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ABSTRACT 

A direct method for controlling nodal displacements and/or internal bar forces has been 

developed for prestressable structural assemblies including complex elements (“macro-

elements”, e.g. the pantographic element), involving Matrix Condensation. The method 

is aimed at static shape control of geometrically sensitive structures. The dissertation 

discusses identification of the most effective bars for actuation, without incurring 

violation in bar forces, and also with objective of minimal number of actuators or 

minimum actuation.  The method can also be used for adjustment of bar forces to either 

reduce instances of high forces or increase low forces (e.g. in a cable nearing slack). 

The techniques of controlling nodal displacement, bar force and simultaneously 

nodal displacement and bar force for a structure made of non-complex elements have 

been verified by experiments on the physical model of a cable-stayed bridge. Likewise 

the technique of joint displacement controlling of structures constructed from complex 

structural elements, has been also been confirmed by experiments on the physical model 

of an aerofoil shaped morphing pantographic structure. Overall, experimental results 

agree well with theoretical prediction. 

This dissertation also concerns with morphing structures, e.g. as applied in the 

aerospace industry. A morphing aerofoil structure capable of variable geometry was 

developed, which was shown to be able to cater for the different aerodynamic 

requirements at different stages of flight.  In this thesis, two suitable morphing aerofoil 

structures were made of curved pantographic units. Results show that the configuration 

with a large number of small pantograph elements exhibits a wider range of Lift 

Coefficient (CL) and Drag Coefficient (CD) than achievable by the first, and also by the 

standard NACA2415 aerofoil with flaps. In addition, it was found that the morphing 

aerofoil can decrease the drag by more than 18%, especially in the early stages of 

morphing. 

Finally, two useful and relatively simple methods have been presented in this 

dissertation which provide a direct method for calculating required morphing shape 

displacements and calculating set of length actuations for bar assembly to adjust shape 

imperfection.  

Keywords: Static shape control, Prestress control, Displacement control, Actuator 

placement, Force Method, Pantographic unit, Morphing structure, Morphing aerofoil, 

NACA aerofoil, Aerodynamic characteristics. 



 

v 

PhD THESIS RESEARCH ACHIEVEMENTS 

 Saeed, N. M. & Kwan, A. S. K. 2014. Concepts for morphing aerofoil sections 

using pantographic structures. Proceedings of Mobile and Rapidly Assembled 

Structures IV. Ostend, Belgium, 11–13 June 2014. WIT Press, pp. 279-289. 



 

vi 

TABLE OF CONTENTS 

DECLARATION .............................................................................................................. i 

ACKNOWLEDGEMENTS ............................................................................................ ii 

Dedicated to .................................................................................................................... iii 

ABSTRACT .................................................................................................................... iv 

PhD THESIS RESEARCH ACHIEVEMENTS ........................................................... v 

TABLE OF CONTENTS ............................................................................................... vi 

LIST OF FIGURES ...................................................................................................... xii 

LIST OF TABLES ....................................................................................................... xix 

LIST OF NOTATIONS .............................................................................................. xxii 

1 Introduction and Overview ..................................................................................... 1 

1.1 Introduction ...................................................................................................... 1 

1.2 Aim and Objectives of Study ........................................................................... 2 

1.3 General Layout of the Dissertation ................................................................... 3 

2 Review of Previous Work ........................................................................................ 6 

2.1 Introduction ...................................................................................................... 6 

2.2 Adjustment/Controlling of the Structure .......................................................... 7 

2.2.1 Displacement Control.............................................................................. 8 

2.2.2 Bar Forces Control ................................................................................ 14 

2.2.3 Simultaneous Displacement and Bar Force Control ............................. 15 

2.3 Number of Actuators ...................................................................................... 19 

2.4 Actuators Placement ....................................................................................... 19 

2.5 Types of Actuators ......................................................................................... 24 

2.5.1 Piezoelectric Actuator ........................................................................... 24 

2.5.2 Thermal Effect ...................................................................................... 24 

2.5.3 Shape Memory Alloy (SMA) ................................................................ 25 

2.5.4 Lead Screw Active Members ................................................................ 25 



 

vii 

2.6 Shape Morphing ............................................................................................. 26 

2.7 Pantographic Structures .................................................................................. 28 

2.8 Pantographic Units ......................................................................................... 31 

2.8.1 Translational Units ................................................................................ 31 

2.8.2 Polar Units ............................................................................................. 33 

2.8.3 Angulated Units .................................................................................... 35 

2.9 Modified Pantographic Unit ........................................................................... 36 

2.10 Compact Folding Constraint ........................................................................... 38 

2.11 Analysis of Pantographic Structures .............................................................. 39 

3 Theoretical Analysis ............................................................................................... 41 

3.1 Introduction .................................................................................................... 41 

3.2 Linear Matrix Controlling Equations ............................................................. 42 

3.2.1 The Force Method ................................................................................. 42 

3.2.2 Displacement Control without Regard to Bar Forces ........................... 44 

3.2.2.1 An Illustrative Example of Displacement Control .................... 45 

3.2.2.2 Best Location of Actuators ........................................................ 47 

3.2.3 Bar Forces Control without Regard to Displacements .......................... 49 

3.2.4 Simultaneous Displacement and Bar Force Control ............................. 52 

3.2.4.1 An Illustrative Example of Displacement and Force Control ... 52 

3.2.4.2 Controlling Displacement and Force with Minimal Actuation

 ................................................................................................. 57 

3.2.4.2.1 Increasing the Control Set ...................................... 58 

3.2.4.2.2 Quadratic Programming ......................................... 58 

3.2.4.2.3 Reselection of Bars ................................................. 59 

3.2.4.2.4 Illustrative Example in Minimising Non-Zero 

Elements in eo ......................................................... 60 

3.2.4.3 Control Where Actuator Locations Are Already Fixed ............ 62 

3.2.5 Adjusting Assembly Imperfections ....................................................... 62 



 

viii 

3.2.6 Comparison of Linear Shape Control Technique.................................. 63 

3.3 Linear Condensed Matrix Controlling Equations ........................................... 66 

3.3.1 Matrix Condensation ............................................................................. 66 

3.3.2 Displacement Control without Regard to Bar Forces ........................... 71 

3.3.3 Bar Forces Control without Regard to Displacements .......................... 75 

3.3.4 Simultaneous Displacement and Bar Force Control ............................. 76 

3.3.5 An Illustrative Example of Using Condensed Matrix in Control ......... 77 

3.3.5.1 Controlling Joint Displacements Only ...................................... 80 

3.3.5.2 Controlling Bar Forces Only ..................................................... 83 

3.3.5.3 Simultaneously Controlling Joint Displacement and Bar 

Force ....................................................................................... 86 

3.4 Computer Programing .................................................................................... 88 

4 Shape Adjustment on a Cable Stayed Bridge Structure .................................... 91 

4.1 Introduction .................................................................................................... 91 

4.2 Cable Stayed Bridge Structure ....................................................................... 91 

4.2.1 Column .................................................................................................. 92 

4.2.2 Beams .................................................................................................... 92 

4.2.3 Cables .................................................................................................... 94 

4.2.4 Joints ..................................................................................................... 95 

4.2.5 Turnbuckles ........................................................................................... 96 

4.2.6 Model Support ....................................................................................... 97 

4.2.7 System of Measurement and Instruments ............................................. 98 

4.2.7.1 Displacement of Joints .............................................................. 98 

4.2.7.2 Cable Forces .............................................................................. 99 

4.2.7.3 Beam Forces .............................................................................. 99 

4.2.8 Properties of Materials ........................................................................ 101 

4.3 Procedure of Testing ..................................................................................... 102 



 

ix 

4.4 Experimental and Theoretical Result Comparison and Discussion.............. 103 

4.4.1 Linear Structure ................................................................................... 103 

4.4.2 Linear Adjustment ............................................................................... 109 

4.4.2.1 Eight Cables Model of Cable Stayed Bridge .......................... 109 

4.4.2.1.1 Experimental Displacement Control Regardless 

of Bar/Beam Forces .............................................. 109 

4.4.2.1.2 Controlling Bar Forces without Regard to 

Displacement ........................................................ 114 

4.4.2.1.3 Simultaneous Control of Displacement and Bar 

Force ..................................................................... 119 

4.4.2.2 Four Cables Model of Cable Stayed Bridge ............................ 125 

4.4.2.2.1 Control of Joint Displacement without Regard to 

Bar/Beam Forces .................................................. 125 

4.4.2.2.2 Experimental Bar Forces Control Regardless of 

Displacement ........................................................ 127 

4.4.2.2.3 Simultaneous Control of Displacement and Bar 

Force ..................................................................... 129 

4.4.2.3 Multi-Iteration Adjustment to Remove Experimental Errors . 132 

5 Changing Aerodynamic Characteristics of a Morphing Wing Structure ...... 135 

5.1 Introduction and Background ....................................................................... 135 

5.1.1 Introduction ......................................................................................... 135 

5.1.1.1 Terminology and Aerodynamic Forces of Aerofoil ................ 136 

5.1.2 Background ......................................................................................... 138 

5.2 Numerical Calculation of Lift and Drag Coefficients .................................. 141 

5.3 Standard NACA2415 .................................................................................... 142 

5.4 Morphing Shape Concept ............................................................................. 143 

5.5 Structure of Proposed Aerofoils ................................................................... 144 

5.6 Results and Discussion ................................................................................. 147 



 

x 

5.6.1 Comparing CL and CD of the Proposed Aerofoils with NACA2415 .. 147 

5.6.2 Comparing CL, CD of the Proposed Aerofoils with 31 NACA Shapes

 .......................................................................................................... 151 

5.6.3 Shape Comparison of Morphing Proposed Aerofoils with 

NACA2415 ....................................................................................... 151 

5.6.4 Cross-Sectional Area Comparison of Proposed Morphing Aerofoils 

with NACA2415 ............................................................................... 161 

6 Experiment, Results and Discussion of Morphing Pantographic Structure .. 164 

6.1 Introduction .................................................................................................. 164 

6.2 Pantographic Morphing Structure ................................................................ 164 

6.2.1 Beams .................................................................................................. 165 

6.2.2 Joints ................................................................................................... 168 

6.2.3 Supporting System .............................................................................. 169 

6.2.4 Measurement of Joints Displacement ................................................. 169 

6.2.5 Properties of Materials ........................................................................ 172 

6.3 Testing Procedure ......................................................................................... 172 

6.4 Experimental and Theoretical Adjustment Comparison and Discussion ..... 174 

6.4.1 Linear Adjustment ............................................................................... 175 

6.4.1.1 Adjustments for Distributed Vertical Load ............................. 175 

6.4.1.2 Adjustments for Distributed Vertical Load after Morphing .... 178 

6.4.1.3 Adjustments for Large Vertical Point Load ............................ 181 

6.4.1.4 Adjustments for Distributed Horizontal Load ......................... 184 

6.4.1.5 Adjustments for Vertical Distribute Loading with Elastic 

Band ...................................................................................... 186 

6.4.1.6 Multi-Iteration Adjustment to Remove Practical Errors ......... 189 

6.4.1.7 Finding Most Effective Bars through Calculating Bar 

Sensitivity to Displacement .................................................. 193 

6.5 Experimental and Theoretical Morphing Comparison and Discussion ........ 198 



 

xi 

6.5.1 Introduction to Morphing Structures ................................................... 198 

6.5.2 Experimental Structure Morphing....................................................... 198 

6.5.3 Linear Calculation Method ................................................................. 200 

6.5.4 Non-Linear Calculation Method (Coordinate Update Method) .......... 200 

7 Conclusions and Future Work ............................................................................ 207 

7.1 Introduction .................................................................................................. 207 

7.2 Conclusion of the Research Work ................................................................ 207 

7.3 Recommendations for Future Work ............................................................. 214 

References .................................................................................................................... 215 

Appendix A .................................................................................................................. 224 

MATLAB Programs ................................................................................................... 224 

A.1 MATLAB Program for Tables 3.1 and 3.2..................................................... 224 

A.2 MATLAB Program for Tables 3.3 and 3.4..................................................... 225 

A.3 MATLAB Program for Tables 3.5, 3.6 and 3.7.............................................. 228 

A.4 MATLAB Program for Tables 4.2, 4.4 and 4.6.............................................. 232 

A.5 MATLAB Program for Tables 4.3, 4.5 and 4.7.............................................. 235 

A.6 MATLAB Program for Tables 4.8, 4.9, 4.10 and 4.11................................... 237 

A.7 MATLAB Program for Table 6.1 ................................................................... 240 

A.8 MATLAB Program for Table 6.2 ................................................................... 244 

A.9 MATLAB Program for Table 6.3 ................................................................... 248 

A.10 MATLAB Program for Table 6.4 ................................................................. 252 

A.11 MATLAB Program for Table 6.5 ................................................................. 256 

A.12 MATLAB Program for Table 6.6 ................................................................. 260 

A.13 MATLAB Program for Non-Linear Calculation Method (Coordinate 

Update Method) of Morphing ............................................................................... 264 



 

xii 

LIST OF FIGURES 

Figure 1.1: Organisation of dissertation. ........................................................................... 5 

Figure 2.1: Three subdomain categories of structural control. Source: Korkmaz  

(2011). .......................................................................................................... 7 

Figure 2.2: Tetrahedral truss antenna reflector. Source: Haftka & Adelman (1985a). ... 10 

Figure 2.3: Antenna consisting of cable networks. Adapted from Tanaka (2011) ......... 12 

Figure 2.4: System for intelligent computational structural control of a tensegrity 

structure. Source: Shea et al. (2002). ......................................................... 13 

Figure 2.5: Tension stabilized truss structure: Adapted from Kawaguchi et al. (1996).

 .................................................................................................................... 15 

Figure 2.6: A two-dimensional cable network. Adapted from You (1997). ................... 16 

Figure 2.7: Planar indeterminate truss. Source: Sener et al. (1994). .............................. 17 

Figure 2.8: Planar antenna support structure. Source: Sener et al. (1994)...................... 18 

Figure 2.9: A laminated beam with piezoelectric sensor/actuator. Source: 

Hadjigeorgiou et al. (2006). ....................................................................... 23 

Figure 2.10: Truss-beam geometry. Source: Burdisso and Haftka (1989). .................... 23 

Figure 2.11: Lead screw active member. Adapted from Salama et al. (1993). .............. 25 

Figure 2.12: Scheme of the three morphing towers shown at the International Expo 

2005, Aichi, Japan. Source: Inoue (2007). ................................................. 27 

Figure 2.13: Shape changes of monument according to performance patterns. Source: 

Inoue et al. (2006). ..................................................................................... 27 

Figure 2.14: The prototype in (a) the straight, (b) the twisted and (c) the coiled 

configurations. Source:  Lachenal et al. (2012). ........................................ 28 

Figure 2.15: The concept of a pantograph. Adapted from Merchan  (1987). ................. 29 

Figure 2.16: Pinero’s deployable structure. Source: Akgün (2010). .............................. 30 

Figure 2.17: Escrig’s deployable vault incorporating rigid panels. Source: Gantes  

(2001) ......................................................................................................... 30 

Figure 2.18: Escrig’s spherical lamella grids. Source: Gantes (2001). ........................... 31 

Figure 2.19: (a) A symmetrical plane-translational unit; (b) a symmetrical curved-

translational unit; (c) a non-symmetrical curved-translational unit. 

Source: Roovers and De Temmerman (2014). ........................................... 32 

Figure 2.20: The simplest plane translational scissor linkage, called a “lazy-tong”. 

Source: Alegria Mira (2010). ..................................................................... 32 



 

xiii 

Figure 2.21: A curved translational linkage in its in two deployment stages. Source: 

Alegria Mira (2010). .................................................................................. 33 

Figure 2.22: Effect of hinge moving on the shape of pantographic structure. Source: 

Alegria Mira (2010). .................................................................................. 33 

Figure 2.23: Polar unit. ................................................................................................... 34 

Figure 2.24: A polar linkage in its undeployed and deployed position. Source: De 

Temmerman (2007). ................................................................................... 34 

Figure 2.25: Angulated unit or Hoberman’s unit. ........................................................... 35 

Figure 2.26: A radially deployable linkage consisting of angulated (or Hoberman’s) 

units in three stages of the deployment. Source: De Temmerman (2007).

 .................................................................................................................... 36 

Figure 2.27: Retractable structure formed from multi-angulated elements. Source: 

You and Pellegrino (1997) and Jensen and Pellegrino (2005). .................. 36 

Figure 2.28: Variations of modified pantographic unit. Adapted: Akgün (2010). ......... 37 

Figure 2.29: Location of modified pantographic unit on a scissor-hinge structure 

proposed by Akgün. Source: Akgün (2010). .............................................. 38 

Figure 2.30: The deployability constraint in terms of the semi-lengths a, b, c and d of 

two adjoining pantograph units in three consecutive deployment stages. 

Adapted from De Temmerman (2007). ...................................................... 39 

Figure 3.1: A simple cantilevered truss structure with one state of selfstress ................ 46 

Figure 3.2: A 3-bay truss with seven degrees of statical indeterminacy. ........................ 53 

Figure 3.3: Illustration of the seven states of selfstress for the structure in Figure 3.2. . 53 

Figure 3.4: A plane cable net structure. Source: You (1997). ........................................ 64 

Figure 3.5: Partitioned forms of the systems of (a) equilibrium, (b) compatibility and       

(c) flexibility equations. Adapted from Pellegrino et al. (1992). ............... 66 

Figure 3.6: A simple pantographic structure with three degrees of statical 

indeterminacy. ............................................................................................ 78 

Figure 3.7: Illustration of the three states of selfstress for the structure in Figure 3.6 

with exaggerated bending (-------) in the pantograph to show 

involvement by bending in the selfstress. .................................................. 79 

Figure 3.8: Flowchart of the MATLAB computer program ........................................... 90 

Figure 4.1: Cable-stayed bridge with eight cables. ......................................................... 93 

Figure 4.2: The photograph of the model of cable stayed bridge. .................................. 94 

Figure 4.3: Photograph of the joint between column and beams of the model. .............. 95 



 

xiv 

Figure 4.4: Photograph of the joint between the top of the column and the cables in 

the model. ................................................................................................... 96 

Figure 4.5: Photograph of a beam and cable joint. ......................................................... 97 

Figure 4.6: Longitudinal-section of the turnbuckle......................................................... 97 

Figure 4.7: Photograph of the model support.................................................................. 98 

Figure 4.8: Photograph of the strain gauges on an aluminium plate for measuring cable 

forces. ....................................................................................................... 100 

Figure 4.9: Strain gauge calibration curve for measuring cable tension versus gauge 

reading for cable 7. ................................................................................... 100 

Figure 4.10: Load-deflection diagram of left-side joints of the structure in Figure 4.1.

 .................................................................................................................. 104 

Figure 4.11: Load-deflection diagram of right-side joints of the structure in Figure 4.1.

 .................................................................................................................. 104 

Figure 4.12: Load-cable tension diagram of the left-side cables of the structure in 

Figure 4.1. ................................................................................................ 105 

Figure 4.13: Load-cable tension diagram of the right-side cables of the structure in 

Figure 4.1. ................................................................................................ 105 

Figure 4.14: Cable-stayed bridge with four cables. ...................................................... 106 

Figure 4.15: Load-deflection diagram of the joints 1 and 3 of the structure in 

Figure 4.14. .............................................................................................. 107 

Figure 4.16: Load-deflection diagram of the joints 6 and 8 of the structure in 

Figure 4.14. .............................................................................................. 107 

Figure 4.17: Load-cable tension diagram of the left-side cables of the structure in 

Figure 4.14. .............................................................................................. 108 

Figure 4.18: Load-cable tension diagram of the right-side cables of the structure in 

Figure 4.14. .............................................................................................. 108 

Figure 4.19: Displacement control of the structure in Figure 4.1 with eight elements 

of eo. ......................................................................................................... 113 

Figure 4.20: Displacement control of the structure in Figure 4.1 with four elements of 

eo ............................................................................................................... 113 

Figure 4.21: Changing vertical displacement of beam joints due to the actuation in 

individual cable. ....................................................................................... 114 

Figure 4.22: Controlling bar forces control of the 8-cable bridge model with eight 

elements of eo. .......................................................................................... 116 



 

xv 

Figure 4.23: Controlling bar forces control of the 8-cable bridge model with four 

elements of eo. .......................................................................................... 118 

Figure 4.24: Changing tension in cables due to the actuation in cables individually ... 118 

Figure 4.25: Displacement results in the simultaneous control of displacement and 

cable forces of the eight-cable structure, with eight actuators in eo. ........ 121 

Figure 4.26: Cable force results in the simultaneous control of displacement and cable 

forces of the eight-cable structure, with eight actuators in eo. ................. 121 

Figure 4.27: Displacement results in the simultaneous control of the structure in 

Figure 4.1 with four elements of eo. ......................................................... 124 

Figure 4.28: Bar force results in the simultaneous control of the structure in Figure 4.1 

with four elements of eo. .......................................................................... 124 

Figure 4.29: Displacement control of the structure in Figure 4.14 with four elements 

of eo. ......................................................................................................... 127 

Figure 4.30: Controlling bar forces control of the 4-cable bridge model with four 

elements of eo. .......................................................................................... 129 

Figure 4.31: Displacement results in the simultaneous control of displacement and 

cable forces of the four-cable structure, with four actuators in eo. ........... 131 

Figure 4.32: Cable forces results in the simultaneous control of displacement and 

cable forces of the four-cable structure, with four actuators in eo. ........... 131 

Figure 4.33: First and second iteration displacement control of the structure in 

Figure 4.14 with four elements of eo. ....................................................... 134 

Figure 4.34: Second iteration displacement control of the structure in Figure 4.14 with 

four elements of eo. ................................................................................... 134 

Figure 5.1: Aerofoil terminology. ................................................................................. 138 

Figure 5.2: Aerodynamic forces of aerofoil. ................................................................. 138 

Figure 5.3: Morphing aerofoil structure. Adapted from Du and Ang (2012). .............. 139 

Figure 5.4: The relationship between CL & CD of the traditional aerofoil with flaps 

and the Du and Ang morphing aerofoil. Adapted from Du and Ang 

(2012). ...................................................................................................... 139 

Figure 5.5: Chiral core morphing aerofoil. Source: Bettini et al. (2010). .................... 140 

Figure 5.6: Chiral composite element. Source: Bettini et al. (2010). ........................... 140 

Figure 5.7: Allocation of normal and shear stress for an aerofoil. Adapted from Taheri 

(2013). ...................................................................................................... 142 

Figure 5.8: Flow streamlines around a tilted aerofoil in normal and stall conditions. .. 143 



 

xvi 

Figure 5.9 : Parameters of the NACA2415 aerofoil. .................................................... 143 

Figure 5.10: Nine morphing stages of MAS1. .............................................................. 145 

Figure 5.11: Nine morphing stages of MAS2. .............................................................. 146 

Figure 5.12: Comparing CL and CD of NACA2415 (by varying angle of attack for 

fixed flap angle) with MAS1 and MAS2. ................................................ 148 

Figure 5.13: Comparing CL and CD of NACA2415 (by varying flap angle for fixed 

angle of attack) with MAS1 and MAS2. .................................................. 149 

Figure 5.14: Pressure coefficient of MAS1. ................................................................. 150 

Figure 5.15: Pressure coefficient of the MAS2. ............................................................ 150 

Figure 5.16: Comparing CL and CD of 31 NACA shapes with MAS1 & MAS2. ......... 153 

Figure 5.17: CD for the same CL in different stages of Figures 5.19 to 5.27. ............... 154 

Figure 5.18: Cm for the same CL in different stages of Figures 5.19 to 5.27. ............... 154 

Figure 5.19: Stage 1 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 154 

Figure 5.20: Stage 2 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 155 

Figure 5.21: Stage 3 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 155 

Figure 5.22: Stage 4 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 155 

Figure 5.23: Stage 5 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 156 

Figure 5.24: Stage 6 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 156 

Figure 5.25: Stage 7 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 156 

Figure 5.26: Stage 8 of normalised MAS1 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 157 

Figure 5.27: Stage 9 of normalised MAS1.................................................................... 157 

Figure 5.28: CD for the same CL in different stages of Figures 5.30 to 5.38. ............... 158 

Figure 5.29: Cm for the same CL in different stages of Figures 5.30 to 5.38. ............... 158 

Figure 5.30: Stage 1 of normalised MAS2 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 158 



 

xvii 

Figure 5.31: Stage 2 of normalised MAS2 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 159 

Figure 5.32: Stage 3 of normalised MAS2 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 159 

Figure 5.33: Stage 4 of normalised MAS2 and same CL of NACA2415 aerofoil shape.

 .................................................................................................................. 159 

Figure 5.34: Stage 5 of normalised MAS2.................................................................... 160 

Figure 5.35: Stage 6 of normalised MAS2.................................................................... 160 

Figure 5.36: Stage 7 of normalised MAS2.................................................................... 160 

Figure 5.37: Stage 8 of normalised MAS2.................................................................... 161 

Figure 5.38: Stage 9 of normalised MAS2.................................................................... 161 

Figure 5.39: Cross-sectional area comparison of MAS1, MAS2 and MAS3 ............... 162 

Figure 5.40: Nine morphing stages of MAS3. .............................................................. 163 

Figure 5.41: Lift versus drag comparison of MAS1, MAS2 and MAS3. ..................... 163 

Figure 6.1: Pantographic morphing structure model (Demonstration morphing of 

Aerofoil) ................................................................................................... 166 

Figure 6.2: The photograph of the pantographic morphing structure ........................... 168 

Figure 6.3: A two-dimensional Pantograph unit ........................................................... 169 

Figure 6.4: Details of the support structure for the pantographic morphing model. ..... 170 

Figure 6.5: Metering modes of the camera: Source: Arbabi (2012). ............................ 171 

Figure 6.6: Calculating joint displacements by AutoCAD software............................. 173 

Figure 6.7: Vertical displacement control of the upper surface joints of the structure 

in Figure 6.1 under distributed vertical load ............................................ 178 

Figure 6.8: Vertical displacement control of the upper surface joints of the morphed 

shape of the structure in Figure 6.1 with (+10mm) eo of bar-36, under 

distributed vertical load. ........................................................................... 179 

Figure 6.9: Vertical displacement control of the upper surface joints of the structure 

in Figure 6.1 under a single vertical point load for the first target position.

 .................................................................................................................. 183 

Figure 6.10: Vertical displacement control of the upper surface joints of the structure 

in Figure 6.1 under a single vertical point load for the second target 

position. .................................................................................................... 184 

Figure 6.11: Horizontal displacement control of the front surface joints of the structure 

in Figure 6.1 against distributed horizontal load. ..................................... 186 



 

xviii 

Figure 6.12: Structure in Figure 6.1 after increasing elastic rubber bands. .................. 187 

Figure 6.13: Vertical displacement control of the upper surface joints of the structure 

in Figure 6.12 with elastic band under distributed vertical load. ............. 189 

Figure 6.14: First and second iteration displacement control of the structure in 

Figure 6.12 ............................................................................................... 192 

Figure 6.15: Second iteration displacement control of the structure in Figure 6.12 ..... 192 

Figure 6.16: Nine morphing stages of morphing structure in Figure 6.1 ...................... 199 

Figure 6.17: Theoretical and experimental deflection of joint 1 in x and y direction 

versus morphing control bar actuation. .................................................... 201 

Figure 6.18: Theoretical and experimental deflection of joint 2 in x and y direction 

versus morphing control bar actuation. .................................................... 202 

Figure 6.19: Theoretical and experimental deflection of joint 4 in x and y direction 

versus morphing control bar actuation. .................................................... 202 

Figure 6.20: Theoretical and experimental deflection of joint 6 in x and y direction 

versus morphing control bar actuation. .................................................... 203 

Figure 6.21: Theoretical and experimental deflection of joint 8 in x and y direction 

versus morphing control bar actuation. .................................................... 203 

Figure 6.22: Theoretical and experimental deflection of joint 12 in x and y direction 

versus morphing control bar actuation. .................................................... 204 

Figure 6.23: Theoretical and experimental deflection of joint 14 in x and y direction 

versus morphing control bar actuation. .................................................... 204 

Figure 6.24: Theoretical and experimental deflection of joint 16 in x and y direction 

versus morphing control bar actuation. .................................................... 205 

Figure 6.25: Theoretical and experimental deflection of joint 18 in x and y direction 

versus morphing control bar actuation. .................................................... 205 

Figure 6.26: Theoretical and experimental deflection of joint 19 in x and y direction 

versus morphing control bar actuation. .................................................... 206 

 



 

xix 

LIST OF TABLES 

Table 3.1: Displacements of the structure in Figure 3.1 under different sets of eo 

(MATLAB Program is shown in Appendix A.1). ...................................... 47 

Table 3.2: State of selfstress or bar forces of the structure in Figure 3.1 under different 

eo (MATLAB program can be found in Appendix A.1). ........................... 51 

Table 3.3: Displacement and bar forces control of the structure in Figure 3.2 

(MATLAB program can be found in Appendix A.2). ............................... 55 

Table 3.4: Displacements (shaded) and bar forces/elongation of the structure in 

Figure 3.2, with increasing number of actuations in eo.  Values exceeding 

limit are shown in bold (MATLAB program is shown in Appendix A.2).

 .................................................................................................................... 61 

Table 3.5: Comparison the present technique of linear shape control with You, Shen 

and Xu techniques for linear shape control of cable net structure in 

Figure 3.4. .................................................................................................. 65 

Table 3.6: Displacements of the structure in Figure 3.6 under different sets of eno 

(MATLAB program can be found in Appendix A.3). ............................... 81 

Table 3.7: Bar forces of the structure in Figure 3.6 under different sets of eno 

(MATLAB program is shown in Appendix A.3). ...................................... 84 

Table 3.8: Displacement and bar forces control of of the structure in Figure 3.6 

(MATLAB program is shown in Appendix A.3). ...................................... 87 

Table 4.1: Cables stayed bridge model cables EA values ............................................. 102 

Table 4.2: Displacement control of the structure in Figure 4.1 with eight elements of 

eo (MATLAB program can be found in Appendix A.4). ......................... 111 

Table 4.3: Displacement control of the structure in Figure 4.1 with four elements of 

eo (MATLAB program is shown in Appendix A.5). ................................ 112 

Table 4.4: Control of bar forces in the structure in Figure 4.1 with eight elements of 

eo (MATLAB program can be found in Appendix A.4). ......................... 115 

Table 4.5: Control of bar forces in the structure in Figure 4.1 with four elements of eo 

(MATLAB program is shown in Appendix A.5). .................................... 117 

Table 4.6: Simultaneous displacement and cable forces control of the eight-cable 

structure with eight actuators in eo (MATLAB program can be found in 

Appendix A.4). ......................................................................................... 120 



 

xx 

Table 4.7: Simultaneous displacement and bar forces control in the eight-cable 

structure with four actuators in eo (MATLAB program is shown in 

Appendix A.5). ......................................................................................... 123 

Table 4.8: Displacement control of the structure in Figure 4.14 with four elements of 

eo (MATLAB program can be found in Appendix A.6). ......................... 126 

Table 4.9: Bar forces control of the structure in Figure 4.14 with four elements of eo 

(MATLAB program is shown in Appendix A.6). .................................... 128 

Table 4.10: Simultaneous displacement and bar forces control of the four-cable 

structure with four actuators in eo (MATLAB program can be found in 

Appendix A.6). ......................................................................................... 130 

Table 4.11: Double iteraton displacement control of the structure in Figure 4.14 with 

four elements of eo (MATLAB program is shown in Appendix A.6). ..... 133 

Table 5.1: Terminology and aerodynamic forces of aerofoil and their definitions. ..... 136 

Table 5.2: CD and Cm for the same CL in different stages of Figures 5.19 to 5.27. ...... 152 

Table 5.3: CD and Cm for the same CL in different stages of Figures 5.30 to 5.38. ...... 157 

Table 6.1:  Vertical displacement control of the upper surface joints of the structure 

in Figure 6.1 under distributed vertical load (MATLAB program is 

shown in Appendix A.7). ......................................................................... 177 

Table 6.2:  Vertical displacement control of the upper surface joints of the morphed 

shape of the structure in Figure 6.1 with (+10mm) eo of bar-36, under 

distributed vertical load (MATLAB program can be found in Appendix 

A.8). .......................................................................................................... 180 

Table 6.3:  Vertical displacement control of the upper surface joints of the structure 

in Figure 6.1 under big vertical point load (MATLAB program is shown 

in Appendix A.9). ..................................................................................... 182 

Table 6.4: Horizontal displacement control of the front joints of the structure in 

Figure 6.1 against distributed horizontal load (MATLAB program can 

be found in Appendix A.10). .................................................................... 185 

Table 6.5: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.12 with elastic rubber bands under distributed vertical load 

(MATLAB program is shown in Appendix A.11). .................................. 188 

Table 6.6: Double iteration displacement control of the structure in Figure 6.12 

(MATLAB program can be found in Appendix A.12). ........................... 191 



 

xxi 

Table 6.7: Bar sensitivity to the vertical displacement of the upper surface joints of 

the structure in Figure 6.1. ....................................................................... 194 

Table 6.8: Bar sensitivity to the horizontal displacement of the upper surface joints of 

the structure in Figure 6.1. ....................................................................... 197 

 

 

 



 

xxii 

LIST OF NOTATIONS 

 

The following is a list of the most important symbols that appear in the thesis. Symbols 

not included in this list are defined when they first appear. 

 

A Equilibrium matrix 

A* Condensed  equilibrium matrix 

a, a1, b, b1, c, 

d 
Semi-bars (semi-lengths) 

A+ Pseudo-inverse of A 

Amn Equilibrium sub-matrix 

Ar Surface area of wing 

AT Transposes of equilibrium matrix 

axial Bar/beam tension (elongation) 

 b Number of bars 

B Compatibility matrix 

B* Condensed compatibility matrix 

Bar36 Morphing control bar 

Bnm Compatibility sub-matrix 

BT Transposes of compatibility matrix 

c Degrees of freedom 

c Chord line 

CD Coefficient of Drag 

CL Coefficient of Lift 

Cm Moment coefficient 

Cp Pressure coefficient 

d External nodal displacements 

D, E, D’, E’ Additional revolute joints of pantograph 

dc External nodal displacement vanishing and non-vanishing 

dm External displacement correspond directly to pm 

dP Nodal displacements due to only load 

dp External displacement correspond directly to pp P.69 

dpc Nodal displacements due to only load vanishing and non-vanishing 

e Internal bar elongation 

E Young’s modulus 

e* Condensed internal bar elongation 

e’ Eccentricity 

EA The axial stiffness of members 

EI The bending stiffness of members 



 

xxiii 

en Non-vanishing internal bar elongation actuation 

eo Elongation actuation vector 

eo
* Condensed elongation actuation vector 

eoc Elongation actuation vector vanishing and non-vanishing member 

ep Vanishing internal bar elongation actuation 

ESPS Exhaustive-single point substitution 

F Flexibility matrix 

F* Condensed flexibility matrix 

FA Flap angle 

FD Drag force on the aerofoil 

FL Lift force on the aerofoil 

Ftotal Total force on the aerofoil 

GA Genetic algorithms 

GA2 Modified Genetic Algorithm 

i Dimension of the structure 

ISA Improved simulated annealing 

j Number of joints of the structure 

K Stiffness matrix 

LE Leading edge 

LPA Laminated piezoelectric actuator 

MAS1 Morphing aerofoil structure one 

MAS2 Morphing aerofoil structure two 

MAS3 Morphing aerofoil structure three 

Mc Mach number 

NACA National Advisory Committee for Aeronautics 

p External loads 

p Normal stress (air pressure) 

p* Condensed external (non-zero) load 

pm Non-zero components of external joint load 

pp Zero components of external joint load 

QTM Qualisys track manager 

Re Reynolds number 

rms Root mean square 

rot.1 & rot.2 Beam moment (rotation) at ends 1 and 2 

S States of self-stress 

S* Condensed states of self-stress 

SA Simulated annealing 

SD Skelton and delorenzo algorithm 

SLE Scissor-like elements 

SMA Shape memory alloy 

SPEC Successive peak error correction 

http://en.wikipedia.org/wiki/National_Advisory_Committee_for_Aeronautics


 

xxiv 

SVD Singular value decomposition 

t Internal bar forces 

t* Condensed internal bar forces 

t, t1, t2  

 
Unit thickness 

tc Internal bar force vanishing and non-vanishing member 

TE Trailing edge 

tH The particular solution internal bar forces 

tn Non-vanishing internal bar force 

to Initial internal force of the cables 

tP Internal force due to the applied load only 

tp Vanishing internal bar force 

U Wind speed 

VGT Variable geometry truss 

WOBI Worst-out-best-in 

x/c Normalised aerofoil length 

Y eo Nodal displacements due to eo 

Y+ Pseudoinverse of Y 

Z eo Internal force due to eo 

z/c Normalised aerofoil thickness 

 Set of s combinatorial constants for the vectors of S 

 Angle of attack 

β Kink angle 

γ  Unit angle 

θ Deployment angle 

ρ Air density 

τw Shear stress (viscosity effects) 

ψ1 & ψ2 Beam rotation at ends 1 and 2 

  

 



Chapter 1: Introduction and Overview 

1 

Chapter 1 

 

 

1 Introduction and Overview 

 

 

 

1.1 Introduction 

The construction industry, by the scale of typical projects and the more imprecise nature 

of loadings, usually works to a less exacting standard of tolerance than most of other 

branches of engineering. Nonetheless, there are applications of structural engineering 

where tolerances of structural shape and internal forces, under changing service 

conditions, are not only important but actually impinge on the structure’s serviceability 

limit state. Such structures could be supporting sensitive scientific or communications 

equipment, which demands challenging structural performance, or be deployed in harsh 

environments (e.g. space).  Such structures are typically pin-jointed assemblies, or have 

characteristics very similar to pin-jointed assemblies, since length actuations, which bring 

about the shape and/or bar force changes can be more readily incorporated into pin-jointed 

assemblies. 

On the other hand, structures composed of beam members such as cable-stayed 

bridges could undergo a big deflection under the load or may be required to control 

internal force of a specific cable. In this case, the displacement must be restored and/or 

the cable force must be controlled and limited according to the desired target. In addition, 

the application of pantographic structures, which are made from pantographic units that 
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consist of two coplanar, straight beams, joined by a shear connector, could be very 

delicate and sensitive to distortion.  

Morphing structures are a type of structure which can change their shape according 

to applications and conditions. The applications of morphing structures are in the 

aerospace industry rather than other branches of engineering. For example, the ability of 

engineers to improve designs of wing will be increased by morphing aerofoil structures. 

Since the shape of the aerofoil section is the principal and most responsive parameter for 

changing the flight characteristics of an aeroplane, researchers working on “smart wings” 

have focused on finding different ways to change the flight efficiency and achieve the 

same aerodynamic effects in different flight conditions and environments. 

 

1.2 Aim and Objectives of Study 

There are two main related aims of the present dissertation. The first is to provide a 

method to directly control nodal displacements and bar forces via bar length actuations. 

Although displacement requirements can make demands on actuations that are in conflict 

with those required by bar forces, there is yet the possibility that solutions, or approximate 

solutions, exist that adjust the shape or stress-state of a structure from a current 

undesirable position to a desired one. 

The second aim of this work is to propose a suitable morphing structure in the form of 

an aerofoil to allow shape re-configuration in order to replace the traditional aerofoil 

while still retaining the required aerodynamic characteristics. In addition, it is also an aim 

to have both first and second aims simultaneously i.e. directly control nodal 

position/displacements of a morphing aerofoil during morphing via bar length actuation. 

These aims are realized through achieving the following nine steps. 

1- To review the available literature on analytical and numerical techniques on shape 

control, with a view to finding efficient and comprehensive techniques for shape 

control. 
2- To derive a direct method for control of nodal displacements, bar forces and 

simultaneous nodal displacements and bar forces, for a structural assembly. 
3- To develop a direct method for adjusting nodal displacements, bar forces and 



Chapter 1: Introduction and Overview 

3 

simultaneously nodal displacement and bar force together, for structures made up of 

more complex structural components (i.e. those with “macro-elements”), e.g. the 

pantographic element. 
4- To identify the best locations for actuators and to determine how to achieve target with 

minimum actuation. 
5- To correct manufacture or assembly imperfections, or restore structural shape or 

internal force due to environmental effects or prestressing. 
6- To propose a morphing aerofoil structure as an effective way to enhance/replace the 

tradition aerofoil. 
7- To study methods for calculating theoretical nodal displacement of the pantographic 

morphing structure. 
8- To examine and test shape adjustment of a morphing structure. 
9- To experimentally verify achievements of the objectives 2 to 7. 

 

1.3 General Layout of the Dissertation 

This dissertation is separated into the following chapters.  

 

Chapter 1 introduces the dissertation and sets out the aim and objectives. It includes a 

brief introduction to the problem of controlling displacement and bar force of structures, 

morphing pantographic structure and it role in aerospace. A summary of the organisation 

of the dissertation is also provided.  

Chapter 2 gives details about the literature review of the topics for this dissertation, in 

the area of controlling structures, morphing structures, and pantographic structures with 

different types of pantographic units. 

Chapter 3 provides theoretical analysis for the controlling equations for controlling joint 

displacement, bar force and simultaneously joint displacement and bar force, through 

using matrices of force method in ordinary and condensed form. The force method, on 

which the current work is based, is briefly summarised to establish notations and 

terminology. Finding length actuations for bars where joint displacements, and separately 

bar forces, are required to be controlled is carried out.  Furthermore, work is also done to 
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find length actuations for bars where both displacements and bar forces are to be 

simultaneously controlled. 

Chapter 4 describes the experimental work of structural joint displacement and bar force 

controlling, on a cable stayed bridge model and explains the experimental work carried 

out. Experimental results are then compared to theoretically derived results following 

Chapter 3. 

Chapter 5 concerns the changing aerodynamic characteristics of a morphing wing 

structure based on pantographic structures. In this chapter, two concepts for morphing 

aerofoil sections are presented using pantographic structures. A brief introduction of the 

terminology and aerodynamic forces of aerofoil as well as a standard aerofoil shape are 

provided. The performance of the proposed morphing aerofoils is then explored alongside 

that of the standard aerofoil. 

Chapter 6 illustrates an experiment carried out on a morphing pantographic structure for 

controlling structural joint displacements. Experimental results are compared with the 

theoretical results obtained from the condensed matrix technique developed in Chapter 3. 

The technique of morphing shape calculation as also covered alongside experimental and 

theoretical result comparison. 

Chapter 7 collects up the conclusions of this study in line with the original aim and 

objectives and also suggests directions for further work to be done in this area. 

For more clarity, a flowchart presenting the interrelations between different chapters is 

shown in Figure 1.1
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Figure 1.1: Organisation of dissertation.
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2 Review of Previous Work 

 

 

 

2.1 Introduction 

This chapter reviews previous work that is relevant to this dissertation and is divided into 

two main subjects, namely controlling and morphing of the structures. The first subject is 

a detailed overview of the relevant literature on adjustment or controlling of the 

structures, which explains why controlling of the structures is required. Controlling of 

structures has three main categories: control of joint displacements; control of bar forces; 

and simultaneous control of both joint displacements and bar forces. Each category is 

reviewed separately with illustrations of the different approaches proposed by different 

researchers. Furthermore, an overview will also be provided for showing methods used 

to limit the number of actuators, and the placement of actuators for optimal control of 

structures, due to the cost of employing a high number of actuators. The different types 

of actuators are also presented. 

The second subject of this chapter deals with morphing and deployable structures, 

with examples in this field. A review is given of existing pantographic structures and 

types of pantograph units such as translational units, polar units and angulated units. All 

of these pantographic units will be used in the morphing structure based on the pantograph 

that will proposed in this thesis, except for angulated units.  The last sections give a review 

of conditions for deployability and analysis of a pantographic structure. 
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2.2 Adjustment/Controlling of the Structure 

In general, an adjustment can be defined as the process of small changes or movement 

that improves the current performance or achieves a desired outcome. More simply, shape 

control can be defined as reduction or even elimination of the structural deformation 

caused by external disturbances (Ziegler, 2005). Therefore, some structures are designed 

to have the ability of changing their shapes by adjusting some of the member lengths or 

forces (Shea et al., 2002).  Structural control can be divided into three subdomain 

categories as active control, adaptive control and intelligent control (Korkmaz, 2011) as 

shown in Figure 2.1.  

 

 

Figure 2.1: Three subdomain categories of structural control. Source: Korkmaz  (2011). 

 

Active control is the controlling in real time of an “active” structure, which 

contains sensors and actuators that, when active, modify the structure in response to its 

environment. Adaptive control is thus the engineering that improves structure’s response 

to changing environments over time without reference to behaviour modelling and actions 

such as loading and temperature. Intelligent control is the control whereby an engineering 

structure monitor and maintains, or improves its structural performance by recognizing 

changes in behaviour and actions, and adapting the structure to meet performance goals, 

and using rules developed from past events to improve future performance (Korkmaz, 

2011). 
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  The controlling or adjustment process in structural engineering can be done via 

elongations of active members capable of length extension/contraction. The element 

elongations can be done using devices embedded in these members, called actuators, 

which produce the length extension/contraction (Sener et al., 1994). For achieving an 

exact solution of static and dynamic shape control, the shape actuators must be capable 

of extension and contraction (Ziegler, 2005). 

In this work, adjustment means “small” changes in external nodal displacements 

or internal member forces in order to control them to the desired target thus both 

“adjustment” and “control” words can be used.  Even though the concept of length 

actuation as the cause of static shape change is simple, work on the associated 

analytical/computational techniques is not extensive, and this is especially the case for 

direct approaches. For more clarity, the previous work in this area can be divided under 

three categories as displacement control, bar force control and simultaneous control of 

both displacements and bar forces. 

 

2.2.1 Displacement Control 

In general, the structural geometric shape is very significant in most structural 

engineering. The shape of a structure is usually defined by its nodal positions. Such 

structures could be supporting sensitive scientific or communications equipment that 

require very high geometric accuracy, which demands good structural performance, or 

are deployed in harsh environments (e.g. space). Since space structures are designed to 

be as light in weight as possible, they also tend to be very flexible. These structures might 

have shape imperfections from manufacturing errors, errors due to unexpected transport 

loading, unexpected loads, and thermal distortion etc. and hence they require adjustment 

with suitable correction to accurately maintain their shapes as far as possible.  

The aim of shape control is to abolish/reduce the effects of external disturbances 

on the structural deformation through appropriate actuation as stated by Irschik (2002) 

and Haftka and Adelman (1985a). In addition, they also pointed out that shape control 

could be a branch of structural engineering that was closely related to control engineering. 
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The process of controlling external displacement can be done by changing the 

length actuation of some active members. To achieve this, it is very necessary to find the 

sites of the most active members (Section 2.4) and amount of the length actuation for 

those members. Therefore, for attaining the previous requirement to nullify unwanted 

shape imperfection an attempts were made by some researchers. Earlier and recent studies 

on the structural control has been reviewed in detail and a number of articles have been 

cited by Korkmaz (2011). In addition, Burdisso and Haftka (1990) have also studied static 

shape control methods. Furthermore, Ziegler (2005) presented a short historical review 

of structural shape control, while a detailed discussion and review on shape control with 

piezoelectric actuators was presented by Irschik (2002), and Sunar and Rao (1999). 

 When the shape distortion becomes undesirable, the nodal positions have to be 

adjusted to restore the shape,  the adjustment process is often achieved by controlling the 

length of the structural members (Edberg, 1987; Du et al., 2013). It seems that subject of 

shape control was introduced firstly by Weeks (1984a; 1984b). Weeks (1984a; 1984b) 

described the approach for both static shape determination and control for large space 

structures using Green's functions.  In the beginning, he developed the static shape control 

and determination algorithms for one-dimensional models, using a flexible simply 

supported beam as an example (Weeks, 1984a). He noted that the shape control problem 

could not be separated from the problem of shape determination since shape 

determination was followed by shape control. In a subsequent paper, Weeks (1984b) 

derived the solutions of static shape determination and control for large space structures, 

which was explained using the finite element model of a large space antenna. 

One year later, the subject of shape control was developed by Haftka and Adelman 

(1985a). They presented an analytical procedure for static shape control of flexible space 

structures by changing the temperature of control elements so as to minimize the overall 

static distortion of a large space structure. Their displacement control procedure was 

based on using higher coefficients of thermal expansion elements as an active member 

for controlling/minimizing the overall distortion of the large space structure. They noted 

that the shape distortion of the structures could be either transient, i.e. changes to the 

structure gradually dampen out, or those that remain fixed over time.  

Haftka and Adelman (1985a) derived two different equations for shape control, 

the first one was for continuous structures on the basis of a differential equation, which 
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they then applied to control the distorted shape of a simple beam due to non-uniform 

heating. Their second formulation procedure was based on the finite element model for 

discrete structures. They performed this procedure for the 55m space-truss-parabolic 

antenna in Figure 2.2 to estimate effectiveness of thermal shape control. After Haftka and 

Adelman (1985a), other researchers appeared gradually who took an interest in the field  

of shape control. 

 

 

Figure 2.2: Tetrahedral truss antenna reflector. Source: Haftka & Adelman (1985a). 

 

Indirect approaches for static shape control problem of flexible structures have 

also been tested, e.g. by Subramanian and Mohan (1996) with an algorithm of successive 

correction based on heuristics. Their algorithm (termed successive peak error correction, 

SPEC) starts with the procedure of applying the first adjustment at the location which has 

the peak deformation in the structure. Then the correction is done in the second location, 

which has the peak deformation after correcting in the first location of the structure and 

so on. This process is repeated until the target is achieved. They concluded that their 

technique is very economical and effective, since it requires only a small fraction of the 

time taken by the more established Skelton and DeLorenzo (1983) algorithm, as will be 

explained in Section 2.4. 
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Simulated annealing in combination with a linear finite-element evaluation of 

control of a precision truss structure was used by Salama et al. (1993) who concluded that  

their search was effective, but observed nonlinear behaviour led to inaccuracies. Chee et 

al. (2001; 2002) investigated a novel static shape control algorithm for structures taking 

into account the curvatures and slopes in the objective functions as the fine-tuning criteria. 

A three-dimensional solution of the static shape control by eigenstrain actuation has been 

derived by Irschik and Ziegler (2001). 

 Shape control has been done on the different types of structures in order to nullify 

the distortion of the shape of structure. The shape control of beam by piezoelectric 

actuator patches was  analytically addressed by Yang and Ngoi (2000). They derived the 

analytical solution of a beam deflection due to both piezoelectric actuation and external 

loads. In their work, different boundary conditions were measured and several case 

studies were presented in order to show how analytical solutions could achieve shape 

control of the structure. Their prediction results showed that it was difficult to approach 

the desired shape of a beam locally with piezoelectric actuators  due to  the limitation of 

actuation forces of the piezoelectric actuators (Yang and Ngoi, 2000). Based on 

Timoshenko beam theory and induced strain actuation theory, Hadjigeorgiou et al. (2006) 

showed the shape control and damage identification of a cantilever composite beam using 

piezoelectric actuators and genetic algorithms optimization procedure. Yu et al. (2009) 

also considered the static shape control of a cantilever beam by laminated piezoelectric 

actuators. 

The reflector surfaces of cable mesh antennas have to be sensibly adjusted to attain 

required accuracy either to achieve high gain or high directivity (which allows 

miniaturization of ground terminals) or to reform their shapes (which allows collection 

of weak signals) by changing the length of some cables capable of adjustment (Du et al., 

2013). The surface adjustment mechanism is used to correct the original deformation. 

Many research groups have carried out shape adjustment of cable mesh space antennas 

(Mitsugi et al., 1990; Tanaka and Natori, 2004; Tanaka, 2011; Du et al., 2014).  

The direct method was studied by Mitsugi et al. (1990) who used the pseudo-

inverse of a sensitivity matrix of surface error with respect to cable length variations  that 

related control inputs to antenna deformations in order to determine the inputs for shape 

control. Tanaka and Natori (2004) also presented a direct method for adjustment and to 
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increase the surface precision by changing the length of boundary cables or  tie cables in 

a mesh reflector shown in Figure 2.3.  

 

 

Figure 2.3: Antenna consisting of cable networks. Adapted from Tanaka (2011) 

 

Tanaka (2011) developed a novel method for the estimation and correction of 

antenna surface deformations called the “surface adjustment mechanisms” method. In this 

method, firstly relationships between antenna surface errors and changes in antenna gains 

caused by intentional deformations were found. Then the deformations were corrected 

after estimating the original deformation of the antenna surface, on the basis of 

monitoring the impact on the signal gains of the antenna due to adjustments carried out 

(Tanaka, 2011). Tanaka (2011) concluded that calculation costs were reduced and 

applicability was improved in this method. Earlier Burdisso and Haftka (1990) also 

addressed the problem of efficient analysis of the statistics of initial and corrected shape 

distortion in antenna structures. 

A shape adjustment procedure based on optimization was presented by Du et al.  

(2013). This method presents the relationship between the reflector surface error and the 

length variation of adjustable cables. Du et al. (2013) pointed out that some cables would 

be slack when the location of the required parabolic surface was not properly determined. 

The finite element model of an active cable structure was established and an active shape 

adjustment method was investigated by Wang et al. (2013) to achieve the active surface 

control of a cable net. On the other hand, shape control of deployable cable net reflectors 
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has been investigated by Tanaka and Natori (2006) on the basis of self-equilibrated 

stresses concept, where shape control was achieved without iteration. 

There has been work on shape control of intelligent structures. A finite element 

analysis for static shape control of intelligent structures with distributed piezoelectric 

sensors/actuators has been proposed by Wang et al. (1997). Moreover, Trak and Melosh 

(1992) addressed the shape control of a truss through choosing nodal coordinates to 

compensate for deformation. For this purpose, they utilized a tetrahedral truss in different 

cases of structural loading and surface geometry, which showed that the determinate truss 

bar forces were not affected significantly by change in the geometry due to smallness of 

this geometry change. 

Tensegrity structures are sensitive to a small environmental changes so Shea et al. 

(2002) described adaptive changes in a tensegrity-like grid structure. Through  using 

stochastic search algorithms, feasible actuations have been found to adjust the structure 

from the initial shape to the target shape. Since the main problem in shape control of 

tensegrity is the determination of the actuations, according to Shea et al. (2002), they 

consequently proposed a system for intelligent structural control of tensegrity structures, 

as shown in Figure 2.4. 

 

 

Figure 2.4: System for intelligent computational structural control of a tensegrity 

structure. Source: Shea et al. (2002). 
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2.2.2 Bar Forces Control 

For some structures, or for some loads, the internal forces in the structural members might 

require control more than the displacements. For example, structures with cable members 

can have those members approaching slack under some loading conditions, and they thus 

need to be tightened to remain structurally existent. On the other hand, a slender strut 

could be approaching instability due to buckling failure and thus needs its compressive 

force reduced. Of course, bar length actuation has effect on internal bar forces only in 

statically indeterminate structures.  

The current concern is about controlling the axial force of some of the structural 

members, which are over- or under-stressed as a result of loading, to avoid structural 

failure. However, the specific issue of control of internal force in structures has not had 

much study, thus some works are reviewed and summarised in this section which deal 

with the more general case of prestressing of structures. Strictly, a prestressing process 

can be done only in the indeterminate structures though, for all structures, there is a certain 

amount of “pre-stressing” due to the weight of the structure. On the other hand, large 

space structures can be prestressed in a certain way in order to reduce the weight of the 

structure (e.g. by shifting the balance of the predominant internal forces towards tensile, 

thus reducing the need for bulky compression struts) and for covering a larger span (Levy 

et al., 1994) hence such structure are generally indeterminate structures. The prestressing 

technique has direct connection with the length actuation of the structure members. On 

the basis of the force method, Kwan & Pellegrino (1993)  addressed methods to calculate 

length actuation in the case of trying to achieve a specific prestress pattern before loading. 

In addition, they also addressed the issue of finding the best prestress actuator sites, and 

the best actuator adjustments to improve an existing, incorrect prestress state in pin-

jointed trusses. 

The amount of the force in the prestressed structures can be also controlled via 

pre-tensioning prestress member to a desired value as discussed by Dong and Yuan 

(2007). Their initial internal force method for pre-tension analysis of a prestressed space 

grid structure was based on the principle of linear superposition. Their numerical results 

show that their technique is correct, reliable and effective, and applicable for the analysis 

of prestressed structures. 
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2.2.3 Simultaneous Displacement and Bar Force Control 

In practice, it is difficult to control of one variable without at the same time affecting 

some other variables.  For instance, in restoring the shape of an antenna to the predefined 

target through changing some member lengths, we have to be very careful that the 

resultant set of actuations do not also change strut forces to reach dangerous levels, or to 

bring some cables to slack due to reduction of their internal force. In this case, there is 

necessity to be able to control both the nodal displacement as well as the bar forces. In 

practice, it is not typically easy to control both the shape and forces at the same time. 

On the control of both shape and internal forces, little work has been done. An 

analytical scheme of shape and stress control of pin-jointed prestressed truss structures, 

using a linear force method of analysis, was investigated by Kawaguchi et al. (1996). For 

validation of the proposed scheme, they compared computed results of the proposed 

scheme with experimental results from a tension stabilized truss structure shown in 

Figure 2.5. The tests were conducted without applying any external loads on the system, 

and they focussed on identifying difficulties regarding control of the displacement 

components. 

 

 

Figure 2.5: Tension stabilized truss structure: Adapted from Kawaguchi et al. (1996). 
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 Based on the force method and for small linear elastic deformations, the 

displacement control scheme for prestressed cable structures by altering the length of 

some structural members was proposed by You (1997). You (1997) dealt with the 

problem directly, and showed the direct link between length actuations and displacements 

for prestressed structures. In his work, it was shown that the displacement of the 

prestressed truss/cable network structures could be controlled via changing the length of 

some structural members while simultaneously keeping the prestress level above a chosen 

lower bound. The validation and practicability of his technique was proved through good 

agreement between the computational and the experimental results in his experiment on 

the prestressable two-dimensional cable network shown in Figure 2.6. You’s technique 

consists of: firstly finding a set of members capable of actuation in order to achieve any 

displacements within a given range, and at the same time their actuation has no effect on 

keeping the prestress level above a chosen lower bound for any member of the given 

structure. The second step is the calculation of the amount of actuation for those members 

required for getting the target displacement in the given range. However, the method is 

only appropriate for the case of small deformation of structures made of linearly elastic 

materials. Likewise, the shape and stress control analysis of pin-jointed prestressed truss 

structures was also investigated by Kawaguchi et al. (1996) where a simple analytical 

scheme based on the linear force method of analysis was proposed. However, difficulties 

were identified in validating numerical results through experimental testing. 

 

 

Figure 2.6: A two-dimensional cable network. Adapted from You (1997). 
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Smart structures, which are a type of engineering structure containing sensors and 

actuators, can change their geometry, stiffness and damping to adjust to changes in the 

environment (Korkmaz, 2011). They are often used in high accuracy space structures such 

as reflectors. Normally low damping, varying thermal loading conditions, and joint 

looseness, etc. affect such structures. These effects can be nullified or reduced by actuator 

control. Geometry control in prestressed adaptive space trusses was discussed by Sener 

et al. (1994) in order to satisfy the precision requirements of the instruments supported 

by them. They noted that approximate methods of geometry control were not satisfactory 

and exact control methods had to be emphasized since the required precision of the 

sensitive measurement equipment supported by the adaptive space truss demanded 

geometry control at the level of micrometres. In their work, two methods were used for 

shape control, stress-free control and stressed control, and both methods were applied to 

the two structures shown in Figures 2.7 and 2.8. 

 

 

Figure 2.7: Planar indeterminate truss. Source: Sener et al. (1994). 
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Figure 2.8: Planar antenna support structure. Source: Sener et al. (1994). 

 

Shape control of a prestressed cable structure was proposed as a multi-objective 

optimization problem which was solved using a genetic algorithm by Xu and Luo (2008). 

In contrast, Wang et al. (2013) argued, for cable net structures with high surface accuracy 

requirements, multi-objective optimization methods were not appropriate due to the low 

precision of the solution and large computational effort for large and/or flexible truss 

structures. Sometimes significant shape errors or undesired bar forces result. Greene and 

Haftka (1990) proposed a member and joint exchange algorithm method to reduce both 

surface errors and member forces through finding alternative arrangements of members 

and joints. 

Moreover, Xu and Luo (2009) proposed an iterative procedure to perform 

nonlinear shape control of prestressed cable structures on the basis of linear displacement 

control technique and the non-linear force method. After conducting their procedure they 

found that the computational results of their non-linear control method were in good 

agreement with the target values, however the corresponding results of the linear control 

method had considerable errors. They concluded also that the non-linear displacement 

control method kept the prestress level of the structural members much closer to the initial 

level than the linear displacement control method. 
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2.3 Number of Actuators 

To control a particular structure, the number of actuators is very important to nullify 

undesired shape or bar force. That number depends on the structure, and what/how many 

joint displacements and bar forces are to be controlled. Salama et al. (1993) discussed 

that increasing the number of actuators could produce desired shape correction with 

successively increasing degree of accuracy. At the same time, due to the cost of 

employing a high number of actuators for the controlling resolution, generally the number 

of the actuators is limited. It is thus very important to find the optimal number of actuators 

for a given problem/structure. 

The problem of selecting n actuator locations from a larger set of m available sites, 

was  considered by Haftka and Adelman (1985b) for static shape control of large space 

structures.  Haftka (1991) presented the concept of “ideal actuators” for correction of 

shape distortion. The concept of “ideal actuators” is used to estimate the number of 

actuators needed for a particular application for reducing shape error and characterization 

of the suitability of an actuator in term of effectiveness to reduce the number of truss 

members with actuators. The “ideal actuators” concept was tested on a 55-m radiometer 

antenna truss structure (Haftka, 1991). Furthermore, Kincaid (1993) used simulated 

annealing to achieve a nearby optimal solution for actuator placement for structures with 

a large number of members. Simulated annealing was found to be a sensible calculation 

technique to avoid a huge number of possible configuration calculations. 

 

2.4 Actuators Placement 

Placement of actuators for optimal control of a structure is of essential significance. 

Therefore, the optimisation to reduce/eliminate the distortion of the structure shape has 

been done via finding minimum amount of actuation by finding the best location for 

actuators (i.e. the location of the most effective actuators). 
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where dp is the vector of nodal displacements of the structure due only to load, and d is 

the resultant nodal displacements after some elongation actuation eo has been applied. 

Furuya and Haftka (1995a) reported that the number of possible combinations for 

placement of controllers, even for small structures, could be very large. Due to the cost 

of placing high number of actuators for the controlling purpose, mostly, the number of 

the actuators is limited. For this reason it is very important to find optimal locations of 

the actuators. Several researchers have earlier attempted the problem of selecting the 

positions of actuators to achieve a global optimal or a near-global optimum solution. 

Kwan and Pellegrino (1993) pointed out the role of location of actuators in adjusting an 

incorrect prestress distribution, as well as their required actuation and the best actuator 

adjustments. 

Haftka  (1984) investigated analytical procedures for placement of thermal and 

force actuators in the optimal locations for shape control against static deformations of 

large space structures. Expressions were derived based on the design against the worst 

disturbances and the analytical effort was minimized numerically. It was found that 

control placement is of greater importance for force actuators, so was of significance for 

thermal actuators. 

Skelton and DeLorenzo (1983) developed a heuristic algorithm (SD algorithm) to 

determine the optimal control sites for actuators and sensors. This technique starts from 

an evaluation the effect of adding or eliminating actuators by quadratic performance 

criteria in all available sites, and then removes the least influential sites one by one, until 

the best sensors and actuators are selected with the permissible number of control sites. 

Subramanian and Mohan (1996) claimed a new, simple, heuristic algorithm method 

called the successive peak error correction to be faster than the SD method for static shape 

control of flexible structures but still with a comparable accuracy. 

In another major study, Haftka and Adelman (1985b) studied the problem of 

placement of actuators with heuristic integer programing in large structures for the 

purpose of shape control. Two iterative heuristic algorithms under names of the Worst-

Out-Best-In (WOBI) and Exhaustive-Single Point Substitution (ESPS) were formulated 

in their work. They were concerned with how to find the optimal locations of actuators 

from a high number of available locations. It was proven that both WOBI and ESPS 

heuristic algorithms were able to achieve shape adjustment by relocating actuators, but 
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the results depended somewhat on the initial guess. Furthermore, they compared their 

results from WOBI and ESPS with those obtained by SD algorithm of Skelton and 

DeLorenzo (1983), using the example of shape control of an antenna reflector. It was 

found that WOBI and ESPS results were better than those of SD when a relatively small 

number of the available sites was selected. However, the SD technique was 

computationally cheaper than the WOBI and ESPS algorithms when a large fraction of 

the available sites had to be selected. In addition, it was difficult to achieve high surface 

accuracy with just a few actuators even if these were optimally placed. 

After Haftka and Adelman (1985b) several researchers proposed new approaches 

for actuator placement, for instance, using genetic algorithms (GA). Rao et al. (1991) 

presented the discrete optimal actuator location selection problem in actively controlled 

structures using a genetic algorithms (GA)  approach to solve this as a binary encoding 

optimization problem and claimed that that their approach could produce a global-optimal 

solution or a near-global-optimal solution if a sufficient number of generations were 

considered. The formulation was also applied to find optimal locations of actuators in a 

two-bay truss (Rao et al., 1991). In the same way, Furuya and Haftka (1995a; 1995b)  

used genetic algorithms and effectiveness indices in solving optimization problems to 

locate good locations for actuators within large space structural systems. 

 Another algorithm for the optimal placement of actuators was Simulated 

Annealing (SA). An attempt was made with static distortion minimization problem 

through the optimization of actuator placement in truss structures by applying SA, as 

applied on a large tetrahedral truss for minimum surface distortion (Kincaid, 1993). In 

addition, Chen et al. (1991) also applied SA to study the problem of the optimal placement 

of active and passive members in complex truss structures. Meanwhile, Onoda and 

Hanawa (1993) applied a Genetic Algorithm (GA), a modified Genetic Algorithm (GA2), 

and Improved Simulated Annealing approach (ISA) to the actuator placement 

optimization problem in shape control of space trusses. They concluded that GA, GA2 

and ISA performed better than ESPS, WOBI and SA when the comparison was done on 

a three-ring tetrahedral truss example. 

Maghami and Joshi (1993) outlined an optimal actuator and sensor location 

selection method  in the active control for large flexible space structure. They optimized 

the location of actuators and sensors in order to move the transmission zeros from the 
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right-half-plane to the left-half-plane of the imaginary axis.  This was a problem that 

especially needed for fast optimal regulation and tracking problems. Additionally this 

method was successfully applied to a large flexible structure  (Maghami and Joshi, 1993).  

The problem of actuator placement for controlling displacement of a force loaded 

beam was also discussed by Irschik and Nader (2009). The Mohr analogy extension has 

been applied to remove displacement and cross-sectional rotation at certain pre-selected 

places on the beam (smart structure) via piezoelectric actuators. They compared their 

proposed beam-type methodology of actuator placement with a two dimensional finite 

element computation with a good response. The optimal placements problem for the 

actuators was also identified by Matunaga and Onada (1995). 

No doubt, in designing smart structures, engineers have to very carefully select 

the appropriate type of actuators with their locations on the structure and the amount of 

actuation to be applied to the actuators. For instance, controlling the bending shape 

distortion of beam structures should be done via piezoelectric patch actuators. 

Hadjigeorgiou et al. (2006) developed a finite element model and genetic optimization 

procedure for controlling and damage identification of a cantilever composite beam 

shown in Figure 2.9, via distributed piezoelectric patch actuators. The mathematical 

formulation of the model was based on the shear formulation beam theory (Timoshenko 

beam theory) and the linear theory of piezoelectricity. The investigators said that in 

general a large number of actuators was needed to be placed along the beam and 

especially in high strain regions. However Hadjigeorgiou et al. proved that a small 

number of actuators with optimal placement and optimal voltage values could also 

achieve shape control of the beam effectively. 
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Figure 2.9: A laminated beam with piezoelectric sensor/actuator. Source: Hadjigeorgiou 

et al. (2006). 

 

In order to reduce the cost of the optimization of actuator location, Burdisso and 

Haftka (1989) presented a continuum approximation technique for calculating statistical 

properties of the corrected shape. They showed that the comparison of their method with 

the exact statistical analysis was very good. In addition, they noted that the use of 

continuous optimization techniques was much cheaper than the integer programing 

methods by Haftka and Adelman (1985b). Furthermore, they concluded that the position 

of the actuators was optimized to minimize the weighted rms of the distortion using the 

continuum analysis also they showed that the optimum design was much better than a 

design with uniformly spaced actuators for parabolic weighting function. Finally, they 

found that actuators located on the beam face elements of the truss-beam structure in 

Figure 2.10 were more effective than the actuators located on the diagonal elements 

connecting the two surfaces.  

 

Figure 2.10: Truss-beam geometry. Source: Burdisso and Haftka (1989). 
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2.5 Types of Actuators  

2.5.1 Piezoelectric Actuator 

Shape control of flexible structures by piezoelectric actuators is one of the exciting 

applications of piezoelectric material (Chee et al., 1998). To date, piezoelectric materials 

have been the most widely used smart material to control the shape of a structure. Detailed 

discussions and review on shape control of by piezoelectric actuation were presented by 

Irschik (2002), and Sunar and Rao (1999). Many researchers have used piezoelectric 

actuators for the purpose of shape control of flexible structures. For instance, they were 

used for shape control and damage identification of a cantilever composite beam by 

Hadjigeorgiou et al. (2006), and also by Yang and Ngoi (2000) for the shape control of a 

beam. In addition, a piezoelectric actuator was also used for static shape control of 

intelligent structures by Koconis et al. (1994a; 1994b), Wang et al. (1997) and Chee et 

al. (2001; 2002). 

A new type of piezoelectric actuator called  the laminated piezoelectric actuator 

(LPA)  has been used by Yu et al. (2009) in the shape control of a cantilever beam. This 

type of piezoelectric actuator is made up of several piezoelectric patches with the same 

geometric and material parameters. 

Despite the fact that piezoelectric actuators have been the most widely considered 

for shape control, they still have some certain disadvantages, such as being prove to 

damage and having limited ability to conform to curved structures (Binette et al., 2009). 

 

2.5.2 Thermal Effect  

Using thermal effect as actuation can be an option whereby changing the temperature of 

the control elements can reduce the overall static distortion of a large space structure from 

its deformed shape. The chosen element as an active member must have a high coefficient 

of thermal expansion. Static shape control of flexible space structures using heat was done 

by Haftka and Adelman  (1985a), who also (1987) performed a study to predict and assess 

the effect of actuator errors on the performance of a shape control procedure for flexible 

space structures using applied temperatures.  
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2.5.3 Shape Memory Alloy (SMA) 

Shape memory alloy (SMA) is a relatively new and useful material and has found 

increasing applications in many different areas due to their unique properties such as high 

force, long stroke, small size, light weight, and silent operation (Peng et al., 2008). 

Recently, research efforts have been extended to using SMA for control of the structures. 

The detailed review of applications of SMA materials for controls of structures was done 

by Song et al. (2006) . However, Peng et al. (2008) claimed that the poor stability and 

controllability of the shape memory alloy (SMA) made it a challenge to achieve accurate 

actuation.  

2.5.4 Lead Screw Active Members 

Salama et al. (1993) used lead-screw active members as actuators in controlling structures 

(as shown in Figure 2.11) as part of a complete assembly with adapters, a load cell and 

erectable joints. Salama et al. (1993) noted that this lead-screw active member was more 

suitable for full scale space-erectable truss structure than piezoelectrically driven active 

members, since actuator gains of the order of 1 mm were needed for this application, 

which could not be provided by piezoelectric active members. 

 

 

Figure 2.11: Lead screw active member. Adapted from Salama et al. (1993). 

 

The combination of lead screws and piezo-actuators for demonstration of shape 

control of an erectable, experimental doubly curved tetrahedral truss structure was used 

by Salama et al. (1993). The structural changes in structures like parabolic tetrahedral 

truss structures resulting from launch loads or during operations in a space environment 

can be compensated precisely and controlled with high precision by substituting some of 

the truss members with actuators according to Haftka and Adelman (1985b) and 

Matunaga and Onoda (1995). 
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2.6 Shape Morphing 

In the past few decades, interest in morphing structures has increased commonly due to 

the greater benefits they can provide, particularly within aerospace research, because of 

their variable geometry, low weight and reduced overall complexity of structure 

(Lachenal et al., 2012). Iannucci and Fontanazza (2008) defined a morphing structure as 

a structure capable of modifying its geometric characteristics, dimensions or tune its 

properties (stiffness and damping) in order to its operating conditions, change its 

interaction with the surrounding environment adapt to different load conditions. The 

shape morphing truss structure has the ability of  bending, twisting and undulating 

deformations (Sofla et al., 2009). 

 Originally, in the last decade an increasing variety of attractive structures and 

buildings with movable functions have been seen worldwide, for instance in bridges that 

open to allow ships to pass, revolving restaurants on tops of buildings, sliding roofs of 

baseball and soccer dome stadiums, and artistic monuments (Inoue, 2007). These types 

of moveable structures can have a very simple movement on rails, or turn around a hinge. 

Their behaviours are repeatable without changing structural shape. Later, Inoue (2007) 

progressed the movable structures that includes change in the behaviour of the structures 

simultaneously with the changing the geometric shape of the structures with a lively 

motion. The first application of an adaptive structure using a variable geometry truss 

(VGT) mechanism was presented by Inoue (2007)  at the International Expo 2005, Aichi, 

Japan. He presented a large-scale movable monument shown in Figure 2.12.  This 

monument is composed of three identical movable towers comprising four actuating truss 

members. Since shape morphing can be easily converted from well-known traditional 

truss structures by substituting some of the trusses with linear displacement actuators 

(Sofla et al., 2009) through controlling the length of each of its extendable member 

(extensible actuator), the monument’s shape can be changed to the various truss shapes 

as presented in Figure 2.13, which shows the monument’s shape changes according to 

performance patterns (Inoue et al., 2006).  

 In 2012, a novel type of morphing structure capable of large deformations was 

presented by  Lachenal et al. (2012) as shown in Figure 2.14. Their morphing structure 

was made of two pre-stressed flanges joined together to have two stable configurations. 

In each flange, five holes were made along the length of each flange with equal space to 
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accommodate the rods. The steel rods were machined at their ends. In order to allow the 

device to twist freely, the flanges were loosely connected to the rods. Three different 

configurations existed. The straight (a) and coiled (c) configurations corresponding to 

unstable equilibria are shown in Figure 2.14. The bistability analysis was done for the 

presented morphing structure through a simple analytical model, predicting the positions 

of the stable and unstable states for different design parameters and material properties 

(Lachenal et al., 2012). They found a good correlation between experimental results, 

finite element modelling.  

 

Figure 2.12: Scheme of the three morphing towers shown at the International Expo 2005, 

Aichi, Japan. Source: Inoue (2007). 

 

 

Figure 2.13: Shape changes of monument according to performance patterns. Source: 

Inoue et al. (2006). 
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Figure 2.14: The prototype in (a) the straight, (b) the twisted and (c) the coiled 

configurations. Source:  Lachenal et al. (2012). 

 

2.7 Pantographic Structures 

The base composition of morphing structure in this dissertation are pantographs, so we 

discuss the pantograph unit in detail. Pantograph elements are also called scissor-like 

elements. Different terms were used, e.g. pantographs (Pinero, 1961), scissor-like 

elements (SLE’s) (Gantes, 2001),  pivot-hinge structural unit (Gantes, 2001), in order to 

describe these units. Pantographs are defined by Glisic et al. (2013) as a specific type of 

deployable structures that are capable to deploy from a small compact state to a larger 

expanded state while carrying loads. The pantograph elements consist of two straight bars 

connected through a shear connector (revolute joint, scissor-hinge or pivotal connection) 

called the “intermediate hinge”, typically near their centres while the ends remain free 

(De Temmerman, 2007; Maden et al., 2011; Glisic et al., 2013). The pivotal connections 

allow free rotation between two rods about the axis perpendicular to the common plane 

of the pantograph (Susam, 2013). By interconnecting such pantograph units at their end 

nodes using the revolute joint, a two-dimensional transformable linkage is formed 

(Merchan, 1987; De Temmerman, 2007). Through rotating the rods about the pin, the 

structure can be elongated or flattened in the plane of the rods to change shape (Wolfe, 

2013) as shown in Figure 2.15. Some devices are constructed on the basis of this idea 

such as scissor lift and lazy tongs. Additional examples, e.g., flat slab, beams, arches and 

domes, exist by connecting multiple pantographs elements together in two dimensions 

(Wolfe, 2013). A detailed review of pantographic structural mechanisms, geometric 

principles and design methods was done by Maden et al. (2011). 

(b)(a) (c)
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Figure 2.15: The concept of a pantograph. Adapted from Merchan  (1987). 

 

Rapid deployability with minimum labour is the main advantage of pantographic 

structures due to  predetermined final shape of the structure by layout and orientation of 

the struts, thus simply pulling or pushing in a few locations automatically erects the 

structure (Wolfe, 2013). Further advantages of this structure are that there can be 

relatively little on site construction of the pantographic structure, high speed deployment 

and  very compact storage, and deployment and contraction of all units can be carried out 

by one control force or mechanism (Chikahiro et al., 2014). Deployable pantographic 

structures are used in a wide variety of applications, on both small and large scales, such 

as military, disaster relief, temporary structures, aerospace and roof structures (Wolfe, 

2013). 

Gantes (2001) defined deployable structures as structures that can be transformed 

from a closed compact configuration to a predetermined, expanded form, in which they 

are stable and can carry loads. Alternatively, morphing structure has a particular function 

in each steps of deploying, for instance morphing aerofoil gives a specific coefficient of 

lift and drag in each stage of morphing. Therefore, in this literature review we discuss 

both deployable and morphing structures that are built from the interconnecting of a series 

of pantographic units. 
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According to Gantes  (2001) the first person who built a deployable structure in the 

modern sense was Emilio Perez Pinero, a Spanish architect, in 1961; thus, he is known as the 

pioneer of deployable structures. The first of his work was designing and constructing a 

real-size deployable theatre using the principle of pantograph as shown in Figure 2.16. 

 

 

Figure 2.16: Pinero’s deployable structure. Source: Akgün (2010). 

 

After Pinero, other researchers worked on deployable structures on the basis of the 

pantograph concept. One of these researchers was Felix Escrig Pallares, who developed a 

deployable vault by incorporating rigid plates that overlap one another as shown in 

Figure 2.17. Moreover, Escrig has also developed several models on pantographs and 

designed a swimming pool in Seville by using one of his models (spherical lamella grids) on 

pantographs as shown in Figure 2.18.  Numerical simulation and a physical prototype of a 

pantograph mast, activated and stiffened by a network of cable segments and active cables 

were presented by Kwan (1991). 

 

 

Figure 2.17: Escrig’s deployable vault incorporating rigid panels. Source: Gantes  (2001) 
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Figure 2.18: Escrig’s spherical lamella grids. Source: Gantes (2001). 

 

2.8 Pantographic Units 

Different types of basic unit types for the pantographic structure can be produced through 

changing the location of the intermediate hinge or the shape of the bars such as 

translational, polar and angulated units (De Temmerman, 2007; Maden et al., 2011). 

 

2.8.1 Translational Units 

In this type of pantographic unit, the unit lines, which connect the upper and lower end 

nodes of a pantograph unit are parallel and remain so during deployment. A plane and a 

curved translational unit are shown in Figure 2.19. An example for plane unit is a lazy-

tong as shown in Figure 2.20, which is formed by linking a series of a plane pantographic 

elements at their ends to form two-dimensional linearly extendible structures (Jensen and 

Pellegrino, 2005).  By linking a series of curved translational units at their ends, a curved 

linkage is formed as presented in Figure 2.21. In the curved translational unit, the lengths 

of the bars are different which produces a curved linkages, thus it is named as a curved 
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translational unit (De Temmerman, 2007; Maden et al., 2011).  This type of structure has 

just a single-degree-of-freedom mechanism characterised by the deployment angle θ 

(Alegria Mira, 2010). The structural thickness t, depends on the value of θ , which is 

measured between the lower and upper end points of the rods (Roovers and De 

Temmerman, 2014). 

 

 

Figure 2.19: (a) A symmetrical plane-translational unit; (b) a symmetrical curved-

translational unit; (c) a non-symmetrical curved-translational unit. Source: 

Roovers and De Temmerman (2014). 

 

 

Figure 2.20: The simplest plane translational scissor linkage, called a “lazy-tong”. Source: 

Alegria Mira (2010). 
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Figure 2.21: A curved translational linkage in its in two deployment stages. Source: 

Alegria Mira (2010). 

  

2.8.2 Polar Units 

This type of pantographic unit can be shaped by moving the intermediate hinge away 

from the centre of the bar with an eccentricity e' as shown in Figure 2.22. Hence a polar 

unit is formed with unequal semi-bars a and b see Figure 2.23. The unit lines intersect at 

an angle γ. When the unit deploys, the angle between lines varies, and varies more and 

more as the intersection point moves closer to the unit as the curvature increases as shown 

in Figure 2.24, which is a polar linkage in its undeployed and deployed configuration (De 

Temmerman, 2007; Alegria Mira, 2010). 

  

Figure 2.22: Effect of hinge moving on the shape of pantographic structure. Source: 

Alegria Mira (2010). 

e’
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Figure 2.23: Polar unit.  

 

 

Figure 2.24: A polar linkage in its undeployed and deployed position. Source: De 

Temmerman (2007). 
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2.8.3 Angulated Units 

The angulated pantograph unit normally called Hoberman’s unit because it was first made 

popular by Hoberman (1990). This type of pantograph element consists of two identical 

angulated elements, each composed of two bars rigidly connected with a kink angle β as 

shown in Figure 2.25, unlike common pantograph units with straight bars (i.e. where 

β=180º). The angulated elements can be used to form expandable closed loop structures 

as shown in Figure 2.26. It is capable of retracting to their own perimeter, which is 

impossible to accomplish with translational or polar units. In Figure 2.26, a circular 

linkage is shown with angulated elements in its undeployed and deployed configuration, 

which is designed by two layers of identical angulated elements. Both layers are formed 

by angulated elements in opposite directions. During the deploying of the structure, each 

layer undergoes a rotation, with the same magnitude but opposite to each other. 

The concept of the angulated pantograph element was extended by You and 

Pellegrino (1997) through their finding that a certain pantographic element with multiple 

kinks at the hinge positions (multi-angulated rod), as shown in Figure 2.27, has the same 

property and can be folded if the rods form a tessellation of parallelograms.  

 

 

Figure 2.25: Angulated unit or Hoberman’s unit. 

β

α

α=γ/2
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Figure 2.26: A radially deployable linkage consisting of angulated (or Hoberman’s) units 

in three stages of the deployment. Source: De Temmerman (2007). 

 

 

 

Figure 2.27: Retractable structure formed from multi-angulated elements. Source: You 

and Pellegrino (1997) and Jensen and Pellegrino (2005). 

 

2.9 Modified Pantographic Unit 

Akgün (2010) developed a new type of pantographic unit, called the modified 

pantographic unit, which can be distinguished from the normal pantographic unit by 

having additional revolute joints on various locations of the bars. These revolute joints 

increase not only the degrees of freedom of the unit, but also the transformation capacity 

of the whole system and increasing the possibilities of the number of structural forms 

(Akgün et al., 2007; Akgün, 2010; Akgün et al., 2010). Three different variations of the 

modified pantographic unit are shown in Figure 2.28. The modified pantographic unit in 

Figure 2.28a was obtained by the connection of four struts by three hinges on a common 

point, in this unit, compared to the structural pantograph unit, two additional degrees of 

freedom come from the revolute joint located at the point B (Akgün et al., 2010). 
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Therefore, each of the four struts can rotate freely about their common point, without 

affecting the other three struts. In this modified pantographic unit, the number of degrees 

of freedoms is equal to three, while the number of degrees of freedom of the 

corresponding normal pantographic unit is equal to one. In Figure 2.28b, the additional 

revolute joints are located on the points D’ and E’. The difference in this modified 

pantographic unit compared to a normal pantographic unit is the additional revolute joints 

on the bottom sides of the bars (points D’ and E’) (Akgün et al., 2007). In the third shape 

of modified pantographic unit in Figure 2.28c, these additional revolute joints are located 

on the points D and E. 

 

 

Figure 2.28: Variations of modified pantographic unit. Adapted: Akgün (2010). 

 

On the basis of modified pantographic units, Akgün et al. (2010) designed a 

transformable planar pantographic roof structure. This adaptive structure can form 

various shapes without changing the size of the covered area because the modified 

pantographic units divide the entire system into sub-structures, acting as “isolators” of 

these sub-structures, so that each sub-structure can transform without directly affecting 

the other sub-structures. Hence, when a modified pantographic unit is used in a 

pantographic structure, it increases the number of degrees of freedoms of the whole 

system, thus enabling the system to change its shape, without changing the span length 

or the dimensions of the bars (Akgün, 2010; Akgün et al., 2010). As an example for using 

Additional 

revolute joint

Additional 

revolute joints

Additional 

revolute joints

a b c
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modified pantographic units in the system, Akgün (2010) presented the system shown in 

Figure 2.29 in his thesis. In the system, there are two modified pantographic units, 

dividing the whole structure into three “isolated” parts. Therefore, only the modified 

pantographic units in the same group follow any movement of one pantographic unit in 

the same group. Hence, it is possible to change the shape of the whole system without 

changing the dimensions of the struts or the span, since each sub-group has independency 

(Akgün, 2010). 

 

 

Figure 2.29: Location of modified pantographic unit on a scissor-hinge structure proposed 

by Akgün. Source: Akgün (2010). 

 

2.10 Compact Folding Constraint 

The introduction of kinematic degree of freedom is ensures mobility and transformation 

of the deployment of a structure. Crucial to the design of deployable morphing structures 

is the “deployability constraint” which is a simple formula derived by Escrig (1985), for 

instance for the linkage in Figure 2.30, as:  

a + b = c + d  
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This equation means that for the system to fully close the sum of the semi-lengths 

a and b of a pantographic unit has to equal the sum of the semi-lengths c and d of the 

adjoining units. 

 

Figure 2.30: The deployability constraint in terms of the semi-lengths a, b, c and d of two 

adjoining pantograph units in three consecutive deployment stages. Adapted 

from De Temmerman (2007). 

 

2.11 Analysis of Pantographic Structures 

Morphing or deployable structures, consisting of only hinged pantographic units, usually 

have low structural stiffness, and high bending moment.  Particularly for the large span 

grids, the structure can become inefficient (Wujun et al., 2002). Therefore, researchers 

have concentrated on the methods for analysis for pantographic structures and have used 

numerous methods for formulating the structural matrix for a pantographic unit. Kwan 

(1991) used the force method, where the pantographic unit was discretised into four beam 

elements. The equilibrium, compatibility and flexibility matrices were derived for a 

typical beam element in a local coordinate system through using shear force and bending 

moment relationships. Subsequently, Pellegrino et al. (1992) reduced the equilibrium 

matrix in size by matrix partitioning and by setting the end moments to zero. In this 

method the number of self-stress states and the number of infinitesimal mechanisms of 

the given system could be evaluated by the singular value decomposition (SVD) of the 

equilibrium matrix (Pellegrino, 1993). 

c

d

b

a
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 Using the same force method approach, Kwan and Pellegrino (1994), explored 

one particular class of deployable structures which consisted only of rods, hinged together 

to form a deployable backbone, some passive cables, and one or more active cables. 

“Passive cables” were slack when the backbone was fully or partially folded but become 

taut when fully deployed, while “active cables” activated deployment and setup suitable 

states of prestress once the structure was in its fully deployed configuration. Efficient 

methods of analysis for foldable pantographic structures have been developed by Kaveh 

and Davaran (1996). The authors have formulated the stiffness matrix a unit of such a 

structure into a standard stiffness method. The stiffness matrix of deployable pantograph 

masts with pantographic units was also obtained by Nagaraj et al. (2010) via an approach 

based on the  constraint Jacobian matrix. They obtained the stiffness matrix in symbolic 

form and found a good match between their results and that obtained using the force 

method. 
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Chapter 3 

 

 

3 Theoretical Analysis 

 

 

 

This chapter deals with the general techniques of direct relationship between bar forces 

and/or bar length actuations and the external nodal displacements of a prestressable pin-

jointed assembly, a beam and cable structure and a pantographic structure.  These 

techniques will be used later in data analysis of a cable-stayed bridge (Chapter 4) and 

morphing pantographic structures (Chapter 6). 

 

3.1 Introduction 

Theoretical analysis using the Force Method of structural analysis can be applied to find 

the direct relationships among bar length actuations, the external nodal displacements and 

internal bar forces in order to identify the good/optimal locations for such actuators, and 

the amount of actuation to produce a prescribed shape or force change of structures under 

set of external loads. The set of equations are the equations for controlling external nodal 

displacements alone, controlling internal bar forces alone and simultaneously controlling 

both external nodal displacements and internal bar forces of the structures. The 

fundamental equations are linear (normal matrices and condensed matrices) for adjusting 

shape or force directly.  
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3.2 Linear Matrix Controlling Equations 

3.2.1 The Force Method  

The current technique is founded in the force method of structural analysis, principally 

because, unlike the displacement method, the force and displacement systems are not so 

“entangled” in the force method throughout the analysis, and thus allows “easy access” 

to the contributing parameters affecting the internal forces and the external displacements.  

Furthermore, the nature of the different effects are more clearly characterised, and thus 

there can be better handling of conflicting requirements of force and displacement.  The 

Force Method is now briefly recapitulated. 

Given an i-dimensional structural assembly with b bars and j joints, and a total of c 

degrees of freedom are constrained by external supports, the equilibrium balance between 

the vector of external loads p and internal bar forces t is expressed as  

  At p  3.1) 

where A is the equilibrium matrix, and has size  ij c b  .  On the other hand, 

compatibility is the statement of general relationship between internal bar elongation e 

and external nodal displacements d and is expressed as 

  Bd e  3.2) 

where B is the compatibility matrix, and has size  b ij c  .  Equilibrium is evidently 

entirely in the force realm, while compatibility concerns only structural displacements.  

Nonetheless, the two systems are clearly interdependent since they both relate to the same 

structure.  The connection is that the equilibrium and compatibility matrices are 

transposes of each other, i.e. T B A .  This can be easily seen by expressing Eqn. 3.2 in 

incremental form, δ δB d e  (or
T T Tδ δe d B ), with δe  and δd  as the virtual counterparts 

of e and d, and since the principle of virtual work (Livesley, 1975) provides T Tδ δe t d p

, then T T Tδ δ   d B t d p  and thus T B t p , i.e. T B A . 

The trio of relationships is completed by the flexibility relationship involving the 

individual member flexibilities, which, for a pin-jointed bar assembly, has a b b  diagonal 

flexibility matrix F such that 

(3.1) 

(3.2) 
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  Ft e . 3.3) 

where every bar has non-zero bar stiffness, F is of full rank and invertible.  In this case, 

1t F e  , and with Eqn. 3.1,  1   A F e p , and with Eqn. 3.2,  1 AF Bd p .  Since the 

Displacement Method has Kd p , then the stiffness matrix 1K AF B .   

However, in the force method, the solution to the system is not via 1K AF B  

but involves firstly expressing the general solution t to the equilibrium equations as the 

sum of a particular solution and the complementary homogeneous solution.  The 

particular solution is any vector t that satisfies Eqn. 3.1, and one such vector  Ht  can be 

obtained [There are other ways to obtain Ht , since Ht  is not unique] from  
H

t A p  

where 
A is the pseudo-inverse (or Moore-Penrose inverse) of A.  With the use of the 

pseudo-inverse 
A , Ht  is actually not merely any particular solution to Eqn. 3.1, but it 

is in fact the least-squares solution, though this additional property is not necessary for 

our purpose. 

The complementary homogenous solution is the set of solutions satisfying A t=0, 

i.e. the sets of bar forces in equilibrium with zero external load.  This is readily provided 

by the nullspace(A)=S, which by definition satisfies AS 0 , and hence S is called the 

states of self-stress.  There are s linearly independent vectors forming S and s=b-rank(A).  

The correct complementary homogeneous solution can be expressed as Sα , where α is 

a set of s combinatorial constants for the vectors of S that has to be determined through 

satisfaction of compatibility.  The total general solution for equilibrium, combining a 

particular solution and the complementary solution, is thus  

 H t t Sα . 3.4) 

At this point, we introduce a vector of elongation actuation to each bar called eo.  In 

reality, since elongation actuation greatly complicates the physical makeup of a bar, we 

would have actuation only for a limited number of bars, and hence many elements of eo 

will remain zero.  Currently, we will allow any bar the capacity for actuation, and thus eo 

is fully populated, and Eqn. 3.3 becomes 

 o e e Ft , 3.5) 

(3.3) 

(3.4) 

(3.5) 
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i.e. the total elongation in each bar comprises of the sum of actuation for the bar and the 

elongation due to axial force.  Substitution of Eqn. 3.4 into Eqn. 3.5 thus gives 

  o H  e e F t Sα . 3.6) 

Whether a set of bar elongation satisfies compatibility or not can be assessed by whether 

it can be found in the set of compatibility elongations, i.e. in the columnspace(B), whereas 

the left-nullspace(B) contains the basis for all the incompatible elongations.  The 

compatibility condition then is imposed through stating that the bar elongations e must 

be orthogonal to the left-nullspace(B), and that is actually identical to nullspace(A) (i.e. 

the states of self-stress S) when T B A .  The compatibility condition is thus T S e 0 , i.e.  

   T T

o H  S e S F t Sα 0  3.7) 

and thus 

   
1

T T T

o H



    α S FS S e S Ft . 3.8) 

The expression for α  then reveals, by back-substitution, the structural vectors of e 

(Eqn. 3.6), t (Eqn. 3.4) and d (Eqn. 3.2). 

 

3.2.2 Displacement Control without Regard to Bar Forces 

The presentation in Section 3.2.1 is completely adequate for analysis of statically 

determinate and indeterminate structures under load, and even prestressed structures 

where the initial imperfection is entered via eo.  The situation under consideration now is 

where some of the displacements of the structure resulting from loadings are considered 

too large (or too small) and need to be corrected by actuation in at least some of the bars.  

Such actuations will necessarily affect at least some of the bar forces, and possibly put 

some beyond tolerance, but we shall not in this section be concerned about changes in bar 

forces.   

Equation 3.8 can be substituted into Eqn. 3.6 to give 

 

  
   

1
T T T

o H o H

1 1
T T T T

o H



 

     

      
      

e e F t S S FS S e S Ft

I FS S FS S e F FS S FS S F t

 3.9) 

and with Eqn. 3.2, we thus have  

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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  o P d Ye d  3.10) 

where  
1

+ + T T


 Y B B FS S FS S , and   
1

T T

P H


   

  
d B F B FS S FS S F t  is the 

vector of nodal displacements of the structure due only to load, vector d and is thus the 

resultant nodal displacements after some elongation actuation eo has been applied.  The 

vector d, in whole or in part, can thus be used as the prescribed desired displacements and 

Eqn. 3.10 therefore provides the required corrective eo to achieve that prescribed d, 

despite the effects of load in dP.  A form of Eqn. 3.10 (without the dP) has in fact been 

presented by  You (1997), but his interest was in shape control of unloaded prestressed 

structures.   

Clearly, Y is generally not a square matrix, and need not even be of full rank.  

Furthermore, it is likely that not every element of d needs to be prescribed a set value.  

For example, where the structure concerned is a truss supporting structure for a parabolic 

dish antenna, only the nodes in direct contact with the surface of the antenna need to be 

prescribed and carefully adjusted, while other nodes would be free to take any values due 

to the loading (and adjustment process).  Furthermore, not all elements of eo would 

typically have the ability to be actuated.  The system of equations and unknowns in 

Eqn. 3.10 is thus normally likely to be only a (small) subset of the full set of equations.  

In view of all this, the solution for eo is thus best obtained using the pseudoinverse of Y: 

  o P

 e Y d d . 3.11) 

 

3.2.2.1 An Illustrative Example of Displacement Control 

This procedure is now illustrated with the simple example shown in Figure 3.1, which 

has 
54 10EA    for all bars.  The structure has a single state of selfstress involving the 

left-hand half of the structure: 

 
T

1 1 2 2 1 1 0 0 0 0   
 

S . 3.12) 

(3.10) 

(3.11) 

(3.12) 
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Figure 3.1: A simple cantilevered truss structure with one state of selfstress 

 

The displacements under load dP are as shown in Column 3 of Table 3.1, and the 

structure deforms primarily in the negative y-direction.  It is supposed that the nodal 

displacements in 3y and 5y are too large and are to be limited to -2.000 each, while the 

remaining displacements are free to take any value.  In prescribing both d3y and d5y to be 

-2.000, we have also prescribed a levelling condition; in some instances, the displacement 

control required would not be of absolute displacements, but of relative displacements 

between selected joints, e.g. to maintain a constant slope or specific shape of a surface.   

Since we are prescribing only two displacements, Eqn. 3.10 has only two 

equations and becomes: 

 o

1 1 1 1 1 1 0 0 0 0
2 2 2 22 3.1642 2

3 32 9.2861 1 1 1 0 2 1 1
2 2 2 22 2

  
     

            
 

e  3.13) 

which clearly has many possible solutions.  One possible solution is to simply use the 

pseudoinverse to solve Eqn. 3.13, where we thus obtain  

 
T

o -0.039 -1.046 0.056 -0.056 +1.046 +0.039 0 -1.424 +1.007 +1.007e

which when entered in as a corrective eo does indeed produce a displacement of -2.000 in 

both d3y and d5y as required, see Column 4 of Table 3.1.  As a beneficial side effect, the 

(3.13) 
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other displacements have also been reduced, e.g. see d6y.  However, this set of eo is not a 

particularly practical solution since it involves an elongation actuation in every bar except 

bar 7, and requires a total actuation of 5.721.  A better set of eo would be one that requires 

only a few non-zero actuations, and yet still produces the required displacements for d3y 

and d5y.   

 

3.2.2.2 Best Location of Actuators 

If the physical actuators were already in place, then the question of which bars could be 

actuated would not be an issue; what only remains to be decided is the amount of actuation 

for the actuators already in situ.  However, at the design stage, while the location of 

actuators is still yet to be decided, the important question is where the actuators should 

be placed so that they could be of most effective in controlling the sort of displacements 

that will arise out of service loading.  In this case, Eqn. 3.13 is now used to identify which 

are the best (i.e. most effective) bars to control d3y and d5y as well as what the associated 

actuations should be. 

 

Table 3.1: Displacements of the structure in Figure 3.1 under different sets of eo 

(MATLAB Program is shown in Appendix A.1). 

(1) (2) (3) (4) (5) (6) 

Joint Dir Just dP, 

no eo 

Y+eo+dP 4 elements 

in eo 

2 elements 

in eo 

1 x 0 0 0 0 

 y 0 0 0 0 

2 x 0 0 0 0 

 y -0.500 -0.461 -0.500 -0.741 

3 x +1.250 +0.204 -1.811 -4.630 

 y -3.164 -2.000 -2.000 -2.000 

4 x -1.250 -0.204 +1.811 -1.009 

 y -2.664 -1.539 -1.500 -1.741 

5 x +1.250 +0.204 -1.811 -4.630 

 y -9.286 -2.000 -2.000 -2.000 

6 x -2.000 +0.054 +1.061 -1.759 

 y -8.536 -2.257 -1.250 -1.250 
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The effectiveness of actuation in any bar in controlling a particular displacement 

is indicated by the associated coefficient in the Y matrix.  For example, the null column 

in Y for bar 7 in Eqn. 3.13 shows that bar 7 is completely ineffectual in controlling both 

d3y and d5y.  Conversely, the most effective bars are those with large coefficients in Y, 

e.g. bars 2 and 5 for d5y, and bars 3 and 4 for d3y.  If there was a preference for elongation 

or shortening for the actuation, then the sign of the coefficient would also be relevant, 

otherwise, it is merely the size of the coefficient that matters.  We shall now consider bars 

2, 3, 4 and 5 as the four chosen bars for actuation since they have the largest coefficients 

in either row of Y and Eqn. 3.13 now becomes:  

 

2

3

4

5

1 1 1 1
2 22 3.1642 2

3 32 9.2861 1
2 22 2

e

e

e

e

 
   

      
             
   

. 3.14) 

The use of the pseudoinverse gives 

  
T

o 0 -3.061 -1.341 +1.341 +3.061 0 0 0 0 0e . 

Although this set of eo has an increased total actuation of 8.803, it does have the 

advantage that only four bars are actuated, and the resultant nodal displacements still 

satisfy the condition that d3y and d5y equal -2.000, see Column 5 in Table 3.1.   

Now, if only two bars are chosen for actuation instead of four, say bar 2 for d5y 

and bar 3 for d3y, Eqn. 3.13 is further reduced to 

 
2

3

1 1
22 3.1642

32 9.2861
2 2

e

e

 
      

            
 

 3.15) 

and 

  
T

o 0 -6.121 -2.682 0 0 0 0 0 0 0e . 

This reduced set of eo is actually similar to the previous set since we can see bars 2 and 5 

form a pair with similar effect and action, while bars 3 and 4 form another pair, and 

actuating one of the two in a pair is similar to half actuating both in the pair.  The total 

actuation is still 8.803, but the distinct advantage is that the required displacements for 

d3y and d5y have been obtained with actuating only two bars. 

(3.14) 

(3.15) 
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The current approach not only determines the necessary amount of actuation to be 

applied to obtain specific prescribed displacements, it also identifies which are the most 

effective bars for a given set of displacement control, so that the minimum number of 

actuation can be used to deliver the required displacements.  This is clearly an important 

tool in the design of shape sensitive structures with built-in shape control, and especially 

of those structures with variable loading (e.g. movable antenna or telescopes, or orbital 

structures under changing thermal loading). 

 

3.2.3 Bar Forces Control without Regard to Displacements 

For some structures under external loading, the internal forces in the structural members 

might require control more than that for the displacements. For example, under some 

loading conditions, a cable member could approach slack and thus needs to be retightened 

to remain structurally existent, or a slender strut could be approaching instability and thus 

needs its compressive force reduced.  Length actuation thus has a function in the control 

of the internal forces in statically indeterminate structures. Kwan and Pellegrino (1993) 

have already discussed length actuation in the case of trying to achieve a specific prestress 

pattern before loading, as in the case of obtaining an even prestress throughout a cable-

stayed bridge after construction, but the current concern is about controlling the axial 

force of some of the structural members which are over- or under-stressed as a result of 

loading, e.g. to avoid structural failure.  

The equation for the required set of eo to attain a given prescribed set of internal 

force comes from substituting Eqn. 3.8 into Eqn. 3.4 to give 

 

 

    

1
T T T

H o H

1 1
T T T T

H H o

P o



 

    

   
  

 

t t S S FS S e S Ft

t S S FS S Ft S S F S S e

t Ze

 3.16) 

where  
1

T T

P H H



 t t S S FS S Ft ,  
1

T T


Z S S FS S . tP is the vector of internal force due 

to the applied load, and t is the resultant internal forces after some elongation actuation 

eo has been applied.  As in Section 3.2.2, the vector t, or part of it, can be used as the 

prescribed internal force and thus Eqn. 3.16 provides the corrective eo to achieve a 

prescribed t, despite the effects of load found in tP.   

(3.16) 
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Although Z appears to be a square matrix in Eqn. 3.16, it is actually rank deficient 

(since s b ).  Furthermore, as with Y in Section 3.2.2, not every bar will participate in t 

and eo and thus Z is even unlikely to be square.  Therefore, the most appropriate way of 

obtaining eo is again through use of the pseudoinverse. 

We shall illustrate the use of Eqn. 3.16 by again using the structure in Figure 3.1, 

and the bar forces due only to load, tP, is shown in Column 2 of Table 3.2.  It is supposed 

that the three largest bar forces in bars 2, 5, and 8 need to be controlled.  Given this, 

Eqn. 3.16 becomes:  

 

2

5 o

8

1 1 2 2 1 1 0 0 0 05000

5000 414.214 1 1 2 2 1 1 0 0 0 0

4243 0 0 0 0 0 0 0 0 0 0

t

t

t

     
    

        
           

e . 3.17) 

The first observation to make is that the third row of Z, relating to t8, contains only zero 

coefficients, and thus t8 is completely unaffected by eo.  This is because S affects only the 

doubly-braced left hand unit of the structure and bars 7 to 10 (on the right hand side) are 

un-prestressable, and hence they derive their bar force only from tP.  Secondly, since bars 

2 and 5 have the same coefficients in S, and there is only a single state of selfstress, then 

any effect from Zeo has to be uniform for both bars 2 and 5, i.e. bar forces 2 and 5 could 

be both raised or decreased by the same amount, but they cannot be independently 

controlled.  In this case, they can either both become more negative, in which case bar 5 

has increased compression (but bar 2 has decreased tension) or they can both become 

more positive, in which case bar 2 has increased tension (and bar 5 correspondingly has 

decreased compression).  We are thus unable to decrease the magnitude of both bar forces 

at the same time; this can also be noted by the fact that row 2 of Z is identical to row 5 

and so the effect of eo has to be the same for t2 as for t5.  

Given the above limitations, we shall thus seek to reduce the compressive force 

in bar 5, but noting at the same time that any such reduction will be met with an equal 

magnitude increase in the tensile force of bar 2.  We assume that the required t5 is -4000, 

and thus the reduced Eqn. 3.16 is 

       o4000 5000 414.214 1 1 2 2 1 1 0 0 0 0      e . 3.18) 

If all possible bars are given an actuation, then the use of the pseudoinverse on Eqn. 3.18 

gives 

(3.17) 

(3.18) 
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T

o -0.3018 1 1 2 2 1 1 0 0 0 0  e   

with a total actuation of 2.061, which gives the set of bar tensions including the required 

t5 as shown in Column 4 of Table 3.2.  Clearly, this set of eo is excessively full of non-

zeroes and only one bar length actuation is necessary to produce the prescribed tension.  

The most effective bar is either bar 3 or 4 (since they have the largest associated 

coefficient in Z) and an actuation of 1.707 on either bar gives the final set of bar tensions 

shown in Column 5 of Table 3.2, which is actually the same result as achieved with six 

bars being actuated.  (Since s=1, there can only be one t which has t5=-4000, regardless 

of what eo is actually set to.) 

The ability of Eqn. 3.16 to control a specific prescribed bar force depends very 

much on S, whether that particular bar has at least one non-zero coefficient in its 

corresponding row in S, and whether there is enough flexibility in the different 

combinations of the columns of S to simultaneously satisfy all the (potentially conflicting) 

prescribed bar forces.  If a bar has no non-zero entry in S then its bar force cannot be 

controlled by actuation at all.  It is also possible that not all the prescribed bar forces can 

be achieved because s is too small (as in the example above), then only an approximate 

or least-squares solution is possible.  Nonetheless, where s is large, and S is thus 

sufficiently expansive, Eqn. 3.16 gives the required eo to control specific bar tensions. 

 

Table 3.2: State of selfstress or bar forces of the structure in Figure 3.1 under different eo 

(MATLAB program can be found in Appendix A.1). 

(1) (2) (3) (4) (5) 

Bar Just tP, no eo S All elements in eo Only 1 element in eo 

1 +2000 1 +3000 +3000 

2 +5000 1 +6000 +6000 

3 -2828 2  
-4243 -4243 

4 +2828 2  
+1414 +1414 

5 -5000 1 -4000 -4000 

6 -2000 1 -1000 -1000 

7 0 0 0 0 

8 +4243 0 +4243 +4243 

9 -3000 0 -3000 -3000 

10 -3000 0 -3000 -3000 
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3.2.4 Simultaneous Displacement and Bar Force Control 

Each of Section 3.2.2 or 3.2.3 provides a method to control either the displacements, or 

the bar forces, in a structure due to external load without regard of the other.  In practice, 

it is highly likely that situations requiring control of one will also have some effects on 

the other.  For example, while it is critical to restore the shape of an antenna to a prescribed 

profile via member length actuations, it is also necessary that the resultant set of eo does 

not then increase some strut forces to dangerous levels, or reduce some cable forces to 

the point of making them slack. In many situations, there is thus a need to be able to 

simultaneously control both the external nodal displacements as well as the internal bar 

forces via the same set of eo.   

The method we adopt for this is rather straightforward and it works well because 

in general, the total number of bars (and thus the total number of possible length 

actuations) outweighs the sum of the number of displacements and bar forces needing 

control.  We can look for a solution in eo that simultaneously satisfies displacement and 

bar force prescriptions by combining together Eqns. 3.10 and 3.16 to give:  

 
P

o

P

  
   

   

d dY
e

t tZ
. 3.19) 

Since eo is coupled to a single system involving both the Y and Z equations, then eo is 

compelled to satisfy both the displacement and bar force prescriptions simultaneously, 

where it is possible to do so.  Clearly, in the extreme, where there can be up to ij c  

equations in Y and b equations in Z, and there are only b unknowns in eo, Eqn. 3.19 will 

be over-determinate and insoluble, and only a least-square “approximation” is possible 

for eo.  However, this extreme situation is mainly only of academic interest, and typical 

situations are under-determinate and allow a choice in eo.   

 

3.2.4.1 An Illustrative Example of Displacement and Force Control 

We shall examine Eqn. 3.19 through the more complicated truss structure shown in 

Figure 3.2, which has 
54 10EA   for all bars.  Each of the three bays of the truss is doubly-

braced, and adjacent pairs of bays are also further doubly-braced.  The double-bracing 

(3.19) 
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thus provides for us the states of selfstress, and there are seven in total, as shown in 

Figure 3.3. 

 

 

Figure 3.2: A 3-bay truss with seven degrees of statical indeterminacy. 

 

 

Figure 3.3: Illustration of the seven states of selfstress for the structure in Figure 3.2. 
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Each of the individual three bays has a state of selfstress as typified by Figure 3.3a 

(where only the middle bay is illustrated).  This is similar to the state of selfstress on the 

left-hand half of the structure in Figure 3.1.  Each of the two doubly-braced double-bays 

also has a similar state of selfstress, and the left-hand state is illustrated in Figure 3.3b.  

Furthermore, the doubly-braced double-bays have a second and less obvious state of 

selfstress as illustrated in Figure 3.3c, where the two main diagonals have opposite forces 

and the forces to equilibrate the diagonals are produced by leaning quadrilateral 

formations. Altogether, the presence of these seven states of selfstress means that each 

bar is spanned by at least two independent states of selfstress and thus there is a greater 

opportunity for bar force control that avoids two specific bars being immutably coupled 

(as in bars 2 and 5 of Section 3.2.3). 

 Table 3.3 shows the displacements and bar force for the structure under load, firstly 

without any corrective actuation eo applied.  As expected, the displacements are largely 

in the negative y-direction, and it is supposed that the top surface is required to remain 

horizontal, and thus all vertical displacements in joints 5 to 8 are to be the same amount.  

An approximate average value of these current vertical displacements under load is -8.00, 

and it is thus supposed that d5y, d6y, d7y, and d8y are all prescribed as -8.00.  A set of four 

equations in twenty unknowns, based on Eqn. 3.11, gives a set of eo, labelled (eo)1 in 

Columns 3 and 4 of Table 3.3, which does result in the required displacements to maintain 

a horizontal top surface despite the applied load. 
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Table 3.3: Displacement and bar forces control of the structure in Figure 3.2 (MATLAB 

program can be found in Appendix A.2). 

 (Displacements (shaded) and bar forces (unshaded) of the structure: with no eo; with (eo)1 

applied to adjust the controlled displacements shown in bold in Column 3; with (eo)2 applied to 

adjust the controlled displacements (Column 5) and bar forces (Column 6) shown in bold; with 

(eo)3 applied to adjust the controlled displacements (Column 7) and bar forces (Column 8) shown 

in bold, including t9.  Values exceeding prescribed limits are shown in bold). 

  (1) (2) (3) (4) (5) (6) (7) (8)  

Jt Dir. no eo (eo)1 (eo)2 (eo)3 Bar 

  dp  tp dp  tp dp tp dp tp  

1 X 0 +1242  +1253  +1231  +1267 1 

 Y 0 -240  -223  -302  -289 2 

2 X +11.38 -936 +4.84 -839 +4.93 -917 +4.87 -924 3 

 Y 0 -701  -647  -661  -656 4 

3 X +7.40 -975 +3.08 -1112 +3.23 -1104 +3.18 -1065 5 

 Y -13.39 +658 -8.51 +643 -8.63 +573 -8.61 +549 6 

4 x +3.11 +1719 +1.93 +1778 +1.88 +1500 +1.81 +1500 7 

 y -11.87 -1046 -8.11 -1097 -8.14 -1372 -8.15 -1328 8 

5 x +9.93 -1380 +2.10 -1462 +2.07 -1560 +1.99 -1500 9 

 y -1.75 -621 -8.00 -556 -8.00 -484 -8.00 -501 10 

6 x +7.59 +147 +2.80 +258 +2.91 +428 +2.86 +370 11 

 y -12.46 +1589 -8.00 +1623 -8.00 +1500 -8.00 +1500 12 

7 x +4.14 -919 +2.01 -884 +2.08 -1053 +1.99 -1053 13 

 y -16.00 -1133 -8.00 -1045 -8.00 -1292 -8.00 -1308 14 

8 x +1.31 +998 +2.85 +1022 +3.11 +1151 +3.07 +1128 15 

 y -2.30 -1752 -8.00 -1805 -8.00 -1500 -8.00 -1500 16 

   -618  -522  -503  -575 17 

   +527  +430  +572  +599 18 

   +477  +361  +534  +570 19 

   -391  -387  -491  -491 20 
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 It is now supposed that the bar forces are not to exceed 1500 in both tension and 

compression and thus bar forces t7, t12, and t16 need to be controlled with a new set of eo, 

while the control on the displacements is at the same time retained.  Equation 3.19 is now 

employed as a system of seven equations in twenty elongation unknowns:  

 
[rows 7 9 11 13, all 20 columns]

o

[rows 7 12 16, all 20 columns]
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8.00
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 3.20) 

and through use of the pseudoinverse on the 7 20  compound matrix [ Y | Z ]T, we get 

a second fully populated set of actuation, labelled (eo)2 in Table 3.3, (eo)2 = [-1.20  0.89  

3.13  -6.35  0.30  -2.06  -2.40  4.06  3.07  1.95  -0.84  -2.05  -5.37  4.26  -3.71  1.66  1.10  

-1.87  -1.82  0.98].  Table 3.3 shows that (eo)2 does enable all the required displacement 

Column 5 and bar force Column 6 controls to be simultaneously achieved, but (eo)2 has 

also caused bar 9 to now carry a force greater than the 1500 limit.  Since length actuation 

does not merely restrict displacements and bar forces, but should be more accurately 

viewed as a redistribution of displacements and bar forces, we should be prepared for this 

eventuality that actuations actually can cause limits to be exceeded in some areas while 

we try to control some other areas.   

 In general, we will have prior knowledge of which specific displacements are to be 

critically controlled, and the remaining displacements will typically be free to take on any 

values within reason.  Any increase of displacements in the uncontrolled joints is likely 

to cause no concern.  On the other hand, all bars will have limits for both compression 

and tension regardless of whether they are in the set of controlled bar forces or not, and 

so it is likely that new violations in bar force limits are possible in hitherto uncontrolled 

bars as a result of some length actuation.  The bar force control should thus be viewed as 

an iterative procedure where any limit-violation in one round of actuation then causes that 

bar to be included in the set of bar force for control in the next.  In the current example, a 

new violation of t9 has caused bar 9 to be added into the Eqn. 3.20 and a new 8 20  

compound matrix then produces (eo)3 and a corresponding deflected shape which has the 

(3.20) 
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required horizontal top surface as well as no bar carrying a force larger than 1500 in either 

tension or compression (see Columns 7 and 8 in Table 3.3). 

 

3.2.4.2 Controlling Displacement and Force with Minimal Actuation 

The eventual set of (eo)3 which allowed simultaneous displacements and bar force control 

had a sum of absolute actuations of 49.19. More pertinent is the fact that all twenty bars 

were involved in the actuation, and this could practically be a prohibitively high number.  

Every length actuation requires some electro-mechanical turnbuckle device embedded in 

the bar which can be remotely controlled and monitored, and this can be an expensive 

and difficult provision. Preferably, only some of the bars should be fitted with actuation 

capability, and ideally, only the most effective bars for this particular set of control 

parameters should be actuated, thus securing both the minimum number of actuators as 

well as minimum actuation.  The process for this involves examination of the size of the 

coefficients in the 8 20  [ Y | Z ]T compound matrix of Eqn. 3.19, which we know has at 

least one solution, i.e. (eo)3, but should also have the potential for many solutions 

involving only eight bars since there are only eight equations. Simple Gauss-Jordan row 

operations would produce viable solutions involving only eight non-zero coefficients in 

eo.  Additionally, an eo with eight minimal non-zero coefficients would come by choosing 

columns [ Y | Z ]T with large coefficients for the pivots.  In the current work, Gauss-

Jordan operations have been carried out with column exchanges on [ Y | Z ]T to enable 

the largest coefficients to be selected as pivots, and the eventual pivotal columns therefore 

identify the best bars for actuation.   

It should be noted that use of the Gauss-Jordan operations with column exchange 

does not immediately provide a completely satisfactory set of eo.  Only the prescribed 

parameters are part of the control set, and since Eqn. 3.19 knows nothing of the 

displacements and (especially) bar forces which are not in the control set, the resultant eo 

can easily cause some of those bars to have bar force exceeding their limits.  There are 

three approaches to this problem.   
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3.2.4.2.1 Increasing the Control Set 

Given that one or more bars have now additionally exceeded their force limits, they could 

be appended into the set of controlled parameters and a new eo be calculated with this 

larger control set, as seen in Section 3.2.4.1.  However, this is not the method of choice 

because increasing the control set means also increasing the number of actuators.  It may 

also be unnecessary to continually increase the number of actuators to increasingly 

restrain bar forces at their prescribed limit, because as new actuations are introduced, 

some bars which have previously exceeded their limit (and are now included in the control 

set) might have their bar forces drop once again below the limit, but are no longer able to 

do just that because they are in the control set and thus have their bar force non-negotiably 

set at the limit.  The bar force controls concurrently prescribe both a maximum and a 

minimum on bar forces, and thus actuation might inadvertently be used to actually keep 

a bar force high, rather than low.  Retaining these bar forces at the point of limit through 

actuations, rather than allowing them to drop, would be counter-productive.  Nonetheless, 

increasing the control set may be a necessary approach in some instances, and we will 

return to this discussion.   

 

3.2.4.2.2 Quadratic Programming 

Bar forces can be artificially held high by actuations through injudicious selection of bars 

for actuation because the bar force limits in Z are set as equalities, whereas they should 

really be inequalities.  The use of inequalities for Z means that bar forces are only 

controlled when they have to be controlled, and the control set can be increased or 

decreased from one iteration to the next.  Therefore, the bar forces should ideally be 

restricted with inequalities, so that Eqn. 3.19 might be restated in the form of quadratic 

programming, i.e.  
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 Although algorithms for quadratic programming are readily available, Eqn. 3.21 

is interpreted as minimizing the norm of eo, rather than minimising the number of non-

zero elements in eo, as well as their size.  This crucial detail means that while quadratic 

programming allows “slack” in (a potentially larger set of) bar force control, the resultant 

eo also tends to be fully populated, which is not much of an advantage over the eo obtained 

with the pseudoinverse.  Standard quadratic programming is thus of limited use for our 

purpose. 

 

3.2.4.2.3 Reselection of Bars 

The problem we still face is that by limiting the number of non-zero elements in eo, force 

redistribution could violate bar force limits in hitherto uncontrolled bars.  However, there 

are potentially many other possible set of bars (with the same number of non-zero 

elements in eo) that could be chosen, albeit with larger norms in their eo.  Among these 

other possible solutions with larger norms, there can be one or more which would not 

only satisfy the controlled parameters, but also not introduce new violations of bar force 

limits in the uncontrolled bars.  Therefore, instead of dealing with a new violation of bar 

force by merely increasing the control set, or by using quadratic programming to allow 

inequalities in the bar force prescription, a simpler technique is to seek an alternative set 

of actuators which would not raise any uncontrolled bar force to beyond their limits.  This 

can be effected by selecting columns in the compound matrix [ Y | Z ]T in a different 

order, or selecting different columns.  For example, a column relating to an uncontrolled 

bar force which has exceeded its bar force limit in the current iteration can be the first 

column to be selected in the next iteration, or alternatively, the second largest rather than 

the absolute largest coefficients can be selected as pivots. 

Nonetheless, even though the first strategy is to look for a different set of actuators 

with the same number of bars, it is entirely possible that there is no solution to be found 

that satisfies all bar force and displacement limits without increasing the number of 

actuators.  The displacement or bar force limits set could be too stringent to allow a 

solution with the current number of actuators.  Where the search is proving unfruitful, 

then one of the bar forces (e.g. the one with the largest violation, or the one that most 
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consistently exceed the limit) should be added to the list of controlled bar force, and a 

solution with one more non-zero element in eo be sought.   

 

3.2.4.2.4 Illustrative Example in Minimising Non-Zero Elements in eo  

The use of twenty actuators with (eo)3 in Table 3.3 produced the required displacements 

for the four top joints, and kept all bar forces within the limit of 1500 , and four bars are 

controlled.  There are thus eight controlled parameters, and eight equations in the 

compound matrix [ Y | Z ]T, and thus there should be a solution with only eight non-zero 

elements in eo.  The Gauss-Jordan operation with column exchange to exploit the most 

effective pivots produces the actuation (eo)4 (Column 3 in Table 3.4) and the resultant 

displacements and bar forces as shown in Columns 1 and 2 of Table 3.4.  Clearly, the 

required eight control parameters are satisfied, but two further bar force violations are 

now also found in bars 1 and 8. 

Although the first strategy is to look for another eight bars (Section 3.2.4.2.3) 

which would satisfy all controlled displacements and produce no bar force violations, no 

solution with eight bars was found, and thus a further bar was added into the control list 

(Section 3.2.4.2.1).  Only one further bar (Bar 1) was added to the controlled list even 

though two bar forces exceeded their limits, because it is entirely possible the new force 

redistribution can bring both bar forces to, or below, the limit.  The Gauss-Jordan 

operation was carried out and a new set of actuation with nine non-zero elements (eo)5 

and the resultant displacements and bar forces are shown in Columns 4 and 5 of Table 3.4, 

where it can be seen that there is now no bar force violation.  Furthermore, the total 

actuation has also slightly decreased from 55.44 to 45.17, even though the total number 

of actuations has now gone up to nine. 
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Table 3.4: Displacements (shaded) and bar forces/elongation of the structure in 

Figure 3.2, with increasing number of actuations in eo.  Values exceeding 

limit are shown in bold (MATLAB program is shown in Appendix A.2). 

  (1) (2) (3) (4) (5) (6) (7) (8) (9)  

Jt Dir dp tp (eo)4 dp tp (eo)5 dp tp (eo)6 Bar 

1 x 0 +1985 0 0 1500 0 0 +1500 0 1 

 y 0 -594 0 0 -175 0 0 -139 0 2 

2 x +6.97 -391 0 8.12 -543 0 +1.81 -567 0.73 3 

 y 0 -240 -7.40 0 -416 -6.96 0 -413 -6.97 4 

3 x +3.22 -1227 0 4.37 -1416 0 +3.97 -1424 0 5 

 y -11.46 +127 0 -7.34 409 -0.71 -7.49 +367 0 6 

4 x +4.96 +1500 -5.50 3.75 1500 -3.13 +3.75 1500 -3.53 7 

 y -6.52 -1813 +8.00 -7.56 -1171 -2.27 -7.65 -1192 +2.47 8 

5 x +2.84 -1500 +11.39 2.28 -1500 -3.34 +1.57 -1500 +3.43 9 

 y -8.00 -612 0 -8.00 -734 0 -8.00 -708 0 10 

6 x +1.87 +963 0 0.92 559 0 +0.88 +517 0 11 

 y -8.00 +1500 0 -8.00 1500 0 -8.00 +1500 -5.91 12 

7 x +9.51 -1053 -5.37 0.51 -1053 -5.38 +0.56 -1053 -5.37 13 

 y -8.00 -1124 0 -8.00 -1457 +12.75 -8.00 -1433 +12.26 14 

8 x +6.70 +1389 0 9.62 917 0 +9.24 +952 0 15 

 y -8.00 -1500         -2.15 -8.00 -1500 +5.03 -8.00 -1500 +0.53 16 

   -1249 +11.91  -558 0  -551 0 17 

   +337 0  283 0  +344 0 18 

   +159 0  904 0  +850 0 19 

   -491 3.73  -491 +5.61  -491 0 20 

total actuation → 55.44   45.17   41.20  
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It should be pointed out that the proposed Gauss-Jordan technique with column 

exchanges, and gradual increase of control set is not guaranteed to produce the solution 

with absolute minimum actuation.  This is because selection of the largest available pivots 

in sequence does not actually guarantee that the absolute best bars (in terms of minimum 

actuation) will be selected.  Nonetheless, the technique will produce solutions which not 

only satisfy the design requirements, but are also near-minimal.  By way of comparison, 

and exhaustive search was carried out examining the 20C9=167960 solutions and the 

results for the solution for minimal actuation (eo)6 is shown in Table 3.4. It can be seen 

that the total actuation of 41.20 is only 9% smaller than the solution obtained by the 

Gauss-Jordan operations.   

 

3.2.4.3  Control Where Actuator Locations Are Already Fixed  

The discussion so far has focussed on the design stage, where it is supposed that the 

location of actuators is part of the design variables, and the quest is for the locations of 

those actuators, as well as the amount of actuation, for a given set of control parameters.  

Once the structure is assembled, and the actuators are in place, their location will remain 

fixed.  Whether a pre-fixed set of actuators will be any good in achieving a given set of 

control parameters will depend on whether the columns of the compound matrix   

 |
T

Y Z  formed with only columns relating the bars with actuators.  

 

3.2.5 Adjusting Assembly Imperfections 

Throughout this thesis, the focus has been on adjusting the structural shape or the internal 

forces of a pin-jointed assembly due to load, but the techniques presented here are not 

confined to rectifying effects of load.  Equations 3.10 and 3.16 (and therefore 3.19) have 

been derived for a loaded structure, but the form of the final equations specifically isolate 

the effects due to eo from any other effects.  Although these other effects so far have been 

explicitly due to load, there is no reason to restrict to any the effects to load, so Eqn. 3.19 

(or 3.10 and 3.16) can be re-written as  
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where dc and tc are the current displacements and bar forces (due to whatever cause) and 

dn and tn are the new resultant displacements and bar forces after the application of eo.   

In this way, Eqn. 3.23 can be used to correct manufacture or assembly 

imperfection, or restore structural shape or internal force due to environmental effects 

(e.g. thermal distortion) or structural movements (e.g. foundation settlement, or the 

structure moving, as in a mobile support structure).  The necessary information is simply 

the displacements and bars forces to be controlled (i.e. not all the displacements or forces) 

as they stand, and what values they should become. 

 

3.2.6 Comparison of Linear Shape Control Technique 

The present technique is now compared with results previously published by You (1997), 

Shen et al. (2006) as cited by Xu and Luo (2008) and Xu and Luo (2008) who worked on 

displacement control of a prestressed 9-cable network structure as shown in Figure 3.4, 

where all cables have axial stiffness of 43.16kN. The prestress of the structure (as given 

by You, 1997) is shown in Column 4 of Table 3.5, which is produced by changing the 

length of the cables vii, viii, ix by the amounts of -5.02mm, +4.49mm and -5.52mm 

respectively.  The consequent displacements for these actuations are shown in Column 3. 

You (1997) set the target displacement for control as negation of the displacement of node 

6, which has pre-adjustment displacements of [2.56, -4.31]T, and this was to be changed 

to [0, 0]T.  Furthermore, the condition was also given that the internal force of the cables 

had to be kept above their initial values i.e. t ≥ to.   

The set of results are achieved via two alternative sets of actuator. The first set 

assumed that only the cables 5 to 9 are adjustable, while in the second set, all cables were 

allowed to participate in the adjustment process for achieving the required target. 

Firstly, following You’s original work in allowing only cables 5 to 9, the 

displacements and internal bar forces after adjustment from using the present method, are 

shown in Columns 8 and 9 of Table 3.5. The set of actuation calculated (Column 10) is 

slightly different to that given by You (Column 7) and Shen et al. (Column 11), and a 

(3.23) 
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slightly smaller total actuation than both previous methods have also been achieved.  All 

three methods attained the target of both eliminating displacements of node 6 (Columns 

5 and 8) without any decrease in any of the cable forces. 

Secondly, when Shen et al. (2006) studied this example, they also allowed all 

cables to be actuated, and the post-adjustment displacement and cable force results from 

the present method, are shown in Columns 12 and 13 of Table 3.5, which shows again 

that the target control was achieved. In actual fact, the present technique found the same 

set of actuation found by Shen et al. (2006) (Column 15) while Xu and Luo (2008) found 

a slightly different set of actuator (Column 16) which had a slightly smaller total 

actuation. 

 

 

Figure 3.4: A plane cable net structure. Source: You (1997).
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Table 3.5: Comparison the present technique of linear shape control with You, Shen and Xu techniques for linear shape control of cable net 

structure in Figure 3.4. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

Joint Dir 

Before  

shape adjustment 

After  

shape adjustment (Theoretical) 
Member 

Theoretical You * Present study* Shen* Present study Shen Xu 

do(mm) to (N) d(mm) t(N) eo(mm) d(mm) t(N) eo(mm) eo(mm) d(mm) t(N) eo(mm) eo(mm) eo(mm) 

2 x 0.00 61.38 0.29  141.8 0.00 -0.02  117.48 0.00 0.00 -1.05 61.38 -1.72 -1.72 -2.56 1 

  y -6.66+ 61.38 -0.60 115.0 0.00 -12.82 118.84 0.00 0.00 -3.13 61.38 0.34 0.34 0.00 2 

5 x -2.56+ 23.55 -0.21 33.3 0.00 -5.22 23.55 0.00 0.00 -3.24 23.55 -1.38 -1.38 0.00 3 

  y -4.31 17.02 -8.50 17.0 0.00 -8.03 33.71 0.00 0.00 -2.90 17.02 1.24 1.24 0.02 4 

6 x 2.56 17.02 0.00 54.1 -10.53 0.00 31.83 -9.33 -8.90 0.00 17.02 -1.62 -1.62 -2.44 5 

 y -4.31 23.55 0.00 23.5 -0.42 0.00 24.05 -0.43 -0.57 0.00 23.55 -0.42 -0.42 -0.63 6 

   50.00  61.1 -4.67  72.94 -4.47 -4.83  50.00 0.14 0.14 -0.01 7 

   50.00  67.5 0.00  57.87 0.00 0.00  50.00 -1.88 -1.88 -3.09 8 

   50.00  101.1 3.79  70.91 4.16 4.30  50.00 4.41 4.41 4.21 9 

total actuation (mm) 19.41  18.39 18.60 13.15 13.15 12.96  

*These three solutions have assumed that only the cables no. 5-9 are adjustable. 

+These numbers have been corrected due to a sign omission in the original.
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3.3 Linear Condensed Matrix Controlling Equations 

The preceding section has described shape adjustment for a structure made of simple 

elements.  The examples given in Section 3.2 concern only pin-jointed trusses with bar 

elements, but the same equations and techniques apply also to other structures with 

elementary elements (e.g. rigidly jointed frames, or plated structures).  Structures made 

up of more complicated structural components (i.e. those with “macro-elements”, e.g. the 

pantographic element in Section 3.3.5 have their structural matrices built up from 

matrices of elementary elements, but the building also involves “matrix condensation” in 

the process.  The governing equations for shape adjustment are thus re-derived in this 

section, for structures with macro-elements.  

 

3.3.1 Matrix Condensation 

Matrix condensation is a technique of reducing the size and simplification of the structural 

matrices (equilibrium, compatibility and flexibility matrices) in the force method 

equations of structural analysis by condensing out unloaded degrees of freedom 

(Pellegrino et al., 1992). This condensation facility allows “macro-elements” to be built 

up from elementary elements, where the connectivity between the elementary elements 

form unloaded “internal joints” within the macro-elements which can then be “condensed 

out” (Kwan and Pellegrino, 1994). The system of equilibrium, compatibility and 

flexibility should be in the form of Figure 3.5. 

 

 

Figure 3.5: Partitioned forms of the systems of (a) equilibrium, (b) compatibility and       

(c) flexibility equations. Adapted from Pellegrino et al. (1992). 
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In the Force Method, the relation between the generalized internal bar force t and 

the generalized external nodal load p is the equilibrium matrix A as shown in linear 

equilibrium equation Eqn. 3.1. In addition, the generalized internal bar elongation e due 

to t are related to the generalized external nodal displacements d (due to p) by 

compatibility matrix B, because of the linear equations of compatibility as presented in 

Eqn. 3.2. Lastly, the flexibility relationships involving the flexibility matrix F are as given 

in Eqn. 3.3.   

For an i-dimensional structural assembly with b bar and j joints, it is likely that 

some of the nodal forces are always equal to zero.  The equilibrium equations relating to 

these zero load components can be condensed out from immediate consideration, and 

similarly the corresponding displacement components and compatibility equations can 

also be condensed out as well, thus leaving a smaller set of equations.  Similarly, when 

“macro-elements” are built up from elementary elements, the unloaded “internal” joints 

within the macro-elements present equations for condensation. Consider (m + p)-

dimensional vectors of external joint load p and displacement d, and (n + p)-dimensional 

vectors of internal bar force t and bar elongation e, where the load vector p is partitioned 

into the two sub-vectors pm with m non-zero components and the remaining pp with p 

zero components. Similarly, the vector of displacements d can also be partitioned into dm 

and dp sub-vectors where dm and dp correspond directly to pm and pp respectively, as 

shown in Figures 3.5a and 3.5b. 

The equilibrium matrix can be re-arranged with simple row-exchange so that the 

equations corresponding to zero loads appear in the lower p equations, and hence pm and 

pp contain only (non-zero) and (zero) load components respectively.  Partitioning can 

then be carried on the equilibrium matrix as shown in Figure 3.5a.  Due to the 

correspondence between components of load and displacement, the compatibility matrix 

can also be re-arranged in a similar way with column-exchanges corresponding exactly 

to the row-exchanges of the equilibrium matrix.  In this way, the Bnm sub-matrix in Figure 

3.5b is still the transpose of the equilibrium sub-matrix Amn in Figure 3.5a.  Furthermore, 

the same row- and column exchanges must also be carried out in the flexibility matrix so 

that the tn, en, etc. in Figure 3.5c correspond to the internal forces and displacements in 

the equilibrium and compatibility relationships in Figures 3.5a and 3.5b. 
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The reduced matrices can be obtained from the following process (Pellegrino et 

al., 1992). Firstly, the system of equilibrium equations after reduction of the equilibrium 

matrix by condensing out p rows with corresponding p load components is:  

 * * *  A t p . 3.24) 

where *
A is the reduced equilibrium matrix which relates the m non-vanishing (non-zero) 

load components to n (almost) arbitrary chosen condensed generalized internal bar forces.  

Since the lower p equation of A are homogeneous, Apn tn + App tp = 0, i.e.  

tp = -App
-1

 Apn tn, which can be used as substitution for tp in Amn tn - Amp tp = pm, to give 

Amn tn - Amp App
-1

 Apn tn = pm, i.e. (Amn - Amp App
-1

 Apn) tn = pm and hence  

 
1     mn mp pp pnA A A A A

*
    3.25) 

*
t is the generalized internal bar forces and is equal to nt , and 

*
p is the generalized external (non-zero) load and equal to mp . 

The size of reduced equilibrium matrix A
*  is m by n. 

 

Secondly, the system of compatibility equations “mirrors” the reduction in 

equilibrium equations, by condensing out p columns corresponding to the p displacements 

components and p rows corresponding to p generalized internal bar elongation, resulting 

in:  

 * * *  B d e . 3.26) 

where *d  is the generalized external nodal displacement (and equal to md ) and B
*  is the 

reduced compatibility matrix relating the m joint displacements (corresponding to the m 

non-zero load components) to the n chosen condensed generalized internal bar elongation 

(corresponding to the chosen generalized internal bar force):   

 
1 ( )    T T T T

mn pn pp mpB A A A A
*

 3.27) 

The matrix B* thus has size n by m.  From Eqns. 3.25 and 3.27  

 
* *( ) TB A  3.28) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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The vector *e  is the condensed generalized internal bar elongation corresponding 

to the chosen generalized internal bar force 

 
* 1 ( )    T T

n pn pp pe e A A e . 3.29) 

where pe  is the generalized internal bar elongation corresponding to the generalized 

internal bar force pt . 

 
1 ( )     p pp pn nt A A t . 3.30) 

Substituting Eqn. 3.27 into Eqn. 3.26 yields:  

 
* *  mB d e . 3.31) 

  Pellegrino et al. (1992) also found the components of external displacement pd , which 

are the displacements corresponding to the zero load components pp  (=0): 

  
1

1( )    


 T T T

p pp p pp mp md A e A A d  . 3.32) 

 

Finally, the condensed system of flexibility equations is 

 * * *  F t e  3.33) 

where *
F  the reduced flexibility matrix is given by 

    
1 1

1 1         
 

    T T T T

nn np pp pn pn pp pn pn pp pp pp pnF F F A A A A F A A F A A
*

          3.34) 

and 
*

t  is the internal bar forces (and equal to nt ). 

Moreover ne  and pe  can be calculated separately through the following equations 

respectively: 

  1        n nn np pp pn ne F F A A t   , 3.35) 

  1        p pn pp pp pn ne F F A A t  . 3.36) 

As discussed in Section 3.2.1, the general solution of the reduced internal bar force 

nt  in the condensed equilibrium equations is the summation of a particular solution 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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(which is a set of bar forces in equilibrium with the load, but not necessarily satisfying 

compatibility) and the complementary homogeneous solution. The particular solution is 

any vector nt  that satisfies Eqn. 3.24, and one such vector is   nHt  obtained from  

 *


nH mt A p    where   *


A   is the pseudo-inverse of reduced equilibrium matrix. 

The complementary homogenous solution is the set of reduced bar forces 

solutions that satisfies 
* nA t 0  , i.e. the set of non-vanishing bar forces in equilibrium 

with zero external load.  This is readily calculated by the nullspace
* *( ) A S , and *S  is 

the condensed states of self-stress.  The number of such condensed states of self-stress 

depends on the statical redundancy s* of the indeterminate structure (note: the determinate 

structure there has no states of self-stress).  The expression of * * S α  is thus the 

complementary homogeneous solution, where *α  is a vector of s* coefficients reflecting 

a set of combinatorial constants (that has to be determined through satisfaction of 

compatibility).  The total general solution for condensed equilibrium equation is thus 

combining a particular solution and the complementary solution, consequently 

 
* *  n nHt t S α , 3.37) 

A structure can in general have lack of fit due to initial construction imperfection, 

or temperature change, or, as in our purpose, deliberate extensional changes to control the 

displacement or/and internal bar force of the structure.  A bar can have axial force due to 

external load or any of these other “lack of fit” effects.  Therefore, the total elongation of 

the bar is made up of two parts, one part due to axial force of the bar, i.e. 
*   nF t , while 

the other part 
*

oe  comes from lack of fit (or which can be deliberately introduced to adjust 

the structure’s shape or force distribution):   

 
* * *   o ne e F t , 3.38) 

In the current context, 
*

oe , is principally the vector of elongation actuation introduced to 

each bar for the purpose of adjustment. 

In the same fashion as Eqn. 3.38, Eqns. 3.35 and 3.36 can be re-written to include the lack 

of fit, and they thus take the following form: 

(3.37) 

(3.38) 
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  1       n no nn np pp pn ne e F F A A t  , and 3.39) 

  1       p po pn pp pp pn ne e F F A A t  , 3.40) 

i.e. the total condensed elongation in each condensed bar is the sum of actuation 

of the condensed bar, and the elongation of the same bar due to axial force. Substitution 

of Eqn. 3.37 into Eqn. 3.38 thus gives 

 
* * * * * (   )  o nHe e t αF S . 3.41) 

Compatibility for the set of condensed bar elongations can be assured by it being 

found in the set of compatible elongations, i.e. in columnspace( *
B ), whereas left-

nullspace( *
B ) contains the basis for all the incompatible condensed bar elongations.  

Subsequently, the compatibility condition can be imposed by stating that the condensed 

bar elongations 𝐞∗ must be orthogonal to the left-nullspace( *
B ) (i.e. by stating that the 

elongations cannot have any component among the incompatible elongations as found in 

the left-nullspace). By virtue of * *( ) TB A , left-nullspace( *
B ) = nullspace( *

A ), and since 

nullspace( *
A ) are the states of selfstress, then the compatibility condition is thus that the 

states of selfstress must be orthogonal to the elongations, i.e.  
T

* * S e 0 , and 

  
* * * * * *   (    ) 0  T T

o nHS t αe S F S  3.42) 

and thus 

   
1

* * * * * * * *     [     ]


  T T T

o nHS F S S e S F tα . 3.43) 

Through back-substitution with , we can thus find the structural vectors of e 

(Eqn.3.41), nt  (Eqn.3.37) and md  (Eqn.3.31). 

 

3.3.2 Displacement Control without Regard to Bar Forces 

In Section 3.3.1, structural analysis was presented utilizing a matrix reduction technique, 

for structures prestressed with an initial oe .  This reduced matrix technique in the Force 

Method can now be applied to the process of controlling (imperfect) structural shape as 

was carried out for the non-condensed matrices in Section 3.2.2. We shall initially be 

concerned with only displacement control without any concern of associated internal 

force change in the structure.   

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 
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For controlling displacements dm which are not associated with zero loads, we 

start with substituting Eqn. 3.43 into Eqn. 3.41 to give 

   1
* * * * * * * * * * *       [     ]



   T T T

o nH o nHe e F t S S F S S e S F t . 3.44) 

and also by substituting Eqn. 3.44 into Eqn. 3.31. to give 

   1
* * * * * * * * * * *    [     ]  


     
  

T T T

m o nH o nHd B e F t S S F S S e S F t , 3.45) 

Equation 3.29 showed that 
* 1 ( )    T T

n pn pp pe e A A e  and hence, similarly,  

 
* 1 ( )    T T

o no pn pp poe e A A e . 3.46) 

where 
*

oe  is the condensed generalized internal bar actuation of bar force.  Substitution 

of Eqn. 3.46 into Eqn. 3.45 gives   

       

  1
* 1 * * * * * * 1 * *(  ( )   )        [ (  ( )   )     ]  


        
  

T T T T T T T

m no pn pp po nH no pn pp po nHd B e A A e F t S S F S S e A A e S F t  

and 

 
    

 

1 1
* * * * * * * * * * * * * * * *

1
* 1 * * * * * * * 1

                           

   ( )                     ( )   )

 
  


   

    
  

 

T T T T

m nH nH no no

T T T T T T

pn pp po pn pp po

d B F t S S F S S F t B e B F S S F S S e

B A A e B F S S F S S A A e

 3.47) 

 

 

 

1
* * * * * * * * * *

1
* * * * * * * *

1
* 1 * * * * * * * 1

                 

             

   ( )                ( )  


 


 


   

  
  

  
  

  
  

T T

m nH

T T

no

T T T T T T

pn pp pn pp po

d B F B F S S F S S F t

B B F S S F S S e

B A A B F S S F S S A A e

. 

Equation 3.48 can be written in the simpler form 

 1 2 3           m nH no poC Cd t eCe . 3.48) 

where  

*

1   C C F    

2  C C    

3    C C r  

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 
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1

* * * * * * * *(           )


   T T
B B F S S F S SC  

1   ( ) T T

pn ppr A A  

To calculate pd , we  substitute Eqns. 3.40 and 3.48  into Eqn. 3.32 to give 

    
1

1 1

1 2 3( )                    


           
T T T

p pp po pn pp pp pn n pp mp nH no pod A e F F A A t A A t e eC C C     , 3.49) 

For ease of presentation, we adapt 
1    pn pp pp pnv F F A A    and then substitute Eqn. 3.37 

and 3.43 into 3.49 to give 

 
  

 

1
1 * * * * * * * *

1

1 2 3

( )            [     ]

             ,






    
  

    

T T T T

p pp po nH o nH

T T

pp mp nH no po

d A e v t S S F S S e S F t

A A tC C Ce e 

 3.50) 

Substituting Eqn. 3.46 into Eqn. 3.50, we obtain the condensed displacements pd , which 

are the displacements corresponding to the zero load components pp  (=0) as 

 
    

 

1
1 * * * * * 1 * *

1

1 2 3

( )            [  ( )     ]

          ,  


 



     
  

    

T T T T T T

p pp po nH no pn pp po nH

T T

pp mp nH no poC C C

d A e v t S S F S S e A A e S F t

A A t e e 

 3.51) 

 

 
    

 

1
1 * * * * * * *

1

1 2 3

( )            [       ]

  ,            






     
  

    

T T T T

p pp po nH no po nH

T T

pp mp nH no po

d A e v t S S F S S e re S F t

A A tC C Ce e

 3.52) 

 

      
   

1 1
1 * * * * * * * * * * *

1
1 *

 ( )                            

( )  –         

 





   

  

T T T T T

p pp nH no po nH

T T T

pp po pp mp nH no po

d A v t S

C C

S F S S e re S S F S S F t

A e F CA A t e re

 

         

   

1 1 1 1
* * * * * * 1 * * * * *

1
1 *

  –         ( )        

( )  –         

   





   
  

  

T T T T T T T

p pp pp nH pp no po

T T T

pp po pp mp nH no po

d A v A v S S F S S F t A vS S F S S e

C C C

re

A e A A F t e re

 

     

   
     

1 1 1
* * * * * *

1 1
1 * * * * * 1 * * * * *

1 1 1
1 *

  –         

( )             ( )              

( )  –     –     –     

  

 
 

  


 
  

 



T T T T

p pp pp nH

T T T T T T

pp no pp po

T T T T T T T

pp po pp mp nH pp mp no pp mp po

d A v A v S S F S S F t

A vS S F S S e A vS S F S S re

A e C C CA A F t A A e A A re

 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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1 1 1 1
* * * * * * *

1 1
1 * * * * *

1 1
1 * * * * * 1

 –        –     

( )                 

( )             ( )        

   

 


 
 

 
  

  
  

   
  

T T T T T T

p pp pp pp mp nH

T T T T T

pp pp mp no

T T T T T T

pp pp pp mp po

d A v A v S S F S S F A A F t

A vS S F S S A A e

A vS S F S S r A A A r

C

e

C

C

 

Which can be presented in a simplified form as 

  
1 2 3            p nH no poQ Qt e eQd , 3.53) 

where  

      
1 1 1

* *

1  –     –     
   

  

T T T T

pp pp pp mpA v A v k F A FCAQ  

 
1

1

2 ( )         


   
  

T T T

pp pp mpQ A CA vk A  

 
1

1 1

3 ( )     ( )        


     
  

T T T T

pp pp pp mpA vk r A AQ rCA  

 
1

* * * * *       


 T T
S S F S SQ  

  
1

 –  


 pn pp pp pnv F F A A  

 

Equations 3.48  and 3.53 provide the non-vanishing and vanishing displacements 

of the structure respectively, without regard to each other through using the condensed 

matrix method, due to tnH and the actuation eno and epo. Both equations have a great role 

in calculating displacement of a morphing structure through adjusting bar actuation 

(rotation), especially Eqn. 3.48 which can be used to provide displacement of non-

vanishing displacements of a pantographic morphing aerofoil structure since in the 

morphing aerofoil structure, only the outer face shape of the aerofoil is significant. 

Combining together Eqns. 3.48 and 3.53, we get:  

 

   c pc c ocd d Y e . 3.54) 

where 

1 1[    ] T

pc nHCd tQ    is the vector of nodal displacements of the structure due only to non-

vanishing load component. 

(3.53) 

(3.54) 
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   c n pY Y Y  

2 2[    ] T

n CY Q  

3 3[    ] T

p CY Q  

[   ] T

oc no poe e e  

cd is the resultant nodal displacements after some elongation actuation oce  has been 

applied in the condensed matrix method.   

 

3.3.3 Bar Forces Control without Regard to Displacements 

As discussed in Section 3.2.3, controlling of internal member force of some structures 

and/or some members are more important than the controlling displacements particularly 

if the structures have cable members in order to avoid slack of the cables so that the cable 

must be tightened. Furthermore slender members of the structures are exposed to buckling 

with extra load, and in this case the compressive force of those type of member must be 

reduced. The process of force control can be done only in statically indeterminate 

structures. 

For the equation of non-vanishing bar forces control without regard to 

displacements, we can start by substituting Eqn. 3.46 into Eqn. 3.37 to give 

     
1

* * * * * 1 * *       [  ( )       ]


   T T T T T

n nH no pn pp po nHt t S S F S S e A A e S F t . 3.55) 

With previously defined substitutions 
1   ( ) T T

pn ppr A A  and   
1

* * * * *     


 T T
S S F S SQ  

(Eqns. 3.48 and 3.53) Eqn. 3.55 can be re-written as 

 
*               n nH nH no poQ Q Qt t F t e re . 3.56) 

 

 For controlling tp without any regard to displacements, Eqn. 3.56 is substituted 

into Eqn. 3.30 to give 

 
*                         p nH nH no pot J t J F t J e J rQ eQ Q . 3.57) 

where 

(3.55) 

(3.56) 

(3.57) 
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 1 ( )    pp pnJ A A  for ease of viewing 

Combination of Eqns. 3.56 and 3.57 gives 

   c pc c oct t Z e  3.58) 

where  

*

*

   

       

 
  

 

nH nH

pc

nH nH

t F t
t

J t FQJ

Q

t
 is the vector of bar forces of the structure due only to 

non-vanishing load components, and 

    c n pZ Z Z  

[       ]   T

nZ JQ Q  

[              ] T

pZ r J rQ Q  

[   ] T

oc no poe e e  

ct is the resultant bar forces after some elongation actuation oce  has been applied in the 

condensed matrix method.   

 

3.3.4 Simultaneous Displacement and Bar Force Control 

Controls of either joint displacement or the bar force due to the external load without 

consideration of the other, through using the condensed matrix method are discussed in 

Sections 3.3.2  and  3.3.3 respectively. Practically and theoretically, control of one will 

also have some requirements on the other, or at least monitoring on the other to ensure 

present limits are not breached.  For instance, in a structure with cables, these might have 

a lower limit on axial force to prevent slack, while other slender strut members will have 

upper limits to prevent buckling. So while controlling the external nodal displacements 

of such a structure, it may be necessary to also control the internal bar forces 

simultaneously via the same set of eoc. For the purpose of adoption this method, 

Eqns. 3.54 and 3.58 are combined together, to enforce displacement and bar force are 

satisfied simultaneously 

  
  

       

c pcc

oc

c pcc

d dY
e

t tZ
. 3.59) 

(3.58) 

(3.59) 
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In this method, because of the typically high number of equations ( ij c  in cY  and b in 

cZ ) while there are only b unknowns in eoc, then Eqn. 3.59 will be over-determinate by 

many degrees and insoluble. Therefore, only a least-squares “approximation” is possible 

for eoc. This is mainly only of academic interest, and typical situations are under-

determinate and allow a choice in eoc because in most typical structures the displacements 

of only some joints are expected to be controlled, and the remaining displacements will 

typically be free to take on any values, and similarly, the number of bar forces that exceed 

specified limits are also not typically large. 

 

3.3.5 An Illustrative Example of Using Condensed Matrix in Control 

The procedure of displacement control without regard to bar forces, bar forces control 

without regard to displacements, and simultaneous displacement and bar force control by 

using condensed matrices in equations of control are now illustrated with the simple 

example pantographic structure as shown in Figure 3.6. The structure has  

 
53.6  N10EA   and  

5 210.8 1  N0 m.mEI    . 

The example consists of a two-dimensional single unit pantograph which is 

formed from two coplanar beams of equal length connected at their mid-point by 

frictionless shear connector which is perpendicular to both beams. Four bars connect 

between adjacent ends of the pantograph. The structure has three states of selfstress as 

shown in Figure 3.7 .The technique of the reduced matrix is now applied to this example 

to find A*, B* and F*. The original size of the equilibrium matrix is 18 24 , and through 

using the condensation process (Kwan, 1991; Pellegrino et al., 1992) the size of the given 

example reduces to 5 8   as shown below 
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Figure 3.6: A simple pantographic structure with three degrees of statical indeterminacy. 
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Figure 3.7: Illustration of the three states of selfstress for the structure in Figure 3.6 with 

exaggerated bending (-------) in the pantograph to show involvement by 

bending in the selfstress. 

 

So the compatibility matrix satisfies Eqn. 3.28 and the size of the matrix reduces 

from 24 18  to 8 5  as shown here.  
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Correspondingly, the flexible matrix reduces from  24 24  to 8 8 : 
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3.62) 

3.3.5.1 Controlling Joint Displacements Only 

The condensed displacements under non-zero load pcd  are as shown in Table 3.6 Column 

4, and the structure deforms in such a way that the non-foundation joints 3 and 4 move to 

the right and downwards. For the controlling purpose, it is assumed that the nodal 

displacements in d3y is to be restored to its original position zero displacement, i.e. we 

prescribe a levelling condition of the top of the structure, whilst the remaining 

displacement are free to take any value. All non-vanishing (i.e. uncondensed) noe  were 

chosen for actuation, since these bar elongations are actually possible and easy to effect 

(On the other hand, the condensed bar curvature would be a difficult actuation to 

practically effect). Since we are prescribing only one displacement, Eqn. 3.54 has only 

one equation and becomes: 

    
1 1 1 1 1 1 1 1

0 0 0 13.409
2 2 2 22 2 2 2

 
           
 

oce  3.63) 

F* 

t*=tn 

e* 

(3.62) 

(3.63) 



Chapter 3: Theoretical Analysis 

81 

which clearly has many possible solutions.  One possible solution is to simply use the 

pseudoinverse to solve Eqn. 3.63, where we thus obtain  

   
T

 +3.162  +3.162  3.164  3.160  2.234  2.234  +2.234  +2.234  0  0    
oc

e  

Since the desired control displacement d3y is one of the non-vanishing displacements and 

the actuation set of bars to control are non-vanished bar elongations eno, then Eqn. 3.48, 

can also be used in this case, to give the same as, i.e. 

  
T

 +3.162    +3.162  3.164   3.160   2.234   2.234    +2.234    +2.234    
no

e , 

when this noe   is used as the corrective oce , a displacement of 0.000 in d3y as required does 

result, see Table 3.6 Column 5. Another useful impact is that all other displacements have 

also been reduced, in both x and y directions. However, the total elongation actuation of 

the non-vanished bar elongations is 21.59mm, with eight separate actuations being used. 

Practically this is not a particular solution due to high member and amount of control in 

the non-vanishing bar elongations. For this purpose, we have to look for another set of  

oce  which contains a fewer non-zero actuations, while still providing the target d3y. 

 

Table 3.6: Displacements of the structure in Figure 3.6 under different sets of eno 

(MATLAB program can be found in Appendix A.3). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Joint 
Cond. 

Disp. 
Dir. 

Just dpc, 

no eoc 
c

 no pcY e d  
Control 

with only  

en1 

Control 

with only  

en2 

Control 

with only  

en3 

Control 

with only  

en4 

1 

dm 

x 0 0 0 0 0 0 

 y 0 0 0 0 0 0 

2 x 0 0 0 0 0 0 

 y -2.776 -0.543 -5.557 -5.549 +0.004 -0.002 

3 x +2.776 +0.543 +5.549 +5.557 -0.004 +0.002 

 y -13.409 0.000 0.000 0.000 0.000 0.000 

4 x -2.776 -0.543 +0.005 -0.003 -5.547 -5.559 

 y -10.633 +0.543 +0.003 -0.005 +5.547 +5.559 

5,6 dp 
x -1.387 -0.273 +6.701 -6.698 -9.469 +3.927 

y -5.318 +0.273 +6.698 -6.701 +9.469 -3.927 
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As explained in Section 3.2.2.2  the best location of actuators should be decided 

at the design stage, so that structures can have actuators embedded for effective control 

of displacements under service loading. For recognition of which are the most effective 

bars to control d3y, and the amount of required actuation, Eqn. 3.63 must be used. 

The effectiveness of actuation in any bar is indicated by the size of the associated 

coefficient in the   cY  matrix in Eqn. 3.63.  Here, there two groups for effectual control of 

d3y: firstly bars 1 to 4, and secondly, bars 5 to 8.  The most effective actuation bars are 

those in the first group with the larger coefficients in   cY . The two elements of    cY  which 

vanish are the curvature of beam-pairs 1-5-3 and 2-6-4.  For providing minimum 

actuation, we shall choose one of the four bars 1, 2, 3 and 4 for actuation since they have 

the largest coefficients in   cY  of Eqn. 3.63. Even though each of the four bars, all with the 

large coefficients of   cY  in Eqn. 3.63 has ability to control displacement of d3y alone, the 

calculation was repeated for each of them in turn, with the results for each calculation 

shown Columns 6 to 9 in Table 3.6. This was to check the displacement of all joints in 

both x and y directions after applying required amount of actuation for each bar separately. 

For example, for bar 1, Eqn. 3.63 becomes:  

      10    0   0   0   0   0   0   0   0   0 13.409
2

  oce . 3.64) 

The use of the pseudoinverse on   cY  gives 

         
T

 18.963   0   0   0   0   0   0   0   0   0
oc

e . 

Similarly, the other calculations yields 18.963 for bar 2, -18.951 for bar 3, and -18.975 

for bar 4. 

As a result, comparison of the required amount of actuation in each of the four 

bars shows they are almost the same, and they all produce the target zero displacement of 

dy3. However, actuation in bar 4 does have advantage over other bars because, while all 

the other actuations produce similar displacements in joints 1 to 4, actuation in bar 4 does 

produce the least displacement in joint 5-6. This is principally because bar 4 is further 

remote from joint 5-6 to the support in joints 1 and 2, and hence shortening of bar 4 is not 

immediately displacing joint 5-6. 

(3.64) 
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In this way, as explained in Section 3.2.2.2, the current approach can actually 

determine not only  the necessary amount of actuation to be applied, but can also indicate 

the most effective bar(s) for a given set of displacement control. 

 

3.3.5.2 Controlling Bar Forces Only 

For the purpose of controlling bar force without regarding to the joint displacements, 

firstly the bar forces 
pct  under load are as shown in Table 3.7, Column 3. Structural 

members have a greater tendency for failure in compression than the tension, due to 

buckling in slender members, so it is presumed the need to control compression force in 

all members to a limit of -6000, whilst the tensile forces are free to take any value. Under 

the loading shown in Figure 3.6, the given example has axial force in bars 1 and 2 (tn1 

and tn2) exceeding the compression limit (see Column 3 in Table 3.7) with values of 

7071.1. 

In the first trial, all non-vanishing bar noe  were chosen for actuation since they are 

easily accessible for the actuation process (being bar length actuations rather than 

curvature). Only two bar forces are prescribed for control, which are those for bars 1 and 

2 (tn1 and tn2), thus Eqn. 3.58 has only two equations, and becomes:  

6000 -373.4 -372.2 -372.8 -372.8 263.2 264.0 264.0 263.2 0 0 7071.1
 

6000 -372.2 -373.4 -372.8 -372.8 264.0 263.2 263.2 264.0 0 0 7071.1

      
      

      
oce  3.65) 

This system of course has many possible solutions.  One possible solution process 

is to simply use the pseudoinverse to solve Eqn. 3.65, which gives: 

  
T

0.479  0.479  0.479  0.479  +0.339  +0.339  +0.339  +0.339  0  0    
oc

e  

Alternatively (and as also mentioned in Section 3.3.5.1), since tn1 and tn2 are among the 

non-vanishing tn in this example, and the actuation is also among the non-vanishing bar 

elongations noe , then Eqn. 3.56 can equally be used, giving the same results of 

  
T

0.479  0.479  0.479  0.479  +0.339  +0.339  +0.339  +0.339    
no

e  

(3.65) 
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After using the corrective oce  the force in bars 1 and 2 are reduced to -6000 as required, 

(see Table 3.7, Column 4) and at the same time, none of the other bars have compression 

force greater than 6000 and so, the objective condition is satisfied, and with a total 

actuation of noe  of 3.27mm. 

 

Table 3.7: Bar forces of the structure in Figure 3.6 under different sets of eno (MATLAB 

program is shown in Appendix A.3). 

(1) (2) (3) (4) (5) (6) (7) 

Bar 
Cond. 

Force 

Just tpc,  

no eoc 

All elements 

in eno 

Control with 

only en1 & en2 

Control with 

only  en1 

Control with 

only  en2 

1 

tn 

-7071.1 -6000.0 -6000.0 -5998.4 -6001.6 

2 -7071.1 -6000.0 -6000.0 -6001.6 -5998.4 

3 +7075.6 +8146.6 +8146.6 +8146.6 +8146.6 

4 +7066.6 +8137.6 +8137.6 + 8137.6 + 8137.6 

5 +4996.8 +4239.5 +4239.5 +4240.6 ++4238.3 

6 +4996.8 +4239.5 +4239.5 +4238.3 +4240.6 

7 -4996.8 -5754.2 -5754.2 -5755.3 -5753.0 

8 -4996.8 -5754.2 -5754.2 -5753.0 -5755.3 

m(1,2) 
tp 

-635.7 -635.7 -635.7 -635.7 -635.7 

m(3,4) 0.0 0.0 0.0 +232.5 -232.5 

 

Observation of Eqn. 3.65 shows that bars 1 to 4 have almost the same coefficients 

in cZ  in the two rows. Therefore, any effect c ocZ e  has on each of bars 1 to 4 is the same 

for bars 1 and 2. In other words, the force in bars 1 and 2 can (only) be raised or lowered 

by the same amount, with actuation in any of bars 1 to 4. In this case, we can reduce the 

number of actuators from eight to two, thus we restrict the length actuators to just bars 1 

and 2 (i.e. the same bars with force requiring control). As before, we shall seek to reduce 

the compressive force in bars 1 and 2 to -6000 for all bars.  With the required nt  as -

6000, the reduced Eqn. 3.65 is 

6000 -373.4 -372.2 0 0 0 0 0 0 0 0 7071.1
 

6000 -372.2 -373.4 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce  3.66) 

which (through use of pseudoinverse) gives 

(3.66) 
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T

1.437  1.437   0   0    0    0    0    0    0    0  
oc

e   

This corrective 𝐞𝐨𝐜 is different to, and simpler than eno above, but, when applied, gives 

the same set of bar forces and also limits the force of bars 1 and 2 to -6000 as required, 

without any other bar force consequently exceeding the limit, see Table 3.7, Column 5. 

This time, the control is achieved with only 2.874mm as the total actuation of noe . 

Actually, a further reduction in the number of actuators is possible this example 

by controlling the chosen bar forces tn1 and tn2 with only one actuator, since Eqn. 3.65 

shows that bars 1 to 4 have nearly the same coefficients in cZ . Therefore, any effect 

resulting from actuation in any of bars 1 to 4 has to be the nearly identical for both tn1 and 

tn2. If we choose bar 1 alone for actuation, then Eqn. 3.65 becomes 

6000 -373.4 0 0 0 0 0 0 0 0 0 7071.1
 

6000 -372.2 0 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce  3.67) 

and 

  
T

2.873   0   0   0   0   0   0   0   0   0 
oc

e   

Similarly, if we choose bar 2 for actuation, then reduced Eqn. 3.65 becomes   

 
6000 0 -372.2 0 0 0 0 0 0 0 0 7071.1

 
6000 0 -373.4 0 0 0 0 0 0 0 0 7071.1

      
      

      
oce  3.68) 

which again gives a similar 

   
T

0   2.873   0   0   0   0   0   0   0   0 
oc

e  

The resultant bar forces from applying these two 
oce  are calculated and collected in 

Columns 6 and 7 of the Table 3.7. Both columns show (near) identical results, so the force 

in bars 1 and 2 can actually be controlled via only one actuator. The principal difference 

in the two sets of resultant forces is in the moment of beam-pair 1-6-4 (i.e. m(3,4)) which 

have values of -232.1 and +232.1.  The difference results from oce  having a shortening 

each time, in either bar 1 or in bar 2, but a shortening in bar 1 (which is “below” beam-

pair 1-6-4) would bend that beam-pair in the opposite direction to a shortening in bar 2 

(which is “above” that beam-pair).  However, whether the beam-pair bends one way or 

the other, so long as the amount of bending is the same, then the effect at its pinned-ends 

(3.67) 

(3.68) 



Chapter 3: Theoretical Analysis 

86 

(i.e. overall shortening) is the same, and hence the controlling effect on the rest of the 

structure is the same.  This is why either Eqn. 3.67 or Eqn. 3.68 produces the same overall 

bar force effect (except for the moment m(3,4)).    

 

3.3.5.3 Simultaneously Controlling Joint Displacement and Bar Force  

The joint displacements and bar forces of the structure under load without any corrective 

actuation eoc applied are shown together in Columns 4 and 5 of Table 3.8 respectively. 

We shall now impose both the controlling conditions introduced in the 

Subsections 3.3.5.1 and 3.3.5.2 simultaneously; so the nodal displacement in d3y is to be 

zero (in order to keep the top of the structure level), and compression force in members 

are limited to -6000. Control is to be achieved through actuation in non-vanishing bar 

elongation eno, which we choose to be tn1 and tn2. Equation 3.59  is now employed as a 

system of two equations in eight non-vanishing elongation unknowns:  

  
[row 3, columns[1-8]]

[rows 1 and 2, columns[1-8]]

0 13.41

6000  7071

6000 7071

    
     
        
          

c

oc

c

e
Y

Z
 3.69) 

Thus, Eqn. 3.69 becomes: 

0 +0.707 0.707 0.707 0.707 0.500 0.500 +0.500 +0.500 0 0 13.41

6000  373.4 372.2  372.8  372.8 +263.2 +264.0 +264.0 +263.2 0 0 70

6000 372.2 373.4 372.8  372.8 +264.0 +263.2 +263.2 +264.0 0 0

        
   
          
          

oce 71

7071

 
 
 
  

 
3.70) 

Simply through the pseudoinverse of the 3 8  compound matrix  
T

|c cY Z a set of 

actuation obtained as: 

   
T

1)  2.683    2.683   -3.643   -3.638   -1.896   -1.896    2.573    2.573    0   0(  
oc

e  

 

 

 

 

(3.69) 

(3.70) 
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Table 3.8: Displacement and bar forces control of of the structure in Figure 3.6 

(MATLAB program is shown in Appendix A.3). 

(Displacements (shaded) and bar forces (unshaded) of the structure: with no eoc; with (eoc)1  and 

(eoc)2 applied to adjust the controlled displacements (Column 4) and bar forces (Column 5) shown 

in bold). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Jt 
Cond. 

Disp. 
Dir. 

no eoc (eoc)1 (eoc)2 Cond. 

Force 

Bar 

dpc tpc dpc tpc dpc tpc 

1 

dm 

x 0 -7071 0 -6000 0 -6000 

tn 

1 

 y 0 -7071 0 -6000 0 -6000 2 

2 x 0 +7076 0 +8143 0 +8140 3 

 y -2.78 +7067 -0.46 +8141 -2.36 +8144 4 

3 x +2.78 +4997 0.46 +4242 +2.36 +4244 5 

 y -13.41 +4997 0.00 +4242 0.00 +4244 6 

4 x -2.78 -4997 -0.63 -5757 -3.20 -5759 7 

 y -10.63 -4997 +0.63 -5757 +3.20 -5759 8 

5,6 dp 
x -1.39 -636 -0.31 -125 +2.26 +248 

tp 
m(1,2) 

y -5.32 0 +0.31 0 -2.26 0 m(3,4) 

 

Table 3.8 shows the effects of 1( )oce  in Columns 6 and 7, and that all the required controls 

are achieved, without any introduction of a new bar force compression violation.  The 

total amount of actuation required by 1( )oce  is 21.585mm. 

 The coefficients in Eqn. 3.70 also identify which are the most effective bars for a 

given set of simultaneous displacement and bar force control.  The minimum number of 

actuations to deliver the required displacements and bar forces can obtained by choosing 

the bars corresponding to the biggest coefficients of  
T

|c cY Z .  In this example, we thus 

choose the three most effective bars, instead of all eight, for actuation, and these are bars 

1, 2 and 4.  Bar 4 was chosen for control of d3y (following the large coefficients for Yc) 

and bars 1 and 2 were chosen for tn1 and tn2 respectively (following the large coefficients 

for Zc). Therefore. Therefore, Eqn. 3.70 simplified to 
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0 0.7071 0.7071 0 0.7067 0 0 0 0 0 0 13.41

6000  373.4 372.2 0 372.8 0 0 0 0 0 0 7071

6000 372.2 373.4 0 372.8 0 0 0 0 0 0 7071

       
     
           
              

oce  3.71) 

and 

  
T

2)  +4.024    +4.024    0    -10.921    0    0    0    0    0    ( 0
oc

e  

 This reduced set of eoc satisfies both displacement and bar force condition without 

any bar violations, as shown in Columns 8 and 9 of Table 3.8. At the same time, not only 

is the total number of actuators reduced from eight to three, but the total amount of 

actuation has also reduced, from 1( )oce =21.585mm to 2( )oce =18.970mm.  There has thus 

been a double advantage in using Eqn. 3.71. 

 As a result, it is proven in this Section that linear controlling equations using 

condensed matrix is as powerful as using non-condensed matrix for control or 

adjustments of structural shape and/or force.  Moreover, these equations can be used in 

finding controlling displacement and bar force with minimum actuation in the same way 

as in Section 3.2.4.2, as well as in cases where the actuator locations are already fixed. 

The same set of equations derived in this Section are also applicable for shape adjustment 

of structures containing macro-elements (i.e. elements built up from one or more 

fundamental elements), of which the pantograph element used in Figure 3.6 is only one 

example. 

 

3.4 Computer Programing 

The MATLAB R2012a software has been used for calculation of the techniques described 

in this chapter. In general, the program contains a number of processes as presented in 

the form of flowchart in Figure 3.8. The main body of the program can be divided into 

two parts. The first part is just the analysis of a given structure and the second part is 

preparation and calculation for the control of joint displacements and/or bar forces of the 

given structure. In the beginning of the MATLAB program the joint coordinates of the 

chosen structure, the bar/beam connectivity between the joints, support conditions and 

the external loads are read. Furthermore, the material and geometric properties of the each 

member of the structure must be specified, e.g. like cross-sectional area, second moment 

(3.71) 
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of area and Young's Modulus of each bar. The program then assembles the global 

equilibrium matrix and flexibility matrix through a looping process, cycling through each 

bar in twin. For the reduced matrix method, another process is required in order to 

condensing out the equilibrium, compatibility and flexibility matrix. The analysis of the 

states of the states of the self-stress and mechanisms is done through the nullspace of the 

equilibrium matrix and compatibility matrix respectively. The MATLAB program then 

calculates the internal bar forces of the structure with the external joint displacements, 

due to external loads or any “lack of fit” i.e. prestressing elongations. 

 The controlling part of the program starts with calculating either Y and Z in 

Eqns. 3.10 and 3.16 respectively, or in the case of condensed matrices Yc and Zc in 

Eqns. 3.54 and 3.58 respectively. Then the required condition for joint displacement 

and/or bar force must be specified in the program, as well as the most effective bars for 

actuation, (which depend on the size of the coefficients in Y and Z). Following this, eo 

from each of the selected active bars are calculated in the program, and  through back 

substituting  eo into the Eqns. 3.10 and 3.16 the post-adjustment joint displacements and 

bar forces can be calculated respectively. Sometimes after using the corrective eo, it is 

impossible to achieve the required conditions, or possibly, new violations in the joint 

displacements or bar forces have come about. In this case, the solution process requires 

increasing the control set of the bars of actuation, or changing the actuation bar set. 
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Figure 3.8: Flowchart of the MATLAB computer program 

- Formation of equilibrium matrix, A

- Formation of compatibility matrix, B

- Formation of flexibility matrix, F

- Formation of A*, B* & F* in the case of condensed matrices
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bar force position post-

adjustment = Required 

displacement and/or bar 

force pre-adjustment?

Data input

- Sets up structure joint coordinates

- Sets up matrix of connectivity (bars)

- Bar area for each bar

- Bar second moment of area for each bar

- Young's modulus
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- Calculation of states of self-stress

- Assessment of mechanisms

Calculation of internal bar forces and external joint displacements

- Formation of   Y & Z matrix

- Formation of Yc & Zc in the case of condensed matrices

Data input

- Required displacement and/or bar force

- Choosing most effective bars for actuation

Calculating required eo for controlling

Data output

- Amount of actuation for each bar eo

- Required displacement and/or bar 

force position post-adjustment

End

- Increasing the control set

- Reselection of bars

- Quadratic programming

YES

NO
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Chapter 4 

 

 

4 Shape Adjustment on a Cable Stayed 

Bridge Structure 

 

 

 

4.1 Introduction 

This Chapter details an experimental model constructed and tested in Structures 

Laboratory of School of Engineering of Cardiff University for verification of theoretical 

results from equations of linear adjustment of  bar and beam structure in Chapter 3. This 

chapter begins with a discussion of the design and constructing of the model, part by part, 

and the system of measurement with instruments used for that specific purpose. In 

addition, testing procedure and comparison of experimental and theoretical results are 

also explained and discussed in this chapter. 

 

4.2 Cable Stayed Bridge Structure 

A cable stayed bridge structure as shown in Figure 4.1 has been built for the experimental 

results of the linear shape adjustment. This structure consists of eight cables originally 

(i.e. some cables were later removed in some tests), two beams and one continuous 

column (tower). The total height and length of the model are 980mm and 2806mm 

respectively.  
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The cables are connected to the top of the column in the “fan arrangement” in 

which all the stay cables are attached to a single point at top of column (Zadeh, 2012) for 

reducing the moment applied to the towers to the minimum. The column is the load-

bearing structures, which transmits the total bridge loads to the support. The beams on 

both sides of the column cantilever outwards and are welded to the central column, and 

are supported by cable stays every 350mm, except for the first bay which was 353mm. 

 

4.2.1 Column 

A square shaped solid steel section was chosen for the column of the model of the cable-

stayed bridge. The section was chosen due to the need for the column to have sufficiently 

high stiffness for preventing significant bending of the column when exposed to 

differential side loading, either from uneven loading one side of the model, or uneven 

shortening on one side of the cable stays. 

 The column of the model carries the whole bridge. Loads applied to the relatively 

flexible bridge deck are quickly taken up by the cable stays to the top of the column as 

displayed in Figure 4.2. The load then becomes principally a compression force in the 

column, with some moment from unbalanced load from of the side beams. The connection 

to the beam presents also both a horizontal load from the horizontal component of the 

cable forces, and a vertical load directly from the beams. Furthermore, since the beams 

are fixed to the column at a height of 190mm from the base, there is additionally a moment 

force at the base. 

 

4.2.2 Beams 

For the beams, a suitably sized and flexible solid round mild steel section has been 

selected for the model. The beams had spans equal to 1403mm. that is a good allowable 

to the beam to be flexible and tends to high deflection, this high deflection is a good help 

for making adjustment test  since a very big part of loadings are carried by cables. 
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Figure 4.1: Cable-stayed bridge with eight cables.
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The sizing and spans were chosen, together with the cable stays, to result in a 

flexibility that enables a reasonably large (a few millimetres) deflection under the 

loadings to be used. This was desirable, so that subsequent control of the sizeable 

deflection could be verified. In the model, the cantilevered beams are fully fixed to the 

central column by welded joints, as shown in Figure 4.2 each beam is carried by four 

cables in the original model.  

 

 

Figure 4.2: The photograph of the model of cable stayed bridge. 

 

4.2.3 Cables 

The cable-stays, or tension-ties, transfer loads from the beam to the top of the column 

directly. Since they are cables made from stainless steel wire approximately (0.4mmΦ) 

they also need to be kept taut to be structurally effective. The factors governing the 

selection of the section of this wire were its low flexibility and sufficiently high strength 

(about 200N). The choice of this wire helps in the testing since it allows appreciably large 

deflection in the beam under load, and structural shape adjustment can be carried out with 

practically applicable length actuation. An alternative wire with much higher strength was 

tested, but its associated high axial stiffness also did not let the beam deflect noticeably 

which consequently rendered adjustment redundant. Furthermore, each cable has a 

turnbuckle (see Section 4.2.5) and a strain gauged plate (see Section 4.2.7.2 ) attached to 

it. 
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4.2.4 Joints 

Various different types of connections were employed in the model. The first type of joint 

involves the side beams and the column, which is by all round welding so both beams are 

fixed perpendicularly to the column, as shown in Figure 4.3. 

 

 

Figure 4.3: Photograph of the joint between column and beams of the model. 

 

Figure 4.4 shows the second type of joint, which is actually a hinge joint in the 

top of the column, via two steel half-ring hangers welded onto each side of the column 

for attaching cables to. The end of each cable is looped around a semi-circular aluminium 

tube, which is then inserted into the half-ring of the column. The semi-circular aluminium 

tube prevents a tight bending radius which can lead to a breaking of the cable. Beyond 

the looping, the cables are terminated with crimps in conjunction with a high strength 

glue, to avoid any slack or looseness in the joint. The choice of crimping as opposed to 

soldering was made because the cables are made of stainless steel material, and only 

"silver solder" is suitable for this. However, the high temperature of the silver solder 

would also lead to melting of the thin wire, and hence a mechanical connection was the 

chosen method. 
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The last type of the joint in the model is the hinge joint between beams and cables. 

This joint is constructed by drilling a small hole from the side to side of the beam cross-

section, see Figure 4.5, and the cable is passed through this hole before termination. At 

the same place a ring (for attaching load hangers to) and a flat plate (for resting the plunger 

of a dial gauge on) are also fixed onto the beam of each of these joints. 

 

4.2.5 Turnbuckles 

The cable length need to be adjusted by prescribed amounts to progress the shape 

adjustment of the structure. For this purpose, a small turnbuckle is attached to each cable. 

Figure 4.6 shows a longitudinal-section of a turnbuckle, which is connected to the cable 

at both its ends. The middle segment of the turnbuckle is a hexagonal shaped boss, which 

can be turned by small spanner. Both sides of the hexagonal shaped boss are fixed to the 

left-and right-handed threaded bar. Each end of this middle piece can rotate inside a 6mm 

square cross-sectional aluminium cap, to bring about simultaneous moving apart or closer 

together, of these end caps. The length of the turnbuckle is thus increased or decreased 

evenly and gradually, at a rate of 1mm length variation for every rotation of the 

turnbuckle. In this way, a fairly accurate (to 0.2mm) length adjustment is possible. The 

aluminium caps have a small hole at their ends for connecting to the cable. 

 

 

Figure 4.4: Photograph of the joint between the top of the column and the cables in the 

model. 
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Figure 4.5: Photograph of a beam and cable joint. 

 

 

Figure 4.6: Longitudinal-section of the turnbuckle. 

 

4.2.6 Model Support 

The cable stayed bridge model has a very simple support as shown in Figure 4.7, which 

is used for supporting the whole model structure during the tests. The support is 

constructed from 5mm thick horizontal steel base plate welded to the bottom of the 

column. Moreover, two vertical 15mm steel plates are welded to the column and base 

plate as buttresses for further rigidity of the support. During testing the base plate area is 

held firmly to the test bench by four G-clamps. 

 

 

Cable is secured at the top of 

the beam as well as through 

the beam via a pilot hole

Beam cable joint, with a 

flat plate for resting the 

plunger of a dial gauge

Turnbuckle

Attachment ring 

for load hangers

Aluminum threaded cap

Left-hand thread

Hexagon shaped boss

Right-hand threadKnotted cable threaded into cap



Chapter 4: Shape Adjustment on a Cable Stayed Bridge Structure 

98 

 

Figure 4.7: Photograph of the model support. 

 

4.2.7 System of Measurement and Instruments 

In the course of the experiments on the model of the cable-stayed bridge, three kinds of 

measurements have been recorded, i.e. joint displacements, cable forces and beam forces 

as detailed below. 

 

4.2.7.1 Displacement of Joints 

The vertical deflections of the beams at joints and horizontal deflection of the top 

of the column were measured. For this purpose the dial gauges (Mohn bull, Maty, Mercer 

and Mitutoyo) of 0.01mm accuracy with variable maximum range of 15mm to 50mm 

were used. Eight dial-gauges were used for measuring vertical deflection at the eight 

joints on both beams. The dial-gauges were attached onto horizontal aluminium plates 

glued to the beam. Moreover, a dial-gauge was also applied to measure horizontal 

deflection of the top joint of the column. 
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4.2.7.2 Cable Forces 

For measuring axial force in the cables, strain gauges have been provided. For each single 

cable, strain gauges were glued to both sides of a 0.5mm thick aluminium plate of 

approximate length and width 45mm and 6mm respectively. This plate was then inserted 

into, and became part of the cable, such that the cable force went through the plate. Two 

strain gauges were used for measuring of cable force in order to remove errors occurring 

due to bending of plates since bending strains at the top and bottom surface could be 

averaged out to provide only the extension strain. The cable is terminated at both ends of 

the aluminium plate as shown in Figure 4.8. An aluminium plate was chosen such that its 

elastic extension stiffness (EA) still allowed significant strains to be measured, but its EA 

was still significantly higher than the cable EA so as to not change the combined EA too 

much. Stain gauges are connected to a computer data logger through a 16-channel Vishay 

Micro-Measurements System 7000 apparatus. The measurement accuracy of this system 

was ±0.05% with measurement resolution of 0.5 micro-strain which corresponding to 

±0.216N in a typical cable. 

Each plate had slightly different dimensions and construction, and so each plate 

was individually labelled and calibrated before use. Nevertheless, it was found that the 

behaviour of all cable strain gauges were approximately the same as each other, and a 

sample strain gauge calibration curve for cable 7 is presented in Figure 4.9. The cable 

strain gauges are calibrated for the entire expected working range, according to the 

preliminary design cable tensile forces from theoretical analysis, with some extra factor 

of safety. In general, the relationship is very linear, with a constant slope from the 

beginning to the end of the curve. 

 

4.2.7.3 Beam Forces 

The beam forces are varying along their length and these include both axial force and 

flexural bending moment. In this experiment, only bending moment near the fixed joint 

with the column is measured, on both sides. The bending moments are measured by fixing 

two strain gauges on top and bottom of each beam, as shown in Figure 4.3, and the data 

recorded by using same apparatus and software mentioned in Section 4.2.7.2.  
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Figure 4.8: Photograph of the strain gauges on an aluminium plate for measuring cable 

forces. 

 

 

Figure 4.9: Strain gauge calibration curve for measuring cable tension versus gauge 

reading for cable 7. 
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4.2.8 Properties of Materials 

The materials used in constructing cable stayed bridge model are square cross-section 

solid steel for the column, a solid round mild steel section for the beams, stainless steel 

wire for cables and small aluminium plates for measuring cable force. In spite of having 

material properties provided by the manufactures (e.g. Young’s Modulus and cross-

sectional dimensions), these were all measured again in the Structural Laboratory of 

Cardiff University School of Engineering. 

The same procedure has been used for calculating the Young’s Modulus of the 

column and beam. They were tested by applying a point load at the free end of a cantilever 

beam and deflection of the free end was measured. The flexural stiffness of the beam is 

linked to the slope and deflection of the bent loaded beam. Young’s Modulus of the beam 

was E=210kN/mm2, and correspondingly, EA=14.82MN and EI=83.25N.m2 while the 

Young’s Modulus of the column used was E=200kN/mm2. Furthermore, EA=77.62MN 

and EI=2.51kN.m2. 

The Young’s Modulus of cables and the small aluminium plates for strain gauges 

for measuring cable force were tested on a tensile testing machine (Shimadzu AG-I 

20KN). The test specimens were gripped at their ends in the top and bottom jaws of the 

testing machine. The ends of the cable specimens were protected by additional aluminium 

plates in order to prevent damaging of the cable, which would then ensure measuring the 

stiffness and strength of the cables accurately. An extensometer held by small clamps in 

the middle of the specimens provided extension data which were recorded and displayed 

on an attached screen. The load-extension of the stainless steel cables was found to be 

linear in the full range of loading until breaking at a load of 190N. The cables EA was 

measured as 24.14kN. However, since aluminium plates for strain gauges for measuring 

cable forces form part of the cable length, the EA of the plates must be taken into 

consideration, and an “effective” EA be calculated for the control, as shown in  

Table 4.1. The EA of the aluminium plates are each slightly different because of 

having slightly different cross-sectional areas and hence the effective EAcombined should 

be calculate for each cable following equation 4.1.  

 combined combined plate plate cable cableEA Length / ( Length / EA Length / EA )   4.1) 

 

(4.1) 
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Table 4.1: Cables stayed bridge model cables EA values 

Cable EAplate (N) EAcable ( N) Combined Length (mm) EAcombined (N) 

1 192,100 24,144.8 1,616.23 24,761 

2 192,200 24,144.8 1,322.01 24,861 

3 196,500 24,144.8 1,062.17 25,148 

4 215,800 24,144.8 868.16 25,144 

5 183,000 24,144.8 868.16 25,391 

6 184,700 24,144.8 1,062.17 25,130 

7 201,600 24,144.8 1,322.01 24,985 

8 168,500 24,144.8 1,616.23 24,612 

 

4.3 Procedure of Testing 

After preparation of the cable stayed bridge model, the structure was tested for different 

load cases and structural arrangements. At the beginning the model was firmly fixed to 

the test bench through using four G-clamps, and equally, a networked of dial gauges were 

also fixed properly for measuring vertical displacements of eight beam joints and 

horizontal movement of the top joint of the column. Loads were applied as weights added 

to a load hanger and all weights were checked by a sensitive electronic balance before 

use. Furthermore, all strain gauges are “adapted” and checked.  

For a given experiment, some steps were routinely carried out. Firstly, all initial 

dial gauge and strain gauge readings without applying any load were recorded. Secondly, 

loads were then gently applied to the structure via load hangers. A visual inspection on 

the deflection in joints and force in members was carried out, especially in cables to see 

if any had become or were approaching becoming slack. Thirdly, all dial gauge and strain 

gauge readings were recorded again, and compared against expected values from 

computation by MATLAB. This is the initial loaded state and the joint displacements and 

member forces in this state were entered into the algorithm for shape adjustment control. 

Fourthly, following decision of which joint displacements or member forces were to be 

controlled then which actuator (and by how much) is calculated. In the fifth stage, the 

calculated amount of actuation (eo) is then carefully applied to the cables by rotation in 

their turnbuckles while taking care to otherwise “disturb” the structure as little as possible. 

In the last stage of the experiment, all readings were recorded and used in the adjustment 

program. The results achieved are compared with the theoretical results as discussed in 

Section 4.4. 



Chapter 4: Shape Adjustment on a Cable Stayed Bridge Structure 

103 

4.4 Experimental and Theoretical Result Comparison and Discussion 

The direct method for controlling nodal displacements, or internal bar forces, and then 

simultaneously both nodal displacements and internal bar forces was verified by a set of 

experimented studies on the eight- and four-cable cable-stayed bridge structure model. 

The process of linear adjustment was applied for adjustment and controlling of the joint 

displacement and bar forces of the model. 

 

4.4.1 Linear Structure 

The overall static behaviour of many structures can be characterized by its load-deflection 

response. The linearity or nonlinearity of materials and members depends on how the 

strain of materials and deformation of members evolve with increasing corresponding 

stress and force. Nonlinearity of the load-deflection response can also result from 

deformation that is too large such that the overall geometry of the deformed structure (and 

its stiffness) is no longer essentially that same as that of the original structure. 

Therefore, before using the linear techniques of controlling nodal displacement, 

etc introduced in Chapter 3 for shape adjustment of the physical model, evaluation was 

made to check whether this structure’s response to load is linear or nonlinear. The cable-

stayed bridge model would be used in two different configurations (with eight cables as 

shown in Figure 4.1 and with four cables as shown in Figure 4.14), so both configurations 

would be tested for presence of geometical nonlinearity. 

The eight-cable bridge was tested under two point loads in each side of the model 

on joints 4, 6, 9 and 11 until 34.3N per joint as maximum load. The results for all tested 

joints are as shown in Figures 4.10 and 4.11, and load-cable tension diagrams are shown 

in Figures 4.12 and 4.13. Similarly, the bridge model with four cables (see Figure 4.14) 

was tested under two point loads in each beam on joints 4, 6, 9 and 11, until the maximum 

total load reached 41.13N per joint. Figures 4.14 and 4.15 show the load-deflection plots 

of the loaded joints and the load-cable tension diagrams are in Figures 4.16 and 4.17. 

Although the size of the deflections were of the same order of magnitude as the 

depth of the beam, the results mostly indicate that the behaviour of the physical model in 
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both configurations is linear. Therefore, an attempt will be made to verify the linear 

control techniques as detailed in Chapter 3. 

 

 

Figure 4.10: Load-deflection diagram of left-side joints of the structure in Figure 4.1. 

 

 

Figure 4.11: Load-deflection diagram of right-side joints of the structure in Figure 4.1. 
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Figure 4.12: Load-cable tension diagram of the left-side cables of the structure in 

Figure 4.1. 

 

 

Figure 4.13: Load-cable tension diagram of the right-side cables of the structure in 

Figure 4.1. 
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Figure 4.14: Cable-stayed bridge with four cables.
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Figure 4.15: Load-deflection diagram of the joints 1 and 3 of the structure in Figure 4.14. 

 

 

Figure 4.16: Load-deflection diagram of the joints 6 and 8 of the structure in Figure 4.14. 
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Figure 4.17: Load-cable tension diagram of the left-side cables of the structure in 

Figure 4.14. 

 

 

Figure 4.18: Load-cable tension diagram of the right-side cables of the structure in 

Figure 4.14. 
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4.4.2 Linear Adjustment 

Linear adjustment in controlling joint displacement and bar force of the structure means 

finding a required set of eo in one cycle of the direct method then applying the obtained 

set of eo to the structure to reach the target shape. The success or otherwise of this can be 

verified by measurement of the resultant shape. This technique was applied to the model 

bridge structure in both configurations. 

 

4.4.2.1 Eight Cables Model of Cable Stayed Bridge 

In this load case the bridge model has eight cables to carry side beams at eight joints. The 

model was tested under six vertical downward of point loads 22.85N each applied at joints 

5 to 10 and two vertical point loads 17.14N applied at joints 4 and 11. Two different sets 

of experiments were carried out on the model. In the first set of experiments (Experiments 

1, 3 and 5), adjustment was carried out on all eight cables with results shown in Tables 

4.2, 4.4 and 4.6. Additionally in the second set of experiments (Experiments 2, 4 and 6), 

although the structure still had eight cables, adjustment was done only on just four cables 

(Cables 1, 3, 6, and 8), and these results are presented in Tables 4.3, 4.5 and 4.7.  

 

4.4.2.1.1 Experimental Displacement Control Regardless of Bar/Beam Forces 

Tables 4.2 and 4.3 ( Experiments 1 and 2) show the displacement control without regard 

to bar forces, due to the actuation in eight and four cables respectively as an application 

of Eqn. 3.10 in Section 3.2.2. Initially, after loading, the structure has measured 

displacements as shown in Column 3. For the case of eight actuators, the chosen target 

was fixed at -1mm deflection in all beam joints, i.e. Column 4 in Table 4.2. A set of eo is 

calculated to achieve the desired target shape, which is shown in Column 5. After 

application of this set of eo the theoretical outcome (Column 6) is exactly the desired 

target shape. However, experimental results in column 7 show very close (though not 

perfect) correlation to the target shape, as seen in Figure 4.19.  

Unlike the case with eight actuators, when there are only four actuators, it is 

impossible to get (even theoretical) results which is the same as the target of having all 
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nodes with -1mm deflection, because in this structure, every single cable has a high direct 

effect on the one node to which it is connected, but also little effect on the other joints. 

The set of only four components in eo is thus not sufficient for controlling eight 

displacements. In this case, the MATLAB software output gives the best (i.e. least-

square) set of result as shown in Column 5 of Table 4.3.  After adjustment with this set 

of eo, the theoretical and experimentally measured results are very close to each other (i.e. 

Columns 6 and 7) but not close to the target shape (i.e. Column 4) as also shown in 

Figure 4.20. 

 For understanding how each cable has a direct effect on meeting nodes, a theoretical 

calculation was done, where for each actuator individually applied, in turn, with the 

results in Figure 4.21. The "no eo"-line shows the position of all nodes from the loading 

before any adjustment, and the "eo all"-line shows the position of those nodes when the 

full eo for all four actuators have been applied. All other lines show the effect of a single 

actuator the on displacements of all joints.  For example, "eo1"  shows the effect of  

shortening only cable1 by 2.43mm, whereby node 4 goes up from deflection of -4.52mm 

to -0.74mm, while node 5 rises from -3.52mm to -2.48mm. However, its effect decreases 

so that the last joint (joint 8) has no observed change. Similarly, the effect of other 

actuators are also the same. 
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Table 4.2: Displacement control of the structure in Figure 4.1 with eight elements of eo 

(MATLAB program can be found in Appendix A.4). 

(1) (2) (3) (4) (5) (6) (7) (8) 

Joint Dir 

Exp1 (8-Cable model, adjustment in only 8 elements in 

eo) 
  

Just dP, target 
eo 

(mm) 

8 elements 8 elements 
Bar 

actuation 
no eo disp in eo (mm) in eo (mm) 

(mm) (mm) Theo. results Exp. results 

1 x -0.01   -1.68 0 0.09 1e 
 y 0.00  -1.63 0.00   2e 
 Ѳ 0.00  -1.17 0.00   3e 
2 x 0.00  0.45 0.00   4e 
 y 0.00  0.47 0.00   5e 
 Ѳ 0.00  -1.22 0.00   6e 
3 x 0  -1.34 0 0 7e 

(Fixed) y 0  -1.72 0 0 8e 
 Ѳ 0  0 0 0 9e 
4 x  0.01  0 0.01   9ψ1 
 y -4.62 -1.00 0 -1.00 -1.11 9ψ2 
 Ѳ 4.10e-03  0 1.20e-03   10e 
5 x 0.01  0 0.01   10ψ1 
 y -3.57 -1.00 0 -1.00 -1.03 10ψ2 
 Ѳ 4.10e-03  0 0.70e-03   11e 
6 x 0.00  0 0.00   11ψ1 
 y -2.21 -1.00 0 -1.00 -1.00 11ψ2 
 Ѳ 3.60e-03  0 -0.80e-03   12e 
7 x 0.00  0 0.00   12ψ1 
 y -0.98 -1.00 0 -1.00 -0.99 12ψ2 
 Ѳ 3.10e-03  0 1.50e-03   13e 
8 x -0.00  0 -0.00   13ψ1 
 y -0.97 -1.00 0 -1.00 -0.97 13ψ2 
 Ѳ -3.10e-03  0 -1.60e-03   14e 
9 x -0.00  0 -0.00   14ψ1 
 y -2.16 -1.00 0 -1.00 -0.99 14ψ2 
 Ѳ -3.60e-03  0 0.40e-03   15e 

10 x -0.01  0 -0.01   15ψ1 
 y -3.38 -1.00 0 -1.00 -1.00 15ψ2 
 Ѳ -4.20e-03  0 -0.90e-03   16e 

11 x -0.01  0 -0.01   16ψ1 
 y -4.51 -1.00 0 -1.00 -1.07 16ψ2 
 Ѳ  -4.20e-03  0 -0.90e-03   17e 
     0    17ψ1 
     0    17ψ2 
     0    18e 
     0    18ψ1 
        0     18ψ2 

  total actuation (mm) 9.68    

e= bar/beam elongation.  ψ1 & ψ2= beam rotation at ends 1 & 2. 
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Table 4.3: Displacement control of the structure in Figure 4.1 with four elements of eo 

(MATLAB program is shown in Appendix A.5). 

(1) (2) (3) (4) (5) (6) (7) (8) 

Joint Dir 

Exp2 (8-Cable model, adjustment in only 4 elements in eo)   

Just dP, target 
eo 

(mm) 

4 elements 4 elements 
Bar 

actuation  
no eo disp in eo (mm) in eo (mm) 

(mm) (mm) Theo. results Exp. results 

1 x 0.07   -2.43 0.07 0.02 1e 

 y 0.00  0 0.00   2e 

 Ѳ 0.00  -1.91 0.00   3e 

2 x 0.00  0 0.00   4e 

 y 0.00  0 0.00   5e 

 Ѳ 0.00  -1.93 0.00   6e 

3 x 0  0 0 0 7e 

(Fixed) y 0  -2.47 0 0 8e 

 Ѳ 0  0 0 0 9e 

4 x 0.01  0 0.01   9ψ1 

 y -4.52 -1.00 0 -0.83 -0.84 9ψ2 

 Ѳ 4.10e-03  0 -2.20e-03   10e 

5 x 0.01  0 0.01   10ψ1 

 y -3.52 -1.00 0 -1.60 -1.69 10ψ2 

 Ѳ 4.10e-03  0 1.30e-03   11e 

6 x 0.00  0 0.00   11ψ1 

 y -2.18 -1.00 0 -0.74 -0.75 11ψ2 

 Ѳ 3.60e-03  0 1.60e-03   12e 

7 x 0.00  0 0.00   12ψ1 

 y -0.96 -1.00 0 -0.60 -0.60 12ψ2 

 Ѳ 3.10e-03  0 0.50e-03   13e 

8 x -0.00  0 -0.00   13ψ1 

 y -1.03 -1.00 0 -0.67 -0.64 13ψ2 

 Ѳ -3.10e-03  0 -0.50e-03   14e 

9 x -0.00  0 -0.00   14ψ1 

 y -2.21 -1.00 0 -0.75 -0.67 14ψ2 

 Ѳ -3.60e-03  0 -1.60e-03   15e 

10 x -0.01  0 -0.01   15ψ1 

 y -3.49 -1.00 0 -1.55 -1.54 15ψ2 

 Ѳ -4.10e-03  0 -1.30e-03   16e 

11 x -0.01  0 -0.01   16ψ1 

 y -4.58 -1.00 0 -0.84 -0.81 16ψ2 

 Ѳ -4.10e-03  0 2.20e-03   17e 

     0    17ψ1 

     0    17ψ2 

     0    18e 

     0    18ψ1 

        0     18ψ2 

  total actuation (mm) 8.74    

e= bar/beam elongation.  ψ1 & ψ2= beam rotation at ends 1 & 2. 
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Figure 4.19: Displacement control of the structure in Figure 4.1 with eight elements of eo. 

 

 

Figure 4.20: Displacement control of the structure in Figure 4.1 with four elements of eo 

 

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

4 5 6 7 8 9 10 11

D
ef

le
ct

io
n
 (

m
m

)

Measured position under load, pre-adjustment

Target position=Theoretical position post-adjustment

Measured position post-adjustment

4y              5y              6y             7y 8y              9y             10y          11y

Joint

target deflection

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

4 5 6 7 8 9 10 11

D
ef

le
ct

io
n

 (
m

m
)

Measured position under load, pre-adjustment

Target position

Theoretical position post-adjustment

Measured position post-adjustment

4y              5y              6y             7y 8y              9y             10y          11y

Joint

target deflection



Chapter 4: Shape Adjustment on a Cable Stayed Bridge Structure 

114 

 

Figure 4.21: Changing vertical displacement of beam joints due to the actuation in 

individual cable. 
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Table 4.4: Control of bar forces in the structure in Figure 4.1 with eight elements of eo 

(MATLAB program can be found in Appendix A.4). 

 (1) (2) (3) (4) (5) (6) 

Bar 

force/ 

actuation 

Exp3 (8-Cable model, adjustment in only 8 elements in eo) 

Just tP, target 
eo8 

(mm) 

8 elements 8 elements 

no eo tension in eo (N) in eo (N) 

(N) (N) Theo. results Exp. results 

1axial 35.97 34.00 -0.80 34.00 34.79 

2axial 33.77 34.00 -1.43 34.00 35.16 

3axial 34.63 34.00 -1.73 34.00 34.16 

4axial 18.78 34.00 -1.78 34.00 34.61 

5axial 16.84 34.00 -2.48 34.00 34.65 

6axial 33.31 34.00 -3.27 34.00 35.85 

7axial 36.05 34.00 -3.44 34.00 34.52 

8axial 34.20 34.00 -3.58 34.00 34.82 

9axial -30.55  0 -28.83   

9rot.1 0.00  0 0.00   

9rot.2 22.18  0 -315.78   

10axial -59.80  0 -58.27   

10rot.1 22.18  0 -315.78   

10rot.2 -272.83  0 -900.01   

11axial -81.66  0 -79.72   

11rot.1 -272.83  0 -900.01  

11rot.2 35.23  0 -1044.59  

12axial -89.56  0 -93.82  

12rot.1 35.23  0 -1044.59   

12rot.2 -1810.06  0 1635.14 1490.38 

13axial  -89.57  0 -95.21   

13rot.1 -1970.78  0 2579.63 2385.31 

13rot.2 28.49  0 -753.89   

14axial -81.68  0 -80.29   

        
 

       

        

18rot.2   0.00   0  0.00   

 total actuation (mm) 18.51   

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.22: Controlling bar forces control of the 8-cable bridge model with eight 

elements of eo. 
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Table 4.5: Control of bar forces in the structure in Figure 4.1 with four elements of eo 

(MATLAB program is shown in Appendix A.5). 

(1) (2) (3) (4) (5) (6) 

Bar 

force/ 

actuation 

Exp4  (8-Cable model, adjustment in only 4 elements in eo) 

Just tP, target 
eo4 

(mm) 

4 elements 4 elements 

no eo tension in eo (N) in eo (N) 

(N) (N) Theo. results Exp. results 

1axial 35.11 34.00 -0.62 37.20 37.58 

2axial 33.65 34.00 0 34.31 34.65 

3axial 34.09 34.00 0.67 27.50 27.70 

4axial 18.47 34.00 0 22.97 23.38 

5axial 16.52 34.00 0 21.83 22.45 

6axial 33.80 34.00 0.74 26.71 28.01 

7axial 35.56 34.00 0 34.15 35.22 

8axial 33.37 34.00 -1.12 37.32 38.19 

9axial -30.55 
 

0 -32.37   
9rot.1 0.00  0 0.00   
9rot.2 22.18  0 380.75   
10axial -59.80  0 -62.14   
10rot.1 22.18  0 380.75   
10rot.2 -272.83  0 582.18   
11axial -81.66  0 -79.63   
11rot.1 -272.83  0 582.18  
11rot.2 35.23  0 -335.16  
12axial -89.56  0 -89.36  
12rot.1 27.48  0 -335.16   
12rot.2 -1784.59  0 -1932.09 -1938.28 
13axial  -89.57  0 -89.33   
13rot.1 -1957.60  0 -2135.00 -2173.65 
13rot.2 28.49  0 -385.12   
14axial -81.64  0 -79.24   
 

       
        
        
18rot.2  0.00   0 0.00   
 total actuation (mm) 3.15   

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.23: Controlling bar forces control of the 8-cable bridge model with four elements 

of eo. 

 

 

Figure 4.24: Changing tension in cables due to the actuation in cables individually 
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4.4.2.1.3 Simultaneous Control of Displacement and Bar Force  

As an application of Eqn. 3.19 in Section 3.2.4 simultaneously controlling both joint 

displacement and bar force, Experiments 5 and 6 were carried out and the results are 

shown in Tables 4.6 and 4.7 respectively. In experiment 5, eight joint displacements and 

eight bar forces were simultaneously controlled by using the eight actuators in the eight 

cables, while in the experiment 6, the same aim was attempted with only four actuators. 

Clearly, based on the experience of the last two subsections, it would be difficult to 

control such large number of displacement and force variables with only a few actuators. 

Columns 3 and 4 of Table 4.6 show the measured displacement and cable tension 

(and two moments) of the loaded bridge model without about control. It is supposed that 

the desired target is to raise all the joints such that all the beam deflections are 0.0mm 

(Column 5), while at the same time, the cable forces are all to be a constant 30.0N 

(Column 8). The calculated set of actuation, with all eight actuators in action, is shown in 

Column 11. Since there is a certain amount of conflict between the displacement 

requirements (which would involve shortening of all the turnbuckles) and the cable force 

requirements (where five of the eight cables need to be lengthened to reduce their tension 

to 32.0N), the resultant theoretically possible state of displacements and cable tensions 

was always unlikely to be perfect. Indeed, when the eo is applied, Columns 6 and 9 show 

a good, but not perfect, possible achievement of the desired state of displacements and 

tension, which is well matched by experimentally measured values in Columns 7 and 10. 

Figures 4.25 and 4.26 show this comparison. 

Although the eventual state was not very close to the originally target state, the 

experiment merely showed the original target was very exacting, and, with the given 

actuators, could only be approximated in a least-squares-error sense. Nevertheless, what 

was achieved was still good, where the root mean square (rms) error for displacement has 

gone from 3.15mm to 0.53mm, and 7.87N to 2.93N for cable tension. 
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Table 4.6: Simultaneous displacement and cable forces control of the eight-cable structure 

with eight actuators in eo (MATLAB program can be found in Appendix A.4). 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Joint Dir 

Exp5 (8-Cable model, adjustment in only 8 elements in eo) 

Bar 

force/ 

actuation 

no eo target Theo. Exp. target Theo. Exp. 

eo8 

(mm) 
Theo. & Exp. disp disp 

measured 

disp 
tension tension 

measured 

tension 

dp tp (mm) (mm)   (mm)  (N) (N)  (N)  

1 x 0.09 35.20   0.18 0.18 30.00 35.05 35.38 -1.84 1axial 

  y 0.00 33.24   0.00   30.00 33.99 34.43 -1.78 2axial 

  Ѳ 0.00 36.44   -0.20e-3   30.00 32.50 32.91 -1.35 3axial 

2 x 0.00 17.48   0.00   30.00 30.86 30.56 -1.44 4axial 

  y 0.00 15.27   0.00   30.00 30.29 30.24 -2.01 5axial 

  Ѳ 0.00 28.88   0.00   30.00 31.04 29.36 -2.40 6axial 

3 x 0 36.13   0.00 0.00 30.00 31.88 31.80 -1.96 7axial 

(Fixed) y 0 32.11   0.00 0.00 30.00 32.64 32.77 -2.06 8axial 

  Ѳ 0 -30.55   0.00 0.00 
 

-30.42 
 

0 9axial 

4 x  0.01 0.00    0.01   
 

0.00 
 

0 9rot.1 

  y -4.53 22.18 0.00 -0.60 -0.68 
 

-2.14 
 

0 9rot.2 

  Ѳ 4.10e-3 -59.80   1.50e-3   
 

-60.24 
 

0 10axial 

5 x 0.01 22.18   0.01   
 

-2.14 
 

0 10rot.1 

  y -3.53 -272.8 0.00 -0.51 -0.52 
 

-164.60 
 

0 10rot.2 

  Ѳ 4.10e-3 -81.66   1.50e-3   
 

-79.52 
 

0 11axial 

6 x 0.00 -272.83   0.00   
 

-164.60 
 

0 11rot.1 

  y -2.19 35.23 0.00 -0.08 -0.09 
 

-752.44 
 

0 11rot.2 

  Ѳ 3.60e-3 -89.56   1.10e-3   
 

-92.87 
 

0 12axial 

7 x 0.00 35.23   0.00   
 

-752.44 
 

0 12rot.1 

  y -0.95 -1773.17 0.00 0.16 0.16 
 

864.03 693.81 0 12rot.2 

  Ѳ 3.10e-3 -89.57   -0.80e-3   
 

-94.22 
 

0 13axial 

8 x -0.00 -2015.57   0.00   
 

1671.24 1588.74 0 13rot.1 

  y -1.08 28.49 0.00 0.53 0.55 
 

-904.67 
 

0 13rot.2 

  Ѳ -3.10e-3 -81.64   2.80e-3   
 

-80.17 
 

0 14axial 

9 x -0.00 28.49   0.00   
 

-904.67 
 

0 14rot.1 

  y -2.24 -270.44 0.00 0.77 0.80 
 

-974.17 
 

0 14rot.2 

  Ѳ -3.60e-3 -59.84   -1.20e-3   
 

-56.93 
 

0 15axial 

10 x -0.01 -270.44   -0.01   
 

-974.17 
 

0 15rot.1 

  y -3.55 6.34 0.00 -0.03 0.00 
 

97.30 
 

0 15rot.2 

  Ѳ -4.10e-3 -30.47   -3.00e-3   
 

-30.93 
 

0 16axial 

11 x -0.01 6.34   -0.01   
 

97.30 
 

0 16rot.1 

  y -4.70 0.00 0.00 -0.75 -0.76 
 

0.00 
 

0 16rot.2 

  Ѳ -4.10e-3 -162.81   -2.80e-3   
 

-185.53 
 

0 17axial 

      0.00       
 

0.00 
 

0 17rot.1 

      10.07       
 

1066.69 
 

0 17rot.2 

      -171.37       
 

-171.37 
 

0 18axial 

      0.00       
 

0.00 
 

0 18rot.1 

      0.00         0.00   0 18rot.2 

       total actuation (mm) 14.84  

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.25: Displacement results in the simultaneous control of displacement and cable 

forces of the eight-cable structure, with eight actuators in eo. 

 

 

Figure 4.26: Cable force results in the simultaneous control of displacement and cable 

forces of the eight-cable structure, with eight actuators in eo. 
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 As with previous experiments, the same control target was carried out with only 

four actuators in the eight-cable model, see results for experiment 6 in Table 4.7. The 

measured displacements (Column 3) and cable tension (Column 4) are to be controlled to 

achieve the same corresponding targets (Columns 5 and 8), and the 4-element set of 

calculated actuation is in Column 11. After application of this eo, the experimentally 

measured displacements (Column 7) and cable tension (Column 10) show very good 

correlation with the theoretically possible counterparts (Columns 6 and 9), but the 

achieved state is expectedly more imperfect than that achieved with eight actuators. For 

controlling with only four actuators, the rms error for displacement has gone from 

3.12mm to 2.64mm, and 7.64N to 6.01N for cable tension. There is only small 

improvement in the rms error when only four actuators are used for controlling, but the 

rms error improvement was approximately five and two times better for displacement and 

cable tension respectively. 

 The comparative results are also shown in Figures 4.27 and 4.28. While the 

actuation has been able to considerably "moderate" the cable tension so that the resultant 

values do fluctuate around 30.0N better than the original values, it is also true that none 

of the displacements (which are originally all below 0.0mm) has been brought up to 

0.0mm. This is probably due to a serious conflict of requirements in the target state: the 

two outermost beam joints (4 and 11) had the largest deflections and thus required the 

largest shortening of associated cables (1 and 8) to raise the beam at these points, but yet, 

the outer cables already had tension values well above 30.0N and thus required the 

actuations there to lengthen the associated cables. The desired target thus presented an 

internally conflicting set of requirements, which the algorithm could only partially 

"solve", giving in the end a compromise where the deflections were raised (though not 

enough) but the cable tension values were also far more regular with an average value of 

31.61 N. 

 In summary, experiments with the eight-cable model have shown that the shape 

adjustment algorithms proposed in Chapter 3 have worked very well to even 

simultaneously control displacements and cable tension. The cable-stayed bridge 

happened to be a structure where an actuator had a strong direct control on one local area 

(i.e. its own cable tension and the vertical displacement of the joint to which the cable is 

connected) but much less control of areas further away; this has resulted in very good 

control where the target state has been attainable. 
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Table 4.7: Simultaneous displacement and bar forces control in the eight-cable structure 

with four actuators in eo (MATLAB program is shown in Appendix A.5). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Joint Dir 

Exp6 (8-Cable model, adjustment in only 4 elements in eo) 
Bar 

force/ 

actuation 

no eo target Theo. Exp. target Theo. Exp. 

eo4 

(mm) 
Theo. & Exp. disp disp 

measured 

disp 
tension tension 

measured 

tension 

dp tp (mm) (mm)  (mm) (N)  (mm) (N) 

1 x 0.08 35.97   0.07 0.11 30.00 39.42 39.03 -0.97 1axial 

  y 0.00 36.79   0.00   30.00 35.03 34.83 0 2axial 

  Ѳ 0.00 34.22   0.00   30.00 29.07 29.55 0.54 3axial 

2 x 0.00 19.82   0.00   30.00 23.79 23.89 0 4axial 

  y 0.00 17.40   0.00   30.00 22.97 22.98 0 5axial 

  Ѳ 0.00 35.76   0.00   30.00 28.52 28.79 0.76 6axial 

3 x 0.00 37.03   0.00 0.00 30.00 34.89 34.83 0 7axial 

(Fixed) y 0.00 34.71   0.00 0.00 30.00 39.31 39.01 -1.30 8axial 

  Ѳ 5.00e-3 -30.55   0.00 0.00 
 

-33.56 
 

0 9axial 

4 x 0.01 0.00   0.01   
 

0.00 
 

0 9rot.1 

  y -4.52 22.18 0.00 -3.00 -2.86 
 

615.22 
 

0 9rot.2 

  Ѳ 4.10e-3 -59.80   -0.30e-3   
 

-61.40 
 

0 10axial 

5 x 0.01 22.18   0.01   
 

615.22 
 

0 10rot.1 

  y -3.41 -272.83 0.00 -3.26 -3.23 
 

544.86 
 

0 10rot.2 

  Ѳ 4.10e-3 -81.66   1.00e-3   
 

-79.85 
 

0 11axial 

6 x 0.00 -272.83   0.00   
 

544.86 
 

0 11rot.1 

  y -2.19 35.23 0.00 -2.63 -2.62 
 

-267.85 
 

0 11rot.2 

  Ѳ 3.60e-3 -89.56   3.50e-3   
 

-89.36 
 

0 12axial 

7 x 0.00 35.23   0.00   
 

-267.85 
 

0 12rot.1 

  y -0.99 -1826.74 0.00 -1.14 -1.14 
 

-1970.84 -1979.56 0 12rot.2 

  Ѳ 3.10e-3 -89.57   4.00e-3   
 

-89.32 
 

0 13axial 

8 x 0.00 -2019.08   0.00   
 

-2207.98 -2230.74 0 13rot.1 

  y -1.05 28.49 0.00 -1.25 -1.28 
 

-398.74 
 

0 13rot.2 

  Ѳ -3.10e-3 -81.64   -4.40e-3   
 

-79.11 
 

0 14axial 

9 x 0.00 28.49   0.00   
 

-398.74 
 

0 14rot.1 

  y -2.25 -270.44 0.00 -2.85 -2.91 
 

858.10 
 

0 14rot.2 

  Ѳ -3.60e-3 -59.84   -3.40e-3   
 

-62.14 
 

0 15axial 

10 x -0.01 -270.44   -0.01   
 

858.10 
 

0 15rot.1 

  y -3.54 6.34 0.00 -3.34 -3.43 
 

795.41 
 

0 15rot.2 

  Ѳ -4.10e-3 -30.47   0.00e-3   
 

-34.47 
 

0 16axial 

11 x -0.01 6.34   -0.01   
 

795.41 
 

0 16rot.1 

  y -4.64 0.00 0.00 -2.60 -2.69 
 

0.00 
 

0 16rot.2 

  Ѳ -4.10e-3 -162.81   1.70e-3   
 

-164.88 
 

0 17axial 

      0.00       
 

0.00 
 

0 17rot.1 

      10.07       
 

-37.49 
 

0 17rot.2 

      -171.37       
 

-171.37 
 

0 18axial 

      0.00       
 

0.00 
 

0 18rot.1 

      0.00         0.00   0 18rot.2 

       total actuation (mm) 3.57  

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.27: Displacement results in the simultaneous control of the structure in 

Figure 4.1 with four elements of eo. 

 

 

Figure 4.28: Bar force results in the simultaneous control of the structure in Figure 4.1 

with four elements of eo. 
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4.4.2.2 Four Cables Model of Cable Stayed Bridge 

The bridge model in Section 4.4.2.1 contained eight cables, which had the 

consequence of both the level of prestress being rather low, and there was a significant 

degree of "interplay" between adjacent cables in that shortening of one to increase its 

tensile force also simultaneously reduced the tension of its neighbouring cables. 

Consequently, the bridge model had four cables taken off (two each side, see Figure 4.14), 

and the shape adjustment exercise were carried out again, and this time, with more than 

one iteration in attempt to better attain the target geometry. The model was tested under 

two vertical point loads of 57.12N applied at joints 5 and 9 with another two vertical point 

loads 28.56N on joints 4 and 11. Displacements were measured for all vertical 

displacements at beam joints and horizontally at the top joint of the tower. Moreover, 

cable forces and bending moments at the root both beams were again recorded. Three 

tests (Experiments 7, 8 and 9) were done for this model to control nodal displacement 

only, internal bar forces only, and then both nodal displacements and internal bar forces 

simultaneously. The results are presented in Tables 4.8, 4.9 and 4.10, respectively. 

 

4.4.2.2.1 Control of Joint Displacement without Regard to Bar/Beam Forces 

The results of the displacement control without regard to the bar forces for the 

four cable bridge model by using all four cable actuations is presented in Table 4.8 

(Experiment 7). The target displacement of obtaining -2.5mm deflection (Column 5) in 

four joints connected to the cables was set and Eqn. 3.10 was used. The results 

comparison between the theoretical (Column 6) and experimental (Column 7) 

(Figure 4.29), show very good correlation with the target displacements for both, even 

though there were some large (-7.27 and -7.62) displacements being reduced to -2.50 with 

only subsequent errors of 3.77% and 2.73%. The results of other joints not connected to 

the cable were not adjusted to any desired values and were thus free to take any value, 

but it should be noted that there was also little discrepancy between practical and 

theoretical values. Furthermore, the theoretical displacement adjustment was also done 

for joints that were not directly connect to the cables as shown in Columns 8, 9 and 10 in 

Table 4.8. This test adjustment was done to see how effective could the displacement 

control of joints could be where those joints could only be indirectly affected by actuators 
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located in more remote parts of the structure. This results show that the present adjustment 

technique was capable to control joints that they have not a direct contact with. 

 

Table 4.8: Displacement control of the structure in Figure 4.14 with four elements of eo 

(MATLAB program can be found in Appendix A.6). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Joint Dir 

Exp7 (4-Cable model, adjustment in only 4 elements in eo) 

  

Bar 

actuation 

 

Joints connected to the cables 
Joints did not connect to the 

cables 

Just dP, target 
eo 

(mm) 

4 elements 4 elements target 
eo 

(mm) 

4 elements 

no eo disp in eo (mm) in eo (mm) disp in eo (mm) 

(mm) (mm) Theo. results Exp. results (mm) Theo. results 

1 x 0.07   -2.38 0.07 0.02   -5.40 0.00 1e 

 y 0.00  -1.12 0.00    -0.23 0.00 2e 

 Ѳ 0.00  -1.34 0.00    -0.33 0.00 3e 

2 x 0.00  -2.57 0.00    -5.43 0.00 4e 

 y 0.00  0 0.00    0 0.00 5e 

 Ѳ 0.00  0 0.00    0 0.00 5ψ1 

3 x 0  0 0 0  0 0 5ψ2 

(Fixed) y 0  0 0 0  0 0 6e 

 Ѳ 0  0 0 0  0 0 6ψ1 

4 x 0.01  0 0.01    0 0.01 6ψ2 

 y -7.27 -2.50 0 -2.50 -2.68  0 2.19 7e 

 Ѳ 4.90e-3  0 -0.10e-3   0 -10.00e-3 7ψ1 

5 x 0.01  0 0.01   0 0.01 7ψ2 

 y -5.99  0 -3.03 2.99 -1.50 0 -1.50 8e 

 Ѳ 5.50e-3  0 0.80e-3   0 -7.30e-3 8ψ1 

6 x 0.00  0 0.00   0 0.00 8ψ2 

 y -4.01 -2.50 0 -2.50 -2.48  0 -3.00 9e 

 Ѳ 7.30e-3  0 3.40e-3   0 0.80e-3 9ψ1 

7 x 0.00  0 0.00   0 0.00 9ψ2 

 y -1.44  0 -1.02 1.02 -1.50 0 -1.50 10e 

 Ѳ 6.60e-3  0 4.40e-3   0 6.10e-3 10ψ1 

8 x 0.00  0 -0.00   0 -0.00 10ψ2 

 y -1.57  0 -1.06 1.06 -1.50 0 -1.50 11e 

 Ѳ -6.60e-3  0 -4.00e-3   0 -5.50e-3 11ψ1 

9 x -0.00  0 -0.00   0 -0.00 11ψ2 

 y -4.24 -2.50 0 -2.50 -2.53  0 -2.92 12e 

 Ѳ -7.30e-3  0 -3.10e-3   0 -0.60e-3 12ψ1 

10 x -0.01  0 -0.01   0 -0.01 12ψ2 

 y -6.30  0 -2.95 2.99 -1.50 0 -1.50 13e 

 Ѳ -5.60e-3  0 -0.70e-3   0 7.00e-3 13ψ1 

11 x -0.01  0 -0.01   0 -0.01 13ψ2 

 y -7.62 -2.50 0 -2.50 -2.64  0 2.02 14e 

 Ѳ -5.00e-3  0 0.10e-3    0 9.50e-3 14ψ1 

    0     0  14ψ2 

  total actuation (mm) 7.41    11.16   

e= bar/beam elongation.  ψ1 & ψ2= beam rotation at ends 1 & 2. 
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Figure 4.29: Displacement control of the structure in Figure 4.14 with four elements of 

eo. 

 

4.4.2.2.2 Experimental Bar Forces Control Regardless of Displacement 

Table 4.9 and Figure 4.30 (Experiment 8) show the results of controlling four cable cable-

stayed bridge model regarding to the bar force only. Theoretical results from the 

MATLAB program gives a set of eo (Column 4) to control the bar force (Column 2) in all 

four cables to 61N (Column 3). It is interesting to note that, the magnitude of the 

components of eo is not near-symmetrical, even though the loaded geometry of the 

structure is near-symmetrical, and the target geometry is symmetrical. This shows that 

there are several possible results of eo and MATLAB program has selected one of them.  

Figure 4.30 shows theoretical results are very close to experimental results, as well as the 

target cable tension. 
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Table 4.9: Bar forces control of the structure in Figure 4.14 with four elements of eo 

(MATLAB program is shown in Appendix A.6). 

(1) (2) (3) (4) (5) (6) 

Bar 

force/ 

actuation 

Exp8 (4-Cable model, adjustment in only 4 elements in eo) 

Just tP, target 
eo 

(mm) 

4 elements 4 elements 

no eo tension in eo (N) in eo (N) 

(N) (N) Theo. results Exp. results 

1axial 57.92 61.00 0.38 61.00 61.14 

2axial 67.89 61.00 1.74 61.00 62.92 

3axial 68.15 61.00 0.90 61.00 62.69 

4axial 57.13 61.00 -1.50 61.00 61.59 

5axial -52.13  0 -54.82  

5rot.1 0.00  0 0.00  

5rot.2 276.43  0 806.21  

6axial -52.13  0 -54.82  

6rot.1 274.43  0 806.21  

6rot.2 552.86  0 1612.41  

7axial -98.68  0 -96.79  

7rot.1 552.86  0 1612.41  

7rot.2 -853.35  0 -1065.53  

8axial -98.68  0 -96.79  

8rot.1 -853.35  0 -1065.53  

8rot.2 -2278.16  0 -3766.42 -3776.44 

9axial -98.68  0 -97.31  

9rot.1 -2401.99  0 -3557.35 -3629.77 

9rot.2 -857.01  0 -730.44   

10axial -98.68  0 -97.31   

        

        

        

14rot.2  0   0  0   

 total actuation (mm) 4.52   

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.30: Controlling bar forces control of the 4-cable bridge model with four elements 

of eo. 

 

4.4.2.2.3 Simultaneous Control of Displacement and Bar Force 

Experiment 9 was done to simultaneous control four joint displacements and four bar 

forces in the four cable bridge with actuators in all four cables, as shown in Table 4.10. 

The initial loaded structure displacements and internal forces as shown in Columns 3 and 

4. The target of the experiment is -4.0mm deflection of the four joint selected (Column 

5) and equalize all cable forces to 61N (Column 8). Equation 3.19 was used for achieving 

the set of eo in Column11. 

 The comparisons of the theoretical with experimentally measured results of joint 

displacements (Column 6 and 7) and bar forces (Column 9 and 10) against joint number 

are also shown in Figures 4.31 and 4.32 respectively. Again, although the target state of 

combined displacement and cable force proved to be too demanding, nonetheless, a good 

approximation to this target state was achieved, and the values obtained experimentally 

matched again very closely the theoretically best possible results. This shows that had 

there been more actuators, or a target with less/no internally conflicting demands, then 

the target would have been achieved. 
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Table 4.10: Simultaneous displacement and bar forces control of the four-cable structure 

with four actuators in eo (MATLAB program can be found in Appendix A.6). 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Joint Dir 

Exp9 (4-Cable model, adjustment in only 4 elements in eo) 

Bar 

force/ 

actuation 

no eo target Theo. Exp. target Theo. Exp. 

eo4 

(mm) 
Theo. & Exp. disp disp 

measured 

disp 
tension tension 

measured 

tension 

dp tp (mm) (mm)   (mm)  (N) (N)  (N) 

1 x 0.08 58.15   0.09 0.12 61.00 62.31 62.30 -2.31 1axial 

  y 0.00 68.81   0.00   61.00 61.71 63.31 0.52 2axial 

  Ѳ 0.00 69.13   0.00   61.00 61.36 62.67 0.77 3axial 

2 x 0.00 56.95   0.00   61.00 61.36 61.69 -2.13 4axial 

  y 0.00 -52.13   0.00    -55.75  0 5axial 

  Ѳ 0.00 0.00   0.00    0.00  0 5rot.1 

3 x 0.00 276.43   0.00 0.00 
 

990.38 
 

0 5rot.2 

(Fixed) y 0.00 -52.13   0.00 0.00 
 

-55.75 
 

0 6axial 

  Ѳ 0.00 276.43   0.00 0.00 
 

990.38 
 

0 6rot.1 

4 x 0.01 552.86    0.01    1980.75  0 6rot.2 

  y -8.27 -98.68 -4.00 -4.13 -4.21  -97.58  0 7axial 

  Ѳ 4.90e-3 552.86   -3.40e-3    1980.75  0 7rot.1 

5 x 0.01 -853.35   0.01   
 

-570.16 
 

0 7rot.2 

  y -6.03 -98.68  -4.64 -4.71 
 

-97.58 
 

0 8axial 

  Ѳ 5.50e-3 -853.35   -1.30e-3   
 

-570.16 
 

0 8rot.1 

6 x 0.00 -2311.53   0.00   
 

-3142.94 -3183.13 0 8rot.2 

  y -4.04 -98.68 -4.00 -4.35 -4.43 
 

-97.36 
 

0 9axial 

  Ѳ 7.30e-3 -2444.15   4.90e-3   
 

-3316.83 -3491.50 0 9rot.1 

7 x 0.00 -857.01   0.00   
 

-617.55 
 

0 9rot.2 

  y -1.47 -98.68  -1.85 -1.87 
 

-97.36 
 

0 10axial 

  Ѳ 6.60e-3 -857.01  7.90e-3   
 

-617.55 
 

0 10rot.1 

8 x 0.00 543.63  0.00   
 

2058.78 
 

0 10rot.2 

  y -1.57 -52.10  -2.05 -2.12 
 

-55.95 
 

0 11axial 

  Ѳ -6.60e-3 543.63   -8.30e-3   
 

2058.78 
 

0 11rot.1 

9 x 0.00 271.81   0.00    1029.39  0 11rot.2 

  y -4.25 -52.10 -4.00 -4.82 -5.01  -55.95  0 12axial 

  Ѳ -7.30e-3 271.81   -5.30e-3    1029.39  0 12rot.1 

10 x -0.01 0.00   -0.01   
 

0.00 
 

0 12rot.2 

  y -6.26 -163.35 
 

-5.22 -5.42 
 

-156.44 
 

0 13axial 

  Ѳ -5.60e-3 0.00   1.20e-3   
 

0.00 
 

0 13rot.1 

11 x -0.01 1.96   -0.01    -173.89  0 13rot.2 

  y -7.59 -171.37 -4.00 -3.81 -3.96  -171.37  0 14axial 

  Ѳ -5.00e-3 0.00   3.30e-3    0.00  0 14rot.1 

    
 

0.00         0.00   0 14rot.2 

      total actuation (mm) 5.73  

axial = bar/beam tension (elongation). 

 rot.1 & rot.2= beam moment (rotation) at ends 1 & 2.  
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Figure 4.31: Displacement results in the simultaneous control of displacement and cable 

forces of the four-cable structure, with four actuators in eo. 

 

 

Figure 4.32: Cable forces results in the simultaneous control of displacement and cable 

forces of the four-cable structure, with four actuators in eo. 
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4.4.2.3 Multi-Iteration Adjustment to Remove Experimental Errors 

In most cases, the structure adjusted for displacement/force can reach either the target 

state, or the theoretically possible least-error approximate, well with application of the eo 

actuation calculated with the equations derived in Chapter 3. However, during the 

adjustment, small errors are possible, and this is principally caused by the difficulty to 

impose a precise length actuation using the mechanical turnbuckles. Although the 

turnbuckles have a pitch on their threads such that one revolution equated with a 1mm 

length change, it was difficult to enforce a rotation with a small hexagonal spanner more 

accurately than say 25-30o, which in turn is just under 0.1mm.  An accuracy of 0.1mm 

can be significant when the actuations in eo were typically only an order of magnitude 

higher.  Furthermore, the steel turnbuckles fitted into the aluminium ends with a small 

amount of play, which meant that even without rotation of the turnbuckle, there was a 

free play (of the order of 0.2mm) in the length.  Having cables taut generally helped, but 

it was clear that approaching a prescribed actuation from either tightening or loosening 

the turnbuckle produced different cable force results. As an additional measure, a 

micrometer was also used each time to check the amount of actuation. It was also evident 

that physical disturbance to the rather “fragile” structure also caused some changes to 

structure, especially bar forces, and hence there were typically still some small 

inaccuracies in the structure even after adjustment. 

            One way to minimise error is to have further iterations of adjustment.  In this way, 

the state of the structure after the initial application of eo is again measured, and another 

eo is calculated, in attempt to adjust the structure from its current state further towards the 

target state.  Such an experiment was conducted on the four cable model; Table 4.11 

shows the results.  Some of the nodal displacements after load (Column 3) are required 

to be controlled to -2.5mm (Column 4) and thus an eo (Column 5) has been calculated 

using Eqn. 3.23.  Displacements as a consequent of this adjustment made to the structure 

are in Column 7 (and also shown in Figure 4.33).  Although the improvement is good, the 

individual displacement errors for joints 4y, 6y, 9y and 11y are 3.77%, 1.32%, 1.72% and 

2.73% respectively, and the rms error is still 0.12.  The error in the adjusted shape is 

judged to be too big and a further iteration of adjustment is carried out, using this once-

adjusted state as the starting state. 
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            The eo for the second iteration (Column 8) is calculated again using Eqn. 3.23, 

whereby the dp is simply the deflection of the post-adjusted structure.  The second eo is 

applied to the structure, where the resultant displacements shown in Column 9 are now 

almost exactly the target values, see also Figure 4.34. The displacement errors in the four 

joints are now of joint 4y, 6y, 9y and 11y are now 0.84%, 0%, 0% and 0% and the rms 

error has reduced to 0.02mm, which illustrates the effectiveness of a multi-iterational 

approach to shape adjustment. 

 

Table 4.11: Double iteraton displacement control of the structure in Figure 4.14 with four 

elements of eo (MATLAB program is shown in Appendix A.6). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Joints Dir 

Iteration (1) Iteration (2) 
Bar 

actuation 

 

Just dp, 

no eo  

(mm) 

target 

disp 

(mm) 

eo 
Iter.(1) 

(mm) 

4 elements 

in eo (mm) 

Theo. results 

4 elements 

in eo (mm) 

Exp. results 

eo 
Iter.(2) 

(mm) 

4 elements 

in eo (mm) 

Exp. results  

1 x 0.10   -2.38 0.11 0.09 -0.10 0.09 1e 
  y     -1.12     0.04   2e 
  Ѳ     -1.34     -0.03   3e 
2 x     -2.57     -0.08   4e 
  y   

 
0     0   5e 

  Ѳ   
 

0     0   5ψ1 
3 x 0.00 

 
0 0.00 0.00 0 0.00 5ψ2 

(Fixed) y 0.00 
 

0 0.00 0.00 0 0.00 6e 
  Ѳ 0.00 

 
0 0.00 0.00 0 0.00 6ψ1 

4 x     0     0   6ψ2 
  y -7.27 -2.5 0 -2.50 -2.68 0 -2.54 7e 
  Ѳ   

 
0     0   7ψ1 

5 x   
 

0     0   7ψ2 
  y -5.99 

 
0 -3.03 -2.99 0 -2.95 8e 

  Ѳ   
 

0     0   8ψ1 
6 x     0     0   8ψ2 
  y -4.01 -2.5 0 -2.50 -2.48 0 -2.50 9e 
  Ѳ   

 
0     0   9ψ1 

7 x   
 

0     0   9ψ2 
  y -1.44 

 
0 -1.02 -1.02 0 -1.03 10e 

  Ѳ   
 

0     0   10ψ1 
8 x   

 
0     0   10ψ2 

  y -1.57 
 

0 -1.06 -1.06 0 -1.05 11e 
  Ѳ   

 
0     0   11ψ1 

9 x     0     0   11ψ2 
  y -4.24 -2.5 0 -2.50 -2.53 0 -2.50 12e 
  Ѳ   

 
0     0   12ψ1 

10 x   
 

0     0   12ψ2 
  y -6.30 

 
0 -2.95 -2.99 0 -2.86 13e 

  Ѳ   
 

0     0   13ψ1 
11 x     0     0   13ψ2 
  y -7.62 -2.5 0 -2.50 -2.64 0 -2.50 14e 
  Ѳ   

 
0     0   14ψ1 

        0     0   14ψ2 

total actuation (mm) 7.38     0.25     

e= bar/beam elongation.  ψ1 & ψ2= beam rotation at ends 1 & 2. 
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Figure 4.33: First and second iteration displacement control of the structure in Figure 4.14 

with four elements of eo. 

 

 

Figure 4.34: Second iteration displacement control of the structure in Figure 4.14 with 

four elements of eo.
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Chapter 5 

 

 

5 Changing Aerodynamic Characteristics 

of a Morphing Wing Structure 

 

 

 

5.1 Introduction and Background 

5.1.1 Introduction 

A morphing structure is a type of structure which has capability to change its shape 

according to its application. It has great importance in numerous engineering applications, 

especially in aerospace, e.g. by increasing the ability of engineers to improve designs of 

a wing.  One of the basic inspirations of morphing structures is in the natural world; e.g. 

a bird wing can take several different shapes for different flight requirements. 

  Initially, from the first successful flight by the Wright brothers, aircraft designers 

have been trying to progress the aircraft flight efficiency for different flying conditions, 

such as taking off, landing, as well as for controlling flight attitude, rolling, pitching and 

yawing performance and for different weather conditions. Since the shape of the aerofoil 

section is the principal and most responsive parameter for changing the flight 

characteristics of a wing, researchers working on “smart wings” have focused on finding 

different ways to control the flight and achieve the different aerodynamic effects under 
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different flight conditions and environments as currently achieved by a conventional 

aircraft wing. 

The purpose of a morphing wing is to obtain a set of optimal aerofoil shapes to 

use instead of the traditional hinged control surfaces at different angles separately. Since 

the shape of the aerofoil’s section has the purpose of determining the flight characteristics 

of a wing, researchers have focused on finding different ways to change the flight 

efficiency in different flight conditions and environments, e.g. by working on smart wings 

or morphing aircraft. We hereby present a  morphing aerofoil concept and we shall use 

the NACA2415 aerofoil (Jacobs et al., 1933) as the base reference aerofoil.  

 

5.1.1.1 Terminology and Aerodynamic Forces of Aerofoil 

An aerofoil is the two dimensional cross-sectional shape of a wing, which is used to either 

generate lift or minimize drag when exposed to a moving fluid (Chandrala et al., 2012).  

For better understanding, some aerofoil terminologies and their definitions are described 

in Table 5.1 and illustrated in Figure 5.1:  

 

Table 5.1: Terminology and aerodynamic forces of aerofoil and their definitions. 

Term Definition (see also Figures 5.1 and 5.2) 

Mean camber line An imaginary curve on an aerofoil that divides it equally into 

an upper half and lower half. 

Chord line (c) The straight line connecting the leading edge of an aerofoil 

with its trailing edge. 

Camber The maximum distance between the mean camber line and 

the chord line, measured perpendicular to the chord line. In 

the symmetric aerofoil the camber always equal to zero. 

Leading Edge (LE) The frontal point on the mean camber line. 

Trailing Edge (TE) The most backward point on the mean camber line. 

Thickness Thickness is always given as a percentage of the maximum 

thickness of the aerofoil to the chord length. 
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Term Definition (see also Figures 5.1 and 5.2) 

Angle of attack () The angle between the chord line of an aerofoil and the 

incoming wind. 

Flap Angle (FA) Angle of the flaps, relative to the mean camber line, at the 

trailing edge of an aerofoil. 

Mach number (Mc) A dimensionless quantity representing object speed relative 

to speed of sound in air. 

Reynolds number (Re) An important parameter in aerodynamics it is a non-

dimensional number that gives the ratio of inertial forces to 

viscous forces, and consequently quantifies the relative 

importance of these two types of forces for given flow 

conditions. Low Reynolds numbers lead to smaller chord 

lengths or slower flight speeds. 

Lift force Lift is the force on the aerofoil in a direction perpendicular to 

the flow direction that tends to push the aerofoil upward, see 

Figure 5.2 (White, 2011). 

Lift Coefficient (CL)  

 

A dimensionless coefficient showing the lift generated by a 

body. It increases by increasing the camber and the angle of 

attack until stalling occurs. 

Drag force  Drag is the force on the body in the direction of flow. This 

force increases slowly with increasing angle of attack for 

producing bigger lift. If the angles of attack increases beyond 

a certain value, the lift force decreases while the drag forces 

continues to increase, see Figure 5.2 (White, 2011). 

Drag Coefficient (CD) A dimensionless coefficient showing the drag force on an 

object, it presents the amount of air resistance on the object. 

Stall Stalling occurs when there is a sudden loss in the lift due to 

an increase of angle of attack beyond the critical value which 

is typically about 15 degrees, see Figure 5.8. 

Moment coefficient (Cm) A non-dimensional number giving a measure of how much 

nose-over torque the aerofoil is generating. Typically, this 

coefficient is measured about a location 25% of the distance 

between the leading edge and trailing edge.  

http://en.wikipedia.org/wiki/Lift_%28force%29
http://en.wikipedia.org/wiki/Angle_of_attack
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Term Definition (see also Figures 5.1 and 5.2) 

Pressure coefficient (Cp) 

 

A non-dimensional representation of the pressure applied to 

an aerofoil at one special point. It can be used to generate the 

lift coefficient by summation of pressure coefficients around 

an aerofoil.  

 

 

Figure 5.1: Aerofoil terminology. 

 

 

Figure 5.2: Aerodynamic forces of aerofoil. 
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a shape memory polymer. They used a compliant mechanism on the leading and the 

trailing edge of the morphing aerofoil to control the aerofoil deformation. In addition, two 

pairs of control points at the leading and trailing edge are used to control the shape of the 

compliant mechanism with the eight control points in the upper and lower surface. The 

main core part of the proposed morphing aerofoil is a fixed structure, which is used for 

attaching all control points and connection of the wing to the fuselage. Du and Ang found 

that their proposed morphing could replace the traditional hinged control aerofoil to 

control flight attitude with smaller drag and increased flight efficiency, see Figure 5.4. 

 

 

Figure 5.3: Morphing aerofoil structure. Adapted from Du and Ang (2012). 

 

 

Figure 5.4: The relationship between CL & CD of the traditional aerofoil with flaps and 

the Du and Ang morphing aerofoil. Adapted from Du and Ang (2012). 

 

Control point and driving device

Fixed structure

Elastic surface and honeycomb texture

Compliant mechanism

0.030

0.025

0.020

0.015

0.010

0.005
-0.2      0.0      0.2      0.4      0.6      0.8      1.0      1.2      1.4      1.6

CD

CL

Flap 0

Flap 3

Flap 5

Du and Ang

Morphing aerofoil



Chapter 5: Changing Aerodynamic Characteristics of a Morphing Wing Structure 

140 

A morphing aerofoil can be developed and constructed from using different 

techniques. Bettini et al. (2010) investigated a morphing aerofoil technique by using 

complex composite cellular structures that provides a large shape deformation through 

deformation of the material of its micro structure, see Figure 5.5. This micro structure 

appears as a chiral topology that produces macro chiral components to produce their 

ability to undergo large deformations in the aerofoil, see Figure 5.6. Bettini et al. found 

suitable composite materials for the micro structure, and from analytical and experimental 

work, they found the chiral composite cores as efficient way to provide morphing 

capabilities of aircraft structures. 

 

      

Figure 5.5: Chiral core morphing aerofoil. Source: Bettini et al. (2010). 

 

         

Figure 5.6: Chiral composite element. Source: Bettini et al. (2010). 
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5.2 Numerical Calculation of Lift and Drag Coefficients 

Lift and drag calculation comes from understanding the behaviour of solid object in a 

fluid stream. The total force on the object Ftotal contains of two components: shear stresses 

(viscous effects) and normal stresses (pressure effects). Figure 5.7 shows distribution 

pressure and shear stress on a typical aerofoil surface. The total force on the aerofoil is 

thus (Bar-Meir, 2013):  

 

 

  

   

.  .

r r

total r w r

A A

F p dA dA    5.1) 

 

Ftotal can in turn be divided into two force components: lift and drag forces. By 

considering a small elemental area on an aerofoil as shown in Figure 5.7, the lift is given 

by 

  

     

   ( .  )sin  ( . )cosL y r w r

Ar Ar Ar

F dF d Øp dA AØ       . 5.2 

and the drag force is 
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The coefficients of lift and drag are obtained by Eqns. 5.2 and 5.3 by 
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where, 

ρ = Air density 

Ar= Surface area of wing= chord length x length of blade 

U=Wind speed 

p= normal stress (air pressure) 

τw=shear stress (viscosity effects) 

Pressure 

effects 

Shear/viscous 

effects 
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(5.3) 
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It is clear from Eqns. 5.4 and 5.5 that the coefficients CL and CD depend on the 

geometry of the object. For the traditional aerofoil, increasing the angle of attack  makes 

the aerofoil become more inclined with respect to the relative wind direction. This results 

in a higher lift coefficient until a certain  when CL decreases and CD increases 

dramatically. Figure 5.8 shows streamlines around a tilted aerofoil in normal (low angle 

of attack) and stall (higher angle of attack) conditions. 

 

 

Figure 5.7: Allocation of normal and shear stress for an aerofoil. Adapted from Taheri 

(2013).  
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Figure 5.8: Flow streamlines around a tilted aerofoil in normal and stall conditions. 

 

 

Figure 5.9 : Parameters of the NACA2415 aerofoil. 
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efficient by providing bigger lift coefficient (CL) and smaller drag coefficient (CD) (Du 

and Ang, 2012), as well as Section 5.6 in the present study). This benefit from using a 

morphing aerofoil can be produced by changing the aerofoil cross sectional configuration. 

Aerofoil morphing thus changes the key aerofoil parameters, such as chord line length, 

camber, thickness, leading and trailing edge configuration and position of the mean 

camber line. 

 

5.5 Structure of Proposed Aerofoils 

In this work, two configurations of morphing aerofoil are proposed, both of which are a 

series of interconnected, curved, single-control pantographs.  Aerofoil NACA2415 is 

chosen as the base-shape for both proposed structures. Configurations of the two 

morphing structures, MAS1 and MAS2 are shown in Figures 5.10 and 5.11 respectively, 

with nine morphing stages to highlight the cross-sectional variation achieved through 

morphing.  (Stages 2 and 8 are shown and have been separately re-plotted with greater 

detail for each structure.) The first structure consists of a small number of big 

pantographic units while the second consists of a large number of small pantographic 

units.  Both aerofoil structures can provide the different shapes required to give a range 

of camber, leading and trailing edge etc to fit flight environment and control the flight 

attitude. Both aerofoil structures have the following components. 

1-Main structure  

The main structure consists of a series of two-dimensional interconnected, curved, single-

control pantographs.  Each pantographic unit is made from a pair of beams connected by 

a shear connector (which is central but typically not in the middle of the beam-pairs). The 

lengths of the beams, as well as the position of the central shear connector, are different 

from one pantographic unit to the next. All pantographs are connected at their ends by the 

shear connecters. 

2-Morphing control bar 

Each morphing structure also has a “control bar” which is a bar of variable length, which 

is used for controlling the shape configuration of the morphing aerofoil structure. The 

overall morphing pantograph mechanism has only one degree of freedom, so this control 

bar can be positioned in many different places, but only one such bar is needed.  In the 
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experimental models in the current work, length actuation has been effected by a 

turnbuckle built into the control bar.  

3-Skin of the aerofoil structure 

The morphing aerofoil is really the cross-sectional “backbone” structure of the aerofoil, 

and hence a “stretchable skin” is also necessary to ensure correct aerodynamic properties 

(Du and Ang, 2012). The amount of maximum stretching required would be 30.1% and 

21.2% for MAS1 and MAS2 respectively. Such a stretchable skin could be made of elastic 

polymer membrane, or it may even be possible for such a “skin” to mimic the operation 

of wing feathers of a bird through overlapping plates, or both. 

 

Figure 5.10: Nine morphing stages of MAS1. 
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Figure 5.11: Nine morphing stages of MAS2. 
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5.6 Results and Discussion 

For understanding the benefit of the proposed morphing aerofoil structures, their 

performance should be calculated and compared with that of the standard traditional 

hinged surface control aerofoil.  The JavaFoil (v2.20) software was used for calculating 

Lift Coefficient (CL) and Drag Coefficient (CD) of the proposed and standard NACA 

aerofoils. Detailed coordinates of the nine morphing stages for each morphing structure 

was carefully determined, and entered into JavaFoil. A two-dimensional morphing 

aerofoil structure, which is made from a series of pantograph units, has a single degree of 

freedom. The overall morphing pantograph mechanism depends on the type of 

pantograph units used (translational, polar, and angulated) to expand and contract. The 

different stages in the deployment are shown in Figures 5.10 and 5.11, in which the 

mechanism deploys gradually in two directions horizontally and vertically. The 

deployment process was numerically modelled in the Working Model software, which is 

a dynamic mechanical mechanism modeller. For a given morphing stage, the Working 

Model model was exported (with fixed geometry) to AutoCAD, and then to DesignFOIL 

as a .dxf file (since DesignFOIL but not JavaFoil could read AutoCAD files).  The outline 

and profile of the morphing pantograph was then described in DesignFOIL as a series of 

fixed coordinates for a fixed morphing stage, and then exported into JavaFoil, in which 

the aerodynamic characteristics were finally calculated. Air speed of Mach 0.045 and 

Reynolds number 300000 were chosen for the calculations because these values have 

been used in the literature, and hence a separate verification of the JavaFoil calculations 

can be obtained. 

 

5.6.1 Comparing CL and CD of the Proposed Aerofoils with NACA2415 

The achieved sets of results of characteristics from the optimal shape of the morphing 

aerofoil in different stages are shown in Figures 5.12 to 5.15. At each stage, CL and CD 

results are compared with the traditional hinged control standard NACA2415 aerofoil, for 

a full range of angle of attack and hinged control flaps. 

The CL and CD relationship for the two morphing aerofoil structures are compared 

with NACA2415 in Figure 5.12, with changing angle of attacks from -8
o 

to +15
 o, for 

http://www.mh-aerotools.de/airfoils/javafoil.htm
http://www.wordhippo.com/what-is/the-opposite-of/contract.html


Chapter 5: Changing Aerodynamic Characteristics of a Morphing Wing Structure 

148 

angles of hinged flaps at +0
o
, +2

o
, … +18

o
 separately.  These coefficients are calculated 

from the shape of the nine morphing stages of MAS1 and MAS2.  

      Figure 5.12 shows that in general both MAS1 and MAS2 provide smaller CD as 

compared to NACA2415.  In addition, both the maximum CL of MAS1 and MAS2 are 

greater than the peak CL achievable by NACA2415.  This CL versus CD graph of MAS1 

has low CL and CD values with stage 1 and CL rises rapidly until stage 5, before it then 

rises more gradually thereafter until stage 9, which has maximum CL and CD.  For MAS2, 

CL becomes less and less related to CD with increasing stages.  

 

 

Figure 5.12: Comparing CL and CD of NACA2415 (by varying angle of attack for fixed 

flap angle) with MAS1 and MAS2. 
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CD =0.02, which is likely to be caused by the aerofoil surface not being smooth enough. 

A similar step change, but more pronounced, is seen for the NACA aerofoil at around the 

same CD =0.02 zone. The reason is that around that angle of attack, the trailing edge of 

the aerofoil is suddenly no longer “hidden” behind maximum thickness, but protrudes 

above the wake of the maximum thickness, thus causing additional drag. This thus causes 

a sudden step change in the CD. 

In summary, it is found that the morphing aerofoil is more effective than 

NACA2415 by producing bigger CL for the same amount of CD. Since the pressure 

coefficient has a big role in CL and CD, the distribution of pressure on the face of the 

proposed aerofoils MAS1 and MAS2 are shown in Figures 5.14 and 5.15 respectively. 

 

 

Figure 5.13: Comparing CL and CD of NACA2415 (by varying flap angle for fixed angle 

of attack) with MAS1 and MAS2. 
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Figure 5.14: Pressure coefficient of MAS1. 

 

 

Figure 5.15: Pressure coefficient of the MAS2. 
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5.6.2 Comparing CL, CD of the Proposed Aerofoils with 31 NACA Shapes 

Figure 5.16 shows a group of results of aerodynamic characteristics CL and CD 

relationship of MAS1 and MAS2 compared to 31 standard NACA shapes.  The CL and 

CD of those 31 standard NACA shapes come via increasing angle of attack from -10o to 

+25o.  MAS2 exhibits a wider range of CL and CD than is achievable by the 31 NACA 

shapes, but results for MAS1 fall within the NACA range.  Mostly, for a given CL, CD of 

MAS1 and MAS2 is smaller than the 31 standard NACA shapes.  In the zone of CL≈2.0, 

CD of MAS1 and MAS2 are greater than CD of shapes NACA6415 to NACA9420.  The 

effect of having a big camber in MAS1/2 over NACA2415 leads to increase in CL.  

NACA2415’s greater thickness also causes MAS1/2 to have a lower drag pressure due to 

the decrease of the cross sectional area, and thus a smaller CD is produced. Therefore, 

both MAS1 and MAS2 have greater lift (for the same drag) than the whole of the NACA 

family of aerofoil shapes. 

 

5.6.3 Shape Comparison of Morphing Proposed Aerofoils with NACA2415 

The MAS1 shape for various morphing stages is shown superimposed on the 

corresponding NACA2415 aerofoil (with different angles of attack and hinged flaps) 

Figures 5.19 to 5.27 with both shapes normalized to their chord length to allow 

comparison. The same is shown for MAS2 in Figures 5.30 to 5.38. The chosen 

NACA2415 configuration is the one that provides the same lift coefficient (CL) in 0° 

angle of attack.  

For MAS1, each figure contains a pair of aerofoils with increasing CL from low 

to high (Figures 5.19 to 5.27). Numerical values of CD and Cm for NACA2415 and MAS1 

for a given CL in different stages are collected in Table 5.2. The data for these figures are 

also tabulated in Tables 5.2 and 5.3 (for MAS1 and MAS2 respectively), and then plotted 

in Figures 5.17 and 5.18, and Figures 5.28 and 5.29 (again, for MAS1 and MAS2 

respectively) where CD and Cm are plotted at every point for the same CL. Not every 

morphing stage has a corresponding NACA2415 configuration since NACA2415 cannot 

achieve CL=2.213 and CL=3.926 as produce by MAS1 and MAS2 respectively; CL=2.158 

is the maximum producible coefficient of lift by NACA2415. Hence, Figure 5.27 gives 
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just the configuration of MAS1 and Figures 5.34 to 5.38 give only the configurations for 

MAS2.  

Figures 5.17 and 5.28 show that in general, CD of MAS1 and MAS2 is much 

smaller than the drag coefficient produced by NACA2415, see also Tables 5.2 and 5.3. It 

is also good that the negative moment coefficients are only in the first five stages of 

MAS1 and the first three stages of MAS2, and they are all less than the moment 

coefficient achieved by NACA2415. These are very useful results of moment coefficient, 

which are produced in the early stages of morphing. 

 

Table 5.2: CD and Cm for the same CL in different stages of Figures 5.19 to 5.27. 

MAS1 
CL 

NACA2415 

Change (%) from 

NACA2415 to 

MAS1 

Stages CD Cm FA  CD Cm CD Cm 

1 0.00957 -0.016 -0.135 0.00 -3.28 0.01262 -0.045 -24.17 -64.44 

2 0.00931 -0.052 0.276 0.09 0.00 0.01182 -0.052 -21.24 0.00 

3 0.00977 -0.078 0.559 3.81 0.00 0.01315 -0.094 -25.70 -17.02 

4 0.01117 -0.115 0.892 8.30 0.00 0.01479 -0.145 -24.48 -20.69 

5 0.01457 -0.160 1.236 12.90 0.00 0.01827 -0.183 -20.25 -12.57 

6 0.02182 -0.199 1.524 14.00 2.10 0.02074 -0.195 5.21 2.05 

7 0.02406 -0.223 1.678 14.00 3.60 0.02720 -0.197 -11.54 13.20 

8 0.03119 -0.282 2.011 14.00 8.50 0.04103 -0.200 -23.98 41.00 

9 0.03739 -0.310 2.213 
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Figure 5.16: Comparing CL and CD of 31 NACA shapes with MAS1 & MAS2. 
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Figure 5.17: CD for the same CL in different stages of Figures 5.19 to 5.27. 

 

 

Figure 5.18: Cm for the same CL in different stages of Figures 5.19 to 5.27. 

 

 

Figure 5.19: Stage 1 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 
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Figure 5.20: Stage 2 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.21: Stage 3 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.22: Stage 4 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 
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Figure 5.23: Stage 5 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.24: Stage 6 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.25: Stage 7 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 
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Figure 5.26: Stage 8 of normalised MAS1 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.27: Stage 9 of normalised MAS1. 

 

Table 5.3: CD and Cm for the same CL in different stages of Figures 5.30 to 5.38. 
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5 0.02843 -0.269 2.258             
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Figure 5.28: CD for the same CL in different stages of Figures 5.30 to 5.38. 

 

 

Figure 5.29: Cm for the same CL in different stages of Figures 5.30 to 5.38. 

 

 

Figure 5.30: Stage 1 of normalised MAS2 and same CL of NACA2415 aerofoil shape. 
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Figure 5.31: Stage 2 of normalised MAS2 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.32: Stage 3 of normalised MAS2 and same CL of NACA2415 aerofoil shape. 

 

 

Figure 5.33: Stage 4 of normalised MAS2 and same CL of NACA2415 aerofoil shape. 
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Figure 5.34: Stage 5 of normalised MAS2. 

 

 

Figure 5.35: Stage 6 of normalised MAS2. 

 

 

Figure 5.36: Stage 7 of normalised MAS2. 
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Figure 5.37: Stage 8 of normalised MAS2. 

 

 

Figure 5.38: Stage 9 of normalised MAS2. 
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MAS1 and MAS2 with stages, while the changing of flap angles has resulted in negligible 

cross-sectional area change for the NACA2415.  

Since the cross-section of aircraft wings is often used for fuel storage, it could be 

argued that the present concepts for morphing aerofoils are unacceptable, due to the cross-

sectional area being smaller than that of for NACA2415, to which they are being 

compared. For this reason, a further morphing aerofoil (MAS3, which is similar to MAS2, 

see Figure 5.40) is proposed, with the deliberate property such that at its minimum cross-

sectional area (i.e. morphing stage 9), it still has a cross-sectional area greater than that 

of NACA2415. At the same time, since MAS3 is designed to have at all times a cross-

sectional area greater than that of NACA2415, then at its largest cross-sectional area 

(stage 1), MAS3 does have an area significantly larger (114%) than is required. 

CL and CD relationship of MAS3 is compared with MAS1 and MAS2 in 

Figure 5.41, where the behaviour of MAS3 is very close to that of MAS2 with just a 

slightly smaller CL for the same CD. 

 

 

Figure 5.39: Cross-sectional area comparison of MAS1, MAS2 and MAS3 
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Figure 5.40: Nine morphing stages of MAS3. 

 

 

Figure 5.41: Lift versus drag comparison of MAS1, MAS2 and MAS3. 
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Chapter 6 

 

 

6 Experiment, Results and Discussion of 

Morphing Pantographic Structure 

 

 

 

6.1 Introduction 

This chapter discuses constructing and testing a morphing pantographic structure and 

compares experimental results with the theoretical results coming from displacement 

control without regard to bar force through using the condensed matrix technique 

(because of pantograph elements) as presented in Section 3.2.2. This chapter gives details 

of the designing and modelling of the structure, measurement system with instruments, 

data collecting and then comparing experimental results obtained with theoretical results. 

 

6.2 Pantographic Morphing Structure 

A model of the morphing aerofoil structure was constructed for experimental purposes. 

This model follows the geometry and configuration of the morphing aerofoil cross-

section presented in Chapter 5, as an application of the pantographic morphing structure. 

The model is built via series of interconnected, irregular, single-control pantographs as 

shown in Figure 6.1. Each pantograph unit consists of two coplanar beam elements of 
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different lengths connected together by a shear connector (scissor-like hinge) with axis 

perpendicular to the plane of the beams. Two adjacent pantograph-units are connected by 

a further shear connector at the ends of the coplanar beams. A model was constructed for 

the purpose of adjustment experiment of the external joint displacement. There was no 

adjustment of internal bar forces in any of experiments done in this chapter mainly 

because the beams of the model are comparatively thick and thus able to sustain big axial 

forces, but also because the principal control of interest in the aerofoil is getting the right 

shape accurately, in order to obtain the desired aerodynamic characteristics. The 

morphing in the structure is activated through length change in the bar designated "bar 

36" in Figure 6.1, and the description and explanation of pantographic morphing structure 

components are detailed in the next sections. 

 

6.2.1 Beams 

Rectangular ( 6.0mm 9.0mm )  aluminium bars with different lengths have been chosen 

for all members of the model. The reason behind choosing the aluminium material is its 

light weight, since the aerofoil structure without any edge members is very flexible and 

very sensitive to vertical loading. Although all the structural members are made of the 

same aluminium bar, there are in fact two types of members based on the internal forces 

carried by the bars. The first group carry just axial force since both ends of the bar are 

hinged (e.g. bar 1). On the other hand, the second group (which covers the majority of 

members, forming the pantographs) are beams with both axial force and bending moment. 

The pantograph beams carry a maximum bending at the central shear-connector joint in 

each of its beams, which diminishes to zero at each of the remote ends. 
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Members 
Length 

(mm) 
 Members 

Length 

(mm) 
 Members 

Length 

(mm) 
 Members 

Length 

(mm) 
 All Members 

1 58.4  11 113.1  21 116.1  31 118.3  Height 9.0 mm 

2 70.1  12 116.7  22 117.5  32 118.9  Width 6.0 mm 

3 52.6  13 118.8  23 117.6  33 119.4  EA 3,780 kN 

4 113.7  14 111.8  24 117  34 310.4  EI 25,515 kN.mm2 

5 76  15 110.7  25 119.3  35 208.1     

6 111.7  16 117.1  26 114.2  36 200.5     

7 107.1  17 117.8  27 113.9        

8 120.6  18 111.5  28 119.8        

9 118.3  19 112.5  29 117.3        

10 111.3  20 119.3  30 117.8       

Figure 6.1: Pantographic morphing structure model (Demonstration morphing of Aerofoil) 
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The “control” for length change is the turnbuckles, which was introduced in 

Section 5.2.5 for cables. Similarly, turnbuckles were introduced into some of the 

beams/bars for length change actuation. In the case of bars (which carry only axial force), 

the position of the turnbuckle along the length of the bar was not too critical. However, 

the positioning of the turnbuckle for a beam was more important, since the turnbuckle 

(with little cross-section depth) is not a good device for transmission of bending moment. 

Indeed, the (necessary) slight play in the thread of the turnbuckle also makes it difficult 

to determine the actual bending moment there. Therefore, turnbuckles for beams were 

placed near the remote ends of the pantographs, where the bending moment is at its 

lowest, as shown in Figure 6.2. 

Initially, the intention was to include a turnbuckle in every beam/bar (even though 

some of these might not be used). However, it was noticed that such a structure had too 

much flexibility, because, however well constructed was each turnbuckle, the slight play 

in the threaded joint meant it behaved to a certain extent as a pin joint with limited 

rotation. With multiple turnbuckles, and therefore a compounding of the rotations from 

multiple turnbuckles even though each has only limited rotation, the other ends of the 

overall structure were rather (uncontrollably) flexible. This could be countered if the 

morphing aerofoil structure had edge cables which could then induce a state of prestress, 

but this model consisted only of the deployable backbone. Instead, a second model was 

made where the members had accurately "perfect" lengths and no turnbuckles, and 

invidual beams/bars were exchanged between the two models only when a turnbuckle in 

a particular member was actually needed in a particular test. 

Bar 36 is known as the “morphing control” bar since this is the bar responsible for 

controlling the shape configuration of the morphing aerofoil structure model. This bar 

can be attached to any of the single pantograph units. The capability of this bar to shorten 

and lengthen gives different shape configurations to the structure. A slightly longer 

turnbuckle (with 75mm of actuation) was used for this bar. Figure 6.2 also shows loading 

hooks attached to the top and end joints of the structure, and loads were applied in the 

form of fixed weights (and calibrated steel bolts proved to be useful for this purpose). 
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6.2.2 Joints 

Although there are two types of joints in the morphing structure, practically, the two types 

are both the same and involve a 3mm diameter frictionless pin inserted through two 

beams/bars perpendicularly to the plane containing those two members, to form a revolute 

joint (also known as a "scissor-hinge"), see Figure 6.3. Such a joint always allows free 

rotation of the two beams/bars in their common plane, but is capable of transmitting all 

other forces through the joint. The difference between the two joints is only in whether 

an inplane bending moment is transmitted across the joint, and this is determined by the 

location of the joint (i.e. somewhere along the length of a beam-pair, rather than at the 

ends), rather than the physical nature of the connection. 

 

 

Figure 6.2: The photograph of the pantographic morphing structure 
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Figure 6.3: A two-dimensional Pantograph unit 

 

6.2.3 Supporting System 

In Figure 6.2 shows the support system built for the morphing structure, which is a simple 

and stiff frame to provide pin-support at two locations, i.e. joints 10 and 13. The detailed 

shape and dimensions are shown in Figure 6.4 , and the frame contains of two columns 

with five welded beam between them stiffness minimising any movement of the model 

due to unsymmetrical loading during the tests.  The frame of the support was welded to 

an 8mm thick steel base plate at the bottom which was in turn fixed to the test bench via 

G-clamps. All support frame connections were full welds 

 

6.2.4 Measurement of Joints Displacement  

For measuring joint horizontal and vertical displacements of the pantographic morphing 

structure model, an attempt was made through using low resistance dial gauges, which 

was not successful for the reason of high flexibility of the model the measurements were 

distorted under plunger force of the dial gauges themselves. A non-contact measuring 

technique was needed. Endeavour was made to use the Qualisys Track Manager (QTM) 

system for measurement which is a system involving a set of cameras taking pictures of 

reflective targets, from which the coordinates of the targets could be found from a 
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computer system linked to the cameras. However, there was limited availability of this 

system, which is largely designed for dynamic monitoring (e.g. in gait studies). It is also 

to be noted that the QTM system is principally a 3D system, which would work for the 

principally 2D model, but was overly complicated for it. The potential extra level of 

accuracy of the QTM system over a simple 2D digital photography was also not necessary 

due to the relatively large displacements exhibited by the flexible model. 

 

 

Figure 6.4: Details of the support structure for the pantographic morphing model. 
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1mm) in the black circle of 5mm diameter as visual targets on white paper glued to the 

joints of the model. A 13MP digital camera mounted on a tripod was used for taking 

photographs of the structure model with using “Pattern monitoring mode” which is also 

called by other names according to different manufactures, e.g. Evaluative (for Canon 
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Cameras), or Matrix (for Nikon Cameras) (Arbabi, 2012). This technique of metering is 

the most accurate and applies the correct exposure of all metering modes for our purpose 

Figure 6.5 shows the different metering modes of the camera. The chosen technique reads 

the light intensity at several points around the frame and the final exposure is the average 

of all points. In contrast, the Spot or Partial metering reads the light from a small section 

in the centre of the frame usually (1%-5%) and (5%-9%) respectively without the 

influence of any other area. This mode type gives more control to small areas of the 

overall photograph. 

 The camera was fixed on a firm tripod stand opposite the centre of the structure 

model in an appropriate distance in such a way as far enough to get minimal edge 

distortion of the picture, while near enough to simultaneously have all the target black 

dots on all joints seen clearly on the photograph. During the experiment, a picture of the 

structure model was taken before and after any change of external loading and bar 

actuation, together with scaled rulers for calibration. Displacements were calculated by 

measuring the distance moved by the black dots in each joints. The process of calculation 

was done in both AutoCAD software and by pixel count, with both software giving an 

accuracy of ±0.4mm on average. 

 

 

Figure 6.5: Metering modes of the camera: Source: Arbabi (2012). 
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The procedure of calculation in AutoCAD was done by superimposing two photos 

to find their displacements change. The combined photos had common points on the base 

and background selected as origin points to eliminate any errors, and to make sure the 

superimposing fit together properly. Then by using the vertical and horizontal dimension 

command of AutoCAD, the distance of the middle pixel of a given joint in both photos 

was measured, as shown in Figure 6.6. Calculating the displacement of the joint by pixel 

count involved using Microsoft Excel. The procedure involved dividing the total length 

and width in the photo by the number of pixels horizontally and vertically, to give the 

actual distance represented by a pixel for a given picture. The distance moved by the joint 

can be counted in terms of pixel, and the associated distance then calculated. The accuracy 

of calculation in both methods is approximate ±0.4mm, which is equal to the size of one 

pixel. 

 

6.2.5 Properties of Materials 

All bars/beams used in constructing of the model of the pantographic morphing structure 

were of the same material and size, which is all aluminium alloy, rectangular cross-section 

solid bar, with 9mm height and 6mm width. The stiffness of the beam/bar used was based 

on Young’s Modulus E=70kN/mm2, thus EA=3.78MN and EI=25.515MN.mm2. 

 

6.3 Testing Procedure 

Various preparations were carried out before the model of the pantographic morphing 

structure was tested. These were performed for all tests: adjustment of displacements, 

morphing and adjustments after morphing. After fixing the model support to the test 

bench via several G-clamps all the black dot target was were glued to the target joints, 

and two scale rules (horizontally and vertically) were fixed to the support of the model to 

provide calibration scale and check against distortion in the photographing process. In 

addition, the camera was fixed and aligned properly along the centreline perpendicular to 

the model. Next, the weights were hung to the structure according to the tests through the 

loading hooks, after checking the weights on a sensitive electronic balance. 
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Figure 6.6: Calculating joint displacements by AutoCAD software 
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photographs, and applying the actuation is a delicate process. There is thus possibility of 

accidental disturbance, and also systematic error in the gradual “relaxation” in the 

joints/turnbuckles. Once all actuations have been applied, the joint movements are again 

measured via taking photographs.  For validation of the results, both experimental results 

are compared to the theoretical results from the MATLAB program. In this chapter 

different experiments were done for adjustment and morphing as discussed in 

Sections 6.4 and 6.5.  
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6.4 Experimental and Theoretical Adjustment Comparison and 

Discussion 

There is a linear method used for the nodal displacement control of the pantographic 

morphing structure. The technique of condensation matrix is applied to control this 

model, using reduced matrices of equilibrium, compatibility and flexibility since this 

model is constructed from interconnecting a series of pantographic units as detailed in 

Section 3.3. This technique can be applied to the pantographic morphing structure model 

in Figure 6.1 with few points and observation.  

The complete global equilibrium matrix (A) of the given example is of size

105 108 , since this model consists of 36 beams and 35 joints. In order to condense the 

equilibrium matrix some steps must be done.  Firstly, removing four rows relating to four 

constraints of the two supports (i.e. dx10, dy10, dx13 and dy13) therefore the size of the A 

matrix becomes 101 108 . Secondly, since there  is no external couple applied to the 

internal joints, the bending moment there will be continuous in each beam-pair of the 

pantograph unit, therefore the moment of both beams of a beam-pair can be replaced by 

a single variable. In the given example there were seven pantograph units with two half 

pantograph beams 31 and 32, see Figure 6.1, thus 30 mid-joint moments of all beams of 

pantographs can be replaced by 15 new variables, hence the size of A becomes101 93 . 

Thirdly, since the pantograph units are connected to each other at their remote ends by 

pin-joints, then the internal bending moment of each beam-pair at these ends are always 

equal to zero, and  consequently all the 42 columns corresponding to these moments can 

be removed and  the size of the A matrix is reduced to 101 51 . Fourthly, since no external 

couples are applied to the mid- and end-joints of the pantograph units of the given 

example, the corresponding 35 rows are removed so the size of the A matrix reduced to 

66 51 . Fifthly, as there is no external load applied to the internal joints of the pantograph 

unit, which is just a shear-connector between two beam-pairs, the two horizontal 

component of load at both mid joints can be replaced by one new horizontal component, 

which is equal to the sum of both horizontal components. Similarly, the same can also be 

done for the vertical components. The given example has sixteen mid joints as shown in 

Figure 6.1, thus all 32 components of the mid-joints of the model can be replaced by 16 

new components, hence the size of A becomes50 51 . Now the equilibrium matrix can 

be condensed to A* by using Eqn. 3.25 to a size of 35 36 . 
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Similarly, the condensed compatibility and flexibility matrix must be calculated 

using the same process. Briefly, since compatibility matrix is the transpose of equilibrium 

matrix, the global size of B is 108 105 , and after condensation the size B* reduces to

36 35 . While the global flexibility matrix starts with size 108 108 , is reduced to51 51

, and after completion of condensation process, F* has size 36 36 . 

 

6.4.1 Linear Adjustment 

An attempt was made to control displacements of joint by using the reduced matrices for 

equilibrium, compatibility and flexibility matrix of the pantographic morphing structure 

linearly through finding a required set of actuations eo directly in one cycle of actuation. 

Then the adjustment was done theoretically in MATLAB program and experimentally on 

the model, applying the calculated set of eo actuations to all selected bars to reach the 

target shape. 

Some experiments were done as shape adjustment on the model, after morphing 

other experiments were done for adjustment of the model with attached elastic bands 

between two adjacent external joints of the model, to simulate the effect of high strain 

stretchable skin on the surface of the aerofoil. Furthermore, experiments of multi-iteration 

adjustment were also done to reduce and remove errors arising from experimental work. 

Since this work is on the demonstration of the morphing aerofoil structure as an 

application of a morphing pantographic structure, the emphasis will be to control the 

shape of the structure, especially the upper surface, lower surface and the leading edge of 

the aerofoil, due to their role on the coefficients of lift and drag.  

 

6.4.1.1 Adjustments for Distributed Vertical Load 

An aerofoil structure must be designed to withstand a large number of different types of 

loads and one of them is the aerodynamic load which is a distributed load as the result of 

pressures and shear stresses distributed over the aerofoil surface (Brandt et al., 2004). 

Therefore, the adjustment in this experiment was done under “distributed” vertical load 

at the joints. Vertical displacement control of the top surface of the structure in Figure 6.1 

is illustrated in Table 6.1 (Experiment 1) which is carried out without regard to the bar 
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forces. Actuation is applied in ten beams of the structure. After entering the target shape 

for the pre-adjustment displacement of the desired joints into the MATLAB program, the 

amount of actuation of each member with an actuator already embedded was calculated 

using Eqn. 3.54.  

Generally, the number of bars selected for actuation was sufficient, i.e. the 

possibility of achieving desired displacement target could be guaranteed in this structure. 

All the selected bar elongations were among non-vanishing components in the 

condensation process. The structure was thus adjusted practically in the laboratory 

according to the set of actuations from the program. 

Values of various parameters for the measured structure are shown in Columns 1 

to 5 of Table 6.1. For the purpose of examining the efficiency of adjustment, it is 

presumed that the desired displacements are those shown in Column 7 of Table 6.1, which 

represent a more smooth top surface shape.  This set of desired displacements represents 

significant deviation from the existing measured displacements in Column 5 and hence it 

is a reasonably good test of adjustment of a distorted model. The computed set of eo is 

shown in Column 6 of Table 6.1. Post-adjustment vertical displacement results (Column 

8) are in good agreement with the target position (Column 7) as also shown in Figure 6.7, 

with only small deviations. The source of this deviation is the combination of errors from 

imperfection in the geometrical construction of the structure and measurement of its 

coordinates, and additional flexibility in the structure due to turnbuckles with some slack 

in the bars. It is clear that the joints furthest from the support have more deviation than 

those closer. The total actuation in this experiment was 10.05mm, through the same 

results could have been achieved with less actuation by selecting the most effective bars 

for these displacements, see Section 6.4.1.7 later on, which gives minimum actuation for 

controlling vertical displacement of the upper surface for any loading and any target 

position. For this set of actuators which have not been optimally chosen according to any 

objective, some of the selected bars would likely be working to some extent against each 

other. 
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Table 6.1:  Vertical displacement control of the upper surface joints of the structure in 

Figure 6.1 under distributed vertical load (MATLAB program is shown in 

Appendix A.7). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Joints 
Cond. 

Disp. 
Dir 

Loads (P) 

N 

Just dp, no eo 

Theo. & Prac. 

(mm) 

(eo) 

(mm) 

displacement after applying 

eo with 10 components (mm)  
Cond. 

Bars 
Bar 

Theo. Prac. 

1 

dm 

x 0  0   

 tn  

1 
 y -2.286 -13.44 0 -9 -9.45 2 

2 x 0  0   3 
 y -2.286 -12.85 0.89 -8 -8.58 4 

3 x 0  0.84   5 
 y 0  0   6 

4 x 0  0   7 
 y -2.286 -9.56 0 -5 -5.11 8 

5 x 0  0   9 
 y 0  0   10 

6 x 0  0   11 
 y -2.286 -5.44 -1.72 -3 -2.99 12 

7 x 0  -0.82   13 
 y 0  0   14 

8 x 0  0   15 
 y -2.286 -2.13 0 -1 -1.13 16 

9 x 0  1.58   17 
 y 0  0   18 

10 x 0 0 0   19 
 y 0 0 -0.24   20 

11 x 0  0   21 
 y 0  0   22 

12 x 0  0   23 
 y 0 0.47 1.60 0 0.13* 24 

13 x 0 0 -0.11   25 
 y 0 0 0   26 

14 x 0  0   27 
 y -2.286 -0.41 -0.79 0 0.23* 28 

15 x 0  -1.46   29 
 y 0  0   30 

16 x 0  0   31 
 y -2.286 -2.14 0 -1 -0.96 32 

17 x 0  0   33 
 y 0  0   34 

18 x 0  0   35 
 y -2.286 -4.33  0  -2 -2.13 36 

19 x 0  0   

tp 

m(3,4) 
 y -2.286 -7.31 0 -3 -3.07 m(4,6) 

34,35 x 0  0   m(7,8) 
 

dp 

y 0  0   m(9,10) 
20,21 x 0  0   m(11,12) 

 y 0  0   m(13,14) 
22,23 x 0  0   m(15,16) 

 y 0  0   m(17,18) 
24,25 x 0  0   m(19,20) 

 y 0  0   m(21,22) 
26,27 x 0  0   m(23,24) 

 y 0  0   m(25,26) 
28,29 x 0  0   m(27,28) 

 y 0  0   m(29,30) 
30,31 x 0  0   m(31,32) 

 y 0  0     
32,33 x 0  0     

 y 0  0     

 total (mm) 10.05     

*Within the range of the precision of 0.4mm 
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Figure 6.7: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.1 under distributed vertical load 

 

6.4.1.2 Adjustments for Distributed Vertical Load after Morphing 

In this experiment (Experiment 2), the structure is tested under the same loading case as 

in Experiment 1 and also the same joint displacements are desired to be controlled, but 

Experiment 2 differs in that the starting shape of the structure is different since the 

structure is tested after shape morphing.  The morphing is the result of lengthening the 

control bar by +10mm and the structure increases in both overall length and curvature. 

The new shape (in nodal coordinates) and different nodal displacements under load 

(Column 5) in Table 6.2, the target position of the of those joints required to be control 

are also consequently different as shown in Column 7 of  Table 6.2. 

The actuation eo for this experiment is calculated in the MATLAB program with 

equation for displacement control (without regard to the bar force), Eqn. 3.54, together 

with including the +10mm initial elongation to the morphing control bar (bar-36). The set 

of eo for this experiment is shown in Column 6 of Table 6.2, with the total actuation of 

14.22mm. 
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Consequent to the adjustment, the measured displacements are as shown Column 

8 of Table 6.2 and graphically compared with the target position in Figure 6.8. Again, the 

difference between post-adjustment measurement and target position is small. 

From this, it can be concluded that shape adjustment or refinement is likely to be 

possible for similar morphing structures for some specified joint displacements, with a 

fixed set of actuation members, in any stage of morphing. This is a good result for the 

technology of designing morphing aerofoils, since not only have the static stages 

morphing aerofoil itself shown to have better aerodynamic characteristics than the 

equivalent fixed shape NACA aerofoil with flaps, but here, we see that a morphing 

aerofoil which has gone "out of shape" due to changes in load or weight (e.g. through the 

burning of fuel normally stored within the voids of the aerofoil) can be corrected via shape 

adjustment. Furthermore, this leads to the possibility that a desired change in lift/drag 

characteristics could be obtained from either a morphing change or a smaller refining 

shape change, and thus the choice could be made dynamically during flight, and be 

optimised for best economy of flight operational parameters. 

 

 

Figure 6.8: Vertical displacement control of the upper surface joints of the morphed shape 

of the structure in Figure 6.1 with (+10mm) eo of bar-36, under distributed 

vertical load. 
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Table 6.2:  Vertical displacement control of the upper surface joints of the morphed shape 

of the structure in Figure 6.1 with (+10mm) eo of bar-36, under distributed 

vertical load (MATLAB program can be found in Appendix A.8). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Joints 
Cond. 

Disp. 
Dir 

Loads (P) 

N 

Just dp, no eo 

Theo. & Prac. 

(mm) 

(eo) 

(mm) 

displacement after applying 

eo with 10 components (mm)  
Cond. 

Bars 
Bar 

Theo. Prac. 

1 

dm 

x 0  0   

 tn  

1 
 y -2.286 20.73 0 15 15.74 2 

2 x 0  0   3 
 y -2.286 19.12 -0.29 15 15.36 4 

3 x 0  2.51   5 
 y 0  0   6 

4 x 0  0   7 
 y -2.286 19.45 0 15 15.90 8 

5 x 0  0   9 
 y 0  0   10 

6 x 0  0   11 
 y -2.286 18.30 1.26 15 15.04 12 

7 x 0  0.17   13 
 y 0  0   14 

8 x 0  0   15 
 y -2.286 11.76 0 10 9.84 16 

9 x 0  -1.32   17 
 y 0  0   18 

10 x 0 0 0   19 
 y 0 0 0.89   20 

11 x 0  0   21 
 y 0  0   22 

12 x 0  0   23 
 y 0 -16.71 3.29 -15 -14.74 24 

13 x 0 0 -1.07   25 
 y 0 0 0   26 

14 x 0  0   27 
 y -2.286 -35.50 1.72 -30 -30.11 28 

15 x 0  -1.70   29 
 y 0  0   30 

16 x 0  0   31 
 y -2.286 -57.51 0 -50 -50.55 32 

17 x 0  0   33 
 y 0  0   34 

18 x 0  0   35 
 y -2.286 -80.76  0  -75 -75.93 36 

19 x 0  0   

tp 

m(3,4) 
 y -2.286 -119.36 0 -110 -111.83 m(4,6) 

34,35 x 0  0   m(7,8) 
 

dp 

y 0  0   m(9,10) 
20,21 x 0  0   m(11,12) 

 y 0  0   m(13,14) 
22,23 x 0  0   m(15,16) 

 y 0  0   m(17,18) 
24,25 x 0  0   m(19,20) 

 y 0  0   m(21,22) 
26,27 x 0  0   m(23,24) 

 y 0  0   m(25,26) 
28,29 x 0  0   m(27,28) 

 y 0  0   m(29,30) 
30,31 x 0  0   m(31,32) 

 y 0  0     
32,33 x 0  0     

 y 0  0     

  total (mm) 14.22     
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6.4.1.3 Adjustments for Large Vertical Point Load 

In this section two experiments (Experiments 3 and 4) are done for two purposes, first to 

show that shape adjustment for a morphing structure is achievable for a concentrated load, 

and second to show that the choice of target position can have a large impact on the 

amount of total actuation in the adjustment process, through comparison results of these 

two experiments. 

For the first purpose, the important point for designing an aerofoil is the very 

effectiveness in response and safety when unexpected forces act on the aerofoil, e.g. in 

storm conditions, as well as in more routine changes due to changing flight attitude, 

landing and take-off of an aircraft. While the aerofoil is expected to be subjected to 

distributed (and thus to a certain extent, even) loading when it is in service, sudden 

changes can cause a significant uneven loading that additionally twists the aerofoil. 

Therefore, a concentrated load was applied at the leading edge (frontal point) of the 

aerofoil to see how the adjustment techniques developed herein would help the distorted 

aerofoil to recover its shape and still meet design requirements of aerodynamic 

characteristics. 

In the given model as a demonstration of the aerofoil morphing structure, a single 

10.287N load was vertically applied to joint 1 for both experiments. The pre-adjusted 

displacements are shown in Column 5 of Table 6.3. The same bars were chosen for 

actuation in both experiments with the different targets. 

The new objective in these experiments is to control ten displacements through 

using only six bars for actuation. This case should thus be over-determinate and insoluble, 

and only a least-squares “approximate” is possible for eo. However in this particular 

structure, all five displacements chosen on the right hand side of the model (12y, 14y, 

16y, 18y and 19y) (see Figure 6.1) are affected by beam-pairs 19 and 20 and hence all 

these displacements can be controlled through actuation in bar 20 in this experiment. The 

other five displacements on the left hand side of the supports can be controlled by the 

other five actuators. Therefore, although the number of actuator is only six, there is still 

good control for the 10 joint displacements, as shown in Column 8 of Table 6.3. The 

measured results show good correlation with the desired displacements, which is restoring 

all displacement to the original pre-loading position with relatively only small deviations 

from the desired position is found in the plot in Figure 6.9. 
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Table 6.3:  Vertical displacement control of the upper surface joints of the structure in 

Figure 6.1 under big vertical point load (MATLAB program is shown in Appendix A.9). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Joints 
Cond. 

Disp. 
Dir 

Loads 

(P) 

N 

Just dp, 

no eo 

Theo. & Prac. 

(mm) 

First target position Second target position 

Cond. 

Bars 
Bar (eo) 

(mm) 

displacement after 

applying eo with 6 

components (mm) 
(eo) 

(mm) 

displacement after 

applying eo with 6 

components (mm) 

Theo. Prac. Theo. Prac. 

1 

dm 

x 0  0   0   

 tn  

1 
 y -10.287 -21.54 0 0 1.36 0 0 2.75 2 

2 x 0  0   0   3 
 y 0 -20.55 -0.153 0 1.39 -0.197 0 2.76 4 

3 x 0  -0.442   0.089   5 

 y 0  0   0   6 
4 x 0  0   0   7 
 y 0 -15.19 0 0 1.23 0 0 2.03 8 

5 x 0  0   0   9 
 y 0  0   0   10 

6 x 0  0   0   11 
 y 0 -8.59 -5.820 0 0.97 -3.314 0 1.17 12 

7 x 0  -1.975   -0.109   13 

 y 0  0   0   14 
8 x 0  0   0   15 
 y 0 -3.40 0 0 0.24* 0 -3 -2.45 16 

9 x 0  4.917   -0.699   17 

 y 0  0   0   18 
10 x 0 0 0   0   19 

 y 0 0 -0.650   -0.650   20 

11 x 0  0   0   21 
 y 0  0   0   22 

12 x 0  0   0   23 
 y 0 1.25 0 0.00 0.13* 0 0.00 -0.11* 24 

13 x 0 0 0   0   25 
 y 0 0 0   0   26 

14 x 0  0   0   27 
 y 0 1.39 0 0.00 0.05* 0 0.00 0.06* 28 

15 x 0  0   0   29 
 y 0  0   0   30 

16 x 0  0   0   31 
 y 0 1.71 0 0.00 -0.05* 0 0.00 -0.06* 32 

17 x 0  0   0   33 
 y 0  0   0   34 

18 x 0  0   0   35 
 y 0 2.10  0  0.00 0.36*  0  0.00 -0.11* 36 

19 x 0  0   0   

tp 

m(3,4) 

 y 0 3.60 0 0.00 0.11* 0 0.00 0.07* m(4,6) 

34,35 x 0  0   0   m(7,8) 
 

dp 

y 0  0   0   m(9,10) 
20,21 x 0  0   0   m(11,12) 

 y 0  0   0   m(13,14) 
22,23 x 0  0   0   m(15,16) 

 y 0  0   0   m(17,18) 
24,25 x 0  0   0   m(19,20) 

 y 0  0   0   m(21,22) 
26,27 x 0  0   0   m(23,24) 

 y 0  0   0   m(25,26) 
28,29 x 0  0   0   m(27,28) 

 y 0  0   0   m(29,30) 
30,31 x 0  0   0   m(31,32) 

 y 0  0   0     
32,33 x 0  0   0     

 y 0  0   0     

  total (mm) 13.96 
  

5.06 
    

* Within the range of the precision of 0.4mm      
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The second purpose in this section is comparing the total required actuation for 

adjustment of the same structure (same loading, actuator position and number of 

actuators) with slightly different target positions for the selected joints. The only 

difference between Experiment 4 and Experiment 3 is that the target 8y displacement is -

3mm, i.e. very close to the pre-adjustment displacement of -3.40mm instead of zero, while 

the amount of total actuation decreases from 13.96mm to 5.06mm, which is a significant 

amount. 

The comparison of the post-adjustment displacements of Experiment 4 with pre-

adjustment is shown in Figure 6.10, which again shows good attainment. Actually, the 

post-adjustment displacement results of Experiment 3 (Column 8 of Table 6.3 and 

Figure 6.9) are much better than the post-adjustment displacement results of Experiment 

4 (Column 7 of Table 6.3 and Figure 6.10). This difference is not related to the 

theoretically achievable required actuation for controlling, since it was possible to control 

the required displacements in both experiments as shown in Columns 7 and 10 of 

Table 6.3. Experiment 4 shows that sometimes selecting targets for the experiment is 

challenging and needs high effort to control. 

 

 

Figure 6.9: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.1 under a single vertical point load for the first target position. 
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Figure 6.10: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.1 under a single vertical point load for the second target position. 
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the goal to secure this structure against horizontal loading. 
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Table 6.4: Horizontal displacement control of the front joints of the structure in Figure 6.1 

against distributed horizontal load (MATLAB program can be found in Appendix A.10). 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Joints 
Cond. 

Disp. 
Dir 

Loads (P) 

N 

Just dp,  no eo 

Theo. & Prac. 

(mm) 

(eo) 

displacement after 

applying eo with 6 

components (mm) 
Cond. 

Bars 
Bar 

Theo. Prac. 

1 

dm 

x 2.286 4.24 0 1 1.98 

tn 

1 

 y 0  0   2 
2 x 2.286 4.00 0 0 0.78 3 
 y 0  -1.27   4 

3 x 0  1.06   5 
 y 0  0   6 

4 x 2.286 2.99 0 0 0.41 7 
 y 0  0   8 

5 x 0  0   9 
 y 0  0   10 

6 x 2.286 1.72 0 0 0.22* 11 

 y 0  2.25   12 
7 x 0  -1.68   13 
 y 0  0   14 

8 x 2.286 0.65 0 0 0.13* 15 

 y 0  0   16 
9 x 0  0.39   17 
 y 0  0   18 

10 x 0 0 0   19 

 y 0 0 -0.38   20 

11 x 0  0   21 
 y 0  0   22 

12 x 0  0   23 
 y 0  0   24 

13 x 0 0 0   25 

 y 0 0 0   26 
14 x 0  0   27 

 y 0  0   28 
15 x 0  0   29 

 y 0  0   30 
16 x 0  0   31 

 y 0  0   32 
17 x 0  0   33 

 y 0  0   34 
18 x 0  0   35 

 y 0  0   36 
19 x 0  0   

tp 

m(3,4) 
 y 0  0   m(4,6) 

34,35 x 0  0   m(7,8) 
 

dp 

y 0  0   m(9,10) 
20,21 x 0  0   m(11,12) 

 y 0  0   m(13,14) 
22,23 x 0  0   m(15,16) 

 y 0  0   m(17,18) 
24,25 x 0  0   m(19,20) 

 y 0  0   m(21,22) 
26,27 x 0  0   m(23,24) 

 y 0  0   m(25,26) 
28,29 x 0  0   m(27,28) 

 y 0  0   m(29,30) 
30,31 x 0  0   m(31,32) 

 y 0  0     
32,33 x 0  0     

 y 0  0     

 
 total (mm) 7.04 

    
* Within the range of the precision of 0.4mm    
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Figure 6.11: Horizontal displacement control of the front surface joints of the structure in 

Figure 6.1 against distributed horizontal load. 

 

6.4.1.5 Adjustments for Vertical Distribute Loading with Elastic Band 

The pantographic morphing structure model is of a demonstration morphing of aerofoil, 

hence a “stretchable skin” is also necessary to provide an external surface that can ensure 

correct aerodynamic properties (Du and Ang, 2012). In Experiment 6, 15 elastic bands 

were stretched between each two adjacent external top and bottom joints of structure, as 

shown in Figure 6.12. Again, joint displacement is controlled without regard to the bar 

forces, and the vertical displacement of the upper external joint joints after prestressing 

with the elastic bands are to be controlled. The axial stiffness of the elastic bands (EA) is 

10N. Approximately, an even prestress level of 2N is achieved in all elastic bands by 

using the algorithm suggested by Kwan and Pellegrino (1993) via shortening the length 

of each elastic rubber band by 20.5%. The prestressing of the structure removed any joint 

slack and also reduced geometric flexibility of the structure. 
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Figure 6.12: Structure in Figure 6.1 after increasing elastic rubber bands. 

 

The structure was tested for adjustment of vertical displacement of the upper joints 

under vertical distributed load as shown in Column 4 in Table 6.5. The measured positions 

of the joints and the target position were introduced to the MATLAB program from which 

a set of actuations (Column 6) was obtained to adjust the pre-adjustment displacement in 

Column 4. All the chosen bars for actuation are the most effective bars (see 

Section 6.4.1.7) for this adjustment, except for bars 5 and 34 which were “second best” 

options but nonetheless chosen instead of the best bars 1 and 35 because these two bars 

did not actually have an actuator. Consequently, the total actuation was 4.34mm which 

was relatively very small. The numerical results are shown in Column 8, and graphically 

in Figure 6.13, which shows the adjustment process is capable of countering the 

displacement due to the prestress and loading. 

This experiment shows that using an elastic stretchable material is a suitable 

technique for the pantographic morphing structure skin to ensure correct aerodynamic 

properties of the aerofoil. In addition, it was also shown that the direct method of 

controlling displacement is valid and practical, and good for adjusting static shape 

induced by both loads (routine and unpredicted) and other factors such as from 

prestressing in the pantographic structures via using elastic bands. The prestress level of 

the elastic bands was not much affected by the adjustment process since the prestress was 

produced by shortening of the order of 20% strain, which is many times greater than the 

strain change due to the adjustment process.  
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Table 6.5: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.12 with elastic rubber bands under distributed vertical load 

(MATLAB program is shown in Appendix A.11). 

(1) (2) (3) (4) (5) (6) (1)

 (1) 

(7) (8) (9) (10) 

Joints 
Cond. 

Disp. 
Dir 

Loads 

(P) 

N 

Just dp,  no eo 

Theo. & Prac. 

(mm) 

(eo) (mm) 

displacement after applying eo with 

10 components (mm) Cond. 

Bars 
Bar 

Theo. Prac. 

1 

dm 

x 0  0   

tn 

1 
 y -2.286 -13.672 0 -1 -2.439 2 
2 x 0  0   3 
 y -2.286 -12.976 -0.237 -1 -1.823 4 
3 x 0  -0.226   5 
 y 0  0   6 
4 x 0  -1   7 
 y -2.286 -9.829 -0.513 -1 -1.058 8 
5 x 0  0   9 
 y 0  0   10 
6 x 0  0   11 
 y -2.286 -5.838 -1.152 -1 -1.227 12 
7 x 0  0   13 
 y 0  0   14 
8 x 0  0   15 
 y -2.286 -2.395 -0.495 -1 -1.001 16 
9 x 0  0   17 
 y 0  0   18 

10 x 0 0 0   19 
 y 0 0 -0.364   20 

11 x 0  0   21 
 y 0  0   22 

12 x 0  0   23 
 y 0 0.700 0 0 0.285* 24 

13 x 0 0 -0.378   25 
 y 0 0 0   26 

14 x 0  0   27 
 y -2.286 0.020* 0 0 0.762 28 

15 x 0  -0.068   29 
 y 0  0   30 

16 x 0  0   31 
 y -2.286 -1.501 0 -1 -0.489 32 

17 x 0  -0.743   33 
 y 0  0.171   34 

18 x 0  0   35 
 y -2.286 -3.501 0 -1 -0.169* 36 

19 x 0  0   37 
 y -2.286 -5.640 0 -1 0.508 38 

34,35 x 0  0   39 
 

dp 

y 0  0   40 
20,21 x 0  0   41 

 y 0  0   42 
22,23 x 0  0   43 

 y 0  0   44 
24,25 x 0  0   45 

 y 0  0   46 
26,27 x 0  0   47 

 y 0  0   48 
28,29 x 0  0   49 

 y 0  0   50 
30,31 x 0  0   51 

 y 0  0   

tp 

m(3,4) 
32,33 x 0  0   m(4,6) 

 y 0  0   m(7,8) 
     0   m(9,10) 
     0   m(11,12) 
     0   m(13,14) 
     0   m(15,16) 
     0   m(17,18) 
     0   m(19,20) 
     0   m(21,22) 
     0   m(23,24) 
     0   m(25,26) 
     0   m(27,28) 
     0   m(29,30) 
     0   m(31,32) 

 
 total (mm) 4.34 

    
* Within the range of the precision of 0.4mm    
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Figure 6.13: Vertical displacement control of the upper surface joints of the structure in 

Figure 6.12 with elastic band under distributed vertical load. 

 

6.4.1.6 Multi-Iteration Adjustment to Remove Practical Errors 

The nodal position defines the shape of the structure, and in this chapter so far the control 

of the nodal displacements to restore structural shape has been carried out by a single 

application of the length actuation. Sometimes a very high geometric accuracy is 

necessary in some structures. One of these is the proposed pantographic morphing 

structure as an aerospace structure, where its functions, and the efficiency with which it 

carries out those functions, are very sensitive to structural shape. At other times, the target 

shape may be quite different from the starting shape. 

It may be too difficult to achieve the required high geometric accuracy through 

only one iteration of the adjustment process, and a second or more iteration is necessary 

to deal with residual errors remaining after the first round. For solving this issue, the 

process of multi-iteration adjustment was applied through using Eqn. 3.54 in two or more 

iterations in Experiment 6. In this technique, simply the post-adjustment displacement 
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from the first iteration is re-introduced as a pre-adjustment displacement in the next 

iteration, and so on, until the best possible adjustment is achieved. Again, in this test, the 

external joint of the morphing aerofoil was been controlled. 

Table 6.6 Column 8 illustrates the results of adjustment, which comes from 

modifying the measured position of joints through applying the set of eo obtained from 

Eqn. 3.54 to the structural model in the first iteration as shown in Figure 6.14. The rms of 

the error after the first adjustments in Table 6.6 is still 0.49mm. This result is good but it 

was supposed that extra accuracy was necessary in the chosen nodes. To reduce the errors 

even further, a second iteration was done using the post–adjustments displacements of 

the first iteration, as shown in Column 8, as the starting values for the second iteration, 

and the results of the second iteration are shown in Column 10, where the rms error is 

now reduced to 0.12mm. For extra clarity, the results of the second iteration, illustrated 

in Figure 6.15, are found to be very close to the theoretical results. 

On the basis of this Experiment 6, it could be concluded that the technique of 

multi-iteration adjustment was effective in eliminating errors that occur in the practical 

adjustment process itself. The only problem in this experiment is the degree of 

measurement precision possible was of the order of the error in the second adjustment 

and hence it was difficult to particularly quantify the degree of improvement possible in 

a second iteration. It can be recommended that a very accurate non-contact measurement 

system should be used for the displacement measurement involving multi-iteration 

adjustment. 
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Table 6.6: Double iteration displacement control of the structure in Figure 6.12 

(MATLAB program can be found in Appendix A.12). 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Joints 
Cond. 

Disp. 
Dir 

Loads 

(P) 

N 

Iteration (1) Iteration (2) 

Cond. 

Bars 
Bar 

Just dp, 

no eo 

Theo. & 

Pra. (mm) 

(eo1) 

(mm)  

displacement after 

applying eo with 10 

components (mm) 
(eo2) 

(mm)  

displacement after 

applying eo with 10 

components (mm), 

Prac.  Theo. Prac. 

1 

dm 

x 0  0   0  

tn 

1 
 y -2.286 -13.672 0 0 -0.293* 0 0.035* 2 

2 x 0  0   0  3 
 y -2.286 -12.976 -0.203 0 0.208* -0.327 0.111* 4 

3 x 0  -0.215   -0.771  5 

 y 0  0   0  6 
4 x 0  -1   -1  7 
 y -2.286 -9.829 -0.396 0 0.379* 0.003 -0.123* 8 

5 x 0  0   0  9 
 y 0  0   0  10 

6 x 0  0   0  11 
 y -2.286 -5.838 -0.757 0 0.127* 0.160 0.107* 12 

7 x 0  0   0  13 
 y 0  0   0  14 

8 x 0  0   0  15 
 y -2.286 -2.395 -1.009 0 -0.121* 0.029 -0.111* 16 

9 x 0  0   0  17 
 y 0  0   0  18 

10 x 0 0 0   0  19 
 y 0 0 -0.363   -0.151  20 

11 x 0  0   0  21 
 y 0  0   0  22 

12 x 0  0   0  23 
 y 0 0.700 0 0 0.290* 0 -0.103* 24 

13 x 0 0 -0.378   0.126  25 
 y 0 0 0   0  26 

14 x 0  0   0  27 
 y -2.286 0.020 0 0 0.574 0 0.098* 28 

15 x 0  -0.542   0.055  29 
 y 0  0   0  30 

16 x 0  0   0  31 
 y -2.286 -1.501 0 0 0.948 0 -0.012* 32 

17 x 0  -0.402   0.425  33 
 y 0  0.097   -0.108  34 

18 x 0  0   0  35 
 y -2.286 -3.501 0 0 0.424 0 -0.131* 36 

19 x 0  0   0  37 
 y -2.286 -5.640 0 0 0.760 0 -0.216* 38 

34,35 x 0  0   0  39 
 

dp 

y 0  0   0  40 
20,21 x 0  0   0  41 

 y 0  0   0  42 
22,23 x 0  0   0  43 

 y 0  0   0  44 
24,25 x 0  0   0  45 

 y 0  0   0  46 
26,27 x 0  0   0  47 

 y 0  0   0  48 
28,29 x 0  0   0  49 

 y 0  0   0  50 
30,31 x 0  0   0  51 

 y 0  0   0  

tp 

m(3,4) 
32,33 x 0  0   0  m(4,6) 

 y 0  0   0  m(7,8) 
     0   0  m(9,10) 
     0   0  m(11,12) 
     0   0  m(13,14) 
     0   0  m(15,16) 
     0   0  m(17,18) 
     0   0  m(19,20) 
     0   0  m(21,22) 
     0   0  m(23,24) 
     0   0  m(25,26) 
     0   0  m(27,28) 
     0   0  m(29,30) 
          m(31,32) 

total (mm) 
 

4.36 
  

2.15 
   

* Within the range of the precision of 0.4mm     
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Figure 6.14: First and second iteration displacement control of the structure in Figure 6.12 

 

 

Figure 6.15: Second iteration displacement control of the structure in Figure 6.12 
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6.4.1.7 Finding Most Effective Bars through Calculating Bar Sensitivity to 

Displacement 

All prior adjustment experiments in this chapter were carried out on actuators which were 

already in place, and consequently the question of which bars could be actuated did not 

arise; only the amount of actuation for the actuators available had to be calculated.  

Alternatively, at the early design stage where the location of actuators is still undecided, 

it is very important to locate the actuators in the components of the structure so that they 

could be of most effective in controlling future displacements.  Section 3.2.2.2 detailed 

the case where effectiveness of actuation in any bar in controlling a particular 

displacement is indicated by the associate coefficient in the Y matrix for that bar, thus the 

most effective bars are those with the largest coefficients in Y. 

In this section, another technique was used to highlight the most effective bars to 

carry the actuators, which we call the “bar sensitivity” technique. Table 6.7 shows the 

vertical displacement of the upper surface pins due to successive unit actuation of each 

of the bars of Figure 6.1. The table is compiled by assigning a unit elongation to each bar 

in turn, and the consequent values of these displacements are recorded. For example, 

when a unit elongation is applied to bar 1, a -1.08mm displacement in d1y results, but no 

other monitored displacement changes. On the other hand, when a unit elongation is 

applied to bar 20, all the monitored displacements are changed. Therefore, the non-zero 

values in this table show which bars are capable of controlling a certain displacement, 

and the largest coefficient for a particular displacement shows which bar has the most 

effective control for that displacement, while a “zero” shows a given bar has no control 

over these displacements. The computation of this technique was done through a specially 

used MATLAB program in such a way the adjustment process follows the prepared data 

of Table 6.7.  

To illustrate the process, Experiment 1 in Section 6.4.1.1 was chosen as an 

example to apply this technique. In the original Experiment 1, the set of the vertical 

displacements  13.44   12.85   9.56   5.44   2.13  0.47   0.41   2.14   4.33   7.31          for 

the upper surface joints  1 2 4 6 8 12 14 16 18 19         y y y y y y y y y yd d d d d d d d d d  was adjusted 

through actuation in a set of pre-selected actuators in bars {4  5  12  13  17  20  24  25  28  

29}. The attempt to control all selected displacements was successful through the set of 
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actuations  0.89  0.84   1.72   0.82 1 .58   0.24 1 .60   0.11   0.79   1.46      . However, the 

total actuation was 10.05mm, which was relatively big, which we will reduce using the 

bar sensitivity technique.  

 

Table 6.7: Bar sensitivity to the vertical displacement of the upper surface joints of the 

structure in Figure 6.1. 

bar eo d1y d2y d4y d6y d8y d12y d14y d16y d18y d19y 

1 1.0 -1.08 0 0 0 0 0 0 0 0 0 
2 1.0 0.60 0 0 0 0 0 0 0 0 0 

3 1.0 0.33 0 0 0 0 0 0 0 0 0 

4 1.0 -1.98 -1.81 0 0 0 0 0 0 0 0 
5 1.0 -0.32 0.28 0 0 0 0 0 0 0 0 

6 1.0 1.37 1.08 0 0 0 0 0 0 0 0 

7 1.0 1.32 1.13 0 0 0 0 0 0 0 0 

8 1.0 -3.49 -3.30 -2.15 0 0 0 0 0 0 0 
9 1.0 -0.93 -0.65 0.36 0 0 0 0 0 0 0 

10 1.0 2.56 2.31 1.33 0 0 0 0 0 0 0 

11 1.0 2.96 2.75 1.55 0 0 0 0 0 0 0 

12 1.0 -5.14 -4.93 -3.67 -2.05 0 0 0 0 0 0 
13 1.0 -1.89 -1.64 -0.76 0.46 0 0 0 0 0 0 

14 1.0 3.75 3.51 2.62 1.38 0 0 0 0 0 0 

15 1.0 4.70 4.48 3.19 1.53 0 0 0 0 0 0 

16 1.0 -6.83 -6.60 -5.26 -3.52 -1.95 0 0 0 0 0 
17 1.0 -2.93 -2.70 -1.89 -0.76 0.53 0 0 0 0 0 

18 1.0 4.89 4.66 3.84 2.69 1.41 0 0 0 0 0 

19 1.0 6.45 6.21 4.86 3.10 1.48 0 0 0 0 0 

20 1.0 -2.92 -2.74 -2.48 -2.03 -1.19 1.93 2.14 2.64 3.22 5.54 
21 1.0 -3.76 -3.55 -3.05 -2.30 -1.27 0.44 0.48 0.60 0.73 1.25 

22 1.0 3.71 3.51 3.01 2.27 1.25 -0.43 -0.48 -0.59 -0.72 -1.24 

23 1.0 0 0 0 0 0 0 1.34 2.60 3.84 4.63 
24 1.0 0 0 0 0 0 0 0.44 -0.86 -2.14 -2.92 

25 1.0 0 0 0 0 0 0 -2.01 -3.49 -4.99 -6.98 

26 1.0 0 0 0 0 0 0 0 1.50 3.03 5.01 
27 1.0 0 0 0 0 0 0 0 1.34 2.66 3.52 

28 1.0 0 0 0 0 0 0 0 0.40 -0.89 -1.71 

29 1.0 0 0 0 0 0 0 0 -2.11 -3.60 -5.60 

30 1.0 0 0 0 0 0 0 0 0 1.44 3.33 
31 1.0 0 0 0 0 0 0 0 0 1.31 2.16 

32 1.0 0 0 0 0 0 0 0 0 0.38 -3.32 

33 1.0 0 0 0 0 0 0 0 0 -2.08 -3.97 

34 1.0 0 0 0 0 0 0 0 0 0 4.06 
35 1.0 0 0 0 0 0 0 0 0 0 -4.22 

36 1.0 3.42 3.20 2.90 2.37 1.39 -1.72 -3.51 -5.54 -7.64 -11.21 
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The program starts with the control of d12y, because it is affected by the least 

number of actuators, which are bars 20, 21 and 22. Then from these three bars, the most 

effective for an actuator is bar 20 with a 1.93 “bar sensitivity” so in the first cycle d12y is 

directly controlled via actuation in bar 20 with the actuation of -0.24mm. The calculated 

set of displacements for the second cycle after applying the actuation of bar 20 is {-12.73  

-12.19  -8.96  -4.95  -1.84  d12y=0  -0.93  -2.78  -5.11  -8.65} . The actuation of bar 20 has 

effect on all displacements as shown in Table 6.7, and the displacement of joints on the 

left hand-side of supports are relatively reduced while the displacements of these right 

had-side are increased. 

In the second cycle, d14y is chosen for controlling since, with only six bars (20, 21, 

22, 23, 24, and 25) able to affect it, it is the displacement with the next least number of 

possible actuators. Bar 25 is highlighted as the most effective bar, since even though bar 

20 has a larger “bar sensitivity”, bar 20 has already been highlighted for controlling d12y.  

Furthermore, bars 21 and 22 cannot be used for controlling d14y either, because they are 

grouped with bar 20 for d12y and any actuation now in bars 21 and 22 would affect d12y .  

Consequently, for d14y, out of the six possible bars, only the bottom three can be used, and 

bar 25 (second biggest bar sensitivity at -2.01) is the most effective of these three, and is 

thus selected.  Together with the actuation in bar 20 for d12y, the calculations show d14y is 

directly controlled via actuation in bar 25 of -0.46mm. The set of displacements after the 

second cycle becomes {-12.73  -12.19  -8.96  -4.96  -1.84  d12y=0  d14y=0  -1.17 -2.82 -

5.44}. 

In the same way, d8y is controlled in cycle three via -0.43mm actuation in  bar 16 

and the displacements then become {-9.78  -9.33  -6.69  -3.43  d8y=-1  d12y=0  d14y=0  -

1.17  -2.82  -5.44}. In the fourth cycle d6y is controlled with its most effective bar, bar 12, 

with a -2.05 bar sensitivity coefficient, and an actuation of 0.21mm the results of 

displacements are {-8.71  -8.30  -5.90  d6y=-3  d8y=-1  d12y=0  d14y=0  -1.17  -2.82  -5.44}. 

The technique as described so far thus will continue until all displacements have achieved 

their targets. In this example, the MATLAB program needed ten cycles to choose ten 

actuators for the 10 displacements to control. The of whole set actuation is {0.53  0.62  -

0.43  -0.21  -0.43  -0.24  -0.46  -0.08  -0.25  -0.23} with total actuation of 3.48mm, while 

the total actuation in Experiment 1 (with the same target displacements, but non-

optimised actuator location) was of 10.05mm. The difference is significantly big, the use 

of the “bar sensitivity” technique has reduced the amount of actuation to around a third.   
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For highlighting the most effective bars for controlling horizontal displacements 

of joints in this structure, Table 6.8 was prepared which illustrates coefficients of bar 

sensitivity to the horizontal displacements of the upper surface joints of the model. In a 

process similar to that for vertical displacements, it was shown that the most effective for 

effective bars for controlling  1 2 4 6 8 12 14 16 18 19         x x x x x x x x x xd d d d d d d d d d  are bars {2  5  9  

12  16  20  25  28  32  35}. The attempt was made to re-analyse the case of Experiment 5 

in Section 6.4.1.4. The new results show that the displacement can be controlled with 

using only five actuating bars {2  5  9  12  16} with a set of actuations of 

 2.67   2.41   1.28   0.88   0.53   respectively, and with the total actuation of 7.77mm. This 

amount of total actuation is slightly greater than that found in Experiment 5 which is 

(which is 7.03mm), but only five actuators were used here while in Experiment 5, it was 

six. Using the technique of bar sensitivity if a further bar was adopted, then it would be 

bar 20, and then the same adjustment effect can be achieved with 2.53mm total actuation, 

and a set of actuation as -0.25   0.63   0.41   0.24   -0.09   -0. 91 . 

In this example, bar 36 does have the ability to affect all displacements of all 

joints, but bar 36 was not used in the process of controlling, since the actuator in bar 36 

was used for controlling morphing of the structure, i.e. the morphing control bar in 

Figure 6.1. 

In conclusion, through using this bar sensitivity technique the decision of where 

the actuator should be place can be taken before the designing of the structures. The 

effectiveness of actuation in a particular bar in controlling a particular displacement is 

indicated by the associated coefficient in the bar sensitivity to displacement table. The 

first advantage of this technique is minimizing the total actuation necessary for 

controlling a particular set of displacements. Secondly, it is possible to choose a just 

sufficient number of actuators. In other words, both the minimum number of actuators as 

well as minimum actuation can be obtained, resulting in less expense and probably easier 

provision for control of structures. 
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Table 6.8: Bar sensitivity to the horizontal displacement of the upper surface joints of the 

structure in Figure 6.1. 

bar eo d1x d2x d4x d6x d8x d12x d14x d16x d18x d19x 

1 1.0 -0.17 0 0 0 0 0 0 0 0 0 

2 1.0 -0.92 0 0 0 0 0 0 0 0 0 

3 1.0 -0.51 0 0 0 0 0 0 0 0 0 

4 1.0 -0.25 -0.52 0 0 0 0 0 0 0 0 

5 1.0 -0.05 -0.96 0 0 0 0 0 0 0 0 

6 1.0 -1.16 -0.73 0 0 0 0 0 0 0 0 

7 1.0 -0.53 -0.23 0 0 0 0 0 0 0 0 

8 1.0 -0.37 -0.66 -0.84 0 0 0 0 0 0 0 

9 1.0 0.24 -0.19 -0.93 0 0 0 0 0 0 0 

10 1.0 -1.59 -1.20 -0.55 0 0 0 0 0 0 0 

11 1.0 -0.53 -0.22 0.03 0 0 0 0 0 0 0 

12 1.0 -0.57 -0.89 -1.12 -1.06 0 0 0 0 0 0 

13 1.0 0.73 0.36 -0.30 -0.89 0 0 0 0 0 0 

14 1.0 -1.97 -1.60 -0.97 -0.41 0 0 0 0 0 0 

15 1.0 -0.42 -0.08 0.21 0.20 0 0 0 0 0 0 

16 1.0 -0.90 -1.25 -1.52 -1.48 -1.23 0 0 0 0 0 

17 1.0 1.18 0.83 0.19 -0.39 -0.85 0 0 0 0 0 

18 1.0 -2.18 -1.83 -1.23 -0.69 -0.29 0 0 0 0 0 

19 1.0 -0.12 0.25 0.55 0.55 0.34 0 0 0 0 0 

20 1.0 3.83 3.54 2.72 1.75 0.84 0.13 -1.04 -2.17 -3.29 -2.62 

21 1.0 3.04 2.73 2.02 1.26 0.58 0.03 -0.23 -0.49 -0.74 -0.59 

22 1.0 -3.00 -2.69 -1.99 -1.24 -0.58 -0.03 0.23 0.49 0.73 0.59 

23 1.0 0 0 0 0 0 0 0.46 0.96 1.49 1.72 

24 1.0 0 0 0 0 0 0 0.90 0.37 -0.19 -0.42 

25 1.0 0 0 0 0 0 0 0.97 1.10 1.18 0.61 

26 1.0 0 0 0 0 0 0 0 -0.12 -0.18 0.39 

27 1.0 0 0 0 0 0 0 0 0.51 1.06 1.30 

28 1.0 0 0 0 0 0 0 0 0.92 0.36 0.13 

29 1.0 0 0 0 0 0 0 0 0.91 1.01 0.44 

30 1.0 0 0 0 0 0 0 0 0 -0.08 0.47 

31 1.0 0 0 0 0 0 0 0 0 0.55 0.79 

32 1.0 0 0 0 0 0 0 0 0 0.93 -0.14 

33 1.0 0 0 0 0 0 0 0 0 0.85 0.30 

34 1.0 0 0 0 0 0 0 0 0 0 1.17 

35 1.0 0 0 0 0 0 0 0 0 0 -0.17 

36 1.0 -4.48 -4.14 -3.18 -2.05 -0.98 0.88 1.70 2.44 3.11 2.08 
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6.5 Experimental and Theoretical Morphing Comparison and 

Discussion 

6.5.1 Introduction to Morphing Structures 

Structural morphing is the ability of the structure to change shape configuration according 

to its application, to adapt to environmental conditions to optimise certain performance 

design requirements. It has great importance in multiple engineering applications, 

especially in aerospace. Morphing has increased the ability of engineers to progress wing 

technology in order to increase the efficiency or safety of the structure. 

Morphing requires structure to possess some form of mechanisms for mobility, 

for instance convenient arrangement of hinges and bars to allow shape re-configuration. 

In any structure the process of morphing will not work without an external source of 

energy or actuation of members, which is done via actuators embedded to the members 

of the structure.   

 

6.5.2 Experimental Structure Morphing 

A pantographic morphing structure in Figure 6.1 was prepared for the purpose of 

morphing as well as for adjustment/controlling. In the morphing mechanism the structure 

changes significantly from one shape configuration to another, with the same number of 

hinges and bars, that is a large geometric change in the structure through actuation in one 

or more morphing control bars. In the present experimental model, just one bar was 

selected for achieving the morphing process. Morphing is distinct to shape 

adjustment/controlling, since the adjustment process moves only small refinements in 

displacement and/or force changing, within essentially the same geometry, for the 

removing or reduction of any undesirable displacement and/or force, which can be carried 

out on either an unmorphable structure, or after morphing. The number of actuators for 

adjustment depends on the number of displacement or force variables, as shown in 

Section 6.4.  

As mentioned in the previous sections in this chapter the structure of Figure 6.1 is 

the demonstration of the morphing aerofoil structure. No doubt, many different shape 

configurations are necessary in any aircraft wing in order to achieve different lift and drag 



Chapter 6: Experiment, Results and Discussion of Morphing Pantographic Structure 

199 

coefficients in the different stages of flight. In the experimental model, bar-36 was the 

morphing control bar, and the change in geometry achievable through actuation in bar 36 

is shown in Figure 6.16. 

 

 

Figure 6.16: Nine morphing stages of morphing structure in Figure 6.1 

 

eo-bar36=-4mm eo-bar36=0mm

eo-bar36=+4mm eo-bar36=+8mm

eo-bar36=+12mm eo-bar36=+16mm

eo-bar36=+28mm

eo-bar36=+20mm eo-bar36=+24mm

Bar36 = Morphing Control Bar 
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The comparison of experimental and analytical models is very important as a 

proof of concept for a morphing aerofoil as an effective way to enhance/replace the 

traditional aerofoil.  The deflection analysis due to the loading and actuation of morphing 

control bar was calculated via Eqn. 3.54 and furthermore, condensation in the force 

method was used for calculation where some of the displacements were “hidden” since 

they relate to unloaded joint components which were then condensed out from the primary 

equations. This is a novel approach and application. Two methods for calculating 

theoretical nodal displacement of the pantographic morphing structure were introduced: 

linear and non-linear methods. 

 

6.5.3 Linear Calculation Method 

In the linear method nodal displacements of the structures were calculated through a 

single use of Eqn. 3.54 in Chapter 3 in one iteration, with the same joint coordinates from 

the original shape of the model. Morphing inaccuracies and any displacements due to 

external loading on the structure were thus adjusted for. Theoretical results of this method 

were compared with the experimental results as illustrated in Figures 6.17 to 6.26, where 

the theoretically computed results were labelled as “Theoretical Linear” with solid lines. 

The results have a good correlation with the experimental results in the early stages of the 

structural shape morphing, typically until around eo=+10. Beyond that point, all the linear 

results begin to separate from the experimental trend line, except for dx4 in Figure 6.19, 

dx6 and dy6 in Figure 6.20, and dx8 in Figure 6.21 which continued in a straight line until 

approximately the end stages of the morphing. This separation is the result of non-linear 

behaviour of the structure for the morphing. Thus, the linear method is not valid for the 

full range of morphing and non-linear modification was proposed.  

 

6.5.4 Non-Linear Calculation Method (Coordinate Update Method) 

Since the nonlinearity in the morphing structure was geometric, due to its flexibility and 

thus relatively large movements and displacements, the non-linear method for calculating 

the nodal displacements of the given model was based on updating the coordinate of the 

structure. In this method, Eqn. 3.54 in Chapter 3 was used in the linear calculation 
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method, within a number of cycles during which coordinates of the structure were updated 

with the displacements in each iteration. The matrices of Equilibrium, Compatibility and 

Flexibility of the assembly are recalculated in each cycle although F changes only by a 

small amount due to very slight change in bar length from the changing coordinates. In 

other words, the calculation in each cycle is done for a “new” structure: the MATLAB 

program for this is shown in Appendix A.13. The accuracy of the calculation increases 

with increasing the number of the iterations beyond the linear limit of displacement. 

Theoretical displacement results of this method have shown a very good correspondence 

with the experimental measured displacement values (horizontal and vertical) of all joints 

as shown in Figures 6.17 to 6.26. 

 

 

Figure 6.17: Theoretical and experimental deflection of joint 1 in x and y direction versus 

morphing control bar actuation. 
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Figure 6.18: Theoretical and experimental deflection of joint 2 in x and y direction versus 

morphing control bar actuation. 

 

 

Figure 6.19: Theoretical and experimental deflection of joint 4 in x and y direction versus 

morphing control bar actuation. 
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Figure 6.20: Theoretical and experimental deflection of joint 6 in x and y direction versus 

morphing control bar actuation. 

 

 

Figure 6.21: Theoretical and experimental deflection of joint 8 in x and y direction versus 

morphing control bar actuation. 
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Figure 6.22: Theoretical and experimental deflection of joint 12 in x and y direction 

versus morphing control bar actuation. 

 

 

Figure 6.23: Theoretical and experimental deflection of joint 14 in x and y direction 

versus morphing control bar actuation. 
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Figure 6.24: Theoretical and experimental deflection of joint 16 in x and y direction 

versus morphing control bar actuation. 

 

 

Figure 6.25: Theoretical and experimental deflection of joint 18 in x and y direction 

versus morphing control bar actuation. 
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Figure 6.26: Theoretical and experimental deflection of joint 19 in x and y direction 

versus morphing control bar actuation. 
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Chapter 7 

 

 

7 Conclusions and Future Work 

 

 

 

7.1 Introduction 

The main conclusions of the present work are summarised in this chapter, under two 

headings according to the aim and objectives in Chapter 1. Furthermore, this chapter 

contains also the recommendations for future work concerning issues of this research that 

can be more developed, arising from the findings of the present study. 

 

7.2 Conclusion of the Research Work 

Nine objectives were identified for the two stated aims in Section 1.2. The conclusions 

made during the course of the current work relating to these objectives are now re-

presented in this section. 

 

7.2.1 Objective 1 concerned reviewing the available literature on analytical and 

numerical techniques on shape control, with view to find an efficient and comprehensive 

technique on shape control. This objective was explored in Section 2.2. The conclusion 

from this section relating to this objective is: 
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7.2.1.1 Conclusion 1. Although many different techniques have been proposed by 

different researchers in the last three decades, there has not been one method which is 

direct, effective, and can comprehensively deal with the problem of displacement and 

force constraints simultaneously. This conclusion from chapter 2 led to the theoretical 

work developed in Chapter 3 [Section 2.2]. 

 

7.2.2 Objective 2 concerned the derivation of a direct method for nodal displacement, 

bar force and simultaneously nodal displacement and bar force control for pin-jointed bar 

assembly.  This objective was explored in Sections 3.2.2, 3.2.3 and 3.2.4. The conclusions 

from those sections relating to this objective are: 

7.2.2.1 Conclusion 2. A useful and relatively simple method (Eqn. 3.10) has been 

presented, which provides a direct method for calculating required length actuations for 

a pin-jointed bar assembly requiring shape control within a single formulation. It can be 

said that this method is complementary  to, and an extension of, the work presented by 

You (1997), since his interest was in shape control of unloaded prestressed structures 

[Section 3.2.2]. 

7.2.2.2 Conclusion 3. In this dissertation also a useful and relatively simple method has 

been presented (Eqn. 3.16) for providing a direct calculation for required length 

actuations for a structural assembly requiring force control within a single formulation. 

This method is very important to control force of structures under some loading 

conditions, a cable member could approach slack and thus needs to be re-tightened to 

remain structurally existent, or a slender strut could be approaching instability and thus 

needs its compressive force reduced [Section 3.2.3]. 

7.2.2.3 Conclusion 4. A useful and relatively simple method has been presented (Eqn. 

3.19) for providing a direct calculation for required length actuations for a structural 

assembly requiring simultaneous nodal displacement and bar force control. The changes 

for both force and displacement regimes are within a single formulation. Ability for 

simultaneous control has vital role, since in practice, it is highly likely that situations 

requiring control of one will also have some requirements on the other [Section 3.2.4]. 

7.2.2.4 Conclusion 5. Equations 3.19 and 3.59 which are used for controlling nodal 

displacement and bar force simultaneously, were found to be over-determinate and thus 
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insoluble, (because of typically high number of equations ( ij c  in Y and b in Z) while 

there are only b unknowns in eo)  and hence only a least-squares “approximate” was used 

for eo which was found to work well.  [Section 3.2.4]. 

 

7.2.3 Objective 3 concerned the extension of the direct method for adjusting nodal 

displacement, bar force and simultaneous nodal displacement and bar force control for 

structures made up of more complex structural components (i.e. those with “macro-

elements”), e.g. the pantographic element.  This objective was explored in Sections 3.3.2, 

3.3.3 and 3.3.4. The conclusions from those sections relating to this objective are: 

7.2.3.1 Conclusion 6. Equation 3.54 was developed which offers a direct method for 

calculating required length actuations for structures made up of more complex structural 

components (i.e. those with “macro-elements”), e.g. the pantographic element requiring 

shape control. This technique involved structural matrices being built up from matrices 

of elementary elements, and then processed with “matrix condensation” [Section 3.3.2]. 

7.2.3.2 Conclusion 7. Two equations (Eqns. 3.48 and 3.53) provided the non-vanishing 

and vanishing displacements of the structure respectively, without regard of each other 

for structures made up of more complicated structural components requiring shape 

through using the condensed matrix method. Both equations were found to work in 

calculating displacements of morphing structure after adjusting bar length actuation. 

Equation 3.48 was important to provide non-vanishing displacements of the pantographic 

morphing aerofoil structure, since in this structure, only displacements of the outer 

surface of the aerofoil were primary non-vanishing displacements [Section 3.3.2]. 

7.2.3.3 Conclusion 8. For structures made up of complex structural components, a direct 

and relatively simple method has also been presented (Eqn. 3.58), for providing a direct 

calculation for required length actuations required for internal force control within a 

single formulation [Section 3.3.3]. In the same section, also Equations 3.56 and 3.57 

provided for controlling bar force without regarding to joint displacement for the non-

vanishing and vanishing member force respectively. 

7.2.3.4 Conclusion 9. Similarly, a direct simple technique (Eqn. 3.59) has also been 

developed for structures with complex structural components for calculating required 
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length actuations where nodal displacement and bar force control are simultaneously 

controlled [Section 3.3.4]. 

 

7.2.4 Objective 4 concerned identifying the best location of actuators and determine the 

minimum amount of actuation and minimum number of actuators required. This objective 

was explored in Sections 3.2.2.2 and 6.4.1.7. The conclusions from those sections relating 

to this objective are: 

7.2.4.1 Conclusion 10. It was shown that the effectiveness of a particular actuation in 

controlling a particular displacement is indicated by the size associated coefficient in the 

Y matrix [Section 3.2.2.2] which was found to work well. 

7.2.4.2 Conclusion 11. It was concluded through using the (bar sensitivity technique) that 

the decision of where the actuator should be placed indicated by the associated coefficient 

in the bar sensitivity to displacement table which was shown to lead to minimal amount 

of actuation and that it is possible to choose a just sufficient number of actuators. In other 

words, it was shown that both the minimum number of actuators as well as minimum 

actuation can be obtained via this simple technique [Section 6.4.1.7]. 

 

7.2.5 Objective 5 concerned correcting manufacture or assembly imperfection, or 

restoring of the structural shape or internal force due to environmental effects. This 

objective was explored in Section 3.2.5. The conclusion from this section relating to this 

objective is: 

7.2.5.1 Conclusion 12. Equation 3.23 was developed which corrected manufacture or 

assembly imperfection. This equation could restore structural shape or internal force due 

to environmental effects (e.g. thermal distortion) or structural movements (e.g. foundation 

settlement, or the structure moving, as in a mobile support structure) [Section 3.2.5]. 

 

7.2.6 Objective 6 concerned the development of a morphing aerofoil structure as an 

effective way to enhance/replace the tradition aerofoil. This objective was explored in 

Sections 5.6, 5.7 and 5.7.4. The conclusions from those sections relating to this objective 

are: 
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7.2.6.1 Conclusion 13. Two morphing aerofoils (Figures 4.10 and 4.11) have been formed 

via a series of interconnected curved controlled pantograph units. It was concluded that 

Morphing Aerofoil Structure 2 exhibited a wider range of Coefficients of Lift (CL) and 

Drag (CD) than achievable by Morphing Aerofoil Structure 1, and the standard 

NACA2415 with flaps. It was shown Morphing Aerofoil Structure 2 could take the place 

of the traditional fixed shape aerofoil with flaps, with its smaller drag and associated 

bigger lift [Section 5.6]. It was shown that Morphing Aerofoil Structure 1 and 2 can have 

18% and 19.5% respectively lower drag on average than the standard NACA2415 

especially in the starting stages of morphing. The maximum CL value of Morphing 

Aerofoil Structure 2 was 1.82 times higher than the CL of the NACA2415. In addition, 

the two morphing aerofoils produced a good coefficient of moment (Cm) in the early 

stages of morphing [Sections 5.6 and 5.7]. 

 7.2.6.2 Conclusion 14. Morphing Aerofoil Structure 3 was developed (Figure 5.40) as an 

alternative to Morphing Aerofoil Structures 1 and 2, because they had significant cross-

sectional area decrease during morphing, which might be deemed unacceptable. It was 

concluded that it was indeed possible to have a morphing shape that had a cross-sectional 

area exceeding that of NACA2415 in all morphing stages, which still had the 

advantageous aerodynamic characteristics of Morphing Aerofoil Structure 2 (i.e. only a 

slightly smaller CL for the same CD) [Section 5.7.4]. 

 

7.2.7 Objective 7 concerned calculating theoretical nodal displacements of the 

pantographic morphing structure. This objective was explored in Section 6.5. The 

conclusion from this section relating to this objective is: 

7.2.7.1 Conclusion 15. The concept for a novel morphing aerofoil as an effective way to 

enhance/replace the tradition aerofoil was proved in Section 6.5 through the comparison 

of experimental and analytical model. While two methods for calculating theoretical 

nodal displacement of the pantographic morphing structure were introduced (linear and 

non-linear methods), it was found correlation between the theoretical computational 

results and the experimental values was good only for early stages of morphing and 

geometric nonlinearity due to large and significant geometry change, mean only a non-

linear coordinate update method could sufficiently track the geometry of the morphing 

aerofoil accurately through all stages of morphing [Section 6.5]. 
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7.2.8 Objective 8 concerned examining shape adjustment of a morphing structure. This 

objective was explored in Section 6.4.1.2. The conclusion from this section relating to 

this objective is: 

7.2.8.1 Conclusion 16. It was concluded that shape adjustment or refinement can be done 

for any morphing structure for some specified joint displacements, with a fixed set of 

actuation members, in any stage of morphing. This is a good result for the technology of 

designing morphing aerofoils, since not only have the static stages morphing aerofoil 

itself shown to have better aerodynamic characteristics than the equivalent fixed shape 

NACA aerofoil with flaps, but here, we see that a morphing aerofoil which has gone "out 

of shape" due to changes in load or weight (e.g. through the burning of fuel normally 

stored within the voids of the aerofoil) can be corrected via shape adjustment. 

Furthermore, this leads to the possibility that a desired change in lift/drag characteristics 

could be obtained from either a morphing change or a smaller refining shape change, and 

thus the choice could be made dynamically during flight, and be optimised for best 

economy of flight operational parameters [Section 6.4.1.2]. 

 

7.2.9 Objective 9 concerned examining objectives 2 to 8 experimentally. This objective 

was explored in Sections 4.4.2, 4.4.2.1.1, 4.4.2.2.1, 4.4.2.3, 6.4.1.6, 6.4.1, 6.4.1.3 and 

6.4.1.5. The conclusions from those sections relating to this objective are: 

7.2.9.1 Conclusion 17. It was established that all experimental results of the physical 

model of the cable stayed bridge and pantographic morphing structure agreed well with 

theoretically computed predictions from Eqns. 3.10, 3.16, 3.19 and 3.54, hence the 

validation of those equations were conclusive for linear shape and internal force 

adjustment of different structural assembly [Sections 4.4.2 and 6.4.1]. 

7.2.9.2 Conclusion 18. It was proven experimentally and practically that the desired 

targets could be achieved for nodal displacement and bar forces, depending on the number 

of actuators. It was shown that if the number of actuators not sufficient it is impossible to 

obtain (even theoretically) the target results [Section 4.4.2.1.1]. 

7.2.9.3 Conclusion 19. For the physical model of the cable-stayed bridge eight cables in 

Chapter 4, a theoretical calculation was done for each actuator individually. It was shown 
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in Figure 4.21 with "eo" that each cable actuation has a direct effect on its joint with the 

beam of the structure [Section 4.4.2.1.1]. 

7.2.9.4 Conclusion 20. It was also concluded that if the number of actuators are sufficient 

the nodal displacement controlling could be done in all joints of the cable stayed bridge 

model, even if the controlled joints did not directly contact with members that had the 

actuators for the purpose of adjustment [Section 4.4.2.2.1].  

7.2.9.5 Conclusion 21. It could be concluded that the technique of multi-iteration 

adjustment was effective in eliminating errors that occur in the practical adjustment 

process itself, as demonstrated by the experiments on the cable stayed bridge and 

pantographic morphing models [Sections 4.4.2.3 and 6.4.1.6].  

7.2.9.6 Conclusion 22. It was proven in Experiments 3 and 4 that choosing a wrong target 

has a very big effect on the amount of total actuation, where a slightly different target 

positions for the one selected joint led to significant difference in the amount of total 

actuation of 8.9mm [Section 6.4.1.3]. 

7.2.9.7 Conclusion 23. Using an elastic stretchable material was found to be a suitable 

technique for the pantographic morphing structure skin to ensure correct aerodynamic 

properties of the aerofoil. In addition, it was also shown that the direct method of 

controlling displacement is valid and practical, and good for adjusting static shape 

induced by both loads (routine and unpredicted) and other factors such as from 

prestressing in the pantographic structures via using elastic bands [Section 6.4.1.5].  

 

An analysis of the conclusions 1 to 23 above shows that Objectives 1 to 5, and 7 to 9 were 

fully met.  However, Objective 6 was only partially met because the proposed morphing 

aerofoils must still be checked experimentally for validation of the calculated 

aerodynamic properties such as coefficients of Lift (CL) and Drag (CD). With the near 

fulfilment of all the objectives, it can be concluded that the original two aims of the thesis 

as stated in Section 1.2 have been achieved. 
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7.3 Recommendations for Future Work 

Objective 6 was only partially met in the present study, since CL and CD were not 

experimentally verified, and hence: 

 It is proposed that further experimental work be carried out on the proposed morphing 

aerofoil shapes in this dissertation to experimentally verify CL and CD values. 

 It is also proposed to construct a larger scaled three-dimensional morphing wing 

structure with a proper stretchable surface material and better joints, to further verify 

the morphing concept. 

Apart from meeting all the original objectives in this work: 

 In the course of the work, it was clear that only a two-dimensional morphing structure 

was proposed and examined (Section 5.6), i.e. the morphing occurred only in one 

vertical plane.  Accordingly, it is proposed that three-dimensional morphing aerofoils 

be examined, such that the morphing allows a changing geometry both in the cross-

section as well as in the long-section.  This could perhaps combine the current two-

dimensional cross-sectional morphing aerofoil with a swept-wing mechanism, which 

could then be tested, and adjusted for any shape imperfection correction. 

 Also, it is recommended that further verification experiments on the shape/force 

adjustment be carried out on other types of structures, for example tensegrity structures 

which are geometry dependent, or other three-dimensional truss structure with cable 

elements.  

 Although some work on minimising the amount of actuation was carried out in the 

present work, it would be useful to have a technique to find exactly the theoretical 

minimum amount of actuation for controlling displacement, internal force and 

simultaneously controlling of external nodal displacement and internal bar force. 

 Lastly, since many of the structures requiring shape/force control are fairly flexible 

and thus exhibit geometric nonlinearity, it is recommended that the current technique 

for adjustment of linear structures be extended to include geometric nonlinearity, and 

that validation work also be carried out on geometrically non-linear structural models. 
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Appendix A 

 

 

MATLAB Programs 

 

 

 

A.1 MATLAB Program for Tables 3.1 and 3.2 

clear; clc; 

coor=100*[0 1; 0 0; 1 1; 1 0; 2 1; 2 0]; %sets up coordinates in mm 

bar=[1 2; 1 3; 2 3; 1 4; 2 4; 3 4; 3 5; 3 6; 4 6; 5 6]; %sets up matrix of 

connectivity 

EA=400000*[1 1 1 1 1 1 1 1 1 1]; %EA for each bar in N 

H=zeros(12, 10);    %sets up 12x8 structural equilibrium matrix 

F=zeros(10, 10);    %sets up 10x10 structural flexibility matrix 

for i=1:10, 

  j1=bar(i, 1); j2=bar(i, 2); 

  hor=coor(j2, 1)-coor(j1, 1); ver=coor(j2, 2)-coor(j1, 2); 

  L=sqrt(hor^2+ver^2); l=hor/L; m=ver/L; %l & m are the cos & sin of bar angle 

  h=[-hor; -ver; hor; ver]/L; f=L/EA(i); 

  H((j1-1)*2+1:(j1-1)*2+2,i)=H((j1-1)*2+1:(j1-1)*2+2,i)+h(1:2,1); 

  H((j2-1)*2+1:(j2-1)*2+2,i)=H((j2-1)*2+1:(j2-1)*2+2,i)+h(3:4,1); 

  F(i,i)=f; 

end; 

H=H([4:12],:);       %selecting rows relating to non-supports 

e0=zeros(10,1);      %vector of initial bar elongation 

P=[0 0 -1000 0 0 0 -3000 0 0]';%Force vector, with rows for supports taken out 

already 

S=null(H);        %state of self-stress, will explain "null"  

tH=pinv(H)*P;     %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));    %alpha is the "redundancies" 

t=tH+S*alpha;        %t is the vector of bar tensions 

e=e0+F*t;            %e is vector of bar elongations 

dp=pinv(H')*e;      %d is vector of displacements 

dp1=dp([3,7],1) ; d1=[-2;-2]; 

B=H' ; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S' ; 

Y1=Y([3,7],:) ; 

e0a=pinv(Y1)*(d1-dp1); 

dpa=Y*e0a+dp ; 

Y4=Y([3,7],[2:5]); 

e04=pinv(Y4)*(d1-dp1); 
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e0(2:5,1)=e04 ; 

e04=e0 ; 

dp4=Y*e04+dp; 

Y2=Y([3,7],[2:3]); 

e02=pinv(Y2)*(d1-dp1); 

e0=zeros(10,1); 

e0(2:3,1)=e02 ; 

e02=e0 ; 

dp2=Y*e02+dp ; 

Table 3.1=[dp,dpa,dp4,dp2] 

%%%%%%%%%%%%%%%%%% 

Z=S*inv(S'*F*S)*S'; 

e0=zeros(10,1); 

tp3=t([2,5,8],:); 

Z3=Z([2,5,8],:); 

e0=zeros(10,1); 

tp2=t([2,5],:); 

tc2=[6000;-4000]; 

Z2=Z([2,5],:); 

e02=pinv(Z2)*(tp2-tc2); 

t2=t-Z*e02; 

e0=zeros(10,1); 

tp1=t(5,:); 

tc1=[-4000]; 

Z1=Z([5],:) ; 

e01=pinv(Z1)*(tp1-tc1); 

t1=t-Z*e01; 

Table 3.2=[t, t2, t1] 

 

A.2 MATLAB Program for Tables 3.3 and 3.4 

clear; clc; 

coor=100*[0 0; 3 0; 2 0; 1 0; 0 1; 1 1; 2 1; 3 1]; %sets up coordinates in mm 

bar=[1 4; 4 6;5 6; 1 5; 1 6; 4 5; 3 4; 3 7; 6 7; 4 7; 3 6; 2 3; 2 8; 7 8; 3 8; 

2 7; 1 7; 3 5; 4 8; 2 6]; %sets up matrix of connectivity 

EA=40000*[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];%EA for each bar in N 

P=[0 0 0 0 0 0 0 0 -1000 0 -3000 0 0]'; 

H=zeros(16,20);   %sets up 10x8 structural equilibrium matrix 

F=zeros(20,20);   %sets up 8x8 structural flexibility matrix 

for i=1:20, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); l=hor/L; m=ver/L;%l & m are the cos & sin of bar angle 

  h=[-hor; -ver; hor; ver]/L; f=L/EA(i); 

  H((j1-1)*2+1:(j1-1)*2+2,i)=H((j1-1)*2+1:(j1-1)*2+2,i)+h(1:2,1); 

  H((j2-1)*2+1:(j2-1)*2+2,i)=H((j2-1)*2+1:(j2-1)*2+2,i)+h(3:4,1); 

  F(i,i)=f; 

end; 

dp=zeros(16,1); 

H=H([3,5:16],:);        %selecting rows relating to non-supports 

e0=zeros(20,1);         %vector of initial bar elongation 

S=null(H);              %state of self-stress, will explain "null" 

tH=pinv(H)*P;           %tH is a vector of t that is in eqm with applied P 
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alpha=inv(S'*F*S)*(-S'*(e0+F*tH)); %alpha is the "redundancies" 

t=tH+S*alpha;            %t is the vector of bar tensions 

e=e0+F*t;                %e is vector of bar elongations 

dp=pinv(H')*e ;          %d is vector of displacements 

dp1=dp([7,9,11,13],1) ; d1=[-8;-8;-8;-8];  dd1=d1-dp1;   B=H'; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S'; 

Y1=Y([7,9,11,13],:) ; 

Z=S*inv(S'*F*S)*S'; 

e01=pinv(Y1)*dd1 ; 

dpe01=Y*e01+dp; 

tpe01=t-Z*e01; 

%%%%%%%%%%%%%%%%%%%%% 

dp2=dp([7,9,11,13],1) ;  d2=[-8;-8;-8;-8];   dd2=d2-dp2; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S' ; 

Y2=Y([7,9,11,13],:) ; 

tp2=t([7,12, 16],:); 

tc2=[1500;1500;-1500]; 

tt2=tp2-tc2; 

Z=S*inv(S'*F*S)*S'; 

Z2=Z([7, 12,16],:); 

A2=[dd2;tt2]; 

B2=[Y2;Z2]; 

e02=pinv(B2)*A2 ; 

dpe02=Y*e02+dp; 

tpe02=t-Z*e02; 

%%%%%%%%%%%%%%%%%%% 

dp3=dp([7,9,11,13],1) ; d3=[-8;-8;-8;-8]; dd3=d3-dp3; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S' ; 

Y3=Y([7, 9, 11,13], :) ; 

tp3=t([7,9, 12,16], :); 

tc3=[1500;-1500;1500;-1500]; 

tt3=tp3-tc3; 

Z=S*inv(S'*F*S)*S'; 

Z3=Z([7, 9, 12,16], :); 

A3=[dd3; tt3]; 

B3=[Y3; Z3]; 

e03=pinv(B3)*A3; 

dpe03=Y*e03+dp; 

tpe03=t-Z*e03; 

%%%%%%%%%%%%%%%%% 

dp4=dp([7,9,11,13],1) ; d4=[-8;-8;-8;-8]; dd4=d4-dp4; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S’; 

Y4=Y([7,9, 11,13],[4,7:9, 13,16:17,20]) ; 

tp4=t([7, 9, 12,16], :); 

tc4=[1500;-1500;1500;-1500]; 

tt4=tp4-tc4; 

Z=S*inv(S'*F*S)*S'; 

Z4=Z([7, 9, 12,16], [4,7:9, 13,16:17,20]); 
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A4=[dd4; tt4]; 

B4=[Y4; Z4]; 

e04=zeros(20,1); 

e04a=pinv(B4)*A4; 

e04([4,7:9, 13,16:17,20] ,1)=e04a; 

dpe04=Y*e04+dp; 

tpe04=t-Z*e04; 

%%%%%%%%%%%%%%%%%% 

dp5=dp([7,9,11,13],1) ; d5=[-8;-8;-8;-8]; dd5=d5-dp5; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S’; 

Y5=Y([7, 9, 11,13], [4,6:9,13:14, 16,20]) ; 

tp5=t([1, 7, 9, 12,16], :); 

tc5=[1500;1500;-1500;1500;-1500]; 

tt5=tp5-tc5; 

Z=S*inv(S'*F*S)*S'; 

Z5=Z([1, 7, 9, 12,16], [4,6:9,13:14, 16,20]); 

A5=[dd5; tt5]; 

B5=[Y5; Z5]; 

e05=zeros(20,1); 

e05a=pinv(B5)*A5; 

e05([4,6:9,13:14, 16,20] ,1)=e05a; 

dpe05=Y*e05+dp; 

tpe05=t-Z*e05; 

%%%%%%%%%%%%%%%%%%% 

dp6=dp([7,9,11,13],1) ; d6=[-8;-8;-8;-8]; dd6=d6-dp6; 

Y=pinv(B)-pinv(B)*F*S*inv(S'*F*S)*S'; 

Y6=Y([7, 9, 11,13], [3:4,7:9,12:14,16]) ; 

tp6=t([1, 7, 9, 12,16], :); 

tc6=[1500;1500;-1500;1500;-1500]; 

tt6=tp6-tc6; 

Z=S*inv(S'*F*S)*S'; 

Z6=Z([1, 7, 9, 12,16], [3:4,7:9,12:14,16]); 

A6=[dd5;tt5]; 

B6=[Y6; Z6]; 

e06=zeros(20,1); 

e06a=pinv(B6)*A6; 

e06([3:4,7:9,12:14,16] ,1)=e06a; 

dpe06=Y*e06+dp; 

tpe06=t-Z*e06; 

D=[dp,dpe01,dpe02,dpe03,dpe04,dpe05,dpe06] 

T=[t,tpe01,tpe02,tpe03,tpe04,tpe05,tpe06] 

T=[e04,e05,e06] 
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A.3 MATLAB Program for Tables 3.5, 3.6 and 3.7 

clear; clc 

coor=[0 200; 0 0; 200 200; 200 0; 100 100; 100 100];%sets up coordinates in mm 

bar=[2 5; 5 3; 1 6; 6 4; 1 3; 1 2; 2 4; 3 4];%sets up matrix of connectivity 

hold on; for i=1:8, j1=bar(i,1); j2=bar(i,2); 

    plot([coor(j1,1) coor(j2,1)], [coor(j1,2) coor(j2,2)],'b-'); end; 

area=[36 36 36 36 36 36 36 36 ];%bar area for each bar in mm2 

inertia=[108 108 108 108 108 108 108 108 ];%bar moment of inertia for each bar 

in mm4 

E=10000*[1 1 1 1 1 1 1 1]; %young's modulus in N/mm2 

H=zeros(18,24);%sets up 18x24 structural equilibrium matrix 

F=zeros(24,24);%sets up 24x24 structural flexibility matrix 

for i=1:8, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([3 5:18 ],:);%selecting rows relating to non-supports 

H=[H(:,[1 2 4 6 7 8 10 12:24]) H(:,3)+H(:,5)  H(:,9)+H(:,11)];%mI.II=mI2+mII1 

H=H(:,[1 3 5 7 9 12 15 18 21 22]);%removing mI1=mII2=mIII1=mIV2=0 

H=H([2 4 5 7 8 10 11 13 14],:);%M1=M2=M3=M4=M5=M6 no moment on mid and end 

joints of pantographic 

H=[H(1:5,:); H(6,:)+H(8,:); H(7,:)+H(9,:)]; %Px5+Px6=0,Py5+Py6=0, no load on 

mid joint of pantographic 

Amn=H(1:5,1:8); Amp=H(1:5,9:10); Apn=H(6:7,1:8); App=H(6:7,9:10); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22]) F(:,3)+F(:,5)  F(:,9)+F(:,11)];                                  

%mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22],:); F(3,:)+F(5,:) ; F(9,:)+F(11,:)];                                   

%mI.II=mI2+mII1 

Fnn=F(1:8,1:8);  Fnp=F(1:8,9:10);  Fpn=F(9:10,1:8);  Fpp=F(9:10,9:10); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(8,1);%vector of initial bar elongation 

e0p=zeros(2,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 
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p1=-10000; 

P=1*[0 0 p1 0 0]';%Force vector, with rows for supports taken out already 

S=null(A);%state of self-stress 

tH=pinv(A)*P;%tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));%alpha is the "redundancies" 

tn=tH+S*alpha;%t is the vector of bar tensions 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;%e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;%d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 

k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH] 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement Control Table 3.5 

e0n1=zeros(8,1); 

e0p1=zeros(2,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm(3,:); 

ddn1=[0];  %target displacement 
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DDn1=ddn1-dpn1;    %difference between target and Theoretical 

Y1=Yc(3,[1:8]); 

e0t1([1:8],:)=pinv(Y1)*DDn1; 

Te0t1=sum(abs(e0t1)); 

DDnp1=Yc*e0t1+dpc 

Check1=DDnp1(3,1); 

Check1=[ddn1 Check1]; 

%%%%%%%%%%%%%%%%%%% 

e0n2=zeros(8,1); 

e0p2=zeros(2,1); 

e0t2=[e0n2; e0p2]; 

dpn2=dm(3,:); 

ddn2=[0];  %target displacement  

DDn2=ddn2-dpn2;    %difference between target and Theoretical 

Y2=Yc(3,1); 

e0t2(1,:)=pinv(Y2)*DDn2; 

Te0t2=sum(abs(e0t2)); 

DDnp2=Yc*e0t2+dpc 

Check2=DDnp2(3,1); 

Check2=[ddn2 Check2]; 

%%%%%%%%%%%%%%%%%%%%% 

e0n2=zeros(8,1); 

e0p2=zeros(2,1); 

e0t2=[e0n2; e0p2]; 

dpn2=dm(3,:); 

ddn2=[0];  %target displacement 

DDn2=ddn2-dpn2;       %difference between target and Theoretical 

Y2=Yc(3,4); 

e0t2(4,:)=pinv(Y2)*DDn2; 

Te0t2=sum(abs(e0t2)); 

DDnp2=Yc*e0t2+dpc 

Check2=DDnp2(3,1); 

Check2=[ddn2 Check2]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Bar Force Control Table 3.6 

e0p1=zeros(2,1); 

e0t1=[e0n1; e0p1]; 

tpn1=tn([1,2],:); 

tdn1=[-6000; -6000];  %target displacement 

TTn1=tdn1-tpn1;       %difference between target and Theoretical 

Z1=Zc([1,2],[1:8]); 

e0t1([1:8],:)=pinv(Z1)*TTn1; 

Te0t1=sum(abs(e0t1)); 

TTnp1=Zc*e0t1+tpc 

Check1=TTnp1([1,2],1); 

Check1=[tdn1 Check1]; 

%%%%%%%%%%%%%%%%%%% 

e0n2=zeros(8,1); 
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e0p2=zeros(2,1); 

e0t2=[e0n2; e0p2]; 

tpn2=tn([1,2],:); 

tdn2=[-6000; -6000];  %target displacement 

TTn2=tdn2-tpn2;       %difference between target and Theoretical 

Z2=Zc([1,2],[1,2]); 

e0t2([1,2],:)=pinv(Z2)*TTn2; 

Te0t2=sum(abs(e0t2)); 

TTnp2=Zc*e0t2+tpc 

Check2=TTnp2([1,2],1); 

Check2=[tdn2 Check2]; 

%%%%%%%%%%%%%%%%%%%%%%% 

e0n2=zeros(8,1); 

e0p2=zeros(2,1); 

e0t2=[e0n2; e0p2]; 

tpn2=tn([1,2],:); 

tdn2=[-6000; -6000];  %target displacement 

TTn2=tdn2-tpn2;      %difference between target and Theoretical 

Z2=Zc([1,2],1); 

e0t2(1,:)=pinv(Z2)*TTn2; 

Te0t2=sum(abs(e0t2)); 

TTnp2=Zc*e0t2+tpc 

Check2=TTnp2([1,2],1); 

Check2=[tdn2 Check2]; 

%%%%%%%%%%%%%%%%%%% 

e0n2=zeros(8,1); 

e0p2=zeros(2,1); 

e0t2=[e0n2; e0p2]; 

tpn2=tn([1,2],:); 

tdn2=[-6000; -6000];  %target displacement 

TTn2=tdn2-tpn2;       %difference between target and Theoretical 

Z2=Zc([1,2],2); 

e0t2(2,:)=pinv(Z2)*TTn2; 

Te0t2=sum(abs(e0t2)); 

TTnp2=Zc*e0t2+tpc 

Check2=TTnp2([1,2],1); 

Check2=[tdn2 Check2]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% simultaneously Joint Displacement and Bar Force Control Table 3.7 

e0n3=zeros(8,1); 

e0p3=zeros(2,1); 

e0t3=[e0n3; e0p3]; 

dpn3=dm(3,:); 

ddn3=[0];  %target displacement 

DDn3=ddn3-dpn3;    %difference between target and prcatical 

Y3=Yc(3,[1:8]); 

tpn3=tn([1,2],:); 

tdn3=[-6000; -6000];  %target displacement 
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TTn3=tdn3-tpn3;    %difference between target and prcatical 

Z3=Zc([1,2],[1:8]); 

DT3=[DDn3;TTn3]; 

YZ3=[Y3;Z3]; 

e0t3([1:8],:)=pinv(YZ3)*DT3; 

Te0t3=sum(abs(e0t3)); 

DDnp3=Yc*e0t3+dpc 

Check3=DDnp3(3,1); 

Check3=[ddn3 Check3]; 

TTnp3=Zc*e0t3+tpc 

Check3=TTnp3([1,2],1); 

Check3=[tdn3 Check3]; 

%%%%%%%%%%%%%%%%%%%%%%% 

e0n5=zeros(8,1); 

e0p5=zeros(2,1); 

e0t5=[e0n5; e0p5]; 

dpn5=dm(3,:); 

ddn5=[0];  %target displacement 

DDn5=ddn5-dpn5;      %difference between target and prcatical 

Y5=Yc(3,[1, 2, 4]); 

tpn5=tn([1,2],:); 

tdn5=[-6000; -6000];  %target displacement 

TTn5=tdn5-tpn5;      %difference between target and prcatical 

Z5=Zc([1,2],[1, 2, 4]); 

DT5=[DDn5;TTn5]; 

YZ5=[Y5;Z5]; 

e0t5([1, 2, 4],:)=pinv(YZ5)*DT5; 

Te0t5=sum(abs(e0t5)) 

DDnp5=Yc*e0t5+dpc 

Check5=DDnp5(3,1); 

Check5=[ddn5 Check5]; 

TTnp5=Zc*e0t5+tpc 

Check5=TTnp5([1,2],1); 

Check5=[tdn5 Check5]; 

 

A.4 MATLAB Program for Tables 4.2, 4.4 and 4.6 

Clear; clc; 

coor=[0 980;0 190; 0 0; -1403 190; -1053 190; -703 190; -353 190;... 

    353 190; 703 190; 1053 190; 1403 190]; %sets up coordinates in mm 

bar=[1 4; 1 5; 1 6; 1 7; 1 8; 1 9; 1 10; 1 11; 4 5;5 6; 6 7; 7 2; 2 8; 8 9; 9 

10;10 11; 1 2; 2 3];          %sets up matrix of connectivity 

area=1*[0.135265 0.135265 0.135265 0.135265 0.135265 0.135265 0.135265 

0.135265 70.584 70.584 70.584 70.584 70.584 70.584 70.584 70.584 ... 

       388.09 388.09];          %bar area for each bar in mm2 
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inertia=[0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 ... 

        396.464 396.464 396.464 396.464 396.464 396.464 396.464 396.464 

12551.154 12551.154];%bar moment of inertia for each bar in mm4 

E=1000*[183.0549 183.7874 185.915 185.8874 187.7155 185.7842 184.7105 ... 

181.9555  210 210 210 210 210 210 210 210 200 200]; % young's modulus in N/mm2 

H=zeros(33,38);     %sets up 33x38 structural equilibrium matrix 

F=zeros(38,38);     %sets up 38x38 structural flexibility matrix 

for i=1:8, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); l=hor/L; m=ver/L; %l & m are the cos & sin of bar angle 

  h=[-hor; -ver; hor; ver]/L; 

  f=L/(E(i)*area(i)); 

  H((j1-1)*3+1:(j1-1)*3+2,i)=H((j1-1)*3+1:(j1-1)*3+2,i)+h(1:2,1); 

  H((j2-1)*3+1:(j2-1)*3+2,i)=H((j2-1)*3+1:(j2-1)*3+2,i)+h(3:4,1); 

  F(i,i)=f; 

end; 

X=(i+1)*2; Y=X-3; 

for i=9:18, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); 

  l=hor/L; m=ver/L;        %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i))); 0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-(X-2))= H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-

(X-2))+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-(X-2))= H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-

(X-2))+h(4:6,:); 

  F((i-1)*3-Y:(i-1)*3-(Y-2),(i-1)*3-Y:(i-1)*3-(Y-2))=f; 

end; 

H=H([1:6 10:33],:);          %selecting rows relating to non-supports 

e0=zeros(38,1);              %vector of initial bar elongation 

P=zeros(30,1); %sets up Force vector, with rows for supports taken out already 

yL1=1.142474725;              %weight of each load in N 

yL=15*yL1;   zL=20*yL1; 

P([8 11  14  17  20  23  26  29],1)=-1*[yL zL zL zL zL zL zL yL]; %Force 

vector, with rows for supports taken out already 

S=null(H);          %state of self-stress, 

tH=pinv(H)*P;       %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH)); %alpha is the "redundancies" 

t=tH+S*alpha;               %t is the vector of bar tensions 

e=e0+F*t;                   %e is vector of bar elongations 

dp=pinv(H')*e ;             %d is vector of displacements 

t([1:8],1);                 %Tension in Cables [1:8] 

t([20,22],1);               %Moment of  beams in supports 

e([1:8],1);                 %Elongation of Cables [1:8] 
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dp([8 11 14 17 20 23 26 29 1],1);  %Displacement in y direction with 

horizontal direction of the top point of column 

Y=pinv(H')-pinv(H')*F*S*inv(S'*F*S)*S'; 

Z=S*inv(S'*F*S)*S'; 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

% Joint Displacement Table 5.2 

e0d=zeros(38,1); 

dp([8 11 14 17 20 23 26 29],:)=[-4.618;-3.569;-2.214;-0.98;-0.973;-2.155;-

3.375;-4.512];  %from Practical 

dpd=dp([8 11 14 17 20 23 26 29],:); 

dtd=-1*[1;1;1;1;1;1;1;1];    %target displacement 

Yd=Y([8 11 14 17 20 23 26 29],[1:8]); 

DD=dtd-dpd;             %difference between target and practical 

e0d([1:8],1)=pinv(Yd)*(dtd-dpd); 

e0d([1:8],1)            %e0 required 

Te0d=sum(abs(e0d)); 

dpdA=Y*e0d+dp; 

ddd=dpdA([8 11 14 17 20 23 26 29],1)-dpd; 

dpdA([8 11 14 17 20 23 26 29 1],1) 

%+++++++++++++++++++++++++ 

% Bar Force Table 5.4 

% Selecting  bar force  1,2,3,4,5,6,7&8 and e01,e02,e03,e04,e05,e06,e07&e08 

e0t=zeros(38,1); 

t([1:8],:)=[35.968;33.768;34.625;18.784;16.843;33.308;36.054;34.195]; 

tpt=t([1:8],:); 

tct=34*[1;1;1;1;1;1;1;1];  %target bar tension 

Zt=Z([1:8],[1:8]); 

TT=tpt-tct;                %difference between target and practical 

e0t([1:8],1)=pinv(Zt)*(tpt-tct); 

e0t([1:8],1)               %e0 required 

ttA=t-Z*e0t; 

ttA([1:8],1) 

Te0t=sum(abs(e0t)); 

%+++++++++++++++++++++++++++++ 

% Joint Deflection & Bar Force Table 5.6 

% Eight points for displacement and eight cables for force CONTROLLING BY 

EIGHT CABLES        

e0B=zeros(38,1); 

dp([8 11 14 17 20 23 26 29],:)=[-4.53;-3.525;-2.189;-0.951;-1.075;-2.242;-

3.549;-4.696]; %from Practical 

dpB=dp([8 11 14 17 20 23 26 29],:); 

dtB=-0*[1;1;1;1;1;1;1;1];  %target displacement 

DDB=dtB-dpB;               %difference between target and practical 

YB=Y([8 11 14 17 20 23 26 29],[1:8]); 

t([1:8],:)=[35.195;33.243;36.436;17.476;15.266;28.878;36.132;32.111]; %from 

Practical 

tpB=t([1:8],:); 

tcB=30*[1;1;1;1;1;1;1;1];     %target bar tension 



Appendix A: MATLAB Programs 

235 

TTB=tpB-tcB;                  %difference between target and practical 

ZB=Z([1:8],[1:8]); 

DTB=[DDB;TTB]; 

YZB=[YB;ZB]; 

e0B([1:8],1)=pinv(YZB)*DTB; 

e0B([1:8],1)          %e0 required 

Te0B=sum(abs(e0B)); 

dpe0B=Y*e0B+dp; 

dpe0B([8 11 14 17 20 23 26 29 1],1) 

tpe0B=t-Z*e0B; 

tpe0B([1:8],1) 

 

A.5 MATLAB Program for Tables 4.3, 4.5 and 4.7 

clear; clc; 

coor=[0 980;0 190; 0 0; -1403 190; -1053 190; -703 190; -353 190;... 

    353 190; 703 190; 1053 190; 1403 190]; %sets up coordinates in mm 

bar=[1 4; 1 5; 1 6; 1 7; 1 8; 1 9; 1 10; 1 11; 4 5;5 6; 6 7; 7 2; 2 8; 8 9; 9 

10; 10 11; 1 2; 2 3];         %sets up matrix of connectivity 

area=1*[0.135265 0.135265 0.135265 0.135265 0.135265 0.135265 0.135265 

0.135265 70.584 70.584 70.584 70.584 70.584 70.584 70.584 70.584 ... 

       388.09 388.09];         %bar area for each bar in mm2 

inertia=[0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 ... 

        396.464 396.464 396.464 396.464 396.464 396.464 396.464 396.464 

12551.154 12551.154];%bar moment of inertia for each bar in mm4 

E=1000*[183.0549 183.7874 185.915 185.8874 187.7155 185.7842 184.7105 181.9555 

210 210 210 210 210 210 210 210 200 200]; %young's modulus in N/mm2 

H=zeros(33,38);         %sets up 33x38 structural equilibrium matrix 

F=zeros(38,38);         %sets up 38x38 structural flexibility matrix 

for i=1:8, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); l=hor/L; m=ver/L; %l & m are the cos & sin of bar angle 

  h=[-hor; -ver; hor; ver]/L; 

  f=L/(E(i)*area(i)); 

  H((j1-1)*3+1:(j1-1)*3+2,i)=H((j1-1)*3+1:(j1-1)*3+2,i)+h(1:2,1); 

  H((j2-1)*3+1:(j2-1)*3+2,i)=H((j2-1)*3+1:(j2-1)*3+2,i)+h(3:4,1); 

  F(i,i)=f; 

end; 

X=(i+1)*2; Y=X-3; 

for i=9:18, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); 

  l=hor/L; m=ver/L;       %l & m are the cos & sin of bar angle 
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  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-(X-2))= H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-

(X-2))+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-(X-2))= H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-

(X-2))+h(4:6,:); 

  F((i-1)*3-Y:(i-1)*3-(Y-2),(i-1)*3-Y:(i-1)*3-(Y-2))=f; 

end; 

H=H([1:6 10:33],:);     %selecting rows relating to non-supports 

e0=zeros(38,1);         %vector of initial bar elongation 

P=zeros(30,1);          %sets up Force vector, with rows for supports taken 

out already 

yL1=1.142474725;        %weight of each load in N 

yL=15*yL1; zL=20*yL1; 

P([8 11  14  17  20  23  26  29],1)=-1*[yL zL zL zL zL zL zL yL]; %Force 

vector, with rows for supports taken out already 

S=null(H);          %state of self-stress, 

tH=pinv(H)*P;       %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));    %alpha is the "redundancies" 

t=tH+S*alpha;               %t is the vector of bar tensions 

e=e0+F*t;                   %e is vector of bar elongations 

dp=pinv(H')*e ;             %d is vector of displacements 

t([1:8],1);                 %Tension in Cables [1:8] 

t([20,22],1);               %Moment of  beams in supports 

e([1:8],1);                 %Elongation of Cables [1:8] 

dp([8 11 14 17 20 23 26 29 1],1);  %Displacement in y direction with 

horizontal direction of the top point of column 

Y=pinv(H')-pinv(H')*F*S*inv(S'*F*S)*S'; 

Z=S*inv(S'*F*S)*S'; 

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%Joint Displacement Table 5.3 

e0d=zeros(38,1); 

dp([8 11 14 17 20 23 26 29],:)=[-4.52;-3.515;-2.182;-0.96;-1.031;-2.205;-

3.49;-4.581]; %from Practical 

dpd=dp([8 11 14 17 20 23 26 29],:); 

dtd=-1*[1;1;1;1;1;1;1;1];       %target displacement 

Yd=Y([8 11 14 17 20 23 26 29],[1,3,6,8]); 

DD=dtd-dpd;           %difference between target and practical 

e0d([1,3,6,8],1)=pinv(Yd)*(dtd-dpd); 

e0d([1:8],1)          %e0 required 

Te0d=sum(abs(e0d)); 

dpdA=Y*e0d+dp; 

ddd=dpdA([8 11 14 17 20 23 26 29],1)-dpd; 

dpdA([8 11 14 17 20 23 26 29 1],1) 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%Bar Force; Table 5.5 
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%Selecting  bar force  1,2,3,4,5,6,7&8 and e01,e02,e03,e04,e05,e06,e07&e08 

e0t=zeros(38,1); 

t([1:8],:)=[35.11;33.65;34.09;18.47;16.52;33.80;35.56;33.37]; 

tpt=t([1:8],:); 

tct=34*[1;1;1;1;1;1;1;1];     %target bar tension 

Zt=Z([1:8],[1,3,6,8]); 

TT=tpt-tct;                   %difference between target and practical 

e0t([1,3,6,8],1)=pinv(Zt)*(tpt-tct); 

e0t([1:8],1)           %e0 required 

ttA=t-Z*e0t; 

ttA([1:8],1) 

Te0t=sum(abs(e0t)); 

%Eight points for displacement and eight cables for force CONTROLLING BY FOUR 

CABLES Table 5.7 

e0B=zeros(38,1); 

dp([8 11 14 17 20 23 26 29],:)=[-4.519;-3.414;-2.194;-0.993;-1.046;-2.248;-

3.536;-4.642]; %from Practical 

dpB=dp([8 11 14 17 20 23 26 29],:); 

dtB=-0*[1;1;1;1;1;1;1;1];     %target displacement 

DDB=dtB-dpB;                  %difference between target and practical 

YB=Y([8 11 14 17 20 23 26 29],[1,3,6,8]); 

t([1:8],:)=[35.968;36.785;34.216;19.815;17.398;35.764;37.03;34.711]; %from 

Practical 

tpB=t([1:8],:); 

tcB=30*[1;1;1;1;1;1;1;1];   %target bar tension 

TTB=tpB-tcB;                %difference between target and practical 

ZB=Z([1:8],[1,3,6,8]); 

 

DTB=[DDB;TTB]; 

YZB=[YB;ZB]; 

e0B([1,3,6,8],1)=pinv(YZB)*DTB; 

e0B([1:8],1)              %e0 required 

Te0B=sum(abs(e0B)); 

dpe0B=Y*e0B+dp; 

dpe0B([8 11 14 17 20 23 26 29 1],1) 

tpe0B=t-Z*e0B; 

tpe0B([1:8],1) 

 

A.6 MATLAB Program for Tables 4.8, 4.9, 4.10 and 4.11 

clear; clc; 

coor=[0 980;0 190; 0 0; -1403 190; -1053 190; -703 190; -353 190;... 

    353 190; 703 190; 1053 190; 1403 190]; %sets up coordinates in mm 

bar=[1 4; 1 6; 1 9; 1 11; 4 5;5 6; 6 7; 7 2; 2 8; 8 9; 9 10;10 11;... 

    1 2; 2 3];        %sets up matrix of connectivity 
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area=1*[0.135265 0.135265 0.135265 0.135265 ... 

       70.584 70.584 70.584 70.584 70.584 70.584 70.584 70.584 ... 

       388.09 388.09];            %bar area for each bar in mm2 

inertia=[0.0233 0.0233 0.0233 0.0233 396.464 396.464... 

 396.464 396.464 396.464 396.464 396.464 396.464 12551.154 12551.154];     

%bar moment of inertia for each bar in mm 

E=1000*[183.0549 185.915 185.7842  181.9555 210 210... 

         210 210 210 210 210 210 200 200] ;% young's modulus in N/mm2 

H=zeros(33,34);      %sets up 33x34 structural equilibrium matrix 

F=zeros(34,34);      %sets up 34x34 structural flexibility matrix 

for i=1:4, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); l=hor/L; m=ver/L;  %l & m are the cos & sin of bar 

angle 

  h=[-hor; -ver; hor; ver]/L; 

  f=L/(E(i)*area(i)); 

  H((j1-1)*3+1:(j1-1)*3+2,i)=H((j1-1)*3+1:(j1-1)*3+2,i)+h(1:2,1); 

  H((j2-1)*3+1:(j2-1)*3+2,i)=H((j2-1)*3+1:(j2-1)*3+2,i)+h(3:4,1); 

  F(i,i)=f; 

end; 

X=(i+1)*2; Y=X-3; 

for i=5:14, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2); 

  l=hor/L; m=ver/L;     %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-(X-2))= H((j1-1)*3+1:(j1-1)*3+3,i*3-X:i*3-

(X-2))+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-(X-2))= H((j2-1)*3+1:(j2-1)*3+3,i*3-X:i*3-

(X-2))+h(4:6,:); 

  F((i-1)*3-Y:(i-1)*3-(Y-2),(i-1)*3-Y:(i-1)*3-(Y-2))=f; 

end; 

H=H([1:6 10:33],:);          %selecting rows relating to non-supports 

e0=zeros(34,1);              %vector of initial bar elongation 

P=zeros(30,1);               %sets up Force vector, with rows for supports 

taken out already 

yL=1.142474725;              %weight of each load in N 

zL=2*yL; 

P([8 11  14  17  20  23  26  29],1)=-25*[yL 0 zL 0 0 zL 0 yL]; %Force vector, 

with rows for supports taken out already 

S=null(H);                         %state of self-stress, 

tH=pinv(H)*P;                      %tH is a vector of t that is in eqm with 

applied P 
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alpha=inv(S'*F*S)*(-S'*(e0+F*tH)); %alpha is the "redundancies" 

t=tH+S*alpha;                      %t is the vector of bar tensions 

e=e0+F*t;                          %e is vector of bar elongations 

dp=pinv(H')*e;                     %d is vector of displacements 

t([1:4],1);                        %Tension in Cables [1:4] 

t([16,18],1);                      %Moment of  beams in supports 

e([1:4],1);                        %Elongation of Cables [1:4] 

dp([8 11 14 17 20 23 26 29 1],1);  %Displacement in y direction with 

horizontal direction of the top point of column 

dp([8 14 23 29],1); 

Y=pinv(H')-pinv(H')*F*S*inv(S'*F*S)*S'; 

Z=S*inv(S'*F*S)*S'; 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%Joint Displacement Table 5.8 

%Selecting bars (1,2,3&4) 

e0d=zeros(34,1); 

dp([8,11,14,17,20,23,26,29],:)=[-7.268;-5.99;-4.005;-1.44;-1.57; -4.244;-6.3; 

-7.618]; %First Iteration from Practical 

%dp([8,14,23,29],:)=[-2.683;-2.475;-2.533;-2.64];  %Second Iteration from 

Practical 

dpd=dp([8 14 23 29],:); 

dtd=[-2.5;-2.5;-2.5;-2.5];      %target displacement 

Yd=Y([8,14,23,29],[1:4]); 

DD=dtd-dpd;          %difference between target and practical 

e0d(1:4,1)=pinv(Yd)*(dtd-dpd); 

e0d([1:4],1)           %e0 required 

Te0d=sum(abs(e0d)); 

dpdA=Y*e0d+dp; 

ddd=dpdA([8 14 23 29],1)-dpd; 

dpdA([8 14 23 29 1],1) 

%++++++++++++++++++++++++++++++++ 

%Bar Force Table 5.9 

%Selecting  bar force  1,2,3&4 and e01,e02,e03&e04 

e0t=zeros(34,1); 

t([1 2 3 4],:)=[57.915;67.89;68.149;57.126];%from Practical 

tpt=t([1 2 3 4],:); 

tct=[61;61;61;61];           %target bar tension 

Zt=Z([1 2 3 4],[1:4]); 

TT=tpt-tct;                  %difference between target and practical 

e0t([1:4],1)=pinv(Zt)*(tpt-tct); 

e0t([1:4],1)            %e0 required 

ttA=t-Z*e0t; 

ttA([1:4],1) 

Te0t=sum(abs(e0t)); 

 

%+++++++++++++++++++++++++++++++++ 

% Joint Deflection & Bar Force Table 5.10 
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%Four point for displacement and four cables for force CONTROLLING BY FOUR 

CABLES 

e0B=zeros(34,1); 

dp([8,11,14,17,20,23,26,29],:)=[-8.266;-6.03;-4.04;-1.47;-1.57;-4.246; -6.26; 

-7.592]; %from Practical used for Table 5.11 

dpB=dp([8,14,23,29],:) ; 

dtB=[-4;-4;-4;-4];            %target displacement 

DDB=dtB-dpB;                  %difference between target and practical 

YB=Y([8,14,23,29],[1:4]); 

t([1 2 3 4],:)=[58.153;68.814;69.134;56.949]; 

tpB=t([1 2 3 4],:); 

tcB=[61;61;61;61];            %target bar tension 

TTB=tpB-tcB;                  %difference between target and practical 

ZB=Z([1 2 3 4],[1:4]); 

DTB=[DDB;TTB]; 

YZB=[YB;ZB]; 

e0B([1:4],1)=pinv(YZB)*DTB; 

e0B([1:4],1)            %e0 required 

Te0B=sum(abs(e0B)); 

dpe0B=Y*e0B+dp; 

dpe0B([8 14 23 29 1],1) 

tpe0B=t-Z*e0B; 

tpe0B([1:4],1) 

 

A.7 MATLAB Program for Table 6.1 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954;  212.2653   22.9330;  381.8877   174.9123 

    395.6891  53.9261;  581.8877  188.7024;  586.5517    68.7931 

    781.8877 186.0357;  775.7805   66.1912;  981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160    30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877    89.3289 

   1781.8877  31.7244;  104.8987   53.7998;  104.8987    53.7998 

    292.0632  94.4307;  292.0632   94.4307;  487.3151   120.2478; 

    487.3151     120.2478;  681.4841  125.7724;  681.4841   125.7724 

    875.7975     117.6957;  875.7975  117.6957; 1076.6141    99.8769 

   1076.6141  99.8769; 1271.8576   75.6409; 1271.8576    75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10  

12];  %sets up matrix of connectivity 



Appendix A: MATLAB Programs 

241 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54... 

   54 54 54 54 54 54 54 54 54 54 54 54  54];%bar area for each bar in mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5  364.5];       %bar moment of inertia 

for each bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 

       70 70 70 70 70 70 70 70 70 70 70 70 70 70 70];%young's modulus in N/mm2 

H=zeros(105,108);        %sets up 105x108 structural equilibrium matrix 

F=zeros(108,108);        %sets up 108x108 structural flexibility matrix 

for i=1:36, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H; 

H=H([1:27 30:36 39:105],:);     %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:108])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 

... 

    53 55 57 59 61 63 65 67 70 73 76 79:93]); %removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39... 

 40 42 43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75... 

  76 78 79 81 82 84 85 87 88 90 91 93 94 96 97 99 100],:); 

          %M1=M2=M3=M4=M5=M6 no moment on mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 
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              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; 

               %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:36); Amp=H(1:35,37:51); Apn=H(36:50,1:36); App=H(36:50,37:51); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 ... 

 70 73 76 79 82 85 88 91 94 97 100 103 106]) F(:,9)+F(:,11)  F(:,15)+F(:,17) 

F(:,21)+F(:,23)... 

    F(:,27)+F(:,29) F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) 

F(:,51)+F(:,53)... 

    F(:,57)+F(:,59) F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) 

F(:,81)+F(:,83)... 

    F(:,87)+F(:,89) F(:,93)+F(:,95)];  %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 

76 79 ... 

 82 85 88 91 94 97 100 103 106],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:);... 

  F(27,:)+F(29,:); F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); 

F(51,:)+F(53,:);... 

  F(57,:)+F(59,:); F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); 

F(81,:)+F(83,:);... 

  F(87,:)+F(89,:); F(93,:)+F(95,:)];        %mI.II=mI2+mII1 

Fnn=F(1:36,1:36);  Fnp=F(1:36,37:51);  Fpn=F(37:51,1:36);  Fpp=F(37:51,37:51); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(36,1);      %vector of initial bar elongation 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

 

p1=2*-1.1430; p2=2*-1.1430; p3=2*-1.1430; p4=2*-1.1430; p5=2*-1.1430; 

p6=0*-1.1430; p7=2*-1.1430; p8=2*-1.1430; p9=2*-1.1430; p10=2*-1.1430; 

 

P=1*[0 p1 0 p2 0 0 0 p3 0 0 0 p4 0 0 0 p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 0 0 0 p9 

0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);                  %state of self-stress 

tH=pinv(A)*P;               %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));   %alpha is the "redundancies" 

tn=tH+S*alpha;                       %t is the vector of bar tensions 

tn([33:36],:);                       %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 
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%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 

k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(36,1); 

e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:); 

ddn1=[-9; -8; -5; -3; -1; 0; 0; -1; -2; -3];  %target displacement 

DDn1=ddn1-dpn1;              %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 12 13 17 20 24 25 28 29]); 

e0t1([4 5 12 13 17 20 24 25 28 29],:)=pinv(Y1)*DDn1; 

e0t1([4 5 12 13 17 20 24 25 28 29],:) 

ee=15*ones(10,1)+e0t1([4 5 12 13 17 20 24 25 28 29],:); 

Bn=[4; 5; 12; 13; 17; 20; 24; 25; 28; 29]; 
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ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=D([2 4 8 12 16 22 24 28 32 34],1)+[3.990; 4.267; 4.457; 2.456; 0.999; -

0.340; 0.634; 1.180; 2.201; 4.236]; 

DF=TH-PR; 

Both=[TH PR DF]; 

 

A.8 MATLAB Program for Table 6.2 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954;  212.2653   22.9330;  381.8877   174.9123 

    395.6891  53.9261;  581.8877  188.7024;  586.5517 68.7931 

    781.8877 186.0357;  775.7805   66.1912;  981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160 30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877 89.3289 

   1781.8877  31.7244;  104.8987   53.7998;  104.8987 53.7998 

   292.0632   94.4307;  292.0632   94.4307;  487.3151   120.2478; 

   487.3151     120.2478;  681.4841  125.7724;  681.4841   125.7724 

   875.7975     117.6957;  875.7975  117.6957; 1076.6141 99.8769 

  1076.6141      99.8769; 1271.8576   75.6409; 1271.8576 75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10  

12];  %sets up matrix of connectivity 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54... 

    54 54 54 54 54 54 54 54 54 54 54 54 54];%bar area for each bar in mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5  364.5]; %bar moment of inertia for 

each bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 

        70 70 70 70 70 70 70 70 70 70 70 70 70 70]; %young's modulus in N/mm2 

H=zeros(105,108);     %sets up 105x108 structural equilibrium matrix 

F=zeros(108,108);     %sets up 108x108 structural flexibility matrix 

for i=1:36, 

  j1=bar(i,1); j2=bar(i,2); 
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  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([1:27 30:36 39:105],:);     %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:108])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 

... 

    53 55 57 59 61 63 65 67 70 73 76 79:93]);  %removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39 40 

42 ... 

  43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 

81 ... 

  82 84 85 87 88 90 91 93 94 96 97 99 100],:);%M1=M2=M3=M4=M5=M6 no moment on 

mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:36); Amp=H(1:35,37:51); Apn=H(36:50,1:36); App=H(36:50,37:51); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 

73 76 ... 

 79 82 85 88 91 94 97 100 103 106]) F(:,9)+F(:,11)  F(:,15)+F(:,17) 

F(:,21)+F(:,23)... 

    F(:,27)+F(:,29) F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) 

F(:,51)+F(:,53)... 

    F(:,57)+F(:,59) F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) 

F(:,81)+F(:,83)... 
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    F(:,87)+F(:,89) F(:,93)+F(:,95)];         %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 

76 79 ... 

 82 85 88 91 94 97 100 103 106],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:);... 

  F(27,:)+F(29,:); F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); 

F(51,:)+F(53,:);... 

  F(57,:)+F(59,:); F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); 

F(81,:)+F(83,:);... 

  F(87,:)+F(89,:); F(93,:)+F(95,:)];          %mI.II=mI2+mII1 

Fnn=F(1:36,1:36);  Fnp=F(1:36,37:51);  Fpn=F(37:51,1:36);  Fpp=F(37:51,37:51); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(36,1);                      %vector of initial bar elongation 

e0n(36,1)=10; 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

 

p1=2*-1.1430; p2=2*-1.1430; p3=2*-1.1430; p4=2*-1.1430; p5=2*-1.1430; 

p6=0*-1.1430; p7=2*-1.1430; p8=2*-1.1430; p9=2*-1.1430; p10=2*-1.1430; 

P=1*[0 p1 0 p2 0 0 0 p3 0 0 0 p4 0 0 0 p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 0 0 0 p9 

0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);                  %state of self-stress 

tH=pinv(A)*P;               %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));   %alpha is the "redundancies" 

tn=tH+S*alpha;                       %t is the vector of bar tensions 

tn([33:36],:);                        %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 

 

%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 
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k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(36,1); 

e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:); 

ddn1=[15; 15; 15; 15; 10; -15; -30; -50; -75; -110];  %target displacement 

DDn1=ddn1-dpn1;             %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 12 13 17 20 24 25 28 29]); 

e0t1([4 5 12 13 17 20 24 25 28 29],:)=pinv(Y1)*DDn1; 

e0t1([4 5 12 13 17 20 24 25 28 29],:) 

 

ee=15*ones(10,1)+e0t1([4 5 12 13 17 20 24 25 28 29],:); 

Bn=[4; 5; 12; 13; 17; 20; 24; 25; 28; 29]; 

ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=D([2 4 8 12 16 22 24 28 32 34],1)+[-4.99; -3.76; -3.55; -3.26;  -1.92; 1.97 

; 5.39; 6.96; 4.83; 7.53]; 

DF=TH-PR; 

Both=[TH PR DF]; 
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A.9 MATLAB Program for Table 6.3 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954;  212.2653   22.9330;  381.8877   174.9123 

    395.6891  53.9261;  581.8877  188.7024;  586.5517 68.7931 

    781.8877 186.0357;  775.7805   66.1912;  981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160 30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877 89.3289 

   1781.8877  31.7244;  104.8987   53.7998;  104.8987 53.7998 

   292.0632      94.4307;  292.0632   94.4307;  487.3151   120.2478; 

   487.3151     120.2478;  681.4841  125.7724;  681.4841   125.7724 

   875.7975     117.6957;  875.7975  117.6957; 1076.6141 99.8769 

  1076.6141      99.8769; 1271.8576   75.6409; 1271.8576 75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10 

12]; %sets up matrix of connectivity 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 ... 

    54 54 54 54 54 54 54 54 54 54 54 54 54];%bar area for each bar in mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5];%bar moment of inertia for each 

bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 

        70 70 70 70 70 70 70 70 70 70 70 70 70 70]; %young's modulus in N/mm2 

H=zeros(105,108);         %sets up 105x108 structural equilibrium matrix 

F=zeros(108,108);         %sets up 108x108 structural flexibility matrix 

for i=1:36, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 
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H=H([1:27 30:36 39:105],:);               %selecting rows relating to non-

supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:108])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49... 

   51 53 55 57 59 61 63 65 67 70 73 76 79:93]);%removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39... 

  40 42 43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75... 

  76 78 79 81 82 84 85 87 88 90 91 93 94 96 97 99 100],:); %M1=M2=M3=M4=M5=M6 

no moment on mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

 H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); H(44,:)+H(46,:);... 

 H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:36); Amp=H(1:35,37:51); Apn=H(36:50,1:36); App=H(36:50,37:51); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67... 

 70 73 76 79 82 85 88 91 94 97 100 103 106]) F(:,9)+F(:,11)  F(:,15)+F(:,17) 

F(:,21)+F(:,23)... 

    F(:,27)+F(:,29) F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) 

F(:,51)+F(:,53)... 

    F(:,57)+F(:,59) F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) 

F(:,81)+F(:,83)... 

    F(:,87)+F(:,89) F(:,93)+F(:,95)];   %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70... 

73 76 79 82 85 88 91 94 97 100 103 106],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:);... 

F(27,:)+F(29,:); F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); 

F(51,:)+F(53,:);... 

  F(57,:)+F(59,:); F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); 

F(81,:)+F(83,:);... 

  F(87,:)+F(89,:); F(93,:)+F(95,:)];           %mI.II=mI2+mII1 

Fnn=F(1:36,1:36);  Fnp=F(1:36,37:51);  Fpn=F(37:51,1:36);  Fpp=F(37:51,37:51); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(36,1);                      %vector of initial bar elongation 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

p1=9*-1.1430; p2=0*-1.1430; p3=0*-1.1430; p4=0*-1.1430; p5=0*-1.1430; 

p6=0*-1.1430; p7=0*-1.1430; p8=0*-1.1430; p9=0*-1.1430; p10=0*-1.1430; 
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P=1*[0 p1 0 p2 0 0 0 p3 0 0 0 p4 0 0 0 p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 0 0 0 p9 

0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);           %state of self-stress 

tH=pinv(A)*P;        %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));   %alpha is the "redundancies" 

tn=tH+S*alpha;                       %t is the vector of bar tensions 

tn([33:36],:);                        %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 

 

%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 

k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 



Appendix A: MATLAB Programs 

251 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(36,1); 

e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:) 

ddn1=[0; 0; 0; 0; 0; 0; 0; 0; 0; 0];  %target displacement 

DDn1=ddn1-dpn1;                   %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 12 13 17 20]); 

e0t1([4 5 12 13 17 20],:)=pinv(Y1)*DDn1; 

e0t1([4 5 12 13 17 20],:) 

ee=15*ones(6,1)+e0t1([4 5 12 13 17 20],:); 

Bn=[4; 5; 12; 13; 17; 20]; 

ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=D([2 4 8 12 16 22 24 28 32 34],1)+[22.8980; 21.9391; 16.4163; 9.5580; 

3.6345; -1.1229; -1.3364; -1.7648; -1.7332; -3.4908]; 

DF=TH-PR; 

Both=[TH PR DF]; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n2=zeros(36,1); 

e0p2=zeros(15,1); 

e0t2=[e0n1; e0p1]; 

dpn2=dm([2;4;8;12;16;22;24;28;32;34],:); 

ddn2=[0; 0; 0; 0; -3; 0; 0; 0; 0; 0];  %target displacement 

DDn2=ddn2-dpn2;           %difference between target and practical 

Y2=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 12 13 17 20]); 

e0t2([4 5 12 13 17 20],:)=pinv(Y2)*DDn2; 

e0t2([4 5 12 13 17 20],:) 

ee2=15*ones(6,1)+e0t2([4 5 12 13 17 20],:); 

Bn2=[4; 5; 12; 13; 17; 20]; 

ee2=[ee2   Bn2]; 

Te0t2=sum(abs(e0t2)); 

 

DDnp2=Yc*e0t2+D; 

Check12=DDnp2([2 4 8 12 16 22 24 28 32 34],1) 

Check22=[ddn2 Check12]; 

TH2=DDnp2([2 4 8 12 16 22 24 28 32 34],1); 
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PR2=D([2 4 8 12 16 22 24 28 32 34],1)+[24.2912; 23.3120; 17.2208; 9.7590; 

0.9494; -1.3590; -1.33406; -1.7781; -2.2056; -3.5281]; 

DF2=TH2-PR2; 

Both=[TH2 PR2 DF2]; 

 

A.10 MATLAB Program for Table 6.4 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954;  212.2653   22.9330;  381.8877   174.9123 

    395.6891  53.9261;  581.8877  188.7024;  586.5517 68.7931 

    781.8877 186.0357;  775.7805   66.1912;  981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160 30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877 89.3289 

   1781.8877  31.7244;  104.8987   53.7998;  104.8987 53.7998 

   292.0632      94.4307;  292.0632   94.4307;  487.3151   120.2478; 

   487.3151     120.2478;  681.4841  125.7724;  681.4841   125.7724 

   875.7975     117.6957;  875.7975  117.6957; 1076.6141 99.8769 

  1076.6141      99.8769; 1271.8576   75.6409; 1271.8576 75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10  

12];  %sets up matrix of connectivity 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 ... 

    54 54 54 54 54 54 54 54 54 54 54 54 54 54  54];  %bar area for each bar in 

mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5  364.5]; %bar moment of inertia for 

each bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70... 

        70 70 70 70 70 70 70 70 70 70 70 70 70 70]; %young's modulus in N/mm2 

H=zeros(105,108);       %sets up 105x108 structural equilibrium matrix 

F=zeros(108,108);       %sets up 108x108 structural flexibility matrix 

for i=1:36, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 
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  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([1:27 30:36 39:105],:);     %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:108])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 

... 

    53 55 57 59 61 63 65 67 70 73 76 79:93]);%removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39 40 

42 ... 

  43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 

81 ... 

  82 84 85 87 88 90 91 93 94 96 97 99 100],:); %M1=M2=M3=M4=M5=M6 no moment on 

mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:36); Amp=H(1:35,37:51); Apn=H(36:50,1:36); App=H(36:50,37:51); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 

73 76 ... 

 79 82 85 88 91 94 97 100 103 106]) F(:,9)+F(:,11)  F(:,15)+F(:,17) 

F(:,21)+F(:,23)... 

    F(:,27)+F(:,29) F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) 

F(:,51)+F(:,53)... 

    F(:,57)+F(:,59) F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) 

F(:,81)+F(:,83)... 

    F(:,87)+F(:,89) F(:,93)+F(:,95)];        %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 

76 79 ... 
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 82 85 88 91 94 97 100 103 106],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:);... 

  F(27,:)+F(29,:); F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); 

F(51,:)+F(53,:);... 

  F(57,:)+F(59,:); F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); 

F(81,:)+F(83,:);... 

  F(87,:)+F(89,:); F(93,:)+F(95,:)];                %mI.II=mI2+mII1 

Fnn=F(1:36,1:36);  Fnp=F(1:36,37:51);  Fpn=F(37:51,1:36);  Fpp=F(37:51,37:51); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(36,1);                      %vector of initial bar elongation 

 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

   p1x=2*1.1430; p1=0*-1.1430; p2x=2*1.1430; p2=0*-1.1430; p3x=2*1.1430;    

   p3=0*-1.1430; p4x=2*1.1430; p4=0*-1.1430; p5x=2*1.1430; p5=0*-1.1430;  

   p6=0*-1.1430; p7=0*-1.1430; p8=0*-1.1430; p9=0*-1.1430; p10=0*-1.1430; 

 

P=1*[p1x p1 p2x p2 0 0 p3x p3 0 0 p4x p4 0 0 p5x p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 

0 0 0 p9 0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);               %state of self-stress 

tH=pinv(A)*P;            %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH)); %alpha is the "redundancies" 

tn=tH+S*alpha;                     %t is the vector of bar tensions 

tn([33:36],:);                     %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 

 

%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 

k=S*inv(S'*F*S)*S'; 
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k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(36,1); 

e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([1;3;7;11;15],:) 

ddn1=[1; 0; 0; 0; 0];  %target displacement 

DDn1=ddn1-dpn1 ;       %difference between target and practical 

Y1=Yc([1 3 7 11 15],[4 5 12 13 17 20]); 

e0t1([4 5 12 13 17 20],:)=pinv(Y1)*DDn1; 

e0t1([4 5 12 13 17 20],:) 

 

ee=15*ones(6,1)+e0t1([4 5 12 13 17 20],:); 

Bn=[4; 5; 12; 13; 17; 20]; 

ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([1 3 7 11 15],1) 

Check2=[ddn1 Check1]; 

TH=DDnp1([1 3 7 11 15],1); 

PR=D([1 3 7 11 15],1)+[-2.2612; -3.2207; -2.5815; -1.4971; -0.5204]; 

DF=TH-PR; 

Both=[TH PR DF]; 
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A.11 MATLAB Program for Table 6.5 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954; 212.2653   22.9330; 381.8877   174.9123 

    395.6891  53.9261; 581.8877  188.7024; 586.5517 68.7931 

    781.8877 186.0357; 775.7805   66.1912; 981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160 30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877 89.3289 

   1781.8877  31.7244; 104.8987   53.7998;  104.8987 53.7998 

   292.0632      94.4307; 292.0632   94.4307;  487.3151   120.2478; 

   487.3151     120.2478; 681.4841  125.7724;  681.4841   125.7724 

   875.7975     117.6957; 875.7975  117.6957; 1076.6141 99.8769 

  1076.6141      99.8769; 1271.8576   75.6409; 1271.8576 75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10 12 

      2   4; 4   6; 6    8; 8   10; 12 14; 14 16; 16 18; 3    5; 5    7 

      7   9; 9 11; 11 13; 13 15; 15 17; 17 19];%sets up matrix of connectivity 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 

... 

      54 54 54 54 54 54 54 54 54 54 54 54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]; %bar 

area for each bar in mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5  364.5 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375... 

          0.84375 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375... 

           0.84375];     %bar moment of inertia for each bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 

       70 70 70 70 70 70 70 70 70 70 70 70 70 70 0.0025 0.0025 0.0025... 

       0.0025 0.0025 0.0025 0.0025 0.0025 0.0025... 

       0.0025 0.0025 0.0025 0.0025 0.0025 0.0025]; %young's modulus in N/mm2 

H=zeros(105,153);       %sets up 105x108 structural equilibrium matrix 

F=zeros(153,153);       %sets up 108x108 structural flexibility matrix 

for i=1:51, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  ll(i)=L; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 
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  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([1:27 30:36 39:105],:);     %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:153])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 

... 

    53 55 57 59 61 63 65 67 70 73 76 79 82 85 88 91 94 97 100 103 106 ... 

    109 112 115 118 121 124:138]);     %removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39 40 

42 ... 

  43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 

81 ... 

  82 84 85 87 88 90 91 93 94 96 97 99 100],:); %M1=M2=M3=M4=M5=M6 no moment on 

mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:51); Amp=H(1:35,52:66); Apn=H(36:50,1:51); App=H(36:50,52:66); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 

73 76 ... 

 79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 136 139 

142 ... 

 145 148 151]) F(:,9)+F(:,11)  F(:,15)+F(:,17) F(:,21)+F(:,23) F(:,27)+F(:,29) 

... 

 F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) F(:,51)+F(:,53) 

F(:,57)+F(:,59) ... 

 F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) F(:,81)+F(:,83) 

F(:,87)+F(:,89) ... 

 F(:,93)+F(:,95)];                                  %mI.II=mI2+mII1 
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F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 

76 79 ... 

 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 136 139 142 

... 

 145 148 151],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); F(21,:)+F(23,:); 

F(27,:)+F(29,:);... 

 F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); F(51,:)+F(53,:); 

F(57,:)+F(59,:);... 

 F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); F(81,:)+F(83,:); 

F(87,:)+F(89,:);... 

 F(93,:)+F(95,:)];                                   %mI.II=mI2+mII1 

Fnn=F(1:51,1:51);  Fnp=F(1:51,52:66);  Fpn=F(52:66,1:51);  Fpp=F(52:66,52:66); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

 

e0n=zeros(51,1);                      %vector of initial bar elongation 

 

e0n([37:51],1)=-

0.205*100*[1.625792648330038;2.034699594672639;2.004748534305737;... 

2.000177774321323;2.011389833547938;2.019236000797331; 2.028390431225951;... 

1.431875491315149;1.860238228132354; 1.914407474070241;1.892466872445856;... 

1.958336181680765; 1.973249669397667;1.972771564037255;4.208645819158463]; 

Elastic=0.795*[162.5793; 203.4700; 200.4749; 200.0178; 201.1390; 201.9236;... 

    202.8390; 143.1875; 186.0238; 191.4407; 189.2467; 195.8336; 197.3250;... 

    197.2772; 420.8646]; 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

 

p1=2*-1.1430; p2=2*-1.1430; p3=2*-1.1430; p4=2*-1.1430; p5=2*-1.1430; 

p6=0*-1.1430; p7=2*-1.1430; p8=2*-1.1430; p9=2*-1.1430; p10=2*-1.1430; 

 

P=1*[0 p1 0 p2 0 0 0 p3 0 0 0 p4 0 0 0 p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 0 0 0 p9 

0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);          %state of self-stress 

M=null(A'); 

tH=pinv(A)*P;       %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));   %alpha is the "redundancies" 

tn=tH+S*alpha;                       %t is the vector of bar tensions 

tn([37:51],:) ;                      %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 
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%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; 

m2=m; 

m3=m*-r; 

k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(51,1); 

e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:) 

ddn1=[-1; -1; -1; -1; -1; 0; 0; -1; -1; -1];  %target displacement 

DDn1=ddn1-dpn1;       %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 8 12 16 20 25 29 33 34]); 

e0t1([4 5 8 12 16 20 25 29 33 34],:)=pinv(Y1)*DDn1; 

e0t1([4 5 8 12 16 20 25 29 33 34],:) 

ee=15*ones(10,1)+e0t1([4 5 8 12 16 20 25 29 33 34],:); 

Bn=[4; 5; 8; 12; 16; 20; 25; 29; 33; 34]; 
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ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=D([2 4 8 12 16 22 24 28 32 34],1)+[ 11.2335;11.1530;8.7709;4.6105;1.3939;-

0.4157;0.7418;1.0121 ;3.3320;6.1480]; 

DF=TH-PR; 

Both=[TH PR DF]; 

 

A.12 MATLAB Program for Table 6.6 

clear; clc; 

coor=[0.0000  25.8097;   31.8877   74.7896;   69.2926    15.0920 

    181.8877 137.4954; 212.2653   22.9330; 381.8877   174.9123 

    395.6891  53.9261; 581.8877  188.7024; 586.5517 68.7931 

    781.8877 186.0357; 775.7805   66.1912; 981.8877   172.3276 

    970.8177  48.5476; 1181.8877  150.9526; 1167.3160 30.5043 

   1381.8877 123.1472; 1362.2205    0.0000; 1581.8877 89.3289 

   1781.8877  31.7244; 104.8987   53.7998; 104.8987 53.7998 

   292.0632      94.4307; 292.0632   94.4307; 487.3151   120.2478; 

   487.3151     120.2478; 681.4841  125.7724; 681.4841   125.7724 

   875.7975     117.6957; 875.7975  117.6957; 1076.6141 99.8769 

  1076.6141      99.8769; 1271.8576   75.6409; 1271.8576 75.6409 

  1471.7888      44.5566; 1471.7888  44.5566];%sets up coordinates in mm 

 

bar=[1   2; 1  3; 3 20; 20  4; 2 21; 21  5; 5 22; 22  6; 4 23 

     23   7; 7 24; 24  8; 6 25; 25  9; 9 26; 26 10; 8 27; 27 11 

     11  28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

     32  16; 14 33; 33 17; 17 34; 34 18; 16 35; 35 19; 18 19; 10 12 

  2   4; 4   6; 6    8; 8   10; 12 14; 14 16; 16 18; 3    5; 5    7 

  7   9; 9 11; 11 13; 13 15; 15 17; 17 19]; %sets up matrix of connectivity 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 ... 

     54 54 54 54 54 54 54 54 54 54 54 54 54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]; 

%bar area for each bar in mm2 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375... 

          0.84375 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375 0.84375... 

           0.84375];       %bar moment of inertia for each bar in mm4 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 
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        70 70 70 70 70 70 70 70 70 70 70 70 70 70 0.0025 0.0025 0.0025... 

        0.0025 0.0025 0.0025 0.0025 0.0025 0.0025... 

        0.0025 0.0025 0.0025 0.0025 0.0025 0.0025]; %young's modulus in N/mm2 

H=zeros(105,153);         %sets up 105x108 structural equilibrium matrix 

F=zeros(153,153);         %sets up 108x108 structural flexibility matrix 

for i=1:51, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  ll(i)=L; 

  l=hor/L; m=ver/L;          %l & m are the cos & sin of bar angle 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([1:27 30:36 39:105],:);    %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50 52 

... 

    54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 96:153])... 

    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 

... 

    53 55 57 59 61 63 65 67 70 73 76 79 82 85 88 91 94 97 100 103 106 ... 

    109 112 115 118 121 124:138]);     %removing mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39 40 

42 ... 

  43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 

81 ... 

  82 84 85 87 88 90 91 93 94 96 97 99 100],:); %M1=M2=M3=M4=M5=M6 no moment on 

mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:51); Amp=H(1:35,52:66); Apn=H(36:50,1:51); App=H(36:50,52:66); 
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A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 

73 76 ... 

 79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 136 139 

142 ... 

 145 148 151]) F(:,9)+F(:,11)  F(:,15)+F(:,17) F(:,21)+F(:,23) F(:,27)+F(:,29) 

... 

 F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) F(:,51)+F(:,53) 

F(:,57)+F(:,59) ... 

 F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) F(:,81)+F(:,83) 

F(:,87)+F(:,89) ... 

 F(:,93)+F(:,95)];              %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 ... 

 73 76 79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 

136 139 142 145 148 151],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:); F(27,:)+F(29,:);... 

 F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); F(51,:)+F(53,:); 

F(57,:)+F(59,:);... 

 F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); F(81,:)+F(83,:); 

F(87,:)+F(89,:);... 

 F(93,:)+F(95,:)];                                   %mI.II=mI2+mII1 

Fnn=F(1:51,1:51);  Fnp=F(1:51,52:66);  Fpn=F(52:66,1:51);  Fpp=F(52:66,52:66); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(51,1);               %vector of initial bar elongation 

e0n([37:51],1)=-

0.205*100*[1.625792648330038;2.034699594672639;2.004748534305737;... 

2.000177774321323;2.011389833547938;2.019236000797331;... 

2.028390431225951;1.431875491315149;1.860238228132354;... 

1.914407474070241;1.892466872445856;1.958336181680765;... 

1.973249669397667;1.972771564037255;4.208645819158463]; 

Elastic=0.795*[162.5793; 203.4700; 200.4749; 200.0178; 201.1390; 201.9236;... 

    202.8390; 143.1875; 186.0238; 191.4407; 189.2467; 195.8336; 197.3250;... 

    197.2772; 420.8646]; 

e0p=zeros(15,1); e0t=[e0n; e0p]; r=Apn'*pinv(App'); e0=e0n-r*e0p; 

p1=2*-1.1430; p2=2*-1.1430; p3=2*-1.1430; p4=2*-1.1430; p5=2*-1.1430; 

p6=0*-1.1430; p7=2*-1.1430; p8=2*-1.1430; p9=2*-1.1430; p10=2*-1.1430; 

 

P=1*[0 p1 0 p2 0 0 0 p3 0 0 0 p4 0 0 0 p5 0 0 0 0 0 p6 0 p7 0 0 0 p8 0 0 0 p9 

0 p10 0]'; %Force vector, with rows for supports taken out already 

S=null(A);      %state of self-stress 

M=null(A'); 

tH=pinv(A)*P;   %tH is a vector of t that is in eqm with applied P 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH));   %alpha is the "redundancies" 

tn=tH+S*alpha;                       %t is the vector of bar tensions 

tn([37:51],:) ;                      %Check strain gauge testing 

tp=-pinv(App)*Apn*tn; 

TT=[tn; tp]; 

e=e0+F*tn;                           %e is vector of bar elongations 
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en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

et=[en; ep]; 

dm=pinv(A')*e;           %d is vector of displacements 

dp=pinv(App')*ep-pinv(App')*Amp'*dm; 

 

%22222222222222222222222222222222222222222 

dy=dm([2;4;6;8;10;12;14;16;18;20;22;24;26;28;30;32;34],:); %dmy 

Test=dm([2;4;8;12;16;22;24;28;32;34],:)'; 

%22222222222222222222222222222222222222222 

x=Fnn-Fnp*pinv(App)*Apn; 

z=Fpn-Fpp*pinv(App)*Apn; 

r=Apn'*pinv(App'); 

m=[pinv(A')-pinv(A')*F*S*inv(S'*F*S)*S']; 

m1=m*F; m2=m; m3=m*-r; 

k=S*inv(S'*F*S)*S'; 

k1=(-pinv(App')*z*k*F+pinv(App')*Amp'*pinv(A')*F*k*F-

pinv(App')*Amp'*pinv(A')*F+pinv(App')*z); 

k2=(-pinv(App')*z*k  +pinv(App')*Amp'*pinv(A')*F*k  -

pinv(App')*Amp'*pinv(A')); 

k3=( pinv(App')*z*k*r-

pinv(App')*Amp'*pinv(A')*F*k*r+pinv(App')*Amp'*pinv(A')*r+pinv(App')); 

MK1=[m1; k1]; 

MK2=[m2; k2]; 

MK3=[m3; k3]; 

dpc=MK1*tH; 

Yc=[MK2 MK3]; 

D=MK1*tH+Yc*e0t; 

J=-pinv(App)*Apn; 

tpc=[tH-k*F*tH; J*tH-J*k*F*tH]; 

Znc=[-k;  -J*k]; 

Zpc=[k*r;  J*k*r]; 

Zc=[Znc Zpc]; 

T=tpc+Zc*e0t; 

%22222222222222222222222222222222222222222 

%Joint Displacement 

% Selecting bars (4,5,8,9,12,13,16,17,20,24,25,28,29,32,33,34&36) to control 

% y of joints (1,2,4,6,8,12,14,16,18&19) 

e0n1=zeros(51,1);  e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:) 

ddn1=[0; 0; 0; 0; 0; 0; 0; 0; 0; 0];  %target displacement 

DDn1=ddn1-dpn1;               %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 8 12 16 20 25 29 33 34]); 

e0t1([4 5 8 12 16 20 25 29 33 34],:)=pinv(Y1)*DDn1; 

e0t1([4 5 8 12 16 20 25 29 33 34],:) 

ee=15*ones(10,1)+e0t1([4 5 8 12 16 20 25 29 33 34],:); 

Bn=[4; 5; 8; 12; 16; 20; 25; 29; 33; 34]; 
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ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=dpn1+[13.3790;13.1844;10.20781;5.9651;2.2739;-0.41063;0.5540;2.4496 

;3.9245;6.4002]; 

DF=TH-PR; 

Both=[TH PR DF]; 

%22222222222222222222222222222222222222222 

e0n1=zeros(51,1); e0p1=zeros(15,1); 

e0t1=[e0n1; e0p1]; 

dm([2;4;8;12;16;22;24;28;32;34],:)=PR; 

D([2;4;8;12;16;22;24;28;32;34],:)=dm([2;4;8;12;16;22;24;28;32;34],:); 

dpn1=dm([2;4;8;12;16;22;24;28;32;34],:) 

ddn1=[0; 0; 0; 0; 0; 0; 0; 0; 0; 0];  %target displacement 

DDn1=ddn1-dpn1;                  %difference between target and practical 

Y1=Yc([2 4 8 12 16 22 24 28 32 34],[4 5 8 12 16 20 25 29 33 34]); 

e0t1([4 5 8 12 16 20 25 29 33 34],:)=pinv(Y1)*DDn1; 

e0t1([4 5 8 12 16 20 25 29 33 34],:) 

ee=[14.7974;14.7853;14.6036;14.2431;13.9911;14.6366;14.6221;14.4582;14.5980;15

.0969]+e0t1([4 5 8 12 16 20 25 29 33 34],:); 

Bn=[4; 5; 8; 12; 16; 20; 25; 29; 33; 34]; 

ee=[ee   Bn]; 

Te0t1=sum(abs(e0t1)); 

DDnp1=Yc*e0t1+D; 

Check1=DDnp1([2 4 8 12 16 22 24 28 32 34],1) 

Check2=[ddn1 Check1]; 

TH=DDnp1([2 4 8 12 16 22 24 28 32 34],1); 

PR=dpn1+[ 0.3283;-0.0971;-0.5011;-0.0205;0.0102;-0.3932;-0.4756;-0.9599;-

0.5551;-0.9763]; 

DF=TH-PR; 

Both=[TH PR DF]; 

 

A.13 MATLAB Program for Non-Linear Calculation Method 

(Coordinate Update Method) of Morphing 

Clear; clc; dm=zeros(35,1); dp=zeros(15,1); y=0; 

for w=1:300; 

 u=0.1; y=y+u; 

coor=[0.0000+dm(1)   25.8097+dm(2); 31.8877+dm(3)   74.7896+dm(4) 

     69.2926+dm(5)   15.0920+dm(6); 181.8877+dm(7)  137.4954+dm(8) 

    212.2653+dm(9)   22.9330+dm(10); 381.8877+dm(11)  174.9123+dm(12) 

    395.6891+dm(13)   53.9261+dm(14); 581.8877+dm(15)  188.7024+dm(16) 
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    586.5517+dm(17)   68.7931+dm(18); 781.8877        186.0357 

    775.7805+dm(19)   66.1912+dm(20); 981.8877+dm(21)  172.3276+dm(22) 

    970.8177          48.5476; 1181.8877+dm(23)  150.9526+dm(24) 

   1167.3160+dm(25)   30.5043+dm(26); 1381.8877+dm(27)  

123.1472+dm(28) ; 1362.2205+dm(29)    0.0000+dm(30) 

   1581.8877+dm(31)   89.3289+dm(32) ; 1781.8877+dm(33)   

31.7244+dm(34) 

    104.8987+dp(2)   53.7998+dp(3) ; 104.8987+dp(2)   53.7998+dp(3) 

    292.0632+dp(4)   94.4307+dp(5) ; 292.0632+dp(4)    94.4307+dp(5) 

    487.3151+dp(6)  120.2478+dp(7) ; 487.3151+dp(6)  120.2478+dp(7) 

    681.4841+dp(8)  125.7724+dp(9) ; 681.4841+dp(8)  125.7724+dp(9) 

    875.7975+dp(10)  117.6957+dp(11); 875.7975+dp(10)  117.6957+dp(11) 

   1076.6141+dp(12)  99.8769+dp(13); 1076.6141+dp(12)   99.8769+dp(13) 

   1271.8576+dp(14)       75.6409+dp(15); 1271.8576+dp(14)   75.6409+dp(15) 

   1471.7888+dm(35)   44.5566+dp(1); 1471.7888+dm(35)   44.5566+dp(1)];             

%sets up coordinates in mm 

bar=[1 2; 1 3; 3 20; 20 4; 2 21; 21 5; 5 22; 22 6; 4 23 

23 7; 7 24; 24 8; 6 25; 25 9; 9 26; 26 10; 8 27; 27 11 

11    28; 28 12; 10 29; 29 13; 13 30; 30 14; 12 31; 31 15; 15 32 

32    16; 14 33; 33   17; 17 34; 34 18; 16 35; 35 19; 18 19; 10 12]; 

area=[54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 ... 

      54 54 54 54 54 54 54 54 54 54 54 54 54]; 

inertia=[364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 364.5 ... 

         364.5 364.5 364.5]; 

E=1000*[70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 ... 

        70 70 70 70 70 70 70 70 70 70 70 70 70 70]; 

H=zeros(105,108);  F=zeros(108,108); 

for i=1:36, 

  j1=bar(i,1); j2=bar(i,2); 

  hor=coor(j2,1)-coor(j1,1); ver=coor(j2,2)-coor(j1,2); 

  L=sqrt(hor^2+ver^2) ; 

  l=hor/L; m=ver/L; 

  h=[-l m/L -m/L;-m -l/L l/L; 0 -1 0;l -m/L m/L;m l/L -l/L;0 0 1]; 

  f=[(L/(E(i)*area(i))) 0 0; 0 (L/(3*E(i)*inertia(i))) 

(L/(6*E(i)*inertia(i)));... 

      0 (L/(6*E(i)*inertia(i))) (L/(3*E(i)*inertia(i)))]; 

  H((j1-1)*3+1:(j1-1)*3+3,i*3-2:i*3)= H((j1-1)*3+1:(j1-1)*3+3,i*3-

2:i*3)+h(1:3,:); 

  H((j2-1)*3+1:(j2-1)*3+3,i*3-2:i*3)= H((j2-1)*3+1:(j2-1)*3+3,i*3-

2:i*3)+h(4:6,:); 

  F((i-1)*3+1:(i-1)*3+3,(i-1)*3+1:(i-1)*3+3)=f; 

end; 

H=H([1:27 30:36 39:105],:);     %selecting rows relating to non-supports 

H=[H(:,[1:8 10 12:14 16 18:20 22 24:26 28 30:32 34 36:38 40 42:44 46 48:50... 

    52 54:56 58 60:62 64 66:68 70 72:74 76 78:80 82 84:86 88 90:92 94 

96:108])... 
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    H(:,9)+H(:,11)  H(:,15)+H(:,17) H(:,21)+H(:,23) H(:,27)+H(:,29) ... 

    H(:,33)+H(:,35) H(:,39)+H(:,41) H(:,45)+H(:,47) H(:,51)+H(:,53)  ... 

    H(:,57)+H(:,59) H(:,63)+H(:,65) H(:,69)+H(:,71) H(:,75)+H(:,77)  ... 

    H(:,81)+H(:,83)  H(:,87)+H(:,89) H(:,93)+H(:,95)];   %mI.II=mI2+mII1 

H=H(:,[1 4 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49... 

    51 53 55 57 59 61 63 65 67 70 73 76 79:93]);     %removing 

mI1=mII2=mIII1=mIV2=0 

H=H([1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 29 30 32 33 36 37 39... 

  40 42 43 45 46 48 49 51 52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75... 

  76 78 79 81 82 84 85 87 88 90 91 93 94 96 97 99 100], :); 

       %M1=M2=M3=M4=M5=M6 no moment on mid and end joints of pantographic 

H=[H(1:34,:); H(63,:)+H(65,:); H(64,:)+H(66,:); H(35,:)+H(37,:); 

H(36,:)+H(38,:);... 

              H(39,:)+H(41,:); H(40,:)+H(42,:); H(43,:)+H(45,:); 

H(44,:)+H(46,:);... 

              H(47,:)+H(49,:); H(48,:)+H(50,:); H(51,:)+H(53,:); 

H(52,:)+H(54,:);... 

              H(55,:)+H(57,:); H(56,:)+H(58,:); H(59,:)+H(61,:); 

H(60,:)+H(62,:)]; %Px5+Px6=0,Py5+Py6=0, no load on mid joint of pantographic 

Amn=H(1:35,1:36); Amp=H(1:35,37:51); Apn=H(36:50,1:36); App=H(36:50,37:51); 

A=Amn-Amp*pinv(App)*Apn; 

F=[F(:,[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67... 

 70 73 76 79 82 85 88 91 94 97 100 103 106]) F(:,9)+F(:,11)  F(:,15)+F(:,17) 

F(:,21)+F(:,23)... 

    F(:,27)+F(:,29) F(:,33)+F(:,35) F(:,39)+F(:,41) F(:,45)+F(:,47) 

F(:,51)+F(:,53)... 

    F(:,57)+F(:,59) F(:,63)+F(:,65) F(:,69)+F(:,71) F(:,75)+F(:,77) 

F(:,81)+F(:,83)... 

    F(:,87)+F(:,89) F(:,93)+F(:,95)];             %mI.II=mI2+mII1 

F=[F([1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 ... 

 73 76 79 82 85 88 91 94 97 100 103 106],:); F(9,:)+F(11,:) ; F(15,:)+F(17,:); 

F(21,:)+F(23,:);... 

  F(27,:)+F(29,:); F(33,:)+F(35,:); F(39,:)+F(41,:); F(45,:)+F(47,:); 

F(51,:)+F(53,:);... 

  F(57,:)+F(59,:); F(63,:)+F(65,:); F(69,:)+F(71,:); F(75,:)+F(77,:); 

F(81,:)+F(83,:);... 

  F(87,:)+F(89,:); F(93,:)+F(95,:)];          %mI.II=mI2+mII1 

Fnn=F(1:36,1:36);  Fnp=F(1:36,37:51);  Fpn=F(37:51,1:36);  Fpp=F(37:51,37:51); 

F=Fnn-Fnp*pinv(App)*Apn-Apn'*pinv(App')*Fpn+Apn'*pinv(App')*Fpp*pinv(App)*Apn; 

e0n=zeros(36,1);          %vector of initial bar elongation 

e0n(36,1)=u; 

e0p=zeros(15,1); 

e0t=[e0n; e0p]; 

r=Apn'*pinv(App'); 

e0=e0n-r*e0p; 

   p1x=0*1.1430; p1y=0*-1.1430;   p2x=0*1.1430; p2y=0*-1.1430; p3x=0*1.1430; 

   p3y=0*-1.1430; p4x=0*1.1430;    p4y=0*-1.1430; p5x=0*1.1430; p5y=0*-1.1430; 

   p6y=0*-1.1430; p7y=0*-1.1430; p8y=0*-1.1430; p9y=0*-1.1430; p10y=0*-1.1430; 
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P=1*[p1x p1y p2x p2y 0 0 p3x p3y 0 0 p4x p4y 0 0 p5x p5y 0 0 0 0 0 p6y 0 p7y 0 

0 0 p8y 0 0 0 p9y 0 p10y 0]'; 

S=null(A); 

tH=pinv(A)*P; 

alpha=inv(S'*F*S)*(-S'*(e0+F*tH)); 

tn=tH+S*alpha; 

tn([33:36],:); 

tp=-pinv(App)*Apn*tn; 

e=e0+F*tn; 

en=(Fnn-Fnp*pinv(App)*Apn)*tn; 

ep=(Fpn-Fpp*pinv(App)*Apn)*tn; 

dm=dm+pinv(A')*e; 

dm1=pinv(A')*e; 

dp=dp+(pinv(App')*ep-pinv(App')*Amp'*dm1); end; 

dmx=dm([1;3;7;11;15;21;23;27;31;33],:) 

dmy=dm([2;4;8;12;16;22;24;28;32;34],:) 


