
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/69 7 7 5/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Zh e n g,  Guodon g,  Kuno, Akihito, M a h a di, Talib , Eva n s,  David J., Miya h a r a ,  M a s a aki,

Taka h a s hi, Yoshio, M a t s uo, Motoyuki a n d  S hi mizu, Hi ros hi 2 0 0 7.  I ron  s p e ci a tion  a n d

mi n e r al  ch a r ac t e riza tion  of con t a min a t e d  s e di m e n t s  by coal mining  d r ain a g e  in

N e a t h  Ca n al, Sou t h  Wales,  U nit e d  Kingdo m.  Geoc h e mical Jou r n al 4 1  (6) , p p .  4 6 3-

4 7 4.  1 0.23 4 3/g eoch e mj.41.46 3  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.23 4 3/g eoc h e mj.41.46 3  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



463

Geochemical Journal, Vol. 41, pp. 463 to 474, 2007

*Corresponding author (e-mail: gdzhuk@hotmail.com)

Copyright © 2007 by The Geochemical Society of Japan.

Iron speciation and mineral characterization of contaminated sediments by
coal mining drainage in Neath Canal, South Wales, United Kingdom

GUODONG ZHENG,1,2,3* AKIHITO KUNO,4 TALIB A. MAHDI,2 DAVID J. EVANS,5 MASAAKI MIYAHARA,3,6

YOSHIO TAKAHASHI,3 MOTOYUKI MATSUO4 and HIROSHI SHIMIZU3

1Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences,
382 West Donggang Road, Lanzhou 730000, P.R. China

2GRC, School of Engineering, Cardiff University, Cardiff CF24 3AA, U.K.
3Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

4Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
5Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, U.K.
6Institute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University,

Sendai 980-8578, Japan

(Received May 17, 2007; Accepted September 12, 2007)

In the early 1990’s, the Neath Canal in South Wales, UK, received large amounts of drainage waters from nearby coal
mines, which contributed to its contamination by heavy metals and arsenic. One sediment core and surface sediments
were collected from the upstream section of the Neath Canal and characterized for their mineral composition and iron
speciation using powder X-ray diffraction (XRD) and Mössbauer spectroscopy. The sediments show three distinctive
layers that are defined by their physical properties including color, sediment components and dryness. The upper layer of
the sediment (0–22 cm) is a reddish-brown wet precipitate dominated by iron oxides and hydroxides and a high content of
arsenic. The middle layer (22–27 cm) is a soft wet deposit of yellow color which mainly contains calcite with sheet
silicates (kaolinite) and goethite. Magnesium, calcium and manganese are enriched in this layer whereas iron is depleted
compared to the upper layer. The lower part of the core (below 27 cm) is colored gray to dark gray and contains quartz,
pyrite and clay minerals, similar to normal aquatic sediments. In addition, this layer also contains abundant coal particles.
Silicon, aluminium, titanium, potassium, phosphorus and sodium concentrations are higher whereas iron, manganese,
calcium and magnesium are lower in the lower portion of the core compared to the middle and upper layers. Mineral
composition, major elements, and iron speciation indicate oxic conditions in the upper and middle layers whereas reduc-
ing conditions prevail in the lower layer, which likely control the distribution of hazardous elements. Given the variation
of physico-chemical characteristics of the sediments with depth in the canal, different remediation treatments will likely
be necessary for each layer of sediments.

Keywords: iron oxide, carbonation, arsenic, coal mining drainage, Neath canal sediments

2003). Several kinds of iron oxides and oxyhydroxides,
such as ferrihydrite, goethite and hematite, are consid-
ered powerful sorbents of arsenic in acid mine drainage
(AMD) or acid rock drainage (ARD) and mine-tailings
ponds (Acero et al., 2006; Gault et al., 2005; Sherman
and Randall, 2003). On the other hand, carbonation (car-
bonate mineral formation) has been shown to immobilize
many kinds of heavy metals in contaminated soils,
sediments and other residues (Alba et al., 2001; Bertos et

al., 2004a; Bonen and Sarkar, 1995; van Gerven et al.,
2004; Yu et al., 2005). At the present time, accelerated
carbonation is a developing technology for treating vari-
ous hazardous materials and it is widely applied for the
remediation of many potential toxic elements, such as
arsenic (Jing et al., 2003), lead (Yin et al., 2006), and
chromium (Luz et al., 2006; Macias et al., 1997). More-

INTRODUCTION

The redox chemistry of iron plays a major role in the
geochemical cycling of many types of elements (anions
and cations) in pristine and contaminated aquatic systems.
As many studies have shown, iron minerals and/or iron-
bearing compounds in marine and terrestrial sediments
influence the cycling of carbon and sulfur (Berner, 1984;
Berner and Raiswell, 1984; Davison, 1993; Drodt et al.,
1998) and largely control the fate of toxic elements, such
as arsenic (e.g., Fuller et al., 1993; Belzile and Tessier,
1990; Raiswell and Canfield, 1998; van der Zee et al.,
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over, various kinds of carbonate minerals, such as calcite
and dolomite, can be generated and accumulated in
aquatic environments, which has an impact on the solidi-
fication/stabilization (S/S) of the treated materials. How-
ever, such a process is dependent on the pH and physico-
chemical conditions of the sediments. Thus, much atten-
tion should be paid to the characterization of AMD or
ARD in order to better understand the fate of hazardous
elements.

The upper stream of the Neath Canal was impacted
by AMD in the early 1990’s and the sediments contain
ochreous precipitates (Hallberg and Johnson, 2003). Pre-
vious investigations revealed that the levels of arsenic,
copper, nickel, and zinc, along with iron, exceeded the
EPA (European Protection Agency) guidelines for metal
content in soils (Mahdi et al., 2003). However, those in-
vestigations mainly focused on the reddish sediments in
the upstream part of the canal and relatively less atten-
tion has been paid to the relationship between iron
speciation and the distribution of heavy metal pollutants
in the Neath Canal sediments. As a result, it is necessary
to characterize the vertical profile of the sediments in the
polluted portion of canal in order to determine the proper
treatment protocol for the canal sediments (Stephens et

al., 2001a, b). In this paper, Mössbauer spectroscopy and
powder X-ray diffraction (XRD) are used to investigate
the characteristics and differences of the various mineral
phases present in the sediment profile, especially the iron-

rich species present in the canal sediments from the up-
permost portion of the Neath Canal. The impacts of those
mineral phases on element distribution are also discussed
with respect to potential remediation treatments of the
contaminated canal sediments.

STUDY SITE AND SAMPLING

Neath Canal, located in the Neath Valley in South
Wales, was opened in 1856 as a supply of industrial wa-
ter. It is an important water supply conduit to various in-
dustries in the Neath-Port Talbot area on the Neath River
estuary. The Neath Valley and its adjacent area used to be
extremely active in coal mining during the industrial pe-
riod (Fowler et al., 1999).

The old Ynysarwed adit close to the village of
Ynysarwed, mid-Glamorgan, South Wales has been re-
leasing coal-mining tunnel water since the early 1990’s
following the closure of several coal mines in the area
(Hallberg and Johnson, 2003). As a result, a 7 km stretch
of the Neath Canal between Abergarwed and Toonna in
the Neath valley has been affected. One major pollution
incident also happened in the spring of 1993 when a large
minewater discharge occurred. The minewater discharge
resulted in a characteristic orange-yellow (rust colored)
blanketing deposit enriched in iron and hazardous ele-
ments, such as arsenic, copper, nickel, and zinc. The N&T
Society and Neath Port Talbot Council have planned to

Sample ID Depth (cm) Color description Color code Moisture (%) Pore water LOI (%) Classification

pH Conductivity
(S⋅cm−1)

Cored samples
TW3-01 0.0−5.0 bright brown 7.5YR 5/8 75.1 7.07 1.183 15.3 upper layer

TW3-02 5.0−10.0 reddish brown 5YR 4/8 78.2 7.68 1.636 9.03 ″

TW3-03 10.0−19.0 bright reddish brown 5YR 5/8 82.1 7.68 1.929 9.95 ″

TW3-04 19.0−22.0 bright reddish brown 5YR 5/8 85.2 7.84 0.566 13.0 ″

TW3-05 22.0−27.0 light yellow orange 7.5YR 8/4 87.2 7.91 2.01 14.0 middle layer

TW3-06 27.0−30.0 olive brown 2.5Y 4/3 57.1 n.w. n.w. 16.1 lower layer

TW3-07 30.0−37.0 brown black 2.5Y 3/2 30.8 7.74 1.373 13.3 ″

TW5-08 40.0−50.0 gray 7.5Y 4/1 27.8 n.w. n.w. 14.8 ″

TW5-09 50.0−60.0 gray 7.5Y 4/1 24.5 7.82 0.534 14.6 ″

TW5-10 70.0−75.0 olive black 7.5Y 3/1 21.2 n.w. n.w. 16.3 ″

Top sediment samples
Iron-1 0.0−1.0 brown-red Topmost 5 cm sediment

Iron-2 1.0−2.0 brown-red

Iron-3 2.0−3.0 brown-red

Iron-4 3.0−4.0 red

Iron-5 4.0−5.0 red

Table 1.  Samples from the Neath Canal in Wales, UK

n.w.- there was no pore water available.
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restore the upper part of the Neath Canal by moving the
contaminated sediments to a landfill. However, in order
to satisfy the environmental control regulations, the pol-
lutants must be removed from the contaminated dredged
sediments prior to their discharge in landfill areas.

Based on the general characteristics and distribution
of the contaminated sediments in the canal, the most up-
stream part of the Neath Canal was selected for this study.
Several cores were taken, but core TW3 (located at Treat-
ment Works station) was studied in further detail because
it was representative of the sediments present in the con-
taminated area. The core (Table 1) was collected using a
plastic tube with a 2.5 cm inner diameter and the samples
were numbered TW3-01 through TW3-07. They repre-
sent the upper 37 cm of sediments. Additional sediment
samples in the canal were obtained from holes that were
dug nearby. The surface sediments were removed with a
shovel and fresh samples were collected. These samples
are labeled as TW5-08, TW5-09, and TW5-10. In addi-
tion, the top portion of the sediments (5 cm) at the sam-
pling point was sampled every 1 cm and labeled Iron-1
through Iron-5. All sampling points were located within
an area less than 4 m2 in the main stream of the canal.

ANALYSES

A sub-set of samples was freeze-dried after being ho-
mogenized and centrifuged under nitrogen atmosphere in
order to separate pore water. Dried samples were pulver-
ized into powder using an agate mortar and pestle and
then stored under dry conditions in a closed desiccator to
avoid further potential contamination and chemical vari-
ation of the original iron components. The moisture con-
tent and loss on ignition (LOI) were measured on another
subset of fresh samples by heating about 5 g of sediments
in pottery crucibles using an oven at 105°C for 1 hour
and then in a Muffle furnace at 550°C for 18 hours.

For 57Fe Mössbauer measurement, 100–110 mg of the
freeze-dried powdered samples (without any chemical
pretreatment) was gently pressed into a brass sample
holder (16 mm in diameter, 1 mm thick). The Mössbauer
spectra were obtained with an Austin Science S-600
Mössbauer spectrometer using a γ-ray source of 1.11 GBq
57Co/Rh at a consistent temperature (293 K) or liquid
helium temperature (4.2 K). Spectra were fitted to
Lorentzian line shapes using standard line shape fitting
routines. Half-width and peak intensity of each quadru-
ple doublet was constrained to be equal. Isomer shifts were
expressed with respect to the centroid of the spectrum of
metallic iron foil at 298 K.

X-ray powder diffraction (XRD) was used to deter-
mine the mineral composition of the sediments using a
MAC M18XHF diffractometer with Cu-Kα radiation (40
kV, 100 mA). A portion of the freeze-dried samples was

crushed to fine powder using a small clean mortar and
then mounted on an aluminum holder for XRD analysis.
Powder XRD scans were performed with the fine powder
samples and run from 2 to 80° 2θ at a step scan of 0.020°
2θ and 1.00 s counting time per step. A portion of the
fine powdered samples was also heated at 500°C for an
hour and then scanned by XRD in order to identify
kaolinite and smectite (More and Reynolds, 1997). The
concentration of major elements was measured with the
alkaline fused bead method using X-ray fluorescence
(XRF). The fused glass bead for XRF measurement was
prepared from the powdered freeze-dried bulk sample
(2.000 g) mixed with Flux No. 100B SPECTROFLUX
(4.000 g containing 80% Li2B4O7 and 20% LiBO2) and
LiNO3 (0.60 g), which was melted in a platinum crucible
at 1200–1210°C using a TK-4100 Bead & Fuse-Sampler.
The concentrations of selected heavy metals were deter-
mined using inductively coupled plasma-mass
spectroscopy (ICP-MS) after acidic digestion of the sam-
ples. Chemical procedures for the sample digestion are
described in Zheng et al. (2001).

RESULTS AND DISCUSSION

Sediment physical characteristics

A series of cores revealed the presence of three dis-
tinctive layers of sediments in the canal. The thickness of
the upper and middle layers decreases away from the
minewater discharge point, where the representative core
TW3 was taken (Table 1). The upper layer of the
sediments (i.e., 0–22 cm) consists of a soft muddy pre-
cipitate of brown-reddish color, which looks like an ochre-
ous sludge. The moisture content is high, and increases
with depth. However, the surface sediments of the top-
most layer (a few cm) has a darker color likely due to the
newly deposited organic matter, such as vegetation re-
mains, mixed with sediment particles from the slope and
some coal particles carried by the AMD from the dam-
aged mine tunnels. The middle layer (i.e., 22–27 cm) is
also soft but has a bright yellowish color when it is wet
and the deposit is clearly different from both the upper
and lower layers and contains the highest moisture con-
tent, 87.2% (Table 1) of the whole sedimentary column.
The deposit is easily broken when it is wet, but becomes
hard and very sticky during powdering after being dried.
The two upper layers clearly represent sediments that
formed after the mine discharge in 1993. In contrast, the
lower layer of sediment varies from gray to deep gray,
and then to black with depth and likely represents the old
canal sediments prior to the discharge in 1993. The mois-
ture contents of the lower layer are lower than the upper
two layers and decrease with depth (Table 1 and Fig. 1).
The sharp variation of moisture content between the two
upper layers and the old canal sediments may indicate



466 G. Zheng et al.

that the vertical circulation and exchange of pore water
is very weak between the layers even though water con-
stantly flows in the canal. The presence of clay minerals
in the sediments (see Subsection “Mineral composition
of the sediments”) appears to reduce the porosity of the
sediments. In addition, there are abundant artificial par-
ticles, such as concrete, broken glass bottles, and shining
coal particles in the lower layer of sediments (below 27
cm) deposited during the early stage of coal mining and
sailing operations since the canal was also used for coal
transportation.

Mineral composition of the sediments

The XRD patterns of the sediments from core TW3
are shown in Fig. 2. Quartz, calcite, and goethite domi-
nate the sediments, along with some other minor miner-
als. It is clear that the three layers of sediments have dis-
tinctive XRD patterns based on the composition and width
of the reflection peaks. The samples from the upper layer
(TW3-01 through TW3-04) are dominated by calcite and
goethite (Fig. 2A). Only the surface sample TW3-01 con-
tains quartz and some clay minerals. The sample of the
middle layer, TW3-05 displays stronger peaks for calcite
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than those present in the upper layer samples. In addi-
tion, there are also distinct reflection peaks correspond-
ing to kaolinite, especially the wide peak between 10.5–
12° (Figs. 2A and 3). In order to confirm this mineral
phase, the yellow deposit was heated at 500°C for 1 hour

(Fig. 3), which led to the disappearance of those peaks
and confirmed the presence of the sheet silicate mineral
kaolinite (More and Reynolds, 1997). All reflection peaks
for the samples from the upper and middle layers are rela-
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tively weaker compared with those of the lower layer.
However, the reflection peaks for calcite, goethite, and
also kaolinite are sharp, indicating that these minerals are
crystalline and formed as a result of diagenetic reactions
in less than 10 years after the mine water discharge acci-
dent.

Quartz, pyrite, chlorite, kaolinite, muscovite, and
smectite were identified in the samples from the lowest
layer (TW3-06, 07 and TW5-08, 09 and 10) (Fig. 2B).
These minerals are common components of aquatic clas-
tic sediments. The existence of pyrite and chlorite indi-
cate the presence of reducing conditions in the sediments
(Berner 1984; Berner and Raiswell 1984). The XRD pat-
tern of each sample from the lower layer is very similar,
showing a similar composition of major minerals in the
old canal sediments. The results confirmed the physical
observations (Subsection “Sediment physical character-

istics”), i.e., the two upper layers clearly differ in their
mineralogical contents from the bottom layer.

Figure 4 shows the XRD patterns of the surface sedi-
ment samples (Iron-1 to Iron-5; Table 1) in the canal,
which were collected from the topmost 5 cm of sediments.
Newly formed minerals, such as calcite and goethite,
clearly dominate. The first three samples (Iron-1 to Iron-
3) are predominantly composed of goethite with very lit-
tle quartz and calcite, whereas the other two samples
(Iron-4 and Iron-5) mainly contain calcite and goethite,
displaying peaks of various intensity.

Iron speciation

Selected Mössbauer spectra of samples measured at
room temperature (Fig. 5) show several kinds of iron spe-
cies, including four overlapping doublets, two sextets and
one relaxation spectrum. The curve fitting of these seven
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components is reliable because the Chi-squared values
are sufficiently small (747.7–3389). The doublets with a
smaller quadrupole splitting are ascribed to either para-
magnetic high-spin ferric iron (para-Fe3+) or to iron in
pyrite (pyr-Fe2+). The former one, para-Fe3+, probably
corresponds to iron in clay minerals and/or hydrated
Fe(III) oxides (Maning and Ash, 1979). Based on the
Mössbauer results and XRD patterns (Fig. 2), the para-
Fe3+ of the samples TW3-01 through TW3-04 likely origi-

nates from iron present in goethite whereas the para-Fe3+

of the other samples are mainly from ferric iron in clay
minerals (Table 2). The ferrous iron in pyrite was fitted
using the following constrained Mössbauer parameters
at 293 K; isomer shift (IS) 0.307 mm/s and quadrupole
splitting (QS) 0.610 mm/s. Pyrite was considered absent
when the calculated peak area of pyr-Fe2+ was lower than
the detection limit, calculated as three times larger than
the standard deviation of the baseline count (Kuno et al.,

Sample ID Total peak area/% mm s−1 Iron species Relative content % IS/mm s−1 QS/mm s−1 HW/mm s−1 Hi/T

TW3-01 23.92 ± 0.17 para-Fe3+ 62.05 ± 0.93 0.365 ± 0.001 0.649 ± 0.002 0.500 ± 0.004

relaxation 36.74 ± 0.95 0.283 ± 0.035 −0.171 ± 0.058 1.586 ± 0.074 25.71 ± 0.35

para-Fe2+ 1.21 ± 0.09 1.084 ± 0.011 2.655 ± 0.023 0.188 ± 0.035

TW3-02 22.56 ± 0.09 para-Fe3+ 100.00 ± 0.00 0.359 ± 0.001 0.676 ± 0.002 0.557 ± 0.004

TW3-03 19.88 ± 0.12 para-Fe3+ 100.00 ± 0.00 0.365 ± 0.002 0.668 ± 0.004 0.609 ± 0.007

TW3-04 21.21 ± 0.07 para-Fe3+ 100.00 ± 0.00 0.359 ± 0.001 0.679 ± 0.002 0.537 ± 0.003

TW3-05 13.86 ± 0.06 para-Fe3+ 96.83 ± 0.17 0.347 ± 0.001 0.577 ± 0.002 0.455 ± 0.003

para-Fe2+ 3.17 ± 0.17 1.207 ± 0.010 2.301 ± 0.020 0.474 ± 0.029

TW3-06 15.60 ± 0.30 para-Fe3+ 35.73 ± 0.63 0.422 ± 0.009 0.587 ± 0.004 0.489 ± 0.009

para-Fe2+(outer) 9.80 ± 0.25 1.120 ± 0.006 2.682 ± 0.014 0.343 ± 0.020

para-Fe2+(inner) 5.39 ± 0.23 1.021 ± 0.010 2.312 ± 0.022 0.321 ± 0.037

pyr-Fe2+ 8.19 ± 0.48 0.307 ± 0.000 0.610 ± 0.000 0.247 ± 0.028

pyrrhotite 40.89 ± 0.69 0.393 ± 0.024 −0.111 ± 0.035 1.618 ± 0.059 29.01 ± 0.21

TW3-07  9.56 ± 0.43 para-Fe3+ 32.45 ± 1.24 0.419 ± 0.014 0.579 ± 0.006 0.503 ± 0.013

mag-Fe3+ 37.03 ± 1.86 0.341 ± 0.084 −0.077 ± 0.132 2.558 ± 0.234 50.49 ± 0.75

para-Fe2+(outer) 19.16 ± 0.66 1.146 ± 0.006 2.606 ± 0.008 0.391 ± 0.019

para-Fe2+(inner) 3.57 ± 0.24 0.943 ± 0.010 2.418 ± 0.021 0.235 ± 0.039

pyr-Fe2+ 7.80 ± 0.82 0.307 ± 0.000 0.610 ± 0.000 0.283 ± 0.051

TW5-08 13.93 ± 0.21 para-Fe3+ 44.45 ± 0.54 0.460 ± 0.007 0.521 ± 0.005 0.594 ± 0.010

mag-Fe3+ 7.23 ± 0.35 0.358 ± 0.015 −0.208 ± 0.030 0.453 ± 0.047 51.18 ± 0.12

para-Fe2+(outer) 19.57 ± 0.36 1.126 ± 0.003 2.688 ± 0.010 0.351 ± 0.014

para-Fe2+(inner) 21.08 ± 0.41 1.071 ± 0.005 2.218 ± 0.018 0.448 ± 0.022

pyr-Fe2+ 7.68 ± 0.41 0.307 ± 0.000 0.610 ± 0.000 0.257 ± 0.034

TW5-09  9.31 ± 0.27 para-Fe3+ 30.94 ± 0.88 0.427 ± 0.014 0.576 ± 0.007 0.508 ± 0.013

mag-Fe3+ 41.43 ± 1.08 0.291 ± 0.035 −0.073 ± 0.063 1.790 ± 0.134 50.33 ± 0.30

para-Fe2+(outer) 17.15 ± 0.46 1.152 ± 0.009 2.621 ± 0.015 0.433 ± 0.026

para-Fe2+(inner) 4.16 ± 0.27 0.957 ± 0.013 2.365 ± 0.028 0.254 ± 0.045

pyr-Fe2+ 6.32 ± 0.65 0.307 ± 0.000 0.610 ± 0.000 0.248 ± 0.053

TW5-10  6.55 ± 0.27 para-Fe3+ 40.73 ± 1.02 0.428 ± 0.016 0.591 ± 0.006 0.523 ± 0.012

mag-Fe3+ 19.24 ± 0.74 0.340 ± 0.017 −0.142 ± 0.034 0.648 ± 0.059 50.81 ± 0.14

para-Fe2+(outer) 21.92 ± 0.53 1.136 ± 0.008 2.653 ± 0.015 0.419 ± 0.020

para-Fe2+(inner) 3.74 ± 0.29 0.959 ± 0.017 2.355 ± 0.035 0.234 ± 0.052

pyr-Fe2+ 11.37 ± 0.96 0.307 ± 0.000 0.610 ± 0.000 0.268 ± 0.044

Table 2.  Mössbauer parameters of the iron components in the cored sediment samples collected from the Neath Canal, South

Wales (measured at 293 K)
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1998). The doublets with a larger quadrupole splitting
were attributable to paramagnetic high-spin ferrous iron,
para-Fe2+(inner) and para-Fe2+(outer), respectively. Ac-
cording to their Mössbauer parameters, the para-
Fe2+(outer) with higher IS, QS, and half-width (HW) may
indicate the iron in clay minerals and/or oxide, whereas
the para-Fe2+(inner) with lower IS, QS and HW may in-
dicate ferrous iron in an organo-iron complex (Matsuo,
1994). For the sextets, at least two kinds of iron minerals
can be identified as hematite and pyrrhotite according to
their Mössbauer parameters. In addition, one iron spe-
cies cited as relaxation was also identified (Table 2, Fig.
5). Because of their asymmetry, these spectra could not
be properly fitted with distributions of quadrupole split-
ting having identical isomer shifts, a model that has been
proven suitable to fit the room temperature spectra of most
poorly crystalline iron oxides (Bigham et al., 1990) as a
result of relaxation. This species is poorly crystalline and/
or amorphous iron oxides, being mostly hydrous ferric
oxide (HFO).

In order to further distinguish the various types of iron
oxyhydroxides in the samples, cryogenic 57Mössbauer
spectroscopy was used for the surface samples collected
from the topmost deposit. All the topmost samples were
identified with a sextet at liquid helium temperature,
which is the paramagnetic ferric iron of hematite in su-
perfine particles (<100 Å), noted as a superparamagnetic
effect as described by several researchers (Kündig and
Bömmel, 1966; Zheng et al., 2001; van Der Zee, 2003).
It indicates the formation and deposition of very fine-
grained hematite in the AMD sedimentary environment,
which cannot be identified by XRD due to its small parti-
cle size, as suggested by the superparamagnetic effect.

The vertical distribution of all iron species in the sedi-
ment core TW3 is illustrated in Fig. 6. The profile shows
that not only various kinds of iron species co-exist within
the sediments, but there are also some systematic varia-
tions of the iron species. The upper layer of reddish de-
posits is dominated by ferric iron in goethite, very fine
particles of hematite, and/or hydrous ferric oxide, and very
little ferrous iron in the topmost part of the sediments.
The middle layer contains mostly goethite and very little
ferrous iron along with calcite, whereas the lower layer
contains much higher contents of ferrous species, such as
the iron in magnetite, pyrrhotite, and also pyrite, indicat-
ing more reducing conditions in the deep layer of the
sediments. The presence of various iron oxides also indi-
cates that some oxides likely aged and transformed over-
time, such as the conversion of hydrous ferric oxide into
goethite and/or hematite (Schwertmann, 1973;
Schwertmann et al., 1982).

Major element composition

The vertical distribution of major elements in the sedi-

ment core is illustrated in Fig. 1. SiO2, Al2O3, TiO2, K2O,
and P2O5 are mainly enriched in the lower layer, and are
also elevated in the topmost part of the upper layer; Na2O
also has a similar vertical distribution, with the excep-
tion of sample TW3-02. These elements are all lithological
elements and their vertical distribution patterns are very
similar to those of primary and secondary silicate miner-
als, such as quartz, kaolinite, chlorite and smectite, rep-
resenting typical sedimentary particles that have entered
the canal prior or during to the pollution event. The de-
cline in organic carbon between 5 and ~27 cm represents
a large input of contaminated water which led to the rapid
formation of iron oxides during the 1990s by the excess
AMD, when the sedimentation rate was likely very high
during the period.

On the other hand, Fe2O3, MnO, and CaO are enriched
in the upper and middle layers whereas MgO is enriched
only in the middle layer. According to the XRD data, iron
and manganese likely originate from oxides; calcium, and
magnesium correspond to newly formed carbonate min-
erals such as calcite and/or sheet silicates (Haese et al.,
1997). There is also a positive correlation between CaO
plus MgO and total inorganic carbon (TIC) as shown in
Fig. 1, which further supports the presence of carbonate
minerals in the sediments. The depth distribution of all
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major elements clearly indicates the presence of three
distinctive layers in the sediments of the canal.

It is clear that the discharge event in 1993 and the
ongoing release of AMD entering the canal led to some
drastic changes in the chemical and mineralogical char-
acteristics of the sediments. Upon sedimentation and
diagenesis, iron, manganese, calcium, and magnesium
precipitated over the old canal sediments within the last
10 years. However, the individual distribution of these
four elements is different, indicating some difference in
their geochemical behavior under such an AMD environ-
ment.

Hazardous element distribution

Selected elements, considered as potential pollutants,
including As, Cu, Zn, Pb, Cr and Se were analyzed. Fig-
ure 7 illustrates the vertical distribution of these elements
in the sediments. Arsenic is consistently enriched along
with iron in the upper layer of reddish precipitate and its
content is almost three times higher than that in the mid-
dle and lower layers. Such arsenic enrichment has a posi-
tive relationship to ferric iron compounds, especially
goethite and fine hematite (r2 > 0.79), which are normally
formed and deposited in oxidative environments (Belzile
and Tessier, 1990). The arsenic content of the sediments
in the lower sediments is relatively constant and may have
close relationship to the occurrence of pyrite (Strawn et

al., 2002). Nickel and selenium show an enrichment in
the upper 40 cm of the sediments, which overlaps the
lower part of the upper layer, the middle layer, and the
upper part of the lower layer. These two elements also
show a slow increase with depth below 45 cm. Chromium
is relatively high in the upper part of the lower layer with
rapid redox change, which appears to indicate that chro-
mium is more stable under reducing conditions (Guo et

al., 1997) because Cr(III) is more insoluble than Cr(VI)
and the reduced chromium should be mainly combined
to iron sulfide (Lakatos et al., 2002). There is however
an increase in chromium content in the deeper part of both
the upper and lower layers, which may indicate a change
in redox conditions. Copper and zinc are considerably en-
riched in the lower layer, and also slightly enriched in
the surface sediments. There is a close positive correla-
tion between these two metals and the major elements
and TOC, indicating that they likely originate from metal
sulfides found in coal, which are mixed with the sediments
(Carignan and Terrier, 1985; Pickhardt, 1989; Rieder et

al., 2007). Lead is only elevated in the deep part of the
lower layer and most likely originated from sulfide min-
erals formed under more reducing conditions (Lambert
et al., 2006).

Based on the above mineralogical and geochemical
data, it is clear that the distribution of heavy metals and
major elements is closely related to the mineral composi-
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tion of the sediments and the iron speciation. The rela-
tionship between Fe, Mn, Ca, Mg, and As in the Neath
Canal sediments show the preference of trace elements
for either iron oxides or calcite as their host phases. The
results clearly indicate that lesser amounts of arsenic are
incorporated into carbonate minerals under an AMD en-
vironment, compared to iron oxides. This is important
when considering carbonation as a potential remediation
strategy. Carbonation is a natural phenomenon affecting
the solidification/stability (S/S) of cementitious materi-
als and has been shown to help immobilize many kinds
of heavy metals in contaminated soils, sediments and other
kinds of residues. At the present time, accelerated car-
bonation is a developing technology for treating various
hazardous materials and has been widely applied for many
potential toxic elements (Enick et al., 2001; Meng et al.,
2001; Jing et al., 2003; Bertos et al., 2004b; Benedetto et

al., 2007), including arsenic immobilization with Port-
land cement or quick lime treatment (Moon et al., 2004).
Based on the present study, however, it is necessary to
consider the long-term stability of S/S treated materials
in the environment. As revealed by the vertical distribu-
tions of arsenic, iron and calcium (and possibly magne-
sium) in the Neath Canal sediments, the redox conditions
appear to be very similar between the upper reddish layer
and the middle yellowish layer, based on the very similar
ratios of Fe(III)/Fe(II). However, the total arsenic con-
tent is sharply different between these two same layers,
i.e., 143–161 ppm in the upper layer and only 36.4 ppm
in the middle layer. The upper layer, dominated by iron
oxides, contains more arsenic than the calcite-rich mid-
dle layer. This may be due to the release of arsenic from
carbonate minerals and/or to the preferential sorption of
arsenic to iron oxides (Belzile and Tessier, 1990). Thus,
carbonation, under the conditions prevailing in the canal,
might not permanently trap arsenic, especially if water
flowing through the sediments destabilizes the carbon-
ate-rich minerals and mobilizes the arsenic. As a result,
much attention should be paid to the site selection for
arsenic S/S treated materials.

SUMMARY

The Neath Canal sediments from our study site can
be vertically divided into three layers with different sedi-
mentary characteristics. The upper layer, 0–22 cm, is a
soft precipitate of brown-reddish color; iron oxides and
hydroxides of very fine size dominate, along with arsenic.
The middle layer, 22–27 cm, is a soft deposit of yellow
color and contains kaolinite, calcite and hematite. The
lower layer, below 27 cm, is a gray to dark gray material
and contains quartz, pyrite and coal particles. The upper
two layers represent precipitated mud from AMD since
the discharge event, and contain high concentrations of

arsenic, copper and selenium. The lower part is the old
canal sediment deposited before the AMD event in 1993,
with general reducing characteristics. Our study provides
useful information with respect to the remediation of the
Neath Canal polluted sediments. Given the existence of
various physico-chemical and mineralogical characteris-
tics, each layer of the sediments will require different
treatment.
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