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Abstract 

 
Bootstrap DEA is a valuable tool for gauging the sensitivity of DEA scores towards 
sampling variations, hence allowing for statistical inference. However, it is associated 
with generous assumptions while evidence on its performance is limited. This thesis 
begins with the evaluation of the performance of bootstrap DEA in small samples 
through a variety of Monte Carlo simulations. The results indicate cases under which 
bootstrap DEA may underperform and it shown how the violation of the fundamental 
assumption of equal bootstrap and DEA biases may affect confidence intervals and 
cause the evidenced underperformance. An alternative approach, which utilises the 
Pearson system random number generator, seems to perform well towards this 
respect. In particular, coverage probabilities converge to the nominal ones for samples 
as small as 120 observations and the bootstrap biases are very close to the DEA ones. 
In the presence of technological heterogeneity, though, poor performance is observed 
in all cases, which is not surprising as even the applicability of simple DEA is 
questionable.  
 
Using an illustrative example from the deregulation of the Greek banking sector during 
late 80s, potential differences arising from the various approaches are discussed. In 
particular, the theoretical explorations are extended to the case of the Global 
Malmquist productivity index, which is used to examine the productivity change of 
Greek banks during (de)regulation. Some differences are observed on the magnitudes 
of the estimated quantities of interest and on the probability masses at the tails of the 
relevant bootstrap distributions. Qualitatively, though, the overall conclusions are very 
similar; the provision of commercial freedoms enhanced the productivity of 
commercial banks whereas the imposition of prudential controls had the opposite 
effect. This result is of topical interest as the European Supervisory Mechanism, which 
recently assumed duties, will closely supervise “significant institutions” which includes 
the 4 biggest Greek banks and their banking subsidiaries.  

 
Keywords: efficiency, productivity, DEA, bootstrap DEA, Global Malmquist index, hypothesis 
testing, Monte Carlo simulations, banking, deregulation 
 
JEL Classifications: C12, C14, C15, C61, C67, G21, G28, L25  
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1 Introduction 

 

The analysis of efficiency and productivity is an area of research interest and practical 

importance for various fields. The motivation behind such analyses is associated with 

the evaluation of certain management practices or the effects of firm-level or economy-

wide events on firm performance. The development of appropriate models for the 

measurement of efficiency and productivity of various decision making units (DMUs) 

traces back to the theoretical works of Debreu (1951), Koopmans (1951) and Farrell 

(1957), while various techniques have been developed since then.  

Empirical studies in the literature have explored various datasets, for different time 

periods and have employed a range of efficiency measurement techniques. Not 

surprisingly, owing to this diversity it is possible to obtain different results, even when 

applying efficiency and productivity analysis methods on the same group of firms. In 

fact, it is possible to obtain different results even when focusing on a certain industry 

and using a certain technique, if we vary the group of firms considered in the analysis 

(perhaps due to the choice of different time periods or the inclusion or exclusion of 

certain firms from the analysis). 

The sensitivity of results towards sampling variations is certainly relevant to linear 

programming techniques of efficiency measurement, such as Data Envelopment 

Analysis (DEA) which is used in this thesis, as efficiency frontiers are constructed from 

the data. The different shapes of the frontier that may result from data variations 

highlights two issues: (i) that sample selection needs careful consideration as it may 
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affect results, and that (ii) there is a “true” population frontier which is unobservable 

within which all observations are enveloped. Hence, sample efficiency scores are only 

estimators of their underlying population values, the detection of which is a challenge 

worth pursuing. One way to perform this task is by using a technique called bootstrap 

DEA which allows constructing confidence intervals for these “true” efficiency scores. 

This thesis examines through simulations the extent to which bootstrap DEA is 

successful towards covering the aforementioned “true” efficiency scores. Indicating 

cases where the performance might not be satisfactory, we propose a variation of the 

original technique which seems to perform well in small samples. After suggesting 

guidelines for the implementation of bootstrap DEA, we perform an empirical 

illustration on the Greek banking sector during the reforms of the late 80s. 

The current chapter serves as a preface of the thesis, outlining the research 

questions, presenting the preliminary findings and motivating the topics examined. The 

remainder of the chapter is structured as follows: section 1.1 outlines the purpose of 

the thesis and succinctly presents the major findings; section 1.2 justifies the focus of 

the empirical application on the Greek banking sector; section 1.3 states the motivation 

and contribution of the thesis, while section 1.4 outlines its structure. 
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1.1 Purpose of study and preliminary results 

 

The measurement of efficiency and productivity can be performed either with 

parametric or non-parametric models; in each case there are strengths and weaknesses. 

Perhaps the most popular non-parametric model is data envelopment analysis (DEA), 

which empirically constructs an efficiency frontier from the data. One of its attractive 

features is that there is no need to specify a production function, but at the same time 

the lack of a parametric specification makes statistical inference challenging. One 

relatively recent development is the implementation of bootstrap methods to construct 

confidence intervals for the efficiency score of each DMU where its “true” value is 

expected to lie.  

The initial contribution by Simar and Wilson (1998) has led to further developments 

and extensions of bootstrap DEA such as the bootstrap Malmquist index (Simar and 

Wilson, 1999), the introduction of bootstrap tests on returns to scale (Simar and Wilson, 

2002), the implementation of two-stage bootstrap DEA to account for environmental 

variables (Simar and Wilson, 2007) and others. However attractive these developments 

may be, there are no clear guidelines in the literature on sample size requirements; 

even in the works of Simar and Wilson (we will elaborate on this issue in section 2.1). 

The fact that the literature has also investigated alternatives to the initial version of 

bootstrap DEA (see section 4.1), and in particular of the smoothing techniques applied 

in the first steps of the algorithm, indicates that the required sample size is still a 

concern and that there is room for further improvement. However, since the most 



22 
 

recent developments seem to require 1000 observations or more, and due to the fact 

that all kernel density estimation methods introduce additional variability (Simar and 

Wilson, 2002), it may be a good idea to explore alternative approaches to kernel density 

estimation which could be applicable to small samples which are often met in the 

empirical DEA literature. 

The purpose of the thesis is to theoretically explore the behaviour of bootstrap DEA, 

to assess its performance through Monte Carlo simulations and to propose an 

alternative approach that is applicable in smaller samples. The theoretical explorations 

focus on the limitations of the existing approaches and on cases under which these 

approaches may underperform. We show that the assumption of equal bootstrap and 

DEA (or model) biases is central for the performance of these methods and that their 

violation may result in confidence intervals which overestimate or underestimate the 

“true” efficiency scores. The implication is that hypothesis testing may lead to wrong 

decisions and it should be therefore used with care. 

The literature is not rich in simulation evidence on bootstrap DEA (see section 2.7) 

and the Monte Carlo experiments in this thesis are by far more extensive compared to 

other papers; yet not exhaustive. As Silverman and Young (1987) suggested, when 

kernel smoothing techniques are used, the performance of the bootstrap procedures 

should be evaluated under various setups and data generating processes; therefore, the 

author believes that there may still be room for further explorations. In our simulations 

we find that bootstrap DEA (and even simple DEA in fact) should not be used if the firms 

of the sample exhibit substantial technological differences; this may result in 
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distributions with a thin tail towards 1, dominated by the firms with access to superior 

technology. On the other hand, when the firms in the sample do not exhibit such 

heterogeneities, bootstrap DEA yields better results. However, in our simulations we 

find that, although bootstrap DEA has nice asymptotic properties, it is not safe to be 

used with small samples; at least not in its initial form. An interesting “by-product” of 

our investigations is that if all the firms in the sample (and the underlying population) 

have almost identical production processes (and are therefore technologically 

homogeneous) the sampling variations almost disappear after a certain sample size and 

the resulting scores are approximately equal to the population ones; this suggests that a 

simple application of DEA would be adequate, if the sample is larger “enough”. 

Taking into account the comment by Simar and Wilson (2002) that kernel density 

estimation methods may introduce additional variability in bootstrap DEA, we proposed 

an alternative approach. The “moments bootstrap”, as we named it, uses the first four 

moments of the empirical distribution of DEA scores to construct a pseudo-population 

from which draws can be performed within the context of bootstrap DEA. Effectively, 

our approach replaces the kernel density estimation step in the original paper of Simar 

and Wilson (1998) with pseudo-population generation from sample moments. 

Simulation evidence suggests that the resulting confidence intervals yield coverage 

probabilities that converge to the nominal ones for sample sizes as small as 120 DMUs 

in a 2-input/2-output setup.  

The lessons learned from our theoretical investigations are summarised in a succinct 

manual-type chapter (chapter 5) where we suggest guidelines on the application of 
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bootstrap DEA and hypothesis testing. We also perform an illustrative application 

(chapter 6) on the Greek banking sector during the period of sector reforms of the late 

80s. In particular, we use a global frontier to compute the global technical efficiency 

scores of Greek banks and we show how our proposed approaches can be extended to 

the case of the Global Malmquist productivity index of Pastor and Lovell (2005). 

Although we observe some differences in the proposed approaches (mainly with respect 

to the shape of the bootstrap distributions, the associated confidence intervals and the 

rejection rates of the null hypothesis of no change in productivity), we find that we 

would reach the same qualitative conclusion with each approach. In particular, we find 

that the provision of commercial freedoms enhances the productivity of Greek banks 

the following year while the imposition of prudential controls has the opposite effect, 

which is in line with banking theory. Our empirical findings also indicate that the overall 

behaviour of the Greek banking sector is driven by big banks, which may carry 

implications for the current situation as the 4 biggest banks in Greece entered the ESM 

on the 4th of November 2014 and they will be more closely supervised. 

 

 

1.2 Why Greece? 

 

The empirical application of the thesis concerns one of the most interesting periods in 

Greek banking which could be termed as the “modernization” period. This term is 

justified by the introduction of a series of “Europeanization” laws in banking and the 
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abolishment of other outdated ones through a directive for the restructuring and 

modernization of the Greek banking sector in the view of the forthcoming Single 

Market. In particular, in 1987 a framework of sector reforms was introduced with a 5 

year implementation period which aimed at the deregulation of the previously heavily 

regulated Greek banking sector. By 1993 Greek banks enjoyed more commercial 

freedoms but this was followed by the imposition of prudential controls, mainly aiming 

at the capital adequacy of banks through the adoption of Basel I. 

During the years that followed and until the entrance of Greece in the Eurozone in 

2001, the macroeconomic conditions had been improving while a wave of mergers and 

acquisitions was observed during the last few years. The latter probably served the 

strategic goals of banks as size was an important aspect of the heavily concentrated 

Greek banking sector, but it could be also considered as a “preparatory” step before the 

entrance to the Eurozone which would open up possibilities for expansion abroad but 

could also attract competition from other EU member states.  

During these last few years before the entrance to the Eurozone, but mainly after 

2001, we observe banks moving towards a universal banking model, offering a wider 

range of banking and other financial services, which was also evident in the substantial 

increase of their off-balance-sheet (OBS) activities. In addition, new entrants appear in 

the market, reducing concentration and increasing competition. The biggest Greek 

banks expand their activities to the relatively unexploited Balkan, Eastern European and 

Turkish financial markets. At the same time, the access to the cheap funds from the ECB 

meant that Greek banks could offer loans and mortgages at historically low interest 
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rates which led to rapid growth of baking operations and which also increased the 

investment activity in Greece. The Greek banking sector had changed in structure and 

conduct of business and we consider the entrance to the EU as a turning point for Greek 

banks. 

 In 2009, Greece was severely hit by a debt crisis which was the result of 

accumulating deficits and significant operational and cost inefficiencies in the public 

sector. Greece entered an agreement with Troika (IMF, European Commission and 

European Central Bank) to introduce austerity measures and enhance its finances. The 

negative outlook of Greece led to a panic of depositors and investors and to a 

subsequent fall in banking revenues and deposits, making the survival of most Greek 

banks questionable. Especially after the 53.5% “haircut” of debt in 2012, Greek banks, 

which held most of Greek bonds, were obliged to report losses of many billions of Euros, 

which was mainly financed by equity, leading to unforeseen negative equity for 4 big 

banks. This resulted in a consolidation wave and two recapitalisations that Greek banks 

had to undergo in order to gain access to liquidity funds. The Greek banking sector is still 

in a transition process while the recent inclusion of the 4 biggest Greek banks under the 

direct supervision of the ESM poses challenges on their efficient operation.  

The aforementioned events show that the Greek banking sector has an interesting 

history. The examination of its deregulation and reregulation period might be relevant 

today and could carry implications about the effect of tighter controls imposed in an 

already turbulent period for Greek banks. The fact that the deregulation and 

reregulation occurred in a period when the Greek banking sector was highly 
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concentrated and the macroeconomic outlook of Greece was in a bad shape (similar to 

the current situation), suggests that the lessons of the past could be used to draw 

implications for the present. 

 

 

1.3 Motivation and contribution 

 

The initial motivation for this research project related to the recent Greek debt crisis 

which led to the situation described above. To draw implications for the current 

situation, we decided to use data from the past due to the aforementioned similarities. 

In fact, there is no study in the literature that covers the whole period of reforms from 

1987 to 1994 as we do (while we also extend it until 1999 to capture longer term 

effects). Moreover, evidence from recent studies on the Greek banking sector indicates 

that significant destabilising events have had a negative impact on banks’ efficiency 

(Siriopoulos and Tziogkidis, 2010), which motivated us to examine whether this was also 

true for the reforms of the late 80s. 

Addressing this question required the use of an appropriate methodology of 

efficiency and productivity assessment which would offer meaningful results. The best 

candidate approaches to test such hypotheses were those of Simar and Wilson 

(1998,1999, 2000a); however, we were concerned about their compatibility with small 

samples, as in our case. This motivated the theoretical explorations of the thesis, which 

preceded our empirical analysis and became the main focus of this monograph. 
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The contributions of the thesis are the following: (i) it assesses the performance of 

bootstrap DEA under a range of Monte Carlo simulations which are the most extensive 

compared to others in the literature, (ii) it indicates cases where bootstrap DEA may 

underperform and explains the possible sources of this underperformance and its 

implications for confidence interval construction and hypothesis testing, (iii) it proposes 

an alternative method to smoothing (the moments bootstrap) that seems to perform 

well in small samples, (iv) it provides suggested guidelines for the application of 

bootstrap DEA and uses data from the unexplored Greek banking (de)regulation era to 

perform an empirical illustration.  

 

 

1.4 Structure of the thesis 

 

The thesis begins with the theoretical explorations on bootstrap DEA and the 

development of the alternative approach to smoothing and it continues with the 

suggestions on the application of bootstrap DEA and an empirical illustration of the 

methods discussed. The structure of the thesis is as follows: chapter 2 introduces, 

discusses and evaluates the performance of bootstrap DEA; chapter 3 explains how 

hypotheses could be tested using bootstrap DEA and explains the implications of the 

violation of fundamental assumptions for the applicability of the hypothesis tests; 

chapter 4 introduces the moments-bootstrap as an alternative method to the smooth 

bootstrap of Simar and Wilson; chapter 5 suggests guidelines for the implementation of 
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bootstrap DEA and hypothesis testing; chapter 6 performs an empirical illustration on 

Greek banking, while chapter 7 concludes the thesis, summarises its limitations and 

proposes areas for future research. 
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2 Small Samples and Bootstrap DEA: a Monte Carlo Analysis1 

 

2.1 Introduction 

 

The analysis of efficiency and productivity can be performed by using either parametric 

or non-parametric models. Non-parametric models such as data envelopment analysis 

(DEA) are more flexible since they are free of assumptions about the functional form of 

the production function or the distribution of inefficiency. In particular, in DEA the user 

just needs to specify a reasonable input-output system which adequately captures the 

underlying production processes in the dataset used. On the other hand, it is not 

possible to apply statistical inference on DEA since it is deterministic (there is no random 

error to introduce unexplained variability). Recently, Simar and Wilson (1998) addressed 

this issue by applying the bootstrap on DEA scores. The idea in bootstrapping DEA 

scores is to evaluate the sensitivity of a decision making unit (DMU) towards changes of 

the reference set against which its efficiency score is assessed. Hence, a distribution of 

efficiency scores can be generated for each DMU and it can be used for statistical 

inference and hypothesis testing. Since Simar and Wilson's (1998) seminal paper, many 

                                                      
1
 This chapter is a revised version of a previous one which was amended according to comments received 

by Prof L. Simar and Prof P. Wilson at the 13
th

 European Workshop on Efficiency and Productivity Analysis 
(EWEPA) in Helsinki (17-20 June 2013). All concerns raised by Simar and Wilson have been addressed 
while mathematical proofs are provided were necessary to illustrate the validity of the approach followed 
here. I would like to cordially thank both Prof L. Simar and Prof P. Wilson for their valuable feedback and 
suggestions which significantly enhanced the quality of this chapter and which carry transferable 
implications for the rest of the thesis. Of course, any remaining errors are the author’s responsibility. 
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works have followed, involving extensions of the original approach or implementations 

of the bootstrap on other DEA models. 

 Bootstrap DEA, as most bootstrap applications, is asymptotically consistent. That is, 

as the sample size approaches the population size (or theoretically infinity) then all 

assumptions that make use of the asymptotic properties of the bootstrap are valid. The 

assumption which is most commonly used in bootstrap DEA2 is that the bootstrap bias is 

asymptotically equal to the DEA bias (or model bias)3. Based on this assumption, 

bootstrap DEA could be used to uncover the population or “true” efficiency score of any 

DMU by correcting twice for bootstrap bias (Simar and Wilson, 1998) or to construct 

low-variance confidence intervals that centre this “true” efficiency score (Simar and 

Wilson, 2000a, 1998). In practice the two biases are different and arguably there is no 

guarantee that this difference is negligible. Sample size can affect the magnitude of the 

biases and it is therefore worthwhile exploring the performance of bootstrap DEA across 

various sample sizes: especially smaller ones which are observed in many empirical 

applications.  

Despite the fact that numerous papers have applied these methods (and therefore 

make use of these assumptions), there is no clear indication of what is considered to be 

an adequate sample size for various dimensions (number of inputs and outputs). In fact 

in some applied works of Simar and Wilson there is no comment on whether the sample 

size meets some “size criteria”; in all cases, though, their sample size at least satisfies 

                                                      
2
 Actually in its implementation: that is, after the bootstrap values have been generated. 

3
 The concepts of bootstrap and DEA bias will be properly introduced later in this chapter, along with the 

required formality. 
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the “rule of thumb” for DEA applications4 while in other cases it well exceeds it. For 

example, Simar and Wilson (1998) include an “illustrative example” in their paper which 

employs the Färe et al. (1989) data on 19 electric power utilities under a 3-input / 1-

output specification. Other examples provided in Simar and Wilson (2008)5 include the 

program follow-through application of Charnes et al. (1981) which uses data from 70 

schools in a 5-input / 3-output model, and the study of Mouchart and Simar (2002) on 

European air traffic controllers, which includes 37 units that use one aggregated input 

variable (resulting from 2 inputs) and one aggregated output variable (resulting from 4 

outputs).  

The motivation for the examination of the finite sample behaviour of bootstrap DEA 

can be found in the analysis of these two latter examples. In particular, Simar and 

Wilson (2008) state in the analysis of  the program follow-through study: 

“Despite the fact that the sample size is rather small in this high-

dimensional problem, the confidence intervals are of moderate length.” 
(Simar and Wilson, 2008; page 467) 
 

Moreover, Simar and Wilson (2008) state for the analysis of the air traffic controllers 

study: 

“Due to the small number of observations… inputs were aggregated into a 
single measure… Outputs were also aggregated into a single measure…” 
(Simar and Wilson, 2008; page 463) 
 

The authors in these examples seem to acknowledge the issue of the finite sample 

performance of the bootstrap since the sample sizes were well-above the required ones 

                                                      
4
 The “rule of thumb” states that in order to overcome the issue of dimensionality in DEA, the minimum 

number of DMUs to be included in the sample should exceed the sum of inputs and outputs multiplied by 
3. For example if the total input and output variables are 4, then the minimum sample size is 12. 
5
 See page 463, section 4.3.5.5 “Examples” in the referenced book chapter. 
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implied by the “rule of thumb”. It is therefore important to examine what would be an 

acceptable sample size under different scenarios. 

In this chapter we explore the plausibility of bootstrap DEA in small samples since 

they are most often met in empirical studies. The preference of DEA over parametric 

models (such as SFA) when dealing with very small samples is well-known in the 

literature since DEA performs better in these situations and simulations have shown it 

(Krüger, 2012; Van Biesebroeck, 2007). We therefore perform Monte Carlo experiments 

over various dimensions and data generating processes in order to associate minimum 

sample requirements with specific cases that the applied researcher might deal with. 

We proceed by exploring the extent to which the aforementioned assumption of equal 

bootstrap biases applies, we evaluate the performance of bootstrap DEA on the basis of 

coverage probabilities while we examine the behaviour of the bootstrap distribution 

and of the associated confidence intervals.  

The results of this exercise indicate some cases where bootstrap DEA cannot be 

safely implemented, especially in finite samples. In particular, we find that in smaller 

samples the assumption of equal bootstrap and DEA biases is a generous one, while 

coverage probabilities do not always converge “fast enough” to their nominal values. In 

larger samples, coverage probabilities do not necessarily increase, but exhibit a clear 

asymptotic tendency to converge. Comparing the coverage of the confidence intervals 

of Simar and Wilson (1998) and Simar and Wilson (2000a) under weak conditions the 

latter perform better only in cases which are not in accordance with good DEA practice. 

This carries implications for models which make use of these intervals such as the 
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bootstrap Malmquist Index (Simar and Wilson, 1999), tests of returns to scale using 

bootstrap DEA (Simar and Wilson, 2002), or the more recent and well-known two-stage 

bootstrap DEA (Simar and Wilson, 2007). 

We also find interesting the observation that the width of confidence intervals 

becomes narrow quite fast; even for a sample size of 200 DMUs. In fact, in larger 

samples the intervals become so narrow that they almost converge to a certain value. 

This suggests that the value added in applying bootstrap DEA to test hypotheses in large 

samples is limited given that we would expect most null hypotheses to be rejected. On 

the other hand this suggests that DEA scores become more robust towards sampling 

variations. This further motivates our interest in the small sample behaviour of 

bootstrap DEA.  

In the sections that follow we proceed step by step in introducing the concepts of 

efficiency and bootstrap DEA (section 2.2) and we provide formal foundations of the 

theory involved in efficiency analysis (section 2.3) and the methods used to estimate 

efficiency (section 2.4). Having established the essential knowledge on efficiency 

analysis we explain the bootstrap in a general setup (section 2.5) and then proceed by 

analysing bootstrap DEA and its associated technicalities (section 2.6). We then provide 

general information about Monte Carlo simulations and discuss previous findings 

(section 2.7), we analyse the methodological aspects of the simulations that we perform 

(section 2.8), we present the results of the Monte Carlo simulations (section 2.9) while 

we also perform the same exercise using large samples (section 2.10). Finally, we 
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conclude the chapter, discussing the implications of our results and suggesting areas for 

future research (section 2.11). 

 

2.2 General concepts 

 

Before we begin our analysis, some informal definitions and discussion are necessary to 

ease the exposition of the technical material that follows. An excellent introduction to 

the concepts of efficiency and productivity can be found in Coelli et al. (2005) which we 

follow in this section. The discussion will employ Figure 2.1, which resembles Figure 1.2 

in Coelli et al (2005; pp 5) and which presents a production frontier in a one-input/one-

output setup. The intuitive interpretation of the frontier is that it suggests the maximum 

possible output (𝑦) that can be produced using a certain level of input (𝑥) and with the 

available production processes and technology captured by the production function 

(𝑓(∙)). All the input-output combinations on and below the frontier comprise the 

feasible set, whereas combinations above the frontier are not technologically feasible. 

Figure 2.1 also illustrates firm 𝐴 which operates below the frontier and is therefore 

“technically” inefficient. To become efficient (and hence operate on the frontier) it 

could “technically” contract its input towards point 𝐴′ (input orientation) or expand its 

output towards point 𝐴′′ (output orientation). In this example, technical efficiency in 

input (output) orientation can be measured as the ratio of the efficient level of input 

(output) divided by the actual input (output). 
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Productivity is defined as the ratio of outputs over inputs, which is also known as the 

average product. Graphically, it is represented by the slope of the ray from the origin to 

any point of interest, which is depicted by the dashed lines in Figure 2.1. This also shows 

that changing the scale of operations leads to different levels of productivity. In fact, 

point 𝐴′ is associated with the maximum average product (maximum productivity) in 

this example, which is known as the most productive scale size (MPSS) or the point of 

technically optimal scale (TOPS). It is worthwhile noting that under output orientation, 

the projection to point 𝐴′′ is not associated with MPSS, suggesting that there is room for 

further improvement in the productivity of firm 𝐴 by exploiting scale economies. This 

leads to an important clarification: technical efficiency does not necessarily imply scale 

efficiency (the extent to which a firm operates under the MPSS). It also suggests that the 

operations of a firm can be improved by both becoming more technically inefficient and 

by exploiting scale economies (at least in this example) 6.  

 

                                                      
6
 For more information on the issue of productivity and its association with RTS and scale of operations 

see Banker et al. (2004). 
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Source: adopted and extended Figure 1.2 in Coelli et al (2005; pp 5) 

 

There is also a time component in the analysis of efficiency and productivity, which 

has not been mentioned thus far. This relates to the fact that over time technical 

efficiency, scale of operations and technology might change, leading to respective 

changes in productivity. The first two sources of productivity change are known as 

efficiency change and scale efficiency change whereas the last one is known as technical 

change and it is associated with shifts of the frontier (technical progress or regress). 

Index number approaches (such as the Malmquist index) have been developed to 

measure changes in productivity and its components.  

In a one-input/one-output setup one could perform computations related to 

efficiency and productivity even manually. However, when the dimensions increase it is 

necessary to employ appropriate methods to aggregate inputs in a single “index of 
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Figure 2.1. Technical efficiency, productivity and scale operations 
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inputs” and outputs in a single “index of outputs” to perform the necessary 

computations (Coelli et al., 2005). These methods are both parametric and non-

parametric with the most popular ones being “Stochastic Frontier Analysis” (SFA) from 

the parametric family and “Data Envelopment Analysis” (DEA) from the non-parametric 

one. DEA is the method that is employed throughout this study while its technical 

details are discussed in section  2.4.3. 

DEA was introduced by Charnes et al. (1978) and uses linear programming principles. 

In the original paper Charnes et al. (1978) propose as a measure of “technical 

efficiency”: 

“the maximum of a ratio of weighted outputs to weighted inputs subject to 

the condition that the similar ratios for every DMU be less than or equal to 

unity” (Charnes et al., 1978; pp.430) 

They then transform this fractional program into two linear ones (one being the dual to 

the other) known as the “envelopment” and “multiplier” forms and which will be 

discussed in more detail later. The intuition in DEA is that the technical efficiency of a 

DMU is computed with respect to a piece-wise linear frontier which is constructed using 

the available data and it is therefore a measure of relative efficiency (relative to the 

DMUs in the sample). Perhaps the greatest advantage of DEA is that it does not require 

the specification of a functional form of the production function, though at the cost of 

being deterministic and therefore not suitable for statistical inference.  

Applying the bootstrap on DEA (Simar and Wilson, 1998), or bootstrap DEA as it is 

commonly called, offers a solution to this issue. The DEA score of a DMU is deemed as a 

sample “estimate” of its population value (or “true” as termed here), suggesting that 
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the estimated DEA score is sensitive towards sampling variations. The random 

resampling in the bootstrap DEA process can be considered as simulating these 

sampling variations. This allows extracting a distribution of bootstrapped efficiency 

scores for each DMU which can be used to construct confidence intervals where their 

“true” (or population) efficiency scores lie. The bootstrap confidence intervals can be 

used to test various hypotheses. For example, in the illustrative example in Simar and 

Wilson (1998), the authors use the constructed confidence intervals to compare the 

technical efficiency between electric utility firms by observing the overlap of the 

constructed intervals.  

 

 

2.3 Theoretical foundations 

 

In this section we formally introduce some concepts relevant to efficiency and 

productivity analysis. Several authors have provided an excellent and rigorous 

treatment of these concepts (Fried et al., 2008; Mas-Colell et al., 1995; Shepard, 1970; 

Varian, 1992) on which we base our exposition here, while maintaining where possible 

the same  notation as in Simar and Wilson (1998). 

 The starting point is the definition of a feasible set (or production set, or technology 

set) which is the set of possible input-output combinations with a given technology 

(Mass-Colell et al., 1995; Fried et al., 2008). Let us denote with 𝑥 the vector of 𝑝 inputs 

and with 𝑦 the vector of 𝑞 outputs. The feasible set 𝛹 is then: 
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 𝛹 = {(𝑥, 𝑦) ∈ ℝ+
𝑝+𝑞

|x can produce y} (2.1) 

An elaborate, yet not exhaustive, account of the properties of production sets can be 

found in Mas-Colell et al. (1995)7. We highlight the importance of the convexity 

assumption which suggests that a linear combination between any two points should lie 

within the feasible set. With reference to the simple example in Figure 2.1 the feasible 

set can only include the combinations on and below the concave part of the production 

function. Moreover, the assumption of free disposal implies that more inputs can be 

used without any reduction in outputs: otherwise the extra inputs (or outputs) would be 

disposed of at no cost. Again with reference to Figure 2.1, the part of the frontier that 

bends backwards violates the assumption of free disposal. 

Figure 2.2 below represents what Coelli et al. (2005) refer to as “the economically 

feasible region of production” under 4 different assumptions on technology, while being 

consistent with the aforementioned properties of feasible sets. In particular, in this 

simple 1-input/1-output setup, section 𝑂𝑀𝑁  presents a production frontier that 

exhibits constant returns to scale (CRS) while the section 𝐾𝑀𝐿 presents a frontier 

associated with variable returns to scale (VRS). Finally, the sections 𝑂𝑀𝐿 and 𝐾𝑀𝑁 

correspond to frontiers that exhibit non-increasing (NIRS) and non-decreasing (NDRS) 

returns to scale, respectively. The areas on and below these sections determine the 

                                                      
7
 In particular they list 12 assumptions commonly used but not in combination as some may be mutually 

exclusive. Also some of the assumptions can be dropped depending on the analysis. The interested reader 
may refer to pages 130-135 in Mas-Colell et al. (1995) for a full description of these properties, which we 
also list here for reference: (i) the set is non-empty, (ii) the set is closed, (iii) no free lunch, (iv) possibility 
of inaction, (v) free disposal, (vi) irreversibility, (vii) non-increasing returns to scale, (viii) non-decreasing 
returns to scale, (ix) constant returns to scale, (x) additivity, (xi) convexity, and (xii) the set is a convex 
cone. Shepard (1970) and Varian (1992) also provide an account of these properties. 
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feasible set in each case. It is quite straightforward to see that the feasible set serves, 

among others, as a representation of the production technology. 

 

 

An alternative representation of technology is through what is known as the 

transformation function. The transformation function 𝑇(𝑥, 𝑦) has the property (Mas-

Colell et al., 1995): 

 𝛹 = {(𝑥, 𝑦) ∈ ℝ+
𝑝+𝑞

| 𝑇(𝑥, 𝑦) ≤ 0} (2.2) 

If 𝑇(𝑥, 𝑦) = 0 then the corresponding input/output combinations would lie on the 

“transformation frontier”, while a special case of the transformation frontier is the 

production function or frontier for 𝑞 = 1, that is one output (Coelli et al. 2005). 
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Figure 2.2. Economically feasible sets 
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We can now define technical efficiency with respect to the feasible set8. Koopmans 

(1951) stated that a firm is technically efficient if an increase in any output requires the 

reduction of at least another output or the increase of at least one input. Also, a firm is 

technically efficient if a reduction in one input is necessarily accompanied by an increase 

in at least another input or a reduction in at least one output. Debreu (1951) and Farrell 

(1957) proposed a radial measure of technical efficiency. In particular, in input 

orientation technical inefficiency is the proportional reduction of all inputs that would 

set a firm technically efficient (keeping outputs fixed), while in output orientation it is 

the required proportional expansion of all outputs (keeping inputs fixed).  

Two alternative representations of the feasible set which are associated with the 

input and output orientations are those of the input requirement set and of the output 

correspondence set. The input requirement set includes the vector of inputs required to 

produce a certain level of outputs:  

 𝑋(𝑦) = {𝑥 ∈ ℝ+
𝑝
|(𝑥, 𝑦) ∈ 𝛹} (2.3) 

while the output correspondence set includes the vector of outputs that are possible to 

be produced by (or correspond to) a certain vector of inputs: 

  𝑌(𝑥) = {𝑦 ∈ ℝ+
𝑞
|(𝑥, 𝑦) ∈ 𝛹} (2.4) 

The boundaries of 𝑋(𝑦) and 𝑌(𝑥) are in fact the same, but the movement towards the 

frontier invites different interpretations, with regards to the two orientations.  

Using the notation in Simar and Wilson (1998), who follow the analysis of Shepard 

(1970), we could define the Debreu-Farrell boundary of 𝑋(𝑦) as follows: 

                                                      
8
 We follow Fried et al. (2008) here – see page 20-21. 
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 𝜕𝑋(𝑦) = {𝑥|𝑥 ∈ 𝑋(𝑦); (𝜃𝑥, 𝑦) ∉ 𝑋(𝑦)  ∀ 𝜃 ∈ [0,1)} (2.5) 

and the boundary of 𝑌(𝑥) as: 

 𝜕𝑌(𝑥) = {𝑦|𝑦 ∈ 𝑌(𝑥); (𝑥, 𝜂𝑦) ∉ 𝑌(𝑥)  ∀ 𝜂 ∈ (1,∞)} (2.6) 

A moment’s reflection will make clear that 𝜕𝑋(𝑦) represents an isoquant while 𝜕𝑌(𝑥) 

represents a production possibility frontier (Fried et al., 2008). The intuition behind the 

notation for 𝜕𝑋(𝑦)  (𝜕𝑌(𝑥))  is that any radial contraction (expansion) of inputs 

(outputs) with the same output (input) levels would not be a member of these boundary 

sets.  

Focusing on input orientation, the Debreu-Farrell technical efficiency for firm 𝑘 is 

defined as: 

 𝜃𝑘 = 𝜃(𝑥𝑘 , 𝑦𝑘) = 𝑚𝑖𝑛{𝜃| 𝜃𝑥𝑘 ∈ 𝑋(𝑦𝑘)} (2.7) 

while the efficient level of input is determined by: 

 𝑥𝜕(𝑥𝑘|𝑦𝑘) = 𝜃𝑘𝑥𝑘 (2.8) 

It is straightforward that if firm 𝑘 is technically efficient, then 𝜃𝑘 = 1 while if it is 

technically inefficient then 0 < 𝜃𝑘 < 1 . Also from (2.8) we see that if firm 𝑘  is 

technically inefficient it should use a fraction 𝜃𝑘  of its inputs (or contract its inputs by 

1 − 𝜃𝑘) in order to become technically efficient in the Debreu-Farrell sense. 

To calculate technical efficiency scores various methods have been proposed and 

developed; parametric and non-parametric. These are reviewed in the next section, but 

the main focus is on DEA which is employed in this study. 
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2.4 Estimation of technical efficiency 

 

The calculation of technical efficiency is straightforward in the simple case of a single 

input and a single output. However, in higher dimensions these computations can only 

be performed with the use of relevant parametric and non-parametric techniques.  

 

2.4.1 Parametric approaches 

 

Parametric models involve specifying a production function while inefficiency for each 

firm is estimated by the appropriate decomposition of the error term of the estimated 

function (most commonly a cost function) into a random component and an inefficiency 

component. In the case of multiple outputs, aggregators  or appropriate distance 

functions are used, initially outlined by Shepard (1970). Despite the restrictions imposed 

by the specification of a production function, parametric models have the advantage of 

distinguishing the various sources of randomness (measurement error, specification 

error, etc) from inefficiency (Bauer et al., 1998). The most common parametric models 

used include the stochastic frontier approach (SFA), the thick frontier approach (TFA) 

and the distribution free approach (DFA). 

In the stochastic frontier approach (SFA), which was introduced by Aigner et al. 

(1977) and Meeusen and Van den Broeck (1977), the random component of the error 

term is assumed to follow a symmetric distribution while the inefficiency-related 

component is assumed to follow an asymmetric distribution. However, as it is pointed 
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out in Bauer et al. (1998) and the therein references, the inefficiencies calculated are 

sensitive towards the choice of the latter distribution. They also argue that: 

“…any distributional assumptions simply imposed without basis in fact are 
quite arbitrary and could lead to significant error in estimating individual 
firm efficiencies.” (Bauer et al, 1998; pp.94) 

 

The thick frontier approach (TFA) was proposed by Berger and Humphrey (1992) to 

measure the efficiency of US commercial banks. TFA uses the same functional form for 

the frontier as SFA, but the regression is based on the firms with the lowest average 

costs for each (predetermined) size class. Differences among firms within the same size 

class are perceived to be random while differences among groups are perceived as 

inefficiency. The major disadvantage of this method, apart from the ones that apply to 

SFA and are common, is that the results are not inefficiency scores but estimated values 

of inefficiency differences. 

The distribution-free approach (DFA), introduced by Berger (1993), uses a functional 

form as with SFA and TFA but without imposing restrictions on the distribution of the 

random error or inefficiency. It is based on panel data techniques where a constant level 

of efficiency is assumed for each firm over time and any deviations about this average 

level are attributed to randomness. DFA shares the same disadvantages with SFA, plus 

the fact that, due to the nature of panel data analysis, the efficiency estimates concern 

the entire period under consideration and not each year separately.  
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2.4.2 Non-parametric approaches 

 

Non-parametric models benefit from being flexible as there is no need to specify a 

functional form for the production function. The user assumes an unobserved 

transformation or production process where a set of inputs produces a set of outputs 

and the frontier is constructed on the basis of the observed data. The disadvantage of 

non-parametric models is that any measurement or specification errors are 

incorporated in the estimated inefficiency, which explains the lower scores of non-

parametric models compared to parametric ones (Bauer et al., 1998). 

The two most popular techniques are the data envelopment analysis (DEA), 

introduced by Charnes et al. (1978), and the free disposal hull (FDH), introduced by 

Deprins et al. (1984), both of which belong to the broad category of non-parametric hull 

models. The fundamental difference between the two methods lies in the convexity 

assumption used by DEA, which is not adopted in FDH.  

 

2.4.3 Data envelopment analysis 

 

The definition of a Pareto-Koopmans efficient firm or decision making unit (DMU) under 

the scope of DEA is: 

“A DMU is fully efficient if and only if it is not possible to improve any input or 
output without worsening some other input or output” (Cooper et al., 2006; 
pp.45) 



47 
 

Data envelopment analysis (DEA), as already mentioned, is a non-parametric technique 

introduced by Charnes et al. (1978), which uses linear programming principles to 

compute efficiency scores of decision making units (DMUs). Their initial proposed 

measure of technical efficiency for DMU 𝑘 (see pp.42 in section 2.2 for definition) could 

be described by the following fractional program: 

 �̂�𝑘 = max{𝑧 =
∑ 𝑢𝑟𝑦𝑟𝑘
𝑞
𝑟=1

∑ 𝑣𝑠𝑥𝑠𝑘
𝑝
𝑠=1

|
∑ 𝑣𝑠𝑥𝑠𝑖
𝑝
𝑠=1

∑ 𝑢𝑟𝑦𝑟𝑖
𝑞
𝑟=1

≥ 1; 𝑣𝑠, 𝑢𝑟 ≥ 0;  ∀ 𝑖 = 1,… , 𝑛 } (2.9) 

where 𝑝 is the number of inputs (𝑥) that DMU 𝑘 uses and 𝑞 the number of outputs (𝑦), 

while 𝑣𝑠  and 𝑢𝑟  are the weights on the 𝑠𝑡ℎ  input and 𝑟𝑡ℎ  output which will be 

determined by the solution of this problem and which will be used to compute the 

technical efficiency score of DMU 𝑘.  

Charnes et al. (1978) transformed the fractional program in (2.9) into a linear one as 

follows: 

 

𝜃𝑘 = max{𝜃 =∑𝜇𝑟𝑦𝑟𝑘

𝑞

𝑟=1

|∑𝜇𝑟𝑦𝑟𝑖

𝑞

𝑟=1

≤∑𝜈𝑠𝑥𝑠𝑖

𝑝

𝑠=1

;  ∑𝜈𝑠𝑥𝑠𝑘

𝑝

𝑠=1

= 1; 𝜈𝑠, 𝜇𝑟

≥ 0;  ∀ 𝑖 = 1,… , 𝑛}  

(2.10) 

where 𝜇𝑟 = (∑ 𝜈𝑠𝑥𝑠𝑘
𝑝
𝑠=1 )

−1
𝑢𝑟  and 𝜈𝑟 = (∑ 𝜈𝑠𝑥𝑠𝑘

𝑝
𝑠=1 )

−1
𝑣𝑟 . The linear program (2.10) 

computes the input oriented technical efficiency score for DMU 𝑘 and it is also known as 

the “multiplier form”. Its dual linear program is: 

 𝜃𝑘 = min {𝜃|𝑦𝑘 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝜃𝑥𝑘 ≥∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,   ∀  𝑖 = 1,… , 𝑛} (2.11) 

which returns the same result as in (2.10) and it is known as the “envelopment form”. 
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These two linear programs are known as the CCR model (from the initials of the 

authors Charnes, Cooper and Rhodes), while they are also known as the CRS (constant 

returns to scale) model9. The latter is due to the fact that the resulting boundary facets 

(the frontier) form a convex cone on which only (efficient) firms which exhibit CRS lie. 

For example, in the simple 1-input/1-output case the frontier is a straight line from the 

origin and through the DMU with the highest average product (output to input ratio), 

which is also deemed as exhibiting CRS.  

It seems useful to provide a graphical illustration of how DEA works in input 

orientation (an assumption adopted throughout this study) and how the multiplier form 

is related to the envelopment one. Perhaps the best way to do this is to consider the 

example in Figure 2.3 which is an extension of Fried et al (2008; pp.48). In this 2-input/1-

output example each DMU uses inputs 𝑥1and 𝑥2 to produce 1 unit of output 𝑦 (let us 

denote it 𝑦0). DMUs B, C, D and E use input vectors 𝑥𝐵, 𝑥𝐶 , 𝑥𝐷, 𝑥𝐸  to produce 𝑦0, 

forming a piecewise linear frontier (which in fact is an isoquant). DMU A is inefficient as 

it uses vector 𝑥𝐴 to produce 𝑦0, which involves proportionately more inputs. To be 

efficient, DMU A should be producing 𝑦0 using 𝜃𝐴𝑥𝐴, 𝜃𝐴 ∈ (0,1). This radial reduction 

in inputs is graphically represented in Figure 2.3 by the projection of 𝑥𝐴 onto the 

frontier along the ray from the origin to 𝑥𝐴. This projection intersects the frontier 

                                                      
9
 Banker et al. (1984) developed what is known as the BCC or VRS model which allows for DMUs on the 

frontier to exhibit variable returns to scale. In this case the multiplier form becomes �̂�𝑘 = 𝑚𝑎𝑥  {𝜃 =

∑ 𝜇𝑟𝑦𝑟𝑘
𝑞
𝑟=1 − 𝜇𝑘| ∑ 𝜇𝑟𝑦𝑟𝑖

𝑞
𝑟=1 ≤ ∑ 𝜈𝑠𝑥𝑠𝑖

𝑝
𝑠=1 − 𝑢𝑘;  ∑ 𝜈𝑠𝑥𝑠𝑘

𝑝
𝑠=1 = 1; 𝜈𝑠, 𝜇𝑟 ≥ 0;  ∀ 𝑖 = 1,… , 𝑛}, where  𝜇𝑘 is 

called the slope parameter and introduces concavity on the frontier. For the envelopment form one just 
needs to add the following convexity constraint in (2.11): ∑ 𝜆𝑖

𝑛
𝑖=1 = 1.  
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through the linear section defined by 𝑥𝐶  and 𝑥𝐷, suggesting that DMUs C and D serve as 

benchmarks for DMU A in this example. 

The multiplier and envelopment weights both have an economic interpretation. Let 

us first consider the multiplier model in (2.10) and in particular the constraint 

∑ 𝜈𝑠𝑥𝑠𝑘
𝑝
𝑠=1 = 1, which, if adapted to our case for DMU 𝑘 = 𝐴, we have: 𝜈1𝑥1𝐴 +

𝜈2𝑥2𝐴 = 1. It is straightforward to graphically represent this constraint as 𝑥2𝐴 =
1

𝜈2
−

𝜈1

𝜈2
𝑥1𝐴 which is parallel to the frontier section defined by  𝑥𝐶  and 𝑥𝐷, which are the 

benchmarks for DMU A. Since −
𝜈1

𝜈2
 is the slope of the isoquant/frontier, it can be 

interpreted as the marginal rate of technical substitution between inputs 𝑥1 and 𝑥2 at 

the projection of DMU A on the frontier.  

The envelopment form in (2.11) determines the exact position of 𝜃𝛢𝑥𝐴 on the 

frontier by using a convex combination of  𝑥𝐶  and 𝑥𝐷, so that  𝜆𝐶𝑥𝐶 + 𝜆𝐷𝑥𝐷 = 𝜃𝐴𝑥𝐴.  

This vector is represented in Figure 2.3 by the green arrow. The envelopment weights 𝜆𝐶  

and 𝜆𝐷 can be thought of as the proportion of the inputs of DMU C (𝜆𝐶) and DMU D 

(𝜆𝐷) that DMU A needs to use in order to become technically efficient. Given that C and 

D are the benchmarks, then 𝜆𝐴 = 𝜆𝐵 = 𝜆𝐸 = 0. Also if, for example, 𝜆𝐶 = 1 and 𝜆𝐷 = 0, 

then vectors 𝑥𝐴, 𝜃𝐴𝑥𝐴 and 𝑥𝐶  would necessarily lie on the same ray. We could state 

that for DMU A the multiplier weights have defined the slope of (the section of) the 

frontier against which it is benchmarked, while the envelopment weights have defined 

the exact position of its projection on the frontier. 
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Figure 2.3. Illustration of DEA in input orientation 

 

 

 

 

 

 

 

 

 

 

 

Linking DEA with the theoretical foundations in the previous section, we can show 

how the feasible set defined in (2.1) is estimated by DEA. Using the envelopment form 

we have: 

 �̂�𝐷𝐸𝐴 = {(𝑥, 𝑦) ∈ ℝ+
𝑝+𝑞

|𝑦 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝑥 ≥∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

;  𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑛} (2.12) 

The input requirement set and its boundary (which is the estimated frontier under input 

orientation), would be the same as in (2.3) and (2.4) but replacing 𝛹 with �̂�𝐷𝐸𝐴, 𝑋(𝑦) 

with �̂�(𝑦), and 𝜕𝑋(𝑦) with 𝜕�̂�𝐷𝐸𝐴(𝑦𝑘).  
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2.4.4 The DEA “estimators” 

 

The sample DEA score of a DMU is an estimator of its population value, since it is 

conditional on the reference set against which it is assessed. Hence, the DEA score is 

subject to sampling variations and the difference between the sample estimate and the 

population or “true” value is called model or DEA bias10. This bias is in principle positive 

since the sample DEA score will almost always be higher than the population one (Simar 

and Wilson, 1998). The latter is attributed to the fact that the probability of all 

population-efficient DMUs appearing in a finite sample is extremely low11. Formally,  

�̂�𝐷𝐸𝐴 ⊆ 𝛹 and therefore:  

 𝜕�̂�𝐷𝐸𝐴(𝑦𝑖) ⊆ 𝜕𝑋(𝑦) ⟺ 1 ≤ 𝜃𝑘 < 𝜃𝑘 (2.13) 

It becomes apparent that 𝜃𝑘  is an estimator of 𝜃𝑘  which has a distribution attributed to 

the aforementioned sampling variations.  

One topic of interest is the behaviour of the DEA or model bias 𝜃𝑘 − 𝜃𝑘  with respect 

to sample size changes. The faster 𝜃𝑘 − 𝜃𝑘  converges to zero, the higher is said to be its 

“speed of convergence”. Moreover, the consistency12 of the DEA estimators depends 

upon their asymptotic convergence, that is lim𝑛→∞(𝜃𝑘 − 𝜃𝑘) = 0 , where 𝑛  is the 

number of DMUs in the sample. 
                                                      
10

 Simar and Wilson (1998) suggest that the unobserved DEA bias could be approximated by bootstrap 

DEA, a statement that is explained in section  2.6. 
11

 It seems worthwhile noting here that the notion of population used by Simar and Wilson (1998) and in 
this study would be more accurately termed as “super-population”. The difference is that the super-
population includes theoretically feasible input-output combinations which are not necessarily members 
of the population and are infinite in number. 
12

 Consistency requires that �̂�𝑘 converges in probability towards 𝜃𝑘, in that as sample size approaches 

infinity, the probability 𝑃(|�̂�𝑘 − 𝜃𝑘| < 𝜀) → 1, ∀ 𝜀 > 0 as sample size approaches infinity. 
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Theoretical studies on the convergence speed of DEA estimators focus on deriving 

expressions on convergence rates and other asymptotic properties that they possess. 

These expressions provide a general idea of the effect of sample size on speed of 

convergence as the latter is expressed as a function of the number of inputs and 

outputs, the number of DMUs, while it differs depending on the technology assumption 

used (CRS, VRS or other). 

 Banker (1993) proves for the VRS, 1 input and 1 output case, that DEA scores of the 

monotone concave production frontier are asymptotically consistent and they are 

actually the maximum likelihood estimators of the DEA model. Korostelev et al. (1995) 

explore the statistical foundations of DEA estimators under VRS and derive theoretical 

expressions about their speed of convergence for the case of one input and multiple 

outputs. Their analysis was extended by Kneip et al. (1998) to the general case of 

multiple inputs and multiple outputs, again under VRS. Recently, Kneip et al. (2008) 

derive the asymptotic distribution of DEA estimators under VRS for the multiple input 

and output case. For a further review on this issue the interested reader may refer to 

Simar and Wilson (2008, 2004, 2000b).  

The common conclusion of these studies is that as the dimensions increase (number 

of inputs and outputs) an exponentially larger data set is required in order to achieve 

the same accuracy and convergence as with smaller dimensions. Monte Carlo 

simulations can provide some evidence on the behaviour of the convergence of DEA 

estimators towards their population values. We will show in our simulations later in this 
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chapter that convergence, apart from the number of inputs and outputs and sample 

size, is also affected by the assumed data generating process (DGP). 

 

 

2.5 General information about the bootstrap 

 

The bootstrap, introduced by Efron (1979) and further explored by Efron and Tibshirani 

(1993) 13 , can be used to produce multiple pseudo-samples by resampling with 

replacement from the empirical distribution of a set of observations. It is an attractive 

tool in cases where statistical inference is difficult (if not impossible), as the bootstrap 

distributions can be used to compute quantities of interest, as well as to perform 

hypothesis testing. The validity of the bootstrap depends on the ability of the process to 

mimic the data generating process (DGP) of the unobserved population. If we assume 

that the sample is a “representative” one, then the properties of the population should 

be reflected in the properties of the sample and therefore the bootstrap should yield 

meaningful results. In particular, if the moments of the empirical distribution are similar 

to the moments of the population distribution, the bootstrap will perform well as the 

bootstrap samples will have the same properties as if they were drawn directly from the 

population. 

                                                      
13

 The bootstrap is based on a series of properties analyzed in Efron and Tibshirani (1993), the most 
important of which is that the empirical distribution function should be a good approximation of the 
actual distribution function of the population.  
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Bootstrapping within a model framework follows a similar logic. A model uses a 

structure to compute or estimate of quantities interest. For example, in the regression 

framework, a model such as OLS is used to estimate the coefficients (�̂�) of the 

independent variables (𝒙) which can be used to compute the expected value of the 

dependent variable (�̂� = 𝒙�̂�, or   𝐸(𝑦|𝑥) = 𝒙�̂� ). The deviations of 𝑦 from 𝐸(𝑦|𝑥) are 

called residuals (𝜀̂ = 𝑦 − 𝒙�̂�) and should be normally distributed. Bootstrapping the 

OLS estimators can be done in two ways: either by bootstrapping pairs of observations 

(also called “case resampling”) or by bootstrapping residuals (also called “fixed 

resampling” as 𝒙’s remain unchanged in each iteration). The bootstrap would enable us 

in this case to extract the distribution of the model’s parameters (the betas) and 

examine, for example, whether they are significantly different from some 

predetermined value. The source of variability is assumed to be the random distribution 

of regression residuals and the bootstrap is implemented by reallocating residuals (or 

deviations from the regression line) among sample observations and regressing again to 

obtain a new set of parameters14. 

One of the most important issues in bootstrapping models is to identify the source of 

variability and apply the bootstrap accordingly. For example, if the source of variability 

seems to be the unconditional distribution of residuals (where 𝒙 is not correlated with 

the residuals), it would be preferable to bootstrap residuals. However, if the model’s 

parameters are sensitive towards sampling variations, it would be preferable to 

                                                      
14

 The analysis in this paragraph and terminology used follows Stine (1989) who provides an intuitive and 
thorough introduction to the bootstrap. 
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bootstrap pairs (Stine, 1989). Due to the strong assumptions in bootstrapping residuals 

(residuals have to be uncorrelated with independent variables), this approach is more 

sensitive to model assumptions compared to bootstrapping pairs; however, they should 

asymptotically provide similar results (Efron and Tibshirani, 1993). 

Another important concept associated with bootstrapping is that of the bootstrap 

bias and of the model bias. The bootstrap bias is the difference between the bootstrap 

mean and the model’s estimated parameter(s) whereas the model bias is the difference 

between the estimated parameters and their “true” value or population value. The 

bootstrap bias occurs (to a large extent) due to the randomness in the resampling 

process. Therefore increasing the number of bootstrap replications reduces the 

randomness element in the bootstrap bias and the remaining bias is due to other factors 

such as sampling variations15. The model bias occurs due to sampling variations but it 

can also be caused by model misspecification or measurement errors. The bootstrap 

should converge faster if the sampling variations are trivial (i.e. if any randomly selected 

sample is fairly representative) and if there are no other errors. In the presence of the 

specification or measurement errors, the bootstrap will not necessarily fail (as it will still 

reproduce the observable variations of the empirical distribution), but results might not 

be as meaningful.  

                                                      
15

 In fact, other methods such as subsampling or the 𝑚 out of 𝑛 bootstrap (either with replacement or 
not) might be more suitable in cases where the estimated parameters depend on the sample size. 
However these methods require large samples and tend to work better asymptotically. For more details 
see Politis et al. (1999) and Bickel et al. (1997).  
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Hence, if there are no such errors and if the sample is a representative one, then the 

bootstrap bias can approximate the model bias. More generally and formally, if the 

estimated data generating process (�̂�) is a consistent estimator of the true one (𝒫), 

then the estimated bias should have similar distribution to that of the true bias: 

 𝑏𝑖𝑎�̂�|�̂�~𝑏𝑖𝑎𝑠|𝒫 (2.14) 

This assumption has important implications in the bootstrap world as it is used to 

construct confidence intervals. Asymptotically this assumption becomes a property as 

both biases converge to zero since the estimated (model) parameters approximate the 

true ones. However, the finite validity of this assumption is of interest and practical 

value and it can be explored with Monte Carlo simulations. 

 

 

2.6 Bootstrapping DEA efficiency scores 

 

In this section we provide more information about bootstrapping DEA efficiency scores. 

Bootstrap DEA was first introduced by Simar and Wilson (1998) who used it to extract 

the sensitivity of DEA efficiency scores towards “sampling variations”.  We introduce the 

logic of applying the bootstrap within the DEA framework, we then explain in more 

detail the method and we comment on the recent developments on bootstrap DEA and 

extensions. 
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2.6.1 Bootstrap DEA: a practical consideration 

 

The principles of bootstrapping within the model framework also apply in DEA. In 

particular, in DEA the source of variability is the distribution of (in)efficiency scores, 

while the estimated parameters are the efficiency scores of the DMUs in the sample. 

Simar and Wilson (1998) introduce bootstrap DEA where efficiency scores are 

resampled rather than input-output combinations (although the latter is also possible). 

To this end, one could loosely associate Simar and Wilson’s approach to that of fixed 

resampling in the previous section.  

Similar to the residual resampling, under bootstrap DEA one effectively resamples 

DEA scores and applies DEA repeatedly, keeping outputs fixed (assuming input 

orientation). This raises, though, an issue which has not been mentioned in the 

literature. In particular, the random resampling of efficiency scores suggests that any 

DMU in the sample could achieve any of the observed efficiency scores. Hence, 

bootstrap DEA implicitly assumes that any bootstrap replication yields pseudo-inputs 

which are members of the feasible set.  

The latter point will become clearer after the mathematical exposition in the next 

section, but let us first consider an intuitive example. Suppose DEA is applied to a set of 

DMUs under CRS and input orientation. The sample comprises one “super-star”, a few 

relatively efficient DMUs and quite a few substantially inefficient DMUs. Graphically this 

is associated with a histogram of efficiency scores with a thin tail towards 1. Applying 

bootstrap DEA on this dataset means that the efficiency scores are randomly reallocated 
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to each DMU through the resampling process. It is possible in some replications that a 

poor performer will be allocated with an efficiency score of 1, suggesting that it would 

have been possible for this DMU to operate efficiently. If the poor performer can indeed 

drastically reduce its inputs and still produce the same outputs then the bootstrap will 

yield meaningful results.  

Practically, this simply suggests that bootstrap DEA scores will be meaningful as long 

as the DEA scores suggest input contractions which could have been achieved 

contemporaneously 16 . On the contrary, if we believe that the suggested input 

contractions are counterintuitive (if not non-feasible), bootstrap DEA might not be a 

good idea to use. This is because bootstrap DEA automatically assumes that any DMU 

could achieve any efficiency score. In such a case one should also explore the reasons 

why the “super-star” performs so well: is it because of the excellent management 

practices followed or is it due to access to superior technology which allows the 

production of outputs with considerably less inputs? We will refer to this case as the 

“technologically heterogeneous” case and we will investigate its implications for 

bootstrap DEA in our simulations later in this chapter. 

We should clarify at this point that even in the presence of technological 

heterogeneity, bootstrap DEA will still be consistent. That is, as the sample size 

approaches infinity the bootstrap will replicate the behaviour of the population. The 

                                                      
16

 By specifying “contemporaneously” we want to make clear that the notion of feasibility relates to the 
present and not to potential improvements in the future. If this is not the case then it would be 
counterintuitive to use bootstrap methods as effectively the resampling process would suggest that the 
improvement in performance would have been feasible. This point will become clearer in our simulations 
as we include a case which violates this principle. 
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consistency of bootstrap DEA is well-established in the literature (Kneip et al., 2011, 

2008), but it is important for the applied researcher to ensure that it is practically 

meaningful to apply these methods and avoid counter-intuitive interpretations. It is not 

within the scope of this study to propose methods to identify technologically 

heterogeneous DMUs and classify them as outliers; in fact we believe that this should be 

done on a one-by-one basis using experts’ knowledge. We merely suggest that one 

should be aware of the implications of including such DMUs in the sample for the 

implementation of bootstrap DEA. 

 

2.6.2 The Simar and Wilson’s (1998) bootstrap DEA algorithm 

 

The principle of bootstrap DEA is to generate various reference sets which would 

produce a distribution of efficiency scores for each DMU in the sample. The first step in 

implementing the algorithm of Simar and Wilson (1998) is effectively to smooth the 

empirical distribution of DEA efficiency scores (𝜃); however, the smoothing process is 

complicated and it might not be clear from the first instance what is actually being 

smoothed17. Then pseudo-efficiency scores (𝜃∗) are drawn with replacement from the 

smoothed distribution and, assuming input orientation, a new set of pseudo-inputs (𝑥∗)  

is obtained by dividing the original efficient input levels (𝜃𝑥)  by 𝜃∗ . Finally, the 

bootstrapped efficiency scores are computed by applying DEA on the original data but 

                                                      
17

 This is done to avoid repeated values showing up in bootstrap loops. More explanations are provided in 
the next subsection while the smoothing process is analyzed in Appendix I. 
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using as a reference set the pseudo-inputs and original outputs (𝑥∗, 𝑦). This procedure is 

repeated 𝐵 times and the resulting distribution of bootstrapped DEA scores can be used 

for statistical inference. 

Let us introduce some formality now and assume that in a CRS setup, inputs (𝑥) and 

outputs (𝑦) are generated by a process 𝒫, which depends on the true attainable set and 

the joint probability density function 𝑓(𝑥, 𝑦) of inputs and outputs (Simar and Wilson, 

2000b): 

 𝒫 = 𝒫(𝛹, 𝑓(𝑥, 𝑦)), where (2.15) 

 𝑓(𝑥, 𝑦) = 𝑓(𝑥|𝑦)𝑓(𝑦) (2.16) 

It is clear that we can write the joint pdf of inputs and outputs as the conditional pdf of 

inputs on outputs, multiplied by the unconditional pdf of outputs: this is the case of 

input orientation. Straightforward interpretation of Simar and Wilson (2000a) implies 

that in the case of the “homogeneous bootstrap” (as they named bootstrap DEA in their 

1998 paper), output is observed with certainty in input orientation, so 𝑓(𝑦) = 1 and 

𝑓(𝑥, 𝑦) = 𝑓(𝑥|𝑦) and the assumed true DGP is: 

 𝒫 = 𝒫(𝛹, 𝑓(𝑥|𝑦)) (2.17) 

Simply, (2.17) tells us that the DGP will produce input-output combinations which 

belong in the feasible set, using a pdf of inputs conditional on outputs but not 

depending on the distribution of outputs. Since we observe only a sample derived from 

the underlying population, the DEA attainable set is a subset of the true one and it is 

defined by the restrictions of the DEA linear program. Thus, the DGP under DEA, �̂� is: 



61 
 

 �̂� = �̂� (�̂�𝐷𝐸𝐴, 𝑓𝐷𝐸𝐴(𝑥|𝑦))  (2.18) 

The steps followed in Simar and Wilson (1998) to obtain the bootstrapped efficiency 

scores and the maths involved are quite straightforward. Again, we assume a CRS 

frontier technology and we focus on input orientation: 

1. Use observed inputs and outputs to estimate DEA efficiency scores 

 𝜃𝑖, 𝑖 = 1,2…𝑛 (2.19) 

2. Use the procedure in Appendix I to smooth the empirical distribution of 

efficiency scores  

3. Generate a sample of pseudo-efficiency scores from the smoothed distribution: 

 𝜃𝑖
∗, 𝑖 = 1,2…𝑛 (2.20) 

4. In each bootstrap replication 𝑏, generate a pseudo-sample 𝒳𝑏
∗ = (𝑥𝑖

∗, 𝑦𝑖)𝑏 , 𝑖 =

1,2, … 𝑛 where 𝑥𝑖
∗ is: 

 𝑥𝑖
∗ =

𝑥𝜕(𝑥𝑖|𝑦𝑖)

𝜃𝑖
∗ =

𝜃𝑖𝑥𝑖
𝜃𝑖
∗ ,   𝑖 = 1,2…𝑛 (2.21) 

5. Compute the bootstrapped efficiency scores (𝜃𝑘
∗) for a firm 𝑘 using the initial 

input-output values (𝑥𝑘, 𝑦𝑘) and as a reference set 𝒳𝑏
∗18. 

 𝜃𝑘𝑏
∗ = 𝑚𝑖𝑛 {𝜃|𝑦𝑘 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝜃𝑥𝑘 ≥∑𝜆𝑖𝑥𝑖
∗

𝑛

𝑖=1

; 𝜃 > 0; 𝛾𝑖 ≥ 0 ∀ 𝑖 = 1,… , 𝑛} (2.22) 

6. Repeat steps (3)-(5) 𝐵 times to obtain a distribution of bootstrap estimated 

efficiency scores 𝜃𝑘𝑏
∗ , 𝑏 = 1,2, …𝐵. 

                                                      
18

 The envelopment form is preferred as the linear programming problem involves fewer constraints 
compared to the multiplier form (𝑝 + 𝑞 < 𝑛 + 1) and it is therefore faster. 
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It is important to note that from (2.21) that 𝑥𝑖
∗ ≥ 𝑥𝑖, suggesting that the feasible set 

defined by bootstrap DEA will be a subset of the one defined by DEA, which mimics the 

fact that the sample DEA feasible set is a subset of the “true” or population one (Simar 

and Wilson, 1998). This means that the bootstrap DEA frontiers will be always 

enveloped within the DEA ones and therefore 𝜃𝑘𝑏
∗ ≥ 𝜃𝑘 just as 𝜃𝑘 ≥ 𝜃𝑘.  

Now looking at (2.22) we also realise that it is possible for 𝜃𝑘𝑏
∗  to exceed one as the 

initial data (𝑥𝑖, 𝑦𝑖) could lie outside the feasible set, with the latter being defined in each 

bootstrap replication by (𝑥𝑖
∗, 𝑦𝑖)𝑏 and regardless of (𝑥𝑖, 𝑦𝑖). In this case bootstrap DEA 

mimics the fact that drawing randomly DMUs from the population will necessarily leave 

out some DMUs which would have otherwise been efficient. Hence, 𝜃𝑘𝑏
∗  exceeding one 

shows by how much the bootstrap DEA frontier could have been “pushed” to coincide 

with the initial DEA frontier, just as the DEA frontier should be “pushed” to coincide with 

the population frontier.  

A graphical illustration of what bootstrap DEA does is provided in Figure 2.4, which 

is a modified version of Figure 4.5 in Simar and Wilson (2008). The figure shows how the 

true efficiency score, the DEA estimate and the bootstrap DEA scores are computed for 

DMU 𝑘(𝑥1
𝑘 , 𝑥2

𝑘|𝑦𝑘) in input orientation in a 2-inputs/1-output specification19 . The 

unobservable “true” or population frontier, 𝜕𝛸𝐷𝐸𝐴(𝑦), is depicted by the solid green 

line, the DEA frontier, 𝜕�̂�𝐷𝐸𝐴(𝑦), is depicted by the solid black piecewise linear sections, 

while the bootstrap DEA frontiers,  𝜕𝛸𝑏
∗ ,̂𝐷𝐸𝐴 (𝑦), 𝑏 = 1,2…𝐵, are represented by the 

                                                      
19

 You can either think that all DMUs use a common output or that the axes represent input divided by 
output. 
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dashed black piecewise linear sections. We have also included a curved dotted, light-

grey line to graphically represent loosely the effects of smoothing the empirical 

distribution of efficiency scores20. 

Suppose that we want to extract the efficiency distribution of DMU 𝑘. The process 

of bootstrap DEA can be thought of as keeping DMU 𝑘, and hence the ray 𝑂𝑘, fixed 

while generating frontiers through bootstrap DEA. Each bootstrap frontier is associated 

with a different efficiency score, yielding a range of bootstrapped efficiency scores 

which is graphically represented by the red-shaded box. The figure also demonstrates 

that the DEA frontier overestimates the “true” efficiency score and how bootstrap DEA 

tries to mimic this “overestimation”, as previously discussed.  

 

 

 

 

 

 

 

 

 

                                                      
20

 We are not suggesting that the frontier is smoothed; it is the distribution of efficiency scores that is 
smoothed. However, the richer support provided by the smoothing process yields a continuum of 
efficiency scores which can be thought of as having an effect on the frontier as well. 
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Figure 2.4. Illustration of bootstrap DEA in input orientation 

 

 

 

 

 

 

 

 

 

 

 

Finally, to provide a practical visualisation of how bootstrap DEA works we have 

reproduced Figure 2.4 in Figure 2.5 using generated data in a 2-input/1-output model. 

The axes of the figure below are the inputs divided by the outputs so that the frontiers 

can be interpreted as isoquants. The reported value for ℎ is a smoothing parameter 

required to smooth the empirical distribution. Regarding DMU 1, its DEA score is 0.7314 

while its bootstrap DEA scores are 0.799, 0.7848 and 0.7567 for bootstrap replications 1, 

2 and 3, respectively. DMU 4 has a DEA score of 0.9499 while its bootstrap scores are 

1.0243, 1.0072 and 0.9836, which is an example of how bootstrap DEA scores can 

exceed 1. Finally, it is interesting to note that the efficient DMUs (2, 7 and 8) which are 

associated with a DEA score of one, have bootstrap DEA scores greater than 1 in this 

example. 

O 𝑥𝐶  

Feasible 

Set - 𝛹 

𝑥2 

𝑥1 

𝑘(𝑥1
𝑘, 𝑥2

𝑘|𝑦𝑘) 
𝑥2
𝑘 

𝑥1
𝑘 �̂�1,𝑒𝑓𝑓

𝑘  𝑥1,𝑒𝑓𝑓
𝑘  

�̂�2,𝑒𝑓𝑓
𝑘  

𝑥2,𝑒𝑓𝑓
𝑘  

𝜕�̂�𝐷𝐸𝐴(𝑦) 

𝜕𝛸𝐷𝐸𝐴(𝑦) 

𝜕𝛸𝑏
∗ ,̂𝐷𝐸𝐴 (𝑦) 

𝑘𝐷𝐸𝐴 
𝑘𝑡𝑟𝑢𝑒 

𝑘𝐷𝐸𝐴
𝑏  



65 
 

 

Figure 2.5. Graphical illustration of bootstrap DEA using data 

 

 

 

2.6.3 Bootstrap DEA: statistical inference and confidence intervals 

 

Let us now consider how 𝜃𝑘
∗ = {𝜃𝑘𝑏

∗ , 𝑏 = 1,2, …𝐵}, can be used to construct confidence 

intervals. The idea is to construct confidence intervals which contain the “true” or 

population efficiency score of a DMU 𝑘. This requires assuming that the bootstrap bias 

is equal to the DEA or model bias. We will see in this section how this assumption allows 

for constructing confidence intervals. 

The first step is to compute the mean of the bootstrap distribution: 
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 𝜃𝑘
∗̅̅ ̅ =

1

𝐵
∑𝜃𝑘𝑏

∗

B

𝑏=1

   (2.23) 

The mean in (2.23) needs to be corrected for bootstrap bias as follows: 

 𝑏𝑖𝑎�̂�𝑘 = 𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘 (2.24) 

Correcting for bias once, tough, would centre the bootstrap distribution on the DEA 

score of DMU 𝑘. If we denote this shifted distribution with 𝜃𝑘
∗𝑐, then: 

 𝜃𝑘
∗𝑐̅̅ ̅̅ = 𝜃𝑘

∗ − 𝑏𝑖𝑎�̂�𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜃𝑘

∗̅̅ ̅ − (𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘) = 𝜃𝑘 (2.25) 

Simar and Wilson (1998) suggest correcting for bootstrap bias twice as it would 

approximately centre the bootstrap distribution on the population efficiency score. The 

resulting double-corrected distribution for firm 𝑘 would be21: 

 �̃�𝑘
∗ = 𝜃𝑘

∗ − 2𝑏𝑖𝑎�̂�𝑘,     𝑏 = 1,2,…𝐵 (2.26) 

with a mean which is assumed to be approximately equal to the “true” efficiency score: 

 �̃�𝑘
∗̅̅ ̅ = 𝜃𝑘

∗̅̅ ̅ − 2𝑏𝑖𝑎�̂�𝑘 = 𝜃𝑘
∗̅̅ ̅ − 2 (𝜃𝑘

∗̅̅ ̅ − 𝜃𝑘) = 2𝜃𝑘 − 𝜃𝑘
∗̅̅ ̅ ≃ 𝜃𝑘 (2.27) 

Although this assumption is valid asymptotically, it has not been yet confirmed for finite 

samples, especially for smaller ones which are frequently met in the empirical literature. 

The accuracy of (2.26) depends on the assumption that the bootstrap bias closely 

approximates the model (or DEA) bias (2.14): 

                                                      
21

 We need to make a note at this point to avoid confusion with notation. Simar and Wilson (1998) use �̃�𝑘
∗ 

to denote the mean of the distribution of {�̃�𝑘𝑏
∗ , 𝑏 = 1…𝐵} while we use it to denote the set of bootstrap 

values of �̃�𝑘𝑏
∗ . In general, we find more clear to denote with 𝜓𝑘𝑏

∗  the 𝑏
th

 bootstrap value of 𝜓 attached to 

DMU 𝑘, with 𝜓𝑘
∗ = {𝜓𝑘𝑏

∗ , 𝑏 = 1…𝐵} the vector of the bootstrap values for DMU 𝑘 and with �̅�𝑘
∗  the 

central moment of 𝜓𝑘
∗ , where 𝜓 can be either  �̂� or �̃�. 
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 (𝜃𝑘
∗ − 𝜃𝑘)|�̂� ~(�̂�𝑘 − 𝜃𝑘)|𝒫 (2.28) 

The assumption in (2.28) is asymptotically valid and it allows considering the centre 

of the distribution of �̃�𝑘
∗ as the “true” efficiency score (see equation (2.27)). Hence, 

Simar and Wilson (1998) propose constructing confidence intervals using the (𝑎 2⁄ )% 

and (1 − 𝑎 2⁄ )% percentiles of this distribution. Hence, the confidence interval that 

includes the true efficiency score 𝜃𝑘  with a probability (1 − 𝑎)% is: 

 (�̃�𝑘,𝑙𝑜𝑤
∗  ,  �̃�𝑘,𝑢𝑝

∗ ) = (�̃�𝑘
∗,(𝑎/2)

  ,  �̃�𝑘
∗,(1−𝑎/2)

) (2.29) 

In a later paper, Simar and Wilson (2000a)22 propose using the distribution of the 

bootstrap bias to construct confidence intervals23. If we denote with 𝑠  and �̂�  the 

percentiles of the distribution of the DEA bias and of the bootstrap bias, then: 

 1 − 𝑎 = Pr (𝑠𝑎
2⁄
< 𝜃𝑘 − 𝜃𝑘 < 𝑠1−𝑎 2⁄

) = Pr (�̂�𝑎
2⁄
< 𝜃𝑘

∗ − 𝜃𝑘 < �̂�1−𝑎 2⁄
) (2.30) 

Implementing the assumption (2.28) here it follows that the endpoints of these 

distributions are approximately equal or:  𝑠𝑎
2⁄
≃ �̂�𝑎

2⁄
= 𝛥𝜃𝑘

∗(𝑎/2)  and 𝑠1−𝑎 2⁄
≃

�̂�1−𝑎 2⁄
= 𝛥𝜃𝑘

∗(1−𝑎/2), where 𝛥𝜃𝑘
∗ = 𝜃𝑘

∗ − 𝜃𝑘. Using this assumption, Simar and Wilson 

(2000a) propose the following intervals about 𝜃𝑘: 

                                                      
22

 In fact this approach was first proposed by Simar and Wilson (1999) in the context of bootstrapping 
Malmquist indices and it was first adopted for the case of bootstrap DEA by Simar and Wilson (2000a).  
23

 Simar and Wilson (2000a) state that the basic confidence intervals should be preferred over the 
intervals constructed under the percentile method of Simar and Wilson (1998) as the bias-corrected 

bootstrap estimates are associated with excess variation, and in particular that 𝑉𝑎𝑟(�̃�𝑘
∗) = 4𝑉𝑎𝑟(�̂�𝑘). 



68 
 

 

1 − 𝑎 = Pr (𝜃𝑘 − 𝑠1−𝑎 2⁄
< 𝜃𝑘 < 𝜃𝑘 − 𝑠𝑎 2⁄

)

≃ Pr (𝜃𝑘 − �̂�1−𝑎 2⁄
< 𝜃𝑘 < 𝜃𝑘 − �̂�𝑎 2⁄

)

= Pr (𝜃𝑘 − 𝛥𝜃𝑘
∗(1−𝑎/2) < 𝜃𝑘 < 𝜃𝑘 − 𝛥𝜃𝑘

∗(𝑎/2)) 

(2.31) 

That is, they use the endpoints of the distribution of the bootstrap bias to approximate 

the unobservable endpoints of the distribution of DEA bias. Again, these confidence 

intervals are asymptotically consistent but it is necessary to establish finite performance 

before using them.   

 

2.6.4 On smoothing the empirical distribution24 

 

Simar and Wilson (1998) suggest that the empirical distribution of efficiency scores 

should be smoothed before bootstrapping. They refer to the standard bootstrap 

procedure (re-sampling with replacement from the empirical distribution) as the “naïve” 

bootstrap and they state that it produces inconsistent estimates due to the bounded 

support of the empirical distribution. The main argument against using the “naïve” 

bootstrap is that the algorithm produces repeated values (especially in smaller samples), 

resulting in distributions that cannot be used for statistical inference. Smoothing the 

empirical distribution, instead, produces bootstrap samples with richer support and 

therefore bootstrap distributions will be more suitable for statistical inference.  

                                                      
24

 Appendix I elaborates on smoothing techniques and reviews the literature which compares the 
strengths and weaknesses of some popular approaches. This section assumes previous knowledge of 
these methods so the interested reader should refer to Appendix I prior to proceeding. 
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A graphical illustration of smoothing is provided in Figure 2.6 below. On the top left 

corner we present an assumed population distribution of efficiency scores while the rest 

subplots present samples of size 25 drawn from the population and on which smoothing 

has been applied (the various lines)25. Ideally, smoothing would estimate a distribution 

which resembles the population one. It is easy to observe that smoothing sometimes 

performs well in that respect but sometimes less so. 

 

Figure 2.6. Graphical illustration of smoothing 

 

                                                      
25

 See footnote 30 for a description of the population. Also note that ℎ corresponds to an estimated 
bandwidth using the Least Squares Cross Validation (LSCV) method, 0.5ℎ and 1.5ℎ shows the LSCV-
smoothed line with 50% less or more smoothing, while ℎ𝑠𝑗 corresponds to a bandwidth that has been 
estimated using the Sheather and Jones (1991)technique. More information on these methods is provided 
in Appendix I.  
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A discussion in support of the smooth bootstrap is given in Simar and Wilson (2004). 

In particular, they refer to the works of Bickel and Freedman (1981), Swanepoel (1986), 

Beran and Ducharme (1991), and Efron and Tibshirani (1993) who examine the use of 

smoothing in general bootstrap applications. In fact, Efron and Tibshirani (1993) 

demonstrate an example of the failure of the (“non-parametric”) bootstrap26 and state 

that: 

“What goes wrong with the non-parametric bootstrap
27

? The difficulty occurs because the 

empirical distribution function �̂� is not a good estimate of the true distribution 𝐹 in the 
extreme tail. Either parametric knowledge of 𝐹 or some smoothing is needed to rectify 

matters.” (Efron and Tibshirani, 1993; pp.81) 
 

 

Indeed, Efron (1979) had already mentioned that, in cases where the empirical 

distribution function is discrete, it would be probably better to apply smoothing as 

bootstrapping such a distribution would result into degenerate distributions of repeated 

values.  

Bickel and Freedman (1981) provide further support to the argument above for the 

case of bootstrapping the mean, under the assumption that the parameterized 

distribution is a good approximation of the true underlying one. Swanepoel (1986) 

argues that drawing from an approximated empirical distribution is asymptotically valid. 

Beran and Ducharme (1991) provide a review of the work thus far on the asymptotics of 

the bootstrap. 

                                                      
26

 This refers to their example experiment where they sampled 50 observations from the uniform 
distribution, for which the maximum likelihood is the greatest value observed. They compared the 
performance of the algorithm with drawing with replacement from the 50 observations and another 
algorithm where they draw with replacement from the uniform distribution on [0, max θ]. They find that 
the first one (non-parametric) is a poor approximation of the latter (parametric) due to the fact that there 
is a large probability mass at a level lower than the maximum observed value of the sample. 
27

 That is, drawing from a sample rather than from some parametric model or distribution. 
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Silverman and Young (1987) impose the question of whether smoothing should be 

employed or not. They emphasize that smoothing is a valuable tool in cases where the 

empirical distribution is discrete because simple re-sampling would produce samples 

with peculiar properties. They prove that smoothing will give better results if the 

approximated function is a linear (affine) transformation of a symmetric distribution but 

not of a uniform one. They also suggest that future research should empirically explore 

the appropriateness of smoothing under different assumptions about the distribution of 

the population28. 

One of the limitations of smoothing approaches is that noise might be introduced in 

the system when resampling from the smoothed distribution. This is not surprising as 

smoothing transforms the empirical distribution to one which tries to capture the 

asymptotic properties of the true distribution. In fact, Simar and Wilson (2002) have 

mentioned this problem in their paper and have stated in particular that: 

“The bootstrap procedures… may involve errors in finite samples due to sampling variation 
in the distance function estimators as well as additional noise introduced by the 

resampling process itself” (Simar and Wilson, 2002; pp.124) 
 

And they continue in a footnote on the same page:  

“In particular, kernel estimators, while consistent, are slow to converge. Resampling from 
kernel estimates of the density of distance function estimates might be a significant source 

of noise in the bootstrap process” (Simar and Wilson, 2002; pp.124; footnote 10) 
 

The mathematics of the consistency of smoothing techniques on bootstrap DEA is a 

very challenging topic29. However, some intuition in support of smoothing can be gained 

by inspecting Figure 2.7. The figure demonstrates the histograms of the bootstrap 

                                                      
28

 This has motivated our Monte Carlo exercise over the different population assumptions. 
29

 The interested reader may refer to Kneip et al. (2011, 2008) who derive theoretical expressions in 
support of smoothing in bootstrap DEA.  
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distribution of efficiency scores for a DMU under two smooth bootstraps and the 

“naïve” bootstrap (last row)30. The two smoothing procedures considered are the least 

squares cross validation method (LSCV) and the “plug-in” method of Sheather and Jones 

(1991) (SJ). The bootstrap is applied on the same data and for sample sizes of 25 (first 

column) and 800 (second column) while a rescaled version of the latter is provided in 

the final column to distinguish among the different cases.  

The two smoothing methods in Figure 2.7 have similar distributions for the case of 25 

DMUs, while the naïve bootstrap is associated with a discrete degenerate distribution. It 

is obvious that the naïve bootstrap should not be used for statistical inference as being 

inconsistent and associated with counter-intuitive confidence intervals. For the case of 

800 DMUs, although the smooth bootstrap still produces more variation compared to 

the naïve bootstrap (last column), the resulting endpoints of the distribution become 

very narrow when viewed on the same scaling as in that of the smaller sample case 

(second column). This is in support of the asymptotic convergence of bootstrap DEA (as 

confidence intervals become narrower). 

Apart from the insights relevant to smoothing, the example in Figure 2.7 shows that 

the bootstrap as a process is useful in smaller samples where the researcher has limited 

knowledge of the population’s estimated parameters. However, its use in large samples 

is limited as the very narrow confidence intervals supress the scope for hypothesis 

                                                      
30

 Although it is not important at this stage, these graphs have been produced from a sample of 25 DMUs 
where a CRS input oriented model is applied on a 1-input/1-output specification, while the bootstrap 
procedure involves 2000 repetitions. The data have been generated from a process that we name 
“Standard” in our Monte Carlo simulations that will be presented is section 2.8. 
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testing since the inferred population parameters are estimated with a very narrow 

range. This is also evidenced in Simar and Wilson (2004) who report an average 95% 

confidence interval width of 0.0019 for a sample of 800, which is consistent with our 

findings. 

 

Figure 2.7. Smooth vs naïve bootstrap: distributions of bootstrapped efficiency scores 

 
 

It is crucial to explore how these smoothing procedures affect the performance of 

confidence intervals in finite samples (this will be addressed later in this chapter). There 

is no clear evidence as to whether LSCV should be preferred to SJ, but from the 
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literature review in Appendix  I we would expect LSCV to perform better in smaller 

samples and SJ better in larger ones31. 

 

 

2.6.5 Developments and extensions 

 

Since the introduction of bootstrap DEA there have been various developments and 

extensions to the algorithm, mainly by Simar and Wilson and co-authors. The most well-

known extensions of bootstrap DEA include the bootstrap Malmquist Index (Simar and 

Wilson, 1999), the heterogeneous bootstrap (Simar and Wilson, 2000a)32, the tests on 

returns to scale using bootstrap DEA (Simar and Wilson, 2002) and the two-stage 

procedure for the regression of efficiency scores on environmental variables (Simar and 

Wilson, 2007). One assumption/principle that is used in all these studies as well as in 

Simar and Wilson (1998, 2000a) is that the bootstrap bias is approximately equal to the 

DEA bias, which is utilised in constructing confidence intervals. Hence, the finite sample 

performance of bootstrap DEA with respect to this assumption carries important 

implications for the extensions of the model.  

                                                      
31

 We deduce that from the findings in the literature that LSCV performs better when the distribution is 
degenerate or with multiple peaks, as most likely in small samples, while SJ has a better performance 
when the empirical distribution has a more clear structure and it is smoother (without peaks), as we 
would expect to find in large samples. 
32

 In an informal discussion with Prof L. Simar, he suggested that the heterogeneous bootstrap might 
produce very wide confidence intervals and that it is not preferable to the homogeneous bootstrap DEA. 
In terms of Figure 2.4, the heterogeneous bootstrap DEA would produce a shaded area (bootstrap 
distribution) that would not lie just on the ray 𝑘𝑘𝐷𝐸𝐴 but it would it would spread around it at some angle. 
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The logic in bootstrapping DEA scores has not changed since it was first introduced. 

The various developments have focused on optimising the smoothing process to 

increase the finite sample efficiency of bootstrap DEA. One such development is the 

introduction of a double smoothing process (Kneip et al., 2008) which has been argued 

to be very complicated and computationally intensive (Kneip et al., 2011).  Another 

alternative is to smooth the empirical distribution about the centre of the bootstrap 

distribution and use naïve bootstrap for the tails (Kneip et al., 2011). Despite that the 

latter method is more tractable and efficient, the minimum sample size cannot be small 

as the naïve bootstrap requires bigger samples to produce adequate tails33. In a recent 

paper, Simar and Wilson (2011) propose subsampling and present evidence from the 

𝑚/𝑛 bootstrap using a data-driven procedure to determine the optimal 𝑚. It reduces 

the computational burden from complicated smoothing procedures and it is more 

accessible to the practitioner. However their method requires large samples; in fact, 

their simulations use a minimum size of 100 DMUs while considerably better results are 

obtained for the alternative sample of 1000 DMUs. 

An interesting suggestion is the use of the iterated bootstrap, provided in a short 

note in Simar and Wilson (2004). The authors suggest iterating the bootstrap (that is, 

applying bootstrap DEA on each bootstrapped sample) to construct more accurate 

confidence intervals for the true efficiency score. The authors suggest that this approach 

would return more accurate confidence intervals by defining better nominal 

                                                      
33

 See the tails in Figure 2.7 (where a sample size of 25 is used) and see tables 2 and 3 in Kneip et al. 
(2011). 
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probabilities to perform hypothesis testing and thus extracting more accurate endpoints 

for the confidence intervals34. The major drawback of this process is the very high 

computational time which would be 𝐵2 times greater than the simple bootstrap DEA, 

where 𝐵2 is the number of second-stage bootstraps (or iterations) and would normally 

exceed 100035. Moreover, no Monte Carlo results are provided for this method to 

evaluate the benefits along with the additional computational costs involved36. 

To our knowledge, the alternative bootstrap DEA procedures are mostly related to 

optimising the smoothing process or the sampling procedure. Unfortunately, they do 

not offer a clear-cut solution in applying bootstrap DEA in small samples (at least not 

with the desirable computational efficiency). Applied researchers use the methods of 

Simar and Wilson (1998, 2000a) to perform hypothesis testing and it is therefore crucial 

to establish the finite sample behaviour of these algorithms.  

 

 

 

 

                                                      
34

 In particular, the double bootstrap would determine a more accurate level of confidence on which 
Simar and Wilson’s (2000a) confidence intervals would be constructed. Hence, instead of using the 

(𝑎 2⁄ )% and (1 − 𝑎 2⁄ )% percentiles of the bootstrap distribution, iterating the bootstrap would provide 

a more accurate �̂� instead of 𝑎. 
35

 To demonstrate the magnitude of computational time, the applied researcher would need about 3 
hours on an i5 3.6GHz PC (a standard desktop PC) and programmed on Matlab (with parallel computing) 
to obtain results from the application of the iterated bootstrap on a sample of 30 firms, implementing a 
CRS 2-inputs/2-outputs specification and using 2000 replications in each stage. 
36

 A Monte Carlo experiment with 1000 replications for the specification in the previous footnote would 
require approximately 125 days to run. Hence, a proper Monte Carlo study with various sample sizes 
would need several years! Obviously, these times could be reduced significantly by using alternative 
programming languages (such as C, Fortran or any language that would allow for hyper-programming) and 
using supercomputers. 
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2.7 Monte Carlo simulations and previous results on bootstrap DEA 

 

Monte Carlo simulations are commonly used, among other uses, to examine the 

plausibility of certain assumptions of a model or the performance of confidence 

intervals. In general, Monte Carlo simulations involve assuming a data generating 

process that produces an unobservable, “true” population. Then the model, whose 

performance is being assessed, is applied on random samples (draws) from that 

population. The model is said to be performing well if (i) the model can replicate on 

average the moments of the population (mean, standard deviation, skewness and 

kurtosis), or (ii) if the model can accept (or reject) a pre-defined null hypothesis at a rate 

that is approximately equal to the nominal probability37.  

The standard approach in bootstrap DEA for performance evaluation is to use 

coverage probabilities, which count the frequency that the bootstrap confidence 

intervals include the “true” (population) efficiency score of a “fixed” DMU38. If the 

coverage probabilities converge towards the nominal ones, then this is an indication of 

good finite sample behaviour. Coverage probabilities are affected by sample size, the 

dimensions of the linear program (number of inputs and outputs) and by the data 

generating process (although the last point has not been thoroughly investigated in the 

literature). More importantly, the convergence of coverage probabilities depends on the 

finite validity of the assumption that the bootstrap bias is equal to the DEA bias. 

                                                      
37

 The nominal probability is the probability used to define the acceptance region for the pre-defined null 
hypothesis.  
38

 A “fixed” DMU is a DMU that is programmed to appear in every Monte Carlo replication. 
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There are only a few papers which assess the performance of bootstrap DEA, which is 

not surprising as it is a specialized area. Furthermore, once Monte Carlo results have 

been published for one bootstrap DEA method, it would be pointless to replicate them. 

However, as Silverman and Young (1987) suggest, to properly evaluate the performance 

of a bootstrap procedure it is almost a requirement to use a wide range of population 

assumptions, especially if smoothing is involved.  

In the literature the only well-known Monte Carlo exercises on the performance of 

the Simar and Wilson’s (1998) bootstrap DEA are by Simar and Wilson (2004, 2000a)39. 

Simar and Wilson (2000a) use a one-input/one-output specification under the 

assumption of output orientation, under both CRS and VRS. They report coverage 

probabilities for their “enhanced” confidence intervals, which are summarized in 

Table 2.1 for the CRS case. The first column reports the sample size used in each Monte 

Carlo repetition, columns 2 to 6 report the coverage probabilities for five different levels 

of significance, column 7 presents the average width of the 95% confidence intervals, 

while the last column reports the average size of the difference between the bootstrap 

bias and the DEA or model bias (the latter is reported as “true” bias in the paper). 

Their results suggest that even in smaller samples (such as 25 or 50), the coverage 

probabilities are quite close to the nominal ones. However, this is not surprising as the 

average width of the confidence intervals is quite high for smaller samples, which is not 

                                                      
39

 Some results are also provided in Löthgren (1998) who applies a similar exercise to compare the 
approach of Simar and Wilson (1998) with his. However, this is a working paper and Prof L. Simar 
expressed his concerns in the EWEPA 2013 conference (Helsinki) that it is flawed in many occasions. 
Therefore the results of Löthgren (1998) are not discussed here. 
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a desirable property for applied hypothesis testing. However, the latter is unrelated to 

the validity of Simar and Wilson’s (1998) approach; it may be due to the data generating 

process chosen40. In fact, an indication that both their method and simulations are 

correct is that confidence intervals become narrower as sample size increases.  

The final and perhaps most important point is that the difference between the 

average bootstrap bias and the average DEA bias is quite substantial for smaller sample 

sizes. Hence, although the coverage probabilities are very close to the nominal ones in 

smaller sample sizes, the finite sample performance of Simar and Wilson’s bootstrap 

DEA is affected by the big difference in biases41. This implies that samples larger than 

200 would be required in this example to combine good coverage probabilities and 

small differences in bootstrap and DEA biases. 

 

Table 2.1. Simar and Wilson (2000a) Monte Carlo results 

 
Source:  Simar and Wilson (2000a), Table 1 and Table 2 

 

Similar evidence is found by Simar and Wilson (2004) who perform Monte Carlo 

experiments under the assumption of output orientation under both CRS and VRS, in a 

                                                      
40

 For the CRS case they assume 𝑦 = 𝑥𝑒−|𝑣|, 𝑣 ∈ 𝑁(0,1), and 𝑥 ∈ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,9). 
41

 It is reminded that one of the fundamental assumptions for the validity of Simar and Wilson’s bootstrap 
DEA and confidence intervals is that the difference between the two bias is approximately zero. 

0.8 0.9 0.95 0.975 0.99

10 0.693 0.814 0.886 0.919 0.942 0.911 -0.088

25 0.772 0.883 0.935 0.973 0.983 0.586 -0.075

50 0.784 0.894 0.940 0.970 0.985 0.351 -0.045

100 0.794 0.911 0.946 0.973 0.988 0.187 -0.024

200 0.810 0.899 0.946 0.970 0.994 0.095 -0.012

400 0.807 0.903 0.953 0.977 0.995 0.047 -0.005

n

Nominal Coverage Levels Av. CI width 

(95%)

Av. Boot.bias 

minus DEA bias
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1-input/1-output setup. In their simulations they compare the coverage probabilities of 

their confidence intervals (that is, of Simar and Wilson (2000a)) and two “naïve” (non-

smooth bootstrap) alternatives: one which draws from the input-output data (case 

resampling) and one drawing from the empirical distribution of efficiency scores (fixed 

resampling). Their results for the CRS technology assumption are presented in Table 2.2. 

The first column reports the sample size while the next three columns present the 

coverage probabilities for the Simar and Wilson (2000a) method (“SW2000”), the naïve 

bootstrap with case resampling and the naïve bootstrap with fixed resampling. Columns 

(5) to (7) report the average confidence interval widths for each of the aforementioned 

cases while the last four columns report the DEA (or model or “true”) bias and the 

average bootstrap biases for each procedure. 

Their findings suggest that the smooth bootstrap achieves higher coverage than the 

other two, while comparing the two naïve procedures the coverage probabilities are 

quite close and there is no clear “superiority” of the one over the other. Confidence 

intervals become narrower with sample size, while bootstrap and DEA biases become 

smaller. This is shown in the last block of Table 2.2 where both the model and bootstrap 

biases converge to zero as sample size increases. 

In contrast with their previous Monte Carlo study, the confidence intervals in Simar 

and Wilson (2004) are substantially narrower. Coverage probabilities seem to converge 

to the nominal ones when the sample size becomes 800 while they are fairly high for 
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reasonably small samples (25 to 50) 42 . Again, the bootstrap bias adequately 

approximates the DEA bias for sample sizes greater than 50, while this difference 

becomes very small when the sample size exceeds 400. Hence, we would deduce that 

the applied researcher could use bootstrap DEA in smaller samples if he is ready to 

accept some degree of bias. Finally, we need to note that according to the results in 

Simar and Wilson (2004), for large samples the average confidence interval width 

becomes so narrow that they seem to actually converge to a certain point, suggesting 

that hypothesis testing would reject the null hypothesis of equal efficiency almost every 

time. That is, any differences observed between DEA scores would automatically be 

significant. 

 

Table 2.2. Simar and Wilson (2004) Monte Carlo results (95%) for the CRS case 

 
Source:  Simar and Wilson (2004), Tables 10.1, 10.3 and 10.6 

 

                                                      
42

 In fact, Simar and Wilson (2004) state that the deviation of coverage probabilities from their nominal 
values could be due to: “sampling variations in the Monte Carlo experiment, and due to the fact that a 
finite number of bootstrap replications are being used” (Simar and Wilson, 2004; pp. 285). 

Smooth Case Fixed Smooth Case Fixed DEA Smooth Case Fixed

10 0.916 0.899 0.899 0.1384 0.2018 0.2018 0.0517 0.0362 0.0324 0.0324

25 0.932 0.894 0.890 0.0551 0.0664 0.0693 0.0203 0.0147 0.0117 0.0121

50 0.920 0.896 0.891 0.0283 0.0320 0.0315 0.0101 0.0076 0.0058 0.0057

100 0.921 0.889 0.891 0.0146 0.0154 0.0157 0.0048 0.0039 0.0028 0.0030

200 0.937 0.879 0.888 0.0076 0.0078 0.0074 0.0024 0.0020 0.0014 0.0014

400 0.936 0.883 0.889 0.0039 0.0037 0.0038 0.0012 0.0010 0.0007 0.0007

800 0.950 0.886 0.871 0.0019 0.0019 0.0019 0.0006 0.0005 0.0004 0.0004

1600 0.957 0.876 0.868 0.0010 0.0009 0.0009 0.0003 0.0003 0.0002 0.0002

3200 0.951 0.897 0.864 0.0005 0.0005 0.0005 0.0002 0.0001 0.0001 0.0001

6400 0.960 0.878 0.868 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000

DEA and Bootstrap BiasesAv. CI Width (95%)

n

Coverage Probabilities (95%)
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The Monte Carlo evidence in Simar and Wilson (2000a, 2004) indicate that bootstrap 

DEA is associated with substantial sample requirements. Although the issue of minimum 

sample size is not discussed in their paper, Simar and Wilson (2004) state that:  

“The results … show that in less favorable situations, even if the bootstrap is 
consistent, the coverage probabilities could be poorly approximated in finite 
samples” (Simar and Wilson, 2004; pp. 292) 

 

Moreover, given that the simulation exercises are based on the smallest possible 

dimension (1-input/1-output) we deduce that for higher dimensions the requirements 

should be even larger. Therefore the assumption of similar bootstrap and DEA biases 

might not have the desirable finite sample performance, carrying important implications 

for the use of Simar and Wilson’s (1998, 2000a) confidence intervals in small samples. In 

addition, when the sample size becomes large enough, the confidence intervals become 

so narrow that it would probably reject most null hypotheses (this was also shown in 

Figure 2.7). Before deducing this implication, it is necessary to establish the behaviour of 

bootstrap DEA under various data generating processes, smoothing procedures and 

model dimensions: this is exactly what this simulation exercise is about. 

 

2.8 The Monte Carlo experiments 

 

2.8.1 The experiment outline 

 

The Monte Carlo experiments are performed using samples drawn from four different 

populations which we name “Standard”, “Truncated Normal Low”, “Truncated Normal 
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High” and “Uniform”. The motivation for including multiple data generating processes in 

our exercise stems from Silverman and Young (1987) who suggested than when 

smoothing is applied, Monte Carlo evidence should be provided under various data 

generating processes. Moreover, Simar and Wilson (2004) found in their simulations 

that:  

“… the structure of the underlying true model plays a crucial role in 
determining how well the bootstrap will perform in a given applied setting.” 
(Simar and Wilson, 2004; pp.295) 

The simulations are performed over 7 different sample sizes (15, 20, 25, 30, 60 and 

120) and three different model dimensions (1-input/ 1-output, 2-inputs/1-output and 2-

inputs/2-outputs)43. Moreover, for the 1-input/1-output dimension we perform one 

extra exercise by including large samples (25, 50, 100, 200, 400, 800 and 1600), since the 

computational costs are permissible44. Each of the 𝑀 = 1000 repetitions of bootstrap 

DEA involves 𝐵 = 2000  loops. The experiments are performed with two smooth 

processes (LSCV and SJ) and one “naïve”, under the assumption of constant returns to 

scale (CRS) and input orientation. All calculations were performed in Matlab, using a 

straightforward code written by the author, which repeatedly calls an appropriately 

modified Matlab code for bootstrap DEA written by L. Simar (last updated in November 

of 2002) while most auxiliary functions (especially for the SJ smoothing process) are 

                                                      
43

 To our know knowledge this is the only simulation study on bootstrap DEA that uses three different 
dimensions while the 2-input/2-output case has only been included in simulations on bootstrap DEA 
extensions (Kneip et al., 2011, 2008). For the standard bootstrap DEA the two studies in the literature only 
use 1-input/1-output. At the moment the computational costs are prohibitive to increase the dimensions 
and it is left for future research.  
44

 We tried to include even larger samples of 3200 and 6400, however due to technological restrictions 
(memory issues) it was not possible to do so. For future work an advanced computer could be used to 
overcome these difficulties. 
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called from the codes of Simar and Zelenyuk (2007)45. All main codes, along with line-by-

line explanations have been uploaded online are also available upon request by the 

author46.   

The computational costs in seconds, using a desktop PC Intel i5 3.8MHz processor, 

are presented in Table 2.3 for each population assumption “Standard”, “Truncated 

Normal Low”, “Truncated Normal High” and “Uniform”) and each model dimension 

(1I/1O, 2I/1O and 2I/2O). As expected, computational costs increase with model 

dimensions. The “naïve” bootstrap is occasionally slightly faster than the smooth 

bootstrap but not always: this is due to the fact that 5 different PCs were used for the 

simulations and differences in expected performance can be due to that. The 

cumulative computational costs were 34.4 days. 

 

Table 2.3. Computational costs in seconds of the Monte Carlo exercise 

 
 

An important note about comparing the two smooth bootstraps and the “naïve” is 

that we take care to use exactly the same samples on which the bootstrap DEA 

                                                      
45

  The codes of Simar and Zelenyuk (2007) are provided from the Journal of Econometrics Data Archive 
and can be downloaded here: http://econ.queensu.ca/jae/2007-v22.7/simar-zelenyuk/. Also note that 
the paper of Simar and Zelenyuk (2007) is not directly related to the bootstrap DEA of Simar and Wilson 
(1998) but it is an extension to multiple groups and deriving aggregate efficiency scores. However, there 
are many auxiliary functions in this paper which are also used in the simple bootstrap and one that is used 
for the SJ smoothing process and which is slightly adjusted to the univariate case here. In fact, the 
auxiliary functions used in Simar and Zelenyuk (2007) were the exact ones used in the codes written by L. 
Simar, however we prefer using the former since they have been officially published in a well-known 
journal. 
46

 Follow the link: https://www.dropbox.com/sh/3btckmd0sqwhqlq/AAAVlFL2cU5DzYUx6sKT7KIDa?dl=0    

1I/1O 2I/1O 2I/2O 1I/1O 2I/1O 2I/2O 1I/1O 2I/1O 2I/2O 1I/1O 2I/1O 2I/2O

LSCV 44146 97727 172476 44122 71690 103457 44388 72241 105675 44340 80621 125804

SJ 42814 93852 165975 42724 69469 99807 42742 69887 101231 43039 77517 119072

Naïve 42661 98263 167177 42757 70878 100342 42731 75005 106901 42583 81583 125630

Standard Trun. Normal Low Trun. Normal High Uniform

http://econ.queensu.ca/jae/2007-v22.7/simar-zelenyuk/
https://www.dropbox.com/sh/3btckmd0sqwhqlq/AAAVlFL2cU5DzYUx6sKT7KIDa?dl=0
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procedures are run. Hence, the generated samples are common in all cases of smooth 

and naïve bootstraps. Therefore any potential differences due to the random sampling 

of the Monte Carlo algorithm have been mitigated and any differences observed are 

solely due the bootstrap procedures. 

The main focus of this exercise is to: (i) examine whether the assumption of equal 

bootstrap and model biases is plausible in finite samples and (ii) examine whether the 

bootstrap confidence intervals of Simar and Wilson (1998, 2000a) are associated with 

coverage probabilities which converge to the nominal ones in finite samples. To 

evaluate the assumption of equal bootstrap and model (or DEA) biases, which carries 

important implications for the performance of Simar and Wilson’s (1998, 2000a) 

confidence intervals, we compute the average bootstrap and DEA biases in the Monte 

Carlo trials and compare them. Although we know that the two biases will converge 

asymptotically to zero, we are mostly interested in their behaviour in smaller samples as 

upon this condition depends the performance of Simar and Wilson’s (1998, 2000a) 

confidence intervals and of the extensions of Simar and Wilson’s works which make use 

of this assumption (already discussed in section 2.6.5). 

To compute coverage probabilities we follow the common practice of using a “fixed” 

DMU47, that is a DMU which is programmed to appear in every Monte Carlo trial. Then 

coverage is calculated by the frequency that the “true” efficiency score of the “fixed” 

DMU lies within the bootstrap confidence intervals. It will be discussed later in this 

                                                      
47

 More details on the definition of the “fixed” DMU are provided in section 2.8.4. 
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chapter that the assumed fixed point returns robust results since it is relatively far from 

the frontier which would yield higher overage probabilities. 

Apart from examining coverage probabilities, we evaluate the behaviour of 

confidence intervals in two ways: (i) we inspect the convergence behaviour of the 

average 95% confidence intervals about the “true” efficiency score (along with their 

width) and (ii) we compute the average moments of the bootstrap distribution of the 

fixed DMU48.  

 

2.8.2 The data generating process 

 

The data generating processes (DGP) have been designed to have an economic 

interpretation, discussed in the next subsection. Since we assume input orientation and 

since the source of variability is attributed to the deviations of inputs from their efficient 

levels, the DGPs are designed to generate these deviations. Output is produced in each 

process by a CRS Cobb Douglas function which uses the efficient input levels of DMUs; 

the deviation of inputs from their efficient level is the source of inefficiency. The 

processes of these deviations are presented below for each input 𝑖 = 1,2, … 𝑛:  

Standard:  𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓𝑒0.2|𝑣|   where  𝑣~𝑁(0, 1) 

Trunc. Normal Low: 𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓𝑒0.2𝜔  where  𝜔~𝑁+(0.5, 1) 

Trunc. Normal High: 𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓𝑒0.8𝜉  where  𝜉~𝑁+(0.5, 1) 

                                                      
48

 We would like to thank Prof L. Simar for his suggestion to explore the moments of the bootstrap 
distribution of the fixed DMU. 
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Uniform:  𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓𝑒0.8𝑢  where   𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 0.8] 

A very important clarification is that in the case of multiple inputs, the random 

components are common to all inputs. This is due to the definition of the input oriented 

efficiency: it is the input contraction factor that needs to be applied to all inputs of a 

DMU in order to become efficient. That is, if a DMU has an efficiency score of 0.8, then 

it will need to use 80% of all its inputs to become input-efficient and the assumption 

used here reflects this definition. 

The efficient inputs in the 1 input and 1 output case are generated from a uniform 

distribution on the [10,20] interval while output is produced according to the following 

simple CRS production function: 𝑦 = 𝑥𝑒𝑓𝑓~𝑈[10,20]. Figure 2.8 presents a scatterplot 

of the generated input-output combinations for the 1-input/1-output case49. The 

resulting scatter plots reflect the expected behaviour: the range of values for the output 

ranges between 10 and 20 (as it is equal with the efficient input level) while inputs vary 

according to the assumed distribution of the disturbance. In particular, for the standard 

case the observations are gathered closer to the frontier, for the truncated normal with 

low variance the observations are a bit more scattered to the right compared to the 

standard, in the truncated normal with high variance the observations are substantially 

more scattered, while in the case of the uniform the observations are equally scattered 

in the feasible set of values. Regarding the frontiers, they all lie on the 45𝑜 line as 

                                                      
49

 The presentation of the scatterplot is used to address the concerns raised by Pror L. Simar in the EWEPA 
2013 conference (Helsinki) that the DGPs used by the author are inconsistent. We would therefore like to 
thank Prof L. Simar for pointing out potential inconsistencies with previously used DGPs. The DGPs used 
here are clearly consistent with a well-defined population frontier and behaviour. 
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expected, although this is not obvious in the two cases with truncation due to the 

different scaling of the axes. 

 

Figure 2.8. Scatter diagram of inputs and outputs 

 

 

In the case of 2-inputs/1-output, the efficient levels of inputs are uniformly 

distributed on the [10,20]  and [20,30]  intervals: 𝑥1
𝑒𝑓𝑓
~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[10, 20]  and 

𝑥2
𝑒𝑓𝑓
~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[20, 30]. Output is produced using a standard Cobb Douglas CRS 

production function 50 : 𝑦 = (𝑥1
𝑒𝑓𝑓
)
0.5
(𝑥2

𝑒𝑓𝑓
)
0.5

 Finally, for the case of 2-inputs/2-

outputs, the efficient levels of inputs are generated using the same process as in the 

previous case. Outputs are produced using the following CRS Cobb Douglas functions: 

                                                      
50

 Although the simulations should not be sensitive to the choice of the input elasticities in the production 
function (as long as they sum up to 1), it would be interesting in the future to examine the robustness of 
our results under various combinations of these parameters. 
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𝑦1 = (𝑥1
𝑒𝑓𝑓
)
0.5
(𝑥2

𝑒𝑓𝑓
)
0.5

and 𝑦2 = (𝑥1
𝑒𝑓𝑓
)
0.3
(𝑥2

𝑒𝑓𝑓
)
0.7

. The resulting population 

distributions for all DGPs and model dimensions are presented in Figure 2.9. The labels 

above each histogram represent the different combinations of DGP and model 

dimensions and are self-explanative. 

 

Figure 2.9. Population distributions of efficiency scores for each DGP 
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2.8.3 The economic interpretation of the DGPs51 

 

Each population is constructed to be both consistent with DEA assumptions52, but also 

to have an economic interpretation. Hence, we associate the evidence on the 

performance of bootstrap DEA with certain market conditions which might be useful to 

the applied researcher. Hence, the user of bootstrap DEA will have more evidence about 

the finite sample performance of these methods in various market structures.  

Regarding the standard case, the actual input levels are created by random positive 

deviations of inputs from their efficient levels. This is in accordance with input 

orientated models where 𝑥 > 𝑥𝑒𝑓𝑓, hence we named this case “Standard”. Moreover, 

the DMUs are homogeneous and produce their outputs using the same CRS technology, 

which is consistent with the case of perfect competition. In a perfectly competitive 

industry we would expect all firms to be efficient while inefficiencies should be 

attributed to randomness, since all firms produce the same output using the same 

inputs and the same technology. It could be also associated with long-run monopolistic 

competition, which could be evidenced in non-perfectly competitive industries where 

well-established and large firms, operating under tight market conditions. 

The truncated normal case with low-variance produces histograms of efficiency 

scores which look like normal distributions. In this case both tails of the distribution are 

                                                      
51

 The author would like to thank Prof M. Tsionas for his time to discuss the association of efficiency 
distribution and market structure. Prof Mike Tsionas agreed with the opinions expressed in this 
subsection. In fact, in one of his current works in progress he associated half-normal distributions with 
perfect competition as we do here. 
52

 See section 2.3 and footnote 7. Most importantly, the generated data are convex combinations of a 
feasible set which exhibits certain technological characteristics (CRS in this case). 
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both relatively thin, indicating that a small proportion of these firms will operate 

efficiently (or not). The efficient firms use substantially less inputs than their peers while 

the inefficient firms use considerably more. In the context of DEA and of production 

economics this could be attributed to access to different technologies rather than 

random deviations from the efficient levels (like in the standard case). Hence, efficient 

firms are expected to have access to superior technology while very inefficient ones 

probably fail to adopt these technologies (perhaps due to size restrictions, various entry 

barriers or patents). We therefore associated “Truncated Normal Low” with monopoly. 

Moreover, it is important to note that applying DEA on such a market would violate the 

assumption of technological homogeneity and could be therefore associated with a 

form of model specification error. 

The truncated case with high variance produces distributions which look like “flat 

normal”. The tails are fat, implying that a greater number of efficient firms have access 

to superior technology compared to the previous case. Moreover, the number of very 

inefficient firms is relatively high, indicating that inefficiency can be attributed to a 

reasonable extent to random deviations. Since inefficiency is both due to randomness 

and technological differences53, this case is a mixture of the previous two and can be 

associated with monopolistic competition in the medium-run. That is, the initial patents 

that some firms used to have are now accessible to other firms, while the entry barriers 

                                                      
53

 In this case there are firms with efficiency score as low as 4% which is due to the high variance 
introduced. If we wanted to attach an economic intuition behind this behaviour, we could state that the 
low-performers are firms which failed to catch-up with modern practices that the efficient firms have 
adopted. These low extremes do not affect the validity of the Monte Carlo exercise as the DGP is valid. 
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are gradually lifted. Thus, all firms could achieve higher performance using these 

technologies and are expected to perform efficiently in the near future. Therefore, 

deviations from the efficient input levels can also be due to random events (apart from 

inability) which have prevented these firms from being efficient. 

Finally, the uniform case cannot necessarily be associated with a specific market 

structure. We decided to include this case for the sake of completeness in order to 

evaluate the sensitivity of our results with respect to various assumptions about the 

DGP. Despite the fact that the DGP does not exhibit technological heterogeneities (as in 

the previous case), we argue that there is a different type of error; either the DMUs or 

the input-output variables chosen do not accurately reflect the underlying production 

process.  We therefore suggest that the practitioner should first rethink about the DMUs 

or the inputs and outputs chosen; however, we provide some results to inform on the 

expected behaviour of bootstrap DEA in such cases. 

 

2.8.4 Defining the fixed DMU54 

  

The Monte Carlo simulations can be used to analyse the behaviour of bootstrap DEA in 

finite samples. As already explained, the main purpose of bootstrap DEA is to construct 

confidence intervals about the true efficiency score of a certain DMU of interest 

                                                      
54

 This section serves as a response to the concerns expressed by Prof L. Simar that the fixed point in a 
previous version was not properly defined. In an informal discussion, Prof L. Simar agreed that the 
approach that the author had followed was correct but the way presented was unclear and confusing. We 
have therefore decided to introduce some mathematical sophistication and proofs to show that the fixed 
point is properly defined and theoretically consistent. The author would like to thank Prof L. Simar for his 
time and valuable feedback on this issue. 
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(𝑥0, 𝑦0)55. The Monte Carlo simulations evaluate the ability of bootstrap DEA to produce 

confidence intervals that actually include the true efficiency score 𝜃(𝑥0, 𝑦0), over a 

number of 𝑀  trials. The frequency that 𝜃(𝑥0, 𝑦0)  is included in each of the 𝑀 

constructed confidence intervals (coverage probability) is a popular approach of such an 

evaluation and we will use it in our analysis. For coverage probabilities to be computed 

for DMU (𝑥0, 𝑦0), it has to appear in every Monte Carlo trial and it is therefore termed 

as the fixed DMU or the fixed point.  Hence, defining the fixed DMU is an important part 

of the simulation exercise. 

An important consideration in defining the fixed point (𝑥0, 𝑦0) is the position of 

𝜃(𝑥0, 𝑦0) in relevance to the population distribution of efficiency scores. One case that 

we could easily exclude is to choose (𝑥0, 𝑦0) such that 𝜃(𝑥0, 𝑦0) ≃ 1. In this case we 

would expect coverage probabilities to be overstated since this DMU would belong in 

the reference set in (almost) every Monte Carlo sample. A more reasonable choice 

would be a fixed point in a middle data point56; in our case we choose (𝑥0, 𝑦0) = (�̅�, �̅�) 

suggesting that 𝜃(𝑥0, 𝑦0) = 𝜃(�̅�, �̅�) would be near �̅�. We could therefore state that in 

this case we examine the behaviour of bootstrap DEA for a typical DMU, the latter being 

represented by a DMU that uses average levels of inputs to produce average levels of 

outputs.  

                                                      
55

 We will denote the fixed point or fixed DMU as (𝑥0, 𝑦0) and its efficiency score as 𝜃(𝑥0, 𝑦0), following a 
suggestion by Prof L. Simar to avoid confusion. 
56

 See for example Simar and Wilson (2004) and Kneip et al. (2008, 2011) where the fixed points lie in the 
middle of the input and output data. 
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Finally, one could choose a DMU whose efficiency lies towards the lower tail of the 

distribution. Considering again Figure 2.5 we deem that as long as that fixed point is not 

a member of the population reference set (or very close to it), then the performance of 

bootstrap DEA should not be considerably affected by the exact position of the fixed 

point. This is because a DMU which is inefficient in (most) Monte Carlo samples, it will 

also be inefficient with respect to the bootstrap reference sets and therefore the 

associated coverage probabilities should now be affected by choosing a different fixed 

point. To make sure that our statement is robust we included a second fixed point which 

uses one standard deviation of each input extra to produce the same output as the first 

fixed point (𝑥0 + 𝜎𝑥, 𝑦0) = (�̅� + 𝜎𝑥, �̅�). The computed coverage probabilities are very 

close for the two fixed points, providing support to our argument; we therefore only 

present here the results for the fixed point (𝑥0, 𝑦0) = (�̅�, �̅�)57. In terms of Figure 2.5, if 

we think of DMU 1 as our fixed point then the second fixed point would lie towards the 

top right corner of the scatterplot, but not (necessarily) on the same ray as that of DMU 

1. It would be interesting in the future to examine alternative fixed points that exhibit 

specialisation in using one of the inputs; they could be thought of as being situated 

towards the top-left or bottom-right boundaries of the isoquant. However, we would 

not expect to observe any substantial differences. 

The true efficiency scores of the fixed DMU for each data generating process, along 

with their input and output values are presented in Table 2.4. To support the validity of 

                                                      
57

 The results for the alternative fixed point are available upon request by the author. The differences are 
so small that could be attributed to randomness. 
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our approach we will show how the true efficiency score of the fixed DMU can be 

derived on the basis of production economics while we will also prove that the DEA 

linear program computes the same efficiency scores as the theoretically derived ones. 

Without loss of generality we will perform these tasks for the 1-input/1-output case. 

 

Table 2.4. True efficiency score and input/output values of the fixed DMU 

 
 

Consider the fixed DMU under the “Standard 1-input/1-output” case and under CRS. 

It has an input value of 17.771 and an output value of 15.011, while its true efficiency is 

0.8447 based on the computations that we will now show. It is reminded that 

𝑦 = 𝑥𝑒𝑓𝑓~𝑈[10,20]  and 𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓𝑒0.2|𝑣|, 𝑣~𝑁(0, 1)  in our case. In theory, input 

oriented inefficiency is defined as the horizontal distance of any DMU from the frontier, 

while the CRS frontier is determined by the ray which has a slope (or tangent) equal to 

the maximum observed average product (1-input/1-output case). The maximum 

average product in the population is found by: 

x1 x2 y1 y2 Efficiency

Standard 1/1 17.771 15.011 0.8447

Standard 2/1 17.768 29.594 19.373 0.8450

Standard 2/2 17.755 29.567 19.380 21.463 0.8462

Trun. Normal Low 1/1 25.459 15.046 0.5916

Trun. Normal Low 2/1 25.310 42.221 19.312 0.5912

Trun. Normal Low 2/2 25.362 42.240 19.380 21.463 0.5927

Trun. Normal High 1/1 41.903 14.990 0.3578

Trun. Normal High 2/1 42.855 71.414 19.367 0.3502

Trun. Normal High 2/2 43.130 71.731 19.422 21.506 0.3494

Uniform 1/1 22.976 15.011 0.6533

Uniform 2/1 22.944 38.218 19.377 0.6545

Uniform 2/2 23.020 38.353 19.367 21.451 0.6520
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 𝐴𝑃𝑚𝑎𝑥 = max
𝑦

𝑥
= max

𝑥𝑒𝑓𝑓

𝑥𝑒𝑓𝑓𝑒0.2|𝑣|
   (2.32) 

There are two equivalent ways to proceed: (i) the maximum average product is 

associated with efficient inputs and outputs hence 𝑣 = 0,  so 𝐴𝑃𝑚𝑎𝑥 = 1, or (ii) in order 

to maximize (2.32) and therefore 1 𝑒0.2|𝑣|⁄ , 𝑣  has to be zero so that 𝐴𝑃𝑚𝑎𝑥 = 1 . 

Therefore, in all of our 1-input/1-output cases the true frontier is defined by a 450 line, 

as in Figure 2.10 below. Then the efficient input level for the fixed DMU will be 

𝑥0
𝑒𝑓𝑓

= 𝑦0 and the true efficiency score will be 𝜃(𝑥0, 𝑦0) = 𝑥0
𝑒𝑓𝑓

𝑥0⁄ = 𝑦0 𝑥0⁄ . Hence, 

for the “Standard 1/1” case, the theoretically-derived, true efficiency score of the fixed 

DMU is 𝜃(𝑥0, 𝑦0) = 15.011 17.771⁄ = 0.8447. For the other 1-input/1-output cases 

the theoretically derived true efficiency is 0.5910 for “Trunc. Normal Low”, 0.3577 for 

“Trunc. Normal High” and 0.6533 for “Uniform”. In all cases the theoretical scores are 

equal to the efficiency scores computed by the application of DEA on the population at a 

4 digit precision58 and therefore applying DEA on the population is a valid means of 

determining the “true” efficiency score. 

 

                                                      
58

 As a technical note, any difference between manually-computed and DEA-computed efficiency scores is 
due to the randomness in generating  𝑣~𝑁(0, 1) and the fact that in the computing world, zero can only 
be approximated (known as machine epsilon). However, these differences are negligible. 
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We have shown that in our case the manually (or theoretically) derived efficiency 

scores of the population would be the same if we had applied DEA on the population. 

We now provide a proof for this statement for the 1-input/1-output case and under 

CRS59. The efficient frontier is defined by DMU(s) 𝑐; that is, any DMU 𝑐 represents an 

efficient DMU 𝜃𝑐 = 1. We also assume that 𝑥𝑖 = 𝑥𝑖
𝑒𝑓𝑓
𝑒𝑢𝑖 , 𝑢𝑖~𝑖𝑖𝑑

+, 𝑖 = 1,2…𝑁 and 

                                                      
59

 In a previous version the notion of the “true” efficiency score of the fixed point caused confusion to 
Prof L. Simar in the EWPA 2014 conference. In particular, the author stated the efficiency scores were the 
population DEA scores. Prof Simar thought that the author was referring to sample efficiency scores as, 
according to Prof Simar, when referring to a “DEA score” it is not usually implied the population efficiency 
score as the latter is 𝑒−𝑢. In a private conversation the author explained the procedure followed in detail 
to Prof Simar and he agreed that the way the population or true efficiency score had been valid was valid 
but the exposition was confusing. We therefore decided to make clear how the population or “true” 
efficiency score is defined. Also, proving that applying DEA on the population yields the same efficiency 
score as its theoretical value (𝑒−𝑢), we establish that our approach is valid. 

O 

𝑦0 = 15.011 

𝑥0
𝑒𝑓𝑓

= 15.011 𝑥0 = 17.771 

(𝑥0, 𝑦0) 

𝑦 

𝑥 

True CRS 

Frontier 

(𝑥0
𝑒𝑓𝑓
, 𝑦0) 

Figure 2.10. Efficiency of the fixed DMU: illustration of the “Standard 1/1” case 
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that output is generated as before by the simple CRS Cobb-Douglas function 60 

𝑦𝑖 = 𝑥𝑖
𝑒𝑓𝑓

= 𝑥𝑖𝑒
−𝑢𝑖 .The efficiency score of each DMU is: 

 𝜃𝑖 =
𝑥𝑖
𝑒𝑓𝑓

𝑥𝑖
 =

𝑥𝑖
𝑒𝑓𝑓

𝑥𝑖
𝑒𝑓𝑓𝑒𝑢𝑖

⇒ 𝜃𝑖 = 𝑒
−𝑢𝑖 ,     𝑖 = 1,2,…𝑁 (2.33) 

We will show that applying DEA on the population to compute 𝜃𝑘, yields the same 

solution as in (2.33): 𝜃𝑘 = 𝑒−𝑢𝑘. For this proof we will use both the envelopment and 

multiplier forms of DEA. In both cases we will need to assume that the frontier 

comprises a set of 𝐶 efficient DMUs for which 𝜃𝑐 = 1, 𝑐 = 1,2, …𝐶 and for which 𝑢𝑐 = 0 

and therefore 𝑦𝑐 = 𝑥𝑐
𝑒𝑓𝑓

= 𝑥𝑐. 

Using the multiplier form in (2.10), the efficiency score of DMU 𝑘 is: 

 𝜃𝑘 = max{𝜃 = 𝜇𝑦𝑘|𝜈𝑥𝑘 = 1; 𝜇𝑦𝑖 ≤ 𝜈𝑥𝑖;  𝑣, 𝜇 ≥ 0;  ∀ 𝑖 = 1,2… ,𝑁}  (2.34) 

By definition 𝑦𝑖 = 𝑥𝑖𝑒
−𝑢𝑖, while from the first restriction we get 𝜈 = 1/𝑥𝑘 . Hence:  

 𝜃𝑘 = max{𝜃 = 𝜇𝑥𝑘𝑒
−𝑢𝑘|𝜇𝑥𝑖𝑒

−𝑢𝑖 ≤ 𝑥𝑖/𝑥𝑘;  𝑣, 𝜇 ≥ 0;  ∀ 𝑖 = 1,2… ,𝑁}  (2.35) 

which reduces to: 

 𝜃𝑘 = max{𝜃 = 𝜇𝑥𝑘𝑒
−𝑢𝑘|𝜇𝑥𝑘 ≤ 𝑒

𝑢𝑖;  𝑣, 𝜇 ≥ 0;  ∀ 𝑖 = 1,2… ,𝑁}  (2.36) 

Since min(𝑒𝑢𝑖) = 1 for 𝑢𝑖 = 𝑢𝑐 = 0, the constraint in (2.36) becomes 𝜇𝑥𝑘 ≤ 1. This 

suggests for the objective function that 𝜇𝑥𝑘𝑒
−𝑢𝑘 ≤ 𝑒−𝑢𝑘 and therefore, to maximise 𝜃 

the constraint needs to be binding so that max(𝜃) = 𝑒−𝑢𝑘 for 𝜇∗ = 𝑣∗ = 1/𝑥𝑘.  

Let us now consider the envelopment form in (2.11). Note that 𝜆𝑖 > 0 only for the 

efficient DMUs which constitute the set of benchmarks for DMU 𝑘 (assume there are 𝐶𝑘 

                                                      
60

 It is essentially 𝑦𝑖 = 𝐴(𝑥𝑖
𝑒𝑓𝑓
)
𝑎

 with 𝐴 = 1 and  𝑎 = 1. 
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benchmarks). Since 𝜆𝑖 = 0 for all other DMUs, we can disregard these for now and 

reformulate the constraints as follows: 

 𝑦𝑘 ≤∑𝜆𝑐𝑦𝑐

𝐶𝑘

𝑐=1

    and      𝜃𝑘𝑥𝑘 ≥∑𝜆𝑐𝑥𝑐

𝐶𝑘

𝑐=1

 (2.37) 

Note that both constraints need to be binding to minimise 𝜃  otherwise 𝜃 >

∑ 𝜆𝑐𝑥𝑐
𝐶𝑘
𝑐=1 /𝑥𝑘. By definition 𝑦𝑖 = 𝑥𝑖𝑒

−𝑢𝑖  and 𝑢𝑐 = 0, so: 

 𝑥𝑘𝑒
−𝑢𝑘 =∑𝜆𝑐𝑥𝑐

𝐶𝑘

𝑐=1

     and      𝜃𝑘𝑥𝑘 =∑𝜆𝑐𝑥𝑐

𝐶𝑘

𝑐=1

 (2.38) 

We find 𝑥𝑘𝑒
−𝑢𝑘 = ∑ 𝜆𝑐𝑥𝑐

𝐶𝑘
𝑐=1 = 𝜃𝑥𝑘 , and therefore 𝜃𝑘 = 𝑒

−𝑢𝑘 . Therefore we have 

proven that applying DEA on the population yields the same technical efficiency score as 

in the theoretical computation: 𝜃𝑘 = 𝑒
−𝑢𝑘. 

 

2.8.5 Performing Monte Carlo simulations and associated issues 

 

The procedure followed in our Monte Carlo simulations is the following: 

 Use a data generating process (𝒫)  to produce the population data (𝑥, 𝑦) 

according to the specifications in subsection 2.8.2. 

 Define the first DMU as the fixed point (𝑥0, 𝑦0) = (�̅�, �̅�) (simulation assumption) 

 Compute the population or true efficiency score of the fixed DMU 𝜃(𝑥0, 𝑦0|𝒫) by 

applying the DEA linear program: 
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𝜃(𝑥0, 𝑦0|𝒫) = 𝑚𝑖𝑛 {𝜃 |𝑦0 ≤∑𝜆𝑖𝑦𝑖

𝑁

𝑖=1

;  𝜃𝑥0 ≥∑𝜆𝑖𝑥𝑖

𝑁

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,

∀  𝑖 = 1,… ,𝑁| 𝒫} 

(2.39) 

 Program the fixed DMU to appear as the first observation in every Monte Carlo 

replication. Hence, its input and output values will always be the same but its 

sample efficiency scores will be different in each Monte Carlo repetition 

compared to its population score (“true”). Since each of the 𝑀 Monte Carlo 

samples can be considered as generated by a DGP �̂�𝑚, 𝑚 = 1,2, …𝑀 which is an 

estimate of 𝒫 , the sample DEA score of the fixed DMU at the 𝑚𝑡ℎ  trial 

𝜃(𝑥0, 𝑦0|�̂�𝑚) will be: 

 

𝜃(𝑥0, 𝑦0|�̂�𝑚) = 𝑚𝑖𝑛 {𝜃 |𝑦0 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝜃𝑥0 ≥∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,

∀  𝑖 = 1,… , 𝑛| �̂�𝑚} 

(2.40) 

 For each DGP �̂�𝑚, 𝑚 = 1,2, …𝑀, apply bootstrap DEA using the steps (2.19) to 

(2.22) in section 2.6.2 to generate a distribution of 𝐵 bootstrapped scores for 

each 𝑚 = 1,2,…𝑀: 

 

𝜃𝑏
∗(𝑥0, 𝑦0|�̂�𝑚) = 𝑚𝑖𝑛 {𝜃 |𝑦0 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝜃𝑥0 ≥∑𝜆𝑖𝑥𝑖
∗

𝑛

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,    𝑖

= 1,… , 𝑛| �̂�𝑚} 

(2.41) 
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 For each 𝑚 = 1,2,…𝑀  construct a confidence interval where 𝜃(𝑥0, 𝑦0|𝒫)  is 

expected to lie. The Simar and Wilson’s (1998) confidence intervals (see Eq. 

(2.29)) are given by: 

 𝜃(𝑥0, 𝑦0|𝒫) ∈ (�̃�(𝑥0,𝑦0|�̂�𝑚)
∗,(𝑎/2)

  ,  �̃�
(𝑥0,𝑦0|�̂�𝑚)

∗,(1−𝑎/2)
) (2.42) 

while  Simar and Wilson’s (2000a) confidence intervals by (see Eq. (2.31)): 

 𝜃(𝑥0, 𝑦0|𝒫) ∈ (𝜃(𝑥0,𝑦0|�̂�𝑚) − 𝛥𝜃(𝑥0,𝑦0|�̂�𝑚)
∗ (1−𝑎/2)

  ,   𝜃(𝑥0,𝑦0|�̂�𝑚) − 𝛥𝜃(𝑥0,𝑦0|�̂�𝑚)
∗ (𝑎/2)

) (2.43) 

 Use the 𝑀  confidence intervals constructed by Monte Carlo to compute 

coverage probabilities as:  

 
𝐶𝑃𝑆𝑊1998 =

#𝜃(𝑥0, 𝑦0|𝒫) ∈ (�̃�(𝑥0,𝑦0|�̂�𝑚)
∗ (𝑎/2)

  ,  �̃�
(𝑥0,𝑦0|�̂�𝑚)

∗ (1−𝑎/2)
)

𝑀
,   𝑚 = 1,2…𝑀 

(2.44) 

for the Simar and Wilson (1998) intervals (2.42) and for the Simar and Wilson’s 

(2000a) confidence intervals (2.43): 

 

𝐶𝑃𝑆𝑊2000

=
#𝜃(𝑥0, 𝑦0|𝒫) ∈ (𝜃(𝑥0,𝑦0|�̂�𝑚) − 𝛥𝜃(𝑥0,𝑦0|�̂�𝑚)

∗ (1−𝑎/2)
  ,   𝜃(𝑥0,𝑦0|�̂�𝑚) − 𝛥𝜃(𝑥0,𝑦0|�̂�𝑚)

∗ (𝑎/2)
)

𝑀
,    

𝑚 = 1,2…𝑀 

(2.45) 

In performing the simulations we encountered two minor issues that required some 

light interventions in the codes to help the simulations run, which do not affect the 

validity of our results. However, they might be of interest to researchers or 

practitioners. 

The first one concerns the Sheather-Jones (1991) smoothing procedure (SJ) which 

would not yield a solution in a few occasions. The problem is that the differential 

equation solving process could not converge to a solution after a number of iterations. 
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The source of the problem was purely data-driven61 and we therefore decided to 

substitute in these few cases the smoothing parameter with one derived from the least 

squares cross validation process (LSCV). We could have alternatively omitted these few 

cases from our results, but it would require a substantial investment in programming 

time while the difference in results would be negligible, given that in many occasions 

the LSCV and SJ smoothing parameters are very close to each other. The number of “SJ 

discrepancies” is presented in Table 2.5 below, for each combination of data generating 

process and input-output combination. We observe that in most cases no such 

discrepancy occurred or less frequently there were 1 or 2 among the 1000 Monte Carlo 

repetitions. Then there were 5 cases where the number of discrepancies was higher, all 

of which observed in very small samples (mainly 10 and 15). This suggests that our 

interventions have not affected results and that perhaps this failure of the SJ smoothing 

process is limited to very small samples.  

 

                                                      
61

 The author performed a small experiment on this issue. In particular he used the data of the samples 
exhibited these discrepancies. By trying different values for the numbers of iterations no result was 
reached, indicating that the problem was caused most likely by the specific data used. The author did not 
look further into this issue by trying different numerical approximation methods, but it seems more likely 
that there is an incompatibility between the specific “problematic” data sets and the SJ method. 
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Table 2.5. Number of SJ discrepancies  

 
 

Another minor issue relates to the code modification for the LSCV method when 

applied in large samples. To avoid “out of memory”62 problems we changed the 

precision of real values to “single” from “double”, which means that we changed the 

number format from 15 decimal places to 7. The value of the smoothing parameter is 

determined by a “grid-search” algorithm that searches for the value of the smoothing 

parameter that minimizes the value of a function of interest63. This procedure considers 

a range of values for the smoothing parameter from 0 to 1, moving from one value to 

the next at a certain “step”. The reduced precision resulted in a few situations where 

two consecutive values of the smoothing parameter were associated with the same 

                                                      
62

 The “out of memory” message appears in computing when the available memory of the computer is 
not adequate to perform an operation. This occurs when the number of elements or the size of a vector 
exceed some limit which depends on the characteristics of the PC. The usual approach is to reduce the 
size of the problematic elements by various techniques (such as partition) where possible (not here), to 
reduce the memory allocation for each element (done here by transforming numbers to have single 
precision) or to increase the random access memory (RAM) of the computer (not possible at this stage).  
63

 This function actually measures the mean integrated squared error (MISE). For more details see 

equation (I.14) in the Appendix. 

n = 10 n = 15 n = 20 n = 25 n = 30 n = 60 n = 120

Standard 1-1 9 3 1 2 2 1 0

Standard 2-1 1 7 4 2 0 1 0

Standard 2-2 2 2 2 1 1 0 0

Trun. Normal Low 1-1 1 0 0 0 0 0 0

Trun. Normal Low 2-1 1 1 0 0 0 0 0

Trun. Normal Low 2-2 3 1 0 0 1 0 0

Trun. Normal High 1-1 0 0 0 1 0 0 0

Trun. Normal High 2-1 1 0 0 0 0 0 0

Trun. Normal High 2-2 2 0 0 0 1 0 0

Uniform 1-1 2 0 0 0 0 0 0

Uniform 2-1 0 0 0 0 0 0 0

Uniform 2-2 1 0 0 0 1 0 0
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minimizing value for the aforementioned function of interest, returning as a solution 

two smoothing parameters. In these few situations we used the smaller of the two, 

which is highly unlikely to affect the validity of our results. 

 

 

2.9 Monte Carlo Results: small samples 

 

The performance of bootstrap DEA and the behaviour of the associated confidence 

intervals, as already mentioned, is characterized by 4 aspects which will be examined in 

the following subsections: (i) the equality of bootstrap and DEA biases, (ii) convergence 

of coverage probabilities to their nominal values, (iii) the behaviour of confidence 

intervals, and (iv) the distributional aspects of bootstrapped efficiency scores. 

Subsections 2.9.2 to 2.9.5, thus, present results that correspond to these four aspects. 

The first subsection, though, tries to address the question of identifying the correct 

population DGP using sample data which would be useful to practitioners. 

 

2.9.1 Identifying the population DGP from the data 

 

The identification of the underlying population DGP using sample data is not an easy 

task; especially when the sample distributions are not similar to the population ones. 

That is, it is not necessary that the distribution of efficiency scores in each sample will 

always have the same properties as the ones of the underlying population. However, 
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this is a well-known issue in statistical inference and therefore the assumption that the 

observed sample is a “representative” one is implicit. This means, that both in general 

statistical applications and in bootstrap DEA, in particular, we hope (and assume) that 

the observed sample is a good representation of “reality”. In this subsection we will 

examine if such an assumption is plausible in the case of DEA using simple diagnostics, 

while we will argue that theoretical intuition could be useful in assuming a valid 

population DGP (as in statistical modelling64).  

We will first discuss how theoretical intuition can help identifying the underlying 

population DGP. In subsection 2.8.3 we attached an economic interpretation to each 

DGP. The first one (“Standard”) was argued to be associated with (perfect) competition 

or monopolistic competition in the long run, whereas the second one (“Trun.Normal 

Low”) was linked to monopoly and technological heterogeneity. It is reasonable to 

assume that the practitioner knows which of these two cases applies to the sample 

under examination and therefore infer the correct DGP. This information could be either 

knowledge of the market under which the DMUs operate, knowledge of the operations 

of each DMU, or it could be in the form of studies on the industrial organisation or 

competitive conditions of the market under examination. Especially for the case of 

technological heterogeneity, this could be easily detected by inspecting data as there 

should be substantial differences in the proportions of outputs to inputs among DMUs. 

                                                      
64

 It is not within the scope of this subsection to analyse these principles but the interested reader is 
directed to any introductory textbook in statistics. For example, one principle of sampling is that data 
should not be collected from certain clusters of the population if the statistical question in hand concerns 
the whole population. Another example concerns employing distributional assumptions which have some 
theoretical basis (such as the assumption of normality for financial stock returns). 



106 
 

In addition, careless data selection can also lead to distributions which look similar to 

those under technological heterogeneity65. We would therefore like to highlight the 

importance of inspecting the sample efficiency distributions and comparing them with 

what was expected to be observed; if expectations are not realised then the data should 

be looked at again. 

 Despite theoretical intuition is clear in these two cases, it is less so in the other two. 

In particular, it is challenging to identify the exact conditions under which we could 

detect the third case (“Trun.Normal High”) in sample data. That is, the practitioner 

cannot easily recognise the conditions under which the sample data can be associated 

with medium-run monopolistic competition where the market is in transition (it is 

becoming increasingly competitive). Regarding the last case (“Uniform”) there is no 

economic interpretation and the DGP is only used for experimental purposes so we do 

not need to comment on that. 

Let us now examine if we could use some simple diagnostics to perform the same 

task. Since the samples are drawn from a population distribution, comparing the 

moments of the population and sample distributions could be informative, especially if 

the latter have unique patterns which could help identifying the underlying DGPs. We 

argue that this information cannot be found in the measures of central tendency and 

                                                      
65

 For example, mixing commercial banks and state development banks in the same sample and applying 
DEA using the intermediation approach, would most probably make development banks look much more 
efficient as the proportions of their deposits compared to loans is much lower compared to those for 
commercial banks. This is due to the fact that state development banks fund national projects (among 
others) while they do not (need to) perform commercial deposit operations as their liquidity is injected by 
the central bank. In the empirical application to the Greek banking sector we will illustrate the 
implications of such a “malpractice” for DEA, which can be extended to bootstrap DEA. 
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dispersion. We support this by the fact that one could have generated different DGPs 

but with similar means and standard deviations. On the other hand, the higher 

moments (skewness and kurtosis) carry information about the shape of the distribution 

and it seems reasonable to use these instead. Thus, we will compare the skewness and 

kurtosis of each population with those of the generated samples66 and we will try to 

associate observable patterns to certain DGPs. 

Table 2.6 reports the values of skewness and kurtosis for each population and for 

different sample sizes. We only report here the case of 2-inputs/2-outputs as the 

dimensions do not affect (and are not relevant to) the identification of the population 

DGP from the sample67; this is because the shape of the distribution is not affected. 

Finally, we need to underline that the discussion is relevant to the input-oriented 

efficiency scores under CRS. However, it should be straightforward for the practitioner 

to perform this simulation exercise (of comparing skewness and kurtosis) for different 

models. 

                                                      
66

 To be precise, we will use the medians of the samples’ skewness and kurtosis values as there are 
𝑀 = 1000 samples generated. Hence, the reported sample values for the higher moments can be 
thought of as the ones of a “typical” sample for each DGP. 
67

 In Chapter 4 we propose a method which we call “Moments Bootstrap” and all moments for all cases 
and dimensions are reported there. However, this is neither necessary nor relevant here. 
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Table 2.6. Identifying underlying DGP using skewness and kurtosis 

 

 

The first thing to observe is that in all cases the higher moments of the samples are 

close to the population ones and they converge as sample size increases. Furthermore, 

we indeed observe patterns which can help identifying the population DGP using the 

sample skewness and kurtosis. We have to note, however, that the observed patterns 

are easier and safer to distinguish for sample sizes above 30 observations. In particular, 

the “Standard” DGP is associated with negative skewness of about -0.6 and with kurtosis 

close to 3 (it roughly ranges from 2 to 3). In the case of “Trun.Normal Low” we observe 

small positive skewness (around 0.4) and similar kurtosis as in the previous case (close 

to 3 and roughly ranging from 2 to 3). In the case of “Trun.Normal High” we observe 

small positive skewness (around 0.3) and kurtosis around 2 (that roughly ranges from 

1.9 to 2.1). The case of “Uniform” is only presented for reference as it is not likely to be 

met in practice; we can observe, though, that it distinguishes from the others as it is 

associated with skewness and kurtosis which are smaller by 0.2 units compared to the 

“Trun.Normal High” case. Although the difference sounds small, this combination would 

yield a noticeably flatter distribution. 

Population Skew Kurt Skew Kurt Skew Kurt Skew Kurt

N = 10,000 -0.675 2.893 0.412 3.003 0.284 2.074 0.286 1.885

Samples Skew Kurt Skew Kurt Skew Kurt Skew Kurt

n = 10 -0.494 2.117 0.146 2.125 0.347 1.921 0.250 1.829

n = 15 -0.472 2.185 0.240 2.266 0.355 1.975 0.256 1.855

n = 20 -0.501 2.235 0.268 2.330 0.303 1.947 0.307 1.862

n = 25 -0.536 2.344 0.270 2.407 0.338 2.000 0.304 1.898

n = 30 -0.519 2.370 0.317 2.505 0.321 2.026 0.314 1.887

n = 60 -0.597 2.579 0.356 2.676 0.309 2.033 0.293 1.888

n = 120 -0.650 2.753 0.381 2.802 0.305 2.066 0.291 1.889

UniformTrun. Normal Low Trun. Normal HighStandard
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The discussion of the values in Table 2.6 suggests that if one plotted a histogram of 

the sample efficiency scores, it would be quite similar to that of the corresponding 

population. This implies that either by visual inspection of the histograms or by 

computing skewness and kurtosis, the practitioner should be able to associate the 

sample data to the true DGP. However, it would be safer to use the suggested 

diagnostics for sample sizes above 30. We would also like to suggest that in empirical 

work both theoretical intuition and inspection of histograms and higher moments is 

employed to reach safer conclusions. 

 

2.9.2 Bootstrap and DEA biases 

 

The equality of the bootstrap and DEA biases is examined in this subsection. Figure 2.11 

presents these biases for each DGP and for all bootstrap procedures: LSCV (least squares 

cross-validation), SJ (Sheather-Jones plug-in estimator) and the naïve bootstrap. Each 

row of Figure 2.11 presents results for the different population assumptions and each 

column for the three different model dimensions. In each subplot, the DEA bias (or 

model or “true” bias) is depicted by the black dotted line, the LSCV-smooth bootstrap 

bias is given by the solid magenta line, the SJ-smooth bootstrap bias by the solid green 

line while the naïve bootstrap bias is presented by the thin dotted grey line. 

The general finding is that for small samples the two biases are not equal, suggesting 

that the relevant assumption in (2.28) is not plausible for the cases examined. Perhaps 

larger samples than 120 would be required for this assumption to work, but such a 
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statement should be examined in more depth. However, there is a clear tendency for all 

biases to converge to zero asymptotically which confirms the consistency of the 

method: (𝜃𝑘
∗ − 𝜃𝑘)|�̂�  

𝑎
→ (𝜃𝑘 − 𝜃𝑘)|�̂� . Another way to look at convergence is by 

considering the ratio of the two biases  

 (𝜃𝑘
∗ − 𝜃𝑘)|�̂�/(𝜃𝑘 − 𝜃𝑘)|�̂� ≃ 1 (2.46) 

The reason we include this in the discussion is because in some cases the ratios of 

bootstrap to DEA bias diverge instead of converging to 1; although we expect (2.46) to 

apply asymptotically. Graphically we observe in some cases that both biases fall and the 

difference between the two becoming smaller which is in support of the assumption of 

the equal biases; however, a closer inspection will reveal that (2.46) does not apply. The 

implication of this is that coverage probabilities fall as sample size increases as we will 

see in the next subsection; this does not invalidate, though, the consistency of the 

method but it suggests that its applicability in small samples needs to be well-

considered. 
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Figure 2.11. Bootstrap and DEA biases 

 
 

Regarding the effect of dimensions we find that biases increase with the number of 

input and output variables. In some cases the increase is more pronounced and in other 

cases less so. It is worthwhile noting, though, that dimensionality affects mostly the DEA 

biases as the effect on bootstrap biases is so small in some cases that one could argue 

that it is due to randomness. We could state however that as the dimensions increase 
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the biases increase suggesting that larger samples are probably required to make the 

assumption of equal biases plausible. 

Finally, considering the two smoothing methods, we would suggest that in cases such 

as the “Standard”, which is associated with perfect competition, the SJ is clearly superior 

to LSCV while in all other cases (monopoly, monopolistic competition, unclear market 

structure) LSCV performs, in principle, better that SJ. With regards to the naïve 

bootstrap, it is clear that in all cases the DEA bias is greater than the bootstrap bias, 

which we will see later that plays an important role in the performance of bootstrap 

DEA. The very small bootstrap bias is not surprising as the naïve bootstrap resamples 

from a discrete distribution and therefore the majority of the bootstrapped efficiency 

scores are equal to the DEA score (which is the main reason why the naïve bootstrap is 

considered inconsistent). The interesting observation, though, is that smoothing the 

empirical distribution seems to generate bootstrap biases which are considerably 

greater than the naïve bootstrap bias and in some cases well–above the DEA bias. This 

confirms Simar and Wilson (2002) who stated that smoothing the empirical distribution 

can introduce additional noise in the bootstrap. We certainly do not suggest that the 

naïve bootstrap should be preferred as its inconsistency has been well-documented in 

the literature; it seems reasonable, that research should focus on approaches that bring 

the two biases close to each other68. 

                                                      
68

 This is the motivation for the “moments bootstrap” that we propose as an alternative to the smooth 
bootstrap in chapter 4. 
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Comparing our results with the simulations in Simar and Wilson (2000b, 2004) we 

find that the behaviour of the bootstrap and DEA biases is similar, although in our case 

the bootstrap biases fall with a slower pace which is most probably due to the different 

data generating processes used and to some extent possibly due to the different 

orientation used69. Moreover, in Simar and Wilson’s (2004) simulations the ratio of the 

bootstrap to DEA bias is monotonically converging to one which explains the observed 

well-behaved coverage probabilities. The examination of every case in isolation does not 

lead to substantially different conclusions compared to the general ones that we have 

already mentioned. However, there are some interesting features associated with each 

DGP which we will now discuss.  

The “Standard” cases exhibits the most pronounced absolute differences between 

bootstrap and DEA biases. Especially if we consider the ratio of the two biases as in 

(2.46), this increases from a value of 2 for 𝑛 = 10 to about 15 for  𝑛 = 120; and this is 

observed in all dimensions examined. We will see in the next subsection that this causes 

coverage probabilities to decline as sample size increases. Apart from attributing these 

findings to the assumed DGP, we could state that the slower declining bootstrap bias 

could be due to smoothing (Simar and Wilson, 2002). On the other hand the observed 

DEA bias is substantially smaller compared to other cases, suggesting that the observed 

DEA scores are not far from the population ones.  

                                                      
69

 Although it has not been explored in the literature, there is a good chance that input orientation (used 
here) to be associated with narrower confidence intervals as the support of efficiency scores is (0,1], 
while in output orientation it is [1,∞). The author believes that this richer support of output orientation 
might allow DEA to converge faster and to produce confidence intervals with higher coverage 
probabilities. The validity of this argument should be explored in the future with further simulations. 



114 
 

The “Trun.Normal Low” case exhibits particular interest because of the fact that it is 

associated with technological heterogeneity as already mentioned. At a first glance, one 

might be tempted to conclude that the biases converge as sample size increases, while 

when 𝑛 = 120 they seem to be very close to each other. Especially since the ratio of the 

two biases converges monotonically to 1, exhibiting similar behaviour to that in Simar 

and Wilson (2004). However, looking at the behaviour of the biases in larger samples 

(see subsection 2.10) we cannot conclude that a sample size of 120 or greater will yield 

good results as the DEA bias keeps converging fast to zero for 𝑛 > 120 while the 

bootstrap bias converges slowly (which again might be due to smoothing). We 

document that the technological heterogeneity introduces a substantial DEA bias which 

confirms our previous concerns that even applying DEA in such cases might not be a 

great idea. And given the fact that the DEA bias is considerably underestimated by the 

bootstrap bias, and underestimated after some point, the use of bootstrap DEA is not 

suggested in these cases as its performance is hard to evaluate. Regarding 

dimensionality, it only slightly introduces an increase in the DEA and bootstrap bias. 

In the “Trun.Normal High” case, we evidence a similar behaviour as in the “Standard” 

case with the difference that in the latter case the magnitude of the biases is smaller. 

The biases increase with dimensions and with regards to the bootstrap biases they are 

almost identical for both smooth bootstraps. The DEA bias seems to converge faster 

than the bootstrap biases but only slightly, suggesting that the assumption of equal 

biases holds better compared to the “Standard” case; yet, we could not consider that 

the two biases are equal. 
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The “Uniform” case does not exhibit particular economic interest but simulation-wise 

it offers well-behaved results compared to the other cases. It seems that the bootstrap 

bias (especially under LSCV) converges to the DEA bias (and to zero) as sample increases 

and this improves even more in larger samples. Despite the fact that assumption of 

equal biases seems more plausible in this case, it still doesn’t hold and this might affect 

coverage probabilities. Regarding dimensionality, there seems to be a small effect when 

moving from 2 variables to 3, but the effect is quite smaller when moving from 3 to 4. 

To summarize, the assumption of equal DEA and bootstrap biases does not hold in 

small samples in the cases examined. Other times it fails considerably and other less so; 

this is to be determined by the associated coverage probabilities examined in the next 

subsection. Perhaps, larger samples are required or the assumption might only apply 

asymptotically when both biases are equal to zero. Information on larger samples will 

provide useful information and will be presented later in this chapter, while it would be 

interesting in the future to perform the same exercise under alternative DGPs and 

assumptions on RTS and orientation. 

 

2.9.3 Coverage probabilities 

 

The results on coverage probabilities are presented in this subsection and are 

summarised in Table 2.7. To conserve space we only report coverage probabilities for 

Simar and Wilson’s (1998) 95% confidence intervals (SW1998) and for Simar and 

Wilson’s (2000a) 95% confidence intervals (SW2000), for all DGPs and sample sizes and 
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for the 2-inputs/2-outputs dimension. Results for other levels of significance (20%, 10%, 

5% and 1%) and dimensions can be found in Appendix II. Monte Carlo experiments were 

performed for both LSCV and SJ smooth bootstrap procedures as well as for the naïve 

bootstrap. The coverage probabilities for the naïve bootstrap are only provided for 

information and carry no implications for the performance of bootstrap DEA70. It is 

worthwhile noting, though, that they are very similar to the ones reported in Simar and 

Wilson (2004), which provides support to the fact that our computations are correct. 

The overall evaluation of the finite sample performance of bootstrap DEA suggests 

that Simar and Wilson’s (1998 and 2000a) confidence intervals cannot be safely used in 

small samples. In particular, we do not observe any convergence of coverage 

probabilities to their nominal values, apart from few cases where coverage probabilities 

are relatively close to the nominal ones. For example, under “Trun.Normal High”, which 

is associated with monopolistic competition, we find relatively good performance using 

the SW1998 intervals and for sample sizes of 30 or less. But it would not be convincing 

to generalise such a result. 

 

                                                      
70

 It is reminded that the naïve bootstrap produces distributions with peculiar properties and the resulting 
confidence intervals are inconsistent.  
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Table 2.7. Coverage of SW1998 and SW2000 95% confidence intervals 

 

 

In addition to the low coverage, the behaviour of probabilities is not steady in that 

the reported values may change non-monotonically with sample size. One exception is 

the “Trun.Normal Low” case where convergence is monotonic for samples up to 

𝑛 = 120 (that is, coverage probabilities increase with sample size) and where the 

behaviour of the bootstrap and DEA biases is similar to that in Simar and Wilson (2004). 

However, apart from the low coverage probabilities reported, this DGP is associated 

with technological heterogeneity and it is not a good idea to apply even simple DEA. 

Therefore we deduce that, based on coverage probabilities and on the particular DGPs 

LSCV SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.743 0.563 0.389 0.517 0.874 0.698 0.755 0.659

n = 15 0.574 0.401 0.385 0.500 0.828 0.621 0.776 0.601

n = 20 0.473 0.325 0.433 0.514 0.819 0.569 0.733 0.581

n = 25 0.421 0.302 0.441 0.511 0.811 0.513 0.745 0.574

n = 30 0.342 0.253 0.446 0.510 0.810 0.511 0.734 0.557

n = 60 0.226 0.151 0.497 0.528 0.690 0.407 0.739 0.494

n = 120 0.148 0.094 0.571 0.576 0.577 0.300 0.756 0.461

SJ SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.830 0.649 0.363 0.513 0.898 0.712 0.817 0.663

n = 15 0.764 0.498 0.387 0.487 0.920 0.592 0.862 0.605

n = 20 0.670 0.393 0.436 0.496 0.916 0.533 0.833 0.502

n = 25 0.566 0.315 0.434 0.513 0.889 0.486 0.825 0.450

n = 30 0.466 0.227 0.434 0.515 0.873 0.444 0.800 0.432

n = 60 0.165 0.079 0.512 0.525 0.722 0.300 0.593 0.249

n = 120 0.022 0.009 0.589 0.584 0.492 0.158 0.412 0.160

Naïve SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.346 0.727 0.201 0.441 0.516 0.852 0.459 0.780

n = 15 0.405 0.771 0.215 0.437 0.527 0.847 0.447 0.799

n = 20 0.403 0.763 0.259 0.477 0.501 0.819 0.487 0.820

n = 25 0.430 0.791 0.238 0.481 0.528 0.835 0.515 0.853

n = 30 0.475 0.809 0.257 0.490 0.512 0.839 0.506 0.843

n = 60 0.459 0.809 0.323 0.553 0.507 0.842 0.556 0.864

n = 120 0.424 0.841 0.348 0.615 0.527 0.872 0.555 0.860

T.N. High 2/2 Uniform 2/2Standard 2/2 T.N. Low 2/2
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examined, it is not safe to apply bootstrap DEA in small samples; at least not as they 

were proposed by Simar and Wilson (1998, 2000a). 

Let us now try to gain a deeper insight about the behaviour of coverage probabilities. 

One interesting observation is that in some cases they fall as sample size increases. This 

can be justified by (i) the behaviour of the ratio of the bootstrap bias over DEA bias 

(2.46), which is observed to increase in all cases except for “Trunc.Normal Low”, and (ii) 

by the fact that as sample size increases the estimated confidence intervals become 

narrower but targeting at a different efficiency score than the true one due to the 

persistent mismatch between the bootstrap and DEA biases71. The latter is graphically 

represented in Figure 2.12 and Figure 2.13 in the next subsection. 

Among the factors that affect coverage probabilities, the most important ones are 

the DGP and the choice between the SW1998 and SW2000 confidence intervals. The 

smoothing process seems to play a role as the LSCV method seems to be associated with 

higher (in most cases) and more stable coverage probabilities with the exception of the 

“Standard” case where SJ performs better. Finally, model dimensions, in principle, affect 

coverage probabilities; though to a small extent. However, they do not always decrease 

with model dimensions, although in bigger samples we observe this pattern more 

consistently (see Appendix II).  

Regarding the choice between SW1998 and SW2000 intervals we find an interesting 

pattern: we observe that when the bootstrap bias is greater than the DEA bias, the 

                                                      
71

 We show in the next chapter that both SW1998 and SW2000 include the bias corrected estimate 

�̃�𝑘
∗ = 𝜃𝑘 from (2.26). As they both become narrower with sample size, this suggests that coverage will 

only be high if the assumption of equal biases (2.28) is satisfied and hence the intervals lie about �̃�𝑘
∗ = 𝜃𝑘. 
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SW1998 intervals perform better, while the opposite is true when the DEA bias is 

greater than the bootstrap bias. Hence, the SW2000 are associated with higher 

coverage probabilities under all naïve bootstraps and under the “Trun.Normal Low” case 

(technological heterogeneity), which are both cases for which we have expressed 

concerns about their applicability with bootstrap DEA. One might argue that this result 

is specific to the simulations examined here, but we show in Appendix IV that it can be 

generalised to a good extent. In particular, we show that the SW2000 intervals perform 

better than the SW1998 intervals only if the DEA bias is greater than the bootstrap 

bias72. This is confirmed in all of our simulations while it is important to note that in all 

simulations of Simar and Wilson (2000, 2004) the DEA bias is always greater than the 

bootstrap bias, explaining the high coverage probabilities reported there.  

The results of this subsection have indicated that the coverage probabilities in all 

cases are not as high as the nominal ones in small samples, providing further support to 

our suggestion in the previous subsection that bootstrap DEA might not be always 

applicable in small samples. The factors affecting coverage probabilities are mainly the 

DGP and the confidence intervals used, while dimensionality or the smoothing 

technique used were found to be less impactful. Perhaps the most interesting finding, 

which applies more generally, is that the SW1998 intervals seem to perform better 

compared to the SW2000 intervals (with the exception of a few cases for which we are 

                                                      
72

 We also require that the bootstrap distribution is positively skewed which is observed in all of our 
simulations. Obviously under positive skewness and greater bootstrap DEA bias the SW1998 intervals 
perform better. If there is no skewness (the distribution is symmetrical) then both intervals perform 
equally well.  
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concerned about applying bootstrap DEA) and that it should be carefully consider 

carefully whether the latter should be used. 

 

2.9.4 Bootstrap confidence intervals 

 

The results on coverage probabilities are further explained in this section which 

analyses the behaviour of the confidence intervals that correspond to the coverage 

probabilities presented in Table 2.7. Figure 2.12 and Figure 2.13 plot the average lower 

(green solid line) and upper (purple solid line) bounds of the 95% SW1998 and SW2000 

intervals, respectively, along with the true efficiency score (black dotted line) and 

average DEA score (magenta dotted line) in the Monte Carlo simulations. The labels on 

each graph indicate the DGP and smoothing process considered. To conserve space the 

discussion is based on the 2-inputs/2-outputs cases while results for all cases can be 

found in Appendix III.  

In all cases the intervals exhibit a behaviour which is in accordance with the coverage 

probabilities in Table 2.7. That is, the highest coverage probabilities correspond to cases 

where 𝜃𝑘  is better centred by the intervals. Moreover, we observe both in Figure 2.12 

and Figure 2.13 that the intervals are wider for small samples and become narrower as 

the sample size increases. However, in some cases they narrow down towards a 

different fixed point than 𝜃𝑘  but there seems to be a tendency for this to be corrected 

asymptotically. In subsection 3.2.3 of the next chapter we show that both intervals 

include �̃�𝑘
∗̅̅ ̅ = 𝜃𝑘

∗̅̅ ̅ − 2𝑏𝑖𝑎�̂�𝑘. It seems that as 𝑛 increases and the confidence intervals 
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become very narrow (targeting �̃�𝑘
∗̅̅ ̅), the bootstrap intervals will perform better if 

�̃�𝑘
∗̅̅ ̅ = 𝜃𝑘  which can only happen if the bootstrap and DEA biases are equal; otherwise 𝜃𝑘  

will be either overestimated or underestimated. This provides more insight into the 

falling coverage probabilities that we observed in the previous section. 

In any case we cannot safely conclude that bootstrap DEA can be applied in small 

samples as the behaviour of the intervals is not “steady” as it changes with sample size. 

Regarding other factors that affect the intervals, we observe that width slightly 

increases with dimensions while the smoothing process has a smaller effect on width 

(with the exception of the inconsistent naïve bootstrap). Once again, the most 

important factor that affects the behaviour of the intervals is the assumed DGP yielding 

either relatively narrow intervals (“Standard” case) or substantially wider ones 

(“Trun.Normal High” case) or even dislocated ones (“Trun.Normal Low” case). 

The SW1998 intervals in Figure 2.12 seem to underestimate 𝜃𝑘  in all cases except for 

the “Trun.Normal Low” case and the naïve bootstraps. This is not surprising as 𝜃𝑘  is 

underestimated when the bootstrap bias is greater than the DEA bias while it is 

overestimated in the opposite case. This is more pronounced for the “Standard” case 

where the DEA bias is very small compared to the other cases while the bootstrap bias is 

proportionately quite bigger. In all other cases where the DEA bias is greater than the 

bootstrap bias, the SW1998 intervals overestimate 𝜃𝑘.  
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Figure 2.12. Simar and Wilson’s (1998) confidence intervals 

 

 

Similarly, Figure 2.13 provides information for the SW2000 intervals. We observe that 

when the bootstrap bias is greater than the DEA bias, the intervals underestimate 𝜃𝑘  

but to a greater extent compared to the SW1998 intervals. This is in accordance with 

the discussion in the previous subsection where the respective coverage probabilities 

where lower. On the other hand, when the DEA bias is greater, 𝜃𝑘  is in principle 
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overestimated to a lesser extent compared to the SW1998 intervals, explaining the 

higher coverage probabilities.  

 

Figure 2.13. Simar and Wilson’s (2000) confidence intervals 

 
 

Comparing the two figures above, we confirm that the SW2000 intervals will perform 

better compared to the SW1998 intervals only if the DEA bias is greater than the 

bootstrap bias. This explains the differences in our results with those of Simar and 
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Wilson (2000a, 2004): in our simulations the DEA (or true) bias is always smaller than 

the smooth bootstrap bias (with the exception of the “Trun.Normal Low” case) whereas 

in their simulations the opposite is true. Therefore, our results are in accordance with 

Simar and Wilson (2000a, 2004) and they also indicate a case where SW2000 intervals 

might underperform73.  

We should also note that, as previously discussed, the bias in the “Trun. Normal Low” 

case is due to technological heterogeneity which is not desirable. If we accept that large 

DEA biases are associated with such sample heterogeneity, then the SW2000 intervals 

have better chances to perform well in cases where DEA might not be a good idea to 

apply. Especially if we consider the fact that theoretical works have focused on the 

convergence and consistency of DEA (Kneip et al., 1998; Korostelev et al., 1995)74, we 

deduce that small and fast declining DEA biases are desirable and that the opposite 

                                                      
73

 This point is intentionally highlighted and underlined as it addresses the most important line of criticism 
of Prof L. Simar against a paper presented by the author at the EWEPA (2013) conference (Helsinki) with 
title “The Simar and Wilson’s bootstrap DEA: a critique”. Prof L. Simar suggested that the observed 
differences in the results were due to programming mistakes or some misunderstanding of the bootstrap 
procedure. Our analysis shows that the observed differences are purely due to the DGP used here which 
generates bootstrap biases that are, in most cases, larger than the DEA biases and for which cases the 
SW2000 have been shown to underperform. Moreover, bootstrap DEA performs as expected, suggesting 
that there is no programming mistake. Another interesting fact is that in these cases SW1998 intervals 
perform better and the author feels that in the simulations in Simar and Wilson (2004) the corresponding 
SW1998 intervals would perform worse if this exercise had been conducted. Therefore, our results are not 
in contrast with those of Simar and Wilson (2004) but actually in accordance. Moreover, we indicate cases 
where either SW1998 or SW2000 intervals might not perform well. It is therefore a case for future 
research to find DGPs which will balance the ratio of the DEA bias to bootstrap bias with the latter being 
smaller and explore the conditions in the input/output relations that help generate these conditions; 
however this does not seem to be a straightforward exercise on a theoretical basis. Most importantly, we 
need to explore the market structures that would be associated with slightly larger (if not equal) DEA 
biases compared to bootstrap biases and attach an economic interpretation as we have done in our 
experiments. 
74

 Note that in both papers Prof L. Simar is a co-author which underlines his interest towards the 
minimization of DEA bias.  



125 
 

should be avoided. This puts serious thoughts on whether the well-established SW2000 

confidence intervals should be preferred over the SW1998 ones. 

A reasonable question to ask is how we could know upfront whether the DEA bias is 

greater than the bootstrap bias or not. Our simulations suggest that when the 

distribution of efficiency scores has a relatively thin tail towards 1 and when values are 

concentrated symmetrically well below 1 (as in the “Trun.Normal Low” case) then the 

DEA bias tends to be bigger. It is quite obvious that the DEA bias under “Trun.Normal 

Low” is greater than the bias in “Trun.Normal High”, which in turn is greater than in the 

“Standard” case. In each of the aforementioned cases the efficiency scores are 

increasingly concentrated towards 1 and the shape of the distribution transforms to a 

half-normal one. This suggest that the distribution of the DEA scores can serve as an 

indication of whether the bootstrap bias is greater than the DEA bias or not (at least 

under the smooth bootstrap procedures under consideration). We have already 

discussed in subsection 2.9.1 that skewness and kurtosis can serve as diagnostic tools in 

identifying the underlying DGP and we can therefore also use them here as an indication 

of whether the bootstrap bias is greater than the DEA bias or not. 

An alternative approach would be to “bootstrap the bootstrap” in the spirit of the 

iterated bootstrap proposed in Simar and Wilson (2004). We have seen that DEA 

generates sample distributions which are similar to the population ones. By iterating the 

bootstrap we would generate samples from the bootstrapped DEA scores and we could 

then compare the double-bootstrap bias with the single-bootstrap bias. That would 

mimic the relationship between the bootstrap bias and the DEA bias and we could 
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therefore use the iterated bootstrap as a diagnostic tool. On the downside, and as 

already discussed, this approach is extremely costly computationally while we would 

need simulation evidence to explore the validity of our argument. This is a proposed 

area for future research. 

To summarize, in this subsection we have provided a graphical visualisation of the 

behaviour of the SW1998 and SW2000 intervals, which is complementary to the 

previous analysis of coverage probabilities. In particular, we confirmed the major 

findings of the previous subsection and the discussion in Appendix IV which support that 

the SW2000 intervals might not be a good idea to use. We have also suggested ways to 

detect upfront the conditions under which we should expect such behaviour. The fact 

that the inferior performance of the SW2000 intervals is associated with a larger DEA 

bias compared to bootstrap bias implies that future research in this field should address 

questions such as: “why would the DEA bias be greater than the bootstrap bias and 

what are the implications” as well as whether this is something desirable or not. 

 

2.9.5 Bootstrap distributions75 

 

So far we have explored the performance of bootstrap DEA on the basis of coverage 

probabilities and the ability of confidence intervals to capture the true efficiency score 

𝜃𝑘, which is the standard approach. One of the issues, though, that has been ignored in 

the literature is the behaviour of the moments of the bootstrap distributions of 

                                                      
75

 Once again we would like thank Prof Simar for his suggestion to explore the moments of the fixed point. 
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efficiency scores76, which carry information about the location, the variability and shape 

of those distributions. Ultimately, the examination of bootstrap moments can indicate if 

the DEA sampling variations are captured adequately by the bootstrap. This information 

might be relevant for the assessment of the performance of bootstrap DEA from 

another perspective or for the construction of bootstrap confidence intervals. 

The location and variability of the bootstrap distribution of a fixed point is important 

for two reasons: (i) it shows how close the bootstrap bias is to the DEA bias, while (ii) it 

indicates how sensitive (or robust) the estimated efficiency scores are towards sampling 

variations. The standard deviation carries information about the variability of the 

bootstrap distribution and the width of confidence intervals. If the standard deviation 

approaches zero (likely in very large samples), then the confidence intervals will be 

extremely narrow and therefore it would be meaningless to apply bootstrap DEA; the 

estimated region for 𝜃𝑘  would actually be a point and therefore there would be no need 

to test hypotheses. Moreover, if the standard deviation in the DEA distributions is very 

low and the DEA scores are close to their population value, then the observed DEA 

scores would be good proxies of the population and scores and robust to sampling 

variations; therefore the application of the bootstrap would not be necessary. 

Regarding the shape of the distributions, as already discussed in this section and 

shown in Appendix IV, if they are positively skewed and leptokurtic then the SW2000 

intervals might underperform. This is because under these conditions the SW2000 

                                                      
76

 Please note the difference between the moments of the sample DEA scores and the moments of the 
bootstrap distribution; the former refer to the DEA scores in the sample while the latter refer to the 
bootstrapped efficiency scores of the DMU of interest (in our case the “fixed” DMU).  



128 
 

intervals will always lie below the SW1998 ones, and therefore will only perform better 

when the DEA bias is greater than the bootstrap bias; a condition either associated with 

technological heterogeneity or observed under the naïve bootstrap. Hence, it is 

important to know whether it would be safer to avoid using the SW2000 intervals in 

general. 

Another reason why one should look at moments relates to the suggestion by Simar 

and Wilson (1998) that in the presence of skewness it might be a better idea to use the 

median when correcting for bootstrap bias and to adopt the bias-corrected intervals of 

Efron (1982). If there is no skewness the distribution will be symmetric and the bias-

corrected intervals will be the same as the simple SW1998 ones. However, the higher 

the skewness (in absolute terms), the greater the degree of correction of the intervals 

with the Efron (1982) will be. Hence, it would be useful to know whether skewness is 

the “rule” or the “exception”. 

Hence, the examination of bootstrap moments may uncover details about the 

behaviour of bootstrap DEA that would not be possible to detect with the conventional 

approach of computing coverage probabilities. We have to note at this point that there 

are actually no “true” (or population) moments for the “fixed” DMU as it is a fixed 

observation. Therefore we will use the DEA scores from each of the 𝑀 Monte-Carlo-

generated samples to create a distribution of values for the fixed point and we will 

deem the moments of this distribution as the true ones. This distribution is due to the 

sampling variations when randomly drawing observations from the population, which 
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resembles the resampling process of bootstrap DEA. Hence, considering these values as 

the true ones seems to be valid in principle. 

The results of this exercise are summarized for the 2-inputs/2-outputs case in 

Table 2.8 to conserve space, while the moments for all model dimensions can be found 

in Appendix V. The moments of the smooth bootstrap procedures approach the DEA 

ones, while this is not true for the naïve bootstrap which overestimates higher 

moments. The means of these distributions have been already examined in the analysis 

of bootstrap biases (section 2.9.2). Regarding, standard deviation we observe that it 

converges with sample size which is desirable. On the other hand, in larger samples the 

standard deviation becomes very small (monotonically) and according to the discussion 

above this limits the relevance of applying bootstrap DEA (or even testing hypotheses) 

in larger samples (see also section 2.6.4).  

Regarding skewness and kurtosis we observe a non-monotonic behaviour, which is 

not surprising since the distribution of efficiency scores for the fixed point is affected by 

the randomness in the sampling process. More importantly, we find that in all cases the 

bootstrap distributions are positively skewed and leptokurtic, providing support to our 

claims for the superiority of the SW1998 intervals (see previous discussion in this 

section and in Appendix IV). Moreover, the observed skewness suggests that there 

might be some benefit from adopting relevant approaches when constructing 

confidence intervals77 while it might be better to use one-sided tests when testing 

                                                      
77

 In the next chapter we elaborate on this idea and we propose using the bias corrected and accelerated 
confidence intervals of Efron (1987) which are an extension of the bias corrected confidence intervals of 
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hypotheses, especially under the “Trun.Normal High” case where skewness is higher 

compared to the other cases. 

 

Table 2.8. Moments of bootstrap distribution of the fixed point 

 

 

 

 

                                                                                                                                                              
Efron (1982) which have been suggested by Simar and Wilson (1998) in cases where the distribution is 
skewed.  

Population Eff. Score Eff. Score Eff. Score Eff. Score

N = 10,000 0.846 0.593 0.349 0.652

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.889 0.027 1.043 4.228 0.774 0.083 0.251 2.459 0.440 0.076 1.898 8.496 0.737 0.063 1.323 4.916

n = 15 0.874 0.019 1.151 4.453 0.738 0.067 0.212 2.796 0.409 0.048 1.773 8.456 0.710 0.044 1.846 8.293

n = 20 0.867 0.014 1.146 4.535 0.715 0.062 0.398 2.780 0.394 0.034 1.510 6.450 0.696 0.034 1.662 7.130

n = 25 0.863 0.011 1.115 4.500 0.703 0.054 0.337 2.640 0.386 0.028 1.571 6.208 0.686 0.025 1.557 6.459

n = 30 0.859 0.009 1.111 4.198 0.694 0.052 0.391 2.675 0.381 0.025 1.898 8.371 0.681 0.021 1.247 5.109

n = 60 0.853 0.005 1.365 5.097 0.660 0.038 0.607 3.033 0.366 0.013 1.657 7.525 0.667 0.011 1.364 5.482

n = 120 0.850 0.002 1.532 7.484 0.637 0.026 0.766 3.523 0.358 0.006 1.106 4.315 0.660 0.006 1.509 6.176

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.950 0.023 0.852 4.210 0.860 0.039 1.088 4.723 0.533 0.058 1.836 8.443 0.822 0.042 1.235 5.355

n = 15 0.928 0.018 0.819 4.141 0.815 0.031 1.143 4.810 0.479 0.038 1.770 8.024 0.781 0.031 1.302 5.615

n = 20 0.915 0.014 0.820 4.153 0.781 0.027 1.163 4.824 0.453 0.027 1.646 7.330 0.754 0.025 1.390 6.063

n = 25 0.909 0.012 0.814 4.150 0.763 0.025 1.208 4.913 0.437 0.022 1.581 6.991 0.736 0.021 1.372 5.894

n = 30 0.902 0.010 0.802 4.116 0.746 0.023 1.195 4.879 0.428 0.019 1.548 6.891 0.725 0.018 1.371 5.887

n = 60 0.886 0.006 0.784 4.093 0.701 0.017 1.201 4.830 0.395 0.010 1.364 5.914 0.692 0.010 1.264 5.463

n = 120 0.875 0.003 0.765 4.041 0.669 0.013 1.194 4.817 0.377 0.006 1.253 5.372 0.674 0.006 1.185 5.062

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.938 0.022 1.045 4.684 0.853 0.038 1.211 5.059 0.527 0.057 1.938 9.182 0.818 0.042 1.319 5.635

n = 15 0.918 0.017 0.977 4.435 0.812 0.031 1.205 4.936 0.479 0.038 1.777 8.112 0.778 0.031 1.323 5.704

n = 20 0.906 0.013 0.967 4.409 0.780 0.028 1.192 4.910 0.454 0.027 1.671 7.564 0.755 0.025 1.331 5.767

n = 25 0.900 0.011 0.955 4.390 0.762 0.024 1.220 4.989 0.437 0.022 1.598 7.152 0.741 0.021 1.290 5.597

n = 30 0.894 0.010 0.932 4.345 0.748 0.023 1.216 4.971 0.427 0.019 1.540 6.772 0.731 0.018 1.276 5.502

n = 60 0.880 0.005 0.909 4.285 0.703 0.017 1.178 4.826 0.397 0.010 1.347 5.758 0.700 0.010 1.178 5.058

n = 120 0.870 0.003 0.903 4.267 0.669 0.013 1.152 4.720 0.379 0.006 1.238 5.297 0.681 0.006 1.129 4.818

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.898 0.018 2.267 9.734 0.808 0.045 1.786 5.959 0.467 0.063 2.862 14.018 0.763 0.045 2.348 9.415

n = 15 0.881 0.013 2.133 8.856 0.771 0.038 1.857 6.319 0.427 0.039 2.729 13.664 0.724 0.030 2.507 11.667

n = 20 0.872 0.010 2.285 10.025 0.741 0.034 1.760 6.117 0.408 0.026 2.633 12.789 0.708 0.023 2.525 11.731

n = 25 0.867 0.008 2.188 9.365 0.727 0.030 1.792 6.339 0.397 0.022 2.544 12.126 0.697 0.020 2.403 10.765

n = 30 0.863 0.007 2.248 9.595 0.714 0.027 1.823 6.521 0.391 0.018 2.513 11.605 0.691 0.017 2.311 10.238

n = 60 0.855 0.004 2.321 10.098 0.676 0.021 1.715 6.113 0.371 0.009 2.353 10.600 0.672 0.009 2.217 9.620

n = 120 0.850 0.002 2.613 11.846 0.648 0.015 1.694 6.220 0.361 0.005 2.253 9.982 0.662 0.005 2.262 9.783

Trun. Normal High 2/2 Uniform 2/2Standard 2/2 Trun. Normal Low 2/2



131 
 

2.10 Monte Carlo Results: large samples 

 

Despite the fact that with bootstrap DEA the interest lies on its applicability in smaller 

samples, it is important to check its behaviour in larger samples. The examination of 

larger samples is a standard practice in Monte Carlo simulations and has been also 

examined by Simar and Wilson (2000b) and Simar and Wilson (2004). One of the 

reasons for looking at larger samples is to confirm the asymptotic convergence of 

bootstrap DEA in that both DEA and bootstrap biases approach zero as sample size 

increases. Moreover, it might be the case that the performance improves in samples 

larger than 120 as the results thus far have not been encouraging. Finally, examining the 

behaviour of bootstrap distributions we gain an insight about the meaningfulness of 

constructing confidence intervals in large samples. To avoid repetition, we will only 

focus on three issues of interest: bootstrap and DEA biases, coverage probabilities and 

moments of bootstrap distributions. We examine samples from 25 up to 1600 DMUs, 

but due to computational limitations we only examine the 1-input/1-output case from 

each DGP, using an efficient Matlab code developed by the author78.  

The behaviour of bootstrap and DEA biases in larger samples is reported in Table 2.9. 

The results indicate that in absolute terms both the bootstrap and DEA biases become 

very small and monotonically approach zero as sample size increases, confirming the 

consistency of the method. However, in relative terms, the ratio of bootstrap to DEA 

                                                      
78

 The main difference is that DEA scores are computed using straightforward computations instead of 
solving linear programmes which is only possible for the 1-input/1-output case. This function is available 
upon request.  
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bias does not converge to one which suggests that bootstrap DEA will only yield the 

desired results asymptotically. This difference is more pronounced for the “Standard” 

case, while it is worthwhile noting that the bootstrap biases under the “Trun.Normal 

Low” case become larger than the DEA ones from 𝑛 = 100 onwards. Furthermore, the 

fact that the smooth bootstraps yield larger biases compared to the naïve bootstrap 

even asymptotically, indicates that smoothing the empirical kernel introduces additional 

variability which might be responsible for the observed behaviour, as suggested by 

Simar and Wilson (2002). Overall, the assumption of equal bootstrap and DEA biases 

seems to be quite generous and can only apply asymptotically. 

 

Table 2.9. Bootstrap and DEA biases: large samples 

 
 

The associated coverage probabilities are reported in Table 2.10 below for the 95% 

intervals while results for other significances are available upon request. Unfortunately, 

we cannot confirm for any sample size that coverage is adequate under the examined 

DEA Bias LSCV SJ Naïve DEA Bias LSCV SJ Naïve

n = 25 0.006 0.046 0.036 0.004 0.086 0.059 0.055 0.022

n = 50 0.003 0.034 0.026 0.002 0.057 0.043 0.042 0.016

n = 100 0.001 0.027 0.021 0.001 0.031 0.032 0.032 0.011

n = 200 0.001 0.020 0.016 0.000 0.019 0.024 0.024 0.008

n = 400 0.000 0.015 0.012 0.000 0.011 0.017 0.017 0.005

n = 800 0.000 0.012 0.009 0.000 0.006 0.012 0.012 0.003

n = 1600 0.000 0.008 0.007 0.000 0.004 0.008 0.008 0.002

DEA Bias LSCV SJ Naïve DEA Bias LSCV SJ Naïve

n = 25 0.019 0.053 0.052 0.013 0.015 0.046 0.053 0.010

n = 50 0.007 0.029 0.032 0.006 0.008 0.022 0.033 0.005

n = 100 0.004 0.018 0.021 0.003 0.004 0.012 0.021 0.003

n = 200 0.002 0.012 0.013 0.001 0.002 0.006 0.012 0.001

n = 400 0.001 0.007 0.009 0.001 0.001 0.003 0.008 0.001

n = 800 0.001 0.005 0.006 0.000 0.000 0.001 0.005 0.000

n = 1600 0.000 0.003 0.004 0.000 0.000 0.001 0.003 0.000

Trun. Normal High Uniform

Standard Trun. Normal Low
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DGPs and it is therefore not safe to test hypotheses using bootstrap DEA as proposed by 

Simar and Wilson (1998, 2000a). Coverage probabilities do not always increase, which is 

attributed to the fact that the ratio of bootstrap to DEA bias might increase with sample 

size, despite the fact that both biases reduce in absolute terms. 

 

Table 2.10. Coverage of SW1998 and SW2000 95% confidence intervals: large samples 

 
 

 

Finally, the results on the moments of the bootstrap distribution are similar to those 

for smaller samples. The interesting point, though, is that standard deviation becomes 

negligibly small after a sample size of 200, suggesting that the associated confidence 

intervals become very narrow; almost point estimates79. This implies that it is not 

meaningful to apply hypothesis testing on large samples as in practice there is almost no 
                                                      
79

 The graphical representation of the intervals can be found in Appendix V. 

LSCV SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 25 0.250 0.127 0.481 0.526 0.805 0.427 0.711 0.402

n = 50 0.177 0.083 0.540 0.543 0.720 0.290 0.696 0.355

n = 100 0.118 0.054 0.662 0.592 0.535 0.208 0.699 0.335

n = 200 0.082 0.024 0.697 0.515 0.377 0.134 0.674 0.299

n = 400 0.058 0.020 0.711 0.467 0.250 0.097 0.716 0.318

n = 800 0.020 0.005 0.718 0.350 0.170 0.071 0.739 0.288

n = 1600 0.001 0.000 0.664 0.293 0.149 0.061 0.837 0.170

SJ SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 25 0.319 0.118 0.479 0.496 0.894 0.345 0.761 0.257

n = 50 0.101 0.033 0.555 0.520 0.737 0.178 0.538 0.132

n = 100 0.015 0.002 0.687 0.558 0.416 0.079 0.312 0.056

n = 200 0.002 0.000 0.735 0.533 0.153 0.029 0.126 0.037

n = 400 0.000 0.000 0.752 0.407 0.048 0.004 0.052 0.008

n = 800 0.000 0.000 0.755 0.297 0.008 0.005 0.021 0.004

n = 1600 0.000 0.000 0.637 0.226 0.000 0.000 0.006 0.001

Naïve SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 25 0.610 0.895 0.331 0.599 0.622 0.881 0.582 0.878

n = 50 0.633 0.900 0.350 0.631 0.628 0.879 0.575 0.857

n = 100 0.621 0.897 0.378 0.732 0.628 0.906 0.578 0.865

n = 200 0.613 0.875 0.429 0.742 0.566 0.867 0.618 0.864

n = 400 0.623 0.871 0.472 0.740 0.538 0.841 0.609 0.872

n = 800 0.649 0.895 0.535 0.816 0.530 0.819 0.691 0.879

n = 1600 0.641 0.897 0.544 0.834 0.530 0.816 0.746 0.933

UniformStandard Trun.N. Low Trun.N. High 
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confidence interval. This argument also carries to extensions of bootstrap DEA such as 

the second-stage regressions of Simar and Wilson (2007).  

 
Table 2.11. Moments of bootstrap distribution of the fixed point: large samples 

 
 

 

 

 

 

 

Population Eff. Score Eff. Score Eff. Score Eff. Score

N = 10,000 0.847 0.592 0.349 0.655

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 25 0.855 0.008 1.724 6.855 0.684 0.056 0.536 2.796 0.377 0.027 1.714 6.466 0.677 0.023 1.826 7.157

n = 50 0.851 0.004 1.886 7.610 0.654 0.038 0.607 2.881 0.361 0.012 1.968 8.250 0.665 0.011 1.917 7.648

n = 100 0.849 0.002 2.279 11.076 0.629 0.026 0.942 3.558 0.355 0.006 2.321 10.589 0.660 0.005 1.710 7.516

n = 200 0.848 0.001 2.089 9.238 0.616 0.017 1.056 4.366 0.352 0.003 1.655 6.330 0.657 0.003 2.399 13.563

n = 400 0.847 0.001 1.999 8.899 0.607 0.012 1.097 4.220 0.350 0.001 1.742 7.361 0.656 0.001 1.797 8.675

n = 800 0.847 0.000 2.038 7.809 0.600 0.006 1.091 3.821 0.350 0.001 1.949 9.330 0.655 0.001 2.139 8.935

n = 1600 0.847 0.000 2.637 13.080 0.597 0.004 1.534 6.166 0.349 0.000 1.554 6.307 0.655 0.000 2.589 11.203

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 25 0.900 0.010 0.929 4.937 0.735 0.025 1.596 6.298 0.420 0.021 2.005 8.985 0.721 0.017 1.866 8.026

n = 50 0.884 0.005 0.903 4.931 0.694 0.019 1.703 6.650 0.389 0.010 2.032 9.190 0.687 0.009 1.964 8.692

n = 100 0.876 0.003 0.795 4.673 0.658 0.014 1.781 7.131 0.372 0.005 1.994 8.975 0.672 0.005 1.963 8.645

n = 200 0.868 0.001 0.742 4.498 0.637 0.010 1.807 7.212 0.363 0.003 1.964 8.627 0.663 0.002 1.969 8.609

n = 400 0.863 0.001 0.670 4.365 0.622 0.006 1.886 7.833 0.358 0.001 1.977 8.762 0.659 0.001 1.960 8.531

n = 800 0.859 0.000 0.622 4.266 0.610 0.004 1.884 7.858 0.354 0.001 1.951 8.597 0.657 0.001 1.966 8.463

n = 1600 0.855 0.000 0.668 4.267 0.604 0.002 1.910 8.067 0.352 0.000 1.944 8.434 0.656 0.000 1.957 8.476

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 25 0.890 0.009 1.332 6.119 0.735 0.025 1.612 6.329 0.421 0.021 2.036 9.390 0.723 0.018 1.834 7.957

n = 50 0.876 0.005 1.262 6.002 0.695 0.019 1.701 6.695 0.389 0.010 2.006 9.065 0.696 0.009 1.875 8.289

n = 100 0.869 0.002 1.123 5.628 0.657 0.014 1.779 7.089 0.374 0.005 1.974 8.699 0.680 0.005 1.888 8.254

n = 200 0.863 0.001 1.039 5.374 0.638 0.010 1.797 7.152 0.365 0.003 1.947 8.553 0.670 0.002 1.894 8.276

n = 400 0.859 0.001 0.941 5.074 0.623 0.006 1.864 7.678 0.359 0.001 1.952 8.619 0.664 0.001 1.913 8.302

n = 800 0.856 0.000 0.826 4.741 0.611 0.004 1.896 7.938 0.355 0.001 1.926 8.437 0.660 0.001 1.923 8.336

n = 1600 0.854 0.000 0.743 4.481 0.604 0.002 1.907 8.028 0.353 0.000 1.923 8.330 0.658 0.000 1.928 8.401

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 25 0.858 0.008 2.519 10.901 0.703 0.036 1.630 5.532 0.386 0.025 2.485 10.320 0.684 0.020 2.532 10.992

n = 50 0.852 0.004 2.502 10.766 0.669 0.027 1.724 5.613 0.364 0.011 2.773 13.084 0.668 0.009 2.751 13.282

n = 100 0.849 0.002 2.616 11.862 0.637 0.019 1.965 6.458 0.357 0.005 2.711 12.473 0.662 0.005 2.492 10.735

n = 200 0.848 0.001 2.737 12.917 0.622 0.014 1.952 6.571 0.353 0.003 2.642 12.261 0.658 0.002 2.404 10.286

n = 400 0.847 0.000 2.606 12.119 0.610 0.008 2.074 7.395 0.351 0.001 2.470 10.455 0.657 0.001 2.382 10.175

n = 800 0.847 0.000 2.623 11.629 0.602 0.006 2.017 6.934 0.350 0.001 2.538 10.912 0.656 0.001 2.437 10.486

n = 1600 0.847 0.000 2.989 14.845 0.598 0.003 2.238 8.104 0.349 0.000 2.311 9.040 0.655 0.000 2.665 11.521

Standard Trun. Normal Low Trun. Normal High Uniform
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2.11 Conclusions 

 

This chapter has explored the behaviour of bootstrap DEA both theoretically and with 

Monte Carlo simulations. The theoretical explorations provide a detailed analysis on 

how bootstrap DEA works, with a view to providing a deep understanding on the logic of 

the method, its mechanics and the implications of various assumptions. The Monte 

Carlo simulations assess the performance of bootstrap DEA and of the associated 

confidence intervals in finite samples, providing suggestions on the applicability of the 

method. 

Since bootstrap DEA involves smoothing the empirical distribution, we followed the 

suggestion of Silverman and Young (1987) and performed the simulations under various 

data generating processes. We attached an economic interpretation to each DGP, while 

we proposed simple diagnostic tools to identify these cases through sample 

observations. The experiments were performed under the assumption of CRS and input 

orientation in three model dimensions and sample sizes which spanned from 10 to 120, 

while two smooth bootstraps and the naïve were considered. Regarding the behaviour 

of bootstrap DEA with respect to certain factors that affect its performance we find that 

results are more sensitive with respect to the DGP and sample bias and to a lesser 

extent due to dimensionality or the smoothing technique used here. 

The results of the Monte Carlo simulations indicate that bootstrap DEA cannot be 

used either in small or large samples safely to construct confidence intervals and test 

hypotheses; it is however, consistent. This is attributed to the fact that that the 
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assumption of bootstrap and DEA biases was violated in our simulations and seemed 

quite generous. In particular, although the two biases have a clear tendency to converge 

asymptotically to zero and despite being very small in larger samples, they are not 

exactly equal, affecting the associated intervals. 

Of equal importance (if not more important) is the finding that the confidence 

intervals of Simar and Wilson (1998) perform better than those of Simar and Wilson 

(2000a). In particular, we have shown that under reasonable conditions80 the SW2000 

intervals perform better only if the DEA bias is greater than the bootstrap bias, which 

corresponds to the case of technological heterogeneity and the naïve bootstrap in our 

simulations. That is, we argued that the performance of the SW2000 is better in cases 

where DEA or bootstrap DEA should not be applied, putting serious thoughts on 

whether the SW2000 intervals should be preferred over the SW1998 ones. The 

implications become more important if we consider the popular extensions of bootstrap 

DEA which make use of the SW2000 intervals such as the bootstrap Malmquist index 

(Simar and Wilson, 1999), tests for RTS (Simar and Wilson, 2002) or the two-stage 

bootstrap DEA (Simar and Wilson, 2007). This suggests that these extensions might need 

to be reconsidered. 

In our simulations we also examined the behaviour of the moments of the bootstrap 

distributions, which has been ignored in the literature. We found that confidence 

intervals may become extremely narrow in large samples, suggesting that it is more 

                                                      
80

 The bootstrap distributions need to be positively skewed and leptokurtic, which is confirmed in our 
simulations. 
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meaningful to use bootstrap intervals in smaller samples; therefore research should be 

focusing on improving the small-sample performance of bootstrap DEA. Moreover, in all 

cases we found positive skewness suggesting that there might be benefits from 

employing confidence intervals which account for skewness such as Efron’s (1982) bias-

corrected intervals, suggested by Simar and Wilson (1998).  

Our research comes with some limitations which we aim to address in future 

research. First, only the CRS technology assumption was considered, although the 

implications should be transferable to any technology assumption; at least to some 

extent. Second, we examined only the input oriented case which might yield different 

results compared to the output oriented case. We believe that this is due to the support 

of the latter which spans from 1 to infinity, affecting the shape of the population 

distribution of efficiency and potentially affecting the results of our simulations. 

Furthermore, despite using 4 different DGPs to perform our experiments, we could still 

try alternative ones which would exhibit different behaviour with regards to the 

bootstrap and DEA biases and therefore different results. Finally, it must be noted that 

some of our suggestions about the appropriate sample size are case-specific81 they do 

not necessarily constitute general advice on the exact number of DMUs required to 

apply these procedures. 

The agenda for future research is rich in this field since bootstrap confidence 

intervals do not achieve yet the desirable finite sample performance. Theoretical work 

                                                      
81

 It is specific with respect to the particular DEA model, technology assumption, orientation, sample size, 
smoothing method and DGP chosen. 
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should focus on the conditions that produce appropriately large bootstrap biases 

compared to the DEA biases and examine the practical implications of accepting larger 

DEA biases. On the same wavelength, smoothing procedures (or similar) should be 

proposed which ensure good performance in small samples and not just asymptotically. 

In addition, future research could focus on confidence interval construction techniques 

which are based on less generous assumptions and which can establish a desirable 

performance in small samples. Finally, further work needs to be done towards the 

direction of designing and performing hypothesis tests, which will be associated with 

plausible assumptions.  

A personal opinion is that the future of bootstrap DEA holds within double-bootstrap 

procedures such as the iterated bootstrap DEA proposed in a short note by Simar and 

Wilson (2004). Apart from providing a more accurate approximation of confidence 

interval endpoints, it could also be used to examine whether the bootstrap bias is 

smaller or larger than the DEA bias and construct confidence intervals accordingly. 

Unfortunately, with the current technology it would require an implausibly big 

computational time on a standard PC in order to obtain results, even for a small sample. 

It is hoped that with efficient manipulations of the algorithms and with the fast 

evolution of technology the computational requirements will soon become reasonable. 
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3 Testing hypotheses with bootstrap DEA 

 

3.1 Introduction 

 

Bootstrap DEA has been mainly used in applied research for confidence interval 

construction and hypothesis testing. Despite being a well-established technique, there is 

limited theoretical background as to how hypothesis testing should be performed. It is 

no surprise that in empirical applications there is no clear description of the hypothesis 

testing procedure followed and the technicalities involved. One of the possible reasons 

for the lack of theoretical works on testing hypotheses using bootstrap DEA, might be 

the lack of detailed evidence for the distributional aspects of bootstrapped efficiency 

scores. This exercise was performed in the previous chapter under the examination of 

the moments of the bootstrap distributions, and offered valuable insights with respect 

to the shape of these distributions. 

Perhaps the only theoretical work on testing hypotheses using bootstrap DEA can be 

found in a relevant book chapter by Simar and Wilson (2008). The authors provide 

guidance on using their techniques and offer an implementation example for the case of 

mean efficiency score differences between two groups. In their general rules they 

suggest what is obvious: the test statistic has to be a function of the data, the critical 

value should result from the bootstrap distribution while the null hypothesis and the 

alternative should be clearly stated and be theoretically sensible. Another well-known 

work is by Simar and Wilson (2002) who propose a test for returns to scale with 
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bootstrap DEA, which, however, cannot be extended to other cases. Also Simar and 

Wilson (1999) propose a test for efficiency and productivity change over time and where 

the null hypothesis is explained in an example by the authors (however, it makes use of 

the SW2000 intervals which are associated with questionable performance as we saw in 

the previous chapter). 

Despite the fact that empirical studies use bootstrap DEA to test for efficiency 

differences between DMUs or between a DMU and a benchmark (or rank DMUs based 

on their bias-corrected scores) 82 , there is no theoretical paper establishing the 

methodology for such tests. The prevailing, implied methodology is to construct 

bootstrap confidence intervals (Simar and Wilson, 1998, 2000a) and examine whether 

some “fixed point” of interest (a benchmark, a sample mean or a peer DMU/competitor) 

in included in the confidence region where the respective population value is expected 

to lie. However, the simulations of the previous chapter have indicated that the finite 

sample performance of these intervals is not satisfactory, carrying implications for the 

validity of hypothesis tests. This underperformance is probably linked with the violation 

of the assumption of equal biases, so it is of interest to explore how bias “asymmetries” 

may affect confidence intervals and hypothesis testing. 

There seems to be a gap in the literature on how hypothesis tests should be 

performed using bootstrap DEA. More importantly, and to the extent of our knowledge, 

there is no paper providing recommendations about when one should avoid employing 

                                                      
82

 See for example the illustrative example in Simar and Wilson (1998) or other empirical studies (Gocht 
and Balcombe, 2006; Gonzales and Miles, 2002; Hawdon, 2003; Magnussen and Nyland, 2008; Sadjadi 
and Omrani, 2010; Sanhueza et al., 2004; Tsolas, 2011). 
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bootstrap DEA for hypothesis testing or about issues that could arise when testing 

hypotheses. This motivated our theoretical explorations in this chapter where we 

investigate how hypothesis testing should be performed using the SW1998 and SW2000 

intervals. In particular, we first consider the assumption of equal biases as valid and 

explain how the null hypothesis for a hypothesis test should be outlined, while we 

propose an approach to compute the associated p-values of the tests where possible. 

Moreover, we show how the presence of unequal bootstrap and DEA biases can affect 

both confidence intervals and the validity of the hypothesis tests and we examine the 

possibility of adopting alternative approaches in certain extreme cases. Furthermore we 

outline some considerations and limitations while some theoretical ideas to overcome 

these issues are proposed along with future research avenues. We then extend the 

discussion to the case of testing for returns to scale using bootstrap DEA (Simar and 

Wilson, 2002) where a similar assumption on bias equality needs to be satisfied. Finally, 

we propose a test for RTS which does not make use of the equal biases assumption by 

incorporating the Banker et al. (1996) approach in bootstrap DEA. 

Our results indicate that the assumption of equal biases is crucial for the hypothesis 

tests to be meaningful, while despite the fact that some alternatives might considerably 

improve the performance of the confidence intervals, they would require large samples 

to perform well. On a positive note, we argue that when the sample exhibits 

technological homogeneity (as in the “Standard” case in the previous chapter’s 

simulations), then it is not necessary to apply bootstrap DEA for sample sizes greater 

than 120 as the DEA bias becomes very small and the sampling variations negligible; 
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that is, DEA scores can be considered as robust “estimators” of the population efficiency 

scores. Finally, we show that the proposed test for RTS is not sensitive to the DGP 

specification though it would require further simulations to evaluate its performance 

and sample size requirements. 

The remainder of the chapter is structured as follows: section  3.2  discusses the 

implied hypothesis testing procedures using Simar and Wilson’s (1998, 2000a) 

confidence intervals when the assumption of equal biases is valid and invalid; 

section  3.3 discusses some issues that need to be considered when testing hypotheses 

with bootstrap DEA and proposes lines of action; section  3.4 explores the possibility of 

adopting alternative approaches in the presence of substantially unequal bias; 

section  3.5 extends the testing to tests of returns to scale and proposes a bootstrap 

approach at a theoretical level; finally, section  3.6 concludes the chapter, highlights 

limitations and suggests areas for future research. 

 

 

3.2 SimarandWilson’sintervals and implied tests 

 

Simar and Wilson (1998, 2000a) propose confidence intervals where the true efficiency 

score of a DMU of interest should lie. It is therefore implied that these intervals could be 

used for hypothesis testing, despite not explicitly stated in the literature. Two examples 

of null hypotheses that could be tested for DMU 𝑘 are 𝐻0: 𝜃𝑘 = 1 (or some other 

constant) or 𝐻0: 𝜃𝑘 = 𝜃𝜈 where DMU 𝜈 is some other DMU of interest. One special case 
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for the latter type of hypothesis test is 𝐻0: 𝜃𝑘
𝑡 = 𝜃𝑘

𝑡+1  where DMUs 𝑘𝑡  and 𝑘𝑡+1 

represent the operations of firm 𝑘 in two consecutive time periods. This test is relevant 

in cases where the number of firms per year is very small and where one of the possible 

solutions is to pool data (Fried et al., 2008, pp.54); and which means that Malmquist-

type approaches cannot be applied on a year-by-year basis83.  

This section first explores the mathematics behind the SW1998 and SW2000 

intervals, focusing on how they behave when the assumption of equal bootstrap and 

DEA biases is not satisfied. Then, we explain how the aforementioned hypotheses could 

be tested if we assumed that the confidence intervals of SW1998 and SW2000 (or 

similar) performed well. Since the first type (𝐻0: 𝜃𝑘 = 1) is more straightforward, the 

discussion will focus on the latter case (𝐻0: 𝜃𝑘 = 𝜃𝜈). The interest lies in the fact that 

both DMUs 𝑘 and 𝜈 are subject to sampling variations and therefore they are both 

associated with a distribution of efficiency scores. For the purposes of this analysis we 

will thereafter assume that the “fixed point” 𝑣 is a DMU that belongs in the same 

dataset as DMU 𝑘 and hence they are both associated with the same DGP. 

 

3.2.1 Simar and Wilson’s (1998) intervals 

 

The SW1998 confidence intervals have been explained in the previous chapter ( 2.6.3). 

The principle is that the distribution of the (double) bias-corrected bootstrapped 

efficiency scores (�̃�𝑘
∗) is used to construct confidence intervals and therefore test 

                                                      
83

 See for example Siriopoulos and Tziogkidis (2010). 
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hypotheses. In particular, the  (𝑎 2⁄ )% and (1 − 𝑎 2⁄ )% percentiles of this distribution, 

which we denote as  �̂�𝑎
2⁄
 and �̂�1−𝑎 2⁄

, respectively, define a region where the “true” 

efficiency score of DMU 𝑘 (𝜃𝑘) lies with a probability of (1 − 𝑎): 

 Pr (�̂�𝑎
2⁄
< �̃�𝑘

∗ < �̂�1−𝑎 2⁄
) ≃ Pr (�̂�𝑎

2⁄
< 𝜃𝑘 < �̂�1−𝑎 2⁄

) = 1 − 𝑎 (3.1) 

This results from the assumption of Simar and Wilson (1998) that the bootstrap bias is 

approximately equal to the DEA bias and therefore the centre of the distribution of �̃�𝑘
∗ is 

approximately equal to 𝜃𝑘, as shown in (2.27).  

We have already explained in the previous chapter that if there is an “asymmetry of 

biases” (the bootstrap bias is either smaller or greater than the DEA bias), then both 

SW1998 and SW2000 intervals will underperform. We will now show how the SW1998 

intervals behave when there is such an “asymmetry of bias”. Suppose that the bootstrap 

bias is 𝑏𝑖𝑎�̂�𝑘 = �̂�  and the DEA 𝑏𝑖𝑎𝑠𝑘 = 𝑧  and that �̂� ≠ 𝑧 . Note that asymptotically 

lim𝑛→𝑁 �̂� = lim𝑛→𝑁 𝑧 = 0 due to consistency. The centre of the bootstrap distribution 

will be 𝜃𝑘
∗̅̅ ̅ = 𝜃𝑘 + �̂� while 𝜃𝑘 = 𝜃𝑘 + 𝑧, while from (2.27): 

 �̃�𝑘
∗̅̅ ̅ = 𝜃𝑘 + �̂� − 2�̂� = 𝜃𝑘 + 𝑧 − �̂� ≠ 𝜃𝑘 (3.2) 

The SW1998 intervals assume that �̂� ≃ 𝑧 or �̃�𝑘
∗̅̅ ̅ ≃ 𝜃𝑘  and hence: 

 

1 − 𝑎 = Pr (�̂�𝑎
2⁄
< 𝜃𝑘 < �̂�1−𝑎 2⁄

) =Pr (�̂�𝑎
2⁄
< �̃�𝑘

∗̅̅ ̅ + �̂� − 𝑧 < �̂�1−𝑎 2⁄
)

≃ Pr (�̂�𝑎
2⁄
+ 𝑧 − �̂� < 𝜃𝑘 < �̂�1−𝑎 2⁄

+ 𝑧 − �̂�) 

(3.3) 
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This simply suggests that the estimated SW1998 intervals will lie below their 

“accurate” 84  position if �̂� > 𝑧  (bias overestimation), and above if �̂� < 𝑧  (bias 

underestimation). This is reasonable and has been confirmed in our Monte Carlo 

simulations.  

More importantly, if �̂� ≫ 𝑧, then the inequality in (3.3) could be violated with the 

upper bound of the SW1998 intervals lying below 𝜃𝑘, indicating a failure in interval 

estimation. Similarly, if �̂� ≪ 𝑧, then the lower bound of the intervals could lie above 𝜃𝑘  

which is another possibility of failure. The first case is evidenced under the “Standard” 

case and for sample sizes greater than 𝑛 = 25. The latter seemingly extreme case is in 

fact observed under the naïve bootstraps and under the DGP associated with 

technological heterogeneity (for sample sizes up to 𝑛 = 60) in Figure 2.12. The other 

DGPs examined are not associated with extreme “bias asymmetry” but they still 

underperform in the way suggested here. In any case, though, the presence of “bias 

asymmetries” will lead to both Type I and II errors (depending on the null hypothesis 

tested), reducing the validity of associated hypothesis tests. 

 

3.2.2 Simar and Wilson’s (1998) implied tests 

 

Let us now consider how hypothesis testing could be performed using the SW1998 

intervals when the assumption of equal biases is satisfied. We will examine the case of 

                                                      
84

 By “accurate” we will mean for the remainder of this chapter the position of the intervals which is 
associated with the nominal probability of 1 − 𝑎. 
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testing for efficiency differences between two DMUs, which could be expressed as 

follows85:  

 𝐻0: 𝜃𝑘 = 𝜃𝑣, 𝐻1: 𝜃𝑘 ≠ 𝜃𝑣 (3.4) 

One might think that it is not possible to perform this test since both 𝜃𝑘  and 𝜃𝑣 are 

unobservable. However, under the assumption of equal biases we could use their 

estimated values from (2.27) and express this test as follows: 

 𝐻0: 𝜃𝑘 = �̃�𝑣
∗̅̅ ̅, 𝐻1: 𝜃𝑘 ≠ �̃�𝑣

∗̅̅ ̅ (3.5) 

Hence, this suggests that we could construct the SW1998 intervals for DMU 𝑘 and 

examine whether the value �̃�𝑣∗
̅̅ ̅ ≃ 𝜃𝑣 falls within the two endpoints of the intervals for 

DMU 𝑘, or �̃�𝑣∗
̅̅ ̅ ∈ (�̃�𝑘

∗,(𝑎/2)
  ,  �̃�𝑘

∗,(1−𝑎/2)
). Moreover, one could compute the following 

probabilities which could serve as an indication of how “well-included” �̃�𝑣∗
̅̅ ̅ is within the 

interval:  

 𝑝𝑙𝑜𝑤 =
#(�̃�𝑏,𝑘

∗ < �̃�𝑣
∗̅̅ ̅)

𝐵
     and   𝑝ℎ𝑖𝑔ℎ =

#(�̃�𝑏,𝑘
∗ > �̃�𝑣

∗̅̅ ̅)

𝐵
,    𝑏 = 1,2, …𝐵 (3.6) 

where #  indicates “number of times” (technically termed “cardinality”). These 

probabilities would indicate how often �̃�𝑣
∗̅̅ ̅ ≃ 𝜃𝑣  lies in the tails of the bootstrap 

distribution of �̃�𝑘
∗. In fact, they could be considered as p-values for one-sided tests86; if 

𝑝𝑙𝑜𝑤 < 𝑎 we could accept 𝐻1: 𝜃𝑘 > 𝜃𝑣, while if 𝑝ℎ𝑖𝑔ℎ < 𝑎 we could accept 𝐻1: 𝜃𝑘 <

𝜃𝑣. 

                                                      
85

 The formulation of the null hypotheses for the one-sided tests is straightforward. In particular the null 
would be the same but the alternatives would be 𝐻1: 𝜃𝑘 < 𝜃𝑣  or 𝐻1: 𝜃𝑘 > 𝜃𝑣. 
86

 One could also check the extent to which the two distributions overlap by computing the following 

probability: 𝑝𝑟𝑜𝑏 = # (�̂�𝑘,𝑎 2⁄
< �̃�𝑏,𝑣

∗ < �̂�𝑘,1−𝑎 2⁄
) /𝐵, 𝑏 = 1,2, …𝐵 as an p-value-alike measure. 
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3.2.3 Simar and Wilson’s (2000a) intervals 

 

We have already discussed how the SW2000 intervals can be constructed (see 

section  2.6.3); we shortly present the approach here again as this information is of 

importance.  From (2.30) we have: 

 1 − 𝑎 = Pr (𝑠𝑎
2⁄
< 𝜃𝑘 − 𝜃𝑘 < 𝑠1−𝑎 2⁄

) = Pr (�̂�𝑎
2⁄
< 𝜃𝑘

∗ − 𝜃𝑘 < �̂�1−𝑎 2⁄
) (3.7) 

Assuming (𝜃𝑘
∗ − 𝜃𝑘)~(𝜃𝑘 − 𝜃𝑘) then from (2.31) we have: 

 

1 − 𝑎 = Pr (𝜃𝑘 − 𝑠1−𝑎 2⁄
< 𝜃𝑘 < 𝜃𝑘 − 𝑠𝑎 2⁄

)

≃ Pr (𝜃𝑘 − �̂�1−𝑎 2⁄
< 𝜃𝑘 < 𝜃𝑘 − �̂�𝑎 2⁄

) 

(3.8) 

Also note that 𝜃𝑘𝑏
∗ − 𝜃𝑘 > 0 ∀ 𝑏 = 1,2, …𝐵 by definition, as explained in the previous 

chapter, indicating that the upper bound of the confidence interval will always lie on or 

below the DEA score (Simar and Wilson, 2008). That is, �̂�𝑎
2⁄
> 0  implying that 

𝜃𝑘 − �̂�𝑎 2⁄
< 𝜃𝑘. Hence, the logic of the intervals is to correct downwards the DEA 

estimator since it is upwards biased. To evaluate the implications of violating the 

assumption of equal bootstrap and DEA biases, suppose that �̂�𝑎
2⁄
= 𝑠𝑎

2⁄
+ 𝜀𝐿  and 

�̂�1−𝑎 2⁄
= 𝑠1−𝑎 2⁄

+ 𝜀𝑈, where 𝜀𝐿 and 𝜀𝑈 represent the deviations of the lower and upper 

estimated percentiles from their true values. Hence: 

 If the bootstrap bias is equal to the DEA bias (�̂� = 𝑧), then 𝜀𝐿 , 𝜀𝑈 = 0 

 If the bootstrap bias is greater than the DEA bias (�̂� > 𝑧), then 𝜀𝐿 , 𝜀𝑈 > 0 

 If the bootstrap bias is smaller than the DEA bias (�̂� < 𝑧), then 𝜀𝐿 , 𝜀𝑈 < 0 
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Then, (3.8) becomes: 

 

1 − 𝑎 = Pr (𝜃𝑘 − 𝑠1−𝑎 2⁄
< 𝜃𝑘 < 𝜃𝑘 − 𝑠𝑎 2⁄

)

= Pr (𝜃𝑘 − 𝑠1−𝑎 2⁄
− 𝜀𝑈 < 𝜃𝑘 < 𝜃𝑘 − 𝑠𝑎 2⁄

− 𝜀𝐿) 

(3.9) 

The important finding from (3.9) is that if the bootstrap bias is greater than the DEA 

bias, the estimated intervals will be below their “accurate” position. If the bootstrap 

bias is smaller than the DEA bias, the estimated intervals will lie above the estimated 

intervals. Obviously, the larger the difference between the bootstrap and DEA biases is, 

the further Simar and Wilson’s (2000a) intervals will deviate from their “accurate” 

position and therefore the worse will be their finite sample performance. However, 

asymptotically both biases will necessarily be zero suggesting that consistency is not 

violated.  

As with the SW1998 intervals, in the case of “extreme bias asymmetry” it would be 

possible for the SW2000 intervals to completely leave 𝜃𝑘  outside the two endpoints. In 

particular, if �̂� ≫ 𝑧, then 𝜀𝐿 , 𝜀𝑈 could be large enough so that 𝜃𝑘 > 𝜃𝑘 − 𝑠𝑎 2⁄
− 𝜀𝐿 in 

(3.9). Similarly, if �̂� ≪ 𝑧, then 𝜀𝐿 , 𝜀𝑈 could be small enough so that 𝜃𝑘 − 𝑠1−𝑎 2⁄
− 𝜀𝑈 >

𝜃𝑘. The only case we observe the latter is to some extent under the “Trun.Normal Low” 

DGP (associated with technological heterogeneity) in the previous chapter (Figure 2.13) 

and mainly under the naïve bootstraps and in very small samples. Though, the SW2000 

intervals seem to be more sensitive towards the first asymmetry (�̂� ≫ 𝑧) as evidenced 

under the “Standard” DGP. In fact, even if the asymmetry is not extreme (�̂� > 𝑧), as 

with the “Trun.Normal High” and “Uniform” DGPs, the upper bounds of the SW2000 

intervals tend to lie below 𝜃𝑘  in small samples. The theoretical explanation for this 
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behaviour is that if 𝑧 = 𝜃𝑘 − 𝜃𝑘 converges to zero fast enough, then it is possible for the 

SW2000 intervals to lie below  𝜃𝑘  since by definition their upper endpoint has to lie on 

or below 𝜃𝑘  as previously discussed. This indicates a potential weakness of the SW2000 

intervals: if the DEA bias converges to zero fast enough (or at least faster than the 

bootstrap bias) then they will tend to underestimate the true efficiency score. And given 

that smoothing techniques tend to introduce more variability (Simar and Wilson, 2002) 

it is possible that this conclusion is not limited to the particular DGPs examined in the 

previous chapter, suggesting once again that it might be a better idea to use the 

SW1998 intervals instead.  

 

3.2.4 Simar and Wilson’s (2000a) implied tests 

 

We will now outline how hypothesis testing could be performed with the SW2000 

intervals if the assumption of equal bootstrap and DEA biases is valid. The test is the 

same as in (3.4) where 𝐻0: 𝜃𝑘 = 𝜃𝑣 ≃ �̃�𝑣∗
̅̅ ̅ due to the equal biases assumption. Hence, if 

�̃�𝑣∗
̅̅ ̅ ∈ (𝜃𝑘 − 𝑠1−𝑎 2⁄

, 𝜃𝑘 − 𝑠𝑎 2⁄
)  we would accept 𝐻0 . However, for the sake of 

completeness we should first show that the SW2000 intervals are designed so that 

𝜃𝑘 ≃ �̃�𝑘
∗̅̅ ̅ ∈ (𝜃𝑘 − 𝑠1−𝑎 2⁄

, 𝜃𝑘 − 𝑠𝑎 2⁄
) to ensure that the null is consistent.  

Let us now denote the 𝑗% percentile of the (non-corrected) bootstrap distribution of 

DMU 𝑘  (𝜃𝑘
∗)  as �̂�(𝜃𝑘

∗)
(𝑗)

. Hence the 𝑗%  percentile of the distribution of (𝜃𝑘
∗ − 𝜃𝑘) 
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would be �̂�(𝑗) = �̂�(𝜃𝑘
∗ − 𝜃𝑘)(𝑗) = �̂�(𝜃𝑘

∗)
(𝑗)
− 𝜃𝑘, since 𝜃𝑘  is a constant. Using this result 

and substituting 𝜃𝑘  with �̃�𝑘
∗̅̅ ̅ = 𝜃𝑘

∗̅̅ ̅ − 2𝑏𝑖𝑎�̂�𝑘 in (3.8), where 𝑏𝑖𝑎�̂�𝑘  = 𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘, we have: 

 

(𝜃𝑘 − �̂�1−𝑎 2⁄
< �̃�𝑘

∗̅̅ ̅ < 𝜃𝑘 − �̂�𝑎 2⁄
) = (𝜃𝑘 − �̂�1−𝑎 2⁄

< 𝜃𝑘
∗̅̅ ̅ − 2𝑏𝑖𝑎�̂�𝑘 < 𝜃𝑘 − �̂�𝑎 2⁄

)

= (2𝜃𝑘 − �̂�1−𝑎 2⁄
< 𝜃𝑘

∗̅̅ ̅ − 2 (𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘) < 2𝜃𝑘 − �̂�𝑎 2⁄

)

= (−�̂�1−𝑎 2⁄
< −𝜃𝑘

∗̅̅ ̅ < −�̂�𝑎
2⁄
) = (�̂�𝑎

2⁄
< 𝜃𝑘

∗̅̅ ̅ < �̂�1−𝑎 2⁄
) 

(3.10) 

The equations in (3.10) simply state that if we substitute 𝜃𝑘  with 𝜃𝑘
∗̅̅ ̅ it would result in a 

consistent transformation as 𝜃𝑘
∗̅̅ ̅ is the centre of the bootstrap distribution and it will 

always lie within its 𝑎 2⁄ % and (1 − 𝑎 2⁄ )% percentiles. Thus, �̃�𝑘
∗̅̅ ̅ will always lie within 

the lower and upper bound of the SW2000 intervals and therefore the null is valid. 

Therefore we could state that if �̃�𝑣∗
̅̅ ̅ ∈ (𝜃𝑘 − �̂�𝑘,1−𝑎 2⁄

 , 𝜃𝑘 − �̂�𝑘,𝑎 2⁄
) we accept the null 

hypothesis of equal efficiency between DMUs 𝑘 and 𝑣87. 

 

3.3 Considerations and limitations 

 

So far we have explained how one could perform hypothesis tests using the SW1998 

and SW2000 intervals. In both cases we have demonstrated that the assumption of 

equal biases should hold otherwise both confidence intervals would have limited 

coverage while the hypothesis tests would not be consistent. We will now share some 

                                                      
87

 The computation of probabilities as in (3.6) is not straightforward in this case. However, we could use a 

similar p-value-alike probability as in footnote 85 which could serve as an indication of the overall of the 

two distributions:  𝑝𝑟𝑜𝑏 = #(�̂�𝑘 − �̂�𝑘,1−𝑎 2⁄
< �̃�𝑏,𝑣

∗ < �̂�𝑘 − �̂�𝑘,𝑎 2⁄
) /𝐵, 𝑏 = 1,2, …𝐵 
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considerations/observations which we deem of importance and potentially of interest 

to the potential bootstrap DEA user. In particular, our considerations are with regards to 

the potential skewness of the bootstrap distributions, on performing same-sample 

comparisons and on the feasibility of performing cross-sample comparisons. 

 

3.3.1 Dealing with skewness 

 

Simar and Wilson (1998) suggested that if the bootstrap distribution is skewed, it could 

be preferable to employ Efron’s (1982) bias-corrected intervals which apply a median-

correction to the percentile intervals. Hence, instead of using the SW1998 intervals 

(�̃�𝑘
∗,𝑎/2

, �̃�𝑘
∗,1−𝑎/2

), two endpoints 𝑎1 and 𝑎2 are determined and the following intervals 

are estimated 𝜃 ∈ (�̃�𝑘
∗,𝑎1 , �̃�𝑘

∗,𝑎2) , where 𝑎1 = Φ(2�̂�0 + 𝑧
(𝑎/2)) , 𝑎2 = Φ,  �̂�0 =

#Φ−1 (�̃�𝑘
∗ < �̃�𝑘

∗̅̅ ̅), and where Φ is the standard normal cumulative density function 

while 𝑧(𝑎/2)  is the 𝑎/2 percentile of the standard normal distribution (Φ(𝑧(𝑎/2)) =

𝑎/2). In the same paper, Simar and Wilson (1998) perform an empirical illustration 

under input orientation using data from Färe et al. (1989) and they use both the 

SW1998 and SW1998bc intervals (standing for Efron’s (1982) bias-corrected intervals). 

They report small differences between the two intervals which they attribute to the fact 

that the means of �̃�𝑘
∗ are close to the medians (in particular in most cases the difference 

between the two is 0.01 to 0.02). Their results also indicate that the SW1998bc intervals 

are wider, mainly with respect to the upper bound in their input-oriented model. In 
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particular, the intervals are in most cases wider by 0.015 to 0.03, compared to the 

SW1998 intervals. 

Apart from the seminal paper of Simar and Wilson (1998), the issue of skewness has 

only been mentioned in subsequent book chapters (Simar and Wilson, 2004; Simar and 

Wilson, 2008) where the same suggestion of using Efron’s (1982) bias correction is 

given. Subsequent works seem favour the SW2000 intervals but no consideration on the 

potential effects of skewness is provided88, apart from the fact that may underperform 

compared to the SW1998 ones as we explained in the previous chapter. The 

examination of bootstrap moments in the previous chapter has indicated that the 

skewness of bootstrap distributions varies with the underlying DGP and it may range 

from about 0.5 to about 2. The severity of the effect of skewness on confidence 

intervals could be examined with further Monte Carlo simulations whereby a variety of 

DGPs associated with a range of skewness values for the bootstrap distributions could 

be chosen. Then, the effect on coverage probabilities could be monitored and the 

benefit of employing techniques which account for skewness can be considered but at 

the same time measuring the potential costs due to potentially wider interval widths. 

A development of this approach would be to construct confidence intervals which, 

apart from providing a median-correction to the intervals, they can also correct for 

skewness (Efron, 1987). In particular, the bias-corrected and accelerated intervals (𝐵𝐶𝑎) 

                                                      
88

 We could provide a suggestion here of how this could be performed. Denote 𝛥�̂�𝑘
∗ = �̂�𝑘

∗ − �̂�𝑘 and 

compute 𝑎1 and 𝑎2 as before, but now �̂�0 = #Φ−1 (𝛥�̂�𝑘
∗ < 𝛥�̂�𝑘

∗̅̅ ̅̅ ̅) = #Φ−1 (�̂�𝑘
∗ < �̂�𝑘

∗̅̅ ̅). Hence, instead of 

𝜃𝑘 ∈ (�̂�𝑘 − 𝛥�̂�𝑘
∗,1−𝛼/2

, �̂�𝑘 − 𝛥�̂�𝑘
∗,𝛼/2

)  we have for the SW2000bc intervals: 𝜃𝑘 ∈ (�̂�𝑘 − 𝛥�̂�𝑘
∗,𝑎2 , �̂�𝑘 −

𝛥�̂�𝑘
∗,𝛼1). 
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of Efron (1987) correct for skewness through the acceleration parameter and are 

superior to the Efron’s (1982) ones. In fact Efron’s (1982) intervals comprise a special 

case of Efron’s (1987) intervals where the acceleration parameter is equal to zero. 

However, the difficulty in implementing this approach is the computation of the 

acceleration parameter which can be very challenging when the problem in hand is 

complex (Shao and Tu, 1995) as in the case of DEA. We have included the underlying 

ideas and the progress of our current work on adapting Efron’s (1987) intervals on DEA 

in Appendix  VII for the interested reader.  

To the extent of our knowledge there is no work that focuses on the issue of 

skewness on bootstrap DEA which seems a field for further development. It is within the 

author’s immediate research plans to investigate in-depth the effects of skewness on 

the performance of bootstrap DEA and to analyse the benefits of implementing the 𝐵𝐶𝑎 

intervals in the case of DEA. 

 

3.3.2 Same-sample comparisons 

 

We have already discussed in the previous section how one could use the SW1998 and 

SW2000 intervals to perform hypothesis tests. When testing 𝐻0: 𝜃𝑘 = 𝑐 where 𝑐 is a 

constant (e.g. 𝑐 = 1), the testing procedure is straightforward and does not present any 

issues to the extent of our knowledge. When testing, though, 𝐻0: 𝜃𝑘 = 𝜃𝜈 ≃ �̃�𝑣∗
̅̅ ̅, apart 

from the fact that the assumption of equal biases must hold, one needs to consider that 

it would be possible to test 𝐻0: 𝜃𝜈 = 𝜃𝑘 ≃ �̃�𝑘
∗̅̅ ̅ as well. Despite the fact that both tests 
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are valid under the assumption of equal biases, it might be possible to receive different 

outcomes from each test. In particular, one possibility is that different sampling 

variations for each DMU may lead to bootstrap distributions with wider or narrower 

confidence intervals. Moreover, skewness can cause the endpoints of the confidence 

intervals to lie asymmetrically about the centre of the bootstrap distribution which 

could allow for such an eventuality if the distribution is skewed enough. 

One possible solution would be to transform the null hypothesis as follows89: 

 𝐻0: 𝜓 =
𝜃𝑘
𝜃𝑣
= 1, 𝐻1: 𝜓 ≠ 1 (3.11) 

To perform this test one could use the bootstrap distribution of the ratios of “the two 

DMUs and compute the following distribution of ratios: 

 �̂�𝑏
∗ = 

𝜃𝑘,𝑏
∗

𝜃𝑣,𝑏
∗
, 𝑏 = 1,2,…𝐵 (3.12) 

And then we could perform the usual bias correction to obtain an estimate of 𝜓: 

 �̃�𝑏
∗ = �̂�𝑏

∗ − 2(�̅�𝑏
∗ − �̂�) = �̂�𝑏

∗ − 2(
1

𝐵
∑ �̂�𝑏

∗

𝐵

𝑏=1

−
𝜃𝑘

𝜃𝑣
) (3.13) 

That is, if  (�̂�∗ − �̂�)|�̂� ~(�̂� − 𝜓)|𝒫, then 𝐸(�̃�𝑏
∗) ≃ 𝜓. Then we could use the bootstrap 

distribution of �̃�𝑏
∗  to construct confidence intervals for the population value of 𝜓. The 

rationale for this hypothesis test is similar to that in Simar and Wilson (1998, 2000a) 

while it has also been used in Simar and Wilson (1999) for the construction of 

confidence intervals for the Malmquist index and its components (efficiency change and 

productivity change). 

                                                      
89

 Alternatively it could be 𝐻0: 𝜃𝑘 − 𝜃𝜈 = 0 and 𝐻1: 𝜃𝑘 − 𝜃𝜈 ≠ 0. Both tests would yield the same results 
by definition which the author has also confirmed with simulations. 
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The proposed confidence intervals could be either constructed using the SW1998 or 

SW2000 approaches, but we are in favour of the former due to the low performance 

that the latter exhibited in the previous chapter. Hence, using the SW1998 intervals we 

would reject (3.11) if 1 ∉ (�̃�𝑏
∗,(𝑎/2)

, �̃�𝑏
∗,(1−𝑎/2)

).  

If we find that the null is rejected, we could go one step further and test if 𝐻1 : 
𝜃𝑘

𝜃𝑣
> 1 

or 𝐻1 : 
𝜃𝑘

𝜃𝑣
< 1. And we could compute probabilities as in (3.6) which would help us 

identify the position of 1 with respect to the distribution of �̃�𝑏
∗ : 

 𝑝𝑙𝑜𝑤 =
#(�̃�𝑏

∗ < 1)

𝐵
     and   𝑝ℎ𝑖𝑔ℎ =

#(�̃�𝑏
∗ > 1)

𝐵
,    𝑏 = 1,2,…𝐵    (3.14) 

And as previously, these probabilities could be considered as p-values for one-sided 

tests; if (3.11) is rejected and 𝑝𝑙𝑜𝑤 < 𝑎 we could accept 𝐻1 : 
𝜃𝑘

𝜃𝑣
> 1, while if (3.11) is 

rejected and 𝑝ℎ𝑖𝑔ℎ < 𝑎 we could accept 𝐻1 : 
𝜃𝑘

𝜃𝑣
< 190. 

For future research we propose exploring the power of the proposed test with Monte 

Carlo simulations which should be carefully designed to represent a “true” 𝐻0. One way 

would be to include two fixed DMUs, modelled to differ in efficiency to various degrees 

in various simulations. This would serve as a sensitivity analysis of the 

                                                      
90

 Another possibility would be to test (3.4) as explained previously and accept 𝐻0 if in both cases 𝐻0 is 
accepted and reject 𝐻0 if it is rejected in at least one test, with reference to (3.5). The logic in this 
approach would be to reduce the probability of a Type II error, which is the most serious in hypothesis 
testing and which seems reasonable in the sense that if one of the tests rejects 𝛨0 then there is evidence 
that the efficiency of the two DMUs is different. However, there is some degree of subjectivity in this 
approach while the probability of a Type I error is increased due to the trade-off between the two error 
types.  
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acceptance/rejection decisions (or of the distribution of the associated p-values where 

relevant) towards different initial input/output setups91. 

 

3.3.3 Cross-sample comparisons 

 

It might be the case that the researcher is interested in performing efficiency 

comparisons between two groups of DMUs. In cases like this it would be more 

interesting (if not meaningful) to compare, for example, the means of the two samples 

instead of comparing a DMU from one sample with a DMU from another. Simar and 

Wilson (2008) outline a hypothesis testing procedure for comparing the means of two 

groups of DMUs using as an example the “program-follow-through” schools and the 

“non-program-follow-through” schools in Charnes et al. (1981). They suggest using the 

ratio of means as a sample statistic and they propose as a p-value the relative frequency 

that the bootstrap ratio of means is greater than the sample statistic. Kneip et al. (2012) 

are currently working on the issue of testing differences between sample means, 

treating the issue from a statistical perspective suggesting that this area of research is 

under development.  

                                                      
91

 The author has experimented to some extent on this issue by comparing two fixed DMUs under the 
DGPs described in the previous chapter. In particular, a second fixed DMU was introduced which uses one 
standard deviation of extra input, hence being more inefficient. The simulations have shown that the test 
proposed in this subsection would reject the null at a rate close to 100% even in very small samples. 
However, to arrive at a general conclusion we would need to perform simulations using other 
input/output combinations for the second fixed point which would make the differences more marginal 
and hence more sensitive to the required sample size for the test to exhibit a satisfying power. The 
examination of the power of various hypothesis tests is within the intermediate research plans of the 
author. 
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We believe that one of the challenging issues that should be taken into account is the 

fact that the two samples might be associated with different DGPs. In that case they 

would exhibit different performance with respect to coverage probabilities and with 

respect to the plausibility of the equal biases assumption. In fact, from the 

mathematical formulations in Simar and Wilson (2008) it is implied that the test 

assumes that the two samples stem from the same feasible set. One suggestion for the 

researchers who wish to adopt the approach of Simar and Wilson (2008) would be to 

compare the skewness and kurtosis of the DEA distributions of the two samples which 

could serve as an indication of whether the underlying DGPs are similar or not.  

 

 

3.4 Canwe“bypass”theissueofunequalbiases? 

 

The simulations of the previous chapter have indicated that the assumption of equal 

bootstrap and DEA biases does not hold well under the chosen DGPs. In fact we 

evidenced an asymmetry of biases with the two extreme cases being the “Standard” and 

the “Trunc.Normal Low” case which have been associated with technological 

homogeneity and heterogeneity, respectively. In the “Standard” case the bootstrap bias 

is large compared to the DEA bias which fast becomes very small, while in the 

“Trunc.Normal Low” case the DEA bias is larger than the DEA bias in smaller samples 

(though it becomes smaller after 𝑛 = 120). In this section we will explore the possibility 

of adopting alternative approaches towards the direction of confidence interval 
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construction in these “extreme” cases. We highlight that throughout this section we 

assume that there is an extreme asymmetry of the two biases and therefore the 

confidence intervals and hypothesis testing approaches discussed thus far would not 

work. 

We will begin with the case of technological heterogeneity which should be 

diagnosed by a positive skewness about 0.4 and a kurtosis value close to 3. We argue 

that in this case it is neither worthwhile nor feasible to propose an alternative approach 

for confidence interval construction or hypothesis testing. It is not worthwhile because, 

as we have argued in the previous chapter, the fact that the DEA bias is greater than the 

bootstrap bias suggests issues from the very application of DEA; perhaps a different 

dataset should be used or the input/output variables should be reconsidered. It is also 

not feasible as it would require knowledge of the true efficiency score for DMU 𝑘, 𝜃𝜅, 

which would allow us (perhaps) to inflate the bootstrap bias to make it equal to the DEA 

bias. Moreover, the argument of non-feasibility is reinforced by the fact that after some 

sample size the bootstrap bias becomes larger than the DEA bias, which would make 

any proposed alternative questionable as we cannot be certain about when this turning 

point should occur. Therefore, in cases where the distribution of efficiency scores 

resembles the case of technological heterogeneity it is generally advisable not only to 

avoid bootstrap DEA, but to reconsider the DEA application as well. 

Let us now consider the other extreme case where the bootstrap bias is large 

compared to the DEA bias, with the latter being relatively small and fast converging 

towards zero. This corresponds to the “Standard” case and we have already shown that 
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we can identify the underlying DGP from the empirical distribution of DEA scores; in 

particular it should exhibit negative skewness (about -0.65) and kurtosis of about 2.8. 

Table 3.1 below presents again the DEA and bootstrap bias under the “Standard” DGP 

and for the 2-input/2-output specification. We have also included the standard 

deviation of the DEA score of the fixed DMU across the 𝑀 = 1,000 generated samples 

from the population (see also Table 2.8 under “Standard 2/2” and DEA), which serves as 

an indication of the variability of the DEA scores with respect to sampling variations. 

 

Table 3.1. “Standard” DEA and bootstrap biases 

 

 

We can see clearly that the DEA bias reduces at a faster rate compared to the two 

bootstrap biases while after 𝑛 = 30 the DEA bias drops below 0.01 while the bootstrap 

biases are around 0.03. Especially for 𝑛 = 120 the bootstrap bias is about 7 times larger 

than the DEA bias, indicating that the assumption of equal biases is violated to a 

considerable extent. Moreover, the sensitivity of the DEA score to sampling variations 

seems to significantly reduce with sample size. The question now is how should the 

researcher proceed in this particular case if he still wishes to test hypotheses? In the 

DEA Bias Std LSCV SJ

n = 10 0.038 0.027 0.065 0.054

n = 15 0.023 0.019 0.058 0.048

n = 20 0.018 0.014 0.051 0.042

n = 25 0.014 0.011 0.047 0.039

n = 30 0.011 0.009 0.045 0.037

n = 60 0.006 0.005 0.034 0.027

n = 120 0.003 0.002 0.026 0.021
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rest of this section we will explore two potential courses of action and comment on 

their plausibility.  

The first suggestion is really an empirical observation; if the sample is large enough, 

and especially if 𝑛 ≥ 120  in our 2-input/2-output model, the DEA bias could be 

considered small enough so that 𝜃𝑘 ≃ 𝜃𝑘. Moreover, given that the standard deviation 

of the DEA score of the fixed DMU is quite small (below 0.002) across the 𝑀 = 1000 

samples, we could argue that for large enough sample sizes the DEA scores become 

robust to sampling variations while they are approximately equal to their population 

values. We therefore suggest that when approximately 𝑛 ≥ 120, it is not necessary to 

apply bootstrap DEA for hypothesis testing; observing the DEA scores will be adequate. 

We would like to remind at this point that the “Standard” DGP is associated with 

technological homogeneity and perfect competition. Therefore, we could generalise our 

argument and suggest that if the sample is technologically homogeneous (perhaps 

derived from a perfectly competitive market) and the sample size is large enough 

(𝑛 ≥ 120), then the DEA scores can be considered as good estimates of the population 

efficiency scores and any observed differences will be significant and robust to sampling 

variations; that is, we simply suggest applying DEA and avoid using bootstrap DEA. 

However, the DEA scores are more sensitive towards sampling variations in smaller 

samples, evidenced by the higher standard deviation in Table 3.1 above. Hence, 

although the DEA bias is quite small one might want to consider an alternative approach 

which involves bootstrapping in order to account for the sampling variations. We could 

therefore explore the possibility of correcting for bootstrap bias once (𝜃𝑘
∗,𝑐 = 𝜃𝑘

∗ −
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𝑏𝑖𝑎𝑠�̂�)  instead of twice and construct confidence intervals and test hypotheses 

following the instructions in the previous section. The idea is that correcting once for 

bias would centre the bootstrap distribution on the DEA efficiency score, which is close 

to the population efficiency score (due to the assumed small DEA bias), and at the same 

time accounting for sampling variations. The assumption and at the same time the 

limitation of this approach is that we use as a proxy for 𝜃𝜅, the mean of 𝜃𝑘
∗,𝑐 which is 

equal to 𝜃𝑘. 

Before elaborating on theoretical technicalities and the meaningfulness of this 

approach we will examine if correcting for bootstrap bias once would yield reasonable 

coverage probabilities. We therefore perform a Monte Carlo exercise where we employ 

the SW1998 intervals but corrected for bias once (denote them with SW1998c) and 

using the “Standard” DGP as in the previous chapter which is of interest here. The 

results for the “Standard” DGP using both the SW1998 and SW2000 intervals and the 

SW19998c ones are presented in Table 3.2 below. Despite the fact that the proposed 

intervals perform much better in this special case (especially as sample size increases) 

compared to the SW1998 and SW2000 ones, the coverage probabilities are still far from 

their nominal levels92. Therefore, bootstrap DEA is not advisable to be used under the 

“Standard” case with smaller samples, based on the particular simulations. 

 

                                                      
92

 We also performed an exercise with large samples under the 1-input/1-output specification and we 
found that the coverage probabilities converge to the nominal ones when 𝑛 = 1600 which supports the 
consistency of the intervals but which makes clear that practically this approach would not be particularly 
successful. 
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Table 3.2. Coverage of SW1998c intervals compared to SW1998 and SW2000 ones 

 

 

To summarise, in this section we explored whether any alternative approaches could 

be followed when the assumption of equal biases is violated to a considerable extent. In 

the presence of the technological heterogeneity where the DEA bias is considerably 

larger than the bootstrap bias we argued that it is neither feasible nor worthwhile to 

propose an alternative approach. In the opposite case, which is associated with 

perfectly competitive markets, we proposed a solution which performed better but not 

adequately to be considered as a practically useful approach. Thus, we conclude that if 

there is substantial bias asymmetry bootstrap DEA should be avoided. On a positive 

note, we found that in the latter case (perfect competition), and for reasonably large 

samples (𝑛 ≥ 120) , DEA scores become robust to sampling variations and are 

approximately equal to their population values, suggesting that any observed efficiency 

differences can be considered as significant and robust. 

 

 

 

 

Sample SW1998 SW2000 SW1998c SW1998 SW2000 SW1998c

n = 10 0.743 0.563 0.426 0.830 0.649 0.358

n = 15 0.574 0.401 0.507 0.764 0.498 0.461

n = 20 0.473 0.325 0.505 0.670 0.393 0.495

n = 25 0.421 0.302 0.550 0.566 0.315 0.518

n = 30 0.342 0.253 0.595 0.466 0.227 0.571

n = 60 0.226 0.151 0.663 0.165 0.079 0.638

n = 120 0.148 0.094 0.715 0.022 0.009 0.668

LSCV SJ
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3.5 On testing returns to scale 

 

We have already established that bootstrap DEA cannot be safely applied if there is 

substantial asymmetry in the bootstrap and DEA biases. It is logical to expect that this 

finding is transferable to other extensions of bootstrap DEA which also make use of this 

assumption. One such popular extension is that of Simar and Wilson (2002) who test for 

returns to scale (RTS) using bootstrap DEA, thus accounting for the sensitivity of the 

characterisation of RTS towards sampling variations. In this section we explain how their 

method works and indicate where the assumption of equal biases is used and how bias 

asymmetry could affect the validity of their approach. Finally, we propose an approach 

for testing RTS in DEA which (i) employs the bootstrap and hence accounts for sampling 

variations and (ii) it does not make use of the equal biases assumption and it is 

therefore independent of the performance of bootstrap DEA with respect to coverage 

probabilities. Despite the fact that the proposed approach is at a theoretical level and 

requires to be examined through simulations, we believe that it is promising due to the 

benefits that it is associated with. 

 

3.5.1 Measuring RTS in DEA 

 

Returns to scale are usually tested in the DEA world to provide support on the relevant 

technology assumption used, unless there is theoretical intuition for using a certain RTS 

specification. As already explained in the previous chapter, excluding or including the 
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concavity restriction (∑ 𝜆𝑖
𝑛
𝑖=1 = 1) , allows for the evaluation of efficiency under 

constant returns to scale (CRS) or variable returns to scale (VRS), respectively. Returns 

to scale can be computed using various techniques, depending on the specific model 

used93. A common way of assessing RTS in all models is by computing their scale 

efficiency, which is computed in DEA by the ratio of CRS over VRS efficiency scores (in 

input orientation). The idea is that a DMU which exhibits CRS has to operate under the 

most productive scale size (MPSS). There are two issues, though, with this: (i) DMUs 

have to be efficient to compute their scale efficiency otherwise their projections on the 

VRS frontier need to be used, and (ii) although CRS implies MPSS, the opposite might 

not always be true as the association of economies of scale with RTS requires the 

assumption of constant factor pricing94. Moreover, these tests might be sensitive 

towards sampling variations and therefore it might be sensible to consider bootstrap 

approaches. 

 

3.5.2 Simar and Wilson’s (2002) approach of testing RTS 

 

The method of Simar and Wilson (2002) uses a bootstrap procedure to test for RTS 

which takes into account sampling variations and where the distribution of the 

bootstrap scale efficiency scores is used to perform the test. The attractive feature of 

their method compared to others in the literature is that the hypothesis or RTS is tested 

                                                      
93

 A comprehensive discussion of returns to scale computation can be found in Banker et al. (2004). 
94

 This assumption suggests that the input prices do not change with the scale of operations or that the 
vector of input prices is common to all DMUs. See for example (Färe and Grosskopf, 1985) 
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without using assumptions about the distribution of scale efficiency, as opposed to 

Banker (1996). It could be also argued that it allows for examining the sensitivity of the 

RTS specification due to sampling variations since the bootstrap is used. On the other 

hand, it only tests for RTS on a sample of DMUs rather than testing for RTS of a certain 

DMU. In Simar and Wilson (2002) the null hypothesis is that the production technology 

in a sample of DMUs exhibits CRS versus the alternative of VRS: 

H0: constant returns to scale 

H1: variable returns to scale 

Simar and Wilson (2002) assume output orientation and they use the mean of ratios 

of CRS over VRS distance functions as their test statistic, given in equation (4.5) in their 

paper: 

 �̂�1𝑛
𝑐𝑟𝑠 =

1

𝑛
∑

�̂�𝑛
𝑐𝑟𝑠(𝒙𝑖, 𝒚𝑖)

�̂�𝑛
𝑣𝑟𝑠(𝒙𝑖, 𝒚𝑖)

𝑛

𝑖=1

= �̂�𝑜𝑏𝑠 (3.15) 

where 𝑛 is the number of DMUs in the sample and �̂� denotes the estimated distance 

function (which is used to calculate efficiency scores in a general non-parametric setup). 

In input orientation and using efficiency scores instead of distance functions, (3.15) 

becomes: 

 �̂�1𝑛
𝑐𝑟𝑠 =

1

𝑛
∑

𝜃𝑛
𝑐𝑟𝑠(𝒙𝑖, 𝒚𝑖)

𝜃𝑛
𝑣𝑟𝑠(𝒙𝑖, 𝒚𝑖)

𝑛

𝑖=1

= �̂�𝑜𝑏𝑠 (3.16) 

In their method, Simar and Wilson (2002) compute both the CRS and VRS efficiency 

scores in each bootstrap loop, they divide them to compute the bootstrap scale 

efficiency scores and then they calculate their means in each bootstrap replication, 

generating a bootstrap distribution of average scale efficiencies (�̂�∗). The resulting 
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distribution is then used to perform hypothesis tests for RTS, which is outlined in 

equation (5.11) in Simar and Wilson (2002) and which is shown to be asymptotically 

consistent: 

 �̂� = Pr(�̂�∗ ≤ �̂�𝑜𝑏𝑠|𝐻0, 𝛷𝑛)  (3.17) 

where 𝛷𝑛 is the observed sample of inputs and outputs of the 𝑛 DMUs. Hence, if the 

chosen level of significance is 𝑎 then the null hypothesis of CRS is rejected if �̂� ≤ 𝑎.  

The intuition behind this test lies in the fact that �̂�1𝑛
𝑐𝑟𝑠 is a ratio of CRS over VRS 

efficiency scores; the maximum value of this ratio is 1 while the higher it is, the smaller 

will be the distance between the CRS and VRS frontiers. If we knew the population value 

𝜔 and we could observe the sampling variations of its estimate �̂�, then we could 

examine how sensitive the distance between the CRS and VRS frontiers is towards 

sampling variations. For example, if we observed quite frequently that �̂� < 𝜔, we would 

deduce that there is a low chance for a random sample generated from the population 

to be associated with a sample VRS frontier closer to the CRS one, compared to the 

distance between the population VRS and CRS frontiers. This suggests that this smaller 

distance is robust to sampling variations and we therefore conclude that the population 

exhibits CRS. On the other hand, if we would rarely evidence �̂� < 𝜔, then we would 

consider that the population exhibits VRS as in the vast majority of the random samples 

we would observe a larger distance between the sample CRS and VRS frontiers 

compared to the distance of the population frontiers. 

However, we cannot observe 𝜔 and we therefore employ the bootstrap in order to 

mimic the aforementioned sampling variations and we perform the hypothesis test as 
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outlined above. The assumption is that under the null hypothesis 𝐻0, the bootstrap bias 

is similarly distributed as the DEA or model bias: (�̂�∗ − �̂�)|𝐻0~(�̂� − 𝜔)|𝐻0. This 

assumption is similar to the ones used for Simar and Wilson’s (1998) bootstrap DEA and 

given the results of the previous chapter we believe it may not be plausible, at least 

under certain DGPs. The Monte Carlo evidence provided in Simar and Wilson (2002) 

suggest that in small samples the computed probabilities do not converge to the 

nominal ones, although they approach them. In particular, the largest sample examined 

consists of 60 DMUs and under a 2-inputs/1-output specification the computed 

probabilities where 0.15 for a nominal probability of 0.05. It is worthwhile, though, to 

note that Simar and Wilson (2002) consider the computed probabilities as “close 

enough” to the nominal ones. Certainly, the literature would benefit from a more 

extensive simulation study on testing for RTS with this approach. 

Let us now examine what the violation of the assumption of equal biases implies in 

this case. Suppose that the bootstrap bias is substantially greater than the DEA bias, 

which suggests that Pr(�̂�∗ − �̂� > 0) > Pr(�̂� − 𝜔 > 0) ⇒ Pr(�̂�∗ < �̂�) < Pr(�̂� < 𝜔). 

That is, it would be possible to reject a true null which means that the probability of a 

Type I error is higher. Similarly, if the bootstrap bias was substantially smaller than the 

DEA bias, the probability of a Type II error would be higher (accept a false null). This 

supports our previous argument that there is scope for further research on this area 

with Monte Carlo simulations which report among others the bootstrap and DEA biases.  

The advantage of the method of Simar and Wilson (2002) is that it allows testing for 

RTS for a group of DMUs while employing the bootstrap which accounts for sampling 
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variations. The disadvantage is that it might perform poorly in some cases as its validity 

depends on the plausibility of the assumption of equal biases. Given our concerns in the 

previous chapter on the plausibility of the assumption of equal biases it becomes 

apparent that it would be desirable to use a method that would not depend on this 

assumption while accounting for sampling variations.  

 

3.5.3 A proposed approach for testing RTS 

 

We will now propose an approach for testing RTS which does not depend on the 

assumption of equal bootstrap and DEA biases, but uses a less restrictive assumption. 

The approach is at a theoretical stage, requiring Monte Carlo simulations to explore its 

performance and sample size requirements.  The idea is simple and it is based on the 

definition of RTS by Banker and Thrall (1992), which was later developed by Banker et al. 

(1996). Here we only discuss the case of testing for RTS under the assumption of a CRS 

frontier and input orientation. 

Banker and Thrall (1992) prove that the RTS of DMU 𝑘 are defined by the sum of 

weights (∑ 𝜆𝑖
𝑛
𝑖=1 ). In particular,  

 if   ∑𝜆𝑖

𝑛

𝑖=1

   {
  < 1,  then IRS
  = 1,  then CRS
   > 1,  then DRS

 (3.18) 

There are two issues here: (i) DMU 𝑘 must either be efficient or its projection on the 

frontier should be used, while (ii) we need to reach at the same RTS characterisation for 

all alternate optima.  
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Banker et al. (1996) propose a test for RTS which is free of both assumptions: DMUs 

do not need to be efficient while it is not necessary to examine RTS under all alternate 

optima. In particular they propose a two-step procedure, the first step of which involves 

solving the envelopment form of DEA in (2.11): 

 𝜃𝑘 = min {𝜃|𝑦𝑘 ≤∑𝜆𝑖𝑦𝑖

𝑛

𝑖=1

;  𝜃𝑥𝑘 ≥∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,   ∀  𝑖 = 1,… , 𝑛} (3.19) 

Assuming that the first step has reached a solution for DMU 𝑘 with ∑ 𝜆𝑖
𝑛
𝑖=1 > 1, the 

second step involves solving the following linear program: 

 

min{∑�̂�𝑖

𝑛

𝑖=1

− 𝜀 (∑�̂�𝑠
−

𝑝

𝑠=1

+∑�̂�𝑟
+

𝑞

𝑟=1

) | 𝑦𝑘 =∑�̂�𝑖𝑦𝑖

𝑛

𝑖=1

− �̂�+; 𝜃𝑘
∗𝑥𝑘

=∑�̂�𝑖𝑥𝑖

𝑛

𝑖=1

+ �̂�−;  ∑ �̂�𝑖

𝑛

𝑖=1

≥ 1;  �̂�𝑖, �̂�𝑠
−, �̂�𝑟

+ ≥ 0,   ∀  𝑖 = 1,… , 𝑛 } 

(3.20) 

Here �̂�−  is a vector of 𝑝 input slacks, �̂�+  is a vector of 𝑞  output slacks, while 𝜃𝑘
∗  is 

computed from the first stage and is treated as a constant (Banker et al., 1996). The 

quantity 𝜀 > 0 is a non-Archimedean element which is smaller than any positive real 

number and which is used to indicate that (3.20) is computed in two phases. In 

particular, in the first phase  ∑ �̂�𝑖
𝑛
𝑖=1  is minimised subject to the constraints in (3.20) 

while in the second phase the sum of slacks (∑ �̂�𝑠
−𝑝

𝑠=1 + ∑ �̂�𝑟
+𝑞

𝑟=1 ) is maximised subject 

to the same constraints. If ∑ 𝜆𝑖
𝑛
𝑖=1 < 1 in (3.19), we solve the same linear program as in 

(3.20) by changing the objective function appropriately as max{∑ �̂�𝑖
𝑛
𝑖=1 + 𝜀(∑ �̂�𝑠

−𝑝
𝑠=1 +

∑ �̂�𝑟
+𝑞

𝑟=1 )} while also changing the last constraint to ∑ �̂�𝑖
𝑛
𝑖=1 ≤ 1. The optimised values 
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of the weights on the second stage in these two cases will return values for ∑ �̂�𝑖
𝑛
𝑖=1  that 

will either confirm ∑ 𝜆𝑖
𝑛
𝑖=1 >< 1 or they will return ∑ �̂�𝑖

𝑛
𝑖=1 = 1 indicating CRS. 

Finally, if the first stage in (3.19) yields ∑ 𝜆𝑖
𝑛
𝑖=1 = 1, then no further treatment is 

required and CRS will prevail. This point is also explained in Cooper et al. (2006; pp.139) 

where it is stated (and shown) that “CRS will prevail at the efficient point” (meaning the 

projection on the frontier). This suggests that if the sum of weights in the first stage for 

any DMU is equal to one, then necessarily this DMU exhibits CRS. On the other hand if it 

exhibits IRS or DRS then the linear program in (3.20) will either confirm this finding or 

will suggest CRS. It has to be noted, though, that this RTS test by Banker et al. (1996), as 

with most RTS tests, is sensitive to orientation and this is one of the limitations of this 

approach. 

It has already been established that DEA is subject to sampling variations and 

therefore the computation of either  ∑ 𝜆𝑖
𝑛
𝑖=1  or ∑ �̂�𝑖

𝑛
𝑖=1  might be affected. Since the 

bootstrap is an efficient way of simulating the sampling variations, we propose 

implementing the bootstrap and performing the test of Banker et al. (1996) on each 

replication95. This will yield a distribution for ∑ �̂�𝑖
𝑛
𝑖=1  which we could use to test for RTS 

in DEA while taking into account the sampling variability. The only assumption of our 

proposed approach is that the observed sample is a representative one and that the 

sampling variations are adequately simulated by the bootstrap.  

                                                      
95

 The author has already produced a Matlab code for the Banker et al. (1996) test and is in the process of 
adapting it for bootstrap computations. 
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The null hypothesis, as with Simar and Wilson (2002), is CRS and the alternative is 

VRS. When implementing the Banker et al. (1996) approach one could also test for 

increasing or decreasing returns to scale in the second stage if interested. The important 

point, though, which stems from Banker et al. (1996), is that at a first stage we could 

examine whether the sum of weights for any DMU is equal to one or not as this would 

determine if we should proceed with the second-stage linear program. If the level of 

significance is 𝑎, then we could compute the following probability for DMU 𝑘: 

 𝑝𝑟𝑜𝑏 =
#(∑ 𝜆𝑖

𝑛
𝑖=1 = 1)𝑘,𝑏

𝐵
,   𝑏 = 1,2, …𝐵 (3.21) 

and examine if 𝑝𝑟𝑜𝑏 > 𝑎. That is, we could examine how frequently we obtain 

∑ 𝜆𝑖
𝑛
𝑖=1 = 1 for DMU 𝑘 across the 𝐵 bootstrap loops and if this exceeds 𝑎, then we 

could accept the null hypothesis of CRS. If not we could proceed with the second stage 

computations of Banker et al. (1996).. However, to establish the performance of the 

proposed test it would require Monte Carlo simulations with DGPs that simulate the null 

hypothesis to be examined and which is proposed for future research. 

To gain a first insight on the sensitivity of RTS characterisation with respect to 

sampling variations and to further motivate our test we have performed a simulation 

exercise. In particular, using the DGPs of the previous chapter, we have computed the 

medians of the distributions of ∑ 𝜆𝑖
𝑛
𝑖=1  for the fixed DMU for both the DEA samples96 

and the bootstrap replications. The computation of the medians serves two purposes: (i) 

we can examine how well the bootstrap simulates the sampling variations by comparing 

                                                      
96

 This refers to the 𝑀 = 1000 samples generated from the population. 
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the DEA and bootstrap values and (ii) we can get an indication of the acceptance rates 

for 𝐻0 as a median of 1 would suggest that a considerable proportion of the bootstrap 

values has ∑ 𝜆𝑖
𝑛
𝑖=1 = 1 and hence it is likely that 𝐻0 would not be rejected.  

Table 3.3 reports the medians of ∑ 𝜆𝑖
𝑛
𝑖=1 = 1 for the fixed DMU, for both the DEA 

samples and the bootstrap resamples. Despite the fact that DMU 𝑘 is inefficient, we do 

not need to consider its projections on the frontier according to Banker et al. (1996). 

Moreover, since the fixed point lies in the centre of the data which is generated from a 

DGP associated with CRS, it is quite likely for it to exhibit CRS as well and we will 

therefore consider values close to 1 as a good indication.  

Inspecting the results, we first observe that for 𝑛 > 30 the bootstrap values are very 

close to the DEA ones suggesting that the bootstrap simulates adequately the DEA 

sampling variations even in small samples. Another interesting observation is that this 

aspect of performance is independent of the DGP used, even under the “Trun.Normal 

Low” which is associated with technological heterogeneity and exhibited poor 

performance in the previous chapter. Finally, we find that values of either 1 or very 

close to 1 are reported for the fixed DMU, which means that ∑ 𝜆𝑖
𝑛
𝑖=1 = 1 should be 

observed a considerable number of times, which is not surprising as all DGPs are 

associated with CRS. This also means that perhaps it would not be necessary to employ 

the second stage computations of Banker et al. (1996), though further simulations 

would be required to confirm this. 
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Table 3.3. Monte Carlo first insights on proposed RTS test 

 
 

To summarise, in this section we have discussed how tests on RTS could be 

performed in bootstrap DEA and in particular using the approach of Simar and Wilson 

(2002). We have explained that in their test, Simar and Wilson (2002) use an assumption 

of equal bootstrap and DEA biases which is similar to the ones used in bootstrap DEA 

and we have shown that violation of this assumption may lead to Type I and Type II 

errors. Given that the results in the previous chapter were not encouraging with respect 

to the assumption of equal biases we proposed an alternative approach which employs 

1I -1O 2I -1O 2I -2O 1I -1O 2I -1O 2I -2O 1I -1O 2I -1O 2I -2O 1I -1O 2I -1O 2I -2O

DEA

n = 10 0.9971 0.9992 0.9997 1.0039 0.9991 0.9994 0.9910 0.9993 0.9999 0.9950 0.9991 1.0000

n = 15 0.9997 0.9994 0.9994 0.9984 0.9996 1.0000 0.9837 1.0001 1.0001 0.9833 0.9995 0.9998

n = 20 1.0070 0.9993 0.9995 0.9935 0.9996 1.0002 0.9866 1.0000 0.9993 0.9556 0.9996 0.9997

n = 25 1.0182 0.9993 0.9996 0.9699 0.9994 0.9997 0.9971 1.0000 0.9993 0.9664 0.9995 0.9996

n = 30 1.0041 0.9993 0.9996 0.9626 0.9994 0.9997 1.0164 1.0001 0.9990 0.9970 0.9995 0.9999

n = 60 1.0185 0.9994 0.9995 0.9501 0.9993 0.9993 1.0128 1.0001 0.9992 0.9624 0.9997 0.9998

n = 120 1.0040 0.9994 0.9995 0.9590 0.9994 0.9994 0.9972 1.0001 0.9993 0.9396 0.9997 0.9997

LSCV

n = 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 15 1.0000 0.9997 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 20 1.0000 0.9994 0.9996 1.0000 0.9998 1.0000 1.0000 1.0000 0.9998 1.0000 0.9999 0.9999

n = 25 1.0000 0.9993 0.9995 1.0000 0.9995 0.9997 1.0000 1.0000 0.9993 1.0000 0.9998 0.9998

n = 30 1.0000 0.9993 0.9995 1.0000 0.9995 0.9995 1.0000 1.0000 0.9991 1.0000 0.9996 0.9998

n = 60 1.0000 0.9993 0.9994 1.0000 0.9992 0.9994 1.0000 1.0000 0.9990 1.0000 0.9997 0.9997

n = 120 1.0000 0.9993 0.9994 1.0000 0.9993 0.9994 1.0000 1.0000 0.9990 1.0000 0.9996 0.9997

SJ

n = 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 15 1.0000 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 20 1.0000 0.9994 0.9996 1.0000 0.9999 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

n = 25 1.0000 0.9994 0.9996 1.0000 0.9995 0.9997 1.0000 1.0000 0.9993 1.0000 0.9998 0.9998

n = 30 1.0000 0.9993 0.9995 1.0000 0.9995 0.9995 1.0000 1.0000 0.9991 1.0000 0.9996 0.9998

n = 60 1.0000 0.9993 0.9994 1.0000 0.9992 0.9994 1.0000 1.0000 0.9991 1.0000 0.9997 0.9997

n = 120 1.0000 0.9993 0.9994 1.0000 0.9993 0.9994 1.0000 1.0000 0.9990 1.0000 0.9996 0.9997

Naïve

n = 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 15 1.0000 0.9996 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

n = 20 1.0000 0.9994 0.9996 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000

n = 25 1.0000 0.9993 0.9995 1.0000 0.9995 0.9998 1.0000 1.0000 0.9994 1.0000 0.9997 0.9997

n = 30 1.0000 0.9993 0.9995 1.0000 0.9995 0.9996 1.0000 1.0000 0.9991 1.0000 0.9996 0.9998

n = 60 1.0000 0.9992 0.9994 1.0000 0.9992 0.9994 1.0000 1.0000 0.9991 1.0000 0.9996 0.9997

n = 120 1.0000 0.9992 0.9994 1.0000 0.9992 0.9994 1.0000 1.0000 0.9990 1.0000 0.9996 0.9996

Standard Trunc. Normal Low Trunc. Normal High Uniform
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the bootstrap but makes use of the Banker et al. (1996) test. The proposed approach is, 

in theory, free of the assumption of equal biases while we have provided some evidence 

that its performance is independent of the underlying DGP. However, it is only limited to 

a specific DMU while Monte Carlo evidence is required to establish the power of this 

test and the sample size requirements, which is left for future research. 

 

 

3.6 Conclusions 

 

The literature on hypothesis testing using bootstrap DEA is underdeveloped despite the 

interest in empirical applications. More importantly, there are no theoretical works 

providing guidance about when hypothesis testing with bootstrap DEA should be 

avoided and what would be the implications of violating fundamental assumptions (such 

as the equality of bootstrap and DEA biases) on the performance of such tests. In this 

chapter we attempted to provide guidance as to how hypothesis testing could be 

performed when the assumption of equal biases is valid and what are the options when 

it is violated. Moreover, we discussed a few considerations that we deem important 

when applying these tests and we proposed lines of action accordingly, along with 

avenues for future research. Finally, we extended the discussion to the case of testing 

for RTS with bootstrap DEA (Simar and Wilson, 2002) and we proposed an alternative 

that does not make use of the assumption of equal biases. 

Our findings on the theoretical explorations of the SW1998 and SW2000 confidence 

intervals lend further support to the Monte Carlo evidence of the previous chapter 
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while the inferior performance of the SW2000 intervals compared to the SW1998 is 

further investigated. More importantly, we show that the associated hypothesis testing 

procedures require the assumption of equal biases to be valid to avoid Type I and II 

errors. But even if this assumption is valid one should take into account the potential 

positive skewness of the bootstrap distributions and the possibility that different DMUs 

might be associated with different sensitivity towards sampling variations. With regards 

to these issues, we proposed lines of action which would benefit from simulations to 

confirm their effectiveness and which is left for future research. 

We also explored the possibility of adopting alternative approaches when the 

bootstrap bias is either small compared to the DEA bias (which corresponds to the case 

of technological heterogeneity where large DEA biases are observed) or big (which 

corresponds to the technologically homogeneous or “Standard” case where the DEA 

biases are small). For the first case we argue that even the DEA model might need to be 

reconsidered as the presence of large DEA biases is not desirable. For the latter case we 

proposed an alternative approach which significantly improves coverage probabilities 

but which cannot be safely used in practice as convergence is only observed in large 

samples. We therefore conclude that in the presence of substantial biases bootstrap 

DEA should not be used and the practitioner/researcher should first explore for such 

asymmetries. One suggestion would be to use the diagnostics of the previous chapter 

(that is, examine the skewness and kurtosis of the distribution of DEA scores) while the 

iterated bootstrap of Simar and Wilson (2004) could be relevant in this case, though it is 

computationally extremely demanding. On the positive side we argued that when the 
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DEA bias is substantially smaller than the bootstrap bias (as in the “Standard” case, 

which is associated with technological homogeneity and perfect competition), then for 

sample sizes greater than 120 the DEA scores are robust to sampling variations and very 

close to their population value. Hence, in this case it is not necessary to apply bootstrap 

DEA as the DEA scores can be considered as the “true” ones.  

Finally, we show how the conclusions of our discussion are transferable to extensions 

of bootstrap DEA such as the test for RTS of Simar and Wilson (2002). In particular, we 

demonstrate how a similar bias asymmetry can lead to Type I and II errors, suggesting 

that this test should be applied with caution. Moreover, we introduce a test based on 

the approach of Banker et al. (1996), which also utilises the bootstrap to account for 

sampling variations but which is free of any equal biases assumption. First insights from 

simulations suggest that the performance of the test is independent of the underlying 

DGP. However, a focused simulation study would be required in order to confirm its 

validity and assess its performance, though the first evidence seems promising. 

Moreover, we have only discussed the case of testing for RTS for a certain DMU which 

could be extended in the future to test for RTS in a sample. 

Bootstrap DEA is a valuable approach which allows considering for sampling 

variations in DEA and therefore to perform hypothesis tests. It depends, however, on 

assumptions which have been challenged in the previous chapter and which carry 

implications about the performance of hypothesis tests. If the bootstrap bias is equal to 

the DEA bias then, as previously mentioned, the hypothesis tests discussed in this 

chapter can be applied. On the other hand, violation of this assumption will lead to 
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inconsistent results. One possibility for future research could be to look at the effects of 

skewness on confidence intervals and the use of methods such as Efron’s (1987) 𝐵𝐶𝑎 

intervals which might improve coverage probabilities (we proposed an approach to 

compute the acceleration parameter in Appendix VII). To improve upon the validity of 

the assumption of equal biases, though, it would require reconsidering the kernel 

smoothing approaches which introduce additional noise in their effort to smooth out 

the empirical distribution (Simar and Wilson, 2002). In fact, some developments on 

bootstrap DEA focus their efforts on this issue but they seem to perform well in large 

samples. It might be worthwhile looking at alternatives to kernel density estimation, 

which can still enrich the support of the empirical distribution and at the same time 

introduce less variability which might cause distortions in the bootstrap biases. This is 

discussed in the next chapter where a new approach is introduced which performs well 

in small samples and which can make the SW1998 and SW2000 intervals along with the 

approaches discussed in this chapter useful in practice. 
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4 A simple alternative to smoothing 

 

4.1 Introduction 

 

The simulations in Chapter 2 have shown that despite the fact that Simar and Wilson’s 

(1998) bootstrap DEA has nice asymptotic properties, it is less useful in practice due to 

its low performance in smaller samples. The unsatisfactory performance is attributed to 

the fact that the bootstrap biases are not equal to the DEA biases in smaller samples 

and we have shown that both the accuracy of confidence intervals and the validity of 

hypothesis testing are affected in this case. Considering alternative confidence intervals 

might go some way towards improving coverage probabilities, however the problem of 

unequal biases will not be resolved. The other potential is to improve or find an 

alternative to smoothing as “kernel estimators are slow to converge” and they “might be 

a significant source of noise in the bootstrap process” (Simar and Wilson, 2002; pp.124). 

This chapter proposes an alternative to smoothing which is shown to perform well and 

therefore allows using the confidence intervals of Simar and Wilson (1998, 2000a) in 

hypothesis testing as outlined in the previous chapter. 

The necessity to employ smoothing in bootstrap DEA stems from the fact that the 

support of the empirical distribution is not rich and it would result in repeated values 

and therefore in bootstrap distributions with peculiar properties. This issue is well-

established in the works of Simar and Wilson, while it is also referenced in studies not 

related to DEA. A review of the arguments in favour of the smooth bootstrap has been 
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provided is subsection 2.6.4 of chapter 2, where it was also shown in Figure 2.7 why the 

naïve bootstrap is a bad idea.  

An important body of the literature on bootstrap DEA focuses on more efficient 

smoothing processes, as already mentioned in subsection 2.6.5. The methods of Kneip 

et al. (2008) on double smoothing, of Kneip et al. (2011) on using a mixture of smooth 

and naïve processes and of Simar and Wilson (2011) on subsampling are the most well-

known (if not the only) recent developments on this area. However, as the 

aforementioned papers state or show through simulations, these methods are either 

too complicated as well as computationally intensive, or require large samples (certainly 

well above 100 and ideally close to 1000) to perform well. All smoothing processes thus 

far employ either simple or complicated kernel smoothing techniques, while no 

alternative approaches have been proposed to the extent of our knowledge. 

In this chapter we propose a simple alternative to smoothing which is based on using 

a Pearson system moment generator to draw values from a pseudo-population instead 

of the empirical distribution (naïve bootstrap) or some smoothed function of it (smooth 

bootstrap). The success of the proposed method is based on the idea that, if the DEA 

samples have moments (mean, standard deviation, skewness and kurtosis) which 

approach those of the population, we could use those sample moments to generate a 

pseudo-population of efficiency scores which would enrich the support of the empirical 

distribution and produce meaningful confidence intervals. Hence, the “moments-

bootstrap”, as we name it, has the same purpose as the smooth bootstrap but it uses an 

alternative technique in doing so.  
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Using Monte Carlo simulations, we show that the implementation of the SW1998 and 

SW2000 intervals under the “moments-bootstrap” yields better results compared to 

using the smooth bootstrap. In fact, the combination of SW1998 intervals and of the 

moments bootstrap exhibits coverage probabilities which converge to the nominal ones 

for sample sizes of 120 DMUs or more. The success of the proposed method is due to 

the fact that the resulting bootstrap biases are very similar to the DEA ones which is the 

fundamental assumption in Simar and Wilson’s works. Moreover, the confidence 

intervals have similar widths compared to the ones constructed under the smooth 

bootstrap, which can be either slightly narrower or slightly wider, depending on the 

DGP. 

The remainder of this chapter is structured as follows: section 4.2 provides further 

evidence in support of using moment generators to enrich the support of the efficiency 

distribution, section 4.3 briefly analyses the method of moments, section 4.4 provides 

details about the Pearson system moment generator which is employed here, 

section 4.5 describes the exact steps in implementing the “moments-bootstrap”, 

section 4.6 presents Monte Carlo evidence on the performance of the proposed 

approach, while section 4.7 concludes the chapter. 
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4.2 Why use moments? 

 

The motivation of following this approach stems from the fact that the bootstrap 

samples mimic the observed samples, which in turn are considered as representative if 

they have similar properties with the population. Hence, if the sample is a 

representative one, then the resulting bootstrap distribution will have, in principle, good 

properties. In that case, the support of the empirical distribution could be consistently 

enriched by using the sample moments to generate a pseudo-population and apply the 

bootstrap by drawing values from this pseudo-population.  

The resulting bootstrap DEA distribution for a certain DMU should be as rich as that 

resulting from the smooth bootstrap and therefore the associated confidence intervals 

will be also meaningful and consistent. To provide an illustration of what the moments-

bootstrap does, we have plotted the relevant bootstrap distribution for a certain DMU 

in Figure 4.1. This is the same example as in Figure 2.7 with the addition of the 

moments-bootstrap approach. The labels are self-explanative and it is obvious from the 

figure below that the moments-bootstrap, like the two smooth bootstraps, provides a 

better support than the naïve bootstrap and is therefore suitable for hypothesis testing. 

One interesting point to note is that the distribution seems to be peaked close to the 

sample DEA score and exhibits a tail to the right, suggesting that the moments-

bootstrap is perhaps more suitable for one-sided tests.  

The advantage of the moments-bootstrap, as it will be explained later, is that it offers 

the flexibility of choosing an appropriate density function over a selection of 
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distributions as opposed to the kernel density estimation approaches which employ 

reflection and fit a symmetric distribution with a normal kernel on data. The latter 

approach has been documented to introduce extra noise in the bootstrap (Simar and 

Wilson, 2002) which is probably avoided by using the proposed approach given its 

improved performance. In addition, it would be possible to recognise the corresponding 

density function and perform further inference using the respective functional forms 

(though, this is not the focus of this chapter and this is left for future research). Finally, it 

is computationally less demanding while it can be easily implemented using interpreters 

such as Matlab or R. 

 

Figure 4.1. Moments-bootstrap and smooth bootstrap histograms 
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4.3 Method of moments 

 

The foundations of moment-matching mechanisms lie within the method of moments. 

This method suggests that if the sample is a representative one, then the sample 

moments can be used to infer those of the population. Using sample moments as 

estimators of population parameters is a consistent approach. More information can be 

found in any advanced econometrics book (see for example Greene (2003)) while we 

will expose here some fundamental information.  

Suppose a function of 𝑦 which is characterized by 𝐾 parameters, or 𝑓(𝑦|𝜃1, … , 𝜃𝐾). If 

there are 𝑛 observations in the sample then the 𝑘𝑡ℎ sample moment is defined as: 

 �̂�𝑘 =
1

𝑛
∑𝑦𝑖

𝑘

𝑛

𝑖=1

 (4.1) 

which is associated with the population moment 𝜇𝑘(𝜃1, … , 𝜃𝐾). Hence, we could use the 

𝐾 moment equations �̂�𝑘 − 𝜇𝑘(𝜃1, … , 𝜃𝐾),   𝑘 = 1,… , 𝐾 and solve for 𝜃𝑘  as a function of 

the sample moments �̂�𝑘  (Greene, 2003). For example, if 𝑦~𝑁(𝜇, 𝜎2) , then �̂�1 =

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 = �̅�  and �̂�2 =

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1

2
, so that 𝜎2 =

1

𝑛
∑ (𝑦𝑖 − �̂�1)

2𝑛
𝑖=1 = �̂�2 − �̂�1

2 , or 

𝜎 = √�̂�2 − �̂�1
2. Hence, the first two sample moments of the Normal distribution can be 

used to estimate the two population parameters (mean and standard deviation) which 

will be asymptotically accurate due to consistency.  

To make clearer the usefulness of the method of moments, consider the Gamma 

distribution with a probability density function 𝑓(𝑦) =
1

𝛤(𝑎)𝛽𝑎
𝑦𝑎−1𝑒−𝑦/𝑏, that belongs 

to the exponential family. It can be shown (Greene, 2003) that �̂�1 = 𝑎𝛽  and �̂�2 =
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𝑎(𝑎 + 1)𝛽2 . Hence, we could solve for the shape parameter 𝑎 and the scale parameter 

𝛽 and get: 𝑎 =
�̂�1
2

�̂�2−�̂�1
2 and 𝛽 =

�̂�2−�̂�1
2

�̂�1
.  

The purpose of the exposition of the fundamentals of the method of moments in this 

section is to underline that the moments of each distribution are associated with certain 

values and relationships that characterize them. The important implication is that each 

distribution will have a unique combination of moments which cannot be associated 

with another distribution. Hence, the mean, standard deviation, skewness and kurtosis 

of a distribution, could be associated with some known distribution and hence with 

some functional form. Taking also into account the consistency of the method of 

moments, we infer that sample moments could be potentially used to identify the 

underlying population distribution, provided that the sample is a representative one. 

 

 

4.4 Pearson system random number generator 

 

The Pearson system moment generator is a random number generator that draws 

values from one of the distribution types that belong in the family of Pearson’s 

distributions. The Pearson family includes most types of standard distributions which 

are most commonly used in the econometrics literature. The 8 types included cover a 

wide range of potential distributions that could be attached to most empirical 

distributions and it therefore seems suitable to be used in bootstrap DEA. 
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The decision of attaching a type from the Pearson system to the empirical 

distribution depends on the first four moments of the sample under consideration 

(mean, standard deviation, skewness and kurtosis). The methods involved are 

mathematically advanced and it is beyond the scope of the thesis to provide a detailed 

account of them all. The interested reader may refer to the book by Johnson et al. 

(1994) for further information on distributions and their moments. Here we will provide 

a summary of the various types of distributions that belong in the Pearson system as 

well as a description of how random values can be generated from the Pearson system. 

The Pearson system includes probability density functions that satisfy a differential 

equation which has the following form97: 

 
1

𝑝

𝑑𝑝

𝑑𝑥
= −

𝑥 + 𝑎

𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2

 (4.2) 

The shape of the distribution depends on the parameters 𝑎, 𝑐0, 𝑐1 and 𝑐2 while the roots 

of the equation: 

 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 = 0 (4.3) 

define the solution in (4.2) and therefore the distribution-type of the Pearson system.  

Suppose that 𝑐1 = 𝑐2 = 0; the solution to (4.2) would be: 

 𝑝(𝑥) = 𝐾 exp [−
(𝑥 + 𝑎)2

2𝑐0
] (4.4) 

where 𝐾 is the integrating constant and has to be 𝐾 = √2𝜋𝑐0  in order to satisfy 

∫ 𝑝(𝑥)𝑑𝑥
∞

−∞
= 1 . Hence 𝑝(𝑥) = √2𝜋𝑐0 exp [−

(𝑥+𝑎)2

2𝑐0
]  is the resulting probability 

                                                      
97

 See Johnson et al. (1994), section 4.1, pp. 15 for further details. The exposition of the material here 
largely follows that book.  
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distribution with expected value 𝑎  and standard deviation 𝑐0 . This is the Normal 

distribution and it is known as Type 0 in the Pearson system.  

Type I corresponds to the case where 𝑎1 < 0 < 𝑎2 are the roots of (4.3) so that 

𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 = −𝑐2(𝑥 − 𝑎1)(𝑥 − 𝑎2). It can be shown that this corresponds to the 

Beta distribution with the following solution: 

 𝑝(𝑥) = 𝐾(𝑥 − 𝑎1)
𝑚1(𝑥 − 𝑎2)

𝑚2 ,    𝑚1 =
𝑎+𝑎1

𝑐2(𝑎2−𝑎1)
   and   𝑚2 =

𝑎+𝑎2

𝑐2(𝑎2−𝑎1)
   (4.5) 

If 𝑚1 = 𝑚2, then this gives rise to a Symmetric Beta distribution and corresponds to 

Type II of the Pearson system. 

Type III is the case where 𝑐2 = 0 and 𝑐1, 𝑐2 ≠ 0 which has the following solution: 

 𝑝(𝑥) = 𝐾(𝑐0 + 𝑐1𝑥)
𝑚 exp (

−𝑥

𝑐1
) ,        𝑚 = 𝑐1

−1(𝑐0𝑐1
−1 − 𝑎)   (4.6) 

This is the case of Gamma distribution. 

Type IV does not belong to some standard distribution density as (4.3) is assumed to 

have no real roots. The solution to (4.3) is extremely complicated and it is usually 

computed by numerical approximations while various papers have tried to come up 

with an accessible functional form. In all cases the solution is of the form 𝑝(𝑥) =

𝑔(𝑎, 𝑐0, 𝑐1, 𝑐2) and it involves imaginary numbers98.  

Type V of the Pearson system corresponds to the case where (4.2) is a perfect square, 

or 𝑐1
2 = 4𝑐0𝑐2. The solution to (4.3) now becomes:  

                                                      
98

 Johnson et al (1994) provide the following functional form: 

 𝑝(𝑥) = 𝐾[𝐶0 + 𝑐2(𝑥 + 𝐶1)
2]−1/2𝑐2 exp (−

𝑎 − 𝐶1

√𝑐2𝐶0
tan−1

𝑥 + 𝐶1

√𝐶0/𝑐2
) 

where  𝐶0 = 𝑐0 −
1

4
𝑐1
2/𝑐2 and 𝐶1 =

1

2
𝑐1/𝑐2 
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 𝑝(𝑥) = 𝐾(𝑥 + 𝐶1)
−1/𝑐2 exp [

𝑎−𝐶1

𝑐2(𝑥+𝐶1)
],        𝐶1 =

𝑐1

2𝑐2
  (4.7) 

which is the general form of the Inverse Gamma distribution. 

Type VI is associated with the case where the roots of (4.2) are all real and have the 

same sign. The solution is exactly the same as the one in (4.5) and an important 

distribution that belongs in this family is the 𝐹-distribution. 

Finally, Type VII distribution corresponds to the case where 𝑐1 = 𝑎 = 0  and 

𝑐0, 𝑐2 > 0. Now the solution to (4.3) becomes: 

 𝑝(𝑥) = 𝐾(𝑐0 + 𝑐2𝑥
2)−(2𝑐2)

−1
  (4.8) 

A well-known distribution that belongs in this family is the 𝑡-distribution with 𝑐2
−1 − 1 

degrees of freedom. 

The values and restrictions on 𝑎, 𝑐0, 𝑐1 and 𝑐2 make possible the distinction among 

the 8 different types of the Pearson System (including the normal one). It can be shown 

that the parameters of (4.3) can be associated with the moments of the distribution and 

analytical results can be obtained. In particular, the solution to the parameters of 

interest satisfies the following system (Johnson et al., 1994): 

 

𝑐0 = (4𝛽2 − 3𝛽1)(10𝛽2 − 12𝛽1 − 18)
−1 

𝑐1 = 𝛼 = √𝛽1(𝛽2 + 3)(10𝛽2 − 12𝛽1 − 18)
−1 

𝑐2 = (2𝛽2 − 3𝛽1 − 6)(10𝛽2 − 12𝛽1 − 18)
−1 

𝛽1 = (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠)
2     and      𝛽2 = 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠  

(4.9) 

Depending on the combination of values that these parameters take and on the value 

that 𝜅 =
1

4
𝑐1
2(𝑐0𝑐2)

−1 takes, the distribution is characterized as belonging to one the 
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types of the Pearson system99. Afterwards, random values can be drawn from the 

respective distribution, taking into account the mean, standard deviation, skewness and 

kurtosis of the sample. 

As already mentioned, in practice this is very straightforward to apply. Compilers 

such as Matlab (or R) can perform this task with only one command line. In particular, 

the Matlab function (which is used here) is:  

PEARSRND(MU,SIGMA,SKEW,KURT,M,N) 

which returns an M by N matrix of values drawn from the Pearson system of 

distributions with mean “MU”, standard deviation “STD”, skewness “SKEW” and kurtosis 

“KURT”. Hence, the only step required by the user is to compute the respective sample 

statistics and feed them into the Matlab function.  

 

 

4.5 The moments-bootstrap DEA 

 

The moments-bootstrap, as we call it, follows the same steps as the bootstrap DEA of 

Simar and Wilson (1998), with the only exception being that the Pearson system random 

number generator is used instead of smoothing. In particular, we replace steps 2 and 3 

in subsection 2.6.2 (see (2.20)) with the following two steps: 

                                                      
99

 The sufficient criteria for the characterization are: Type 0: 𝑐1 = 0, 𝛽2 = 3; Type I: 𝑘 < 0; Type II: 
𝛽1 = 0, 𝛽2 < 3; Type III: 2𝛽2 − 3𝛽1 − 6 = 0; Type IV: 0 < 𝜅 < 1; Type V: 𝜅 = 1; Type VI: 𝜅 > 1; Type VII: 
𝛽1 = 0, 𝛽2 > 3. 
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 Use the moments of the empirical distribution of 𝜃𝑖 , 𝑖 = 1,2…𝑛 to generate a 

pseudo-population of efficiency scores 𝜃𝑗
𝑀, 𝑗 = 1,2…𝑁, so that 𝜃𝑗

𝑀 ∈ (0,1]. 

 Randomly draw 𝑛 values of pseudo-efficiency scores from 𝜃𝑗
𝑀: 

 𝜃𝑖
∗, 𝑖 = 1,2…𝑛 (4.10) 

Hence, we choose a value for 𝑁 which has to be large enough to generate a smooth 

pseudo-population distribution. We use 𝑁 = 5000 in our simulations. 

One of the limitations of the proposed approach, is that the distribution of the 

generated pseudo-population has to be truncated so that the generated pseudo-

efficiency scores lie between 0 at 1, to avoid theoretical inconsistencies. This is expected 

to have a small impact on results as the Pearson system would generate distributions 

that recognize such limitations, especially as sample size increases. However, there is a 

chance for some generated values on the right tail to “misbehave”. In these cases we 

delete these values and we ask the generator to replace them with others that satisfy 

our restrictions. This limitation does not restrict the validity of the results100; however, 

future research could examine alternatives to truncation. 

 

 

 

 

                                                      
100

 To examine the extent to which the results might be affected by the truncation, we compared the 
moments of the truncated pseudo-population and the moments of the non-truncated one. We find that 
the median absolute differences (MAD) of these moments becomes very small and certainly too small to 
be considered as capable of changing the characterisation of the Pearson distribution type. Appendix VIII 
includes more information about this exercise and presents the relevant results. 
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4.6 Monte Carlo evidence 

 

We provide Monte Carlo evidence on the performance of the moments-bootstrap. The 

Monte Carlo exercise is exactly the same as the one performed in chapter 2 and the 

interested reader may refer to section 2.8 for a recollection of the data generating 

processes (DGPs) used. The evaluation of coverage probabilities is performed on the 

basis of the SW1998 and SW2000 intervals to evaluate the enhancement in coverage. 

We first compare the population, sample and bootstrap moments to assess the 

plausibility of this method. We then compare the bootstrap bias generated from the 

moments-bootstrap with that of the other approaches and we compute coverage 

probabilities and examine the behaviour of confidence intervals. 

 

4.6.1 Population, sample and bootstrap moments 

 

The performance of this approach is based on the assumption that the sample moments 

are close enough to the population ones. Hence, the moments-bootstrap will return 

distributions with moments similar to the sample ones, by construction, which are 

expected to be similar to the population moments, by implication.  

A clarification required here is that we do not refer to the moments of the fixed point 

but to the moments of the distribution of efficiency scores. The bootstrap draws values 

from the empirical distribution of efficiency scores and it is therefore reasonable to 

state that if the moments of this distribution are close to the population ones, then the 
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bootstrap results will be meaningful. Considering this point from a different perspective, 

smoothing procedures discussed in the previous chapters aim at capturing the 

asymptotic properties of the underlying population distribution. Therefore, our idea of 

comparing sample and population moments of the efficiency distributions and using the 

Pearson generator to produce “pseudo-population” values does not lack theoretical or 

intuitive basis. 

Table 4.1 presents the mean, standard deviation, skewness and kurtosis (which we 

loosely refer to as the first 4 moments) of the population, the sample and the bootstrap. 

We present findings for the 2-inputs/2-outputs case, to conserve space, while more 

detailed evidence can be found in Appendix IX. The labels are self-explanative and the 

results are provided for the population, the sample (DEA), the two smooth bootstraps 

(LSCV and SJ), the herein introduced moments-bootstrap (moments) and the naïve 

bootstrap. We need to note at this point that, regarding the bootstrap moments, we 

actually present the centre (median) of the distribution of the respective moments as an 

indication of representative behaviour of the Monte Carlo simulations. 

Comparing the population moments with the sample ones, we find that in all cases 

DEA performs well as it approaches the population statistics quite fast. An interesting 

finding is that in the case of technological heterogeneity (“Trun. Normal Low”), apart 

from a substantial overestimation of the population mean, the higher moments are 

substantially underestimated in smaller samples. This suggests that, apart from the 

issues reported in the previous chapters, in such cases hypothesis testing might not be a 

safe choice overall. 
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Comparing the moments of the smooth bootstraps with those of the moments-

bootstrap we find that the behaviour is quite similar, with the exception of the mean. 

The mean under the moments-bootstrap is always closer to the DEA and population 

means compared to the smooth bootstraps with the exception of the DGP associated 

with technological heterogeneity. Given the randomness in the Monte Carlo resampling, 

we cannot consider these differences as substantial and we therefore conclude the that 

moments-bootstrap produces bootstrap samples which have at least similar properties 

and behaviour with that of the smooth bootstraps. However, the moments-bootstrap 

samples are located closer to the true ones and this difference is more evident in 

smaller samples. This might suggest that the proposed approach is more appropriate to 

be used in small samples as it will have similar shape to the ones related to the smooth 

bootstraps but will be displaced towards the population centre.  
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Table 4.1. Population, sample and bootstrap moments 

 
 

 

4.6.2 Bootstrap and DEA biases 

 

We now turn to the comparison of the bootstrap and DEA biases which is important for 

the finite performance of Simar and Wilson’s approaches. We remind that the SW1998 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.859 0.097 -0.675 2.893 0.617 0.121 0.412 3.003 0.493 0.241 0.284 2.074 0.688 0.158 0.286 1.885

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.891 0.097 -0.494 2.117 0.786 0.139 0.146 2.125 0.555 0.278 0.347 1.921 0.756 0.163 0.250 1.829

n = 15 0.882 0.098 -0.472 2.185 0.759 0.138 0.240 2.266 0.538 0.270 0.355 1.975 0.741 0.164 0.256 1.855

n = 20 0.880 0.098 -0.501 2.235 0.741 0.139 0.268 2.330 0.534 0.267 0.303 1.947 0.729 0.164 0.307 1.862

n = 25 0.876 0.099 -0.536 2.344 0.730 0.138 0.270 2.407 0.526 0.263 0.338 2.000 0.724 0.163 0.304 1.898

n = 30 0.873 0.099 -0.519 2.370 0.720 0.138 0.317 2.505 0.524 0.258 0.321 2.026 0.717 0.164 0.314 1.887

n = 60 0.869 0.098 -0.597 2.579 0.688 0.134 0.356 2.676 0.515 0.255 0.309 2.033 0.707 0.162 0.293 1.888

n = 120 0.865 0.098 -0.650 2.753 0.667 0.131 0.381 2.802 0.504 0.248 0.305 2.066 0.700 0.161 0.291 1.889

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.959 0.108 -0.476 2.470 0.876 0.161 0.318 2.601 0.676 0.348 0.493 2.181 0.845 0.189 0.410 2.062

n = 15 0.943 0.107 -0.450 2.383 0.834 0.157 0.367 2.643 0.630 0.322 0.443 2.181 0.814 0.185 0.351 1.990

n = 20 0.933 0.105 -0.473 2.395 0.808 0.156 0.388 2.667 0.613 0.310 0.370 2.085 0.789 0.180 0.376 1.966

n = 25 0.927 0.106 -0.521 2.479 0.791 0.154 0.368 2.704 0.596 0.301 0.392 2.118 0.774 0.177 0.359 1.996

n = 30 0.921 0.105 -0.509 2.488 0.778 0.152 0.405 2.791 0.584 0.293 0.368 2.131 0.761 0.176 0.365 1.966

n = 60 0.905 0.103 -0.590 2.645 0.735 0.144 0.409 2.877 0.555 0.276 0.332 2.082 0.736 0.169 0.320 1.928

n = 120 0.893 0.101 -0.645 2.786 0.703 0.139 0.410 2.918 0.531 0.263 0.316 2.090 0.717 0.165 0.303 1.909

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.944 0.107 -0.468 2.476 0.870 0.161 0.323 2.602 0.674 0.348 0.495 2.190 0.847 0.190 0.417 2.068

n = 15 0.931 0.106 -0.449 2.381 0.832 0.157 0.369 2.648 0.637 0.325 0.444 2.184 0.819 0.185 0.352 1.991

n = 20 0.924 0.105 -0.469 2.399 0.808 0.156 0.389 2.672 0.619 0.312 0.372 2.088 0.797 0.182 0.377 1.970

n = 25 0.917 0.105 -0.519 2.478 0.792 0.154 0.371 2.699 0.601 0.303 0.393 2.116 0.782 0.179 0.362 1.996

n = 30 0.913 0.105 -0.507 2.488 0.778 0.152 0.406 2.796 0.591 0.294 0.368 2.131 0.772 0.178 0.365 1.969

n = 60 0.898 0.103 -0.590 2.645 0.735 0.144 0.408 2.877 0.560 0.279 0.332 2.082 0.745 0.171 0.321 1.929

n = 120 0.887 0.101 -0.645 2.786 0.705 0.139 0.410 2.918 0.535 0.264 0.316 2.090 0.725 0.167 0.303 1.909

Moments Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.919 0.105 -0.455 2.504 0.843 0.159 0.335 2.633 0.629 0.325 0.513 2.174 0.815 0.183 0.430 2.107

n = 15 0.906 0.103 -0.443 2.397 0.813 0.154 0.382 2.663 0.597 0.305 0.469 2.142 0.787 0.179 0.362 2.007

n = 20 0.900 0.103 -0.465 2.409 0.793 0.154 0.397 2.694 0.583 0.294 0.390 2.068 0.769 0.176 0.382 1.988

n = 25 0.895 0.103 -0.517 2.485 0.780 0.152 0.381 2.714 0.570 0.287 0.404 2.108 0.758 0.174 0.366 2.006

n = 30 0.891 0.102 -0.505 2.487 0.768 0.150 0.417 2.814 0.563 0.281 0.383 2.117 0.750 0.173 0.367 1.981

n = 60 0.880 0.101 -0.587 2.642 0.731 0.144 0.413 2.898 0.541 0.269 0.337 2.082 0.730 0.168 0.322 1.932

n = 120 0.873 0.099 -0.642 2.785 0.703 0.139 0.416 2.931 0.523 0.258 0.318 2.093 0.715 0.164 0.304 1.912

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.904 0.102 -0.483 2.491 0.809 0.152 0.324 2.587 0.577 0.299 0.487 2.176 0.778 0.175 0.411 2.062

n = 15 0.893 0.101 -0.461 2.385 0.783 0.149 0.374 2.642 0.560 0.284 0.443 2.168 0.760 0.171 0.345 1.990

n = 20 0.889 0.101 -0.481 2.411 0.762 0.148 0.390 2.687 0.551 0.278 0.365 2.078 0.743 0.170 0.375 1.961

n = 25 0.884 0.101 -0.526 2.485 0.751 0.146 0.377 2.707 0.542 0.274 0.386 2.107 0.736 0.168 0.360 1.992

n = 30 0.880 0.101 -0.511 2.488 0.740 0.144 0.409 2.790 0.537 0.267 0.365 2.125 0.730 0.168 0.365 1.965

n = 60 0.873 0.099 -0.590 2.650 0.705 0.138 0.406 2.880 0.523 0.260 0.330 2.081 0.715 0.164 0.317 1.927

n = 120 0.868 0.099 -0.647 2.788 0.680 0.135 0.413 2.918 0.510 0.252 0.316 2.089 0.705 0.162 0.302 1.907

Standard 2/2 Trun. Normal Low 2/2 Trun. Normal High 2/2 Uniform 2/2
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and SW2000 intervals are based on the assumption that the DEA (or model) and 

bootstrap biases are equal. Here, we provide Monte Carlo evidence about the behaviour 

of the moments-bootstrap compared to the smooth and naïve bootstraps. 

Figure 4.2 below presents the bootstrap and DEA biases associated with the “fixed 

DMU”. The fixed DMU is defined exactly as in chapter 2 while the figure below is exactly 

the same as Figure 2.11 with the addition of the bias of the moments-bootstrap (blue 

double line). In all cases, except under “Trun. Normal Low” which is associated with 

technological heterogeneity, the bootstrap bias associated with the moments-bootstrap 

is very close to the DEA bias (black dotted line). This suggests that the moments-

bootstrap satisfies the assumption of Simar and Wilson (1998, 2000a) of equal bootstrap 

and DEA biases to a greater extent compared to the two smooth bootstraps (and of 

course the naïve). We would therefore expect that the coverage probabilities for the 

respective confidence intervals of Simar and Wilson will be higher if the moments-

bootstrap is employed instead of the smooth bootstraps.  This also suggests that we can 

make use of the hypothesis testing approaches discussed in the previous chapter more 

safely. 
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Figure 4.2. Bootstrap and DEA biases – All cases 

 
 

To confirm that the moments bootstrap generates bootstrap and DEA biases which 

converge asymptotically we also examined the behaviour of biases in large samples but 

only for the 1-input/1-output case (due to computational limitations). The results are 

presented in Figure 4.3 where it is obvious that the good behaviour of the moments 

bootstrap is preserved asymptotically, providing further evidence that Simar and 

Wilson’s fundamental assumption of equal biases works under the moments bootstrap. 
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As already mentioned in chapter 2 the case of technological heterogeneity 

(“Trun.Normal Low”) requires special attention as the convergence is considerably 

slower. 

Figure 4.3. Bootstrap and DEA biases in large samples – all cases 

 
 

 

4.6.3 Coverage probabilities - Small samples 

 

We now present results on coverage which is a performance indicator of the proposed 

method. Table 4.2 replicates the information of Table 2.7 on the LSCV and SJ smooth 

bootstraps for comparison and reports the coverage probabilities for the moments-

bootstrap on the last section (we present the 2-input/2-output case here but results for 

all dimensions can be found in Appendix X).  
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Table 4.2. Coverage probabilities of 95% intervals – moments-bootstrap 

 
 

The results indicate that the moments-bootstrap is better behaved and associated 

with higher coverage probabilities. In particular for samples sizes greater than 25 the 

coverage probabilities under the moments bootstrap exceed the respective ones under 

the two smooth bootstraps considered. More importantly, for sample sizes equal or 

greater than 120 the coverage probabilities converge to their nominal levels in all cases 

and under the SW1998 intervals, except under the case of technological heterogeneity 

where convergence is slow. Comparing the two confidence intervals we find that the 

SW1998 intervals perform much better than the SW2000 ones as the latter do not 

LSCV SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.743 0.563 0.389 0.517 0.874 0.698 0.755 0.659

n = 15 0.574 0.401 0.385 0.500 0.828 0.621 0.776 0.601

n = 20 0.473 0.325 0.433 0.514 0.819 0.569 0.733 0.581

n = 25 0.421 0.302 0.441 0.511 0.811 0.513 0.745 0.574

n = 30 0.342 0.253 0.446 0.510 0.810 0.511 0.734 0.557

n = 60 0.226 0.151 0.497 0.528 0.690 0.407 0.739 0.494

n = 120 0.148 0.094 0.571 0.576 0.577 0.300 0.756 0.461

SJ SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.830 0.649 0.363 0.513 0.898 0.712 0.817 0.663

n = 15 0.764 0.498 0.387 0.487 0.920 0.592 0.862 0.605

n = 20 0.670 0.393 0.436 0.496 0.916 0.533 0.833 0.502

n = 25 0.566 0.315 0.434 0.513 0.889 0.486 0.825 0.450

n = 30 0.466 0.227 0.434 0.515 0.873 0.444 0.800 0.432

n = 60 0.165 0.079 0.512 0.525 0.722 0.300 0.593 0.249

n = 120 0.022 0.009 0.589 0.584 0.492 0.158 0.412 0.160

Moments SW1998 SW2000 SW1998 SW2000 SW1998 SW2000 SW1998 SW2000

n = 10 0.637 0.806 0.337 0.487 0.782 0.909 0.702 0.855

n = 15 0.727 0.823 0.358 0.492 0.813 0.916 0.753 0.864

n = 20 0.747 0.825 0.417 0.533 0.800 0.913 0.809 0.878

n = 25 0.779 0.824 0.438 0.534 0.818 0.895 0.840 0.884

n = 30 0.823 0.842 0.466 0.562 0.836 0.901 0.847 0.887

n = 60 0.866 0.814 0.574 0.640 0.885 0.886 0.906 0.860

n = 120 0.929 0.817 0.674 0.702 0.960 0.880 0.930 0.838

Uniform 2/2Standard 2/2 T.N. Low 2/2 T.N. High 2/2
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achieve convergence. Finally, it is worthwhile mentioning that the probabilities exhibit 

almost monotonic convergence which is desirable as it suggests that their performance 

stabilises as sample size increases. We therefore conclude that it is safe to use the 

SW1998 intervals in samples sizes of 120 or more, and to apply the hypothesis testing 

approaches discussed in the previous chapter. 

The correction that we achieved by using the moments-bootstrap indicates that 

there is scope for further research towards the direction of smoothing-alike processes. 

Enriching the support of the efficiency distribution seems critical for the finite sample 

performance of bootstrap DEA. Future research should focus on engineering accessible 

and computationally efficient processes that perform well on small samples. The more 

recent approaches of Kneip et al. (2011) and Simar and Wilson (2011) seem to enhance 

to some extent previous approaches; however, they are computationally intensive while 

they seem to work better in larger samples, as already mentioned.  

 

4.6.4 Confidence intervals 

 

To examine the behaviour of confidence intervals, we have plotted the average 95% 

SW1998 intervals in Figure 4.4 and the SW2000 ones in Figure 4.5. The plots in the 

figures below further support the good behaviour of the moments-bootstrap, especially 

for the SW1998 case. The Simar and Wilson’s intervals almost centre the true efficiency 

score (or “fixed point”) in all cases except for the “Trun. Normal Low” (as expected), 

which suggests that the good performance cannot be attributed to chance. The 
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observed behaviour is well justified by the theoretical explorations and the simulations 

of the previous two chapters while the good performance is due to the fact that the 

assumption of equal bootstrap and DEA biases is realised in smaller samples. It also 

becomes apparent that the SW2000 intervals perform slightly worse than the SW1998 

and they will always lie below the SW1998 ones, as already explained previously, 

suggesting that their inferior performance is probably due to the fact their upper bound 

tends to underestimate the true efficiency score. 

 

Figure 4.4. Confidence intervals of Simar and Wilson (1998) – Moments-bootstrap 
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Figure 4.5. Confidence intervals of Simar and Wilson (2000a) – Moments-bootstrap 
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Having established the good performance of the SW1998 and SW2000 intervals 

under the moments bootstrap, the next step is to compare the confidence interval 

widths under the various approaches. We therefore computed the average widths of 

the 95% SW1998 confidence intervals (which are the best performing) under the 

moments bootstrap to the respective ones under the LSCV and SJ smooth bootstraps 

(see subsection 2.9.4). The results are presented in Table 4.3 and the labels are self-

explanative. We observe that the moments bootstrap yields narrower SW1998 intervals 

under the “Standard” DGP, with the exception of 𝑛 = 120 where the intervals are 

marginally wider, while in all other cases the moments bootstrap yields slightly wider 

intervals101. The differences in widths become smaller with sample size and could be 

considered unimportant for 𝑛 = 120 (or more) which is the suggested sample size to be 

used with the moments bootstrap. In fact, any differences are limited to the third 

decimal place, with the exception of technological heterogeneity where the differences 

are larger. We therefore conclude that the SW1998 (and SW2000) intervals under the 

proposed alternative approach to smoothing are much more accurate while having 

similar widths when compared to the ones under the smooth bootstraps. 

 

                                                      
101

 It is worthwhile mentioning that the “Standard” DGP which exhibits narrower intervals is associated 
with technological homogeneity and perfect competition. Hence in this case the intervals are both 
narrower and more accurate. 
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Table 4.3. SW1998 average 95% confidence interval widths 

 

 

 

4.7 Conclusions 

 

This chapter has suggested an alternative approach to smoothing, which performs the 

same task of enriching the empirical distribution of efficiency scores. Based on the 

observation/assumption that the samples are representative, in that the sample 

moments are similar to the population ones, we propose using the Pearson system 

random number generator to produce pseudo-populations of efficiency scores to draw 

from when bootstrapping. We have named this method the “moments-bootstrap”. 

LSCV 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O

n = 10 0.085 0.092 0.092 0.161 0.161 0.158 0.235 0.232 0.237 0.173 0.173 0.177

n = 15 0.058 0.067 0.068 0.125 0.128 0.125 0.150 0.147 0.150 0.116 0.121 0.124

n = 20 0.046 0.054 0.055 0.109 0.111 0.106 0.104 0.114 0.108 0.093 0.096 0.096

n = 25 0.037 0.045 0.045 0.094 0.100 0.096 0.081 0.088 0.089 0.070 0.078 0.080

n = 30 0.031 0.039 0.040 0.090 0.087 0.092 0.066 0.074 0.073 0.057 0.067 0.068

n = 60 0.017 0.022 0.022 0.067 0.064 0.067 0.034 0.039 0.039 0.029 0.036 0.038

n = 120 0.009 0.012 0.012 0.050 0.049 0.052 0.018 0.022 0.023 0.014 0.020 0.021

SJ 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O

n = 10 0.081 0.085 0.083 0.151 0.157 0.157 0.233 0.237 0.231 0.170 0.170 0.175

n = 15 0.056 0.063 0.064 0.123 0.124 0.124 0.145 0.147 0.151 0.123 0.127 0.123

n = 20 0.044 0.050 0.050 0.108 0.108 0.105 0.106 0.113 0.110 0.094 0.096 0.100

n = 25 0.035 0.043 0.043 0.096 0.096 0.096 0.081 0.089 0.089 0.075 0.081 0.083

n = 30 0.029 0.037 0.038 0.086 0.088 0.088 0.067 0.075 0.075 0.060 0.069 0.071

n = 60 0.015 0.021 0.021 0.066 0.063 0.067 0.034 0.039 0.040 0.031 0.038 0.040

n = 120 0.008 0.012 0.011 0.048 0.047 0.049 0.018 0.022 0.023 0.015 0.021 0.022

Moments 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O 1I-1O 2I-1O 2I-2O

n = 10 0.067 0.079 0.079 0.167 0.174 0.167 0.264 0.277 0.268 0.192 0.197 0.209

n = 15 0.044 0.055 0.057 0.137 0.142 0.139 0.158 0.160 0.164 0.126 0.137 0.135

n = 20 0.035 0.044 0.045 0.123 0.123 0.125 0.116 0.128 0.120 0.098 0.104 0.110

n = 25 0.030 0.038 0.037 0.113 0.117 0.109 0.093 0.101 0.102 0.079 0.086 0.093

n = 30 0.026 0.032 0.034 0.109 0.104 0.107 0.080 0.087 0.085 0.064 0.077 0.080

n = 60 0.015 0.021 0.019 0.089 0.086 0.088 0.044 0.051 0.050 0.036 0.043 0.046

n = 120 0.009 0.013 0.012 0.071 0.068 0.071 0.026 0.032 0.031 0.019 0.025 0.026

Standard Trun. Normal Low Trun. Normal High Uniform
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Comparing the population and sample moments we find that there is scope for such 

an approach as the latter are quite close to the former even in very small samples. 

Results from the Monte Carlo simulations have indicated that the moments-bootstrap 

can satisfy the assumption of equal bootstrap and DEA biases (Simar and Wilson, 1998) 

to a noticeably greater extent compared to the other two smooth bootstraps. 

Consequently, the coverage probabilities for Simar and Wilson’s intervals under the 

moments-bootstrap are substantially improved; especially, for the SW1998 ones which 

exhibit coverage probabilities close to their nominal values for sample sizes equal or 

greater than 120. The only exception is the DGP associated with monopoly and 

technological heterogeneity where, despite the fact that coverage is improved 

compared to the smooth bootstraps, the associated coverage probabilities are still far 

from their nominal values.  

The improvement in coverage probabilities comes at no additional cost as the 

confidence interval widths are comparable to those produced under the two smooth 

bootstraps. Moreover, as sample size increases, the differences in widths become very 

small. In particular, we find that under the DGP which is associated with perfect 

competition (and technological homogeneity) the SW1998 intervals generated under 

the moments bootstrap are narrower compared to the ones generated under the LSCV 

or SJ smooth bootstraps. For the other DGPs we find that the moments bootstrap 

generates slightly wider intervals, but the difference is too small to be considered as a 

limitation of this approach over the smooth bootstrap; in fact for sample sizes as large 
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as 120 or more, the differences range from 0.004 to 0.008 (with the exception of the 

technologically heterogeneous case where differences are larger).  

We therefore conclude that using the moments bootstrap makes the assumption of 

equal biases plausible in small samples and to its extent the theoretical works of Simar 

and Wilson implementable in practice. Using the SW1998 intervals under the proposed 

alternative to smoothing, allows performing hypothesis testing in samples of 120 DMUs 

or more following the suggestions in the previous chapter. We believe that this finding 

carries implications for the previously mentioned extensions of bootstrap DEA 

(bootstrap Malmquist DEA, tests of returns to scale and two-stage regressions) the 

validity of which was questioned due to observed bias asymmetries under the smooth 

bootstraps. Future research could focus on implementing the moments bootstrap into 

these approaches and on comparing their performance through Monte Carlo 

simulations.  

The limitation of this approach is that the generated pseudo-populations are 

truncated; however, we have shown that this is not adequate to affect the validity of 

our results as the resulting truncated pseudo-population would only exhibit small 

differences compared to a non-truncated one, especially in larger samples. Future 

research could focus on alternative approaches for this issue, but also taking care not to 

increase the confidence interval widths as we suspect that the refection method (used 

in the smooth bootstrap) does. Another suggestion for future research would be the 

consideration of alternative approaches which would increase coverage probabilities in 

even smaller samples while preserving or even reducing the width of the associated 
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confidence intervals. The author currently experiments with a “smooth-moments-

bootstrap” which involves smoothing the pseudo-population generated from the 

moments-bootstrap, while in the future research agenda Bayesian methods such as the 

HPDI (highest probability density interval) could be also considered.  
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5 Suggested guidelines on applying bootstrap DEA 

 

The previous chapters have discussed various aspects of bootstrap DEA, both in terms of 

technique as well as in terms of application. Some weaknesses were identified and some 

suggestions to move forward were proposed. In this short chapter we summarise these 

recommendations in “manual-style” guidelines for the application of bootstrap DEA. The 

exhibition of technical material and use of terminology is minimised in order to provide 

straightforward guidance to the interested practitioner. 

 

5.1 Assumptions 

 

There are three assumptions in bootstrap DEA: (i) the bootstrap bias is equal to the DEA 

bias, (ii) the sample is representative (in that the observed distribution of DEA scores 

reflects the distribution of the underlying population), and (iii) efficiency scores reflect 

practically feasible input reductions or output expansions. The last one is due to the fact 

that the bootstrap resamples efficiency scores randomly, suggesting that any firm could 

be assigned with any efficiency score in the sample.  

 

 

5.2 Applying bootstrap DEA 

 

The simulations have shown that the samples should ideally consist of about 120 firms 

or more. We believe that smaller samples might exhibit good performance but we 
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would definitely not recommend using less than 60 firms in any case. To apply the 

bootstrap on DEA we propose the following steps: 

i. Identify the underlying population 

ii. Enrich he empirical distribution 

iii. Apply the bootstrap 

 

5.2.1 Step 1: Identify the underlying population 

 

It is important to identify the underlying population as it may affect how we proceed. To 

perform this task it is suggested inspecting the histogram of the empirical DEA scores 

and the associated skewness and kurtosis. We discuss 4 cases. 

 

Case 1: Technological Homogeneity 

This case corresponds to setups where the firms exhibit technological similarities among 

them and it could be associated with (almost) perfectly competitive markets. The 

underlying population has a half-normal distribution and it 

can be identified in the sample by a negative skewness of 

about -0.65 and kurtosis of about 2.8. Under this case the 

efficiency scores are less sensitive to sampling variations and they tend to be close to 

their population value, especially as sample size increases. For large enough samples 

sizes (certainly larger than 120 firms and considerably more if many inputs and outputs 
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are used) the application of simple DEA would be adequate as bootstrap DEA would not 

add much in practice.  

 

Case 2: Technological Heterogeneity 

In this case some firms have access to superior technology that other firms do not. This 

is a form of barrier and could be associated with a monopolistic market (or some form 

of oligopoly). The underlying population has a bell-shaped 

distribution with a thin tail towards 1 and it can be 

recognised from sample skewness of about 0.4 and kurtosis 

approaching 3. Bootstrap DEA cannot be applied in this case because apart from 

violating assumption (iii) above, it would be valid only asymptotically which is practically 

infeasible. In fact, due to the high and persistent DEA bias we express our concerns on 

even applying DEA. We recommend reconsidering the inputs and outputs used as well 

as the firms included in the dataset in case any outliers can be detected. 

 

Case 3: Technological “Variability” 

This case represents a “changing” market and it is a mixture of the previous two cases. 

Intuitively, the firms gradually gain access to superior technology and we therefore 

consider this case as a form of monopolistic competition in 

the medium-run. This case can be identified by skewness 

close to 0.3 and kurtosis that slightly exceeds 2. The 
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population efficiency scores tend to be sensitive to sampling variations and the use of 

bootstrap can be very useful even in larger samples. 

 

Case 4: Technological Randomness 

This case exhibits an almost random selection of efficiency scores which implies that it 

cannot be associated with a specific market structure. We would not expect this case to 

appear frequently in practice, and if it did it would be a good 

idea to reconsider the data chosen and input-output 

specification. It can be identified by a flat, almost uniform 

distribution of efficiency scores which have skewness slightly below 0.3 and kurtosis 

below 2. The efficiency scores are sensitive to sampling variations and there is scope to 

apply bootstrap DEA. 

 

5.2.2 Step 2: Enrich the empirical distribution 

 

It has been established in the literature that the discrete nature of the DEA scores may 

lead to inconsistencies if the “naïve” bootstrap is applies. In particular, the resulting 

bootstrap distributions will consist of repeated values and will possibly have peculiar 

properties. It is therefore necessary to enrich the empirical distribution to deal with this 

issue. The most popular way is to employ kernel density estimation techniques which, 

however, introduce additional noise and require very big samples to perform well. 
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Recent developments which are based on these techniques are sited to perform better 

but they still require samples much bigger than 100 and ideally close to 1000 firms. 

An alternative approach would be to employ the “moments-bootstrap” which uses 

the sample moments to enrich the support of the empirical distribution by producing 

pseudo-populations with similar properties. Simulations have shown that this approach 

performs very well for samples with about 120 firms (or more). The assumption of bias 

equality, which is the fundamental assumption for Simar and Wilson’s (1998) bootstrap 

DEA and for its popular extensions, is well-satisfied under the moments bootstrap. 

 

5.2.3 Step 3: Apply the bootstrap 

 

Having established that it is suitable to apply the bootstrap to the sample in hand we 

are ready to generate bootstrap DEA scores. The procedure followed is the same as in 

Simar and Wilson (1998) but we recommend using the moments-bootstrap instead of 

the smooth bootstrap. The resulting distribution of bootstrapped efficiency scores for 

each firm can be used to construct confidence intervals and test hypotheses as well as 

to provide more accurate estimates of the population efficiency scores.  
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5.3 Testing hypotheses 

 

The interested reader should consult chapter 3 which is devoted on testing hypotheses 

with bootstrap DEA for more details. Here we only describe briefly the steps that could 

be followed. 

 

5.3.1 Step 1: Define the null 

 

It is important to clearly state what is being tested as this will determine the way to 

proceed. The tests can be either one-sided or two sided and can take the form of same-

sample or cross-sample comparisons.  In the first case one could test, among others, if a 

firm achieves a certain efficiency score or if two firms have similar efficiency. The second 

test can be particularly useful in cases of pooled panel data where the interest is on 

testing for efficiency change for a firm over time and where the implementation of the 

bootstrap Malmquist might not be feasible due to sample size issues.  

Cross sample comparisons are also possible where one could test, for example, the 

equality of the means between two samples (see also Simar and Wilson, (2008)). We 

recommend care to be taken in this case as the two samples might be associated with 

different underlying populations, which could affect the validity of the results. 

Comparing the skewness and kurtosis of the two samples could be useful. 

Extensions of bootstrap DEA can be also used to test hypotheses. For example one 

could test for productivity change using the bootstrap Malmquist index or test for 
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returns to scale using the approach in Simar and Wilson (2002). The two-stage 

approaches in Simar and Wilson (2007) can be used to test the significance of the 

impact of environmental factors on efficiency. 

 

5.3.2 Step 2: Define the test statistic 

 

The test statistic determines how the hypothesis test is carried out. In the simple case of 

testing if a firm has a specific efficiency score or if it has the same efficiency compared 

to another firm, the test statistic is actually a constant. The latter case can be 

transformed into a test involving the ratio of efficiency scores in which case the test 

statistic is this ratio and which will be computed in all bootstrap replications. Another 

example of a test that requires the careful definition of an appropriate test statistic is 

that of Simar and Wilson (2002) on testing for returns to scale. In that case, the 

computed statistic is the average scale efficiency of the sample and it computed in every 

bootstrap loop. If one wants to construct their own test it is recommended to consider 

carefully how they define the test statistic. 

 

5.3.3 Step 3: Confidence intervals and p-values 

 

The two most popular methods of constructing confidence intervals is the percentile 

method used in Simar and Wilson (1998) and the basic bootstrap confidence intervals 

used in Simar and Wilson (2000a). The theoretical explorations and simulations here 
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have shown that the percentile method provides more accurate intervals and requires 

fewer observations. Moreover, the SW2000 intervals have been argued to perform well 

in cases which are not associated with good DEA practice such as in the case of 

technological heterogeneity. We therefore recommend using the percentile method. 

In the presence of high skewness it might be worthwhile considering extensions of 

the percentile method such as the bias-corrected intervals of Efron (1982), proposed by 

Simar and Wilson (1998). Another popular extension which is argued to cope better with 

skewness is the bias-corrected and accelerated intervals of Efron (1987); however, it is 

still under development and experimentation by the author. The downside of these 

methods is that they are associated with wider intervals. 

Finally, the bootstrap distribution of efficiency scores can be used to compute p-

values for any test. One simply needs to compute the number of times that the 

bootstrap test satisfies the null hypothesis and divide it with the number of bootstrap 

loops.  

 

5.3.4 Step 4: Accept or reject the null 

 

The null hypothesis can be rejected if either the hypothesised value in the null (the 

critical value) lies outside the confidence intervals or if the computed p-values are less 

than the level of significance. In the special case of comparing two firms with each 

other, it might be worthwhile performing the test twice (using the two different 
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bootstrap distributions for each firm) to check if they reach a common decision. If not, 

we recommend following the instructions in section 3.3.  
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6 An illustrative example: the Greek banking case 

 

The previous chapters have investigated the plausibility of certain assumptions of 

bootstrap DEA in small samples and have shown through simulations that alternative 

methods to smoothing may perform better towards this direction. The proposed 

“moments bootstrap” seems to be a promising avenue for bootstrap DEA as under this 

approach the assumption of equal bootstrap and DEA biases is plausible in small 

samples while the associated coverage probabilities seem to converge reasonably fast 

(we proposed a minimum of 120 observations). In this chapter we provide an empirical 

illustration of the methods examined using as an example the Greek banking sector 

reforms of the late 80s. This is a subject of topical interest due to the ongoing Greek 

debt crisis and the expected closer supervision of Greek banks under the umbrella of the 

recently established Single Supervision Mechanism (SSM).  

 

 

6.1 Introduction 

 

Since the early stages of the EMU, European banking integration has received criticism. 

For example, Dermine (2002, 2006) points to the inadequacy of home country 

supervision and that a pan-European framework would need to finance the costs of a 

potential bailout, concluding that a common regulatory framework should be created. It 

is arguable that such arguments have proven to be correct, especially after the 
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subprime crisis in 2007 and the ensuing banking crisis culminating in the EU sovereign 

debt crisis, which has affected severely the Greek economy. Most Greek banks became 

technically insolvent by 2012 and the source of liquidity of many Greek banks has been 

the ELA funds from the Bank of Greece. The 53.5% “haircut” of Greek debt in 2012, 

which was mostly held by Greek banks, has further worsened the parlous state of the 

balance sheets, while the writing off of bonds, combined with the significant increase in 

non-performing loans has eaten the sector’s equity. Greek banks had to undergo a 

substantial recapitalization process to meet the requirements of the supervisory 

framework, which has recently become stricter.  

To avoid the contagion of the banking crisis to other countries in distress, the 

creation of a European Support Mechanism (ESM) was proposed from which EU banks 

could borrow. However, this required the establishment of a Single Supervisory 

Mechanism (SSM) which would ideally supervise all EU banking institutions and grand 

access to ESM funds, and which, in fact, resumed duties on the 4th of November 2014. 

Although prudential regulation is deemed to favour depositors and the economy in the 

long run, it is not clear whether this would be the case for Greece whose financial sector 

is already in a transitional process. It is therefore important to investigate how the 

potential imposition of further controls may affect the performance of Greek banks, 

using as a reference the Greek banking (de)regulation process of the late 80s and early 

90s.  

This is achieved by monitoring the effects of each step of the (de)regulation process 

on bank efficiency and productivity and by analysing their behaviour after the 
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imposition of prudential controls. The step-by-step analysis of the deregulation process 

as well as the long-run post-event analysis comprises an empirical contribution in the 

literature of banking regulation. The explorations are utilized by the implementation of 

the moments bootstrap DEA (introduced in Chapter 4) on a pooled sample of 

observations, which allows the computation of bootstrapped Global Malmquist indices 

and the application of the hypothesis testing procedures discussed in Chapter 3. 

Throughout the analysis we show how the suggested guidelines can be followed in this 

case and apart from the policy implications extracted, we results across the various 

approaches, both qualitatively and quantitatively. Our findings confirm theory in that 

after the provision of commercial freedoms the productivity of Greek banks increases, 

whereas after the imposition of further controls productivity tends to decrease. We 

arrive at the same qualitative finding with all approaches reviewed, although we 

observe that under the moments bootstrap the rejection rate of our null hypotheses is 

smaller and the p-values slightly different. 

The rest of the chapter is structured as follows: section 6.2 provides a contextual 

background of the Greek banking sector; section 6.3 reviews the relevant literature; 

section 6.4 describes the data and method used; section 6.5 presents and discusses the 

empirical results of the study, while section 6.6 concludes the study and provides 

directions for future research. 
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6.2 Contextual background 

 

The Greek banking sector until the end of the 80’s was heavily regulated and was 

characterized by high concentration rates relative to the other European countries. It 

operated under conditions of monopolistic competition (Hondroyiannis et al., 1999) 

with existing, though declining, economies of scale (Apergis and Rezitis, 2004; Karafolas 

and Mantakas, 1994). 

The Singe Market Act, of 1986, provided the imperative for the Greek banking sector 

to modernize and become more competitive by 1993. The necessary reforms were 

implemented over a 5 year period according to a plan outlined in the “Committee for 

the Restructuring and Modernization of the Banking System” introduced in 1987. 

Among others, the deregulation process involved102 (i) the liberalization of interest 

rates, (ii) the removal of minimum reserve requirements, (iii) the abolition of 

compulsory purchases of governmental promissory notes and bonds, (iv) the abolition 

of compulsory financing of public companies and SMEs by commercial banks, and (v) the 

removal of restrictions on capital mobility among EU state members. 

The last few commercial freedoms (de-specialization of special credit institutions) 

along with the complete liberalization of capital mobility and branching within EU were 

established by the Second Banking Directive of 1988 and were effective as of 1993. 

However, they were followed by the imposition of prudential controls in 1993 

                                                      
102

 A detailed analysis of the Greek deregulation process is provided by Gortsos (2002) and Voridis et al. 

(2003). 
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(definition of capital for regulatory purposes, minimum 8% of capital adequacy ratio, 

introduction of accounting standards), in order to harmonize the Greek banking sector 

with those of other European countries.  

Macroeconomic policy was geared towards the requirements of the Maastricht 

Treaty while competition in the banking sector was intensified as the liberalization 

attracted more banks into the industry. The macroeconomic outlook of Greece 

improved after 1995, followed by a bull run on the Athens Stock Exchange market. 

Moreover, end of 90s sees vivid M&A activity, especially during 1998 and 1999, while 

the universal banking model is gradually adopted.  

The accession of Greece in the Eurozone was a changing point for Greek banks which 

expanded into new markets (mainly the Balkans, Turkey and Eastern European 

countries) and offered a wider range of financial products and services. The access to 

substantially cheaper funds in the European interbank market reduced the cost of 

borrowing and boosted the credit expansion in Greece.  

However, since the outbreak of the Greek debt crisis in 2009, Greek banks have 

become technically insolvent, especially after the 53.5% debt haircut of March 2012. In 

fact, the total equity of all commercial banks (according to their annual financial 

statements) fell to a negative 461.1 million Euros during that year, forcing some banks 

to shut down and others to merge. Greek banks had to recapitalize in order to meet the 

appropriate regulatory standards and to gain access to the ESM funds, implying also that 
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they would need to enter the Single Supervisory Mechanism103 which furthers the 

pressure due to the stricter supervision. 

The basic features of the Greek banking sector during the period of study (1987-

1999) and extending until the end of 2011 (making 1999 the midpoint) are depicted in 

Figure 6.1, below, while fundamental ratios and economic indicators are summarized in 

Table 6.1. Inspecting Figure 6.1, we observe that deregulation increased banking 

competition which is evident in the steady reduction of concentration104 (auxiliary axis) 

from 1987 to 1999. Indeed, deregulation lifted the entry barriers and relaxed the 

conditions for the provision of financial intermediation services, therefore increasing the 

number of domestic commercial banks as well as the branches of foreign banks. 

Concentration increased again in 2000 due to the M&A wave in Greece while it returned 

to the 1998 levels after the accession to the EMU, with the latter motivating new 

entries. After 2010, concentration increased due to the Greek debt crisis as banks 

merged in order to meet the regulatory requirements and to survive through the crisis. 

Size is a key success factor for Greek banks as implied by the high concentration. Big 

banks can manage to operate under tight margins by exploiting their economies of 

                                                      
103

 The SSM was first announced in 2012 (Ecofin meeting, 15
th

 September 2012, Cyprus) with an initial 
plan to be implemented by the beginning of 2013. However, after a long debate among EU members on 
its rules and implementation, it was finally agreed in the Ecofin council of 13

th
 December 2012 (Brussels) 

that the legal framework of SSM should be ready within 2013 and to be implemented by March 2014. The 
ECB assumed the supervisory tasks in the framework of the SSM on the 4

th
 of November 2014 with 120 

“significant credit institutions” included in the regulators’ list. Under this arrangement 4 Greek banks will 
be directly supervised from the ECB along with their subsidiaries: Alpha Bank (including the recently 
acquired Emporiki Bank), Eurobank, National Bank of Greece and Piraeus Bank (including the recently 
acquired General Bank). More information can be found here: 
 https://www.ecb.europa.eu/ssm/html/index.en.html 
104

 Concentration is measured here by the contribution of the assets of the 5 largest banks. Chortareas et 
al. (2008) find that concentration in the Greek banking industry is well above the European average. 

https://www.ecb.europa.eu/ssm/html/index.en.html


221 
 

scale; a strategy that cannot be easily followed by small banks. Indeed, Greek banks 

seem to follow the structure-conduct-performance (SCP) paradigm (Rezitis, 2010), 

whereby banks use their size to gain market power and increase their profitability and 

efficiency. At the same time, the inflexibility of the labour market (Ayadi, 2008) is an 

impending factor in Greece in terms of adjusting variable costs, implying that overgrown 

banks (that is, banks which exhibit diseconomies of scale) are expected to be more cost-

inefficient. 

Regarding customer loans (less provisions) and deposits, it is interesting to note that 

most of the credit expansion in Greece took place after the accession in the EMU, as 

interest rates on loans, especially mortgages, where historically low. In addition, Greek 

banks increased their interbank borrowing activity105 in order to satisfy the increasing 

demand for loans, explaining the loan-to-deposits ratio which exceeds one in 2007. 

However, due to the recent Greek debt crisis the value of loans less provisions has 

substantially decreased, after a considerable proportion of loans being characterized as 

bad debt and due to the noticeable contraction of credit. Similarly, deposits have also 

experienced a sharp decline as depositors have become nervous about the safety of 

their deposits and have moved their deposits out of the country106.  

 

                                                      
105

 Data on interbank borrowing can be obtained online from Bank of Greece, under “Monetary and 
Banking Statistics” 
106

 This fact and the unstable political environment received the attention of the press as they contributed 
in a hasted deposit flight. See for example: 
http://www.theguardian.com/world/2012/may/16/greeks-withdraw-3bn-10-days  and 
http://www.reuters.com/article/2012/06/29/us-ecb-greece-deposits-idUSBRE85S0I720120629  

http://www.theguardian.com/world/2012/may/16/greeks-withdraw-3bn-10-days
http://www.reuters.com/article/2012/06/29/us-ecb-greece-deposits-idUSBRE85S0I720120629
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Figure 6.1. Greek banking sector fundamentals 

 
* Values in constant 1995 prices 

 

Banks operated in an enhancing economic environment until the breakout of the 

Greek debt crisis, as documented in the last two columns of Table 6.1. The structure of 

the Greek banking sector seems to change after 2000 as all ratios in the first four 

columns exhibit a steady increase, especially during the first years after 2000. In 

particular, the size of the banking sector relative to the size of the Greek economy 

grows, while the proportions of assets per employee and of loans to deposits increase 

steadily. This indicates that Greek banks have changed their conduct of business after 

the accession to the EU suggesting a different “technology” of transformation of their 

inputs into outputs. This may be relevant to the observation of Molyneux (2009) that 

reaction of European banks to M&As before and after post-2000 is different and this 

may be associated with the different way in which banks seem to operate. On the other 
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hand, prior to 2000, the aforementioned ratios only mildly fluctuate, despite the sector 

reforms; the only exception is the ratio of equity to liabilities which exhibits an increase 

in the period 1997-1999 due to the bullish exchange market in Greece. This provides 

further support to our decision to cut-off the sample prior the accession of Greece to 

the EU. 

Regarding the profitability of Greek banks, indicated by the financial ratios of returns 

to assets (ROA) and net interest margin (NIM) we do not observe a particular pattern. 

The ROE becomes negative but increases again until 1999, while the highest value of the 

ratio is observed afterwards. This may suggest that the sector reforms had an initial 

negative impact on the profitability of Greek banks but it was later improved. Regarding 

NIM, we can observe that its lowest values are observed during periods of high 

competition or distress, which is not surprising (Matthews and Thompson, 2014). 
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Table 6.1. Greek banking sector fundamentals 

 

 

 

6.3 Literature Review 

 

Bank regulation can be either systemic (financial system stability), prudential (consumer 

protection) or on the conduct of business (Casu et al., 2006). Proponents of systemic 

regulation support that bank runs can be prevented with the introduction of deposit 

insurance schemes, the provision of liquidity assistance to financial institutions in 

Assets/ 

GDP

Assets/ 

Employee

Loans/ 

Deposits

Eq./ 

Liabilities
ROA (%) NIM (%)

Inflation 

(%)

Real GDP 

Growth (%)

1987 0.76 1.41 0.52 2.28 0.46 2.20 16.40 -2.30

1988 0.68 1.33 0.46 3.16 0.37 2.44 13.50 4.30

1989 0.70 1.38 0.48 3.15 -0.51 2.26 13.70 3.80

1990 0.68 1.36 0.49 4.02 -0.08 2.81 20.40 0.00

1991 0.64 1.30 0.58 4.85 0.36 3.45 19.50 3.10

1992 0.67 1.38 0.44 5.22 0.71 3.45 15.90 0.70

1993 0.70 1.39 0.39 4.92 0.70 1.99 14.40 -1.60

1994 0.67 1.30 0.40 5.26 0.99 1.91 10.90 2.00

1995 0.68 1.28 0.43 5.00 0.94 2.34 8.90 2.10

1996 0.70 1.32 0.44 4.82 0.62 2.23 8.20 2.40

1997 0.75 1.46 0.44 5.36 0.76 2.50 5.50 3.60

1998 0.82 1.57 0.46 6.14 0.98 2.48 4.80 3.40

1999 0.91 1.93 0.50 10.81 2.68 2.57 2.60 3.40

2000 1.01 2.00 0.55 9.09 1.73 2.65 3.10 4.50

2001 1.05 2.18 0.58 8.33 1.32 2.78 3.40 4.20

2002 1.05 2.20 0.68 7.41 0.68 2.69 3.60 3.40

2003 1.01 2.22 0.76 7.22 0.87 2.93 3.60 6.00

2004 1.02 2.37 0.83 6.82 0.69 2.95 2.90 4.40

2005 1.17 2.80 0.90 6.33 1.02 3.08 3.60 2.30

2006 1.27 3.15 0.95 7.20 1.03 2.98 3.20 4.50

2007 1.50 3.64 1.01 7.09 1.08 2.73 2.90 4.30

2008 1.76 4.21 1.09 4.89 0.32 2.38 4.20 1.30

2009 1.87 4.38 1.06 6.82 0.02 2.04 1.20 -2.30

2010 1.86 4.36 1.16 6.55 -0.50 2.06 4.70 -4.20

2011 1.46 3.63 1.31 -0.16 -11.18 2.04 3.30 -6.90
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distress by central banks (such as emergency liquidity assistance funds or the lender-of-

last-resort function) or restrictions imposed on withdrawals (Baltensperger and 

Dermine, 1987; Diamond and Dybvig, 1983). Prudential controls concern the monitoring 

of the soundness of financial institutions, the imposition of minimum capital adequacy 

and reserve requirements as well as the disclosure of information. This monitoring is 

undertaken by regulatory agencies, hence benefiting consumers who do not have the 

resources or incentives to perform this task107. Finally, regulations on the conduct of 

business mainly involve authorizing (or not) banks to undertake certain activities 

(securities trading, investment banking, insurance) as well as maintaining an ethos in 

banking activities and services provided. 

On the other hand, regulation (mainly in its prudential form) induces moral hazard as 

banks have incentives to take up more risk (Diamond and Dybvig, 1986) while it is 

associated with high costs for both banks and the society (Goodhart, 1988). In fact 

Goodhart (1988) reports that regulation costs include, among others, capital and labour 

costs, social costs arising from the Pareto-inefficient allocation of resources, costs from 

potentially lower competition (especially for peripheral, non-intermediation services, 

also offered by bank conglomerates) as well as potential costs from hindering financial 

innovation108.  

                                                      
107

 This concept is known as the “representation hypothesis” and it was introduced by Dewatripont and 
Tirole (1994). 
108

 For an overview of theories of banking deregulation the interested reader may consult any standard 
textbook on banking, while a more detailed account of those theories is provided in Hall (1989) and 
Dewatripont and Tirole (1994).  
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Deregulation allows the redistribution of inputs allocated on (or restrained by) 

supervision and compliance to more productive purposes, by lifting certain restrictions 

and providing commercial freedoms to banks. In theory, it aims at a more efficient 

allocation of resources and is therefore expected to increase efficiency while the 

benefits to society include reduced intermediation costs, higher quality and wider range 

of products and services provided. Deregulation is also used to increase banking sector 

competitiveness (as happened in Europe during the early 90s in the view of the Single 

Market) which has a more aggressive character and it is therefore uncertain whether it 

will lead to efficiency improvements or not (Berger and Humphrey, 1997). On the other 

hand, deregulation is usually followed by reregulation (Matthews and Thompson, 2014) 

in order to limit the commercial power given to banks and avoid moral hazard 

(Dewatripont and Tirole, 1994), this explains the term “(de)regulation” used here. It is 

therefore possible that the benefits of deregulation will be eliminated by the imposition 

of prudential controls109.    

Theory suggests that more regulation tends to hinder total factor productivity (TFP) 

growth. Crafts (2006) reviews the relevant theories and concludes that if regulation 

reduces the net returns to investment and innovation (through tough regulation 

controls or high costs of supervision and compliance), then it is expected to have a 

negative impact on TFP growth. In banking, the effects of (de)regulation on efficiency 

and productivity depend on the purpose of the reforms (more efficient resource 

                                                      
109

 A nice review on bank regulation and consumer protection (on the lines of both prudential and 
conduct of business controls) is provided by Benston (2000). 
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allocation or higher competitiveness), while other factors should be taken into account, 

such as the economic conditions, monetary policy as well as the timing and process of 

implementing the reforms.  

It is almost certain that (de)regulation affects efficiency and productivity since it 

involves a reconsideration of the input/output mix used in the banking production 

process; however, its exact effects may differ across countries and context of reforms. 

Indeed, Berger and Humphrey (1997) review 130 studies over 22 countries and find that 

there is no consensus on the effects of (de)regulation on bank efficiency and 

productivity. They attribute the observed differences to the variety of models, 

methodologies and approaches followed as well as to the specific characteristics of the 

various cases examined.  

Recent international studies examine the effect of the “state of regulation” (power of 

regulator, type of regulation, bank activity), bank-specific characteristics and 

macroeconomic environment on bank efficiency and productivity. Pasiouras (2008) uses 

a variant of the intermediation approach on a sample of 715 banks from 95 countries to 

examine the effects of the aforementioned factors on banks’ technical efficiency. He 

finds that, after using various model specifications, the third pillar of Basel II (“market 

discipline”, which relates mainly to financial information disclosure) always appears 

significant, while the significance of the other two pillars (“capitalization” and “internal 

capital adequacy assessment process”) is sensitive towards model specification. 

Pasiouras et al. (2009) extend the study of Pasiouras (2008) and perform a similar 

analysis for cost and profit efficiency using stochastic frontier analysis. The variables 
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they used, which relate to the regulatory environment, are sourced from the same 

database as in Pasiouras (2008)110, but their sample is different and includes 615 banks 

from 74 countries (selected on the basis of data availability). They find that cost and 

profit efficiency are positively affected by the second and third pillars of Basel II while 

capital requirements (first pillar) tend to increase cost efficiency and decrease profit 

efficiency. On the other hand, restricting bank activities tends to decrease cost 

efficiency but increase profit efficiency. 

Delis et al. (2011) explore the linkage between regulation and productivity from a 

dataset of 22 transition countries111. They find that only market discipline (related to the 

third pillar of Basel II) and restrictions of bank activities (other non-traditional 

operations) have a positive impact while the other two pillars gain significance after 

crises. They attribute the non-significant dependence of the other two Basel pillars to 

the characteristics of banking systems in transition countries, such as overcapitalization 

and law enforcement.  

The previous studies, although of great importance, do not provide country-specific 

results due to data limitations on the sophisticated list of regulatory variables 

constructed by Barth et al. (2001). Studies which focus on certain countries can provide 

                                                      
110

 Barth et al. (2001) have created a very interesting database on regulatory conditions for each country 
which is available on-line from the World Bank. It is constructed using responses from banking institutions 
around the world and by aggregating answers per country into a single measure. Since then, the database 
has been updated in non-regular time intervals and its completeness is subject to the banks’ 
responsiveness.  
111

 It is important to note that in their model specification they use one period’s lag for regulatory 
variables on the basis that it needs time for regulatory changes to affect productivity. We also adopt this 
view in this study as it seems to be a reasonable assumption for Greek banks according to Siriopoulos and 
Tziogkidis (2010). 
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a deeper insight about the effects of (de)regulation on bank efficiency at a national 

level. 

Extensive US studies find negative effects on productivity during and after the 

deregulation of the 80’s (Humphrey and Pulley, 1997; Humphrey, 1990; Wheelock and 

Wilson, 1999). However, after a 4 year period of continuous adjustment (input 

reduction and adjustment of output prices), US banks seem to recover and improve 

their profitability, driven by the enhancing business environment (Humphrey and Pulley, 

1997). 

Bank deregulation studies in Asia report mixed results. Kumbhakar and Sarkar (2003) 

examine the effects of deregulation on Indian banks during the pre- and post-

deregulation period (1985-1996). They find that productivity increased, however 

regulatory distortions persisted in the post-deregulation period, especially for public 

banks, in the form of distortions in input prices (mainly due to over-employment). 

Positive effects are also documented by Isik and Hassan (2003a) who examine the 

deregulation process in Turkey during the 80s. On the other hand Chen et al. (2005), 

who examine the technical and cost efficiency of Chinese banks in the pre and post-

deregulation period of 1995, document a decline on the average levels of technical and 

allocative efficiency, especially after the outset of the Asian financial crisis.  

European studies seem to document an increase in productivity after the 

(de)regulation period of late 80s to early 90s which was implemented by most European 

Community members in the view of the Single European Market. Altunbas et al. (2001) 

and Altunbas et al. (1999) use a large sample of banks from 15 EU countries and find 
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that during 1989 to 1997 banks exhibited technical progress which led to cost savings, 

benefiting mostly large banks. Casu et al. (2004) examine the productivity change in 

France, Germany, Italy, Spain and UK over the period 1994 to 2000. They use both 

parametric and non-parametric techniques and find that EU banks in the post 

deregulation period have increased their productivity on average (with the exception of 

the first and the last year). More recently, Chortareas et al. (2013), after examining the 

influence of financial freedoms that the commercial banks of 27 EU countries have 

enjoyed during 2001-2009, they document a positive effect on productivity. Moreover, 

Chortareas et al. (2012) in a similar study using data from 22 EU countries for the period 

2000-2008, confirm that governmental interventions on private banks’ policies and the 

monitoring of their practices has had a negative effect on efficiency. On the contrary, 

regulations concerning capital quality tend to have a positive effect on efficiency; 

however, these effects are mainly evidenced for large banks operating in countries with 

developed and low-concentrated financial systems. 

Country-specific studies for the EU can be found in the literature, although the recent 

focus is on cross country exercises. For example, Kumbhakar et al. (2001) examine the 

effects of deregulation on Spanish savings banks and document an increase in 

productivity but a decline in technical efficiency, whereas profit efficiency first declines 

and then increases. Also, Berg et al. (1992) find that Norwegian banks experienced 

technical regress prior to deregulation but technical progress afterwards. 

 The literature on Greek banking also reports mixed results, depending on the period 

examined and the approach followed, as documented in the review of Chortareas et al. 
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(2008). The majority of studies focus on the post-deregulation period, and specifically 

during 1993-1998. In particular, these studies find that productivity increases with the 

exception of the first year (Tsionas et al., 2003), that private banks are more technically 

efficient than public banks (Noulas, 2001) and that large banks are substantially more 

cost inefficient than small ones (Christopoulos et al., 2002). However, there seems to be 

room for substantial improvement in cost efficiency for all banks (Christopoulos and 

Tsionas, 2001; Kamberoglou et al., 2004). 

To the extent of our knowledge, the only Greek banking studies which cover the full 

period of deregulation (that is, from 1987 onwards) are by Apergis and Rezitis (2004) 

and Rezitis (2006), who use a dataset of 6 banks over the period 1982 to 1997. Although 

the sample used is the same, the two studies report different effects on productivity, 

potentially attributed to the different methods and variables (or approach) used or even 

due to the small number of observations.  

The literature on the effects of bank (de)regulation, although vast, seems to be 

focusing only on the overall or average effects of (de)regulation; the effects of each step 

of the deregulation process are neglected, which is a gap in the literature that we wish 

to address. In Greece, there is evidence that significant, destabilizing events have a 

negative impact on banks’ technical efficiency the year after the event, followed by a 

period of “recovery” which may last from 2 to 4 years (Siriopoulos and Tziogkidis, 
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2010)112. Lagged effects are also assumed by Delis et al. (2011) in his European study on 

regulation, or by Orea (2002) who examined the M&As of Spanish savings banks. Apart 

from the fact that it takes time to implement regulations from their date of 

announcement, in the presence of strong trade unions or labour laws (as in Greece) the 

potentials for cost reductions or better allocation of resources are not necessarily 

exploited in the short run and it might lead to decrease in efficiency (Ayadi, 2008). 

Deregulation seems to be associated with efficiency and productivity improvements 

whereas the imposition of prudential controls seems to have opposite results in the 

short run. The two gaps that we identified in the literature is that no study follows a 

step-by-step approach to analyse the effects of (de)regulation, while we found no Greek 

banking studies which cover the full period of deregulation and reregulation. We 

therefore aim to contribute towards this direction with our empirical exercise. 

 

 

6.4 Data and Method 

 

6.4.1 Choice of study period 

 

For the purposes of this illustrative example we use Greek commercial banks which 

operated during the period 1987 to 1999. Due to the fact that the number of Greek 

                                                      
112

 This concept could be related to neoclassical theories of the firm where capital needs one period in 
order to become productive (termed as “time to build”) or in the theories of management change where 
the effects of a “bad” event appear with a lag (Elrod and Tippett, 2002).   



233 
 

banks in most years is too small (10 to 13 while the maximum is 18) even to apply 

simple DEA, we pool observations. Hence, the operations of a bank in a certain year are 

considered as a separate DMU. This is explained in more detail in subsection 6.4.4.3. 

The study period covers the (de)regulation era of 1987 to 1994, while it includes 

another 5 years to explore the existence of longer term benefits from the sector 

reforms. In mid-1999 the Athens Stock Exchange experienced a crisis (due to a “bubble” 

burst) while at the same time Greece was working towards entering the European 

Union, with the Euro being adopted from the beginning of 2001. Hence, we consider 

that the effects of deregulation could not be identified beyond 1999.  

During the deregulation period (1987 to 1994), apart from the reforms, no other 

event has been observed with the exception of a scandal in 1987 (see subsection 6.4.3) 

and two privatisations113. From 1994 to 1999 we observe 5 M&A events114 (out of which 

4 occurring during 1998-1999) and one partial privatisation115 (in 1998). Considering 

that our database is “quite clean” of other major events (at least until 1997) we could 

argue that deregulation and the fiscal or monetary policies of that time were perhaps 

the most influential factors to affected bank efficiency and productivity of Greek banks.  

                                                      
113

 Piraeus bank is privatised in 1991 and Bank of Athens in 1993.   
114

 In 1995 Emporiki Bank acquires 51% Metrolife (40% through Emporiki Bank and about 11% through 
one of its subsidiaries); in 1998 EFG Eurobank acquires Cretabank (99.8% of shares) and Bank of Athens; in 
1998 Egnatia Bank acquire 51% of shares of Bank of Central Greece from its parental company, 
"Agricultural Bank" but with an agreed price that was at a 56% discount compared to its market value; in 
1998 National Bank merges through absorption with the National Mortgage Bank; in 1998 Piraeus Bank 
acquires a 37% controlling stake of Macedonia Thrace's shares from the National Bank of Greece and it 
also acquires the branches of Chase Manhatan and Credit Lyonnais Hellas. 
115

 In 1998 General Bank is securitized and partially privatized; though its full privatization and acquisition 
by Societe General occurred in 2004.  
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Therefore, we assume that, during the study period, changes to banks’ inputs and 

outputs are a response to the changing regulatory environment, which can be translated 

into changes of their productivity. In fact, the author has examined the annual reports 

of each bank for that period (including those of special credit institutions)116 and the 

focus is on the sector reforms and the macroeconomic environment in the view of the 

Single Market. Therefore attributing any substantial efficiency changes to the sector 

reforms seems reasonable.  

 

6.4.2 Data and variables117 

 

To construct the dataset we used a combination of the Bankscope database along with 

archived and published financial statements of banks (in order to verify Bankscope and 

include missing entries)118. The archived financial statements were obtained from the 

library of the Bank of Greece (banks’ annual reports, Banker’s Almanac, Athens Stock 

Exchange annual catalogue of listed firms), the libraries of banks which maintain 

historical archives (Agricultural Bank of Greece, Alpha Bank, National Bank of Greece), 

from the finance divisions of the respective financial institutions, or from the Hellenic 

                                                      
116

 The annual reports are available at the library of the Bank of Greece or in the historical archives of the 
National Bank of Greece and Alpha Bank. 
117

 The author would like to thank the employees at the library of the Bank of Greece for their support on 
locating entries in the library, on finding missing entries from alternative resources as well as on helping 
the author with various auxiliary, time-consuming tasks.  
118

 To verify the Bankscope database accuracy we compared it with the published accounts on the basis of 
total assets and earnings before tax on an annual basis; if a difference was detected we reviewed all 
Bankscope figures accordingly. The procedure of data collection and building up the database was very 
time consuming (it lasted more than 9 months) as it required several visits at various locations in Athens 
(also detained by the restricted opening hours of the libraries to the public) as well as typing accounting 
entries into the computer (they were only available in hardcopy form).   
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Printing Office119. After inputting the data into a “processable” file, we converted data 

from Drachmas to Euros, using the fixed rate of 1 DRC=340.75 EUR for ease of 

exposition, while all values were converted to 1995 constant prices using the GDP 

deflator.  

For the purposes of the illustrative example we collected data for both commercial 

and other financial institutions in order to exhibit the effects of technological 

heterogeneity on DEA and, to its extent, on bootstrap DEA. The analysis of empirical 

results, though, is based on commercial banks only, with the exception of a few outliers, 

the exclusion of which we justify and discuss in subsection 6.4.4.2.  

The final list of commercial banks used for the illustrative exercise is provided in 

Table 6.2. In each year, “YES” denotes that the bank was included in the sample, “N/A” 

indicates that there were no available data (also shaded in dark tan), while “NO” 

indicates that the bank was excluded from the sample (also shaded in light orange). We 

have also included in each year an artificial DMU which we have named “Average Bank”, 

in order to capture the average behaviour of the Greek banking sector. The inputs and 

outputs of the “Average Bank” are the average values of the inputs and outputs of all 

DMUs during a certain year120. Hence, the efficiency scores of these artificial DMUs are 

always less than 1 and their inclusion does not affect the shape or position of the 

frontier and therefore the efficiency scores of other banks. Also, we have included a 

                                                      
119

 This is the official printing office of the Greek state which, apart from publishing the Greek 
Government’s Gazette and Presidential Decrees, it maintains an archive of published documents. In most 
cases, the published financial accounts of Greek banks since 1994 are available on line (www.et.gr – in 
Greek). 
120

 In our view, this provides a better estimate of the average efficiency score per year rather than just 
calculating the average efficiency score of DMUs after applying DEA, as usually done in the literature. 

http://www.et.gr/
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second artificial bank which uses the weighted averages (weighted each year by total 

assets) of the variables to examine the extent to which the market is driven by large 

banks121. Overall, the sample comprises 216 DMUs out of which 26 correspond to the 

aforementioned artificial observations.  

 

Table 6.2. Banks included in the sample 

 

 

To measure bank efficiency we use the well-established intermediation approach 

(Sealey and Lindley, 1977) which deems banks as financial intermediaries that transform 

their resources (usually related to capital, labour and certain liabilities) into banking 

                                                      
121

 The author would like to thank Prof John Nankervis† for his kind suggestion at a presentation of the 
author with title “Did (de)regulation deteriorate the performance of Greek banks?” at Essex Business 
School, in October 2012. Prof Nankervis† had suggested that the addition of the weighted-average DMU 
would not affect the computation of efficiency of the other DMUs in the dataset and would provide a 
measure that takes into account the high concentration of the Greek banking sector, hence acting as a 
“representative large bank”. Moreover, I would like to thank Prof Nankervis† for being encouraging on my 
work on the theoretical explorations on bootstrap DEA.  

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Total

Agricultural Bank of Greece NO NO NO NO NO YES YES YES YES YES YES YES YES 8

Alpha Bank AE YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Bank of Athens N/A YES YES YES YES YES YES YES YES YES YES 10

Bank of Attica SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Bank of Central Greece YES N/A YES YES YES YES YES YES YES YES YES YES 11

Bank of Crete - Cretabank YES N/A YES YES YES YES YES YES YES YES YES YES 11

Egnatia Bank SA YES YES YES YES YES YES YES 7

Emporiki Bank of Greece SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Ergobank SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Eurobank Ergasias (EFG) SA YES YES YES 3

General Bank of Greece SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Interbank YES YES 2

Ionian and Popular Bank of Greece YES YES YES YES YES YES YES YES YES YES YES YES 12

Laiki Bank (Hellas) SA YES YES YES YES YES YES YES 7

Macedonia Thrace Bank SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

National Bank of Greece SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

Piraeus Bank SA YES YES YES YES YES YES YES YES YES YES YES YES YES 13

T Bank S.A YES YES YES YES YES YES YES 7

Xiosbank YES YES YES YES YES YES YES YES 80

Total 11 10 12 12 13 14 17 17 18 18 18 17 13 190



237 
 

outputs (usually related to earning assets). In particular, we use fixed assets, personnel 

expenses and customer deposits as inputs and net loans (loans minus provisions for bad 

debts) and other securities122 as outputs. We should note that we have excluded from 

our analysis the interbank activity (that is, deposits and loans to other financial 

institutions) as we want to focus on the customer orientation of banks. Furthermore, we 

have not included off-balance sheet items due to data unavailability and due to the fact 

that these items became more important in more recent years. Finally, due to lack of 

data we are only able to compute technical efficiency and not cost efficiency, which 

would concern the effects of deregulation on the cost structures of financial institutions 

(Berger and Humphrey, 1997). But since we are using monetary values in an input 

oriented model, we have incorporated the concept of cost minimization in our analysis 

to some extent. 

Table 6.3 presents the annual averages of the input and output variables used in the 

final sample of commercial banks; effectively this is the data for the average bank. 

Although the values may seem to vary at a first glance, when considering the ratios of 

outputs over inputs these variations become quite less noticeable. This means that on 

average, banks have not changed substantially the way they transform the particular 

inputs of the intermediation approach into outputs.  

                                                      
122

 Bankscope defines other securities as the sum of investments of banks to associates through equity 
and other securities, which in turn includes bonds, equity derivatives and any other type of securities. 
Also, we have to note that some studies use other assets (=total assets – fixed assets - loans) instead of 
other securities. We diverge from this in order to assess financial institutions in terms of their earning 
assets (assets that are used to produce earnings) while also excluding loans and advances to banks as well 
as deposits to banks, hence focusing on the customer orientation of intermediaries. 
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Table 6.3. Averaged of input/output variables per year 

 

 

Table 6.4 presents some descriptive statistics for the input and output variables 

(lower part) and their Spearman’s rank correlations123 along with an indication of 

significance124 (upper part). The descriptive statistics suggest that banks range from very 

small to quite big. Also the correlations indicate a strong, positive and significant 

association between all variables, which is not of concern (in the sense of 

multicollinearity) in DEA modelling due to its non-parametric nature125. High correlation 

                                                      
123

 It is preferred to the Pearson correlation in cases where the variables might not be linearly related to 
each other. In our case it would be normal to expect some non-linear input-output relationships and 
therefore the Spearman correlation seems to be a safer choice. At the same time, the log-transformations 
reveal that these relationships are monotonic hence Spearman’s rho is a valid measure of correlation in 
our case.  

124
 The test statistic is 𝑡 = 𝜌√ 

𝑛−2

1−𝜌2
, where 𝜌 is the Spearman correlation coefficient and 𝑛 is the sample 

size. It follows approximately a t-distribution with 𝑡 − 2 degrees of freedom. 
125

 However, in general the discrimination power can be affected in the presence of high correlation 
(Charnes et al., 1994). Low discrimination refers to the situation where DEA is favourable only towards a 
certain group of DMUs that exhibit similar characteristics. The more homogeneous the sample is, the less 
worrying this issue is. The scatterplots in Figure 6.2 show that our sample is quite homogeneous as there 

 

Fixed 

Assets

Personnel 

Expenses

Customer 

Deposits
Loans

Other 

Securities

Average_1987 59.22 65.20       3,808.89 1,588.80 1,393.86 

Average_1988 99.84 74.90       4,069.99 1,458.81 1,534.44 

Average_1989 79.73 67.49       3,685.07 1,419.01 1,331.52 

Average_1990 69.93 66.01       3,470.56 1,327.02 1,329.68 

Average_1991 61.71 59.51       3,084.19 1,550.69 786.47    

Average_1992 71.33 73.63       3,385.42 1,486.19 1,295.66 

Average_1993 43.79 56.52       2,765.71 1,053.51 1,295.45 

Average_1994 43.64 59.54       2,653.63 1,056.82 1,142.40 

Average_1995 41.55 61.26       2,695.14 1,143.47 1,104.05 

Average_1996 43.71 66.29       2,837.50 1,240.62 1,099.11 

Average_1997 43.56 68.85       3,136.09 1,367.10 1,338.48 

Average_1998 48.12 76.63       3,917.96 1,790.71 1,463.93 

Average_1999 67.14 104.00     5,526.23 2,746.27 2,237.03 

* Values in million Euros and in 1995 constant prices
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implies that there is consistency with regards to the input and output variables used, in 

the sense that they are associated with a certain banking production process. In fact, it 

would be surprising if the correlation coefficients were low. Moreover, the high 

significant correlations indicate that the input/output proportions under the 

intermediation approach have remained almost fixed, explaining the observed 

technological homogeneity across time periods. 

 

Table 6.4. Correlations and descriptive statistics of input/output variables 

 

 

To provide a graphical illustration of the input-output relationships in our sample, we 

have produced relevant scatterplots in Figure 6.2. In particular, the horizontal axes in 

each “line” correspond to the three inputs used and the vertical axes in each “column” 

correspond to the two outputs used. The values are expressed in natural logarithms and 

                                                                                                                                                              
is only one homogeneous cluster when considering input/output combinations and therefore the issue of 
reduced discriminatory power is not of concern in our case. 

Fixed 

Assets
Deposits

Pers. 

Expenses
Loans Securities

Fixed Assets 1

Deposits 0.943** 1

Pers. Expenses 0.943** 0.962** 1

Loans 0.945** 0.987** 0.963** 1

Securities 0.915** 0.955** 0.939** 0.932** 1

Mean 56.54 3381.94 68.61 1450.12 1316.50

Median 22.86 872.68 25.35 457.36 253.19

St.Deviation 83.64 5775.90 99.13 2178.62 2453.70

Minimum 1.03 56.74 1.34 11.97 2.97

Maximum 548.11 26321.56 450.64 11645.83 11875.60

** Signifcant at the 0.01 level
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therefore any movement in the plot can be considered as a percentage change. Finally, 

the different colours of the filings represent a different year with the darkest ones 

corresponding to 1999.  

 

Figure 6.2. Inputs/outputs (in logs) per year 
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The information included in this depiction is quite interesting. One observation is that 

there is no specific clustering of banks per year of operation. For example, if we believed 

that in later years banks had access to superior technology, we would expect to observe 

the majority of dark-coloured dots lying on the north-western part of the cluster while 

banks operating in early years should lie on the south-eastern region. The mix of colours 

can be therefore perceived as an indication that the technology of transforming the 

inputs of the intermediation approach into outputs did not change over the time period; 

at least not in proportional terms. 

Another interesting observation is that the sample is quite homogeneous with almost 

all observations lying on a dense cluster that approximately forms a straight line. There 

are only a few scattered observations in the lower part of the scatterplots but we could 

not state that we observe a “break” in the cluster or another one forming. A simple 

regression analysis would reveal that the slopes of those “lines” are quite close to 1, 

which means that a proportional increase in inputs would lead, in principle, to a 

proportional increase in outputs (given that the axes are expressed in logs). This 

observation provides further support to our CRS assumption. 

 

6.4.3 An account of the sector reforms examined 

 

In this subsection we will present the sector reforms announced and implemented in 

each year and we will explain how we expect them to affect efficiency and productivity. 

A detailed account of the sector reforms and the actions of monetary policy during this 
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period is provided by Voridis et al. (2003), while a more general overview can be found 

in the annual reports of the National Bank of Greece and in Gortsos (2002).  

 

1987 

The sector reforms are announced and include a long list of actions aiming at the 

modernisation and competitiveness of the Greek banking sector. Given that Greek 

banks were tightly bound by governmental controls and given the inflexibility of the 

Greek labour market, the positive effects of such an announcement are not expected to 

be immediately realised (Ayadi, 2008). This is also supported empirically by Berger and 

Humphrey (1997) in cases where deregulation has an aggressive character. The first 

financial freedoms appear in 1987; interest rate controls on loans and deposits are 

liberalized (to a large extent) and the reserve requirement of 19.5% for large industrial 

firms’ loans (accompanied by a low interest rate floor of 12.5%) is abolished.  

Apart from the managerial shock, the minimum reserve for loans and bonds of public 

sector companies increased to 10.5% (from 3.5%), the minimum deposits with the Bank 

of Greece increased to 7.5% (from 6%) with a lower interest rate of 14% (from 15.5% 

during a period with an inflation rate of 16.4%) while the minimum reserve 

requirements on holding Greek state promissory notes increased by 1% (to 38%); that is, 

more controls seem to be imposed in the first year of the (de)regulation process. 

However, the positive news of deregulation for the banking industry are shadowed 

by one of the greatest scandals in the history of Greek banking: the “Koskotas scandal”. 

Koskotas was a banker who owned the majority of shares (around 60%) of Cretabank 
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and who was favoured by the ruling party at the time (PASOK) by directing public 

companies’ deposits and assigning their financing to his bank. Koskotas, with the 

support of certain politicians, was involved in illegal activities using Cretabank’s funds. 

Among others, Koskotas tried to acquire the Bank of Central Greece through Cretabank 

in 1987, but no clearance was given for the takeover (Dobratz and Whitfield, 1992; 

Featherstone, 1994, 1990). This resulted in a temporary shock in the Greek banking 

market and mistrust in state-owned banks which must have had an impact on the 

productivity of the sector negatively. 

 

1988 and 1989 

During 1988 we observe the first substantial set of commercial freedoms to banks. The 

most important of them include the lifting of restrictions on financing certain sectors of 

the economy, the abolishment of the 21% interest rate ceiling on loans, as well as the 

removal of selective credit controls126. Moreover, banks are allowed to determine freely 

loan rates and contract terms with certain industries. 

In 1989 the liberalization process is continued. In particular, selective controls are 

completely removed, interest rates and other contract terms for most types of loans are 

freely determined, while interest rates on demand and sight deposits are liberalized. 

Furthermore, some measures aim at increasing competition: housing loan borrowers 

                                                      
126

 Effective as of 31 Dec 1988 (and completed in 1989), Greek commercial banks are no more obliged to 
allocate their portfolio of loans to certain sectors of the economy according to a predetermined 
percentage on outstanding loans, introduced in 1966 in order to weather the banks’ reluctance to finance 
certain industries. Voridis et al. (2003) report the following percentages: 9.6% on domestic trade, 9.6% on 
import trade, 10.8% on export trade and 26.6% on manufacturing (that is, 56.6% in total). 
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are allowed to use financing from more than one financial institutions and special credit 

institutions are allowed to finance various sectors of the economy at freely determined 

rates and contract terms. Finally, the Second Banking Directive in 1989 (although 

effective from 1993) gave a fresh perspective to banks’ expansionary strategies as it 

permitted the establishment of branches to other European countries without the 

further permission of the host country authorities. We expect that efficient banks 

should exploit this opportunity to expand their outputs or contract their previously 

“reserved” inputs, leading to an increase in productivity during both years.  

 

1990 

The climate is reversed in 1990 as inflation jumps to a period high of 20.4%, perhaps due 

to the oil crisis127 as the growth rate of money supply was stable. The newly established 

government promotes a restructuring plan for the economy, including the liberalization 

of the private sector and the privatization of various public sector companies (including 

the Agricultural Bank of Greece and Piraeus Bank, though both completed in the 

following year). At the same time authorities focus their efforts on catching up with the 

forthcoming Maastricht Treaty’s requirements by increasing taxation (in order to reduce 

the substantial deficit of 19.4%) and by adopting policies to decrease inflation. One of 

the fiscal measures which is relevant to Greek banks is the announcement of the 

imposition of 10% tax on interest income in 1991. We believe that the effect of high 

                                                      
127

 After the Iraqi invasion in Kuwait the price of the barrel increased from $17 to $36 in August.  
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inflation, the moderation efforts and the pending imposition of tax on interest income, 

have all affected bank efficiency negatively128.  

 

1991-1992 

During the next two years, the government policies succeed in decreasing inflation and 

in increasing real GDP. The deregulation process enters one of its most important steps 

as the obligation of banks to invest 40% of their deposits in Greek promissory notes, 

Greek government bonds or bonds of public sector enterprises reduces to 30% in 1991 

and 15% in 1992, allowing banks to use an important fraction of their funds more 

productively. Moreover, the minimum requirements on low-interest loans to SMEs is 

gradually lifted in 1992 and abolished by mid-1993. At the same time, the operations of 

commercial banks and other credit institutions are completely liberalized, allowing 

banks to expand their operations. We would expect to evidence an increase in banks’ 

productivity during this period. 

 

1993 

In 1993 the Greek government decides to adopt Basel I standards and imposes a 

minimum liquidity ratio of 8% while capital is explicitly defined for regulatory purposes. 

At the same time Greek accounting standards (GAS) and international accounting 

standards (IAS) are introduced. The idea of imposing these prudential controls was to 

                                                      
128

 The only important deregulation step was the reduction of the minimum percentage of banks’ deposits 
that should be directed to the financing of Greek enterprises from 10.5% to 6%, which cannot be 
considered as adequate to offset the negative climate. 
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harmonize Greek banks with the European ones in the view of the Single Market; hence, 

supervision became tighter. Although a few more commercial freedoms were given in 

1993129 and competition was further intensified130, we believe that the impact from the 

introduction of new regulations would have been quite powerful in terms of restricting 

a recently liberalised sector, potentially causing productivity to decline.  

The reason we expect this behaviour is that, apart from the evidence in the literature 

(Chortareas et al., 2012; Matthews and Thompson, 2014; Tsionas et al., 2003), 

compliance with Basel regulation requires allocating substantial resources for this 

purpose and the reconsideration of banks’ portfolio of securities and other assets.  

 

1994 and after 

After 1994 the business environment of Greece is gradually improving and by the end of 

the study period Greece is very close to the Maastricht Treaty requirements. Until 1997, 

before Greek banks start engaging in M&As, we would expect banks to settle after the 

volatile period of reforms and reconsider their allocation of resources to increase their 

technical efficiency. From 1997 to 1999 we observe a further decrease in interest rates 

and greater improvement of the macroeconomic indicators, which we view as an 

                                                      
129

 In particular, capital movements of medium and long-term funds within EU where completely 
liberalized in 1993 while for short-term funds liberalisation came in June of 1994. Second, the obligation 
of commercial banks to hold a certain fraction of their deposits in Greek government bonds and 
promissory notes is completely abolished by May 1993 (from 40% in 1991 and 15% in 1992). Moreover, 
banks are no more required to channel funds to SMEs, however they are obliged to refinance the loans of 
these enterprises, corresponding to 6.5% of deposits in 1993 (Voridis et al., 2003). Finally, the interest 
rate floor on saving deposits (which comprise about 2/3 of total deposits in 1993) is completely 
liberalized, which had be proven to be binding (Voridis et al., 2003).  
130

 The co-operative bank notion is legally introduced in the Greek banking sector while other financial 
intermediaries can offer a broad range of products and services that commercial banks traditionally 
offered. 



247 
 

opportunity for banks to grow. The relation to the sector reforms is that the imposition 

of prudential controls might have contributed towards building up confidence to 

depositors and investors, which has been reinforced by the improving business 

environment which peaks in 1999. The sign of the efficiency change should depend 

upon whether the increase in inputs is proportionately greater than the increase in 

outputs or not, while it may have been affected to some extent by the M&A wave of 

that period. However, we would expect to evidence an increase in efficiency from 1998 

to 1999 due to the bullish stock exchange which should have increased the value of 

securities. 

 

6.4.4 Method and Implementation  

 

To compute technical efficiency we use the input oriented model in (2.11), with the 

orientation being justified by the fact that banks have more control over their inputs 

rather than outputs (Cook et al., 2014). Regarding the assumption of the CRS 

technology, apart from the evidence we provided in the previous subsection, there is a 

number of reasons for supporting this choice, which are explained in subsection 6.4.4.1. 

We then explain the procedure of choosing the banks to be included in the final sample 

in subsection 6.4.4.2, following the suggestions of the suggested guidelines in 

section 5.2. Finally, in subsection 6.4.4.3 we explain how we apply bootstrap DEA and 

how we extend the test of significant efficiency change from section 3.3.2 to the case of 
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testing for productivity change using the Global Malmquist index of Pastor and Lovell 

(2005). 

 

6.4.4.1 Returns to scale 

 

For the purposes of the illustrative example we will adopt the assumption of constant 

returns to scale (CRS), given that the simulations have also been performed under the 

same assumption and hence we would like our illustrations to be consistent with the 

theoretical part of the thesis. Apart from serving the purposes of an empirical 

illustration and apart from the previous analysis using Figure 6.2, the CRS assumption 

can be considered appropriate in our case for a number of reasons.  

One such reason is that, under CRS, the efficient banks are associated with minimum 

long-run average costs and have exploited any economies of scale, which can be 

considered as one of the desirable effects of deregulation. Given also that we are using 

an input-oriented model and given that inputs are expressed in monetary terms, it could 

be thought that we are assessing the extent to which banks operate under the minimum 

costs with reference to the whole study period. Hence, it could be considered that CRS 

is consistent with the intentions of the policymakers who, through deregulation, may 

want to encourage banks to appropriately adjust their scale of operations and input 

mixes. On the other hand, applying VRS would assess some banks (usually relatively 

small and big ones) with respect to a convex frontier under the justification that it would 

not be technologically feasible for them to operate under the same input/output 
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proportions as the CRS-efficient banks. However reasonable this may seem for a certain 

point in time, our reference set comprises 13 years which is adequate time for banks to 

expand or contract their operations and therefore VRS might not even be appropriate 

for our purposes in this case. 

Another line of argument that provides support to the CRS assumption is that the 

median scale efficiency is quite high (0.989) suggesting that half of the DMUs in the 

sample are associated with a scale efficiency between almost 0.99 and 1. Since scale 

efficiency is the ratio of the CRS over the VRS technical efficiency scores, the high value 

of the median suggests that the two frontiers are quite close to each other and 

therefore CRS is a reasonable assumption. There are only a few cases where SE is quite 

small and we therefore find useful to provide a histogram with the distribution of scale 

efficiency scores in Figure 6.3.  

 

Figure 6.3. Distribution of scale efficiencies 
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Moreover, given that the underlying DGP is technologically homogeneous to a 

considerable extent (this will be further discussed in the following subsection), we could 

state that the observed scale efficiency scores are a good approximation of the 

population ones since the computed technical efficiencies are quite robust due to this 

homogeneity (see subsection 5.2.1 of the suggested guidelines). That is, although the 

technical efficiencies are subject to sampling variations, we would expect the DEA 

scores to be relatively close to their population values and therefore the distribution of 

the sample scale efficiencies to be similar to the population distribution. Assuming that 

the sample distribution is a representative one, the few low scale efficiencies may 

correspond to a few isolated cases of banks who failed to catch up with the changes and 

adjust their size accordingly.  

As a final note, there seems to be a non-conclusive debate in the literature on the 

assumption of returns to scale in DEA. The early literature provides evidence in support 

of CRS in the form of flat, U-shaped cost curves (Berger et al., 1993). Later studies seem 

to turn their attention to unexploited scale economies evident by small banks and 

provide arguments which are in support of VRS (Berger and Mester, 1997). Matthews 

and Thompson (2014) conclude that the potential for scale economies is left open in the 

literature. Thus, the assumption of CRS finds support on one stream of the literature, 

while it also seems to be reasonable in our case as well. 
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6.4.4.2 The effect of technological heterogeneity  

 

This section discusses the methodological approach followed to decide whether the 

sample is appropriate to apply bootstrap DEA and this relates to the suggestions in 

section 5.2 of the suggested guidelines. In particular, we had suggested that 

technological homogeneity is desirable, which, in our case, translates into homogeneity 

across both DMUs and time periods (the latter already discussed in the previous 

subsection).  

To exhibit the effect of technological heterogeneity we present histograms of the 

efficiency distribution by including all financial intermediaries131 that operated during 

the study period and then we exclude non-commercial banks. Then we remove 

commercial banks (one at a time) which we consider as outliers and we observe how the 

distribution of efficiency scores gradually changes. In particular, we observe that the 

distribution shifts from a symmetric one with a relatively thin tail to the right, towards 

an almost half-symmetric distribution with a concentration of values towards 1. In terms 

of the discussions in chapter 2, we move from a sample associated with technological 

heterogeneity, where the application of bootstrap DEA is not permissible, towards a 

more technologically homogeneous sample where bootstrap DEA performs well if the 

sample is large enough (we have suggested 120 DMUs or more). 

                                                      
131

 Regarding other financial intermediaries, the sample includes 3 investment banks (Aegean Baltic Bank, 
Euromerchant Bank, Investment Bank of Greece) 1 savings bank (Hellenic Postbank), 2 development 
banks (Hellenic Industrial Development Bank, National Investment Bank for Industrial Development), 3 
mortgage banks and building societies (Deposits Loans and Consignations Fund, National Housing Bank, 
National Mortgage Bank) and two cooperative/industry-specific banks (Pancretan Bank, Traders’ Bank). 
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Figure 6.4. The effect of deleting outliers on the distribution of technical efficiency scores 

 

It is interesting, though, to explain why removing certain DMUs has this effect on the 

distribution of efficiency scores. To begin with, consider non-commercial banks: their 

operations are quite different and could exhibit a high ratio of loans to deposits or a 

high proportion of financial assets compared to what a typical commercial bank would 

exhibit. For example, the two development banks included in the “All” sample used to 

receive their liquidity from the Bank of Greece, hence deposits were very low and at the 

same time their loans were very high, financing major public projects. Including these 

two banks in the sample would introduce technological heterogeneity as they operated 

under a much higher output/input ratio which was not feasible for commercial banks. 
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Moreover, under the intermediation approach these two banks would always appear 

efficient while they would set counter-intuitive efficient input targets for inefficient 

banks. 

Regarding the commercial banks removed, the rationale is similar. For example 

Marfin Bank, being a former investment bank as well as the Greek subsidiary of a 

Cypriot conglomerate, had limited commercial banking activities while its business plan 

was different. Regarding Cyprus Bank, it was excluded from the sample as it reflects the 

operations of the Greek branches of the Cypriot Cyprus Bank and hence the reporting 

standards or the business model are different compared to the rest of the sample. The 

next exclusion, Dorian Bank, although officially classified as a commercial bank, it 

focused its operations on large enterprises, maritime financing as well as private 

banking and became an investment bank when it merged in 1999 with Telesis Finance 

(creating Telesis Investment Bank). Finally, the removal of the operations of the 

Agricultural Bank of Greece until 1991 is justified by the fact that it was a non-for-profit 

governmental organization and it only became an SA after 1991, expanding its activities 

to commercial banking and extending its potential clientele outside the agricultural 

sector. 

These banks use a different “technology” compared to commercial banks and this 

“technology” can be expressed in terms of their conduct of business or business plan, 

which would imply a different input/output scheme. When these banks are included in 

the sample, they appear as efficient, distorting the frontier and leading to “unfair” 

evaluations for the other commercial banks. This lends support to our suggestion in 
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subsection 2.8.3 that symmetric distributions with a thin tail towards 1 suggest 

technological heterogeneity and it might not be a good idea to even apply DEA as the 

resulting input contractions (or output expansions in output orientation) would not be 

feasible. Prior to applying DEA, it should be ensured that all DMUs are members of the 

same feasible set; hence, our suggestion could be perceived as an exploratory data 

analysis approach which would inform the data selection process.  

Having justified the data selection process we now move to performing the 

diagnostic checks proposed in the suggested guidelines in section 5.2. In particular we 

compute the first four moments of the various DEA samples which will be used to 

associate the sample distribution with the underlying population, which carries 

implications for the applicability of bootstrap DEA. Table 6.5 below presents this 

information and it is obvious that the data selection process has significantly increased 

the mean efficiency and has reduced its variability. At the same time the median 

converges to the mean while the shape of the distribution becomes less skewed and less 

peaked. Comparing these results with Table 2.6 we could say that the initial sample 

(‘All’) corresponds to the “Trun.Normal Low” case which is associated with technological 

heterogeneity. In particular, both skewness and kurtosis are quite high, which is the 

characteristic that stands out in this DGP, while the corresponding histograms are very 

similar to each other.  

On the other hand, the final sample has a kurtosis relatively close to 3 and at the 

same time negative skewness, which is a combination that we only meet under the 

“Standard” case which corresponds to technological homogeneity. However, skewness 
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is smaller in absolute terms while the histogram could be characterised as a mixture of 

the “Standard” and “Trun.Normal High” DGPs. Given that the latter distribution was 

designed as a mixture of technological homogeneity and heterogeneity, it is reasonable 

to state that the final sample reflects also such a mixture but with more technological 

homogeneity compared to that under the Trun.Normal High” DGP. This is also 

supported by the larger concentration of efficiency scores towards 1.  

 

Table 6.5. Diagnostics to identify the underlying DGP 

 

 

The implications of our diagnostic analysis are important for the further examination 

of the final sample. First, the fact that the sample has a considerable technological 

homogeneity suggests that the “technology” of transformation of inputs into outputs 

under the intermediation approach has not changed dramatically during the period of 

study. If the frontier had shifted out substantially due to technological developments we 

should have observed a distribution that is associated with technological heterogeneity 

with the more recent banking operations defining the frontier and the older 

observations lying on the left tail of the distribution; this is not the case in our sample as 

Mean Median St.Dev. Skewness Kurtosis

All 0.441 0.375 0.201 1.495 4.671

Commercial 0.501 0.464 0.180 1.138 4.070

- Marfin 0.666 0.660 0.143 0.107 3.928

- Cyprus 0.684 0.673 0.131 0.089 4.068

- Dorian 0.754 0.746 0.137 -0.345 3.883

Final 0.753 0.747 0.133 -0.335 3.954
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the efficient DMUs are scattered across the study period132. We are not suggesting that 

the various “technological” advances in Greek banking were not important; we are just 

arguing that the results from the pooled sample are credible and can be used for further 

analysis. 

Another important implication, and taking into account the suggested guidelines in 

chapter 5, is that applying the moments bootstrap DEA on the final sample will yield 

consistent results and accurate confidence intervals. The relatively high technological 

homogeneity and the fact that the sample includes 216 observations means that even 

the DEA scores will be quite accurate; however, they are subject to sampling variations 

which can be adequately captured by the moments bootstrap. Hence, the discussion on 

hypothesis testing in chapter 3 is relevant and the therein suggestions can be applied in 

our case. 

 

6.4.4.3 Implementation  

 

The illustration of the approaches discussed in the previous chapters proceeds in two 

steps. We first apply bootstrap DEA to compute and compare confidence intervals of 

interest and then we proceed with examining the effects of sector reforms on banks’ 

efficiency, using the hypothesis testing approaches discussed in chapter 3.  

As already mentioned, efficiency is estimated by a CRS, input-oriented DEA model. To 

gauge the sensitivity of the efficiency scores towards sampling variations we apply 

                                                      
132

 See also Figure 6.2. 
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bootstrap DEA (we use 2000 repetitions) under all smoothing alternatives considered in 

the previous chapters: the LSCV bootstrap, the SJ bootstrap, the Moments bootstrap 

and the Naïve bootstrap. The logic of the bootstrap algorithm has already been 

explained in section 2.6.2 while section 4.5 describes how this algorithm can be adapted 

for the case of the moments bootstrap133. The resulting bootstrap distributions are used 

to compute the bias-corrected estimates of the “true” efficiency scores and to construct 

the percentile confidence intervals of Simar and Wilson (1998). The intervals of Simar 

and Wilson (2000a) are excluded from the analysis due to the inferior performance 

evidenced in our simulations134. 

Then we analyse the effects of the sector reforms on the efficiency and productivity 

of Greek banks. Due to the small number of observations per year we had to pool the 

dataset in order to satisfy the minimum size requirements for applying bootstrap DEA 

which is more than 120 observations under the moments bootstrap (though quite 

higher for the other smoothing approaches). Pooling the sample is an acceptable 

approach (Fried et al., 2008, pp.54) and it has been followed in DEA empirical studies in 

Greek banking (Halkos and Salamouris, 2004; Siriopoulos and Tziogkidis, 2010).Then the 

ratios of those “global” technical efficiency scores for each bank and between adjacent 

periods are in fact the Global Malmquist indices of Pastor and Lovell (2005) as explained 

later in this subsection.  

                                                      
133

 Information about the LSCV and SJ smoothing approaches is provided in Appendix I. 
134

 However, results on this approach are available upon request by the author. Results on naïve are only 
presented to compare smoothing versus non-smoothing methods. 
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The bootstrap in this case randomly redistributes efficiency scores of DMUs across all 

time periods and the resulting bootstrapped values will be members of the same 

feasible set by construction. The lower the technical heterogeneity across time periods 

the narrower the confidence intervals will be. In our case we observe that the efficient 

DMUs are scattered across the study period (this is has been already discussed; see 

Figure 6.2 and Appendix XII), suggesting that banks have the capacity to operate 

efficiently in any year; at least with respect to the particular inputs and outputs. 

The only popular alternative approach which has been used with bootstrap DEA is 

the Bootstrap Malmquist index of Simar and Wilson (1999). In our case this approach 

would not be suitable as the number of DMUs is too small (in some cases even to apply 

simple DEA). In addition, despite the fact that the manual of Prof Paul Wilson’s FEAR 

package states that the Bootstrap Malmquist is fully compatible with unbalanced 

panels, there are issues of “information loss” in this case. In fact, we demonstrate in 

Appendix XI the potential problems arising in this case, using the derivations and 

definitions in Simar and Wilson (1999). 

Let us now provide more details on the approach we follow to examine the effects of 

sector reforms. As already explained, we include all observations under the same 

frontier, which is also termed as “global” frontier (Pastor and Lovell, 2005). Define the 

contemporaneous technology (or feasible set) in period 𝑡 as:  

 𝛹𝑡 = {(𝑥𝑡, 𝑦𝑡) ∈ ℝ+
𝑝+𝑞

|𝑥𝑡 can produce 𝑦𝑡},    𝑡 = 1,2,…𝑇 (6.1) 

The global technology is defined as the convex hull of the contemporaneous 

technologies (Pastor and Lovell, 2005): 
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 𝛹𝐺 = conv {𝛹1⋃…⋃𝛹𝑇} (6.2) 

The input-oriented, CRS DEA score of DMU 𝑘  that operates in period 𝑡  and 

benchmarked against the 𝑁 observations of the global frontier is:  

 

𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡)  

= min {𝜃|𝑦𝑘
𝑡 ≤∑𝜆𝑖𝑦𝑖

𝑁

𝑖=1

;  𝜃𝑥𝑘
𝑡 ≥∑𝜆𝑖𝑥𝑖

𝑁

𝑖=1

;  𝜃 > 0; 𝜆𝑖 ≥ 0,   ∀  𝑖 = 1,… ,𝑁} 

(6.3) 

And the linear program above can be also used to compute 𝜃𝑘
𝐺(𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1). Since 

𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡) and 𝜃𝑘

𝐺(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) are two different DMUs which are assessed under the 

same frontier, despite being the same firm 𝑘, we can follow the guidelines in 3.3.2 to 

test for their “efficiency differences”. In particular, in the context of subsection 3.3.2 we 

define 𝜃𝑘 = 𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡)  and 𝜃𝑣 = 𝜃𝑘

𝐺(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)  and thus the ratio 𝜃𝑘 𝜃𝑣⁄  now 

becomes 𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡) 𝜃𝑘

𝐺(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)⁄ . This ratio is in fact the Global Malmquist index 

introduced by Pastor and Lovell (2005)135: 

 𝑀𝐺(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 , 𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) =
𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡)

𝜃𝑘
𝐺(𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1)

 (6.4) 

If 𝑀𝐺 < 1 then the productivity of DMU 𝑘 increased between periods 𝑡 and 𝑡 + 1, while 

if 𝑀𝐺 > 1 then the productivity of DMU 𝑘 decreased, whereas 𝑀𝐺 = 1 indicates no 

change in productivity.  

Pastor and Lovell (2005) argue that the Global Malmquist Index has four benefits 

over the simple Malmquist index of Caves et al. (1982). The most important one is that, 

unlike the standard Malmquist index, it is circular, in that:  

                                                      
135

 See equation (2) of their paper. The Global Malmquist index is introduced in terms of distance 
functions which are the inverse of the technical efficiency scores used in our presentation. 
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𝑀𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥𝑘

𝑡+𝜏, 𝑦𝑘
𝑡+𝜏)

= 𝑀𝐺(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 , 𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) × …×𝑀𝐺(𝑥𝑘
𝑡+𝜏−1, 𝑦𝑘

𝑡+𝜏−1, 𝑥𝑘
𝑡+𝜏, 𝑦𝑘

𝑡+𝜏) 
(6.5) 

Second it provides a single measure (and does not depend upon the time direction) 

without requiring the computation of geometric means of adjacent time periods. Third, 

the frontier shift element is with respect to the whole period of study and not relevant 

to two adjacent time periods. Finally, it can be decomposed to the usual elements which 

are all immune to linear programming infeasibilities136.  

The proposed test of efficiency differences in subsection 3.3.2 can be easily adapted 

in this context. We just need to observe that the ratio in (3.11) in this case is the Global 

Malmquist index in our case and the null hypothesis now becomes: 

 𝐻0:𝑀
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1) = 1, 𝐻1:𝑀

𝐺(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 , 𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) ≠ 1 (6.6) 

The bootstrap distribution of efficiency ratios in (3.12) is therefore a bootstrap 

distribution of Global Malmquist indices: 

 �̂�𝑏
𝐺,∗ =

𝜃𝑘
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡)𝑏
∗

𝜃𝑘
𝐺(𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1)𝑏

∗
, 𝑏 = 1,2,…𝐵 (6.7) 

 

                                                      
136

 Pastor and Lovell (2005) show that the Global Malmquist can be decomposed into efficiency change 

and technical change as follows: 𝑀𝐺(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 , 𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) =
𝜃𝑘(𝑥𝑘

𝑡 ,𝑦𝑘
𝑡)

𝜃𝑘(𝑥𝑘
𝑡+1,𝑦𝑘

𝑡+1)
× {

𝜃𝑘(𝑥𝑘
𝑡+1,𝑦𝑘

𝑡+1)

𝜃𝑘
𝐺(𝑥𝑘

𝑡+1,𝑦𝑘
𝑡+1)

∙
𝜃𝑘
𝐺(𝑥𝑘

𝑡 ,𝑦𝑘
𝑡)

𝜃𝑘(𝑥𝑘
𝑡 ,𝑦𝑘

𝑡)
}, where 

𝜃𝑘(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡)   and 𝜃𝑘(𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1)  are the usual efficiency scores for DMU 𝑘  at times 𝑡  and 𝑡 + 1 , 
respectively. The first element is the efficiency change component and the latter is the technical change 
component. It can be also decomposed into its scale efficiency component (Ray and Desli, 1997) which 
should be a simple extension of the previous decomposition (Pastor and Lovell, 2005). However, these 
decompositions are not considered here due to the small sample size as in 7 out of 13 years the number 
of DMUs does not even satisfy the well-known (and in fact challenged) “rule of thumb” for simple DEA 
which would require at least 15 DMUs in our case; the requirements for bootstrap DEA are obviously 
much higher as our previous simulations have shown. We also note that another possibility would be to 
use the Global Frontier shifts of Asmild and Tam (2007), the combination of which with bootstrap DEA is 
proposes for future research.  
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Assuming that (�̂�𝑏
𝐺,∗ − �̂�𝐺)|�̂� ~(�̂�𝐺 −𝑀𝐺)|𝒫 , we can bias-correct the bootstrap 

distribution above as in (3.13) and use its percentiles to test the hypothesis in (6.6); if 

1 ∉ (�̃�𝑏
𝐺,∗,(𝑎/2) 

, �̃�𝑏
𝐺,∗,(1−𝑎/2) 

) we can accept the alternative hypothesis that productivity 

has changed from 𝑡 to 𝑡 + 1. And if the null is rejected we proceed with examining the 

direction of productivity change by testing the two possible alternatives:  

 𝐻1:𝑀
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1) > 1,   or  𝐻1:𝑀

𝐺(𝑥𝑘
𝑡 , 𝑦𝑘

𝑡 , 𝑥𝑘
𝑡+1, 𝑦𝑘

𝑡+1) < 1 (6.8) 

The following p-values can be used to test (6.8): 

 𝑝𝑙𝑜𝑤 =
#(�̃�𝑏

𝐺,∗ < 1)

𝐵
     and   𝑝ℎ𝑖𝑔ℎ =

#(�̃�𝑏
𝐺,∗ > 1)

𝐵
,    𝑏 = 1,2,…𝐵    (6.9) 

If (6.6) is rejected and 𝑝𝑙𝑜𝑤 < 𝑎  we could accept the alternative 

𝐻1:𝑀
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1) > 1 which indicates a decline in productivity, while if (6.6) is 

rejected and 𝑝ℎ𝑖𝑔ℎ < 𝑎 we could accept the alternative 𝐻1:𝑀
𝐺(𝑥𝑘

𝑡 , 𝑦𝑘
𝑡 , 𝑥𝑘

𝑡+1, 𝑦𝑘
𝑡+1) < 1 

which indicates an increase in productivity.  

 

 

6.5 Empirical Results 

 

This section presents the empirical results of the illustrative example. We first present 

general results which look at the global efficiency scores of the DMUs examined, the 

relationship between size and efficiency as well as at the distribution of efficiency scores 

relative to the inputs and outputs used (subsection 6.5.1). We then look at the shapes of 

the bootstrap distributions of global efficiency scores and the associated confidence 
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intervals (subsection 6.5.2). Then the hypothesis testing procedures described above is 

implemented and we look into the numerical results obtained from the various 

approaches (subsection 6.5.3). Finally, we empirically analyse the effects of the sector 

reforms using the results obtained from the moments bootstrap which has been argued 

to perform well in small samples (subsection 6.5.4). 

 

6.5.1 General results 

 

To provide an informative summary of the global efficiency scores, we present in 

Table 6.6 the averages and standard deviations for the listed size percentiles and for the 

whole sample. In particular, the size groupings are according to each bank’s total assets 

in each year and in constant 1995 values (for example the top 10% comprises a 

combination of National Bank and Alpha bank in certain years). We note that the 

average efficiency (median is 0.747, close to mean) over the period of study is similar to 

the one documented in the international and Greek literature (Berger and Humphrey, 

1997; Chortareas et al., 2008).  

There are strong indications in Table 6.6 that larger banks tend to be more efficient 

as there is a quite monotonic decrease in efficiency as size decreases. At the same time 

standard deviations are small enough to suggest that the size-efficiency relationships 
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are not due to chance. This implies that during the study period the SCP paradigm 

seems to be valid137. 

 

Table 6.6. DEA scores by size percentile 

 

 

The positive relationship between size and efficiency is also observed in Figure 6.5, 

which depicts the same scatterplots as in Figure 6.2 but this time the colour mapping 

corresponds to the efficiency scores observed in the sample; the higher the efficiency 

score of a DMU the darker the dot filling. It is obvious that the most efficient DMUs lie 

on the north-eastern part of the scatterplots, confirming that banks which use more 

inputs and outputs are more efficient. There are a few exceptions of very efficient and 

inefficient DMUs scattered across the graphs; however, as we move outwards from the 

origin, the fillings are in principle darker.  

                                                      
137

 The author would like to note that he has also examined the efficiency behaviour of Greek banks after 
2000 and this pattern is no longer observed as some small banks appear as efficient. One possible 
explanation for this change is the adoption of “technologies” or financial innovations by small banks 
which allowed them to perform operations that previously only large banks could afford to undertake. 
This is in accordance with the findings in the elaborate review study of Amel et al. (2004). 

Percentile Average Eff. Stand.Dev.

Big 10% 0.868 0.131

10%-20% 0.863 0.096

20%-30% 0.820 0.109

30%-40% 0.753 0.138

40%-50% 0.704 0.056

50%-60% 0.678 0.076

60%-70% 0.703 0.153

70%-80% 0.713 0.094

80%-90% 0.735 0.144

Small 10% 0.676 0.180

Total 0.753 0.133
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Another interesting observation which combines Table 6.6 and Figure 6.5 is that most 

of the variability in efficiency scores is observed for the smallest banks. Indeed, the 

smallest banks are associated with higher standard deviations according to Table 6.6, 

while their positions in the lower end of Figure 6.5 seem to be slightly more scattered. 

This corresponds to the left tail of the empirical distribution of efficiency scores which 

could potentially affect bootstrap DEA results by introducing additional variability across 

DMUs when resampling. In our case though, this is not of concern as the dataset is quite 

homogenous138. However, we would recommend practitioners who want to apply 

bootstrap DEA to be careful when dealing with substantial variability in the lower end of 

the efficiency distribution. This is, though, something that could be looked at in a future 

paper. 

                                                      
138

 It is interesting to note that the author has experimented with the linkage of the scattered, inefficient 
observations and bootstrap DEA. In particular, we observe that by removing the very inefficient and 
scattered DMUs the resulting confidence intervals become narrower. 
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Figure 6.5. Inputs/outputs (in logs) and efficiency distribution 

 

 

6.5.2 Bootstrap distributions and confidence intervals 

 

In this subsection we present results regarding the distributional aspects of 

bootstrapped efficiency scores along with the associated confidence intervals. We only 

discuss the bias-corrected distribution and the associated percentile confidence 
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intervals of Simar and Wilson (1998). The “basic intervals” of Simar and Wilson (2000a) 

are not discussed as the simulations have suggested that convergence is considerably 

slower and therefore they are not suitable for small samples. The focus is rather on the 

choice of the smoothing method which has been shown to affect performance. 

Table 6.7 below presents the average moments of the bias-corrected bootstrap 

distributions along with the average 95% SW1998 widths. More analytic results for each 

bank per year of operation can be found in Appendix XII where we also present results 

for the bias-corrected and accelerated confidence intervals of Efron (1987), the 

adoption of which for bootstrap DEA was discussed in Appendix VII.  

 

Table 6.7. Bootstrap distribution moments and widths of 95% intervals 

 

 

In terms of distributional aspects, we observe that the moments bootstrap is on 

average less skewed and leptokurtic compared to the other two smoothing methods 

while the SW1998 widths are slightly wider (by 0.016 units). The average standard 

deviation of the distributions indicates that there is sampling variability that justifies the 

application of bootstrap DEA. To provide a better insight regarding the shape of the 

distributions in each case, we have plotted, as an example, the histograms of the 

bootstrapped efficiency scores for the DMU “Average Bank 1991” where we have also 

Mean St.Dev Skew Kurt
SW98 

Width

LSCV 0.699 0.023 0.632 3.651 0.090

SJ 0.699 0.024 0.615 3.542 0.091

Moments 0.686 0.028 0.297 2.984 0.107

Naïve 0.713 0.025 1.083 6.031 0.092
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indicated with red dotted lines the 95% SW1998 confidence intervals. This DMU was 

selected by chance but it can be also deemed as the middle of the reforms period 1987-

1994.  

 

Figure 6.6. Bootstrap distributions for Average Bank in 1991 

 

 

The descriptive statistics and SW1998 confidence intervals for the histograms above 

are provided in Table 6.8 below. By inspecting Figure 6.6 and the table below we 

observe that the moments bootstrap, being more symmetrical, has well-defined tails on 

either side of the bootstrap distribution. On the other hand, the inconsistent “Naïve” 
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bootstrap is skewed to the right and quite leptokurtic and therefore has a significant 

mass of bootstrap values to the lower end of the distribution and a thin tail to the right. 

The two smooth bootstraps (LSCV and SJ) have almost the same performance and are 

substantially less skewed and leptokurtic compared to the Naïve bootstrap but more 

skewed compared to the moments bootstrap. This may be one of the contributing 

factors for the improved performance of the moments bootstrap in our simulations but 

it also suggests that it may be more meaningful to account for skewness under these 

smoothing techniques when constructing confidence intervals.  

 

Table 6.8. Details for distribution of Average Bank in 1991 

 

 

Regarding the confidence interval widths in either Table 6.7 or the table above, it 

should not be perceived that the Moments bootstrap underperforms as the simulations 

in the previous chapters have suggested otherwise. For example, we have already 

mentioned that, when Simar and Wilson (1998) used the bias-corrected intervals of 

Efron (1982) to account for skewness, the SW1998bc intervals were wider by 0.015 to 

0.03 units compared to the SW1998 ones (see subsection 3.3.1). This suggests that the 

costs of slightly widely confidence intervals seem to be small compared to the potential 

benefits. In fact, since the moments bootstrap is associated with higher and converging 

Mean St.Dev Skew Kurt
SW98 

Low

SW98 

High

LSCV 0.638 0.012 0.817 3.796 0.619 0.667

SJ 0.638 0.012 0.817 3.796 0.619 0.667

Moments 0.627 0.017 0.290 2.904 0.597 0.662

Naïve 0.652 0.014 1.087 4.323 0.636 0.685
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coverage probabilities for sample sizes as large as ours, any differences in the behaviour 

of the other smoothing techniques could be interpreted as deviations from the 

“benchmark” (the moments bootstrap); however, with caution due to the infinite 

possible underlying DGPs. In our case, it could be argued, for example, that the slightly 

wider confidence intervals may allow to successfully capture the underlying population 

efficiency scores, which the other two smooth bootstraps seemed to miss out in the 

simulations of the previous chapters. 

We could go one step further with the previous example of the Average Bank in 1991 

and translate the efficiency scores and confidence intervals in terms of its input values. 

In particular, Table 6.9 below reports the actual input values for the Average Bank in 

1991, its DEA-efficient input levels and below it reports the target values computed by 

the bias-corrected bootstrap distributions. For example, Average Bank in 1991 could 

have produced the same outputs by using €41.24 million worth of fixed assets according 

to DEA (along with the required reductions in the other inputs). However, a better 

estimate of the input level that would make the average bank efficient would be around 

€38.70 million, focusing on the moments bootstrap. There is a chance of 95% that this 

“ideal” input level ranges between €36.87 and €40.85 million, which excludes by far the 

observed value of €61.71 million. Given that the Average Bank in 1991 represents 

average operations, we could also state, for example, that Greek banks would have 

operated efficiently if they used on average €23.01 million less of their fixed assets 

(apart from deposits and personnel expenses) and still produce the same level of 
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output. The same rationale could be applied to the other inputs and smoothing 

methods. 

 

Table 6.9. Target input levels for Average Bank 1991 

 

 

6.5.3 Hypothesis testing results 

 

We now present the hypothesis testing results which will be used in the next subsection 

to analyse the effects of the sector reforms on the efficiency of Greek banks. To perform 

this task we have computed the ratios of the bias-corrected efficiency scores for the 

operations of each bank between adjacent periods; a bootstrap version of the Global 

Malmquist index. We remind that values of the index below 1 indicate productivity 

increase and values greater than 1 indicate productivity decline.  

The results for the Average bank and for the three smoothing alternatives are 

presented in Table 6.10. In particular, for each of the LSCV, SJ or Moments bootstraps, 

we present the bias-corrected Bootstrap Global Malmquist index means (Gl.Mal.BC) 

along with an indication of significance. In particular, we test the hypothesis of no 

change in productivity as in (6.6) and if rejected we test for the direction of productivity 

Actual Value 61.71 3084.19 59.51

DEA Efficient 41.24 2061.50 39.78

LSCV 39.40 38.22 41.16 1969.20 1910.49 2057.05 38.00 36.87 39.69

SJ 39.40 38.22 41.16 1969.20 1910.49 2057.05 38.00 36.87 39.69

Moments 38.70 36.87 40.85 1934.10 1842.63 2041.85 37.32 35.56 39.40

Naïve 40.23 39.23 42.27 2011.05 1960.60 2112.59 38.81 37.83 40.77

* Values in millions of Euros and in 1995 prices

Range Range Range

Fixed Assets Deposits Pers. Expenses
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change as in (6.8) using the p-values in (6.9), which are represented here by Prob<1 and 

Prob>1. Hence, “*” and “**” indicate that the increase or decrease in productivity was 

significant at the 0.05 or 0.01 level of significance, respectively. The results for all banks 

along with the 95% intervals used to test (6.6) can be found in Appendix XIII. 

 

Table 6.10. Hypothesis testing results for the Average Bank 

 

 

The results in Table 6.10 suggest that the direction of productivity change is the same 

across the different approaches but the significance levels can be different as the 

position of the bootstrap distributions relative to 1 can be different. That is, observing 

the p-values we find that the moments bootstrap tends to “include” 1 to a greater 

extent compared to the other two smoothing methods as the p-values under the 

moments bootstrap towards the tails are smaller. In fact, we observe that in one case 

(1990-1991) the moments bootstrap does not reject the null hypothesis of no change in 

productivity while the other two approaches do. This may be attributed to the slightly 

Gl.Mal.BC Prob<1 Prob>1 Gl.Mal.BC Prob<1 Prob>1 Gl.Mal.BC Prob<1 Prob>1

1987-1988 1.019 0.279 0.721 1.019 0.304 0.696 1.015 0.361 0.640

1988-1989 0.992 0.752 0.249 0.993 0.727 0.273 0.991 0.721 0.279

1989-1990 0.972** 1.000 0.001 0.971** 1.000 0.000 0.973** 0.998 0.002

1990-1991 1.051* 0.014 0.987 1.053* 0.015 0.985 1.051 0.048 0.952

1991-1992 0.891** 1.000 0.000 0.889** 1.000 0.000 0.886** 1.000 0.000

1992-1993 0.918** 1.000 0.000 0.918** 1.000 0.000 0.926** 0.998 0.002

1993-1994 1.046** 0.000 1.000 1.047** 0.000 1.000 1.044** 0.000 1.000

1994-1995 1.016 0.105 0.895 1.016 0.107 0.893 1.017 0.145 0.855

1995-1996 1.026** 0.000 1.000 1.026** 0.000 1.000 1.025** 0.001 1.000

1996-1997 0.936** 1.000 0.000 0.936** 1.000 0.000 0.938** 1.000 0.000

1997-1998 1.119** 0.000 1.000 1.121** 0.000 1.000 1.122** 0.000 1.000

1998-1999 0.927** 1.000 0.000 0.927** 1.000 0.000 0.927** 1.000 0.000

Moments BootstrapLSCV Bootstrap SJ Bootstrap
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wider or less skewed intervals generated under the moments bootstrap but it may also 

suggest that the other two procedures are more likely to reject a null hypothesis. And 

given the good convergence rates for the moments bootstrap in our simulations, this 

might be an indication of Type I errors for the two smoothing alternatives. 

Looking in Appendix XIII we find that the null hypothesis is rejected 136 times under 

the LSCV bootstrap (and at a 5% level), 137 times under the SJ bootstrap and 131 times 

under the Moments bootstrap. In these cases we find only one case where the 

moments bootstrap rejects the null while the LSCV bootstrap fails in doing so139, while 

we find 6 cases where the LSCV and SJ bootstraps both reject the null when the 

moments bootstrap does not140. So the behaviour of the two smoothing alternatives is 

very similar while under the Moments bootstrap we observe about 6% less rejections141. 

The author believes that these differences could have been more pronounced if the 

sample was less homogeneous with respect to the input-output relations (see for 

example Figure 6.5). Moreover, the nature of the particular tests contributes towards 

this direction as, although the magnitudes of the estimated Global productivity change 

indices are different, their location within the associated bootstrap distributions seems 

to be analogous across the different approaches. 

                                                      
139

 This is Xiosbank (97-98) which is rejected by SJ and Moments bootstrap but not under LSCV. 
140

 These are: Alpha Bank (93-94), Cretabank (96-97), Emporiki Bank (95-96), General Bank (89-90),  
Xiosbank (94-95) and Average Bank (90-91). 
141

 We note here that if we were using the alternative approach suggested in footnote 89 in 
subsection 3.3.2, we would end up with 133 rejections of the null for LSCV and SJ (corresponding to the 
same cases) and with 112 for the Moments bootstrap, all of which being in common with the other two 
smoothing approaches. That is, the Moments bootstrap rejects the null for the same cases as with the 
LSCV and SJ bootstrap but does not reject the null in 21 cases. We are not presenting analytical results for 
this approach as it is associated with more limitations compared to the approach we use here, which have 
been discussed in chapter 3.  
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A summary of the productivity changes on an annual basis is provided in Table 6.11. 

In particular, the table below indicates the direction of the productivity change for the 

average bank along with a summary of the movements of all other banks (excluding the 

average and weighted average banks). We find that the change in productivity under all 

bootstrap approaches is the same, though their magnitude and level of significance 

might differ. The total number of commercial banks that exhibited an increase or 

decrease in productivity is presented for each year while we also report how many of 

those changes were significant under each smoothing alternative in the last three 

columns. One interesting observation is that the differences in hypothesis testing 

decisions are scattered across 6 out of 12 time periods which suggests that they should 

not be disregarded; however, it is true that in terms of policy implications for the whole 

sector the conclusions are not affected considerably if only the direction of productivity 

change is considered (and not its magnitude). 

 

Table 6.11. Summary of hypothesis testing results for sample 

 

Av. Bank Increase Decrease LSCV Sig SJ Sig Mom. Sig

1987-1988 6 4 6 6 6

1988-1989 4 6 8 8 8

1989-1990 10 2 11 11 10

1990-1991 4 8 8 8 8

1991-1992 7 6 9 9 9

1992-1993 8 6 9 9 9

1993-1994 4 13 15 15 14

1994-1995 10 7 11 11 10

1995-1996 9 9 17 17 16

1996-1997 14 3 13 13 12

1997-1998 3 14 5 6 6

1998-1999 8 5 8 8 8

Total 87 83 120 121 116
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We also observe that in three cases the productivity change of the average bank may 

not be in accordance with that of most banks during a certain year. In particular, during 

the first two years and during 1994-1995 the behaviour of the average bank and of the 

sample seem to be different. However, this can be explained by the fact that the 

behaviour of the average bank is largely driven by the largest banks in the sample. We 

consider this as reasonable since the Greek banking sector is highly concentrated and 

therefore the average bank is a good representation of the behaviour of the Greek 

banking sector as it captures these influences142.  

 

6.5.4 Examining the effects of sector reforms 

 

The results in Table 6.10 have provided evidence that the provision of commercial 

freedoms results in higher productivity levels in the following year. On the other hand, 

in the view of regulation tightening or aggressive economic reforms, banks experience a 

decline in productivity on average. In this subsection we will use the hypothesis testing 

results to analyse the effects of sector reforms on Greek banks’ efficiency on a year-by-

year basis as mentioned in the literature review. We will use the results from the 

Moments bootstrap since the simulations have suggested that it performs better than 

the other two smoothing alternatives in terms of providing numerically more accurate 

results. 

                                                      
142

 The behaviour of the Weighted Average bank is very similar but it attaches even more weight to larger 
banks. 
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To aid our analysis we will use Figure 6.7 and Figure 6.8 which demonstrate the (log) 

input-output scatterplots for the “Average Bank” and its trajectory over time, 

respectively. In particular, Figure 6.7 indicates the position of the Average bank (red 

fillings) with respect to the other banks in the sample while Figure 6.8 presents the path 

of the Average Bank over time with the labels indicating the bias-corrected efficiency 

scores and the year (1 through 13 correspond to 1987 through 1999)143. Moreover, the 

black solid lines in the latter figure indicate a significant increase or decrease in 

productivity (under the Moments bootstrap and a 0.05 level of significance), while the 

grey dashed lines suggest no significant change in efficiency. The individual scatterplots 

and trajectories for each bank are presented in Appendix XIV. 

For the rest of this subsection, when we talk about productivity change and firms 

that exhibited significant productivity decline or increase we will be referring to 

Table 6.10 and Table 6.11, respectively. The discussion will be also using Figure 6.8 for 

illustrative purposes.  

The first observation is that during the first 7 years of the study period, where all 

sector reforms took place, the inputs and outputs of the Greek banking sector were 

quite volatile. On the contrary, the later years appear more tranquil with smoother 

movements and with a growing trend during 1997 to 1999. The behaviour of the post-

reforms period is more straightforward to be explained and through a quick overview 

                                                      
143

 We could have used the respective bias-corrected bootstrap Global Malmquist index instead; however, 
we found that their use is confusing in terms of presentation in this case. Besides, it can be confirmed that 
the direction of productivity change is the same as that of the change in the bias-corrected global 
efficiency scores by comparing Appendices XIII and XIV. This should not be confused with efficiency 
change as it is (a) based on the bootstrap bias-corrected efficiency scores and (b) with respect to the 
global frontier. 
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we could say that the sector experienced growth in both inputs and outputs. However, 

the analysis of the years during the sector reforms requires a step-by-step analysis in 

order to extract useful conclusions. 

 

Figure 6.7. Average Bank input-output scatterplots 
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Figure 6.8. Average Bank efficiency trajectory 
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and Sarkar, 2003). In particular, looking in Appendix XIII we find that the change in 

global bias-corrected efficiency144 from 1987 to 1994 for 6 banks was positive while for 

6 banks it was negative145. Given that the positive change was driven by large banks we 

could state that the overall change was mostly on the positive side as captured by the 

change in productivity of the Average Bank.  

Taking into account, though, each step of the (de)regulation process and of the 

relevant policy interventions, the results are different. Following Orea (2002), 

Siriopoulos and Tziogkidis (2010) and Delis et al. (2011) we will assume that the effects 

of each step of the (de)regulation process appear with one period’s lag, which can be 

also supported by the inflexible Greek labour market (Ayadi, 2008). 

The commercial freedoms given to Greek banks were limited during the first year of 

the reforms; in fact, a few extra controls were imposed, while the scandal of 1987 

destabilised the Greek banking sector. We would therefore expect that some banks 

benefited from the provision of commercial freedoms but we would expect a decline in 

the productivity levels for the banks which experienced a “managerial shock” in the 

view of the sector reforms or which were affected by the scandal. Indeed, we observe 

that the estimated productivity for the Average Bank declines, though insignificantly. 

                                                      
144

 We find easier to inspect the start and end-period bias-corrected efficiency scores with respect to the 
global frontier. Alternatively we could have computed the bootstrapped ratios of bias-corrected efficiency 
scores (Global Malmquist indices) between the two periods and compute a bias-corrected Global 
Malmquist index from the resulting distribution (as we did in Appendix XIII for each bank and for adjacent 
time periods). We would like to avoid a potential “information overload” and hence we did not present 
these computations here; however, the author can provide this information upon request.  
145

 Increase is documented for Attica Bank, Bank of Central Greece, Emporiki Bank, Ionian and Popular 
Bank, National Bank and Piraeus Bank. Decline is documented for Alpha Bank, Bank of Athens, Cretabank, 
Ergobank, General Bank and Macedonia-Thrace Bank.   
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The average decline was driven by the substantial decrease in productivity of Cretabank 

(the bank which was primarily affected by the scandal146) and the decrease in 

productivity of National Bank (the biggest bank which was also affected to a small 

extent by the scandal). The change that stands out is that both fixed assets and 

personnel expenses increased substantially, especially for large banks; even those that 

experienced an increase in productivity. One possible explanation is that those banks 

believed that they should expand their network to exploit the forthcoming commercial 

freedoms which was registered as a decline in efficiency under the intermediation 

approach. The other explanation could be related to the scandal as a substantial amount 

of resources shifted away from Cretabank and the Bank of Central Greece and probably 

directed to other Greek banks or even abroad. 

The initial decline in productivity in 1988 was followed by an increase in 1989 and 

1990, which may be attributed to the commercial freedoms given to commercial banks 

during that period (discussed in the previous section). The increase in productivity from 

1988 to 1989 was mainly driven by large banks, despite the fact that the majority of 

banks exhibited lower productivity. The pattern observed for most banks was an 

increase in loans, irrespective if their productivity eventually improved or declined. 

From 1989 to 1990, with the exception of two banks which experienced a small decline 

in productivity, all other banks recorded a significant increase, mainly due to the 

decrease in inputs.  

                                                      
146

 Unfortunately we do not have data for the Bank of Central Greece in 1988 which was also involved in 
the scandal (though not directly). There appears to be a productivity increase from 1987 to 1989 but we 
cannot be sure about its direction in the first year. 
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The period from 1990 to 1991 involved more obvious effects; the jump in inflation, 

combined with the pending imposition of tax on interest on deposits should cause 

productivity to drop by considerably decreasing the value of securities (the potential 

decrease in deposits should be proportionately smaller). This expectation is supported 

by the fact that inflation-indexed bonds had not been established in Greece yet (Garcia 

and Rixtel, 2007), while inflation would divert investors from securities to real estate 

according to theory (Fama and Schwert, 1977). Indeed, during that period 8 out 12 

banks experienced a decline in productivity due to a substantial decrease in securities, 

with 6 of these cases being significant.  

The following year we observe that the moderation efforts were successful as 

inflation declined to some extent and at the same time the real GDP growth achieved a 

3.1% rate. The tax on interest is also implemented, which contributed to the decrease in 

deposits as depositors sought alternative options for their money which can probably 

explain the observed increase in securities. At the same time the deregulation process 

almost completes during 1991 and 1992, allowing banks to reallocate their inputs more 

productively. Indeed, we evidence a substantial increase in securities for most banks 

while 7 out of 13 banks experience an increase in productivity, with 6 cases being 

significant. 

By the end of 1992 the deregulation process has almost been completed with the 

final important commercial freedoms provided to banks. We observe that banks 

experience a decrease in all inputs and loans, with the former being greater. On the 

other hand, securities remained almost the same in most cases, though higher for 
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bigger banks. The author did not find a justification for the observed behaviour in the 

commercial banks’ reports. One possibility is that the final wave of deregulation allowed 

banks to reallocate their inputs in more productive sources; in this case probably 

securities. The effect on productivity was overall positive and significant as documented 

by the results for the Average and for 8 out of 14 commercial banks during that period, 

including the  biggest banks in the sample (in 5 cases the increase was significant).  

The deregulation wave was followed by reregulation in 1993, which is a common 

pattern in the literature (Matthews and Thompson, 2014). The imposition of prudential 

controls after the introduction of the Basel rules on capital definition and liquidity along 

with the introduction of financial accounting standards suggested that banks would 

need to use more inputs and produce their outputs under stricter supervision. Since 

Basel I focused mainly on credit risk and the risk-weighting of assets for regulatory 

purposes (to compute the necessary capital ratios) we would expect that banks would 

reconsider their securities. In fact we observe a decrease in securities along with a small 

increase in personnel expenses (perhaps, to some extent, due to the higher resourcing 

requirements for compliance), leading to a decrease in productivity for 13 out of 17 

banks, with the decline being significant in 10 cases.  

In the first three years following the sector reforms, we document a substantial 

improvement of the macroeconomic environment with inflation dropping down to 5.5% 

and the real GDP growth rates averaging 2.7%. The good environment is also reflected 

in the productivity of Greek banks which, on average, experienced an overall increase in 

productivity. The results for the Average bank document two small decreases in 
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productivity, followed by a substantial increase. Comparing the bias-corrected efficiency 

scores between 1994 and 1997 we observe that 12 banks improved their performance 

during that period whereas 6 documented a fall147. The prevailing change in inputs and 

outputs that explains this behaviour is the relative increase in loans compared to other 

inputs. Securities exhibit a small decline, fixed assets and deposits are not very volatile 

while personnel expenses seem to increase (perhaps to serve the extra demand for 

loans). This overall increase in productivity, supported by the improving conditions of 

the environment is a pattern also documented in Humphrey and Pulley (1997) for the 

case of the US deregulation during the 80s. 

During 1997-1999 the macroeconomic environment keeps improving, while the 

bullish market of the Athens stock exchange reaches its peak in late 1999. Inspecting the 

results for the Average Bank we deduce that during the last two years, banks 

experienced an increase in both inputs and outputs, which can be attributed to the 

decreasing interest rates and the possibilities opening up in the view of joining the EU in 

the near future. The Greek banking sector enters an M&A wave during that period and it 

is followed by a bullish stock market in 1999. Hence the effects of the deregulation 

process may be mixed with the effects of the aforementioned events. It seems that in 

some cases banks increased their inputs (mainly deposits) proportionately more 

compared to their outputs which is captured as a decline in productivity. In 1998 to 

                                                      
147

 These were: Agricultural Bank, Attica Bank, Bank of Central Greece, Ionian and Popular bank and 
Emporiki Bank. We note that these banks were acquired in the future by other Greek banks. 
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1999 we observe, though, that outputs increase by more compared to inputs which 

might be due to the improving business conditions, combined with the bullish market. 

Overall, we observe that the Greek banking sector follows the theoretical pattern 

that bank productivity increases after deregulation and tends to decrease after the 

imposition of controls (Matthews and Thompson, 2014). After about 3 years from the 

end of the (de)regulation period (by 1997), Greek banks seem to recover on average, 

supported by the good market conditions which is a pattern also evidenced by 

Humphrey and Pulley (1997) for the US deregulation of the early 80’s. Moreover, we 

observe that commercial banks experience in most cases a decline in productivity during 

1993-1994 and in 1994-1995, while productivity increased in most cases over the next 

two years which is a pattern similar to that in Tsionas et al. (2003). 

 

 

6.6 Conclusions 

 

In this chapter we provided an illustrative example of the methods discussed earlier 

under the scope of the Greek banking sector reforms era. In particular, we examined the 

effect of each step of the deregulation and reregulation process on the efficiency and 

productivity of Greek banks by applying bootstrap DEA on a pooled sample of 

commercial banks. In particular we used for our analysis the moments bootstrap which 

was shown in the previous chapters to perform well in small samples and we compared 

the results with other smoothing techniques. Quantitatively, the magnitudes of the 
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estimated productivity changes and the associated confidence intervals are different to 

some extent. However, the qualitative result is the same; the productivity of Greek 

banks tends to increase after the provision of commercial freedoms whereas the 

imposition of controls seems to have the opposite effect. 

Throughout our analysis we followed the suggested guidelines in Chapter 5. The first 

important action was to highlight issues of technological heterogeneity which led to the 

exclusion of certain banks from the sample which did not exhibit the usual 

characteristics of commercial banks. The resulting sample is technologically 

homogeneous both with respect to the cross section and the panel, which is supported 

by the fact that efficient DMUs are scattered across time periods and that they form one 

homogenous cluster when we looking at the different input/output scatterplots  

This homogeneity allows for the implementation of bootstrap DEA under the 

moments bootstrap and the hypothesis testing procedures described in Chapter 3. In 

particular, the resulting sample has an almost half-normal distribution of efficiency 

scores which was shown in the previous simulations to be associated with good 

performance for samples of size 120 or more. The diagnostics have also confirmed that 

the underlying DGP exhibits technological homogeneity and it is a mixture of what we 

called in Chapter 2 “Standard” and “Trun.Normal High”.  

The results on the technical efficiency of Greek banks suggest that size is a key 

success factor as large banks tend to be more efficient compared to smaller ones; a 

pattern which holds well across the whole study period. This lends support to the SCP 

paradigm for Greek banking; at least for the period examined. At the same time, Greek 
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banks seem to have exploited their economies of scale as the median scale efficiency is 

0.989 with the few exceptions of mainly smaller banks lying on the lower tail. These 

findings do not seem to be in accordance with those of Christopoulos et al. (2002) who 

find that big banks are more cost-inefficient. However, this difference can be justified by 

the different sample and method used, but it certainly makes us consider that the 

patterns that we observe for the particular period might not be the same for all time 

periods. 

The sensitivity analysis of DEA scores through bootstrap DEA reveals that the 

moments bootstrap has produced more symmetrical bootstrap distributions compared 

to the other approaches (at least in the case examined here). In fact, the naïve 

bootstrap exhibits high skewness to the right and kurtosis and its distribution resembles 

a peaked half-normal distribution with the tail to the right. The other two smoothing 

approaches (LSCV and SJ) are less skewed compared to the naïve bootstrap but more 

skewed compared to the moments-bootstrap, making the smooth bootstraps to look 

like a mixture between the naïve bootstrap and the moments bootstrap. If we accept 

that the moments bootstrap is the “benchmark” due to its good behaviour in the 

simulations, then this extra asymmetry may be associated with the inferior performance 

of the two smoothing alternatives. We also find that the associated confidence intervals 

for the moments bootstrap are slightly wider in this example, which could be another 

reason for its superior performance and we would not perceive it as a weakness.  

Then we wanted to examine the effects of sector reforms on the Greek banking 

sector by implementing the relevant test in subsection 3.3.2 and we therefore 
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computed the ratios of the bootstrapped efficiency scores for adjacent periods and for 

each bank. And given that the efficiency scores were computed using a global frontier, 

the resulting ratios can be considered as Pastor and Lovell’s (2005) Global Malmquist 

indices. The hypothesis testing results under all approaches provide the same 

qualitative result: deregulation improves productivity while reregulation deters it (Casu 

et al., 2004; Pariouras et al. 2009, Matthews and Thompson, 2014). However, under the 

moments bootstrap we find that the null is not rejected in 6 cases whereas there was 

another case where the null was rejected under the moments bootstrap but not under 

the LSCV bootstrap. And if we accept the moments bootstrap as the benchmark, this 

could be perceived as an indication of Type I error for the other two bootstraps. It is 

interesting to note at this point that the naïve bootstrap has provided the same 

hypothesis testing outcomes as the other two smoothing approaches.  

Looking further into the productivity changes over time we observe that the changes 

were driven by big banks, which is probably due to the fact that the Greek banking 

sector is highly concentrated. To some extent this lends support to the studies of 

Altunbas et al. (1999, 2001) across 15 countries and during 1989-1997. The lagged 

response also confirms the relevant suggestion by Orea (2002), Siriopoulos and 

Tziogkidis (2010) and Delis et al. (2011). The analysis of the banks’ input-output 

trajectories was not necessarily conclusive but the strongest patterns seem to be the 

expansions and contractions in securities, as well as the simultaneous increases or 

decreases of all inputs and outputs. In fact, during the period 1994-1997 we observe an 

expansion in banks’ activities and an overall increase in productivity, on average, which 
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was supported by the enhancing business environment in Greece. This finding is similar 

to the one of Humphrey and Pulley (1997) on the post-deregulation period of US banks 

during the 80s.  

There is a clear message from this study which we suggest to be taken into account 

by regulators and policy makers. The imposition of prudential controls on Greek banks 

will probably reduce the productivity of the already unstable Greek banking sector. 

When the Basel regulations where implemented in Greece we observed a decrease in 

securities, as banks had to reconsider their portfolios along with a small increase in 

personnel expenses, perhaps due to the higher resourcing requirements for compliance. 

In the view of the closer supervision under the ESM and to the stricter capital 

requirements, as well as combined with the bad business environment in Greece and 

the increase in “red” loans, we expect a negative impact on Greek banks in the short 

run. The author believes that authorities should make sure that the imposition of new 

controls will not come at extra costs for the banks, especially the ones in distress, in 

order to ensure a smoother transition towards ECB supervision.  

The limitation of this study is the fact that due to sample size restrictions it was not 

possible to decompose the Global Malmquist index to its components. Hence, it is not 

clear whether these changes in productivity were due to changes in efficiency or 

technology. One possibility would be to use a mixture of the Global Malmquist approach 

and window analysis, however it is not clear if this would solve more problems than 

create and it is left for future research. We also note that an informal analysis of post 

2000 data (not discussed here) shows a change in the patterns observed which might 
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suggest that an approach to account for global frontier shifts, such as Asmild and Tam 

(2007) would be relevant. In terms of future methodological research, the author 

believes that there is scope for development of a bootstrap approach on the Global 

Malmquist index and its decompositions which poses the challenge of using an 

appropriate smoothing approach. 
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7 Thesis Conclusions 

 

The thesis has explored the performance of Simar and Wilson’s (1998) bootstrap DEA 

through Monte Carlo simulations and has proposed a modification which makes it 

applicable in small samples. It has also suggested guidelines for the implementation of 

bootstrap DEA and hypothesis testing and it has performed an empirical illustration on 

the Greek banking case. The theoretical explorations have highlighted the importance of 

the assumption of equal bootstrap and DEA biases for the accuracy of the constructed 

confidence intervals and, to its extent, for hypothesis testing. Our simulations have 

indicated that kernel density estimation techniques, used in the seminal paper of Simar 

and Wilson (1998) and in other developments or extensions, might indeed introduce 

additional noise (Simar and Wilson, 2002) and contribute towards the violation of the 

aforementioned assumption. The proposed alternative to smoothing performs better in 

our simulation towards this respect, justifying the higher coverage probabilities 

observed. The empirical application indicates that these differences might be reflected 

in slightly different confidence intervals and shapes of the bootstrap distributions; 

though the overall qualitative result seems to be the same across all methods. In the 

sections that follow we discuss the main findings of the thesis, we highlight its 

limitations and we propose avenues for future research. 
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7.1 Thesis summary and discussion 

 

The theoretical explorations of the thesis concerned the analysis of the deterministic 

efficiency measurement technique DEA and its extension, bootstrap DEA, which allows 

for statistical inference. Bootstrap DEA, proposed by Simar and Wilson (1998), has been 

shown to be a consistent technique which uses the empirical distribution of DEA scores 

to generate bootstrap distributions of efficiency scores for each DMU. These 

distributions can be then used to construct confidence intervals which are supposed to 

cover the population efficiency score of the DMUs in the sample. The coverage 

probabilities of these confidence intervals seem to depend heavily on the extent to 

which the fundamental assumption of equal bootstrap and DEA biases is valid; this is 

shown both theoretically and through simulations. 

The Monte Carlo simulations, which are the most extensive compared to others in 

the literature, use 4 data generating processes along with 2 different smoothing 

techniques and cover a range of sample sizes. The results indicate that, although 

bootstrap DEA is consistent and has nice asymptotic properties, it cannot be safely used 

with small samples due to the violation of the equal biases assumption. In our 

simulations we observe an interesting pattern for the confidence intervals of Simar and 

Wilson (1998, 2000a) which is also explained theoretically; the basic confidence 

intervals (Simar and Wilson, 2000a) only perform better than the percentile ones (Simar 

and Wilson, 1998) when the DEA bias is considerably greater than the bootstrap bias. In 

the Monte Carlo exercises this case was associated with populations that exhibit 
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technological heterogeneity for which we argue that even the application of simple DEA 

might not be a good idea. We therefore propose that the bootstrap DEA confidence 

intervals based on the basic interval method (Simar and Wilson, 2000a) should not be 

preferred over the ones based on the percentile method (Simar and Wilson, 1998), or at 

least the use of the primer should be carefully considered. This finding carries 

implications for the later extensions of bootstrap DEA which make use of the basic 

confidence intervals, such as the bootstrap Malmquist index (Simar and Wilson, 1999), 

the tests on returns to scale (Simar and Wilson, 2002) or the two-stage bootstrap DEA 

(Simar and Wilson, 2007).  

The investigation of the moments of the bootstrap DEA distributions of the “fixed 

DMU”, which has been disregarded in the literature, has also offered some interesting 

insights on the behaviour of bootstrap DEA. Firstly, we find that these moments are 

similar to the moments of the distribution of the DEA scores of the fixed point 

generated by the various Monte Carlo samples. This could be considered as evidence 

that bootstrap DEA has the capacity to “mimic” the sampling variations of DEA scores as 

claimed by Simar and Wilson (1998), providing support to the validity of their method. 

Secondly, we observe that the greater the technological homogeneity of the population, 

the faster the standard deviation of the bootstrap distribution will be converging to 

zero. Given the fast declining bootstrap and DEA biases in these cases, this suggests that 

for large enough samples and “homogeneous” enough samples, the DEA scores are 

robust and approximately equal to their population value. Hence, the application of 

simple DEA is adequate in these cases as the resulting confidence intervals become very 
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narrow. Finally, according to our simulations the bootstrap distributions appear as 

positively skewed and relatively leptokurtic (on average), which may be relevant when 

constructing confidence intervals. For example, in the presence of high skewness, as 

suggested by Simar and Wilson (1998), researchers may want to consider alternative 

confidence interval construction techniques, such as the bias-corrected intervals of 

Efron (1982), or they could consider the bias-corrected and accelerated confidence 

intervals of Efron (1987) proposed in Appendix VII. 

The non-satisfactory small sample performance was further investigated in Chapter 3 

and its implications for hypothesis testing were explained. In particular, we find that, 

apart from the low coverage probabilities, the violation of the equal biases assumption 

can be translated into Type I and II errors when testing hypotheses. Exploring 

alternatives in the presence of bias asymmetries (mainly on the basis of alternative 

confidence intervals) resulted in solutions which, although seemed to improve coverage 

probabilities, they did not exhibit converge to the nominal ones. Moreover, we showed 

how these asymmetries can affect the popular extension of testing for returns to scale 

with bootstrap DEA (Simar and Wilson, 2002) and we indicated a possible alternative 

that could be further looked into in the future.  

On the other hand, we argue that when there are no bias asymmetries, bootstrap 

DEA could work well in small samples. In fact, we indicate how a range of hypothesis 

tests could be implemented and how p-values could be computed. This further 

motivated our search towards finding an approach that would make this assumption 

work and that could be used in practice with small samples. Given that the reduction of 
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the bootstrap and DEA bias asymmetries is not related to confidence interval 

construction we decided to look into an alternative option; reconsidering the empirical 

distribution smoothing approach. 

The reconsideration of kernel density estimation techniques was also motivated by 

the comment in Simar and Wilson (2002) that such approaches usually introduce 

additional variability. The considerably larger bootstrap biases compared to DEA ones in 

(relatively) technologically homogeneous processes can be deemed as evidence in 

support of this comment of Simar and Wilson (2002). The alternative approach 

proposed here uses the moments of the empirical distribution of DEA scores to generate 

pseudo-populations of efficiency scores from which draws can be performed for 

bootstrap DEA. Simulations have shown that the moments-bootstrap, as we named it, is 

associated with considerably lower asymmetry of bootstrap and DEA biases compared 

to the smooth bootstraps, resulting in coverage probabilities that converge to the 

nominal ones for samples of 120 observations and under a 2-input/2-output setup.  

The theoretical explorations were summarised in a few suggested guidelines on the 

application of bootstrap DEA and its implementation on hypothesis testing. We 

emphasised the assumptions used in bootstrap DEA and the need to use the simple 

proposed diagnostics to identify the underlying data generating process, as it has 

implications for the performance and even the applicability of bootstrap DEA. On the 

same note we proposed the investigation of the technological homogeneity of the 

DMUs included in the sample and, where possible, to exclude from the analysis DMUs 

that seem to use different processes or have access to different technology. Once a 
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“satisfactory” degree of technological homogeneity has been achieved, we suggested 

using the moments bootstrap along with the percentile method for constructing 

confidence intervals (Simar and Wilson, 1998) with samples of 120 observations or 

more, while we summarised the steps that could be followed for hypothesis testing. 

In order to provide an empirical illustration of the theoretical findings we used data 

from Greek banks during 1987 to 1999, a period which is characterised by a long 

deregulation process followed by reregulation towards the standards of the Basel I 

accord. The choice of the data period is influenced by the fact that after 1999 the Greek 

banking sector is affected by a range of other events (stock exchange crisis, M&As, 

privatisations and the accession of Greece to the EU), making the long-run effects of the 

sector reforms no longer discernible. In fact Molyneux (2009) observes that after 2000, 

the EU banks exhibited different reaction to certain events, which is also confirmed for 

the Greek case by informal explorations by the author. Apart from the empirical and 

data contributions of this study, it is also of topical interest due to the current outlook of 

the Greek economy and the tightening of supervision through the European Supervisory 

Mechanism (ESM).  

The methodological challenge in this application lies within the very small sample size 

for each year and the fact that the data panel is highly unbalanced. To overcome this 

issue we decided to use a global frontier approach and therefore the ratios of global 

efficiency scores for a certain DMU in adjacent periods is the Global Malmquist 

productivity index of Pastor and Lovell (2005). Then the implementation of the 
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previously discussed hypothesis testing approaches in this case means that we can test 

for significant changes in productivity change as well as for the direction of that change. 

When looking into the quantitative results we observe some differences among the 

approaches considered. In particular, when testing for productivity change and its 

direction, we find that the associated bootstrap distributions are different and therefore 

the associated confidence intervals and p-values are different, to some extent. To be 

precise, in our case the moments bootstrap is associated with more symmetrical 

distributions while the other two smooth alternatives and the naïve bootstrap have 

more skewed and leptokurtic distributions. This extra “symmetricity” could be 

considered as an explanation for the improved performance of the moments bootstrap 

in the previous Monte Carlo simulations, something that could be further investigated in 

the future.  

The qualitative results, though, seem to be almost the same across the different 

approaches. In particular, in all cases we conclude that the provision of commercial 

freedoms increases the productivity of Greek banks the next year [lagged effects also in 

Orea (2002), Siriopoulos and Tziogkidis (2010) and Delis et al. (2011)] while the 

imposition of prudential controls has the opposite effect, which is in accordance with 

theory and evidence (Casu et al., 2004; Pariouras et al. 2009, Matthews and Thompson, 

2014). We also find that these changes where driven by the larger banks, which is in 

accordance with the European studies of Altunbas et al. (1999, 2001), while the 

application of simple DEA indicates that larger banks across all time periods tend to be 

more technically efficient than smaller ones. This suggests that the overall performance 
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of the highly concentrated Greek banking sector was driven by large banks, which 

seemed to be the leaders of the change.  

In the longer term, Greek banks seemed to have experienced an overall improvement 

in productivity and on average over the next 3-4 years. This was supported by the 

enhancing economic outlook of Greece, a pattern also observed in Humphrey and Pulley 

(1997) for the US deregulation of the early 80s.  

 

 

7.2 Policy implications 

 

There is a useful policy implication from this exercise regarding the ongoing Greek debt 

crisis which has severely affected the Greek banking sector. The four biggest Greek 

banks entered the Single Supervisory Mechanism on the 4th of November, 2014. This 

recent change requires the direct supervision of these banks (and their subsidiaries) by 

the European Central Bank, tightening the prudential monitoring of those institutions. 

During the early 90s, when prudential controls were imposed on Greek banks, they had 

a negative productivity impact for the next 1-2 years, but resulted in an overall (and on 

average) increase in productivity over a 3-4 year horizon. The productivity increase was 

supported by the good business environment at that time, which is a pattern that was 

also observed by Humphrey and Pulley (1997) for the US banking case. This finding may 

suggest that changes in banking regulation, even if they are considered as 
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“improvements”, will not necessarily lead to higher efficiency and productivity in the 

short run, especially if the environment is “hostile”. 

Given that the prospects of the Greek economy are not promising and that the big 

Greek banks only marginally passed the recent stress tests, any further regulations 

might have a long-lasting negative impact on the productivity of Greek banks. Taking 

also into account the current rumours for a further haircut of the Greek debt, the overall 

impact on the Greek banking sector would be hard to manage. We therefore suggest 

that the imposition of any further controls to be gradual and that any potential changes 

in regulation to be announced well in advance to give time for banks to adjust their 

operations accordingly. For the same reasons, we believe that the fact that the entrance 

of the Greek banks into the SSM came after the end of their recapitalisation process, 

was a good move by the policymakers; either this was intentional or not. 

 

 

7.3 Limitations and future directions 

  

The findings from our theoretical and empirical analysis come along with some 

limitations that have been explained in the previous chapters. Accordingly, suggestions 

for future research have been also proposed to address these issues as well as to 

suggest alternative avenues that could be considered in the future. Here we discuss 

what we consider to be the most important ones. 
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One of the limitations of the study relates to the fact that the simulations, despite 

being the most extensive so far in the literature, they are not exhaustive. Despite the 

fact that we observe common patterns arising, it would require further simulations to 

allow us to generalise the conclusions derived from our observations. The Monte Carlo 

simulations involved 4 data generating processes, 7 different sample sizes ranging from 

10 to 120, 3 alternative approaches to smoothing (including the moments bootstrap) as 

well as the assumption of CRS and input orientation. Given the suggestions in the 

literature that when smoothing is involved a number of alternative simulation setups 

should be considered (Silverman and Young, 1987), we propose extending the 

simulations to account for as many possibilities as possible. To this end, future research 

could look into output orientation and VRS as well as alternative DGPs, since the 

resulting shapes of the bootstrap distributions might be different.  

The additional simulations could also look at the extent to which we can generalise 

our suggestion that the percentile intervals of Simar and Wilson (1998) should be 

preferred over the “basic” ones of Simar and Wilson (2000a). Our simulations have 

shown that the latter perform better (yet not adequately well) only in the presence of 

technological heterogeneity, where even simple DEA might not be a good idea to use. It 

is interesting to examine whether the same result will be reached with alternative 

simulations as, apart from allowing us to generalise this finding, it would also pose 

questions on the performance of extensions of bootstrap DEA that make use of the 

latter intervals. 
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Another fact, which is only partially a limitation, is that, on average, bootstrap 

distributions are associated with positive skewness, despite the fact that it tends to 

decrease with sample size. Given the fact that skewness has received some attention in 

the literature, it may be the case that confidence intervals that account for skewness 

might be more suitable in the presence of high skewness. For example the Efron’s 

(1982) bias-corrected intervals, proposed by Simar and Wilson (1998), might be 

appropriate or the Efron’s (1987) bias-corrected and accelerated intervals, proposed in 

Appendix VII in this thesis, might be relevant. In any case, it seems that there is research 

potential on the issue of the effect of skewness on the performance of bootstrap DEA 

and simulations could reveal the extent to which alternative confidence intervals would 

perform better. On the same logic, the effect of kurtosis could also be investigated and 

ideally linked to certain types of data generating processes. 

Given the importance of the potential underperformance of bootstrap DEA and the 

importance of the unequal bootstrap and DEA biases towards this direction, it seems 

reasonable to propose the further investigation of the causes of such asymmetries. Our 

simulations have suggested clearly that the higher the DEA bias the greater will be the 

degree of technological heterogeneity, identified visually by histograms with a thin tail 

towards 1. However, we could not necessarily identify what causes the bootstrap bias to 

be greater than the DEA bias or vice versa. We suspect that the variability in the DGP or 

the smoothing processes used might be associated with this issue. In any case, a focused 

study on the causes of bias asymmetries and their identification from sample data 

would be useful. The author believes that the iterated bootstrap might be promising 
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towards this direction but the extremely high computational costs make it almost 

impossible to assess its performance through Monte Carlo simulations (they would 

currently require several months to run, if not years). 

The alternative approach to smoothing, the moments bootstrap, is also associated 

with some limitations that need to be further examined. In particular, our simulations 

suggested that the associated confidence intervals are slightly narrower, on average, 

when the underlying DGP is associated with technological homogeneity. On the other 

hand, the introduction of technological heterogeneity seems to make the intervals 

wider, though to a small extent. Despite that fact that narrower confidence intervals 

seem more “attractive”, the high coverage probabilities under the moments bootstrap 

seem to suggest otherwise; besides, as sample size increase the differences in widths 

seem to become very small. It would be therefore reasonable to propose for future 

research an in-depth investigation of the relationship between certain DGPs and the 

bootstrap distributions, which would explain why the resulting intervals are narrower or 

wider.  

The final limitation, which we would like to point out here, concerns our empirical 

illustration. The small number of observations per year posed a methodological 

challenge that we tried to mitigate with the consideration of a global frontier. The 

resulting ratios for the implementation of the required hypothesis tests (discussed in 

Chapter 3) were actually the Global Malmquist indices of productivity change of Pastor 

and Lovell (2005). Due to sample size issues we could not decompose the indices to 

efficiency change and technical change, while, even if sample size was not an issue, such 
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decomposition would pose other methodological challenges. In particular, it would 

require an approach to maintain the correlation structure of the local efficiency scores 

(the usual DEA scores) between adjacent periods, since they are required for these 

decompositions. Simar and Wilson (1999) dealt with this issue when they proposed 

bootstrapping the Malmquist index, by introducing a bivariate kernel from which draws 

could be performed for two adjacent periods, taking into account the correlations 

between the two samples. Apart from the fact that this method might not be relevant in 

our case, we have shown in Appendix XI that the approach of Simar and Wilson (1999) is 

not fully compatible with unbalanced panels, despite the fact that the FEAR software 

manual suggests otherwise. In particular, although results can be obtained, the 

smoothing process disregards the non-common elements which may have serious 

implications for the shape of the empirical distribution and hence for smoothing.  

Future research could also consider the implementation of the bootstrap on Asmild 

and Tam’s (2007) approach of Global Frontier shifts. This approach might be relevant in 

our case since the accession of Greece to the EU seems to be a structural break for the 

operations of Greek banks, as was the case for other European sectors (Molyneaux, 

2009). Hence the extension of our dataset after 1999 with the implementation of the 

bootstrap on the approach of Asmild and Tam (2007) seems to be an interesting 

extension. 

As a final note, the author would like to point out that there seems to be a lot of 

room for future research on bootstrap DEA. Our explorations have indicated that our 

understanding of how these methods work could be expanded by additional 
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simulations. Theoretical explanations would also be useful to indicate “when can be 

used what” and create a manual for bootstrap DEA with general applicability. Therefore, 

future research on bootstrap DEA could invest some efforts towards further improving 

the practical understanding of the existent approaches before moving to new ones. 
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I. Appendix I: Smoothing methods 

 

A. Kernel density estimation  

 

The purpose of density estimation is the determination of a functional form that mimics 

the empirical distribution of data. In particular, it uses the sample distribution to 

estimate the kernel of the density function which best approximates the asymptotic 

characteristics of the underlying population. Silverman (1986) provides a solid review of 

density estimation methods.  

The simplest method of “estimation” is the inspection of histograms, however it lacks 

precision. To construct a histogram, data are sorted and plotted by using a certain “bin-

width” ℎ, which determines the width of the histogram intervals. Therefore, each 

histogram bar includes the frequency of observations that belong in a certain interval. 

More formally: 

 𝑓ℎ(𝑡) =
1

𝑛ℎ
{number of 𝜃𝑖′s that belong in the same bin as t} ( I.1) 

where 𝑛 is the number of observations, 𝜃𝑖  is the estimated DEA efficiency score while 

the subscript ℎ in  𝑓ℎ denotes that the estimated density depends on the bin-width.  

The most popular alternative is kernel density estimation, which uses a kernel 

estimator from a popular distribution (usually a symmetric one) along with an 

appropriate smoothing parameter (or bandwidth or window width) ℎ which determines 

the closeness of the estimated density to data. The estimated kernel is determined by: 
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 𝑓ℎ(𝑡) =
1

𝑛ℎ
∑𝐾(

𝑡 − 𝜃𝑖
ℎ

)

𝑛

𝑖=1

 ( I.2) 

where 𝐾(∙) is the kernel estimator used. Obviously, 𝑓(𝑡) is a probability density with the 

same continuity and differentiability properties with those of the kernel estimator used 

(Silverman, 1986). If the kernel estimator is a standard normal one, we have from ( I.2): 

 𝑓ℎ(𝑡) =
1

𝑛ℎ
∑

1

√2𝜋
𝑒
−
1
2(
𝑡−�̂�𝑖
ℎ )

2𝑛

𝑖=1

 ( I.3) 

However, in the case of efficiency score distributions the distribution is bounded at 1, 

which is incompatible with this approach. 

Simar and Wilson (1998) propose, for the case of DEA, to use a standard normal 

density and to reflect the efficiency scores of inefficient DMUs about 1 which creates a 

compatible symmetric distribution. Hence, the kernel of efficiency scores between zero 

and one will be the mirror image of the kernel of reflected scores (between 1 and 2). In 

particular, if 𝑡𝑖 is a random variable which is defined on the (0,1) interval and 𝑡𝑖
𝑅  is its 

reflected value on the (1,2) interval, then due to symmetricity we have: 

 𝑃(𝜃𝑖 < 𝑡𝑖 < 1) = 𝑃(1 < 2 − 𝑡𝑖
𝑅 < 2 − 𝜃𝑖), 𝑡𝑖

𝑅 = 2 − 𝑡𝑖  ( I.4) 

Equation ( I.4) states the obvious: that the probabilities are symmetric about one. The 

same is valid for the tails, that is: 

 𝑃(0 < 𝑡𝑖 < 𝜃𝑖) = 𝑃(2 − 𝜃𝑖 < 𝑡𝑖 < 2) ( I.5) 

and by standardizing we have: 

 𝑃 (−
𝜃𝑖
ℎ
<
𝑡𝑖 − 𝜃𝑖
ℎ

< 0) = 𝑃 (0 <
𝑡𝑖 − 2 + 𝜃𝑖

ℎ
<
𝜃𝑖
ℎ
) ( I.6) 
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The result in ( I.6) implies that the aggregated kernel on the (0,2) interval can be defined 

by the following expression (Silverman and Young, 1987; Simar and Wilson, 1998): 

 

𝑔ℎ(𝑡) =
1

2𝑛ℎ
∑[𝐾 (

𝑡 − 𝜃𝑖
ℎ

) + 𝐾 (
𝑡 − 2 + 𝜃𝑖

ℎ
)]

𝑛

𝑖=1

=
1

2𝑛ℎ
∑[

1

√2𝜋
𝑒
−
1
2(
𝑡−�̂�𝑖
ℎ )

2

+
1

√2𝜋
𝑒
−
1
2(
𝑡−2+�̂�𝑖

ℎ )

2

]

𝑛

𝑖=1

 

( I.7) 

This is simply the average of the kernels implied by ( I.6), which is therefore equivalent to 

the following expression (Simar and Wilson, 1998): 

 𝑙ℎ(𝑡) =

{
 

 
2�̂�ℎ(𝑡) =

1

𝑛ℎ
∑[

1

√2𝜋
𝑒
−
1
2(
𝑡−�̂�𝑖
ℎ )

2

+
1

√2𝜋
𝑒
−
1
2(
𝑡−2+�̂�𝑖

ℎ )

2

]

𝑛

𝑖=1

, if t ≤ 1 

0                                                                                                    ,   otherwise

 ( I.8) 

Hence if t ≤ 1 we attach a double weight on the density since it has the same 

probability for t ≥ 1 resulting from symmetricity and we attach a zero density in the 

latter case. Thus, the reflected density is reflected back to the (0,1) interval.   

To illustrate how this can be implemented in the case of bootstrap DEA, suppose that 

𝑡𝑖 in ( I.6) is determined by the following process: 

 𝑡𝑖  = 𝛽𝑖
∗ + ℎ𝜀𝑖

∗ = 𝑡𝑖 ≤ 1,     𝑖 = 1,2,…𝑛 ( I.9) 

where 𝛽𝑖
∗ is a random resample from the empirical distribution of efficiency scores and 

𝜀𝑖
∗ is a standard normal error. Using ( I.4) and ( I.9) we have for the reflected values: 

 𝑡𝑖
𝑅 = 2 − 𝑡𝑖 = 2 − 𝛽𝑖

∗ − ℎ𝜀𝑖
∗ ( I.10) 

Obviously, the expected value of ( I.9) and ( I.10) is the DEA score or the reflected DEA 

score (since 𝛽𝑖
∗ is their random resample) and the standard deviation is equal to ℎ. 
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Hence, the kernels of the standardised values of 𝑡𝑖 correspond to the ones in ( I.7), that 

is: 

 𝑡𝑖~𝑔1,ℎ(𝑡) =
1

𝑛ℎ
∑𝐾(

𝑡1 − 𝜃𝑖
ℎ

) =
1

𝑛ℎ
∑

1

√2𝜋
𝑒
−
1
2(
𝑡1−�̂�𝑖
ℎ )

2𝑛

𝑖=1

𝑛

𝑖=1

 ( I.11) 

and 

 𝑡𝑖
𝑅 = 2 − 𝑡𝑖~𝑔2,ℎ(𝑡) =

1

𝑛ℎ
∑𝐾(

𝑡2 − 2 + 𝜃𝑖
ℎ

) =
1

𝑛ℎ
∑

1

√2𝜋
𝑒
−
1
2(
𝑡2−2+�̂�𝑖

ℎ )

2𝑛

𝑖=1

𝑛

𝑖=1

 ( I.12) 

Thus, averaging over ( I.11) and ( I.12) we get ( I.7). 

From ( I.9)and ( I.10) we can define the following sequence: 

 �̃�𝜄
∗ = {

𝛽𝑖
∗ + ℎ𝜀𝑖

∗, if 𝛽𝑖
∗ + ℎ𝜀𝑖

∗ ≤ 1 

2 − 𝛽𝑖
∗ − ℎ𝜀𝑖

∗,                 otherwise
 ( I.13) 

The distribution of the sequence �̃�𝜄
∗ is distributed as 𝑙ℎ(𝑡) in ( I.7) as �̃�𝜄

∗ ≤ 1 (Simar and 

Wilson, 1998) and it can be used to translate the reflected resample of DEA scores into a 

smoothed resample of non-reflected scores.  

To summarize, we have shown how Simar and Wilson (1998) use the empirical 

distribution of efficiency scores to estimate the kernel in ( I.8) which will be used to 

produce the bootstrap sample of pseudo-efficiency scores. We still need to determine 

how the smoothing parameter, ℎ is defined. 
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B. Choice of the smoothing parameter 

 

The estimated density is sensitive towards the choice of the smoothing parameter, ℎ. 

Low values of ℎ give rise to spurious and under-smoothed estimated densities, hence 

gaining in precision but lacking in structure (or variability). On the other hand high 

values cause over-smoothing which leads to the exclusion of potentially interesting 

variation; therefore, the gain in terms of capturing the asymptotic feature of the 

empirical distribution is offset by the higher estimation bias for the observed sample. It 

is obvious that there is a trade-off between bias and variance in density estimation 

hence bandwidth selection (that is, the choice of ℎ) should take this into account. 

The appropriate choice of the smoothing parameter is a long debated topic in the 

literature which is divided in two main streams: cross validation (or first generation 

methods) and “plug-in” (or second generation methods). Their common goal is to 

minimize a measure of distance of the estimated and the true density, usually being the 

mean integrated square error (MISE): 

 𝑀𝐼𝑆𝐸(𝑙ℎ) = ∫𝑀𝑆𝐸 (𝑙ℎ)𝑑𝑡 = ∫𝐸{𝑙ℎ(𝑡) − 𝑙(𝑡)}
2
𝑑𝑡 ( I.14) 

which, according to Silverman (1986) can be proven to be: 

 𝑀𝐼𝑆𝐸(𝑙ℎ) = ∫{𝐸[𝑙ℎ(𝑡)] − 𝑙(𝑡)}
2
𝑑𝑡 + ∫𝑣𝑎𝑟[𝑙ℎ(𝑡)]𝑑𝑡 ( I.15) 

where  

 𝐸[𝑙ℎ(𝑡)] = ∫ 𝑙ℎ(𝑡)𝑓(𝑡)𝑑𝑡 ( I.16) 

and 
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 𝑛 ∙ 𝑣𝑎𝑟[𝑙ℎ(𝑡)] = 𝐸[𝑙ℎ(𝑡)
2] − 𝐸[𝑙ℎ(𝑡)]

2
= ∫[𝑙ℎ(𝑡)]

2
𝑓(𝑡)𝑑𝑡 − [∫ 𝑙ℎ(𝑡)𝑓(𝑡)𝑑𝑡]

2

 ( I.17) 

Density estimators are assessed in terms of their asymptotic convergence, which is 

done using the asymptotic MISE148 (or AMISE). The problem is that MISE and AMISE 

cannot be estimated directly as the probability density function 𝑓(𝑡) in the expectations 

term ( I.16) is not observed. Hence, different approaches are followed in the literature to 

perform this task. 

First generation methods include “rules of thumb”, least squares cross validation 

(LSCV), likelihood cross validation (LCV) and biased cross-validation (BCV). Among these 

methods the best performing one is LSCV, which is obvious in the simulations in Park 

and Marron (1990), Jones et al. (1996) and Loader (1999). The general idea behind LSCV, 

introduced by Rudemo (1982) and Bowman (1984), is to minimize the integrated 

squared error (ISE) with respect to the smoothing parameter, which should also be the 

minimizing value for MISE: 

 𝐼𝑆𝐸(ℎ) = ∫(𝑙ℎ(𝑡) − 𝑙(𝑡))
2
𝑑𝑡 = ∫ 𝑙ℎ

2(𝑡)𝑑𝑡 − 2∫ 𝑙ℎ(𝑡)𝑙(𝑡)𝑑𝑡 + ∫ 𝑙
2(𝑡)𝑑𝑡  ( I.18) 

where the second term is estimated using “leave-one-out” cross validation. 

Second generation methods include, among others, “plug-in” methods, which seem 

to be quite popular. “Plug-in” methods involve expressing the error of the estimated 

density in terms of the unknown density and approximating it using Taylor series 

expansions (Loader, 1999). In particular, both the MISE and the optimal ℎ depend on the 

                                                      
148

 This is a quite complicated issue and describing the details of AMISE or providing further details about 
MISE is not within the scope of this study. For an introduction on these concepts, the interested reader 
can look at chapter 3 in Silverman (1986). 
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integral of the second derivative of the unknown density. Then a pilot (kernel) estimate 

of the second derivative is used where a certain relationship between the estimated 

bandwidth and the pilot bandwidth is assumed. And the resulting estimated error 

approximates MISE. Many “plug-in” approaches have been proposed but the 

benchmark seems to be these of Park and Marron (1990) and Sheather and Jones 

(1991), the latter estimator known as SJPI, standing for Sheather-Jones Plug-In. 

Second generation methods provide an optimum trade-off between error and 

variance, in contrast to LSCV which focuses in approximating MISE at the cost of excess 

variance. Models like SJPI introduce much less variance while they achieve a much faster 

rate of asymptotic convergence. However, they produce meaningful results only when 

the density to be estimated is already smooth enough. In the opposite case, the 

estimated density is not a good representation of the actual one (actually it is 

oversmoothed) and approaches based on “plug-in” techniques, like SJPI, should not be 

used; LSCV would provide by far more consistent results. 

In fact, Park and Marron (1990), when they introduced their popular “plug-in” 

method, compared simulation results from using their method against different 

methods and different data sets and state that: 

“The main result is that, under strong enough smoothness assumptions on the 

underlying density, the plug-in bandwidth will dominate in the limit. Nevertheless, there 

is some trade-off for this, which is caused by the fact that for small amounts of 

smoothness least squares cross-validation is the most effective” 
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In one of the simulation exercises they find that LSCV provides unreasonable 

answers, which is justified by the small-scale clustering in the data, implying that if there 

is distinct clustering then it may be preferred to use LSCV. 

In a comparison study, Jones et al. (1996) review bandwidth selection methods and 

argue that although LSCV provides the best centring in terms of the distribution of the 

smoothing parameter, it is associated with excess variability, hence with 

undersmoothing. Also, they argue that the asymptotic rate of convergence is very slow, 

in that it would require an enormous amount of data to ensure asymptotic convergence. 

The authors conclude that in the case of smooth densities new generation methods 

perform better; however, if there is substantial variability in the density it is implied that 

LSCV performs better, although it is not clearly stated in the paper. 

Loader (1999), argues that plug-in approaches are subject to criticism of arbitrary 

selection of pilot estimators and that they introduce too much smoothing when dealing 

with complex problems. However, second generation methods can capture the main 

trend (in the sense of capturing the asymptotic distribution) and introduce significantly 

less noise in the kernel estimation. Loader (1999) also tries to address the criticism of 

excess variability and under-smoothness on the classical methods. In particular Loader 

states that: 

“We argue that variability of cross validation is not a problem but a symptom of the 

difficulty of bandwidth selection. Less variable bandwidth selectors display this 
difficulty in another way: consistently oversmoothing when presented with problems 

with small and difficult to detect features.” (Loader, 1999; pp. 417) 
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Loader (1999) also performs comparisons based on simulations among a set of 

bandwidth selection methods: Akaike information criterion (AIC), LCV, BCV, LSCV and 

SJPI. In two distinct examples they highlight the superiority of LSCV and SJPI. In 

particular, in the first exercise LSCV fails to clearly capture the bi-modal nature of the 

data set while SJPI achieves the best performance. However, in the second exercise, 

where the density to be estimated is a multi-modal claw density, SJPI completely fails to 

capture the behaviour of the density, while LSCV achieves a very good approximation. 

Loader concludes that there is no distinct superiority between first and second 

generation methods of bandwidth selection; rather, that each has its advantages and 

disadvantages and the method used should be carefully chosen, depending on the 

nature of the data set. 

To sum up, when dealing with “hard-to estimate” densities in the sense that data do 

not follow a smooth distribution, LSCV provides much better results although it 

introduces excess variability. However, when the density to be estimated is smooth 

enough, SJPI provides better asymptotic results and LSCV does not provide enough 

smoothness. 
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C. Obtaining smoothed bootstrap samples 

 

This section provides more detail on the procedure followed by Simar and Wilson (1998) 

to obtain a set of smooth pseudo-efficiency scores 𝜃𝑖
∗, 𝑖 = 1,2…𝑛, as mentioned in Step 

2, in section  2.6.  

The first step is to use the empirical distribution to determine the smoothing 

parameter by also assuming a functional form for the kernel estimator, which is the one 

in ( I.8). They apply an appropriate technique to approximate the smoothing parameter 

and then they correct it for sample size using the following expression: 

 ℎ = ℎ (
𝑚

𝑛
)
1/5

 ( I.19) 

Then, they use the sequence in ( I.13) to transform the bootstrap resample according 

to the stochastic properties defined by the estimated kernel. Finally, they correct for 

variance and they obtained the set of smoothed pseudo-efficiency scores using: 

 
𝜃𝑖
∗ = �̅�∗ +

1

√1 + ℎ2 �̂�𝜃
2⁄

(�̃�𝜄
∗ − �̅�∗) 

( I.20) 

where �̅�∗ is the average of the re-sampled (with replacement) DEA scores and �̂�𝜃 is the 

standard deviation of the DEA scores. The vector 𝜃𝑖
∗ is the one that we wish to obtain in 

(2.20). 
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II. Appendix II: Coverage probabilities 

 

Table II.1. Coverage of Simar and Wilson’s (1998) confidence intervals: “Standard” case 

 
 
Table II.2. Coverage of Simar and Wilson’s (2000) confidence intervals: “Standard” case 

 

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.261 0.409 0.575 0.916 0.425 0.587 0.743 0.896 0.425 0.587 0.743 0.896

n = 15 0.214 0.310 0.409 0.719 0.284 0.420 0.574 0.854 0.284 0.420 0.574 0.854

n = 20 0.178 0.248 0.319 0.541 0.253 0.363 0.473 0.761 0.253 0.363 0.473 0.761

n = 25 0.137 0.191 0.243 0.398 0.239 0.341 0.421 0.657 0.239 0.341 0.421 0.657

n = 30 0.140 0.199 0.254 0.361 0.201 0.269 0.342 0.538 0.201 0.269 0.342 0.538

n = 60 0.091 0.131 0.167 0.234 0.128 0.176 0.226 0.313 0.128 0.176 0.226 0.313

n = 120 0.085 0.119 0.138 0.192 0.082 0.114 0.148 0.208 0.082 0.114 0.148 0.208

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.330 0.577 0.814 0.922 0.499 0.695 0.817 0.865 0.522 0.718 0.830 0.857

n = 15 0.227 0.417 0.603 0.962 0.438 0.597 0.771 0.927 0.416 0.582 0.764 0.929

n = 20 0.159 0.295 0.448 0.877 0.336 0.507 0.679 0.933 0.322 0.477 0.670 0.919

n = 25 0.121 0.219 0.341 0.753 0.248 0.397 0.574 0.892 0.256 0.394 0.566 0.891

n = 30 0.079 0.163 0.257 0.595 0.220 0.340 0.472 0.837 0.189 0.322 0.466 0.809

n = 60 0.022 0.051 0.083 0.212 0.075 0.118 0.188 0.390 0.059 0.104 0.165 0.374

n = 120 0.002 0.009 0.017 0.058 0.008 0.020 0.033 0.093 0.009 0.013 0.022 0.084

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.551 0.570 0.570 0.570 0.332 0.332 0.332 0.332 0.346 0.346 0.346 0.346

n = 15 0.586 0.588 0.590 0.590 0.378 0.378 0.379 0.379 0.404 0.405 0.405 0.405

n = 20 0.585 0.585 0.588 0.588 0.386 0.386 0.386 0.386 0.402 0.403 0.403 0.403

n = 25 0.576 0.576 0.579 0.579 0.434 0.434 0.434 0.434 0.430 0.430 0.430 0.430

n = 30 0.570 0.570 0.572 0.572 0.415 0.416 0.417 0.417 0.475 0.475 0.475 0.475

n = 60 0.571 0.571 0.573 0.573 0.435 0.437 0.437 0.437 0.457 0.459 0.459 0.459

n = 120 0.557 0.561 0.561 0.561 0.409 0.410 0.410 0.410 0.418 0.424 0.424 0.424

Standard 1/1 Standard 2/1 Standard 2/2

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.235 0.277 0.331 0.445 0.383 0.491 0.563 0.690 0.383 0.491 0.563 0.690

n = 15 0.175 0.210 0.242 0.301 0.260 0.333 0.401 0.537 0.260 0.333 0.401 0.537

n = 20 0.128 0.159 0.187 0.233 0.225 0.283 0.325 0.420 0.225 0.283 0.325 0.420

n = 25 0.107 0.125 0.145 0.183 0.218 0.271 0.302 0.372 0.218 0.271 0.302 0.372

n = 30 0.105 0.120 0.135 0.158 0.175 0.216 0.253 0.313 0.175 0.216 0.253 0.313

n = 60 0.062 0.072 0.080 0.086 0.113 0.140 0.151 0.174 0.113 0.140 0.151 0.174

n = 120 0.064 0.074 0.075 0.081 0.074 0.089 0.094 0.107 0.074 0.089 0.094 0.107

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.260 0.317 0.382 0.487 0.438 0.549 0.636 0.761 0.492 0.578 0.649 0.788

n = 15 0.179 0.220 0.255 0.325 0.363 0.461 0.519 0.627 0.366 0.451 0.498 0.609

n = 20 0.125 0.151 0.176 0.228 0.281 0.355 0.404 0.490 0.293 0.341 0.393 0.486

n = 25 0.091 0.112 0.135 0.165 0.221 0.274 0.305 0.384 0.216 0.270 0.315 0.391

n = 30 0.056 0.075 0.086 0.111 0.183 0.228 0.270 0.321 0.157 0.202 0.227 0.302

n = 60 0.014 0.020 0.023 0.028 0.063 0.076 0.090 0.108 0.045 0.062 0.079 0.099

n = 120 0.001 0.002 0.003 0.003 0.006 0.007 0.009 0.013 0.005 0.007 0.009 0.010

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.742 0.779 0.871 0.933 0.487 0.623 0.723 0.866 0.480 0.612 0.727 0.853

n = 15 0.763 0.767 0.874 0.953 0.517 0.656 0.778 0.904 0.556 0.669 0.771 0.893

n = 20 0.741 0.741 0.867 0.941 0.551 0.690 0.782 0.910 0.531 0.660 0.763 0.909

n = 25 0.755 0.757 0.874 0.954 0.542 0.684 0.776 0.904 0.574 0.701 0.791 0.910

n = 30 0.761 0.765 0.885 0.955 0.553 0.698 0.790 0.912 0.606 0.724 0.809 0.926

n = 60 0.745 0.774 0.873 0.952 0.594 0.729 0.827 0.922 0.589 0.715 0.809 0.916

n = 120 0.709 0.750 0.858 0.953 0.541 0.683 0.786 0.930 0.579 0.727 0.841 0.938

Standard 1/1 Standard 2/1 Standard 2/2
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Table II.3. Coverage of Simar and Wilson’s (1998) confidence intervals: “Trun. Normal Low” case 

 
 
Table II.4. Coverage of Simar and Wilson’s (2000) confidence intervals: “Trun. Normal Low” case 

 

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.370 0.409 0.435 0.467 0.303 0.349 0.367 0.410 0.327 0.376 0.389 0.421

n = 15 0.390 0.432 0.450 0.478 0.337 0.386 0.413 0.438 0.318 0.370 0.385 0.420

n = 20 0.382 0.433 0.451 0.468 0.346 0.400 0.429 0.453 0.358 0.412 0.433 0.448

n = 25 0.378 0.439 0.459 0.480 0.348 0.398 0.425 0.455 0.350 0.411 0.441 0.458

n = 30 0.385 0.445 0.468 0.487 0.338 0.402 0.430 0.449 0.330 0.417 0.446 0.480

n = 60 0.409 0.520 0.548 0.556 0.358 0.431 0.459 0.491 0.377 0.459 0.497 0.536

n = 120 0.387 0.536 0.612 0.624 0.395 0.482 0.518 0.546 0.429 0.526 0.571 0.609

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.354 0.381 0.397 0.414 0.302 0.327 0.348 0.374 0.319 0.353 0.363 0.387

n = 15 0.371 0.416 0.427 0.445 0.335 0.389 0.407 0.430 0.319 0.369 0.387 0.412

n = 20 0.379 0.433 0.449 0.462 0.340 0.416 0.433 0.460 0.353 0.417 0.436 0.460

n = 25 0.397 0.461 0.477 0.495 0.362 0.419 0.445 0.459 0.341 0.406 0.434 0.455

n = 30 0.384 0.458 0.465 0.480 0.351 0.416 0.439 0.451 0.339 0.412 0.434 0.475

n = 60 0.407 0.546 0.565 0.573 0.372 0.438 0.479 0.493 0.377 0.479 0.512 0.540

n = 120 0.377 0.581 0.636 0.645 0.411 0.503 0.552 0.569 0.450 0.547 0.589 0.634

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.249 0.249 0.249 0.249 0.199 0.199 0.199 0.199 0.201 0.201 0.201 0.201

n = 15 0.275 0.275 0.275 0.275 0.222 0.222 0.222 0.222 0.215 0.215 0.215 0.215

n = 20 0.261 0.261 0.261 0.261 0.232 0.234 0.234 0.234 0.259 0.259 0.259 0.259

n = 25 0.278 0.278 0.278 0.278 0.242 0.244 0.244 0.244 0.237 0.238 0.238 0.238

n = 30 0.296 0.296 0.296 0.296 0.246 0.246 0.246 0.246 0.253 0.257 0.257 0.257

n = 60 0.343 0.343 0.344 0.344 0.263 0.266 0.267 0.267 0.317 0.320 0.323 0.323

n = 120 0.431 0.431 0.431 0.431 0.271 0.277 0.278 0.278 0.337 0.345 0.348 0.349

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.379 0.471 0.554 0.684 0.339 0.442 0.530 0.663 0.360 0.451 0.517 0.639

n = 15 0.381 0.477 0.545 0.682 0.362 0.459 0.537 0.668 0.324 0.419 0.500 0.656

n = 20 0.383 0.466 0.541 0.657 0.362 0.444 0.498 0.631 0.356 0.432 0.514 0.649

n = 25 0.366 0.451 0.536 0.673 0.360 0.457 0.520 0.663 0.361 0.443 0.511 0.650

n = 30 0.385 0.473 0.546 0.654 0.350 0.429 0.513 0.665 0.354 0.453 0.510 0.626

n = 60 0.367 0.456 0.522 0.636 0.354 0.455 0.534 0.663 0.367 0.454 0.528 0.649

n = 120 0.342 0.417 0.466 0.565 0.396 0.495 0.572 0.699 0.415 0.500 0.576 0.676

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.343 0.435 0.516 0.652 0.314 0.412 0.512 0.634 0.326 0.421 0.513 0.614

n = 15 0.360 0.460 0.527 0.655 0.336 0.457 0.527 0.658 0.315 0.407 0.487 0.637

n = 20 0.378 0.466 0.540 0.653 0.359 0.433 0.484 0.622 0.339 0.430 0.496 0.632

n = 25 0.377 0.458 0.523 0.659 0.367 0.468 0.532 0.667 0.334 0.433 0.513 0.642

n = 30 0.368 0.457 0.526 0.633 0.347 0.442 0.519 0.650 0.339 0.449 0.515 0.634

n = 60 0.355 0.452 0.507 0.609 0.369 0.459 0.524 0.661 0.356 0.443 0.525 0.649

n = 120 0.333 0.402 0.446 0.536 0.405 0.491 0.573 0.705 0.422 0.517 0.584 0.692

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.395 0.428 0.529 0.635 0.309 0.363 0.449 0.575 0.321 0.373 0.441 0.551

n = 15 0.453 0.453 0.570 0.659 0.328 0.403 0.488 0.614 0.310 0.370 0.437 0.601

n = 20 0.477 0.478 0.579 0.677 0.317 0.413 0.476 0.604 0.337 0.424 0.477 0.598

n = 25 0.470 0.475 0.604 0.713 0.327 0.424 0.499 0.639 0.324 0.413 0.481 0.622

n = 30 0.481 0.482 0.584 0.703 0.318 0.411 0.479 0.629 0.322 0.420 0.490 0.615

n = 60 0.520 0.545 0.663 0.778 0.338 0.423 0.499 0.655 0.390 0.480 0.553 0.679

n = 120 0.570 0.602 0.683 0.808 0.349 0.460 0.552 0.684 0.422 0.531 0.615 0.737

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2
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Table II.5. Coverage of Simar and Wilson’s (1998) confidence intervals: “Trun. Normal High” case 

 
 
Table II.6. Coverage of Simar and Wilson’s (2000) confidence intervals: “Trun. Normal High” case 

 

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.636 0.816 0.883 0.905 0.646 0.817 0.868 0.885 0.641 0.790 0.874 0.897

n = 15 0.528 0.743 0.837 0.911 0.570 0.767 0.840 0.912 0.555 0.736 0.828 0.890

n = 20 0.469 0.698 0.813 0.897 0.504 0.727 0.826 0.907 0.511 0.714 0.819 0.900

n = 25 0.443 0.668 0.778 0.887 0.447 0.682 0.792 0.906 0.469 0.693 0.811 0.898

n = 30 0.405 0.615 0.773 0.887 0.424 0.652 0.798 0.893 0.457 0.684 0.810 0.907

n = 60 0.284 0.471 0.634 0.887 0.349 0.531 0.718 0.920 0.354 0.538 0.690 0.894

n = 120 0.221 0.351 0.514 0.808 0.236 0.395 0.565 0.857 0.268 0.417 0.577 0.858

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.688 0.863 0.900 0.918 0.659 0.847 0.879 0.894 0.685 0.869 0.898 0.912

n = 15 0.545 0.812 0.910 0.936 0.552 0.823 0.918 0.933 0.583 0.819 0.920 0.937

n = 20 0.465 0.782 0.889 0.938 0.518 0.800 0.910 0.954 0.516 0.784 0.916 0.953

n = 25 0.390 0.713 0.868 0.946 0.432 0.728 0.887 0.961 0.474 0.752 0.889 0.957

n = 30 0.327 0.646 0.852 0.951 0.380 0.696 0.871 0.952 0.430 0.682 0.873 0.950

n = 60 0.192 0.378 0.666 0.955 0.243 0.456 0.734 0.966 0.289 0.484 0.722 0.945

n = 120 0.094 0.194 0.379 0.875 0.128 0.273 0.472 0.902 0.151 0.277 0.492 0.916

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.582 0.600 0.603 0.603 0.552 0.562 0.562 0.562 0.509 0.516 0.516 0.516

n = 15 0.601 0.602 0.604 0.604 0.549 0.550 0.550 0.550 0.526 0.527 0.527 0.527

n = 20 0.570 0.570 0.573 0.573 0.575 0.575 0.575 0.575 0.498 0.501 0.501 0.501

n = 25 0.556 0.556 0.559 0.559 0.554 0.556 0.556 0.556 0.526 0.528 0.528 0.528

n = 30 0.561 0.561 0.565 0.565 0.537 0.538 0.538 0.538 0.509 0.512 0.512 0.512

n = 60 0.560 0.560 0.565 0.565 0.535 0.539 0.539 0.539 0.504 0.507 0.507 0.507

n = 120 0.588 0.589 0.591 0.592 0.497 0.500 0.501 0.501 0.524 0.527 0.527 0.527

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.497 0.564 0.623 0.707 0.546 0.631 0.699 0.788 0.547 0.629 0.698 0.801

n = 15 0.411 0.467 0.520 0.575 0.445 0.552 0.622 0.689 0.477 0.556 0.621 0.706

n = 20 0.356 0.418 0.469 0.524 0.400 0.492 0.544 0.621 0.438 0.506 0.569 0.646

n = 25 0.324 0.385 0.427 0.485 0.376 0.439 0.486 0.556 0.388 0.463 0.513 0.608

n = 30 0.308 0.345 0.377 0.428 0.346 0.415 0.470 0.545 0.380 0.460 0.511 0.585

n = 60 0.216 0.255 0.276 0.308 0.287 0.347 0.387 0.435 0.315 0.373 0.407 0.470

n = 120 0.154 0.183 0.193 0.214 0.191 0.239 0.265 0.308 0.221 0.271 0.300 0.331

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.484 0.574 0.617 0.703 0.504 0.597 0.674 0.762 0.560 0.648 0.712 0.814

n = 15 0.355 0.417 0.467 0.548 0.415 0.499 0.551 0.645 0.462 0.535 0.592 0.685

n = 20 0.315 0.376 0.430 0.483 0.394 0.465 0.514 0.595 0.404 0.480 0.533 0.626

n = 25 0.264 0.309 0.345 0.419 0.315 0.386 0.432 0.523 0.353 0.427 0.486 0.575

n = 30 0.224 0.264 0.293 0.355 0.300 0.363 0.405 0.473 0.332 0.391 0.444 0.515

n = 60 0.141 0.169 0.184 0.207 0.191 0.223 0.261 0.301 0.230 0.264 0.300 0.357

n = 120 0.069 0.082 0.092 0.100 0.090 0.105 0.132 0.172 0.120 0.140 0.158 0.189

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.753 0.804 0.906 0.961 0.693 0.759 0.873 0.957 0.653 0.728 0.852 0.927

n = 15 0.767 0.771 0.894 0.949 0.656 0.770 0.863 0.944 0.648 0.745 0.847 0.941

n = 20 0.734 0.735 0.874 0.945 0.674 0.769 0.865 0.949 0.623 0.740 0.819 0.933

n = 25 0.736 0.738 0.876 0.947 0.675 0.788 0.853 0.958 0.645 0.752 0.835 0.934

n = 30 0.728 0.740 0.864 0.938 0.655 0.780 0.850 0.955 0.616 0.757 0.839 0.942

n = 60 0.704 0.728 0.853 0.949 0.646 0.783 0.860 0.940 0.620 0.760 0.842 0.930

n = 120 0.744 0.787 0.861 0.955 0.616 0.759 0.838 0.945 0.661 0.782 0.872 0.956

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2
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Table II.7. Coverage of Simar and Wilson’s (1998) confidence intervals: “Uniform” case 

 
 
Table II.8. Coverage of Simar and Wilson’s (2000) confidence intervals: “Uniform” case 

 
 
  

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.512 0.685 0.772 0.869 0.543 0.697 0.789 0.837 0.542 0.689 0.755 0.809

n = 15 0.434 0.641 0.735 0.863 0.497 0.641 0.738 0.835 0.504 0.671 0.776 0.869

n = 20 0.435 0.613 0.718 0.837 0.467 0.626 0.727 0.846 0.486 0.621 0.733 0.854

n = 25 0.427 0.604 0.721 0.833 0.492 0.631 0.742 0.849 0.490 0.650 0.745 0.866

n = 30 0.396 0.559 0.691 0.837 0.451 0.595 0.708 0.823 0.465 0.629 0.734 0.851

n = 60 0.371 0.552 0.684 0.852 0.453 0.598 0.698 0.851 0.431 0.611 0.739 0.888

n = 120 0.382 0.571 0.700 0.866 0.447 0.657 0.775 0.899 0.411 0.600 0.756 0.911

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.519 0.770 0.860 0.883 0.302 0.327 0.348 0.374 0.584 0.761 0.817 0.838

n = 15 0.400 0.699 0.834 0.935 0.335 0.389 0.407 0.430 0.542 0.758 0.862 0.901

n = 20 0.348 0.646 0.828 0.956 0.340 0.416 0.433 0.460 0.447 0.674 0.833 0.923

n = 25 0.270 0.547 0.786 0.948 0.362 0.419 0.445 0.459 0.415 0.669 0.825 0.948

n = 30 0.235 0.476 0.731 0.938 0.351 0.416 0.439 0.451 0.382 0.613 0.800 0.952

n = 60 0.106 0.232 0.487 0.905 0.372 0.438 0.479 0.493 0.223 0.397 0.593 0.932

n = 120 0.050 0.105 0.227 0.720 0.411 0.503 0.552 0.569 0.146 0.251 0.412 0.864

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.562 0.576 0.577 0.577 0.456 0.457 0.457 0.457 0.457 0.459 0.459 0.459

n = 15 0.608 0.610 0.612 0.612 0.436 0.439 0.439 0.439 0.446 0.447 0.447 0.447

n = 20 0.612 0.612 0.617 0.617 0.463 0.463 0.463 0.463 0.483 0.487 0.487 0.487

n = 25 0.602 0.602 0.607 0.607 0.466 0.468 0.468 0.468 0.515 0.515 0.515 0.515

n = 30 0.570 0.570 0.572 0.572 0.450 0.454 0.454 0.454 0.502 0.505 0.506 0.506

n = 60 0.609 0.612 0.614 0.614 0.477 0.480 0.480 0.480 0.555 0.556 0.556 0.556

n = 120 0.606 0.609 0.611 0.611 0.430 0.431 0.431 0.431 0.552 0.555 0.555 0.555

Uniform 1/1 Uniform 2/1 Uniform 2/2

Cov. LSCV p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.427 0.496 0.545 0.637 0.509 0.609 0.677 0.791 0.486 0.593 0.659 0.777

n = 15 0.343 0.399 0.447 0.510 0.451 0.544 0.610 0.718 0.445 0.528 0.601 0.712

n = 20 0.335 0.390 0.428 0.490 0.414 0.499 0.551 0.657 0.440 0.529 0.581 0.656

n = 25 0.322 0.371 0.421 0.490 0.433 0.510 0.570 0.656 0.445 0.520 0.574 0.638

n = 30 0.311 0.351 0.381 0.424 0.419 0.511 0.563 0.632 0.413 0.503 0.557 0.631

n = 60 0.262 0.307 0.332 0.370 0.404 0.470 0.523 0.593 0.357 0.442 0.494 0.561

n = 120 0.256 0.285 0.311 0.340 0.391 0.459 0.509 0.583 0.343 0.420 0.461 0.521

Cov. SJ p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.379 0.456 0.509 0.595 0.314 0.412 0.512 0.634 0.492 0.588 0.663 0.775

n = 15 0.261 0.314 0.355 0.428 0.336 0.457 0.527 0.658 0.432 0.532 0.605 0.727

n = 20 0.222 0.266 0.301 0.367 0.359 0.433 0.484 0.622 0.391 0.454 0.502 0.602

n = 25 0.203 0.241 0.269 0.303 0.367 0.468 0.532 0.667 0.325 0.401 0.450 0.536

n = 30 0.153 0.198 0.222 0.264 0.347 0.442 0.519 0.650 0.320 0.367 0.432 0.508

n = 60 0.074 0.085 0.098 0.111 0.369 0.459 0.524 0.661 0.189 0.226 0.249 0.306

n = 120 0.030 0.040 0.044 0.050 0.405 0.491 0.573 0.705 0.110 0.143 0.160 0.177

Cov. Naïve p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.736 0.779 0.865 0.925 0.594 0.700 0.809 0.909 0.586 0.670 0.780 0.895

n = 15 0.794 0.799 0.910 0.961 0.560 0.696 0.800 0.911 0.568 0.705 0.799 0.905

n = 20 0.761 0.762 0.899 0.958 0.571 0.711 0.797 0.931 0.604 0.723 0.820 0.917

n = 25 0.757 0.758 0.880 0.952 0.587 0.719 0.812 0.928 0.635 0.767 0.853 0.949

n = 30 0.743 0.752 0.879 0.950 0.571 0.698 0.795 0.931 0.628 0.765 0.843 0.952

n = 60 0.769 0.793 0.884 0.965 0.597 0.723 0.813 0.922 0.675 0.786 0.864 0.955

n = 120 0.756 0.804 0.875 0.958 0.562 0.735 0.842 0.946 0.658 0.800 0.860 0.949

Uniform 1/1 Uniform 2/1 Uniform 2/2
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III. Appendix III: Confidence intervals 

 

Figure III.1.  Simar and Wilson (1998) confidence intervals – LSCV smoothing 
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Figure III.2. Simar and Wilson (2000) confidence intervals – LSCV smoothing 
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Figure III.3. Simar and Wilson (1998) confidence intervals – SJ smoothing 
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Figure III.4. Simar and Wilson (2000) confidence intervals – SJ smoothing 
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Figure III.5. Simar and Wilson (1998) confidence intervals – Naïve bootstrap 
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Figure III.6. Simar and Wilson (2000) confidence intervals – Naïve bootstrap 
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IV. Appendix IV: SkewnessandeffectonSimarandWilson’s confidence

intervals 

 

We show that in the presence of positive skewness (as evidenced in all simulations), the 

upper and lower boundaries of the Simar and Wilson’s (1998) intervals are higher than 

the Simar and Wilson’s (2000a) intervals. The implication of this is that when the 

bootstrap bias is greater than the DEA bias then SW1998 are expected to perform better 

while in the opposite case SW2000 will perform better. Hence, we theoretically justify 

the observed behaviour of coverage probabilities and confidence intervals in chapter 2. 

For the SW1998 intervals we know from (2.26) that �̃�𝑘
∗ = 𝜃𝑘

∗ − 2𝑏𝑖𝑎�̂�𝑘 and that the 

(1 − 𝑎)% SW1998 intervals are 𝜃 ∈ (�̃�𝑘
∗,(𝑎/2)

  ,  �̃�𝑘
∗,(1−𝑎/2)

). Taking into account (2.24) 

and (2.26) the 𝑗% SW1998 percentile satisfies: 

 
�̃�𝑘
∗,(𝑗)

= [𝜃𝑘
∗ − 2𝑏𝑖𝑎�̂�𝑘]

(𝑗)
= [�̂�𝑘

∗ − 2(𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘)]

(𝑗)
= 𝜃𝑘

∗,(𝑗)
− 2(𝜃𝑘

∗̅̅ ̅ − 𝜃𝑘)

= 𝜃𝑘
∗,(𝑗)

+ 2𝜃𝑘 − 2𝜃𝑘
∗̅̅ ̅ 

(IV.1) 

Note that we can take the term 2 (𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘) out of the bracket since it is a constant 

which shifts the distribution of 𝜃𝑘
∗ without affecting its shape. Regarding the SW2000 

intervals we know from (2.30) and (2.31) that Pr (𝛥𝜃𝑘
∗(𝑎) < 𝜃𝑘

∗ − 𝜃𝑘 < 𝛥𝜃𝑘
∗(1−𝑎/2)) =

1 − 𝑎, hence the associated percentiles satisfy: 

 𝛥𝜃𝑘
∗(𝑗) = [𝜃𝑘

∗ − 𝜃𝑘]
(𝑗)
= 𝜃𝑘

∗,(𝑗)
− 𝜃𝑘 (IV.2) 
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And we already know from (2.31) that the associated confidence intervals are 

𝜃𝑘 ∈ (𝜃𝑘 − 𝛥𝜃𝑘
∗(1−𝑎/2), 𝜃𝑘 − 𝛥𝜃𝑘

∗(𝑎/2)). 

We will show first that under reasonable conditions the upper boundary of the 

SW1998 intervals lies higher compared to that of the SW2000 intervals. We have: 

 

 �̃�𝑘
∗,(1−

𝑎
2
)
> 𝜃𝑘 − 𝛥𝜃𝑘

∗(
𝑎
2
)
⇒ 

𝜃𝑘
∗,(1−

𝑎
2
)
+ 2𝜃𝑘 − 2𝜃𝑘

∗̅̅ ̅ > 𝜃𝑘 − [𝜃𝑘
∗,(
𝑎
2
)
− 𝜃𝑘] ⇒ 

𝜃𝑘
∗,(1−

𝑎
2
)
− 𝜃𝑘

∗̅̅ ̅ > 𝜃𝑘
∗̅̅ ̅ − 𝜃𝑘

∗,(
𝑎
2
)
 

(IV.3) 

Note that 𝜃𝑘
∗̅̅ ̅ is the centre of the distribution of 𝜃𝑘

∗ , and therefore 𝜃𝑘
∗,(𝑎/2)

< 𝜃𝑘
∗̅̅ ̅ <

𝜃𝑘
∗,(1−𝑎/2)

. If the distribution is positively skewed, as this seems to be on average the 

cases from our simulations in subsection 2.9.5, then the last inequality is almost certain 

to apply. If the distribution is also leptokurtic (which also seems to be true on average 

from our simulations), then 𝜃𝑘
∗̅̅ ̅ should lie closer to 𝜃𝑘

∗,(𝑎/2)
 than 𝜃𝑘

∗,(1−𝑎/2)
 as there would 

be a high concentration of values towards the lower end of the distribution and very 

close to 𝜃𝑘
∗̅̅ ̅. Therefore, we have shown that under the usually observed conditions 

𝜃𝑘
∗,(1−𝑎/2)

− 𝜃𝑘
∗̅̅ ̅ > 𝜃𝑘

∗̅̅ ̅ − 𝜃𝑘
∗,(𝑎/2)

. Following the same approach for the lower bounds of 

the two confidence intervals we reach exactly the same inequality. Hence, in these cases 

the SW1998 endpoints should lie higher than the SW2000 ones which is confirmed in 

our simulations for all cases. 

We also need to note, that Simar and Wilson (1998) have suggested that in the 

presence of skewness that the median should be preferred in bias corrections instead of 
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the mean and they suggested using Efron’s (1982) bias-corrected intervals. If the median 

is used to compute 𝜃𝑘
∗̅̅ ̅ instead of the mean, then the only condition necessary for the 

previous inequality to apply would be that the distribution be positively skewed. Given 

that all simulations exhibit skewness and given that we should be using the median 

instead in these cases, we deduce that the endpoints of Simar and Wilson’s (1998) lie 

higher compared to those of Simar and Wilson (2000). 

The implications of this are quite useful as they explain why the SW1998 intervals 

perform better when the bootstrap bias is larger than the DEA bias and why the 

opposite is true when the DEA bias is larger than the bootstrap bias (as in the 

“Trun.Normal Low” case or under all naïve bootstraps). Consider the case where the 

bootstrap bias is larger than the DEA bias, suggesting that the true efficiency score is 

underestimated and that the associated confidence intervals target at a value below 𝜃𝑘. 

That is, in both cases the lower bounds of the intervals will be well below 𝜃𝑘  while the 

extent to which the upper bounds will cover 𝜃𝑘  will depend upon the magnitude of the 

bias (see also subsection 3.2.1). Since SW1998 upper bound lies further up compared to 

the SW2000 one, then there is a higher probability for 𝜃𝑘  to be included in SW1998 

intervals rather than the SW2000 ones. This is confirmed in all of our simulation results 

in subsections 2.9.3 and 2.9.4. 

Likewise, when the DEA bias is greater than the bootstrap bias then 𝜃𝑘  is 

overestimated and the upper bounds of the intervals lie well-above 𝜃𝑘. Moreover, the 

larger the DEA bias is compared to the bootstrap bias (see also subsection 3.2.3) the 

higher is the probability for the intervals to overestimate 𝜃𝑘  as well. Since the SW2000 
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lower bound lies below the SW1998, the probability of including 𝜃𝑘  is greater. Again, the 

simulations for the “Trun.Normal Low” case and for samples up to 𝑛 = 120, confirm this 

argument.  

Hence, in the presence of positive skewness the SW1998 confidence intervals 

perform better when the bootstrap bias is greater than the DEA bias while SW2000 

perform better when the bootstrap bias is smaller than the DEA bias. However, it is 

reminded that this case has been associated with technological heterogeneity which 

might suggest that SW2000 should not be preferred if there is positive skewness. 
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V. Appendix V: Moments of the fixed DMU’sbootstrapdistribution 

 

Table V.1. Moments for the fixed DMU: “Standard” case 

 

Population Eff. Score Eff. Score Eff. Score

N = 10,000 0.845 0.845 0.846

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.869 0.023 1.823 7.241 0.887 0.026 0.989 4.330 0.889 0.027 1.043 4.228

n = 15 0.860 0.014 1.536 5.603 0.872 0.018 1.080 4.799 0.874 0.019 1.151 4.453

n = 20 0.856 0.011 1.724 6.616 0.866 0.014 1.042 3.974 0.867 0.014 1.146 4.535

n = 25 0.854 0.008 1.404 5.088 0.862 0.012 1.233 4.926 0.863 0.011 1.115 4.500

n = 30 0.852 0.007 2.171 12.005 0.860 0.010 1.368 5.556 0.859 0.009 1.111 4.198

n = 60 0.849 0.004 2.050 9.177 0.852 0.005 1.514 6.117 0.853 0.005 1.365 5.097

n = 120 0.847 0.002 1.855 7.513 0.849 0.002 1.069 4.544 0.850 0.002 1.532 7.484

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.931 0.022 1.010 4.999 0.948 0.023 0.870 4.305 0.950 0.023 0.852 4.210

n = 15 0.914 0.015 0.986 5.002 0.927 0.017 0.838 4.211 0.928 0.018 0.819 4.141

n = 20 0.904 0.012 0.972 5.020 0.915 0.014 0.817 4.154 0.915 0.014 0.820 4.153

n = 25 0.898 0.010 0.964 5.036 0.907 0.012 0.826 4.207 0.909 0.012 0.814 4.150

n = 30 0.893 0.008 0.954 5.064 0.902 0.010 0.798 4.117 0.902 0.010 0.802 4.116

n = 60 0.880 0.004 0.875 4.821 0.886 0.006 0.789 4.059 0.886 0.006 0.784 4.093

n = 120 0.871 0.002 0.825 4.700 0.875 0.003 0.763 4.008 0.875 0.003 0.765 4.041

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.917 0.020 1.373 6.051 0.937 0.022 1.071 4.747 0.938 0.022 1.045 4.684

n = 15 0.902 0.014 1.363 6.069 0.916 0.016 0.999 4.545 0.918 0.017 0.977 4.435

n = 20 0.894 0.011 1.353 6.099 0.906 0.013 0.977 4.467 0.906 0.013 0.967 4.409

n = 25 0.888 0.009 1.345 6.068 0.899 0.011 0.971 4.456 0.900 0.011 0.955 4.390

n = 30 0.884 0.007 1.328 6.142 0.894 0.010 0.955 4.449 0.894 0.010 0.932 4.345

n = 60 0.873 0.004 1.207 5.792 0.879 0.005 0.918 4.301 0.880 0.005 0.909 4.285

n = 120 0.866 0.002 1.138 5.635 0.869 0.003 0.897 4.273 0.870 0.003 0.903 4.267

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.876 0.020 2.454 9.919 0.898 0.018 2.317 9.779 0.898 0.018 2.267 9.734

n = 15 0.865 0.013 2.538 10.918 0.879 0.013 2.303 9.743 0.881 0.013 2.133 8.856

n = 20 0.860 0.010 2.491 10.446 0.871 0.010 2.193 9.226 0.872 0.010 2.285 10.025

n = 25 0.857 0.008 2.472 10.496 0.866 0.008 2.258 9.877 0.867 0.008 2.188 9.365

n = 30 0.854 0.007 2.438 10.098 0.863 0.007 2.174 9.058 0.863 0.007 2.248 9.595

n = 60 0.850 0.003 2.494 10.638 0.854 0.004 2.377 10.617 0.855 0.004 2.321 10.098

n = 120 0.847 0.002 2.501 10.909 0.850 0.002 2.471 11.138 0.850 0.002 2.613 11.846

Standard 1/1 Standard 2/1 Standard 2/2
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Table V.2. Moments for the fixed DMU: “Trun. Normal Low” case 

 
 

Population Eff. Score Eff. Score Eff. Score

N = 10,000 0.592 0.591 0.593

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.749 0.083 0.329 2.806 0.771 0.080 0.219 2.730 0.774 0.083 0.251 2.459

n = 15 0.716 0.066 0.237 2.406 0.734 0.068 0.274 2.574 0.738 0.067 0.212 2.796

n = 20 0.700 0.059 0.370 2.762 0.716 0.060 0.257 2.607 0.715 0.062 0.398 2.780

n = 25 0.685 0.053 0.452 2.774 0.701 0.053 0.357 2.690 0.703 0.054 0.337 2.640

n = 30 0.677 0.050 0.454 2.687 0.691 0.048 0.341 2.728 0.694 0.052 0.391 2.675

n = 60 0.647 0.036 0.579 2.919 0.662 0.036 0.478 2.925 0.660 0.038 0.607 3.033

n = 120 0.626 0.026 0.657 2.706 0.640 0.025 0.510 3.022 0.637 0.026 0.766 3.523

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.833 0.038 1.312 5.432 0.861 0.039 1.097 4.763 0.860 0.039 1.088 4.723

n = 15 0.785 0.031 1.462 5.788 0.808 0.032 1.171 4.828 0.815 0.031 1.143 4.810

n = 20 0.759 0.027 1.528 5.983 0.782 0.027 1.178 4.859 0.781 0.027 1.163 4.824

n = 25 0.739 0.024 1.596 6.247 0.760 0.025 1.218 5.033 0.763 0.025 1.208 4.913

n = 30 0.726 0.023 1.600 6.277 0.746 0.023 1.235 5.059 0.746 0.023 1.195 4.879

n = 60 0.684 0.017 1.685 6.512 0.703 0.017 1.215 4.960 0.701 0.017 1.201 4.830

n = 120 0.653 0.013 1.778 6.963 0.672 0.012 1.185 4.850 0.669 0.013 1.194 4.817

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.827 0.038 1.471 5.965 0.858 0.039 1.229 5.125 0.853 0.038 1.211 5.059

n = 15 0.783 0.031 1.536 6.088 0.806 0.032 1.218 5.020 0.812 0.031 1.205 4.936

n = 20 0.758 0.027 1.566 6.161 0.784 0.027 1.207 4.947 0.780 0.028 1.192 4.910

n = 25 0.738 0.025 1.627 6.397 0.761 0.025 1.238 5.046 0.762 0.024 1.220 4.989

n = 30 0.727 0.023 1.634 6.427 0.748 0.023 1.235 4.991 0.748 0.023 1.216 4.971

n = 60 0.685 0.017 1.695 6.589 0.705 0.017 1.212 4.922 0.703 0.017 1.178 4.826

n = 120 0.654 0.013 1.753 6.851 0.673 0.012 1.181 4.835 0.669 0.013 1.152 4.720

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.780 0.053 1.585 5.088 0.807 0.046 1.803 6.097 0.808 0.045 1.786 5.959

n = 15 0.744 0.044 1.665 5.552 0.764 0.039 1.755 6.006 0.771 0.038 1.857 6.319

n = 20 0.724 0.040 1.591 5.191 0.745 0.034 1.755 6.010 0.741 0.034 1.760 6.117

n = 25 0.706 0.036 1.680 5.499 0.724 0.031 1.800 6.395 0.727 0.030 1.792 6.339

n = 30 0.696 0.034 1.665 5.400 0.715 0.027 1.777 6.245 0.714 0.027 1.823 6.521

n = 60 0.661 0.025 1.756 5.762 0.678 0.020 1.709 6.283 0.676 0.021 1.715 6.113

n = 120 0.635 0.018 1.810 6.055 0.653 0.014 1.720 6.365 0.648 0.015 1.694 6.220

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2
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Table V.3. Moments for the fixed DMU: “Trun. Normal High” case 

 
 
 

Population Eff. Score Eff. Score Eff. Score

N = 10,000 0.358 0.350 0.349

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.434 0.076 2.118 9.663 0.440 0.078 1.514 5.358 0.440 0.076 1.898 8.496

n = 15 0.405 0.046 1.916 8.254 0.407 0.052 2.339 11.288 0.409 0.048 1.773 8.456

n = 20 0.394 0.034 1.620 6.318 0.393 0.033 1.545 5.839 0.394 0.034 1.510 6.450

n = 25 0.386 0.027 1.878 7.777 0.384 0.029 2.056 9.864 0.386 0.028 1.571 6.208

n = 30 0.381 0.024 2.233 11.064 0.380 0.024 2.003 8.814 0.381 0.025 1.898 8.371

n = 60 0.369 0.011 1.895 8.763 0.366 0.012 1.846 8.037 0.366 0.013 1.657 7.525

n = 120 0.364 0.006 1.794 6.801 0.358 0.006 1.530 7.053 0.358 0.006 1.106 4.315

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.515 0.059 1.971 8.895 0.526 0.059 1.908 8.812 0.533 0.058 1.836 8.443

n = 15 0.465 0.036 1.983 8.820 0.473 0.038 1.798 8.184 0.479 0.038 1.770 8.024

n = 20 0.446 0.026 2.022 9.219 0.453 0.028 1.712 7.773 0.453 0.027 1.646 7.330

n = 25 0.430 0.020 1.994 9.069 0.435 0.022 1.661 7.501 0.437 0.022 1.581 6.991

n = 30 0.419 0.017 2.030 9.204 0.425 0.019 1.626 7.139 0.428 0.019 1.548 6.891

n = 60 0.395 0.008 1.979 8.927 0.395 0.010 1.426 6.208 0.395 0.010 1.364 5.914

n = 120 0.380 0.005 1.964 8.686 0.378 0.006 1.291 5.536 0.377 0.006 1.253 5.372

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.512 0.058 2.113 9.874 0.528 0.058 1.969 9.170 0.527 0.057 1.938 9.182

n = 15 0.468 0.035 2.052 9.418 0.474 0.037 1.814 8.378 0.479 0.038 1.777 8.112

n = 20 0.446 0.026 2.054 9.579 0.454 0.028 1.725 7.758 0.454 0.027 1.671 7.564

n = 25 0.430 0.020 2.030 9.385 0.435 0.022 1.654 7.438 0.437 0.022 1.598 7.152

n = 30 0.422 0.017 2.028 9.246 0.425 0.019 1.611 7.166 0.427 0.019 1.540 6.772

n = 60 0.395 0.009 1.992 8.987 0.397 0.010 1.401 5.996 0.397 0.010 1.347 5.758

n = 120 0.381 0.005 1.944 8.574 0.380 0.006 1.262 5.361 0.379 0.006 1.238 5.297

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.458 0.073 2.662 11.409 0.467 0.068 2.793 13.291 0.467 0.063 2.862 14.018

n = 15 0.420 0.043 2.504 10.680 0.424 0.038 2.759 13.425 0.427 0.039 2.729 13.664

n = 20 0.404 0.031 2.675 11.926 0.409 0.030 2.599 12.554 0.408 0.026 2.633 12.789

n = 25 0.393 0.023 2.624 12.151 0.396 0.022 2.630 12.458 0.397 0.022 2.544 12.126

n = 30 0.388 0.019 2.593 11.630 0.388 0.019 2.653 12.824 0.391 0.018 2.513 11.605

n = 60 0.373 0.009 2.678 11.893 0.370 0.009 2.595 12.112 0.371 0.009 2.353 10.600

n = 120 0.365 0.005 2.501 10.774 0.361 0.005 2.417 11.111 0.361 0.005 2.253 9.982

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2
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Table V.4. Moments for the fixed DMU: “Uniform” case 

 
 
 

 

  

Population Eff. Score Eff. Score Eff. Score

N = 10,000 0.653 0.655 0.652

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.716 0.061 1.755 6.513 0.736 0.060 1.578 5.975 0.737 0.063 1.323 4.916

n = 15 0.691 0.038 1.885 7.272 0.713 0.040 1.298 4.953 0.710 0.044 1.846 8.293

n = 20 0.681 0.028 2.133 10.499 0.698 0.031 1.594 6.971 0.696 0.034 1.662 7.130

n = 25 0.676 0.023 1.814 7.115 0.690 0.024 1.288 5.447 0.686 0.025 1.557 6.459

n = 30 0.672 0.017 1.527 5.453 0.686 0.022 1.193 4.608 0.681 0.021 1.247 5.109

n = 60 0.662 0.009 2.035 8.958 0.671 0.012 1.276 5.102 0.667 0.011 1.364 5.482

n = 120 0.658 0.004 2.017 9.309 0.663 0.006 1.831 8.819 0.660 0.006 1.509 6.176

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.790 0.041 1.489 6.223 0.820 0.043 1.280 5.488 0.822 0.042 1.235 5.355

n = 15 0.751 0.028 1.730 7.148 0.782 0.031 1.386 5.942 0.781 0.031 1.302 5.615

n = 20 0.733 0.022 1.816 7.792 0.758 0.024 1.355 5.812 0.754 0.025 1.390 6.063

n = 25 0.718 0.018 1.899 8.251 0.741 0.020 1.385 5.929 0.736 0.021 1.372 5.894

n = 30 0.709 0.014 1.877 8.305 0.729 0.017 1.368 5.880 0.725 0.018 1.371 5.887

n = 60 0.681 0.008 1.968 8.717 0.697 0.009 1.278 5.487 0.692 0.010 1.264 5.463

n = 120 0.667 0.004 1.961 8.657 0.677 0.005 1.218 5.213 0.674 0.006 1.185 5.062

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.787 0.041 1.630 6.841 0.817 0.042 1.381 5.758 0.818 0.042 1.319 5.635

n = 15 0.752 0.029 1.726 7.376 0.782 0.031 1.376 5.875 0.778 0.031 1.323 5.704

n = 20 0.735 0.023 1.781 7.747 0.760 0.024 1.319 5.729 0.755 0.025 1.331 5.767

n = 25 0.722 0.018 1.843 8.072 0.744 0.020 1.322 5.748 0.741 0.021 1.290 5.597

n = 30 0.713 0.015 1.837 8.081 0.735 0.018 1.311 5.690 0.731 0.018 1.276 5.502

n = 60 0.689 0.008 1.871 8.226 0.704 0.010 1.211 5.182 0.700 0.010 1.178 5.058

n = 120 0.675 0.004 1.906 8.409 0.684 0.006 1.156 4.961 0.681 0.006 1.129 4.818

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.731 0.052 2.354 8.278 0.758 0.047 2.412 9.201 0.763 0.045 2.348 9.415

n = 15 0.703 0.034 2.531 10.066 0.729 0.030 2.531 11.888 0.724 0.030 2.507 11.667

n = 20 0.691 0.026 2.462 10.201 0.711 0.023 2.517 11.435 0.708 0.023 2.525 11.731

n = 25 0.683 0.021 2.565 11.379 0.701 0.018 2.368 10.696 0.697 0.020 2.403 10.765

n = 30 0.677 0.016 2.635 11.749 0.695 0.016 2.321 10.060 0.691 0.017 2.311 10.238

n = 60 0.665 0.008 2.608 12.079 0.676 0.008 2.244 9.781 0.672 0.009 2.217 9.620

n = 120 0.659 0.004 2.627 11.833 0.666 0.004 2.356 10.246 0.662 0.005 2.262 9.783

Uniform 1/1 Uniform 2/1 Uniform 2/2
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VI. Appendix VI: SW1998 and SW2000 intervals in large samples 

 

We observe that intervals narrow down with sample size and there is an obvious 

asymptotic trend to converge to the fixed point. The convergence slows down due to 

the fact that the bootstrap bias is not exactly the same as the DEA bias; this will only 

occur asymptotically where both will be equal to zero.  

 

Figure VI.1. Simar and Wilson’s (1998) confidence intervals: large samples 
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Figure VI.2. Simar and Wilson’s (2000a) confidence intervals: large samples 
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VII. Appendix VII: Bias corrected and accelerated confidence intervals 

 

Skewness may affect the validity of hypothesis testing and the performance of 

bootstrap DEA in general. As already mentioned in chapter 3, Simar and Wilson (1998) 

propose using the bias-corrected intervals of Efron (1982) and in an empirical illustration 

it is shown that the bias-corrected intervals are wider towards the upper bound (due to 

input orientation and positive skewness). However, Efron (1987) proposed a better 

technique for accounting for skewness: the bias corrected and accelerated intervals. In 

fact Efron’s (1982) bias-corrected intervals (𝐵𝐶) are a special case of Efron’s (1987) 

bias-corrected and accelerated intervals (𝐵𝐶𝑎) where the “acceleration parameter” is 

equal to zero. However, the estimation of the acceleration parameter can be very 

challenging when the problem in hand is complicated (Shao and Tu, 1995) as in the case 

of bootstrap DEA. In this appendix we outline some ideas on how the acceleration 

parameter could be computed, which comprises work in progress by the author. 

Let us first explain how the 𝐵𝐶𝑎 intervals could be computed in the case of bootstrap 

DEA by employing a straight application from Efron (1987). The logic is similar with 

implementing the 𝐵𝐶 intervals: instead of using the SW1998 intervals (�̃�𝑘
∗,𝑎/2

, �̃�𝑘
∗,1−𝑎/2

), 

two endpoints 𝑎1 and 𝑎2 are determined and the following intervals are estimated 

𝜃 ∈ (�̃�𝑘
∗,𝑎1 , �̃�𝑘

∗,𝑎2), where 

 𝑎1 = 𝛷(�̂�0 +
�̂�0 + 𝑧

(𝑎 2⁄ )

1 − �̂� (�̂�0 + 𝑧
(𝑎 2⁄ ))

) (VII.1) 

and:  
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 𝑎2 = 𝛷(�̂�0 +
�̂�0 + 𝑧

(1−𝑎 2⁄ )

1 − �̂� (�̂�0 + 𝑧
(1−𝑎 2⁄ ))

) (VII.2) 

As explained in chapter 3, 𝛷 is the standard normal cumulative density function and 

𝑧(
𝑎
2⁄ ) is the normalized value that corresponds to the (𝑎 2⁄ )th percentile of the standard 

normal distribution, so that  𝛷(𝑧(
𝑎
2⁄ )) = 𝑎

2⁄ . The parameter �̂�0 is called the bias-

correction parameter and is computed as �̂�0 = 𝛷
−1[𝐺(�̃�𝑘

∗)]  where 𝐺(�̃�𝑘
∗) =

Pr (�̃�𝑘
∗ < �̃�𝑘

∗̅̅ ̅). 

We would like to note at this point that Efron (1987) suggests for a general estimator 

𝜃 that 𝐺(𝜃 ) = Pr(𝜃∗ < 𝜃 ); this involves the proportion of bootstrap estimates that 

are smaller the sample estimate. However in bootstrap DEA we know that by definition 

𝜃∗ > 𝜃 and hence the point �̃�𝑘
∗̅̅ ̅ is chosen which serves as an estimator for 𝜃𝑘, as in Simar 

and Wilson (1998). One may think that we could correct the bootstrap distribution once 

so that 𝜃𝑘
∗,𝑐 = 𝜃𝑘

∗ − 𝑏𝑖𝑎𝑠�̂� which would centre the distribution on 𝜃𝑘  149and therefore 

we could compute 𝐺(𝜃𝑘 ) = Pr(𝜃𝑘
∗,𝑐 < 𝜃𝑘  ) instead. However, it can be easily shown 

that 𝐺(�̃�𝑘
∗) = Pr (�̃�𝑘

∗ < �̃�𝑘
∗̅̅ ̅) = Pr(𝜃𝑘

∗,𝑐 < 𝜃𝑘  ) = 𝐺(𝜃𝑘 ); we just need to observe that 

Pr (�̃�𝑘
∗ < �̃�𝑘

∗̅̅ ̅) = Pr (𝜃𝑘
∗,𝑐 − 𝑏𝑖𝑎𝑠�̂� < 𝜃𝑘

∗,𝑐̅̅ ̅̅ ̅ − 𝑏𝑖𝑎𝑠�̂�) = Pr(𝜃𝑘
∗,𝑐 < 𝜃𝑘). Hence, the choice 

of (�̃�𝑘
∗) = Pr (�̃�𝑘

∗ < �̃�𝑘
∗̅̅ ̅) by Simar and Wilson (1998) is appropriate for the estimation of 

the bias-correction parameter �̂�0. 

                                                      
149

 Note that �̂�𝑘
∗,𝑐̅̅ ̅̅ = �̂�𝑘

∗̅
− 𝑏𝑖𝑎𝑠�̂� = �̂�𝑘

∗̅
− (�̂�𝑘

∗̅
− �̂�𝑘) = �̂�𝑘. 
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The acceleration parameter for the non-parametric case can be calculated in various 

ways150 one of which involves using the jackknife. We will first explain how it can be 

computed in a general setup (non-specific to DEA) and we will try then to apply it on 

DEA. We follow closely the analysis in Efron and Tibshirani (1993; pp.186) and the 

interested reader may refer there for more information. Suppose that 𝜃 is estimated by 

the model 𝜃 = 𝑠(𝐱). Denote with 𝐱(𝑖) the original data with the 𝑖𝑡ℎ observation deleted 

and let 𝜃(∙) =
1

𝑛
∑ 𝜃(𝑖)
𝑛
𝑖=1 , where 𝜃(𝑖) = 𝑠(𝐱(𝑖)). Then the acceleration parameter can be 

estimated as: 

 �̂� =
∑ (𝜃(∙) − 𝜃(𝑖))

3𝑛
𝑖=1

6 [∑ (𝜃(∙) − 𝜃(𝑖))
2𝑛

𝑖=1 ]
3
2⁄

 (VII.3) 

Note that the acceleration parameter, as opposed to the bias-correction parameter �̂�0, 

is not computed on the basis of the bootstrap distribution but on the basis of the 

empirical distribution. Attaching an intuitive interpretation to the acceleration 

parameter is not straightforward. We could state though that it tries to capture the 

effect of skewness in the distribution of 𝜃 on the estimation of bootstrap confidence 

intervals that have been generated using the empirical distribution 𝜃. To some extent it 

measures how the standard error of 𝜃 changes by moving along its distribution. 

There is a challenge in applying this estimator on DEA: 𝜃(𝑖) = 𝑠(𝐱(𝑖)) cannot be 

estimated since it would require deleting DMU 𝑖 to compute the efficiency score of 

DMU 𝑖, which is logically inconsistent. We propose two alternative approaches: either 

                                                      
150

 See Efron and Tibshirani (1993) for more information and in particular section 14.3 in pp.184. 
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applying the jackknife on the means of efficiency scores or using a form of leave-one-out 

cross validation to estimate the acceleration parameter for DMU 𝑘. 

The first suggestion of applying jackknife on the means can be easily implemented; 

instead of using 𝜃(𝑖) one could use 𝜃(𝑖)
̅̅ ̅̅̅, and instead of 𝜃(∙) one could use 𝜃(∙)

̅̅ ̅̅ . To be 

more specific, 𝜃(𝑖)
̅̅ ̅̅̅ involves deleting the 𝑖𝑡ℎ DMU from the sample, applying DEA on the 

𝑛 − 1 DMUs and calculating their mean, whereas 𝜃(∙)
̅̅ ̅̅ =

1

𝑛
∑ 𝜃(𝑖)

̅̅ ̅̅̅𝑛
𝑖=1  involves computing 

the mean of these means. The acceleration parameter would then be: 

 �̂� =
∑ (𝜃(∙)

̅̅ ̅̅ − 𝜃(𝑖)
̅̅ ̅̅̅)

3
𝑛
𝑖=1

6 [∑ (𝜃(∙)
̅̅ ̅̅ −  𝜃(𝑖)

̅̅ ̅̅̅)
2

𝑛
𝑖=1 ]

3
2⁄
 (VII.4) 

What we find less attractive in this approach is that the estimated acceleration 

parameter is not specific to some DMU but to the whole dataset. This means that 

computing the 𝐵𝐶𝑎  intervals for each DMUs would involve all using the same 

acceleration parameter which does not seem ideal in the case of bootstrap DEA.  

An alternative approach would be to use a form of leave-one-out cross validation 

(CV) which would return an acceleration parameter for each DMU. The idea here is that 

instead of 𝜃(𝑖) we could proceed with our analysis for some DMU 𝑘 by deleting DMU 

𝑖 ≠ 𝑘 which we denote as 𝜃𝑘,(𝑖). And instead of using 𝜃(∙), we propose using 𝜃𝑘,(∙) =

1

𝑛−1
∑ 𝜃𝑘,(𝑖)
𝑛
𝑖≠𝑘=1 . This means that the acceleration parameter is now specific to each 

DMU, which seems to be more relevant for the case of bootstrap DEA where each DMU 

has its own bootstrap distribution and on which confidence intervals are estimated. 

Hence, the acceleration parameter could be estimated as: 
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 �̂�𝑘 =
∑ (𝜃𝑘,(∙) − 𝜃𝑘,(𝑖))

3𝑛
𝑖=1

6 [∑ (𝜃𝑘,(∙) − 𝜃𝑘,(𝑖))
2𝑛

𝑖=1 ]
3
2⁄
 (VII.5) 

To summarise, in the presence of skewness it might be a good idea to consider 

confidence intervals which account for it. Despite Efron’s (1982) intervals, suggested by 

Simar and Wilson (1998) provide median-corrected intervals, one would need to use 

Efron’s (1987) 𝐵𝐶𝑎 intervals which account for skewness. However, for the case of 

bootstrap DEA they are not straightforward to apply and we therefore suggested two 

potential ways, although we favour the latter which employs cross validation. Some 

simulations would be required to estimate the benefit of employing this procedure 

while a deeper exploration on the suitability of the proposed estimator of the 

acceleration parameter would be necessary. This is work in progress of the author and it 

seems an interesting area of research with potential benefits for researchers and 

practitioners. 
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VIII. Appendix VIII: Truncating the moments bootstrap at 1 

 

We explained in Chapter 3 that the moments bootstrap uses the sample moments of 

the empirical distribution of DEA scores to generate pseudo-population values which 

can be used to perform the bootstrap draws. It is possible that these values violate the 

requirement that 𝜃 ∈ (0,1]151, though not to a considerable extent, and we therefore 

proposed truncating the generated random numbers to satisfy 𝜃 ∈ (0,1]. Approaches 

such as reflection, used in Simar and Wilson (1998), were avoided since it would impose 

a symmetric structure and perhaps introduce excess noise as in the case of the smooth 

bootstrap (Simar and Wilson, 2002). Furthermore it might not be possible to employ this 

technique under certain types of the Pearson family distributions. 

In this section we provide evidence that truncating the pseudo-population does not 

affect results, especially in larger samples. To perform this task we used the DGPs in the 

Monte Carlo simulations to generate pseudo-populations with and without truncation. 

Then we computed the moments of the two pseudo-populations that corresponds to 

each DEA sample and DGP and we calculated their median absolute differences (MAD) 

which serves our comparison purposes.  

Table VIII.1 reports the results of our comparison exercise. We observe that the 

absolute differences become very small as sample size increases and especially for 

𝑛 = 120 which is associated with converging coverage probabilities to their nominal 

                                                      
151

 However, we only observed a few cases that violated the upper bound. 
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values. The absolute differences are too small to change the characterisation of the 

Pearson Type of distribution. Focusing on 𝑛 = 120 and under the 2-input/2-output 

cases we observe that the displacement of the mean is negligible, there is almost no 

excess variability introduced, while the distribution preserves its shape as evident from 

the small differences in skewness and kurtosis. Taking into account these results and the 

good behaviour of the coverage probabilities we conclude that truncating the pseudo-

populations in the moments bootstrap does not affect the validity of the results. 
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Table VIII.1. Median Absolute Differences (MAD) of the two pseudo-populations 

  

Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.008 0.004 0.022 0.052 0.016 0.007 0.029 0.078 0.016 0.007 0.029 0.077

n = 15 0.006 0.003 0.014 0.030 0.011 0.005 0.025 0.066 0.012 0.005 0.026 0.069

n = 20 0.004 0.002 0.011 0.025 0.010 0.005 0.022 0.055 0.011 0.005 0.024 0.060

n = 25 0.003 0.001 0.009 0.020 0.008 0.004 0.020 0.047 0.009 0.004 0.019 0.050

n = 30 0.003 0.001 0.008 0.018 0.008 0.003 0.018 0.043 0.008 0.004 0.020 0.048

n = 60 0.002 0.001 0.006 0.013 0.005 0.003 0.015 0.033 0.006 0.003 0.015 0.036

n = 120 0.003 0.001 0.008 0.016 0.004 0.002 0.013 0.030 0.004 0.002 0.013 0.030

Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.014 0.011 0.132 0.199 0.016 0.011 0.121 0.212 0.017 0.012 0.117 0.219

n = 15 0.009 0.008 0.121 0.152 0.012 0.009 0.116 0.185 0.013 0.010 0.118 0.183

n = 20 0.007 0.006 0.102 0.117 0.009 0.008 0.113 0.157 0.010 0.008 0.110 0.164

n = 25 0.006 0.005 0.097 0.110 0.009 0.007 0.109 0.136 0.009 0.007 0.106 0.144

n = 30 0.005 0.005 0.087 0.084 0.007 0.007 0.105 0.127 0.008 0.007 0.107 0.135

n = 60 0.003 0.003 0.066 0.050 0.005 0.004 0.083 0.085 0.005 0.005 0.088 0.084

n = 120 0.002 0.002 0.052 0.037 0.003 0.003 0.070 0.064 0.003 0.003 0.072 0.063

Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.031 0.030 0.094 0.114 0.035 0.032 0.100 0.112 0.039 0.033 0.093 0.111

n = 15 0.020 0.020 0.068 0.074 0.027 0.024 0.067 0.075 0.028 0.024 0.073 0.076

n = 20 0.016 0.016 0.057 0.058 0.021 0.019 0.064 0.068 0.023 0.020 0.052 0.060

n = 25 0.014 0.014 0.054 0.049 0.019 0.018 0.055 0.058 0.020 0.018 0.046 0.048

n = 30 0.013 0.012 0.048 0.043 0.018 0.017 0.058 0.055 0.018 0.017 0.051 0.049

n = 60 0.009 0.009 0.043 0.044 0.013 0.013 0.054 0.052 0.013 0.012 0.043 0.035

n = 120 0.006 0.007 0.033 0.035 0.010 0.011 0.050 0.055 0.009 0.009 0.040 0.039

Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.019 0.015 0.130 0.245 0.025 0.017 0.133 0.298 0.025 0.017 0.129 0.305

n = 15 0.014 0.011 0.108 0.183 0.020 0.014 0.105 0.230 0.020 0.014 0.106 0.229

n = 20 0.010 0.009 0.085 0.128 0.016 0.012 0.089 0.180 0.018 0.013 0.099 0.208

n = 25 0.009 0.007 0.070 0.108 0.014 0.010 0.079 0.149 0.015 0.011 0.095 0.181

n = 30 0.008 0.007 0.059 0.098 0.012 0.009 0.074 0.141 0.014 0.010 0.084 0.170

n = 60 0.005 0.004 0.040 0.056 0.009 0.006 0.053 0.092 0.009 0.007 0.061 0.102

n = 120 0.003 0.003 0.024 0.033 0.006 0.004 0.037 0.062 0.007 0.005 0.042 0.072

Standard 1/1 Standard 2/1 Standard 2/2

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2

Uniform 1/1 Uniform 2/1 Uniform 2/2
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IX. Appendix IX : Population, sample and bootstrap moments 

 

Table IX.1. Population, sample and bootstrap moments: Standard 

 
 
 
 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.857 0.098 -0.686 2.929 0.858 0.097 -0.683 2.946 0.859 0.097 -0.675 2.893

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.865 0.102 -0.392 2.181 0.888 0.098 -0.466 2.102 0.891 0.097 -0.494 2.117

n = 15 0.863 0.101 -0.450 2.279 0.881 0.098 -0.468 2.200 0.882 0.098 -0.472 2.185

n = 20 0.861 0.101 -0.467 2.303 0.878 0.098 -0.493 2.243 0.880 0.098 -0.501 2.235

n = 25 0.858 0.100 -0.535 2.419 0.875 0.099 -0.530 2.361 0.876 0.099 -0.536 2.344

n = 30 0.859 0.100 -0.518 2.412 0.873 0.099 -0.547 2.420 0.873 0.099 -0.519 2.370

n = 60 0.859 0.099 -0.611 2.627 0.867 0.098 -0.583 2.565 0.869 0.098 -0.597 2.579

n = 120 0.858 0.099 -0.644 2.744 0.864 0.098 -0.641 2.758 0.865 0.098 -0.650 2.753

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.930 0.109 -0.465 2.516 0.958 0.108 -0.440 2.399 0.959 0.108 -0.476 2.470

n = 15 0.916 0.107 -0.501 2.503 0.941 0.106 -0.455 2.411 0.943 0.107 -0.450 2.383

n = 20 0.908 0.106 -0.506 2.464 0.931 0.105 -0.475 2.399 0.933 0.105 -0.473 2.395

n = 25 0.903 0.105 -0.569 2.569 0.923 0.105 -0.527 2.499 0.927 0.106 -0.521 2.479

n = 30 0.900 0.104 -0.546 2.531 0.919 0.104 -0.537 2.542 0.921 0.105 -0.509 2.488

n = 60 0.891 0.102 -0.627 2.701 0.903 0.103 -0.582 2.623 0.905 0.103 -0.590 2.645

n = 120 0.881 0.101 -0.652 2.785 0.891 0.101 -0.638 2.796 0.893 0.101 -0.645 2.786

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.913 0.108 -0.465 2.516 0.942 0.107 -0.439 2.402 0.944 0.107 -0.468 2.476

n = 15 0.903 0.106 -0.501 2.503 0.928 0.105 -0.457 2.417 0.931 0.106 -0.449 2.381

n = 20 0.897 0.105 -0.506 2.464 0.920 0.104 -0.474 2.401 0.924 0.105 -0.469 2.399

n = 25 0.892 0.104 -0.569 2.569 0.915 0.104 -0.526 2.499 0.917 0.105 -0.519 2.478

n = 30 0.890 0.104 -0.546 2.531 0.911 0.104 -0.535 2.542 0.913 0.105 -0.507 2.488

n = 60 0.883 0.102 -0.627 2.701 0.896 0.102 -0.580 2.624 0.898 0.103 -0.590 2.645

n = 120 0.876 0.101 -0.652 2.785 0.886 0.101 -0.637 2.796 0.887 0.101 -0.645 2.786

Moments Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.881 0.104 -0.465 2.516 0.914 0.105 -0.427 2.410 0.919 0.105 -0.455 2.504

n = 15 0.875 0.103 -0.501 2.503 0.903 0.102 -0.450 2.420 0.906 0.103 -0.443 2.397

n = 20 0.871 0.102 -0.506 2.464 0.897 0.102 -0.471 2.410 0.900 0.103 -0.465 2.409

n = 25 0.868 0.101 -0.569 2.569 0.892 0.102 -0.523 2.497 0.895 0.103 -0.517 2.485

n = 30 0.867 0.101 -0.546 2.531 0.889 0.101 -0.535 2.544 0.891 0.102 -0.505 2.487

n = 60 0.864 0.100 -0.627 2.701 0.878 0.100 -0.578 2.625 0.880 0.101 -0.587 2.642

n = 120 0.861 0.099 -0.652 2.785 0.872 0.099 -0.634 2.798 0.873 0.099 -0.642 2.785

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.865 0.102 -0.465 2.516 0.898 0.103 -0.449 2.412 0.904 0.102 -0.483 2.491

n = 15 0.863 0.101 -0.501 2.503 0.890 0.101 -0.461 2.418 0.893 0.101 -0.461 2.385

n = 20 0.861 0.101 -0.506 2.464 0.885 0.100 -0.478 2.400 0.889 0.101 -0.481 2.411

n = 25 0.858 0.100 -0.569 2.569 0.881 0.101 -0.531 2.503 0.884 0.101 -0.526 2.485

n = 30 0.859 0.100 -0.546 2.531 0.879 0.100 -0.535 2.544 0.880 0.101 -0.511 2.488

n = 60 0.859 0.099 -0.627 2.701 0.871 0.099 -0.584 2.625 0.873 0.099 -0.590 2.650

n = 120 0.858 0.099 -0.652 2.785 0.866 0.099 -0.639 2.797 0.868 0.099 -0.647 2.788

Standard 1/1 Standard 2/1 Standard 2/2
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Table IX.2. Population, sample and bootstrap moments: Trun. Normal Low 

 
 
 
 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.615 0.120 0.397 2.957 0.616 0.120 0.427 2.973 0.617 0.121 0.412 3.003

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.757 0.142 0.270 2.308 0.782 0.139 0.189 2.143 0.786 0.139 0.146 2.125

n = 15 0.730 0.140 0.341 2.461 0.752 0.138 0.275 2.322 0.759 0.138 0.240 2.266

n = 20 0.714 0.136 0.359 2.568 0.739 0.137 0.288 2.403 0.741 0.139 0.268 2.330

n = 25 0.702 0.135 0.395 2.610 0.724 0.137 0.306 2.435 0.730 0.138 0.270 2.407

n = 30 0.693 0.134 0.377 2.681 0.720 0.137 0.329 2.473 0.720 0.138 0.317 2.505

n = 60 0.667 0.130 0.401 2.846 0.691 0.133 0.374 2.667 0.688 0.134 0.356 2.676

n = 120 0.646 0.126 0.397 2.915 0.670 0.130 0.391 2.780 0.667 0.131 0.381 2.802

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.828 0.156 0.321 2.740 0.867 0.162 0.344 2.640 0.876 0.161 0.318 2.601

n = 15 0.789 0.152 0.379 2.765 0.824 0.156 0.397 2.723 0.834 0.157 0.367 2.643

n = 20 0.766 0.146 0.389 2.808 0.803 0.153 0.401 2.747 0.808 0.156 0.388 2.667

n = 25 0.751 0.145 0.420 2.804 0.784 0.152 0.408 2.740 0.791 0.154 0.368 2.704

n = 30 0.740 0.143 0.397 2.851 0.774 0.150 0.411 2.734 0.778 0.152 0.405 2.791

n = 60 0.702 0.137 0.411 2.940 0.736 0.142 0.413 2.840 0.735 0.144 0.409 2.877

n = 120 0.674 0.132 0.402 2.963 0.705 0.137 0.417 2.886 0.703 0.139 0.410 2.918

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.826 0.156 0.321 2.740 0.863 0.161 0.343 2.655 0.870 0.161 0.323 2.602

n = 15 0.790 0.151 0.379 2.765 0.825 0.156 0.398 2.734 0.832 0.157 0.369 2.648

n = 20 0.767 0.147 0.389 2.808 0.805 0.153 0.402 2.750 0.808 0.156 0.389 2.672

n = 25 0.751 0.146 0.420 2.804 0.785 0.152 0.407 2.743 0.792 0.154 0.371 2.699

n = 30 0.740 0.144 0.397 2.851 0.777 0.150 0.411 2.732 0.778 0.152 0.406 2.796

n = 60 0.705 0.137 0.411 2.940 0.737 0.143 0.413 2.838 0.735 0.144 0.408 2.877

n = 120 0.676 0.132 0.402 2.963 0.706 0.138 0.417 2.886 0.705 0.139 0.410 2.918

Moments Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.800 0.152 0.321 2.739 0.837 0.157 0.356 2.666 0.843 0.159 0.335 2.633

n = 15 0.772 0.148 0.381 2.758 0.807 0.153 0.411 2.755 0.813 0.154 0.382 2.663

n = 20 0.753 0.144 0.389 2.807 0.790 0.151 0.407 2.766 0.793 0.154 0.397 2.694

n = 25 0.740 0.143 0.424 2.799 0.774 0.150 0.418 2.756 0.780 0.152 0.381 2.714

n = 30 0.730 0.142 0.400 2.844 0.766 0.149 0.416 2.749 0.768 0.150 0.417 2.814

n = 60 0.700 0.136 0.414 2.938 0.732 0.142 0.421 2.848 0.731 0.144 0.413 2.898

n = 120 0.673 0.131 0.402 2.963 0.704 0.137 0.422 2.895 0.703 0.139 0.416 2.931

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.757 0.142 0.321 2.740 0.804 0.151 0.342 2.638 0.809 0.152 0.324 2.587

n = 15 0.730 0.140 0.379 2.765 0.775 0.147 0.393 2.732 0.783 0.149 0.374 2.642

n = 20 0.714 0.136 0.389 2.808 0.759 0.144 0.400 2.751 0.762 0.148 0.390 2.687

n = 25 0.702 0.135 0.420 2.804 0.743 0.144 0.409 2.741 0.751 0.146 0.377 2.707

n = 30 0.693 0.134 0.397 2.851 0.738 0.143 0.410 2.733 0.740 0.144 0.409 2.790

n = 60 0.667 0.130 0.411 2.940 0.706 0.137 0.414 2.836 0.705 0.138 0.406 2.880

n = 120 0.646 0.126 0.402 2.963 0.682 0.133 0.417 2.892 0.680 0.135 0.413 2.918

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2
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Table IX.3. Population, sample and bootstrap moments: Trun. Normal High 

 
 
 
 
 

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.495 0.238 0.278 2.095 0.490 0.239 0.326 2.144 0.493 0.241 0.284 2.074

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.535 0.269 0.459 2.084 0.547 0.274 0.394 1.993 0.555 0.278 0.347 1.921

n = 15 0.524 0.259 0.386 2.094 0.536 0.268 0.360 1.999 0.538 0.270 0.355 1.975

n = 20 0.520 0.255 0.372 2.133 0.525 0.262 0.370 2.074 0.534 0.267 0.303 1.947

n = 25 0.514 0.254 0.360 2.107 0.524 0.259 0.363 2.054 0.526 0.263 0.338 2.000

n = 30 0.510 0.250 0.361 2.119 0.517 0.257 0.367 2.089 0.524 0.258 0.321 2.026

n = 60 0.505 0.245 0.330 2.117 0.509 0.251 0.338 2.108 0.515 0.255 0.309 2.033

n = 120 0.497 0.241 0.298 2.108 0.503 0.246 0.338 2.122 0.504 0.248 0.305 2.066

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.630 0.318 0.544 2.344 0.662 0.341 0.535 2.337 0.676 0.348 0.493 2.181

n = 15 0.596 0.298 0.430 2.238 0.622 0.319 0.446 2.237 0.630 0.322 0.443 2.181

n = 20 0.580 0.287 0.403 2.243 0.598 0.303 0.442 2.274 0.613 0.310 0.370 2.085

n = 25 0.566 0.280 0.384 2.184 0.589 0.294 0.417 2.180 0.596 0.301 0.392 2.118

n = 30 0.557 0.275 0.380 2.183 0.578 0.288 0.420 2.197 0.584 0.293 0.368 2.131

n = 60 0.536 0.260 0.338 2.146 0.550 0.272 0.361 2.162 0.555 0.276 0.332 2.082

n = 120 0.519 0.251 0.302 2.121 0.529 0.260 0.347 2.150 0.531 0.263 0.316 2.090

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.635 0.319 0.544 2.344 0.664 0.342 0.537 2.336 0.674 0.348 0.495 2.190

n = 15 0.603 0.300 0.430 2.238 0.632 0.322 0.448 2.238 0.637 0.325 0.444 2.184

n = 20 0.588 0.289 0.403 2.243 0.606 0.306 0.442 2.276 0.619 0.312 0.372 2.088

n = 25 0.573 0.283 0.384 2.184 0.596 0.297 0.418 2.179 0.601 0.303 0.393 2.116

n = 30 0.563 0.277 0.380 2.183 0.582 0.292 0.421 2.199 0.591 0.294 0.368 2.131

n = 60 0.539 0.262 0.338 2.146 0.554 0.274 0.362 2.162 0.560 0.279 0.332 2.082

n = 120 0.521 0.252 0.302 2.121 0.534 0.262 0.347 2.150 0.535 0.264 0.316 2.090

Moments Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.591 0.300 0.563 2.291 0.619 0.321 0.552 2.296 0.629 0.325 0.513 2.174

n = 15 0.564 0.280 0.451 2.198 0.592 0.301 0.461 2.212 0.597 0.305 0.469 2.142

n = 20 0.552 0.271 0.427 2.199 0.574 0.289 0.465 2.225 0.583 0.294 0.390 2.068

n = 25 0.539 0.266 0.399 2.154 0.567 0.282 0.433 2.166 0.570 0.287 0.404 2.108

n = 30 0.535 0.262 0.401 2.152 0.556 0.279 0.437 2.185 0.563 0.281 0.383 2.117

n = 60 0.519 0.252 0.340 2.133 0.536 0.265 0.367 2.162 0.541 0.269 0.337 2.082

n = 120 0.506 0.245 0.303 2.118 0.521 0.256 0.350 2.152 0.523 0.258 0.318 2.093

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.535 0.269 0.544 2.344 0.566 0.292 0.530 2.314 0.577 0.299 0.487 2.176

n = 15 0.524 0.259 0.430 2.238 0.554 0.282 0.438 2.226 0.560 0.284 0.443 2.168

n = 20 0.520 0.255 0.403 2.243 0.541 0.272 0.438 2.261 0.551 0.278 0.365 2.078

n = 25 0.514 0.254 0.384 2.184 0.539 0.268 0.415 2.179 0.542 0.274 0.386 2.107

n = 30 0.510 0.250 0.380 2.183 0.529 0.265 0.418 2.194 0.537 0.267 0.365 2.125

n = 60 0.505 0.245 0.338 2.146 0.517 0.255 0.359 2.158 0.523 0.260 0.330 2.081

n = 120 0.497 0.241 0.302 2.121 0.507 0.249 0.347 2.149 0.510 0.252 0.316 2.089

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2
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Table IX.4. Population, sample and bootstrap moments: Uniform 

 
 
 
  

Population Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

N = 10,000 0.689 0.158 0.273 1.885 0.691 0.158 0.249 1.864 0.688 0.158 0.286 1.885

DEA Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.729 0.163 0.359 2.001 0.751 0.163 0.261 1.841 0.756 0.163 0.250 1.829

n = 15 0.712 0.162 0.377 2.002 0.737 0.165 0.265 1.855 0.741 0.164 0.256 1.855

n = 20 0.703 0.161 0.375 2.032 0.732 0.163 0.256 1.861 0.729 0.164 0.307 1.862

n = 25 0.701 0.160 0.354 1.985 0.725 0.163 0.264 1.857 0.724 0.163 0.304 1.898

n = 30 0.701 0.162 0.323 1.941 0.721 0.162 0.275 1.890 0.717 0.164 0.314 1.887

n = 60 0.694 0.159 0.303 1.938 0.709 0.161 0.269 1.882 0.707 0.162 0.293 1.888

n = 120 0.692 0.160 0.281 1.893 0.702 0.160 0.261 1.871 0.700 0.161 0.291 1.889

LSCV Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.801 0.180 0.425 2.198 0.839 0.189 0.407 2.077 0.845 0.189 0.410 2.062

n = 15 0.765 0.176 0.420 2.105 0.806 0.184 0.349 1.982 0.814 0.185 0.351 1.990

n = 20 0.749 0.172 0.406 2.110 0.789 0.178 0.321 1.958 0.789 0.180 0.376 1.966

n = 25 0.736 0.170 0.377 2.032 0.775 0.177 0.318 1.933 0.774 0.177 0.359 1.996

n = 30 0.733 0.170 0.340 1.971 0.763 0.174 0.322 1.961 0.761 0.176 0.365 1.966

n = 60 0.712 0.164 0.311 1.951 0.738 0.169 0.291 1.919 0.736 0.169 0.320 1.928

n = 120 0.701 0.162 0.285 1.898 0.718 0.165 0.272 1.887 0.717 0.165 0.303 1.909

SJ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.805 0.181 0.425 2.198 0.842 0.190 0.409 2.077 0.847 0.190 0.417 2.068

n = 15 0.776 0.176 0.420 2.105 0.813 0.185 0.350 1.987 0.819 0.185 0.352 1.991

n = 20 0.756 0.173 0.406 2.110 0.799 0.179 0.318 1.959 0.797 0.182 0.377 1.970

n = 25 0.746 0.171 0.377 2.032 0.783 0.179 0.320 1.933 0.782 0.179 0.362 1.996

n = 30 0.742 0.172 0.340 1.971 0.773 0.175 0.325 1.962 0.772 0.178 0.365 1.969

n = 60 0.721 0.166 0.311 1.951 0.746 0.171 0.292 1.920 0.745 0.171 0.321 1.929

n = 120 0.710 0.164 0.285 1.898 0.727 0.166 0.273 1.887 0.725 0.167 0.303 1.909

Moments Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.769 0.174 0.425 2.198 0.807 0.183 0.416 2.104 0.815 0.183 0.430 2.107

n = 15 0.741 0.169 0.420 2.105 0.782 0.178 0.357 1.995 0.787 0.179 0.362 2.007

n = 20 0.727 0.166 0.406 2.110 0.768 0.174 0.325 1.969 0.769 0.176 0.382 1.988

n = 25 0.719 0.165 0.377 2.032 0.757 0.173 0.322 1.939 0.758 0.174 0.366 2.006

n = 30 0.717 0.165 0.340 1.971 0.750 0.170 0.327 1.967 0.750 0.173 0.367 1.981

n = 60 0.703 0.161 0.311 1.951 0.730 0.167 0.293 1.924 0.730 0.168 0.322 1.932

n = 120 0.697 0.161 0.285 1.898 0.716 0.164 0.273 1.888 0.715 0.164 0.304 1.912

Naïve Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

n = 10 0.729 0.163 0.425 2.198 0.772 0.175 0.401 2.074 0.778 0.175 0.411 2.062

n = 15 0.712 0.162 0.420 2.105 0.753 0.171 0.344 1.979 0.760 0.171 0.345 1.990

n = 20 0.703 0.161 0.406 2.110 0.746 0.167 0.318 1.952 0.743 0.170 0.375 1.961

n = 25 0.701 0.160 0.377 2.032 0.737 0.168 0.315 1.933 0.736 0.168 0.360 1.992

n = 30 0.701 0.162 0.340 1.971 0.731 0.165 0.321 1.960 0.730 0.168 0.365 1.965

n = 60 0.694 0.159 0.311 1.951 0.717 0.163 0.290 1.919 0.715 0.164 0.317 1.927

n = 120 0.692 0.160 0.285 1.898 0.707 0.162 0.272 1.886 0.705 0.162 0.302 1.907

Uniform 1/1 Uniform 2/1 Uniform 2/2
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X. Appendix X: Coverage probabilities – Moments bootstrap 

 

Table X.1. Coverage probabilities of moments-bootstrap – “Standard” case 

 
 

Table X.2. Coverage probabilities of moments-bootstrap – “Truncated Normal Low” case 

 

 

SW1998 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.660 0.688 0.694 0.703 0.591 0.615 0.626 0.635 0.596 0.628 0.637 0.644

n = 15 0.652 0.692 0.713 0.743 0.663 0.710 0.715 0.722 0.646 0.713 0.727 0.737

n = 20 0.649 0.701 0.729 0.762 0.669 0.744 0.764 0.773 0.663 0.740 0.747 0.760

n = 25 0.659 0.708 0.731 0.775 0.686 0.765 0.786 0.797 0.685 0.761 0.779 0.794

n = 30 0.663 0.709 0.745 0.780 0.679 0.786 0.813 0.824 0.694 0.808 0.823 0.842

n = 60 0.681 0.719 0.750 0.785 0.719 0.830 0.853 0.880 0.695 0.831 0.866 0.890

n = 120 0.733 0.770 0.787 0.820 0.744 0.888 0.917 0.936 0.742 0.897 0.929 0.946

SW2000 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.629 0.735 0.792 0.872 0.594 0.715 0.800 0.893 0.601 0.722 0.806 0.892

n = 15 0.609 0.715 0.774 0.839 0.638 0.742 0.825 0.911 0.636 0.753 0.823 0.912

n = 20 0.579 0.671 0.733 0.791 0.657 0.762 0.835 0.920 0.638 0.751 0.825 0.915

n = 25 0.595 0.679 0.727 0.774 0.634 0.756 0.825 0.902 0.635 0.762 0.824 0.907

n = 30 0.591 0.687 0.735 0.776 0.658 0.754 0.832 0.914 0.630 0.764 0.842 0.927

n = 60 0.613 0.688 0.730 0.758 0.645 0.767 0.829 0.903 0.627 0.745 0.814 0.900

n = 120 0.649 0.719 0.754 0.792 0.669 0.768 0.837 0.908 0.615 0.749 0.817 0.896

Standard 1/1 Standard 2/1 Standard 2/2

SW1998 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.348 0.359 0.363 0.366 0.281 0.305 0.312 0.326 0.295 0.321 0.337 0.347

n = 15 0.381 0.400 0.408 0.415 0.336 0.370 0.384 0.401 0.314 0.344 0.358 0.377

n = 20 0.399 0.427 0.434 0.441 0.360 0.399 0.423 0.435 0.370 0.408 0.417 0.426

n = 25 0.440 0.471 0.482 0.487 0.379 0.435 0.451 0.469 0.367 0.417 0.438 0.452

n = 30 0.442 0.482 0.489 0.499 0.365 0.430 0.450 0.468 0.377 0.438 0.466 0.486

n = 60 0.544 0.603 0.610 0.613 0.444 0.502 0.539 0.556 0.464 0.540 0.574 0.607

n = 120 0.600 0.676 0.690 0.699 0.526 0.614 0.645 0.670 0.568 0.632 0.674 0.703

SW2000 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.363 0.452 0.528 0.667 0.310 0.411 0.483 0.621 0.327 0.423 0.487 0.608

n = 15 0.405 0.491 0.557 0.678 0.359 0.460 0.534 0.645 0.323 0.420 0.492 0.623

n = 20 0.403 0.506 0.583 0.687 0.366 0.455 0.511 0.619 0.380 0.470 0.533 0.636

n = 25 0.442 0.531 0.605 0.730 0.404 0.498 0.549 0.676 0.382 0.467 0.534 0.657

n = 30 0.450 0.541 0.611 0.722 0.385 0.475 0.565 0.691 0.403 0.495 0.562 0.674

n = 60 0.531 0.634 0.705 0.798 0.455 0.547 0.619 0.745 0.459 0.579 0.640 0.742

n = 120 0.559 0.674 0.746 0.815 0.543 0.656 0.721 0.825 0.565 0.651 0.702 0.818

Trun. Normal Low 1/1 Trun. Normal Low 2/1 Trun. Normal Low 2/2



346 

Table X.3. Coverage probabilities of moments-bootstrap – “Truncated Normal High” case 

 

 

Table X.4. Coverage probabilities of moments-bootstrap – “Uniform” case 

 

 

 

  

SW1998 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.761 0.774 0.780 0.785 0.761 0.781 0.787 0.796 0.758 0.771 0.782 0.789

n = 15 0.764 0.783 0.794 0.805 0.769 0.791 0.796 0.809 0.774 0.802 0.813 0.822

n = 20 0.768 0.799 0.803 0.810 0.795 0.838 0.844 0.853 0.748 0.791 0.800 0.808

n = 25 0.780 0.808 0.814 0.819 0.808 0.856 0.866 0.877 0.763 0.809 0.818 0.825

n = 30 0.795 0.816 0.827 0.835 0.805 0.853 0.862 0.869 0.754 0.825 0.836 0.841

n = 60 0.818 0.849 0.859 0.866 0.810 0.903 0.918 0.925 0.785 0.879 0.885 0.893

n = 120 0.856 0.881 0.897 0.907 0.797 0.944 0.956 0.963 0.799 0.949 0.960 0.967

SW2000 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.736 0.850 0.920 0.970 0.730 0.838 0.915 0.971 0.751 0.843 0.909 0.962

n = 15 0.709 0.824 0.872 0.952 0.745 0.840 0.901 0.965 0.752 0.862 0.916 0.970

n = 20 0.735 0.833 0.894 0.959 0.753 0.861 0.915 0.974 0.722 0.838 0.913 0.965

n = 25 0.710 0.837 0.897 0.961 0.745 0.851 0.912 0.969 0.726 0.842 0.895 0.966

n = 30 0.711 0.836 0.884 0.944 0.741 0.852 0.911 0.969 0.718 0.834 0.901 0.966

n = 60 0.742 0.853 0.907 0.945 0.704 0.815 0.903 0.974 0.703 0.818 0.886 0.958

n = 120 0.781 0.882 0.922 0.949 0.664 0.788 0.881 0.959 0.700 0.814 0.880 0.959

Trun. Normal High 1/1 Trun. Normal High 2/1 Trun. Normal High 2/2

SW1998 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.743 0.758 0.760 0.765 0.727 0.749 0.759 0.769 0.672 0.696 0.702 0.712

n = 15 0.788 0.806 0.813 0.816 0.718 0.747 0.756 0.767 0.706 0.747 0.753 0.764

n = 20 0.787 0.808 0.819 0.827 0.721 0.765 0.774 0.787 0.738 0.795 0.809 0.815

n = 25 0.775 0.798 0.811 0.818 0.746 0.797 0.804 0.816 0.755 0.830 0.840 0.847

n = 30 0.771 0.800 0.815 0.829 0.720 0.789 0.800 0.812 0.752 0.838 0.847 0.858

n = 60 0.798 0.840 0.859 0.885 0.734 0.824 0.838 0.849 0.752 0.901 0.906 0.916

n = 120 0.764 0.793 0.828 0.859 0.790 0.884 0.902 0.915 0.728 0.915 0.930 0.946

SW2000 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01 p = 0.20 p = 0.10 p = 0.05 p = 0.01

n = 10 0.711 0.806 0.866 0.935 0.715 0.821 0.883 0.937 0.645 0.778 0.855 0.924

n = 15 0.699 0.805 0.866 0.942 0.720 0.799 0.879 0.938 0.689 0.792 0.864 0.944

n = 20 0.688 0.799 0.869 0.931 0.694 0.823 0.899 0.961 0.688 0.816 0.878 0.951

n = 25 0.686 0.779 0.845 0.917 0.710 0.835 0.890 0.963 0.704 0.813 0.884 0.964

n = 30 0.684 0.793 0.854 0.913 0.668 0.802 0.875 0.953 0.694 0.818 0.887 0.971

n = 60 0.670 0.769 0.824 0.867 0.664 0.803 0.878 0.948 0.650 0.774 0.860 0.958

n = 120 0.649 0.738 0.783 0.820 0.724 0.832 0.904 0.948 0.627 0.749 0.838 0.940

Uniform 1/1 Uniform 2/1 Uniform 2/2
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XI. Appendix XI: A note on the compatibility of Simar and Wilson’s (1999) 

bootstrap Malmquist with unbalanced panels  

 

The Malmquist index, as explained by Färe et al., (1994) in their seminal paper, can be 

applied on unbalanced panels but with the index being undefined for the missing 

observations (see footnote 14, pp. 73 of their paper). A reasonable implication is that 

the Bootstrap Malmquist Index of Simar and Wilson (1999) can cope with unbalanced 

panels as well. Simar and Wilson (1999) do comment on the applicability of their 

approach on unbalanced panels. However, according to the manual of the FEAR 

software package of Prof Paul Wilson, the bootstrap Malmquist index is presented as 

compatible with unbalanced panels, but “with some small modifications”152. In this note 

I will explain a potential problem with Simar and Wilson’s (1999) bootstrap approach on 

the Malmquist index when dealing with unbalanced panels. 

The approach of Simar and Wilson (1999) is an extension of the univariate case in 

Simar and Wilson (1998). In particular, smoothing is applied by fitting a bivariate 

(instead of univariate) kernel density to the efficiency score distributions of the two 

examined periods, which maintains the correlation structure between the DMUs in the 

two periods under examination when bootstrapping. Our understanding of Eq.18 

through Eq.24 in Simar and Wilson (1999) is that to estimate a bivariate kernel density, 

to preserve the correlation structure as well as to reflect bootstrap values, all require 

                                                      
152

 Look at the last sentence of the “Details” section on pp. 39 in the FEAR manual: 
http://www.clemson.edu/economics/faculty/wilson/Software/FEAR/Compiled/2.0.1/FEAR-manual.pdf 

http://www.clemson.edu/economics/faculty/wilson/Software/FEAR/Compiled/2.0.1/FEAR-manual.pdf
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2𝑁-dimensional vectors; this is the first indication that their approach may not be able 

to deal with unbalanced panels appropriately.  

It is not clear which are the “modifications” mentioned in the FEAR manual and 

whether these require performing smoothing and reflecting only on the common 

observations between two reference sets, while including the non-common 

observations in the computation of Malmquist indices. If the latter is true then we 

would expect some degree of bias due to possible errors in the computation of the 

smoothing parameter and of the covariance matrix. 

Studying carefully Simar and Wilson’s (1999) work we find that that the code for 

bootstrapping the Malmquist index with unbalanced panels probably works as we have 

just suggested. To support our argument we will discuss four relevant parts from their 

paper. In section 3 and Eq.10 (pp. 462), the (naïve) bootstrap Malmquist indices can be 

easily adjusted to account for unbalanced panels: hence, this ensures the feasibility of 

the task. In section 3 and Eq. 19-21 (pp. 465) they perform reflection as follows (using 

the therein notation): 

 

𝜟(4𝑁×2) = [

𝜜 𝜝
2 − 𝜜 𝜝
2 − 𝜜
𝜜

2 − 𝜝
2 − 𝜝

]    where 

𝜜 = (�̂�1
𝑡1,𝑡1 …�̂�𝑁

𝑡1,𝑡1)
′
  and   𝜝 = (�̂�1

𝑡2,𝑡2 … �̂�𝑁
𝑡2,𝑡2)

′
 

(XI.1) 

Note that �̂�𝑖
𝑡𝑗,𝑡𝑗

 corresponds to the distance function estimated for DMU 𝑖  for the 

reference set of period 𝑗. The fact that 𝜟 is a (4𝑁 × 2) matrix indicates that reflection is 

performed on the common elements of two reference sets.  
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Even if this can be modified, there is a third point in Simar and Wilson (1999) that 

suggests otherwise. In particular, to preserve the intertemporal correlation between 

two DMUs a covariance matrix is computed as �̂� = cov(𝜜,𝜝), which is by definition a 

square matrix and requires both 𝜜  and 𝜝  to have the same dimensions. The 

intertemporal correlation is then accounted for in the following bivariate kernel density 

estimator (Eq.24):  

 𝑔(𝑧) =
1

4𝑁ℎ2
∑𝐾𝑗 (

𝒛 − 𝜟𝑗

ℎ
)

4𝑁

𝑗=1

 (XI.2) 

This suggests that the bootstrap procedure produces the smoothed bootstrap 

distribution on the basis of common observations, disregarding the non-common 

elements.  

Finally, Simar and Wilson (1999) state in pp.466 that the smoothing parameter (ℎ) is 

chosen by the approximation rule ℎ = (4 5⁄ 𝑁)1 6⁄  which corresponds to the number of 

observations in each sample. Hence, if the panels are unbalanced, then the larger the 

size difference, the higher the degree of discrepancy in computing ℎ would be. If, on the 

other hand, someone wanted to use a smoothing process (such as LSCV and SJ) or an 

alternative distribution enrichment approach (such as the moments bootstrap) it is not 

clear how this task could be performed.  

The discussion here shows Simar and Wilson’ (1999) method can accommodate 

unbalanced panels in the first step of computing the required distance functions for the 

computation of the Malmquist index. However, in implementing the bootstrap and 

generating bootstrap values, only the common observations are taken into account. Our 
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understanding is that the processes of reflection, of random number generation from a 

bivariate kernel density (that accounts for intertemporal correlation) and of smoothing 

are all based on the “balanced” part of the dataset. This might cause inaccuracies in 

computing bootstrap Malmquist indices which will be more important as the number of 

non-common observations increases. It is within the future plans of the author to 

extend this note by including numerical examples which will illustrate the extent to 

which results can be affected by such discrepancies.  
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XII. Appendix XII: Moments and confidence intervals for the empirical 

illustration 

 

This appendix provides analytical results for the distributional aspects and confidence 

intervals of the bootstrap DEA distributions for each bank in each year and under for 

each smoothing method (LSCV, SJ and moments bootstrap). Each table has three 

sections. The first lists the DMUs (banks per year of operation) and their DEA score. The 

second section reports the mean, median, standard deviation, skewness and kurtosis of 

the bias-corrected bootstrap distributions (the last three are the same as with the non-

bias-corrected distributions as we shift the distribution twice to left for bias). The third 

section reports the 95% confidence intervals under the percentile method (adopted by 

Simar and Wilson (1998)) and under the bias-corrected and accelerated intervals 

method of Efron (1987) which was proposed and adapted in Appendix VII for bootstrap 

DEA. Although the analysis is not based on the BCa intervals, we present them here as 

we believe that there is a good potential for the enhancement of the performance of 

bootstrap DEA which needs to be confirmed by future research.  
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Table XII.1. Confidence intervals under the LSCV bootstrap 

 

Bank
DEA 

Score

Eff. bc 

mean

Eff. bc 

median

Stand. 

Dev.
Skew. Kurt.

SW98 

Low

SW98 

High

BCa 

Low

BCa 

High

Agricultural_1992 1.000 0.837 0.841 0.065 -0.313 2.891 0.696 0.954 0.689 0.939

Agricultural_1993 0.976 0.929 0.926 0.017 0.701 3.882 0.899 0.967 0.895 0.962

Agricultural_1994 0.927 0.871 0.869 0.020 0.699 3.935 0.836 0.918 0.830 0.912

Agricultural_1995 0.919 0.845 0.839 0.036 0.704 3.163 0.791 0.927 0.788 0.923

Agricultural_1996 0.906 0.838 0.832 0.035 0.703 3.189 0.785 0.917 0.783 0.912

Agricultural_1997 0.936 0.851 0.846 0.038 0.566 3.060 0.789 0.937 0.783 0.927

Agricultural_1998 0.937 0.809 0.814 0.059 -0.006 2.561 0.701 0.919 0.691 0.890

Agricultural_1999 1.000 0.833 0.843 0.073 -0.171 2.525 0.689 0.963 0.677 0.925

Alpha_1987 0.784 0.751 0.749 0.014 1.048 5.038 0.730 0.784 0.729 0.781

Alpha_1988 0.796 0.766 0.765 0.013 1.063 5.033 0.748 0.796 0.747 0.791

Alpha_1989 0.803 0.774 0.772 0.013 1.180 5.532 0.756 0.805 0.755 0.803

Alpha_1990 0.893 0.845 0.842 0.021 0.704 3.373 0.812 0.893 0.808 0.886

Alpha_1991 0.801 0.757 0.755 0.019 0.692 3.339 0.729 0.798 0.724 0.791

Alpha_1992 0.709 0.674 0.672 0.016 0.929 4.826 0.649 0.710 0.648 0.705

Alpha_1993 0.815 0.766 0.763 0.023 0.882 3.947 0.732 0.821 0.729 0.814

Alpha_1994 0.750 0.724 0.722 0.012 1.126 5.320 0.707 0.751 0.706 0.748

Alpha_1995 0.811 0.782 0.780 0.013 1.140 5.477 0.764 0.812 0.763 0.809

Alpha_1996 0.953 0.893 0.890 0.028 0.744 3.623 0.848 0.959 0.843 0.948

Alpha_1997 1.000 0.922 0.920 0.032 0.463 3.271 0.864 0.991 0.855 0.976

Alpha_1998 0.892 0.778 0.780 0.052 0.121 2.655 0.685 0.883 0.674 0.854

Alpha_1999 1.000 0.763 0.774 0.101 -0.380 2.734 0.549 0.939 0.542 0.920

Bank of Athens_1988 0.783 0.763 0.762 0.006 1.084 5.266 0.753 0.778 0.752 0.777

Bank of Athens_1989 0.805 0.784 0.783 0.007 1.207 5.629 0.775 0.801 0.774 0.799

Bank of Athens_1990 0.844 0.817 0.816 0.009 0.711 3.668 0.803 0.837 0.801 0.834

Bank of Athens_1991 0.855 0.776 0.777 0.030 0.132 2.998 0.718 0.835 0.707 0.820

Bank of Athens_1992 0.746 0.725 0.724 0.007 0.879 4.251 0.714 0.742 0.713 0.741

Bank of Athens_1993 0.733 0.712 0.711 0.007 1.012 4.533 0.701 0.729 0.701 0.729

Bank of Athens_1994 0.543 0.510 0.509 0.014 0.462 2.953 0.487 0.541 0.483 0.533

Bank of Athens_1995 0.635 0.603 0.601 0.013 0.921 4.164 0.583 0.636 0.580 0.630

Bank of Athens_1996 0.653 0.621 0.619 0.013 1.058 4.630 0.602 0.656 0.600 0.651

Bank of Athens_1997 0.753 0.685 0.680 0.036 0.715 3.148 0.632 0.770 0.630 0.763

Bank of Attica_1987 0.800 0.779 0.779 0.007 1.184 5.586 0.770 0.796 0.769 0.794

Bank of Attica_1988 0.742 0.724 0.723 0.006 1.176 5.645 0.715 0.738 0.715 0.737

Bank of Attica_1989 0.660 0.636 0.635 0.008 0.437 2.998 0.622 0.654 0.620 0.650

Bank of Attica_1990 0.744 0.726 0.725 0.007 1.090 5.126 0.716 0.741 0.715 0.739

Bank of Attica_1991 0.910 0.878 0.877 0.012 0.562 3.182 0.859 0.903 0.856 0.899

Bank of Attica_1992 1.000 0.847 0.858 0.051 -1.055 3.816 0.717 0.920 0.704 0.898

Bank of Attica_1993 0.945 0.891 0.889 0.022 0.551 3.567 0.851 0.940 0.849 0.934

Bank of Attica_1994 0.820 0.800 0.799 0.007 1.259 6.084 0.790 0.816 0.790 0.815

Bank of Attica_1995 0.793 0.734 0.737 0.019 -0.420 2.813 0.691 0.768 0.682 0.756

Bank of Attica_1996 0.747 0.692 0.693 0.019 -0.168 2.698 0.653 0.727 0.644 0.717

Bank of Attica_1997 0.810 0.761 0.759 0.017 0.364 3.072 0.730 0.798 0.724 0.795

Bank of Attica_1998 0.819 0.749 0.743 0.038 0.698 2.947 0.697 0.836 0.694 0.828

Bank of Attica_1999 0.764 0.702 0.701 0.028 0.369 2.770 0.656 0.762 0.649 0.747
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Central Greece_1987 1.000 0.627 0.590 0.252 1.160 4.969 0.278 1.298 0.297 1.464

Central Greece_1989 0.706 0.685 0.684 0.007 0.744 3.544 0.674 0.702 0.674 0.700

Central Greece_1990 0.668 0.648 0.647 0.007 0.803 3.653 0.637 0.665 0.637 0.664

Central Greece_1991 0.667 0.635 0.635 0.009 0.076 3.105 0.617 0.653 0.613 0.650

Central Greece_1992 0.636 0.610 0.610 0.008 0.376 3.193 0.596 0.627 0.593 0.624

Central Greece_1993 0.705 0.666 0.663 0.017 0.811 3.791 0.640 0.706 0.636 0.700

Central Greece_1994 0.700 0.663 0.660 0.016 0.970 4.184 0.639 0.703 0.637 0.699

Central Greece_1995 0.660 0.629 0.628 0.012 0.661 3.951 0.608 0.656 0.606 0.653

Central Greece_1996 0.675 0.641 0.639 0.013 0.653 4.036 0.618 0.669 0.616 0.665

Central Greece_1997 0.626 0.575 0.571 0.025 0.655 2.987 0.537 0.631 0.535 0.628

Central Greece_1998 0.630 0.581 0.577 0.025 0.862 3.595 0.544 0.643 0.542 0.639

Cretabank_1987 0.655 0.640 0.639 0.005 1.241 6.059 0.632 0.652 0.632 0.652

Cretabank_1989 0.449 0.412 0.409 0.019 0.695 3.334 0.383 0.455 0.381 0.450

Cretabank_1990 0.526 0.496 0.494 0.014 1.077 4.887 0.475 0.529 0.473 0.523

Cretabank_1991 0.578 0.557 0.555 0.009 1.233 5.164 0.545 0.580 0.544 0.577

Cretabank_1992 0.643 0.620 0.618 0.009 1.154 4.844 0.607 0.644 0.606 0.643

Cretabank_1993 0.701 0.678 0.677 0.008 0.714 3.652 0.666 0.696 0.665 0.694

Cretabank_1994 0.589 0.558 0.556 0.014 0.794 3.520 0.537 0.591 0.535 0.588

Cretabank_1995 0.605 0.544 0.542 0.026 0.386 2.924 0.498 0.599 0.494 0.593

Cretabank_1996 0.726 0.701 0.700 0.009 0.717 3.314 0.687 0.722 0.686 0.721

Cretabank_1997 0.740 0.712 0.711 0.009 0.415 3.057 0.695 0.732 0.693 0.730

Cretabank_1998 0.814 0.772 0.772 0.014 0.311 2.955 0.747 0.802 0.742 0.798

Egnatia_1993 0.628 0.553 0.557 0.030 -0.246 2.648 0.492 0.608 0.483 0.587

Egnatia_1994 0.484 0.450 0.448 0.016 0.835 4.159 0.425 0.486 0.423 0.481

Egnatia_1995 0.470 0.433 0.431 0.020 0.701 3.336 0.404 0.478 0.403 0.471

Egnatia_1996 0.685 0.619 0.617 0.033 0.434 3.069 0.563 0.690 0.560 0.675

Egnatia_1997 0.779 0.711 0.709 0.033 0.622 3.329 0.660 0.784 0.655 0.774

Egnatia_1998 0.719 0.678 0.674 0.021 0.985 4.064 0.649 0.729 0.646 0.721

Egnatia_1999 0.715 0.669 0.665 0.022 0.863 3.685 0.636 0.720 0.632 0.713

Emporiki_1987 0.750 0.716 0.714 0.013 0.799 3.698 0.696 0.748 0.694 0.745

Emporiki_1988 0.738 0.717 0.715 0.008 1.090 4.989 0.706 0.735 0.705 0.733

Emporiki_1989 0.718 0.697 0.695 0.008 1.109 5.225 0.685 0.716 0.685 0.715

Emporiki_1990 0.753 0.727 0.725 0.010 1.008 4.634 0.712 0.750 0.712 0.748

Emporiki_1991 0.722 0.696 0.695 0.010 0.934 4.296 0.682 0.719 0.681 0.717

Emporiki_1992 0.860 0.813 0.811 0.019 0.731 3.695 0.784 0.858 0.778 0.848

Emporiki_1993 0.956 0.899 0.896 0.023 0.639 3.390 0.861 0.952 0.855 0.943

Emporiki_1994 0.928 0.867 0.865 0.025 0.488 3.141 0.825 0.921 0.820 0.914

Emporiki_1995 0.851 0.808 0.807 0.016 0.600 3.839 0.779 0.845 0.775 0.835

Emporiki_1996 0.790 0.767 0.766 0.008 0.855 3.901 0.754 0.786 0.754 0.785

Emporiki_1997 0.811 0.786 0.784 0.009 0.787 3.587 0.773 0.806 0.772 0.805

Emporiki_1998 0.769 0.732 0.731 0.013 0.415 3.257 0.710 0.760 0.706 0.754

Emporiki_1999 0.916 0.864 0.861 0.024 0.698 3.220 0.829 0.919 0.825 0.909
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Ergobank_1987 0.683 0.649 0.647 0.014 0.728 4.084 0.626 0.680 0.624 0.674

Ergobank_1988 0.727 0.695 0.693 0.014 1.016 5.071 0.675 0.727 0.674 0.723

Ergobank_1989 0.688 0.645 0.644 0.017 0.451 3.457 0.614 0.681 0.610 0.673

Ergobank_1990 0.749 0.697 0.695 0.022 0.772 4.251 0.661 0.746 0.658 0.739

Ergobank_1991 0.875 0.826 0.822 0.025 0.862 3.855 0.789 0.885 0.787 0.876

Ergobank_1992 0.708 0.659 0.656 0.021 0.912 4.516 0.627 0.707 0.623 0.702

Ergobank_1993 0.658 0.619 0.617 0.017 0.850 4.527 0.592 0.658 0.590 0.654

Ergobank_1994 0.567 0.543 0.542 0.009 0.815 4.229 0.529 0.563 0.527 0.561

Ergobank_1995 0.600 0.576 0.576 0.008 0.586 3.732 0.563 0.594 0.561 0.591

Ergobank_1996 0.657 0.630 0.629 0.010 0.700 3.733 0.614 0.654 0.611 0.649

Ergobank_1997 0.723 0.682 0.681 0.016 0.356 3.122 0.654 0.715 0.649 0.707

Ergobank_1998 0.639 0.559 0.557 0.036 0.259 2.657 0.493 0.634 0.487 0.619

Ergobank_1999 0.682 0.608 0.607 0.034 0.262 2.694 0.546 0.676 0.542 0.663

Eurobank_1997 0.512 0.462 0.457 0.026 0.626 2.808 0.422 0.521 0.419 0.515

Eurobank_1998 0.990 0.867 0.857 0.079 0.467 2.268 0.759 1.026 0.755 1.003

Eurobank_1999 0.747 0.706 0.704 0.018 0.831 4.258 0.678 0.746 0.674 0.739

General_1987 0.731 0.707 0.706 0.008 0.591 3.427 0.694 0.724 0.693 0.722

General_1988 0.754 0.733 0.732 0.007 0.864 4.210 0.722 0.749 0.721 0.748

General_1989 0.782 0.756 0.755 0.009 0.440 3.412 0.740 0.774 0.739 0.771

General_1990 0.791 0.770 0.769 0.007 1.126 5.314 0.760 0.785 0.760 0.784

General_1991 0.690 0.663 0.663 0.008 0.267 3.160 0.647 0.680 0.645 0.677

General_1992 0.677 0.660 0.659 0.006 1.161 5.503 0.652 0.674 0.651 0.673

General_1993 0.577 0.561 0.560 0.005 1.032 4.654 0.553 0.573 0.553 0.573

General_1994 0.680 0.659 0.658 0.007 0.773 3.839 0.648 0.675 0.647 0.673

General_1995 0.779 0.753 0.752 0.009 0.616 3.409 0.738 0.773 0.736 0.769

General_1996 0.714 0.685 0.684 0.010 0.350 2.890 0.668 0.705 0.665 0.701

General_1997 0.716 0.691 0.691 0.008 0.592 3.319 0.678 0.710 0.676 0.707

General_1998 0.714 0.682 0.682 0.010 0.259 3.147 0.663 0.702 0.659 0.699

General_1999 0.793 0.757 0.757 0.010 0.134 3.136 0.738 0.778 0.733 0.774

Interbank_1995 0.558 0.538 0.537 0.008 0.950 4.058 0.527 0.557 0.526 0.555

Interbank_1996 0.557 0.527 0.526 0.013 0.790 3.653 0.507 0.557 0.506 0.554

Ionian and Popular_1987 0.780 0.721 0.718 0.027 0.549 3.004 0.678 0.779 0.671 0.768

Ionian and Popular_1988 0.790 0.751 0.750 0.014 0.594 3.641 0.727 0.785 0.722 0.775

Ionian and Popular_1989 0.725 0.691 0.690 0.014 0.517 3.172 0.669 0.722 0.665 0.714

Ionian and Popular_1990 0.761 0.735 0.734 0.009 0.755 3.974 0.720 0.756 0.718 0.752

Ionian and Popular_1991 0.807 0.757 0.753 0.023 0.918 3.801 0.723 0.815 0.719 0.805

Ionian and Popular_1992 0.846 0.803 0.801 0.016 0.911 4.403 0.779 0.841 0.773 0.835

Ionian and Popular_1993 0.748 0.696 0.693 0.023 0.549 3.099 0.659 0.747 0.653 0.737

Ionian and Popular_1994 1.000 0.897 0.899 0.040 -0.072 2.829 0.815 0.973 0.808 0.963

Ionian and Popular_1995 1.000 0.880 0.876 0.047 0.217 3.178 0.782 0.978 0.779 0.973

Ionian and Popular_1996 0.930 0.837 0.833 0.041 0.362 3.032 0.763 0.923 0.756 0.909

Ionian and Popular_1997 1.000 0.878 0.871 0.056 0.635 3.542 0.777 1.004 0.770 0.992

Ionian and Popular_1998 0.930 0.848 0.842 0.039 0.928 4.103 0.789 0.940 0.785 0.936
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Laiki (Hellas)_1993 0.495 0.470 0.469 0.012 0.783 3.515 0.453 0.497 0.451 0.492

Laiki (Hellas)_1994 0.294 0.250 0.250 0.023 0.179 2.317 0.211 0.295 0.210 0.285

Laiki (Hellas)_1995 0.481 0.409 0.407 0.039 0.227 2.355 0.345 0.485 0.341 0.470

Laiki (Hellas)_1996 0.704 0.562 0.572 0.072 -0.083 2.131 0.437 0.690 0.428 0.657

Laiki (Hellas)_1997 0.864 0.759 0.757 0.046 0.381 3.022 0.678 0.860 0.671 0.844

Laiki (Hellas)_1998 0.798 0.684 0.680 0.059 0.382 2.591 0.589 0.808 0.581 0.786

Laiki (Hellas)_1999 0.857 0.738 0.733 0.059 0.406 2.656 0.640 0.861 0.630 0.840

Macedonia Thrace_1987 0.786 0.753 0.752 0.010 0.456 3.540 0.735 0.775 0.732 0.772

Macedonia Thrace_1988 0.741 0.712 0.712 0.009 0.275 3.146 0.696 0.730 0.692 0.727

Macedonia Thrace_1989 0.681 0.655 0.655 0.008 0.421 3.500 0.641 0.671 0.639 0.669

Macedonia Thrace_1990 0.744 0.723 0.722 0.006 1.042 4.683 0.714 0.739 0.713 0.738

Macedonia Thrace_1991 0.603 0.580 0.579 0.008 0.381 3.021 0.566 0.597 0.564 0.594

Macedonia Thrace_1992 0.694 0.675 0.674 0.007 1.026 4.904 0.664 0.692 0.663 0.688

Macedonia Thrace_1993 0.683 0.662 0.661 0.007 0.868 3.894 0.652 0.679 0.651 0.679

Macedonia Thrace_1994 0.591 0.566 0.566 0.007 0.271 3.142 0.554 0.581 0.550 0.579

Macedonia Thrace_1995 0.619 0.580 0.579 0.017 0.493 3.105 0.552 0.616 0.549 0.608

Macedonia Thrace_1996 0.662 0.638 0.636 0.010 0.733 3.397 0.623 0.659 0.622 0.658

Macedonia Thrace_1997 0.635 0.612 0.611 0.008 0.642 3.206 0.599 0.631 0.599 0.629

Macedonia Thrace_1998 0.635 0.610 0.609 0.008 0.513 3.506 0.596 0.627 0.595 0.625

Macedonia Thrace_1999 0.733 0.702 0.701 0.013 0.753 3.435 0.683 0.734 0.681 0.728

National_1987 0.723 0.644 0.641 0.036 0.359 2.599 0.582 0.721 0.576 0.712

National_1988 0.664 0.625 0.621 0.020 1.040 4.344 0.597 0.672 0.596 0.667

National_1989 0.679 0.631 0.627 0.023 0.891 4.020 0.596 0.683 0.595 0.681

National_1990 0.674 0.620 0.617 0.023 0.673 3.501 0.581 0.672 0.577 0.668

National_1991 0.628 0.574 0.568 0.029 0.655 2.785 0.531 0.639 0.529 0.633

National_1992 0.850 0.776 0.773 0.036 0.624 3.468 0.719 0.855 0.712 0.838

National_1993 1.000 0.805 0.813 0.081 -0.296 2.690 0.636 0.946 0.628 0.931

National_1994 0.913 0.796 0.792 0.059 0.333 2.445 0.702 0.914 0.690 0.893

National_1995 0.909 0.808 0.802 0.055 0.518 2.587 0.727 0.922 0.721 0.914

National_1996 0.817 0.738 0.734 0.041 0.593 2.887 0.676 0.827 0.672 0.823

National_1997 1.000 0.864 0.858 0.068 0.435 2.653 0.750 1.005 0.746 1.001

National_1998 0.962 0.866 0.858 0.047 0.686 3.262 0.789 0.970 0.788 0.969

National_1999 1.000 0.900 0.894 0.045 0.638 3.478 0.824 0.999 0.833 1.018

Piraeus_1987 0.748 0.715 0.712 0.014 0.897 4.269 0.693 0.748 0.690 0.742

Piraeus_1988 0.788 0.764 0.763 0.009 0.949 4.593 0.751 0.786 0.749 0.782

Piraeus_1989 0.747 0.722 0.721 0.010 0.862 4.245 0.706 0.745 0.705 0.740

Piraeus_1990 0.828 0.798 0.797 0.012 0.844 4.194 0.779 0.826 0.777 0.821

Piraeus_1991 0.706 0.687 0.686 0.007 0.892 4.117 0.676 0.702 0.676 0.702

Piraeus_1992 0.758 0.726 0.724 0.012 0.830 4.353 0.705 0.754 0.702 0.749

Piraeus_1993 0.870 0.820 0.818 0.020 0.556 3.532 0.785 0.865 0.783 0.861

Piraeus_1994 0.899 0.875 0.874 0.008 1.062 5.150 0.864 0.893 0.863 0.891

Piraeus_1995 0.946 0.908 0.907 0.012 0.433 3.211 0.887 0.933 0.882 0.929

Piraeus_1996 0.768 0.740 0.738 0.011 0.778 3.503 0.724 0.765 0.723 0.763

Piraeus_1997 0.924 0.870 0.869 0.020 0.376 3.061 0.835 0.913 0.828 0.904

Piraeus_1998 0.966 0.823 0.832 0.068 -0.135 2.255 0.701 0.944 0.690 0.905

Piraeus_1999 0.780 0.702 0.702 0.035 0.126 2.578 0.639 0.767 0.632 0.754



356 

 

 

 

  

T Bank_1993 0.225 0.195 0.195 0.015 0.123 2.318 0.169 0.224 0.167 0.216

T Bank_1994 0.590 0.569 0.568 0.008 1.024 4.289 0.557 0.589 0.557 0.589

T Bank_1995 0.867 0.836 0.835 0.011 0.444 3.056 0.817 0.858 0.815 0.855

T Bank_1996 0.760 0.693 0.690 0.030 0.591 3.489 0.642 0.759 0.637 0.747

T Bank_1997 0.749 0.660 0.654 0.048 0.403 2.420 0.586 0.756 0.580 0.740

T Bank_1998 0.758 0.653 0.647 0.059 0.395 2.348 0.564 0.775 0.558 0.750

T Bank_1999 0.708 0.567 0.574 0.079 0.071 2.134 0.441 0.710 0.433 0.671

Xiosbank_1991 0.561 0.545 0.544 0.006 0.758 3.919 0.536 0.557 0.535 0.555

Xiosbank_1992 0.846 0.773 0.768 0.032 0.756 3.958 0.720 0.846 0.716 0.840

Xiosbank_1993 0.639 0.618 0.617 0.009 1.126 5.116 0.606 0.639 0.606 0.638

Xiosbank_1994 0.466 0.440 0.436 0.014 1.091 4.088 0.422 0.473 0.421 0.472

Xiosbank_1995 0.499 0.455 0.451 0.024 0.615 2.816 0.422 0.506 0.418 0.498

Xiosbank_1996 0.597 0.556 0.553 0.019 0.864 3.677 0.528 0.602 0.524 0.597

Xiosbank_1997 0.700 0.653 0.649 0.020 0.796 3.590 0.621 0.702 0.617 0.697

Xiosbank_1998 0.667 0.577 0.572 0.045 0.365 2.654 0.501 0.671 0.496 0.662

Average_1987 0.710 0.660 0.658 0.022 0.405 2.936 0.621 0.708 0.618 0.696

Average_1988 0.681 0.648 0.647 0.013 0.738 3.978 0.626 0.677 0.623 0.673

Average_1989 0.681 0.653 0.652 0.011 1.069 5.076 0.637 0.680 0.636 0.678

Average_1990 0.704 0.672 0.670 0.012 0.772 4.105 0.651 0.702 0.648 0.695

Average_1991 0.668 0.638 0.637 0.012 0.817 3.796 0.619 0.667 0.618 0.664

Average_1992 0.741 0.717 0.716 0.009 1.087 5.042 0.704 0.739 0.704 0.737

Average_1993 0.830 0.777 0.775 0.020 0.563 3.449 0.743 0.821 0.738 0.813

Average_1994 0.782 0.743 0.741 0.015 0.724 3.721 0.720 0.776 0.717 0.773

Average_1995 0.769 0.731 0.729 0.015 0.740 3.559 0.708 0.766 0.704 0.764

Average_1996 0.748 0.712 0.710 0.016 0.716 3.347 0.688 0.749 0.686 0.744

Average_1997 0.806 0.760 0.757 0.020 0.669 3.218 0.727 0.806 0.725 0.799

Average_1998 0.748 0.672 0.674 0.039 0.072 2.180 0.606 0.746 0.603 0.724

Average_1999 0.812 0.723 0.726 0.044 0.070 2.204 0.648 0.806 0.642 0.783

Average W_1987 0.718 0.648 0.646 0.033 0.390 2.628 0.594 0.715 0.589 0.707

Average W_1988 0.657 0.616 0.614 0.019 0.866 3.875 0.588 0.662 0.586 0.656

Average W_1989 0.664 0.615 0.612 0.021 0.750 3.743 0.580 0.663 0.577 0.657

Average W_1990 0.677 0.627 0.625 0.022 0.511 3.225 0.590 0.673 0.585 0.666

Average W_1991 0.639 0.594 0.589 0.024 0.734 2.919 0.561 0.648 0.559 0.643

Average W_1992 0.733 0.681 0.681 0.020 0.395 3.178 0.646 0.725 0.638 0.713

Average W_1993 0.937 0.848 0.843 0.040 0.504 2.942 0.780 0.934 0.772 0.922

Average W_1994 0.843 0.779 0.775 0.028 0.665 3.274 0.734 0.843 0.733 0.842

Average W_1995 0.816 0.747 0.744 0.028 0.493 3.210 0.698 0.809 0.692 0.803

Average W_1996 0.760 0.700 0.698 0.025 0.462 3.258 0.655 0.753 0.650 0.747

Average W_1997 0.885 0.806 0.802 0.034 0.519 3.204 0.747 0.881 0.742 0.874

Average W_1998 0.857 0.775 0.771 0.037 0.575 3.376 0.714 0.856 0.705 0.840

Average W_1999 0.922 0.837 0.834 0.041 0.525 3.079 0.771 0.927 0.763 0.907
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Table XII.2. Confidence intervals under the SJ bootstrap 

 

Bank
DEA 

Score

Eff. bc 

mean

Eff. bc 

median

Stand. 

Dev.
Skew. Kurt.

SW98 

Low

SW98 

High

BCa 

Low

BCa 

High

Agricultural_1992 1.000 0.831 0.836 0.065 -0.241 3.051 0.686 0.953 0.676 0.927

Agricultural_1993 0.976 0.928 0.926 0.017 0.681 3.941 0.898 0.968 0.894 0.962

Agricultural_1994 0.927 0.870 0.868 0.020 0.714 4.098 0.835 0.916 0.830 0.911

Agricultural_1995 0.919 0.845 0.839 0.037 0.689 3.293 0.789 0.926 0.785 0.920

Agricultural_1996 0.906 0.837 0.832 0.035 0.708 3.347 0.784 0.916 0.783 0.909

Agricultural_1997 0.936 0.851 0.846 0.039 0.516 3.046 0.786 0.935 0.781 0.931

Agricultural_1998 0.937 0.809 0.813 0.058 -0.059 2.590 0.702 0.918 0.690 0.883

Agricultural_1999 1.000 0.832 0.841 0.070 -0.230 2.633 0.687 0.958 0.674 0.921

Alpha_1987 0.784 0.751 0.749 0.014 0.855 4.301 0.729 0.782 0.728 0.778

Alpha_1988 0.796 0.767 0.765 0.013 0.942 4.251 0.749 0.797 0.748 0.793

Alpha_1989 0.803 0.774 0.772 0.013 1.009 4.733 0.756 0.803 0.755 0.800

Alpha_1990 0.893 0.845 0.842 0.021 0.644 3.325 0.812 0.893 0.808 0.884

Alpha_1991 0.801 0.757 0.755 0.018 0.622 3.294 0.728 0.798 0.723 0.792

Alpha_1992 0.709 0.674 0.672 0.016 0.763 3.722 0.649 0.711 0.648 0.708

Alpha_1993 0.815 0.767 0.763 0.024 0.830 3.704 0.731 0.823 0.728 0.812

Alpha_1994 0.750 0.724 0.722 0.012 0.973 4.420 0.708 0.750 0.707 0.748

Alpha_1995 0.811 0.782 0.781 0.013 0.953 4.571 0.764 0.811 0.763 0.808

Alpha_1996 0.953 0.893 0.890 0.028 0.707 3.520 0.847 0.959 0.843 0.944

Alpha_1997 1.000 0.922 0.920 0.032 0.405 3.129 0.866 0.992 0.854 0.974

Alpha_1998 0.892 0.778 0.779 0.053 0.062 2.388 0.684 0.881 0.673 0.857

Alpha_1999 1.000 0.763 0.777 0.102 -0.416 2.605 0.550 0.936 0.544 0.914

Bank of Athens_1988 0.783 0.763 0.762 0.006 0.951 4.238 0.754 0.778 0.753 0.777

Bank of Athens_1989 0.805 0.785 0.784 0.006 1.018 4.375 0.775 0.800 0.775 0.799

Bank of Athens_1990 0.844 0.818 0.817 0.009 0.549 3.180 0.803 0.836 0.801 0.833

Bank of Athens_1991 0.855 0.775 0.775 0.031 0.121 3.040 0.714 0.837 0.703 0.820

Bank of Athens_1992 0.746 0.726 0.725 0.007 0.691 3.552 0.714 0.741 0.713 0.739

Bank of Athens_1993 0.733 0.712 0.711 0.007 0.933 4.225 0.701 0.729 0.701 0.728

Bank of Athens_1994 0.543 0.510 0.510 0.014 0.326 2.829 0.486 0.540 0.483 0.532

Bank of Athens_1995 0.635 0.604 0.602 0.013 0.849 4.191 0.583 0.633 0.580 0.630

Bank of Athens_1996 0.653 0.622 0.620 0.014 1.112 5.150 0.601 0.654 0.599 0.650

Bank of Athens_1997 0.753 0.686 0.680 0.036 0.751 3.235 0.633 0.768 0.630 0.761

Bank of Attica_1987 0.800 0.780 0.779 0.006 1.008 4.391 0.770 0.795 0.770 0.795

Bank of Attica_1988 0.742 0.725 0.724 0.006 0.981 4.266 0.716 0.738 0.716 0.737

Bank of Attica_1989 0.660 0.636 0.636 0.008 0.363 2.847 0.622 0.654 0.620 0.651

Bank of Attica_1990 0.744 0.726 0.725 0.006 0.917 4.065 0.717 0.741 0.716 0.739

Bank of Attica_1991 0.910 0.878 0.878 0.012 0.462 2.899 0.860 0.903 0.857 0.898

Bank of Attica_1992 1.000 0.846 0.858 0.051 -1.111 3.951 0.713 0.921 0.704 0.898

Bank of Attica_1993 0.945 0.892 0.891 0.022 0.491 3.409 0.855 0.938 0.851 0.931

Bank of Attica_1994 0.820 0.800 0.799 0.007 1.112 4.689 0.791 0.816 0.790 0.815

Bank of Attica_1995 0.793 0.735 0.737 0.020 -0.365 2.734 0.692 0.768 0.685 0.758

Bank of Attica_1996 0.747 0.692 0.694 0.020 -0.151 2.607 0.653 0.729 0.646 0.719

Bank of Attica_1997 0.810 0.761 0.759 0.018 0.520 3.525 0.727 0.802 0.723 0.796

Bank of Attica_1998 0.819 0.750 0.742 0.038 0.738 3.088 0.697 0.836 0.693 0.828

Bank of Attica_1999 0.764 0.702 0.701 0.027 0.301 2.639 0.656 0.759 0.649 0.747
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Central Greece_1987 1.000 0.639 0.608 0.246 1.213 5.358 0.302 1.265 0.318 1.440

Central Greece_1989 0.706 0.685 0.684 0.007 0.782 3.831 0.674 0.702 0.674 0.701

Central Greece_1990 0.668 0.648 0.647 0.007 0.820 3.829 0.637 0.665 0.637 0.664

Central Greece_1991 0.667 0.636 0.636 0.009 0.155 3.378 0.617 0.656 0.612 0.651

Central Greece_1992 0.636 0.610 0.610 0.008 0.454 3.428 0.596 0.627 0.593 0.625

Central Greece_1993 0.705 0.666 0.665 0.016 0.665 3.551 0.640 0.703 0.636 0.696

Central Greece_1994 0.700 0.664 0.661 0.016 0.919 4.270 0.640 0.701 0.637 0.696

Central Greece_1995 0.660 0.629 0.628 0.012 0.787 4.199 0.610 0.657 0.607 0.653

Central Greece_1996 0.675 0.640 0.639 0.013 0.829 4.579 0.619 0.672 0.615 0.667

Central Greece_1997 0.626 0.574 0.570 0.026 0.713 3.209 0.535 0.633 0.534 0.631

Central Greece_1998 0.630 0.582 0.577 0.026 0.895 3.745 0.544 0.641 0.543 0.637

Cretabank_1987 0.655 0.640 0.639 0.005 1.071 4.634 0.633 0.652 0.633 0.652

Cretabank_1989 0.449 0.411 0.408 0.020 0.784 3.492 0.382 0.456 0.381 0.453

Cretabank_1990 0.526 0.495 0.493 0.015 1.009 4.307 0.474 0.530 0.472 0.526

Cretabank_1991 0.578 0.557 0.555 0.010 1.246 5.139 0.544 0.581 0.543 0.578

Cretabank_1992 0.643 0.620 0.618 0.010 1.152 5.027 0.605 0.645 0.604 0.642

Cretabank_1993 0.701 0.678 0.677 0.008 0.807 3.884 0.665 0.697 0.664 0.695

Cretabank_1994 0.589 0.557 0.554 0.015 0.989 4.042 0.536 0.595 0.535 0.591

Cretabank_1995 0.605 0.543 0.540 0.027 0.483 3.194 0.494 0.603 0.490 0.595

Cretabank_1996 0.726 0.701 0.700 0.009 0.744 3.636 0.687 0.723 0.685 0.720

Cretabank_1997 0.740 0.712 0.711 0.010 0.450 3.155 0.696 0.732 0.693 0.730

Cretabank_1998 0.814 0.773 0.772 0.015 0.255 3.005 0.745 0.804 0.739 0.797

Egnatia_1993 0.628 0.553 0.557 0.030 -0.280 2.650 0.491 0.606 0.483 0.587

Egnatia_1994 0.484 0.450 0.447 0.017 0.829 3.871 0.425 0.489 0.423 0.485

Egnatia_1995 0.470 0.433 0.430 0.021 0.715 3.305 0.402 0.481 0.401 0.473

Egnatia_1996 0.685 0.618 0.615 0.033 0.505 3.151 0.561 0.689 0.557 0.676

Egnatia_1997 0.779 0.710 0.706 0.034 0.675 3.445 0.657 0.787 0.653 0.779

Egnatia_1998 0.719 0.676 0.672 0.023 0.933 3.630 0.645 0.729 0.644 0.725

Egnatia_1999 0.715 0.667 0.663 0.024 0.951 3.808 0.634 0.727 0.629 0.720

Emporiki_1987 0.750 0.717 0.715 0.014 0.815 3.956 0.695 0.747 0.694 0.745

Emporiki_1988 0.738 0.717 0.716 0.008 0.931 3.978 0.707 0.736 0.705 0.733

Emporiki_1989 0.718 0.697 0.696 0.008 0.972 4.397 0.685 0.716 0.685 0.715

Emporiki_1990 0.753 0.727 0.726 0.010 0.929 4.302 0.713 0.750 0.712 0.749

Emporiki_1991 0.722 0.696 0.695 0.010 0.903 4.218 0.682 0.720 0.681 0.717

Emporiki_1992 0.860 0.814 0.812 0.018 0.725 3.754 0.786 0.855 0.779 0.848

Emporiki_1993 0.956 0.900 0.898 0.023 0.600 3.391 0.862 0.950 0.856 0.942

Emporiki_1994 0.928 0.868 0.866 0.025 0.455 3.143 0.826 0.921 0.821 0.913

Emporiki_1995 0.851 0.809 0.808 0.015 0.574 3.838 0.781 0.843 0.776 0.834

Emporiki_1996 0.790 0.767 0.766 0.008 0.857 3.967 0.755 0.785 0.754 0.785

Emporiki_1997 0.811 0.786 0.785 0.009 0.814 3.771 0.773 0.806 0.772 0.805

Emporiki_1998 0.769 0.733 0.732 0.013 0.353 3.085 0.709 0.761 0.706 0.756

Emporiki_1999 0.916 0.865 0.863 0.023 0.705 3.540 0.830 0.918 0.825 0.906
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Ergobank_1987 0.683 0.649 0.648 0.014 0.670 3.707 0.626 0.681 0.622 0.673

Ergobank_1988 0.727 0.696 0.694 0.014 0.888 4.275 0.675 0.726 0.674 0.722

Ergobank_1989 0.688 0.645 0.644 0.017 0.538 3.380 0.615 0.683 0.610 0.676

Ergobank_1990 0.749 0.697 0.695 0.022 0.632 3.421 0.661 0.749 0.656 0.740

Ergobank_1991 0.875 0.826 0.823 0.025 0.837 3.769 0.789 0.885 0.786 0.874

Ergobank_1992 0.708 0.660 0.657 0.021 0.755 3.692 0.625 0.709 0.621 0.703

Ergobank_1993 0.658 0.620 0.618 0.018 0.687 3.497 0.592 0.660 0.590 0.655

Ergobank_1994 0.567 0.543 0.542 0.009 0.785 4.073 0.528 0.563 0.527 0.560

Ergobank_1995 0.600 0.576 0.575 0.008 0.600 3.753 0.562 0.593 0.560 0.590

Ergobank_1996 0.657 0.629 0.628 0.010 0.705 3.934 0.612 0.653 0.609 0.648

Ergobank_1997 0.723 0.682 0.681 0.016 0.315 2.960 0.653 0.715 0.649 0.708

Ergobank_1998 0.639 0.559 0.557 0.037 0.247 2.722 0.495 0.633 0.486 0.618

Ergobank_1999 0.682 0.607 0.605 0.033 0.375 2.983 0.547 0.676 0.541 0.665

Eurobank_1997 0.512 0.461 0.457 0.027 0.667 3.125 0.421 0.521 0.417 0.513

Eurobank_1998 0.990 0.868 0.853 0.080 0.488 2.214 0.760 1.029 0.755 1.017

Eurobank_1999 0.747 0.706 0.705 0.017 0.713 3.681 0.678 0.745 0.675 0.739

General_1987 0.731 0.707 0.706 0.008 0.647 3.755 0.694 0.725 0.693 0.723

General_1988 0.754 0.734 0.733 0.007 0.785 3.853 0.723 0.750 0.722 0.748

General_1989 0.782 0.756 0.756 0.008 0.453 3.302 0.742 0.774 0.740 0.771

General_1990 0.791 0.770 0.769 0.006 0.955 4.220 0.761 0.785 0.761 0.784

General_1991 0.690 0.664 0.663 0.008 0.272 3.093 0.648 0.681 0.645 0.678

General_1992 0.677 0.660 0.659 0.005 1.020 4.417 0.652 0.673 0.652 0.673

General_1993 0.577 0.561 0.560 0.005 0.958 4.286 0.553 0.573 0.553 0.573

General_1994 0.680 0.660 0.659 0.007 0.587 3.255 0.649 0.675 0.647 0.672

General_1995 0.779 0.753 0.753 0.009 0.491 3.014 0.739 0.772 0.736 0.769

General_1996 0.714 0.685 0.685 0.010 0.291 2.781 0.668 0.705 0.665 0.701

General_1997 0.716 0.692 0.691 0.008 0.476 2.972 0.679 0.709 0.676 0.706

General_1998 0.714 0.682 0.682 0.010 0.357 3.367 0.664 0.702 0.659 0.699

General_1999 0.793 0.758 0.757 0.010 0.294 3.449 0.739 0.779 0.733 0.775

Interbank_1995 0.558 0.538 0.536 0.008 1.073 4.526 0.526 0.558 0.526 0.557

Interbank_1996 0.557 0.527 0.524 0.014 1.008 4.248 0.507 0.561 0.506 0.558

Ionian and Popular_1987 0.780 0.721 0.719 0.027 0.564 3.129 0.678 0.783 0.671 0.770

Ionian and Popular_1988 0.790 0.752 0.751 0.014 0.515 3.666 0.726 0.781 0.722 0.774

Ionian and Popular_1989 0.725 0.691 0.690 0.014 0.501 3.105 0.669 0.720 0.665 0.714

Ionian and Popular_1990 0.761 0.735 0.734 0.009 0.774 3.938 0.721 0.756 0.719 0.754

Ionian and Popular_1991 0.807 0.756 0.751 0.025 1.028 4.045 0.720 0.821 0.718 0.814

Ionian and Popular_1992 0.846 0.804 0.802 0.016 0.796 4.085 0.780 0.840 0.775 0.833

Ionian and Popular_1993 0.748 0.697 0.694 0.022 0.703 3.527 0.661 0.747 0.656 0.739

Ionian and Popular_1994 1.000 0.898 0.899 0.039 -0.032 2.953 0.819 0.975 0.811 0.964

Ionian and Popular_1995 1.000 0.881 0.877 0.048 0.395 3.513 0.786 0.987 0.781 0.980

Ionian and Popular_1996 0.930 0.838 0.835 0.042 0.570 3.525 0.764 0.934 0.757 0.916

Ionian and Popular_1997 1.000 0.877 0.871 0.058 0.779 3.917 0.778 1.013 0.768 0.993

Ionian and Popular_1998 0.930 0.848 0.841 0.041 1.053 4.479 0.787 0.947 0.786 0.944
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Laiki (Hellas)_1993 0.495 0.470 0.469 0.012 0.688 3.389 0.453 0.496 0.451 0.493

Laiki (Hellas)_1994 0.294 0.250 0.250 0.024 0.199 2.143 0.212 0.295 0.210 0.288

Laiki (Hellas)_1995 0.481 0.409 0.405 0.040 0.265 2.267 0.344 0.486 0.341 0.476

Laiki (Hellas)_1996 0.704 0.564 0.573 0.073 -0.061 2.067 0.438 0.693 0.432 0.660

Laiki (Hellas)_1997 0.864 0.761 0.760 0.048 0.249 2.757 0.674 0.857 0.668 0.841

Laiki (Hellas)_1998 0.798 0.684 0.681 0.061 0.372 2.622 0.587 0.809 0.579 0.788

Laiki (Hellas)_1999 0.857 0.737 0.731 0.060 0.434 2.727 0.637 0.864 0.629 0.845

Macedonia Thrace_1987 0.786 0.753 0.752 0.010 0.498 3.377 0.735 0.775 0.732 0.773

Macedonia Thrace_1988 0.741 0.712 0.712 0.009 0.407 3.385 0.697 0.732 0.694 0.728

Macedonia Thrace_1989 0.681 0.655 0.655 0.008 0.463 3.572 0.642 0.672 0.639 0.670

Macedonia Thrace_1990 0.744 0.724 0.723 0.006 0.879 4.076 0.714 0.739 0.714 0.738

Macedonia Thrace_1991 0.603 0.580 0.579 0.008 0.430 3.056 0.567 0.597 0.565 0.595

Macedonia Thrace_1992 0.694 0.675 0.674 0.007 0.922 4.082 0.665 0.691 0.664 0.688

Macedonia Thrace_1993 0.683 0.663 0.661 0.007 0.865 3.988 0.652 0.679 0.651 0.679

Macedonia Thrace_1994 0.591 0.567 0.567 0.007 0.285 3.188 0.554 0.582 0.551 0.580

Macedonia Thrace_1995 0.619 0.579 0.578 0.017 0.543 3.153 0.551 0.618 0.548 0.609

Macedonia Thrace_1996 0.662 0.637 0.636 0.010 0.775 3.651 0.623 0.660 0.622 0.658

Macedonia Thrace_1997 0.635 0.612 0.611 0.008 0.654 3.463 0.599 0.630 0.598 0.628

Macedonia Thrace_1998 0.635 0.610 0.609 0.008 0.562 3.381 0.596 0.628 0.594 0.626

Macedonia Thrace_1999 0.733 0.703 0.701 0.013 0.761 3.369 0.683 0.734 0.681 0.730

National_1987 0.723 0.644 0.641 0.037 0.262 2.405 0.580 0.715 0.574 0.708

National_1988 0.664 0.625 0.621 0.020 0.992 4.058 0.597 0.674 0.595 0.667

National_1989 0.679 0.631 0.627 0.023 0.724 3.448 0.594 0.683 0.592 0.677

National_1990 0.674 0.619 0.617 0.023 0.553 3.191 0.581 0.670 0.575 0.663

National_1991 0.628 0.573 0.568 0.030 0.707 3.124 0.529 0.639 0.526 0.632

National_1992 0.850 0.775 0.772 0.036 0.523 2.945 0.718 0.854 0.711 0.838

National_1993 1.000 0.805 0.811 0.080 -0.274 2.830 0.632 0.954 0.627 0.936

National_1994 0.913 0.797 0.796 0.060 0.372 2.655 0.701 0.919 0.690 0.891

National_1995 0.909 0.808 0.800 0.056 0.640 3.011 0.726 0.930 0.721 0.920

National_1996 0.817 0.739 0.733 0.043 0.777 3.518 0.677 0.837 0.675 0.829

National_1997 1.000 0.865 0.854 0.069 0.557 2.982 0.751 1.013 0.750 1.011

National_1998 0.962 0.866 0.859 0.048 0.787 3.720 0.790 0.977 0.789 0.972

National_1999 1.000 0.900 0.894 0.047 0.684 3.699 0.820 1.003 0.832 1.028

Piraeus_1987 0.748 0.715 0.714 0.014 0.848 4.155 0.694 0.748 0.691 0.741

Piraeus_1988 0.788 0.765 0.764 0.009 0.963 4.348 0.752 0.786 0.751 0.783

Piraeus_1989 0.747 0.722 0.721 0.010 0.822 4.100 0.707 0.746 0.706 0.741

Piraeus_1990 0.828 0.799 0.797 0.012 0.838 4.175 0.780 0.826 0.778 0.821

Piraeus_1991 0.706 0.687 0.686 0.007 0.886 4.086 0.677 0.702 0.677 0.702

Piraeus_1992 0.758 0.726 0.724 0.012 0.773 4.231 0.705 0.753 0.703 0.748

Piraeus_1993 0.870 0.821 0.820 0.020 0.513 3.493 0.787 0.863 0.785 0.857

Piraeus_1994 0.899 0.876 0.874 0.007 0.898 4.084 0.865 0.893 0.864 0.892

Piraeus_1995 0.946 0.909 0.908 0.012 0.338 2.980 0.887 0.934 0.882 0.930

Piraeus_1996 0.768 0.740 0.738 0.011 0.888 4.044 0.724 0.766 0.723 0.764

Piraeus_1997 0.924 0.870 0.869 0.020 0.313 2.914 0.836 0.912 0.827 0.904

Piraeus_1998 0.966 0.822 0.832 0.068 -0.179 2.205 0.698 0.936 0.688 0.906

Piraeus_1999 0.780 0.702 0.702 0.035 0.115 2.654 0.638 0.771 0.631 0.752
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T Bank_1993 0.225 0.195 0.195 0.015 0.133 2.327 0.170 0.222 0.167 0.216

T Bank_1994 0.590 0.569 0.567 0.009 1.005 4.284 0.557 0.590 0.557 0.590

T Bank_1995 0.867 0.836 0.835 0.010 0.493 3.092 0.819 0.859 0.816 0.855

T Bank_1996 0.760 0.691 0.689 0.032 0.572 3.380 0.637 0.763 0.630 0.749

T Bank_1997 0.749 0.657 0.652 0.049 0.332 2.273 0.580 0.755 0.573 0.739

T Bank_1998 0.758 0.651 0.647 0.060 0.350 2.313 0.560 0.767 0.552 0.747

T Bank_1999 0.708 0.566 0.574 0.079 0.105 2.278 0.441 0.715 0.431 0.665

Xiosbank_1991 0.561 0.545 0.544 0.005 0.725 3.661 0.536 0.557 0.536 0.556

Xiosbank_1992 0.846 0.773 0.768 0.033 0.767 3.851 0.717 0.851 0.715 0.844

Xiosbank_1993 0.639 0.619 0.617 0.009 1.071 4.867 0.607 0.639 0.606 0.637

Xiosbank_1994 0.466 0.439 0.435 0.014 1.064 4.042 0.419 0.473 0.418 0.471

Xiosbank_1995 0.499 0.453 0.450 0.025 0.563 2.603 0.419 0.506 0.415 0.500

Xiosbank_1996 0.597 0.555 0.551 0.021 0.900 3.717 0.524 0.604 0.521 0.600

Xiosbank_1997 0.700 0.652 0.648 0.021 0.852 4.018 0.617 0.701 0.615 0.698

Xiosbank_1998 0.667 0.577 0.574 0.043 0.331 2.776 0.500 0.667 0.495 0.656

Average_1987 0.710 0.660 0.658 0.022 0.367 2.779 0.621 0.707 0.618 0.698

Average_1988 0.681 0.649 0.647 0.013 0.653 3.656 0.627 0.677 0.624 0.672

Average_1989 0.681 0.653 0.652 0.011 0.878 4.332 0.636 0.679 0.635 0.676

Average_1990 0.704 0.672 0.671 0.012 0.688 3.901 0.652 0.699 0.648 0.693

Average_1991 0.668 0.638 0.636 0.012 0.810 4.012 0.618 0.666 0.617 0.663

Average_1992 0.741 0.717 0.716 0.009 0.962 4.388 0.704 0.739 0.703 0.737

Average_1993 0.830 0.778 0.776 0.019 0.602 3.808 0.743 0.820 0.736 0.812

Average_1994 0.782 0.744 0.742 0.014 0.795 4.209 0.720 0.776 0.716 0.773

Average_1995 0.769 0.731 0.729 0.015 0.828 3.880 0.707 0.767 0.705 0.764

Average_1996 0.748 0.713 0.711 0.016 0.767 3.502 0.688 0.750 0.686 0.745

Average_1997 0.806 0.760 0.758 0.020 0.758 3.675 0.729 0.808 0.726 0.799

Average_1998 0.748 0.671 0.672 0.038 0.051 2.295 0.604 0.742 0.601 0.724

Average_1999 0.812 0.722 0.725 0.043 0.029 2.300 0.646 0.804 0.640 0.781

Average W_1987 0.718 0.647 0.645 0.033 0.284 2.411 0.592 0.710 0.586 0.704

Average W_1988 0.657 0.616 0.613 0.019 0.823 3.677 0.588 0.663 0.584 0.654

Average W_1989 0.664 0.615 0.613 0.021 0.643 3.391 0.580 0.664 0.575 0.656

Average W_1990 0.677 0.626 0.625 0.021 0.452 3.109 0.591 0.674 0.584 0.662

Average W_1991 0.639 0.593 0.589 0.024 0.776 3.290 0.558 0.648 0.556 0.644

Average W_1992 0.733 0.682 0.680 0.020 0.342 3.110 0.645 0.724 0.638 0.715

Average W_1993 0.937 0.849 0.844 0.041 0.534 3.039 0.781 0.938 0.773 0.927

Average W_1994 0.843 0.780 0.777 0.028 0.776 3.677 0.737 0.845 0.737 0.844

Average W_1995 0.816 0.748 0.746 0.029 0.510 3.586 0.695 0.811 0.690 0.801

Average W_1996 0.760 0.701 0.700 0.025 0.481 3.457 0.657 0.755 0.652 0.744

Average W_1997 0.885 0.807 0.803 0.035 0.674 3.813 0.747 0.886 0.744 0.878

Average W_1998 0.857 0.774 0.772 0.038 0.520 3.282 0.709 0.860 0.700 0.839

Average W_1999 0.922 0.836 0.835 0.042 0.453 2.948 0.768 0.929 0.760 0.901



362 

Table XII.3. Confidence intervals under the Moments bootstrap 

 

Bank
DEA 

Score

Eff. bc 

mean

Eff. bc 

median

Stand. 

Dev.
Skew. Kurt.

SW98 

Low

SW98 

High

BCa 

Low

BCa 

High

Agricultural_1992 1.000 0.812 0.816 0.066 -0.247 2.947 0.670 0.931 0.637 0.909

Agricultural_1993 0.976 0.912 0.911 0.024 0.107 2.796 0.865 0.958 0.853 0.950

Agricultural_1994 0.927 0.853 0.853 0.027 0.104 2.709 0.805 0.907 0.785 0.896

Agricultural_1995 0.919 0.823 0.821 0.039 0.087 2.661 0.749 0.901 0.735 0.889

Agricultural_1996 0.906 0.816 0.815 0.038 0.052 2.645 0.739 0.890 0.731 0.878

Agricultural_1997 0.936 0.828 0.827 0.041 0.181 2.767 0.753 0.911 0.739 0.897

Agricultural_1998 0.937 0.787 0.791 0.058 -0.155 2.830 0.664 0.894 0.642 0.866

Agricultural_1999 1.000 0.810 0.817 0.071 -0.241 2.807 0.664 0.937 0.624 0.901

Alpha_1987 0.784 0.738 0.736 0.021 0.445 3.046 0.702 0.782 0.699 0.777

Alpha_1988 0.796 0.756 0.754 0.021 0.533 3.001 0.723 0.803 0.719 0.794

Alpha_1989 0.803 0.763 0.761 0.021 0.606 3.140 0.730 0.809 0.727 0.803

Alpha_1990 0.893 0.828 0.827 0.029 0.281 2.740 0.776 0.887 0.767 0.874

Alpha_1991 0.801 0.742 0.742 0.026 0.277 2.753 0.697 0.795 0.688 0.783

Alpha_1992 0.709 0.662 0.660 0.023 0.412 3.063 0.622 0.712 0.618 0.704

Alpha_1993 0.815 0.749 0.747 0.031 0.350 2.745 0.695 0.814 0.687 0.801

Alpha_1994 0.750 0.714 0.712 0.020 0.573 3.038 0.683 0.758 0.681 0.750

Alpha_1995 0.811 0.771 0.769 0.021 0.580 3.101 0.738 0.817 0.735 0.811

Alpha_1996 0.953 0.872 0.870 0.036 0.250 2.667 0.808 0.946 0.794 0.929

Alpha_1997 1.000 0.899 0.898 0.038 0.065 2.825 0.824 0.977 0.804 0.957

Alpha_1998 0.892 0.758 0.761 0.053 -0.091 2.835 0.650 0.858 0.626 0.831

Alpha_1999 1.000 0.744 0.754 0.101 -0.335 2.730 0.525 0.923 0.515 0.909

Bank of Athens_1988 0.783 0.758 0.756 0.013 0.870 3.767 0.740 0.788 0.739 0.785

Bank of Athens_1989 0.805 0.779 0.777 0.013 0.873 3.751 0.761 0.811 0.760 0.809

Bank of Athens_1990 0.844 0.811 0.810 0.015 0.590 3.227 0.787 0.844 0.784 0.839

Bank of Athens_1991 0.855 0.758 0.758 0.035 0.061 3.074 0.689 0.826 0.666 0.809

Bank of Athens_1992 0.746 0.721 0.719 0.013 0.759 3.543 0.702 0.750 0.700 0.746

Bank of Athens_1993 0.733 0.705 0.704 0.014 0.591 3.111 0.684 0.736 0.682 0.732

Bank of Athens_1994 0.543 0.498 0.498 0.018 0.041 2.671 0.464 0.533 0.456 0.525

Bank of Athens_1995 0.635 0.591 0.590 0.019 0.310 2.793 0.557 0.630 0.550 0.622

Bank of Athens_1996 0.653 0.608 0.607 0.019 0.381 2.754 0.576 0.649 0.568 0.642

Bank of Athens_1997 0.753 0.667 0.666 0.037 0.204 2.704 0.602 0.742 0.585 0.728

Bank of Attica_1987 0.800 0.775 0.773 0.013 0.868 3.752 0.756 0.806 0.755 0.804

Bank of Attica_1988 0.742 0.720 0.719 0.012 0.949 3.953 0.704 0.749 0.703 0.746

Bank of Attica_1989 0.660 0.630 0.629 0.013 0.349 2.947 0.607 0.657 0.604 0.652

Bank of Attica_1990 0.744 0.722 0.720 0.012 0.917 3.841 0.704 0.751 0.704 0.748

Bank of Attica_1991 0.910 0.870 0.869 0.018 0.404 2.970 0.839 0.909 0.835 0.900

Bank of Attica_1992 1.000 0.826 0.833 0.051 -0.958 4.363 0.683 0.905 0.657 0.892

Bank of Attica_1993 0.945 0.875 0.874 0.030 0.247 2.914 0.820 0.936 0.811 0.926

Bank of Attica_1994 0.820 0.795 0.792 0.014 0.921 3.785 0.776 0.828 0.775 0.825

Bank of Attica_1995 0.793 0.723 0.724 0.023 -0.294 3.227 0.675 0.766 0.657 0.753

Bank of Attica_1996 0.747 0.680 0.681 0.023 -0.183 3.118 0.630 0.724 0.615 0.712

Bank of Attica_1997 0.810 0.746 0.745 0.023 0.300 3.268 0.706 0.794 0.697 0.790

Bank of Attica_1998 0.819 0.730 0.729 0.039 0.201 2.657 0.661 0.809 0.647 0.795

Bank of Attica_1999 0.764 0.683 0.683 0.031 0.043 2.797 0.622 0.745 0.605 0.730
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Central Greece_1987 1.000 0.620 0.577 0.246 1.097 4.482 0.281 1.243 0.313 1.415

Central Greece_1989 0.706 0.679 0.677 0.013 0.478 2.971 0.658 0.706 0.657 0.704

Central Greece_1990 0.668 0.642 0.641 0.013 0.445 2.855 0.621 0.668 0.619 0.665

Central Greece_1991 0.667 0.627 0.627 0.014 0.131 2.988 0.602 0.654 0.593 0.649

Central Greece_1992 0.636 0.602 0.602 0.012 0.274 3.143 0.580 0.628 0.575 0.624

Central Greece_1993 0.705 0.651 0.649 0.022 0.269 2.783 0.611 0.696 0.603 0.689

Central Greece_1994 0.700 0.649 0.648 0.022 0.315 2.729 0.611 0.695 0.603 0.684

Central Greece_1995 0.660 0.617 0.616 0.018 0.326 2.811 0.587 0.655 0.580 0.648

Central Greece_1996 0.675 0.628 0.626 0.019 0.366 2.953 0.595 0.666 0.590 0.663

Central Greece_1997 0.626 0.560 0.559 0.027 0.216 2.777 0.511 0.615 0.504 0.605

Central Greece_1998 0.630 0.566 0.565 0.027 0.254 2.755 0.519 0.623 0.510 0.614

Cretabank_1987 0.655 0.637 0.635 0.011 0.990 3.993 0.622 0.662 0.622 0.661

Cretabank_1989 0.449 0.401 0.399 0.022 0.323 2.880 0.362 0.445 0.359 0.441

Cretabank_1990 0.526 0.485 0.484 0.018 0.372 3.088 0.453 0.523 0.446 0.514

Cretabank_1991 0.578 0.548 0.547 0.014 0.475 2.959 0.525 0.578 0.522 0.574

Cretabank_1992 0.643 0.611 0.609 0.015 0.455 2.921 0.586 0.643 0.583 0.638

Cretabank_1993 0.701 0.670 0.669 0.013 0.381 2.963 0.646 0.698 0.644 0.694

Cretabank_1994 0.589 0.546 0.545 0.018 0.358 3.042 0.514 0.586 0.509 0.577

Cretabank_1995 0.605 0.530 0.529 0.028 0.138 2.980 0.478 0.587 0.460 0.574

Cretabank_1996 0.726 0.692 0.691 0.015 0.402 2.881 0.667 0.723 0.664 0.719

Cretabank_1997 0.740 0.703 0.703 0.014 0.318 2.969 0.677 0.734 0.674 0.729

Cretabank_1998 0.814 0.761 0.761 0.019 0.232 2.968 0.726 0.802 0.713 0.794

Egnatia_1993 0.628 0.539 0.543 0.031 -0.367 2.935 0.470 0.594 0.451 0.578

Egnatia_1994 0.484 0.440 0.438 0.019 0.379 3.097 0.405 0.479 0.400 0.473

Egnatia_1995 0.470 0.422 0.421 0.022 0.291 2.810 0.382 0.469 0.378 0.461

Egnatia_1996 0.685 0.602 0.600 0.036 0.274 2.941 0.536 0.675 0.521 0.661

Egnatia_1997 0.779 0.692 0.689 0.037 0.302 2.927 0.626 0.768 0.619 0.759

Egnatia_1998 0.719 0.663 0.662 0.025 0.319 2.687 0.620 0.716 0.614 0.704

Egnatia_1999 0.715 0.654 0.652 0.026 0.370 2.960 0.608 0.708 0.597 0.696

Emporiki_1987 0.750 0.703 0.702 0.020 0.192 2.751 0.666 0.743 0.660 0.736

Emporiki_1988 0.738 0.710 0.708 0.015 0.695 3.180 0.689 0.744 0.687 0.740

Emporiki_1989 0.718 0.689 0.688 0.014 0.579 3.040 0.666 0.721 0.665 0.719

Emporiki_1990 0.753 0.717 0.716 0.016 0.439 2.814 0.690 0.752 0.687 0.747

Emporiki_1991 0.722 0.686 0.685 0.016 0.341 2.773 0.659 0.719 0.656 0.716

Emporiki_1992 0.860 0.798 0.797 0.025 0.237 2.780 0.752 0.848 0.741 0.836

Emporiki_1993 0.956 0.881 0.880 0.030 0.180 2.754 0.827 0.940 0.813 0.929

Emporiki_1994 0.928 0.850 0.849 0.031 0.104 2.752 0.790 0.911 0.780 0.900

Emporiki_1995 0.851 0.794 0.794 0.023 0.215 2.857 0.754 0.841 0.740 0.830

Emporiki_1996 0.790 0.759 0.758 0.015 0.488 2.932 0.735 0.791 0.734 0.788

Emporiki_1997 0.811 0.778 0.776 0.015 0.426 2.813 0.752 0.810 0.750 0.806

Emporiki_1998 0.769 0.721 0.721 0.018 0.063 2.805 0.685 0.757 0.677 0.749

Emporiki_1999 0.916 0.844 0.844 0.030 0.157 2.764 0.787 0.904 0.778 0.892
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Ergobank_1987 0.683 0.638 0.637 0.019 0.346 2.995 0.602 0.678 0.596 0.671

Ergobank_1988 0.727 0.684 0.682 0.020 0.515 3.133 0.650 0.729 0.646 0.722

Ergobank_1989 0.688 0.633 0.632 0.022 0.258 2.943 0.594 0.677 0.582 0.669

Ergobank_1990 0.749 0.682 0.681 0.028 0.311 2.999 0.634 0.741 0.621 0.731

Ergobank_1991 0.875 0.807 0.805 0.033 0.323 2.713 0.750 0.877 0.743 0.862

Ergobank_1992 0.708 0.645 0.643 0.028 0.363 2.968 0.596 0.702 0.587 0.693

Ergobank_1993 0.658 0.607 0.607 0.023 0.329 3.001 0.565 0.655 0.559 0.647

Ergobank_1994 0.567 0.535 0.534 0.014 0.437 2.944 0.512 0.566 0.508 0.560

Ergobank_1995 0.600 0.568 0.568 0.012 0.254 2.895 0.547 0.594 0.541 0.589

Ergobank_1996 0.657 0.620 0.619 0.015 0.234 2.865 0.593 0.651 0.585 0.644

Ergobank_1997 0.723 0.669 0.669 0.020 -0.076 2.671 0.629 0.707 0.618 0.699

Ergobank_1998 0.639 0.544 0.544 0.035 0.008 3.004 0.475 0.608 0.453 0.596

Ergobank_1999 0.682 0.591 0.591 0.034 -0.029 2.958 0.520 0.656 0.501 0.640

Eurobank_1997 0.512 0.450 0.450 0.027 0.194 2.928 0.399 0.505 0.390 0.491

Eurobank_1998 0.990 0.845 0.841 0.075 0.220 2.447 0.713 0.992 0.703 0.963

Eurobank_1999 0.747 0.692 0.691 0.024 0.321 2.894 0.648 0.743 0.642 0.732

General_1987 0.731 0.700 0.699 0.013 0.379 2.977 0.677 0.727 0.674 0.724

General_1988 0.754 0.728 0.726 0.012 0.641 3.376 0.707 0.756 0.706 0.753

General_1989 0.782 0.749 0.748 0.013 0.364 3.168 0.725 0.778 0.721 0.774

General_1990 0.791 0.765 0.763 0.013 0.851 3.695 0.747 0.795 0.746 0.792

General_1991 0.690 0.656 0.656 0.013 0.272 3.069 0.633 0.683 0.628 0.679

General_1992 0.677 0.656 0.654 0.011 0.874 3.652 0.640 0.682 0.640 0.680

General_1993 0.577 0.556 0.555 0.010 0.649 3.258 0.541 0.579 0.540 0.577

General_1994 0.680 0.654 0.653 0.012 0.633 3.282 0.636 0.681 0.634 0.677

General_1995 0.779 0.747 0.746 0.014 0.485 3.122 0.723 0.779 0.719 0.772

General_1996 0.714 0.678 0.677 0.014 0.273 2.931 0.652 0.708 0.646 0.702

General_1997 0.716 0.686 0.685 0.013 0.465 3.079 0.664 0.715 0.660 0.708

General_1998 0.714 0.673 0.672 0.014 0.323 3.200 0.647 0.704 0.642 0.699

General_1999 0.793 0.748 0.748 0.015 0.176 3.011 0.720 0.779 0.711 0.773

Interbank_1995 0.558 0.530 0.529 0.012 0.506 3.040 0.510 0.557 0.507 0.554

Interbank_1996 0.557 0.516 0.515 0.017 0.347 3.093 0.487 0.552 0.482 0.545

Ionian and Popular_1987 0.780 0.701 0.701 0.030 0.142 2.789 0.645 0.760 0.625 0.749

Ionian and Popular_1988 0.790 0.738 0.737 0.021 0.195 2.914 0.697 0.779 0.689 0.771

Ionian and Popular_1989 0.725 0.679 0.679 0.019 0.035 2.675 0.643 0.714 0.634 0.707

Ionian and Popular_1990 0.761 0.726 0.725 0.015 0.309 2.841 0.699 0.756 0.696 0.752

Ionian and Popular_1991 0.807 0.740 0.739 0.028 0.343 3.035 0.691 0.801 0.678 0.786

Ionian and Popular_1992 0.846 0.789 0.788 0.023 0.374 2.929 0.749 0.838 0.738 0.828

Ionian and Popular_1993 0.748 0.678 0.678 0.027 0.144 2.819 0.629 0.731 0.612 0.720

Ionian and Popular_1994 1.000 0.873 0.875 0.044 -0.204 2.952 0.776 0.955 0.767 0.946

Ionian and Popular_1995 1.000 0.853 0.854 0.051 -0.034 3.121 0.746 0.953 0.722 0.939

Ionian and Popular_1996 0.930 0.813 0.813 0.045 0.024 3.069 0.718 0.900 0.698 0.879

Ionian and Popular_1997 1.000 0.852 0.849 0.057 0.311 3.360 0.749 0.972 0.708 0.943

Ionian and Popular_1998 0.930 0.824 0.823 0.042 0.343 3.244 0.749 0.910 0.727 0.894
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Laiki (Hellas)_1993 0.495 0.461 0.461 0.016 0.322 2.727 0.434 0.494 0.430 0.488

Laiki (Hellas)_1994 0.294 0.244 0.245 0.022 -0.013 2.583 0.199 0.287 0.194 0.275

Laiki (Hellas)_1995 0.481 0.398 0.397 0.037 0.117 2.667 0.328 0.473 0.317 0.454

Laiki (Hellas)_1996 0.704 0.550 0.551 0.070 0.020 2.357 0.418 0.680 0.400 0.656

Laiki (Hellas)_1997 0.864 0.739 0.738 0.046 0.040 2.997 0.644 0.828 0.628 0.815

Laiki (Hellas)_1998 0.798 0.666 0.665 0.057 0.182 2.927 0.559 0.779 0.538 0.753

Laiki (Hellas)_1999 0.857 0.718 0.715 0.057 0.234 3.058 0.611 0.832 0.587 0.808

Macedonia Thrace_1987 0.786 0.742 0.742 0.015 0.193 2.992 0.713 0.774 0.707 0.769

Macedonia Thrace_1988 0.741 0.704 0.704 0.013 0.236 2.982 0.680 0.732 0.675 0.727

Macedonia Thrace_1989 0.681 0.649 0.647 0.012 0.332 3.026 0.627 0.673 0.623 0.671

Macedonia Thrace_1990 0.744 0.718 0.717 0.012 0.739 3.485 0.700 0.746 0.699 0.743

Macedonia Thrace_1991 0.603 0.573 0.573 0.012 0.277 2.924 0.552 0.598 0.548 0.593

Macedonia Thrace_1992 0.694 0.669 0.667 0.013 0.704 3.256 0.650 0.700 0.648 0.694

Macedonia Thrace_1993 0.683 0.656 0.654 0.013 0.473 2.936 0.634 0.683 0.633 0.680

Macedonia Thrace_1994 0.591 0.561 0.560 0.011 0.272 3.002 0.541 0.583 0.538 0.580

Macedonia Thrace_1995 0.619 0.568 0.567 0.021 0.236 3.015 0.529 0.610 0.519 0.602

Macedonia Thrace_1996 0.662 0.629 0.628 0.015 0.408 2.972 0.604 0.659 0.600 0.656

Macedonia Thrace_1997 0.635 0.605 0.604 0.013 0.370 2.916 0.583 0.632 0.579 0.628

Macedonia Thrace_1998 0.635 0.602 0.601 0.012 0.175 2.880 0.578 0.627 0.573 0.623

Macedonia Thrace_1999 0.733 0.690 0.690 0.019 0.140 2.577 0.655 0.728 0.650 0.719

National_1987 0.723 0.626 0.628 0.037 -0.004 2.739 0.553 0.697 0.535 0.684

National_1988 0.664 0.610 0.608 0.026 0.435 2.847 0.567 0.667 0.563 0.657

National_1989 0.679 0.615 0.613 0.027 0.332 2.918 0.566 0.672 0.559 0.664

National_1990 0.674 0.604 0.602 0.026 0.204 2.911 0.557 0.658 0.538 0.646

National_1991 0.628 0.559 0.559 0.030 0.166 2.841 0.502 0.619 0.492 0.604

National_1992 0.850 0.756 0.754 0.040 0.210 2.921 0.680 0.837 0.665 0.816

National_1993 1.000 0.780 0.788 0.078 -0.374 2.994 0.604 0.920 0.588 0.903

National_1994 0.913 0.774 0.775 0.058 0.075 2.705 0.662 0.891 0.639 0.860

National_1995 0.909 0.786 0.785 0.055 0.243 2.747 0.690 0.899 0.673 0.880

National_1996 0.817 0.718 0.717 0.042 0.277 2.934 0.642 0.806 0.632 0.791

National_1997 1.000 0.840 0.839 0.068 0.188 2.762 0.717 0.978 0.708 0.966

National_1998 0.962 0.841 0.840 0.048 0.245 3.102 0.749 0.941 0.732 0.926

National_1999 1.000 0.874 0.873 0.047 0.161 3.053 0.782 0.966 0.784 0.967

Piraeus_1987 0.748 0.703 0.702 0.020 0.369 2.914 0.668 0.745 0.661 0.737

Piraeus_1988 0.788 0.758 0.756 0.016 0.628 3.254 0.733 0.793 0.731 0.786

Piraeus_1989 0.747 0.714 0.713 0.017 0.519 3.117 0.687 0.751 0.684 0.742

Piraeus_1990 0.828 0.789 0.788 0.019 0.483 3.068 0.757 0.831 0.751 0.821

Piraeus_1991 0.706 0.681 0.679 0.013 0.567 3.085 0.661 0.708 0.659 0.706

Piraeus_1992 0.758 0.716 0.714 0.019 0.445 3.004 0.685 0.756 0.675 0.747

Piraeus_1993 0.870 0.806 0.805 0.027 0.315 2.959 0.757 0.862 0.750 0.854

Piraeus_1994 0.899 0.870 0.868 0.014 0.862 3.789 0.849 0.904 0.848 0.901

Piraeus_1995 0.946 0.899 0.898 0.018 0.361 3.040 0.867 0.938 0.861 0.930

Piraeus_1996 0.768 0.729 0.728 0.016 0.466 3.014 0.702 0.765 0.699 0.761

Piraeus_1997 0.924 0.852 0.853 0.025 0.021 2.631 0.804 0.901 0.792 0.891

Piraeus_1998 0.966 0.800 0.807 0.067 -0.235 2.584 0.662 0.919 0.637 0.884

Piraeus_1999 0.780 0.682 0.684 0.037 -0.156 2.769 0.605 0.749 0.588 0.732
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T Bank_1993 0.225 0.190 0.190 0.014 -0.038 2.611 0.162 0.216 0.156 0.210

T Bank_1994 0.590 0.561 0.559 0.013 0.544 3.076 0.540 0.590 0.539 0.587

T Bank_1995 0.867 0.827 0.826 0.016 0.289 2.888 0.798 0.861 0.793 0.854

T Bank_1996 0.760 0.675 0.674 0.034 0.219 2.949 0.611 0.744 0.596 0.730

T Bank_1997 0.749 0.643 0.645 0.047 0.065 2.543 0.555 0.732 0.539 0.710

T Bank_1998 0.758 0.638 0.637 0.056 0.227 2.632 0.540 0.751 0.521 0.727

T Bank_1999 0.708 0.557 0.555 0.075 0.202 2.531 0.422 0.704 0.410 0.676

Xiosbank_1991 0.561 0.541 0.540 0.009 0.563 3.258 0.525 0.561 0.524 0.559

Xiosbank_1992 0.846 0.754 0.750 0.037 0.364 3.096 0.689 0.832 0.673 0.821

Xiosbank_1993 0.639 0.611 0.609 0.015 0.613 3.102 0.587 0.645 0.586 0.640

Xiosbank_1994 0.466 0.430 0.429 0.016 0.418 2.820 0.403 0.463 0.398 0.458

Xiosbank_1995 0.499 0.444 0.444 0.025 0.185 2.626 0.400 0.493 0.390 0.482

Xiosbank_1996 0.597 0.543 0.542 0.022 0.298 3.012 0.505 0.587 0.491 0.578

Xiosbank_1997 0.700 0.637 0.637 0.024 0.202 2.798 0.595 0.686 0.582 0.677

Xiosbank_1998 0.667 0.561 0.561 0.042 0.145 2.880 0.483 0.644 0.460 0.628

Average_1987 0.710 0.644 0.645 0.026 -0.029 2.825 0.590 0.694 0.582 0.683

Average_1988 0.681 0.637 0.636 0.020 0.329 2.950 0.601 0.678 0.597 0.668

Average_1989 0.681 0.643 0.641 0.018 0.480 3.060 0.613 0.680 0.609 0.676

Average_1990 0.704 0.660 0.659 0.019 0.320 2.956 0.626 0.699 0.620 0.691

Average_1991 0.668 0.627 0.626 0.017 0.290 2.904 0.597 0.662 0.593 0.658

Average_1992 0.741 0.708 0.707 0.016 0.516 2.934 0.682 0.743 0.680 0.739

Average_1993 0.830 0.759 0.758 0.025 0.129 2.922 0.711 0.809 0.693 0.799

Average_1994 0.782 0.728 0.727 0.020 0.261 2.835 0.691 0.770 0.684 0.765

Average_1995 0.769 0.716 0.715 0.021 0.192 2.750 0.676 0.760 0.670 0.751

Average_1996 0.748 0.698 0.698 0.022 0.120 2.634 0.656 0.743 0.650 0.731

Average_1997 0.806 0.742 0.740 0.026 0.173 2.832 0.693 0.794 0.682 0.783

Average_1998 0.748 0.652 0.654 0.041 -0.179 2.454 0.567 0.724 0.558 0.707

Average_1999 0.812 0.701 0.705 0.046 -0.182 2.466 0.608 0.783 0.593 0.763

Average W_1987 0.718 0.630 0.631 0.034 -0.012 2.706 0.564 0.694 0.551 0.682

Average W_1988 0.657 0.602 0.600 0.025 0.348 2.739 0.559 0.655 0.551 0.643

Average W_1989 0.664 0.600 0.599 0.026 0.256 2.885 0.554 0.654 0.541 0.642

Average W_1990 0.677 0.611 0.610 0.025 0.087 2.859 0.563 0.662 0.548 0.648

Average W_1991 0.639 0.580 0.580 0.026 0.144 2.728 0.531 0.632 0.524 0.618

Average W_1992 0.733 0.665 0.665 0.025 -0.002 2.896 0.615 0.712 0.599 0.702

Average W_1993 0.937 0.826 0.825 0.043 0.121 2.910 0.742 0.914 0.719 0.897

Average W_1994 0.843 0.758 0.757 0.032 0.213 2.935 0.697 0.825 0.690 0.816

Average W_1995 0.816 0.726 0.726 0.032 0.019 3.138 0.660 0.791 0.640 0.777

Average W_1996 0.760 0.680 0.681 0.028 0.061 2.963 0.625 0.739 0.606 0.723

Average W_1997 0.885 0.783 0.782 0.036 0.183 3.160 0.715 0.857 0.695 0.846

Average W_1998 0.857 0.752 0.752 0.040 -0.010 2.807 0.672 0.828 0.650 0.813

Average W_1999 0.922 0.812 0.813 0.045 0.004 2.598 0.727 0.896 0.705 0.877
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XIII. Appendix XIII: Hypothesis testing results  

 

In the tables that follow, “Global Malm” is the Global Mamlquist Index, “Glob.Mal. BC” 

is the bias-corrected mean of the bootstrapped Global Malmquist index where one or 

two stars denote significance at the 5% or 1% level, based on the probabilities in the 

following two columns. The last two columns are the denoted percentiles for the 

distribution of the bootstrapped and bias corrected values of the index. 
 

Table XIII.1. Results based on the LSCV bootstrap DEA 

 

 

Bank Global Malm Glob.Mal. BC Prob<1 Prob>1 CI 2.5% CI 97.5%

Agricultural_92-93 1.024 0.912 0.932 0.069 0.780 1.028

Agricultural_93-94 1.053 1.064** 0.000 1.000 1.041 1.079

Agricultural_94-95 1.008 1.026 0.199 0.802 0.956 1.074

Agricultural_95-96 1.015 1.009** 0.000 1.000 1.003 1.023

Agricultural_96-97 0.968 0.981 0.802 0.199 0.950 1.020

Agricultural_97-98 0.999 1.037 0.112 0.889 0.982 1.103

Agricultural_98-99 0.937 0.960** 0.994 0.007 0.948 0.995

Alpha_87-88 0.985 0.979* 0.953 0.047 0.959 1.006

Alpha_88-89 0.990 0.990 0.806 0.194 0.971 1.013

Alpha_89-90 0.899 0.914** 1.000 0.000 0.872 0.954

Alpha_90-91 1.114 1.115** 0.000 1.000 1.103 1.134

Alpha_91-92 1.130 1.123** 0.000 1.000 1.073 1.169

Alpha_92-93 0.870 0.877** 1.000 0.000 0.844 0.911

Alpha_93-94 1.087 1.061** 0.000 1.000 1.021 1.123

Alpha_94-95 0.925 0.925** 1.000 0.000 0.915 0.931

Alpha_95-96 0.851 0.872** 1.000 0.000 0.826 0.907

Alpha_96-97 0.953 0.966** 1.000 0.000 0.936 0.981

Alpha_97-98 1.121 1.167** 0.000 1.000 1.069 1.270

Alpha_98-99 0.892 0.967 0.753 0.247 0.885 1.056

Bank of Athens_88-89 0.973 0.972** 1.000 0.000 0.965 0.980

Bank of Athens_89-90 0.954 0.959** 1.000 0.000 0.944 0.974

Bank of Athens_90-91 0.987 1.040 0.086 0.915 0.983 1.100

Bank of Athens_91-92 1.145 1.074* 0.026 0.974 0.999 1.154

Bank of Athens_92-93 1.018 1.018 0.053 0.947 0.995 1.038

Bank of Athens_93-94 1.350 1.390** 0.000 1.000 1.325 1.443

Bank of Athens_94-95 0.855 0.845** 1.000 0.000 0.812 0.881

Bank of Athens_95-96 0.972 0.970** 1.000 0.000 0.957 0.982

Bank of Athens_96-97 0.868 0.899** 1.000 0.000 0.829 0.952
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Bank of Attica_87-88 1.078 1.076** 0.000 1.000 1.069 1.088

Bank of Attica_88-89 1.124 1.137** 0.000 1.000 1.115 1.158

Bank of Attica_89-90 0.887 0.877** 1.000 0.000 0.863 0.894

Bank of Attica_90-91 0.818 0.826** 1.000 0.000 0.812 0.838

Bank of Attica_91-92 0.910 1.001 0.600 0.401 0.951 1.091

Bank of Attica_92-93 1.058 0.961 0.747 0.254 0.825 1.053

Bank of Attica_93-94 1.153 1.115** 0.000 1.000 1.070 1.174

Bank of Attica_94-95 1.034 1.081** 0.000 1.000 1.043 1.132

Bank of Attica_95-96 1.061 1.061** 0.000 1.000 1.036 1.082

Bank of Attica_96-97 0.922 0.910** 1.000 0.000 0.873 0.937

Bank of Attica_97-98 0.990 1.009 0.384 0.617 0.921 1.076

Bank of Attica_98-99 1.071 1.066 0.100 0.900 0.975 1.174

Central Greece_87-89 1.416 0.944 0.634 0.366 0.465 1.850

Central Greece_89-90 1.057 1.056** 0.000 1.000 1.050 1.061

Central Greece_90-91 1.002 1.018* 0.029 0.972 0.999 1.040

Central Greece_91-92 1.048 1.041** 0.001 0.999 1.019 1.059

Central Greece_92-93 0.903 0.914** 1.000 0.000 0.869 0.950

Central Greece_93-94 1.007 1.004 0.208 0.793 0.989 1.017

Central Greece_94-95 1.060 1.054** 0.000 1.000 1.029 1.098

Central Greece_95-96 0.979 0.981** 1.000 0.000 0.969 0.992

Central Greece_96-97 1.078 1.107** 0.000 1.000 1.034 1.163

Central Greece_97-98 0.993 0.989 0.689 0.312 0.936 1.041

Cretabank_87-89 1.460 1.538** 0.000 1.000 1.422 1.627

Cretabank_89-90 0.853 0.832** 1.000 0.000 0.784 0.883

Cretabank_90-91 0.910 0.891** 1.000 0.000 0.867 0.930

Cretabank_91-92 0.899 0.898** 1.000 0.000 0.886 0.913

Cretabank_92-93 0.918 0.914** 1.000 0.000 0.898 0.939

Cretabank_93-94 1.191 1.212** 0.000 1.000 1.158 1.251

Cretabank_94-95 0.973 1.014 0.283 0.717 0.961 1.059

Cretabank_95-96 0.834 0.779** 1.000 0.000 0.719 0.852

Cretabank_96-97 0.980 0.984* 0.987 0.014 0.972 0.998

Cretabank_97-98 0.909 0.920** 1.000 0.000 0.900 0.938

Egnatia_93-94 1.298 1.237** 0.000 1.000 1.128 1.299

Egnatia_94-95 1.029 1.036 0.087 0.913 0.979 1.093

Egnatia_95-96 0.686 0.697** 1.000 0.000 0.667 0.755

Egnatia_96-97 0.880 0.871** 1.000 0.000 0.823 0.900

Egnatia_97-98 1.083 1.052 0.112 0.888 0.972 1.135

Egnatia_98-99 1.005 1.012 0.287 0.714 0.972 1.060
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Emporiki_87-88 1.017 1.000 0.579 0.422 0.980 1.038

Emporiki_88-89 1.028 1.028** 0.000 1.000 1.016 1.039

Emporiki_89-90 0.953 0.958** 1.000 0.000 0.944 0.967

Emporiki_90-91 1.044 1.043** 0.000 1.000 1.034 1.055

Emporiki_91-92 0.839 0.853** 1.000 0.000 0.816 0.885

Emporiki_92-93 0.900 0.904** 1.000 0.000 0.895 0.917

Emporiki_93-94 1.030 1.035** 0.000 1.000 1.031 1.048

Emporiki_94-95 1.090 1.074** 0.000 1.000 1.035 1.108

Emporiki_95-96 1.078 1.055** 0.000 1.000 1.019 1.100

Emporiki_96-97 0.974 0.975** 1.000 0.000 0.971 0.981

Emporiki_97-98 1.054 1.071** 0.000 1.000 1.047 1.090

Emporiki_98-99 0.840 0.845** 1.000 0.000 0.807 0.880

Ergobank_87-88 0.940 0.933** 1.000 0.000 0.922 0.953

Ergobank_88-89 1.056 1.075** 0.000 1.000 1.051 1.103

Ergobank_89-90 0.919 0.924** 1.000 0.000 0.878 0.958

Ergobank_90-91 0.856 0.844** 1.000 0.000 0.808 0.889

Ergobank_91-92 1.236 1.250** 0.000 1.000 1.194 1.293

Ergobank_92-93 1.076 1.065** 0.000 1.000 1.044 1.094

Ergobank_93-94 1.161 1.141** 0.000 1.000 1.103 1.202

Ergobank_94-95 0.945 0.942** 1.000 0.000 0.925 0.965

Ergobank_95-96 0.912 0.914** 1.000 0.000 0.900 0.924

Ergobank_96-97 0.909 0.921** 1.000 0.000 0.896 0.939

Ergobank_97-98 1.131 1.197** 0.000 1.000 1.093 1.303

Ergobank_98-99 0.936 0.922** 1.000 0.000 0.870 0.986

Eurobank_97-98 0.517 0.526** 1.000 0.000 0.452 0.607

Eurobank_98-99 1.326 1.238** 0.000 1.000 1.089 1.437

General_87-88 0.969 0.964** 1.000 0.000 0.959 0.981

General_88-89 0.965 0.969** 1.000 0.000 0.961 0.978

General_89-90 0.989 0.982** 0.990 0.010 0.964 0.998

General_90-91 1.145 1.159** 0.000 1.000 1.139 1.184

General_91-92 1.019 1.005 0.306 0.694 0.982 1.028

General_92-93 1.174 1.176** 0.000 1.000 1.161 1.183

General_93-94 0.848 0.850** 1.000 0.000 0.838 0.864

General_94-95 0.874 0.875** 1.000 0.000 0.870 0.882

General_95-96 1.091 1.098** 0.000 1.000 1.086 1.109

General_96-97 0.997 0.991* 0.963 0.037 0.982 1.001

General_97-98 1.002 1.012 0.124 0.877 0.990 1.036

General_98-99 0.900 0.900** 1.000 0.000 0.883 0.918

Interbank_95-96 1.003 1.018 0.107 0.893 0.985 1.040
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Ionian and Pop_87-88 0.988 0.961 0.865 0.135 0.907 1.034

Ionian and Pop_88-89 1.089 1.087** 0.000 1.000 1.046 1.132

Ionian and Pop_89-90 0.953 0.941** 1.000 0.000 0.927 0.966

Ionian and Pop_90-91 0.943 0.966 0.916 0.084 0.908 1.012

Ionian and Pop_91-92 0.954 0.943* 0.951 0.049 0.891 1.012

Ionian and Pop_92-93 1.130 1.150** 0.000 1.000 1.087 1.195

Ionian and Pop_93-94 0.748 0.770** 1.000 0.000 0.755 0.809

Ionian and Pop_94-95 1.000 1.014 0.241 0.759 0.944 1.049

Ionian and Pop_95-96 1.076 1.055** 0.000 1.000 1.024 1.087

Ionian and Pop_96-97 0.930 0.946 0.883 0.118 0.866 1.047

Ionian and Pop_97-98 1.075 1.040 0.090 0.911 0.980 1.098

Laiki (Hellas)_93-94 1.687 1.823** 0.000 1.000 1.627 2.032

Laiki (Hellas)_94-95 0.610 0.610** 1.000 0.000 0.569 0.640

Laiki (Hellas)_95-96 0.684 0.710** 1.000 0.000 0.616 0.797

Laiki (Hellas)_96-97 0.814 0.756** 1.000 0.000 0.653 0.880

Laiki (Hellas)_97-98 1.083 1.100 0.069 0.931 0.974 1.218

Laiki (Hellas)_98-99 0.931 0.928** 1.000 0.000 0.889 0.944

Mac-Thrace_87-88 1.060 1.057** 0.000 1.000 1.040 1.078

Mac-Thrace_88-89 1.088 1.087** 0.000 1.000 1.077 1.101

Mac-Thrace_89-90 0.915 0.906** 1.000 0.000 0.892 0.921

Mac-Thrace_90-91 1.234 1.246** 0.000 1.000 1.219 1.275

Mac-Thrace_91-92 0.868 0.859** 1.000 0.000 0.835 0.886

Mac-Thrace_92-93 1.017 1.018* 0.035 0.965 0.999 1.037

Mac-Thrace_93-94 1.156 1.168** 0.000 1.000 1.145 1.196

Mac-Thrace_94-95 0.955 0.973 0.871 0.129 0.923 1.014

Mac-Thrace_95-96 0.934 0.911** 0.999 0.001 0.884 0.950

Mac-Thrace_96-97 1.044 1.041** 0.000 1.000 1.031 1.055

Mac-Thrace_97-98 1.000 1.003 0.357 0.643 0.981 1.025

Mac-Thrace_98-99 0.865 0.868** 1.000 0.000 0.837 0.892

National_87-88 1.089 1.037 0.251 0.750 0.961 1.143

National_88-89 0.978 0.988 0.843 0.157 0.958 1.007

National_89-90 1.007 1.015 0.149 0.851 0.986 1.050

National_90-91 1.073 1.077 0.084 0.916 0.972 1.183

National_91-92 0.739 0.738** 1.000 0.000 0.662 0.818

National_92-93 0.850 0.923 0.888 0.113 0.831 1.036

National_93-94 1.096 1.030 0.238 0.762 0.951 1.088

National_94-95 1.004 0.989 0.652 0.349 0.948 1.035

National_95-96 1.113 1.097** 0.000 1.000 1.065 1.125

National_96-97 0.817 0.844** 1.000 0.000 0.818 0.892

National_97-98 1.039 1.005 0.448 0.552 0.933 1.077

National_98-99 0.962 0.961* 0.974 0.026 0.934 1.000
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Piraeus_87-88 0.949 0.935** 0.999 0.002 0.913 0.968

Piraeus_88-89 1.055 1.058** 0.000 1.000 1.049 1.064

Piraeus_89-90 0.902 0.904** 1.000 0.000 0.898 0.908

Piraeus_90-91 1.173 1.162** 0.000 1.000 1.130 1.204

Piraeus_91-92 0.931 0.944** 1.000 0.001 0.911 0.971

Piraeus_92-93 0.871 0.883** 1.000 0.000 0.863 0.914

Piraeus_93-94 0.968 0.938** 0.992 0.009 0.899 0.988

Piraeus_94-95 0.950 0.963** 1.000 0.000 0.944 0.982

Piraeus_95-96 1.231 1.226** 0.000 1.000 1.190 1.256

Piraeus_96-97 0.832 0.848** 1.000 0.000 0.812 0.883

Piraeus_97-98 0.957 1.028 0.347 0.653 0.943 1.127

Piraeus_98-99 1.238 1.184** 0.000 1.000 1.077 1.305

T Bank_93-94 0.381 0.344** 1.000 0.000 0.302 0.393

T Bank_94-95 0.680 0.681** 1.000 0.000 0.667 0.702

T Bank_95-96 1.140 1.193** 0.000 1.000 1.112 1.268

T Bank_96-97 1.016 1.040 0.196 0.804 0.946 1.105

T Bank_97-98 0.988 1.003 0.373 0.628 0.939 1.033

T Bank_98-99 1.071 1.121 0.066 0.934 0.966 1.198

Xiosbank_91-92 0.663 0.696** 1.000 0.000 0.649 0.736

Xiosbank_92-93 1.324 1.255** 0.000 1.000 1.166 1.367

Xiosbank_93-94 1.372 1.402** 0.000 1.000 1.310 1.465

Xiosbank_94-95 0.933 0.959** 0.992 0.009 0.906 0.996

Xiosbank_95-96 0.836 0.820** 1.000 0.000 0.779 0.872

Xiosbank_96-97 0.853 0.851** 1.000 0.000 0.809 0.894

Xiosbank_97-98 1.049 1.108* 0.025 0.975 1.000 1.222

Average_87-88 1.042 1.019 0.279 0.721 0.964 1.086

Average_88-89 1.000 0.992 0.752 0.249 0.971 1.018

Average_89-90 0.967 0.972** 1.000 0.001 0.956 0.987

Average_90-91 1.053 1.051* 0.014 0.987 1.006 1.095

Average_91-92 0.902 0.891** 1.000 0.000 0.862 0.927

Average_92-93 0.893 0.918** 1.000 0.000 0.878 0.954

Average_93-94 1.062 1.046** 0.000 1.000 1.021 1.076

Average_94-95 1.016 1.016 0.105 0.895 0.990 1.042

Average_95-96 1.028 1.026** 0.000 1.000 1.012 1.045

Average_96-97 0.928 0.936** 1.000 0.000 0.909 0.957

Average_97-98 1.078 1.119** 0.000 1.000 1.051 1.186

Average_98-99 0.921 0.927** 1.000 0.000 0.912 0.934
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Average W_87-88 1.093 1.055 0.127 0.874 0.976 1.153

Average W_88-89 0.988 0.999 0.435 0.566 0.967 1.021

Average W_89-90 0.982 0.981 0.929 0.071 0.960 1.009

Average W_90-91 1.059 1.054 0.119 0.881 0.960 1.142

Average W_91-92 0.872 0.870** 1.000 0.001 0.806 0.953

Average W_92-93 0.782 0.798** 1.000 0.000 0.736 0.851

Average W_93-94 1.112 1.092** 0.000 1.000 1.043 1.160

Average W_94-95 1.033 1.041* 0.020 0.981 1.002 1.065

Average W_95-96 1.073 1.067** 0.000 1.000 1.040 1.099

Average W_96-97 0.859 0.866** 1.000 0.000 0.824 0.903

Average W_97-98 1.033 1.038 0.166 0.835 0.971 1.119

Average W_98-99 0.930 0.925** 1.000 0.000 0.905 0.953
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Table XIII.2. Results based on the SJ bootstrap DEA 

 

Agricultural_92-93 1.024 0.907 0.941 0.059 0.772 1.026

Agricultural_93-94 1.053 1.064** 0.000 1.000 1.039 1.079

Agricultural_94-95 1.008 1.025 0.206 0.794 0.959 1.074

Agricultural_95-96 1.015 1.009** 0.000 1.000 1.003 1.023

Agricultural_96-97 0.968 0.980 0.806 0.194 0.948 1.018

Agricultural_97-98 0.999 1.038 0.098 0.903 0.983 1.105

Agricultural_98-99 0.937 0.961** 0.991 0.009 0.950 0.995

Alpha_87-88 0.985 0.978 0.949 0.052 0.958 1.007

Alpha_88-89 0.990 0.990 0.788 0.213 0.972 1.013

Alpha_89-90 0.899 0.913** 1.000 0.000 0.871 0.955

Alpha_90-91 1.114 1.115** 0.000 1.000 1.103 1.137

Alpha_91-92 1.130 1.123** 0.000 1.000 1.073 1.171

Alpha_92-93 0.870 0.878** 1.000 0.000 0.844 0.914

Alpha_93-94 1.087 1.060** 0.001 1.000 1.017 1.122

Alpha_94-95 0.925 0.925** 1.000 0.000 0.913 0.931

Alpha_95-96 0.851 0.872** 1.000 0.000 0.829 0.908

Alpha_96-97 0.953 0.966** 1.000 0.000 0.936 0.981

Alpha_97-98 1.121 1.167** 0.000 1.000 1.072 1.268

Alpha_98-99 0.892 0.967 0.750 0.251 0.884 1.054

Bank of Athens_88-89 0.973 0.972** 1.000 0.000 0.964 0.980

Bank of Athens_89-90 0.954 0.959** 1.000 0.000 0.944 0.974

Bank of Athens_90-91 0.987 1.042 0.080 0.920 0.982 1.105

Bank of Athens_91-92 1.145 1.071* 0.037 0.964 0.994 1.154

Bank of Athens_92-93 1.018 1.018 0.051 0.950 0.996 1.039

Bank of Athens_93-94 1.350 1.390** 0.000 1.000 1.327 1.444

Bank of Athens_94-95 0.855 0.845** 1.000 0.000 0.809 0.882

Bank of Athens_95-96 0.972 0.971** 1.000 0.000 0.956 0.983

Bank of Athens_96-97 0.868 0.898** 1.000 0.000 0.830 0.949

Bank of Attica_87-88 1.078 1.076** 0.000 1.000 1.069 1.088

Bank of Attica_88-89 1.124 1.137** 0.000 1.000 1.114 1.159

Bank of Attica_89-90 0.887 0.877** 1.000 0.000 0.862 0.895

Bank of Attica_90-91 0.818 0.825** 1.000 0.000 0.812 0.838

Bank of Attica_91-92 0.910 1.002 0.582 0.419 0.952 1.094

Bank of Attica_92-93 1.058 0.960 0.757 0.244 0.820 1.051

Bank of Attica_93-94 1.153 1.116** 0.000 1.000 1.069 1.173

Bank of Attica_94-95 1.034 1.081** 0.000 1.000 1.042 1.133

Bank of Attica_95-96 1.061 1.060** 0.000 1.000 1.036 1.084

Bank of Attica_96-97 0.922 0.911** 1.000 0.000 0.872 0.939

Bank of Attica_97-98 0.990 1.009 0.382 0.618 0.922 1.077

Bank of Attica_98-99 1.071 1.067 0.091 0.909 0.975 1.176
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Central Greece_87-89 1.416 0.960 0.622 0.379 0.495 1.822

Central Greece_89-90 1.057 1.057** 0.000 1.000 1.050 1.061

Central Greece_90-91 1.002 1.018* 0.027 0.974 1.000 1.039

Central Greece_91-92 1.048 1.042** 0.001 0.999 1.019 1.061

Central Greece_92-93 0.903 0.914** 1.000 0.000 0.870 0.950

Central Greece_93-94 1.007 1.004 0.206 0.795 0.990 1.018

Central Greece_94-95 1.060 1.055** 0.000 1.000 1.029 1.100

Central Greece_95-96 0.979 0.982** 1.000 0.001 0.969 0.992

Central Greece_96-97 1.078 1.107** 0.000 1.000 1.037 1.164

Central Greece_97-98 0.993 0.987 0.698 0.303 0.936 1.042

Cretabank_87-89 1.460 1.540** 0.000 1.000 1.418 1.629

Cretabank_89-90 0.853 0.832** 1.000 0.000 0.785 0.881

Cretabank_90-91 0.910 0.891** 1.000 0.000 0.867 0.931

Cretabank_91-92 0.899 0.898** 1.000 0.000 0.886 0.914

Cretabank_92-93 0.918 0.914** 1.000 0.000 0.897 0.941

Cretabank_93-94 1.191 1.213** 0.000 1.000 1.152 1.253

Cretabank_94-95 0.973 1.015 0.283 0.717 0.962 1.061

Cretabank_95-96 0.834 0.777** 1.000 0.000 0.717 0.856

Cretabank_96-97 0.980 0.984* 0.986 0.014 0.972 0.998

Cretabank_97-98 0.909 0.920** 1.000 0.000 0.900 0.939

Egnatia_93-94 1.298 1.237** 0.000 1.000 1.126 1.299

Egnatia_94-95 1.029 1.037 0.087 0.914 0.980 1.095

Egnatia_95-96 0.686 0.697** 1.000 0.000 0.667 0.760

Egnatia_96-97 0.880 0.871** 1.000 0.000 0.817 0.901

Egnatia_97-98 1.083 1.052 0.108 0.893 0.968 1.135

Egnatia_98-99 1.005 1.012 0.290 0.710 0.968 1.062

Emporiki_87-88 1.017 0.999 0.579 0.422 0.979 1.039

Emporiki_88-89 1.028 1.029** 0.001 1.000 1.015 1.039

Emporiki_89-90 0.953 0.957** 1.000 0.000 0.945 0.967

Emporiki_90-91 1.044 1.044** 0.000 1.000 1.034 1.055

Emporiki_91-92 0.839 0.853** 1.000 0.000 0.816 0.884

Emporiki_92-93 0.900 0.904** 1.000 0.000 0.895 0.917

Emporiki_93-94 1.030 1.035** 0.000 1.000 1.031 1.048

Emporiki_94-95 1.090 1.075** 0.000 1.000 1.035 1.108

Emporiki_95-96 1.078 1.055** 0.000 1.000 1.020 1.099

Emporiki_96-97 0.974 0.975** 1.000 0.000 0.971 0.981

Emporiki_97-98 1.054 1.070** 0.000 1.000 1.048 1.091

Emporiki_98-99 0.840 0.845** 1.000 0.000 0.806 0.879
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Ergobank_87-88 0.940 0.933** 1.000 0.000 0.922 0.955

Ergobank_88-89 1.056 1.075** 0.000 1.000 1.050 1.102

Ergobank_89-90 0.919 0.923** 1.000 0.000 0.880 0.958

Ergobank_90-91 0.856 0.845** 1.000 0.000 0.807 0.889

Ergobank_91-92 1.236 1.249** 0.000 1.000 1.195 1.294

Ergobank_92-93 1.076 1.065** 0.000 1.000 1.041 1.095

Ergobank_93-94 1.161 1.142** 0.000 1.000 1.103 1.200

Ergobank_94-95 0.945 0.943** 1.000 0.000 0.925 0.964

Ergobank_95-96 0.912 0.914** 1.000 0.000 0.901 0.924

Ergobank_96-97 0.909 0.921** 1.000 0.000 0.895 0.940

Ergobank_97-98 1.131 1.197** 0.000 1.000 1.094 1.304

Ergobank_98-99 0.936 0.923** 1.000 0.000 0.870 0.986

Eurobank_97-98 0.517 0.526** 1.000 0.000 0.449 0.608

Eurobank_98-99 1.326 1.238** 0.000 1.000 1.091 1.441

General_87-88 0.969 0.964** 0.998 0.002 0.958 0.982

General_88-89 0.965 0.969** 1.000 0.000 0.960 0.978

General_89-90 0.989 0.982* 0.980 0.020 0.966 0.999

General_90-91 1.145 1.159** 0.000 1.000 1.138 1.184

General_91-92 1.019 1.005 0.308 0.693 0.981 1.028

General_92-93 1.174 1.177** 0.000 1.000 1.159 1.183

General_93-94 0.848 0.850** 1.000 0.000 0.837 0.864

General_94-95 0.874 0.875** 1.000 0.000 0.870 0.882

General_95-96 1.091 1.098** 0.000 1.000 1.086 1.109

General_96-97 0.997 0.991* 0.953 0.048 0.982 1.001

General_97-98 1.002 1.013 0.118 0.882 0.991 1.036

General_98-99 0.900 0.900** 1.000 0.000 0.883 0.918

Interbank_95-96 1.003 1.019 0.105 0.896 0.980 1.041

Ionian and Pop_87-88 0.988 0.961 0.863 0.138 0.907 1.037

Ionian and Pop_88-89 1.089 1.088** 0.000 1.000 1.047 1.133

Ionian and Pop_89-90 0.953 0.940** 1.000 0.000 0.926 0.965

Ionian and Pop_90-91 0.943 0.968 0.898 0.103 0.906 1.013

Ionian and Pop_91-92 0.954 0.941 0.944 0.056 0.887 1.016

Ionian and Pop_92-93 1.130 1.150** 0.000 1.000 1.084 1.195

Ionian and Pop_93-94 0.748 0.770** 1.000 0.000 0.756 0.807

Ionian and Pop_94-95 1.000 1.014 0.247 0.753 0.939 1.048

Ionian and Pop_95-96 1.076 1.055** 0.000 1.000 1.023 1.088

Ionian and Pop_96-97 0.930 0.948 0.874 0.126 0.869 1.049

Ionian and Pop_97-98 1.075 1.040 0.088 0.913 0.978 1.098
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Laiki (Hellas)_93-94 1.687 1.822** 0.000 1.000 1.629 2.025

Laiki (Hellas)_94-95 0.610 0.611** 1.000 0.000 0.569 0.641

Laiki (Hellas)_95-96 0.684 0.708** 1.000 0.000 0.611 0.797

Laiki (Hellas)_96-97 0.814 0.756** 1.000 0.000 0.656 0.892

Laiki (Hellas)_97-98 1.083 1.102 0.071 0.929 0.973 1.227

Laiki (Hellas)_98-99 0.931 0.928** 1.000 0.000 0.887 0.945

Mac-Thrace_87-88 1.060 1.056** 0.000 1.000 1.039 1.078

Mac-Thrace_88-89 1.088 1.086** 0.000 1.000 1.077 1.101

Mac-Thrace_89-90 0.915 0.906** 1.000 0.000 0.891 0.920

Mac-Thrace_90-91 1.234 1.246** 0.000 1.000 1.220 1.276

Mac-Thrace_91-92 0.868 0.859** 1.000 0.000 0.834 0.885

Mac-Thrace_92-93 1.017 1.018* 0.034 0.967 0.999 1.037

Mac-Thrace_93-94 1.156 1.167** 0.000 1.000 1.144 1.195

Mac-Thrace_94-95 0.955 0.975 0.832 0.168 0.923 1.017

Mac-Thrace_95-96 0.934 0.910** 1.000 0.000 0.883 0.954

Mac-Thrace_96-97 1.044 1.041** 0.000 1.000 1.031 1.056

Mac-Thrace_97-98 1.000 1.003 0.342 0.659 0.981 1.025

Mac-Thrace_98-99 0.865 0.867** 1.000 0.000 0.836 0.891

National_87-88 1.089 1.036 0.270 0.730 0.960 1.143

National_88-89 0.978 0.989 0.824 0.176 0.958 1.008

National_89-90 1.007 1.016 0.139 0.862 0.986 1.050

National_90-91 1.073 1.077 0.089 0.911 0.965 1.185

National_91-92 0.739 0.738** 1.000 0.000 0.658 0.826

National_92-93 0.850 0.923 0.892 0.109 0.828 1.033

National_93-94 1.096 1.029 0.242 0.759 0.949 1.085

National_94-95 1.004 0.989 0.641 0.360 0.948 1.036

National_95-96 1.113 1.097** 0.000 1.000 1.065 1.125

National_96-97 0.817 0.844** 1.000 0.000 0.818 0.890

National_97-98 1.039 1.006 0.445 0.555 0.931 1.080

National_98-99 0.962 0.962* 0.970 0.031 0.936 1.001

Piraeus_87-88 0.949 0.935** 1.000 0.000 0.913 0.967

Piraeus_88-89 1.055 1.058** 0.000 1.000 1.049 1.064

Piraeus_89-90 0.902 0.904** 1.000 0.000 0.899 0.908

Piraeus_90-91 1.173 1.163** 0.000 1.000 1.131 1.202

Piraeus_91-92 0.931 0.944** 1.000 0.000 0.913 0.972

Piraeus_92-93 0.871 0.882** 1.000 0.000 0.862 0.914

Piraeus_93-94 0.968 0.939** 0.993 0.007 0.899 0.985

Piraeus_94-95 0.950 0.962** 1.000 0.000 0.944 0.981

Piraeus_95-96 1.231 1.228** 0.000 1.000 1.187 1.258

Piraeus_96-97 0.832 0.847** 1.000 0.000 0.812 0.882

Piraeus_97-98 0.957 1.029 0.343 0.657 0.948 1.132

Piraeus_98-99 1.238 1.183** 0.000 1.000 1.073 1.306
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T Bank_93-94 0.381 0.344** 1.000 0.000 0.303 0.390

T Bank_94-95 0.680 0.680** 1.000 0.000 0.667 0.700

T Bank_95-96 1.140 1.196** 0.000 1.000 1.106 1.275

T Bank_96-97 1.016 1.041 0.186 0.815 0.946 1.108

T Bank_97-98 0.988 1.003 0.378 0.623 0.944 1.032

T Bank_98-99 1.071 1.119* 0.049 0.951 0.976 1.193

Xiosbank_91-92 0.663 0.697** 1.000 0.000 0.647 0.738

Xiosbank_92-93 1.324 1.253** 0.000 1.000 1.161 1.376

Xiosbank_93-94 1.372 1.405** 0.000 1.000 1.310 1.469

Xiosbank_94-95 0.933 0.960* 0.979 0.022 0.906 0.999

Xiosbank_95-96 0.836 0.819** 1.000 0.000 0.778 0.871

Xiosbank_96-97 0.853 0.850** 1.000 0.000 0.807 0.894

Xiosbank_97-98 1.049 1.108* 0.020 0.981 1.006 1.222

Average_87-88 1.042 1.019 0.304 0.696 0.964 1.088

Average_88-89 1.000 0.993 0.727 0.273 0.971 1.019

Average_89-90 0.967 0.971** 1.000 0.000 0.956 0.987

Average_90-91 1.053 1.053* 0.015 0.985 1.006 1.098

Average_91-92 0.902 0.889** 1.000 0.000 0.860 0.928

Average_92-93 0.893 0.918** 1.000 0.000 0.879 0.954

Average_93-94 1.062 1.047** 0.000 1.000 1.021 1.076

Average_94-95 1.016 1.016 0.107 0.893 0.989 1.043

Average_95-96 1.028 1.026** 0.000 1.000 1.012 1.045

Average_96-97 0.928 0.936** 1.000 0.000 0.909 0.957

Average_97-98 1.078 1.121** 0.000 1.000 1.053 1.188

Average_98-99 0.921 0.927** 1.000 0.000 0.913 0.934

Average W_87-88 1.093 1.054 0.128 0.872 0.976 1.154

Average W_88-89 0.988 1.000 0.413 0.588 0.967 1.021

Average W_89-90 0.982 0.981 0.924 0.076 0.961 1.011

Average W_90-91 1.059 1.055 0.117 0.884 0.962 1.145

Average W_91-92 0.872 0.869** 0.999 0.002 0.805 0.952

Average W_92-93 0.782 0.798** 1.000 0.000 0.734 0.850

Average W_93-94 1.112 1.091** 0.000 1.000 1.042 1.159

Average W_94-95 1.033 1.041* 0.017 0.983 1.003 1.067

Average W_95-96 1.073 1.067** 0.000 1.000 1.040 1.099

Average W_96-97 0.859 0.866** 1.000 0.000 0.824 0.903

Average W_97-98 1.033 1.040 0.160 0.841 0.975 1.125

Average W_98-99 0.930 0.925** 1.000 0.000 0.906 0.954
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Table XIII.3. Results based on the Moments bootstrap DEA 

 

Agricultural_92-93 1.024 0.906 0.933 0.067 0.769 1.029

Agricultural_93-94 1.053 1.066** 0.000 1.000 1.040 1.083

Agricultural_94-95 1.008 1.030 0.167 0.833 0.963 1.084

Agricultural_95-96 1.015 1.009** 0.000 1.000 1.002 1.024

Agricultural_96-97 0.968 0.980 0.808 0.192 0.948 1.021

Agricultural_97-98 0.999 1.036 0.130 0.871 0.982 1.101

Agricultural_98-99 0.937 0.960** 0.999 0.002 0.948 0.994

Alpha_87-88 0.985 0.977 0.921 0.079 0.948 1.013

Alpha_88-89 0.990 0.990 0.757 0.243 0.966 1.024

Alpha_89-90 0.899 0.918** 1.000 0.001 0.866 0.969

Alpha_90-91 1.114 1.115** 0.000 1.000 1.101 1.137

Alpha_91-92 1.130 1.122** 0.000 1.000 1.067 1.177

Alpha_92-93 0.870 0.880** 1.000 0.000 0.847 0.921

Alpha_93-94 1.087 1.052 0.031 0.970 0.998 1.124

Alpha_94-95 0.925 0.925** 1.000 0.000 0.909 0.934

Alpha_95-96 0.851 0.878** 1.000 0.000 0.829 0.923

Alpha_96-97 0.953 0.966** 1.000 0.000 0.935 0.982

Alpha_97-98 1.121 1.167** 0.000 1.000 1.069 1.275

Alpha_98-99 0.892 0.963 0.774 0.226 0.880 1.048

Bank of Athens_88-89 0.973 0.972** 1.000 0.001 0.960 0.984

Bank of Athens_89-90 0.954 0.960** 0.999 0.002 0.940 0.986

Bank of Athens_90-91 0.987 1.052 0.066 0.934 0.982 1.128

Bank of Athens_91-92 1.145 1.057 0.107 0.893 0.966 1.157

Bank of Athens_92-93 1.018 1.021 0.102 0.898 0.986 1.051

Bank of Athens_93-94 1.350 1.404** 0.000 1.000 1.330 1.474

Bank of Athens_94-95 0.855 0.845** 1.000 0.000 0.799 0.888

Bank of Athens_95-96 0.972 0.970** 1.000 0.000 0.954 0.984

Bank of Athens_96-97 0.868 0.901** 1.000 0.000 0.834 0.961

Bank of Attica_87-88 1.078 1.075** 0.000 1.000 1.065 1.093

Bank of Attica_88-89 1.124 1.141** 0.000 1.000 1.111 1.175

Bank of Attica_89-90 0.887 0.873** 1.000 0.000 0.852 0.897

Bank of Attica_90-91 0.818 0.828** 1.000 0.000 0.811 0.847

Bank of Attica_91-92 0.910 1.009 0.431 0.569 0.954 1.103

Bank of Attica_92-93 1.058 0.958 0.754 0.247 0.809 1.064

Bank of Attica_93-94 1.153 1.103** 0.001 1.000 1.034 1.173

Bank of Attica_94-95 1.034 1.088** 0.000 1.000 1.039 1.153

Bank of Attica_95-96 1.061 1.062** 0.000 1.000 1.036 1.087

Bank of Attica_96-97 0.922 0.912** 1.000 0.000 0.870 0.941

Bank of Attica_97-98 0.990 1.013 0.380 0.620 0.930 1.092

Bank of Attica_98-99 1.071 1.067 0.099 0.902 0.969 1.174
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Central Greece_87-89 1.416 0.949 0.635 0.365 0.484 1.807

Central Greece_89-90 1.057 1.057** 0.000 1.000 1.048 1.064

Central Greece_90-91 1.002 1.020 0.052 0.949 0.996 1.048

Central Greece_91-92 1.048 1.041** 0.005 0.995 1.015 1.065

Central Greece_92-93 0.903 0.921** 1.000 0.000 0.869 0.970

Central Greece_93-94 1.007 1.004 0.249 0.751 0.988 1.019

Central Greece_94-95 1.060 1.051** 0.000 1.000 1.019 1.099

Central Greece_95-96 0.979 0.982** 0.998 0.003 0.967 0.994

Central Greece_96-97 1.078 1.111** 0.000 1.000 1.042 1.177

Central Greece_97-98 0.993 0.989 0.665 0.335 0.934 1.044

Cretabank_87-89 1.460 1.561** 0.000 1.000 1.440 1.681

Cretabank_89-90 0.853 0.830** 1.000 0.000 0.773 0.880

Cretabank_90-91 0.910 0.887** 1.000 0.000 0.856 0.932

Cretabank_91-92 0.899 0.897** 1.000 0.000 0.880 0.917

Cretabank_92-93 0.918 0.912** 1.000 0.000 0.888 0.943

Cretabank_93-94 1.191 1.220** 0.000 1.000 1.157 1.274

Cretabank_94-95 0.973 1.017 0.257 0.743 0.966 1.063

Cretabank_95-96 0.834 0.771** 1.000 0.000 0.705 0.843

Cretabank_96-97 0.980 0.983 0.970 0.030 0.966 1.001

Cretabank_97-98 0.909 0.921** 1.000 0.000 0.899 0.944

Egnatia_93-94 1.298 1.238** 0.000 1.000 1.115 1.299

Egnatia_94-95 1.029 1.038 0.066 0.935 0.989 1.099

Egnatia_95-96 0.686 0.697** 1.000 0.000 0.666 0.755

Egnatia_96-97 0.880 0.871** 1.000 0.000 0.820 0.900

Egnatia_97-98 1.083 1.048 0.155 0.845 0.957 1.135

Egnatia_98-99 1.005 1.013 0.263 0.738 0.970 1.066

Emporiki_87-88 1.017 0.990 0.696 0.304 0.960 1.040

Emporiki_88-89 1.028 1.030** 0.003 0.997 1.011 1.046

Emporiki_89-90 0.953 0.960** 1.000 0.000 0.943 0.973

Emporiki_90-91 1.044 1.044** 0.000 1.000 1.031 1.060

Emporiki_91-92 0.839 0.857** 1.000 0.000 0.813 0.900

Emporiki_92-93 0.900 0.904** 1.000 0.000 0.896 0.920

Emporiki_93-94 1.030 1.035** 0.000 1.000 1.031 1.051

Emporiki_94-95 1.090 1.071** 0.000 1.000 1.028 1.106

Emporiki_95-96 1.078 1.048 0.036 0.964 0.997 1.105

Emporiki_96-97 0.974 0.976** 1.000 0.000 0.970 0.985

Emporiki_97-98 1.054 1.075** 0.000 1.000 1.045 1.102

Emporiki_98-99 0.840 0.851** 1.000 0.000 0.805 0.894
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Ergobank_87-88 0.940 0.932** 1.000 0.000 0.918 0.956

Ergobank_88-89 1.056 1.076** 0.000 1.000 1.050 1.109

Ergobank_89-90 0.919 0.925** 1.000 0.000 0.873 0.967

Ergobank_90-91 0.856 0.846** 1.000 0.000 0.806 0.895

Ergobank_91-92 1.236 1.248** 0.000 1.000 1.190 1.294

Ergobank_92-93 1.076 1.063** 0.000 1.000 1.035 1.094

Ergobank_93-94 1.161 1.137** 0.000 1.000 1.088 1.211

Ergobank_94-95 0.945 0.942** 0.998 0.002 0.918 0.973

Ergobank_95-96 0.912 0.916** 1.000 0.000 0.902 0.929

Ergobank_96-97 0.909 0.924** 1.000 0.000 0.894 0.949

Ergobank_97-98 1.131 1.202** 0.000 1.000 1.107 1.315

Ergobank_98-99 0.936 0.924** 1.000 0.000 0.873 0.987

Eurobank_97-98 0.517 0.526** 1.000 0.000 0.454 0.604

Eurobank_98-99 1.326 1.234** 0.001 0.999 1.069 1.421

General_87-88 0.969 0.961** 0.994 0.006 0.953 0.989

General_88-89 0.965 0.970** 1.000 0.000 0.959 0.983

General_89-90 0.989 0.980 0.961 0.039 0.952 1.002

General_90-91 1.145 1.163** 0.000 1.000 1.134 1.200

General_91-92 1.019 1.001 0.447 0.553 0.964 1.033

General_92-93 1.174 1.179** 0.000 1.000 1.152 1.189

General_93-94 0.848 0.849** 1.000 0.000 0.832 0.871

General_94-95 0.874 0.875** 1.000 0.000 0.869 0.886

General_95-96 1.091 1.100** 0.000 1.000 1.085 1.115

General_96-97 0.997 0.989 0.956 0.045 0.977 1.001

General_97-98 1.002 1.016 0.133 0.867 0.988 1.049

General_98-99 0.900 0.899** 1.000 0.000 0.876 0.922

Interbank_95-96 1.003 1.023 0.100 0.900 0.984 1.050

Ionian and Pop_87-88 0.988 0.954 0.874 0.127 0.889 1.036

Ionian and Pop_88-89 1.089 1.086** 0.000 1.000 1.034 1.145

Ionian and Pop_89-90 0.953 0.936** 1.000 0.000 0.918 0.963

Ionian and Pop_90-91 0.943 0.973 0.781 0.220 0.910 1.035

Ionian and Pop_91-92 0.954 0.939 0.926 0.074 0.863 1.021

Ionian and Pop_92-93 1.130 1.156** 0.000 1.000 1.085 1.209

Ionian and Pop_93-94 0.748 0.770** 1.000 0.000 0.755 0.808

Ionian and Pop_94-95 1.000 1.016 0.226 0.775 0.946 1.053

Ionian and Pop_95-96 1.076 1.055** 0.000 1.000 1.022 1.091

Ionian and Pop_96-97 0.930 0.946 0.880 0.120 0.866 1.046

Ionian and Pop_97-98 1.075 1.042 0.064 0.937 0.980 1.099
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Laiki (Hellas)_93-94 1.687 1.827** 0.000 1.000 1.637 2.054

Laiki (Hellas)_94-95 0.610 0.611** 1.000 0.000 0.572 0.640

Laiki (Hellas)_95-96 0.684 0.707** 1.000 0.000 0.615 0.791

Laiki (Hellas)_96-97 0.814 0.761** 1.000 0.001 0.666 0.899

Laiki (Hellas)_97-98 1.083 1.099 0.064 0.936 0.975 1.214

Laiki (Hellas)_98-99 0.931 0.928** 1.000 0.000 0.888 0.945

Mac-Thrace_87-88 1.060 1.054** 0.000 1.000 1.030 1.080

Mac-Thrace_88-89 1.088 1.086** 0.000 1.000 1.072 1.105

Mac-Thrace_89-90 0.915 0.903** 1.000 0.000 0.883 0.924

Mac-Thrace_90-91 1.234 1.251** 0.000 1.000 1.212 1.296

Mac-Thrace_91-92 0.868 0.857** 1.000 0.000 0.815 0.897

Mac-Thrace_92-93 1.017 1.020 0.086 0.915 0.989 1.051

Mac-Thrace_93-94 1.156 1.167** 0.000 1.000 1.134 1.209

Mac-Thrace_94-95 0.955 0.981 0.728 0.272 0.924 1.033

Mac-Thrace_95-96 0.934 0.906** 1.000 0.000 0.873 0.952

Mac-Thrace_96-97 1.044 1.040** 0.000 1.000 1.026 1.058

Mac-Thrace_97-98 1.000 1.004 0.371 0.630 0.971 1.032

Mac-Thrace_98-99 0.865 0.870** 1.000 0.000 0.831 0.907

National_87-88 1.089 1.035 0.290 0.711 0.956 1.141

National_88-89 0.978 0.989 0.799 0.202 0.958 1.011

National_89-90 1.007 1.016 0.138 0.863 0.985 1.051

National_90-91 1.073 1.076 0.093 0.907 0.970 1.197

National_91-92 0.739 0.738** 1.000 0.000 0.653 0.822

National_92-93 0.850 0.923 0.907 0.093 0.833 1.033

National_93-94 1.096 1.030 0.240 0.761 0.951 1.089

National_94-95 1.004 0.989 0.647 0.353 0.947 1.035

National_95-96 1.113 1.098** 0.000 1.000 1.067 1.128

National_96-97 0.817 0.843** 1.000 0.000 0.815 0.891

National_97-98 1.039 1.007 0.425 0.576 0.932 1.083

National_98-99 0.962 0.962 0.959 0.042 0.935 1.004

Piraeus_87-88 0.949 0.929** 1.000 0.001 0.897 0.965

Piraeus_88-89 1.055 1.060** 0.000 1.000 1.049 1.069

Piraeus_89-90 0.902 0.905** 1.000 0.000 0.900 0.911

Piraeus_90-91 1.173 1.159** 0.000 1.000 1.109 1.218

Piraeus_91-92 0.931 0.948** 0.992 0.008 0.901 0.990

Piraeus_92-93 0.871 0.885** 1.000 0.000 0.867 0.923

Piraeus_93-94 0.968 0.928* 0.986 0.015 0.870 0.992

Piraeus_94-95 0.950 0.966* 0.989 0.012 0.941 0.994

Piraeus_95-96 1.231 1.232** 0.000 1.000 1.184 1.273

Piraeus_96-97 0.832 0.851** 1.000 0.000 0.807 0.901

Piraeus_97-98 0.957 1.030 0.308 0.693 0.943 1.133

Piraeus_98-99 1.238 1.187** 0.000 1.000 1.081 1.303
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T Bank_93-94 0.381 0.342** 1.000 0.000 0.296 0.388

T Bank_94-95 0.680 0.678** 1.000 0.000 0.658 0.704

T Bank_95-96 1.140 1.206** 0.000 1.000 1.121 1.300

T Bank_96-97 1.016 1.039 0.191 0.810 0.947 1.102

T Bank_97-98 0.988 1.001 0.376 0.624 0.943 1.029

T Bank_98-99 1.071 1.116 0.053 0.948 0.971 1.187

Xiosbank_91-92 0.663 0.705** 1.000 0.000 0.657 0.754

Xiosbank_92-93 1.324 1.241** 0.000 1.000 1.119 1.371

Xiosbank_93-94 1.372 1.411** 0.000 1.000 1.318 1.507

Xiosbank_94-95 0.933 0.961 0.967 0.034 0.908 1.002

Xiosbank_95-96 0.836 0.820** 1.000 0.000 0.774 0.872

Xiosbank_96-97 0.853 0.852** 1.000 0.000 0.806 0.898

Xiosbank_97-98 1.049 1.109* 0.020 0.981 1.005 1.225

Average_87-88 1.042 1.015 0.361 0.640 0.945 1.090

Average_88-89 1.000 0.991 0.721 0.279 0.965 1.023

Average_89-90 0.967 0.973** 0.998 0.002 0.955 0.992

Average_90-91 1.053 1.051 0.048 0.952 0.992 1.116

Average_91-92 0.902 0.886** 1.000 0.000 0.841 0.932

Average_92-93 0.893 0.926** 0.998 0.002 0.881 0.974

Average_93-94 1.062 1.044** 0.000 1.000 1.015 1.078

Average_94-95 1.016 1.017 0.145 0.855 0.987 1.047

Average_95-96 1.028 1.025** 0.001 1.000 1.010 1.049

Average_96-97 0.928 0.938** 1.000 0.000 0.909 0.963

Average_97-98 1.078 1.122** 0.000 1.000 1.055 1.197

Average_98-99 0.921 0.927** 1.000 0.000 0.913 0.934

Average W_87-88 1.093 1.053 0.169 0.832 0.971 1.157

Average W_88-89 0.988 1.000 0.413 0.588 0.967 1.022

Average W_89-90 0.982 0.982 0.923 0.077 0.958 1.010

Average W_90-91 1.059 1.053 0.155 0.845 0.957 1.154

Average W_91-92 0.872 0.870** 0.997 0.003 0.796 0.956

Average W_92-93 0.782 0.799** 1.000 0.000 0.734 0.860

Average W_93-94 1.112 1.093** 0.000 1.000 1.040 1.159

Average W_94-95 1.033 1.042* 0.014 0.986 1.004 1.068

Average W_95-96 1.073 1.067** 0.000 1.000 1.039 1.099

Average W_96-97 0.859 0.866** 1.000 0.000 0.826 0.903

Average W_97-98 1.033 1.038 0.176 0.825 0.972 1.127

Average W_98-99 0.930 0.926** 1.000 0.000 0.905 0.952
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XIV. Appendix XIV: Input-output-efficiency scatterplots 

 

This appendix graphically summarises the results of our analysis. In particular for each 

bank we first present input output scatterplots, with the bank under examination 

identified by the markers with the red filling.  We also map the bank under examination 

on the input-output space with respect to all banks in the sample which correspond to 

the other markers. The input and output variables are expressed in logs to help us 

identify clusters, though in all cases we observe that the observations are highly 

correlated and form one cluster. Also, given that we are using logs and movements on 

the input-output space can be thought of as proportional changes; in all cases we 

observe that the clusters lie on a straight line which has a slope close to one suggesting 

that a proportional increase in input leads to almost the same proportional increase in 

outputs, providing further support to the assumption of CRS. 

After each set of “mapping scatterplots” we present the same input-output 

scatterplots, this time “zooming in” each bank and identifying its trajectory over time. It 

also provides information about our hypothesis tests and for this purpose we have used 

results from the moments bootstrap. In particular, the labels above each point indicate 

the mean bias-corrected efficiency score under the moments bootstrap and year 

identifier (where 1=1987 and 13=1999). If the one-sided tests of efficiency change at a 

5% level of significance have indicated either a significant increase or decrease in 

efficiency we will denote this by linking the two consecutive markers with a solid black 

line. In the opposite case a light grey dotted line is used.  
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Figure XIV.1. Agricultural Bank 
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Figure XIV.2. Agricultural Bank 
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Figure XIV.3. Alpha Bank 
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Figure XIV.4. Alpha Bank 
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Figure XIV.5. Bank of Athens 
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Figure XIV.6. Bank of Athens 
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Figure XIV.7. Attica Bank 
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Figure XIV.8. Attica Bank 
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Figure XIV.9. Bank of Central Greece 
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Figure XIV.10. Bank of Central Greece
153

 

 

 

                                                      
153

 The dotted boxes are the operations of Bank of Central Greece during 1987, which were substantially 
greater than in other years and hence it would affect the scaling of the axes to such an extent that it 
would be impossible to inspect the trajectory for this bank. The massive drop evidenced is due to a 
political scandal and resulted in public organisations switching their banking to other financial institutions. 
The jump from period 1 (1987) to 3 (1989) is due to lack of data for 1988. 
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Figure XIV.11. Bank of Crete - Cretabank 
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Figure XIV.12. Bank of Crete - Cretabank 
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Figure XIV.13. Egnatia Bank 
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Figure XIV.14. Egnatia Bank 
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Figure XIV.15. Emporiki Bank 
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Figure XIV.16. Emporiki Bank 
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Figure XIV.17. Ergobank 
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Figure XIV.18. Ergobank 
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Figure XIV.19. EFG Eurobank 
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Figure XIV.20. EFG Eurobank 
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Figure XIV.21. General Bank 
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Figure XIV.22. General Bank 
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Figure XIV.23. Interbank 
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Figure XIV.24. Interbank 
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Figure XIV.25. Ionian and Popular Bank 
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Figure XIV.26. Ionian and Popular Bank 
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Figure XIV.27. Laiki Bank 
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Figure XIV.28. Laiki Bank 
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Figure XIV.29. Macedonia-Thrace Bank 
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Figure XIV.30. Macedonia-Thrace Bank 
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Figure XIV.31. National Bank 
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Figure XIV.32. National Bank 
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Figure XIV.33. Piraeus Bank 
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Figure XIV.34. Piraeus Bank 
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Figure XIV.35. TBank 
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Figure XIV.36. TBank 
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Figure XIV.37. Xiosbank 
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Figure XIV.38. Xiosbank 
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Figure XIV.39. Average Bank 
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Figure XIV.40. Average Bank 
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Figure XIV.41. Weighted Average Bank 
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Figure XIV.42. Weighted Average Bank 
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