherwise intact rock.377

As discussed above, slickenfiber veins represent incremental slip on surfaces ranging from378

well to poorly oriented, implying that reshear occurred on progressively more unfavourably379

oriented surfaces as folding progressed. Ideally oriented faults would be dipping at 30◦ to 37◦380

in these quartz-clay rocks, and lack of optimally oriented discordant faults (Fig. 4) implies381

that frictional failure of surrounding rock, initiating new faults, was not a preferred brittle382

deformation mode during folding. However, tensile failure of rock immediately surrounding383

slip surfaces must have occurred to create macroscopic, layered, slickenfibers containing wall384

rock fragments. One mechanism to grow such fibers was suggested by Fagereng et al. (2010)385
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and termed ‘dilational hydroshear’. In this mechanism, shear failure along weak planes oc-386

curs coincidentally with tensile failure of surrounding rock, such that conditions must prevail387

where a shear failure criterion is reached along a pre-existing surface at the same time as the388

hydrofracture criterion is achieved in the host rock of this shear surface. This implies the fluid389

pressure, Pf , must equal σ3 plus the tensile strength of the host rock, T0, and that differential390

stress is less than 4T0 (Secor, 1965; Etheridge, 1983). For frictional reactivation to occur at391

the same time as tensile failure, the following criterion must be met (Sibson, 2009; Fagereng392

et al., 2010):393

(σ1 − σ3) =
tan θr + cot θr
1 − µs tan θr

× (c− µsT0) (1)

where c is the cohesion of the slip surface. For shear surfaces with low cohesion (0.1 MPa)394

and assuming a tensile strength of 1 to 10 MPa for surrounding mudstone (Lockner, 1995),395

conditions for ‘dilational hydroshear’ as a function of reactivation angle θr are estimated in396

Fig. 9. This mechanism of concurrent slip and tensile fracture appears to only occur on397

unfavorable to severely misoriented faults, as a positive (σ1 − σ3) value is only obtained for398

θr in excess of about 60◦ for µs of 0.6, and over 75◦ for µs of 0.3. It may therefore be that399

flexural slip occurred along bedding planes from an early stage of folding, but only produced400

slickenfiber-coated fault surfaces involving coincident shear and dilation as progressive folding401

led to steepening of fold limbs and slip occurred on weak, unfavorably oriented planes. If402

this interpretation is correct, then at least some slickenfibers reflect slip allowed by high403

fluid pressure at unfavorable conditions for reactivation. In this case, that would mean than404

flexural slip folding in the Prince Albert Formation mudstones continued, at least locally,405

after faults steepened to unfavorable angles, and that this was allowed by fluid pressures in406

excess of lithostatic along weak bedding planes. Slickenfibre laminae with quartz morphology407

not involving crack-seal bands at high angles to slip surfaces, may have formed by frictional408

reactivation of more preferably oriented planes, but it is then intriguing that crack-seal bands409

were not preserved. This lack of crack-seal band preservation may indicate a difference in410

fault slip style between well and poorly oriented planes, potentially governed by the maximum411

contained overpressure.412

An alternative mechanism for slickenfiber growth involves slip assisted by dissolution-413

precipitation creep, a viable mechanism in fine grained rocks with a pressure solution cleavage414

(Bos et al., 2000; Bos and Spiers, 2001; Niemeijer and Spiers, 2006; Gratier and Gueydan,415

2007; den Hartog and Spiers, 2014). In this model, pressure solution allows for dissolution of416
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asperities (irregularities) along the slip surface, and precipitation occurs in low-stress dilatant417

sites, without necessarily requiring brittle fracture (Gratier and Gueydan, 2007). This is418

a possible mechanism in the temperature window of 150 - 200◦C that is proposed for the419

Cape Fold Belt, as fine grain sizes and mobility of silica in solution at these conditions are420

favorable for pressure solution (Fagereng, 2014). However, the highly localized slip required421

for flexural slip rather than flexural flow, velocity-weakening behavior observed in quartz in422

this temperature range (Blanpied et al., 1995), and the presence of cataclasites along slip423

surfaces, indicate that at least a component of frictional sliding is likely for the flexural slip424

folds in the Prince Albert Formation.425

6.4. Fault Slip Style426

Vein quartz in shear veins from the Prince Albert Formation is largely unaffected by post-427

precipitation deformation and recrystallization, an effect of the low temperature of precipita-428

tion (well below the onset of quartz plasticity at ∼ 350◦C, Hirth et al., 2001). We therefore429

use the microstructure of these veins to discuss the kinematics and mechanics of flexural slip430

that accommodated deformation during the folding in the Prince Albert Formation.431

In places, the shear veins preserve a crack-seal microstructure. The crack-seal bands have432

a relatively consistent spacing (within an order of magnitude) along single shear surfaces,433

but spacing varies by orders of magnitude between transects from different veins (Fig. 8).434

The spacing between inclusion bands reflects the sealed crack from each individual crack-435

seal episode (Ramsay, 1980; Cox and Etheridge, 1983; Cox, 1987). This spacing is therefore436

a minimum estimate for the crack aperture, as the crack may not have been completely437

sealed. It is possible for a crack-seal structure to form by continuous fault slip, if continuous438

vein opening is coupled to a precipitation rate that increases with time until the crack is439

filled, and then a new crack forms adjacent to the sealed crack (Lee and Wiltschko, 2000).440

This mechanism would, however, require that vein growth rate can increase during sealing441

of each growth increment. In the veins studied here, crystals are usually continuous across442

inclusion bands, implying that the size and orientation of crystal faces stay approximately443

constant, and unless other parameters change significantly growth rate should not increase444

during sealing. Alternatively, the presence of inclusion bands implies incremental slickenfiber445

growth (e.g. Renard et al., 2005; Fagereng et al., 2011). In this case, vein opening is faster446

than precipitation, and sealing occurs at a constant or decreasing rate (e.g. Lee and Wiltschko,447

2000). The blocky and elongate-blocky quartz morphology that is predominant in the Prince448

Albert Formation veins is generally inferred to be associated with growth into open cracks449
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(Cox, 1987; Oliver and Bons, 2001; Bons et al., 2012), rather than slow subcritical grain growth450

which is more commonly associated with fibrous growth (Urai et al., 1991; Fisher and Brantley,451

1992). Therefore, we infer that the crack-seal bands developed along faults accommodating452

flexural slip in the Prince Albert Formation reflect incremental slip where each slip episode453

created a dilatant crack which was subsequently filled by quartz precipitation.454

A number of interpretations can be made based on the inference that crack-seal bands455

reflect episodic fault slip. Another inference we have made, is that the slickenfiber veins con-456

taining crack-seal bands, reflecting tensile cracks, formed on faults active at fluid pressures457

locally in excess of σ3. Each crack event is then associated with a point in time where fluid458

pressure was locally lithostatic, because σ3 is inferred as vertical, and sealing reflects precip-459

itation of quartz driven by the fluid pressure drop induced by crack dilation. In this case,460

slip along bedding planes occurs as fluid pressure reaches a critical value, and is relatively461

independent of fluctuations in shear stress. Consequently, the relatively consistent inclusion462

band spacing along any transect implies cycling of fluid pressure levels and failure at a rel-463

atively constant maximum contained fluid pressure. These two interpretations, that slip on464

slickenfiber-coated bedding surfaces was controlled by fluid pressure fluctuations, and led to465

creation of open space in characteristic increments, lead to a third inference; flexural slip in-466

volved stick-slip motion along unfavourably oriented bedding planes, at least in late stages of467

folding.468

Stick-slip motion is generally associated with earthquake slip, and incrementally grown469

slickenfibers with crack-seal bands at a high angle to vein walls may therefore reflect episodic470

earthquake slip on unfavorably oriented faults under low effective stress conditions. Slip471

increments on the order of 10 µm to 1000 µm on faults that are continuous for tens to hundreds472

of meters, imply a ratio of average slip, ū, to potential rupture length, L, of 10−6 < ū/L <473

10−5. Because fault length likely increases as a fault grows by incremental slip, this is likely an474

underestimate of ū/L, as each slip event likely had a smaller L than the entire available fault475

length. Stress drop, ∆τ , is related to ū/L with the relation ∆τ = CGū/L (Kanamori and476

Anderson, 1975), where C is a geometrical factor, and G is the shear modulus and typically477

30 GPa in the brittle crust (Turcotte and Schubert, 2002). For a circular rupture where478

C = 7π/16, the stress drop for slip increments in this study can then be estimated as roughly479

between 40 and 400 kPa, although locally higher and lower stress drops could have occurred.480

Although significant uncertainties are involved in these numbers, episodic slip events recorded481

in crack-seal slickenfiber veins here appear to have stress drops of no more than a few hundred482
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kPa, on the low end of the range of stress drops calculated for geophysically observed events483

(Scholz, 2002). The magnitudes of such events would be small; an average slip of 30 µm on a484

10 m radius (r) fault would give a moment, defined as M0 = Gπr2ū for a circular rupture (Aki,485

1967), of approximately 3×108 Nm. Larger slip of 1 mm over a 100 m radius fault would give486

a moment of about 9×1011 Nm. Taking moment magnitude, Mw, as equal to 2/3(logM0−9.1)487

(Purcaru and Berckenhemer, 1978; Hanks and Kanamori, 1979), this moment range translates488

to a moment magnitude range of -0.5 to +1.9. Repeating low stress drop events in this small489

magnitude range is comparable to observations of low frequency earthquakes in subduction490

zones (Ito and Obara, 2006; Peng and Gomberg, 2010) and repeating microseismicity on the491

San Andreas fault (Nadeau et al., 1995; Nadeau and McEvilly, 2004). A mechanism analogous492

to repeating small, possibly low stress drop, earthquakes, was also suggested for the formation493

of slickenfiber veins in an exhumed accretionary mélange by Fagereng et al. (2011).494

As opposed to slickenfiber veins studied by Fagereng et al. (2011), the slickenfibers involved495

in flexural slip folding in this study do not have a uniform crack-seal structure, but also include496

significant segments and layers defined by a blocky microstructure. Blocky quartz, as well as497

subhedral and elongate-blocky crystals present in places, imply growth into an open space498

that opened in one event. Also, for these microstructures to be preserved, rather than fibrous499

quartz, vein opening rate likely exceeded growth rate (Lee and Wiltschko, 2000; Bons et al.,500

2012). Accordingly, the slickenfiber veins do not exclusively record episodic crack-seal growth501

representing tens to hundreds of events (as depicted in Fig. 8), but also single slip events502

of greater magnitude. There is also a possibility that some of these events occurred by a503

‘crack-seal, slip’ mechanism as proposed by Petit et al. (1999). This would imply that slip504

along shear surfaces, preserved as cataclasites, led to dilatant opening of zones between slip505

surfaces (as in Fig. 6a), and these areas were then sealed over time, until a new slip event may506

have occurred. There is no constraint on reactivation angle relative to σ3 in slickenfiber veins507

that lack crack-seal bands reflecting tensile opening in cracks at a high angle to slip surfaces.508

It is possible, therefore, that slickenfibers formed by this ‘crack-seal. slip’ mechanism reflect509

shear under lower contained fluid pressure, at optimal or less unfavourable orientation than510

the slip by the dilational shear mechanism outlined above.511

Overall, the slickenfiber veins reflect a variety of slip increment magnitudes, associated512

with dilatancy allowing for quartz precipitation. In places, incremental stick-slip is evident513

from blocky quartz microstructures and crack-seal inclusion bands, reflecting tens to hun-514

dreds of slip increments of characteristic order of magnitude, and possibly reflecting repeating515
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micro-earthquakes. We infer these microstructures to have formed under high fluid pressures516

to explain the high angle between coincident shear end tensile fracture. In other places, larger517

zones of blocky, elongate-blocky, and euhedral to subhedral quartz, adjacent to cataclastic518

slip surfaces, indicate larger and possibly single event slip increments. This latter slip style519

may reflect shear under lower fluid pressure conditions along well-oriented to slightly misori-520

ented planes. This variety in slickenfiber microstructures may indicate that multiple fault slip521

styles occurred on a single fault segment, potentially as a function of increasingly unfavorable522

orientation as faults steepened with progressive folding.523

7. Conclusions524

In conclusion, we have made a number of observations and inferences regarding slickenfiber525

veins associated with flexural slip folding in the Prince Albert Formation of the Karoo foreland526

basin of the Cape Fold Belt. We suggest that these veins formed by localised frictional sliding527

within a zone of distributed deformation. The veins therefore reflect fault slip styles recorded528

from a zone of mixed continuous-discontinuous deformation.529

1. Bedding-parallel slickenfiber veins thicken in fold hinges and show a reversal in shear-530

sense such that the hanging wall moves toward the hinge line on both sides of the531

hinge. As a result, there is no shear displacement at the hinge, but rather a com-532

ponent of bedding-perpendicular extension. The veins commonly also cross-cut axial533

planar cleavage. Bedding-parallel slickenfiber veins are therefore inferred to have formed534

progressively during flexural slip folding.535

2. Bedding planes that accommodated flexural slip during folding are characterized by536

slickenfibre-coated surfaces, and typically dip at angles greater than the optimal reacti-537

vation angle of 30◦ to 37◦. The range in dip angles indicates faults ranging in orientation538

from well to poorly oriented, as expected if folds tighten progressively until lock-up an-539

gles are reached.540

3. Slickenfiber veins formed by a mixture of slip styles, but generally involving stick-slip541

behavior along one or more shear surfaces. Some veins record tens to hundreds of slip542

increments on the order of tens of micrometers to a few millimeters, whereas other veins543

reflect quartz precipitation into open spaces that imply slip increments of as much as a544

few centimeters.545

4. Shear veins locally contain subhorizontal crack-seal bands and are in places associated546

with subhorizontal tensile fractures. Formation of these tensile fractures imply fluid547
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pressures in excess of the least compressive stress, which was subvertical and therefore548

approximately lithostatic. Flexural slip folding in this location therefore, locally and549

likely in late stages of folding, involved slip on low cohesion, weak planes, assisted by550

local and transient lithostatic fluid pressure conditions.551

5. Stick-slip deformation along bedding-planes, occurring under low effective stress condi-552

tions, may reflect low stress drop seismic events as recorded in some subduction zones553

and along the San Andreas fault. The mixture of slip increments and vein quartz mi-554

crostructures within any one slickenfiber vein highlights the possibility that a single555

fault can be capable of several fault slip styles, including slow, fast, and intermediate556

slip rates. The type of fault slip may be governed by the local maximum contained557

overpressure, which is again governed by the degree of misorientation of planes available558

for reactivation. Increasing misorientation as folds progressively tighten, may therefore559

lead to slip at decreasing effective stress in late phases of folding as faults begin to lock560

up. Active flexural slip folding may therefore be associated with a complex deforma-561

tion pattern involving continuous deformation of folded layers accompanied by variable562

magnitude frictional stick-slip along discrete, mostly bedding-parallel, fault surfaces, at563

least until slip on new, through-going fault surfaces becomes preferable.564
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Table and Figure Captions754

Figure 1: Location of the study area. a) Overview of southern Africa, with the extent of the Main Karoo Basin

and the Cape Fold Belt (after Johnson et al., 1996), the rectangle showing the study area related to the map

in panel (c). b) Schematic cross-section of the Cape Fold Belt and the Karoo Basin, based on a composite

cross-section east of the study area, compiled by Tankard et al. (2009). c) Local geology in the area around

Laingsburg, same legend as in (b), after the 1:1,000,000 geological map of South Africa. The dashed rectangle

shows the area from which samples and measurements were collected.

Figure 2: Field photographs. a) Small antiform within the Prince Albert Formation, bedding-parallel

slickenfiber-coated veins are highlighted in dashed red lines, discordant slickenfiber-coated faults are in yel-

low. b) Fold hinge zone with massive, fractured, clay-poor bed and cleaved, clay-rich beds, separated by

slickenfiber-coated shear veins. Note thickening of bedding-parallel vein in the fold hinge, where the shear

displacement is zero as the vein opening vector is bedding-normal rather than bedding-oblique in this location.

c) Close-up of slickenfiber coated bedding plane.

Figure 3: Lower hemisphere, equal area, stereoplots showing orientations of (a) poles to bedding bedding (open

circles, n = 103), fold hinge lines (black triangles, n = 29), pencil lineation (red open diamonds, n = 35),

and cleavage (dashed great circles, n = 45); and (b) bedding-parallel faults (black solid great circles, n = 57),

discordant faults (red dashed great circles, n = 20), and slickenfibers (black, filled circles, n = 79).

Figure 4: Histogram showing the frequency distribution of fault dip angles for bedding-parallel (n = 57) and

discordant (n = 20) faults, identified by slickenfiber-coated surfaces.

Figure 5: Spacing of bedding-parallel, slickenfiber-coated veins along a north-south transect, where spacing was

measured perpendicular to bedding. a) Cumulative spacing against vein number, where veins are numbered

sequentially as they intersect the transect line. Note a few large steps in spacing, within an otherwise near-

linear relationship. b) Histogram showing the frequency distribution of vein spacing (n = 65), note a positively

skewed distribution with most spacings less than 1 m, but a few instances of several meters spacing between

adjacent fault veins.
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Figure 6: Geometry of slickenfiber veins. a) Typical model for the development of slickenfiber vein geometry

by incremental dilation on an uneven fault surface (after Fagereng et al., 2010; Bons et al., 2012). At time

= 0 the fault initiates, and at each increment of slip, dilatant zones open by an amount dependent on the

slip magnitude. After n increments of slip (at time = n), a macroscopic slickenfiber with n crack-seal bands

has opened. Note that whether crack-seal bands are preserved depends on the relative rates of vein opening

and mineral precipitation (Lee and Wiltschko, 2000). In the final vein, fibers may be laminated, with laminae

separated by slip surfaces, and containing crack-seal bands (dashed lines in sketch). b) Scanned thin section

cut parallel to slickenfibers and perpendicular to the slickenfiber-coated bedding plane. Like the model in (a),

this vein comprises multiple quartz laminae separated by slip surfaces (dashed red lines). Note relatively high

angle (60 - 70◦) between inclusion bands, extension veins (that are parallel to inclusion bands and shown in

blue dashed lines), and slip surfaces.

Figure 7: Photomicrographs illustrating the internal geometry and morphology of slickenfiber-coated, bedding-

parallel veins from flexural slip folds in the Prince Albert Formation. (a) and (b) are in plane-polarized light,

the rest in cross-polarized light. a) Numerous subparallel slip surfaces, defined by wallrock fragments and/or

thin cataclasites, lie at approximately 60◦ to inclusion bands, and separate multiple layers of vein quartz. b)

Closer-up view of slip surface and inclusion bands, in a vein that cross-cuts wall rock foliation, which is near-

perpendicular to inclusion bands. c) Elongate-blocky quartz within a slickenfiber vein, surrounding a zone

of multiple cataclasite slip surfaces. d) Layers of block quartz and calcite separated by slip surfaces that are

defined by multiple cataclasites separated by thin damage zones. e) Layers of blocky and euhedral to subhedral

quartz separated by a thin slip surface. f) Quartz layer characterised by stretched quartz crystals, with serrated

grain boundaries and inclusion bands indicating a crack-seal microstructure.

Figure 8: Locations and data from transects along slip surfaces to measure the spacing between inclusion bands.

Left column: sample numbers and thin section scans showing the location of the transects in red lines (circled

to be more visible). Middle column: Cumulative spacing of inclusion bands against inclusion band number,

where the bands were numbered sequentially as they intersect the transect line. Right column: Histograms

illustrating the frequency distribution of inclusion band spacings along each transect.

Figure 9: Conditions for simultaneous frictional reactivation of bedding surfaces with cohesive strength 0.1 MPa,

frictional coefficient of µs and dip θr, and tensile opening of surrounding rock with tensile strength T0. Cal-

culations using Eq. 1 from Sibson (2009), as adapted by Fagereng et al. (2010). These conditions allow for

a mechanism of slickenfiber growth by shear along weak surfaces and concomitant opening of dilational zones

between these slip surfaces (as in Fig. 6a), and is only possible for the parameters that yield (σ1−σ3) > 1. For

other conditions, shear failure will occur at fluid pressures that are insufficient for concomitant hydrofracturing.

Table 1: Statistics of measured spacing between adjacent inclusion bands along transects shown in

Figure 8.
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Table 1: Statistics of measured spacing between adjacent inclusion bands along transects shown in
Figure 8.
Sample LB10 LB11-1 LB11-2 LB13 LB17
Number of inclusion bands 24 65 63 165 17
Cumulative spacing (mm) 0.89 2.6 0.54 3.6 17
Mean spacing (µm) 37 40 9 22 1000
Standard deviation (µm) 19 47 5 16 555
Minimum spacing (µm) 10 4 3 3 180
Maximum spacing (µm) 67 220 25 82 2600
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