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Abstract 

Background 

Huntington’s disease (HD) is an inherited neurodegenerative condition characterised by 

progressive motor, cognitive and psychiatric symptoms. The most frequent cause of death is 

respiratory failure, yet little is known about respiratory function through the progression of 

the disease or the underlying causes of respiratory failure. A thorough exploration of the 

relevant literature led to the development of a conceptual framework for respiratory failure in 

people with HD. Within this framework respiratory failure was characterised as type 1 

hypoxaemic and type2 hypercapnic failure and further evaluated through (i) an observational 

study to investigate respiratory function in people with HD, and (ii) the benefit and feasibility 

of inspiratory muscle training in people with HD. In order to develop understanding of 

potential underlying causes of type 1 hypoxaemic and type 2 hypercapnic respiratory failure, 

the observation study aimed to investigate if there was a difference in respiratory function 

between healthy controls and people with HD at different stages of the disease, and to explore 

factors that may influence or be influenced by respiratory function. The framework was 

further evaluated through the intervention study which investigated the feasibility and benefit 

of inspiratory muscle training in people with HD as a method of increasing capacity of the 

respiratory system. 

Method 

In the observation study 67 people with HD and 39 healthy control participants underwent a 

series of measurements of respiratory function based on underlying causes of type 1 

hypoxaemic respiratory failure and type 2 hypercapnic respiratory failure. These included 

measurement of lung volume, respiratory muscle strength and endurance. Exercise capacity, 

physical activity, swallow and posture as potential influencing factors were also measured in 

people with HD. 

In the intervention study 20 people with HD were randomly allocated either to inspiratory 

muscle training at 50% of maximal inspiratory pressure, or to training against a load 

suggested to have no effect, completed in the home. The training protocol was 30 breaths, 

twice daily for six weeks, which was preceded by a habituation period of one week. Sniff 

nasal inspiratory pressure, peak cough flow and 30 second sit to stand were measured before 

and after the intervention. The programme was supported by alternate weekly phone calls and 

home visits. 
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Results 

All measures of respiratory function, except FEV1/FVC were significantly decreased (p 

<0.001) in people with manifest HD compared to healthy control participants and people with 

pre-manifest HD. There was no difference between healthy control participants and people 

with pre-manifest HD. Respiratory function demonstrated a significant linear decline with 

disease progression measured by the total functional capacity scale (p<0.001). In particular, 

peak cough flow was abnormal at the middle stage of the disease. Exercise capacity, physical 

activity, swallow and posture were significantly related to respiratory function in people with 

manifest HD (p range 0.016-0.001). In people with manifest HD, exercise capacity was 

27.73% ±26.29 predicted and swallow capacity was abnormal in 84.80% of participants. 

In the intervention study, five participants completed the intervention arm and 7 completed 

the sham arm. Adherence to the inspiratory muscle training programme ranged from 37-

100% across both groups, with mean adherence rates of 70.67% ±26.35 and 74.53% ±21.03 

for intervention and sham groups respectively. There was no difference in inspiratory muscle 

strength, peak cough flow or 30 second sit to stand as a result of the intervention. Participants 

and their carers identified carer support as a key enabler and life events as a barrier for 

carrying out the exercises. 

Conclusion 

The findings from this study indicate that people with HD are susceptible to type 1 

hypoxaemic respiratory failure and predisposed to type 2 hypercapnic respiratory failure due 

to increased elastic and resistive loads and decreased capacity of respiratory muscles. The 

risk of type 1 hypoxaemic respiratory failure is high due to decreased swallow capacity and 

concomitant decreased cough efficacy. Decreased lung volume leading to hypoventilation 

may be impact on both type 1 hypoxaemic respiratory failure and lead on to type 2 

hypercapnic respiratory failure. The predisposition to type 2 hypercapnic respiratory failure is 

due to decreased respiratory muscle capacity and increased elastic and resistive load. The 

study also highlighted the complex relationship between respiratory function, exercise 

capacity and physical activity. Although inspiratory muscle strength, cough efficacy and 

functional activity remained unchanged in this small sample, the results of the intervention 

study suggest that inspiratory muscle training is feasible in people with HD. Further studies 

should use protocols that are directly related to the primary outcome measure e.g. a power 

based protocol to improve cough efficacy or an endurance based protocol to improve physical 

activity.  
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A model of respiratory failure in people with HD incorporating both type 1 hypoxaemic and 

type 2 hypercapnic respiratory failure can be proposed based from the findings of the studies 

that informs future research and clinical management of people with HD.  
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1.1 Rationale for and development of the study 

Huntington’s disease is a genetic neurodegenerative condition affecting approximately 

12/100,000 people in the United Kingdom (UK) (Evans et al. 2013). The genetic mutation 

results in death of cells and in particular medium spiny neurons within the striatum. Cell 

death in other areas of the brain results in a triad of motor, cognitive and behavioural 

problems (Ross and Tabrizi 2011). Symptoms become apparent in the middle stage of life, 

with death occurring 15-20 years from onset of symptoms (Bates 2005). This study originated 

from clinical observations that people with Huntington’s disease (HD) die from respiratory 

problems, yet little empirical evidence existed in 2008 that quantified respiratory function or 

suggested that HD as a pathology could influence respiratory function. A study of 385 people 

with HD and 282 unaffected siblings from 1992 (Sorensen and Fenger 1992) had identified 

that pneumonia was the most common cause of death in people with HD, a later study in 

2010 (Heemskerk and Roos 2010) further classified this as aspiration pneumonia. An abstract 

from 1985 (Leopold et al. 1985) reported observations of altered respiratory pattern in people 

with HD with more detail provided in an abstract that respiratory cycles in terms of tidal 

volume and respiratory flow were irregular and partial pressure of oxygen (PaO2) variable 

throughout the cycle (Fischer et al. 1983). It was concluded that this may be due to the 

underlying HD pathology or adaptation of the respiratory centre to maintain optimal oxygen 

tensions throughout the body. At the beginning of this study, little was known about 

pathological changes in the brainstem in people with HD and the influence this may have on 

respiratory control and function. A small study, n=12, exploring respiration during sleep 

found no difference in respiratory variability between people with HD and healthy controls 

(Bollen et al. 1988) yet a case study in a person with manifest HD and an altered sleep 

breathing pattern observed improvements in their breathing pattern following application of 

continuous positive airway pressure (Banno et al. 2005). In 2009, immunohistochemical 

staining of post-mortem HD brains identified for the first time that mutant Huntingtin was 

present in the brainstem (Herndon et al. 2009) which suggests that respiratory control may be 

influenced by HD pathology.  

During the final writing up phase of this thesis, the first article describing respiratory function 

in people with HD was published (Reyes et al. 2014). This small study demonstrated that 

respiratory function was decreased in 18 people with manifest HD compared to 18 matched 

control participants and that the magnitude of decrease was associated with severity of motor 

symptoms. The study had high internal validity as demonstrated by reliability studies on 
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respiratory muscle strength and spirometric measurements, but lacked some external validity 

as smokers were excluded. The exclusion of people with late stage disease limited the range 

of motor symptoms and thus disease severity (mean Unified Huntington’s Disease Rating 

Scale: Total Motor Score 40±15.7, range 13-62), and a lack of people with pre-manifest HD 

limited the conclusions that could be drawn from the findings. Outcome measures were 

limited as cough efficacy and inspiratory muscle strength measured nasally were not 

included. Declining respiratory function associated with worsening motor signs provided 

limited insight into the relationship between HD pathology and primary cause of death as 

outcome measures such as functional scores and other potential relational variables such as 

swallow, posture, exercise capacity and physical activity were not assessed. 

Evidence from other neurodegenerative conditions e.g. Parkinson’s disease (PD), multiple 

sclerosis (MS), motor neurone disease (MND)/amyotrophic lateral sclerosis (ALS) had 

identified respiratory dysfunction in relation to respiratory muscle strength (Buyse et al. 

1997; Sathyaprabha et al. 2005; Sathyaprabha et al. 2009); lung volume (Sabate et al. 1996; 

Sathyaprabha et al. 2009) and upper airway obstruction (Buyse 2006).  

The synthesis of this evidence highlights the importance of further investigation of 

respiratory function in people with HD and potential management strategies More 

specifically this led to the research question ‘is respiratory function in people with HD 

different to that of healthy people?’ with subsequent questions ‘does respiratory function 

change over the progression of the disease?’ and ‘how could potential respiratory dysfunction 

be managed?’. 

A thorough literature search enabled a conceptual framework of respiratory function in 

people with HD to be developed which could be evaluated using an iterative process of 

investigation. The literature search was limited to English language articles including human 

and animal studies, found using the following databases: Medline, EMBASE, AMED, and 

CINAHL from inception to July 2014. Key words and phrases were ‘Huntington*’ and 

‘striatum’, ‘cortex’, ‘brainstem’, ‘cerebellum’, ‘hypothalamus’, ‘respiratory centre’, 

‘respiratory control’, ‘breathing’, ‘swallow’, ‘sleep’, ‘muscle’, ‘diaphragm’, ‘thorax’, ‘trunk’, 

‘exercise’, ‘physical activity’, ‘physiotherapy’. For information related to respiratory failure 

search keywords were: ‘respiratory failure’, ‘respiratory drive’, ‘breathing control’, ‘control’, 

‘respiration’, ‘diaphragm’, ‘inspiratory muscles’, ‘expiratory muscles’, ‘lung compliance’, 

‘elastic recoil’. For information related to respiratory function in people with 

neurodegenerative conditions the above search words were combined with: ‘neuro*’, 

‘huntington’, ‘multiple sclerosis’, ‘amyotrophic lateral sclerosis’, ‘motor neurone disease’, 
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‘parkinsons’. For information related to outcome measures the following keywords were 

used: ‘swallow’, ‘posture’, ‘exercise tolerance’, ‘physical activity’ AND ‘measurement’, 

‘reliability’, ‘validity’ 

An iterative investigative process enabled the development of studies that sit within the 

development phase of the Medical Research Council (MRC) framework for the development 

and evaluation of complex interventions. This phase encompasses identifying the evidence 

base, developing theory and modelling process and outcomes (Craig et al. 2008).  

Little was known about respiratory function in people with HD or the impact of HD 

pathology on the respiratory system at the beginning of the study and the aims of this thesis 

were therefore to explore respiratory function in people with HD using a conceptual 

framework of respiratory failure and thereafter investigate whether inspiratory muscle 

training is feasible and can improve respiratory function in people with HD. 

 

1.2 Structure of the thesis 

The structure of this thesis is based on the development of ideas throughout the study period 

and the iterative investigative process. The study began by exploring how HD pathology may 

impact on respiratory function and respiratory failure with Chapters 2 and 3 exploring the 

literature in both these areas. The synthesis of evidence from these chapters was used to 

produce a conceptual framework of respiratory failure in people with HD which formed the 

basis of the observation study methodology in Chapter 4. The results of the observation study 

in Chapter 5, are discussed in relation to the conceptual framework in Chapter 6. 

The intervention study was developed based on preliminary findings of the observation study 

and systematic review of physiotherapy strategies to manage respiratory problems in people 

with neurodegenerative conditions, see Chapter 7. The methods and results of the 

intervention study are described in Chapters 8 and 9 respectively with the findings discussed 

in Chapter 10. Conclusions from both studies along with limitations, clinical implications and 

recommendations for future research are provided in Chapter 11. 
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2.1 Introduction 

Huntington’s disease (HD) is an inherited neurodegenerative condition characterised by 

progressive motor, cognitive and psychiatric symptoms. Cognitive and/or personality changes 

often occur before the more noticeable motor signs of chorea and balance problems (Novak 

and Tabrizi 2010). George Huntington’s original description of a condition that did not skip 

generations and resulted in ‘nervous excitement’ and ‘tendency to insanity’ (Bates 2005; 

Harper and Perutz 2001) is still as valid today as it was in 1872. The phenotypical expression 

of Huntington’s disease has remained unchanged, but a greater understanding of the cause 

and progression of the disease has been gained through years of diligent research.  

This chapter will review the literature regarding the pathological changes occurring in HD 

highlighting areas that may relate to respiratory function. 

2.2 Genetics 

HD is an autosomal dominant condition with children of an affected parent having a 50% 

chance of also being affected. The HD gene was mapped onto the short arm of chromosome 4 

in 1983 (Bates 2005) and 10 years later in 1993, the HD gene was isolated and the mutation 

identified by the Huntington’s Disease Collaborative Research Group (Huntington's Disease 

Collaborative Research Group. 1993). Pre-symptomatic testing for HD before the discovery 

of the gene in 1993 was based on the use of closely linked genetic markers involving family 

members, but the change to DNA testing enabled individuals to know whether they had 

inherited the mutation (Harper et al. 2000). The mutation is an expansion in the CAG 

(cytosine-adenine-guanine) portion of the chromosome and is measured in number of repeats 

of the protein with 0-35 repeats being normal, 36-40 incomplete penetrance with increased 

risk of developing the condition and more than 40 repeats being fully penetrant where the 

individual will most certainly develop HD (Bates 2005; Walker 2007). People with 36-39 

CAG repeats may have variable age of onset and variable disease progression (Panegyres and 

Goh 2011). CAG repeats of over 28 are unstable during replication, particularly during 

spermatogenesis, resulting in children from male affected parents often having higher repeats 

than their parent. This is termed anticipation and explains the likelihood of inheritance of 

juvenile HD from fathers rather than mothers (Walker 2007). Juvenile HD is characterised by 

very early onset, younger than 21 years, with CAG repeats of over 70 (Bates 2005). The 

length of the CAG repeat influences the age of onset, individuals with longer repeats 

commonly have an earlier onset than those with shorter repeats (Tabrizi et al. 2009).  
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2.3 Epidemiology 

People with the HD gene usually become symptomatic in the middle years of life, 40-50 

years old (Kelly et al. 2009) with death occurring some 15-20 years after onset of symptoms 

(Bates 2005). Prevalence around the world is estimated to be 4-7/100,000 in Europe, 2.4-

8.4/100,000 in Canada and 4.1-5.2/100,000 in the United States of America (Fisher and 

Semeka 2011), with a lower prevalence in Asia and Africa (Walker 2007). Evidence suggests 

a slightly higher frequency in Wales of 1 in 13,200, with concentrations within the Sirhowy 

and Afon Llywd valleys of Gwent (Harper 1986). The data were collected before genetic 

testing was available so the accuracy may be questionable; current prevalence data within 

Wales is not available. Recent data now show a prevalence of 12.3/100,000 [95% CI 11.2-

13.5] in the United Kingdom (UK) with possible reasons for the increase given as more 

accurate diagnosis, more available therapies and a greater willingness to register HD as a 

diagnosis (Evans et al. 2013). This may still be an underestimation as secrecy and denial are 

still common in families with HD (Wexler 2010). 

2.4 Assessment and measurement of Huntington’s disease 

Neuronal death due to mutant Huntingtin results in cognitive, motor, behavioural and 

functional dysfunction in people with HD which are typically assessed clinically using the 

Unified Huntington’s Disease Rating Scale (UHDRS). The UHDRS was developed by the 

Huntington Study Group and originally assessed for reliability and consistency in 1996 

(Huntington Study Group. 1996). The scale comprises 4 components i.e. motor, cognitive, 

behaviour and function (see Table 1 for details of the subsections within the scale). 

People who are known to be gene positive for the HD gene usually have regular assessment 

using the UHDRS total motor score (UHDRS:TMS) which is used, in part, to categorise 

people into pre-manifest and manifest HD. The clinical diagnosis of manifest HD is based on 

the total motor score (UHDRS:TMS) and a diagnostic confidence level of 4 by the assessor. 

Diagnostic confidence is assessed as: 0 = normal (no abnormalities); 1 = non-specific motor 

abnormalities (less than 50% confidence); 2 = motor abnormalities that may be signs of HD 

(50-89% confidence); 3 = motor abnormalities that are likely signs of HD (90-98% 

confidence and 4 = motor abnormalities that are unequivocal signs of HD (≥ 99% confidence) 

(Huntington Study Group. 1999). The rate of decline in UHDRS has been assessed over a 36 

month period with significant mean rate of change per year for: motor +4.748; cognitive -

6.32 and TFC -0.44 (Meyer et al. 2012). 
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The diagnosis of manifest HD is based on unequivocal motor abnormalities in a subject at 

risk of HD (Huntington Study Group. 1999). Other conditions, from which a differential 

diagnosis is made include: dentatorubral-pallidoluysian atrophy; Huntington’s disease-like 2; 

neurocanthocytosis and tardive dyskinesia. When the UHDRS has been completed, the 

examiner then decides with a confidence level of ≥ 99% whether the individual has manifest 

HD. 

Table 1 The components of the Unified Huntington’s Disease Rating Scale  

Motor 0 - 124 

Higher scores represent 

decreased motor ability 

Cognitive 0 - >300 

Lower scores represent 

decreased cognitive 

ability 

Behavioural 0 – 93 

Higher scores represent 

poorer behavioural 

function 

Functional 0 – 13 

Lower scores represent 

decreased functional 

ability 

Oculor motor function Verbal fluency Mood Functional assessment 

Dysarthria and tongue 

protrusion 

Symbol digit 

modalities test 

Behaviour Independence scale 

Chorea Stroop interference Psychosis Total functional 

capacity score 

Dystonia  Obsessiveness  

Gait    

Bradykinesia    

Postural stability    

Finger tapping    

Luria test    

 

When HD is clinically diagnosed as manifest, the progression of the disease is categorised 

using the total functional capacity score, see Table 2 (Shoulson and Fahn 1979). The typical 

categorisation is: 

 early: TFC 11-13; 

 middle: TFC 3-10; 

 late: TFC < 3 

(European Huntington's Disease Network Physiotherapy Working Group. 2009).  
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Table 2  Total Functional Capacity (Shoulson and Fahn 1979) 

Category of TFC 

Occupation Finances 
Domestic 

Chores 

Activities of 

Daily Living 
Care Level 

Normal 

3 

Normal 

3 

Normal 

2 

Normal 

3 

Home 

2 

Reduced 

capacity for 

normal job 

2 

Slight 

assistance 

 

2 

Impaired 

 

 

1 

Minimal 

impairment 

 

2 

Home with 

chronic care 

 

1 

Marginal work 

only 

 

1 

Major 

assistance 

 

1 

Unable 

 

 

0 

Gross tasks 

only 

 

1 

Full time 

skilled nursing 

0 

Unable 

 

 

0 

Unable 

 

 

0 

Unable 

 

 

0 

Total care 

 

 

0 

Full time 

skilled nursing 

0 

2.5 Pathology of Huntington’s disease 

The HD gene is responsible for the production of a protein called Huntingtin which is found 

throughout the human body, particularly in the central nervous system and peripheral tissue. 

Mutation of the gene causes Huntingtin to be an expanded protein that aggregates or clumps 

within cell nuclei (Bates 2005), neuronal dendrites and synapses (Bano et al. 2011) and 

cytoplasm (Ross and Tabrizi 2011). Both the aggregated and soluble form of mutant 

Huntingtin is thought to disrupt functioning of transcription, cellular trafficking and 

mitochondria within cells. Mitochondrial dysfunction is thought to lead to altered calcium 

metabolism, increased production of reactive oxygen compounds and increased sensitivity to 

apoptosis (Costa and Scorrano 2012). This dysfunction eventually leads to cell death which 

occurs most frequently within the striatum and the cerebral cortex with phenotypical 

expression being observed as movement disorders, cognitive and behavioural dysfunction. 

This loss of physiological function may also be accompanied by a gain in toxic function of 

mutant Huntingtin (Ross and Tabrizi 2011), but symptoms do not arise until later in life due 

to protective cellular molecular networks (Finkbeiner 2011). The medium spiny neurons 

within the striatum may be particularly susceptible to mitochondrial dysfunction with the 

high energy demands of these neurons leading to their subsequent death (Costa and Scorrano 

2012).  

2.5.1 Striatal and cortical dysfunction in Huntington’s disease  

Neuronal cell death leads to loss of volume in the brain and this has been observed in people 

who are pre-manifest as well as those with manifest disease. A prospective, multinational 
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observation study (TRACK-HD, n= 366 at baseline; 332 (91%) at 24 month follow up) 

(Tabrizi et al. 2012) reported that people with pre-manifest HD close to onset of symptoms 

and people with early stage HD demonstrated greater annual decreases in whole brain volume 

compared to control subjects, the predominance of this atrophy being within the striatum. 

This loss of both white and grey cells was correlated with measures of function (TFC) and 

motor scores of the UHDRS. The total motor score includes measures of chorea, bradykinesia 

and dystonia which may occur throughout the progression of the disease and may be 

explained by dysfunction of cortico-striatal neuronal activity through neuronal loss. 

The striatum receives input from a wide range of cortical areas; in relation to motor activity 

these areas include the supplementary motor area, arcuate pre-motor area, motor cortex and 

somatosensory cortex (O'Callaghan et al. 2014). The putamen in the dorsolateral region of the 

striatum receives information relating to sensorimotor function and output is primarily 

divided into the direct and indirect pathways returning to the cortex. The direct pathway 

projects to the substantia nigra pars reticulate and the internal portion of the globus pallidus 

whilst the indirect pathway projects to the external portion of globus pallidus before 

following the direct pathway (Galvan et al. 2012). The indirect medium spiny neurones 

appear to be more susceptible to cell death than the direct neurones, with post mortem animal 

and human studies showing decreased indirect pathway neurones in people with pre-manifest, 

early stage and people with fully symptomatic HD and sparing of the direct pathway in the 

early stages of the disease (Galvan et al. 2012). The loss of indirect projections from the 

striatum results in decreased inhibition of the thalamo-cortical pathways and involuntary 

movement such as chorea. Appropriate voluntary movements continue as the direct pathway 

remains functional (Fenney et al. 2008). Through the progression of the disease, choreiform 

movements spread from distal to proximal muscles, including the trunk and face (Roos 

2010).  

Choreic buco-lingual movements influence swallow ability and abnormal swallow has been 

identified in people with HD which is characterised by swallow incoordination, repetitive 

swallows and inability to stop respiration during swallow (Kagel and Leopold 1992). 

Choking, coughing and aspiration during the pharyngeal phase of swallowing and shortened 

oral transit time are consequences of swallow incoordination (Heemskerk and Roos 2011). 

Normal swallow is both a reflex and planned manoeuvre involving not only the swallow 

mechanism but also pulmonary function and situational factors. Abnormal tongue movements 

associated with choreic buco-lingual movements may impact on the oral phase of swallow. 

Inability to protrude the tongue is one of the classical signs of HD and correlates with disease 
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burden and progression scores (Reilmann et al. 2010) and basal ganglia volume (Tabrizi et al. 

2009). It is difficult to assert the exact causes of impaired tongue protrusion but central 

sensorimotor feedback and integration circuits are likely to be involved (Reilmann 2013). 

Swallow can be affected by cortical, cranial and brainstem pathology (Hughes 2003) but as 

yet, the specific underlying reasons for abnormal swallow in people with HD is unknown.  

Appropriate integration between breathing and swallow (see section 3.3.1) and situational 

factors such as food preparation, appropriate posture as well as adequate protective 

mechanisms are necessary for safe and effective oral feeding (Hughes 2012; Hughes and 

Wiles 2000).  

Although no empirical evidence reports choreic movements of the diaphragm, clinical 

observations have observed altered breathing patterns (Leopold et al. 1985). This alteration in 

breathing pattern may be due to other causes e.g. disruption in the generation of breathing 

pattern from the brainstem (see section 3.3.1). Dystonia is highly prevalent in people with 

HD and can be distinguished from chorea in that the former is sustained muscle contraction 

producing twisting or repetitive movements and abnormal postures whereas choreic 

movements are random and flowing (Louis et al. 1999). Dystonia is involuntary and recent 

evidence from post mortem brains of 37 people with HD suggests that loss of interneurons 

within the striatum may explain the imbalance of muscle contraction, although loss of 

neurons within the direct pathway may also explain these gross movements (Reiner et al. 

2013). Patterns of trunk flexion and upper limb sustained shoulder internal rotation with 

elbow extension (Louis et al. 1999) may impact on normal functioning of the rib cage 

influencing the biomechanics of breathing (see section 3.3.2.3). 

As HD progresses medium spiny neurons of the direct pathway are lost, as well as cortical 

neurons, with losses in the primary and pre-motor areas correlating positively with motor 

dysfunction (Estrada Sánchez et al. 2008). In late stage HD 95% of striatal and 30% of 

cortical neurons may be lost (Estrada Sánchez et al. 2008) resulting in voluntary movement 

dysfunction. This may be observed as akinesia and/or bradykinesia, although this slowing of 

movement can be observed early in the condition and also alongside chorea (Fenney et al. 

2008). A small study identified the co-existence of non-smooth trajectory and slowing of 

movement which was different to healthy control subjects during a reach to eat task (Klein et 

al. 2011). This study also identified that proximal movements, including the trunk, 

compensated for distal movement impairment, but as the disease progressed poor posture i.e. 

slumping, resulted in poor sitting balance. The functional consequences of bradykinesia and 

akinesia are postural instability, impaired gait and falls. Postural instability is common in 
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people with HD (Brozova et al. 2011), with control of the centre of gravity compromised 

during functional tasks such as sit to stand (Panzera et al. 2011). Walking speed is decreased 

in both people with pre-manifest HD (Rao et al. 2008) and manifest HD (Bilney et al. 2005) 

with 75-80% of people with HD reporting falling more than once in the previous year (Busse 

et al. 2009; Grimbergen et al. 2008). 

Postural instability of the trunk and slumping posture may influence the synchrony between 

abdominal muscles and respiratory muscles in postural control; the shape of the thoracic cage 

and inspiratory capacity and the position of the diaphragm within the thoracic cavity and 

subsequent force generation (see section 3.3.2). If bradykinesia is a common finding of 

voluntary movement, this may have implications during voluntary breathing activities such as 

singing and also activities that require adaptation of automatic respiration e.g. coughing; 

swallowing and speech (see section 3.3.1).  

 

Voluntary movements rather than involuntary movements have been reported to correlate 

with cognitive impairment, specifically short term memory and executive function in a small 

study of 45 people with HD across the stages of the disease (Klempíř et al. 2009). The 

relationship between cognitive impairment and motor impairment was further analysed in a 

large cohort study of 1882 people with HD which found that those with chorea had better 

global and cognitive function than those with hypokinetic-rigid HD irrespective of age and 

disease duration (Hart et al. 2013). These findings highlight the complexity of the cortico-

striatal loops that influence cognition and behaviour as well as sensori-motor functioning. 

The caudate has connections with the frontal and parietal association cortices and the nucleus 

accumbens has connections with limbic structures such as the amygdala and hippocampus 

(O'Callaghan et al. 2014); disruption of these extensive interconnections possibly explaining 

the cognitive and behavioural symptoms in people with HD. A large study of 516 people with 

pre manifest HD demonstrated that motor functions were associated with specific volumes of 

putamen (speeded tapping), caudate (UHDRS total motor score), globus pallidus 

(bradykinesia and chorea) and nucleus accumbens (oculomotor), and also that putamen 

volumes were associated with cognitive measures that included a motor component, whereas 

caudate volumes were associated with cognitive tasks that emphasised executive control 

rather than motor control. There were no relationships between psychiatric measure and 

striatal volumes or between cortical grey matter volumes and motor, cognitive, psychiatric or 

functional variables identified. This may have been due to the sample not exhibiting 
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psychiatric symptoms and degree of cortical loss during the pre-manifest phase of the disease 

(Aylward et al. 2013). 

Cognitive changes are often the first noticeable signs in people with HD (Kingma et al. 

2008). A lack of ability to shift strategies for tasks, deficiencies in motor and procedural 

learning and loss of executive function is seen in people with pre-manifest HD with attention, 

acquisition of motor skills, planning and executive functions progressively declining in 

people with manifest HD. Dementia gradually develops in the late stage of the disease with 

slowing of information processing, depression and apathy (Giralt et al. 2012). In people with 

pre-manifest HD, motor planning and sensory perceptual processing are the best indicators of 

time to diagnosis, after controlling for CAG repeat, age and motor impairment (Harrington et 

al. 2012). Memory loss is also noted in the early stages of the disease (Paulsen et al. 2008). 

Motor planning deficit is therefore not confounded by motor symptoms but is most likely due 

to cortico-striatal dysfunction (Giralt et al. 2012; Harrington et al. 2012). Other suggested 

causes for cognitive dysfunction are hippocampal and/or synaptic dysfunction (Giralt et al. 

2012) and metabolic alterations in the posterior cingulate cortex (Unschuld et al. 2012). 

Psychiatric disturbances such as irritability, aggressiveness, depression and obsessive 

compulsive behaviour are also features of the disease (Estrada Sánchez et al. 2008; van Duijn 

et al. 2014), with apathy being a predominant feature in advanced stages of the disease (van 

Duijn et al. 2014). The ability to perform activities of daily living is influenced by both 

cognitive (Peavy et al. 2010) and behavioural (Hamilton et al. 2003) deficits with Hamilton et 

al. (2003) suggesting that profound apathy, lack of initiative and irritability may interfere 

with functional activities, even if the necessary motor and cognitive capacity is retained.  

2.5.2 Other brain areas affected by Huntington’s disease 

The striatum and cortex have been the main focus of central nervous system research in 

people with Huntington’s disease, based on the clinical features of motor, cognitive and 

behavioural impairment. As Huntingtin is a ubiquitous protein, the effects of mutant 

Huntingtin could potentially be found in all parts of the brain and indeed all tissues of the 

body. In relation to movement dysfunction, a small study of eight post-mortem brains of 

people with HD showed atrophy of the cerebellum with neuronal death in the deep nuclei. 

This loss could influence the quality of limb, trunk and eye movements as well as the 

maintenance of posture and balance (Rub et al. 2013). In relation to cognitive and 

behavioural impairments, a narrative review of human and animal studies identifies 

pathological changes in the hypothalamic and limbic systems. Changes include loss of grey 
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matter and volume as well as blood and cerebrospinal fluid biochemical changes. Clinical 

features associated with these changes include depression, anxiety, body weight changes, 

circadian rhythm changes and sleep disturbances (Petersen and Gabery 2012). Sleep 

disturbance is thought to be common amongst people with HD with a small qualitative study 

demonstrating 77% of people had abnormal sleep, which was confirmed by sleeping partners 

(Videnovic et al. 2009). Animal studies have also shown disrupted sleep even in the pre-

manifest stage of the disease (Kantor et al. 2013). It is still unclear, however, whether sleep 

and circadian rhythms disruption in people with HD are due to the underlying disease 

pathology or whether they are secondary to the consequences e.g. sleep deprivation, of 

having a neurodegenerative condition (Morton 2013).  

Emerging from a number of sleep studies is some evidence of sleep related breathing 

disorders which may exist in people with later stage disease. Studies assessing apnoea-

hypopnea events showed no difference between people with early and mid-stage disease and 

healthy controls (Arnulf et al. 2008; Cuturic et al. 2009; Wiegand et al. 1991) yet in more 

advanced stages of the disease, three of 13 cases demonstrated abnormal patterns (Antczak et 

al. 2013). These are all relatively small studies and the lack of control participants in Antczak 

et al limits the external validity of the findings. A case study describing snoring and an 

apnoea – hypopnea index of 6.6 events per sleeping hour in a woman with HD demonstrated 

that management using continuous positive airways pressure abolished nocturnal respiratory 

systems. The sleep related breathing problems described may result from altered circadian 

rhythms due to hypothalamic pathological changes or represent changes in respiratory rhythm 

generation within the brainstem. Mutant Huntingtin has been identified in the brainstem with 

degeneration of pontine nuclei within post mortem studies of people with HD (Herndon et al. 

2009; Rub et al. 2014) and magnetic resonance imaging showing progressive atrophy of the 

brainstem alongside that of the cortex and striatum in people with early HD (Hobbs et al. 

2010). These findings may have implications for the generation and control of respiration in 

people with HD (see section 3.3.1). 

2.5.3 Huntington’s disease outside the central nervous system  

Research over the last decade has begun to examine non central nervous systems of the body 

in order to understand the potential influence of mutant Huntingtin in other tissues and 

systems such as skeletal muscle and the cardiovascular system. 

Skeletal muscle atrophy is a recognised observation in people with HD (Sassone et al. 2009) 

although the pathological mechanisms underlying this atrophy are unclear. Mutant Huntingtin 
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has been found in muscle cells in the R6/2 mouse (Orth et al. 2003) with some evidence, yet 

not conclusive, of myopathic changes in people with HD (Sassone et al. 2009). The 

relationship between mutant Huntingtin and atrophy may be due to mitochondrial 

dysfunction in skeletal muscle as suggested in an in vitro study in human subjects with HD 

(Ciammola et al. 2011). Skeletal muscle atrophy in animal studies may be due to a complex 

interaction between increased protein synthesis within the muscle which creates an energy 

deficit due to decreased mitochondrial energy production (She et al. 2011). Changes in 

skeletal muscle fibres have also been documented; Ribchester et al. (2004) noted a reduction 

in mouse muscle fibre diameter and Strand et al. (2005) demonstrated a progressive loss in 

fast twitch fibres with concomitant gain in slow twitch fibres in both mouse models and 

humans. Mitochondrial dysfunction is thought to lead to a reduction in muscle bulk and 

reflected functionally in a low anaerobic threshold (Ciammola et al. 2011). Force generation 

in muscles in people with HD may also be influenced by emerging evidence of altered 

membrane potential and hyperexcitability (Waters et al. 2013), though this relationship is as 

yet not fully established. Clinical evidence supports these pathological findings, with Busse et 

al. (2008a) identifying peripheral muscle weakness in people with HD. Whether this 

weakness is reversible remains unknown, with findings demonstrating no change in lower 

limb strength after strengthening exercises (Khalil 2012) and a single case study 

demonstrating strength gains following a progressive strengthening programme (Meaney et 

al. 2008). Functional gains, however, were observed by Khalil (2012), similar to positive 

findings after intensive general rehabilitation, including specific strengthening exercises 

(Zinzi et al. 2007). Physiological changes therefore exist in skeletal muscle in people with 

HD, but the relationship between muscle strength and function remain unclear. It is also 

unknown if the physiological changes seen in peripheral skeletal muscle are also evident 

within the diaphragm and other muscles of respiration. If changes in muscle fibre type from 

fast to slow fibre type do occur, these could lead to a decrease in explosive muscle function 

such as during coughing whilst changes in energy metabolism may influence respiratory 

muscle endurance (see section 3.3.2). 

Respiratory muscle function is also influenced by nutrition (see 3.3.2), with atrophy a 

potential consequence of the weight loss observed in people with HD. Unintended weight 

loss has been observed throughout the disease progression of HD, including the pre-manifest 

stage (Aziz and Roos 2013) with the first systematic evidence being provided by Farrer and 

Meaney (1985). This anthropometric study investigated thirty three variables to look for 

differences between affected, ‘at risk’ and control groups. The ‘at risk’ group included family 
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members who had no symptoms of the disease and this method of categorisation was used 

prior to DNA testing. Results indicated that people with HD differed from controls in all 

body weight parameters including body mass index (BMI) as measured by kg/m
2
. BMI, all 

skinfold measurements and upper arm, chest and abdominal circumferences were all reduced 

in people with HD. When factor analysis was carried out on the data the primary factor that 

accounted for the overall variance was BMI (42.6%).  

More recent work, which included genetic testing, explored this further. Marder et al (2009) 

examined calorie intake, dietary composition and BMI in participants who were at risk for 

HD, but had not had genetic testing prior to the study. Participants who had CAG ≥ 37, but 

not diagnosed as HD, had a significantly lower BMI than those with CAG ≤ 37, 27.0Kg/m
2
 

±5.4 and 28.4 kg/m
2
 ±6.6 respectively, with calorie intake rather than BMI being 

significantly correlated with CAG repeat. BMI in people with HD has been found to be 

significantly less than healthy controls with values ranging from 22.2Kg/m
2
 ± 2.4 to 

25.9Kg/m
2
 and 24.6Kg/m

2
 ±1.5 to 27.68Kg/m

2
 ±0.16 respectively (Djousse et al. 2002; Trejo 

et al. 2004) with a rate of decline of -0.15Kg/m
2
 per year (Aziz et al. 2008). Although weight 

loss has been suggested as a prominent sign in people with HD, the participants in the studies 

noted were not actually underweight when compared to the World Health Organisation BMI 

classifications (World Health Organisation. 2006), of normal (18.50-24.99) and pre-obese 

(25.00-29.99).  

Weight loss, as identified by decreased BMI, may be due to chorea, dysphagia, malabsorption 

or increased metabolism (Marder et al. 2009; van der Burg et al. 2008; van der Burg et al. 

2011). The relationship between chorea and decreased BMI is unclear, as BMI is decreased in 

people with HD who have minimal chorea (Djousse et al. 2002) but cannot be excluded as 

some relationship does exist between the two variables (Marder et al. 2009). Marder et al 

(2009) also noted that although BMI was reduced, calorie intake was increased, which may 

be due to a gastrointestinal problem, confirmed in animal but not human studies (van der 

Burg et al. 2011). Animal models also describe increased metabolism as the most likely cause 

of weight loss in HD mice (van der Burg et al. 2008) with similar findings emerging in 

human studies (Krzysztoń-Russjan et al. 2013). 

Peripheral muscle weakness and respiratory muscle dysfunction may also impact on exercise 

tolerance and the potential to undertake physical activity (see section 3.3.4). Self-reported 

physical activity as measured by the International Physical Activity Questionnaire is low to 

moderate in people with HD (Quinn et al. 2013). More specifically, daily step count in people 

with HD who fall (3853 ±1796) is significantly less than those who do not fall (6729 ±1494) 
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(Busse et al. 2009); the step count being classified as ‘sedentary’ for fallers and ‘low active’ 

for non-fallers (Tudor-Locke and Bassett Jr 2004). Developing a progressive exercise 

program is a key theme of physiotherapy intervention (Busse et al. 2008b; European 

Huntington's Disease Network Physiotherapy Working Group. 2009), with emerging positive 

evidence of the feasibility of an exercise intervention directing further research (Busse et al. 

2013). This is a complex area, with evidence that having a lifestyle that includes physical 

activity does not influence age of onset of symptoms, yet following a passive lifestyle e.g. 

listening to music, watching television, leads to earlier age of onset of symptoms (Trembath 

et al. 2010). Additionally, physical activity is associated with higher lung functional values 

whilst a sedentary lifestyle is associated with lower values in the general population (Jakes et 

al. 2002), which impacts on cardiovascular respiratory function and, potentially, exercise 

capacity. 

Reduced physical activity in people with HD can lead to lack of participation in an 

individual’s normal lifestyle and may compromise physical and psychosocial well-being 

(Helder et al. 2001). Whether as a consequence or a cause of decreased physical activity, 

evidence exists to indicate that people with manifest HD have a reduced work capacity, low 

anaerobic threshold and early increase in blood lactate which are thought to reflect abnormal 

oxidative metabolism in skeletal muscle (Ciammola et al. 2011). This translates into 

decreased exercise capacity which appears to occur in people with HD (Quinn et al. 2013), 

with people with manifest HD walking 381.66m ±129.97 and people with pre-manifest HD 

walking 515.75m ±101.66 in the six minute walk test, although predicted values were not 

reported. Decreased exercise tolerance and potential decreased activity in people with HD is 

likely to be due to a number of factors. Neural dysfunction can lead to postural instability and 

falls; abnormal energy systems within skeletal muscle can lead to reduced work capacity and 

the combination of these factors may lead to decreased activity and deconditioning. 

Ability to exercise and be physically active may also be influenced by autonomic dysfunction 

in people with HD affecting the cardiovascular system. Autonomic nervous system 

dysfunction has been identified in people with early to middle stage HD (Andrich et al. 2002) 

as well as people with pre-manifest HD (Aziz et al. 2010). Both sympathetic and 

parasympathetic systems are affected and with disease progression, sympathetic activity 

predominates resulting in reduced modulation of cardiovagal activity (Andrich et al. 2002). 

There is a high incidence of cardiac failure in people with HD, although the exact underlying 

mechanisms are unknown with many factors such as central control, autonomic control and 
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potential relationships between psychiatric and cardiac symptoms needing further 

investigation (Abildtrup and Shattock 2013). 

2.5.4 Huntington’s disease and respiratory function 

The review of HD pathology highlights a number of aspects that may influence respiratory 

function in people with HD. Respiratory muscle strength in people with HD may be 

influenced by central factors e.g. disturbance in central respiratory control as a consequence 

of mutant Huntingtin within the brainstem (Herndon et al. 2009), or as a consequence of 

muscle atrophy (Sassone et al. 2009). Endurance may be affected less than strength as a gain 

in slow twitch fibres and decrease in fast twitch fibres has been noted in animal and human 

studies in HD (Strand et al. 2005). The rigidity and bradykinesia noted in later stage HD 

(Andre et al. 201; Han et al. 2010) may also impact on respiratory muscle activity resulting in 

a potential decrease in respiratory muscle strength. Rigidity of chest wall muscles may reduce 

chest wall compliance through associated stiffening of tendons and ligaments and ankylosis 

of costosternal and thoracovertebral joints (Buyse 2006). Postural instability (Broẑová et al. 

2011) may also impact on the biomechanical actions of the diaphragm with resultant 

decreased force production. Decreased respiratory muscle force generation will lead to 

decreased capacity of the respiratory muscle pump and with alterations in posture may lead to 

decreased lung volume, increasing the load on the respiratory pump. This load may also be 

increased through disruption of airflow from the lungs as a consequence of laryngeal and 

pharyngeal dysfunction identified in swallow studies (Heemskerk and Roos 2011).  

The most frequent cause of death in people with HD is aspiration pneumonia (Heemskerk and 

Roos 2010; Sorensen and Fenger 1992), but at the onset of this study little was known about 

respiratory function throughout the progression of the disease. Aspiration pneumonia could 

be a singular event due to swallow difficulties and although the underlying cause of swallow 

dysfunction is unknown in people with HD, it is a common clinical occurrence (Heemskerk 

and Roos 2011; Kagel and Leopold 1992). The inhaled liquid and/or solid would precipitate 

an inflammatory response and clinical signs of pneumonia such as high temperature and 

cough would be present. If secretions cannot be cleared through effective cough, gaseous 

exchange will be impaired and death due to hypoxaemia occurs. Aspirations of small 

amounts of solid and/or fluid may go unnoticed, but if they occur repeatedly, chronic damage 

to the respiratory epithelium will ensue (Wallis and Ryan 2012). The long term effects of 

repeated micro-aspirations and consequent epithelial damage may influence respiratory 

function and gradually lead to respiratory failure that is both hypoxaemic and hypercapnic. 
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These different types of respiratory failure are termed type 1 hypoxaemic respiratory failure 

and type 2 hypercapnic respiratory failure. Type 2 hypercapnic respiratory failure may be the 

consequence of altered central drive, decreased respiratory muscle capacity as well as an 

increase in load placed upon the respiratory system.  

The physiological and pathologic changes associated with type 1 hypoxaemic and type 2 

hypercapnic respiratory failure will be discussed in relation to HD pathology and other 

neurodegenerative conditions in the following chapter in order to develop a framework for 

the observation study of respiratory function in people with HD. 
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3.1 Introduction 

The preceding chapter reviewed the pathological changes of Huntington’s disease with 

specific reference to aspects that may impact on respiratory function. Cortico-striatal 

dysfunction leading to chorea, dystonia and bradykinesia may impact on respiratory muscle 

movement and the consequences of alterations in trunk posture and postural instability may 

influence the biomechanics of respiratory muscle force generation and the synchrony of 

postural and respiratory muscle activation. Loss of neurons within the brainstem may 

influence the generation and control of respiratory rhythm, whilst skeletal muscle changes 

and weight loss may reduce capacity of the respiratory muscles. This chapter will explore the 

underlying causes of type 1 and type 2 respiratory failure in order to identify the key areas for 

assessment in the observation study of respiratory function in people with HD. The 

categorisation of respiratory failure as described by Hart (2008) was used as a framework for 

the review of the literature as it deconstructed type 1 and type 2 respiratory failure into 

components that could relate to the underlying pathology of HD and the clinical signs and 

symptoms of respiratory failure. As little was known about respiratory function in people 

with HD, evidence from other neurodegenerative conditions was used to potentially validate 

the Hart framework for people with neurodegenerative conditions. Parkinson’s disease (PD), 

multiple sclerosis (MS) and motor neurone disease (MND)/amyotrophic lateral sclerosis 

(ALS) were chosen as comparable conditions as their pathologies include the central nervous 

system and clinical symptoms show some similarity to HD. 

Hart (2008) categorises respiratory failure into lung failure leading to type 1 hypoxaemic 

respiratory failure and pump failure leading to type 2 hypercapnic respiratory and 

acknowledges that both can occur concurrently in the same person. Lung failure causing 

hypoxaemia can be the result of pathological mechanisms such as mismatch of ventilation 

and perfusion; impaired diffusion across the respiratory membrane; low partial pressure of 

inspired oxygen; alveolar hypoventilation and a shunting of de-oxygenated blood past non-

ventilating portions of the lung. Pump failure results from an imbalance between neural 

respiratory drive, the load placed upon the respiratory muscles and the capacity of the 

respiratory muscles. This framework will be used alongside evidence of respiratory function 

in people with PD, MS, MND/ALS to develop a conceptual framework for respiratory failure 

in people with HD. The framework will therefore provide the basis for the investigation of 

respiratory function in people with HD. 
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3.2 Type 1 hypoxaemic respiratory failure 

Type 1 hypoxaemic respiratory failure is due to lung tissue failure i.e. a failure of gaseous 

exchange as a consequence of hypoventilation with consequent ventilation perfusion 

mismatch; low partial pressure of inspired oxygen and/or impaired diffusion. As decreased 

partial pressure of inspired oxygen is only likely to occur with decreased atmospheric oxygen 

e.g. at altitude (Peacock 1998) and impaired diffusion usually due to pulmonary oedema 

(West 2008a) and respiratory pathology such as emphysema (Hari and Mackenzie 2007), the 

physiological mechanisms of ventilation will be explored in order to identify potential 

dysfunction in people with HD. 

The primary role of the respiratory system is exchange of carbon dioxide (CO2) and oxygen 

(O2) to and from the external environment respectively. This is achieved through an efficient 

bidirectional flow of approximately six litres of air per minute through a highly branched 

conducting system and gaseous exchange via specialist alveolar type 1 epithelial cells 

(Rackley and Stripp 2012). As the system is open to the environment specialist cells provide 

protection from potential antigens. The large conducting airways are lined with ciliated, 

mucous secretory, neuroendocrine and basal cells (Green et al. 2012) which provide a 

mechanical removal of particles absorbed in a viscous layer of mucous through movement of 

the cilia (Rackley and Stripp 2012). Alveoli are lined with alveolar type 1 epithelial cells, 

alveolar type 2 cells and alveolar macrophages. Alveolar type 2 cells produce surfactant 

which lowers the surface tension within the alveolus (Rackley and Stripp 2012) whilst 

macrophages within the alveolus and those found in the airway epithelium are involved in 

defence through the inflammatory system (Hussell and Bell 2014). A breach in the defence 

mechanism of the airways and alveoli will prevent adequate gaseous exchange and can lead 

to type 1 hypoxaemic respiratory failure. In relation to HD pathology, little is known about 

changes in epithelial tissue although animal studies have shown decreased mucosal thickness 

in the gastrointestinal tract in mice (van der Burg et al. 2011). Further research is needed to 

investigate whether these changes also occur in the respiratory tract and whether this 

influences gaseous exchange.  

Alveolar hypoventilation and subsequent decreased gaseous exchange may be a consequence 

of atelectasis and/or pneumonia. Atelectasis can be caused by airway obstruction, 

compression of the airway and/or an increase in surface tension within the airway 

(Peroni and Boner 2000). Airway closure occurs during tidal breathing when the closing 

volume exceeds end expiratory lung volume; closing volume increasing in conditions 
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such as chronic obstructive pulmonary disease (COPD) and asthma; end expiratory lung 

volume decreasing with obesity and heart failure (Milic-Emili et al. 2007). Airway 

closure occurs in small airways as residual volume is approached during expiration due 

to surface tension instability within the airways and collapse of airway walls (Bian et al. 

2010; Heil et al. 2008). Repeated closure and re-opening of airways during tidal breathing 

causes sheer stresses within the airways leading to cell injury (Bian et al. 2010) and 

consequent peripheral airway pathological changes. Alteration in the liquid film coating the 

airways will influence surface tension compounding airway closure and also reduce 

protection against infection (Heil et al 2008). The postural changes caused by dystonia 

(Louis et al. 1999) and decreased physical activity (Quinn et al. 2013) may reduce tidal 

and total lung volumes in people with HD leading to airway closure and atelectasis. 

Atelectasis results in alveolar hypoventilation with consequent hypoxaemia via ventilation 

perfusion mismatch and may cause predisposition to respiratory infection. Type 1 

hypoxaemic respiratory failure with atelectasis as an underlying cause represents a gradual 

increase in alveolar hypoventilation which may be overlaid by a respiratory infection causing 

gaseous exchange to be inadequate. 

Pneumonia as a common respiratory infection leads to hypoxaemia, with aspiration 

pneumonia accounting for 5-15% of all cases (Lanspa et al. 2013) and is the leading cause of 

death in people with Parkinson’s disease (Williams-Gray et al. 2013); multiple sclerosis 

(Lalmohamed et al. 2012); Huntington’s disease (Heemskerk and Roos 2010) and motor 

neurone disease (Rafiq et al. 2012). Aspiration is a consequence of ineffective swallow which 

is evident in people with HD (Kagel and Leopold 1992), PD (Johnston et al. 1995) and MS 

(Calcagno et al. 2002) which is compounded by evidence of ineffective cough in people with 

PD (Ebihara et al. 2003) and MS (Aiello et al. 2008). Pneumonia may be a consequence of 

aspiration of oropharyngeal contents or of liquids and/or solids. Large volume aspirations as 

defined by >0.8mL/Kg in children are associated with rapid and acute hypoxaemia, whilst 

microaspirations or silent aspirations, that can occur without notice, can result in chronic 

damage to the epithelium (Wallis and Ryan 2012). Susceptibility to pneumonia is increased 

through smoking by facilitation of adherence of bacteria to the lower airway epithelium 

whilst inhibiting the normal production of antimicrobial and antiviral agents and impairing 

mucociliary clearance (Feldman and Anderson 2013). Rates of smoking also appear to be 

higher in people with HD (49%) compared to the United States of America national average 

of 28.4% (Byars et al. 2012) making them more susceptible to pneumonia. 
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The likelihood of type 1 hypoxaemic respiratory failure appears to be high in people with HD 

as aspiration pneumonia is the most common cause of death ((Heemskerk and Roos 2010). 

Hypoxaemia may be an acute event from a large aspiration or may be due to escalating 

alveolar hypoventilation and microaspirations. The following section reviews the assessment 

of type 1 hypoxaemic respiratory failure and also cough efficacy as this is a key factor in the 

removal of secretions. 

3.2.1 Measurement related to type 1 respiratory failure  

Clinical diagnosis of type 1 hypoxaemic respiratory failure is through analysis of arterial 

blood partial pressures (Pa)  of oxygen (O2) with a value of < 8KPa being indicative of 

hypoxaemic failure. An alternative to invasive blood gas analysis is the measurement of 

saturation of oxygen (SaO2) using pulse oximetry. Although this provides an accurate 

representation of arterial blood gas (Decker et al. 1989) it is susceptible to light and 

movement artefacts (Tremper 1989). 

Effectiveness of swallow as a precursor to aspiration and cough as an airway clearance 

technique may also be measured objectively. Assessment of swallow is discussed in section 

3.3.4. Bach and Saporito (1996) identified that a peak cough flow (PCF) rate of 160L/min 

was necessary for successful extubation of people with neuromuscular ventilatory impairment 

and this value has become the benchmark measurement for effective cough particularly in 

people with neuromuscular weakness (Bott et al. 2009). Bott et al. (2009) also recommend 

that if PCF < 270L/min and the person is unwell, interventional strategies to increase PCF 

should be employed. PCF is a measure of volitional cough effectiveness whereas reflex 

cough sensitivity and intensity can be measured by inhalation of stimulants (Morice et al. 

2007). In people with dysphagia however, measurement of reflex cough is not recommended 

due to lack of adequate evidence (Hammond and Goldstein 2006). 

3.3 Type 2 hypercapnic respiratory failure 

Type 1 hypoxaemic respiratory failure is primarily due inadequate gaseous exchange at 

alveolar level. Type 2 hypercapnic respiratory failure however may have complex underlying 

impairment of central respiratory drive and/or capacity of the respiratory muscles and/or 

increased load on the respiratory system. Although Hart (2008) draws clear distinctions 

between the two types of failure, progressive atelectasis as a cause of alveolar 

hypoventilation and hypoxaemia, may increase the load on the respiratory system and the 

development of pump failure. Type 2 hypercapnic respiratory failure is defined clinically as a 
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PaO2 ≤ 8KPa concurrent with a PaCO2 of ≥ 6PKa and is characterised by difficulty sleeping, 

sleepiness during the day and morning headache due to nocturnal desaturation (Polkey et al. 

1999). The three components underlying type 2 respiratory failure i.e. central drive; capacity 

and load are explored in more detail in the following sections in order to identify potential 

dysfunction in people with HD. 

3.3.1 Central respiratory drive  

The brainstem is a distinctive part of the central nervous system and includes the centres of 

origin and/or termination of the cranial nerves (except the olfactory cranial nerve); the 

reticular formation and numerous relay nuclei (Nieuwenhuys 2011). The reticular formation 

is a network of polysynaptic interconnections responsible for the generation of a number of 

patterned activities. These activities include eye movements, chewing, walking, respiration, 

coughing, cardiovascular activity, sleeping and arousal (FitzGerald et al. 2012). The 

respiratory central pattern generator within the brainstem is responsible for the homeostatic 

maintenance of carbon dioxide and oxygen in relation to the demands of the body at an 

automatic or basic level of functioning (Bianchi and Gestreau 2009). The respiratory muscles 

must also adapt to other functions such as speech, swallow and posture in both voluntary and 

involuntary (automatic) contexts (Aleksandrova and Breslav 2009). The following sections 

will review the generation of both automatic and voluntary breathing as well as the adaptation 

of breathing to non-respiratory events. As mutant Huntingtin has been identified within the 

brainstem in people with HD (Herndon et al. 2009; Rub et al. 2014) with associated atrophy 

(Hobbs et al. 2010), there is a potential for the disruption of generation and control of 

respiration from the brainstem. Cortico-striatal dysfunction in people with HD may also 

impact on voluntary breathing activities. 

3.3.1.1 Automatic respiratory rhythm  

Automatic respiratory rhythm is generated in the pontomedullary region of the brainstem 

from which, predominantly bilateral, bulbospinal connections are made with anterior horn 

cells in the spinal cord (Hudson et al. 2011; Koritnik et al. 2009). Other categories of 

respiratory neurons that exist are propriobulbar which provide an inter-neural brainstem 

network and laryngeal motoneurons which connect with the vagus (laryngeal) nerve (Bianchi 

and Gestreau 2009). The basic rhythm of breathing is generated by the pre-Botzinger 

complex (inspiratory) and the retrotrapezoid nucleus (expiratory). The pre-Botzinger complex 

sends projections to the diaphragm and external intercostal muscles to drive the inspiratory 

pump muscles; while the retrotrapezoid nucleus stimulates the abdominal muscles and 
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internal intercostals; both groups activating the laryngeal and tongue muscles which act as 

valves to modulate airflow resistance (Feldman et al. 2013). The central pattern generator of 

respiratory rhythm can be broken down into three phases: inspiration; post inspiration/early 

expiration and late expiratory. These phases are integrated with activity of nerves controlling 

the valve muscles, with the vagus and recurrent laryngeal nerves activating abduction of the 

glottis in inspiration and adduction during expiration. Other neuronal integration occurs with 

the glossopharyngeal nerve responsible for pharyngeal dilation during inspiration; the 

pharyngeal branch of the vagus nerve responsible for pharyngeal constriction in expiration 

and the hypoglossal nerve producing tongue protrusion during inspiration (Bianchi and 

Gestreau 2009). Modulation with cranial nerves including that of the hypoglossal nucleus 

controlling tongue protrusion helps maintain a clear airway (Sawczuk and Mosier 2001). It 

appears that the genioglossus is stimulated with respiratory manoeuvres, but that voluntary 

tongue protrusion can occur without respiratory muscle involvement (Wang et al. 2007).  

The basic rhythm of respiration is modulated by both central pontine and peripheral 

pulmonary feedback loops which control the length of inspiration and expiration as well as 

frequency of breathing (Molkov et al. 2013). The pons receives afferent input from the 

hypothalamus, cortex amygdala, periaqueductal grey matter and pulmonary 

mechanoreceptors, whilst the medulla receives afferent information from the central and 

peripheral chemoreceptors, mechanoreceptors and cardiovascular afferents (Nogues and 

Benarroch 2008). Within the mid brain, therefore, the central pattern generator creates the 

basic inspiratory and expiratory drive which is then modulated by inputs from higher centres 

and sensory afferents in order to maintain homeostasis of arterial oxygen and carbon dioxide 

levels. 

The complexity of neural circuitry involved in automatic breathing may be affected by 

pathological changes in HD with evidence of widespread white and grey matter throughout 

the cortex, striatum and brainstem (Hobbs et al. 2009; Tabrizi et al. 2012). Evidence of 

breathing control dysfunction in people with HD is limited, with one abstract describing 

abnormal breathing pattern (Leopold et al. 1985), and another abstract further defining this as 

variable tidal volume, flow and timing (Fischer et al.1983). Although it is not known whether 

central generation of respiratory rhythm is affected in HD, there is a likelihood that 

dysfunction cortico-striatal neuronal loops could influence the pattern generated. The pattern 

may lose its smooth transition from inspiration and/or demonstrate incoordinated muscle 

contraction. Brainstem dysfunction is also noted by the inability of people with HD to 

protrude their tongue (Reilmann et al. 2010). 
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Evidence in people with PD also suggests that their respiratory control is compromised. In a 

small study of 19 people with mild to moderate PD an abnormal ventilatory response to 

hypercapnia and abnormal occlusion pressure response in was found in 47% and 73% of the 

subjects respectively, yet all subjects maintained normal respiratory flow and volumes 

(Seccombe et al. 2011). These results may indicate brainstem involvement in the early stages 

of PD.  

3.3.1.2 Adaptation to non-respiratory events 

The respiratory rhythm adapts and contributes to non-respiratory functions such as coughing, 

swallowing and vomiting (Bianchi and Gestreau 2009) and speech (Aleksandrova and 

Breslav 2009). There is thus integrated control of both ‘valve’ muscles i.e. those that control 

the upper airway and ‘pump’ muscles that act on the chest wall (Butler 2007). Breathing and 

swallowing are highly co-ordinated activities, controlled by neural interactions within the 

brainstem with connections to the cranial nerves. It is proposed that swallow, breathing and 

coughing share elements of neural control, and that the swallow mechanism reconfigures the 

respiratory neural network in order to protect the airways (Davenport et al. 2011). Factors 

such as PaO2 that influence breathing also influence swallowing, with pharyngeal dysfunction 

in turn impacting on breathing (Hårdemark Cedborg et al. 2009). Control of the tongue is also 

thought to be integrated with the central pattern generators for swallow and breathing in order 

to allow the safe movement of food to the oesophagus (Sawczuk and Mosier 2001). The 

predominant pattern of breathing during swallow is inspiration-expiration-swallow-apnoea-

expiration. Swallow apnoea is thought to be an active process, with the diaphragm being 

active throughout pharyngeal swallow representing central control which aims to ensure that 

breathing has stopped before a bolus enters the pharynx. Approximately 200ml of tidal 

volume is held during and is expired after swallow (Hårdemark Cedborg et al. 2009). Sensory 

information from the oral cavity is co-ordinated with the activity of the cranial nerves 

responsible for swallow and results in a safe passage of food to the oesophagus (Hughes and 

Ackermann 2003). These integrated mechanisms ensure safe passage of food and fluid and 

reduce the likelihood of aspiration. 

The components of swallow dysfunction identified in people with HD are not just those 

related to choreic buco-lingual movements; the inability to stop respiration during swallow 

and short oral transit time (Heemskerk and Roos 2011; Kagel and Leopold 1992) may 

indicate a central processing dysfunction in adaption to non-respiratory events. The presence 

of mutant Huntingtin within the pons and medulla (Herndon et al. 2009) would suggest that 
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neural dysfunction may occur within the brainstem which may help to explain the existence 

of abnormal swallow-breathing co-ordination in people with HD. The close proximity of the 

hypoglossal nerve (cranial XII), and the respiratory nuclei in the brainstem in conjunction 

with integration of genioglossal, swallow and breathing function suggest that central control 

of breathing may be impaired in people with HD. 

Abnormalities have also been identified in swallow patterns of people with PD. 

Videofluoroscopy assessment during the swallowing of a liquid bolus identified a 

predominantly normal swallow pattern of expiration following swallow apnoea, but 

participants who had decreased swallow safety were more likely to inspire and have a shorter 

swallow apnoea phase (Troche et al. 2011). These studies highlight the need not only for 

further exploration of brainstem function in neurodegenerative conditions but also the need 

for clinical assessment and management of swallow function in order to prevent aspiration. 

3.3.1.3 Voluntary respiration 

The rhythmic involuntary control of breathing can be altered for activities such as singing, 

playing musical instruments or carrying out breathing exercises. Voluntary control of 

respiratory muscles could be compared to that of other skeletal muscle, with cortico-spinal 

pathways from the primary sensorimotor cortex, lateral premotor cortex supplementary motor 

area and cingulated motor area to the spinal cord via the internal capsule and brainstem 

(FitzGerald et al. 2012). There is evidence that this pathway does exist for some fibres 

(Corfield et al. 1998; Urban et al. 2002) but that other fibres may also integrate with 

automatic respiratory control before descending to the spinal cord (Butler 2007; Hudson et al. 

2011). Although unsubstantiated by evidence, it is thought that voluntary and involuntary 

breathing have a high level of co-operation in order to fulfil the roles and demands placed 

upon the respiratory system (Haouzi 2011). Small studies of transcranial magnetic 

stimulation in people post cerebrovascular accident (CVA) demonstrated that inspiratory 

muscle activity (Urban et al. 2002) and expiratory muscle strength (Harraf et al. 2008) were 

reduced when the affected hemisphere was stimulated. Muscle activity and strength were not 

reduced when the participants were stimulated at spinal level providing evidence that 

respiratory muscles are under some cortico – spinal control.  

Abnormal cortio-striatal circuitry in people with HD results in bradykinesia in peripheral 

skeletal muscles during voluntary movements, but it is unknown whether this could influence 

voluntary control of respiratory muscles during activities such as singing or whether it may 

influence the ability to carry out breathing exercises. 
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3.3.1.4 Input to central respiratory drive 

As well as input from the cortex, the brainstem receives input from other higher centres such 

as the hypothalamus and amygdala. The amygdala as part of the limbic system is primarily 

associated with the emotion of fear and via multi-synaptic pathways leads to hyperventilation 

(FitzGerald et al. 2012). The lateral hypothalamus controls functional activities such as food 

intake, locomotion, sleep and wakefulness alongside breathing. Hydrogen ion concentration 

and partial pressure of carbon dioxide are detected by chemoreceptors which project to the 

medulla (Burdakov et al. 2013). This central chemoreceptor system is essential for acid-base 

homeostasis throughout the body and is assisted by peripheral chemoreceptors in the carotid 

and aortic bodies. Arterial hypoxaemia is detected by the peripheral chemoreceptors with 

altered input to the brainstem when PaO2 falls below 8kPa (Calverley 2005), which provides 

a rapid response in acute situations. Other receptors which feed information into the central 

respiratory centre are mechanoreceptors within the lung, joints, peripheral muscle and larynx. 

Lung receptors included pulmonary stretch receptors in airway smooth muscle, irritant 

receptors between airway epithelial cells, J receptors in the alveolar walls and bronchial C 

fibres in the bronchial circulation. Mechanoreceptors in joints and muscle are thought to be 

the stimulus to ventilation during exercise. Muscle spindles within the diaphragm control the 

strength of contraction especially when load is increased (West 2008b). Input from irritant 

receptors in the larynx is thought to stimulate the ventral and dorsal respiratory groups to 

produce the specific breathing pattern necessary for cough (Shannon et al. 1996). Figure 1 

provides a simplified diagram illustrating the integration that occurs in the central drive to 

respiration, based on Bianchi and Gestreau 2009, Butler 2007, Feldman et al 2013, Haouzi 

2011, Hudson et al 2011, Nogues and Benarroch 2008, Sawczk and Mosier 2001, Shannon et 

al 1996.  
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Figure 1 Central drive to respiration  
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3.3.1.5 Measurement of respiratory drive 

As ventilation is controlled by both voluntary and automatic pathways, it is impossible to 

completely separate their contributions. Voluntary control through the cortico-spinal 

pathways may be assessed by breath holding time; the length of time someone can hold their 

breath reflects both the activity of respiratory reflexes and the ability to voluntarily control 

diaphragmatic contractions (Shneerson 1988). Breath holding time reflects not only cortico-

spinal control, but the patency of feedback systems such as chemoreceptors, proprioceptors in 

the respiratory muscles and the perception of effort. The break in breath holding is usually an 

involuntary breath, suggesting that rhythm generation in the brainstem over-rides voluntary 

control. Normal values for this measurement are unclear due to different study methods e.g. 

preceding lung volume (Parkes 2006). The intensity of respiratory drive can be assessed by 

measuring the pressure generated when the airway is briefly occluded within the first 0.1 

second of inspiration. This method is thought to reduce other influences such as the Hering-
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Breuer reflex as it is a transient measure. The measure however is dependent upon the 

strength of the respiratory muscles and the mechanics of the chest wall (Shneerson 1988). 

Further analysis of breathing pattern and lung volumes can be achieved through 

plethysmography which has advantages over spirometry in that residual volume, functional 

residual capacity and inspiratory and expiratory reserve volumes can be determined. (Criee et 

al. 2011). Analysis of flow time or flow volume spirograms can provide visual and 

quantitative measures of breathing pattern (Williams et al 2014). Although used 

predominantly in people with obstructive respiratory disorders, they could be used to explore 

respiratory patterns in people with neurodegenerative conditions.  

Visual analysis of breathing pattern at rest may be observed by the anteroposterior and lateral 

movement of the rib cage due to action of scalene and diaphragm respectively; inward and 

outward movement of abdomen due to displacement of abdominal viscera (Banner 1995); a 

ratio of inspiratory to expiratory of approximately 1:2 (Molkov et al. 2013) with little 

activation of accessory respiratory muscles (Banner 1995). Technological advancement has 

seen the introduction of respiratory inductive plethysmography, which uses two inductance 

sensors usually placed around the chest and abdominal walls, that detect changes in cross 

sectional area. This method has the advantage of being non-invasive and relatively portable 

allowing it to be used in a range of situations e.g. critical care people with sleep related 

disorders and in clinical research (Brullman et al. 2010).  

3.3.2 Capacity of the respiratory system 

Information integrated within the central nervous system drives the respiratory pump to 

achieve the goal of optimal gaseous exchange. This relies on the capacity of the peripheral 

nervous system to relay the information and for the respiratory muscles to work appropriate 

force. This section will explore transmission of central drive; biomechanical and 

physiological aspects of respiratory muscles and respiratory muscle dysfunction in people 

with neurodegenerative conditions. 

3.3.2.1  Transmission of central drive 

The centrally generated pattern of breathing is transmitted via respiratory motor neurons in 

the spinal cord to the respiratory muscles. Specifically, the diaphragm is innervated by the 

phrenic nerve C3-5; the intercostals by their adjacent thoracic nerves (Gatzoulis 2008); 

scalene by the cervical nerve C3-8 and sternocleidomastoid by the cervical nerve C2-3 

(Standring 2008). The abdominal muscles: rectus abdominus; internal and external oblique 

and transverse abdominus are used during expiration and are supplied by: T6-7; T6-12; T6-12 
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and L1 respectively (Borley and Healy 2008). Any pathology that interrupts transmission of 

the respiratory impulses may lead to respiratory failure. Conditions likely to cause respiratory 

failure by this means are spinal cord lesions above C3, amyotrophic lateral sclerosis (ALS), 

Guillain-Barré syndrome and critical illness neuromuscular abnormalities (Hart 2008). It is 

unknown whether peripheral nerve transmission is influenced by HD pathology. 

3.3.2.2 Assessment of nerve transmission 

Nerve conduction to the respiratory muscles can be assessed in one of two ways: 

electromyography and stimulation. As the control of respiration is complex, so are its 

measurements, as both of these tests are inter-related and also relates to the biomechanics of 

the respiratory muscles. 

Electromyography (EMG) is used to assess the level and pattern of nerve impulses to the 

muscle via electrodes; the signal being amplified and filtered before visual analysis. 

Electrodes may be surface, intramuscular or oesophageal. Surface electrodes are placed over 

or as close to the muscle being assessed which relies on the assessor’s anatomical knowledge. 

Currently there are no standards for placement of the electrodes which may influence 

reliability, but the advantage of surface electrodes is that they are simple to use and non-

invasive. Disadvantages include cross talk from other muscles and influence of subcutaneous 

fat or chest wall deformity (American Thoracic Society/European Respiratory Society. 2002). 

These disadvantages are reduced if intramuscular electrodes are used although this method 

does carry a small risk of pneumothorax (Saadeh et al. 1993). Direct measurement of 

diaphragm electrical activity may be gained by oesophageal electrodes which are mounted on 

a catheter and inserted via the mouth or nose. The electrode is then positioned at the level of 

the crural diaphragm. This method may produce reliable outcomes, but can be unpleasant for 

the subject and carries risk of regurgitation and aspiration (Duiverman et al. 2004). 

Whilst EMG measures spontaneous electrical activity, the efficiency of neural and 

neuromuscular transmission may be assessed by actively stimulating peripheral nerves, spinal 

nerves or the cerebral cortex. Stimulation may be via implanted electrodes and external 

electrical or magnetic fields. Following stimulation of the phrenic nerve, EMG activity of the 

diaphragm is measured; from this the nerve/diaphragm latency can be measured as well as the 

compound muscle action potential. Cortical stimulation is a highly specialised skill and 

although not always selective can measure the central conduction time for the diaphragm 

(American Thoracic Society/European Respiratory Society. 2002). 
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3.3.2.3 Biomechanics of respiratory muscles 

The respiratory muscles may be divided into inspiratory and expiratory muscles although 

each group influences the other. Inspiratory muscles include the diaphragm, scalene, 

sternocleidomastoid, external intercostals and parasternal muscles and their action is to 

increase the vertical, transverse and antero-posterior dimensions of the chest (Gatzoulis 

2008). The diaphragm, as the main muscle of respiration, is thin and musculotendinous with 

muscle fibres radiating from a central tendon to three lumbar vertebral bodies, the posterior 

of the xiphoid process and the inner surfaces of the lower six ribs creating the lumbar, sternal 

and costal diaphragm segments respectively (Ratnovsky et al. 2008). This domed shape 

means that, unlike most skeletal muscles that exert forces along their axis, the diaphragm acts 

to balance a pressure load perpendicular to the axis of the muscle (Wilson and De Troyer 

2010). Contraction of the diaphragm expands the pleural cavity in proportion to the extent of 

the descent of the diaphragm displacing the abdominal contents until the limit of extensibility 

of the abdominal wall is reached (Wilson and De Troyer 2010). At this point the central 

tendon then becomes a fixed point from which the muscle fibres of the diaphragm contract, 

elevating the second to tenth ribs and moving them outward to increase the transverse 

dimension of the thorax. This movement, particularly in the seventh to tenth ribs, is often 

termed the ‘bucket handle movement’ and occurs due to the vertical arrangement of the 

lumbar and costal segments of the diaphragm (Gatzoulis 2008). The alignment of the vertical 

fibres in close proximity to the inner surface of the ribs is called the zone of apposition, these 

fibres are relatively thicker than in the dome suggesting that this zone has primary 

responsibility for creation of respiratory pressure (Wait and Johnson 1997). The multi-

dimensional action of the diaphragm has led to it being described as a piston in an expanding 

cylinder (Gauthier et al. 1994). 

The force generated by the diaphragm depends on lung volume as this influences both the 

length of the muscle and its radius of curvature. The surface area of the diaphragm decreases 

linearly as lung volume increases from residual volume to total lung capacity (Gauthier et al. 

1994), resulting in lower pressure generation (De Troyer and Wilson 2009). Conversely, 

when end expiratory lung volume is decreased as in exercise, the diaphragm is stretched and 

is working at its optimal length tension relationship. This balance is delicate as in high 

intensity exercise with increased lung volumes, the diaphragm becomes shorter and less 

effective (Romer and Polkey 2008). 

The anterior dimension of the thorax is increased through a ‘pump handle action’: the 

sternum and first two ribs being raised by contraction of the scalene muscles with further 
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elevation of the rib cage due to contraction of the external intercostals (Ratnovsky et al. 

2008). Sternocleidomastoid is usually inactive during quiet breathing, but, as the major 

accessory inspiratory muscles, become active during high levels of ventilation increasing 

‘pump handle movement’ (Banner 1995). The primary role of the intercostal muscles is to 

stiffen the rib cage preventing an inward movement due to the decrease in pressure in the 

thorax (Gatzoulis 2008; Lumb 2010). 

Normal quiet expiration is a passive event caused by the elastic recoil of the lung tissue, 

inspiratory muscles and rib cage (Feldman et al. 2013). Inward elastic recoil of the lung tissue 

is due to surface tension acting on the air/water interface lining the alveoli. Recoil due to 

elastin and collagen fibres does however occur if the lungs are nearly fully extended. Surface 

tension within the alveoli is dependent upon the radius of the alveoli and the liquid lining. 

Forces within the alveoli are less than expected due to the presence of surfactant, which is a 

protein containing fatty acids that are hydrophobic at one end and hydrophilic at the other 

end. Surfactant lowers the surface tension and serves to protect alveoli from collapsing at low 

lung volumes (Van Golde et al. 1988). This has been discussed in terms of atelectasis and 

subsequent hypoventilation in relation to type 1 hypoxaemic respiratory failure (see section 

3.2). Active expiration occurs when there is an increased load placed upon the respiratory 

system. This can occur due to exercise, pathology or activities such as sneezing or coughing. 

The ribs will be actively lowered by the internal intercostals and contraction of the abdominal 

muscles pulls the abdominal wall inward, pushing the diaphragm cranially. Abdominal 

muscles involved in active expiration are rectus abdominus, external oblique, internal oblique 

and transverse abdominus (Ratnovsky et al. 2008). With the diaphragm in a more domed 

position, the fibres are lengthened enabling it to contract more forcefully in the subsequent 

inspiratory contraction (Romer and Polkey 2008). 

The diaphragm is continuous with transverse abdominus, forming an uninterrupted structure 

with lumbar fascia and the rectus sheath surrounding the abdominal cavity (Downey 2011). 

Interaction between the inspiratory muscles and the abdominal muscles involved in 

expiration is thought to occur throughout the respiratory cycle with abdominal muscle 

activity during late inspiration and extending through expiration into the following inspiration 

(Iizuka 2011). Expiratory activity in late inspiration increases in hypercapnic conditions with 

the potential to increase expiratory flow (Abe et al. 1996) and therefore maintain CO2 

homeostasis. Lung inflation and deflation can be finely controlled by this dual control system 

as well as expiratory muscle activity providing mechanical stability to the respiratory system 

(Iizuka 2011).  
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Synchrony between respiratory and abdominal muscles does not only influence ventilation; 

respiratory muscles are also involved in postural control (Bianchi and Gestreau 2009). The 

diaphragm acts as an anticipatory stabiliser during upper limb movements with the intercostal 

and parasternal muscles involved in trunk rotation (Hudson et al. 2011) with the relationship 

between postural control and respiration being adaptable dependent upon the body’s 

movement and needs (Massery et al. 2013). The integration of respiratory and postural 

muscles is highlighted in two small studies in healthy subjects demonstrating diaphragm 

recruitment during sit ups and weightlifting exercises (power lift, bench press and biceps 

curl) (Al-Bilbeisi and McCool 2000) and strengthening of the diaphragm following a 

progressive strengthening programme of biceps and sit up exercises (DePalo et al. 2004). In 

healthy people, the postural role of the diaphragm during arm movements is reduced when 

respiratory demand increases suggesting compromise of trunk stability due to preferential 

respiratory function over postural actions (Hodges et al. 2001). Experimental mechanically 

and chemically induced hyperventilation in healthy subjects has also shown that disturbance 

of respiratory pattern reduced postural stability (David et al. 2012) which has implications for 

people with respiratory disease in terms of their postural stability and potential consequences 

for activity limitation. 

Decreased postural stability has been observed in people with COPD compared to healthy 

control subjects and in particular those with decreased inspiratory muscle strength. 

Functionally this was related to an increase in reliance on ankle rather than back muscle 

proprioceptive mechanisms which may increase the risk of falls in people with COPD 

(Janssens et al 2013). Differences in diaphragm activity during upper and lower limb activity 

have also been observed in people with low back pain. Magnetic resonance imaging of the 

diaphragm showed that people with low back pain had smaller excursions of the anterior and 

middle portions of the diaphragm during resistance of upper and lower limb activity 

compared to healthy subjects (Kolar et al. 2012). These studies do not reflect cause and effect 

but rather the complex integration of roles of both respiratory and postural muscles. 

Additionally, postural control is also influenced by the opening and closing of the glottis 

which influences both thoracic stability and balance mechanisms (Massery et al. 2013). 

During a tip toe movement designed to alter posture healthy subjects inhaled during the 

upward movement, held their breath when whole body balance was required and exhaled 

during the downward movement. The breath hold was attributed to the maintenance of spinal 

stability by increasing intra-abdominal pressure (Lamberg and Hagins 2013). For people with 
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neurodegenerative conditions, the co-existence of swallow dysfunction and postural 

instability may influence or be influenced by respiratory muscle weakness.  

 

Co-ordination of muscle control is important in the gross movements required for inspiration 

and expiration, adaptation of ventilation in response to physiological changes and stability of 

the trunk during movements. Dystonic postures in people with HD and in particular trunk 

flexion, may cause the diaphragm to become more domed and beyond its optimal length for 

force generation. The zone of apposition may also be influenced by a flexed posture with 

potential reduction of bucket handle movement and reduced ventilation in lower lung zones. 

Dystonic patterns in the upper limb may disturb the synchronicity between respiratory, upper 

limb and trunk postural muscles resulting in impoverished movement during inspiration as 

well as poor postural stability. Postural instability may in turn reduce biomechanical 

efficiency of the diaphragm. Fixed abdominal contents needed for ‘bucket handle’ rib 

movement are not actually fixed, due to poor postural control of the abdominal muscles. 

Glottic dysfunction in people with HD (Heemskerk and Roos 2011) may also influence 

postural control and/or thoracic stability. These biomechanical deficiencies may reduce the 

capacity of the respiratory pump in people with HD.  

3.3.2.4 Physiology of respiratory muscles 

Force generation of the diaphragm in normal quiet breathing is achieved through recruitment 

of fatigue resistant slow and fast twitch muscle fibres and requires only 10-25% of the total 

force generating capacity, increasing to near maximal during coughing and sneezing 

(Mantilla and Sieck 2013), with fast type 2 muscle fibres being recruited with increasing 

levels of activity (Banner 1995). Within the human diaphragm, slow fibres make up 

approximately 55% of the fibres, with 21% being fast oxidative and 24% fast glycolytic. The 

proportion of slow fibres in the intercostal muscles is thought to be slightly higher than that 

of the diaphragm at 60% (Polla et al. 2004).  

The ability of the slow fibres to maintain their contractile ability is due to their resistance to 

fatigue, which in turn is due to the balance between energy production and consumption. 

Slow oxidative fibres use little energy and the production of adenosine triphosphate in the 

mitochondria matches this. Fast glycolytic fibres require more adenosine triphosphate and 

also produce lactate as a by-product. Lactate and inorganic phosphates that are also a 

consequence of glycolytic fibre work, accumulate, causing fatigue. Performance loss is 

therefore quicker in fast fibres than in slow (Westerblad et al. 2010). Fatigable fibres are 
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selectively lost before fatigue resistant fibres in conditions that cause muscle atrophy e.g. 

chronic obstructive pulmonary disease with an increased proportion of slow twitch and 

decreased proportion of fast twitch fibres (Levine et al. 2013) which may impact in loss of 

force in expulsive acts such as coughing (Mantilla and Sieck 2013). Fatigue, as measured as 

lack of endurance of the respiratory muscles may be an important factor in respiratory failure. 

For the oxidative metabolism of the majority of the diaphragm muscle fibres to continue 

unceasingly, an adequate blood supply is necessary. The cross sectional area of diaphragm 

fibres is generally less than limb muscles, yet have a similar number of capillary vessels 

surrounding them. This ensures a more efficient oxygen supply to the diaphragm compared to 

other muscles (Polla et al. 2004). 

Force generation in muscles in people with HD may be influenced by emerging evidence of 

altered membrane potential and hyperexcitability (Waters et. al. 2013), although this 

relationship is as yet not fully established. Skeletal muscle atrophy (She et al. 2011) and 

progressive loss of fast twitch fibres (Strand et al. 2005) in animal and human studies of HD 

pathology may impact on force generation in the respiratory muscles. This may have 

functional consequences during high respiratory demand activities and in cough efficacy. 

Low physical activity in people with HD (Quinn et al. 2013) may also influence muscle fibre 

atrophy as reduced respiratory muscle activity during controlled mechanical ventilation has 

been shown to decrease all fibre types in animal and human studies (Mantilla and Sieck 

2013). 

The physiology and biomechanics of the respiratory muscles enable them to continually 

produce forces that expand the thorax enabling ventilation of the alveoli and gaseous 

exchange. Impaired respiratory muscle strength can lead to decreased ventilatory capacity 

(Naeije 2005) and thus pulmonary function. These relationships were further explored in a 

large study (n=960 older people) (Buchman et al. 2008) that found correlations between 

respiratory muscle strength and pulmonary function (r=0.46 p<0.001). Further analysis, 

including measures of extremity muscle strength and mortality which were related, 

established that extremity muscle strength was a surrogate for respiratory muscle strength and 

that the association between respiratory muscle strength and mortality was mediated through 

pulmonary function. Buchman et al (2008) concluded that respiratory muscle strength is the 

beginning of a causal chain which leads to reduced pulmonary function and death. Physical 

activity is associated with higher FEV1 whilst a sedentary lifestyle is associated with lower 

values. These findings were independent of confounders such as age, BMI and smoking habit 
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and may provide an important link between respiratory function and mortality (Jakes et al. 

2002).  

The relationship between respiratory and extremity muscle strength may help to explain 

decreased exercise capacity caused by deconditioning (Naeije 2005) with a potential cycle of 

inactivity, deconditioning, decreased peripheral and respiratory muscle strength, decreased 

pulmonary function and death. The exact causal relationships between these variables are 

unknown and likely to be confounded by pathology such as respiratory or neurodegenerative 

conditions, smoking habit, cognitive impairment, but the modelling by Buchman et al (2008) 

was not influenced by these confounders. In people with HD it is known that peripheral 

muscle weakness exists (Busse et al. 2008) and that physical activity levels are low (Quinn et 

al. 2013), yet it is not known whether respiratory muscle strength is reduced. It is therefore 

not known whether the underlying movement disorder results in decreased physical activity 

and thus reduced muscle strength and taking into consideration the cognitive and behavioural 

aspects of the disease, it is likely that more complex interdependent relationships exist. 

 

Malnutrition influences both skeletal and respiratory muscles with animal studies showing 

decreased diaphragm muscle protein synthesis as a consequence of severe short term 

nutritional deprivation (Bando et al. 2012), causing a predominant shift from fast to slow 

fibre type (Ciciliot et al. 2013). In animal studies, force generation of the diaphragm after 

starvation was preserved and low frequency fatigue increased (Prezant et al. 1993), which is 

consistent with the change in fibre type. A small study of undernourished people with no 

pulmonary disease, found that expiratory muscle strength was linearly related to body weight 

and that both inspiratory and expiratory muscle strength were significantly reduced compared 

to well-nourished subjects (Arora and Rochester 1982). A similar association between 

malnutrition and decrease in expiratory muscle strength has also been found in people 

undergoing upper abdominal surgery (Lunardi et al. 2012).  

Muscle atrophy may be a consequence of weight loss which is prevalent in HD (Aziz and 

Roos 2013) with evidence that in atrophied states, diaphragm weight loss is proportional to 

that of skeletal muscle (Polla et al. 2004). Some evidence exists in healthy subjects and 

people with cystic fibrosis and chronic obstructive pulmonary disease as to the positive 

relationship between diaphragm thickness and inspiratory muscle strength (DePalo et al. 

2004; Enright et al. 2007; Vestbo et al. 2006). Despite evidence of weight loss and reduced 

BMI (Aziz et al. 2008; Djousse et al. 2002; Marder et al. 2009; Trejo et al. 2004) it is not 

known whether people with HD are malnourished. The European Huntington’s Disease 
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Network recommend standards of nutritional care for people with HD, because of the impact 

of increased metabolic rate, swallow and feeding difficulties and high energy expenditure 

(Brotherton et al. 2012). These guidelines however are predominantly based on consensus of 

expert opinion as research evidence in this area is limited. If weight loss in people with HD 

does lead to respiratory muscle atrophy, this would decrease the capacity of the respiratory 

muscle pump. 

3.3.2.5 Assessment of respiratory muscle strength 

Respiratory muscle strength is usually measured in a global perspective, rather than as 

individual muscles, with mouth pressures being the most commonly used method (Polkey et 

al. 1995). Other methods include electrical and magnetic stimulation and invasive methods 

for specific measurement of diaphragm strength. 

Volitional tests are simple to perform and do not cause much discomfort for subjects, 

although validity of the measures depends on the effort of the subject, therefore 

underestimation may be an issue (Celli and Grassino 1998). Understanding of the procedures 

is also dependent upon cognitive ability. Inspiratory and expiratory muscle strength may be 

measured by the maximum pressure that can be generated by the mouth; maximal inspiratory 

pressure (MIP) and maximal expiratory pressure (MEP) respectively. This global measure not 

only reflects the pressure developed by the muscles, but also the passive elastic recoil of 

pressure of the lung and chest wall. At functional residual capacity, elastic recoil of the chest 

wall is zero, so the pressure at the mouth will equate to pressure generated by the muscles; at 

residual volume elastic recoil may contribute up to 30% of MIP and at total lung capacity 

(TLC) may contribute up to 40% of MEP. Although elastic recoil influences MIP and MEP at 

different lung volumes, the pressures tend to be measured at or close to RV and TLC 

respectively, as these lung volumes are easier to standardise between subjects compared to 

functional residual capacity (FRC) (American Thoracic Society/European Respiratory 

Society. 2002). For some subjects, particularly those with neuromuscular disorders, keeping a 

seal around the mouthpiece may be difficult and an alternative measure of pressure generated 

through the nostril may be used. The pressure generated through a maximal sniff, maximum 

sniff nasal inspiratory pressure (SNIP), is a relatively simple technique and may be used 

alongside yet not interchangeably with MIP (Iandelli et al. 2001; Uldry and Fitting 1995).  

Mouth and nostril pressures are easy to use clinical measures, but do not give specific 

information regarding diaphragm strength. This can be achieved by measuring the difference 

between oesophageal pressure and gastric pressure and is known as transdiaphragmatic 
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pressure. These measurements involve the passing of balloon catheters through the nose into 

the oesophagus and stomach and therefore require greater co-operation from the subject than 

that necessary for mouth pressure measurements (Celli and Grassino 1998). Severe 

diaphragm weakness can be assessed by comparing forced vital capacity (FVC) in both 

supine and sitting, with the former being 5-10% of the latter in healthy subjects, abnormal 

values being >30% (American Thoracic Society/European Respiratory Society 2002) 

Non-volitional measures of respiratory muscle strength are specific to the diaphragm and can 

be carried out by stimulating the phrenic nerve electrically or magnetically. Electrical 

stimulation is carried out using surface or needle electrodes, the former having the 

disadvantage of stimulating pain as well as muscle activation, the latter carrying risk of 

trauma and infection. Magnetic stimulation is non-invasive and causes depolarisation of 

neural tissue in response to electrical fields generated by the magnetic pulses. It is preferable 

to direct electrical stimulation as larger fibres are activated, and not the smaller pain nerve 

fibres (Man et al. 2004). 

Volitional measures of respiratory function are dependent on both the subject and the skill of 

the person conducting the measurement, the latter accounting for up to 12% variation in 

measures (Enright et al. 1994). Subject variability is high with standard deviations of 25-38% 

of mean values which makes comparison between studies difficult. Variability may be due to 

effort of the subject but respiratory function is correlated with gender, age and BMI and 

therefore predicted values are necessary for clinical and research purposes (Hautmann et al. 

2000). Despite this variability, measurement of respiratory muscle strength has been found to 

be reliable for MIP: ICC 0.88-0.92 (Maillard et al. 1998), standard error 0.009 (Romer and 

McConnell 2004) and MEP: standard error 0.009 (Romer and McConnell 2004). Specifically, 

the Micro Respiratory Pressure Monitor device was found to be reliable in measuring mouth 

pressures in both standing (ICC 0.78-0.83, SEM 12-14, SDD 23-26) and sitting positions 

(ICC 0.86-0.90, SEM 9-10, SDD 18-22) (Dimitriadis et al. 2011). 

There may be a learning effect in these volitional measures and an habituation period may be 

necessary when comparing repeated measures (Lomax and McConnell 2009) although the 

learning effect SNIP was found to be less than that of MIP in healthy subjects (Terzi et al. 

2010). SNIP was found to be reliable in healthy subjects (ICC 0.85-0.92) (Maillard et al. 

1998). It is recommended, based on a study with healthy subjects and people with 

neurodegenerative conditions that at least 10 sniff manoeuvres are taken to ensure reliable 

and valid results (Lofaso et al. 2006).  
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Respiratory muscle weakness is associated with increasing dyspnoea in people with 

MND/ALS and is thought to be related to both transmission and central drive deficits (Mustfa 

and Moxham 2001; Similowski et al. 2000). This finding is confirmed in people with 

myopathy who did not perceive inspiratory difficulty when breathing against increased 

inspiratory loads when compared to healthy subjects (Hours et al.2004). Dyspnoea is derived 

from physiological, psychological, sociological and environmental factors and as such can be 

measured as a sensory perception using the Borg scale and in terms of impact on activity 

using the modified medical research council (MRC) scale (Parshall et al. 2012). Although 

used extensively in people with respiratory conditions, the use of the MRC scale in people 

with neurodegenerative conditions is not recommended in people with exercise limiting limb 

weakness such as MND (Dougan et al. 2000). Its use may therefore also be limited in people 

with HD due to lower limb weakness (Busse et al. 2008) and cognitive impairment. 

3.3.2.6 Assessment of respiratory muscle endurance 

Respiratory muscle endurance is the ability to sustain ventilation against a load over time. 

This can be measured by calculating the pressure time product or the work of breathing. The 

pressure time product is normally measured over one minute and is calculated as the 

integration of pressure over time, i.e. the area under the pressure time curve of an inspiration 

or expiration. From this calculation, the mean pressure and ultimately the pressure time index 

can be calculated. Mean pressure over a breath cycle is calculated as: 

 Mean pressure = Pressure-time product/sampling period 

The mean pressure can then be normalised by dividing it by the maximal pressure either MIP 

or MEP. This is then known as the pressure time index. 

 Pressure time index= mean pressure/MIP 

The technique of measuring pressure should be noted as this will give an indication of 

whether the pressure time index refers specifically to the diaphragm or all respiratory muscles 

working against a load (pressure measured at the mouth) (American Thoracic 

Society/European Respiratory Society. 2002). 

Methods of measuring respiratory muscle endurance are variable across studies and include: 

maximum voluntary volume in a specified time (12sMVV) (Leith and Bradley 1976); highest 

sustainable inspiratory pressure in a specified time (Nickerson and Keens 1982); heaviest 

load, incremental loading, tolerated for a specified time (McElvaney et al. 1989); length of 

time breathing against a maximal load (Hart et al. 2002; McElvaney et al. 1989) and single 

breath maximal work capacity (Enright et al. 2006a). The variety of methods demonstrates 
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the difficulty in accurately measuring endurance of the respiratory muscles in a range of 

populations. Clinically, a maximal incremental ventilation test is recommended (American 

Thoracic Society/European Respiratory Society. 2002).  

Single-breath maximal work capacity is a method that does not require subjects to work to 

fatigue but measures pressure over time through a sustained maximal inspiration, i.e. through 

full range of respiratory muscle action (Ionescu et al. 1998). Single–breath work capacity 

correlates with diaphragm thickness in people with cystic fibrosis (Enright et al. 2007) and 

has also been found to be a reliable measure in this patient group (Enright et al. 2006a).  

3.3.2.7 Respiratory muscle dysfunction in people with neurodegenerative 

conditions 

Recent evidence suggests that respiratory muscle strength is decreased in people with early 

and mid-stage HD compared to matched controls (Reyes et al. 2014) but as this was not 

known when the framework was being developed; evidence from people with other 

neurodegenerative conditions was explored 

Observational studies provide evidence of reduced respiratory muscle strength in people with 

MS. People with MS, n= 25, had significantly lower MIP (40.87cmH2O ± 12.5) and MEP 

(51.62cmH2O ± 26.8) compared to a matched healthy control group, n=15 (MIP 61.26cmH2O 

± 1.5, p<0.001; MEP 94.49cmH2O ± 19.4, p< 0.001) (Koseoglu et al.2006). Abnormal 

percentage predicted values were found in studies with no comparator group, total n=128, 

MIP (27-77%predicted) and MEP (18-60%predicted) (Buyse et al. 1997; Gosselink et al. 

2000; Mutluay et al. 2005). Nocturnal de-saturation was also noted in 70% of the people with 

MS (Buyse et al. 1997) with a mean SaO2 of 88.4%, in those that desaturated. This indicates a 

possible link between decreased respiratory muscle strength and decreased gaseous exchange 

leading to type 1 hypoxaemic respiratory failure. These studies covered a range of disease 

severity as measured by the expanded disability status scale (EDSS) with values ranging from 

4.3 to 8.5, although a significant relationship between respiratory muscle strength and EDSS 

was only found in the study with all non-ambulatory participants and an EDSS of 8.5 

(Gosselink et al. 2000). Exercise capacity as measured by VO2peak was found to be 

significantly related to MEP and not MIP but also related to EDSS and functional scores 

(Koseoglu et al 2006) adding complexity to functional implications of the results. The use of 

% predicted values and absolute values between studies make comparisons difficult as 

inspiratory and expiratory muscle strength decrease with age (Lalley 2013). 
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Similar results have been observed in people with PD. People with mild-moderate PD, n= 35, 

had significantly lower MIP (29.6%predicted ±9.9) and MEP (41.8%predicted±12.6) than 

matched healthy controls, n=35, (MIP 77.7%predicted ±4.2; MEP 88.6%predicted±22.9) 

(Sathyaprabha et al 2005) with similar findings in people with ALS (Sathyaprabha et al. 

2009).  

The limited evidence suggests that the capacity of the respiratory muscle pump is reduced in 

people with neurodegenerative conditions which will impact on both lung volumes and 

ability to cough and effectively clear secretions. Decreased respiratory muscle strength can 

therefore impact on acute type 1 hypoxaemic respiratory failure in terms of clearing retained 

secretions and progressive decrease in lung volume. This progressive decline in lung volume 

will increase the load placed upon the respiratory pump and with a concurrent decrease in 

respiratory muscle strength lead to the development of type 2 hypercapnic respiratory failure. 

3.3.3 Load placed on the respiratory muscle pump 

Central respiratory drive, via intact transmission of impulses enables the respiratory muscles 

to ventilate the lungs, but this work must overcome intrinsic mechanical loads. The load may 

be: elastic, reflecting the physical properties of lung tissue and the chest wall; resistive, 

dependent upon patency of the airways and threshold which is dependent on end expiratory 

volumes (Hart 2008). 

3.3.3.1 Elastic load 

In healthy people, approximately two-thirds of the work of breathing is due to overcoming 

elastic load (Bach and Kang 2000). An increase in elastic load is related to the lung tissue and 

the chest wall. At the end of a normal expiration, i.e. at functional residual capacity (FRC), 

the inward elastic recoil of the lungs is matched by the outward elastic recoil of the rib cage 

(Ferguson 2006). Elastic recoil of the lungs is dependent upon the action of elastin with 

complete collapse of alveoli prevented by surfactant. Elastin as a complex protein structure 

acts to maintain airway patency as well as ensuring elastic recoil of the lungs. In respiratory 

lung disease such as emphysema, elastin fibre breakdown causes destruction of parenchyma 

with subsequent reduced airway compliance and airway collapse (Maclay et al. 2012). 

Proteases that destroy elastin are produced in inflammatory cells that may be stimulated by 

noxious substances such as cigarette smoke. Damage may be permanent as lung cells are 

unable to fully repair the elastic fibres leading to progressive lung disease (Shifren and 

Mecham 2006). Further damage may occur through repeated closure and re-opening of 

airways during tidal breathing causing sheer forces within the airways (Bian et al. 2010). 
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Although surfactant protects alveoli from collapsing at low volumes (Van Golde et al 1988) it 

is now understood that an optimal stretch magnitude exists for surfactant production. Over 

distention of alveoli e.g. during mechanical ventilation decreases surfactant production and 

conversely, a minor reduction in stretch from optimum reduces production leading to 

decreased compliance, further decreased stretch and eventual collapse of alveoli (Amin et al. 

2013). Lack of periodic deep breaths may therefore lead to micro atelectasis (Bach and King 

2000) which could be a consequence of a sedentary lifestyle. Alveolar collapse leading to 

atelectasis will result in reduced lung volume and subsequent decreased lung compliance 

(Dargaville et al. 2010), thus increasing elastic load. 

The high incidence of smoking (Byars et al. 2012) and low activity levels (Quinn et al. 2013) 

of people with HD may lead to an increased elastic load within the respiratory system due to 

destruction of elastin and micro atelectasis respectively.  

 

Age influences both lung tissue and chest wall compliance. The closing volume, the lung 

volume at which small airways begin to close, increases with advancing age which increases 

elastic load, although most of the compliance related changes are due to decreased chest wall 

compliance and decreased respiratory muscle strength (Lalley 2013). Age should therefore be 

considered as a confounder in observation studies of respiratory function. 

Lung volumes are also reduced by kyphotic postures (Harrison et al. 2007) in particular FVC 

and peak expiratory flow rate (PEFR) (Lin et al. 2006) and tidal and minute volumes 

(Landers et al. 2003). This may be due to the decrease in physical size of the thorax or be 

related to underlying muscle weakness associated with the kyphosis. In these instances, FEV1 

will also be low, but in proportion to FVC, and a restrictive respiratory pattern is noted (West 

2008a). The dystonic flexed trunk postures noted in people with HD (Louis et al. 1999) may 

reduce the physical size of the thorax, but the impact on lung volume may depend on time 

spent within these postures.  

Sufficient inspiratory muscle capacity is needed to move the ribs, maintain rib joint integrity 

and maintain chest wall compliance (Bach and Kang 2000) and maintain the respiratory 

muscles’ postural role (Bianchi and Gestreau 2009). Chest wall compliance is also influenced 

by changes in posture due to alterations of range of movement available in rib cage joints 

(Lee et al. 2010). Gross changes in posture from the upright sitting position through to supine 

lying show a decrease in rib cage movement as the body becomes more horizontal. 

Concurrent with the decreased rib cage movement, changes in tidal volume and minute 

ventilation can be observed (Romei et al. 2010). Subtle changes in the upright sitting position 
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also influence movement of the chest wall, with postures that would be thought to reduce 

compliance in one region, involve increased movement elsewhere in the chest wall. These 

changes ensure that overall efficient ventilation is maintained despite changing the elastic 

load on the respiratory system (Lee et al. 2010). Elastic load on the respiratory system is 

dependent upon the compliance of the lung tissue and the chest wall, which in turn are 

influenced by lung volume and posture. In people with HD, recent evidence demonstrates 

that people with HD have reduced lung volumes compared to matched control participants 

(Reyes et al. 2014). This may be due to atelectasis as a result of known decreased physical 

activity (Busse et al. 2009; Quinn et al. 2013) and postural changes due to bradykinesia and 

dystonia with subsequent rigidity of chest wall muscles and decreased chest wall compliance 

leading to an increased elastic load on the respiratory pump. These theoretical assumptions 

will be explored in the following section which reviews evidence regarding lung volumes in 

people with PD, MS and MND/ALS. 

3.3.3.2 Lung volumes in people with neurodegenerative conditions 

Forced vital capacity (FVC), the maximal amount of air in a forced expiration following a 

maximal inspiration is a measure of inspiratory capacity and expiratory reserve volume 

(Cotes et al. 2006). In people with mild to moderate PD, n=35, FVC was decreased 

(56.0%predicted±14.5) compared to matched healthy controls n=35 (84.2%predicted±14.6) 

(Sathyaprabha et al. 2005) and was found to be significantly lower than predicted values in 

people with moderate PD (Sabate et al. 1996). Conflicting results were found in people with 

mild to moderate PD with no difference between actual and predicted values (Canning et al. 

1997). This study included 16 participants and may have been underpowered. Decreased 

FVC (49.6%predicted±18.9) was also observed in people with ALS n= 40 compared to 

healthy controls n=63 (84.6%predicted±14.8). Concurrent with the decreased FVC was a 

decrease in forced expiratory volume in one second (FEV1) and a significant increase in 

FEV1/FVC indicating a restrictive respiratory pattern (Sathyaprabha et al. 2009). Although 

there was an increase in FEV1/FVC in people with PD (91.3±8.4) compared to healthy 

control subjects (86.0±10.1) this was not significant (Sathyaprabha et al. 2005), with Sabate 

et al (1996) noting that 27% of people in their study did demonstrate a restrictive pattern. A 

limitation of the studies was the exclusion of smokers which although removes the 

confounding variable of airway disease, may demonstrate reduced external validity.  

There is little evidence of reduced lung volume in people with MS, except for during the late 

stages of the disease. Gosselink et al. (2000) observed FVC%predicted values of 43±26 in a 
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group of 28 non-ambulatory people with MS. A study of people with mild to moderate 

disease n=40, stated that a significant difference existed between people with MS and 

predicted value but the method for analysis was unclear. The FVC%predicted value of 94±12 

would question whether this was in fact a clinical difference (Mutluay et al 2005). A 

comparative study with healthy control subjects (Koseoglu et al. 2006) and two single group 

studies (Altintas et al. 2007; Foglio et al. 1994) showed no statistically significant difference 

to predicted values of FVC. 

These studies indicate that decreased lung volume is a feature of PD and ALS which may 

relate to rigidity and decreased peripheral muscle strength respectively and alters the 

biomechanics of breathing resulting in a restrictive respiratory pattern. In people with MS 

however, lung volume appears to be maintained despite decreased respiratory muscle strength 

until the late stage of the disease, which may indicate progressive atelectasis that contributes 

to type 2 hypercapnic respiratory failure. Decreased lung volume will increase elastic load 

concomitant with a decrease capacity and thus pre-dispose people with neurodegenerative 

conditions to type 2 hypercapnic respiratory failure. As a consequence of this knowledge, the 

European guidelines for the management of ALS recommend monitoring of FVC with a 

value of <80%predicted being one of the criteria for intervention with non-invasive 

ventilation (Andersen et al 2012). 

3.3.3.3 Resistive load 

Resistive load refers to the work that needs to be done to overcome resistance to airflow, 

particularly during expiration. This resistance is common in conditions that include 

bronchospasm or upper airways obstruction (Hart 2008). Normal expiratory airflow is the 

result of elastic recoil of the lungs, with forced expiration requiring abdominal and intercostal 

muscle involvement (Banner 1995). These muscles generate airflow up to a peak value seen 

on expiration from total lung capacity and therefore this measurement of peak expiratory 

flow rate (PEFR) is effort dependent. After this point, flow plateaus and is linear to lung 

volume, driven by the elastic recoil of the lungs and therefore independent of effort (Cotes et 

al. 2006). This is illustrated in Figure 2. PEFR reflects large airway calibre, whereas the 

similar measure FEV1 reflects small airway calibre.  
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Figure 2 Normal flow volume loop (adapted from Miller et al 2005, p327) 

 

 

 

 

 

 

 

 

 

 

 

 

PEFR  peak expiratory flow rate 

 

The flow volume loop can identify obstructive and restrictive respiratory conditions based on 

the shape of the graph, FEV1%predicted value, and FEV1/FVC. The flow volume loop in 

Figure 3 identifies a low FEV1 and PEFR, with the effort dependent portion of the curve 

being concave representative of an obstructive lung disorder. A restrictive respiratory 

condition is illustrated in Figure 4 by a low FEV1 and low FVC with flow being higher than 

expected at a given volume (Pellegrino et al. 2005). 

Figure 3 Flow volume loop identifying an obstructive lung condition  

From: Pellegrino et al. 2005, p 954 
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Figure 4 Flow volume curve identifying a restrictive respiratory condition  

From: Pellegrino et al. 2005 p 954 

 

 

 

 

 

 

 

 

 

 

Increased resistance to airflow can be due to retained secretions obstructing the airway e.g. 

aspiration pneumonia (Ebihara et al. 2012) or airway thickening e.g. chronic obstructive 

pulmonary disease (Kosciuch et al. 2009). Airflow limitation is assessed by FEV1% predicted 

as indicated in the classification of COPD by the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD): mild ≥ 80%predicted; moderate 50% ≤ FEV1 < 80%predicted; severe 

30% ≤ FEV1 < 50% predicted; very severe < 30%predicted (Vestbo et al. 2013).  

These obstructions describe dysfunction within the lower airways of the lung, but for people 

with neurodegenerative conditions consideration also needs to be given to the upper airways, 

in the particular the vocal cords and glottis. A categorisation of extrathoracic i.e. above the 

sternal notch and intrathoracic i.e. below the sternal notch (Pellegrino et al. 2005) can be used 

to identify areas of dysfunction in flow volume loops, see Figure 5 for characteristic patterns.  

Figure 5 Flow volume loops for intrathoracic and extrathoracic obstruction  

From Pellegrino et al. 2005, p960 

 a)    b)    c) 
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The normal inspiratory curve is lost when extrathoracic structures e.g. pharynx, larynx are 

obstructed, as in a) and b) above, whereas the expiratory curve is lost when intrathoracic 

structures e.g. main bronchi are obstructed, see a) and c). When both inspiratory and 

expiratory flow is obstructed as in a), this suggests a fixed central or upper airway 

obstruction. These characteristic loops can only be used for diagnosis if the subject’s effort is 

maximal (Pellegrino et al. 2005). The loops can also be assessed by examining the mid flow 

ratio of inspiration and expiration i.e. the ratio of maximal expiratory to maximal inspiratory 

flow at 50% of vital capacity (Miller and Hyatt 1973). The mid flow ratio (MEF50/MIF50) can 

be categorised as approximately 1 in fixed obstructions Figure 5a, >1 in extrathoracic 

obstructions Figure 5b and <1 intrathoracic obstructions Figure 5c. Central or upper airway 

obstruction can also be assessed by the ratio of FEV1 to PEFR, a value of >8 suggesting 

central or upper airway obstruction (Pellegrino et al. 2005). 

3.3.3.4 Airflow limitation in people with neurodegenerative conditions 

There is little evidence of lower airway flow limitation in people with neurodegenerative 

conditions. In people with PD and ALS, FEV1 is significantly reduced compared to healthy 

control subjects. but the reduction is concomitant with significantly reduced FVC and 

therefore represents a restrictive rather than obstructive pattern (Sathyaprabha et al. 2005; 

Sathyaprabha et al. 2009). Sabate et al (1996) report obstructive ventilatory dysfunction in 

54% of a sample of 58 people with PD, but lack of data in the results meant that it is not clear 

whether this was due to upper or lower airway obstruction. Normal FEV1 values have been 

described in people with MS (Altintas et al. 2007; Foglio et al. 1994; Koseoglu et al 2006). 

Mutluay et al (2005) however report a significant reduction in FEV1% predicted with a value 

of 91% for the sample, although this would be considered mild using the GOLD 

classification if accompanied by other signs and symptoms (Vestbo et al 2013). 

Large airway obstruction as measured by PEFR was reduced in people with PD and ALS but 

not in MS (Koseoglu et al. 2006; Sathyaprabha et al. 2005; Sathyaprabha et al. 2009). The 

reduction in PEFR may represent upper airway obstruction which can be observed from flow 

volume curves. In people with neurodegenerative conditions oscillations may occur during 

inspiration and expiration and are thought to be due to vocal cord tremor or instability of the 

upper airway (Buyse 2006; Vincken et al. 1986), see Figure 6 for a flow volume curve with 

expiratory oscillations found in PD. Vocal cord dysfunction may also be observed by 

truncation of the loop and flattened inspiratory curves (Watson et al. 2009). 
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Figure 6 Flow volume curve in Parkinson’s disease (Buyse et al 2006, p268)  

 

 

 

 

 

 

 

 

 

 

People with HD may have an increase in resistive load as a consequence of upper airway 

obstruction, as pharyngeal and laryngeal dysfunction has been observed in dysphagia 

(Heemskerk and Roos 2011) and speech studies (Velasco García et al. 2011; Vogel et al. 

2012), with Rusz et al. (2013) observing turbulent airflow through the vocal cords. As a 

consequence of swallow difficulties, aspiration does occur and obstruction in the lower 

airways would lead to increased resistive load.  

3.3.3.5 Threshold load 

Intrinsic positive end expiratory pressure is created if expiration stops before the lung volume 

has returned to functional residual capacity (FRC). This is also known as dynamic 

hyperinflation and auto positive end expiratory pressure (Lumb 2010). In people with airflow 

limitation e.g. chronic obstructive airways disease, the resistance to expiratory airflow 

lengthens the time needed to exhale a given volume of air. If inspiration commences before 

the lung has returned to FRC, air trapping will occur. The increased end expiratory lung 

volume alters the relationship between the elastic recoil of the lungs and that of the chest 

wall, which increases the work of breathing (Ferguson 2006). It is necessary for each breath 

to overcome this load and it is therefore termed ‘threshold load’ and is common in moderate 

to severe obstructive respiratory disorders. Although air trapping to the extent of that in 

emphysema is unlikely in people with HD as severe airway obstruction is not noticed 

clinically, alteration in breathing pattern generation may cause expiration to stop before lung 

volume has returned to functional residual capacity. The extent of the increased threshold 

load would depend on the extent and type of breathing pattern alteration. 
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3.3.3.6 Extrinsic load on the respiratory system 

Elastic, resistive and threshold loads represent intrinsic factors that increase the work of 

breathing. Additional load can be placed on the respiratory system from extrinsic sources 

including chemical e.g. hypercapnia and metabolic e.g. exercise. Hypercapnia is detected by 

chemoreceptors stimulating the central respiratory controller to increase neural drive to the 

respiratory muscles (Hill and Eastwood 2011). Chronic hypercapnia is common in people 

with neurodegenerative conditions caused by decreased capacity and increased elastic load 

(Misuri et al. 2000) thus a cycle of decreasing capacity and increasing load may lead to 

respiratory failure. In people with PD and MS, the respiratory drive response to hypercapnia 

is impaired (Seccombe et al. 2011; von Klaveren et al. 1999); the increased load is not 

matched by increased drive, which in the presence of respiratory muscle weakness will lead 

to respiratory failure. 

During exercise, CO2 and metabolite production increases and homeostasis is maintained 

through chemoreceptor, baroreceptor and proprioceptive input. Exercise therefore increases 

the load on the respiratory pump, particularly at high intensities when respiratory metabolites 

redistribute blood away from locomotor muscles and preferentially to respiratory muscles 

(Dempsey 2012). Functional exercise capacity is reduced in MS (Bosnak-Guclu et al. 2012) 

and PD (Canning et al. 2006) and this may be due to a combination of factors including 

decreased capacity, increased load and impaired response to hypercapnia. This low level of 

activity may actually mask symptoms of respiratory dysfunction such as dyspnoea (Haas et 

al. 2004). There is little known about the physiological response of people with HD to 

exercise with a small study in people with early HD noting a reduced workload during sub 

maximal exercise testing compared to control (Jones et al. 2012).  

3.3.3.7 Assessment of load on respiratory system 

The elastic load placed on the respiratory system is due to the compliance of both the lungs 

and the chest wall. The total compliance is therefore the summation of these two factors as 

below: 

1/compliance (thorax) = 1/compliance (lung) + 1/compliance (chest wall)  

(Cotes et al. 2006) 

Chest wall compliance is derived from separate static measurements of thoracic and lung 

compliance. Compliance is measured as the slope of the pressure (pleural)-volume curve 

created from repeated inspirations and expirations at different lung volumes. For static lung 

compliance the repeated manoeuvres are voluntary breaths, whereas for thoracic compliance 
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the respiratory muscles are relaxed and manoeuvres are pre-set via positive pressure 

breathing apparatus (Cotes et al. 2006).  

Resistive load may be measured by techniques that measure resistance to airflow such as 

FEV1; FEV1/FVC% and PEFR. FEV1 and FVC are measured in the same manoeuvre – a 

forced expiration from total lung capacity. FEV1 is the volume of air expired in the first 

second of the forced expiration and is usually reported as a percentage of FVC, the maximum 

volume of air expired. This then standardises FEV1 as it is related to gender, height and age; 

the normal ratio being 70-80%. These measures are effort dependent and visually examining 

the flow volume curve will highlight airway obstruction. When airways are obstructed, the 

linearity is lost and the curve may become concave. From the flow volume curve, the mid 

expiratory flow rate, FEF25-75%FVC can be measured as an index of the average flow over the 

middle half of the forced expiration. This part of the manoeuvre is effort independent and is 

used for detecting early stages of airflow limitation (Miller et al. 2005). 

Peak expiratory flow rate can also be measured independently from FEV1 and FVC. The flow 

rate is dependent on effort and mechanical properties of the lungs as well as airways’ 

resistance. It tends to be a better measure of large airway obstruction, whereas FEV1 is a 

better measure of small airways calibre (Cotes et al. 2006). Airway obstruction may also 

occur in the pharynx, larynx, trachea and main bronchi, which is referred to as upper and 

central airway obstruction. This type of obstruction does not reduce FEV1 but does reduce 

PEFR, and a FEV1/PEFR ratio of >8 is suggestive of central or upper airway obstruction 

(Pellegrino et al. 2005).  

Threshold load is that created when intrinsic positive end expiratory pressure is present and 

can be determined from the negative inflection in oesophageal pressure from the point of 

inspiratory effort to the point of zero flow (Haluszka et al. 1990). Haluska et al (1990) found 

a significant correlation between intrinsic positive end expiratory pressure and FEV1; 

measurement of airways obstruction may be an indirect way, therefore, of assessing the 

threshold load on the lungs. 

3.3.4 Factors influencing respiratory function 

The preceding section has identified potential impairment in respiratory function in people 

with HD and highlighted factors that may influence or be influenced by respiratory function. 

Smoking (Shifren and Mecham 2006) and age (Lalley 2013) affect respiratory function and 

therefore may be confounders in observation studies. Factors specific to HD that may 

influence respiratory function are swallow, posture, exercise capacity and physical activity. 
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Impaired swallow will lead to aspiration and potential type 1 hypoxaemic respiratory failure 

with laryngeal and pharyngeal dysfunction potentially increasing resistive load on the 

respiratory pump. Breathing and swallow are highly integrated activities controlled by neural 

interactions in the brainstem and connections to the cranial nerves (Hårdemark Cedborg et al. 

2009) and exploration of both functions may provide insight into dysfunction within the 

brainstem and neural control of breathing.  

Dystonia and bradykinesia will lead to a flexed posture which in turn can reduce lung volume 

(Harrison et al. 2007) and alter the biomechanics of the respiratory muscles and compliance 

of the rib cage (Lee et al. 2010) inducing both increased load on and decreased capacity of 

the respiratory muscles.  

The relationships between respiratory function, physical activity and exercise capacity are 

complex. Physical activity is reduced in people with HD (Quinn et al. 2013) but little is 

known regarding exercise capacity and respiratory function. In studies from the general 

population, deconditioning caused by decreased exercise capacity (Naeije 2005) may lead to 

decreased peripheral muscle strength which is related to respiratory muscle strength 

(Buchman et al. 2008). Decreased physical activity in people with HD may lead to decreased 

capacity of the respiratory pump and conversely decreased respiratory muscle strength may 

reduce physical activity. Exercise may increase the extrinsic load placed on the respiratory 

pump and/or decreased capacity of the pump may reduce exercise capacity. 

The influence of swallow, posture, physical activity and exercise capacity therefore needs to 

be explored in people with HD in order to help explain any change in respiratory function. 

The following section explores methods of measurement of the key factors potentially 

influencing respiratory function in people with HD. 

3.3.4.1 Measurement of swallow 

Normal swallow comprises a number of stages: oral, pharyngeal, laryngeal and oesophageal 

(Heemskerk and Roos 2011; Hughes and Wiles 2000). Clinical assessment evaluates the oral 

phase and differential diagnoses of the pharyngeal, laryngeal and oesophageal phases which 

can then be evaluated by assessments such as videofluoroscopy or ultrasound. Clinical 

assessment includes gathering signs and symptoms through history taking, cranial nerve 

assessment and observation of swallow (Gates et al. 2006). Videofluoroscopy and ultrasound 

can then clarify the mechanism of the swallow problem irrespective of the pathology causing 

the problem (Hughes and Wiles 2000). 
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Videofluoroscopy is the most common tool for evaluating all stages of swallow. It is carried 

out by administrating a radiopaque liquid e.g. barium, mixed with liquid and food with 

radiographic images recorded during swallow for analysis (Gates et al. 2006). Although 

videofluoroscopy is recommended as the ‘gold standard’ in identifying swallow dysfunction 

(Wu et al. 2004), it may not be suitable for assessing progressive swallow dysfunction due to 

repeated radiation. An alternative assessment is a timed swallow test that can be carried out 

with minimal equipment and training (Nathadwarawala et al. 1992).  

The timed swallow test requires a subject to swallow 150ml of cold water as quickly as 

possible, while the time and number of swallows is measured. The volume of water may be 

adjusted if subjects are predicted to have difficulties with 150ml. This test has been shown to 

have reliability and validity in a group of people with neurological problems 

(Nathadwarawala et al. 1992). 

3.3.4.2 Measurement of posture 

Quantification of spinal and head posture is a complex activity as it is a three dimensional 

entity. The spine in standing position normally has lumbar and cervical lordoses and a 

thoracic kyphosis whereas in the sitting position, there is no consensus as to what good or 

normal posture is. Qualitatively, ideal sitting posture may be one of three options: a flat lower 

thoracic and lumbar posture; flat lumbar posture with back rest and lordosis at both lower 

thoracic and lumbar regions (Claus et al. 2009). The majority of research on spinal posture 

relates to back and neck pain as well as correction of spinal deformities. The purpose of 

measurement of posture in this study was to investigate relationships between thoracic, neck 

and head postures with respiratory function and therefore the emphasis was on feasible, 

reliable measures of posture rather than comparison with normal values.  

Measuring true spinal posture requires radiographic images and subsequent quantification of 

angles. Although this would appear to be the ‘gold standard’, error can occur with 

identification of bony landmarks and incorrect drawing of lines for angle determination 

(Gstoettner et al. 2007). This method also has the disadvantage of requiring subjects to 

undergo radiation. Surface methods of determining posture have therefore developed and 

include goniometers; inclinometers; flexicurve; computerised movement analysis; spinal 

wheel and photographs. 

Clinically, instruments such as goniometers, inclinometers and flexicurve are used with 

reliability dependent upon the examiners experience in using the device as well as their 

ability to identify bony landmarks (Sheeran et al. 2010).   
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Computerised movement analysis uses sensors attached to the skin, corresponding to bony 

landmarks, to determine spinal curvature. Magnetic tracking devices such as Fastrak® use a 

source of pulsed electromagnetic waves and up to four sensors attached to bony landmarks. 

The angle and distance from the sensor are sampled and angles computed by software to 

provide a three dimensional analysis of posture and movement (Jordan et al. 2000). Although 

this system is accurate and reliable, it is still subject to error in positioning of sensors 

(Sheeran et al. 2010) and the proximity required for the sensors. Other devices such as 

accelerometers are also used to measure posture when acceleration is zero, and have been 

assessed to be accurate and reliable in the sitting position (Wong and Wong 2008). Novel 

instruments such as the spinal wheel (Sheeran et al. 2010) and the spinal mouse (Mannion et 

al. 2004) have also demonstrated reliability in measurement of posture. 

Analysis of posture from photographs is suggested as an alternative ‘gold standard’ to 

radiographic imaging (van Niekerk et al. 2008). Intra-tester reliability was assessed, in a 

sample of 39 adolescents, within one day and concurrent validity was assessed by comparison 

with a radiographic image using a digital low dose radiography device.  

Measurements were taken of sagittal head angle, the angle between the horizontal and a line 

drawn between the lateral canthus of the eye and midpoint of the tragus; cervical angle, the 

angle between the horizontal and the line drawn between the midpoint of the tragus and the 

spinous process of C7; thoracic angle, the angle between the line drawn between the spinous 

process of C7 and the manubrium and the line drawn between the spinous process of T8 and 

the manubrium. Protraction/retraction of the shoulder and arm angles were also calculated. 

Bland Altman limits of agreement were calculated, with small bias in cervical, head and 

thoracic angles (-1.12º, -1.56º, -1.12º respectively). Concurrent validity was high with 

Pearson correlation coefficients between photographs and radiographs of 0.84, 0.89 and 0.92 

for head, cervical and thoracic angles. Van Niekerk et al (2008) however, did note that there 

were some difficulties in visualising markers and made recommendations to improve the 

protocol for data collection.  

Analysis of photographs for quantification of posture has been carried out using protractors 

and digitisation. Watson and Trott (1993) assessed head angle using a protractor and plumb 

line, though Dunk (2005) suggests that using a biological marker is preferable to external 

markers such as the plumb line. Researchers have also used bespoke software packages for 

digital analysis of photographs (McEvoy and Grimmer 2005; van Niekerk et al. 2008).  

Despite technological advances, reliability of postural measurements is variable and validity 

studies are few. Reliability of measurement is dependent upon anatomical knowledge for the 
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placement of markers on bony landmarks, standardisation of subject positions and human 

error in visualising markers on photographs. Validity is also dependent on marking of bony 

landmarks and the movement of skin after placement. Morl and Blickhan (2006) note that 

although markers and movements of the lumbar back surface are not identical to positions 

and movements of the lumbar vertebrae, surface markings can predict vertebral position and 

movement. 

3.3.4.3 Measurement of exercise capacity 

The ability or capacity to exercise is dependent upon the integration not only of the 

cardiovascular and respiratory systems but also of the blood, neurological, psychological and 

skeletal systems (Goldstein 1990). Measurement of exercise capacity therefore needs to 

include all these systems within the test. The following section will review methods of 

assessing exercise capacity and relate this to people with neurological conditions. 

Exercise testing usually refers to an individual’s capacity for maximal long term exercise, 

involving the aerobic energy system. Tests for immediate and short term energy systems do 

exist, but are specific to sports people who use these energy systems. Maximal oxygen 

consumption (V̇O2max) is the fundamental measure of physiological functional capacity for 

exercise, but since its inception as a concept of cardiovascular capacity the method of 

attaining maximal activity has been questioned (Mitchell et al. 1958). V̇O2max can be assessed 

through a variety of exercise tests that use the body’s large muscle groups and include 

treadmill walking or running; stationary bike and step tests. Protocols for increasing 

workload may be continuous i.e. incremental increases in exercise without rest and 

discontinuous i.e. with rests between increments, both types producing similar V̇O2max values 

(Duncan et al. 1997). The American College of Sports Medicine guidelines recommend 

V̇O2max as the criterion measure of cardiorespiratory fitness but acknowledge that when direct 

measurement is not feasible, submaximal exercise tests can be used as estimation (American 

College of Sports Medicine. 2010). For people with clinical conditions, V̇O2peak is often used 

as an estimate for V̇O2max (American Thoracic Society American College of Chest 

Physicians. 2003). 

V̇O2max testing requires a range of equipment including treadmill/cycle ergometer as well as a 

computerised system that collects and analyses data from a flow meter and gas sampling 

chamber. A number of field tests have therefore been developed that can be used within a 

clinical setting and can measure exercise capacity in people with limitations in one or more 

body systems. 
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The six minute walk test (6MWT) is a self-paced walk on a 100 foot hallway and evaluates 

the response of cardiovascular, respiratory, blood, neurological, psychological and skeletal 

systems to exercise (American Thoracic Society. 2002). It was developed from and is highly 

correlated with the 12 minute walk test and provides a feasible option for the measurement of 

exercise capacity (Butland et al. 1982). When compared to 2MWT and 12MWT tests, the 

6MWT is better tolerated and more reflective of activities of daily living and is seen as the 

test of choice for clinical or research purposes (Solway et al. 2001). 

The 6MWT is recommended for a range of neurological conditions (Tyson and Connell 

2009) and has been assessed for reliability and validity specifically in people with MS and 

PD. Reliability in people with MS and PD is excellent with ICC ranging from 0.91 to 0.96 

(Falvo and Earhart 2009; Fry and Pfalzer 2006; Goldman et al. 2008; Schenkman et al. 1997). 

Savci et al (2005) and Canning et al (2006) both demonstrated significant differences 

between people with MS and PD with healthy controls, indicating construct validity for 

6MWT in these populations. The 6MWT has been found to be reliable in people with pre-

manifest and manifest HD, ICC 0.98 and 0.94 respectively and have a minimal detectable 

change of 36.22m (pre-manifest HD) and 86.57m (manifest HD) (Quinn et al. 2013). The 

Physiotherapy Clinical Guidelines for Huntington’s disease, by consensus, suggests the 

6MWT as an outcome measure for exercise capacity (Quinn and Busse 2012).  

3.3.4.4 Measurement of physical activity 

Physical activity is defined as “any bodily movement produced by skeletal muscles that 

requires energy expenditure” (World Health Organisation. 2012). Physical activity includes a 

range of activities such as household chores, walking to the shops/work, physical work, 

recreational activity and exercise and thus presents a complex activity to measure accurately. 

A range of tools have been devised that attempt to quantitatively capture physical activity, a 

summary of which is provided below. 

 

Accelerometers are electromechanical devices that can measure acceleration in one, two or 

three dimensions. A simple pedometer will measure how many steps a person takes per day, 

but they are limited by not taking into consideration the person’s movement style and 

walking speed (Busse et al. 2004). Step activity monitors are more technologically advanced 

devices and measure overall activity levels and patterns of activity as well as step count. 

Reliability studies demonstrate good to excellent intraclass correlations for people post 

stroke, ICC 0.95 (Rand et al. 2009), PD, ICC 0.45-0.96 (White et al. 2007) and a mixed 
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group of post stroke, PD, MS and healthy subjects, ICC 0.68-0.85 (Hale et al. 2008) and a 

mixed group of people with MS, PD and primary muscle disorder, ICC 0.82-0.94 (Busse et 

al. 2004). Standard error of measurement ranged between 23-33% (Busse et al. 2004; Hale et 

al. 2008; Rand et al. 2009).  

In people with neurological conditions, step activity monitors have demonstrated good 

criterion validated against gait parameters (Esliger et al. 2007; Schmidt et al. 2011). 

Construct validity, assessed by measuring activity in groups known to be different was 

demonstrated by Busse et al (2004) and Schmidt et al (2011). Waist worn devices are 

suggested to be a more valid measure of activity as they are placed closer to the centre of 

mass and capture whole body movements (Motl et al. 2010). Although activity monitors 

accurately quantify activity, they do not give an indication of the type of activity carried out. 

These domains of physical activity can be assessed through a range of questionnaires. 

 

Physical activity questionnaires can be used for many purposes including surveillance, as an 

outcome measure in intervention studies and investigating relationships between disease and 

physical activity (Ainsworth et al. 2012). A systematic review on reliability and validity of 

physical activity questionnaires evaluated 96 papers which tested 130 questionnaires for a 

range of age groups. The majority of questionnaires showed acceptable to good reliability 

(ICC 0.64-0.79), though criterion validity was generally low (median Spearman 0.30, Pearson 

0.46). Criterion validity was assessed against other questionnaires, accelerometry and the 

doubly labelled water method. This review identified four questionnaires that showed 

acceptable to good results for both reliability and validity: International Physical Activity 

Questionnaire (IPAQ) – short form; Flemish physical activity computerised questionnaire; 

previous day physical activity recall and the recess physical activity recall (Helmerhorst et al. 

2012). 

The Flemish physical activity computerised questionnaire measures activity in the domains of 

physical activity, job, leisure time, household chores, transport and personal care over a 

typical week in adults, with primary outcomes of total hours of activity per week and 

metabolic equivalent of task (MET) (Matton et al. 2007). Completion requires access to a 

computer and currently the questionnaire is only available in Dutch, although English, 

Portuguese and French versions are being developed (Scheers et al. 2012). Similar domains 

are measured in the recess physical activity recall (Martínez-Gómez et al. 2010) and the 

previous day physical activity recall questionnaires (Weston et al. 1997) except for 

occupation as these questionnaires are aimed at adolescents.  
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IPAQ-s gathers data on three specific levels of activity over the last seven days: walking, 

moderate intensity and vigorous intensity undertaken in the leisure, domestic, occupation and 

transport domains in adults. The questionnaire is available in 23 languages, a number of 

which have been evaluated internationally for reliability and validity (Craig et al. 2003). Data 

from across 12 countries were collected on: test-retest reliability; concurrent validity between 

versions and criterion validity against accelerometer data. The results found that the short and 

long forms of the questionnaire were reliable with Spearman correlation coefficients of 0.76 

and 0.81 respectively. Concurrent validity between the different versions was reasonable, r= 

0.67 with fair to moderate agreement between long and short forms with accelerometer data. 

The conclusions of this study were that the short form recording activity over the last seven 

days was feasible to administer, reliable and valid to use with adults aged 15-69 and the long 

form could be used when more detail of the activities were needed for research purposes. 

IPAQ has been found to have good reliability in people with manifest HD with a minimal 

detectable change of 2792 MET min/week (Quinn et al. 2013) and that it is valid for 

discriminating between healthy controls and people with manifest HD (Khalil 2012). The 

purpose of IPAQ is for epidemiology studies and not for intervention studies, but is suggested 

as a useful questionnaire to gather data on activity levels in people with Huntington’s disease 

(Quinn and Busse 2012).  

3.4 A conceptual framework of respiratory failure in people with 

Huntington’s disease 

The previous chapters have reviewed the literature regarding the pathological changes 

occurring in HD and, using the categorisation of respiratory failure described by Hart (2008), 

literature related to respiratory function and the relationship with respiratory failure in people 

with neurodegenerative conditions. The synthesis of this information provides a framework to 

explore respiratory function in order to understand respiratory failure in people with HD 

which is illustrated in Figure 7 and Figure 8. The framework is underpinned by theoretical 

postulation from what is known in HD and empirical evidence from people with PD, MS and 

MND/ALS. Although the framework has been divided into two distinct types of respiratory 

failure, progressive decline in lung volume may be a causal link in progression from type 

hypoxaemic respiratory failure to type 2 hypercapnic respiratory failure. 

People with HD may develop acute hypoxaemic respiratory failure due to respiratory 

infection and aspiration pneumonia, the most common cause of death in people with HD 

(Heemskerk and Roos 2010). Airway clearance may be impaired as evidenced in people with 
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MS (Aiello et al. 2008) and PD (Ebihara et al. 2003) compounding the problem of retained 

secretions and consequent impaired diffusion of gases. Smoking (Shifren and Mecham 2006), 

age (Lalley 2013), dystonic posture (Louis et al. 1999) and subsequent rigidity of the chest 

wall and low physical activity levels (Quinn et al. 2013) may result in alveolar 

hypoventilation and decreased lung volumes as seen in people with PD ((Sabate et al. 1996). 

Both alveolar hypoventilation and aspiration pneumonia will result in ventilation perfusion 

mismatch and potential type 1 hypoxaemic respiratory failure. 

The conceptual framework proposes a number of ways in which type 2 hypercapnic 

respiratory failure may occur in people with HD which spans all three elements of drive, 

capacity and load. Automatic breathing generated within the pontomedullary region of the 

brainstem may be altered as a consequence of neuronal degeneration (Rub et al. 2014) and 

atrophy (Hobbs et al. 2010) due to the presence mutant Huntingtin (Herndon et al. 2009) 

leading to the altered pattern observed at rest (Fischer et al 1983; Leopold et al. 1985). 

Evidence of lack of integration of breathing and swallowing (Heemskerk and Roos 2010; 

Heemskerk and Roos 2011; Kagel and Leopold 1992) may point to central pattern generation 

dysfunction. A reduced response to hypercapnia and abnormal occlusion pressures in people 

with PD (Seccombe et al. 2011) suggests that similar findings could be found in people with 

HD. 

Capacity of the respiratory muscles may be decreased due to biomechanical and 

physiological changes leading to decreased respiratory muscle strength, similar to that 

identified in people with MS (Koseoglu et al. 2006), and PD (Sathyaprabha et al. 2005). 

Physiological reasons for a decrease in strength may be related to atrophy due to the presence 

of mutant Huntingtin in skeletal muscle (Ciammola et al. 2011; She et al. 2011) and/or 

weight loss (Aziz and Roos 2013). Biomechanically, evidence of decreased postural control 

in people with HD (Brožová et al. 2011) may disrupt the normal synchrony of respiratory and 

postural muscles (Bianchi and Gestreau 2009) influencing force production. Physical 

inactivity (Busse et al. 2009; Quinn et al. 2013) and deconditioning may lead to decreased 

peripheral muscle strength (Busse et al. 2008) which is related to respiratory muscle strength 

(Buchman et al. 2008a). 

Progressive decline in lung volume as described for type 1 hypoxaemic respiratory failure 

may lead to an increase in elastic load on the respiratory pump. Resistive load may be 

increased by incoordinated contraction of the valve muscles of the larynx and pharynx, 

dysfunction of which are noted in studies of swallow in people with HD (Heemskerk and 

Roos 2011; Kagel and Leopold 1992). Upper airway obstruction has been demonstrated in 
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people with PD (Buyse 2006; Sathyaprabha et al. 2005) who have similar swallow problems 

as people with HD.  

This conceptual framework suggests that respiratory function may be impaired in people with 

HD and that this may lead to type 1 hypoxaemic and type 2 hypercapnic respiratory failure. 

Respiratory function in people with HD may be a delicate balance of altered central 

respiratory drive, decreased respiratory muscle capacity and an increased elastic and resistive 

load. 
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Figure 7  Conceptual framework of type 1 hypoxaemic respiratory failure in 

people with Huntington’s disease 
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Figure 8 Conceptual framework of type 2 hypercapnic respiratory failure in 

people with HD 
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3.5 Observation study objectives 

Chapters 2 and 3 have explored the pathological and functional changes resulting from the 

presence of mutant Huntingtin in people with Huntington’s disease with specific reference to 

aspects that may impact on respiratory function and respiratory failure. The underlying 

causes of respiratory failure, type 1 hypoxaemic and type 2 hypercapnic, have also been 

explored in order to develop a conceptual framework for respiratory failure in people with 

HD. This framework provides theoretical assumptions and specific direction for an 

observational study exploring respiratory function in people with HD. In order to test the 

framework, it was necessary to compare respiratory function in people with HD with matched 

healthy control subjects; to use measures of disease progression to examine changes 

throughout the condition and to explore relationships with factors that may influence or be 

influenced by respiratory function. The objectives of the study were therefore to: 

 investigate respiratory function in people with Huntington’s disease and compare with 

healthy control subjects; 

 investigate respiratory function throughout the progression of the disease; 

 investigate factors that may influence and be influenced by respiratory function in 

people with Huntington’s disease. 

 

The principle research questions were: 

 Is there a difference in respiratory function between healthy controls and people with 

Huntington’s disease 

 Does respiratory function change as Huntington’s disease progresses? 

 

Further research questions were: 

If there is a difference in respiratory function between healthy controls and people with 

Huntington’s disease: 

 Is respiratory function related to swallow capacity? 

 Is respiratory function related to posture? 

 Is respiratory function related to exercise capacity? 

 Is respiratory function related to physical activity? 
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The null hypotheses for the study were: 

H01  There is no difference in respiratory function in people with HD compared to healthy 

control subjects; 

H02 Respiratory function in people with HD does not change as the disease progresses; 

H03 Respiratory function does not decrease over time; 

H04 Respiratory function is not related to exercise capacity in people with HD; 

H05 Respiratory function is not related to physical activity in people with HD; 

H06 Respiratory function is not related to posture in people with HD; 

H07 Respiratory function is not related to swallow capacity in people with HD; 
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4 Observation study methods 
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4.1 Research design and outcome measures 

Observational studies may use one of three main research methods: Case control, cohort or 

cross sectional study. A case control study selects people with a particular condition (cases) 

and people without the condition (controls) and explores, retrospectively, both groups' 

exposure to a potentially contributing factor. The control group must be appropriately 

matched and there must be reliable evidence of exposure. A cohort study identifies firstly 

whether people have been exposed or not exposed to a factor and then gathers information 

from over a time scale to ascertain whether the exposure influences the pathological 

condition. The collection of data may be prospective or retrospective (Carlson and Morrison 

2009). These two types of observational study are predominantly used to assess association 

between exposure and outcomes over time within a real world setting. Cross sectional studies 

are primarily used to determine prevalence of cases within a population at a given point in 

time but can also be used to infer causation. The advantages of this type of study are that data 

is collected only once and multiple outcomes can be assessed (Mann 2003). A prospective 

longitudinal study for this study was not appropriate as the length of time of observation may 

be between 40 and 50 years, from diagnosis of being gene positive to onset of symptoms and 

then to death. A retrospective study would be limited by the quality of evidence related to 

respiratory function that could be gathered. A cross sectional method was chosen as data 

could be collected from people with HD across the spectrum of the condition i.e. from pre-

manifest to late stage and that multiple variables could be measured. 

This observational study collected data from people who were gene positive and categorised 

as pre-manifest; people who were categorised as manifest HD and healthy participants. The 

categorisation of pre-manifest and manifest was based on the UHDRS:TMS and diagnostic 

confidence score of the consultant neurologist as described in section 2.4. 

Comparisons of respiratory function were made between people with HD and healthy 

subjects to determine if respiratory function was different in people with HD. Respiratory 

function through the progression of the disease was investigated through correlation between 

measures of disease severity and respiratory function. To investigate influencing factors, 

correlations were carried out between measures of respiratory function and swallow capacity, 

posture, exercise capacity and physical activity.  

Using the framework of respiratory failure as described in Chapter 3, respiratory function was 

categorised into measurable component parts, see Figure 9. Measurement of each component 

of the framework was discussed in Chapter 3. 
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Figure 9 Measurement of respiratory function  
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4.2 Measurement related to type 1 respiratory failure  

Measures of saturation of oxygen were taken as an alternative to invasive arterial blood gas 

analysis as although it is susceptible to light and movement artefacts (Tremper 1989) it does 

provide an accurate representation of arterial blood gas (Decker et al. 1989). The 

measurements used were those taken before the six minute walk test. Variables that could 

influence type 1 respiratory failure were measured: cough and swallow efficacy. Cough 

efficacy was measured as voluntary cough using peak cough flow (PCF) as recommended by 

Bott et al. (2009). Assessment of swallow by subjective means and/or videofluoroscopy 

would require specialist training and therefore it was decided to measure swallow capacity 

using the timed swallow as it has been found to be reliable and valid in people with 

neurological conditions (Nathadwarawala et al. 1992).  

In order to gain information on signs and symptoms related to respiratory and swallow 

dysfunction, a questionnaire was used. The questions relating to respiratory dysfunction were 

taken from the Royal Brompton Hospital Respiratory Muscle Symptom Score (Hart and 

Polkey 2001) and the swallow component was based on Hughes and Wiles (1996). 

4.3 Measurement related to type 2 respiratory failure 

Symptoms related to type 2 hypercapnic respiratory failure were collected via Royal 

Brompton Hospital Respiratory Muscle Symptom Score (Hart and Polkey 2001) with oxygen 

saturation and dyspnoea (Modified Borg Dyspnoea Scale) measured at the beginning of the 

six minute walk test. Capacity of the respiratory pump was measured by inspiratory and 

expiratory muscle strength and single breath work capacity. Volitional methods were chosen 

for respiratory muscle strength, including oral and nasal measures of inspiratory muscle 

strength, specific guidelines having been devised for these measures (American Thoracic 

Society/European Respiratory Society. 2002). Severe diaphragm weakness can be assessed 

by comparing FVC in supine and seated positions, with the former being 5-10% of the latter 

in normal subjects with abnormal values being >30% (American Thoracic Society/European 

Respiratory Society. 2002). 

As the study design involved collecting a large number of variables both of respiratory 

function and influencing factors, it was felt that using a method that required subjects 

working to fatigue was not feasible for assessing respiratory muscle endurance. The 

alternative measure of single breath work capacity was used; although this has not been used 

in people with neurodegenerative conditions it is reliable in people with CF (Enright et al. 

2006b) 
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Resistive load offered by lower and upper airways was measured as PEFR, FEV1 and 

FEV1/PEFR values following guidelines (Miller et al. 2005). Flow volume curves were also 

analysed using descriptors specified by Watson et al. (2009). Specific expertise and 

equipment to measure elastic load in terms of respiratory system compliance was not 

available to the researcher. As decreased lung volume results in decreased alveolar 

compliance (Dargaville et al. 2010), FVC was used as an indirect measure of elastic load. 

There was insufficient evidence that threshold load would be increased in people with HD 

and it was not measured.  

There was insufficient evidence regarding central respiratory drive in people with HD and it 

was decided that the study be limited to measures of capacity and load; respiratory drive was 

not measured. 

4.4 Variables influencing respiratory function 

Swallow was measured using the timed swallow test as described by Hughes and Wiles 

(1996). Assessing posture using radiographic imaging was not feasible for this study and 

therefore measurement using photographic images was chosen as it is deemed reliable and 

valid in healthy subjects (van Niekerk et al. 2008). It was decided to use a bespoke software 

package to analyse thoracic angle, head tilt and neck angle as unpublished data within the 

researchers department indicated good reliability. In order to confirm this, further reliability 

studies were undertaken with healthy subjects and people with HD, see Appendix 1. 

Measurement of exercise capacity using V̇O2max was not undertaken due to lack of 

appropriate equipment. Exercise capacity was measured by the six minute walk test due to 

simplicity of the task and reliability in people with HD (Quinn et al. 2013).  

Assessment of physical activity can be carried out objectively via activity monitors or 

subjectively via questionnaires. A disadvantage of activity monitors is the lack of specificity 

of task and therefore a questionnaire was used: the International Physical Activity 

Questionnaire (IPAQ). This questionnaire was found to be reliable and valid across 12 

countries (Craig et al. 2003); in a meta-analysis (Ainsworth et al. 2012), and reliable 

specifically in people with HD (Quinn et al. 2013). 

4.5 Pilot study 

Five participants took part in a pilot study. The aim of the pilot was to: 

 Familiarise the researcher with the protocol; 

 Determine time necessary for data collection; 
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 Identify any issues with equipment; 

 Identify any issues with standard operating procedures. 

 

The outcomes of the pilot study were: 

 Data collection would take approximately 1 hour 30 minutes; 

 Spare batteries needed to be available for relevant equipment; 

 DeVilbiss RT2 for assessment of SMIP did not always complete data collection and 

therefore its position was raised to ensure a wider reception width; 

 A flange was necessary for maximal expiratory pressure manoeuvre; 

 Explicit demonstrations and explanations were needed for respiratory manoeuvres. 

4.6 Participants 

4.6.1 Inclusion criteria: people with HD  

As this was an observational study, few exclusion criteria were applied. 

(i) Confirmed diagnosis of HD by neurologist; 

(ii) Aged 18 years and older; 

(iii) Able to understand instructions in English. 

4.6.2 Exclusion criteria: people with HD 

(i) Other health issues that would impact on the interpretation of data, these participants 

were excluded. Examples were previous cerebro vascular accident, severe chronic 

obstructive pulmonary disease and on-going treatment for cancer.  

(ii) Participants were excluded if they were currently or had been involved in other 

research studies in the past two months. 

4.6.3 Inclusion criteria: healthy controls participants  

Healthy control participants were matched with people with HD for age, gender, body mass 

index and smoker/non-smoker matched individuals and must have been able to understand 

instructions in English. 

4.6.4 Recruitment 

Potential participants attending their routine clinic appointment were approached by 

Professor Anne Rosser, the clinician responsible for their care, and were invited to participate 

in the programme alongside the ‘Registry’ study, see Figure 10 and Figure 11. The clinics 

were associated with the Cardiff Huntington’s Disease Centre. Many patients attending the 
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HD clinic are already enrolled in the ‘Registry’ study (Ethic committee number: 

04//WSE05/89). One of the optional components within the ‘Registry’ project includes 

permission to be contacted between visits. Patients who had consented to this component 

were contacted by letter and informed of the study. The researcher assumed responsibility for 

any further telephone follow up of the postal information sheet. 

Participants recruited in this group ranged from people who were diagnosed with HD and had 

no symptoms through to those at the late stage of the disease. 

Potential healthy control participants were recruited in one of three ways: 

 From carers, friends or relatives of people with HD introduced by the patient and in 

the same manner as the participants with HD; 

 From staff and students from Cardiff University; 

 By individual recruitment by the researcher. 

Twenty healthy control participants were recruited by an MSc student under the supervision 

of the researcher. All potential participants received an information sheet and were given at 

least one week to consider the information, before being contacted to discuss their 

involvement. 

A pragmatic approach to the number of participants recruited to study was taken. The number 

was sufficient to include a range of disease severity from those with no symptoms to those at 

the late stage of the disease, within the context of number of patients attending the HD clinic. 

Figure 10 Recruitment of participants with Huntington’s disease  
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Figure 11 Observation study recruitment flow diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

People attending Cardiff HD 

Research Centre 

n= 132 

Assessed for eligibility 

n= 85 

Declined to partake n = 47 

Total recruited 

n=67 

Excluded n= 18 

Enrolled in other research   n=9 

Complex medical needs  n=7 

Underlying respiratory condition n=1 

Other neurological problem  n=1 

Agreed to follow up 

n=10 
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4.7 Observation study protocol 

Participants in the observational study attended a data collection session that lasted between 

90-120 minutes. This took place either at Cardiff University or the participants’ homes. Data 

collection followed a similar format for each participant to minimise changing position, and 

provide breaks from the respiratory function tests. Respiratory function data were collected 

from 10 participants approximately one year after their initial assessment to explore change 

of respiratory function over time. The protocol for the assessment visit was as follows: 

 Welcome, time for questions related to information sheet, consent gained 

 Respiratory history – including respiratory symptoms 

 Swallow history 

 Measurement of height and weight 

 Measurement of body mass index and FVC in supine 

 Measurement of lung function in sitting: FEV1, FVC, FEV1/FVC, PEFR, PCF 

 Physical activity questionnaire 

 Measurement of respiratory muscle strength and endurance: MIP, MEP, SNIP, SMIP 

 Swallow test 

 Analysis of posture 

 Six minute walk test including O2 saturation and dyspnoea 

 Barthel index 

4.7.1 Demographic data 

Age was determined from asking the patient and checking with their date of birth. Height and 

weight were measured using Seca height and weight scales. In order for the results to be 

compared with other studies in people with neurodegenerative conditions, the Barthel index 

was used to assess functional ability.  The index is found in Appendix 3 and was completed 

by asking the participant and/or the carer the questions. 

4.7.2 Measures of disease severity 

Measures of disease severity were accessed via the participant’s clinic notes. These included: 

UHDRS: TFC, TMS, functional and independence scores. Related measures such as 

cognitive scores were also accessed via the participant’s clinic notes, see Appendix 3 for 

details of assessment scoring proforma. Categorisation of people with HD into pre-manifest 

and manifest was based on a clinical diagnosis as described in section 2.4. 
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4.7.3 Body mass index 

Malnutrition influences both skeletal and respiratory muscles with diaphragm weight loss 

being proportional to that of skeletal muscle (Polla et al. 2004) and related to decreasing 

inspiratory muscle strength (Rochester and Esau 1984). Body mass index was therefore a 

potential confounder in this study and was measured using the bioelectrical impedance 

method in order to match people with HD and healthy control subjects. 

Body mass index was measured using the Maltron Body Composition Analyser, see 

Appendix 4 for details. The participant was asked to lie flat on a bed or plinth, dependent 

upon data collection site. The sensors were placed on the right hand and foot. The hand 

sensors were placed just proximal to the third metacarpal phalangeal joint and the crease of 

the wrist. The foot sensors were placed just proximal to the second and third metatarsal joint 

and the crease of the ankle in line with the tibia, see Figure 12 for details. 

Figure 12 Placement of sensors for body composition analysis 

          

 

Cables were attached to the sensors, the black cable being the more distal attachment, on both 

hand and foot. The participant was asked to relax as much as possible during the test. Once 

data were inputted into the analyser, the test took approximately 10 seconds. 

4.7.4 Respiratory history and swallow questionnaire 

In order to gain further information relating respiratory function and swallow, a questionnaire 

was used to collect data from a daily living perspective. The respiratory history was based on 

the Royal Brompton Hospital Respiratory Muscle Symptom Score (Hart and Polkey 2001) 

and the swallow component was based on Wiles and Hughes (1996). The respiratory history 

and swallow questionnaire can be found in Appendix 3. 
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4.7.5 Respiratory function 

4.7.5.1 Spirometry: FVC (sitting and supine), FEV1, PEFR, Peak Cough Flow, 

Flow volume loops 

Lung volumes and flows were measured using the Micromedical Microloop Spirometer with 

a bacterial filter, see Appendix 4 for details and Figure 13 and Figure 14 for images. All 

measurements, except FVC supine, were taken with the subject in an upright position sitting 

in a supported chair. The measurement techniques were explained and the participant 

practised the manoeuvres. Some subjects needed very simple instructions with visual cues in 

order to carry out the test appropriately, due to co-ordination problems. A forced expiratory 

manoeuvre was performed following American Thoracic Society guidelines (Miller et al. 

2005), see Appendix 3. A flanged mouthpiece was used if necessary. The American Thoracic 

Society guidelines state that encouragement should be given during the test; however it was 

found that this was distracting for people with HD and therefore no encouragement was given 

to any subject.  

Figure 13 The Micromedical Microloop Spirometer 

 

 

 

 

 

 

 

 

 

Figure 14 Using the Microloop Spirometer 
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4.7.6 Assessment of respiratory muscles 

4.7.6.1 Respiratory muscle strength (MIP, MEP, SNIP) 

Respiratory muscle strength was measured using the Micromedical MicroRPM, details are 

found in Appendix 4; see also Figure 15 and Figure 16. The measurement techniques were 

explained and the participant practised the manoeuvres. MIP was measured from residual 

volume, MEP from total lung capacity and SNIP from functional residual capacity following 

American Thoracic Society/European Respiratory Society guidelines (American Thoracic 

Society/European Respiratory Society. 2002), see Appendix 3. A flanged mouthpiece was 

used for oral tests if necessary. The best of a minimum of 10 sniff manoeuvres were taken for 

SNIP (Lofaso et al. 2006). 

Figure 15 The Micromedical MicroRPM 

 

 

 

 

 

 

 

 

 

 

Figure 16 Using the Micromedical MicroRPM 
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4.7.6.2 Single-breath work capacity (SMIP) 

Sustained maximal inspiratory pressure (SMIP) was measured using the DeVilbiss RT2 

trainer, see Appendix 4 for details, see also Figures17-19. Testing was carried out using the 

method of Chatham et al (1999), see Appendix 3. A flanged mouthpiece was used if 

necessary. The measurement technique was explained and the participant practised the 

manoeuvres. Each manoeuvre went from residual volume and was sustained through to total 

lung capacity. The best of three sustained maximal inspiratory manoeuvres was used. 

Figure 17 The DeVilbiss RT2 

 

 

 

 

 

 

 

 

 

 

Figure 18 Using the DeVilbiss RT2 
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Figure 19 Measuring SMIP using DeVilbiss RT2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7.7 Exercise Tolerance 

Exercise tolerance was assessed by the 6 minute walk test, and carried out in accordance with 

American Thoracic Society guidelines (American Thoracic Society. 2002), on a 20 metre lap 

rather than a 100 metre lap. The total distance covered was the number of laps times 20 plus 

any portion of a lap as measured by a trundle wheel. If the participant stopped walking during 

the test and needed a rest, they were told to rest and then continue walking when they felt 

able. The timer was not stopped. If the participant could not continue or the researcher felt 

that they should not continue, the participant was returned to their chair. The distance 

covered, the time stopped and the reason for stopping was recorded. Predicted values were 

based on Enright and Sherrill (1998). Measures of O2 saturation, heart rate, respiratory rate, 

dyspnoea using the Modified Borg Dyspnoea Scale (Borg 1970), see Appendix 3 and 

perceived exertion using the Borg Perceived Exertion Scale (Borg 1982) see Appendix 3 

were taken before and after the six minute walk test. 

4.7.8 Physical Activity 

Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) 

(IPAQ Research Committee. 2005), see Appendix 3 for details. This was completed by the 

researcher asking the participant the questions and prompting if necessary. 
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4.7.9 Posture 

Posture was assessed by digital analysis as per protocol in the reliability study, see Appendix 

1. Video recordings were made of the subject sitting at a self-selected comfortable upright 

position; images were extracted from the video recording and processed using a bespoke 

Matlab programme.  

4.7.10 Swallow Capacity 

The swallow capacity test was carried out according to the instructions of Hughes and Wiles 

(1996). Competency of cough was assessed by the researcher prior to this test. If the 

participant was being fed through a percutaneous endoscopic gastrostomy tube or did not 

have a competent cough, this measure was not taken. An amount of water was measured into 

a clear plastic drinking cup. A spout or straw was used when necessary. The amount was 

150ml if the participant had no swallow problems, 50ml if there were swallow problems 

(personal communication Dr T Hughes March 2009). The participant was asked to drink the 

water as quickly as possible. The time taken between the bolus of water reaching the lips and 

the end of the last swallow was taken. The number of swallows was also counted. The 

volume of water swallowed, the time to complete the drink, and the number of swallows was 

recorded. Predicted values were based on Hughes and Wiles (1996).  

4.8 Data analysis 

4.8.1 Analysis of normality of data 

Data were assessed for normality through histograms, Shapiro-Wilk test and Q-Q plots. 

Frequency histograms were analysed visually to assess the frequency curve with a normal 

distribution curve (Portney and Watkins 2009). A normal Q-Q plot demonstrates a straight 

diagonal line of expected values with a plot of the observed values closely following the line. 

Deviation from normality is noted if the plot of observed points deviates from the diagonal 

line (Field 2009). The Shapiro-Wilk test assess whether the observed distribution deviates 

from a normal distribution by comparing the scores in the sample to a normally distributed 

set of scores with the same mean and standard deviation. If the result is significant i.e. 

p<0.05, the observed data are different to the normally distributed data and is therefore 

classed as non-normal (Field 2009). 
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4.8.2 Descriptive data analysis 

Data were analysed descriptively by means, standard deviations and 95% confidence 

intervals [CI]. Graphically, box plots were used to describe central tendency and spread of 

data and scatterplots were used to illustrate potential relationships between variables. Flow-

volume loops were analysed based on descriptors from (Watson et al. 2009) and (Pellegrino 

et al. 2005) 

4.8.3 Inferential analysis 

The choice of inferential analysis was based on the outcome of assessment of normality, with 

non-parametric tests being chosen if normality was not evident in the data. Between group 

differences i.e. between people with pre-manifest HD, people with manifest HD and healthy 

control could be analysed using a one way ANOVA or Kruskal-Wallis test as the non-

parametric equivalent. Post-hoc analysis for Kruskal-Wallis is the Mann-Whitney U test with 

Bonferroni correction as multiple comparisons are carried out (Portney and Watkins 2009). 

Relational analysis was carried out using Pearson correlation coefficient or the non-

parametric equivalent Spearman rank correlation coefficient. Relationships were described 

using the following descriptors (Portney and Watkins 2009): 

0.00< r >0.25  little/no relationship 

0.25< r >0.50  fair relationship 

0.50< r >0.75  moderate to good relationship 

r >0.75   good to excellent relationship 

4.9  General ethical considerations 

All work undertaken as part of this study complied with the Research Governance 

Framework for Health and Social Care in Wales and the Cardiff University Research 

Governance Framework. All participant identification and referral procedures as well as 

procedures for data storage, processing and management complied with the Data Protection 

Act 1998. 

Ethical approval was gained from the Research Ethics Committee for Wales (08/MRE/65); 

Cardiff and Vale University Health Board gave research and development approval 

(08/IBD/4316) and Cardiff University acted as sponsor (SPON 579-08), see Appendix 2. 

The researcher complied with the School of Healthcare Sciences lone working policy when 

carrying out home visits. The researcher met the participants at the Cardiff Huntington’s 

disease research and management clinic and arrangements made for the home visit. The 
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researcher kept in contact with a member of staff from Cardiff University at the beginning 

and end of each visit and carried a mobile phone throughout the visit. 

Data were stored confidentially on password protected computers maintained on the Cardiff 

University Network. Files were only accessible to the researcher responsible for the running 

of the study and the supervisors. All paper records were stored in a locked filing cabinet, with 

keys available only to researcher. All essential documents generated by the study were kept 

in the study master file. All conversations that took place during the interviews were audio 

recorded for the purposes of analysis. All audio and video records obtained were stored in 

locked cabinets in the School of Healthcare Sciences, Cardiff University. All personal data of 

participants were destroyed at the end of the study and all other data will be kept in locked 

storage for 15 years in accordance with the Cardiff University Research Governance 

Framework. 

4.10 Specific ethical considerations 

4.10.1 Risk during assessment 

All participants were fully informed of testing procedures before participation, and made 

aware that they could withdraw from the study without reason at any time. Participants were 

carefully monitored during testing by the researcher who was experienced in lung function 

testing and clinical assessment. The care and comfort of the participants was ensured at all 

times.  

4.10.2 Participants unable to consent 

The aim of the observational study was to investigate respiratory function at different stages 

of HD and it was essential to include people with HD at all stages of the disease. HD, as a 

chronic degenerative disease, results in a progressive decline in mental ability and some 

people with HD did not have the capacity to make decisions about their participation in the 

study. The researcher, in discussion with clinician responsible for their care, decided whether 

potential participants had the capacity to give consent. The decision was based on a 2 stage 

test, based on the Mental Capacity Act 2005, code of practice (Department for Constitutional 

Affairs. 2007): 

Stage 1 

 Did the participant have an impairment of or a disturbance in the function of their  

mind or brain? 

 Did the impairment/disturbance mean that the person is unable to make a specific  
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decision when they used to? 

Stage 2 

The decision as to whether a person was able/unable to make a decision was based on: 

 whether the person understood the information related to the decision; 

 whether the person could retain that information; 

 whether the person could use or weigh that information or; 

 whether the person could communicate his/her decision. 

If it was deemed that the person was unable to decide to give consent, a nominated consultee 

was approached to decide whether the person would participate in the research. 

4.10.3 Identification of a respiratory problem 

During assessment of respiratory function, participants may have been identified as having a 

specific respiratory problem. If this was the case, Dr Hope-Gill, consultant physician at 

Llandough Hospital had agreed to clinically screen the participant. No participants were 

identified as having a respiratory problem during data collection.  

4.10.4 Possible aspiration following swallow test 

Participants were monitored during and after the swallow tests for possible aspiration. 

Suction apparatus was available throughout testing and the researcher was competent in its 

use.  

4.10.5 Increased burden on participants 

The main burden for participants participating in this research was their time. For the 

observational study participants gave up approximately two hours of their time for data 

collection.  

4.10.6 Increased anxiety during/post data collection 

Potential increased anxiety during or after data collection was minimised by a supportive and 

empathetic approach being used throughout data collection. Full contact details of the 

researcher were given to participants at the end of the study. 

4.10.7 Project management 

The project was primarily managed through the supervisory team of Dr Enright and Professor 

Busse who have specialist knowledge in inspiratory muscle training and HD respectively. 

The team met monthly for updates and discussion. Professor Rosser was also available to 
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oversee the project with opportunities for discussion at the weekly HD research and 

management clinic. 

4.10.8 User involvement 

The development of this study was based on discussions within the European Huntington’s 

Disease Network Physiotherapy Working group and the Regional Care Advisor from the 

U.K. Huntington’s Disease Association. On-going discussions took place with members of 

the Wales Huntington’s Disease Involving People group, throughout the study. 
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5 Observational study results 
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5.1 Recruitment 

People with HD were recruited from clinics organised through the Cardiff Huntington’s 

Disease Research Centre, at which approximately 170 patients attend. Potential participants 

were informed of the study by the clinician responsible for their care and further details were 

provided by the researcher. Those participants who were willing to take part in the study were 

contacted to arrange a date and time for the assessment; recruitment took place over three 

years. In total 132 people were approached see Figure 11. 67 consented to the study (people 

with pre-manifest HD=20, people with manifest HD=47), 47 refused or did not reply, 18 

were unsuitable. Reasons for unsuitability were: participant in other trials (n=9); chronic 

obstructive pulmonary disease (n=1); concurrent neurological problem (n=1); complex 

medical needs (n=7). In the people with manifest HD group, 7 were early stage, 22 middle 

stage and 18 late stage as determined by their TFC scores. 

Healthy control participants (n=39) were recruited from a number of sources. Relatives and 

carers were approached as were staff and students of Cardiff University. Toward the end of 

the recruitment stage, specific recruitment was targeted to males who smoked and were aged 

over 45 years in order to match the people with HD group. 

5.1.1 Potential confounding factors 

Demographic data regarding gender, age, body mass index, fat free mass and smoking habit 

are displayed in Table 3. There were no statistically significant differences between the 

groups in gender (χ
2
 =1.44, p=0.488, standardised residuals -0.6 to 0.6). The manifest group 

were significantly older than healthy control and people with pre-manifest HD, as would be 

expected. The age of the people with pre-manifest HD group (42.80 ±12.04) reflects the age 

of onset of clinical symptoms (Kelly et al. 2009). The difference in age between the groups 

could influence the findings as respiratory muscle strength and lung volumes alter with age 

(Lalley 2013; Polla et al. 2004) and for that reason, predicted values for respiratory function 

were used when possible. 

People with pre-manifest HD had a higher body mass index (BMI) than those with people 

with manifest HD, although there was no difference between healthy control and people with 

pre-manifest HD or healthy control and people with manifest HD. These can be classified as 

healthy control (26.52 ±6.38) and people with pre-manifest HD (28.39 ±6.34) being ‘pre-

obese’ and people with manifest HD (23.99 ±3.70) as ‘normal’ according to the World Health 

Organisation classification of BMI (World Health Organisation. 2006). In this study 
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therefore, people with manifest HD had normal BMI with people with pre-manifest HD being 

toward the upper end of pre-obese and healthy control being at the lower end of pre-obese.  

This difference in BMI was not reflected in fat free mass (FFM), with no significant 

difference across the groups. The lack of statistical difference in FFM across the groups 

excludes it as a confounding variable in this study. 

Although there were significantly more non-smokers in the healthy control group (χ
2
 =13.17, 

exact p=0.01, standardised residual=1.7), there was no significant difference in pack years 

across the groups (Kruskall-Wallis χ
2
 =2.12, p=0.347). Pack year is calculated by multiplying 

the number of packs of cigarettes smoked per day by the number of years the person has 

smoked. For example, one pack year is equal to smoking one pack (20 cigarettes) per day for 

one year (Prignot 1987). Pack years for smokers and ex-smokers was 18.75 ±10.7 (healthy 

control); 14.77 ±11.14 (people with pre-manifest HD); 22.80 ±16.92 (people with manifest 

HD).  

Table 3 Demographic data for people with HD and healthy control subjects  

 
Healthy control 

n=39 

Pre-manifest HD 

n=20 

Manifest HD 

n=47 

 Male Female Male Female Male Female 

Gender 18 21 9 11 27 20 

Age (years) 

mean ± sd [CI] 

46.74 ±15.81 

[41.62,51.87] 

42.80 ±12.04 

[37.16,48.44] 

53.28 ±12.98 

[49.46,57.09] 

Body Mass Index 

Kg/m
2
 

mean ± sd [CI] 

26.52 ± 6.38 

[24.45,28.59] 

28.39 ± 6.34 

[25.23,31.54] 

23.99 ± 3.70 

[22.90,25.09] 

Fat free mass (%) 

mean ± sd [CI] 

66.80 ±13.60 

[62.39,71.21] 

65.66 ±12.73 

[59.70,71.62] 

67.97 ±11.73 

[63.94,72.00] 

Smoker 5 8 12 

Ex-smoker 3 5 11 

Non-smoker 31 7 24 

 

The groups of healthy control, people with pre-manifest HD and people with manifest HD 

were matched for all confounding variables, except for age and therefore it was necessary to 

undertake analysis of respiratory function as % predicted values as well as absolute values. 
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5.1.2 Measurements of Huntington’s disease and functional ability  

The scores for Unified Huntington’s Disease Rating Scale: Total Motor Score (UHDRS: 

TMS); Total Functional Capacity (TFC); functional assessment and independence are shown 

in Table 4. People with HD were categorised as pre-manifest and manifest based on a clinical 

diagnosis as described in section 2.4. 

Table 4 Measurement of severity of Huntington’s disease  

 
Pre-manifest HD 

Mean ±sd                 Range 

Manifest HD 

Mean ±sd              Range 

UHDRS:TMS 

(0-124) 

n=16 

3.94 ±4.53 

 

0-15 

n=46 

58.75 ±24.00 

 

4-100 

TFC 

(0-13) 
n/a all 13 

n=47 

4.72 ±4.04 

0-12 

 

Functional 

Assessment. (0-25) 
n/a all 25 

n=43 

11.63 ±8.60 
0-25 

Independence 

(0-100%) 
n/a all 100% 

n=40 

59.88 ±25.98 
0-100 

UHDRS:TMS  Unified Huntington’s Disease Rating Scale: Total Motor Score 

TFC    Total Functional Capacity 

 

There was some overlap in UHDRS:TMS scores between people with pre-manifest HD and 

people with manifest HD groups, which indicates that although motor impairment was noted 

in some people with pre-manifest HD they were not showing signs unequivocal of HD. All 

people with pre-manifest HD were functionally able and independent as noted by TFC, 

functional assessment, independence scale. The pragmatic approach to recruitment ensured 

that the full range of scores was observed in TFC, functional assessment, and independence 

in people with HD. The mean TFC score of 4.72, with 11 subjects having a score of 0, 

indicates that the sample was skewed toward less functionally able. The relatively large 

standard deviations and full range of scores indicate that although the sample may be skewed, 

the full range of severity of HD was included. 

Functional ability was measured using the Barthel index. The mean scores for people with 

pre-manifest HD (n=20) and people with manifest HD group (n=47) were 99.75 ±1.12, range 

95-100 and 62.45 ±39.53, range 0-100 respectively.  

5.2 Normality of data 

Data were assessed for normality using normal distribution histograms, Q-Q plots, Shapiro-

Wilk values and the Levene statistic, see Appendix 5 for details. All variables demonstrated 

at least one element of non-normal distribution and therefore inferential analysis was carried 

out using non-parametric tests. 
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5.3 Data related to type 1 respiratory failure 

5.3.1 Respiratory symptoms in people with Huntington’s disease  

A small proportion of people with HD attended their GP with breathing problems in the last 

year (pre-manifest HD=2 (10%), manifest HD=11(23.4%)), see Table 5. The reasons for GP 

visits in the two subjects with pre-manifest HD were asthma check-ups. The reasons given 

for going to the GP in people with manifest HD were: aspiration and chest infection (n=5); 

chest infection (n=3); anaphylaxis (n=1), breathlessness (n=1), rhinitis (n=1). Breathing 

problems that did not necessitate a GP visit were: Chesty/chest infection (n=2); cough/cold 

(n=2); persistent cough (n=1); aspiration (n=1); flu (n=1); difficulty breathing during eating 

(n=1); chest tightness (n=1); asthma (n=1); breathlessness (n=1); always bubbly (n=1). Those 

visiting the GP for chest infections had a TFC range of 0-5, indicating increased incidence of 

clinical respiratory problems later in disease progression. There did not appear to be any sub-

clinical respiratory problems, as it was the same participants who did attend their GP who 

also had problems for which they did not seek GP advice. Almost half of those with manifest 

HD obtained flu vaccinations in order to reduce the likelihood of a severe respiratory 

infection. 

Table 5 Respiratory symptoms in people with Huntington’s disease  

 
Pre-manifest HD 

n=20 

Manifest HD 

n=47 

 

 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Have you been to the GP 

with breathing problems in 

the last year? 

2 

(10%) 

18 

(90%) 

0 

(0%) 

11 

(23.4%) 

36 

(76.6%) 

0 

(0%) 

Have you had breathing 

problems that you didn’t 

go to the GP about? 

0 

(0%) 

19 

(95%) 

1 

(5%) 

7 

(14.9%) 

36 

(76.6%) 

4 

(8.5%) 

Have you had a flu 

vaccination in the last 

year? 

7 

(35%) 

13 

(65%) 

0 

(0%) 

21 

(47.7%) 

23 

(52.3%) 

0 

(0%) 

 

5.3.2 Respiratory signs in people with Huntington’s disease  

Measures of heart rate, respiratory rate and O2 saturation for both groups of people with HD 

were within normal ranges (Broad et al. 2012; Kispert 1987), see Table 6. This data suggests 

that the subjects completing this study did not have signs of acute respiratory problems. 
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Table 6 Respiratory signs in people with Huntington’s disease  

 Heart rate 

(beats per minute) 

Respiratory rate 

(breaths per minute) 

O2 Saturation 

(%) 

Pre-manifest HD 66 ± 11 n=18 18 ± 4 n=13 98 ± 1 n=17 

Manifest HD 74 ± 12 n=34 15 ± 5 n=29 96 ± 2 n=33 

Normal values 

 

60-100 

(Broad et al. 2012) 

10-20 

(Kispert 1987) 

95-100 

(Broad et al. 2012) 

5.3.3 Swallow data 

In people with manifest HD, 34 (63.9%) reported swallow problems, seven of which had a 

percutaneous endoscopic gastrostomy (PEG) tube fitted. One person with pre-manifest HD 

reported swallow problems. The qualitative data presented in Table 7 refers to all people with 

HD, except those with a PEG fitted. The majority (> 60%) of people with manifest HD 

reported problems in that they needed to be careful eating and that this required them to avoid 

certain foods and have other foods specially prepared. The majority (67.5%) also reported 

coughing and food ‘going down the wrong way’ when eating. Half of people with manifest 

HD used the compensatory technique of drinking water when eating and only 40% had 

difficulties keeping food in their mouth. 

Table 8 provides quantitative data on swallow ability. Predicted values and 95% predicted 

lower value for swallow capacity and volume per swallow were calculated using data from 

Hughes and Wiles (1996). Swallow was categorised as normal/abnormal if the participant’s 

absolute score was above/below the predicted 95% lower limit for that individual. Prediction 

equations were obtained from Wiles (2013). 

In the pre-manifest group, one person stated that they had a swallow problem, yet the 

swallow capacity and volume per swallow were normal. In the manifest group, 6 people who 

stated they had no problem with swallow had abnormally low swallow capacity. Excluding 

those people (n=7) with a PEG tube, 32 people with manifest HD had abnormally low 

swallow capacity: 15 had a normal volume per swallow indicating that the problem was slow 

time for swallow; 17 had abnormal volume per swallow which could indicate either a volume 

or volume and timing problem.  

  



113 

 

Table 7 Swallow symptoms in people with Huntington’s disease  

 
Pre-manifest HD 

n=20 

Manifest HD 

n=40 

 

 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Do you need to be 

careful when eating? 

1 

(5%) 

19 

(95%) 

0 

(0%) 

24 

(52.2%) 

12 

(26.1%) 

4 

(10.0%) 

Do you need to avoid 

certain foods? 

0 

(0%) 

20 

(100%) 

0 

(0%) 

19 

(47.5%) 

16 

(40.0%) 

5 

(12.5%) 

Does your food need 

to be specially 

prepared? 

0 

(0%) 

20 

(100%) 

0 

(0%) 

21 

(52.5%) 

14 

(35.0%) 

5 

(12.5%) 

Do you have 

difficulties keeping 

food in your mouth? 

0 

(0%) 

20 

(100%) 

0 

(0%) 

9 

(22.5%) 

24 

(60.0%) 

7 

17.5%) 

Do you need to drink 

water when you are 

eating? 

0 

(0%) 

20 

(100%) 

0 

(0%) 

14 

(35.0%) 

20 

(50.0%) 

6 

(15.0%) 

Do you cough when 

you are eating? 

0 

(0%) 

18 

(90%) 

2 

(10%) 

11 

(27.5%) 

13 

(32.5%) 

16 

(40.0%) 

Does food go down 

the wrong way when 

you are eating? 

0 

(0%) 

18 

(90%) 

2 

(10%) 

7 

(17.5%) 

13 

(32.5%) 

20 

(50.0%) 

Do you get short of 

breath when you are 

eating? 

0 

(0%) 

19 

(95%) 

1 

(5%) 

1 

(2.5%) 

35 

(87.5%) 

4 

(10.0%) 
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Table 8 Quantitative swallow data in people with Huntington’s disease  

 
Pre-manifest HD 

n=20 

Manifest HD 

n=46 

Normal swallow capacity 

(frequency) 
20 (100%) 7 (15.2%) 

Mean ±sd % predicted swallow 

capacity  
127.32 ±68.89 28 ±34.35 

Normal volume per swallow 

(frequency) 

20 (100%) 22 (47.8%) 

Mean ±sd % predicted volume 

per swallow  
127.24 ±48.98 47.07 ±41.46 

5.3.4 Cough efficacy 

Cough efficacy was assessed by measuring PCF, see Table 9 and Figure 20, with 

comparisons being made between healthy control, people with pre-manifest HD and people 

with manifest HD. Mean PCF in people with manifest HD (269.46 L/min ±154.58) and a 

minimum value of 19 L/min indicating  that some subjects had ineffective cough. The 

minimum value of 188L/min in the healthy control group required further analysis of the raw 

data, which identified two participants with PCF of < 270 L/min. One participant had a PCF 

of 265 L/min was aged 58, a non-smoker and normal values for FVC %predicted (99%), 

FEV1% predicted (102%) and PEFR%predicted (90%). MEP %predicted was slightly low 

(73%) which may relate to the low PCF; the low result. The participant with PCF of 

188L/min was aged 46, a non-smoker with normal FVC%predicted (91%) and slightly low 

FEV1%predicted (86%), PEFR%predicted (68%) and MEP%predicted (74%). It is unclear 

why the PCF values were so low and they may be testing anomalies.  

Analysis using Kruskall-Wallis demonstrated significant differences across the three groups 

in PCVF (χ
2
 36.78, p<0.001). Mann-Whitney U with Bonferroni correction (significance 

level of p≤0.017) analysis showed that PCF was significantly lower in people with manifest 

HD compared to healthy control (U=289.00, p<0.001) and people with pre-manifest HD 

(U=86.00, p<0.001); there was no difference between healthy control and people with pre-

manifest HD (U =262.00, p≤0.04), see Table 10. 
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Table 9  Peak cough flow in healthy control and people with Huntington’s 

disease 

 n 
Peak Cough Flow (PCF) Litres/minute 

Mean ±sd                                           Range 

Healthy 

control 
39 433.95 ±102.48 

188.00–653.00 

Pre-manifest 

HD 
20 504.55 ±124.12 

311.00–783.00 

Manifest 

 HD 
47 269.46 ±154.58 

19.00–629.00 

 

Figure 20 Box plot of peak cough flow (L/min) across groups  

 

 

 

 

 

 

 

 

 

 

 

 

Control  Healthy control participants 

Pre-Manifest  People with pre-manifest HD 

Manifest  People with manifest HD 
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Table 10 Post-hoc analysis for differences in peak cough flow across groups 

 Mean difference 

[95% CI] 

Mann-Whitney U 

P value 

Healthy control and pre-

manifest HD 

-70.60 

[131.27,-9.93] 

262.00 

0.040 

Healthy control and manifest 

HD 

164.49 

[105.80,223.17] 

289.00 

<0.001 

Pre-manifest HD and manifest 

HD 

235.09 

[155.70,314.48] 

86.00 

<0.001 

 

Further analysis of data related to swallow capacity and cough efficacy indicate a significant 

relationship between these two variables, r=0.515, p<0.001.  

The data related to type 1 respiratory failure shows that 23.4% of people with manifest HD 

reported respiratory problems and that these were predominantly people at the late stage of 

the disease. Underlying this data, 84.8% had abnormal swallow and 16.4% had ineffective 

cough (<160L/minute) with both variables having a positive relationship. This indicates that 

people with HD are at risk of aspiration pneumonia and type 1 respiratory failure. 

5.4 Data related to type 2 respiratory failure 

5.4.1 Capacity of respiratory pump 

The capacity of the respiratory pump was measured via inspiratory and expiratory muscle 

strength and single breath work capacity. A comparison was made between FVC in supine 

and upright sitting in order to investigate severe diaphragm weakness. The objective data 

related to inspiratory muscle strength were supplemented by subjective data from the 

respiratory questionnaire. 

5.4.1.1 Respiratory questionnaire 

The Royal Brompton Respiratory muscle symptom score questionnaire (Hart and Polkey 

2001) was used to collect data regarding respiratory symptoms. The questions related to 

inspiratory muscle weakness (question 1), nocturnal hypoventilation (questions 2-4) and 

expiratory muscle weakness (questions 5-6), see Table 11. 
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Table 11 Respiratory related problems in people with Huntington’s disease  

 
Pre-manifest HD 

n=20 

Manifest HD 

n=47 

 

 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Yes 

n (%) 

No 

n (%) 

Sometimes 

n (%) 

Do you ever feel 

breathless? 

2 

(10%) 

10 

(50%) 

8 

(40%) 

6 

(12.8%) 

29 

(61.7%) 

12 

(25.5%) 

Do you get morning 

headaches? 

n=20; 45 

3 

(15%) 

16 

(80%) 

1 

(5%) 

2 

(4.4) 

38 

(84.4%) 

5 

(11.1%) 

Do you feel sleepy during 

the day? 

6 

(30%) 

6 

(30%) 

8 

(40%) 

14 

(29.8%) 

20 

(42.6%) 

13 

(27.7%) 

Do you have difficulties 

sleeping? 

2 

(10%) 

11 

(55%) 

7 

(35%) 

12 

(25.5%) 

24 

(51.1%) 

11 

(23.4%) 

Do you have difficulties 

coughing? 

0 

(0%) 

18 

(90%) 

2 

(10%) 

12 

(25.5%) 

29 

(61.7%) 

6 

(12.8%) 

Do you have difficulties 

clearing secretions? 

0 

(0%) 

19 

(95%) 

1 

(5%) 

7 

(14.9) 

35 

(74.5%) 

5 

(10.6%) 

 

Breathlessness is a key symptom of inspiratory muscle weakness, and this was evident in 

50% or less of people with HD. The reasons for becoming breathless were: walking hills 

(n=3); walking (n=2); sitting (n=2); panic (n=1). The reasons for sometimes becoming 

breathless were: walking uphill (n=6); walking (n=4); running (n=2); playing squash (n=2); 

chesty (n=1); agitated (n=1); sitting (n=1); lying flat (n=1); jogging (n=1); hay fever (n=1). 

The reasons for breathlessness tended to be on exertion e.g. walking uphill, walking or 

running, with only 3 people feeling breathless while at rest. The median score on the 

Modified Borg Dyspnoea Scale taken before the six minute walk test was 0 for both people 

with pre-manifest and manifest HD, indicating no breathlessness. The range of scores was 0-

0.5 for people with pre-manifest HD and 0-2 for people with manifest HD, see Table 33. 

Expiratory muscle weakness was also noted by difficulties in coughing and/or clearing 

secretions. These difficulties were predominantly in people at the later stages of the disease, 

TFC 0-3 (n=8) but four people in the middle stage also experienced these difficulties. These 

difficulties were also reported by three people in people with pre-manifest HD.  
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5.4.1.2 Respiratory muscle strength and single breath work capacity 

Data from respiratory muscle strength and single breath work capacity tests are shown in 

Table 12. There were no differences between values for healthy control and people with pre-

manifest HD, people with manifest HD showed significantly reduced values compared to 

healthy control and people with pre-manifest HD values for respiratory muscle strength and 

single breath work capacity see Figure 21and Figure 22 and Tables 12-16. 

Measurements were taken of FVC in supine and sitting in people with pre-manifest and 

manifest HD to identify if diaphragm weakness existed. In normal subjects FVCsupine is 5-

10% of that in sitting, a decrease of >30% indicates severe weakness (American Thoracic 

Society/European Respiratory Society. 2002). FVCsupine was 96.03 ±7.34% (range 72.89-

108.55) and 89.69 ±27.27% (range 0.00-128.57) of FVC sitting in people with pre-manifest 

HD and people with manifest HD respectively. Five individuals had FVCsupine <70% of 

FVC sitting. Three of these were late stage participants with FVC % predicted 8-22%; MIP 2-

16% predicted and SNIP 2-37% predicted. Two were middle stage participants with FVC % 

predicted 61% and 73%; MIP 16-32% predicted and SNIP 37-5% predicted. 

The data show generalised respiratory muscle weakness in people with manifest HD in 

inspiratory (MIP 29.31% predicted, SNIP 36.65% predicted) and expiratory muscles (29.06% 

predicted). SNIP values were less than MIP values in healthy control and people with pre-

manifest HD, but not in people with manifest HD. This may be due to SNIP being relatively 

easier for people with HD to perform compared to MIP, with the sniff manoeuvre creating 

more complete neuromuscular activation (Fitting 2006). The recommendation that MIP and 

SNIP are not interchangeable (Uldry and Fitting 1995) is confirmed by the data in this study.  

SMIP was significantly reduced in people with manifest HD (99.45 ±121.32) compared to 

healthy control (427.50 ± 221.52) and people with pre-manifest HD (519.68 ±272.51). 

Although normative values for SMIP have not been developed, data from healthy subjects in 

a respiratory muscle training intervention study had baseline SMIP values of 415 ±129 and 

504 ±184 in both groups (Enright et al. 2006b). This would indicate that single breath work 

capacity in healthy control and people with pre-manifest HD may be typical values, whereas 

the values from people with manifest HD are atypical. 
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Table 12 Respiratory muscle function across groups 

 n 
Maximal Inspiratory Pressure 

(MIP) cmH2O 

Mean ±sd                Range 

% Predicted MIP 

 

Mean ±sd                 Range 

Healthy control 38 83.00 ±31.43 29–144 95.29 ±32.27 41.06–158.97 

Pre-manifest 

HD 
19 87.00 ±30.33 50–166 

97.68 ±29.45 46.00–160.00 

Manifest 

HD 
46 25.60 ±21.49 0–94 

29.31 ±24.25 0.00–121.00 

  

Sniff Nasal Inspiratory Pressure 

(SNIP) cmH2O 

Mean ±sd                Range 

% predicted SNIP 

 

Mean ±sd                  Range 

Healthy control 38 74.13 ±31.68 22–149 77.97 ±32.84 25.82–175.29 

Pre-manifest 

HD 
19 81.32 ±33.22 44–176 

85.29 ±32.69 41.00–157.00 

Manifest 

HD 
42 34.79 ±23.79 2–94 

36.65 ±26.62 2.00–109.00 

  

Maximal Expiratory Pressure 

(MEP) cmH2O 

Mean ±sd                  Range 

% predicted MEP 

 

Mean ±sd                 Range 

Healthy control 38 108.89 ±42.88 53–267 79.03 ±29.79 32.07–174.25 

Pre-manifest 

HD 
19 112.21 ±37.73 40–194 

80.67 ±31.40 30.00–144.00 

Manifest 

HD 
46 39.63 ±35.53 1–158 

29.06 ±28.38 0.00–120.00 

  

Sustained Maximal Inspiratory Pressure (SMIP) 

pressure time unit 

Mean ±sd                                            Range 

Healthy control 38 427.50 ±221.52 50–942 

Pre-manifest 

HD 
19 519.68 ±272.51 

220–1159 

Manifest 

HD 
38 99.45 ±121.32 

0–397 
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Figure 21 Box plots of SNIP and SNIP% predicted across groups 

 

 

 

 

 

 

 

 

 

a) SNIP across the three groups   b) SNIP % predicted across the three groups 

Figure 22  Box Plots for MEP and MEP% predicted across groups 

 

 

 

 

 

 

 

 

 

a) MEP across the three groups   b) MEP% predicted across the three groups 

 

SNIP  Sniff Nasal Inspiratory pressure (cmH2O) 

MEP  Maximal Expiratory Pressure (cmH2O) 

Control Healthy control participants 

Pre-Manifest People with Pre-manifest HD 

Manifest People with Manifest HD 
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Table 13 Main differences in respiratory muscle function across groups  

 Chi-square p value 

MIP 60.55 <0.001 

MIP% predicted 62.97 <0.001 

SNIP 40.2 <0.001 

SNIP% predicted 38.50 <0.001 

MEP 52.50 <0.001 

MEP% predicted 46.84 <0.001 

SMIP 49.95 <0.001 

control (n=39), pre-manifest (n=20), manifest groups (n=47), df=2. 

Kruskall-Wallis analysis 

MIP Maximal inspiratory pressure (cmH2O) 

SNIP Sniff nasal inspiratory pressure (cmH2O) 

MEP Maximal expiratory pressure (cmH2O) 

SMIP Sustained maximal inspiratory pressure (Pressure time unit) 

Table 14 Post-hoc analysis of respiratory muscle function: control and pre-

manifest groups 

 
Healthy control 

Mean ±sd 

Pre-manifest HD 

Mean ±sd 

Mean difference 

[95%CI] 

U value 

p 

MIP 
83.00 ±31.43 87.00 ±30.33 -4.00 

[-21.50,13.50] 

345.00 

0.786 

MIP% predicted 
95.28 ±32.27 97.68 ±29.24 -2.39 

[-20.03,15.24] 

356.00 

0.953 

SNIP 
74.13 ±31.68 81.32 ±33.22 -7.18 

[-25.31,10.94] 

321.50 

0.504 

SNIP% 

predicted 

77.97 ±32.84 85.29 ±32.69 -7.32 

[-25.78,11.14] 

320.00 

0.488 

MEP 
108.89 ±42.88 112.21 ±37.73 -3.316 

[-26.55,19.91] 

326.00 

0.553 

MEP% 

predicted 

79.03 ±29.79 80.67 ±31.40 -1.64 

[-18.72,15.44] 

348.00 

0.826 

SMIP 
427.50 ±221.52 519.68 ±272.51 -92.18 

[-226.99,42.62] 

301.50 

0.314 

Mann-Whitney U analysis 

MIP Maximal inspiratory pressure (cmH2O) 

SNIP Sniff nasal inspiratory pressure (cmH2O) 

MEP Maximal expiratory pressure (cmH2O) 

SMIP Sustained maximal inspiratory pressure (Pressure time unit)  
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Table 15 Post-hoc analysis of respiratory muscle function: control and 

manifest groups 

 

Healthy control 

 

Mean ±sd 

Manifest 

HD 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

MIP 
83.00 ±31.43 25.60 ±21.41 57.40 

[45.97,68.84] 

112.00 

<0.001 

MIP% predicted 
95.29 ±32.27 29.31 ±24.25 65.98 

[53.70,78.26] 

84.00 

<0.001 

SNIP 
74.13 ±31.68 34.42 ±23.63 39.71 

[27.44,51.99] 

240.00 

<0.001 

SNIP% 

predicted 

77.97 ±32.84 36.65 ±26.61 41.32 

[28.07,54.58] 

242.00 

<0.001 

MEP 
108.89 ±42.88 38.87 ±35.52 70.02 

[53.11,86.93] 

163.50 

<0.001 

MEP% 

predicted 

79.03 ±29.79 29.06 ±28.38 49.97 

[37.31,62.62] 

183.00 

<0.001 

SMIP 
427.50 ±221.52 99.45 ±121.32 328.05 

[246,409.69] 

120.00 

<0.001 

Mann-Whitney U analysis 

MIP Maximal inspiratory pressure (cmH2O) 

SNIP Sniff nasal inspiratory pressure (cmH2O) 

MEP Maximal expiratory pressure (cmH2O) 

SMIP Sustained maximal inspiratory pressure (Pressure time unit) 
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Table 16 Post-hoc analysis of respiratory muscle function: pre-manifest and 

manifest groups 

 
Pre-manifest HD 

Mean ±sd 

Manifest HD 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

MIP 
87.00 ±30.33 25.60 ±21.41 61.40 

[48.23,74.58] 

37.00 

<0.001 

MIP% predicted 
97.68 ±29.24 29.31 ±24.25 68.37 

[54.33,82.42] 

31.00 

<0.001 

SNIP 
81.32 ±33.22 34.42 ±23.63 46.90 

[32.09,61.70] 

81.50 

<0.001 

SNIP% 

predicted 

85.29 ±32.69 36.65 ±26.61 48.64 

[32.82,64.47] 

83.50 

<0.001 

MEP 
112.21 ±37.73 38.87 ±35.52 73.34 

[53.70,92.98] 

68.50 

<0.001 

MEP% 

predicted 

80.67 ±31.40 29.06 ±28.38 51.61 

[35.65,67.56] 
96.50 

<0.001 

SMIP 
519.68 ±272.51 99.45 ±121.32 420.24 

[316.10,524.38] 
38.00 

<0.001 

Mann-Whitney U analysis 

MIP Maximal inspiratory pressure (cmH2O) 

SNIP Sniff nasal inspiratory pressure (cmH2O) 

MEP Maximal expiratory pressure (cmH2O) 

SMIP Sustained maximal inspiratory pressure (Pressure time unit) 
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5.4.2 Load placed on the respiratory pump 

FVC as a measure of lung volume was used as an indirect measure of elastic load. FEV1/FVC 

is used as an indicator of obstructive and restrictive disorders. Resistive load created by lower 

and upper airways was measured as PEFR, FEV1 and FEV1/PEFR and visual analysis of 

flow-volume loops.  

5.4.2.1 Elastic load  

Data from lung function tests are shown in Table 17, with box plots illustrating differences 

across the groups in Figure 23, and statistical analysis in Tables 18-21. Measures of forced 

vital capacity (FVC) were greatly reduced in people with manifest HD; mean % predicted 

56.70 ±31.69. Seven participants in the healthy control group had FVC%predicted <80%. 

Further analysis of the raw data did not highlight a respiratory problem in specific 

participants as each had normal values in other respiratory variables and therefore none of 

these participants were referred for further investigation. Participants with FVC%predicted 

(n=7) included 1 male, ranged from 21-83 years old, were all non-smokers had %predicted 

values for FEV1 67-88%; PEFR 68-98% and  MIP 44-138% with PCF values of  304-

508L/min. 

The variance in data from people with manifest HD data were greater than that in people with 

pre-manifest HD and healthy control groups, 13.84 and 15.89 respectively, demonstrating 

that people with manifest HD were less homogenous than people with pre-manifest HD or 

healthy control. This would be expected considering the range of disease severity and 

functional ability. For FVC% predicted, 36 people with manifest HD (53.73%), had a value 

of <80%, this being the critical value in people with ALS for exploring supportive non-

invasive ventilation if respiratory symptoms also exist (Andersen et al. 2012). Of these 36 

people, 18 were late, 17 middle and 1 early stage of the disease. FEV1/FVC was higher in 

people with manifest HD (89.89 ±11.22) compared to healthy control (85.64 ±10.18) and 

people with pre-manifest HD (85.48 ±9.93). This difference was significant between the three 

groups, but when Bonferroni correction was applied for post-hoc analysis, the differences 

between healthy control and people with manifest HD and between people with pre-manifest 

HD and people with manifest HD were not significant. This indicates a restrictive pattern in 

people with manifest HD as defined as ≥70 and FVC <80%predicted (Ford et al. 2013). The 

significantly decreased lung volume and trend of increased FEV1/FVC, suggests that elastic 

load is increased in people with manifest HD. 
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Table 17 Lung volume across groups 

 N 

Forced vital capacity 

(FVC) litres 

Mean ±sd             Range 

%predicted FVC 

 

Mean ±sd              range 

Healthy 

control 
39 3.59 ±0.92 1.78–6.00 

94.05 ±15.89 55–129 

Pre-manifest 

HD 
20 3.93 ±0.97 2.79–6.51 

101.15 ±13.84 65–122 

Manifest 

HD 
47 2.14 ±1.39 0.21–5.77 

56.70 ±31.69 7–114 

  
FEV1/FVC 

Mean ±sd                                           Range 

Healthy 

control 
39 85.64 ±10.18 

52.71–101.00 

Pre-manifest 

HD 
20 85.48 ±9.93 

64.82–114.00 

Manifest 

HD 
47 89.89 ±11.22 

62.88–119.05 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 

Figure 23 Box plots of FVC, FVC% predicted across groups 

a) FVC in the three groups               b) FVC% predicted in the three groups 

FVC  Forced vital capacity (litres) 

Table 18 Main differences in lung volume across groups  

 Chi-square p value 

FVC 33.71 <0.001 

FVC% predicted 43.76 <0.001 

FEV1/FVC 6.27 0.036 

control (n=39), pre-manifest (n=20), manifest groups (n=47), df = 2. 

FVC  Forced vital capacity (litres) 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 
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Table 19 Post-hoc analysis of lung volume: control and pre-manifest groups 

 

Healthy control 

Mean ±sd 

Pre-manifest HD 

 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

FVC (Litres) 
3.59 ±0.92 3.93 ±0.97 -0.34 

[-0.86,0.17] 

331.00 

0.342 

FVC 

% predicted 

94.05 ±15.89 101.15 ±13.83 -7.10 

[-15.49,1.29] 

263.50 

0.043 

FEV1/FVC 
85.64 ±10.18 85.48 ±9.93 0.15 

[-5.41,5.71] 

353.50 

0.559 

FVC  Forced vital capacity (litres) 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 

 

Table 20 Post-hoc analysis of lung volume: control and manifest groups 

 
Healthy control 

Mean ±sd 

Manifest HD 

Mean ±sd 

Mean difference 

[95%CI] 

U value 

p 

FVC (Litres) 
3.59 ±0.91 2.14 ±1.39 1.45 

[0.93,1.96] 

352.50 

<0.001 

FVC% 

predicted 

94.05 ±15.89 56.70 ±31.69 37.35 

[26.25,48.45] 

285.50 

<0.001 

FEV1/FVC 
85.64 ±10.18 89.89 ±11.22 -4.26 

[-8.89,0.38] 
683.50 

0.043 

FVC  Forced vital capacity (litres) 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 

 

Table 21 Post-hoc analysis of lung volume: pre-manifest and manifest groups 

 
Pre-manifest HD 

Mean ±sd 

Manifest HD 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

FVC (Litres) 
3.93 ±0.97 2.14 ±1.39 1.79 

[1.11,2.47] 
131.00 

<0.001 

FVC% 

predicted 

101.15 ±13.83 56.70 ±31.69 44.45 

[29.68,59.21] 

87.50 

<0.001 

FEV1/FVC 
85.48 ±9.93 89.89 ±11.22 -4.41 

[-10.19,1.38] 

308.50 

0.027 

FVC  Forced vital capacity (litres) 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 
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5.4.2.2 Resistive load 

Large airway obstruction as measured by PEFR% predicted (49.49% ±29.53) in people with 

manifest HD was greater than small airway obstruction as measured by FEV1, % predicted 

(60.51% ±33.94), see Table 22.  

FEV1 predicted was significantly less in people with manifest HD (60.51% ±33.94) compared 

to healthy control (95.26% ±14.88) and people with pre-manifest HD (101.35% ±15.19), see 

Tables 23-26. Although this would appear to indicate small airway obstruction, when these 

data are analysed alongside decreased lung volume, it may be due to a restrictive pattern 

rather than obstructive. 

Five participants in the healthy control group had FEV1%predicted < 80%. Three of these 

people also had FVC%predicted <80% indicating a restrictive respiratory pattern rather than 

obstructive due to airway narrowing. One participant, aged 49, with FEV1%predicted 74% 

was a non-smoker with FVC%predicted 87%; PEFR%predicted 84% and MEP%predicted 

70%. The low FEV1%predicted value may highlight low effort during the test. 

One participant, aged 30 with FEV1%predicted 58% was a non-smoker with FVC%predicted 

92%, PEFR%predicted 59% and MEP%predicted 87%. Data related to airway obstruction 

were low, but study notes did not highlight any respiratory problem. 

Table 22 Resistive load across groups  

 n 

Forced expiratory volume in 1 

second (FEV1) litres 

Mean ±sd             Range 

% predicted FEV1 

 

Mean ±sd              range 

Healthy 

control 
39 3.02 ±0.83 1.64–5.00 

95.26 ±14.88 58–129 

Pre-manifest 

HD 
20 3.31 ±0.79 2.16–4.86 

101.35 ±15.19 57–121 

Manifest 

HD 
47 1.88 ±1.20 0.25–4.67 

60.51 ±33.94 9–121 

  
Peak expiratory flow rate (PEFR) 

litres/minute 

% predicted PEFR 

Healthy 

control 
39 457.41 ±113.22 247–671 

100.13 ±18.71 59–131 

Pre-manifest 

HD 
20 435.05 ±139.73 145–678 

92.60 ±24.63 34–129 

Manifest 

HD 
47 221.49 ±141.61 32–581 

49.49 ±29.53 6–115 
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Table 23 Main differences in resistive load across groups  

 Chi-square p value 

FEV1 28.09 <0.001 

FEV1% predicted 33.80 <0.001 

PEFR 47.85 <0.001 

PEFR% predicted 51.35 <0.001 

control (n=39), pre-manifest (n=20) and manifest groups (n=47), df=2. 

FEV1  Forced expiratory volume in one second (litres) 

PEFR  Peak expiratory flow rate (litres/minute) 

 

Table 24 Post-hoc analysis of resistive load: control and pre-manifest groups 

 

Healthy control 

 

Mean ±sd 

Pre-manifest HD 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

FEV1 
3.02 ±0.83 3.31 ±0.79 -0.29 

[-0.74,0.16] 

297.00 

0.135 

FEV1% 

predicted 

95.26 ±14.88 101.35 ±15.19 -6.09 

[-14.34,2.16] 

272.50 

0.060 

PEFR 
457.41 ±113.22 435.05 ±139.73 22.36 

[-45.21,89.93] 

365.50 

0.695 

PEFR% 

predicted 

100.13 ±18.71 92.60 ±24.63 7.58 

[-3.97,19.02] 

325.00 

0.298 

FEV1  Forced expiratory volume in one second (litres) 

PEFR  Peak expiratory flow rate (litres/minute) 

 

Table 25 Post-hoc analysis of resistive load: control and manifest groups 

 

Healthy control 

 

Mean ±sd 

Manifest HD 

 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

FEV1 
3.02 ±0.83 1.88 ±1.20 1.14 

[0.69,1.59] 

406.00 

<0.001 

FEV1% 

predicted 

95.26 ±14.88 60.51 ±33.94 34.75 

[23.10,46.39] 

360.50 

<0.001 

PEFR 
457.41 ±113.224 221.49 ±141.61 235.92 

[180.12,291.72] 

180.50 

<0.001 

PEFR% 

predicted 

100.13 ±18.71 49.49 ±29.53 50.64 

[39.78,61.50] 

144.00 

<0.001 

FEV1  Forced expiratory volume in one second (litres) 

PEFR  Peak expiratory flow rate (litres/minute) 
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Table 26 Post-hoc analysis of resistive load: pre-manifest and manifest 

groups 

 

Pre-manifest HD 

Mean ±sd 

Manifest HD 

 

Mean ±sd 

Mean difference 

[95%CI] 
U value 

p 

FEV1 
3.31 ±0.79 1.88 ±1.20 1.43 

[0.84,2.01] 

165.50 

<0.001 

FEV1% 

predicted 

101.35 ±15.19 60.51 ±33.94 40.84 

[25.00,56.68] 

136.50 

<0.001 

PEFR 
435.05 ±139.73 221.49 ±141.61 213.56 

[138.35,288.77] 

120.00 

<0.001 

PEFR% 

predicted 

92.60 ±24.63 49.49 ±29.53 43.11 

[28.08,58.14] 

124.00 

<0.001 

FEV1  Forced expiratory volume in one second (litres) 

PEFR  Peak expiratory flow rate (litres/minute) 

 

Further analysis of these data, see Table 27, show that 50.7% of all participants had a 

FEV1/PEFR ratio of >8, which may indicate an upper airway obstruction, with no difference 

between people with pre-manifest HD and people with manifest HD (χ
2
=1.317, p=0.251). 

Increased resistive load in people with HD is therefore more likely to be from an upper 

airway obstruction i.e. pharynx and larynx than bronchial obstruction.  

Table 27 FEV1/PEFR ratio in people with Huntington’s disease  

 FEV1/PEFR ratio ≤8 FEV1/PEFR >8 

Pre-manifest HD 12 (60.0%) 8 (40.0%) 

Manifest 21 (44.7%) 26 (55.3%) 

All people with HD 33 (49.3%) 34 (50.7%) 

FEV1  Forced expiratory volume in  one second (litres) 

PEFR  Peak expiratory flow rate (litres/minute) 

 

This was further explored by visual analysis of flow volume loops, see Figures24 - 29. 

Truncation of the loop and flattened inspiratory curves are suggestive of vocal cord 

dysfunction (Watson et al. 2009) and these were illustrated in both people with pre-manifest 

HD (8 (44%)) and manifest HD (22 (51%)). Caution must be taken with diagnoses from flow 

volume curves as they do not accurately predict pathology and subject’s full effort is needed 

during the manoeuvre (Pellegrino et al. 2005).  

Visual analysis of plots for people with pre-manifest HD (n=18), showed 9 (50%) normal; 7 

(39%) with flattened inspiratory curves (indicative of laryngeal/pharyngeal obstruction); 1 

(5.5%) truncated (indicative of vocal cord dysfunction) and 1 (5.5%) with rounded expiration 

(indicative of main bronchi obstruction). Figure 24 and Figure 25 illustrate normal and 

abnormal curves in people with pre-manifest HD. 
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Analysis of flow volume curves for people with manifest HD (n=43) showed 4 (9%) normal; 

2 (5%) normal shape but with reduced flow rates; 18 (42%) truncated; 7 (16%) irregular; 6 

(14%) rounded expiratory curve; 4 (9%) flattened inspiratory curve; 2 (5%) with flow and 

volume too small to analyse. Figures 26 - 29 illustrate the abnormal curves found in people 

with manifest HD.  

Figure 24 Normal flow volume curve in participant with pre-manifest 

Huntington’s disease 
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Figure 25 Abnormal flow volume curves in people with pre-manifest 

Huntington's disease 

 

 

 

 

 

 

 

 

 

 

a) flattened inspiratory curve           b) rounded expiration 

 

 

 

 

 

 

 

 

 

 

Figure 26 Truncated flow volume curves in people with manifest Huntington’s 

disease 

 

 

 

 

 

 

 

 

c) truncated inspiratory curve 
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Figure 27 Irregular flow volume curves in people with manifest Huntington’s 

disease 

 

 

 

 

 

 

 

 

 

 

Figure 28 Rounded flow volume curves in people with manifest Huntington’s 

disease  

 

 

 

 

 

 

 

 

 

  

a) flattened inspiratory curve   b) rounded expiration 
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Figure 29 Flattened inspiratory curve in people with manifest Huntington’s 

disease 

 

 

 

 

 

 

 

 

 

 

The data collected indicate that both elastic and restrictive load may be increased in people 

with manifest HD. Decreased lung volume and the trend of a restrictive pattern suggest an 

increase in elastic load. Restrictive load is increased and appears likely to be due to upper 

airway obstruction (PEFR 49.49% predicted). Analysis of FEV1/PEFR and flow volume 

loops suggest that restrictive load is increased in both people with pre-manifest and manifest 

HD, which may be due to laryngeal/pharyngeal dysfunction. 

5.5 Variables influencing respiratory function 

The relationships between respiratory function and variables that may influence or be 

influenced by respiratory function were explored in people with manifest HD. These 

variables were swallow, posture, exercise capacity and physical activity. Specific measures 

were chosen for each relational analysis, dependent upon the influencing variable. 

The relationship between swallow capacity and respiratory function was explored using FVC, 

MIP, SNIP and MEP as lung volume, inspiratory and expiratory muscle strength are all 

components of effective cough (McCool 2006a). The relationship between PCF and swallow 

capacity has already been explored in section 5.3.4. 

Altered thoracic posture may increase the load placed on the respiratory pump by decreasing 

lung volumes and altering the biomechanical properties of the respiratory muscles. 

Relationships between FVC, FEV1/FVC, PCF, MIP and SNIP and thoracic angle were 

analysed. 

Decreased exercise tolerance and physical activity may influence and be influenced by 

respiratory function. Decreased lung volume may decrease gaseous exchange with a 
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consequent decrease in exercise capacity. Decreased activity may cause general de-

conditioning with loss of strength and endurance of muscles, both peripheral and respiratory. 

Decreased respiratory muscle strength, due to altered biomechanics and/or weakened muscles 

may lead to decreased activity. Relationships between exercise tolerance/physical activity 

and FVC, MIP, SNIP and SMIP were analysed. 

5.5.1 Swallow capacity 

Descriptive data regarding swallow capacity is in Table 8. Scatterplots of respiratory function 

and swallow capacity demonstrated positive relationships, see Figure 30. The relationships 

were significantly correlated: Rs ranged 0.515–0.781; Rs
2
 ranged 0.265–0.610; p<0.01, see 

Figure 30 and Table 28. This analysis was repeated for % predicted swallow and respiratory 

function values see Table 29 with similar findings. 

A significant positive relationship has already been established between swallow capacity 

and PCF, see section 5.3.4. Decreased swallow capacity is therefore related to low lung 

volume and hence increased load and decreased respiratory muscle strength and hence 

decreased capacity of the respiratory pump. These relationships were similar when absolute 

and predicted values were analysed.  

Table 28  Relationships between respiratory function and swallow  

 Rs Rs
2
 p value 

MIP 0.781 0.610 <0.001 

MIP% predicted 0.760 0.578 <0.001 

FVC 0.741 0.549 <0.001 

SNIP 0.705 0.497 <0.001 

MEP 0.699 0.489 <0.001 

FVC% predicted 0.690 0.476 <0.001 

MEP% predicted 0.617 0.381 0.002 

SNIP% predicted 0.597 0.356 <0.001 

PCF 0.515 0.265 0.001 

MIP  Maximal inspiratory pressure (cmH2O) 

FVC  Forced vital capacity (litres) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MEP  Maximal expiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Rs  Spearman’s correlation coefficient 
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Figure 30  Scatterplots of respiratory function against swallow capacity  

MIP  Maximal inspiratory pressure 

FVC  Forced vital capacity 

Table 29  Relationships between % predicted respiratory function and 

%predicted swallow capacity  

 Rs Rs
2
 p value 

MIP% predicted 0.789 0.623 <0.001 

FVC% predicted 0.705 0.497 <0.001 

SNIP% predicted 0.681 0.464 <0.001 

MEP% predicted 0.661 0.437 <0.001 

MIP  Maximal inspiratory pressure 

FVC  Forced vital capacity 

SNIP  Sniff nasal inspiratory pressure 

MEP  Maximal expiratory pressure 

Rs  Spearman’s correlation coefficient 
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5.5.2 Posture 

Descriptive data for thoracic, neck and head posture are detailed in Table 30. People with 

manifest HD were more kyphotic and had increased head tilt in comparison with people with 

pre-manifest HD. Analysis of respiratory function and posture was limited to thoracic angle. 

Scatterplots of respiratory function and thoracic angle demonstrated negative relationships, 

i.e. as thoracic angle increased, respiratory function decreased, see Figure 31. The 

relationships were significantly correlated, except for FEV1/FVC: Rs ranged -0.388-0.551; 

Rs
2
 ranged 0.151-0.304; p <0.05, see Table 31. These data suggest a kyphotic posture is 

related to increased elastic load as measured by lung volume and decreased capacity of the 

respiratory pump as measured by respiratory muscle strength. 

Table 30  Descriptive analysis of posture in people with Huntington’s disease 

 Pre-manifest HD 

 

n=18 

Manifest HD 

 

n=43 

t-value 

p 

[95%CI] 

Thoracic angleº 

Mean ±sd 

[95%CI] 

43.26 ±10.14 

[38.21, 48.30] 

51.95 ±13.30 

[47.85,56.04] 

t=-2.481 

p=0.016 

[-15.70,-1.68] 

Neck angleº 

Mean ±sd 

[95%CI] 

39.03 ±8.42 

[34.84, 43.21] 

26.16 ±52.78 

[9.92, 42.40] 

t=1.553 

p=0.127 

[-3.8, 29.55] 

Head tiltº 

Mean ±sd 

[95%CI] 

151.02 ±10.13 

[145.98, 156.06] 

123.10 ±68.18 

[102.12, 144.09] 

t=2.617 

p=0.012 

[6.45, 49.39] 
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Figure 31  Scatterplots of respiratory function against thoracic angle 

 

 

 

 

 

 

FVC  Forced vital capacity (litres) 

MIP   Maximal inspiratory pressure (cmH2O) 
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Table 31  Relationships between respiratory function and thoracic angle 

 Rs Rs
2
 p value 

MIP% predicted -0.551 0.304 <0.001 

MIP -0.526 0.277 <0.001 

SNIP% predicted -0.488 0.238 0.003 

SNIP -0.465 0.216 0.002 

FVC% predicted -0.465 0.216 0.002 

FVC -0.427 0.182 0.004 

PCF -0.388 0.151 0.016 

FEV1/FVC 0.032 0.001 0.837 

MIP  Maximal inspiratory pressure (cmH2O) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

FVC  Forced vital capacity (litres) 

PCF  Peak cough flow (litres/minute) 

FEV1/FVC Forced expiratory volume in one second/forced vital capacity 

Rs  Spearman’s correlation coefficient 

5.5.3 Exercise capacity 

Table 32 shows the distances walked during six minutes for people with pre-manifest HD and 

people with manifest HD, compared with data from Quinn et al 2013. The values for people 

with manifest HD is much lower in the current study compared to Quinn et al (2013) yet 

people with pre-manifest HD is similar. Predicted values for 6MWD were calculated from 

Enright and Sherrill (1998) 6MWD% predicted is significantly lower in people with manifest 

HD compared to people with pre-manifest HD (t=10.55, p<0.001 [41.25, 60.54]).  

Table 32  Descriptive analysis of six minute walk distance  

 Quinn et al (2013) This study 6MWD% predicted 

for this study 

Pre-manifest HD 

6MWD 

mean ±sd 

[95% CI] 

515.75 ±101.66 

[447.5, 584.1] 

503.39 ±88.51 

[461.96, 544.81] 

78.63 ±12.84 

[72.62, 84.64] 

Manifest HD 6MWD 

mean ±sd 

[95% CI] 

381.66 ±129.97 

[348.65, 414.67] 

173.32 ±166.133 

[123.99, 222.66] 

27.73 ±26.29 

[19.92, 35.54] 

6MWD six minute walk distance (metres) 

Data related to heart rate, respiratory rate, saturation of O2, perceived dyspnoea and perceived 

exertion were taken before and after the six minute walk test, see Table 33. The data are 

incomplete for some variables. 

Respiratory rate was slightly higher than the typical value of 12 at rest, but did not reach the 

typical rate of 30 for moderate exercise (McArdle et al. 2010), after the 6MWT. Observations 

whilst measuring respiratory rate noted that the rate was often irregular before the walking 

test, but became regular immediately afterwards. Heart rate before the test was typical for 
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untrained people (McArdle et al. 2010), with a small rise after the test. Desaturation did not 

occur during the walk.  

Before the test, 70.8% of people with manifest HD had a perceived dyspnoea score of 0 

(nothing at all) with 57.1% having a perceived exertion score of 6 (no exertion at all).  The 

maximum pre-test score for perceived dyspnoea was 2 (slight), and exertion was perceived at 

a maximum of 15 (hard, heavy). After the walk, 87.0% of people perceived dyspnoea to be 

moderate (3) or less with 80% perceiving exertion to be somewhat hard (13) or less.  

Table 33  Variables related to six minute walk test 

 Before 6MWT After 6MWT 

Respiratory rate (breaths per minute) 15 ±5 n=29 19 ±6 n=18 

Heart rate (beats per minute) 74 ±12 n=34 86 ±18 n=24 

Saturation O2 (%) 96 ±2 n=33 97 ±1 n=23 

Perceived dyspnoea 

(0-10 scale) 

Median 0 

Range 0-2 n=24 

Median 2 

Range 0-7 n=23 

Perceived exertion 

(6-20 scale) 

Median 6 

Range 6-15 n=21 

Median 13 

Range 6-17 n=20 

6MWT  six minute walk test 

Scatterplots of respiratory function and distance walked in six minutes demonstrated positive 

relationships, see Figure 32. The relationships were significantly correlated: Rs ranged 0.504-

0.780; Rs
2
 ranged 0.254–0.608; p<0.01, see Table 34. This analysis was repeated for 

respiratory function % predicted values and % predicted six minute walk distance with 

similar results, see Table 35. These data indicate that decreased exercise tolerance is related 

to increased load i.e. low lung volume and decreased capacity of the respiratory muscles. 

  



140 

 

Figure 32  Scatterplots of respiratory function against 6 minute walk distance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FVC  Forced vital capacity (litres) 

MIP  Maximal inspiratory pressure (cmH2O) 

6MWD six minute walk distance (metres) 

Table 34  Relationships between respiratory function and 6 minute walk 

distance 

 
Rs Rs

2
 p value 

FVC% predicted 0.780 0.908 <0.001 

FVC 0.759 0.576 <0.001 

MIP 0.746 0.557 <0.001 

MIP% predicted 0.725 0.526 <0.001 

SMIP 0.652 0.425 <0.001 

SNIP 0.598 0.358 <0.001 

SNIP% predicted 0.504 0.254 0.002 

FVC  Forced vital capacity (litres) 

MIP  Maximal inspiratory pressure (cmH2O) 

SMIP  Sustained maximal inspiratory pressure (pressure time units) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

Rs   Spearman rank correlation coefficient 
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Table 35  Relationships between respiratory function and 6 minute walk 

distance % predicted 

 
Rs Rs

2
 p value 

FVC% predicted 0.778 0.605 <0.001 

MIP% predicted 0.711 0.506 <0.001 

SNIP% predicted 0.245 0.060 0.001 

FVC  Forced vital capacity (litres) 

MIP  Maximal inspiratory pressure (cmH2O) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

Rs   Spearman rank correlation coefficient 

 

5.5.4 Physical activity  

Data collected from IPAQ allowed for categorical and continuous data to be analysed. Total 

METs min/week was categorised into high (>3000), moderate (601-2999) and low (<600). In 

people with HD, 10.61% (n=7) were categorised as high activity, 33.33% (n=22) as moderate 

and 56.10% (n=37) as low activity (IPAQ Research Committee. 2005). The median scores 

for people with pre-manifest HD and manifest HD were moderate, 1502.50 (IQR=2418.4), 

and low, 82.50 (IQR=618.80) respectively. Similar to exercise capacity, these results are 

lower than those found by Quinn et al. (2013) with mean values of 2649 ±2107 for people 

with pre-manifest HD and 1354 ±1796 for people with manifest HD.  

Differences between people with pre-manifest HD and manifest HD were not analysed as 

IPAQ is recommended as a population surveillance measure rather than an outcome measure 

(IPAQ Research Committee. 2005). Scatterplots of respiratory function and total METs 

demonstrated positive relationships, see Figure 33. The relationships were significantly 

correlated: Rs ranged 0.627-0.790; Rs
2
 ranged 0.276-0.624; p<0.001, see Table 36. These 

findings are similar to exercise capacity, with decreased physical activity being related to 

increased load and decreased capacity of the respiratory pump. 
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Figure 33  Scatterplots of respiratory function against total METs 

FVC  Forced vital capacity (litres) 

MIP  Maximal inspiratory pressure (cmH2O) 

METs  Metabolic equivalents (minutes/week) 

 

Table 36  Relationships between respiratory function and total METs 

 
Rs Rs

2
 p value 

FVC% predicted 0.790 0.624 <0.001 

MIP 0.775 0.600 <0.001 

MEP 0.775 0.600 <0.001 

SMIP 0.758 0.575 <0.001 

FVC 0.755 0.570 <0.001 

MEP% predicted 0.728 0.530 <0.001 

MIP% predicted 0.725 0.526 <0.001 

SNIP 0.627 0.393 <0.001 

SNIP% predicted 0.525 0.276 0.001 

FVC  Forced vital capacity (litres) 

MIP  Maximal inspiratory pressure (cmH2O) 

MEP  Maximal expiratory pressure (cmH2O) 

SMIP  Sustained maximal inspiratory pressure (pressure time units) 

SNIP  Sniff nasal inspiratory pressure cmH2O) 

Rs  Spearman’s correlation coefficient 
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5.5.5 Summary of relational analysis 

Respiratory function significantly correlated with swallow capacity, posture, exercise 

capacity and physical activity. The possibility of further exploration using linear regression 

was not carried out due to non-normal distribution of respiratory function data and the 

likelihood of colinearity. Using descriptors suggested by Portney and Watkins (2009), the 

data were reviewed for r values >0.75, indicating a good-excellent relationship. It was noted 

that forced vital capacity and inspiratory muscle strength demonstrated excellent relationships 

with exercise capacity and physical activity, with inspiratory muscle strength also 

demonstrating an excellent relationship with swallow capacity. This is illustrated in Figure 

34. These results indicate that a complex relationship exists between respiratory function and 

exercise capacity, physical activity and swallow. The relationship between respiratory 

function and posture was fair to moderate. 

Figure 34  Key relationships between respiratory function and influencing 

factors 

 

 

 

 

 

 

 

 

 

 

 

MIP  Maximal inspiratory pressure (cmH2O) 

FVC  Forced vital capacity (litres) 
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5.6 Respiratory function and progression of Huntington’s disease 

The previous section investigated respiratory function in people with HD in the context of the 

framework of respiratory failure. Further analysis was undertaken to establish if respiratory 

function changed across the progression of the disease. This was achieved in two ways: the 

analysis of relationships between measures of disease severity and respiratory function and a 

follow up study with 10 people with manifest HD. 

5.6.1 Relationship between disease severity and respiratory function 

Disease severity was measured from functional (TFC) and motor (UHDRS:TMS) 

perspectives. Relationships were explored between these variables and all measures of 

respiratory function in people with manifest HD. Scatterplots of measures of respiratory 

function against TFC and against UHDRS:TMS demonstrated a positive relationship for all 

variables except FEV1/FVC. This scatterplot showed no relationship between FEV1/FVC and 

TFC. Typical scatterplots are shown in Figures 35-40. 

All variables, except FEV1/FVC, showed significant positive relationships with TFC and 

significant negative relationships with UHDRS:TMS. For TFC, Rs ranged from 0.716 (PCF)–

0.863 (MIP); Rs
2
 ranged from 0.513–0.745; p<0.001, see Table 37. For UHDRS:TMS Rs 

ranged from -0.625 (SNIP% predicted) to -0.874 (MIP% predicted); Rs
2
 ranged 0.39 –0.824; 

p<0.001, see Table 38. These results indicate that respiratory function declines linearly as 

Huntington’s disease progresses i.e. as TFC decreases and UHDRS:TMS increases. 

Further analysis was carried out to explore the relationship between PCF and TFC in order to 

predict when people with HD would have a PCF <270L/minute and therefore require 

interventional strategies to improve cough efficacy. Linear regression was used and a 

prediction equation generated: PCF=120.36 +27.91TFC. When PCF is 270, TFC is 5.36, i.e. 

middle stage of the disease suggesting that cough efficacy may be reduced when TFC <6. 

  



145 

 

Figure 35  Scatterplots of FVC and FVC% predicted against TFC 

FVC  Forced vital capacity (litres) 

TFC  Total functional capacity (0-12) 

 

Figure 36 Scatterplots of MIP and MIP% predicted against TFC 

 

 

 

 

 

 

 

 

 

MIP  Maximal inspiratory pressure (cmH2O) 

TFC  Total functional capacity (0-12) 
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Figure 37 Scatterplot of PCF against TFC 

 

 

 

 

 

 

 

 

 

PCF  Peak cough flow (litres/minute) 

TFC  Total functional capacity (0-12) 

 

Table 37 Relationships between respiratory function and total functional 

capacity 

 Rs Rs
2
 p value 

MIP 0.863 0.745 <0.001 

FVC% predicted 0.859 0.738 <0.001 

MIP% predicted 0.854 0.729 <0.001 

MEP 0.848 0.719 <0.001 

MEP% predicted 0.832 0.692 <0.001 

FEV1% predicted 0.827 0.984 <0.001 

FVC 0.819 0.671 <0.001 

SNIP 0.806 0.650 <0.001 

FEV1 0.805 0.648 <0.001 

SMIP 0.785 0.616 <0.001 

SNIP% predicted 0.726 0.527 <0.001 

PCF 0.716 0.513 <0.001 

FEV1/FVC -0.231 0.053 0.119 

MIP  Maximal inspiratory pressure (cmH2O) 

FVC  Forced vital capacity (litres) 

MEP  Maximal expiratory pressure (cmH2O) 

FEV1  Forced expiratory volume in one second (litres) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

SMIP  Sustained maximal inspiratory pressure (pressure time units) 

PCF  Peak cough flow (litres/minute) 

Rs  Spearman’s correlation coefficient 
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Figure 38 Scatterplots of FVC and FVC% predicted against UHDRS: TMS 

FVC  Forced vital capacity (litres) 

UHDRS:TMS Unified Huntington’s disease rating scale: total motor score (0-124) 

 

Figure 39 Scatterplots of MIP and MIP% predicted against UHDRS:TMS 

 

 

 

 

 

 

 

 

 

MIP  Maximal inspiratory pressure (cmH2O) 

UHDRS:TMS Unified Huntington’s disease rating scale: total motor score (0-124) 
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Figure 40 Scatterplot of PCF against UHDRS:TMS 

 

 

 

 

 

 

 

 

 

PCF  Peak cough flow (litres/minute) 

UHDRS:TMS Unified Huntington’s disease rating scale: total motor score (0-124) 

 

Table 38 Relationships between respiratory function and UHDRS:TMS 

 Rs Rs
2
 p value 

MIP% predicted -0.874 0.764 <0.001 

MIP -0.842 0.709 <0.001 

MEP -0.814 0.663 <0.001 

MEP% predicted -0.812 0.659 <0.001 

SMIP -0.767 0.588 <0.001 

FVC% predicted -0.748 0.560 <0.001 

FEV1% predicted -0.723 0.523 <0.001 

FVC -0.704 0.496 <0.001 

FEV1 -0.702 0.493 <0.001 

SNIP -0.693 0.480 <0.001 

PCF -0.670 0.449 <0.001 

SNIP% predicted -0.625 0.391 <0.001 

FEV1/FVC -0.148 0.022 0.326 

MIP  Maximal inspiratory pressure (cmH2O) 

MEP  Maximal expiratory pressure (cmH2O) 

SMIP  Sustained maximal inspiratory pressure (pressure time units) 

FVC  Forced vital capacity (litres) 

FEV1  Forced expiratory volume in one second (litres) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres) 

Rs  Spearman’s correlation coefficient 
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5.6.2 Respiratory function over time in people with Huntington’s disease  

Data were collected from 10 people with manifest HD approximately one year after the initial 

assessment, in order to determine if respiratory function decreased over a relatively short time 

period. The subjects, female=2, mean age 52.80 ±15.20, had a median TFC of 5 range 3-10 

and mean UHDRS:TMS of 52.7 ±12.75. The average time gap between measurements was 

15.5 months, range 12-19 months. Tables 39 and 40 provide analysis of respiratory function 

at initial assessment and at follow up. It is known that respiratory function declines with age, 

but normal rates of change are dependent on factors such as peak function in adulthood and 

the duration of plateau after 25 years of age. The estimated rate of decline of FEV1 is 25-

30ml per year from age 35-40 and may double after 70 years of age with a suggested 0.8–

2.7cmH2O decline in MIP per year in people aged 65-85 (Sharma and Goodwin 2006). The 

data from this study show a mean decline of 14ml in FEV1 and 4cmH2O decline in MIP, 

which would appear to be within a normal range. Statistically, there were no differences in 

respiratory function over one year in time. 
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Table 39  Lung volumes at initial assessment and follow up  

 
Initial assessment 

mean ±sd 

Follow up 

mean ±sd 

 

% change 

Mean difference 

[95% CI] 

p value 

FVC L 2.93 ±1.39 2.87 ±1.35 

 

-2.05 

-0.05 

[-0.27,0.38] 

0.725 

FVC% predicted 70.40 ±24.23 69.10 ±25.93 

 

-1.85 

-1.30 

[-7.44,10.04] 

0.744 

FEV1 L 2.46 ±1.14 2.32 ±1.20 

 

-5.69 

-0.14 

[-0.16,0.44] 

0.316 

FEV1% predicted 73.30 ±24.59 70.40 ±28.93 

 

-3.96 

-2.90 

[-6.90,12.70] 

0.520 

FEV1/FVC 85.10 ±12.00 80.10 ±13.44 

 

-5.88 

-5.00 

[-3.47,13.471] 

0.215 

PEFR L/min 279.00 ±132.40 268.90 ±147.04 

 

-3.62 

-10.9 

[-52.68,74.48] 

0.707 

PEFR% predicted 54.90 ±20.37 54.60 ±25.21 

 

-0.55 

-0.30 

[13.01,13.61] 

0.960 

PCF L/min 314.30 ±138.39 322.10 ±162.93 

 

+2.48 

+7.80 

[-64.75,49.15] 

0.764 

FVC  Forced vital capacity (litres) 

FEV1  Forced expiratory volume in 1 second (litres) 

FEV1/FVC Forced expiratory volume in 1 second/forced vital capacity 

PEFR  Peak expiratory flow rate (litres/minute) 

PCF  Peak cough flow (litres/minute) 
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Table 40 Respiratory muscle function at initial assessment and follow up 

 
Initial assessment 

mean ±sd 

Follow up 

mean ±sd 

 

% change 
Mean difference 

[CI] 

p value 

MIP cmH2O 33.80 ±15.61 29.50 ±21.56 

 

-12.72 

-4.30 

[-5.18,13.78] 

0.332 

MIP% predicted 37.50 ±14.07 30.13 ±22.61 

 

-19.65 

-7.38 

[-4.86,19.61] 

0.197 

SNIP cmH2O 34.33 ±15.40 35.33 ±12.73 

 

+2.91 

1.00 

[-12.30,10.30] 

0.843 

SNIP% predicted 

 

31.86 ±12.27 

 

 

33.86 ±10.70 

 

 

6.28 

-2.00 

[-16.09,12.09] 

0.740 

MEP cmH2O 44.50 ±26.01 48.00 ±29.31 

 

7.87 

3.50 

[-14.48,7.48] 

0.489 

MEP% predicted 32.37 ±22.73 34.13 ±20.73 

 

5.44 

1.75 

[-12.28,8.78] 

0.706 

SMIP PTU 
132.30 ±116.23 

 

126.30 ±128.16 

 

 

-4.53 

-6.00 

[-15.46,27.46] 

0.543 

MIP  Maximal inspiratory pressure (cmH2O) 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MEP  Maximal inspiratory pressure (cmH2O) 

SMIP  Sustained maximal inspiratory pressure (pressure time units) 

  



152 

 

5.7 Summary of Observational Study 

The observational study aimed to investigate: respiratory function in people with HD and 

compare this with healthy control subjects; respiratory function throughout the progression of 

HD and factors that may influence and be influenced by respiratory function in people with 

HD. The following null hypotheses were rejected: 

 

H01  There is no difference in respiratory function in people with HD compared to healthy 

control subjects; 

H02 Respiratory function in people with HD does not change as the disease progresses; 

H04 Respiratory function is not related to exercise capacity in people with HD; 

H05 Respiratory function is not related to physical activity in people with HD; 

H06 Respiratory function is not related to posture in people with HD; 

H07 Respiratory function is not related to swallow capacity in people with HD; 

 

The following null hypothesis was not rejected: 

H03 Respiratory function does not decrease over time; 

 

The findings from this study indicate that respiratory function in people with manifest HD is 

decreased when compared to people who are pre-manifest and to healthy control participants 

and that respiratory function in people with manifest HD declines linearly with disease 

progression. Respiratory function is positively related to exercise capacity, physical activity, 

and swallow in people with manifest HD, with lower respiratory function also being 

associated with a more kyphotic posture. The following chapter will discuss these findings in 

the context of the proposed framework of respiratory failure in people with HD. 
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6 Observation Study discussion  
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6.1 Overview of observation study findings 

This study has identified that respiratory function in people with manifest Huntington’s 

disease is decreased when compared to a matched healthy control group. Furthermore it is 

apparent that this decreased function is linearly associated with disease severity. Exploration 

of relationships between respiratory function and potential influencing factors identified 

excellent relationships between respiratory function and exercise capacity; physical activity 

and swallow capacity. In the context of the proposed framework of respiratory failure in HD, 

the results of this study suggest that people with HD are susceptible to type 1 hypoxaemic 

respiratory failure and predisposed to type 2 hypercapnic respiratory failure. Type 1 

hypoxaemic respiratory failure due to aspiration pneumonia is likely to be due to impaired 

swallow capacity and ineffective cough. Decreased lung volume leading to hypoventilation 

will influence type 1 hypoxaemic respiratory failure with progressive decline leading to the 

development of type 2 hypercapnic respiratory failure. Predisposition to type 2 respiratory 

failure is due to decreased capacity of the respiratory muscle pump and increased elastic and 

resistive load due to decreased lung volume and upper airway dysfunction respectively. 

Decreased respiratory muscle strength may be directly attributable to HD pathology and/or be 

influenced by other factors. Inspiratory muscle strength demonstrated excellent relationships 

with exercise capacity, physical activity and swallow capacity; expiratory muscle strength 

demonstrated an excellent relationship with physical activity as did respiratory muscle 

endurance. The relationship between inspiratory muscle strength and posture was moderate to 

good. Decreased lung volume leading to increased elastic load may be as a consequence of 

decreased respiratory muscle strength with lung volume demonstrating excellent relationships 

with exercise capacity and physical activity, with a moderate to good relationship with 

swallow and only a fair relationship with posture. Increased resistive load was identified as 

upper airway obstruction in 50.7% of all participants and suggested by visual analysis of flow 

volume loops. 
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6.2 Discussion of observation study findings 

The sample of people with manifest HD recruited to this study was skewed toward people 

who were more affected by HD, despite considerable effort by the researcher. The researcher 

attended the weekly HD research and management clinic for three years and discussed 

recruitment issues with the clinician responsible for the patient group and the research nurse. 

The researcher also attended the HD Association study days and AGM to discuss and 

disseminate information regarding the research. A number of reasons may explain the lack of 

people with early stage HD attending clinic appointments. It is possible that people beginning 

to show signs and symptoms may be in denial and do not wish to undergo assessment that 

may confirm clinical diagnosis of the condition. This may be due to an individual’s way of 

dealing with a genetic neurodegenerative condition as well as the continuing stigma 

associated with the condition. Wexler (2010) feels that the shame and embarrassment felt by 

family members at public hearings in the United States in 1977 still pervade the HD 

community today. For people newly diagnosed with HD without a family history, 

confirmation may be extended and the person may be at the middle stage of disease, before 

attending a HD specific clinic.  

People with HD were categorised as people with pre-manifest and manifest HD based on 

neurological assessment by a neurologist. This was based upon the UHDRS:TMS and a 

diagnostic confidence level of 4 (motor abnormalities that are unequivocal signs of HD ≥99% 

confidence). There was some overlap in scores between the people with pre-manifest and 

manifest HD, 0–15 and 4–100 respectively, which indicated that although motor impairment 

was noted in some people with pre-manifest HD, they were not showing signs unequivocal of 

HD. This overlap was also noted in the PHAROS study, when the same categorisation criteria 

were used (Marder et al. 2009). All people with pre-manifest HD were functionally able and 

independent as observed by TFC, functional assessment, independence scale and Barthel 

Index. The full range of severity of HD was observed in the people with manifest HD as 

measured by disease specific scores, see Table 4. Twelve people lived in a nursing home, the 

remainder at home with or without some level of support. 

Recruitment of healthy control participants was on-going alongside that of people with HD 

with carers and relatives being approached - 12 consented to participate in the study. Other 

healthy control participants were recruited from staff and students from within Cardiff 

University and also from friends and relatives of staff at the university, in order to achieve 

matching of the groups for confounders of respiratory function. Healthy control recruitment 
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raises a number of issues. Ideally these participants should be matched to the comparator 

group i.e. those with HD, in order to eliminate the influence of extraneous variables. 

University students are not representative of the lifestyle of the general population and in 

particular the students in this study were predominantly physiotherapy students. Carers and 

relatives of participants may lead a more similar lifestyle to people with HD, but there is also 

the issue that their lifestyle may be indirectly affected by caring for someone with a health 

condition. The healthy control group in this study therefore contained a mixture of carers, 

relatives and university staff and students and matched people with HD for confounding 

variables of respiratory function i.e. age, gender, smoking habit and fat free mass, see Table 

3. 

The findings of this study are now discussed in relation to the proposed framework of 

respiratory failure in people with HD. The framework was based on the categorisation 

described by Hart (2008) and developed through theoretical postulation regarding HD 

pathology and evidence from people with PD, MS and MND/ASLMS. The primary cause of 

respiratory failure in people with neurodegenerative conditions is thought to be decreased 

capacity leading to type 2 hypercapnic respiratory failure (Buyse 2006), but impaired 

swallow and ineffective cough may also predispose to aspiration pneumonia and type 1 

hypoxaemic respiratory failure. These factors are then related to the functional problems of 

decreased ventilatory capacity, decreased respiratory muscle strength and decreased cough 

efficacy leading to retained secretions.  

6.2.1 Type 1 hypoxaemic respiratory failure 

The participants in this study were all medically well and did not show any signs of type 1 

hypoxaemic respiratory failure as demonstrated by heart rate, respiratory rate and O2 

saturation values being within normal range, see Table 6. A small proportion of the 

participants had presented with symptoms of respiratory problems in the preceding year, 2 

(10%) people with pre-manifest HD and 11 (23.4%) people with manifest. The number of GP 

visits is slightly higher than that for the general population in Wales at 14% (Welsh 

Government 2012), reflecting the increased incidence of clinical respiratory problems in the 

later stages, as the TFC for those with chest infections was 0-5. Uptake of flu vaccination was 

47.7% which is surprisingly low in an at risk sample with average age of 53 years, although 

this was similar to figures for Wales in people less than 65 with one or more clinical risk 

factor (49.7%) (Public Health Wales 2014). Dyspnoea, as a key symptom in respiratory 

disease, was not evident at rest when measured by the modified Borg dyspnoea scale.  



157 

 

The findings of abnormal swallow, decreased cough efficacy and decreased lung volume 

support the proposition in the conceptual framework that people with HD are susceptible to 

type 1 respiratory failure.  

This is the first study to quantify swallow capacity in people with HD and the decreased 

swallow capacity values concur with short oral transit time described by Heemskerk and 

Roos (2011). Objective measures of swallow capacity indicated that only 7 (15.2%) people 

with manifest HD had normal swallow capacity, the mean % predicted values being 28 

±34.35 based on Hughes and Wiles (1996). Swallow dysfunction is recognised in people with 

HD (Kagel and Leopold 1992) but the underlying mechanisms are unknown. Although the 

exact integrative swallow and breathing mechanisms are unknown, the anatomical closeness 

in the brainstem of the two control centres, and proximity to the nucleus of the hypoglossal 

nerve innervating the tongue could infer functional integration. The % predicted values for 

volume per swallow were higher than those for swallow capacity (47.07 ±41.46), which 

highlights that for some people (n=15) timing of swallow was an issue and others (n=17) had 

either a volume or volume and timing issue. This may indicate that central generation of 

swallow may be affected in people with HD with impairment of appropriate integration 

between breathing and swallowing. Automatic respiratory rhythm is generated in the 

pontomedullary region of the brainstem (Hudson et al. 2011) with projections to the 

inspiratory muscles, expiratory muscles and activation of the laryngeal and tongue muscles 

which act as valves modulating airflow (Feldman et al. 2013). The anatomical proximity of 

hypoglossal nerve and the respiratory nuclei and the identification of brainstem pathological 

changes (Herndon et al. 2009; Hobbs et al. 2010; Rub et al. 2014) in people with HD would 

support this finding. Evidence that PaO2 influences swallow and breathing and pharyngeal 

dysfunction influences breathing (Hårdemark Cedborg et al. 2009) adds strength to this 

proposition. Evidence of abnormalities in tongue protrusion (Reilmann et al. 2010), swallow 

dysfunction (Heemskerk and Roos 2011) and the presence of mutant Huntingtin in the 

brainstem (Herndon et al. 2009) may provide some insight into control of breathing in people 

with HD and help to explain the relationship, see Table 28 between swallow and respiratory 

function observed in this study. 

Normal swallow is both a reflex and planned manoeuvre involving not only the swallow 

mechanism but also pulmonary function and situational factors. Appropriate integration 

between breathing and swallow and situational factors such as food preparation, appropriate 

posture as well as adequate protective mechanisms are necessary for safe and effective oral 

feeding (Hughes 2012; Hughes and Wiles 2000). Data from the swallow questionnaire see 
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Table 7 indicates that people with manifest HD modify situational factors i.e. specially 

preparing their food (65%), adapt behaviourally by avoiding certain foods (60%) and 

compensate by drinking water whilst eating (50%) to ensure safe passage of food. People 

with manifest HD in this study were aware that food did go down the wrong way and that 

they coughed when eating and therefore these modifications were made to minimise the risk 

of aspiration. Although people may be aware of potential large aspirations, they may be 

unaware of micro aspiration. Normal swallow capacity was identified in only 7% of people 

with manifest HD, yet 32.5% reported no problems with coughing during eating or food 

going down the wrong way.  

This study has established that swallow capacity is reduced in people with manifest HD and 

that this is adjusted for by modifying situational factors such as food preparation and eating 

behaviour. Furthermore, significant relationships were found between swallow capacity and 

respiratory function, and in particular inspiratory muscle strength. This may be due to each 

variable declining independently with disease progression but may reflect dysfunction in the 

integration of swallow and breathing.  

From a clinical perspective, swallow dysfunction, decreased respiratory muscle strength and 

decreased peak cough flow increases the likelihood of type 1 hypoxaemic respiratory failure 

in people with HD. The consequence of aspiration pneumonia may be alleviated if cough 

mechanisms are effective in clearing secretions from the respiratory system. PCF in people 

with manifest HD in this study was significantly decreased compared to people with pre-

manifest HD and healthy control participants, see Table 9 and correlated significantly with 

swallow capacity (r=0.515, p<0.001). From a clinical perspective, the most important finding 

is that the mean PCF in people with manifest HD was at the cut-off point necessitating 

interventions to enhance cough efficacy (Bott et al. 2009). The combination of impaired 

swallow and cough efficacy in people with manifest HD-increases the likelihood of aspiration 

pneumonia. This may lead to type 1 hypoxaemic respiratory failure due to impaired diffusion 

as a consequence of retained secretions and/or atelectasis leading to alveolar hypoventilation. 

Atelectasis may be the underlying cause of decreased volume found in people with manifest 

HD (56.70%predicted FVC), see Table 17. Concomitant decreased lung volume and silent 

aspiration may be underlying factors of a downward spiral of respiratory dysfunction. As 

lung volume decreases, closing volume will exceed end expiratory volume resulting in 

further airway closure (Milic-Emili et al. 2007), with repeated closure and re-opening of 

airways causing sheer stress within the airway and cell injury (Bian et al. 2010). Cell damage 

due to these biomechanical factors and inflammation as a consequence of aspiration (Wallis 
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and Ryan 2012) will lead to further hypoventilation and eventual hypoxaemia. This is 

compounded by the high incidence of smoking in people with HD (Byers et al 2012) which 

facilitates adherence of bacteria to lower airway epithelium and impairs mucociliary 

clearance. The decreased lung volume seen in people with manifest HD will result in 

hypoventilation, ventilation perfusion mismatch and decreased gaseous exchange that may 

contribute to type 1 hypoxaemic respiratory failure. Compared to an aspiration event which 

may result in acute hypoventilation and hypoxaemia, decreased lung volume due to 

progressive atelectasis could represent an underlying respiratory dysfunction that may 

contribute to an acute episode of hypoxaemia, and by progressively increasing elastic load 

contribute to the development of type 2 hypercpanic respiratory failure. 

The findings of this study corroborate evidence that swallow dysfunction exists in people 

with manifest HD which may lead to aspiration of food or liquid. The data from this study 

indicate that people with HD are susceptible to type 1 hypoxaemic respiratory failure which 

is caused either by escalating hypoventilation and micro aspirations and/or a single large 

aspiration due to swallow dysfunction and retention of secretions due to ineffective cough. 

The decline in lung volume and cough efficacy concomitant with disease progression 

indicates the need for monitoring of respiratory function. The outcome of linear regression of 

PCF with TFC highlights that cough becomes ineffective when TFC is less than 5, therefore 

clinical observation of swallow and cough should be carried out during the middle stage of 

the disease. 

6.2.2 Type 2 hypercapnic respiratory failure 

Type 2 hypercapnic respiratory failure results from an imbalance between neural respiratory 

drive, the load on the respiratory system and respiratory muscle capacity (Hart 2008). For 

people with neurodegenerative conditions, respiratory muscle weakness leading to decreased 

capacity is suggested as the main problem, although increased load due to reduced chest wall 

and pulmonary compliance, upper airway weakness and impaired control of breathing may 

also alter the balance between drive, capacity and load (Buyse 2006; Misuri et al. 2000). 

Clinical characteristics of type 2 hypercapnic respiratory failure are difficulty sleeping, 

sleepiness during the day and morning headaches (Polkey et al. 1999). Blood gas analysis 

was not carried out in this study and although there was evidence of difficulty in sleeping 

(people with pre-manifest HD 45.0%, manifest HD 28.9%) and daytime sleepiness (people 

with pre-manifest HD 70.0%, manifest HD 57.5%), morning headache was not common 

(people with pre-manifest HD 20.0%, manifest HD 15.5%). The low frequency of morning 
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headache would suggest that these findings are more likely due to altered sleep patterns in 

people with HD rather than nocturnal hypoventilation. These findings add to previous studies 

on sleep related breathing disorders which are not conclusive regarding abnormal breathing 

pattern (Arnulf et al. 2008; Cuturic et al. 2009; Wiegand et al. 1991), with only a small study 

with no control group showing abnormalities in people with late stage disease (Antczak et al. 

2013). It is still unclear as to whether sleep and circadian rhythm disruption in people with 

HD are due to direct gene involvement or as a consequence of having a neurodegenerative 

condition (Morton 2013). Nocturnal monitoring of sleep and arterial blood saturation patterns 

may help to identify whether the problems relate to underlying HD pathology or decreased 

ventilatory capacity. Although there were few clinical signs or symptoms of type 2 

hypercapnic respiratory failure in this sample, this study provides the first evidence that 

capacity is decreased and load increased in people with manifest HD that may predispose to 

type 2 hypercapnic respiratory failure. 

Subjective data collected via questionnaire suggest that people with manifest HD had more 

difficulties in coughing and clearing secretions than people with pre-manifest HD, see Table 

7, reflecting the objective data regarding PCF. The ability to cough requires both adequate 

inspiratory muscle strength to increase lung volume and adequate expiratory muscle strength 

to produce sufficient flow to clear secretions (McCool 2006), therefore decreased PCF may 

occur as a consequence of weakness in both groups of muscles.  

Breathlessness, as a symptom of inspiratory muscle weakness, was evident in 38.3% of 

people with manifest HD and 50.0% of people with pre-manifest HD. In people with pre-

manifest HD, this symptom was felt only sometimes and tended to occur on exertion, i.e. 

walking uphill, walking or running. Breathlessness at rest was felt by three people with 

manifest HD but was not a constant symptom. This is supported by a median score of no 

breathlessness in the modified Borg dyspnoea scale when measured at rest for both people 

with pre-manifest and manifest HD. The data suggest that breathlessness was not a 

predominant clinical problem in this sample, yet this is in conflict with objective data of 

decreased inspiratory muscle strength, as MIP was found to be 29.31%predicted (mean value) 

in people with manifest HD. This could be due to an impaired respiratory drive response to 

hypercapnia or low activity masking respiratory insufficiencies as found in people with PD 

(Haas et al. 2004; Seccombe et al. 2011; von Klaveren et al. 1999). The integration of 

information relating to breathlessness i.e. physiological and psychological (Parshall et al. 

2012) may be impaired in people with HD similar to that found in neuromuscular patients 

with primary muscle disorders (Hours et al. 2004), which may be due to either altered chest 
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wall motion or altered response to hypercapnia (Seccombe et al. 2011; von Klaveren et al. 

1999). Altered input to the pons from pulmonary mechanoreceptors and to the medulla from 

chemoreceptors and peripheral mechano receptors may influence the integration of 

information related to respiratory effort and may therefore effect the sensation of dyspnoea. 

 

Objective measures of respiratory muscle strength demonstrated significantly decreased 

inspiratory and expiratory muscle strength in people with manifest HD compared to people 

with pre-manifest HD and healthy control participants, see Table 12 concurring with 

evidence from Reyes et. al (2014). The extent of inspiratory and expiratory muscle weakness 

was similar with mean values of MIP 29.31%predicted, SNIP 36.65%predicted and MEP 

29.06%predicted. MIP and SNIP measures do not discriminate between the strength of the 

diaphragm and that of other inspiratory muscles (American Thoracic Society/European 

Respiratory Society. 2002). Specific weakness of the diaphragm can be identified by 

measuring FVC in supine and sitting position, with normal subjects reducing FVC by 5-10% 

in the supine position, a decrease of >30% indicating severe diaphragm weakness (American 

Thoracic Society/European Respiratory Society. 2002). The results indicated that five 

individuals had a FVC supine <70% FVC sitting. Three participants were late stage (TFC = 

0) with very low FVC% predicted, 8-22 therefore these results may be due to general 

weakness. It is difficult to explain the findings for the two participants in the middle stage, 

both of whom were independently mobile, with one getting short of breath only when 

walking hills. These findings may be simple anomalies. It would appear that, in this study, 

decreased MIP and SNIP was due to global respiratory muscle weakness rather than specific 

diaphragm weakness. 

Respiratory muscle strength in people with HD may be influenced by HD pathology within 

the central nervous system and skeletal muscle but also by exercise capacity, physical activity 

and posture as identified in this study. 

Cortico-striatal dysfunction leading to chorea, dystonia and bradykinesia may impact on the 

quality of respiratory muscle contraction. Motor control of voluntary movement via the 

cortico-spinal pathway in people with HD is affected by the loss of medium spiny neurons, 

resulting in chorea in the early stages of the condition followed by bradykinesia and rigidity 

(Andre et al. 2010; Han et al. 2010). Chorea and bradykinesia may influence the 

biomechanical effectiveness of the respiratory muscles, through altered force production and 

altered co-ordination of contraction. The integrated role of the abdominal and respiratory 

muscles in postural and ventilatory roles may also influence force production. Respiratory 
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dysfunction has been seen to alter posture in people with COPD (Janssens et al. 2013) and 

low back pain influences diaphragm contraction (Kolar et al. 2012) and therefore links 

between postural instability in people with HD (Brozova et al.2011) and respiratory muscle 

strength could be suggested. This evidence of poor postural control may be in part due to 

diaphragm dysfunction or conversely diaphragm dysfunction may be due to postural 

instability. More specifically, the ability of the diaphragm to fix against abdominal contents 

may be influenced by the stability of the trunk, with truncal chorea and dystonia potentially 

affecting the biomechanical efficiency of diaphragm contraction. 

Physiological factors influencing force generation in muscles in people with HD include 

emerging evidence of altered membrane potential and hyperexcitability (Waters et al. 2013), 

muscle atrophy and secondary effects of malnutrition. Mutant Huntingtin has been found in 

animal (Orth et al. 2003) and human (Sassone et al. 2009) muscle studies, yet the relationship 

between mutant Huntingtin and muscle dysfunction is unclear. It is suggested that mutant 

Huntingtin is a factor that results in mitochondrial dysfunction (Ciammola et al. 2011) 

causing an energy deficit that, in combination with increased protein synthesis, is part of a 

complex interaction leading to muscle atrophy (She et al. 2011). This evidence is based on 

animal and human studies on peripheral skeletal muscle, but if the premise of peripheral 

muscle strength as a surrogate for respiratory muscle strength (Buchman et al. 2008) is true, 

then the skeletal muscle atrophy observed in people with HD (Sassone et al. 2009) could be 

extended to include the respiratory muscles. Weight loss and cachexia noted in late stages of 

HD (Aziz and Roos 2013) may contribute to respiratory muscle atrophy as in other 

malnutritioned states as diaphragm weight loss is proportional to skeletal muscle weight loss 

(Polla et al. 2004). Atrophy of the diaphragm, as measured by diaphragm thickness, has a 

positive relationship with respiratory muscle strength in healthy subjects (DePalo et al. 2004) 

and people with respiratory conditions (Enright et al. 2007; Vestbo et al. 2006). If these 

physiological factors lead to the findings of reduced peripheral muscle strength (Busse et al. 

2008), then the same physiological changes may lead to reduced respiratory muscle strength 

in people with HD.  

Concomitant with decreased inspiratory and expiratory muscle weakness was a significant 

decrease in single breath work capacity in people with manifest HD with SMIP values 

23.26% of healthy control; the values were also greatly reduced compared to those in healthy 

control participants in other studies (Enright et al. 2006b; Ionescu et al. 1998). The measure 

of single breath work capacity provides information relating to inspiratory muscle work 

throughout the full range of muscle length i.e. from residual volume to total lung capacity and 
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may reflect reduced respiratory muscle endurance (Enright et al. 2006a). SMIP (23.26%) was 

reduced more than MIP (36.39%) compared to the healthy control subjects which may 

indicate a loss of slow twitch compared to fast twitch fibres. This differs from evidence in 

animal and human studies of HD skeletal muscle (Strand et al. 2005) and findings in people 

with COPD (Levine et al. 2013) were the proportion of slow twitch fibres increased while the 

proportion of fast fibres decreased. These findings may reflect the different mechanisms 

within respiratory muscles and pathology of different conditions as decreased use of 

respiratory muscles in people who were mechanically ventilated demonstrated a decrease in 

all fibre types (Mantilla and Sieck 2013). 

Respiratory muscle strength demonstrated an excellent positive relationship with exercise 

capacity (Rs 0.746) and physical activity (Rs 0.775) with a weaker relationship found with 

thoracic angle (Rs -0.526) indicating that secondary factors other than central nervous system 

and skeletal muscle pathology may impact on respiratory function. These factors are 

discussed in more detail in section 6.2.3. 

The findings of decreased respiratory muscle strength from this study are similar to those 

from studies in people with PD, MS and ALS Observational studies in people with MS and 

PD show MIP values ranging from 27-77%, predicted (Buyse et al.1997; Gosselink et al. 

2000; Mutluay et al. 2005) and MEP values in people with ALS (Polkey et al. 1998; 

Sathyaprabha et al. 2009); MS, 30-50%predicted (Buyse et al. 1997; Gosselink et al. 2000; 

Smeltzer et al. 1992) and PD, 38%predicted (Sabate et al. 1996). This co-existence of 

inspiratory and expiratory muscle weakness observed in people with HD, PD and MS 

suggests a global weakness of respiratory muscle. Decreased respiratory muscle strength and 

single breath work capacity in people with manifest HD signifies decreased capacity of the 

respiratory muscle pump. Inspiratory insufficiency will impact on ventilatory capacity which 

may influence both type 1 hypoxaemic respiratory failure and type 2 hypercapnic respiratory 

failure, with expiratory insufficient influencing the ability to clear secretions through an 

effective cough.  

Sufficient expiratory muscle strength is needed for an effective cough and a correlation has 

been identified between PCF and MEP in people with neuromuscular and neurodegenerative 

conditions (Chatwin et al. 2003; Sancho et al. 2007; Trebbia et al. 2005) although in people 

with ALS, this is only apparent when there is substantial muscle weakness (Polkey et al. 

1998). Abdominal muscles used in forced expiration may be weak due to incoordination or 

postural instability, a key motor issue in people with HD (Brožová et al. 2011). These 
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findings may explain the significant reduction in PCF in people with manifest HD compared 

to people with pre-manifest HD and healthy control participants. 

 

Concomitant with observations of decreased capacity, the data from this study provide 

evidence that both elastic and resistive load are increased in people with HD, which 

predisposes people with HD to type 2 hypercapnic respiratory failure. Approximately two-

thirds of the work of breathing in healthy subjects is due to overcoming elastic load that is 

related to lung tissue and chest wall compliance (Bach and Kang 2000). Decreased lung 

volume results in decreased alveolar compliance (Dargaville et al. 2010) leading to an 

increase in elastic load and consequent increase in the work of breathing. Although lung 

tissue compliance was not measured directly in this study, measures of lung volume were 

used as an indicator of compliance and thus load. Measures of forced vital capacity (FVC) 

were greatly reduced in people with manifest HD; mean % predicted 56.70 ±31.69. The large 

standard deviation in the current study may be accounted for by the wide range of disease 

severity in the sample. These findings are similar to studies on people with ALS, 

(FVC%predicted  49.6% ±18.9, Sathyaprabha et al 2009) and in a study on people with MS 

who were non-ambulatory (FVC%predicted 43%±26, Gosselink et al 2000). The findings are 

not consistent across all neurodegenerative conditions. Conflicting evidence in people with 

PD demonstrated decreased FVC compared to healthy controls (Sathyaprapbha et al 2005); 

significantly lower than predicted values (Sabate et al 1996) and no difference between actual 

and predicted values (Canning et al. 1997). Evidence in people with mild to moderate MS 

demonstrated normal FVC but did identify some individuals with %predicted values <80% 

(Altintas et al. 2007; Foglio et al. 1994; Koseoglu et al. 2006; Mutluay et al. 2005). From a 

pathological perspective, ALS has both central and peripheral nervous system involvement 

(Cooper-Knock et al. 2012) and therefore respiratory muscle dysfunction is theoretically 

more likely due to transmission deficiency compared to conditions such as PD.  

The decrease in ventilatory capacity as noted by FVC values seen in people with manifest 

HD may be the consequence of a number of underlying mechanisms. Decreased physical 

activity (Busse et al. 2009; Quinn et al. 2013) may lead to a sedentary lifestyle with potential 

decrease in periodic deep breaths leading to micro atelectasis (Bach and King 2000). 

Reduction in stretch of the alveoli will lead to a reduction of surfactant production, 

subsequent decreased compliance and further alveoli collapse (Amin et al. 2013). The 

escalation of atelectasis will lead to decreased lung volumes and increased elastic load. 

Concomitant with this decreased respiratory muscle strength may contribute to a restrictive 
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respiratory pattern seen in people with neuromuscular conditions (Simonds 2013). A 

restrictive pattern is characterised by a concomitant decrease in FVC and FEV1, which was 

observed in people with manifest HD in this study: FVC%predicted 56.70; FEV1%predicted 

60.51 with a trend toward an increasing FEV1/FVC in people with manifest HD compared to 

people with pre-manifest HD and healthy control participants. The reduction in lung volumes 

in people with respiratory muscle weakness is thought to be due to a decrease in distending 

pressure generated by the respiratory muscles, but also to the secondary changes in chest wall 

compliance as a consequence of respiratory muscle weakness (De Troyer et al. 1980). 

Progressive decreasing lung volume and consequent hypoventilation may lead to chronic 

hypoxaemia. In people with chronic respiratory disease this leads to widespread hypoxic 

pulmonary vasoconstriction with potential right sided heart failure (Evans et al. 2011). This 

may have implications within HD when the causes of cardiac failure are as yet unknown 

(Abildtrup and Shattock 2013). Thus a downward spiral of respiratory muscle weakness 

leading to decreased lung volume and consequential altered biomechanics compounds 

respiratory function.  

The decreased FEV1 observed in people with manifest HD was accompanied by a relatively 

larger decrease in PEFR see Table 22, suggestive of large rather than small airway 

obstruction. This was further confirmed with analysis of FEV1/PEFR showing that 55.3% of 

people with manifest HD and 40% of people with pre-manifest HD had upper airway 

obstruction and thus suggests increased resistive load in people with HD. Analysis of the 

flow volume loops indicates that the obstruction in people with pre-manifest HD tended to be 

laryngeal/pharyngeal in nature (39% n=7) whereas in people with manifest, vocal cord 

dysfunction was the most common cause of obstruction (42% n=18). These findings can be 

related to abnormal swallow identified within this study and evidence that swallow and 

speech is affected in people with HD. Laryngeal and pharyngeal dysfunction has been 

identified in swallow studies (Heemskerk and Roos 2011) accompanied by vocal cord 

dysfunction in a speech study (Rusz et al. 2013). The severity of laryngeal dysfunction is 

related to severity of motor impairment and due to underlying pathological changes in the 

striatum. Hyper-adduction of the vocal cords may be due to motor impersistence, similar to 

inability to maintain tongue protrusion (Rusz et al. 2013).  

Reduced FEV1 has been observed in people with PD and ALS, but is likely to be due to a 

restrictive rather than obstructive mechanism as FVC was also reduced (Sathyaprabha et al. 

2005; Sathyaprabha et al. 2009), with normal values being observed in people with MS 

(Altintas et al. 2007; Foglio et al. 1994; Koseoglu et al 2006). Similar to this study, reduced 
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FEV1 was accompanied by reduced PEFR in people with PD and ALS (Sathyaprabha et al. 

2005; Sathyaprabha et al. 2009), which may indicate upper airway resistance to airflow. 

Although truncation of the flow volume loop suggests vocal cord involvement (Watson et al. 

2009), the characteristic ‘saw tooth’ irregular flow seen in people with PD was not observed 

in this study. This oscillatory flow volume pattern see Figure 6, is thought to be due to vocal 

cord tremor or instability of the upper airway (Buyse 2006; Vincken et al. 1986). The 

irregular flows seen in this study have lower frequency oscillations which could be due to 

either choreic movement of the diaphragm if seen on inspiration or of the abdominal muscles 

during expiration. Choreic movements of the diaphragm occurring during voluntary 

breathing, such as these respiratory assessment tasks, may be due to lack of integration in the 

striatum of the cortico-spinal pathways. Whether these movements occur during involuntary 

or adaptive breathing would be difficult to assess. Abnormalities on expiration may be 

associated with a lack of synchrony between respiratory and abdominal muscles, with 

respiratory muscles having a postural role (Bianchi and Gestreau 2009) and abdominal 

muscle providing stability of the abdominal contents during inspiration (Gauthier et al. 1994) 

as well as having a role in active expiration (Ratnovsky et al. 2008). Postural instability, as a 

common finding in people with HD (Brožová et al. 2011), may influence the smooth muscle 

contraction of the diaphragm and provide less mechanical stability from the abdominal 

muscles. The irregular breathing patterns seen in people with PD are thought to be due to 

central drive impairment (Seccombe et al. 2011), which is also a possibility in people with 

HD as mutant Huntingtin is present in the brainstem (Herndon et al. 2009). The loss of cells 

within the pons and medulla due to mutant Huntingtin may influence the generation of 

respiratory rhythm within the pre-Botzinger complex with consequent alteration of motor 

control of the diaphragm and intercostal muscles.  

The findings of this study indicate that resistive load is increased in people with HD possibly 

due to laryngeal, pharyngeal and vocal cord dysfunction. These motor deficits may be as a 

consequence of striatal dysfunction, but may also be influenced by abnormal control of 

breathing swallow and speech within the brainstem. The irregular flow volume loops in 

people with manifest HD suggest an irregular breathing pattern which was first described by 

Leopold (1985) and Fischer et al. (1983). 

Predisposition to type 2 hypercapnic respiratory as proposed in the conceptual framework of 

respiratory failure in people with HD is supported by the findings of this study. Although 

direct evidence of altered neural drive to respiration in people with HD was not gathered, data 

related to swallow dysfunction and irregular flow volume loops suggest that further research 
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is needed for a better understanding of the functional consequences of brainstem pathology. 

Strong evidence of decreased capacity of and increased load on the respiratory was found in 

people with manifest HD. The linear decline of respiratory function with disease progression 

indicates that signs and symptoms of respiratory dysfunction e.g. SNIP should be monitored 

alongside swallow and cough efficacy.  

Linear decline of respiratory function with disease progression may also be secondary to the 

consequences of having a neurodegenerative condition e.g. decreased physical activity, 

exercise capacity and altered posture and these will be discussed in detail in the following 

section.  

6.2.3 Variables influencing respiratory function in people with Huntington’s 

disease 

Relationships between respiratory function and exercise capacity, physical activity and 

posture were analysed. Those relationships with Rs ≥0.75, indicating good to excellent 

correlation, were FVC and MIP with exercise capacity and physical activity, with MIP also 

having an excellent relationship with swallow capacity, see Figure 34. 

Exercise capacity is dependent upon the integration of cardiovascular, neurological, 

respiratory and musculoskeletal function (Goldstein 1990). During exercise, CO2 and 

metabolite production increases and homeostasis is maintained through chemoreceptor, 

baroreceptor and proprioceptive input, increasing the extrinsic load placed upon the 

respiratory system (Dempsey 2012). Measurement of exercise capacity encompasses a range 

of factors. This study identified that exercise capacity as measured by six minute walk 

distance, was less than previously noted in people with manifest HD: 173.32 ±166.133m 

compared to 381.66 ±129.97m in Quinn et al (2013). This may have been due to the average 

TFC in this study being 4.72, with people with manifest HD in the Quinn et al study having 

an average TFC of 8. Additionally, some of the participants in the Quinn et al study were 

based in a specialist unit which had a walking programme. Care must be taken in the 

comparison of these two studies as 17 of the participants in Quinn et al (2013) were also 

participants in the current study. Distance walked %predicted is reduced in people with pre-

manifest HD, 78.63% ±12.84 and greatly reduced in people with manifest HD, 27.73% 

±26.29 in this study. 

The reduction in exercise capacity is greater than that seen in ALS, 65.2% ±17.4 predicted 

(Cheah et al. 2011) and MS, 62.8% ±27.8% predicted for total group, 74.3% ±23.2 for the 

mild disability subgroup and 40.2% ±21.8 for the moderate disability sub group (Wetzel et al. 



168 

 

2011). Distance walked in six minutes in people with mild to moderate PD (546 ±103) was 

found to be significantly less than in healthy control subjects (619 ±69) (Canning et al. 2006). 

The data in all the studies show increased variability which may be greater than in healthy 

cohorts. It has been suggested that disease specific reference equations should be used, as the 

variance in the data in people with PD was not fully accounted for by anthropometrics, 

gender and age as is found in healthy subjects. For people with PD, increased fall, balance 

and gender explained approximately 56.6% of the variance (Falvo and Earhart 2009). This is 

an important consideration when defining normal ranges, but for the current study the 

%predicted value gives a strong indication that exercise capacity is greatly reduced in people 

with manifest HD. Some of these differences between studies may be due to length of circuit, 

the current study circuit was 20m; the Wetzel et al study used 91.5m and 120m long 

corridors; Canning et al used a 30m walkway and Cheah et al did not report the circuit length. 

Although no difference has been shown in straight courses ranging from 15–50m (American 

Thoracic Society. 2002), turning may have more influence on distance walked in people with 

balance problems.  

The excellent relationships between MIP and FVC and exercise capacity provide evidence of 

the link between underlying impairment within the respiratory system and functional ability. 

The relationship between 6MWD and MIP has also been noted in people with MS (Wetzel et 

al. 2011). Decreased inspiratory muscle strength leads to decreased FVC (De Troyer et al. 

1980) and a restrictive respiratory pattern that can lead to hypoventilation (Simonds 2013). 

Increased elastic load on the respiratory system as measured by decreased FVC in this study, 

will result in an increased work of breathing (Bach and Kang 2000) which may influence the 

capacity to exercise. The decreased volume of air within the lung will reduce the minute 

ventilation and potentially reduce exercise capacity. This may relate to a reduced workload 

capacity in people with HD (Jones et al. 2012a) which is similar to findings in people with 

MS (Bosnak-Guclu et al. 2012) and PD (Canning et al. 2006), although the reasons for this 

diminished capacity are unknown.  

Measures taken before and after the test indicate a normal physiological response to exercise 

i.e. slight rise in respiratory and heart rate, with no evidence of desaturation. Perceived 

dyspnoea ranged from nothing to slight (0-2) before the test and for some people increased to 

very severe, whilst others remained not breathless (range 0-7). Exertion was perceived 

differently to dyspnoea, with a range from no exertion to heavy exertion (6-15) before the 

test, increasing to very hard for some whilst others felt no exertion (6-17). This perception of 
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exertion before the test may be due to participants feeling exerted from the respiratory 

function tests that preceded the six minute walk test. 

Physiological deficiencies may be compounded by biomechanical issues such as decreased 

gait velocity (Bilney et al. 2005), postural instability (Panzera et al. 2011) and decreased 

peripheral muscle strength (Busse et al. 2008) which will result in less distance being walked 

over a set time. Participants could use walking aids or support, if that was their normal 

walking behaviour and as such were as stable as possible and using a familiar pattern. 

Walking is a complex activity which requires cognitive planning and execution and in the 

context of a research study may require further cognitive processes to follow instructions. 

Motor planning deficit in people with HD is thought to be separate from motor symptoms 

(Giralt et al. 2012; Harrington et al. 2012) and this may have led to underperformance in this 

test. 

When considering physical activity, people with HD had predominantly low levels of activity 

based on IPAQ scoring, the median score for people with pre-manifest HD (1502.50 

(IQR=2418.4)) was within the moderate category and people with manifest HD (82.50 

(IQR=618.8)) was in the low category. Direct comparisons with previous HD data are 

problematic as mean values were used, people with pre-manifest HD 2649 ±2107, people 

with manifest HD 1354 ±1796 (Quinn et al. 2013), but the people with manifest HD values in 

this study do appear much lower than Quinn et al (2013). The findings compare well to 

people with other neurodegenerative conditions. Physical activity as measured by IPAQ and 

accelerometers in people with MS is significantly reduced compared to matched healthy 

controls (Sandroff et al. 2012). Similarly, people with PD were found to be 29% less 

physically active compared to healthy control subjects and through regression methods 

inactivity was associated with worse walking performance, increased disability and greater 

disease severity and PD. These three variables accounted for only 24% of the variance and 

therefore many other factors may be associated with inactivity (van Nimwegen et al. 2011).  

Measuring physical activity is complex and although IPAQ demonstrates good reliability and 

validity (Helmerhorst et al. 2012; Khalil 2012; Quinn et al. 2013) the tool relies on memory 

and validity of the subject’s answers, therefore caution must always be taken when 

interpreting findings. In particular, cognitive (Kingma et al. 2008) and memory (Paulsen et al. 

2008) deficits may influence the measurement of physical activity via questionnaire in people 

with HD. 

The relationship identified between respiratory function and physical activity is similar to that 

between respiratory function and exercise capacity; the ability to exercise potentially 
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influencing participation in physical activity. The relationship between decreased FEV1 and 

physical inactivity has been demonstrated in a large cohort study, with suggested links 

between FEV1 and morbidity and mortality (Jakes et al. 2002). Conversely, deconditioning 

due to disuse or inactivity will cause decreased muscle strength (Bortz 2005) which is related 

to respiratory muscle strength (Buchman et al. 2008). Cause and effect is thus unknown, 

however Buchman et al (2008) place respiratory muscle strength as the beginning of a causal 

chain which leads to reduced pulmonary function and death. 

These inter-relationships are further confounded by social, cognitive and psychological 

factors. Social factors such as transport issues, expense, accessibility of leisure facilities and 

living in a rural community are additional barriers to people with long term health conditions 

(Smith et al. 2013). The support of health and fitness professionals as well as staff attitude is 

also seen as important factors supporting people with neurodegenerative conditions to engage 

in physical activity (The LIFE group 2011). In a qualitative study exploring client and 

therapists’ views on exercise programmes (Quinn et al. 2010), people with HD and PD did 

not see that having the condition limited their ability to exercise and that it did not preclude 

them from attending a gym, but some felt that home exercises better suited their lifestyle. 

Therapists did however feel that cognitive impairment may affect the ability of a person with 

PD or HD to exercise independently. The ability to perform activities of daily living is 

influenced by both cognitive deficits (Peavy et al. 2010) and the inability to shift strategies 

for tasks (Giralt et al. 2012) which may make it difficult for people with HD to commence a 

new physical activity routine. From a behavioural perspective, Hamilton et al. (2003) 

suggests that profound apathy, lack of initiative and irritability may interfere with functional 

activities, even if the necessary motor and cognitive capacity is retained. Psychological issues 

such as distress, depression and anxiety may be either consequential to or integral to 

inactivity (Verbunt et al. 2003). Although these findings relate to people with chronic pain 

they may be transferable to people with HD due to the manifestation of depression as a 

symptom of HD (Estrada Sánchez et al. 2008). It is clear that the relationship between 

respiratory function and physical activity is multifactorial, with cause and effect relationships 

yet to be confirmed. 

 

This study showed that people with manifest HD had a more kyphotic and chin down posture 

compared to people with pre-manifest HD. Thoracic angle demonstrated a moderate to good 

relationship with inspiratory muscle strength and a fair relationship with lung volume see 

Table 31. The data reflect decreases FVC seen in people with PD and camptocormia, defined 
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as an abnormal flexion of the thoracolumbar spine of ≥45º in upright standing (Marinelli et 

al. 2013) and people with kyphotic postures (Berdal et al. 2012; Harrison et al. 2007). The 

relationship between posture and respiratory function in HD was classified as moderate to 

good and is therefore different to the excellent relationships found between respiratory 

function and exercise capacity, physical activity and swallow capacity. This may be due to 

few participants having a fixed kyphosis (n=6, based on observations during assessment), and 

may be a consequence of the choreic nature of HD in the early stage of disease (Andre et al. 

2010; Han et al. 2010). 

A more slumped posture compresses internal organs (Lin et al. 2006) and reduces tidal 

volume and minute volume (Landers et al. 2003) which may explain the relationship between 

increased thoracic curve and decreased FVC in this study. The relationship with respiratory 

muscle strength is likely to be due to altered biomechanics in the slumped position. A 

slumped position induces changes in chest wall diameter in all planes, which influences rib 

cage compliance and alters the anatomical position of respiratory muscles. The chin down 

position will alter the length of scalene and sternocleidomastoid, with the increased thoracic 

curve altering external intercostal and parasternal muscle length with consequent reduction in 

pump handle movement (Lee et al. 2010). Decreased spinal mobility and chest wall 

compliance contribute to decreased lung volumes in people with kyphosis (Berdal et al. 2012) 

with the postural changes likely to cause altered biomechanics and efficacy of the respiratory 

muscles. These findings indicate that posture is an influencing factor in increasing elastic 

load and decreasing capacity of the respiratory muscle pump. 

6.2.4 Respiratory function and progression of Huntington’s disease 

This study provides new information that the decline in respiratory function in people with 

HD is linear, rather than being a specific problem of the late stage and that therapeutic 

intervention may be necessary at the middle stage of the condition. All measures of 

respiratory function, except FEV1/FVC, demonstrated significant relationships with 

functional capability as measured by TFC and motor impairment as measured by 

UHDRS:TMS in that respiratory function decreased as HD progressed, see Table 37 and 

Table 38. The scatterplots for TFC and TMS were similar for each respiratory variable and 

were also similar between absolute respiratory scores and %predicted scores. 

Scatterplots for FVC, FVC%predicted, PCF, MIP, MIP%predicted and SNIP were all similar 

in terms of scatter around the line of best fit, with points scattered similarly throughout the 

range of TFC. FEV1 and FEV1%predicted demonstrated more scatter, but still had Rs values 
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of 0.805 and 0.827 respectively. The scatterplot for SMIP was dissimilar to other measures of 

respiratory function, with more dispersion of plots when TFC >8.  

The scatterplot of PCF and TFC, with reference lines for 270L/min and 160L/min, suggests 

that 46.3% (n=19) of people with manifest HD need supportive management strategies for 

cough and 24.4% (n=10) have an ineffective cough based on physiotherapy guidelines (Bott 

et al. 2009). Of the 10 people who had ineffective cough, three had a PEG tube fitted and six 

reported having swallow problems necessitating special food preparation. One person 

reported that they had no difficulties with swallowing. From the linear regression equation 

(PCF=120.36+27.91TFC), when PCF is 270L/min, TFC is 5.36. This has important clinical 

implications in that PCF should be monitored regularly and in particular when TFC <6 in 

order to implement strategies that could increase inspiratory capacity and expiratory flow e.g. 

maximal insufflation/exsufflation (Chatwin et al.2003) or expiratory muscle training 

(Gosselink et al. 2000). It must be noted that the measures of cough in this study were 

volitional and may differ from a reflex cough. In other words, participants who produced PCF 

< 160L/min voluntarily may be able to produce higher values if the integrity of the airway is 

challenged during feeding or drinking. The neural control of breathing, cough and swallow is 

integrated and complex (Davenport et al. 2011) and it is therefore difficult to deconstruct 

reflex and voluntary cough in order to explore this possibility. Additionally, assessment of 

reflex cough is not recommended in people with neurodegenerative conditions due to lack of 

evidence (Hammond and Goldstein 2006). The physiotherapy guidelines, however, use best 

available evidence for its recommendations regarding strategies for people with PCF 

<270L/min.  

The decline in respiratory function throughout the progression of manifest HD is not solely 

attributable to the ageing process as %predicted values showed similar relationships with 

TFC and UHDRS:TMS as did absolute values. These findings are similar to those in people 

with late stage MS, with the extended disability status scale showing significant correlations 

with FVC% predicted (r=0.87, p<0.001); MEP% predicted (r=0.79, p<0.001) and cough 

efficacy (r=0.45, p<0.05) (Gosselink et al. 2000). The relationship between respiratory 

function and disease severity was not found in people with mild to moderate MS (Foglio et 

al. 1994; Koseoglu et al. 2006). Although the overall findings of the observation study were 

that respiratory function declines with disease progression, the time gap of approximately 15 

months in the follow up sub-study was not sufficient to show significant change in respiratory 

function over time. The progressive decline in respiratory function with age (Lalley 2013) 

was addressed by using %predicted values, which did show average percentage decrease in 
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FVC% predicted of 1.85% and MIP% predicted of 19.68%, however MEP% predicted 

increased by 5.41%. These results may be unsurprising in terms of progression of HD, the 

rate of decline being 0.44 TFC units per year (Meyer et al. 2012) and life expectancy of 15-

20 years from onset of symptoms (Bates 2005).  

The findings of linear decline were unexpected, but indicate that prognostic indicators could 

be used to identify patients at risk of respiratory failure. In relation to acute type 1 

hypoxaemic respiratory failure, PCF would indicate those with values < 270L/minute who 

require strategies to increase inspiratory capacity and expiratory flow in order to effectively 

clear secretions. Measurement of FVC would indicate decreasing lung volume that could lead 

to hypoventilation and progressively increase load on the respiratory pump. As for people 

with ALS, an FVC of <80%predicted should be further investigated in terms of nocturnal 

desaturation and potential use of non-invasive ventilation (Anderson et al. 2012). Declining 

capacity of the respiratory pump as measured by SNIP would indicate potential type 2 

hypercapnic respiratory failure which could be further investigated through blood gas 

analysis.  

 

6.3 Conclusions from observation study 

A conceptual framework of respiratory failure in people with HD provided the rationale and 

methodological basis for the observation study of respiratory function in people with HD. 

The theoretical postulations were based on existing knowledge of pathological changes in HD 

and supported by evidence regarding respiratory function in people with PD, MS and 

MND/ALS. The key findings of decreased lung volume, impaired swallow and decreased 

cough efficacy support the theory that people with HD are susceptible to type 1 hypoxaemic 

respiratory failure. Further research is required to quantify the frequency of aspiration 

pneumonia in people with HD and describe current management strategies. Progressive 

decline in lung volume will increase the elastic load placed on the respiratory pump and with 

concomitant increased resistive load and decreased capacity predispose people with HD to 

type 2 hypercapnic respiratory failure. The exact causes of the underlying respiratory 

dysfunction are as yet unknown as further research is needed to explore whether HD 

pathology is primarily involved and how factors such as decreased exercise capacity, physical 

activity and altered posture impact on respiratory function. These findings are illustrated in 

Figures 41-43. 
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The functional problems associated with these findings are decreased ventilatory capacity, 

decreased respiratory muscle strength and decreased cough efficacy leading to retention of 

secretions. It has been suggested that the key factor of respiratory failure in people with 

neurodegenerative conditions is respiratory muscle weakness (Benditt and Boitano 2013; 

Buyse 2006) as this impacts on inspiratory capacity and cough efficacy. Based on the 

findings from the observation study an intervention study was planned to explore the 

feasibility and benefit of a physiotherapy technique to improve respiratory function and 

potentially reduce the risk of respiratory failure. The following chapters of this thesis will 

report the findings of a systematic review of physiotherapy management of respiratory 

problems in people with neurodegenerative conditions and the rationale, methods and results 

of the intervention study. 

Figure 41 Theoretical causes of type 1 hypoxaemic respiratory failure in 

people with Huntington’s disease 
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Figure 42 Theoretical causes of type 2 hypercapnic respiratory failure in 

people with Huntington’s disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43 A model of respiratory failure in people with Huntington’s disease  
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7 Intervention study: Literature Review 
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7.1 Introduction  

The main findings from the observation study suggest that people with manifest HD may 

have functional problems of retained secretions, decreased ventilation and decreased capacity 

of the respiratory muscle pump due to underlying respiratory dysfunction. Physiotherapy 

management of these problems was reviewed in order to identify an intervention for people 

with HD that could improve respiratory function and potentially decrease the likelihood of 

respiratory failure. When the intervention study was developed, little was known regarding 

management of respiratory problems in people with HD; a qualitative study identified that 

respiratory therapy was used by physiotherapists in the United Kingdom, but detail of 

specific interventions were not provided (Busse 2008). It was therefore necessary to review 

the literature related to people with PD, MS and MND/ALS. The specific question to be 

answered in the review was ‘how do physiotherapy interventions for retained secretions, 

decreased lung volume and decreased capacity of the respiratory pump in people with 

neurodegenerative conditions influence respiratory function’. The three functional problems 

were then used to provide the structure for the review. The exploration in this thesis was 

specific to respiratory function; therefore the review only included studies with outcomes 

measures of respiratory function. 

7.2 Search Strategy: Physiotherapy management of respiratory 

problems 

The search was limited to English language articles found using the following databases: 

Medline, EMBASE, AMED, CINAHL, HUGEnet, British Library Direct and SIGLE from 

inception to September 2013. A participant, intervention, comparison, outcome (PICO) 

approach (The Joanna Briggs Institute. 2008) was used to generate key words for all searches. 

Literature was appraised using the critical appraisal skills programme (CASP) (Critical 

Appraisal Skills Programme. 2007) guidance. Bibliographies of all relevant studies and 

reviews were searched by hand. References were managed through EndNote version X5.  

Population keywords included ‘neuro*’, ‘Parkinson’s disease’, ‘Amyotrophic Lateral 

Sclerosis’, ‘Motor Neurone Disease’, ‘Multiple Sclerosis’, and ‘Huntington’s disease’. 

Intervention keywords included ‘physiotherapy’ and ‘respiratory’ with outcome words 

including ‘lung’. Subsequent to the initial search and analysis of the categories of evidence 

found, two further search terms were used; ‘respiratory muscle strength’ and ‘retained 

secretions’, see Figure 44 and Figure 45 for a summary of the search strategy and record of 

findings. 
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Exclusion criteria were: the population consisted entirely of neuromuscular conditions such 

as myasthenia gravis and muscular dystrophies; all subjects <18 years old; subjects not 

breathing spontaneously; the intervention did not measure respiratory function; n<2. 

Figure 44 Summary of search strategy:  

 

1 = physiother* 

2 = neuro* 

3 = respir* 

4 = lung 

5 = respiratory muscle strength 

6 = retained secretions 

7 = 3 OR 4 OR 5 OR 6 

8 = 1 AND 2 AND 7 

9 = motor neurone disease 

10 = amyotrophic lateral sclerosis 

11 = multiple sclerosis 

12 = Huntington’s disease 

13 = Parkinsons disease 

14 = 9 OR 10 OR 11 OR 12 OR 13 

15 = 14 AND 7 
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Potentially relevant citations 

identified and screened for 

retrieval (n= 5508) 

Citations excluded by title, abstract or 

method as clearly unsuitable and 

duplicates (n= 5460) 

Potentially relevant articles 

retrieved for detailed evaluation 

(n=48) 

Citations excluded by full text (n= 11) 

see Table 1 

Studies reviewed (n=37) 

Figure 45 Flow diagram for selection of studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Details of individual studies are in Tables 41-44 with critical appraisal in Appendix 6. 

 

7.3 Management of retained secretions 

7.3.1 Description of techniques to manage retained secretions 

Cough efficacy, which is determined by respiratory muscle strength and glottic function, has 

been highlighted as functionally impaired in people with neurodegenerative conditions 

(Benditt and Boitano 2013) and therefore may result in retention of secretions during 

respiratory infections. Aspiration pneumonia is common in people with neurodegenerative 

conditions (Heemskerk and Roos 2010; Lalmohamed et al. 2012; Rafiq et al. 2012; Williams-

Gray et al. 2013) and thus effective ways of managing retained secretions in people with 

neurodegenerative conditions need to be identified to enhance clinical practice.  
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Physiotherapy techniques to manage retained secretions include: active cycle of breathing 

technique (ACBT); autogenic drainage; postural drainage; manual techniques such as 

percussion and vibrations; positive expiratory pressure devices; high frequency chest wall 

oscillation; assisted cough and mechanical insufflation-exsufflation.  

ACBT, as described by Webber (1990), is a cycle of breathing control, thoracic expansion 

exercise and the forced expiratory technique (FET). Breathing control is relaxed breathing at 

tidal volume at the patient’s own rate and depth and is used interspersed between thoracic 

expansions and FET. Thoracic expansion exercises are breaths at higher than tidal volumes 

which aim to increase lung volume by increasing the flow of air through collateral ventilation 

pathways at alveolar level and mobilise secretions in the alveoli (Button and Button 2013). 

FET is a forced expiration with an open glottis creating dynamic compression of the airway. 

Downstream i.e. toward the mouth, of the compression very high airflows clear mucus from 

the airway walls (Selsby and Jones 1990). Airway clearance techniques are effective in the 

short term in the management of excess mucus in people with cystic fibrosis (Van der Schans 

et al. 2000) but there is insufficient evidence to promote the use of ACBT over other 

techniques (Robinson et al. 2010). For individual patients there are no objective markers to 

endorse particular use of a technique, with adherence dependent upon individual preference 

(Pryor et al. 2010). ACBT is recommended in cystic fibrosis (CF) and bronchiectasis at grade 

A (at least one meta-analysis) and components such as breathing exercises are recommended 

for people with: spinal cord injury, grade D (expert opinion, case reports); Asthma, grade A; 

chronic obstructive pulmonary disease (COPD), grade D (Bott et al. 2009).  

Autogenic drainage focuses on breathing exercises at different lung volumes. Breathing is a 

slow inspiration with 2-4 second hold and a sighing expiration. When these breaths are used 

at low lung volumes, secretions are mobilised in the peripheral airways which then collect in 

the middle airways at mid lung volumes. Evacuation or expectoration then occurs when 

breathing at high lung volumes (Chevaillier 2009). Evidence on the effectiveness of 

autogenic drainage is limited but is recommended at grade A for people with CF and at grade 

D for COPD (Bott et al. 2009). 

CF and non-CF bronchiectasis result in large quantities of thick sticky secretions which often 

require the assistance of gravity to help drain secretions. Postural drainage uses knowledge of 

broncho-pulmonary anatomy (The Thoracic Society. 1950) to position the thorax in a way 

that will allow gravity to have best effect on secretions, causing them to move from 

peripheral to central airways to be expectorated. The recommendation of postural drainage 
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for CF and bronchiectasis is grade B (high quality systematic review) and should only be 

used if safe in COPD and can further add to clearance, grade D. 

Manual techniques such as percussion and vibrations may be used in conjunction with ACBT 

and postural drainage. Percussion is thought to loosen secretions from bronchial walls and 

vibrations increase expiratory flow rate in the peripheral and central airways (Wong et al. 

2003) thus enabling secretions to be moved from peripheral and central airways and 

expectorated. Percussion and vibration techniques are thought of as ‘conventional’ 

physiotherapy and with few studies investigating their efficacy, specific recommendations for 

use cannot be made (Bott et al. 2009). When percussion and vibration are combined with 

postural drainage, this chest physiotherapy is recommended in people with CF at grade C 

(McCool 2006b). 

A development of manual vibrations is high frequency chest wall oscillation (HFCWO), 

which uses a vest connected to an air pulse generator and provides compression of the chest 

at frequencies of 5-20Hz (Button and Button 2013) Although HFCWO has cost implications, 

it is recommended, in people with CF, grade A (Bott et al. 2009). Smaller devices such as 

positive expiratory pressure (PEP) and oscillating PEP devices are also recommended for 

people with CF and non-CF bronchiectasis, grade A (Bott et al. 2009). These devices provide 

between 5-20cmH2O pressure on expiration which is thought to maintain airway patency, 

promote airflow to obstructed airways and thus enhance clearance of secretions (Mortensen et 

al. 1991).  

In physiotherapy practice, expectoration of retained secretions may be managed by improving 

the cough effectiveness. Cough effectiveness can be improved by increasing inspiratory 

volumes through maximal insufflation and breath stacking (McCool 2006b), by enhancing 

forced expiration by means of maximal exsufflation and manually assisted techniques and by 

manually assisted cough. These interventions can be applied to people who are self-

ventilating and those who are ventilated by invasive and non-invasive means.  

Assisted cough and mechanical insufflation-exsufflation are techniques that aim to assist the 

expectoration of secretions when cough may be ineffective and therefore are recommended 

for people with spinal cord injury and people with neuromuscular disorders, both at grade D 

(Bott et al. 2009). Assisted cough is a manual technique performed on a person by applying 

an inward and upward force against the thorax, as a substitute for abdominal and intercostal 

muscle work (Harris and Ward 2008). A mechanical insufflation-exsufflation device 

promotes maximal lung inflation through application of positive pressure via a face mask 

followed by a rapid negative pressure which imitates flow changes occurring during a cough. 
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It is thought that this enforced cough would enable clearance of secretion (Chatwin et al. 

2003). A mechanical glottis, an external device which mimics the normal closure of the 

glottis, has also been used to enhance cough (Suleman et al. 2004).  

The physiotherapy techniques described above have some theoretical underpinning and 

variable efficacy in the management of retained secretions. Further analysis of evidence was 

carried out in people with neurodegenerative conditions. This evidence was collected and 

analysed systematically, see Appendix 6 for critical analysis. 

7.3.2 Management of retained secretions in people with neurodegenerative 

conditions 

Ten studies were selected that described treatment/intervention for retained secretions, see 

Table 41 for details of the studies. All individual studies were small, populations were 

ALS/MND (n=6) but did include other neurodegenerative conditions (n=4). No studies were 

randomised controlled trials and interventions were not standardised across studies. 

Outcomes for cough effectiveness studies were consistent; measuring expiratory flow rates. 

Three studies used high frequency chest wall oscillation as an intervention to mobilise 

secretions and one study investigated mechanical glottis to enhance cough. Six studies 

compared combinations of increasing maximal insufflation capacity, maximum insufflation-

exsufflation and manually assisted cough. The primary outcome measure for most studies 

(7/10) was peak cough flow (PCF) with two using peak expiratory flow rate (PEFR) and one 

using forced vital capacity (FVC) and oxygen saturation (SaO2). PCF is the maximal flow 

rate from a cough manoeuvre and differs from PEFR in that the manoeuvre follows a closed 

rather than open glottis. A critical cut off point for effective cough has been established as 

PCF ≥ 160L/min (Bach et al.1998). 

7.3.3 Studies related to mobilisation of secretions 

High frequency chest wall oscillation was the only modality with evidence for use in people 

with neurodegenerative conditions. In three studies with a total of 62 patients with ALS, high 

frequency chest wall oscillation was applied twice a day for between 10-30 minutes per 

session (Chaisson et al. 2006; Jackson et al. 2006; Lange et al. 2006). Although there were no 

significant changes in respiratory function (SaO2, FVC, PCF), breathlessness decreased 

significantly (Lange et al. 2006) and 92% felt better after treatment (Jackson et al. 2006). 

Based on this evidence, high frequency chest wall oscillation may enhance mobilisation of 

secretions in people with neurodegenerative conditions, but large scale studies are necessary 

to provide conclusive findings. 
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7.3.4 Studies related to improvement of cough effectiveness 

Winck et al (2004) investigated the effects of sequentially increasing mechanical insufflation-

exsufflation pressures from ±15cmH2O to ±30 and then to ±40cmH2O on parameters 

including PCF, SaO2, and dyspnoea. The sample group included 13 subjects with ALS and 7 

subjects with other neurodegenerative conditions. PCF and SaO2 measured at baseline and 

after mechanical insufflation-exsufflation of ±40cmH2O showed significant improvement in 

subjects with ALS (p<0.005 PCF and SaO2) and those with neurodegenerative conditions 

(PCF p<0.05, SaO2 p<0.005). Dyspnoea was measured in just the neurodegenerative 

conditions group and significantly decreased from baseline to ±40cmH2O (p <0.05). Median 

PCF increased from 180L/min to 220L/min in the ALS group and from 170L/min to 

200L/min in the neurodegenerative conditions group. These are clinically significant results 

as both groups improved their ability to independently clear secretions as shown by median 

values > 160L/min. 

Bach (1993), Chatwin et al (2003) Mustfa et al (2003) and Sancho et al (2004) all compared 

combinations of mechanical insufflation-exsufflation, manual assisted cough and breath 

stacking in people with ALS and neurodegenerative conditions using PCF as one of the 

outcome measures. For patients with ALS (n=73, (Mustfa et al. 2003; Sancho et al. 2004), 

mechanical insufflation-exsufflation was found to be more effective than manually assisted 

cough and unassisted cough in those patients without bulbar involvement and who are stable. 

Mechanical insufflation-exsufflation was not effective in those with little lung function 

impairment and those with bulbar dysfunction who also had a maximal inspiratory capacity 

of >1 litre and a PCF (generated from maximal insufflations) of <162L/min, probably due to 

upper airway collapse during expiration. The specific issue of bulbar involvement highlights 

the importance of impaired cough due to upper airway weakness which may not be overcome 

by these interventions (Mustfa et al. 2003). In people with neurodegenerative conditions Bach 

(1993) found that mechanical insufflation-exsufflation was more effective than manually 

assisted cough with breath stacking; cough with insufflations and unassisted cough. Slightly 

different results were found by Chatwin et al (2003) who found that although mechanical 

insufflation-exsufflation and exsufflation alone were better than unassisted cough, they were 

not significantly better than assisted cough. This study used a mixed adult and child sample. 

The evidence from these studies indicates that mechanical insufflation-exsufflation is 

effective in producing sufficient volumes for effective cough in people with 

neurodegenerative conditions that have impaired lung function. In a small study of 10 
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patients with neurodegenerative conditions, Trebbia et al (2005) found that a combination of 

manually assisted cough and manual hyperinflation significantly improved PCF. 

An alternative aid to cough may be a mechanical glottis device that can imitate glottis closure 

and thus potentially generate pressures that produce adequate PCF. Suleman et al (2004) 

investigated the use of such a device in healthy controls and people with bulbar problems and 

demonstrated that the device created a PEFR significantly higher than that of both a 

straightforward PEFR manoeuvre and a cough manoeuvre in patients. In the healthy control 

group PEFR was highest with a cough manoeuvre and lowest with normal PEFR manoeuvre. 

 

Physiotherapy based interventions to improve cough effectiveness by increasing PCF appear 

to have some efficacy for people with neurodegenerative conditions. Mechanical insufflation-

exsufflation and manually assisted cough appear to be more effective than unassisted cough 

(Bach 1993; Chatwin et al. 2003; Mustfa et al. 2003). The choice of physiotherapy 

intervention depends upon the patient’s vital capacity (Sancho et al. 2004) and whether the 

patient is stable and needs to maintain clear airways or has an acute respiratory infection and 

needs to clear secretions. Skills in manually assisted cough and maximal insufflation-

exsufflation can be taught to carers and therefore may be suitable within the primary care 

setting. The heterogeneous populations used including neurodegenerative and neuromuscular 

disorders make it difficult to draw conclusions for specific disease populations. 
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Table 41 Studies related to retained secretions 

Study Population Intervention and comparison Key significant findings 

Bach 1993  21 people with 

neurodegenerative 

conditions  

Single group, comparison of PCF during: 

A unassisted cough,  

B unassisted cough preceded by breath stacking 

C manually assisted cough preceded by breath stacking 

D mechanical insufflation-exsufflation (several 5 cycle 

applications at comfortable pressures) 

PCF in D>C  p <0.0005 

PCF in C>B  p <0.001 

PCF in B>A  p <0.0005 

 

Chatwin  

et al 2003  

21 adult and child 

with 

neurodegenerative 

conditions  

Single group, comparison of PCF during: 

A unassisted cough 

B physiotherapy assisted cough  

C non-invasive ventilator assisted cough 

D exsufflation assisted cough 

E insufflation-exsufflation assisted cough 

PCF in E>D p <0.001 

 

Chaisson  

et al 2006  

9 ALS 2 groups, comparison of FVC in: 

A standard care plus high frequency chest wall oscillation 

applied for 15min, twice daily 

B standard care 

Both groups received instruction on cough augmentation 

manoeuvres 

 

No difference in rate of decline in FVC 

between high frequency chest wall 

oscillation and standard treatment 



186 

 

Study Population Intervention and comparison Key significant findings 

Jackson  

et al 2006  

18 ALS Retrospective analysis of FVC, MIP, and PCF before and after 

high frequency chest wall oscillation, applied twice daily for 

10-20 minutes or more frequently if needed.  

Frequency = 10-14Hz, pressures 30–40cmH2O     

No significant differences 

Lange 

et al 2006  

46 ALS Randomised control trial, outcome measures: FVC predicted 

and PCF 

A high frequency chest wall oscillation, twice daily for 10-15 

minutes, for 12 weeks. Frequency = 10-12Hz, pressures 1-4 

(linear scale no units) 

B Control no treatment. 

A & B No change in FVC or PCF 

Sub analysis of patients with 

40<FVC<70% predicted, showed FVC 

significantly decreased in B but not A. 

Mustfa  

et al 2003  

47 ALS Single group comparison of PCF during: 

A unassisted cough 

B manual assisted cough 

C exsufflation assisted cough 

D insufflation assisted cough 

E insufflation/exsufflation assisted cough 

PCF in C > A, B, D, E p<0.01 

Sancho  

et al 2004  

26 ALS Single group, comparison of  PCF during: 

A maximal insufflation assisted cough 

B maximal insufflation-exsufflation assisted cough 

Mechanical insufflation-exsufflation delivered at ± 40cm H2O 

Mechanical insufflation-exsufflation 

can increase PCF in stable patients with 

ALS with  2.7L/s < PCFMIC <4L/s 

(MIC  at maximal insufflation capacity) 
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Study Population Intervention and comparison Key significant findings 

Suleman  

et al 2004  

10 MND Single group, comparison of PEFR in: 

A PEFR 

B PEFR with mechanical glottis 

C PEFR with cough 

PEFR in B>A p<0.005 

PEFR in C>A p<0.005 

PEFR in C>B p<0.005 

Trebbia  

et al 2005  

10 people with 

neurodegenerative 

conditions  

Single group, comparison of PCF in: 

A unassisted cough 

B manually assisted cough 

C mechanical insufflation 

D manually assisted cough and mechanical insufflation 

PCF in B, C, D>A  p<0.01 

PCF  in D>C, B  p<0.01 

 

Winke  

et al 2004  

13 ALS 

7 people with 

other 

neurodegenerative 

conditions  

Single group, comparison of PCF, SaO2, dyspnoea in: 

A baseline 

B MIE ±15cmH2O 

C MIE ±30cmH2O 
D MIE ±40cmH2O 

 

 

 

ALS 

PCF in D>A  p<0.005 

SaO2 in D>A p<0.005 

 

Other neurodegenerative conditions 

PCF in D>A  p<0.05 

SaO2 in D>A p<0.005 

Dyspnoea in D>A p<0.05 
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Key to Table 41 

ALS  Amyotrophic lateral sclerosis 

FVC  Forced vital capacity 

MIE  Maximal insufflation exsufflation 

MIP  Maximal inspiratory pressure 

PCF  Peak cough flow 

PEFR  Peak expiratory flow rate 

SaO2  Saturation of oxygen 

 

7.4 Management of decreased lung volume 

Atelectasis leading to decreased lung volume may represent an underlying cause of type 1 

hypoxaemic respiratory failure which may lead to type 2 hypercapnic respiratory failure. 

Decreased lung volume has been demonstrated in people with PD and management of this 

problem may decrease the likelihood of progressive atelectasis. 

7.4.1 Description of techniques to manage decreased lung volume 

Physiotherapy techniques to increase lung volume include thoracic expansion exercises; 

positioning and postural advice and general exercise. As described in Section 7.3, thoracic 

expansion exercises can increase lung volume by utilising collateral ventilation between 

alveoli (Button and Button 2013). The technique of positioning to improve lung volume is 

based upon the effect of gravity on ventilation throughout the lung. At tidal volume 

breathing, ventilation is greater in dependent regions of the lung compared to non-dependent 

regions. This is due to the effect of gravity on lung structure, causing intra-pleural pressure to 

be more positive in dependent regions, causing compression of alveoli which are thus more 

compliant during inspiration. (Bryan et al. 1966). This deformation of the lung tissue under 

its own weight also influences pulmonary perfusion, in that non-dependent regions will 

contain fewer blood vessels than dependent regions (Hopkins et al. 2007). Matching of 

ventilation and perfusion is necessary for optimal pulmonary function and physiotherapists 

use this knowledge to position people who have regional dysfunction of ventilation (Dean 

1985). Gross changes in posture also influence pulmonary function in terms of lung volume. 

Changing posture from upright sitting through to supine lying shows a decrease in rib cage 

movement and consequent decreases in tidal volume and minute ventilation (Romei et al. 

2010). Similarly, kyphotic postures reduce vital capacity (Harrison et al. 2007). 

Physiotherapy management aims to optimise lung volumes by either passively positioning 

people who are unable to position themselves and/or educating carers and patients regarding 

best positions for respiratory function. Postural alignment and appropriate seating is 
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recommended for people with HD in order to maximise functional ability and to reduce the 

risk of aspiration and respiratory complications (Quinn and Busse 2012).  

Exercise influences breathing mechanics as the respiratory system strives to maintain 

homeostasis. During exercise, tidal volume and breathing frequency increase to improve 

gaseous exchange (Dominelli and Sheel 2012). Increased tidal volume is thought to be 

predominant in low intensity exercise, with breathing rate increasing with more intense 

exercise. The initial increase in tidal volume is due to optimal diaphragmatic contraction as a 

consequence of stretch, as end expiratory volume decreases due to active expiration (Babb 

2013). Exercise to improve cardiorespiratory function is recommended in asthma (Grade B); 

cystic fibrosis (Grade B); spinal cord injury (Grade D) and as part of pulmonary rehabilitation 

for people with COPD (Grade A) (Bott et al. 2009). 

7.4.2 Management of decreased lung volume in people with neurodegenerative 

conditions  

Studies related to increasing lung volume in people with neurodegenerative conditions 

included general exercise and specific breathing exercises. Seven studies were found that 

investigated the influence of different types of exercise in people with neurodegenerative 

conditions, see Table 42. Three studies (n=168 people with MS) (Mostert and Kesselring 

2002; Rampello et al. 2007; Rasova et al. 2006) compared bike training with neurological 

rehabilitation with positive changes in FVC found in two studies (Mostert and Kesserling 

2002; Rasova et al. 2006). The lack of positive findings in Rampello et al. (2007) may have 

been due to small numbers, as after dropouts only five subjects remained in each group. 

Another small study (n=9) in people with PD demonstrated no difference in respiratory 

function after a specific pulmonary rehabilitation program although the negative finding may 

also have been due to the mean value for predicted FVC being in the normal range (107.11%) 

(Koseoglu et al. 1997).  

The study on diaphragmatic training in people with ALS (n=8) (Nardin et al. 2008) used the 

principle of decreasing end expiratory volume in order to maximise the length tension 

relationship of the diaphragm in order to enhance diaphragm contraction. There were no 

changes in FVC after the intervention which may indicate that any change in lung volume is 

temporary whilst performing the exercise. 

In contrast, an intervention of deep breathing exercises in 24 people with PD demonstrated 

significant increases in FVC, FEV1, PEFR and maximal voluntary ventilation (MVV) (Genç 

et al. 2012). In this study, the subjects’ % predicted FVC was 83.62 ±16.09 which may 
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indicate the potential for improvement. The intervention differed from Nardin et al. (2008) in 

that slow deep breaths with end inspiratory hold were included. These exercises aim to 

increase airflow through collateral ventilation and therefore may have expanded previously 

collapsed alveoli, thus increasing FVC.  

A positive trend in change of FVC and MEP was seen following an intervention of breathing 

enhanced upper extremity exercises in people with MS (n=40) (Mutluay et al. 2007). These 

exercises targeted accessory muscles, but as FVC % predicted was not in a pathological range 

(91±17) it is unlikely that accessory muscles are used in normal breathing, therefore limiting 

the efficacy of the intervention. 
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Table 42 Studies related to exercise  

Study Population Intervention and comparison Key significant findings 

Genç et al 

2012  

24 PD Single group, comparison of  FEV1, FVC, FEV1/FVC, 

PEFR, MVV pre and post intervention 

Deep breathing exercises 3 x 15 daily for 12 weeks 

FVC, FEV1, PEFR significant 

improvement p<0.001 
MVV significant improvement p<0.006 
FEV1/FVC no change 

 

Koseoglu et 

al 1997  

9 PD Single group comparison of FEV1, FVC, PEFR, MVV, VC, 

pre and post intervention 

Pulmonary Rehabilitation including specific breathing 

exercises 60 minutes, 3 days/week for 5 weeks. 

 

No significant differences pre and post 

in any variable 

Mostert and 

Kasserling 

2002  

37 MS, 26 

healthy control 

4 groups, comparison of FEV1, FVC, FEV1/FVC, PEFR, 

MVV 

A MS exercise training (bike)  

B MS control, normal physiotherapy 

C Healthy control, no regular physical exercise 

D Healthy control, exercise training (bike) 

Exercise training: 30 minutes, 5 times/week for 3-4 weeks, 

individualised intensity. 

 

A ↑ FVC, PEFR  p<0.05 

B ↑ PEFR p<0.05 
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Study Population Intervention and comparison Key significant findings 

Mutluay et 

al 2007  

40 MS 2 groups, comparison of FEV1, FVC, FEV1/FVC, MIP, 

MEP 

A Breathing enhanced upper extremity exercises  

B Control no intervention 

Breathing exercises programme 30 minutes, once/day for 6 

weeks 

 

A ↑FEV1, FEV1/FVC compared to B 

 

Nardin et al 

2008  

8 ALS Single group, comparison of FVC, hypercapnic ventilatory 

response, breathing pattern pre and post intervention 

Diaphragmatic training: 5 sets of 10 minutes daily for 12 

weeks 

 

No change in FVC, hypercapnic 

ventilatory response. 

4/8 altered breathing pattern 

Rampello et 

al 2007  

19 MS Single group, cross over design, comparison of FEV1, 

FEV1/FVC, VC, MIP, MEP 

A Aerobic training (cycle ergometer)  

B Neurological rehabilitation 

Training 55 minutes, 3 times/week for 8 weeks. Intensity 

dependent on work rate and increased to 80% maximum 

work rate 

Rehabilitation 60 minutes, 3 times/week for 8 weeks.  

No difference in lung function  
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Study Population Intervention and comparison Key significant findings 

Rasova et al 

2006  

112 MS 4 groups, comparison of FEV1, FVC, PEFR 

A Neurophysiological physiotherapy  

B Aerobic bike training  

C Combined A & B 

D Control 

Physiotherapy 1 hour, twice/week for 2 months 

Bike training twice/week, intensity 60% maximal oxygen 

uptake, time dependent on disability score range 10-30 

minutes 

Mixed training 1 hour twice/week physiotherapy and bike 

training as above. 

Control – no intervention. 

B ↑FVC p<0.05 

 

Key to Table 42 

PD  Parkinsons disease 

MS  Multiple Sclerosis 

ALS  Amyotrophic lateral sclerosis 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

FEV1/FVC Forced expiratory volume in 1 second/ Forced vital 

capacity ratio 

 

 

 

PEFR  Peak expiratory flow rate 

MVV  Maximal voluntary ventilation 

MIP  Maximal inspiratory pressure 

MEP  Maximal expiratory pressure 

VC  Vital capacity 
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7.5 Management of decreased capacity 

Ventilatory function is determined by inspiratory muscle strength with functional impairment 

being observed as nocturnal and daytime hypoventilation (Benditt and Boitano 2013). Two 

main interventions were identified to address the problem of respiratory muscle weakness; 

non-invasive ventilation (NIV) and respiratory muscle training. NIV aims to reduce the work 

of breathing and conserve energy whilst respiratory muscle training aims to strengthen 

inspiratory and expiratory muscles and improve endurance. Studies on the effectiveness of 

these interventions include a systematic review including eight randomised control trials, five 

additional randomised controlled trials, five prospective observational studies, two 

retrospective observational studies and six experimental studies; see Table 43 and Table 44 

for details. Further detail on respiratory muscle training can be found in the next section. 

7.5.1 Non-invasive ventilation 

Non-invasive ventilation can be administered via nasal mask, mouthpiece or oro-nasal masks 

and can be volume cycled, pressure cycled or Bi level positive airway pressure (BiPAP) 

(Annane et al. 2009). Ten studies were selected that involved non-invasive ventilation as an 

intervention, see Table 43. One was a systematic review with a specific population of ALS. 

Other studies selected that were not contained within the review included 391 people with 

ALS and 68 mixed population studies. The studies were mainly prospective observational 

studies (n= 5), with two retrospective studies and two experimental studies. Interventions 

included BiPAP, volume cycled NIV and pressure cycled NIV. Outcome measures included 

FVC, SNIP, MIP, MEP, lung compliance and Tlim (endurance limit measured in time). 

The systematic review (Annane et al. 2009) identified eight randomised control trials 

investigating the efficacy of nocturnal NIV in relieving hypoventilation related symptoms in 

patients with neuromuscular and chest wall disorders. Neuromuscular in this review included 

people with ALS. The primary outcome measure was reversal of daytime hypoventilation 

symptoms including diurnal hypersomnia and headaches with few studies reporting lung 

function measurements. The finding of the review was that although the evidence supporting 

mechanical ventilation was weak, it was consistent in suggesting benefit in the short term. 

Seven studies investigated the effect of NIV on lung function in people with ALS (n=391). 

Four studies (n=282) demonstrated a slower decline in FVC in people who could tolerate 

NIV (Bourke et al. 2003; Carratu et al. 2009; Kleopa et al. 1999; Lo Coco et al. 2006). As the 

main focus of these studies was survival, NIV intervention was non-standardised i.e. it was 
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individualised to the patient, in terms of mode and length of time of intervention. The 

evidence is weakened by the fact that Kleopa et al (1999) and Carratu et al (2009) are 

retrospective studies.  

Inconclusive evidence exists in relation to other measures of lung function. Aboussouan et al 

(2001) found no change in FVC, FEV1, MIP or MEP; Butz et al (2003) identified increased 

oxygenation (SaO2 and PaO2) and Lechtzin et al (2006) showed increased lung compliance 

following NIV. This increase in compliance would then result in a decrease in load and 

potentially improve the balance between load and capacity, despite no change in MIP. Two 

studies, including 29 subjects with a range of neurodegenerative conditions, identified 

increased respiratory muscle endurance (Goldstein et al. 1991) and improved oxygenation 

(Nauffal et al. 2002) following NIV intervention. 

The key findings from these studies are that NIV may have an influence on lung function in 

people with ALS/MND and recommendations have been made for its use within these groups 

as an intervention to improve quality of life and survival as well as alleviating breathlessness. 

It would be interesting to explore, from a clinical perspective, why NIV has not been 

investigated in other neurodegenerative conditions such as MS and PD and whether it may be 

effective in improving lung function in these groups.  
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Table 43 Studies related to non-invasive ventilation 

a) Systematic review 

 

Author Title Sources Method Results 

Annane et al 

2009 

Nocturnal mechanical ventilation 

for chronic hypoventilation in 

patients with neuromuscular and 

chest disorders 

MEDLINE (January 

1966-June 2006) 

EMBASE (January 

1980–June 2006) 

Cochrane 

neuromuscular 

disease group trials 

register 

Inclusion criteria: 

Randomised controlled trial, with 

or without blinding; people with 

neuromuscular and chest wall 

disorder related stable chronic 

hypoventilation; all ages; all 

severity; any type and mode of 

nocturnal mechanical ventilation. 

Exclusion criteria: 

People with COPD 

 

Independently reviewed by 2 

reviewers. 

15 studies found, 8 met inclusion 

criteria. 

Conclusion: Evidence regarding 

nocturnal mechanical ventilation is 

weak, but consistent, suggesting 

short term alleviation of 

hypoventilation. 
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b) Individual studies 

Study Population Intervention and comparison Key significant findings 

Aboussouan 

et al 2001 

60 ALS Single group, repeated measures over time of FEV1, FVC, 

MIP, MEP during: 

NIV:  volume controlled or BiPAP with pressures for 

patient comfort, for as long as tolerated during night and as 

necessary daytime. 

 

Rate of decline in FEV1, FVC 

unchanged with NIV. 

No change in MIP, MEP. 

Bourke  

et al 2003  

17 ALS Single group, repeated measures over time of VC, MIP, 

MEP, SNIP during: 

NIV, pressures adjusted according to blood gas analysis and 

patient comfort 

 

 

Rate of decline in VC slower post 

treatment p=0.039 

Butz  

et al 2003  

30 ALS Single group, repeated measures over time of VC, PaCO2, 

PaO2, SaO2 during 

NIV: pressure cycled; pressures 8-22 millibars dependent 

upon arterial blood gases, oxygen saturation and relief of 

symptoms 

 

 

PaO2 improved at 4 months p=0.01 

SaO2 improved up to 7 months  p=0.027 
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Study Population Intervention and comparison Key significant findings 

Carratu  

et al 2009  

72 ALS Retrospective study, comparing FVC in: 

A FVC>75%predicted, no NIPPV 

B FVC<75% predicted and tolerant of NIPPV 

C FVC<75% predicted and refused or intolerant of NIPPV 

NIPPV: Volume controlled or BiPAP; pressures – 8cmH2O 

BiPAP, 3cmH2O EPAP; volume/pressure dependent upon 

chest rise, leaks and comfort; used nightly as tolerated and 

as necessary daytime. 

FVC decline slower in B than C  

p<0.0001 

Goldstein  

et al 1991  

6 including 2 

neurodegenerative 

conditions  

Single group, repeated measures over time of FEV1, FVC, 

FEV1/FVC, MIP, MEP, MVV, Tlim during: 

NIV: volume cycled , as tolerated by participant 

Tlim ↑ at 3 months post intervention  

p<0.05 

Kleopa  

et al 1999  

122 ALS Retrospective study, comparing FVC % predicted in, 

A those who tolerated BiPAP for >4 hours 

B those that tolerated <4 hours  

C those who refused. 

A slower decline of FVC %predicted 

than B, p=0.02 and C, p<0.001 

Lechtzin  

et al 2006  

19 ALS, 4 healthy 

control 

2 groups , compared MIP, MEP, lung compliance 

A ALS with BiPAP 

B Healthy control  with BIPAP 

BiPAP for 5 minutes, dependent upon lung compliance 

 

A ↑Lung compliance with BiPAP  

B no change  
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Study Population Intervention and comparison Key significant findings 

LoCoco  

et al 2006  

71 ALS Single group, repeated measures over time comparing FVC 

% predicted, FVC variation over time 

BiPAP: pressures adjusted to patient comfort, leaks and 

efficiency of ventilation; for as long as tolerated nightly and 

as necessary daytime 

Decline of FVC slower in those who 

could tolerate NIV p=0.002 

Nauffal  

et al 2002  

62 including 27 

neurodegenerative 

conditions 

Single group, repeated measures over time comparing FEV1 

%predicted, FVC %predicted, TLC, SaO2, MIP, PaO2, 

PaO2 during: 

BiPAP nightly; pressures dependent on arterial blood gases. 

For people with neurodegenerative 

condtions:SaO2, ↑ after 3 months 

p<0.05, FEV1, FVC ↓ after 12 months  

Key to Table 43 

COPD  Chronic obstructive pulmonary disease 

ALS  Amyotrophic lateral sclerosis 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

FEV1/FVC Forced expiratory volume in 1 second/ Forced vital 

capacity ratio 

VC  vital capacity 

MIP  Maximal inspiratory pressure 

 

 

 

 

 

 

 

 

MEP  Maximal expiratory pressure 

SNIP  Sniff nasal inspiratory pressure 

NIPPV  Non-invasive positive pressure ventilation 

NIV  Non-invasive ventilation  

BiPAP  bilevel positive airway pressure 

EPAP  Expiratory positive airway pressure 

PaO2  Partial pressure of oxygen in arterial blood 

PaCO2  Partial pressure of carbon dioxide in blood 

SaO2  Saturation of oxygen 
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7.5.2 Respiratory muscle training 

Ten studies, including four randomised control studies, see Table 44, were found that 

assessed the effect of respiratory muscle training in people with neurodegenerative 

conditions. Outcome measures used in the studies include maximal inspiratory pressure 

(MIP), maximal expiratory pressure (MEP) and 12 second maximal voluntary ventilation 

(12MVV). 

Five studies investigated inspiratory muscle training and identified significant increases in 

MIP post intervention: two randomised control studies in 61 people with MS (Fry et al. 2007; 

Klefbeck and Nedjad 2003); an experimental study in MS with 46 participants (Pfalzer and 

Fry 2011) and one study including 20 people with PD (Inzelberg et al. 2005). The trial by 

Cheah et al (2009) only demonstrated trends of increased inspiratory pressure measured by 

MIP and sniff nasal inspiratory pressure (SNIP) when compared to sham inspiratory muscle 

training in 19 people with ALS. The studies lasted between 10 and 12 weeks with training 

ranging from daily to every other day. Although Fry et al (2007) and  Pfalzer and Fry (2011) 

did not see a change in MVV, Inzelberg et al (2005) did see a significant increase in 

inspiratory muscle endurance as measured by the peak pressure obtained on breathing against 

progressive loads to fatigue.  

The effect of expiratory muscle training (EMT) on maximal expiratory pressure (MEP) is less 

clear than the effect of inspiratory muscle training (IMT) on MIP. Two randomised control 

trials demonstrated significant increases in MEP in 48 people with MS compared to breathing 

exercises (Gosselink et al. 2000) and control group (Smeltzer et al. 1996). Chiara et al (2006) 

also found significant increases in MEP in 17 people with MS after 8 weeks training; this was 

not significantly different to the group of healthy control subjects who carried out the same 

training. A shorter study by Pitts et al (2009) of 4 weeks EMT in people with PD showed a 

significant increase in MEP, but no difference in peak cough flow. The length of training: 

daily for 3 months (Gosselink et al. 2000; Smeltzer et al. 1996); daily for 8 weeks (Chiara et 

al. 2006); 5 days/week for 4 weeks (Pitts et al. 2009) and different stages of disease: mild 

(Smeltzer et al. 1996) mild/moderate (Chiara et al. 2006; Pitts et al. 2009) and severe 

(Gosselink et al. 2000) may explain the different results. 

In a pilot study by Olgiati et al (1989), 8 people with MS were assigned either IMT or EMT, 

dependent upon whether the subjects MIP or MEP was <70% predicted. Although training 

was only for 4 weeks, significant increases were observed in MIP, MEP and MVV for the 

whole group. 
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There is some evidence that specific inspiratory and expiratory muscle training does increase 

MIP and MEP respectively, and also respiratory muscle endurance in people with 

neurodegenerative conditions. The majority of studies were carried out on people with MS 

and therefore results may not be inferred to people with other neurodegenerative conditions. 

Although a number of the studies were randomised controlled trials, the interventions and 

outcomes used differed, making overall conclusions difficult to make.  

A similar review was undertaken after this work had been completed and cites Jones et al. 

(2012b), used a similar search strategy, reviewed the same studies and came to the same 

conclusions (Reyes et al. 2013). 
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Table 44 Studies related to respiratory muscle training  

Study Population Intervention and comparison Key significant findings 

Cheah  

et al 2009 

19 ALS 2 groups, comparison of VC, FVC, MIP, MEP, SNIP 

A IMT group  

B Sham group, no resistance 

IMT 10 minutes, 3 times daily, 12 weeks. 

Threshold device, resistance increased weekly from 15 to 

60% SNIP, then sustained at 60% SNIP. 

Adherence IMT 82%, Sham 85% 

Non- significant increase in FVC, MIP, 

SNIP in both groups 

Chiara  

et al 2006  

17 MS,  

14 healthy 

control 

2 groups, repeated measures pre, post and 4 weeks after 

intervention, comparing FEV1, FVC, PEFR, MEP, PCF 

A MS & EMT 

B Healthy control & EMT 

EMT 4 sets of 6 repetitions, 5 days a week, 8 weeks. 

Threshold device, resistance increased weekly from 40 to 

80% MEP then sustained at 80% MEP 

Adherence >90% 

A & B ↑MEP, PEFR after 8 weeks  

p<0.01 and sustained through no 

training 

no difference between groups 

 

 

Fry  

et al 2007  

46 MS 2 groups, comparison of FEV1, FVC, VC,  MIP, MEP, 

MVV 

A Home IMT group  B Control group no intervention 

Threshold device, IMT 3x15 reps, daily for 10 weeks. 

Resistance altered according to baseline MIP, perceived 

exertion and symptoms 

Adherence 81% 

A ↑MIP  p=0.001; FVC p=0.04; FEV1 

p=0.01; FEV1/FVC predicted p=0.016; 

VC p=0.009 compared to B 



203 

 

Study Population Intervention and comparison Key significant findings 

Gosselink  

et al 2000  

28 MS 2 groups, comparison of FVC, MIP, MEP, cough efficacy 

A EMT  

B Breathing exercises 

EMT 3 sets of 15 repetitions, twice daily for 3 months. 

Threshold device, resistance was 60% MEP. 

Breathing exercises to enhance maximal inspirations 

A ↑Cough efficacy compared to B 

p<0.05 

A ↑MIP from baseline but not different 

to B 

Inzelberg  

et al 2005  

20 PD 2 groups, comparison of FEV1, FVC, MIP, inspiratory 

muscle endurance (PmPeak) 

A IMT  

B Sham 

Threshold device, IMT: 30mins, 6 days/week, 12 weeks. 

Resistance increased from 15 to 60% MIP and sustained at 

60% MIP. Control frequency as IMT. Resistance 7cmH2O 

A ↑MIP,  PmPeak p=0.05 

 

 

Klefbeck 

and Nedjad 

2003  

15 MS 2 groups, comparison of FEV1, FVC, VC, PEFR, MIP, 

MEP 

A IMT 

B Control  

Threshold device, IMT: 3 sets of 10 repetitions, twice every 

other day, 10 weeks. Resistance 40-60% MIP. Control deep 

breathing exercises as part of physiotherapy treatment. 

A ↑MIP  p=0.008 and MEP p=0.02  

from baseline  

A ↑MIP significant compared to B p = 

0.01 
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Study Population Intervention and comparison Key significant findings 

Olgiati  

et al 1988  

8 MS Single group, comparison of VC, RV, TLC, MIP, MEP, 

MVV pre and post intervention. 

IMT /EMT dependent upon % MIP/MEP 

Device type not stated, training 6-10 minutes, twice/day, 5 

days/ week for 4 ±1 week. Resistance dependent upon 

%MIP/MEP and progressively increased. 

↑MIP p<0.02, MEP p<0.05, MVV 

p<0.05 

Pfalzer and 

Fry 2011 

46 MS 2 groups, comparison of FEV1, FVC, MIP, MEP, MVV 

A IMT  

B Control 

Threshold device, 3 x 15 reps, daily for 10 weeks,  

Adherence 81% 

A ↑MIP compared to B,  p=0.003  

Pitts  

et al 2009  

10 PD Single group, comparison of MEP, PCF pre and post  

EMT 

Threshold device, training 5 sets of 5 breaths, once/day, 5 

days week for 4 weeks. Resistance 75% of MEP 

↑MEP p=0.005, PCF p=0.01 

Smeltzer  

et al 1996  

20 MS 2 groups, repeated measures over time comparing MIP, 

MEP 

A EMT  

B Sham, IMT at low load 

Threshold device, EMT 3 x 15 repetitions, twice daily for 3 

months. Resistance based on MEP  

A ↑MEP compared to B 
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Key to Table 44 

PD  Parkinson’s disease 

ALS  Amyotrophic lateral sclerosis 

MS  Multiple sclerosis 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

VC  Vital capacity 

TLC  Total lung capacity 

 

PEFR  Peak expiratory flow rate 

PCF  Peak cough flow 

MIP  Maximal inspiratory pressure 

MEP  Maximal expiratory pressure 

SNIP  Sniff nasal inspiratory pressure 

MVV  Maximal voluntary ventilation 

IMT  Inspiratory muscle training 

EMT  Expiratory muscle training 
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7.6 Summary of evidence on physiotherapy management of 

respiratory problems in people with neurodegenerative 

conditions 

The review selected 37 studies related to physiotherapy based interventions for respiratory 

function. Populations were defined clearly in all studies; only two studies carried out power 

calculations. In those studies (n=6) that required allocation to groups, this was defined. 

Random allocation was defined in the seven randomised controlled trials. Reproducibility of 

interventions was variable (14/35 not reproducible), reasons included retrospective studies 

and inadequate information. All outcome measures were defined, reliable and valid, but 

different outcome measures were used in comparable studies. Generalizability of the findings 

was low for the majority of studies due to lack of power and non-reproducible interventions. 

The evidence selected was weak due to lack of power and lack of reproducibility of 

interventions, as highlighted in Appendix 6. 

This systematic review was limited by the number and quality of studies and consequently a 

meta–analysis was not feasible. The studies had heterogeneous populations, were under 

powered, often non-randomised and of insufficient number to provide guidelines for 

management of the different stages of progressive conditions. Interventions and outcome 

measures were not standardised between studies. The process of review was limited by 

having one reviewer rather than two, thus introducing potential bias to the review. This was 

minimised by using the PICO structure (The Joanna Briggs Institute. 2008) for searching and 

the CASP appraisal tool (Critical Appraisal Skills Programme. 2007) for evaluation of 

studies. 

The management of retained secretions included increasing lung volume, mobilising 

secretions and maximising cough efficacy. For people with neurodegenerative conditions and 

susceptibility to type 1 respiratory failure, assisted cough strategies may improve cough 

effectiveness. There is no evidence to support the use of high frequency chest wall oscillation 

to mobilise secretions and inconclusive evidence regarding methods to increase lung volume. 

This inconclusive evidence implies that management of increased load in people with 

neurodegenerative conditions requires further investigation. Exercise as an intervention 

should be explored further based on the findings of Mostert and Kasserling (2002) and 

Rasova et al. (2006). 

Decreased capacity in people with neurodegenerative conditions is predominantly managed 

by reducing the work of breathing by non-invasive ventilation, which shows weak positive 
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effects. There is some evidence that respiratory muscle strength may be increased through 

specific training programmes. 

Inspiratory muscle weakness is suggested as an important determinant in respiratory 

dysfunction in people with neurodegenerative conditions (Benditt and Boitano 2013; Buyse 

2006; Polkey et al. 1998) and was identified in the observation study to be a key element in 

respiratory dysfunction in people with HD. There is some evidence from the preceding 

review that inspiratory muscle training (IMT) may increase strength and endurance in people 

with neurodegenerative conditions and therefore it was decided to explore IMT in more depth 

as a potential intervention for people with HD. Training of respiratory muscles in people with 

and without pathological conditions has been researched for the last 40 years and further 

exploration of physiological mechanisms and benefit was necessary to determine if IMT was 

a feasible intervention for people with HD. The specific question to be answered in the 

second review was ‘what is the effect of inspiratory muscle training in untrained and trained 

healthy subjects and in people with respiratory conditions in relation to the World Health 

Organisation’ International Classification of Functioning, Disability and Health’.  

7.7 Search strategy: Inspiratory muscle training 

The search was limited to English language articles found using the following databases: 

Medline, EMBASE, AMED and CINAHL, from inception to September 2013. The search 

was carried out using an historical approach alongside a structured PICO approach. In the 

historical approach, specific studies were sought that developed the theory underpinning 

inspiratory muscle training based on the original Leith and Bradley (Leith and Bradley 1976) 

study and related to the principles of resistance training. 

The CASP approach was used to evaluate efficacy of inspiratory muscle training in healthy 

trained and untrained subjects as well as people with pulmonary health conditions. The 

review was written within the context of the World Health Organisation’ International 

Classification of Functioning, Disability and Health (World Health Organisation. 2009) and 

therefore outcome measures were related to body function and structure and activity. 

Populations keywords were: ‘healthy’, ‘trained’, ‘untrained’, ‘athletes’, ‘chronic obstructive 

pulmonary disease’, ‘cystic fibrosis’, ‘asthma’. 

Intervention keywords were: ‘inspiratory muscle training’, ‘respiratory muscle training’. 

Outcome keywords were: ‘resp*’, ‘pulmonary’, ‘lung’, ‘performance’. 

Studies were excluded if: the population was <18, inspiratory muscle training was combined 

with other interventions, subjects were ventilated, case studies, abstracts. 
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7.8 Inspiratory Muscle Training 

7.8.1 Skeletal muscle strength training 

The current principles of strengthening skeletal muscle date back to 1945 (DeLorme 1945), 

presumably due to an increase in injured soldiers returning from war. Captain Thomas 

DeLorme of the United States Medical Corps transformed exercise training by introducing 

progressive resistive exercises which utilised the principles of overload and specificity to 

strengthening muscles. Progressive overload is the gradual increase of stress placed on the 

body in order for improvement to be made (Kraemer and Ratamess 2004). DeLorme (1945) 

achieved overload by assessing the one repetition maximum strength (1-RM) and the 10 

repetition maximum strength (10-RM) and using these values to set the initial and increasing 

load. Overload can also be introduced by increasing the number of repetitions or speed of 

repetition; changing the rest period; increasing the volume and by any combination of these 

variables. Shortening the rest period may improve local muscle endurance, whilst lengthening 

it may improve strength and power (Kraemer and Ratamess 2004). 

Specificity relates to the type of exercise and the consequent functional changes, as all 

training adaptations are specific to the stimulus applied. Adaptations are specific to the 

individual muscles and muscle groups involved; the range of motion in which the training 

was performed; the speed of movement; the energy systems involved and the intensity and 

volume of training (Kraemer and Ratamess 2004). The original exercise dose prescribed by 

DeLorme (1945) was 70-100 repetitions, once a day, five days per week. The exact numbers 

were not rationalised, but it was felt that a single session per day would not be tiresome for 

the participant and that they should rest on the days when not doing exercise. There was no 

physiological reason given for the rest, possibly the days rested were weekends. These 

principles of progression using overload and specificity are still core to the setting of exercise 

programmes in healthy adults (Kraemer et al. 2002). For novice healthy people i.e. those who 

have not trained previously, the American College of Sports Medicine (ACSM) recommend a 

load of 60-70% of 1RM, 1-3 sets of 8-12 repetitions with 2-3 minutes rest between sets, 2-3 

times per week. For intermediate and advanced people the load, velocity and frequency is 

increased (Kraemer et al. 2002). Guidelines for prescription of exercise for people with 

pathology are provided by the ACSM (American College of Sports Medicine. 2010) 

Changes in skeletal muscle strength may be due to factors other than muscle hypertrophy and 

include volition, motor neuron activity and co-ordination of limb stabilising muscles 

(Rutherford and Jones 1986). Neuronal adaptions appear to occur in the first two weeks of 
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training and include increased motor-unit recruitment and firing frequency, whilst 

hypertrophy proceeds linearly throughout training. Hypertrophy is greater in type 2 muscle 

fibres and is thought to be due to individual muscle fibre growth and proliferation (Folland 

and Williams 2007).  

The third principle of strength training, alongside overload and specificity is reversibility. 

Strength that is lost through inactivity can be regained during a similar time period of 

resistance training (Campbell et al. 2013) and gains during training can be subsequently lost 

when training ceases. The extent of the loss is dependent on age, the length of cessation of 

exercise and training status (Bosquet et al. 2013).  

7.8.2 Principles of skeletal muscle training applied to respiratory muscles 

When Leith and Bradley (1976) first investigated inspiratory muscle training (IMT) in human 

subjects, their primary question was whether respiratory muscles like other skeletal muscles 

could be specifically trained to increase strength and endurance. An increase in strength and 

endurance of respiratory muscles could then lead to improved performance in two distinct 

categories of people. One category is those who have ‘normal’ respiratory systems and 

needed to exercise against added ventilatory loads e.g. divers and firemen, with the second 

category being those with respiratory diseases where ventilation limits exercise. The Leith 

and Bradley study found, similar to the original DeLorme findings, that specific strength 

training improved respiratory muscle strength and specific endurance training improved 

respiratory muscle endurance. Although there are some flaws to the study, small numbers 

(n=12, 4 in each group) and non-naive subjects, this study was the basis for the development 

of research on inspiratory muscle training and its use within people with ‘normal’ respiratory 

systems and those with conditions that altered the load on the respiratory system. 

Tzelepis et al (1994a) further explored Leith and Bradley’s concept of specificity of training 

by relating flow during inspiration to the velocity of muscle shortening and relating the 

pressure generated during inspiratory with force generation. Drawing on evidence regarding 

the specificity of force-velocity training from other skeletal muscle research, this study 

investigated single gasps as high velocity training and maximal static inspiratory efforts as 

high force training. A third group performed intermediate velocity and force manoeuvres, 

whilst a fourth group acted as a control. Like Leith and Bradley (1976), Tzelepis et al (1994a) 

confirmed that respiratory muscles did respond to specific training programmes, with high 

velocity training improving flow, high force training improving strength and combined 

training increasing flow and strength. 
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Tzelepis et al (1994b) then went on to look at specificity of lung volume on training, in 

healthy participants, with the reasoning that the greatest improvement in strength will occur 

only at the length at which the muscle is trained. Following 6 weeks isometric training at 

residual volume, relaxed end expiratory volume and relaxed end expiratory volume plus half 

of the inspiratory capacity, the greatest strength improvements were found at the specific 

volume at which the training took place. The greatest increase in strength was found at lower 

lung volumes, i.e. when the diaphragm is at optimal length (De Troyer and Wilson 2009). 

Tzelepis et al (1994b) postulated that the specific volume related strength increase may be 

due to neuromuscular adaptation as well as increase in muscle cross sectional area.  

Romer and McConnell (2003) developed these ideas further, again in healthy participants, by 

evaluating pressure-flow specificity of inspiratory muscle training and the effects of de-

training and reduced frequency of training on these adaptations. Analysis of pressure-flow-

power relationships of inspiratory muscle function demonstrated that after 9 weeks of 

training, high pressure training produced the largest improvements in pressure (strength); 

high flow training produced the largest improvements in flow (velocity) and intermediate 

training resulted in a more uniform increase in pressure and flow. Intermediate training 

produced the greater improvement in power of the inspiratory muscles. When the frequency 

of training was reduced from six days per week to two days per week, the gains in respiratory 

function were maintained whereas no training resulted in small but significant reductions in 

respiratory muscle function. As the period of training in this study was longer than Tzelepis 

et al (1994b), Romer and McConnell (2003) attribute the early changes (first 5-6 weeks) to 

neural adaptations or skill acquisition as described by Moritani (1993) whereas later in the 

training period muscle hypertrophy and transformation of muscle fibre may have produced 

the strength changes. Diaphragm hypertrophy following IMT has been confirmed on 

ultrasound by both Enright (2006b) and Downey (2007). Table 45 gives further detail on the 

above studies. 
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Table 45 Studies related to background of respiratory muscle training 

Author Participants Intervention and comparison Outcome 

Leith and Bradley  

1976 

12 healthy A Control group – unknown protocol 

B static inspiratory and expiratory manoeuvres at 20% 

intervals over VC range 30mins/day 

C ventilated to exhaustion 3-5 times, lasted 45-60mins 

5 days/week, 5 weeks 

 

 

B ↑MIP, MEP, VC p<0.05 

C ↑MVV p<0.05 

Romer and McConnell 

2003 

 

24 healthy A Low flow, high pressure 10 sets of 3 maximal  

inspiratory efforts from RV with static 2-3 second 

hold, minimal recovery between sets 

B High flow, low pressure 30 maximal inspiratory 

efforts, no resistance 

C Intermediate flow and pressure 30 maximal 

inspiratory efforts at 50%MIP 

D no training 

 

6 days/week, for 9 weeks 

Then randomly assigned to 2 days/week OR no IMT 

for 9 weeks 

 

 

Adherence A 91%, B 88%, C 89%, M 90% 

No change in FVC, FEV1, PEFR in any 

groups or between groups 

A ↑Maximum pressure at zero flow  (P0), 

no change maximum pressure at maximal 

flow (V̇max) 

B ↑ V̇max, no change P0 

C ↑P0, ↑V̇max 

All p<0.05 

D no change P0 or Vmax 

No IMT detraining: ↓P0 and Vmax 

Maintenance IMT: no change P0,  Pmax 

Tzelepis et al 1994a 19 healthy A 30 maximal static inspiratory efforts at end 

expiratory relaxation volume 

B 30 x 3 maximal inspiratory efforts, no resistance 

C 30 maximal inspiratory efforts with 7mm resistor 

D control – unknown protocol 

 

Rests between sets not defined 

5 days/week for 6 weeks 

 

 

 

A  ↑maximal oesophageal pressure 

B  ↑ flow 

C ↑ maximal oesophageal pressure and 

flow 

All p<0.05 

D no change in flow or maximal 

oesophageal pressure 
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Author Participants Intervention and comparison Outcome 

Tzelepis et al 1994b 27 healthy A isometric strength training at RV 

B isometric strength training at end expiratory 

relaxation volume  

C isometric training at end expiratory relaxation 

volume + ½ IC 

D control no training 

 

30 max manoeuvres, rests between sets not defined, 

5days/week for 6 weeks 

A, B, C ↑ MIP p<0.05 

Greatest change within groups was at the 

specific training volume. 

Broadest range of increases was in the 

group training at lowest lung volume 

No difference in VC or TLC within or 

between groups 

 

 

Key to Table 45 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

VC  Vital capacity 

PEFR  Peak expiratory flow rate 

MIP  Maximal inspiratory pressure 

MEP  Maximal expiratory pressure 

MVV  Maximal voluntary ventilation 

RV  Residual volume 

IMT  Inspiratory muscle training 

IC  Inspiratory capacity 
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7.9 Methods of inspiratory muscle training  

Following initial positive evidence that IMT could strengthen and increase endurance of 

respiratory muscles in healthy volunteers, further research was carried out on trained athletes 

and people with conditions resulting in increased load on the respiratory system. These 

studies used a number of methods to achieve training including voluntary isocapnic 

hyperpnoea, flow resistive loading and pressure threshold loading. Voluntary isocapnic 

hyperpnoea does not provide external resistance to breathing, but requires individuals to 

breath at high respiratory rates for up to 30 minutes. Appropriate CO2 levels are maintained 

by supplemental O2 (Sheel 2002). This can be uncomfortable, particularly for people with 

respiratory limitations and therefore tends to be confined to laboratory studies (McConnell 

and Romer 2004).  

Flow resistive loading involves individuals breathing through a variable diameter of 

mouthpiece, with a smaller diameter producing greater resistive load. Issues with this method 

include the fact that individuals can alter their flow by altering breathing pattern, which 

negates the resistive load applied (McConnell and Romer 2004). Chatham et al (1996) further 

developed the idea of flow resistive training through the test of incremental respiratory 

endurance (TIRE). This method requires individuals to perform sustained maximal 

inspiratory efforts through a 2mm diameter orifice at 80% of their maximal effort. Training 

involves six breathes at 80% maximal effort, repeated up to 6 times with decreasing time 

periods between each set of six breaths. The decreasing rest periods are recommended for 

endurance training, compared to longer rest periods recommended for strength training 

(Kraemer et al. 2002). The TIRE method requires an electronic manometer and computer 

with specific software for the training programme.  

Pressure threshold training requires individuals to overcome a negative pressure provided by 

the device in order to initiate inspiration. Devices used in studies include a weighted plunger, 

spring loaded poppet valve and solenoid valve (McConnell and Romer 2004). Although 

theoretically the initial load to be overcome would only have effect at the particular volume 

at which the inspiration occurs based on the work by Tzelepis (1994b), when moderate 

pressure loads and moderate flow rates are used improvements have been noted at both 

extremes of the force-velocity relationship (Romer and McConnell 2003). A relatively new 

technological development is the POWERbreathe® Medic threshold trainer which provides a 

variable resistance throughout inspiration from residual volume to total lung capacity to 

provide a load through the full range of muscle work. 
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7.10 Efficacy of inspiratory muscle training 

The physiological and clinical basis of respiratory muscle training remains controversial. 

Proponents cite systematic reviews and meta-analyses that provide statistical evidence for its 

use, based upon improvements in exercise limitation (Ambrosino 2011; McConnell 2012); 

opponents cite inappropriate methodologies and question whether respiratory muscles can be 

strengthened in people with COPD as the diaphragm is at a mechanical disadvantage due to 

hyperinflation (Patel et al. 2012) as well as the learning effect of intervention manoeuvre 

being similar to the outcome measure (Polkey and Moxham 2004). The evidence on 

respiratory muscle training spans a wide range of subject groups e.g. healthy trained and 

untrained and people with health conditions and different outcome measures e.g. respiratory 

muscle strength and endurance, exercise tolerance and performance. Polkey et al (2011) 

recommend that measures of body structure and function i.e. respiratory muscle strength and 

endurance, should not be the primary outcome measure of studies, as preference should be 

given to measures of activity. This, in part, is based on the view that patients do not present to 

their doctors complaining of weak respiratory muscles, but rather limitations in activity and 

participation (Polkey et al. 2011). In order to cover the range of studies, this section will use 

the framework of the World Health Organisation’s International Classification of 

Functioning, Disability and Health (World Health Organisation. 2009), to review the 

evidence regarding respiratory muscle training on body function and structure, activities and 

participation in relation to those with ‘normal’ respiratory systems and those with health 

conditions that increase the load on the respiratory system. Description of studies is provided 

in Tables 46-49, critical appraisal in Appendix 6. 

7.10.1 Body Function and structure 

IMT, with the exception of TIRE, does not alter pulmonary function in healthy untrained 

subjects (Edwards et al. 2008; Kellerman et al. 2000; Suzuki et al. 1993); healthy trained 

subjects (Inbar et al. 2000; Williams et al. 2002); people with cystic fibrosis (Houston et al. 

2008) and people with asthma (Ram et al. 2009). In two recent systematic reviews on people 

with chronic obstructive pulmonary disease, pulmonary function was not reviewed (Geddes 

et al. 2008; Gosselink et al. 2011). Three studies using TIRE do show increases in vital 

capacity in healthy untrained (Enright et al. 2006b; Enright and Unnithan 2011) and healthy 

trained subjects (Mickleborough et al. 2010).  

Maximal inspiratory muscle strength after interventions using both pressure threshold devices 

and TIRE is increased in healthy untrained subjects (Downey et al. 2007; Edwards et al. 
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2008; Enright et al. 2006b; Enright and Unnithan 2011; Witt et al. 2007) and in trained 

cyclists (Romer et al. 2002a); endurance (Inbar et al. 2000) and recreational runners (Kwok 

and Jones 2009; Mickleborough et al. 2010); rowers (Volianitis et al. 2001) and wheelchair 

athletes (Goosey-Tolfrey et al. 2010). Sustained maximal inspiratory pressure was also 

increased in healthy subjects (Enright et al. 2006b; Enright and Unnithan 2011). This is 

supported by evidence that diaphragmatic thickening occurs as a result of IMT (Downey et 

al. 2007; Enright et al. 2006b) confirming that changes in strength are due not only to neural 

adaptations but changes in the muscle fibres. The evidence in people with conditions that 

increase load on the respiratory system is less clear. Evidence from systematic reviews on 

IMT in people with COPD agrees that IMT increases inspiratory muscle strength (Geddes et 

al. 2008; Gosselink et al. 2011) yet the evidence in people with CF (Reid et al. 2008) and 

asthma (Ram et al. 2009) is weak. Strength gains in people with COPD are supported by 

changes in the proportion of type I fibres and size of type II fibres (Ramirez-Sarmiento et al. 

2002). 

7.10.2 Activity and Participation 

Dyspnoea is a sensation that restricts activity and is derived from physiological, 

psychological, sociological and environmental factors (Parshall et al 2012). The physiological 

element relates to the balance between load and capacity and therefore IMT aims to increase 

capacity to offset an increase in load and consequently reduce the sensation of dyspnoea. 

Evidence for a reduction of dyspnoea in healthy untrained subjects is weak (Downey et al. 

2007), but is very strong in people with COPD and accompanies an increase in exercise 

capacity and quality of life (Geddes et al. 2008; Gosselink et al. 2011). 

Evidence related to exercise capacity in healthy subjects is dependent upon level of fitness, 

interventions and activities measured. In untrained healthy subjects, Chatham et al (1999) and 

Edwards et al (2008) demonstrated increased predicted and actual V̇O2max values 

respectively, whilst Downey et al (2007) demonstrated improved ventilation and gaseous 

exchange in exercise in hypoxic conditions and Enright and Unnithan al (2011) demonstrated 

increased work capacity.  

Two systematic reviews and meta-analyses on the effects of inspiratory muscle training on 

performance in healthy individuals (Illi et al. 2012) and athletes (HajGhanbari et al. 2013) 

concluded that endurance performance improved independently of the type of training 

(strength or endurance) or the type of sport. Additionally, Illi et al. (2012) found that less fit 

individuals benefited more than highly trained athletes. This range of fitness in healthy 



216 

 

subjects may be comparable to range of respiratory muscle strength in people with health 

conditions and as such, larger differences may be seen in those with weaker muscles 

(Gosselink et al. 2011). 

7.10.3 Relationship between ‘body function and structure’ and ‘activity and 

participation’ 

The mechanism underlying the relationship between respiratory muscle strength and exercise 

capacity is thought to relate to blood flow alterations when diaphragmatic fatigue occurs. 

Romer and Polkey (2008) suggest that this relationship may be dependent on 

cardiorespiratory interactions and describe a reflex decrease blood flow to peripheral muscles 

when respiratory fatigue occurs. The reflex comprises an increase in metabolites produced by 

the fatiguing diaphragm, which stimulates sympathetic efferent discharge, causing 

vasoconstriction of the locomotor muscles. The consequence of this is locomotor fatigue 

which can lead to an increase in perception of effort and limitation of high intensity 

performance (Dempsey et al. 2006). It is thought that this reflex results in increased blood 

flow to the diaphragm in preference to the locomotor muscles, but the exact balance is still 

unknown (Dempsey 2012). Respiratory muscle fatigue could occur when there is an 

imbalance between load and capacity which would arise in healthy subjects exercising at high 

intensities >80% V̇O2max (Dempsey et al. 2006), in people with respiratory conditions 

exercising at relatively lower intensities, and when the load on the respiratory system is 

suddenly increased. It is thought that inspiratory muscle training attenuates this reflex by 

reducing the energy requirements of the respiratory muscles thereby enhancing performance 

(Turner et al. 2012),  

7.11 Summary of inspiratory muscle training review 

Respiratory muscles may be strengthened by progressive exercise training and are governed 

by the same principles of overload, specificity and reversibility which exist in peripheral 

skeletal muscles (Romer and McConnell 2003). Evidence is not consistent across untrained, 

trained, people with respiratory problems and people with neurodegenerative conditions 

which is likely to be due to inconsistent methods and outcome measures between studies. 

Interventions differ in key programme variables such as muscle action used; intensity, 

volume and frequency of exercises and rest periods between sets. Measures of respiratory 

muscle strength tend to be similar i.e. MIP but measurement of respiratory muscle endurance 

is not consistent. Measures of functional ability related to the specific participant group 



217 

 

(untrained/trained/with respiratory or neurodegenerative conditions). The strongest evidence 

for people with respiratory conditions is for people with COPD based on a systematic review 

(Gosselink et al. 2011) with little evidence for those with neurodegenerative conditions  

(Jones et al. 2012b; Reyes et al. 2013).  

One of the main arguments against inspiratory muscle training in people with COPD is that 

the respiratory muscles may not be weak in a physiological sense, but are biomechanically 

weak due to hyperinflation (Polkey and Moxham 2004), but this argument may not be true 

for people with neurodegenerative conditions. Decreased capacity i.e. decreased respiratory 

muscle strength is the primary cause of respiratory failure in this group (Buyse 2006) and 

therefore respiratory muscle training appears to be a potential management option. Strength 

training involves muscular and neural adaptations (Folland and Williams 2007) and therefore 

integrity of these systems must exist for improvements to occur. However, neural plasticity 

may occur throughout the respiratory neuromuscular pathway from respiratory drive to the 

neuromuscular junction and respiratory muscles (Johnson and Mitchell 2013) therefore 

strength training may be effective. Increased neural drive has been noted following lower 

limb resistance training in people with MS (Dalgas et al. 2013), but this has not been 

investigated in respiratory muscle training. 

The measurement of effectiveness of respiratory muscle training is dependent upon the 

reasons for increasing respiratory muscle strength. Respiratory muscle strength is thought to 

be the beginning of a causal chain which leads to reduced pulmonary function and death 

(Buchman et al. 2008a) which in itself is a strong reason why respiratory muscle training 

should be investigated, with respiratory muscle strength as an outcome measure. The 

complexity of relationships between respiratory muscle strength, peripheral muscle strength, 

pulmonary function and mortality (Buchman et al. 2008a) and between FEV1, physical 

activity and mortality (Jakes et al. 2002) provides a number of outcome measures that may be 

used when assessing the impact of respiratory muscle training. In relation to the proposed 

framework of respiratory failure in people with HD the primary outcome measure should be 

inspiratory muscle strength in order to investigate physiological changes in body structure 

and function and a functional measure as recommended by Polkey et al. (2011). 
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Table 46 Studies related to untrained healthy participants 

Author Participants Intervention Outcome 

Chatham et al. 1999 22 healthy  A TIRE training: up to 36 SMIP manoeuvres at 

80%MIP, 6 sets of 6 with decreasing rests between sets 

i.e. 45, 30, 15, 10 and 5 seconds rest, until unable to 

follow training template. 

3days per week for 10 weeks 

B Control training as above 3 days/week in week 1 and 

10. No training weeks 2-9.  

Flow resistance device 

 

A ↑ MIP p<0.002, SMIP  p<0.0001, 

predicted V̇O2max p<0.001, no change in 

dyspnoea in shuttle run 

 

B no change 

Downey et al. 2007 

 

15 healthy A threshold device, 40 maximal inspirations at 50% 

MIP 

B threshold device, 40 maximal inspirations at 15% 

MIP 

 

Rest period not defined 

2 per day, 5 days/week for 4 weeks 

A ↑MIP, diaphragm thickness,  

↓ respiratory muscle fatigue in hypoxia and 

normoxia  

↔V̇O2 in normoxia 

↓V̇O2, Cardiac output, VE, lung diffusing 

capacity, RPE and dyspnoea in hypoxic 

exercise 

All p<0.05 

B no change 

Significant difference between A and B,  

p<0.05 

 

Edwards et al. 2008 16 healthy males A 30 breaths at maximal resistance possible 

B 30 breaths 15%MIP 

 

Threshold device, no rest period defined 

30 breaths, 1/day, 7days/week for 4 weeks 

A, B  no change in lung volume 

A, B, ↑ MIP p<0.01, V̇O2max p<0.05, 

ventilatory threshold p<0.05 

A ↓RPE p<0.05, 5K run time compared to 

B p<0.05 

A↑ MIP more than B p<0.05 

No difference in maximal aerobic power, 

ventilatory threshold between A and B 
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Author Participants Intervention Outcome 

Enright & Unnithan 

2006 

20 healthy A 1 week habituation, TIRE as per Chatham 1999 

3days/week for 8 weeks 

 

B no training 

100% adherence 

A ↑MIP, SMIP p<0.01 ↑VC, TLC 

↑diaphragm thickness, exercise capacity 

p<0.05 Significant differences between A 

and B p<0.05 

Enright et al. 2011 

 

40 healthy A TIRE protocol 80% SMIP 

B TIRE protocol 60% SMIP 

C TIRE protocol 40% SMIP 

D no training 

 

3/week for 8 weeks 

100% adherence 

A, B, C ↑MIP, SMIP  

A ↑VC, TLC  

A, B ↑work capacity and power output  

All p<0.01 

D no change 

Kellerman et al. 2000 10 healthy Single group 

Threshold device, 4 sets of 6 breaths, 10-15 second rest 

between breaths, 75%MIP (measured weekly) 

 

5 days/week for 4 weeks 

4 day habituation, supervised group training 

No change in FVC, FEV1 

↑ MIP p<0.05 

 

Suzuki et al. 1993  12 healthy 

females 

A  Threshold device, 30%MIP, 15min/day, 2/day, 

7days per week for 4 weeks 

Rest periods between sets not defined 

 

B control group no defined protocol 

A no change in VC, FEV1 after 4     

weeks or Borg during exercise 

After 2 weeks:  ↑MIP 

After 4 weeks  ↑MIP, MEP, Pdimax 

(transdiaphragmatic  pressure ), ↑MVV 

All p < 0.05 

B no change 

Witt et al. 2007 16 healthy males A 3 sets of 75 breaths at 50%MIP, 5 minute rest 

between sets 

B 3 sets of 75 breaths at 10%MIP, 5 minute rest 

between sets 

Threshold device 

1/day, 6 days/week for 5 week 

Adherence A 97%, B 88%, 

A ↑MIP p < 0.05, no change MEP 

B no change 

Change in MIP greater in A compared to B 

p < 0.05 
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Key to Table 46 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

VC  Vital capacity 

TLC  Total lung capacity 

MIP  Maximal inspiratory pressure 

MEP  Maximal expiratory pressure 

SMIP  Sustained maximal inspiratory pressure 

MVV  Maximal voluntary ventilation 

IMT  Inspiratory muscle training 

TIRE  Test of incremental respiratory endurance 

V̇O2max Maximal oxygen consumption 

RPE  Rate of perceived exertion 
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Table 47 Studies related to trained healthy participants 

Author Participants Intervention and comparison Outcome 

Goosey-Tolfey et al. 

2010 

16 wheelchair 

basketball 

athletes  

A 30 breaths at 50% MIP, 2/day,  

B 60 breaths at 15% MIP, 1/day ,  

7 days/week for 5 weeks 

 

Threshold device 

 

Adherence 63% A, 79%B 

A, B ↑MIP, MEP p<0.03, no differences 

between groups 

A, B no change in FVC, FEV1, PEFR, 

MVV, sprint performance 

Inbar et al. 2000 20 well trained 

endurance track 

athletes 

A week 1-4 increasing resistance from 30% to 80% 

MIP, 5% per session, week 5-9 80% MIP with 

resistance adjusted weekly 

B no resistance 

Threshold device, no rest period defined 

30 minutes, 1/day, 6days/week for 10weeks 

 

 

A ↑MIP, respiratory muscle endurance 

p<0.005 

B MIP, respiratory muscle endurance 

unchanged 

No change in FVC, FEV1, VO2max in A or B 

Kwok and Jones 2009 

 

16 recreational 

runners 

A 30 breaths 2/day at 80% MIP week 1-2, 90% MIP 

week 3-6. 

7 days/week for 6 weeks 

B 30 shoulder circumduction exercises 2/day 

7 days/week for 6 weeks 

Rest period not defined 

Flow resistance device 

 

A ↑MIP, ↓1.5K time trial p<0.05 

 

No change in V̇O2max in either group 

Mickleborough et al. 

2010 

24 university 

recreational 

runners 

A TIRE protocol 80% SMIP 

B TIRE protocol 30% SMIP 

C no training 

 

3 days/week for 6 weeks 

A ↑MIP, SMIP, maximal inspiratory power 

output,  inspiratory muscle work capacity 

(IMWC), TLim, run time to exhaustion 

All p<0.05 

B, C no change in above variables 

Improvements in A significantly better than 

B, C p<0.05 
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Author Participants Intervention Outcome 

Romer et al. 2002a 

 

16 male road 

cyclists 

including 5 

triathletes 

Participants ranked by maximal inspiratory power, 

matched and assigned to A/B 

A 30breaths at 50% maximal inspiratory power, 2 /day 

B 60breathes 1/day 15% maximal inspiratory power 

Threshold device, rest period not defined 

7days /week, for 6 weeks 

Adherence 96%A 95%B 

A ↑P0 (pressure at zero flow), maximal 

inspiratory flow, maximal inspiratory 

power, 20K, 40K time trial all p<0.01 

B no change in ↑P0 (pressure at zero flow), 

maximal inspiratory flow, maximal 

inspiratory power, 20K, 40K time trial 

 

 

Romer et al. 2002b 16 male road 

cyclists 

including 5 

triathletes 

Participants ranked by maximal inspiratory power, 

matched and assigned to A/B 

A 30breaths at 50% maximal inspiratory power, 2 /day 

B 60 breathes 1/day 15% maximal inspiratory power 

Threshold device, rest period not defined 

7days /week, for 6 weeks 

 

Less change in P0 and maximal relaxation 

rate in A compared to B  

p<0.05 

Voliantis et al. 2001 14 female 

competitive 

rowers 

A 30 breathes at 50%MIP  2/day,  

B 60 breathes at 15%MIP 1/day,  

7days/week for 11weeks  

 

Threshold device, no rest period defined 

 

Adherence 96-97% 

4 weeks 

A ↑MIP p<0.05 

11 weeks 

A ↑MIP, PETO2, Improved 6 minute power 

test, 5K time trial p<0.05 

B Improved 6 minute power test, 5K time 

trial p<0.05 

 

Change in MIP, PETO2, 6 minute power test, 

5K greater in A than B p<0.05 
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Author Participants Intervention and comparison Outcome 

Williams et al. 2002 7 university 

cross country 

runners 

Single group 

5-7 sets of 4-5 minutes of loaded breaths, 1-2 min rest 

per set 

Resistance 50%MIP increasing by 5%/week 

 

25 minutes/day, 4-5day/week for 4 weeks 

 

Threshold device 

↑MIP, breathing endurance time  

p<0.05 

No change in lung volume, V̇O2 max, 

endurance run time 

 

Key to Table 47 

FEV1  Forced expiratory volume in 1 second 

FVC  Forced vital capacity 

MIP  Maximal inspiratory pressure 

MEP  Maximal expiratory pressure 

SMIP  Sustained maximal inspiratory pressure 

MVV  Maximal voluntary ventilation 

 

IMT  Inspiratory muscle training 

TIRE  Test of incremental respiratory endurance 

V̇O2max Maximal oxygen consumption 

Tlim  Respiratory endurance time 

PETO2  partial pressure of end tidal oxygen 
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Table 48 Systematic reviews on inspiratory muscle training in healthy people  

Author Title Sources Method Results 

Illi et al. 2012 

 

Effect of respiratory muscle 

training on exercise performance in 

healthy individuals 

MEDLINE, 

EMBASE, CINAHL  

inception to October 

2011 

Inclusion criteria: 

all languages; all studies including 

RMT intervention; endurance 

performance as outcome measure. 

Exclusion criteria: 

combined endurance and strength 

training; unloaded breathing 

exercise or breathing therapy; meta-

analysis used only controlled 

studies 

 

2 independent reviewers with a 3
rd

 

reviewer used if lack of agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

236 studies found, 46 studies 

included. 

 

Conclusion: 

Respiratory muscle training improves 

endurance exercise performance in 

healthy subjects with greater 

improvements in less fit individuals 

and in sports of longer durations. 



225 

 

Author Title Sources Method Results 

HajGhanbari et 

al. 2013 

Effects of respiratory muscle 

training on performance in athletes: 

A systematic review and meta-

analysis 

MEDLINE, 

CINAHL, 

SPORTDiscus, 

EMBASE 

Cochrane Central 

Register of 

Controlled Trials, 

PEDro, EBM 

reviews, gray 

literature 

Inclusion criteria: 

Healthy athletes with no disability 

age 15-40; 

Study was RCT; study included 

outcomes of sport performance and 

respiratory muscle strength or 

endurance; published in English. 

Exclusion criteria: 

Subjects had physical impairment 

that interfered with exercise 

involving large muscle groups; 

healthy adults that were not 

elite/recreational athletes. 

 

2 independent reviewers with a 3
rd

 

reviewer used if lack of agreement. 

5,132 studies found, 21 studies 

included. 

 

Conclusion: 

Respiratory muscle training improves 

sport performance 
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Table 49 Systematic reviews on inspiratory muscle training in people with health conditions 

a) Chronic obstructive pulmonary disease (COPD) 

Author Title Sources Method Results 

Geddes et al 

2005 

Inspiratory muscle training in 

adults with chronic obstructive 

pulmonary disease: a systematic 

review 

MEDLINE, 

CINAHL 

Inception to 2003 

Inclusion Criteria: 

RCT or randomised cross-over 

trial; English language; adults > 18 

years old; stable COPD; 

comparison of IMT to another 

comparison group 

 

Independently reviewed by 2 

reviewers, with a 3
rd

 reviewer used 

if lack of agreement. 

274 studies found, 19 studies 

included that compared: 

IMT vs. sham; IMT vs. no 

intervention; two intensities of IMT; 

two modes of IMT. 

 

Conclusion: 

Targeted inspiratory resistive or 

threshold IMT significantly improves 

inspiratory muscle strength and 

endurance and decreases dyspnoea 

for adults with stable COPD. 
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Author Title Sources Method Results 

Geddes et al 

2008 

Inspiratory muscle training in 

adults with chronic obstructive 

pulmonary disease: an update of a 

systematic review 

MEDLINE, 

CINAHL  

2003-2007  

EMBASE 

Inception to 2007 

Inclusion Criteria: 

RCT or randomised cross-over 

trial; English language; adults > 18 

years old; stable COPD; 

comparison of IMT to sham IMT or 

no intervention, low versus high 

intensities of IMT, different modes 

of IMT. 

 

Independently reviewed by 2 

reviewers, with a 3
rd

 reviewer used 

if lack of agreement. 

Additional 17 articles found, 6 

studies met inclusion criteria. Sub 

group analysis completed on studies 

that specifically compared targeted, 

threshold or normocapnic 

hyperventilation IMT with sham 

IMT. 

 

Conclusion: 

Targeted inspiratory resistive, 

threshold or normocapnic 

hyperventilation IMT significantly 

increases inspiratory muscle strength 

and endurance, improves outcomes 

of exercise capacity,  quality of life 

as measured by chronic respiratory 

disease questionnaire and decreases 

dyspnoea in adults with stable COPD 
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Author Title Sources Method Results 

Gosselink et al 

2011 

Impact of inspiratory muscle 

training in patients with COPD: 

what is the evidence?  

MEDLINE, 

CINAHL, Cochrane 

Central Register of 

Controlled Trials, 

EMBASE, PEDro 

and DocOnline. 

Inception to 2009 

ATS and ERS 

congress CD-ROMs 

2000-2008 

No language 

restrictions 

Inclusion criteria: 

randomized controlled trial;  COPD 

patients with pulmonary function 

tests; inspiratory muscle training at 

an intensity of ≥30%MIP 
 
or 

respiratory muscle endurance 

training in a controlled manner;  

outcomes MIP, inspiratory muscle 

endurance, dyspnoea rating, 6- or 

12-min walking distance 

(6/12MWD) and/or health-related 

quality of life (HRQoL). 

 

Independently reviewed by 2 

reviewers. 

Present search found 129 studies 

which were added to a previous 

search (Lotters et al. 2002) with 14 

studies. 

30 studies met inclusion criteria. 

Conclusion: 

IMT is an effective treatment 

modality in COPD patients to 

improve respiratory muscle strength 

and endurance, resulting in 

reductions of dyspnoea and 

improvement in functional exercise 

capacity and HRQoL. Patients with 

more advanced muscle weakness 

seem to be better responders, 

especially when IMT is in addition to 

general exercise training. Inspiratory 

muscle endurance training is less 

effective than strength training. 
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b) Cystic Fibrosis (CF) 

 

Author Title Sources Method Results 

Reid et al 2008 

 

Effects of inspiratory muscle 

training in cystic fibrosis: a 

systematic review 

MEDLINE, 

EMBASE, CINAHL 

Inception to 2008 

Restricted to English 

language 

Inclusion criteria: 

Participants were >13 years of age;  

the study compared an IMT group 

to a sham IMT, no intervention or 

other intervention group; the study 

used a randomized controlled trial 

or cross-over design with an 

adequate washout. 

  

2 independent reviewers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 studies found, 2 met inclusion 

criteria 

 

Conclusion: 

Evidence supporting the benefit of 

inspiratory muscle training on 

improving inspiratory muscle 

function in people with cystic 

fibrosis is weak, and its impact on 

dyspnoea, exercise capacity and 

quality of life is unclear. 
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Author Title Sources Method Results 

Houston et al 

2011 

Inspiratory muscle training for 

cystic fibrosis (Cochrane Review) 

CF trials register 

which includes 

searches from: 

MEDLINE, 

EMBASE, CF 

Conferences, Also 

CINAHL, AMED, 

PEDro, BIOSIS 

previews, Science 

Direct, Scopus to 

2005 Current 

controlled trials, UK 

national research 

register 

 

 

 

 

 

 

Inclusion criteria: 

Randomised or quasi- randomised 

clinical controlled trials; people 

diagnosed with CF; any age; IMT 

compared with sham, no treatment 

or comparison of modes. 

 

3 independent reviewers 

265 studies found, 11 met inclusion 

criteria 

 

Conclusion: 

There is no evidence to suggest that 

IMT is either beneficial or not. 
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c) Asthma 

Author Title Sources Method Results 

Ram et al 

2009 

Inspiratory muscle training for 

asthma (Cochrane Review) 

Cochrane Central 

Register of 

Controlled Trials 

MEDLINE January 

1966 to March 2002, 

EMBASE January 

1985 to March 2002, 

CINAHL to March 

2002 and the UK 

National Research 

Register of trials 

January 1982 to 

March 2002, on line 

respiratory journals 

and manufacturers of 

training devices to 

obtain trials. 

Inclusion criteria: 

Randomised controlled trials of 

IMT vs sham or no device; 

Patients with stable asthma;  

 

2 independent reviewers 

62 studies found, 5 met inclusion 

criteria 

 

Conclusion: 

IMT seems to improve MIP and there 

is insufficient evidence to suggest 

that IMT could provide clinical 

benefit to patients with asthma. 

 

Key to Table 48 & 49 

RCT  Randomised controlled trial 

COPD  Chronic obstructive respiratory disease 

CF  Cystic fibrosis 

IMT  Inspiratory muscle training 

MIP  Maximal inspiratory pressure 

6/12MWD Six/twelve minute walk distance 

HRQoL Health related quality of life 
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7.12 Intervention study aims and objectives 

Inspiratory muscle weakness was a key finding from the observation study and represents 

decreased capacity of the respiratory muscle pump within the model of respiratory failure in 

people with HD, see Figure 43. The preceding reviews suggest that IMT can be used in 

people with neurodegenerative conditions and may improve inspiratory muscle strength and 

functional activities. The aim of the intervention study was therefore to explore the feasibility 

and benefit of inspiratory muscle training in people with HD. 

7.12.1 Study objectives 

The objective of the study was to: 

 Investigate the feasibility and benefit of inspiratory muscle training as a potential 

management strategy for people with Huntington’s disease. 

 

The principle research question was: 

 Is inspiratory muscle training a feasible method to increase respiratory muscle 

strength in people with Huntington’s disease? 

 

A further research question was: 

 Does inspiratory muscle training improve functional tasks? 

 

The null hypotheses for the study were: 

 

H01 People with HD will not adhere to an inspiratory training programme as defined as 

completing less than 85% of the programme; 

H02 Inspiratory muscle training does not improve respiratory muscle strength in people 

with HD;  

H03 Inspiratory muscle training does not improve peak cough flow in people with HD; 

H04 Inspiratory muscle training does not improve sit to stand in 30 seconds performance 

in people with HD. 
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8 Intervention study methods 
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8.1 Research design 

The intervention study was based on the principles of a randomised controlled trial with 

qualitative data collected to evaluate feasibility of inspiratory muscle training in people with 

HD. Randomisation reduces the likelihood of bias in allocation to groups and the inclusion of 

a control group enhances the probability of making causal inferences. Participants were 

randomised to one of two groups, each group following the same intervention and support 

programme. The device was set to an inspiratory resistance known to have no training effect 

(Geddes et al. 2008) for the sham group and set to a resistance of 50% of maximal inspiratory 

pressure for the other group. The study lasted seven weeks and all assessments were carried 

out in the participant’s home. 

8.2 Participants 

8.2.1 Inclusion criteria 

(i) Genetically confirmed HD; 

(ii) Capacity to give informed consent; 

(iii) Inspiratory muscle strength <80% predicted; 

(iv) Maintenance of a stable medical regime for 4 weeks prior to initiation of study and; 

(v) Aged 18 years and older. 

8.2.2 Exclusion criteria 

(i) History of additional prior neurological condition, such as stroke; 

(ii) Uncontrolled psychiatric symptoms; 

(iii) History of spontaneous pneumothorax/unstable asthma/chronic respiratory condition; 

(iv) Unable to give consent. 

8.2.3 Recruitment 

Potential participants attending their routine clinic appointment were approached by 

Professor Anne Rosser, the clinician responsible for their care, and were invited to participate 

in the programme alongside the ‘Registry’ study as per the observation study, see section 

4.6.4. The organisation of recruitment is summarised in Figure 46. 
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Figure 46  Intervention study recruitment flow chart  

  

People attending Cardiff HD 

Research Centre 

n=52 

Assessed for eligibility 

n= 43 

Declined to partake n = 9 

Total recruited 

n=20 

Excluded n= 23 

Enrolled in other research   n=4 

Complex medical needs           n=16 

Underlying respiratory condition n=1 

Other neurological problem  n=2 
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8.3 Intervention study protocol 

The training programme used was based on previous research using the POWERbreathe 

device (Romer et al. 2002a; Volianitis et al. 2001). The POWERbreathe Kinetic 3 inspiratory 

muscle trainer was used, see appendix 4. This is a handheld device, with a variable valve 

which provides resistance throughout inspiration from residual volume to total lung capacity. 

It thus provides resistance throughout the available range of muscle work. The protocol, see 

Figure 47, required participants to use the training device for 30 breaths, twice a day, 7 

days/week for 6 weeks. Resistance was set at 50% of maximal inspiratory pressure for the 

intervention group. Resistance was set at 10cmH2O for the control group. This load is known 

to have no training effect and is used as a sham intervention (Geddes et al. 2008). The 

participants were not informed of their group allocation.  

A habituation period of 1 week preceded the intervention phase, based on the method of 

Enright et al. (2006b). This enabled participants to familiarise themselves with the device and 

the training procedure. Baseline measures were also taken at the beginning of the habituation 

week to familiarise participants with the procedure.  Support was provided throughout the 

study by alternating weekly phone calls and home visits. Further contacts were made 

available if necessary. Both groups were given the opportunity to keep the POWERbreathe 

device after the study. 
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Visit 1 

Baseline 1 data collected;  

Randomisation 

Instruction on use of inspiratory muscle trainer 

Habituation with 

POWERbreathe for  

1 week 

Intervention group 

Training 30 breaths twice 

daily at 50% MIP for 6 weeks 

Potential participants screened for inclusion 

Consent gained 

Visit 2 

Baseline 2 data collected  

Assessment of training technique and further advice if necessary 

Sham group 

Training 30 breaths twice 

daily at 10cm H2O for 6 weeks 

Alternate weekly support visits/phone calls 

Figure 47 Intervention study design protocol flow diagram  

Follow up data collection 

Interview 
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8.3.1 Randomisation  

The sample was randomised using a minimisation method into two groups. With 

minimisation, allocation of the next participant enrolled is dependent upon the characteristics 

of those participants already enrolled. The advantage of minimisation in this pilot study is 

that there would be only minor differences between the groups in those factors used in the 

allocation process (Altman and Bland 2005). The three factors considered to have potential 

impact on the outcome of the study were age, gender and smoking (smoker/non-smoker) as 

the most important cause of COPD (Mannino and Buist 2007) and therefore influences 

respiratory function. 

8.3.2 Measurement in the intervention study 

This study explored the feasibility and benefit of inspiratory muscle training as a method to 

increase capacity of the respiratory muscle pump. The primary outcome measure was 

inspiratory muscle strength in order to investigate physiological changes in body structure 

and function. Inspiratory muscle strength was measured using sniff nasal inspiratory pressure 

(SNIP), as the testing manoeuvre is independent of the training manoeuvre, is reliable in 

healthy subjects (Maillard et al. 1998) and recommended for use in people with 

neurodegenerative conditions (Lofaso et al. 2006).  

In the context of respiratory failure, cough efficacy is influenced by inspiratory muscle 

strength, as inspiratory muscle weakness results in small volumes of inhaled air, reducing 

expiratory pressure, flow and velocity (McCool 2006a). Measurement of cough efficacy by 

PCF was used in order to demonstrate any potential effect in a variable potentially related to 

type 1 respiratory failure. 

As recommended by Polkey et al. (2011), a functional task was assessed. The 30 second sit to 

stand test is a valid field measure of lower body strength (Rikli and Jones 1999) and 

discriminates between different activity levels (Macfarlane et al. 2006). This was chosen due 

to its simplicity and the ability of the test to be carried out in the subjects’ own homes. 

 

Details of outcome measures are shown in Table 50. Standard operating procedures were 

utilised for conducting all outcome assessments, see Appendix 3. 

The primary outcome measure to investigate physiological proof of principle of inspiratory 

muscle training in people with HD was inspiratory muscle strength measured as sniff nasal 

inspiratory pressure (SNIP). Previous studies on IMT have been criticised for using the same 

manoeuvre for assessment as is practised during the training programme i.e. a maximal 
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inspiration is used during training and used as the primary outcome measure and therefore 

participants may be just getting better at doing the test (Polkey et al. 2011). In this study 

SNIP was used as the outcome measure as it is a different manoeuvre to that used during 

training and is a valid measure of inspiratory muscle strength (Uldry and Fitting 1995). 

Maximal inspiratory pressure (MIP) was also measured as a complementary measure. Peak 

cough flow is recommended by the British Thoracic Society as a measure of cough efficacy 

in people with neuromuscular conditions (Bott et al. 2009). The 30 second sit to stand test 

was used to measure functional ability (Macfarlane et al. 2006). 

Table 50 Outcome measures used in intervention study 

Outcome measures 

B1 = first baseline; B2 = second baseline, 1 week after B1; F = follow up after 6 weeks intervention 

Domain to be 

measured 

Validated outcome 

measure 

Time required When 

Inspiratory muscle 

strength 

Sniff nasal inspiratory 

pressure  

Maximal inspiratory 

pressure  

(ATS/ERS 2002) 

5 minutes B1;B2;F 

Cough efficacy Peak cough flow  

(Bott et al. 2009) 

5 minutes B1;B2;F 

Functional task 30 second sit to stand 

(Macfarlane et al 2006) 
5 minutes B2;F 

 

The outcome to measure adherence was the number of training sessions completed. These 

data are automatically stored and downloaded from the POWERbreathe K3 device and were 

recorded using a diary. 

Acceptability of the intervention was assessed through interviews. A member of the research 

team, who was not the principle investigator, carried out the interviews in order to reduce 

bias, see appendix 7 for the interview schedule. The interview covered aspects including 

participant’s views of the intervention, barriers and facilitators, impact of life events on 

adherence to the intervention, perception of benefit/non benefit and the importance of social 

support strategies.  

8.4  Data Analysis 

8.4.1 Sample size 

Formal sample size calculations were not conducted. Twenty participants in total (10 per 

group) would however be sufficient to detect a standardised difference of 1.2 at the final 

measurement point, with a power of 80% and alpha level of 0.05. 
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8.4.2 Analysis of data 

Adherence data collected from the device were compared to categories described by Fry et al 

(2007): full compliance >85% completion; partial compliance 70-84% completion; poor 

compliance 50-69% completion and non-compliant 10-49% completion.  

Single case analysis included a summary of notes taken through the study and individual 

outcomes. Group data analysis included descriptive analysis using means, standard 

deviations, 95% confidence intervals and effect size. 

Data from the interviews were transcribed and analysed using qualitative description method 

incorporating thematic content analysis. Qualitative description provides a rich straight 

description of a person’s experience enabling researchers to stay close to the data collected 

(Neergaard et al. 2009). This was an appropriate method to analyse the semi structured 

interview as the aim was to gain an understanding of the participant’s experiences in relation 

to acceptability of intervention. Thematic analysis was used following the method of Braun 

and Clarke (2006) using the following steps: transcription and reading of the data; generation 

of initial codes; creating potential themes; themes checked in relation to initial codes; naming 

of themes and generation of thematic map. 

8.5 Ethical considerations 

The general ethical considerations discussed in section 4.9 applied to the intervention study. 

Ethical approval was gained from the Research Ethics Committee for Wales 11/WA/0183, 

Cardiff and Vale University Health Board gave research and development approval as a 

patient identification centre for the intervention study (11-IBD-5200) and Cardiff University 

acted as sponsor (SPON 975-11), see Appendix 2. 

Specific considerations for the intervention study were as follows. 

8.5.1 Increased burden on participants 

The main burden for participants participating in this research was their time. The 

intervention study required training for approximately 5 minutes, twice daily for 6 weeks. 

The data collection took approximately 2 hours in total. 

8.5.2 Risk associated with inspiratory muscle training. 

There is low risk associated with inspiratory muscle training, calculated as possible in 

likelihood and insignificant in consequence. Participants may feel some discomfort during 

training, but this would not cause any harm. This was explained to the participants during the 



241 

 

initial visit. All participants were able to keep the training device after the study was 

completed.  

8.5.3 Project management 

The project was primarily managed through the supervisory team of Dr Enright and Professor 

Busse who have specialist knowledge in inspiratory muscle training and HD respectively. A 

Study Steering Committee (SSC) consisting of the researcher, both supervisors and two 

independent members was established for the intervention study. The first meeting was held 

before the study commenced to review the protocol and arrange the timelines for subsequent 

meetings. The SSC provided overall supervision for the study and provided advice through its 

independent chair. The ultimate decision for the continuation of the study lay with the SSC.  
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9 Intervention study results  
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9.1 Participants 

The participants who met the inclusion criteria for the study were randomised, and completed 

or did not complete the intervention study as described in Figure 48. A habituation period of 

one week preceded the intervention phase of the study. Reasons for not beginning the 

intervention were: inability to generate sufficient flow to use device (n=1); inability to co-

ordinate limb and oral movements (n=1); inability to co-ordinate breathing and use of the 

device (n=2) and did not wish to continue (n=1). Two participants did not complete the study, 

reasons were: did not wish to continue (n=1); and other health issues prevented completion 

(n=1). One participant in the sham group did not withdraw from the study but did not 

complete the training as per protocol and therefore was withdrawn from analysis. 
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Figure 48 CONSORT flow diagram for intervention study 
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9.2  Demographic data 

The demographic data for all participants enrolled into the intervention group are displayed in 

Table 51.  

Table 51 Demographic data for participants recruited to intervention study 

 

 

Intervention 

 

Sham 

Age (years) 53.8 ±17.50 53.5 ±13.08 

Gender 3F 7M 3F 7M 

Smoker 7Sm 3NSm 7Sm 3NSm 

MIP% Predicted 46.37 ±25.09 42.81 ±18.41 

UHDRS:TMS 
51.5 ±16.18 

Range 20-72 

58.8 ±17.69 

Range 36-84 

TFC 
4.4 ±2.12 

Range 2-9 

6.4 ±3.17 

Range 3-11 

UHDRS:Cog 

132.67 ±53.13 

Range 64-207 

n=6 

151.33 ±54.85 

Range 65-225 

n=9 

Gender   F=female, M=male 

Smoker  Sm=smoker, NSm=non-smoker 

MIP% Predicted Maximal inspiratory pressure as a percentage of predicted 

UHDRS:TMS:  Unified Huntington’s disease rating scale: total motor score 

TFC   Total functional capacity 

UHDRS:Cog:  Unified Huntington’s disease rating scale: cognitive score 

 

The groups were matched for age, gender and smoking habit, as per minimisation protocol. 

The intervention group had a slightly lower UHDRS:TMS score, a lower TFC score and 

lower cognitive score, although the differences were not statistically significant. However, 

the mean cognitive score for the intervention group is categorised as markedly impaired 

whereas the mean score for the sham group is categorised as mildly impaired. The 

demographic data was explored further in respect of completers and drop outs, see Table 52 

The demographic data for the sham group were similar for completers and drop outs. People 

who dropped out from the intervention group tended to have weaker inspiratory muscle 

strength, higher UHDRS: TMS scores, lower TFC scores yet higher cognitive scores. 
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Table 52  Demographics of drop outs and completers 

 

 

Intervention 

drop outs 

 

 

Intervention 

completers 

Sham 

drop outs 

 

Sham completers 

Age (years) 55 ±12.04 52.6 ±23.24 52.33 ±8.33 54.00 ±15.25 

Gender 3F, 2M 5M 2F, 1M 1F, 6M 

Smoker 3Sm, 2NSm 4Sm, 1NSm 2Sm, 1NSm 5Sm, 2NSm 

MIP% Predicted 33.10 ±17.63 59.65 ± 25.80 47.62 ±34.05 40.75 ±10.26 

UHDRS:TMS 59.20 ±15.07 43.80 ±14.62 60.33 ±17.01 58.14 ±19.27 

TFC 3.6 ±1.52 5.20 ±2.49 6.33 ±3.51 6.43 ±3.31 

UHDRS:Cog 

 

151.33 ±76.58 

(n=3) 

114 ±12.17 

(n=3) 

140.67 ±53.98 

(n=3) 

156.67 ±59.54 

(n=6) 

MIP   Maximal inspiratory pressure (cmH2O) 

UHDRS:TMS:  Unified Huntington’s disease rating scale: total motor score 

TFC   Total functional capacity 

UHDRS:Cog:  Unified Huntington’s disease rating scale: cognitive score 

 

9.3 Individual analysis of data from intervention study 

The number of participants within the study was small and therefore analysis was carried out 

on both an individual and group basis. Individual profiles of all participants are presented 

followed by group analysis of participants who completed the study as per protocol. 

9.3.1 Subject 01: sham group 

Subject 01 was a 67 year old male who was a non-smoker and lived with his wife. His TFC 

score was 4, UHDRS:TMS 62 and a cognitive score of 65. His adherence was 94% as 

recorded in the diary and 37% as recorded by the device. The reason for non-adherence was 

forgetting to do the exercises. Study data show an increase in MIP, a decrease in SNIP and 

PCF and no change in sit to stand see Table 53. The training load was consistent at 10cmH2O 

throughout the study, providing approximately 42% MIP resistance. 
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Table 53 Subject 01 study data 

 Baseline 1 Baseline 2 Final 
Change 

final – baseline 2 

SNIP (cmH2O) 

 
35 35 34 -1 

MIP (cm H2O) 

 
24 24 26 2 

PCF (L/min) 

 
170 296 291 -5 

Sit-stand 

 
 6 6 0 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator for the training programme was the subject’s wife. 

Although the subject was independent in using the device and finding it easy to use, the 

subject’s wife cleaned and assembled it and reminded the subject to do the exercises. The 

disparity between the diary and device adherence data is not clear, but it may be that the 

subject was not actually turning the device on. He complained of not being able to see the 

image on the device during training and on reviewing the technique, the subject turned the 

device on but did not press the start button. The technique was reviewed at each visit. The 

subject’s wife felt that the home visits were valuable for getting feedback from the 

researcher, although the number of visits could have been reduced. The subject and his wife 

felt no appreciable benefit to the training; it was felt that although walking distance and 

breathlessness had improved, this may have been due to generally feeling better than in the 

recent past. It was felt that speech was worse. The wife valued the research study and said 

that they liked to get involved in studies. 

9.3.2 Subject 02: sham group 

Subject 02 was a 67 year old male who was a non-smoker and lived with his wife. His TFC 

score was 11, UHDRS:TMS 41 and cognitive score 201. Adherence was 95% as recorded in 

the diary and 86% recorded by the device. Reasons for non-adherence: busy x2 (preparing 

Sunday dinner; watching rugby) too tired; device needed to be charged. The researcher noted 

some issues with the device recording sessions. The study data show an increase in MIP and 

PCF and a decrease in SNIP and sit to stand, see Table 54. The training load was consistent at 

10cmH2O throughout the training study, providing approximately 17.5%MIP resistance. 
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Table 54  Subject 02 study data 

 Baseline 1 Baseline 2 Final 

Change 

final -baseline 

2 

SNIP (cmH2O) 

 
24 43 31 -12 

MIP (cm H2O) 

 
49 57 76 19 

PCF (L/min) 

 
343 279 442 163 

Sit-stand 

 
 11 10 -1 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by the researcher as study notes written during visits. The 

only issue raised by the subject, was some difficulty in maintaining a seal around the 

mouthpiece of the device. The main enabler was creating a routine with the main barrier 

being finding time to do the exercises. The subject did not perceive any benefit for the 

training. 

9.3.3 Subject 03: intervention group 

Subject 03 was a 44 year old female who was a non-smoker who lived with her husband and 

had full time care when her husband was at work. Her TFC score was 2 and UHDRS:TMS 

72. She was unable to undertake training as she was unable to generate sufficient volume and 

flow to trigger the device. Her baseline 1 readings were SNIP 15cmH2O, MIP 11cmH2O and 

PCF 196 L/min. 

9.3.4 Subject 04: sham group 

Subject 04 was a 55 year old male who smoked and lived alone; he had support from 

community nursing care for the study. His TFC score was 3, UHDRS:TMS 67 and cognitive 

score 109. The subject withdrew from the study during the habituation week as he found the 

intervention too complex and that this increased his anxiety. The community nurse felt that 

motivation was an issue and that the subject was unable to learn the skill of using the device, 

particularly in the mornings when the subject found it difficult to co-ordinate and process 

new information. His baseline 1 readings were SNIP 28cmH2O, MIP 16cmH2O and PCF 

217L/min. 
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9.3.5 Subject 05: intervention 

Subject 05 was an 80 year old male who was a non-smoker and lived with his wife. His TFC 

score was 3 and UHDRS:TMS 59. His adherence was 52% as recorded by the diary and 49% 

recorded by the device. Reasons for non-adherence were: unwell x8, tired x7, at 

daycare/respite x13, needed charging x1, missed x10. Study data show an increase in SNIP 

but decrease in MIP and PCF, with no change in sit to stand, see Table 55. The data collected 

from the device during the intervention demonstrated an upward trend in resistance provided 

by the device Figure 49. Resistance was set at 50% of MIP, which was measured during the 

first two breaths of the training session. From the beginning to the end of the intervention, 

resistance increased by approximately 10cmH2O, indicating an increase in the daily MIP 

values. 

Table 55 Subject 05 study data 

 Baseline 1 Baseline 2 Final 

Change  

final –  

baseline 2 

SNIP (cmH2O) 

 
29 12 19 7 

MIP (cm H2O) 

 
50 73 48 -25 

PCF (L/min) 

 
351 476 436 -40 

Sit-stand 

 
 4 4 0 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 
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Figure 49 Subject 05: Resistance provided by device during each day of 

training 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was the subject’s wife who cleaned and assembled the 

device and prompted the subject to do the exercises. The subject carried out the exercises 

independently, but often required input from his wife to co-ordinate breathing in and 

breathing out. His wife felt that if she was not there, that the subject may not carry out the 

exercises. During a visit the researcher noted that the subject was rushing the technique and 

therefore advice was given on slowing down and concentrating on full in and full out breaths. 

There were some issues with the device not recording breaths, but this seemed to resolve 

when the frequency of breathing was reduced. The subject felt that stair climbing was better 

since starting the exercises. 

9.3.6 Subject 06: sham group 

Subject 06 was a 54 year old female who was a non-smoker and lived with her husband and 

was in a stable gym exercise routine. Her TFC score was 6, UHDRS:TMS 47 and cognitive 

score of 160. Adherence was 100% as recorded in the diary and 98% recorded on the device. 

Study data show increases in SNIP, MIP, PCF and no change in sit to stand see Table 56. The 

training load was consistent at 10cmH2O throughout the study, providing approximately 

20%MIP resistance. 

Load 

cmH2O 

Time in days 
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Table 56 Subject 06 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
40 44 45 1 

MIP (cm H2O) 

 
30 49 59 10 

PCF (L/min) 

 
394 357 412 55 

Sit-stand 

 
 11 11 0 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by the researcher as study notes written during visits. The 

subject carried out the training programme independently and had no problems during the 

study. She did not notice any change in activities of daily living, cough or speech as a 

consequence of the training. She felt that the training was not difficult and that it was 

something that she may do later on to maintain her breathing. 

9.3.7 Subject 07: intervention group 

Subject 07 was a 60 year old male who was a non-smoker who lived at home with his wife 

and two children. His TFC score was 3, UHDRS:TMS 68 and cognitive score of 64. At the 

first visit, the subject had difficulties in co-ordinating breathing and using the device as he 

had facial and upper limb chorea. He was willing to carry on with the study at this point, but 

after a few days the subject’s wife felt that the intervention was too difficult to continue due 

to co-ordination problems. The co-ordination problems were both in pattern of breathing and 

chorea. The subject’s motivation to continue was also low. His baseline readings were: SNIP 

33cmH2O, MIP 27cmH2O and PCF 122L/min. 

9.3.8 Subject 08: sham group 

Subject 08 was a 45 year old male who was a non-smoker and lived with his wife and child. 

His TFC score was 3 and UHDRS:TMS was 83. Adherence recorded in the diary was 71.4% 

and 83.2 % recorded by the device. Reasons for non-adherence were going out x4; no reason 

x3; busy x2; hospital appointment x1; forgot x1; father’s day x1. The study data show an 

increase in SNIP and PCF. The change in PCF was based on final-baseline 1, as the subject 
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was unable to give full effort at baseline 2. MIP and sit to stand decreased, see Table 57. The 

training load was consistent at 5cmH2O, providing approximately 7%MIP resistance. 

Table 57 Subject 08 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
62 70 80 10 

MIP (cm H2O) 

 
37 69 67 -2 

PCF (L/min) 

 
250 

77 

Unable to get full 

effort 

388 
Final-baseline 1 

138 

Sit-stand 

 
 21 19 -2 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was the subject’s wife who prompted the use of the 

device and coached during the exercise. The exercises were short, compared to other exercise 

studies and easy to do. Having a routine facilitated carrying out the exercise, and this was 

better in the morning compared to evening, when the subject got tired. During the 

researcher’s visits, it was noted that the subject took successive short inspirations before 

expirations. Following coaching from the researcher during the visit and wife during the 

intervention, the number of multiple breaths reduced, and inspirations were slower and 

longer. The subject’s wife felt that his swallow had improved since the intervention. Barriers 

tended to be family events and tiredness in the evening. The device was easy to use, but not 

something that they would take out with them. 

9.3.9 Subject 09: intervention group 

Subject 09 was a72 year old female who smoked and lived with her partner. Her TFC score 

was 4 and UHDRS:TMS 52. The subject had difficulty in performing the technique due to 

problems with co-ordinating her breaths with using the device, poor seal around the 

mouthpiece and was unable to activate the device. This caused increased frustration and 

anxiety and the subject withdrew from the study. Her baseline data were SNIP 18cmH2O, 

MIP 13cmH2O and PCF 101L/min. 
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9.3.10  Subject 10: sham group 

Subject 10 was a 59 year old female who was a non-smoker and lived alone and had social 

support. She had a TFC of 6, UHDRS:TMS of 73 and cognitive score of 110. She did not 

complete the diary and her adherence was 1.2% as recorded by the device. She carried out 1 

training session in 6 weeks with the researcher, but was always happy to try and continue 

with the study. The reason for not completing training was hay fever. It was noted during the 

researcher’s visits that the subject had difficulties using the device. Initially, she had 

difficulties pressing the buttons to start the training, but this improved in subsequent visits. 

She had difficulties co-ordinating breaths with using the device, often expiring instead of 

inspiring through the device. There were difficulties with the flange, as it sometimes came off 

during a breathing manoeuvre. The researcher removed the flange and the subject felt that 

this was easier to use. The researcher noted that the subject had decreased ability to follow 

instructions but always consented to carrying on with the study. The data were collected, see 

Table 58 but not used in the group analysis as the intervention had not been followed as per 

protocol. SNIP, MIP, PCF and sit to stand all increased 

Table 58 Subject 10 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
42 39 65 26 

MIP (cmH2O) 

 
31 29 40 11 

PCF (L/min) 

 
263 208 257 49 

Sit-stand 

 
 8 9 1 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

9.3.11 Subject 11: intervention group  

Subject 11 was a 28 year old male who smoked and lived with his parents. His TFC score 

was 3, UHDRS:TMS 51 and cognitive score of 100. Adherence as recorded by the diary was 

36% and 63% as recorded by the device. Reasons for non-adherence were that the subject 

was asleep x4. The subject smoked through a home-made device that included a 5mm wide 

and 95cm long tube. Study data show an increase in MIP, PCF and sit to stand and a decrease 

in SNIP see Table 59. The resistance provided by the device showed an upward trend of 
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approximately 2cmH2O across the study, indicating change in daily MIP measures, see 

Figure 50. 

Table 59 Subject 11 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final  - 

baseline 2 

SNIP (cmH2O) 

 
24 42 37 -5 

MIP (cm H2O) 

 
44 38 41 3 

PCF (L/min) 

 
n/a 213 313 100 

Sit-stand 

 
 9 10 1 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Figure 50  Subject 11: Resistance provided by device during each day of 

training 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was the subject’s father, who cleaned, assembled and 

supervised the exercises. The flanged mouthpiece was a major obstacle to the exercises being 

carried out and this was adapted by removing the lugs at each side, resulting in an oval tube. 

This was somewhat satisfactory, but the subject did tend to bite down on the tube. There were 

Load 

cmH2O 

Time in days 
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some difficulties with co-ordination of breathing with the device, with the subject sometimes 

not generating sufficient flow to trigger the device. This improved when the subject was sat 

up in bed, this position also offered less distraction from TV and computer screens. The 

device did not appear to hold power and therefore advice was given on charging the device 

overnight rather than just for a few hours. The subject’s father felt that the weekly phone 

calls/visits were helpful to discuss adaptations to the device and that training once a day may 

be better than twice, as it was sometimes difficult to fit in two sessions. The subject’s mother 

commented that the parent/child relationship was sometimes difficult, as the onus was on 

them to remember to do the exercises and there was an element of guilt if they forgot. The 

parents did not observe any perceived benefit from the exercises. 

9.3.12 Subject 12: intervention group 

Subject 12 was a 31 year old male who was a non-smoker who lived alone. His TFC score 

was 9 and UHDRS:TMS 20. Adherence as recorded by the device was 77%, a diary was not 

kept. Reasons for non-adherence were being busy or away from home. Study data show an 

increase in SNIP, MIP and PCF with no change in sit to stand, see Table 60. The resistance 

provided by the device increased by approximately 5cmH2O across the intervention period, 

indicating an increase in daily MIP values, see Figure 51. 

Table 60 Subject 12 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final - 

baseline 2 

SNIP (cmH2O) 

 
64 64 67 3 

MIP (cmH2O) 

 
74 85 105 20 

PCF (L/min) 

 
548 567 649 82 

Sit-stand 

 
 15 15 0 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 
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Figure 51 Subject 12: Resistance provided by device during each day of 

training 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator for the intervention was setting an alarm to remind 

the subject when to carry out the exercises. It helped having the researcher come and review 

the exercises, although there were no difficulties in carrying them out. There were some 

problems with the device: it took a long time to charge and the buttons were not intuitive. The 

subject lost the flange, but continued using the device without this. The subject did not notice 

any benefit from the exercise. He was happy to do the study and thought that if the outcome 

of the study was positive, then he would continue with the exercises. 

9.3.13 Subject 13: sham group 

Subject 13 was a 41 year old male who smoked and lived in a care home facility. His TFC 

score was 4, UHDRS:TMS 84 and cognitive score 110. Adherence as recorded by the diary 

was 58.3% and 75% as recorded by the device. Reasons for non-adherence were: nursing 

staff forgot; not awake long enough for 2 sessions x2; refused x1; machine not working 

correctly. During baseline 1, the subject had difficulty coughing into the mouthpiece and a 

face mask was used for baseline 2 and final measures. Subsequent to this, a reliability and 

validity study was carried out which showed that PCF using face mask was valid as 

compared to mouthpiece and reliable in healthy subjects (Jones et al. 2013). Study data show 

an increase in SNIP and PCF and decreases in MIP and sit to stand, see Table 61. The 

Load 

cm H2O 

Time in days 
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baseline 2 SNIP ready was considerably lower than baseline, the reason for this is not known. 

The final sit to stand measure was reduced as the subject stopped to pull up his trousers. As 

the subject was busy, the test was not repeated. The training device provided a consistent load 

of 5cmH2O throughout the study, providing approximately 12%MIP resistance. 

Table 61 Subject 13 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
38 14 60 46 

MIP (cmH2O) 

 
35 41 39 -2 

PCF (L/min) 

 
107 329* 372 43 

Sit-stand 

 
 14 10** -4 

*Measuring device altered from mouthpiece to face mask 

** stopped to pull up trousers 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was the support from the care home staff. The staff 

cleaned and assembled the device and the subject reminded staff about carrying out the 

exercises. The carers felt that the subject would have been unable to assemble the device 

independently. There were some problems with co-ordination in terms of placing the device 

in the mouth and this was resolved by staff helping. There was also a problem with the flange 

and the researcher advised using the device without the flange. There were some problems 

with charging the device and advice was given to charge overnight. The subject felt that his 

swallowing was better since carrying out the exercises. 

9.3.14 Subject 14: sham group 

Subject 14 was a 72 year old male who did not smoke and lived with his wife. His TFC score 

was 6, UHDRS:TMS 54 and cognitive score 225. Adherence as recorded by the diary was 

83% and 67.9% as recorded by the device. No reasons were given for non-adherence. Study 

data show that SNIP increased, MIP and PCF decreased and no change in sit to stand, see 

Table 62. The training load provided by the device was consistent at 10cmH2O throughout 

the study, providing approximately 30%MIP resistance. 
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Table 62 Subject 14 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
56 44 51 7 

MIP (cmH2O) 

 
332 33 24 -9 

PCF (L/min) 

 
184 277 217 -60 

Sit-stand 

 
 7 7 0 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefit of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was keeping the device in view in order to remember 

to carry out the exercises. It was noted on the baseline 2 visit that the device was not being 

used correctly as the subject was not pressing the start button twice. Advice was given and 

reminders written in the diary. The device had been dropped and the posterior valve broke, 

this was replaced and training continued. The subject tended to breathe very quickly and 

sometimes there was more emphasis on expiration rather than inspiration, advice on correct 

technique was given by the researcher. The subject did not perceive any benefit from the 

study. 

9.3.15 Subject 15: sham group 

Subject 15 was a 32 year old male who smoked and lived with his mother. His TFC score 

was 11, UHDRS:TMS 36 and cognitive score 179. Adherence as recorded by the device was 

66.7%, a diary was not kept. The study data show an increase in MIP and decreases in SNIP, 

PCF and sit to stand see   
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Table 63. The resistance provided by the device was consistent at 10cmH2O throughout the 

study, providing approximately 18%MIP resistance. 
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Table 63 Subject 15 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
44 72 70 -2 

MIP (cmH2O) 

 
56 55 63 8 

PCF (L/min) 

 
563 550 473 -77 

Sit-stand 

 
 14 13 -1 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Facilitators, barriers and perceived benefit of the training programme 

The following data were collected by the researcher as study notes written during visits. The 

main facilitator was setting a routine which fitted in with the subject’s work times. The 

subject and his mother felt that the researcher’s visits and phone calls were helpful. The 

device was easy to use, although the subject did not like the flange and used the device 

without it. The subject felt that his speech was better, in that people could understand him 

better, the words were clearer and sentences longer. 

9.3.16 Subject 16: intervention group 

Subject 16 was a 56 year old female who was a non-smoker and lived with her husband and 

son. Her TFC was 6, UHDRS:TMS 36 and cognitive score 207. The subject successfully 

carried out the exercises during baseline 1 and baseline 2 visits. The resistance was reduced 

from 50%MIP to 40%MIP as the subject was unable to trigger the device at the former 

resistance. At visit 1, the subject withdrew from the study as she felt that she could not “get 

into the training”. The subject’s baseline 2 data were: SNIP 32cmH2O, MIP 37cmH2O, PCF 

331L/min and sit to stand 12. 

9.3.17 Subject 17: intervention group 

Subject 17 was a 71 year old male who was a non-smoker and lived with his wife. His TFC 

score was 5, UHDRS:TMS 43 and cognitive score 122. Adherence was 83% as recorded by 

the device, no diary was kept. The study data show that SNIP, MIP and sit to stand increased 

and PCF decreased see Table 64. Variable resistance was provided by the device during the 

intervention. On the baseline 2 visit, it was noted that the device was set at 80%MIP; this was 

adjusted to a level that the subject found capable of breathing against which was 40%. The 
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resistance was adjusted to 50% on visit 1, but on visit 2 was reduced to 40% as the subject 

found 50% too difficult. The resistance, in cmH2O, provided by the device remained constant 

throughout the study see Figure 52 (baseline 2 to final visit). 

Table 64 Subject 17 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
33 23 55 32 

MIP (cmH2O) 

 
28 35 45 10 

PCF (L/min) 

 
116 306 296 -10 

Sit-stand 

 
 4 7 3 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Figure 52 Subject 17 Resistance provided by device during training 

programme 

 

 

 

 

 

 

 

 

 

 

 

 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by interview and study notes written during the 

researcher’s visits. The main facilitator was being reminded to do the exercise by the 

subject’s wife, who also cleaned and assembled the device. The subject continued to use the 

device while away on holiday, but sometimes missed sessions due to family commitments. 

There were some problems with device not holding its charge and sometimes not recording 

Load  

cm H2O 

Time in days 
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breaths. The subject had been on antibiotics for a chest infection in the habituation week. The 

subject did not perceive any benefit from the training programme. 

9.3.18 Subject 18: intervention group  

Subject 18 was a 43 year old man who was a smoker and lived in a care home facility. His 

TFC score was 3, UHDRS:TMS 68 and cognitive score 183. During baseline 1 visit, the 

subject had difficult in co-ordinating breathing with using the device, as he emphasised 

expiration rather than inspiration. At baseline 2 visit, the subject’s technique had improved 

and he was happy to continue with the study. At the first phone call, the carer stated that the 

subject was having difficulty with the training and visit 1 was moved to an earlier date. At 

this visit, the subject withdrew from the study. The subject felt that it was too difficult to co-

ordinate his breathing with using the device; the carer felt that the subject had low motivation 

and had other concerns in his life that needed his attention. Data from baseline 2 were SNIP 

24cmH2O, MIP 29cmH2O, PCF 365L/min and sit to stand 8. 

9.3.19 Subject 19: sham group 

Subject 19 was a 43 year old female who was a smoker and lived alone. Her TFC score was 

10, UHDRS:TMS 41 and cognitive score 203. The subject had a high breathing rate whilst 

carrying out the exercises and advice was to slow the rate and ensure full inspiration and 

expiration. At visit 1, the subject had other health issues and withdrew from the study. The 

baseline 2 data were SNIP 49cmH2O, MIP 83cmH2O, PCF 305L/min and sit to stand 14. 

9.3.20 Subject 20: intervention group 

Subject 20 was a 53 year old male who was a non-smoker and lived with his wife and son. 

His TFC score was 6. UHDRS:TMS 46 and cognitive score 120. Adherence was 99% as 

recorded by diary and 100% as recorded by the device. The study data show an increase in 

MIP and PCF and a decrease in SNIP and sit to stand, see Table 65. The resistance provided 

by the device showed a decrease of approximately 5cmH2O over the time of the study see 

Figure 53. 

  



263 

 

Table 65 Subject 20 study data 

 

 

Baseline 1 

 

Baseline 2 Final 

Change 

final – 

baseline 2 

SNIP (cmH2O) 

 
80 97 93 -4 

MIP (cmH2O) 

 
99 83 90 7 

PCF (L/min) 

 
547 527 530 3 

Sit-stand 

 
 8 7 -1 

SNIP  Sniff nasal inspiratory pressure (cmH2O) 

MIP  Maximal inspiratory pressure (cmH2O) 

PCF  Peak cough flow (litres/minute) 

Figure 53 Subject 20: Resistance provided by device during training 

programme 

 

 

 

 

 

 

 

 

 

 

Facilitators, barriers and perceived benefits of the training programme 

The following data were collected by the researcher as study notes written during visits. The 

main facilitator was having a routine for the exercises. On occasion the subject would get 

breathless, but after a short rest he was able to continue with the training. The subject found 

that the training was OK and did not interfere with his life. He did not perceive any benefit 

from the training. 

Load 

cmH2O 

Time in days 
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9.4 Adherence to inspiratory muscle training in people with 

Huntington’s disease 

Adherence was measured by a diary and by the number of sessions completed on the device. 

Adherence as measured by the device was similar between groups, 70.67% ±26.35, range 49-

100 and 74.53% ±21.03%, range 37-98 for the intervention and sham groups respectively, but 

was recorded differently in the diary 62.33% ±32.75, range 36-99 and 83.62% ±16.10, range 

58.30-100 for intervention and sham groups respectively. 

9.4.1 Perceptions of people with Huntington’s disease regarding intervention  

The perception of participants regarding the intervention was analysed through the responses 

to interview questions. Five participants from the intervention group and three from the sham 

group were interviewed by an independent researcher. Audio recordings were transcribed see 

Appendix 8, coded and themes generated. The codes were: frequency of use; support from 

carer; support from researcher; ease of use of device; problems with device; reminders; carers 

responsibility; barriers; the future; facilitators, participation in research. From these codes the 

major themes of the device and enablers were generated and two sub themes of life events 

and perceived benefit, see Figure 54. 

Figure 54 Themes from interview data 
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9.4.2 The device 

Six interviewees felt that the device was easy to use e.g. 

  “small easy to use, it doesn’t take up any space” (carer, subject01).  

Difficulties with the device included the mouthpiece (n=4), the icons (n=1) and the inability 

to see how many breaths were left (n=2) and the device not working correctly (n=3). Three 

participants used the device without the mouthpiece and one fashioned a new mouthpiece 

  “the biggest difficulty we had was with the mouthpiece because with the Huntington’s 

the muscle coordination is quite complicated to get the mouthpiece in and to get [him] 

to seal around the bit……. it was made a lot easier by cutting the ends of the 

mouthpiece off” (carer subject 11). 

One participant felt that the icons on the buttons were not intuitive 

“…why do you need to press the on button to go to the menu button and why the up 

and down button on the left, why is that a play button?” (subject12) 

Problems with the device were  

“ a couple of times .. the device seemed to jam” (carer subject11);  

“there should be fourteen readings on there, there might only be ten or something” 

(carer subject01);  

 the device seemed to not work properly” (subject 17);  

“he couldn’t see how many breaths were left” (carer subject 05);  

“the screen goes blank, it doesn’t tell him how many breaths you know?” (carer 

subject 01). 

Although there were problems with the device, participants continued with the training once 

or twice a day.  

9.4.3 Enablers 

Participants and carers perceived that support from carers and the researcher, plus creating 

reminder systems enabled them to carry out the exercises. Six of the eight participants 

interviewed required support from carers in order to carry out the training. Support was 

needed for cleaning and assembling the device: 

“well what I do in the morning is I put the device together with the mouthpiece….and 

when he’s had his breakfast I say “go and do your breathing”” (carer subject01); 

“I’m not sure if he would manage to get it on and off himself, I think he would need 

someone independent to do that, like switching it on and loading it” (carer 

subject13). 
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Carers also needed to coach the participants: 

  “I would stand there and go “in, out” and he’d do it perfectly then. Breathe in, 

breathe out and he’d know which way he was going. But sometimes he’d get a bit lost 

in that” (carer subject 05) 

Carers also expressed concern over their responsibility: 

“it was my fault, I wasn’t there, so I wasn’t sure what was supposed to be happening” 

(carer subject 01) 

A comment made by subject 11 mother after the recorder was turned off:  

“the parent/child relationship is sometimes difficult, as the onus is on us to remember 

to do the exercises and there is an element of guilt if we forget.” 

Support was provided by the researcher with alternate weekly phone calls and home visits, 

which were perceived as helpful. 

“yes, I mean it helps to go over what’s going on and her turning up to remind you” 

(subject 12) 

“they were good, important to see that he was progressing, doing it properly” (care 

subject 05) 

“if I’m having a problem I can say something” (carer subject 01) 

“having that extra input was quite helpful” (care subject 11) 

Subjects and carers used different systems to act as reminders to carry out the exercises:: 

“definitely for us the morning is part of a routine” (carer subject 08) 

“I kept the device in view otherwise I think I would have forgotten it” (subject 14) 

“ my wife reminded me” (subject 17) 

“having an alarm helped” (subject 12) 

“I just knew” “ he would remind us” (subject 13, carer subject 13) 

9.4.4 Life events 

Life events acted as barriers to carrying out the exercises: 

“simply to get it done amongst all the other things” (carer subject 11) 

“when I went away for a few days I forgot to take it with me” (subject 12) 

“he was full of cold” “except for the days when he was in day centre” carer (Subject 

05) 

“we’ve been busy with trips and things” (carer subject 08) 
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9.4.5 Perceived benefit 

Four participants who were interviewed did not perceive any benefit from the exercises. 

Benefits that were noted were: 

“he seems to be able to walk further… but I think that’s because he is well” “his 

speech is worse if anything” (carer subject 01) 

“swallowing is a lot better” (subject 13) 

“he told the nurses that he feels a lot better, going upstairs” (carer subject 05) 

Perceived benefit was also linked to participating in the research project: 

“helping out in the study I’m always up for that” “if it was part of me getting better 

its worth doing” (subject 12) 

“well we like to get involved. He’s happy to do any sort of studies that come up then 

because we have done the breathing with you in the Heath, it seems like a logical 

follow on….and if it’s going to help then anything is worth trying” (carer subject 01) 

 

The inspiratory muscle training intervention was facilitated primarily by support of carers, 

the ease of use of the device and setting reminders to carry out the exercises. Barriers were 

issues regarding the device and life events. 

9.5 Group analysis of data from intervention study 

Data from completers in the intervention and sham groups were analysed. Firstly, training 

parameters were analysed to explore whether the intervention group did train differently from 

the sham group. Data related to inspiratory muscle strength, cough efficacy and the functional 

task were analysed for differences between the groups. 

9.5.1  Training parameters 

The training load provided by the device was significantly higher (U= 0.00, p=0.003, 

[2.89,43.28]) in the intervention group (31.66cmH2O  ±16.33) compared to the sham group 

(8.57cmH2O), these findings were confirmed when load was calculated as % of baseline 2 

MIP: intervention group (49.00%); sham group (20.93%) (U=0.00, p=0.004, [16.11,40.04]). 

There was no difference in the number of sessions carried out in each group (U=10.50, 

p=0.255). This information confirms that the intervention group received a training 

programme that was different to the sham group. 

  



268 

 

9.5.2 Inspiratory muscle strength 

Descriptive analysis of the changes in SNIP and MIP are displayed in Table 66 and Table 67 

respectively. SNIP increased in three participants in the intervention group and four in the 

sham group; MIP increased in four participants in the intervention group and three in the 

sham group. Effect size was calculated as XI – Xs / spooled, i.e. mean of the intervention group – 

mean of the sham group/ pooled standard deviation from both groups. Baseline 2 MIP for 

completers was assessed for differences between the groups, as the values had changed when 

dropouts were excluded from analysis. There was no difference between groups in baseline 2 

MIP for completers, Mann-Whitney U=10, p=0.223. The results show an overall increase in 

inspiratory muscle strength within both groups, although these were not significant and no 

difference between the intervention and sham groups. The data indicate that respiratory 

muscle strength does not change significantly after inspiratory muscle training in people with 

HD. 

Table 66  Group analysis of sniff nasal inspiratory pressure  

 Intervention 

mean ±sd 

[95% CI] 

Sham 

mean ±sd 

[95% CI] 

Baseline SNIP 

(All starters) 

 

43.67 ±31.87 

 [10.22,77.11] 

n=6 

45.56 ±17.57 

[32.05,59.06] 

n=9 

Baseline SNIP 

(completers) 

47.60 ±33.96 

 [5.43,89.77] 

n=5 

46.00 ±20.06 

[27.44,64.55] 

n=7 

Final SNIP 

 

53.60 ±28.31 

[18.44,88.76] 

53.00 ±18.17 

[36.20,69.80] 

Change SNIP 

 

6.00 ±13.78 

[-11.12,23.12] 

7.00 ±18.58 

[-10.19,24.19] 

Within group analysis 
Z=-0.674 

p=0.500 

Z=-0.593 

p=0.553 

Mean between group difference  

[95% CI] 

-1.00 

[-22.96,20.96] 

Effect size 0.07 

SNIP  Sniff nasal inspiratory pressure (cmH2O)  
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Table 67  Group analysis of maximal inspiratory pressure  

 Intervention 

mean ±sd 

[95% CI] 

Sham 

mean ±sd 

[95% CI] 

Baseline MIP 

(all starters) 

 

57.17 ±25.86 

[30.02,84.31] 

n=6 

48.89 ±19.37 

[34.00,63.78] 

n=9 

Baseline MIP 

(completers) 

 

62.80 ±24.46 

[32.43,93.17] 

n=5 

46.86 ±15.35 

[32.67,61.05] 

n=7 

Final MIP 

 

65.80 ±29.52 

[29.14,102.46] 

n=5 

50.57 ±20.76 

[31.37, 69.77] 

n=7 

Change MIP 

 

3.00 ±16.87 

[-17.94,23.94] 

3.71 ±9.32 

[-4.91,12.34] 

Within group analysis Z=-0.674 

p=0.500 

Z=-0.851 

p=0.395 

Mean difference 

[95%CI] 

-0.71 

[-18.52, 16.09] 

Effect size -0.06 

MIP  Maximal inspiratory pressure 
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9.5.2.1 Peak cough flow 

Descriptive analysis of the changes in PCF is displayed in Table 68. PCF increased in three 

participants in the intervention group and four in the sham group. The results show an overall 

non-significant increase in PCF in both groups, with no difference between the intervention 

and sham groups. The data indicate that PCF does not significantly change after inspiratory 

muscle training in people with HD. 

Table 68  Groups analysis of peak cough flow  

 
Intervention 

mean ±sd 

[95% CI] 

Sham 

mean ±sd 

[95% CI] 

Baseline PCF 

(all starters) 

 

407.33 ±138.91 

[261.56,553.11] 

n=6 

316.78 ±97.49 [241.84,391.71] 

n=9 

Baseline PCF 

(completers) 

415.80 ±153.57 

[225.12, 606.48] 

n=5 

334.00 ±101.64 

[240.00,428.00] 

n=7 

 

Final PCF 

 

448.40 ±144.97 

[268.40, 628.40] 

n=5 

370.71 ±89.00 

[288.40,453.03] 

n=7 

Change PCF 

 

32.60 ±65.08 

[-48.21,113.41] 

36.71 ±91.84 

[-48.22,121.65] 

Within group analysis 
Z=-1.095 

p=0.273 

Z=-0.676 

p=0.499 

Mean difference 

[95% CI] 

-4.11 

[-111.34,103.11] 

Effect size 0.09 

PCF  Peak cough flow (litres/minute)  
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9.5.3 Sit to stand 

Descriptive analysis of the changes in the number of sit to stand in 30 seconds is displayed in. 

Table 69. Sit to stand increased in two people in the intervention group, with no participants 

showing an increase in the sham group; it remained the same in two participants in the 

intervention group and three in the sham group. The results show an overall increase in sit to 

stand in the intervention groups and a decrease in the sham group. The decline in sit to stand 

in the sham group may have been influenced by one participant who stopped to pull up his 

trousers during the test and the participant was not able to repeat the test. The data were re-

analysed excluding this participant, with the findings remaining largely unchanged, effect 

size 1.18. The minimal detectable change for SS in HD is 2.2 (Khalil 2012); the mean 

difference of 1.74 therefore indicates no clinical difference between the groups. 

Table 69  Group analysis of sit to stand in 30 seconds  

 
Intervention 

mean ±sd 

[95% CI] 

Sham 

mean ±sd 

[95% CI] 

Baseline SS 

(all starters) 

 

8.00 ±4.05 

 [3.75, 12.25] 

n=7 

11.78 ±4.63 

[8.22, 15.34] 

n=9 

Baseline SS 

(completers) 

 

8.00 ±4.53 

[2.38,13.62] 

n=5 

12.00 ±5.03 

[7.35,16.65] 

n=7 

Final SS 

 

8.60 ±4.16 

[3.44,13.76] 

n=5 

10.86 ±4.30 

[6.88,14.83] 

n=7 

Change SS 

 

0.60 ±1.52 

[-1.28,2.48] 

-1.14 ±1.46 

[-2.50,0.21] 

Within group analysis 
Z=-0.816 

p=0.414 

Z=-1.841 

p=0.066 

Mean difference  

[95% CI] 

1.74 

[-0.19,3.68] 

Effect size 1.28 

SS  Sit to stand (frequency)  
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9.6 Summary of intervention study 

The intervention study aimed to investigate the feasibility and benefit of inspiratory muscle 

training as a potential management strategy for people with Huntington’s disease. The 

following null hypotheses were not rejected: 

 

H08 People with HD will not adhere to an inspiratory training programme as defined as 

completing less than 85% of the programme; 

H09 Inspiratory muscle training does not improve respiratory muscle strength in people 

with HD;  

H010 Inspiratory muscle training does not improve peak cough flow in people with HD; 

H011 Inspiratory muscle training does not improve sit to stand in 30 seconds performance 

in people with HD. 

 

The data collected from the interviews demonstrated that inspiratory muscle training is 

feasible for people with HD and that carers and setting a routine facilitated carrying out the 

exercises. The main barriers were forgetting or being busy with other activities. Problems 

with the device included comfort of using the flange and the length of time required to charge 

the device. 
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10 Intervention study discussion 
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10.1 Intervention study 

The aim of the intervention study was to investigate whether inspiratory muscle training 

could increase inspiratory muscle strength and thus increase capacity of the respiratory 

muscle pump. Participants were recruited and allocated to either the intervention group or 

sham group using the minimisation method of random allocation. The minimisation method 

was successful in allocating participants to the groups based on confounders of respiratory 

function i.e. age, gender and smoking habit see Table 51. This method of balancing between 

groups was used as it is recommended for studies with small numbers as it enables balance 

between groups for prognostic factors (Altman and Bland 2005). On consideration of all 

demographic data, differences were noted between the groups, with the intervention group 

including participants who were functionally and cognitively less able, although statistical 

analysis demonstrated that the differences were not significant. These factors may have led to 

more participants dropping out of the intervention group compared to the sham group, see 

Table 52. The dropouts from the intervention group tended to have weaker inspiratory 

muscles, lower functional capacity and worse motor function than those who completed the 

intervention. Lower physical ability is reflected in reasons for withdrawing from the 

intervention i.e. decreased co-ordination (x3); inability to generate sufficient volume and 

flow and inability to ‘get on’ with the training. These reasons differed from those of 

participants who withdrew from the sham group i.e. inability to learn new a skill and lived 

alone; other health issues; did not follow protocol and lived alone. Reasons for withdrawal in 

the sham group therefore tended to be psychosocial rather than the physical reasons in the 

intervention group highlighting the complexity of HD as a condition. As motor function in 

terms of UHDRS:TMS and inspiratory muscle strength appeared to influence completion of 

the study, they could be considered as confounding variables in future studies. Smoking 

would still be considered a confounder as it is the most important cause of chronic 

obstructive pulmonary disease worldwide (Mannino and Buist 2007) and as such influences 

respiratory function. Age and gender could be removed as confounders, if %predicted values 

are used as outcomes. 

Adherence to the intervention measured via the device was 71% and 75% for participants 

who completed the intervention and sham programmes respectively, with a range of 37-100% 

across both groups. These figures correspond to partial compliance according to 

categorisation suggested by Fry et al (2007), but are favourable when using a more 

conservative cut off point of 50% as suggested by Khalil et al. (2012). Adherence was similar 
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between groups with one person in each group below the 50% cut off and no significant 

differences in the number of sessions performed by each group. These adherence values were 

similar to wheelchair athletes 63-79% (Goosey-Tolfrey et al. 2010) but less than for people 

with MS which ranged from 81-90% (Chiara et al.2006; Fry et al. 2007; Pfalzer and Fry 

2011) and ALS 82-85% (Cheah et al. 2009) and much less than trained athletes 95-97% 

(Romer et al. 2002b; Volianitis et al. 2001). Adherence may have been reduced due to the 

current study being home based and therefore unsupervised by the researcher. Supervised 

studies have shown adherence of 100% (Enright and Unnithan 2011). Decreased adherence in 

people with HD may also be due to complexity of the condition including apathy which is 

thought to interfere with functional activities even when the necessary motor and cognitive 

capacity is retained (Hamilton et al. 2003).  

Group analysis of data show no difference between the intervention and sham groups in terms 

of inspiratory muscle strength (SNIP effect size -0.07, MIP effect size -0.06) and cough 

efficacy (PCF effect size -0.09) following the six week intervention. Although the functional 

task of sit to stand had a large effect size, 1.28, the mean difference of 1.74 is less than the 

minimal detectable change of 2.2 identified by Khalil (2012). The study was underpowered 

with a post-hoc power calculation of 0.052 (PS software), which could indicate a type II 

error, with the real effects of IMT in people with HD remaining unknown. 

The training programme i.e. 30 breaths, twice a day, seven days/week for six weeks with a 

resistance of 50% of MIP was based on previous research using the POWERbreathe device 

(Romer et al. 2002a; Volianitis et al. 2001). The resistance for the sham group was based on 

evidence from Geddes et al (2008), established in studies on people with COPD and a mean 

baseline MIP of 42-72cmH2O. The mean values for MIP in this study are at the lower end of 

this range; see Table 67, therefore an absolute value for sham resistance may not be 

applicable. The mean value for resistance in the sham group was 8.57cmH2O, but this 

represented a mean of 20.93% of their baseline MIP. The resistance based on %MIP was 

significantly lower than that of the intervention group (49%), but may still have provided a 

training effect. This result is similar to the findings in a study in people with COPD, when no 

differences were found between training at 52%MIP and 22%MIP (Preusser et al. 1994), yet 

a systematic review concluded that greater increases in MIP are seen with training at higher 

rather than lower intensities (Geddes et al. 2008). This highlights a need for further research 

on providing overload to the respiratory muscles in people with different pathological 

conditions and thus different causes of decreased capacity and increased load on the 

respiratory pump.  
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In this study, both intervention and sham groups demonstrated increases in inspiratory muscle 

strength but these were not statistically or clinically significant compared to the significant 

increase in MIP of 13cmH2O in the meta-analysis on people with COPD (Gosselink et al. 

2011). Participants in both groups may therefore have experienced a training effect. The 

effect may have been due to the resistance providing an overload and thus increasing the 

strength of the inspiratory muscles and/or taking regular deep breaths may have increased 

lung volumes and altered the biomechanics of the respiratory muscles. Resistance of 50% 

MIP was provided by the POWERbreathe in the intervention group, based on the initial two 

breaths of each training session. Theoretically, as strengthening occurs, the resistance 

increases thus satisfying the principles of progressive overload (Kraemer et al. 2002). This 

was demonstrated in four participants in the intervention group see Figures 51-54, with 

increases in training load ranging from approximately 1-10cmH2O through the training 

period. Interestingly, subject 20 was the only participant with 100% adherence yet data show 

a decline in load of approximately 3cmH2O across the training period and a reduction of 

4cmH2O in SNIP. This participant had the highest SNIP score in the sample, 97cmH2O, so it 

is possible that the load of 50%MIP was not sufficient to increase strength. Studies in people 

with PD (Inzelberg et al. 2005) and MS (Klefbeck and Nedjad 2003) demonstrated significant 

increases in MIP when training resistance was increased to and then sustained at 60%MIP. 

The American College of Sports Medicine guidelines recommend a load of 60-70% 1 RM, 1-

3 sets of 8-12 repetitions, with 2-3 minutes rest between sets, 2-3 times per week (Kraemer et 

al. 2002) but few studies in people with neurodegenerative conditions follow all of these 

recommendations. In the sham group, resistance was set at a constant level and therefore 

progressive overload would not occur, however constant overload may have occurred as the 

% MIP ranged from 7-42% baseline MIP.  

The non-significant increase in inspiratory muscle strength seen in both groups was similar to 

that in people with ALS (Cheah et al. 2009) who took part in a similar training protocol. The 

pathological changes in ALS affecting both peripheral and central nervous systems may mean 

that strengthening of muscle is harder to achieve and that the changes in strength may be due 

to biomechanical adjustment as a consequence of regular deep breathing exercises. This may 

also have been an influencing factor in the current study. Daily deep breathing exercises in 

people with PD significantly improve FVC (Genç et al. 2012) which will increase the 

thoracic cavity, and potentially place the diaphragm in an optimal length and shape to 

increase strength of contraction (De Troyer and Wilson 2009). An increased FVC will also 

decrease the elastic load on the respiratory system, decreasing the work of breathing (Bach 
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and Kang 2000) which may influence the efficiency of the respiratory muscles. In people 

with advanced MS however, IMT significantly increased MIP compared to a control group 

that included deep breathing exercises (Klefbeck and Nedjad 2003). No details were given 

regarding the deep breathing exercises, only that it was part of the routine physiotherapy 

treatment that served as the control arm of the study. The intensity of the exercises therefore 

may not have been sufficient to alter FVC and consequentially MIP.  

The results from group analysis results differ from IMT studies in people with MS (Fry et al. 

2007; Klefbeck and Nedjad 2003; Olgiati et al. 1989) and PD (Inzelberg et al. 2005) and 

studies with similar interventions in untrained healthy people (Downey et al.2007; Edwards 

et al.2008; Witt et al. 2007). Only two of the above studies in people with ALS and MS had a 

similar intervention to the current study i.e. participants randomised to either intervention or 

sham (Cheah et al. 2009; Inzelberg et al. 2005). Other studies had a control group with no 

intervention (Fry et al. 2007); breathing exercises (Klefbeck and Nedjad 2003) or no control 

group (Olgiati et al. 1989). All of the above studies used a threshold device, which requires 

the participant to overcome an initial load therefore, theoretically, strengthening inspiratory 

muscles at the lung volume at which the resistance is overcome. The POWERbreathe device 

chosen for this study was a technologically advanced device that provided resistance 

throughout the breath and therefore potentially strengthening the inspiratory muscles 

throughout their range of action.  

The degree of disability may influence the outcome of IMT studies. The current study 

included people with early to late stage HD, whereas the studies in PD (Inzelberg et al. 2005) 

and MS (Fry et al. 2007; Pfalzer and Fry 2011) predominantly included people with 

mild/moderate disease severity with only one including people with advanced disease 

(Klefbeck and Nedjad 2003). These studies all showed positive findings irrespective of 

disease severity, but the co-existence of behavioural and cognitive dysfunction with motor 

deficits in people with HD may impact on an individual’s ability to undertake inspiratory 

muscle training.  

Striatal dysfunction leads to chorea being more dominant in the early stage of the disease 

followed later by rigidity and bradykinesia (Andre et al. 2010; Han et al. 2010) affecting 

motor control of the face, mouth and arms which may influence the ability to physically 

accomplish placing the training device in the mouth. Dysfunctional sensorimotor integration 

within the basal ganglia (Smith et al. 2000) will lead to inco-ordinated movements that may 

include volitional aspects of breathing required for inspiratory muscle training. Inspiratory 

muscle training is a voluntary breathing activity and therefore requires appropriate integration 
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of cortico-spinal and bulbo-spinal pathways. Although little evidence exists to confirm that 

this integration occurs (Haouzi 2011), higher cortical involvement must be necessary for the 

planning and sequencing of breathing pattern in inspiratory muscle training. The co-

ordination issues faced by the participants in this study may be due to lack of integration 

within the striatum leading to motor planning deficits (Giralt et al. 2012; Harrington et al. 

2012).  

From a healthy person’s perspective, breathing in and out of a hand held device is a relatively 

straightforward task, but this did not appear to apply to people with HD. During the study the 

researcher had to break down the task into component parts, give slow, brief instructions and 

use visual cues to enable the participants to carry out the technique correctly. Traditionally 

the basal ganglia was thought to be just involved in the control of motor function, it is now 

considered to be essential in the learning of new complex movements which include 

emotional, motivational and cognitive components (Haber and Calzavara 2009). This may 

help explain the increased anxiety levels, ‘not getting on’ with the training programme and 

inability to learn a new skill in those who dropped out of the study. For those that remained in 

the study, the habituation period of one week may have been insufficient, or more home visits 

may have been necessary in that week to ensure the programme was being carried out 

correctly. This lengthened learning time may have influenced the efficacy of the intervention. 

The controversy surrounding efficacy of inspiratory muscle training may be extended when 

abnormalities within skeletal muscle in people with HD is included. Proponents provide 

statistical evidence that inspiratory muscle training improves exercise limitation (Ambrosino 

2011; McConnell 2012), whilst opponents question whether respiratory muscles can in fact 

be trained (Patel et al. 2012) and attribute positive findings to better performance of the 

outcome measure due to the manoeuvre being similar to the intervention (Polkey and 

Moxham 2004). The controversy behind the ability to train respiratory muscles is based on 

people with COPD, in whom the diaphragm is at a biomechanical disadvantage due to 

hyperinflation (Patel et al 2012). This would not be the case in people with HD, as the 

converse is true i.e. the lungs are underinflated as demonstrated by decreased FVC. However, 

abnormalities in mitochondrial function which are thought to lead to muscle atrophy 

(Ciammola et al. 2011) in people with HD may influence the ability of the muscle to be 

strengthened. Ciammola et al (2011) suggest that low anaerobic threshold levels and elevated 

blood lactate levels in people with HD are attributable to abnormal oxygen utilisation. The 

question that is yet to be answered is whether skeletal muscle in people with HD can be 

strengthened despite muscular cellular dysfunction.  
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The decreased inspiratory muscle strength observed in this study may not be solely 

attributable to underlying HD pathology; general de-conditioning may play a role. 

Deconditioning due to disuse or inactivity will cause decreased muscle strength (Bortz 2005) 

which is related to respiratory muscle strength (Buchman et al. 2008). Evidence for 

effectiveness of inspiratory muscle training in people who are healthy but untrained is strong 

(Downey et al.2007; Edwards et al.2008; Kellerman et al. 2000;Suzuki et al 1993; Witt et al. 

2007) and would suggest that if decreased strength is due to de-conditioning, this could be 

reversible. The potential for strengthening inspiratory muscles in people with HD who have 

decreased activity levels and are de-conditioned is therefore possible.  

The intervention study included outcome measures related to function pertinent to people 

with HD. Cough efficacy decreases linearly with measures of disease severity and is an 

influencing factor in predisposition to type 1 respiratory failure. Strengthening of the 

inspiratory muscles would lead to increased inspiratory capacity, this increased volume 

optimising the length tension relationship of the expiratory muscles resulting in greater 

expiratory flow (McCool 2006a). Group analysis of the data demonstrate that PCF, in a 

similar pattern to SNIP and MIP, increased non-significantly within groups but the effect size 

of 0.09 indicated no difference between the groups. Although IMT studies in people with 

neurodegenerative conditions did not assess cough efficacy, EMT studies in people with MS 

(Gosselink et al. 2000) and PD (Pitts et al. 2009) did show improvements in subjective and 

objective cough measures. EMT appears to be a more logical approach to increasing cough 

efficacy, but limited evidence and lack of suitable equipment meant that it was not chosen as 

an intervention in this study. 

This study was concerned not only with physiological consequences of inspiratory muscle 

training, but in line with recommendations (Polkey et al. 2011) an outcome related to 

function was included. The 30 second sit to stand is a functional measure of an activity of 

daily living that incorporates elements such as lower body strength and co-ordination 

(Macfarlane et al. 2006). The findings demonstrated a different pattern to SNIP, MIP and 

PCF, in that the sham group decreased in the number of sits to stands in 30 seconds, and the 

intervention group increased with an effect size of 1.28 see Table 69. When the irregular 

measurement of one participant was removed the findings remained relatively unchanged, 

effect size 1.18. This is considered a large effect size (Cohen 1988), however the mean 

difference (1.74) was less than minimal clinical difference of 2.2 for this outcome measure in 

people with HD (Khalil 2012). An outcome measure of sit to stand ability in terms of time 
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taken to complete a set number of manoeuvres rather than the number of manoeuvres in a set 

time may provide more sensitive data to measure functional activity.  

It is unclear why the sham group should decrease in the number of sit to stand manoeuvres 

relative to the intervention group, when no significant difference was found in inspiratory 

muscle strength. Analysis of individual participants indicated that one person in the sham 

group increased sit to stand, three decreased and three remained the same. One person 

completed 21 manoeuvres at baseline and 19 on the final assessment. These values were 

much larger than those reported for healthy older males, 14.2 (Rikli and Jones 1999) and 

therefore the decrease on second assessment may be due to regression to the mean. With the 

small sample size this reading will have a large influence on the group analysis. 

Similar results were found following an inspiratory muscle training in people with MS, yet a 

significant improvement was demonstrated in balance and a non-significant improvement in 

six minute walk distance were found (Pfalzer and Fry 2011). These improvements were 

greater in those people with mild disability. The functional changes were attributed to the 

postural role of the respiratory muscles. The diaphragm acts as a stabiliser during upper limb 

movements with the intercostal and parasternal muscles involved in trunk rotation (Hudson et 

al. 2011) with the relationship between postural control and respiration being dependent upon 

the body’s movement and needs (Massery et al. 2013). The lack of improvement in sit to 

stand, both in Pfalzer and Fry (2011) and the current study may be due to the outcome 

measure being dependent more on lower limb strength than on postural stability and balance. 

Review of the study notes and interviews revealed that only one participant in the 

intervention group perceived benefit from inspiratory muscle training, the improvement being 

increased ability to climb stairs. This participant demonstrated an increase in load of 

approximately 10cmH2O during the training and increased SNIP of 7cmH2O, but no change 

in sit to stand. It is possible that the improvement in climbing stairs was due to improved 

postural mechanics, or was unrelated to the intervention. 

Inspiratory muscle training is thought to attenuate the proposed reflex decrease in blood flow 

to peripheral muscles consequentially respiratory fatigue occurs, by reducing the energy 

requirements of the respiratory muscles (Turner et al. 2012). This attenuation would enhance 

performance of physical activity that is halted due to peripheral muscle fatigue. In this study 

the lack of improvement in the functional task suggests that fatigue of the respiratory muscles 

did not influence task performance. This may be due to either the task being not sufficiently 

arduous and/or the respiratory muscles did not fatigue. The study by Inzelberg et al. (2005) in 

people with PD did not measure a functional task, but observed a decrease in perception of 
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dyspnoea following an intervention similar to this study. This may indicate an increase in 

capacity of the respiratory system to withstand an increased load and therefore reduces the 

physiological element in the perception of dyspnoea. Evidence for improvements in dyspnoea 

are strong in people with COPD and accompanies an increase in exercise capacity and quality 

of life (Geddes et al. 2008; Gosselink et al. 2011), but is weaker in healthy untrained subjects 

(Downey et al. 2007). 

Functional benefits perceived by the participants were improved swallow, n=2 and improved 

speech, n=1. These three participants were all in the sham group, the improvements possibly 

due to regular breathing exercises rather than respiratory muscle training. Breathing exercises 

are encouraged in the early stages of HD in order to improve speech (Hamilton et al. 2012), 

which highlights not only the highly integrated functions of swallow and breathing 

(Davenport et al. 2011) but also speech (Aleksandrova and Breslav 2009). The effect of 

breathing in a regular pattern, as required for the sham intervention, may provide sensory and 

motor feedback to and potentially alter the central pattern generator of breathing. If the IMT 

intervention improved the regularity of breathing pattern this may provide benefit to the 

integrated functions of speech and swallow. This is a hypothetical proposition as the exact 

mechanisms of integration of these functions are not yet fully understood (Feldman et al. 

2013). 

This study showed no changes in inspiratory muscle strength, cough effectiveness or a 

functional task following inspiratory muscle training. This may be due to the non-specificity 

of the training protocol i.e. resistance against 50% MIP. For people with neurodegenerative 

conditions improvements in cough, exercise tolerance and physical activity may be functional 

goals and therefore training protocols may need to be adapted for these specific outcomes. In 

order to improve cough effectiveness, a power based protocol with lighter loads and faster 

inspirations may be appropriate. Conversely a protocol similar to the test of incremental 

respiratory endurance (Chatham et al 1999) may be more appropriate for improving physical 

activity outcomes. It is also possible that a longer intervention time is required for people 

with neurodegenerative conditions compared to healthy subjects in order for strength training 

against a background of neural dysfunction to show changes in muscle strength. 

 

Two major themes and two sub themes emerged from structured interviews with five 

participants from the intervention group and three participants from the sham group regarding 

participants’ perceptions of inspiratory muscle training. The major themes were the device 
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and enablers, with sub themes of life events and perceived benefit. As the interviews were 

structured around a number of set questions, a narrow breadth of data were gathered.  

Support from carers was a strong component of the enablers theme, with carers being 

involved in assembly, set up, cleaning of the device as well as coaching participants through 

the training. This theme was similar to that found by Khalil et al. (2012) who found that 

commitment of the caregiver was key to the success of an exercise intervention in people 

with HD and suggested that physiotherapists should work with caregivers to assist them in 

their supporting role. Wright et al (2013) found that carers of people with HD play an active 

role in deciding if the person with HD should participate in a study and then facilitate 

attendance at appointments and data collection throughout the study. By contrast, the 

participant with HD tended to play a passive role with a focus on physical and behavioural 

changes during the trial. Four participants in the current study lived alone, only one of whom 

completed the study, which may be related to the active role played by caregivers in 

intervention studies. 

Two carers in the current study expressed feelings of responsibility, one of blame (carer 

subject01) and one of guilt (mother subject11). The feeling of blame was that the carer had 

not been present for the initial information giving meeting and that this meant she was not 

sure how the device worked or the details of the protocol. This feeling confirms the 

suggestion from Khalil et al (2012) that therapists, and in this context, researchers, should 

assist caregivers in the supportive role. The feeling of guilt was related to the burden placed 

upon the carer to remember to do the exercises and as a parent of the participant they felt that 

the onus was on them to remember rather than the participant. Wright et al. (2010) suggest 

that further research is needed to understand the burden and role of carers in HD research in 

order to enhance their experience and also improve recruitment and retention in studies. 

Khalil et al (2012) attribute adherence to an exercise intervention to both caregiver 

involvement and researcher support. In the current study, weekly support provided by the 

researcher was perceived as helpful by participants and carers, both in terms of a reminder to 

carry out the exercises and as a trouble shooter. The role of the researcher as trouble shooter 

was appreciated by participants and carers as a number of issues arose concerning the training 

device. Although most interviewees felt that the device was easy to use in general terms, four 

had problems with the mouthpiece whilst others had problems with the device working 

correctly. Supported by the researcher, participants adjusted the device to suit their own 

needs, either by fashioning a new mouthpiece or removing it completely. Although there are 

no inherent dental features to HD pathology (Manley et al. 2012), the issues with oral 
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compatibility of the device are more likely to relate to muscle incoordination and inability to 

keep a seal around the mouthpiece. This has been recognised in a number of 

neurodegenerative conditions in relation to measurement of respiratory function (Uldry and 

Fitting 1995).  

Some participants took an active role in remembering to carry out the exercises such as 

leaving the device in view, setting an alarm and getting into a routine. This suggests that 

these participants potentially had insight into cognitive (Peavy et al. 2010), particularly 

memory loss (Paulsen et al. 2008) and behavioural e.g. apathy, lack of initiative, elements of 

HD and set up strategies to overcome these in order to enable them to carry out the exercises.  

Particular negative issues with the device included jamming, the screen not showing the 

number of breaths yet to complete and length of charging time. As this was a home based 

study, the researcher was unable to give advice on inability to see the numbers of breaths left, 

as the source of the problem was unknown. For some participants, study notes provided 

information relating to incorrect use of the device, in that the button to start the exercises had 

not been pressed. It remains unclear as to why the screen went blank during the exercise, but 

could possibly be due to the charge level of the device. One participant expressed surprise at 

the length of time required for charging and this information was then used to encourage 

subsequent participants to charge the device overnight. 

Life events often acted as a barrier to carrying out the exercises with activities such as being 

at a day centre (subject05) or on trips (subject08) meaning that training was not performed. 

Trying to fit the training in around other things (subject11) may create an extra burden for 

participants.  

Four participants did not perceive any benefit from the training, although one did feel that 

speech was better (subject13) and one that walking upstairs was better (carer subject05). The 

potential of some benefit to the individual by taking part in a research study was highlighted 

by a carer and a participant. The carer of subject 01 and subject12 expressed their desire to 

get involved in research in terms of being happy to do any research related to HD, but 

qualified this with comments about getting better. This altruism is therefore not ‘pure’ but 

context dependent and related to helping future patients including their own family as 

described by Hallowell et al. (2010). Hamilton et al. (2010) also discuss the risk benefit of 

involvement in research and as IMT is a low risk intervention this may have encouraged 

participation in the context of developing therapy for a genetic condition.  
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10.2 Conclusions from intervention study 

This is the first study investigating an intervention for respiratory dysfunction in people with 

HD, which may reflect the current approach to respiratory problems in this population. The 

intervention study was underpowered and therefore it is not known whether IMT may 

increase capacity of the inspiratory muscles in people with HD. Both groups demonstrated 

increases in inspiratory muscle strength and cough efficacy, but these were not significant 

and may be due to undertaking regular deep breathing exercises rather than as a consequence 

of resistance training. Alternatively, due to low measures of respiratory muscle strength in the 

sample, the resistance offered to the sham group may actually have provided a training load. 

Participants did adhere to the training protocol, and perceived that carer support, ease of use 

of the device and the setting of reminder systems enabled them to carry out the exercises. 

Management of respiratory problems in people with HD has been described as restorative at 

the later stages of the disease (Busse et al. 2008) rather than preventative. This was reflected 

and developed upon in the European Huntington’s disease network physiotherapy guidance 

document (EHDN Physiotherapy working group 2009) with specific commentary that 

respiratory problems may arise at any stage of the disease. The work within this thesis has 

helped to establish respiratory dysfunction within a treatment based approach to management 

of people with HD (Quinn and Busse 2012). The results of this study may therefore lead to 

investigation of other interventions for the management of respiratory problems in people 

with HD such as maximal insufflation-exsufflation and non-invasive ventilation as discussed 

in section 7.4.  
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11 Thesis conclusions  
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11.1 Synthesis of findings from the observation and intervention 

studies 

This thesis was based on two studies that sought to generate knowledge regarding respiratory 

function in people with Huntington’s disease. The underlying clinical issue was that people 

with HD die from respiratory failure, yet there was no quantification of respiratory function 

or exploration of factors that may influence respiratory function in people with HD. In 

relation to the MRC framework for complex interventions (Craig et al. 2008), these studies 

provide an evidence base and have generated knowledge that can develop theory regarding 

respiratory function and potential management of respiratory problems in people with HD. 

The observation study established that respiratory function is decreased in people with 

manifest HD compared to those who are pre-manifest and healthy control subjects and that 

this decline is linearly associated with disease progression as measured by motor symptoms 

and functional activity. Of particular clinical relevance is that cough becomes ineffective at 

the middle stage of the disease and therefore regular monitoring of peak cough flow is 

essential for the prevention of aspiration pneumonia. The intervention study developed from 

preliminary analysis of data from the observation study as it was clear that there were 

physiotherapy interventions that could be instituted to manage the problems of decreased 

ventilatory capacity, decreased respiratory muscle strength and decreased cough efficacy 

leading to retention of secretions. A systematic review of the literature indicated that 

inspiratory muscle training was one such intervention and therefore the feasibility and benefit 

of IMT were assessed in people with HD. Although physiological benefit was not determined 

in the small sample, the findings suggest that the training is feasible. The key clinical 

implications of this study are that respiratory function should be regularly monitored in 

people with HD and that problems should be managed based on strategies that have sound 

physiological rationale and potential benefit. Dissemination of clinical case study findings 

will help develop appropriate strategies for people with complex motor, cognitive and 

behavioural problems. 

From a theoretical perspective, a model of respiratory failure in people with HD was 

developed from existing evidence and postulation from that evidence. The underlying 

conceptual framework was developed from the categorisation described by Hart (2008) i.e. 

type 1 hypoxaemic respiratory failure is lung failure whilst type 2 hypercapnic failure is 

respiratory pump failure due to an imbalance between central neural drive, capacity of the 

respiratory muscle pump and the load placed upon the pump. Although the predominant 
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cause of death was known to be aspiration pneumonia which would be a categorised as type 1 

hypoxaemic respiratory failure, it was not known if this actually constituted an acute or 

chronic episode indicating an underlying imbalance between drive, capacity and load with an 

acute aspiration infection tipping the balance into respiratory failure. The categorisation 

allowed components of each type of respiratory failure to be explored in depth with the 

conclusion that people with HD are susceptible to type 1 hypoxaemic respiratory failure and 

predisposed to type 2 hypercapnic respiratory failure. The linear decline in respiratory 

function across progression of the disease would suggest that this is not a dichotomous 

classification but that decreasing ventilatory capacity and subsequent hypoxaemia leads to 

increasing elastic load driving the respiratory system toward type 2 hypercapnic respiratory 

failure. The concomitant decline in respiratory muscle strength and increase in resistive load 

due to upper airway dysfunction provides evidence that people with HD are predisposed to 

type 2 respiratory failure. Signs and symptoms of respiratory system dysfunction may not be 

apparent in people with HD as their decreased exercise capacity and physical activity may 

mask breathlessness on exertion. The complex interrelationships between exercise capacity, 

physical activity, posture and respiratory function found in this study mean that causal 

relationships cannot be made. 

The underlying cause of respiratory dysfunction in people with HD is still unknown and the 

framework of respiratory failure can be used to explore theoretical postulation. Type 1 

hypoxaemic respiratory failure may be due to swallow dysfunction which is evident in people 

with HD (Heemskerk and Roos 2011; Kagel and Leopold 1992) and ineffective cough. These 

two factors indicate that central processing of swallow is dysfunctional and that respiratory 

muscle strength is inadequate respectively. Central processing dysfunction may indicate that 

central drive to the respiratory muscles is also impaired as integration between breathing and 

swallow is known (Bianchi and Gestreau 2009; Butler 2007; Davenport et al. 2011; 

Hardemark Cedborg et al. 2009). Central drive of the respiratory muscle pump may impact 

on type 1 hypoxaemic respiratory failure in terms of both aspiration and ineffective clearance 

of secretions, but may also impact on the balance between drive, capacity and load 

influencing type 2 hypercapnic respiratory failure. Emerging evidence of brainstem 

pathology in people with HD (Herndon et al. 2009; Hobbs et al 2010;Rub et al 2014) and 

evidence of irregular airflow patterns in people with manifest HD in this study support a 

theory of central respiratory control dysfunction in people with HD . Ineffective cough is 

likely due to decreased inspiratory and expiratory muscle strength as identified in the 

observation study. Although there was no improvement in peak cough flow following 
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inspiratory muscle training in the intervention study, this is to be expected as inspiratory 

muscle strength also did not increase. The lack of benefit identified in the intervention study 

poses a number of potential theories. It may be that the model of respiratory failure proposed 

is not complete, as it would have been presumed that inspiratory muscle training, for which 

there is evidence of increased diaphragm thickness in healthy people (Enright et al. 2006b) 

and increased respiratory muscle strength in people with COPD (Geddes et al 2008; 

Gosselink et al 2011), would increase capacity of the respiratory muscle pump and increase 

cough effectiveness. More likely reasons for the lack of benefit include the small number of 

participants, lack of supervision influencing the quality of the intervention and inappropriate 

sham condition, but further exploration of muscle control needs to be undertaken. 

The key motor dysfunctions in people with HD are chorea, dystonia, rigidity and 

bradykinesia as a result of loss of neurones within the striatum (Estrada Sánchez et al. 2008; 

Fenney et al. 2008; Reiner et al 2013) which alongside skeletal muscle dysfunction (She et al. 

2011) may impact on the generation of muscle force in both normal breathing and during 

respiratory muscle training. Striatal dysfunction also impairs cognitive planning of motor 

activity which may decrease the effect of the training programme. Taking these factors into 

consideration, a longer, more supervised trial is needed to further explore the effect of 

inspiratory muscle training in people with HD. 

The model developed from the conceptual framework provides evidence of respiratory 

dysfunction in people with HD that needs to be tested in further studies. This study was 

limited by not assessing central drive and therefore studies incorporating plethysmography, 

arterial blood gas analysis and airflow-time analysis will develop theories of brainstem 

involvement in people with HD which could be furthered through animal and post mortem 

studies. Animal studies could also explore physiological properties of the respiratory muscles 

and force generating influencing factors. The complex relationships between respiratory 

function, physical activity and exercise capacity need larger studies with regression analysis 

and appropriate evaluation of exercise intervention studies to gain a deeper understand of 

these relationships. 

11.2 Limitations of the study 

This study is not without limitations; recruitment, outcome measures and adherence to the 

inspiratory muscle training programme are specifically discussed. 

HD as a progressive neurodegenerative condition is relatively uncommon, with a prevalence 

of 12.3/100,000 in the UK (Evans et al. 2013) and the number of potential participants in a 
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single site study will always be low. Approximately 170 patients attend the Cardiff 

Huntington’s disease research clinics, with the 67 participants in the observational study 

being 39.4% of this population. The findings of this study are therefore representative of the 

South Wales community, but not necessarily of the UK, European or world community as the 

number of participants is too low to make statistical inference. The findings from this study 

could however influence larger scale studies such as the European Huntington’s Disease 

Network observational study ‘Registry’. The key outcomes of decreased capacity and cough 

efficacy could be included in this larger study to further understanding of respiratory function 

in people with HD.  

Although the target recruitment for the inspiratory muscle training study was reached, 5 

participants (25%) did not continue from the practice week into the intervention stage of the 

study. Reasons for drop out were related to decreased co-ordination, inability to generate 

sufficient volume and flow and inability to learn a new skill with the need for carer support as 

an emergent theme from the interviews. This would suggest that recruitment for further 

exercise intervention studies should include disease severity as a confounding variable and 

possibly carer support as an inclusion criterion. These amendments may reduce external 

validity, but may ensure adherence and completion of adequately powered studies. 

 

All outcome measures had evidence of reliability and validity, except digital analysis of 

posture, therefore the researcher carried out a reliability study prior to the main study to 

ensure consistent measurements (Jones et al. 2011). The study is limited by having a non-

blinded assessor who was aware of the hypotheses of the study although this had limited 

impact for the observational study. Some data from healthy participants were collected by 

MSc students, but consistency was ensured through training and monitoring by the 

researcher. 

Some difficulties were noted during respiratory function tests, in that participants had 

difficulty in co-ordinating the breathing pattern necessary for the individual tests and that an 

adequate seal around the mouthpiece sometimes did not occur. Valid measurements were 

assured by asking participants to repeat the tests until a manoeuvre was deemed acceptable by 

the assessor i.e. stable reading over three manoeuvres. As the respiratory function tests were 

all volitional, the amount of effort conferred by the participant influences the maximal values 

attained. Although enthusiastic coaching is recommended during testing (Miller et al. 2005), 

it was thought that too many instructions to the participant may result in confusion. As 

cognition is influenced by HD pathology (Kingma et al. 2008) the techniques were visually 
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demonstrated, and verbal commands limited to short statements in order to maximise 

understanding.  

The study is limited in the breadth of respiratory variables that were measured; in particular, 

no measurements were made relating to central drive of respiration. In the planning of the 

study it was recognised that a large number of variables could be measured and due to 

experience of the researcher and availability of suitable equipment, measures of mouth 

occlusion pressure and end-tidal CO2 were not taken. These measures would provide further 

data regarding the existence and potential progression of type 2 hypercapnic respiratory 

failure in people with HD. This study identified abnormalities in breathing pattern via visual 

analysis of flow volume loops, but further data could be gathered using respiratory 

inductance plethysmography. This would enable further analysis of the quality and synchrony 

of movement of the rib cage and abdomen in order to gain understanding of the biomechanics 

of breathing in people with HD.  

Measurement of physical activity was limited to using the IPAQ questionnaire which may not 

reflect true activity as it relies on memory and cognition, both influenced by HD pathology 

(Kingma et al. 2008; Paulsen et al. 2008). More accurate assessment of physical activity 

could be analysed using accelerometers, although these are also limited as they do not give an 

indication of the type of activity being carried out. A combination of questionnaires, 

accelerometers and diaries may enhance the validity of measurement of physical activity. 

The outcome measures in the intervention study were limited to assess specific hypotheses 

developed during the PhD study. The hypotheses were based on preliminary findings of 

decreased muscle strength and limited cough efficacy. Analysis later in the study 

demonstrated lung volume as a key variable that declines with disease progression and relates 

to exercise capacity and physical activity. The intervention study was limited in that FVC 

was not measured and therefore it is not known whether carrying out regular breathing 

exercises alters lung volumes, as is suggested by evidence in people with PD (Genç et al. 

2012). 

 

A strength of the intervention study was that the burden placed upon the participants was 

minimised by having a home based exercise programme, however this in turn may reduce 

adherence due to lack of supervision. The weekly contact from the researcher was perceived 

as a reminder for some participants, but adherence may have been enhanced by further 

contact. This could be explored in terms of digital reminders e.g. text messages which would 

be more appropriate than home visits for a study covering a large geographical area. For 



291 

 

some participants, more visits in the practice week may have enabled them to better learn the 

breathing manoeuvre and to deal with any problems related to the device, which may have 

improved the number of participants progressing to the intervention stage.  

11.3 Clinical implications 

This study aimed to investigate respiratory function and explore the feasibility and benefit of 

inspiratory muscle training in people with HD. The findings from this study provide new 

knowledge that respiratory function decreases linearly with disease severity, which can be 

incorporated into clinical guidelines for the management of people with HD and provide a 

basis for further research. 

This study provides the first objective measure of respiratory function in people with HD 

from pre-manifest to late stage of the disease. The findings show that respiratory function is 

decreased in people with manifest HD compared to people with pre-manifest HD and healthy 

control participants and that there is no difference between people with pre-manifest HD and 

healthy control participants. Relational analysis with measures of disease progression 

demonstrated a linear relationship between respiratory function and TFC and UHDRS:TMS. 

This information contributed to clinical guidance for the management of respiratory function 

and associated factors of swallow and exercise capacity.  

Linear regression of PCF and TFC data demonstrate that cough may be ineffective at the 

middle stage of HD and suggests that monitoring of PCF should in fact be integrated into 

clinical management of people with HD. If PCF <160L/min, referral to a physiotherapist may 

be appropriate. Apppropriate interventions could include maximal insufflation/exsufflation 

(Chatwin et al. 2003) or expiratory muscle training (Gosselink et al. 2000). For patients with 

PCF >160L/min but <270L/min, regular monitoring and assessment to determine causes of 

decreased PCF will enable planning of appropriate interventions to maintain adequate cough 

efficacy as suggested by Bott et al. (2009).  

Associated with reduced PCF, swallow capacity was also found to be reduced in people with 

HD. Swallow capacity can be assessed using a simple timed swallow test. If signs and 

symptoms of swallow dysfunction are reported, swallow capacity can be assessed and referral 

made to a speech and language therapist. If swallow dysfunction is suspected, but there have 

been no obvious signs of aspiration e.g. cough, a chest X-ray can provide information 

regarding silent aspirations in terms of identifying the lobe affected. 

In this study significant relationships between both inspiratory muscle strength and lung 

volume and exercise capacity and physical activity were identified. The relationships appear 
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to be complex, and evidence from the literature review shows inconclusive evidence of the 

influence of exercise on respiratory function in people with neurodegenerative conditions. 

When considering exercise prescription, the complex relationship between respiratory 

function, physical inactivity, morbidity and mortality (Buchman et al. 2008b; Jakes et al. 

2002) imply that monitoring of respiratory muscle strength is also important  

11.4 Recommendations for future work 

11.4.1 Focusing and extending the observational study 

The observational study could be focused and extended in a number of ways. The number of 

outcomes measures could be reduced to specifically measure respiratory function, the key 

outcomes being FVC in terms of elastic load, FEV1and PEFR in terms of resistive load, SNIP 

and MEP as measures of respiratory pump capacity and PCF as a measure of cough efficacy. 

This type of data could be collected through the European Huntington’s Disease Network 

Registry study, which would then allow the study to become longitudinal. A longitudinal 

study would provide more data regarding the rate of decline of respiratory function in people 

with HD. 

The observational study could also be extended by investigating measures of central 

respiratory drive in people with HD and exploring histologically the role of mutant 

Huntingtin in breathing control. Future work could include analysis of respiratory pattern 

using plethysmography and assessment of flow time indices to measure ratio of inspiratory 

time to total breath time. This would potentially provide information regarding the synchrony 

of inspiratory drive and whether the respiratory muscles are choreic or bradykinetic. Intensity 

of respiratory drive could be analysed using mouth occlusion pressure, but inspiratory muscle 

strength would be a confounding variable. The respiratory system’s capability of responding 

to hypoxaemia, hypercapnia and mechanical loads could be analysed using breath by breath 

gas analysis in controlled settings. Further use of breath by breath analysis of O2 and CO2 at 

rest would provide further physiological data regarding the existence and potential 

progression of type 2 hypercapnic respiratory failure in people with HD.  

11.4.2 Extending the intervention study 

The intervention study was limited by the number of participants completing the study and 

the relatively few outcome measures used. The aim of the study was to investigate a method 

of increasing the capacity of the respiratory pump in people with HD and this aim has yet to 

be realised. Further studies should use protocols that are directly related to the primary 



293 

 

outcome measure e.g. a power based protocol to improve cough efficacy or endurance based 

protocol to improve physical activity. A number of potential interventions were identified in 

the literature review e.g. maximal insufflation exsufflation and non-invasive ventilation and 

further intervention studies could assess their efficacy in people with HD. 

The same protocol could be repeated in a larger group, with altered inclusion/exclusion 

criteria to recruit people with early to mid-stage disease. Outcome measures could include a 

functional task that is less reliant on lower limb strength, but related more to postural stability 

e.g. a walk test. Further exploration is required to determine an appropriate sham resistance 

for people with low inspiratory muscle strength, which would be a percentage of MIP rather 

than an absolute value. 

For those people with PCF <160L/min, the feasibility and benefit of mechanical insufflation-

exsufflation could be explored. For those with 160<PCF<270L/min, comparative studies of 

deep breathing exercises, breathing exercises using incentive spirometry and expiratory 

muscle training could provide information regarding appropriate methods to improve cough 

efficacy. 

11.4.3 Enhancing validity of measurements in people with HD 

The limitations of the study highlighted cognition and poor seal around mouthpieces as issues 

influencing data collection. Further work could explore the most effective way of collecting 

respiratory function data from people with HD. This could include actual methods and 

instructional advice. Methods of measuring lung function and respiratory muscle strength via 

face mask rather than mouthpiece may reduce the co-ordination and adequate seal needed for 

the mouthpiece. This would require appropriate validity and reliability studies in people with 

HD. Methods of learning skills could be explored in people with HD. Studies comparing 

verbal, visual and potentially digital instructions given to people with HD would provide 

information on the most appropriate way to teach a person with HD how to carry out an 

assessment task, but also has implications for intervention studies, like inspiratory muscle 

training that introduce new skills to the participant. 

11.4.4 Exploration of the relationship between respiratory function, exercise 

capacity and physical activity 

Further work needs to be carried out which explores the relationship between respiratory 

function, exercise capacity and physical activity in people with HD and potentially people 

with other neurodegenerative conditions. This is a complex relationship which spans all three 
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domains of the WHO International Classification of functioning, disability and health i.e. 

impairment, activity and participation.  

A longitudinal study measuring respiratory function, exercise capacity and physical activity 

may provide further information regarding the casual factor in the decline of all three 

variables. An intervention study with a number of arms e.g. inspiratory muscle training, 

exercise and control measuring both exercise tolerance and respiratory function may help to 

explore cause and effect relationships. An intervention study with participation as its focus 

and outcome measures of respiratory function, exercise capacity and quality of life would 

help to explore the complex interactions between impairment, activity and participation. 

A study of this type could also provide information regarding the influence of physical 

activity on disease progression, activities of daily living, and cognitive and behavioural 

factors in people with neurodegenerative conditions. 
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12.1 Conclusions 

This study explored respiratory function in people with HD using a conceptual framework of 

respiratory failure and investigated whether a targeted intervention was feasible and could 

improve respiratory function in people with HD. The framework provided a structure to 

explore type 1 hypoxaemic and type 2 hypercapnic respiratory failure in the context of people 

with HD. The findings demonstrate that people with HD are susceptible to type 1 

hypoxaemic respiratory failure due to impaired swallow capacity and cough efficacy. The 

decreased lung volume, declining linearly with disease progression, may indicate progressive 

atelectasis leading to type 2 hypercapnic respiratory. People with HD are predisposed to type 

2 respiratory failure as a consequence of increased elastic and resistive load and decreased 

capacity of the respiratory muscle pump. The intervention of inspiratory muscle training to 

potentially increase respiratory muscle capacity was feasible and did not demonstrate change 

in respiratory function, cough efficacy or a functional task. Data from interviews with 

participants suggest that carer support enabled them to complete the study and life events as a 

barrier to carrying out the exercises. 

The data from the observational study identified that respiratory function is decreased in 

people with manifest HD compared to people with pre-manifest HD and healthy control 

participants, and that respiratory function declines linearly with disease progression. This is 

new information which can be integrated into clinical care through regular monitoring of 

respiratory function. Of specific clinical concern is PCF, which is impaired in the middle 

stage of the disease and has a significant relationship with swallow capacity. These findings 

highlight that people with HD are susceptible to aspiration pneumonia from the middle stage 

of the disease. The relationship between swallow and breathing provides insight into the 

integration of these functions within the brainstem which may be directly influenced by HD 

pathology. Respiratory muscle capacity is reduced in people with manifest HD and the 

situation is made more complex by the significant relationships between respiratory muscle 

strength, exercise capacity and physical activity. Decreased respiratory muscle strength may 

be influenced by abnormal neural drive, muscle atrophy and/or deconditioning. The causal 

factors within these relationships are unknown and additional research is required to gain 

further understanding. The findings from the observational study were synthesised to produce 

a model of respiratory function in people with HD which was used as a basis for the 

intervention study. 
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In the context of the development stage of the MRC framework for the development and 

evaluation of complex interventions, the intervention study identified that inspiratory muscle 

training is feasible in people with HD and that no benefit in terms of inspiratory muscle 

strength, cough efficacy or functional activity was found. Both groups demonstrated 

increases in respiratory muscle strength and cough efficacy, but these were not significant 

and may be due to undertaking regular deep breathing exercises which would decrease elastic 

load rather than as a consequence of resistance training. Alternatively, due to low measures of 

respiratory muscle strength, the resistance offered to the sham group may actually have 

provided a training load. Participants did adhere to the training protocol, although this may 

have been enhanced by further support from the researcher. 

This study is the first to demonstrate that people with HD have decreased respiratory function 

which makes them susceptible to type 1 hypoxaemic respiratory failure and predisposed to 

type 2 hypercapnic respiratory failure. These findings therefore have important implications 

for the therapeutic management of people with HD, particularly in the middle stage of the 

disease progression. 
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14.1 Appendix 1 Reliability of digital analysis of posture 

14.1.1 Overview 

The reliability aimed to address the following objective: 

 To investigate the reliability of objectively measuring posture in people with 

Huntington’s disease using digital images processed by a bespoke software 

programme. 

 

The relevant research question was: 

 Is digital analysis using a bespoke software programme reliable in measuring posture 

in people with HD. 

 

The relevant null hypothesis was: 

 Digital analysis of posture using a bespoke software programme is not reliable in 

measuring posture in people with HD as identified by an intra-class correlation of less 

than 0.75. 

 

Two reliability studies were carried out: one with healthy subjects before the main study 

commenced and one with people with HD which was analysed before the main data were 

analysed. Intra-tester within day reliability was carried out with both sets of data. 

A decision on the reliability of the measuring tool was based on data analysis including 

assessing systematic bias, standard error of measurement and coefficient of variation. 

Judgement of the intraclass correlation coefficient was based on Portney and Watkins (2009) 

with values > 0.75 indicative of good reliability.  

14.1.2 Reliability of posture in healthy participants 

14.1.2.1 Participants 

Twenty normal healthy participants were recruited from the population of staff and students 

from the School of Healthcare Sciences, Cardiff University. Ethical approval was provided 

by School of Healthcare Sciences Research Ethics Committee. Inclusion criterion was ability 

to follow instructions in English. Exclusion criteria were inability to sit unsupported for 1 

minute and known difficulties in swallowing. 
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14.1.2.2 Protocol 

 (i) Explanation of study, informed consent attained 

(ii) Positioning of surface markers: 

L4: The 10
th

 ribs were palpated and the lower edge identified. A perpendicular line was run 

(imaginary) from the lowest edge of the 10
th

 rib to the spinal column. This was identified as 

L1. Counting down the spinal processes identified L4. This was confirmed by drawing an 

imaginary perpendicular line from the iliac crests – Tuffier’s line (Jung et al. 2004). A 

reflective marker was placed on L4. 

C7: C7 and C6 were identified by visual inspection. C7 was confirmed by asking the 

participant to extend the neck, C7 remains palpable, C6 is unpalpable (Field and Hutchinson 

2006). A reflective marker was placed on C7. 

Tragus: A coloured circle was placed on the tragus, using visual inspection. 

(iii)  The participant sat in a standard wheelchair, with the back and side removed, in a 

relaxed comfortable position. 

(iv) A video camera was set up in line with the participant in the chair, ensuring that the 

whole trunk was within view. A video recording was taken for 1 minute. Spirit levels within 

the tripod were used to ensure the camera was horizontal. 

(v) Surface markers were removed. 

(vi) The participant moved to a supported chair and rested for five minutes 

(vii) Steps (ii) to (vi) were repeated 3 times, thus ensuring a time gap and movement 

between measurements. 

14.1.2.3 Data Processing 

Thoracic angle, neck angle and head tilt were processed using a bespoke MATLAB 

programme (written by Dr Robert van Deursen 2010) and the measures were each a single 

angle. Still images were taken from the video using Pinnacle Studio software. The still 

images were then opened within the MATLAB programme and cropped to have a close up 

view of the relevant area. The appropriate variable was chosen from the MATLAB menu and 

the instructions followed to measure thoracic angle, neck angle and head tilt. Neck angle was 

measured using trunk angle as the reference line. Thoracic angle was assessed using the 

following instructions, see Figure.1. 

 Click on L4 and C7. A circle will appear round L4; 

 Click on the intersection of the circle and the spine at S1 and L2, a circle will appear 

again; 
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 Click on the intersection of the circle and the spine at T12, etc. When all are done, a 

blue curve will appear; 

 Click on the yellow button to reveal and save the results. 

Figure A1.1 Assessing thoracic angle using MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

Head tilt and neck angle were assessed using the following instructions, see FigureA1.2. 

 Click on PSIS, ASIS, C7 and larynx; 

 Then click on the ear tragus and eye canthus to determine head tilt and neck angle. 

Figure A1.2 Assessing head tilt and neck angle using MATLAB 
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The output from the MATLAB programme, see FigureA1.3 was recorded. 

Figure A1.3 Output from MATLAB posture analysis 

 

 

 

 

 

 

 

 

 

14.1.2.4 Data Analysis 

Sitting posture was recorded by video camera for one minute, with a still image to be 

extracted when posture was stable. In order to determine at which time point during the video 

recording that the still image could be taken, images were extracted at 15, 30 and 45 seconds 

from the beginning of the recording. Analysis of mean and standard deviations values at the 

three time points indicated that the most stable time for the still image to be taken was at 30 

seconds, see Figure A1.4 

Figure A1.4 Posture at 15, 30 and 45 seconds 
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Reliability was assessed using repeated measures analysis of variance (ANOVA); standard 

error of the mean (SEM); coefficient of variation (CV) and intraclass correlation coefficients 

(ICC) – two way mixed model with measures of consistency (3,1).  

14.1.2.5 Results 

Twenty healthy participants took part in the reliability study. The demographic details are 

shown in Error! Reference source not found.A1.1. The results of the analyses are shown in 

Table A1.2.  

Table A1.1 Demographic data of healthy subjects in posture reliability study  

 Mean ±sd Minimum Maximum 

Height (cm) 169.28 ±6.72 159.00 188.00 

Weight (Kg) 73.72 ±20.30 46.90 138.20 

BMI (Kg/m
2
) 25.46 ±5.26 17.87 39.10 

Age (years) 35.95 ±13.82 19.00 59.00 

n=20 

BMI   Body mass index 

Table A1.2  Reliability: digital analysis of posture in healthy control subjects 

Variable Repeated measures 

ANOVA 

SEM 

(√MSE) 

CV 

(SEM/mean)*100 

ICC 

Thoracic angle 

(degrees) 

(single 

measure) 

F=0.463, p=0.633 4.61º 12.9% 0.718 

Thoracic angle 

(degrees) 

(average 

measure) 

F=144.9, p<0.001 3.61º 8.8% 0.943 

Neck angle 

(degrees) 
F=2.144, p=0.144 2.41º 5.43% 0.907 

Head til 

(degrees)t 
F=0.514, p=0.602 3.56º 2.54% 0.839 

ANOVA  Analysis of variance 

SEM   Standard error of measurement 

MSE  Mean square error 

CV   Coefficient of variation 

ICC  Intraclass correlation coefficient 

As the CV was high and ICC <0.75 for thoracic angle when measured by a single measure, 

further analysis was carried out whereby the average of three readings were used for thoracic 

angle. SEM, CV and ICC all improved by using the average value, but a systematic error was 
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apparent, with the second occasion reading being significantly higher than both first and third 

readings, see Figure A1.5. 

Figure A1.5 Consistency of averaged thoracic angle readings  

 

 

 

 

 

 

 

 

 

 

 

 

 

On reviewing the raw data, it is not clear why this systematic error occurred. Further 

exploration of the reliability of this method was then carried out with a sample of people with 

HD. 

 

14.1.3 Reliability of posture in people with Huntington’s disease  

14.1.3.1 Participants 

Images from 20 participants in the observational study were used to determine reliability of 

digital analysis for posture in people with HD.  

14.1.3.2 Protocol 

Data were collected from the participants following the protocol described in section 

14.1.2.2. The images were analysed on separate occasions during one day. 

14.1.3.3 Data processing and analysis 

Data were processed and analysed as described in section 14.1.2.3. 
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14.1.3.4 Results 

Data from 20 participants with HD were used for the reliability study. One assessor measured 

thoracic angle, neck angle and head tilt from the video recording on three occasions within 

one day as per protocol for the healthy control reliability study. Based on the high SEM and 

CV and low ICC using a single measure for thoracic angle, the value for thoracic angle was 

the average of three readings. The demographic data of the participants are in Error! 

Reference source not found.A1.3. 

Table A1.3 Demographic data of subjects with HD in posture reliability study 

 Mean ±sd Minimum Maximum 

Height (cm) 170.25 ±10.07 147.00 184.00 

Weight (Kg) 68.85 ±11.19 48.90 84.50 

BMI (Kg/m
2
) 23.67 ±2.77 19.94 29.21 

Age (years) 49.95 ±11.23 25.00 70.00 

n=20 

BMI   Body mass index 

The results of the analyses are shown in Table A1.4. The ICC values indicate excellent 

reliability and were higher than those from the reliability in healthy subjects. This may be due 

to the increased range in values of thoracic angle in people with HD compared to healthy 

subjects, the greater variance between subjects in relation to within subject variance resulting 

in a higher ICC. This is then reflected in lower SEM and CV. The systematic error seen in the 

study with healthy subjects was not apparent in the study with people with HD, see Figure 

A1.6. 

Table A1.4 Reliability: digital analysis of posture in people with HD 

Angle ANOVA 
SEM 

√MSE 

CV 

(SEM/mean)*100 
ICC 

Thoracic angle 

(degrees) 

(average) 

F=2.236 

p=0.121 
1.55º 2.73% 0.996 

Neck angle 

(degrees) 
F=1.214 p=0.308 1.18º 2.12% 0.998 

Head tilt 

(degrees) 

F=0.634 

p=0.536 
2.43º 1.87% 0.997 

ANOVA  Analysis of variance 

SEM   Standard error of measurement 

MSE   Mean square error 

CV  Coefficient of variation 

ICC  Intraclass correlation coefficient 
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Figure A1.6 Consistency of thoracic angle readings in people with Huntington’s 

disease 

 

 

 

14.1.4 Summary of reliability study 

The analyses indicated that the method of measuring posture by digital analysis and bespoke 

MATLAB software used by the researcher was reliable in measuring thoracic posture, neck 

angle and head tilt in people with HD.  

A kyphotic posture reduces lung volumes (Harrison et al. 2007) and in particular FVC (Lin et 

al. 2006) and minute volumes (Landers et al. 2003) and therefore may be an influencing 

factor in respiratory function in people with HD. A range of instruments and techniques are 

available for measuring posture and have been shown to be reliable e.g. magnetic tracking 

devices (Jordan et al. 2000) spinal wheel (Sheeran et al. 2010) and spinal mouse (Mannion et 

al. 2004). Digital analysis has been suggested as an alternative gold standard to radiographic 

imaging (van Niekerk et al. 2008) which obviously reduces the exposure to X-rays and is 

more convenient for clinical and/or home based studies. The results from this study 

demonstrated a SEM of 1.55º for thoracic angle which is comparable to 1.12º mean 

difference noted by Van Niekerk (2008). This protocol for taking still images from a video 

enables analysis of posture in people with a movement disorder that is reliable, non-invasive 

and convenient for use within a clinic or home setting and was therefore deemed appropriate 

for use within the observation study 
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14.2 Appendix 2  Ethical and Research and Development approval 
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14.3 Appendix 3  Standard operating procedures 
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14.3.1 Unified Huntington’s Disease Rating Scale: Total Motor Score 

(UHDRS:TMS) 
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14.3.3 Unified Huntington’s Disease Rating Scale:Total Functional Capacity 

(UHDRS:TFC) 
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14.3.4 Unified Huntington’s Disease Rating Scale Functional Assessment 
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14.3.5 Barthel Index 

Instructions to subject/carer 

This questionnaire will ask some questions about whether you can do everyday activities on 

your own or whether you need help with them. I would like you to answer the questions on 

how you have carried out the following activities over the last few days. 

 

Activity Score 

FEEDING 

0 = unable 

5 = needs help cutting, spreading butter, etc., or requires modified diet 

10 = independent          ______ 

 

BATHING 

0 = dependent 

5 = independent (or in shower)        ______ 

 

GROOMING 

0 = needs to help with personal care 

5 = independent face/hair/teeth/shaving (implements provided)    ______ 

 

DRESSING 

0 = dependent 

5 = needs help but can do about half unaided 

10 = independent (including buttons, zips, laces, etc.)     ______ 

 

BOWELS 

0 = incontinent (or needs to be given enemas) 

5 = occasional accident        ______ 

 

BLADDER 

0 = incontinent, or catheterized and unable to manage alone 

5 = occasional accident 

10 = continent          ______ 
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TOILET USE 

0 = dependent 

5 = needs some help, but can do something alone 

10 = independent (on and off, dressing, wiping)      ______ 

 

TRANSFERS (BED TO CHAIR AND BACK) 

0 = unable, no sitting balance 

5 = major help (one or two people, physical), can sit 

10 = minor help (verbal or physical) 

15 = independent          ______ 

 

MOBILITY (ON LEVEL SURFACES) 

0 = immobile or < 50 yards 

5 = wheelchair independent, including corners, > 50 yards 

10 = walks with help of one person (verbal or physical) > 50 yards 

15 = independent (but may use any aid; for example, stick) > 50 yards   ______ 

 

STAIRS 

0 = unable 

5 = needs help (verbal, physical, carrying aid) 

10 = independent          ______ 

  

TOTAL (0–100):          ______ 

 

Provided by the Internet Stroke Center — www.strokecenter.org 

 

The Barthel ADL Index: Guidelines 

1. The index should be used as a record of what a patient does, not as a record of what a 

patient could do. 

2. The main aim is to establish degree of independence from any help, physical or verbal, 

however minor and for whatever reason. 

3. The need for supervision renders the patient not independent. 
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4. A patient's performance should be established using the best available evidence. Asking 

the patient, friends/relatives and nurses are the usual sources, but direct observation and 

common sense are also important. However direct testing is not needed. 

5. Usually the patient's performance over the preceding 24-48 hours is important, but 

occasionally longer periods will be relevant. 

6. Middle categories imply that the patient supplies over 50 per cent of the effort. 

7. Use of aids to be independent is allowed. 
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14.3.6 Respiratory History and Swallow questionnaire  

Based on Hart and Polkey 2001 and Wiles and Hughes 1996 

 

1. Have you visited the GP in the last year in relation to breathing problems? 

If yes, how many times, what was the main problem and how was this managed? 

2. Have you had any breathing problems that you did not go to the GP about? 

If yes, how many times, what was the main problem and how was this managed? 

3. Do you smoke? If yes, how many cigarettes do you smoke in a day? 

4. Have you had a flu vaccination in the last year? 

5. Do you ever get breathless? If yes, when do you get breathless e.g. on walking/  

walking uphill/ lying flat/sitting? 

6. Do you have any problems sleeping? Do you feel sleepy during the day or have  

morning headaches? 

7. Do you have any problems swallowing? 

8. Has your voice changed over the last year? 

9. Do you need to be careful when eating? 

10. Do you avoid certain foods? 

11. Do you have difficulty keeping food or drink in your mouth? 

12. Does your food need special preparation? 

13. Do you need a glass of water when you are eating? 

14. Do you cough when you are eating? 

15. Does food or drink go down the wrong way? 

16. Do you get short of breath when you are eating? 
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14.3.7 Lung function tests  

From Miller et al (2005) 

 

Instructions FVC, FEV1: 

The following tests will assess how much you can breathe in and out of your lungs. You will 

need to take as big a breath in as you can and then blow into the machine as hard and as long 

as you can. You will do this about 3-5 times to ensure we get the best result for you. 

Demonstrate and practice with viral mouthpiece. 

 

Perform manoeuvre: 

Have subject assume the correct position – sitting upright, head slightly elevated; 

Attach nose clip; 

  Inhale completely and rapidly with a pause of <1 second at TLC; 

Place mouthpiece in mouth and close lips around the mouthpiece; 

Exhale maximally until no more air can be expelled while maintaining an upright 

posture; 

Repeat instructions as necessary, coaching vigorously; 

Repeat for a minimum of three manoeuvres – no more than eight are usually required. 

 

A manoeuvre is acceptable if: 

It is free from artefacts – cough, early termination of test, effort not maximal, leak in 

equipment. 

Satisfactory exhalation – duration of >6sec (3 sec for children), if the subject cannot or 

should not continue to exhale. 

 

After 3 acceptable manoeuvres resulting in 3 spirograms have been obtained the following 

criteria must apply: 

The 2 largest FVC must be within 0.150 L of each other. 

The 2 largest FEV1 must be within 0.150 L of each other. 

If both these criteria are met, the test session may be concluded. 

If both these criteria are not met, continue testing until 

 both criteria are met or; 

 a total of 8 tests have been performed (optional) or; 

 the subject cannot or should not continue. 
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Instructions PEF 

Perform manoeuvre: 

 Ask subject to assume correct position – neck must be in  

neutral; 

 Inspire maximally and deliver the blow without hesitation. 

The use of a nose clip is not necessary. For safety reasons, testing should be preferably done 

in the sitting position, using a chair without arms and without wheels. If testing is undertaken 

in a different position, this must be documented. 

A manoeuvre is acceptable if: 

A good seal has been achieved; 

No hesitation has occurred; 

No abnormal start to the manoeuvre. 

After 3 acceptable manoeuvres have been performed the following criterion must apply: 

 The 2 largest PEF must be within 0.67 l/sec of each other. 

 

If this does not apply up to 2 additional blows van be performed. 

 

Instructions PEF Cough 

The subject will be seated comfortably and the test explained to them. They will complete the 

following manoeuvre with a peak flow meter:  

 Take a maximal breath in; 

 Seal lips around mouthpiece or apply mask firmly to the face; 

 Cough as hard as possible into the peak flow mouthpiece or mask. 

This will be repeated three times and the maximum value recorded. 

 

Instructions Flow Volume loops: 

An expiratory flow volume loop is obtained during the FVC/FEV1 manoeuvre. 

Inspiratory flow volume loops are more difficult for the subject and will not be used in the 

study.
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14.3.8 Respiratory muscle testing 

From ATS/ERS (2002) 

 

Instructions MIP, MEP 

The following tests will measure how strong your respiratory muscles are. You will need to 

breathe out as much as possible, then place the mouthpiece in your mouth, breath in as much 

as possible and breathe out as much as possible. You will do this 3-5 times. Demonstrate and 

practice. 

Manoeuvre: 

 Subject sitting, nose clip not required, 

 Breathe out as much as possible. 

Place flanged mouthpiece in mouth. 

Breathe in as much as possible, with encouragement. 

Breathe out as much as possible with encouragement.  

Repeat 3 times. 

Ensure maximum values vary less than 20%. 

Record the largest measure. 

 

Instructions SNIP 

This test will measure how strong your respiratory muscles are by taking a sniff. This catheter 

will be placed in one nostril and you will sniff through the other nostril. Demonstrate and 

practice. You will need to take 15 sniffs, with at least 30 sec rest between each sniff. 

Manoeuvre: 

 Subject sitting. 

 Test which size nose piece fits by placing a catheter in the nostril and asking the 

subject to sniff. Choose the size with no leak. 

Allow 1 minutes rest. 

Ask the subject to take as big a sniff as possible. 

Repeat 15 times, with at least 30 secs rest between each sniff. 

Record the largest pressure. 
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Single breath work capacity  

From Chatham et al (1999) 

 

Instructions to subject: 

This test will measure how strong your respiratory muscles are over a long breath in. You 

will breathe out as much as possible, then breathe in as much as possible for as long as 

possible. You will repeat this 3 – 5 times. Demonstrate and practice. 

Manoeuvre: 

 Subject sitting, with nose clip in place; 

 Breathe out as much as possible; 

 Place flanged mouthpiece in mouth; 

 Breathe in as much as possible and for as long as possible with encouragement; 

Repeat 3 times; 

 Record highest value. 
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14.3.9 International Physical Activity Questionnaire – short form. 

From IPAQ Research Committee (2005) 

 

We are interested in finding out about the kinds of physical activities that people do as part of 

their everyday lives.  The questions are about the time you spent being physically active in 

the last 7 days. They include questions about activities you do at work, as part of your house 

and yard work, to get from place to place, and in your spare time for recreation, exercise or 

sport. 

Your answers are important. 

Please answer each question even if you do not consider yourself to be an active person. 

 

THANK YOU FOR PARTICIPATING. 

In answering the following questions, 

“Vigorous” physical activities refer to activities that take hard physical effort and make you 

breathe much harder than normal. 

“Moderate” activities refer to activities that take moderate physical effort and make you 

breathe somewhat harder than normal. 

 

1a. During the last 7 days, on how many days did you do vigorous physical activities like 

heavy lifting, digging, aerobics, or fast bicycling,? 

Think about only those physical activities that you did for at least 10 minutes at a time. 

________ days per week       

1b. How much time in total did you usually spend on one of those days doing vigorous 

physical activities? 

_____ hours ______ minutes 

or 

•        none 

 

2a. Again, think only about those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do moderate physical activities like 

carrying light loads, bicycling at a regular pace, or doubles tennis? Do not include walking. 

________ days per week  
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 2b. How much time in total did you usually spend on one of those days doing moderate 

physical activities? 

_____ hours ______ minutes 

or 

•  none 

 

3a. During the last 7 days, on how many days did you walk for at least 10 minutes at a time? 

This includes walking at work and at home, walking to travel from place to place, and any 

other walking that you did solely for recreation, sport, exercise or leisure. 

________ days per week     

3b. How much time in total did you usually spend walking on one of those days? 

_____ hours ______ minutes 

or 

•  none 

 

The last question is about the time you spent sitting on weekdays while at work, at home, 

while doing course work and during leisure time. This includes time spent sitting at a desk, 

visiting friends, reading travelling on a bus or sitting or lying down to watch television. 

 

4. During the last 7 days, how much time in total did you usually spend sitting on a week 

day? 

____ hours ______ minutes 

 

This is the end of questionnaire, thank you for participating. 
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14.3.10 Borg perceived exertion scale 

Borg (1982) 

 

6   No exertion at all  

7   Extremely light  

8  

9   Very light - (easy walking slowly at a comfortable pace)  

10  

11   Light  

12  

13   Somewhat hard (It is quite an effort; but can continue)  

14  

15   Hard (heavy)  

16  

17   Very hard (very strenuous, and you are very fatigued)  

18  

19   Extremely hard (You can not continue for long at this pace)  

20   Maximal exertion 

 

 

Patient Instructions for Borg Dyspnoea Scale 

 

Look at the rating scale below while you are engaging in an activity; it ranges from 6 to 20, 

where 6 means "no exertion at all" and 20 means "maximal exertion." Choose the number 

from below that best describes your level of exertion. This feeling should reflect how heavy 

and strenuous the exercise feels to you, combining all sensations and feelings of physical 

stress, effort, and fatigue.  
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14.3.11 Modified Borg Dyspnoea Scale 

Borg (1970) 

 

 

  0  Nothing at all 

  0.5  Very, very slight (just noticeable) 

  1  Very slight 

  2  Slight 

  3  Moderate 

  4  Somewhat severe 

  5  Severe   

  6 

  7  Very severe 

  8 

  9   Very, very severe (almost maximal) 

10  Maximal 

     

Patient Instructions for Borg Dyspnoea Scale 

 

“This is a scale that asks you to rate the difficulty of your breathing. It starts at number 0 

where your breathing is causing you no difficulty at all and progresses through to number 10 

where your breathing difficulty is maximal. How much difficulty is your breathing causing 

you right now?” 
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14.3.12 30 second sit to stand 

Macfarlane et al (2006) 

 

1  The chair-stand test will be administered using a chair without arms, with a seat 

height of 43cm. 

2  The chair will be placed against a wall to prevent it from moving during the test. 

3  The test begins with the participant seated in the middle of the chair, back straight, 

feet approximately shoulder-width apart and placed on the floor slightly posterior to the 

knees, with one foot slightly in front of the other to help maintain balance when standing. 

4  Arms will be crossed at the wrists and held against the chest. 

5  At the signal "go" the participant rise to a full stand (body erect and straight) and then 

returns back to the initial seated position. 

6  The participants will be encouraged to complete as many full stands as possible 

within a 30 second time limit. 

7  The participant will be instructed to be fully seated between each stand. 

8  While monitoring the participant's performance to assure proper form, the tester will 

silently count the completion of each full stand. 

9  Following a demonstration by the tester, a practice trial of one repetition will be given 

to check proper form, followed by the 30 second test trial. 

10  The score will be the total number of stands executed correctly within 30 second 

(more than halfway up at the end of 30 second counted as a full stand). 

11  Incorrectly executed stands will not be counted. 

 

If subjects are unable to stand up one time without assistance than they can use their hands to 

assist them in rising and returning to the seated position while following all other procedures 

as described above. It will be noted that hands were used when recording the assessment data. 

 

(Macfarlane et al. 2006) 
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14.4 Appendix 4  Instrumentation 

14.4.1 Maltron Body Composition Analyser 

 

 

 

    

 

 

 

 

Frequency        50KHz  

Resolution        Measures body fat in increments of 0.1%  

Impedance Range       200-1000 Ω  

Accuracy        Resistance to within 1.00% +/- 4% across   

     350-1000%  

Ambient Temperature Environment   +10°C to 40°C  

Relative Humidity       30% to 75% non-condensing  

Atmospheric Pressure      700hPa to 1060hPa  

Test Current       0.7mA  

Power        1-9V PP3 Battery IEC No. 6LR6L  

Battery Current       20mA (approx)  

Weight        .230 Kgs (0.51 Lbs) with battery or .180 Kgs    

        (0.397 Lbs) with out battery  

Dimensions        145 x 80 x 34mm  

    

Maltron International Ltd 

PO Box 15 

Rayleigh 

Essex SS6 9SN 

UK 

012668778251 
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14.4.2 Micromedical Microloop Spirometer 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurements (forced): 

VC, FEV.75, FEV1, FEV3, FEV6, FVC, PEF, FEV.75/VC, FEV.75/FVC,FEV1/VC, 

FEV1/FVC (FER), FEV3/VC, FEV3/FVC, FEV.75/FEV6, FEV1/FEV6, FEF25 

(MEF75), FEF50 (MEF50), FEF75 (MEF25), FEF25-75 (MMEF), FEF50/VC, 

FEF50/FVC, MMEF/FVC (FEF25-75/FVC), FIV1, FIVC, PIF, FIV1/FIVC (FIR), 

FIF25 (MIF75), FIF50 (MIF50), FIF75 (MIF25), R50 (FEF50/FIF50), MET25-75, FET, 

MVV (ind.) 

Measurements (relaxed): 

EVC, IVC, IC,VT (TV),Ti,Te,Ti/Ttot.,VT/Ti (TV/Ti), IRV, ERV, FR 

Predicted Values: Various - depends upon national preference (including NHANESIII) 

Transducer: Micro Medical Gold Standard Bi-Directional Digital Volume 

Resolution: 10ml volume 0.025L/s flow 

Accuracy: +/- 3% to ATS recommendations   

Standardisation of Spirometry ATS/ERS 2005  

Power Supply: Input: 100-240V AC 50-60Hz Output: 5V 2.0A 

Battery Pack: Rechargeable Lithium Polymer 3.7V 1600mAH 

Dimensions: 123mm x 81mm x 23mm Transducer 50 x 60 x 90mm 

Weight: Excluding transducer : Micro Loop unit 191g, Docking Station 124g 

Temperature: The instrument will operate in a uniform environment of 0°C-40°C, out of 

direct sunlight 
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Operating Humidity: 30-90% non-condensing 

Storage Temperature: -20°C to +70°C 

Storage Humidity: 10% to 90% RH 

Connectivity: USB 1.1 

 

Micro Medical Ltd 

 

Address: Quayside, Chatham Maritime, Chatham, Kent, ME4 4QY, United Kingdom 

Phone: +44 (0)1634 893500 

Fax: +44 (0)1634 893600 

Email: uksales@micromedical.co.uk    

Website: www.micromedical.co.uk 

 

mailto:uksales@micromedical.co.uk
http://www.micromedical.co.uk/
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14.4.3 Micromedical RPM 

 

 

 

 

 

 

 

 

 

 

 

Measurements: 

PImax/MIP (Maximal Inspiratory Pressure at the Mouth) 

PEmax/MEP (Maximal Expiratory Pressure at the Mouth) 

SNIP (Sniff Nasal Inspiratory Pressure) 

With Puma:  

MRPD (Maximum Rate of Pressure Development) 

MRR (Maximum Rate of Relaxation) 

Tau 

 

Operating pressure: ±300 cmH2O (±5PSID) 

Burst Pressure: ±700 cmH2O (±20PSID) 

Resolution: 1 cmH2O 

Accuracy: ±3% 

Power Supply: Single 9V PP3 

Dimensions: 170x60x26mm 

Weight:175g (unit); 750g (complete) 

Operating temperature: 0°C - 40°C 

Operating humidity: 30% - 90% RH 

Storage temperature: -20°C - +70°C 

Storage humidity: 10% - 90% RH 
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Micro Medical Ltd 

 

Address: Quayside, Chatham Maritime, Chatham, Kent, ME4 4QY, United Kingdom 

Phone: +44 (0)1634 893500 

Fax: +44 (0)1634 893600 

Email: uksales@micromedical.co.uk    

Website: www.micromedical.co.uk 

  

mailto:uksales@micromedical.co.uk
http://www.micromedical.co.uk/
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14.4.4 DeVilbiss Respiratory Trainer/RT sport 

 

 

 

 

 

 

 

 

 

 

Measurements 

Maximal inspiratory pressure (MIP) cmH2O 

Accumulated area under curve of sustained maximal inspiratory pressure:pressure/time units 

Specifications 

Handset size: 86x585x267mm 

Base station size: 222x222x216mm 

Combined weight: approximately 2Kg 

Maximum pressure range: -350 cm H2O 

Accuracy: 3% or ±3cmH2O (whichever is higher) 

Infra-red distance: 2m 

Reception width: 34º height 1.8m 

Internal power source: 9V high capacity rechargeable Nickel Cadmium battery 

Electrical requirements: 230V, 50Hz, 25VA 

Power consumption: 1.2 Watts 

Storage conditions ambient temperature: -20ºC to + 35ºC 

Storage conditions relative humidity: 10%-100% 

Storage condition atmosphere pressure: 500hPaA to 1060hPaA 

 

DeVilbiss- SUNRISE MEDICAL LTD 

High Street 

Wollaston 

West Midlands 

DY8 4PS 
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14.4.5 The POWERbreathe device 

 

 

 

 

 

 

 

 

 

 

 

Instructions for use: 

The device is made ready for use by turning on and selecting start from the screen menu.  

Inhale as deeply as possible through the mouthpiece and then breathe out until the lungs feel 

completely empty. 

Repeat 30 times. 

Once 30 breaths have been taken the results menu will automatically be displayed. You may 

view the results and/or turn the machine off. 

Cleaning the device 

After each training session remove the valve head and soak in warm water for 10 minutes. 

Then hold the valve head under running water whilst opening and closing the valve to aid 

cleaning of the valve surfaces. 

Once a week soak the valve head in a mild sterilising fluid e.g. Milton for 10 minutes. Then 

hold the valve head under running water whilst opening and closing the valve to aid cleaning 

of the valve surfaces. 

If you are suffering from a cold or respiratory infection, soak the valve head in mild 

sterilising fluid for 10 minutes after each session. Then hold the valve head under running 

water whilst opening and closing the valve to aid cleaning of the valve surfaces. 

 

HaB Direct, Northfield Road, Southam, CV47 0RD, Warwickshire, T: 01926 816100 

http://www.habdirect.co.uk 

  

http://www.habdirect.co.uk/
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14.5 Appendix 5  Assessment of respiratory function data for 

normality 

14.5.1 Normal distribution graphs for respiratory function data 

 

a) Forced vital capacity, forced expiratory volume in 1 second, forced expiratory ratio, 

peak cough flow 
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b) Maximal inspiratory pressure, sniff nasal inspiratory pressure, maximal expiratory pressure 

and sustained maximal inspiratory pressure 
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14.5.2 Q-Q plots for respiratory function data in people with manifest HD 

a) Forced vital capacity, forced expiratory volume in 1 second, forced expiratory ratio, 

peak cough flow 
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b) Maximal inspiratory pressure, sniff nasal inspiratory pressure, maximal expiratory pressure 

and sustained maximal inspiratory pressure 
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14.5.3 Analysis of normal distribution 

Shapiro-Wilk and p values and Levene statistic for respiratory function data 

 

 

Healthy control 

 

People with pre-

manifest HD 

People with 

manifest HD 
Levene Statistic 

FVC 0.950 p=0.083 0.910 p=0.063 0.948 p=0.036 4.929 p=0.009 

FVC% 

predicted 
0.986 p=0.906 0.986 p=0.049 0.943 p=0.024 22.056 p<0.001 

FEV1 0.942 p=0.044 0.953 p=0.411 0.945 p=0.028 6.119 p=0.003 

FEV1% 

predicted 
0.989 p=0.961 0.887 p=0.023 0.940 p=0.017 24.187 p<0.001 

PEFR 0.960 p=0.180 0.961 p=0.567 0.938 p=0.014 0.558 p=0.574 

PEFR% 

predicted 
0.959 p=0.169 0.895 p=0.033 0.957 p=0.082 4.385 p=0.015 

FER 0.943 p=0.046 0.925 p=0.122 0.915 p=0.002 0.730 p=0.485 

PCF 0.983 p=0.808 0.956 p=0.473 0.961 p=0.177 2.401 p=0.096 

MIP 0.958 p=0.160 0.898 p=0.045 0.904 p=0.001 4.954 p=0.009 

MIP% 

predicted 
0.966 p=0.305 0.966 p=0.657 0.894 p=0.001 1.891 p=0.156 

SNIP 0.963 p=0.237 0.882 p=0.023 0.937 p=0.022 2.722 p=0.071 

SNIP% 

predicted 
0.957 p=0.153 0.946 p=0.332 0.925 p=0.009 1.614 p=0.205 

MEP 0.886 p=0.001 0.978 p=0.921 0.896 p=0.001 0.276 p=0.759 

MEP% 

predicted 
0.872 p<0.001 0.952 p=0.419 0.859 p<0.001 0.141 p=0.869 

SMIP 0.973 p=0.481 0.873 p=0.016 0.769 p<0.001 7.936 p=0.001 

 

Shaded boxes indicate non-normal distribution of data 
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14.6 Appendix 6  Critical appraisal of literature 

 

Physiotherapy management of respiratory problems in people with neurodegenerative 

conditions. 

 

Inspiratory muscle training 
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Summary of critical appraisal of physiotherapy management of respiratory problems in people with neurodegenerative conditions. 

 

 Study 

design 

Focused 

question 

Appropriate 

design 

Population 

defined 

Sample 

size 

calculation 

Allocation 

defined 

Intervention 

reproducible 

Outcome 

measures 

defined 

Data 

analysis 

defined 

Inferential 

analysis 

employed 

Appropriate 

interpretation 

Generalizability Clinical 

relevance 

discussed 

Annane  

et al  

EBR yes yes yes n/a n/a n/a yes yes n/a yes yes yes 

Aboussouan 

et al 

Obs P yes yes yes no n/a no yes yes yes yes no yes 

Bach Exp yes yes yes no n/a no yes no yes yes no yes 

Bourke  

et al  

Obs P yes yes yes no n/a yes yes no yes yes no yes 

Butz et al  Obs P yes yes yes no n/a no yes yes yes yes no yes 

Carratu  

et al 

Obs R yes yes yes no n/a yes yes yes yes yes no yes 

Chaisson 

et al  

Exp yes yes yes no yes no yes yes yes yes no yes 

Chatwin  

et al  

Exp yes yes yes no n/a yes yes yes yes yes no yes 

Cheah  

et al 

RCT yes yes yes no yes yes yes yes yes yes no yes 

Chiara  

et al 

Exp yes yes yes no n/a yes yes yes yes yes no yes 

Fry et al RCT yes yes yes no yes yes yes yes yes yes no yes 

Genç et al  Exp yes yes yes no n/a yes yes yes yes yes no yes 

Gosselink RCT yes yes yes yes yes yes yes yes yes yes yes yes 

Goldstein et 

al  

Exp yes yes yes no n/a no yes yes yes yes no yes 

Inzelberg  

et al  

Exp yes yes yes no yes yes yes yes yes yes no yes 

Jackson  

et al  

Obs R yes no yes no n/a no yes yes yes yes no yes 

Kleopa 

et al 

Obs R yes yes yes no n/a no yes yes yes yes no yes 

Klefbeck & 

Hamrah  

RCT yes yes yes no yes yes yes yes yes yes no yes 

Koseoglu  

et al  

Exp yes yes yes no n/a no yes yes yes yes no yes 

Lange 

et al  

RCT yes yes yes no yes yes yes yes yes yes yes yes 



  

  400 

 

 Study 

design 

Focused 

question 

Appropriate 

design 

Population 

defined 

Sample 

size 

calculation 

Allocation 

defined 

Intervention 

reproducible 

Outcome 

measures 

defined 

Data 

analysis 

defined 

Inferential 

analysis 

employed 

Appropriate 

interpretation 

Generalizability Clinical 

relevance 

discussed 

Lechtzin 

et al  

Exp yes yes yes no n/a yes yes yes yes yes no yes 

LoCoco 

et al 

Obs P yes yes yes no n/a yes yes yes yes yes no yes 

Mostert 

Kesselring  

Exp yes yes yes no yes no yes yes yes yes no yes 

Mustfa et al Exp no yes yes no n/a yes yes yes yes yes no yes 

Mutluay 

et al  

RCT yes yes yes no yes yes yes yes yes yes yes yes 

Nardin et al Exp yes yes yes yes n/a yes yes yes yes yes no yes 

Nauffal 

et al 

Obs 

(P) 

yes yes yes no n/a yes yes yes yes yes no yes 

Olgiati 

et al  

Exp yes yes yes no n/a no yes no yes yes no yes 

Pfalzer and 

Fry 

Exp yes yes yes no yes yes yes yes yes yes no yes 

Pitts et al 

 

Exp yes yes yes no n/a yes yes yes yes yes no yes 

Rampello 

et al  

Exp yes yes yes no yes no yes yes yes yes no yes 

Rasova  

et al  

Exp no yes yes no yes no yes yes yes yes no yes 

Sancho 

et al  

Exp yes yes yes no n/a yes yes yes yes yes no yes 

Smeltzer et 

al 

RCT yes yes yes no yes no yes yes yes yes no yes 

Suleman 

et al  

Exp yes yes yes no n/a yes yes yes yes yes no yes 

Trebbia  

et al 

Exp  yes yes yes no n/a yes yes yes yes yes no yes 

Winck  

et al 

Exp yes yes yes no n/a yes yes yes yes yes no yes 
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Key 

EBR   Evidence based review 

Exp   Experimental 

Obs P  Observational (prospective) study 

Obs R   Observational (retrospective) study 

RCT   Randomised controlled trial 
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Critical appraisal of respiratory muscle training studies 

Author Study 

design 

Focused 

question 

Appropriate 

design 

Population 

defined 

Sample 

size 

calculation 

Allocation 

defined 

Intervention 

reproducible 

Outcome 

measures 

defined 

Data 

analysis 

defined 

Inferential 

analysis 

employed 

Appropriate 

interpretation 

Generalizability Clinical 

relevance 

discussed 

Chatham   

et al 1993 

Exp yes yes yes no no yes yes yes yes yes no yes 

Downey  

et al 2007 

Exp yes yes yes no no yes yes yes yes yes no no 

Edwards  

et al 2008 

Exp yes yes yes no no yes yes yes yes yes no no 

Enright  

et al 2006 

Exp yes yes yes no yes yes yes yes yes yes no yes 

Enright & 

Unnithan 2011 

Exp yes yes yes no yes yes yes yes yes yes no yes 

Inbar et al 

2000 

Exp yes yes yes no no yes yes yes yes yes no yes 

Gossey-Tolfey 

et al 2010 

Exp yes yes yes no yes yes yes yes yes yes no yes 

Kellerman 

et al 2000 

Exp yes yes yes no n/a yes yes yes yes Yes no yes 

Kwok and 

Jones 2009 

Exp yes yes yes no yes yes yes yes yes yes no no 

Leith & 

Bradley 1976 

Exp yes  yes yes no no no yes yes yes yes no yes 

Mickleborough 

et al 2010 

Exp yes yes yes no no yes yes yes yes yes no no 

Romer et al 

2000a 

Exp yes yes yes no no yes yes yes yes yes no yes 

Romer et al 

2002b 

Exp yes yes yes no no yes yes yes yes yes no yes 

Romer & 

McConnell 

2003 

Exp yes yes yes no no yes yes yes yes yes no no 

Suzuki  

et al 1993 

Exp  yes yes yes no no no yes yes yes yes no no 

Tzelepis  

et al 1994a 

Exp yes yes yes no no no yes yes yes yes no yes 

Tzelepis  

et al 1994b 

Exp yes yes yes no no no yes yes yes yes no yes 

Volantis  

et al 2001 

Exp yes yes yes no no yes yes yes yes yes no no 
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Author Study 

design 

Focused 

question 

Appropriate 

design 

Population 

defined 

Sample 

size 

calculation 

Allocation 

defined 

Intervention 

reproducible 

Outcome 

measures 

defined 

Data 

analysis 

defined 

Inferential 

analysis 

employed 

Appropriate 

interpretation 

Generalisability Clinical 

relevance 

discussed 

Williams et al 

2002 

Exp yes yes yes no n/a yes yes yes yes yes no no 

Witt  

et al 2007 

Exp yes yes yes no no yes yes yes yes yes no yes 
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Critical appraisal of systematic reviews 

Author and topic Focused 

question 

Appropriate search 

strategy 

Appropriate 

inclusion/exclusion 

criteria 

Appropriate 

system of review 

Homogenous results 

Geddes et al 2005 

COPD 

yes Limited to MEDLINE 

and CINAHL 

Limited to English 

language  

Limited to 

descriptive 

analysis 

Yes: For targeted inspiratory resistive or threshold IMT vs. 

sham IMT in MIP, inspiratory muscle endurance, inspiratory 

threshold loading, exercise capacity, Borg scale, Transitional 

dyspnoea index 

No: For targeted inspiratory resistive or threshold IMT vs. sham 

IMT in 6MWD, work rate, FVC, FEV1 

For targeted inspiratory resistive IMT vs. no intervention 

in MIP 

For targeted inspiratory resistive  or threshold IMT vs. no 

intervention in MIP 

For non-targeted inspiratory resistive IMT vs. sham in MIP 

 

Geddes et al 2008 

COPD 

yes Limited to MEDLINE 

and CINAHL and 

EMBASE 

Limited to English 

language  

Limited to 

descriptive 

analysis 

Targeted inspiratory resistive or threshold IMT vs. sham 

Yes, MIP, MIP %predicted, Inspiratory muscle endurance, 

VO2max, Borg scale, work rate, TDI 

No PEFR, MVV, Vemax, 6MWD, HRQoL 

Gosselink et al 2011 

COPD 

yes yes yes yes Yes: MIP, respiratory muscle endurance, 6MWD, 12MWD, 

Borg, HRQoL 

No: TDI, CRQ dyspnoea score 

 

HajGhanbari et al 2013 yes yes yes yes Yes: exercise endurance time; speed of performance; MIP; 

MVV; respiratory endurance time 

No: time trials of sports performance; RPE 

Houston et al 2008 

Cystic Fibrosis 

yes yes yes yes Lack of comparability of methods lead to inability to pool 

results 

Illi et al. 2012 

Healthy subjects 

yes Limited to MEDLINE 

and CINAHL and 

EMBASE 

yes yes Moderate heterogeneity in studies chosen for meta-analysis 

Ram et al 

Asthma 

yes yes yes yes No: MIP 

Heterogeneity not tested on all outcomes due to limited number 

of studies 

Reid et al 

Cystic fibrosis 

yes Limited to MEDLINE 

and CINAHL and 

EMBASE 

Limited to English 

language 

yes Only 2 studies reviewed 
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14.7 Appendix 7  Interview schedule for intervention study 

 

Interview questions and probes/prompts 

 

1 Did you use the breathing device? 

 How often per day and per week? 

If Q1 answer is yes then: 

2 Was the intensity and frequency acceptable? 

 how would you feel if the intensity/frequency was higher/more? 

 how would you feel if the intensity/frequency was lower/less? 

3. What made it possible for you to carry out the training? 

 What difficulties did you have and how did you manage these? 

 Where the number of home visits/phone calls appropriate? 

4. Did you feel any benefit from doing the training? 

 What did the change mean for you? 

 Was cough/swallow/speech any different? 

If Q1 answer is no then: 

5. What made it difficult for you to carry out the training? 

 The device technology 

 Remembering to do it 

 Difficulty of task 

 support 

General questions 

 

6. What did you like/dislike about the device? 

 

7. What did you like/dislike about the training programme? 

 

8. How could the device/training programme be improved?  
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14.8 Appendix 8  Transcripts of interviews 

14.8.1 Subject01 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

I: So I’m going to ask both of you, okay about how did you get on in terms of the training, 

but just as a start because I don’t know anything about what you have done. 

C: No, alright 

I: So just for the start okay I just want to know if Sam has been using the device or not? 

C: Yes 

I: Yes so he has been using the device 

C: twice a day 

I: Twice a day and was that for every day during the last 6 weeks? 

C: Only once or twice we forgot and I’ve written on the diary. There were different reasons 

that is was forgotten but on the whole it’s been… 

I: So it has been for the majority, for the majority of the days it was every day for six weeks. 

So that’s pretty good, that’s good. Now what would you tell Sam how you have been using 

the device? 

P: Good 

C: How have you been using it, what do you mean by how? 

*dog interrupts dialogue 

C: So how do you mean how has he been using it? 

I: So for example would we need you to be with him every time? 

C: Oh I see, Well what I do in the morning is I put the device together with the mouth piece. 

I: Yes 

C: And then I leave him to have his breakfast and when he’s had his breakfast I say “Go and 

do your breathing” because I’m out with the dog 

I: yeah 

C: So when I come back he’s done his breathing and then I wash the mouth piece and sterilise 

it or whatever 

I: Okay 

C: Erm and then in the evening usually I’m here when he does it. So he does it, you know and 

I say “Do your breathing” and I’m usually here with him 

I: Your with him, so you watch him? 

C: Yes 
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I: So was it easy for you to use the device, was it difficult? What did you think about it? 

C: *to pt* What did you think about it? Easy or difficult? 

P: Quite easy 

I: Quite easy, so in terms of the resistance because I know that the device gives you sort of 

resistance. So you think that was okay for you? 

C: *to pt* do you feel you had to blow hard or was it ok? 

P: No it was ok 

I: So it was okay, what do you think about if it goes higher, do you think that you would still 

be able to use it, if we make it harder for you? 

P: *grunting noises* 

I: Or you don’t know, or you cannot tell? 

C: Difficult to say 

I: Difficult to say, okay 

C: I’m not sure if he has done it correctly all the time because I know that when Una has 

downloaded some of it there has only been so many ways he’s done it every day for two 

weeks and there should be fourteen and the recordings on there, there might only be ten or 

something. So I’m not sure whether he is doing it properly anyway you know? 

I: Ah, so this is one of the things you are not sure okay, So he’s trying to use but.. 

C: He’s doing what he thinks yes 

I: But you are not sure if he was doing the right thing? 

C: because there was no way of knowing because I asked him a couple of times to let me see 

the screen but it went blank 

I: The screen went to blank? 

C: The screen goes blank, it doesn’t tell him how many breaths you know?  

I: And it doesn’t show you any diagram or anything? 

C: No 

I: Would you thing that something set in to the device to show you how you breathe would 

help you? 

C: Yes I think if it came up with the number of breaths that it had actually recorded would be 

useful 

I: Or how hard you are trying? 

C: Yes 

I: That’s just a visual kind of thing that something would help you to make sure you are doing 

the right thing? 
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C: Yes 

P: Should it go blank? 

I: Sorry? 

C: Should it go blank? 

C: *to pt* Hannan doesn’t know 

I: Yes so this is why I am asking okay. 

C: *to pt* She needs to sort of ask about the machine 

P:?11:37? 

I: But sometimes, was that a lot of the times? 

C: Well, every time I asked him for me to look at it to see how many breaths. To make sure 

he had done the thirty breaths, it had gone blank. 

I: It had gone blank? 

C: Yes, I mean when you first put it on you get the picture of the training lungs, the picture of 

the person with the lungs 

I: Yeah 

C:  and thirty but that’s it then, that stays for a little while and then that goes off when he 

starts using it 

I: Oh 

C: So at the end I have said to him, bring me the machine and I can see if you have done 

thirty but there was nothing on there to see them and I wasn’t sure to find out how many 

breaths. 

I: Ok, now in terms of the number of times during the day. Do you think two times a day is 

something acceptable or do you think that if it goes to lower than that would be better? 

C: Erm, well twice a day is fine I think, as I say I just put it ready for him and he uses it so 

I: So you think twice a day is something that people can work around? 

C: Yeah I think so, I think twice a day is acceptable 

I: What if it goes to more than that? 

C: Oh no, I don’t think he would want more than that. He’s too tired and you just couldn’t fit 

it in. I’m quite busy so I wouldn’t be able to…he can’t put it together, I have to put it together 

for him 

I: So it takes time? 

C: yeah it takes a little bit of time 

I: And it becomes part of the routine that you need to do 
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C: Yeah well I got into a routine with it now and I think if it was more than twice I couldn’t 

possibly do it 

I: Good to know that. Now so we have asked about difficulties now we would like to know 

what do you think made it possible for you to do it. Because you have done it, you have tried 

to do it twice a day. Every day for the last six weeks. Which is very good. What do you think 

made it possible for you to do it? To adhere to it? To comply? 

C: Well because we tend to be that sort of people, if we say yes we’re going to try and do 

something. We try to do it, you know? We have been able to fit it in as best we can so you 

know I mean Sam is here, he isn’t doing a lot so he can do it. It’s not a problem 

I: And he doesn’t mind that? 

C: No he doesn’t mind doing that at all, do you? 

P: No 

I: He needs you for that? 

C: But he does need me to just set it up for him 

I: Would he remind you about it or you need to remind him? 

C: No, no. A couple of times when I have forgotten for different reasons he hasn’t 

remembered so, so it’s me that says do your training 

I: So it’s you that ?? 

C: Yes, yes 

I: Now did you feel any benefit out of what you have been doing? Have you noticed any 

changes? 

C: No, I don’t think so no 

I: Nothing in term of the careful speech in particular? 

C: His speech is worse if anything, it’s not better. His speech has gone down a lot. His 

breathing, obviously because he had…he was getting very breathless but then he had 

pneumonia. He was ill, he’s not getting breathless anymore but I think it’s because he’s not 

ill. Not because he has had that machine, you know I don’t think that’s done…he seems to be 

able to walk a bit further. Don’t you? But that I think is because he is well 

I: Ok so he was ill and he is recovering. So you don’t think this is anything to do with the 

device? 

C: No it’s a bit difficult to say but I don’t think so. 

P: I can walk couple miles, two three miles. 

C: Okay Sam 

I: What is it? 
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*pause* 

I: Can you talk about what you like in general about the device in particular? 

C: It’s easy to use I suppose isn’t it? 

P: Yes 

C: Small, easy to use. It doesn’t take up any space. 

I: Anything that you dislike bout it? That you hate? 

C: Only when I said about I think it would be beneficial to show the number 

I: To show them the number to give them feedback about what they are doing? 

C: Yes 

I: I agree with you, this is a good point to have. 

C: As there is a screen and there is a picture I am surprised that it doesn’t show you how 

many breaths you are doing 

P: Screen goes blank 

C: Yes that’s what we are saying 

I: Yes it does go blank. Anything that you liked about involvement in the study in general? 

Not about the device. 

C: Well we like to get involved. He’s happy to do any sort of studies that come up then 

because we have done the breathing with you in the Heath. It seems a logical follow on from 

that so…and if it’s going to help then anything’s worth trying really 

I: That’s good, anything you dislike about it? 

C: No not really 

I: Any general comments that you think we need to consider? In future work that may make 

this work better? 

C: No 

I: Or make things just get improved 

C: As I say, I think it has been quite satisfactory for us. It’s only the fact that I think it would 

help if we could see, because as I say I thought he was doing it. When Una came originally I 

missed her demonstration of it so I wasn’t sure if I was supposed to be hearing or seeing 

something. So of course when she said that after the first fortnight there were only so many 

recordings on it, I said he has been doing it twice a day. I just couldn’t understand it but I said 

I wasn’t sure how it was supposed to work anyway. She said it should beep. So I don’t know, 

I really don’t know 
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I: Yeah ‘cos this was good that you mentioned this because I was going to ask you this and I 

forgot about it. I was going to ask you about the home visits that all of us did and also the 

phone calls.  

C: Yeah that’s fine, it’s good to see somebody and you can give them the feedback and they 

can pass that feedback on to you 

I: But you think if you had been here for the first visit… 

C: It was my fault I wasn’t here 

I: That’s fine, we just wanted to know just to make sure how we can make this better 

C: I think because I cannot sit here while he does it because I’m usually doing something else 

it would be good to be able to visually see that he had done the thirty breaths on the screen. 

That would be fairly useful. Because I could check it then after each time. 

I: But the thing about the breaths it’s probably also about something that, he is probably 

trying but the machine doesn’t get it. 

C: Yes 

I: So we are not sure okay, so this is about exploring how the machine is recording and how 

the things work 

C: Yes 

I: Okay it may be not his fault that maybe he really tries that thirty times or whatever but it 

may be the technicality of the machine itself that it doesn’t pick up sometime or it only picks 

up at a certain threshold even though you are trying. 

C: I realise that. Perhaps he wasn’t strong enough, you know he was quite weak 

I: When he tries? 

C: Yes 

I: Now in terms of the phone calls how do you feel about that? 

C Yes its fine, you ring up and ask if everything is okay. That’s good, I can then..if I’m 

having a problem I can say something but no its been absolutely fine. 

I: Was that every week? 

C: Every other week because Una came every other week 

I: Okay so she comes one week and then phones the next week 

C: Yes 

I: Do you think that is too much? 

C: No its fine. To speak to somebody just once a week is good 

I: Just to make sure that you are on the track 
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C: She doesn’t have to do three home visits really, I mean she could just do one at the 

beginning and one at the end. If she can but I think she needed to come to download the data 

from the machine 

I: But other than that you don’t think she needs to come to demonstrate again or to do 

something else? 

C: No I mean if I had asked her to demonstrate it again I’m sure she would have done but it 

was my fault, as I say I wasn’t here so I wasn’t quite sure what was supposed to be happening 

with the machine. So she clarified that so it was alright. 

I: I think I have covered most of the questions so anything that you would like to ask me 

about before we stop recording? 

C: No I don’t think so. 

I: Any comments that you would like to add Sam? 

P: No it’s fine 

I: You are okay with that? 

P: Yes 

I: Okay you are fine for me to stop the recording? 

C: Yes 
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14.8.2 Subject05 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

 

I: So what we are going to do today is just ask a few questions about you have been doing 

during the last few weeks in terms of the breathing device that Una has given you. So the first 

question, did you use the breathing device. 

C: The breathing device 

P: Yes I’m breathing much better generally, when I go outside it gets worse 

C: Yes but when you were using the device… 

P: Yes I thought you were on about something else, outside 

I: So my question is did you/he use it at all? 

C: Yes 

I: Yes ok so he used it? 

C: Yes 

I: Would you be able to tell me how many times during the week you were using the device? 

C: Well most days. Except for the days when he was up in Ty-Wan-Allen on Thursday but he 

used to do it then, he would do it once when he came back home 

I: Ok so that was for 8 weeks was it? 

C: 6 weeks 

I: So for 6 weeks he used the device almost every day apart from some days 

C: He was full of cold last week and there were two days he didn’t do it for 

I: Apart from these two days can you remember any other days that he didn’t do it? 

C: Perhaps there was once when he was a bit tired but most days he has done it at least once 

I: So if he didn’t do it once he would do it twice? 

C: Yes 

I: Now what about the intensity of the breathing that Una has set up for you, was it ok for you 

or would you prefer it harder? With more resistance or less resistance 

C: No I think it was alright, sometimes he was quite good with it but other times he was a bit 

short. I think it was because he didn’t really understand part of it. He’d blow out more than 

what he’d take in. 

I: So you think that this is because he… 

C: He couldn’t understand what he needed to do 

I: Rather than he is not able to do it, is it? 

C: Yes 
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I: Ok so in terms of the resistance that you have been given, you are ok with that?  

P: Upstairs 

C: Yes it was good 

P: The doctor’s upstairs 

C: Yes but when you were doing the breathing 

P: Oh sorry 

C: Una, you did it well? 

P: Yes 

I: Ok so you don’t have a problem with that, what do you think if Una gave you more 

resistance, would you be able to do it? 

C: I’m not sure, we could try when she comes up  

I: She would be able to try it by you, I’m not sure about this. That’s fine. Now can you tell 

me what made in possible for you to do the training or to use the device. 

P: ?3:27? 

I: What has made it possible for you, that you were able to use the breathing device. What 

made it possible for you? What makes it easy for you to do it? You have done it which is 

good, great so well done for that. What do you think made it good for you that you were able 

to do it. 

C: The breathing apparatus that he’s got to test, he’s finding it alright. 

I: So you find it alright, you find it easy? 

P: Yes 

I: So you find it easy, that’s good. So it’s not complicated, it’s something that you were able 

to do easily? 

C: Yeah 

I: And what else? Did you need to be with him every time he did it? 

C: Oh yes I, but he’s get on with it but sometimes he would stop and then I’d have to 

encourage 

I: Did he need points? 

C: Sometimes, he needed, because he would forget which way he was going (breathing) 

I: So in that term ok he needed you to tell him which way to do it? 

C: Sometimes I would stand there and go “in, out” and he’d do it perfectly then. Breathe in, 

breathe out and he’d know which way he was going. But sometimes he’d get a bit lost in that. 

I: So you have been sitting beside him every time he has been doing it. Do you think that is 

you are not there, the situation will be different? 
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C: Might, perhaps he wouldn’t do it, complete it than.  I think one of two puffs . Although he 

would look up but he wouldn’t be able to see the number of times that are left for him to do. 

So I’d tell him you’ve got so much to do. Keep going, and he would. I think there was only 

once…no twice I think he didn’t complete the thirty breaths 

I: That’s good, now, did you have any difficulties using the device or any part of the 

programme? 

C: No he was alright 

I: Yep, So you wouldn’t say there are any difficulties using the device? It’s not too technical, 

stopped working sometimes? You couldn’t program it well or? 

C: No nothing 

I: So what do you think about the home visits that Una has provided? Do you think it is 

important? 

C: They were good, important to see that he was progressing, doing it properly 

I: What about the phone calls from Una 

C: Yes Una rang to see if he had completed the sessions, good to know that you were keeping 

in touch to see that everything was progressing. I think, if you didn’t we perhaps would be 

prone to not do it she is going to phone, I had better do it. 

I: Just going back to the exercise, did you need to remind him to do the exercises? 

C: I’d have to remind him every time 

I: Now, did you feel any benefit or changes? 

C: Yes, he told the nurses that he feels a lot better. going up the stairs – finds it easier.  

I: Anything else, what about cough or his speech? 

C: No nothing 

I: Would you be able to tell me things that you most liked or disliked about the device? 

C: Quite easy to use, once Una told us how to use it, 

I: Was there anything you didn’t like about the device 

P: Found it easier to breathe out rather than breathe in 

I: Is there anything else that could make it better 

C: No 

I: Great thank you, I am going to stop it here. 
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14.8.3 Subject08 

P=Patient (name changed) C=Wife/Carer (name changed)  I=Interviewer 

 

I: Ok so the machine is recording now, so for the next 10 minutes or so we will just talk about 

the study that you are just finishing. Erm and eh I have got a list of different questions to ask 

you about that em and I wanted to say em if your wife wants to add anything or has anything 

to comment on em I think it would be really useful and helpful because what we need to 

understand is whether this is useful if the programme itself makes sense or there are things 

that we can do differently if you think it is worth doing erm just to start off Did you use the 

breathing device? 

S: Yeah  

I: Yes 

S: Ye 

I: And and did you use it every day? 

S: yeah 

I: Yes, ok. Em and how or how often during the day do you use it?  

S2: Twice a day 

I: Twice a day ok, so and how did you feel about doing it twice a day was that too much or 

too little or was that easy for you to do?  

S2: It was Ok most days just em certain days when he was doing something he may only get 

to do it the once, I have written that down.  

I: And that’s all in the diary anyway 

S2: Yeah he may only get to do it once like in the mornings and a better routine otherwise 

and then later on if we went out he would find it difficult fitting that in 

I: Yeah cos even though  

S2: Cos if it’s, with Clive it’s, em for the pm one, it’s got to be before 7 o’clockish, cos from 

7 o’clock onwards, he gets really tired and I just found that there’s no point in doing in it 

I: No point … and it’s not.. even though its portable it’s not the sort of thing that you can take 

out with you 

S2: No not really 

I: No  

S2: It’s not the type of thing you take it if you’re out for a meal or something  

I: No (laughs) you can’t sit there and do it  

S2: No  
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I: So it’s easy for you to use in the home 

S2: Yeah 

I: But it’s not something you would take out  

S2: Neh 

I: OK so if you were busy during a day then you would tend to so it in the morning and then 

leave it S2 mm 

I: Ok, and about, in terms of em em doing it every day / would you say that you managed to 

do it every day?  

S: Yea 

S2: Managed to do it most days and like I said, he definitely did the morning one it was only 

if we were doing something  

I: Ok 

S2: Because in the period of time that Clive has had it, we have had half term so we’ve been 

busy with trips and things 

I: Yeah, Ok all right so how would you feel if we said to you well you only need to do it 

twice a week do you think that would be better or do you think doing it every day is good as 

part of the routine  or  

S2: em well definitely for us the morning is part of a routine so that wouldn’t be a… 

I: Wouldn’t be a problem 

S2: No  

I: So doing it every day is fine  

S2: Yeah 

I: As long as it’s in the morning  

S2: Yeah, like I said with Clive he gets tired towards .. and if I miss that because I’m doing 

something then I know there’s not much point because he won’t actually do it like he’s 

supposed to take in the  deep breaths  

I: Ok 

S2: Because he is so tired 

I: Right so so really for it to be a good session would you say that you need to be helping 

with it?  

S2: yeah definitely  

I: Ok 

S2: Yeah coaching him 
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I: For coaching Ok, alright, so some of the questions, Clive I am going to ask Sally really 

about what was and what was not good 

(S and C laugh) 

I: Because, so coaching and having you there to coach is an important part of that 

S2: Yes, I would say yes  

I: In terms of the prompts 

S2: Yeah 

I: Ok… em so what do you think was difficult about using the machine, was there anything 

particularly difficult or did you find it self-explanatory? 

S: No eh no 

I: Its quite easy isn’t it? 

S2: Yeah  

I: Just press a button 

S: Ye 

I: A bit like the Dictaphone em … ok so you didn’t have any problems with the device itself 

and in terms of the amount of times that Una came to visit em and phone in terms of the 

support if you had any questions, was that appropriate or  

S2: Yeah 

I: It wasn’t too much 

S2: No 

I: No and you didn’t need any more? 

S2: No 

I: So it was just the right balance? 

S2: Yes 

I: Ok alright em did you feel that the training helped you? Do you think it’s made a difference 

to you?  

(S laughs) 

S2: I wouldn’t have said so, do you feel any different Clive? 

S: No 

S2: Not really no 

S: No 

I: No OK alright em so is there anything different about your speech at all? Do you think his 

speech is any different?  No? And what about swallowing?  

S: em ok swallowing  
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S2: Maybe, maybe the swallowing yeah maybe, cos you haven’t bitten your lip or anything 

have you 

S: No  

I: So that’s healed nicely, so you used to bit your lip  

S: Yeah 

I: And do you know why it was that you bit your lip?  

S2: It was just when he was eating  

I: Ok and you haven’t been biting your lip as much  

S: No 

I: Can you think about how long that’s been?  

S2: Well that was before he started, he hasn’t been biting his lip for quite a while that’s’ a 

long time 

I: Longer than the intervention 

S2: Yeah I would say yeah 

I: So it’s not the breathing device then 

S2: No, the only thing that I would say is that he seems to be eating quicker  

I: Ok so the time that it takes to get the food off the plate  

S2: Down yeah 

I: Ok 

S2: Fast 

S: Um um 

I: So quicker swallowing then 

S2: Yeah 

I: No choking 

S2: Well he still gets episodes of choking 

S: Yeah 

I: But no em I guess what I am saying is that the quicker might not be safer 

S2: No 

I: So is the quicker also as safe as it was before .. 

S2: Yeah 

I: So there’s no more choking 

S2: No 

I: No, alright OK em so you just in general then what did you was there anything you 

particularly like about doing the training  
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S: Eh yeah 

I: Yeah? 

S: Ye 

I: What did you like about it? 

S: (not understandable) 

I: Did you like practicing the breathing? 

S: Yeah 

I: Is there anything that you don’t like about it? 

S: No 

I: No? 

S: No (laughs) 

I: Ok are you going to carry on doing it 

S: (not understandable) 

S2: We haven’t really thought about it have we? Cos we get to keep it  

I: Yes you get to keep it yeah, you can keep it em  

S2: Maybe we might not do it twice a day maybe as part of the em when he wakes up he is 

expecting to do it 

I: Yeah 

S2: Perhaps we’ll do it as much as we can Clive? 

S: Yeah 

I: It’s not a difficult thing to do,  is it? 

S2: No 

I: Cos it’s very contained, how long does it take you to do one session? 

S2: Not long, in the mornings its quite quick a few minutes, then it’s done in’it 

S: Yeah 

S2: Doesn’t take long at all 

I: Not long at all 

S2: No 

I: So in comparison to the other exercise programmes this is a really easy thing to do (laughs) 

OK  

S2: Plus obviously we’re at home 

I: Yeah, it does help being able to do it at home and fit it into your routine. Is there anything 

else you would like to talk about, about this study? And sort of your experience of doing it? 

Anything else that you want to let us know? 
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S2: No  - has it been found to be beneficial at all? 

I: We don’t know,  

S2: You don’t know 

I: We don’t know em this this study is very much about em seeing what people thing and 

seeing whether people can do it and fit it into their lives and em it’s only 2 thirds of the way 

through so em  

S2: So what is the thinking behind it?  

I: The thinking behind it is that if you can em increase the strength of the breathing muscle 

that it can help both with just breathing and coughing so if you do have a problem were you 

swallow food  

S2: Yeah 

I: You’ve got then a good cough and because if you have these muscles that are strong then  

the cough is good and can prevent the food going the wrong way so it’s as a long term 

precaution the theory is that if we keep these muscles as strong as possible that you would 

prevent chest infections. That’s the one theory. The other theory is that if your breathing 

muscles are strong em then the work of breathing takes less effort and that means that you 

can concentrate more on your walking and other  muscles so there is some kind of thoughts 

but none of it is proven that if you can keep these muscles ….so if you can.. this is mostly 

used by athletes  

S2: Yeah 

I: To strengthen the breathing muscles so that they can then have less work on their breathing 

and more energy and more effort going into their running muscles and walking muscles so 

em that’s really the 2 kind of thoughts about it em so certainly what would happen is a soon 

as the analysis is done, Una will get back and tell you what has happened and that has 

changed. And she will be discussing that with you and she can look at the individual data and 

say whether there has been any changes and I suspect that that would help you make a 

decision 

S2: Yeah 

I: About whether you carry on. I think that’s the feeling OK  

S: Ye 

I: So you’ve got an appointment so what I will do then is, I am going to turn that off. 
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14.8.4 Subject11 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

 

I:  Okay, so thank you for taking part in Una’s research, it’s just a few questions to go 

through now about the intervention em so I’ll just start the questions, the first one is Did you 

use the breathing device? 

S: Yes 

I: Ok and how often per day and per week 

S: Ehm we were supposed to use it twice ehm we tried as often as possible to do it twice ehm 

it wasn’t always possible ehm just simply because David was having problems and I think it 

was also getting used to the apparatus, because we had a few difficulties with it 

I:  Ok, so was the intensity and frequency acceptable? 

S:  Yes, yes  

I: How would you feel if the intensity and frequency was higher or more? 

S: eh it would have been … a bit harder if it was higher, simply to get it all done in amongst 

all the other things as well (laughs) 

I:  How about if the intensity or frequency was lower or less? 

S: Eh it would obviously be easier ehm but ehm we felt that about once a day would probably 

be Ok rather than twice. 

I: Ok ehm and what made it possible for you to carry out the training?  

S: ehm well I think it was the fact that…. we were always here with David anyway, so it 

made it easier because if we weren’t here  it would have to organised with a carer or 

something or somebody else to do it. 

I: Ok ehm what difficulties did you have, if any, and how did you manage them? 

S: Eh, the biggest difficulty we had was with the mouthpiece because with the Huntington’s 

the muscle co-ordination is quite complicated to get the mouthpiece in and to get David to 

seal around the bit. In fact it was so difficult that the only way we managed to do it was at 

first to take the mouthpiece off completely so David was just blowing straight into the 

apparatus  

I: Right 

S: Uhm but eh Una felt that perhaps we weren’t getting the right distance from the apparatus 

so she allowed me to cut the mouthpiece off so that David could slip the tube straight into his 

mouth without the … the snorkel type mouthpiece which requires the mouthpiece to go 
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behind the gums and then for the teeth to bite on to the little eh lugs that were there, but that 

was far too complicated. It was made a lot easier by cutting the ends of the mouthpiece off.  

I: Ehm were the number of home visits and phone calls appropriate?  

S: Yes, yes, Una was phoning me weekly to see how we were getting on and em that’s where 

she was advising me well cut the tube and  

I: Right 

S: And see how we get on that way, rather than not being able to do it all because when we 

had the mouthpiece as it was supplied it was virtually impossible for David to do one exercise 

successfully  

I: Right so having that extra input was quite helpful 

S: Yes, yeah yeah 

I: Em did you feel any benefit from the training?  

S: Em it’s hard to tell if there is any benefit in other words the strength of it because we don’t 

know what the results were but eh certainly over a period of time em David was getting the 

hang of how to breath in cos at first he was doing very short little puffs which weren’t 

successful 

I: OK em what did the change mean for you? 

S:  Em not sure what that means, em it well I don’t know (laughs) I really don’t know 

I: Ok (laugh) em so and you have put here the question was cough, speech, swallow any 

different you’re unsure of that, is that right? 

S: yeah, yeah we’re unsure we don’t know really cos there was nothing for us to measure 

against 

I: Ok em what made it difficult for you to carry out the training you’ve already mentioned the 

mouthpiece is that the one … 

S: Yeah mainly the mouthpiece, we also found that there was a couple of times that the 

device seemed to jam 

I: Right 

S: So I was trying to ask .. David was failing to actually do any successful blows , I mean we 

were trying about 15 times and it was still reading about 30 remaining so it hadn’t budged 1 

em and then I took off the headpiece and out it back on again and then we tried again em so it 

seemed to be that it hadn’t quite meshed you know onto the head and then the second time 

part way through the test, the device seemed to have stuck because David ,half way through 

the test just couldn’t get the numbers to drop down any more, so I gave it…. I had to clear it I 

thought so why isn’t it working so I thought well I’ll test  it and I gave it one good, well I 
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tried sucking it and I thought my god its impossible I can’t even do it so I gave it one good 

blow and a really hard suck and it seemed to clear it then. 

I: Right 

S: So it felt like the device had actually stuck  

I: Right Ok em anything else about the training that perhaps being able to remember to do it 

or… 

S: Em found that it was easier for David to do it em lying down but in a sitting upright 

position when he was in bed with the head of the..  the backs of the …back of the bed raised 

up  

I: Right 

S: So that he was lying but sitting upright, as it were in bed, that seemed to be easier. I don’t 

know .. do you agree with that Dave? rather than sitting in the chair like this, he seemed to 

find it better when he was relaxed in bed 

I: Right 

S: And doing the exercises seemed to be more successful in that position 

I: Ok so changing, slight change in posture 

S: Yeah so lying down but with his torso slightly raised at 45 degrees seemed to be the ideal 

position.  

I: Ok em is there anything that you liked or disliked about the device apart from the mouth 

piece? 

S: Eh no not really it was quite straightforward to use 

I: Ok em any likes or likes about the training programme?  

S: No  

I: Em how do you think it could be…  how could the device or the training programme be 

improved?  

S: Eh well the only improvement would be to have I thought that if there was a more -  

without the snorkel type mouthpiece em but a more rigid end of the tube or something that 

fitted over the tube. If something fitted over the tube, that was rigid that David could put into 

his mouth without any obstruction,  in other words just a plain elliptical mouthpiece that was 

more rigid, cos what was happening  sometimes was, David when he had the tube in his 

mouth to get a firm seal around the mouthpiece em he was actually biting on the tube so that 

was constricting the flow of air as well so there was quite a combination of things em so if, if 

the tube how can say – the endpiece that goes into the mouth didn’t have all the clutter so that 

it was just a plain  oval tube  
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I: Yeah 

S: But was more rigid that he could get a firm grip on it without actually crushing the end of 

the mouthpiece  

I: Yeah 

S: That would have been perfect  

I: Ok, that’s all the questions thank you very much  

S: That’s alright Kate 
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14.8.5 Subject12 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

 

I: So we are recording what we are talking about now, so basically I just need to talk to you 

today about the machine and the exercises. How you did it and what you thought about it. So, 

I already know that you used, you did use this. On average how many times a day did you do 

the training. 

P: On average I would say I used it twice a day but obviously if I was to average it out it 

would probably be one and a half/one and three quarters a day 

I: There were some things that you didn’t do, and what were the reasons for why you didn’t 

do it 

P: To start with, I didn’t set an alarm properly so that didn’t help much. I still manage to sort 

of squeeze them in. So having an alarm helped but there were still times, especially when I 

went away for a few days I forgot to take it with me. There were other times when the alarm 

went and I was busy so I forgot 

I: Just about the alarm, did you decide that was the best way to remind yourself 

P: Yes I did 

I: So you kind of said I’m going to set it. What were the times of the day? 

P: There was one at about 11.30 because I normally get up at about 10 so it gives me some 

time to wake up first and at about 6pm after I take food 

I: Ok and was that intensity, so how often you did it and how hard you worked, was that ok 

for you? 

P: Yes that was ok 

I: There was just sometimes if you were out or you were busy that you didn’t do it but you 

managed to fit it in 

P: Yes that happened sometimes 

I: So you definitely did it once a day for the whole time 

P: Yes 

I: Would you be able to do it more often in a day? 

P: Yes I don’t see why not, it would be annoying yes. It terms of the physical, being able to 

do it physically, yes. 

I: Its annoying because it interferes with things or? 

P: It does, I mean…if it was part of me getting better its worth doing. So therefore from that 

point of view it would be fine to do it a few times a day if it benefitted me, as a point of view 
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for the study. For me it is less likely to benefit me at the moment, really because I’m quite 

early on post….of the whole thing 

I: So if you thought that it was helpful then it’s ok to do it, but just because you are doing it 

and you don’t really see the point of doing it at this moment. 

P: Yes 

I: Is that what you mean?  

P: Yes 

I: So the things that you did to make it possible for you to carry out the training was setting 

the alarm, what other things did you do? 

P: I think that’s mostly it, obviously leaving the device somewhere obvious such as in the 

kitchen so when I popped in for a drink or bite to eat and you see it, that helped. 

I: So having visual, not putting it away in a cupboard. That was a conscious thing that you 

did? 

P: To start with it was sort of an accident because I was in the kitchen because I had it 

washing or drying all the time but afterwards yes it was something I did. 

I: Were there any problems or difficulties that you had with doing or using it 

P: Not really, I did lose the end which wasn’t particularly clever. 

I: The mouth piece 

P: yes, I have the mouthpiece somewhere but I didn’t have any trouble using it as it is 

I: So you don’t have a mouth piece and it still worked without a mouthpiece, ok. How long 

into the study do you remember that you lost the mouthpiece. 

P: About two thirds of the way it 

I: By then you had kind of learnt how to use it, so you just… 

P: Yes 

I: It terms of the visits, so Una coming to visit you. Was that helpful? 

P: Yes I mean it helps to go over what’s going on and her turning up to remind you 

I: Were there enough visits, do you think there were enough visits? Do you think she could 

have done more or do you think that she needed to do less? 

P: Just fine the way it is to be honest 

I: Fine, so it was the perfect balance? 

P: Yes 

I: And the phone calls? 

P: Yes that obviously helps as well, it keeps you motivated and reminds you again. 

I: So it’s mostly about having a reminder for you? 
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P: Yes 

I: Ok, do you feel any benefit from doing the training? 

P: I haven’t particularity noticed anything myself, no. 

I: So you don’t have any difficulties with cough or swallowing problems now 

P: No I don’t 

I: And you haven’t noticed anything different 

P: No 

I: Is there anything you particularly like about the machine? 

P: I suppose once you got it going it was very easy to use once it has been set up you turn it 

on, it’s fairly easy to use. That’s about it. 

I: Anything you don’t like? 

P: The buttons on there are completely…why do you need to press the on button to go to the 

menu button and why does the up and down button on the left, why is that a play button? 

Which makes it seem like it should be that start but not the ? button 

I: Oh I see. It should have up and down things for the menus 

I: Yes because the button looks as though it is a play button on a video machine 

P: So I did that quite a lot 

I: So it’s not intuitive, the way it looks doesn’t work the way you should it should work 

P: The charge time is phenomenal. I had to leave it plugged in overnight to get a decent 

charge on it 

I: So you would take it off and it would run down quite quickly? 

P: Yeah you know the battery sign, I would leave it in for a few hours and it didn’t seem to 

make a difference 

I: Is there anything you particularly liked about doing the program? 

P: No not massively 

I: Would you say you are impartial? 

P: Yes I would say, no comment 

I: Are there things you particularly disliked? 

P: No massively either, either way for the sort of helping out the study I’m always up for that. 

From that point of view it was good to do. 

I: So you feel that by doing it you can contribute to finding ways to help with the disease and 

be involved in the research, but you didn’t feel it particularly relevant to you 

P: No, I’m assuming from my point of view I’m a baseline  

I: So what do you think should be done differently, what could be done differently? 
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P:  Apart from the problems with the thing itself it’s fine 

I: So you were happy with the amount of support that you had and phone calls, it was fairly 

easy to fit into your life if you had alarms on your clocks and you left it visible 

P: Yes 

I: If I summarise, if you thought it would help you would continue to do it? 

P: Yes 

I: And so we just have to wait and see, ok well I think that is all. Is there anything else that 

you wanted to say about this particular study 

P: No 
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14.8.6 Subject13 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

 

I: Did you use the breathing device? 

P: Yes 

I: How often per day and week?  

P: twice a day 

I: And how often was that? Was that every day or every other day? 

P: Every day 

I: So you used it twice a day every day? 

P: Yes  

I:  Was the intensity and frequency acceptable? So how often you had to do it? 

P: Yes 

I: And the intensity, how difficult it was, was that too difficult or ok? 

P: Ok 

C: It was difficult at one stage but it was on the wrong setting, when the lady came out she 

looked at it and we realised that’s why he was struggling a little bit 

I: But apart from that it was alright? 

C: Yes 

P: Yes 

I: How would you feel if it was a bit harder or you had to do it more often? Would you feel 

happy about that or not so happy? 

P: Happy 

I: And what if you had to do it less often and it was a bit easier? Or was it just right as it was? 

P: Yes 

I: What made it possible for you to carry out the training so what helped you to do it? For 

example, having reminders 

P: I just knew 

I: So you had good memory? 

P: Yes 

C: Yes he would remind us! 

I: And what about Una phoning you, did you feel like the number of phone calls you were 

getting was appropriate? 

P: I didn’t care about them! 
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I: Did you feel any benefit from doing the training 

P: Yes 

I: In what way? Did you find your coughing was any different or swallowing? 

P: Swallowing is a lot better 

I: So did that make anything easier for you? Did that change mean anything to you? Did it 

help when you were eating? 

P: Yes 

I: So you didn’t have any difficulties with it? 

P: No 

I: What did you like or dislike about the device 

P: Nothing 

I: Nothing you liked or disliked? 

P: No 

C: At the start we found with the plastic gum shield we couldn’t manage it with that on and 

just did it directly because it kept falling off. It was easier not to use it 

I: What about the training programme, was there anything you liked or didn’t like 

P: I liked it 

I: What did you like about it? 

P: For the future 

I: for the future? You thought it might help for the future? Is that right? 

P: Yes 

I: Do you think it could be improved in anyway like you said you took the shield off to make 

it easier, is there any other way you would improve it or the training programme itself? 

P: It’s alright 

I: What about the size of it, was it easy to handle? 

P: Yes 

C: I think it was easy to handle but I’m not sure if he would managed to get it on and off 

himself, I think he would need someone independent to do that, like switching it on and 

loading it. We only managed to drop it once! 

I: That’s all the questions, thank you very much 
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14.8.7 Subject14 

P=Patient (name changed) C=Wife/Carer I=Interviewer 

 

I: Did you use it, the breathing device? 

P: Yep 

I: How often per day  

P: Twice a day, sometimes three times 

I: Was that every day? 

P: Yes 

I: Was the intensity and the frequency acceptable 

P: Yes 

I: How would you feel if it was higher? If it was a bit harder or you had to do it more often 

P: I would have done it the same 

I: Or if it was less difficult, how would you find it? 

P: I was happy the way it was 

I: What made it possible for you to carry out the training? 

P: Nothing, I just had to get on with it 

I: Were there any difficulties you had with doing it? 

P: No 

I: Were the number of home visits and phone calls you had appropriate 

P: Yes 

I: Was there anything that helped you to do the training? That you were able to do it three 

times a day 

P: ? 

I: Did you feel any benefit from doing the training? 

P: No 

I: It didn’t make any change to you at all? 

P: No 

I: You didn’t notice anything with coughing, speech or swallow? 

P: No 

I: Did you find actually using it difficult? 

P: No 

I: Were you able to remember to do it or did you need some reminding or prompting from 

anybody? 



  

  433 

 

P: No I reminded myself 

I: And you didn’t find it difficult as you said? 

P: I kept the device in view otherwise I think I would have forgotten it 

I: You kept it in view so you could see it and that’s what helped you? 

P: Yes 

I: Was there anything you didn’t like about it? 

P: No 

I: Was there anything you didn’t like or did like about the training programme 

P: No? 

I: Anyway you think it could be improved? 

P: How do you mean?  

I: The way you use the device or was the mouthpiece okay to use? 

P: Yes 

I: Do you think the size of it was ok? 

P: Tidy 

I: It was okay to hold and use it? 

P: Yes 

I: Well that’s it then, thank you very much 
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14.8.8 Subject 17  

interview notes 

1 Did you use the breathing device? Yes 

 How often per day and per week? Twice a day every day, morning and 

afternoon 

If Q1 answer is yes then: 

2 Was the intensity and frequency acceptable? Yes 

 how would you feel if the intensity/frequency was higher/more? Would be 

difficult to fit in if more often. 

 how would you feel if the intensity/frequency was lower/less? Would be ok 

3. What made it possible for you to carry out the training? Wife reminded participant to 

do the training 

 What difficulties did you have and how did you manage these? Difficult to use in the 

afternoon, the device seemed to not work properly 

 Where the number of home visits/phone calls appropriate? Yes, just right  

4. Did you feel any benefit from doing the training? No 

 What did the change mean for you? 

 Was cough, speech, swallow any different? 

If Q1 answer is no then: 

5. What made it difficult for you to carry out the training? 

 The device technology – easy to hold, good size 

 Remembering to do it – reminders from wife 

 Difficulty of task –not difficult 

 support 

General questions 

 

6. What did you like/dislike about the device? Nothing disliked, size of it made it easy to 

use 

 

7. What did you like/dislike about the training programme? No comments 

 

8. How could the device/training programme be improved? Couldn’t suggest any way of 

improving it 
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14.9 Appendix 9  Publications 

14.9.1 Jones et al 2011 

RELIABILITY OF DIGITAL ANALYSIS OF THORACIC, NECK ANGLE AND HEAD 

TILT MEASUREMENTS 

U Jones, V Sparkes, M Busse, S Enright and R van Deursen 

+ Author Affiliations 

 Department of Physiotherapy, Cardiff University, UK  

Abstract 

Background: Postural re-training is one element used in the physiotherapeutic management 

of spinal disorders. Clinicians need outcome measures that are accurate, reliable and easy to 

use to monitor effects of treatment and to provide justification for the management of these 

conditions. This study aimed to assess the reliability of digital video analysis of thoracic, 

neck and head tilt angles using one measurer within one day.  

Methods: Twenty healthy subjects were recruited. L4, C7 spinous processes and tragus were 

marked on the skin and identified with reflective markers. The subject sat in a relaxed 

comfortable position in a chair and was video recorded from a lateral view for one minute. 

The markers were removed and the subject rested, in a chair, for a few minutes. Two further 

recordings were taken in the same day. Still images were taken at 30seconds of the recording 

and were analysed using a bespoke programme within MATLAB software. Analysis included 

Intraclass Correlation Coefficients (ICCs) and Bland Altman plots.  

Results: Excellent reliability was ascertained for thoracic, neck and head tilt angles identified 

by ICC of 0.94 (mean difference 0.34° ±4.7°), 0.91 (mean difference 1.1°±3.7°) 0.84 (mean 

difference 0.9°±4.9) respectively. All points, except one for neck angle and head tilt angle 

and two for thoracic angles, were within 95% limits of agreement.  

Conclusion: Digital video analysis using MATLAB is a reliable way to measure thoracic, 

neck and head tilt angles. This is an inexpensive method for measuring posture that could be 

used in the management of people with spinal disorders.  
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14.9.2 Jones et al 2012 
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14.9.3 Jones et al 2013 
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