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Summary 

 

The metastatic spread of cancer cells to distant sites in the body accounts for the 

majority of cancer-related death and significantly decreases patient survival. Whilst 

cell migration is a physiologically important process, when uncontrolled, it can be a 

contributing factor to the metastatic phenotype. Actin polymerisation enables the 

dynamic restructuring of the cytoskeleton which is fundamental to cell migration and 

is stimulated by the Arp (actin-related protein) 2/3 protein complex which in turn is 

activated by members of the WAVE (WASP Verprolin homologous protein) family. 

WAVE1 and 3 expression was targeted separately in the PC-3 cell line utilising 

ribozyme transgene transfection. In vitro experiments revealed a reduction in cell 

growth and invasion following WAVE1 or 3 knockdown in PC-3 cells. These 

experiments were also repeated with small molecule inhibitors targeting the Arp2/3 

complex, ROCK and N-WASP independently. This inhibitor work implicates Arp2/3 

as a facilitator of cell proliferation through which WAVE regulates. Inhibition of 

Arp2/3, ROCK or N-WASP in WAVE1 knockdown cells increased cell invasion 

which may be attributed to the regulatory role of WAVE3 on MMP activity.  

Co-localisation of WAVE1 and 3 with ARP2 and ROCK-I was observed in PC-3 

cells whilst this affect was abolished with WAVE1 or 3 knockdown. Furthermore, 

WAVE3 and WAVE1 knockdown affected ARP2 and ROCK-II tyrosine 

phosphorylation, respectively. 

These results suggest WAVE1 and 3 proteins are involved in several metastatic traits 

that characterise PC-3 cells. Furthermore, the contribution of WAVE in the networks 

that influence these traits may also involve association with Arp2/3 complex, ROCK-

I and –II and N-WASP. Additionally, it sheds light on the similarities between these 

two related proteins and also highlights their subtle distinctions in PC-3 cells. The 

data outlined here provides justification to futher explore WAVE1 and 3 as potential 

contributors of prostate cancer progression. 
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1.1 Prostate cancer epidemiology 

1.1.1 Prostate cancer incidence and mortality in the UK 

Cancer of the prostate has long been recognised as a significant public health issue 

and is one of the major cancers to affect males worldwide (Globocan, 2012). 

Statistics from 2011 reported prostate cancer as the most prevalent cancer affecting 

men in the UK which accounted for approximately a quarter of all new male cancer 

diagnoses. There were 41,736 new prostate cancer cases recorded, followed by lung 

and bowel cancers which were the second and third most common male cancers with 

23,770 and 23,171 cases, respectively (Cancer Research UK, 2014). However, 

prostate cancer mortality was responsible for only 13% of male cancer deaths 

making it the second most common cause of cancer death after lung cancer in the 

UK. In 2011, there were 10,793 prostate cancer related deaths in the UK (Cancer 

Research UK, 2014). 

A strong correlation exists between incidence rates of prostate cancer and age. The 

mean age of patients at diagnosis with prostate cancer is 72-74 years (Grӧenberg., 

2003). Approximately three-quarters of prostate cancer cases are diagnosed in men 

aged 65 years and over with very few diagnoses made in men younger than 50 years 

old (Cancer Research UK, 2014) (Figure 1.1).  
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Figure 1.1 Relationship between prostate cancer incidence and age (Figure taken from Cancer 

Research UK, 2014) 

  



4 
 

Similarly, affected individuals show a strong trend of increased mortality with 

increasing age. Between 2009 and 2011 in the UK, affected individuals aged 65 

years or older accounted for around 93% of all prostate cancer related deaths (Figure 

1.2). Men beyond 85 years, have the highest number of prostate cancer deaths with 

775 per 100,000 compared to 396.4 per 100,000 for the 80 to 84 year age group. 

Interestingly, an overwhelming majority of affected males are likely to die with, 

rather than as a result of prostate cancer (Kessler and Albertson., 2003). Nonetheless, 

it is evident that age is an important factor to consider when evaluating prostate 

cancer risk. 

  



5 
 

 
 
Figure 1.2 Relationship between prostate cancer mortality rates and age (Figure taken from Cancer 

Research UK, 2014) 
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1.1.2 Incidence within ethnic groups and geographical populations 

The incidence of prostate cancer varies greatly when comparing different ethnic 

groups and geographical populations. Some of the lowest rates of disease are seen in 

Asia, for instance, 1.9 in 100,000 men per year in males from Tianjin in China are 

affected (Grӧnberg., 2003). In contrast, the highest rates are in North America and 

Scandinavia. Between 2004 and 2008, African-American males had a significantly 

higher incidence of the disease with 233.3 per 100,000 males per year compared to 

149.5 per 100,000 in their white counterparts (DeChello et al., 2006; Quinn and 

Babb., 2002). Furthermore, these two ethnic groups have dissimilar aetiology and 

disease course/prognosis (Powell., 1998).  

Multiple reasons have been put forward to explain the differences seen in incidence 

rates across different populations and ethnic groups. The fact that higher incidence 

rates are recorded in North America, Northern and Western Europe and 

Australia/New Zealand is largely attributed to a growing awareness of prostate 

cancer and the widespread availability of diagnostic procedures such as serum 

prostate specific antigen (PSA) testing and prostate biopsies (Potosky et al., 1995). 

Over two-thirds of registered prostate cancer cases in 2012 occurred in developed 

countries (Globocan, 2012). Even so, prostate cancer incidence rates are increasing 

in both high-risk and low-risk countries (Grӧenberg., 2003). 
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1.1.3 Risk factors 

1.1.3.1 Diet 

Ethnic and geographical trends in prostate cancer incidence suggest numerous 

environmental and genetic factors may be responsible for the differences observed. 

Migration studies have demonstrated that when Japanese men emigrate from their 

native country, a region of low incidence, to North America, a country with a high 

incidence, prostate cancer frequency in this group of individuals is seen to increase. 

Despite this, the rate does not increase to even half of the levels seen for North 

Americans. These findings demonstrate a strong environmental impact on the disease 

but also an underlying genetic influence (Shimizu H et al., 1991; Tominaga., 1985). 

There is conflicting evidence regarding links between diet and cancer. However, 

there appears to be an increasing association between a diet comprising of higher 

levels of fat, meat and dairy products, characteristic of a Western lifestyle, with 

higher incidences of prostate cancer (Armstrong and Doll., 1975). In contrast, East-

Asian populations report lower incidences of prostate cancer. In these regions, diets 

rich in isoflavones in soy and polyphenols in green tea, in addition to being low in 

red meat and dietary fat has been implicated as a preventative factor (Kim et al., 

2008; Khan et al., 2009; Sim et al., 2005). 

It has been suggested that selenium and vitamin E have potential preventative effects 

against prostate cancer, although many reports are conflicting (Venkateswaran and 

Klotz., 2010). However, the SELECT clinical trial reported that neither selenium nor 

vitamin E reduced the incidence of prostate cancer and that vitamin E was associated 

with a 17% increased prostate cancer risk compared to placebo (Nicastro and Dunn., 

2013). 
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1.1.3.2 Genetic factors 

A predisposition to prostate cancer has been linked to numerous genetic factors. 

Regardless of ethnicity, the risk of developing the disease is likely to increase two to 

three-fold if a first-degree relative is already affected. This risk increases with the 

number of affected relatives particularly when diagnosis is at a younger age 

(Whittemore et al., 1995). Interestingly, males with an affected brother are more 

likely to develop prostate cancer than individuals with an affected father which may 

imply a recessive inheritance pattern or that it is X-chromosome linked (Monroe et 

al., 1995). 

Genome-wide linkage studies have enabled the identification of susceptibility loci 

for prostate cancer. The disease was first mapped to the Hereditary prostate cancer 1 

(HPC1) locus in 1996 in a study examining high-risk families from Sweden and the 

USA (Smith et al., 1996). Within the HPC1 loci lies the RNASEL gene which has 

been proposed as a potential candidate gene, increasing the risk of developing 

prostate cancer. This gene is involved in the interferon-regulated 2-5A pathway and 

is implicated as a tumour suppressor gene due to its role in the regulation of cell 

proliferation and apoptosis (Liang et al., 2006). Despite this, very few cases of 

familial prostate cancer have been linked to mutations in the RNASEL gene (Carpten 

et al., 2002). 

A comparison of gene expression profiles between African-American and Caucasian-

American men revealed a significant number of genes showing differential 

expression between the two ethnic groups. Several metastasis-promoting genes were 

found to be expressed at higher levels in tumours from African-American relative to 

Caucasian-American patients (Wallace et al., 2008). 
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Allelic differences in the SRD5A1 and 2 genes which encode the 5α-reductase 

isoform 1 and 2, respectively, have shown interesting ethnic variation with some 

single nucleotide polymorphisms (SNPs) linked to prostate cancer risk (Makridakis 

et al., 1999; Setlur et al., 2010). These 5α-reductase enzymes are responsible for 

catalysing the conversion of testosterone to its active metabolite, dihydrotestosterone. 

This is essential for the development of the prostate gland and prostate cell growth 

but also necessary for the continued survival and growth of prostate cancer cells 

(Roy and Chaterjee., 1995). 

Genome wide association studies (GWAS) have also identified numerous 

susceptibility loci associated with prostate cancer. Many of these SNPs are involved 

in the testosterone synthesis pathway and are found in regions which may hold 

potential clinical implications relevant to prostate cancer. These include a SNP found 

at a chromosomal location close to the C-MYC oncogene and another found upstream 

of microseminoprotein-β, a protein commonly found at lower levels in prostate 

cancer (Schkeutker., 2012; Goh et al., 2012). Other deleterious genetic changes 

identified include germline mutations in the genes BRCA1 and BRCA2 (Castro and 

Eeles., 2012). These genetic variants have been associated with advanced prostate 

cancer with a poor prognosis. 
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1.2 Prostate biology 

The human prostate is a walnut sized gland found solely in the male reproductive 

system. It surrounds the urethra proximal to the urinary bladder (prostatic urethra) 

and is anterior to the rectum. The prostate secretes a thick white alkaline fluid which 

comprises approximately a third of semen ejaculate that functions to neutralise the 

acidic environment in the female vagina and in turn protects and nourishes the 

sperm. This prostatic secretion also contains the enzyme prostate specific antigen 

(PSA) whose role is to liquefy semen to facilitate sperm motility in the vagina. 

The prostate can be divided into four distinct glandular zones based on anatomic 

region, histologic appearance and disease susceptibility (refer to Figure 1.3). The 

central zone is a cone shaped region that surrounds the ejaculatory ducts extending 

from the seminal vesicle ducts and vas deferens to the verumontanum of the prostatic 

urethra. The peripheral zone, comprising approximately 70% of prostatic tissue, is 

located posterolaterally and surrounds the central zone and distal portion of the 

prostate urethra. This region houses the majority of prostatic glandular tissue where 

ducts secrete into the prostatic urethra. This zone, which comprises the greatest 

volume of the prostate, is also where the majority of prostate carcinomas originate 

(60-70%). The proximal urethra is surrounded by the transition zone which is found 

between the verumontanum and bladder (McNeal., 1988). Throughout life, this 

region enlarges and is responsible for benign prostatic hyperplasia which can 

obstruct the urethra and interfere with normal urine flow; a problem commonly seen 

in older men. Lastly, the anterior fibromuscular zone typically lacks glandular tissue 

and consists mainly of muscle and fibrous tissue.  
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Figure 1.3 Anatomy of the prostate gland and the four main zones (Figure taken from Baylor College 

of Medicine, 1990).  
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Histologically, the human prostate contains pseudostratified epithelium which is 

comprised mainly of main differentiated cell populations (Schalken and van 

Leenders., 2003). The luminal epithelial cells form a continuous layer of polarised 

columnar cells and are responsible for protein secretions such as prostate specific 

antigen (PSA) and prostatic acid phosphatase (PAP) (McNeal., 1988). The basal cells 

are adhered to the basement membrane and located beneath the luminal epithelium. 

The majority of prostate cancers are pathologically classified as adenocarcinomas 

(approximately 95%) and exhibit a luminal phenotype (Shen and Abate-Shen., 2010). 

Other subtypes of prostate cancer include: ductal carcinoma, mucinous carcinoma, 

signet ring carcinoma, neuroendocrine carcinoma and small cell carcinoma. It is 

widely accepted that adenocarcinoma of the prostate is preceded by prostatic 

intraepithelial neoplasia (PIN). At the histological level, PIN is characterised by the 

appearance of luminal epithelial hyperplasia, reduction in basal cells, enlargement of 

nuclei and nucleoli, cytoplasmic hyperchromasia and nuclear atypia (Shen and 

Abate-Shen., 2010). Even so, whether PIN is a true precursor of prostatic carcinoma 

is widely debated (DeMarzo et al., 2003). The metastatic progression of normal 

epithelium to adenocarcinoma in prostate cancer is shown in Figure 1.4. 

  



13 
 

 

 

 

  

F
ig

u
re

 1
.4

 P
ro

st
at

e 
ca

n
ce

r 
p

ro
g

re
ss

io
n

 a
t 

th
e 

h
is

to
lo

g
ic

al
 l

ev
el

 (
F

ig
u

re
 t

ak
en

 f
ro

m
 S

h
en

 a
n
d

 A
b

at
e
-S

h
en

.,
 2

0
1

0
) 

 



14 
 

1.3 Detection and staging of prostate cancer 

Prostate cancer is the most commonly diagnosed cancer in men in the UK. Being 

able to clearly determine disease progression for each individual is a major problem 

for prostate cancer management. Detection of prostate cancer in the early stages is 

crucial due to the well-known aggressive nature of the disease. Patients with 

symptoms such as haematuria (blood in urine) and pain in the bones usually indicate 

advanced prostate cancer and it is important to diagnose these patients and identify 

the best approach to treat the disease. Accurate staging of prostate cancer in affected 

individuals allows correct prognosis assessment and individualisation of treatment 

options. 

 

1.3.1 Prostate cancer detection 

1.3.1.1 Prostate specific antigen (PSA) testing 

Prostate specific antigen (PSA) is a glycoprotein serine protease secreted by the 

epithelial cells of the prostate gland. It is present in small quantities in the serum of 

men with normal prostates but is usually elevated in men affected by prostate cancer 

(Haythorn and Ablin., 2001). 

Screening PSA levels is a common clinical procedure and is relatively easy to 

conduct. PSA testing is a non-invasive blood test resulting in minimal patient 

discomfort relative to other detection methods available. PSA level thresholds are 

age-dependent: 2.5ng/ml for 40-49 years, 3.5ng/ml for 50-59 years, 4.5ng/ml for 60-

69 years and 6.5 ng/ml for 70-79 years (Oesterling et al., 1993; Prostate Cancer Risk 

Management Programme, 2013). These thresholds generally suggest an increased 
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risk of prostate cancer, whereas levels above 10ng/ml potentially indicate more 

advanced prostate cancer with possible metastasis (Schulz et al., 2003). Despite 

being one of the most common methods to test for prostate cancer, its reliability is 

still a focus for debate and controversy. PSA is not a prostate cancer-specific 

biomarker as a high serum PSA level does not necessarily indicate a higher risk or 

aggressiveness of prostate cancer but can be attributed to an increase in prostate size 

as seen in non-malignant prostate diseases such as benign prostatic hyperplasia 

(BPH). In such cases, high serum PSA level can lead to a false positive result which 

may lead to unnecessary follow up tests (Ablin., 1997). 

 

 1.3.1.2 Digital rectal examination (DRE) 

Digital rectal examination (DRE) was the first established method for detecting 

prostate cancer. This method involves the insertion of a gloved finger into the rectum 

to examine the prostate for any lumps or nodules.  Due to the crude nature of this 

clinical procedure, it is limited in its ability to detect all prostate cancers as its 

accessibility is restricted to the area of the prostate most adjacent to the rectum 

(Spigelman et al., 1986). In addition to this method being invasive to the patient, 

there is the possibility that any suspicious lumps detected via DRE could be 

aggressive cancers with the potential to metastasise. In these cases, therapeutic 

approaches are unlikely to be successful (Scardino et al., 1992). 
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1.3.1.3 Transrectal ultrasound (TRUS) 

Transrectal ultrasound (TRUS) is used to visualise and target prostate biopsies via an 

ultrasound probe inserted into the patient’s rectum. Patients with an elevated level of 

PSA generally undergo TRUS guided prostate biopsies to confirm the diagnosis. An 

ultrasound image is created of the internal architecture of the prostate gland where 

any regions harbouring potential cancer abnormalities can be identified; doing so 

enables guided biopsies to be performed on these problematic areas. Despite the 

common use of this method, abnormal looking regions picked up via ultrasound 

imaging which could correlate to cancerous zones can in fact result from benign 

pathologies such as benign prostatic enlargement nodules. On the contrary, images 

which appear normal may actually be harbouring malignancies (Narain et al., 2002). 

To enable a thorough examination of the patient’s prostate, it is important that 

biopsies are obtained from areas having both abnormal and normal appearance in a 

systematic manner with a recommendation that ten to twelve cores be obtained 

(National Institute of Health and Care Excellence guidelines CG175, 2014). 

 

1.3.1.4 Magnetic Resonance Imaging (MRI) 

Despite the plethora of detection options available for the patient, approaches such as 

PSA screening and random prostate gland biopsies often diagnose the patient with 

indolent or low-grade cancers that may remain asymptomatic. The use of Magnetic 

Resonance Imaging (MRI) has greatly improved the detection and staging of 

localised prostate cancer as well as metastases to distant sites in the body (Turkbey et 

al., 2013). MRI is best suited for prostate cancer patients who are deemed at a high-

risk of developing metastases, especially for bone metastases (Lecouvet et al., 2007). 
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1.3.2 Prostate cancer staging 

1.3.2.1 Tumour Node Metastasis (TNM) staging system 

The TNM staging system considers the primary tumour (T), lymph node status (N) 

and metastasis (M) in order to stage the prostate cancer. It is the most widely used 

and accepted staging system at present which is regularly updated and revised 

(American Joint Committee on Cancer, 2009). However, there remains controversy 

and doubt over its application to predict disease progression and correct treatment 

selection. Despite lymph node status being used as an important prognostic factor, 

when using the TNM staging system in prostate cancer, clinical outcomes of patients 

with positive lymph nodes are highly variable (Adams and Cheng., 2011). A variety 

of physical examinations, imaging techniques, laboratory tests and pathology 

analyses allow the classification of each component in TNM staging which are 

described in Table 1.1 and Figures 1.5 and 1.6. 
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Table 1.1 The TNM staging system of the prostate (adapted from Borley et al., 2009) 

Stage Characterisation 

Primary tumour (T) 

TX Primary tumour cannot be assessed 

T0 Primary tumour not evident 

T1 Tumour clinically inapparent, not palpable or visible by imaging 

T1a 

Tumour (non-palpable) as incidental histological finding at 

transurethral resection of prostate in 5% tissue resected 

T1b 

Tumour (non-palpable) as incidental histological finding at 

transurethral resection of prostate in >5% tissue resected 

T1c 

Tumour (non-palpable) identified by needle biopsy (for elevated 

serum PSA) includes bilateral non-palpable tumour on needle 

biopsy 

T2 

Tumour confined within prostate (including prostatic apex and 

prostatic capsule) that is either palpable or visible on imaging, 

or (p-prefix) demonstrated in radical prostatectomy specimen 

T2a Tumour involving one-half of one lobe or less 

T2b Tumour involving more than one-half of one lobe or less 

T2c Tumour involving both lobes 

T3 Tumour extends through prostatic capsule 

T3a Extra-capsular extension (ECE) 

T3b Invasion of seminal vesicle(s) 

T4 

Tumour fixed, or invades adjacent structures: bladder neck, 

external sphincter, rectum, levator muscles, and pelvic wall 

Lymph nodes (N) 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastases 

N1 

Regional lymph node metastases within true pelvis, below 

common iliac artery bifurcation, either unilateral or bilateral 

Metastases (M) 

MX Distant metastases cannot be assessed 

M0 No distant metastases 

M1a Non-regional lymph node metastasis 

M1b Metastasis to bone(s) 

M1c Metastasis to other site(s) 
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Figure 1.5 Coronal section through the prostate depicting stages T1-3 of prostate cancer (Image taken 

from Cancer Research UK). 

 

 

Figure 1.6 Sagittal cross section through the prostate depicting stages T3-4 of prostate cancer (Image 

taken from Cancer Research UK). 
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1.3.2.2 Gleason grading system 

The Gleason grading system is used in conjunction with the TNM staging system to 

give a histological grade of prostate cancer status which also assists with prognosis. 

This platform for classification is based on the histological status of prostate cells to 

describe their distribution and growth patterns in prostatic sections, acquired from 

prostate biopsies or the whole organ, subsequent to radical prostatectomy. Following 

histological examination, the most common pattern discerned is assigned a score 

whilst the second most common pattern observed is assigned another. The sum of 

these two scores comprises the overall Gleason score given to the prostate cancer 

(Gleason, and Mellinger., 1974). A higher Gleason score is normally attributed to 

cancers exhibiting a more aggressive phenotype and poorer prognosis. An overall 

Gleason score of 6 or less is considered low risk; a score of 7 is regarded as moderate 

whilst a high grade Gleason score of 8 or above is deemed high risk. A 

comprehensive description of each score is given in Table 1.2 and Figure 1.7. 
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Figure 1.7 Gleason grade schematic for prostate cancer (Image taken from Gleason., 1992) 
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Table 1.2. Gleason grading system for prostate cancer (data adapted from Humphrey., 2004) 

 

Score Tumour shape Stromal invasion Tumour cell distribution Gland size 

1 
Nodular with well 

defined smooth edges 
Pushing 

Single, oval and closely 

packed cells, but detached 

glands 

Medium 

2 
Less defined and 

constrained masses 

Some gland 

separation at 

tumour 

peripheries 

Single, separated, loosely 

packed oval glands, with 

more variation in their size 

and shape 

Medium 

3A 
Indefinable infiltrating 

edges 

Irregular 

extension 

Single, detached glands of 

variable shape and size, with 

elongated and twisted forms 

and wide stromal separation 

Medium 

3B 
Indefinable infiltrating 

edges 

Irregular 

extension 

As with 3A except with 

smaller glands 

Small to 

very small 

3C 
Masses and cylinders 

with smooth round edges 
Expansile 

Papillary and cribriform 

epithelium without necrosis 

Medium to 

large 

4A Raggedly infiltrative 
Disseminated and 

permeative 

Amalgamated glands in 

masses, cords, or chains 
Variable 

4B Raggedly infiltrative 
Disseminated and 

permeative 

As 4A, but cells have 

cleared cytoplasm 

(hypernephromatoid) 

Variable 

5A 
Smooth and rounded 

cylinders 
Expansile 

Papillary, cribriform or solid 

masses with central necrosis 

(comedocarcinoma) 

Variable 

5B Raggedly infiltrative 
Disseminated and 

permeative 

Masses and sheets of 

anaplastic carcinoma, with 

some tiny glands or signet 

cells 

Variable 

 

 

 



23 
 

1.4 Prostate cancer treatments 

A major problem faced by individuals affected by prostate cancer can be the indolent 

and latent nature of the disease. Symptoms of this disease can appear much later in 

life which usually indicates locally advanced or metastatic disease. 

Prostate cancers deemed low risk and localised tend to be very slow growing or show 

no progression in growth at all. In such cases, these patients are offered active 

monitoring whereby the cancer is assessed over time and if the disease progresses, 

patients at risk can be quickly identified and treated appropriately. Due to the 

heterogeneity seen across prostate cancer cases, choosing a treatment best suited for 

a particular patient represents a difficult decision that requires careful consideration. 

The D’Amico classification system for localised disease was designed for evaluating 

the risk of disease recurrence following primary prostate cancer treatment (D’Amico 

et al., 1998). This risk assessment takes PSA level, Gleason score and tumour size (T 

stage) to classify this risk to patients as low, intermediate or high (refer to Table 1.3). 

This system aids an informed decision to select the most suitable treatment option. 
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Table 1.3. The D’Amico classification system for prostate cancer using PSA level, Gleason score and 

tumour size (T stage) to determine risk of disease recurrence 

 

 

D’Amico risk 

classification 

PSA level Gleason score T stage 

Low Less or equal to 10 Less or equal to 6 T1-2a 

Intermediate Between 10 and 20 Equal to 7 T2b 

High More than 20 More or equal to 8 T2c-3a 
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1.4.1 Radical prostatectomy 

Surgical removal of the whole prostate, known as prostatectomy is a common 

procedure for prostate cancers at stage T1 or T2 when the tumour is confined within 

the prostate. For obvious reasons, this option is not suitable in cases where the cancer 

has metastasised to distant sites. The main technique used to surgically remove the 

prostate is radical prostatectomy which is an improvement on previous procedures as 

it involves sparing the neurovascular bundles adjacent to the prostate and therefore 

avoids impairing erectile function and sexual potency (Walsh et al., 1983). 

Refinements in the surgical technique have led to the development of laparoscopic 

and more recently robotic surgery for the surgical treatment of prostate cancer (Ali et 

al., 2013). 

 

1.4.2 Radiotherapy 

Radiotherapy uses high doses of radiation to target cancer cells by promoting DNA 

damage induced apoptosis, a process to which cancer cells are more vulnerable than 

normal cells. This method is suitable for low-grade prostate cancers that are still 

confined within the prostate gland as well as cancers that have progressed to a locally 

advanced stage. Radiotherapy can help reduce tumour size and offers an element of 

relief for the patient. The two main types of radiotherapy available are brachytherapy 

and external beam radiotherapy. Brachytherapy involves the insertion of pellets 

comprised of radioactive elements such as iodine-125 or palladium-103 for low dose 

rate brachytherapy. These pellets are placed into thin needles which permits 

implantation directly into the prostate. These ‘seeds’ then expose the prostate to high 
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doses of radiation over a few months without being administered to the healthy 

tissues elsewhere in the body (Radge et al., 2000). 

Men opting for low dose rate brachytherapy require only a single treatment, making 

it the preferred choice for some patients compared to external beam radiotherapy 

where 30-35 treatment doses are administered over a period of 6-7 weeks at a 

frequency of 5 days a week. External beam radiotherapy directs high dose radiation 

beams from a linear accelerator to the prostate from outside the body. Like 

brachytherapy, this method spares the surrounding normal tissue from damage, 

however it is possible for patients to suffer from side effects including problems 

affecting the bowel and bladder regions such as diarrhoea, urinary incontinence and 

inflammation as well as erectile dysfunction (Mohan and Schellhammer., 2011).  

 

1.4.3 Androgen deprivation therapy 

The development of the prostate gland and prostate cell growth is stimulated by 

androgens. Such androgens include testosterone which is secreted from the testicles 

and is converted into dihydrotestosterone (DHT) in the prostate (Roy and Chaterjee., 

1995). Despite being physiologically important, these hormones are also essential to 

the continued survival and growth of prostate cancer cells. Limiting androgen 

activity suppresses prostate cancer cell proliferation, triggers apoptosis and in in vivo 

models, a decrease in tumour size (Kyprianou et al., 1990). 

Early research on prostate cancer focused on the androgen dependence of the disease 

which led to the suggestion that it was a hormone-dependent cancer (Huggins and 

Hodges., 1941). Androgen deprivation therapy (ADT) encompasses a wide variety of 
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drugs that either diminish circulating levels of androgens or block the androgen 

receptor as illustrated in Figure 1.8. 

Luteinising hormone (LH) releasing hormone (LHRH) agonists and antagonists 

function by blocking the LHRH receptor which in turn reduces LH and thus causes a 

reduction in testosterone production in the testicles. This approach has replaced 

orchiectomy (surgical castration) due to patient preference and the flexibility this 

option offers to adapt treatment over the course of the disease (Stricker., 2001). In 

some patients, LHRH agents are used in conjunction with anti-androgens which 

inhibit the binding of testosterone or dihydrotestosterone to the androgen receptor. 

Doing so abolishes the testosterone negative feedback loop and thus stimulates the 

production of LHRH and therefore testosterone production (Denmeade and Isaacs., 

2002). However, patients treated with androgen deprivation therapy often become 

resistant to these drugs and develop castration-resistant prostate cancer. Androgen 

insensitivity is commonly associated with advanced prostate cancer and contributes 

to the challenges faced in the treatment of this disease (Feldman and Feldman, 2001). 

An adjuvant or neoadjuvant androgen deprivation therapeutic approach to 

radiotherapy is commonly used to improve outcome in patients presenting with 

locally advanced prostate cancer (Payne and Mason., 2011). 
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Figure 1.8 Androgen production and their regulation by therapeutic drugs. Luteinising hormone 

(LH) releasing hormone (LHRH) produced in the hypothalamus stimulates LH production in the 

pituitary gland. Activation of the the LH receptor stimulates testosterone production in the testicles 

and is converted to dihydrotestosterone. The mode of action elicited in this cascade described above is 

targeted by a variety of drugs to control and treat prostate cancer (Figure taken from Denmeade and 

Isaacs., 2002). 
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1.5 Cancer metastasis 

The majority of prostate cancers are slow growing and asymptomatic. Even when 

considering aggressive cases, it is generally seen that prostate carcinomas remain 

confined to the prostate with very few cases progressing to metastasis. Despite this, 

cancer metastasis accounts for as much as 90% of cancer-related deaths. Even so, no 

definite preventative or curative treatments have yet been developed to target the 

metastatic cascade of cancer. It is hoped that ongoing dynamic research into this area 

of importance will yield an insight into the mechanisms underlying this complex 

multistage process and subsequently lead to the development of viable therapeutic 

approaches with the ability to prevent cancer metastasis. 

 

 

1.5.1 Metastatic cascade 

Cancer metastasis involves the establishment of cancer cells, originating from the 

primary tumour, to a distant site to form a secondary tumour. This complex process 

requires the coordination of several key events. The primary step involves the 

dissociation of cancer cells from the primary tumour which then proceed to locally 

invade surrounding tissue enabling entry into the circulatory system (intravasation). 

Successful passage into the bloodstream provides indiscriminate access for these 

cancer cells to distant sites within the body. Once a successful exit from the 

bloodstream (extravasation) has been achieved, the cancer cells will need to survive 

and proliferate in the distant tissue to establish a secondary tumour. This succession 

of events in the metastatic cascade is illustrated in Figure 1.9. 

Instigation of the metastatic cascade occurs upon the acquisition of metastatic 

phenotypes by cancer cells in the primary tumour. A single point mutation has the 
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ability to transform a normal cell into a cancer cell and furthermore, an accumulation 

of genetic and/or epigenetic aberrations in a cancer cell at the primary site has the 

potential to confer aberrant characteristics such as increased motility, invasion and 

resistance to apoptosis which is ideal for metastasis.  

Despite the aggressive nature of cancer metastases, accomplishing each stage of the 

metastatic cascade does not come without potential cell elimination along the way. 

With less than 0.1% of disseminated cancer cells from the primary tumour 

establishing secondary tumours at a distant site, this process is in reality very 

inefficient (Fidler., 1970). Even so, an appreciation of the molecular basis underlying 

each phase of the process will lead to a greater understanding of metastatic disease. 
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Figure 1.9 The metastatic cascade follows a sequence of steps: local invasion, intravasation, survival 

and migration in the vascular system, adhesion, extravastion ending with successful colonisation at the 

secondary site (Image taken from Clarke et al., 2009) 
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1.5.2 Local invasion 

Dissemination of cancer cells from the primary site is the preliminary event that 

initiates the metastatic cascade, without which, there would be no possibility of these 

cells spreading elsewhere in the body. A vast spectrum of adhesion molecules 

including members of the immunoglobin superfamily (IgSF),  cadherins, integrins, 

selectins, ephrins, claudins and occludin (Palmer et al., 2011) play a cardinal role in 

regulating cell-cell and cell-matrix interactions. The establishment of dynamic 

interactions between adjacent cells and/or the extracellular matrix (ECM) is pivotal 

in regulating cell migration and invasiveness. In spite of this, the acquisition of 

metastatic traits can enable cancer cells to overcome the inhibitory effects inflicted 

by cell-cell and cell-matrix interactions, thus permitting cells to advance through the 

metastatic cascade. During metastasis, the architecture at the cell junctions can 

change, thus influencing cell-cell adhesion. Cell adhesion molecules (CAM) such as 

E-cadherin, N-cadherin and β-catenin are key elements in this metastatic transition.  

Epithelial (E-) cadherin is a major component of adherens junctions in epithelial cells 

whereby cell-cell contacts are heavily mediated by its ability to co-ordinate with 

another E-cadherin molecule of a neighbouring epithelial cell. Furthermore, E-

cadherin is able to associate intracellularly with members of the catenin family 

including β-catenin. The formation of cadherin-catenin complexes is a key link 

between adherens junctions and the actin cytoskeleton. Actin polymerisation factors 

have been suggested to be recruited by cadherin and catenin co-ordination to 

promote actin reorganisation to facilitate adherens junction assembly and formation 

of cell-cell contacts (Harris and Tepass., 2010). E-cadherin is regarded as a 

tumour/invasion suppressor due to findings of decreased expression levels in higher 
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grade carcinomas, thus implicating it as a potential biomarker for aggressive cancers 

(Rubin et al., 2001).  

Contemporaneously with decreased E-cadherin expression, an upregulation of 

mesenchymal markers such as vimentin and neural (N-) cadherin is associated with 

epithelial to mesenchymal transition (EMT). The loss of epithelial properties along 

with the gain of mesenchymal characteristics is indicative of EMT and is becoming 

increasingly recognised as a fundamental passage to metastasis. Increased N-

cadherin levels induce cytoskeleton reorganisation via small GTPase signalling. This 

mediates the formation of cell protrusions such as stress fibres, filopodia and 

lamellipodia (Cavallaro and Christofori., 2004). Despite this cadherin switch being 

an inherent process in embryonic development, chronic inflammation and wound 

healing; aberrations of this operation are implicated as a defining development in 

conferring increased motile and invasive capacity in metastatic cancer cells. 

Acquisition of a mesenchymal phenotype enables cancer cells to escape the confines 

of the primary tumour into the surrounding tissue. In the case of carcinomas such as 

prostate and breast cancer, which are epithelial in origin, invasion of these cells 

requires extracellular matrix (ECM) reconstruction to enable breach of the basement 

membrane. Cell-matrix contact is facilitated by adhesive proteins on the cancer cell 

surface and the ECM. The integrin family of proteins bind directly to structural 

components of the ECM. This action governs their crucial role in cell migration and 

invasion (Desgrosellier and Cheresh., 2010). These traits are facilitated by the ability 

of integrins to recruit proteases and regulate their activity which can assist cancer 

cells to cross tissue barriers by remodelling the surrounding matrix. Most prominent 

of these matrix degrading enzymes are the matrix metalloproteinases (MMPs) which 
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have the capacity to digest multiple ECM components including collagen, 

vitronectin, fibrinogen and laminin (Deryugina and Quigley., 2006). 

 

1.5.3 Intravasation and survival in the vascular system 

Angiogenesis is an essential process which orchestrates the formation of new blood 

vessels with the sole purpose of providing necessary nutrients and oxygen to tissue. 

However, as with the properties that characterise cancers, this normal physiological 

process is aberrantly upregulated in tumour growth and greatly facilitates the 

progression of cancer cell dissemination. As a tumour proliferates, its consumption 

of oxygen and nutrients grows. As the blood supply can become restricted, a state of 

oxygen starvation in these cancer cells results in the activation of pro-angiogenic 

factors such as hypoxia-inducible factor-1 (HIF-1). HIF-1 along with vascular 

endothelial growth factors (VEGF) can stimulate the generation of new blood vessels 

in their surrounding microenvironment (Jośko and Mazurek., 2004). Unsurprisingly, 

the formation of new blood vessels as a gateway for nutrients and oxygen is also an 

escape route for cancer cells, particularly cancer cells which have acquired migratory 

and invasive phenotypes. 

Intravasation is the invasion of carcinoma cells into the circulatory or lymphatic 

system which enables cancer cells to reach distant organs (Gupta and Massaque., 

2006). The blood of many patients presenting with advanced primary tumours 

harbour circulating tumour cells (CTCs). These cells represent metastatic 

intermediates advancing from their primary tumour origins to their uncertain 

destination. CTCs must overcome a multitude of challenges on this perilous journey, 

all of which could result in cell elimination. 
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Cancer cells face numerous hurdles which could hamper their translocation, one such 

hindrance being the large diameters of carcinoma cells (20-30µm) relative to the 

luminal diameter of capillaries (~8µm). Moreover, CTCs may travel as larger multi-

cell clusters thus further restricting their movement. Considering the physical 

constraints of their surroundings, a large proportion of CTCs become trapped and 

destroyed. Moreover, CTCs can be subjected to attack by the immune system and the 

activation of apoptosis. Advantageously for CTCs, several mechanisms aid their 

survival in the circulatory system. The attributes acquired during EMT are not only 

limited to increased cell motility and invasion. Mesenchymal transformation also 

bestows stem cell properties, in particular, increased resistance to apoptosis and 

senescence and suppression of the immune system (Kallergi et al., 2013).  

Furthermore, the production of chemokines, cytokines and growth factors by CTCs 

encourages the association of blood platelets. These platelet-coated tumour cells are 

thus ‘cloaked’ from attack by the immune system and provide an additional benefit 

to the cells which are shielded from potential damage inflicted by shear forces during 

transportation in the blood system (van Zijl et al., 2011). 

 

1.5.4 Extravasation 

The mesenchymal phenotype of the cancer cells greatly benefits them in escaping 

from their primary tumour origins and in survival within the hostile environment of 

the circulatory system. Even so, this does not appropriately equip them for the latter 

stages of the process, namely, exit from the blood stream (extravasation) and 

colonisation at a distant site. However, the observation of an epithelial phenotype at 

the secondary tumour site and the close resemblance between the primary tumour 



36 
 

and the metastasised tumour at a distant site on a histopathological level has led to 

the suggestion that this is influenced by mesenchymal-to-epithelial transition (MET) 

(Gao et al., 2012). 

The acquisition of traits facilitating cancer cell progression through the metastatic 

cascade has already been established as a random series of events which benefit cell 

survival in an inefficient process. The colonisation of a secondary tumour on the 

other hand points towards a mechanism which is less accidental. 

Prior to metastatic colonisation, CTCs need to escape the vascular system and arrest 

at distant organ sites. Evidence implicates the action of particular integrins to assist 

tumour cell adherence to the endothelium of the capillary bed at the target organ. 

Studies in mice have shown that β4 integrin adhesion to the lung endothelial Ca
2+

-

activated chloride channel protein mCLCA1 is a mechanism that facilitates lung 

colonisation by B16-F10 cells (Abdel-Ghany et al., 2002). Alternative in vitro 

studies have linked the integrin αvβ3 with assisting melanoma cell progression 

through a monolayer of human lung microvascular endothelial cells (Voura et al., 

2001). Besides integrins, the well-known cell adhesion molecule CD44 is known to 

form a complex with ezrin, a cytoskeletal anchoring protein. These properties 

support the notion of this complex’s role in tumour-endothelium interaction (Martin 

et al., 2003). 

In other cases, CTCs may become lodged within capillary beds due to their large size 

relative to the smaller diameter of blood vessels, thus limiting their passage. Where 

this occurs in conjunction with cells that proliferate at a rapid rate, the cancerous 

lesion breaches through the confines of the vascular space into the neighbouring 

tissue (Al-Mehdi et al., 2000). 
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The site of secondary tumours in patients diagnosed with a particular cancer is a 

complex issue. For example, prostate and breast cancer are the most common 

carcinomas to develop bone metastases whereas colorectal cancers have a tendency 

to metastasise to the liver (Lehr and Pienta., 1998; Kawada et al., 2011). This 

apparent pattern observed for secondary sites of metastatic colonisation for specific 

cancers is unlikely to be attributable to chance. This observation was first 

documented and pioneered by Stephen Paget who established the ‘seed and soil’ 

hypothesis where he postulated that cancer cells with metastatic potential (the ‘seed’) 

would only go on to establish metastases if they settle at specific sites (the ‘soil’) 

(Paget., 1889). 

The specificity of metastases in particular organs can be influenced by the capillary 

architecture of the tissues of these favoured organs, which can arrest CTCs at these 

sites as already mentioned. Furthermore, vascular flow patterns can contribute to 

metastatic specificity. For example, it is very common for colorectal cancers to form 

metastases in the liver due to cancer cells from the primary site being transported via 

the hepatic portal circulatory system and arriving directly at the liver (Chambers et 

al., 2002). Additionally, the action of “homing signals” including chemokines and 

growth factors have also been implicated in organ-specific metastases (Langley and 

Fidler., 2011). 
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1.5.5 Metastatic colonisation 

As with all stages of the metastatic cascade, colonisation at distant organs is an 

exceedingly inefficient process with the majority of CTCs undergoing apoptosis 

within 24 hours of extravasation (Chaffer and Weinberg., 2011). It is likely that the 

tissue microenvironment encountered by the extravasated tumour cells will differ 

from their primary tumour origins, thus making them poorly adapted. However, if 

cells successfully extravasate and are not terminated, these surviving tumour cells are 

postulated to exist in either a non-proliferative dormant state or in a state of rapid 

growth. Transition from quiescent mode to one that exhibits metastatic colonisation 

capacity is governed by the need for the cells to acclimatise to their new 

surroundings. Remodelling local microenvironments via Matrix metalloproteinases 

(MMPs), stimulation of integrins and recruitment of pro-angiogenetic factors such as 

VEGF have been implicated in this transition (Joyce and Pollard., 2008). Such 

remodelling, which has already been established, provides a portal for oxygen and 

nutrients in addition to an escape route for tumour cells with metastatic potential, 

allowing them to seed a secondary tumour elsewhere in the body. 

 

1.6 Prostate cancer metastasis 

According to worldwide statistics, prostate cancer has the second highest incidence 

rate. Despite this, mortality rates of this disease place it the sixth highest worldwide 

due to relatively few number of cases resulting in cancer-related death (Globocan, 

2012). The vast majority of prostate cancer-related deaths are as a consequence of 

aggressive metastatic spread of the cancer cells to other sites within the body. 

Prostate cancer patients exhibiting localised tumours have approximately a 90% 5-
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year survival rate which falls to 30% for patients presenting with metastases (Cancer 

Research UK, 2014). Metastatic lesions originating from prostate cancers most 

frequently occur in the bones. This is a trait shared with other leading cancer types 

including  breast and lung. Mortality data indicate that over 80% of prostate cancer 

patient deaths exhibit bone metastatic lesions (Bubendorf et al., 2000). Aside from 

the issue of mortality, symptoms experienced by individuals burdened by bone 

metastases often include chronic bone pain, hypercalcemia (elevated calcium levels 

in the blood), bone fractures and nerve compression (Gralow et al., 2009). The 

development of bone metastases and the associated effects are indicative of poor 

prognosis. The processes that define the preference for prostate cancers to 

metastasise to the bone are poorly understood. Therefore, elucidating this mechanism 

will help understand this clinically significant disease and aid the development of 

therapies to inhibit and/or treat metastatic bone lesions. 

The sequence of events in prostate cancer bone metastases follows those outlined in 

the previous section ‘Cancer metastasis’. Before metastasis has initiated, it is 

generally observed, at the very early stages of prostate cancer, that the tumour cells 

to retain their epithelial traits and are well confined to the prostate. Their limited 

motility is due to stable adherence of these luminal basal cells to the basement 

membrane and to each other, thus forming a cell layer that coats the lumen. 

However, the influence of several molecular changes has the potential to disrupt 

these cell to cell and cell to matrix contacts which has therefore been linked to EMT 

in prostate cancer.  
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1.6.1 Cadherins and catenins 

Maintaining contacts between cells and their matrix is managed by cell adhesion 

molecules (CAM). Downregulation of these fundamental interactions disrupts tissue 

architecture and is the prerequisite to developing an invasive phenotype in early 

metastasis. The CAMs encapsulate molecules of various classes and functions which 

include cadherins, integrins and the immunoglobin superfamily (IgSF).  

As previously mentioned, loss of E-cadherin is linked with the acquisition of 

mesenchymal characteristics and this contribution to cancer metastasis has been well 

documented. Expression levels of E-cadherin are known to be lower in tumour 

specimens taken from patients presenting with higher-grade prostate cancers 

(Gleason score ≥8) compared to patients with a lower-grade (Umbras et al., 1992). 

E-cadherin was also found to be down-regulated in several prostate cancer cell lines 

(Bussemakers et al., 2000). Cadherins require an association with cytoplasmic 

proteins such as catenins to elicit their cell-cell adhesive properties. A well 

characterised complex formed from members of these protein families is comprised 

of E-cadherin and β-catenin. Interestingly, one study compared the expression levels 

of both proteins in primary prostate and bone metastases specimens, and observed 

both were down-regulated in the latter group (Bryden et al., 2002). This finding 

implicates the dysfunction of this complex to be clinically relevant in prostate cancer. 

More recently, the significance of δ-catenin in prostate cancer progression was 

highlighted when it was demonstrated to influence E-cadherin processing via MMP 

and PS-1/γ-secretase which impacts β-catenin-mediated oncogenic signalling (Kim et 

al., 2012). 
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1.6.2 Matrix metalloproteinases (MMPs) and other proteases 

Degradation of the ECM carves a pathway for metastatic prostate cancer cells to 

breach the basement membrane.  This is achieved via the enzymatic activity of 

several proteases which are able to digest the collagen, laminin and fibronectin ECM 

components. Matrix metalloproteinases are a family of zinc-binding enzymes able to 

cleave these ECM constituents whose activity is regulated by tissue inhibitors of 

metalloproteinases (TIMPs). These antagonistic protein groups are valuable in 

understanding cancer progression as an imbalance in their activity is a significant 

contributory factor to tumour cell invasion (Lokeshwar et al., 1993).  

Expression analysis comparing prostate cancer tissue to specimens from normal 

prostates found MMP-9 levels were significantly higher in the former group 

(Lichtinghagen et al., 2002). Additionally, MT1-MMP, an activator of proMMP-2, 

was demonstrated to be up-regulated in the metastatic prostate cancer cell lines, PC-3 

and DU-145 (Nagakawa et al., 2000). The role of MMPs in prostate cancer 

metastasis was further demonstrated using RNAi to target MMP-12 expression in 

PC-3 cells with the consequence of reduced invasive capacity (Nabha et al., 2008). 

The findings of this study were attributed to the action of MMP-12 in enhancing type 

I collagen degradation in the bone and highlights the contribution of MMPs in bone-

related metastasis. 

Serine proteases are another enzyme group able to degrade the ECM. These include 

trypsin, thrombin, plasmin, cathepsin G and urokinase-type plasminogen activator 

(uPA). Upon binding to its receptor, uPAR, uPA activity is greatly accelerated and is 

able to efficiently convert inactive plasminogen to a broad-spectrum protease 

plasmin which can cleave ECM components such as fibronectin, laminin, fibrin, 



42 
 

vitronectin and collagen. Furthermore, it has the ability to activate several proteases 

including procollagenases and MMPs (Li and Cozzi., 2007). This proteolytic enzyme 

has been studied at great length and is of much clinical interest due to findings that 

levels of uPA and uPAR are upregulated in prostate cancer tissues relative to those 

from benign lesions and normal prostate tissue (Gavrilov et al., 2001). Additionally, 

uPA is secreted at higher levels by the metastatic prostate cancer cell lines PC-3 and 

DU-145 relative to LNCaP which exhibits comparatively low tumorigenicity 

(Hossein et al., 1991). 

Recognised worldwide as a diagnostic marker for the early detection of prostate 

cancer, PSA has also been implicated as a serine protease with the ability to aid 

prostate cancer cell invasion. Further to its primary role of liquefying semen during 

ejaculation, in vitro assays have demonstrated the ability of PSA to degrade 

fibronectin and laminin, main components of the ECM (Webber et al., 1995). 

 

1.6.3 Integrins 

The integrins comprise a broad family of proteins with roles in cell apoptosis, 

angiogenesis, migration and adhesion (Desgrosellier and Cheresh., 2010). The 

diversity of the integrin family is reflected in the multiple downstream effectors it 

regulates including the focal adhesion kinase (FAK), phosphatase and tensin 

homolog (PTEN) and Ras/Mitogen-activated protein kinase (MAPK) pathway.  It is 

therefore unsurprising that dysregulated integrin signalling is common in prostate 

cancer (Goel et al., 2008; 2009). Whilst most α and β subunits that comprise integrin 

heterodimers are found to be downregulated in prostate cancers, overexpression of 

α6, β1, β3 and β6 are upregulated with the former two subunits linked with an increased 
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invasive capacity (Cress et al., 1995). Cancer cells have been shown to utilise the β1 

integrin subunit in regulating insulin-like growth factor type 1 receptor (IGF-IR) 

localisation, expression and activity of which can promote cell proliferation and 

survival (Goel HL et al., 2005). Similarly, the β3 integrin subunit is of benefit to 

cancer cells because it increases levels of Cdc2 which results in promoted cell 

motility (Manes et al., 2003).  

As previously mentioned, cancer cells are subjected to an array of host immune 

responses once successful intravasation has occurred. It has been proposed that 

clumping with other cells particularly platelets, allows these cancer cells to overcome 

the hostile environment of the circulatory system. Integrins have been implicated as a 

possible mechanism to attract protective platelets to cancer cells as inhibiting 

platelet-cancer cell adhesion using antibodies to target αllb-βllla-integrins reduced 

lung colonisation in mice injected with DU-145 cells (Trikha et al., 1998). 

Once circulating prostate cancer cells have survived the hostile environment in 

circulation, they need to attach to the vascular endothelium and extravasate. Due to 

the propensity of prostate cancer metastasis to establish in bone, this would suggest 

that the ‘soil’ referenced in Stephen Paget ‘seed and soil’ hypothesis is the bone 

marrow. Indeed, evidence implicates that prostate cancer cells adhere to human bone 

marrow endothelial cells with a higher affinity relative to other endothelial cells 

(Lehr and Pienta., 1998). 

The mechanism that denotes endothelial cell type favouritism is not clear but several 

explanations have been postulated including the action of adhesion molecules on the 

surface of prostate cancer and endothelial cells, chemoattraction, paracrine 

interaction and growth factors (Cher., 2001). A model used to explain this specificity 
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is the ‘dock and lock’ mechanism which requires the aid of several adhesion 

molecules. For example, integrins including αvβ3, α5β1 and α3β1 mediate the ‘locking’ 

of prostate cancer cells with endothelial cells (Romanov and Goligorsky., 1999). 

Interestingly, αvβ3 is also expressed by osteoclasts; a major cellular component of 

bone (Nesbitt et al., 1993). Moreover, the integrins facilitate the association of 

prostate cancer cells to extracellular matrix components to establish these cells at a 

distant site. The β1 and β4 integrins mediate binding to laminin and type IV and V 

collagen, whilst β1 has also been shown to aid interaction with hyaluronan, 

fibronectin and type I collagen (Clarke et al., 2009). 

Together, the roles played by these integrin subunits within various signalling 

pathways permits an understanding as to how their aberrant expression can 

contribute to prostate cancer progression. 

 

1.6.4 Prostatic bone metastasis 

As previously stated, prostate cancers have a propensity to establish in the bone 

marrow and lymph nodes. Metastases can present as two types of lesions in the 

skeleton: osteoblastic or osteolytic. Imbalances in osteoblast activity (bone 

formation) and osteoclast activity (bone resorption) result in such skeletal 

irregularities. Although bone metastases associated with prostate cancer tend to be 

osteoblastic in nature, this is attributed to aberrations in both bone formation and 

resorption.  

In addition to Paget’s ‘seed and soil’ hypothesis (Paget., 1889), an alternative theory 

was put forward by James Ewing who proposed that the pattern seen in different 
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cancers which favour metastases at particular sites was controlled by the direction of 

the vascular system (Fidler., 2003). This idea holds more validity when applied to 

certain cancers (e.g. colorectal cancer) however other mechanisms are implicated in 

the explanation of susceptibility of the bone to metastasis in prostate cancers. The 

presence of chemo-attractants in the eventual secondary site and the fact that it is an 

energy-rich source, can help to explain the homing phenomenon seen in cancers of 

the breast, lung and prostate.  

Specificity for bone in prostate cancer was demonstrated when it was noted that the 

metastatic prostate cancer cell lines, PC-3 and DU-145 displayed increased 

invasiveness and chemotaxis when cultured with bone extracts in comparison to 

extracts taken from brain, kidney, liver, lung and splenic tissue (Jacob et al., 1999). 

The chemo-attractant found in the bone was identified as osteonectin, a minor bone 

matrix protein and interestingly, this was also shown to upregulate MMP activity in 

prostate cancer cells.  

Prostate cancer cells have been demonstrated to respond to certain growth factors 

which are expressed at sites where prostate cancers preferentially metastasise. 

Epidermal growth factor (EGF) which is expressed in the lymph nodes and bone 

stroma has been shown to increase chemo-migration of prostate cancer cells in vitro 

and treatment with an EGF blocking antibody interrupts this migratory effect (Rajan 

et al., 1996) (Zolfaghari and Djakiew., 1996). Prostate cancer cells have also been 

shown to display increased migration in in vitro assays in response to insulin-like 

growth factor (IGF-) 1 and 2, both of which are produced by bone cells (Ritchie et 

al., 1997). 
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The chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 

facilitates the homing of haematopoietic stem cells (HSC) to the bone marrow. The 

fact that SDF-1 is expressed by bone marrow endothelial cells and osteoblasts 

supports this notion in addition to the finding that CXCR4 knockout cells are unable 

to engraft HSCs to the bone marrow (Aiuti et al., 1999; Peled A et al., 1999). This 

CXCR4-SDF-1 mechanism is known to influence bone metastasis in prostate cancer 

(Taichman et al., 2002). Expression analysis of CXCR4 in prostate cancer patients 

revealed those affected by localised or metastasised cancers exhibited significantly 

upregulated SDF-1 and CXCR4 levels compared to individuals with normal or 

benign prostate tissue (Sun et al., 2003). Furthermore, in vitro studies demonstrated 

increased migration in PC-3 and DU-145 cells in response to SDF-1 (Taichman et 

al., 2002). As promising as these findings are, experiments blocking CXCR4/SDF-1 

signalling did not inhibit the invasion of prostate epithelial cells towards bone 

marrow derivatives indicating that, despite being an important motility mechanism, 

other chemokine signalling cascades are involved (Hart et al., 2005). 

Along with chemokines at the eventual distant site, the presence of a rich energy 

source to attract metastasising cancer cells is important. The appeal of a lipid source 

to a cancer cell is clear when considering the aberrant levels of proliferation and 

migration commonly observed in cancer cells. Co-cultured adipocytes with PC-3 

cells demonstrated that the proliferation of these cells was significantly higher 

compared to cells cultured alone (Tokuda et al., 2003). The availability of lipids as a 

significant factor for prostate cancer metastasis was further exemplified when the 

high rates of migration observed by PC-3 cells in response to omega-6 lipids found 

in the bone marrow was suppressed by the competitive binding of omega-3 lipids 

(Brown et al., 2006). The composition of bone marrow becomes increasingly 
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occupied by adipose tissue with age and is a frequent site for metastasising prostate 

cancer cells; these details along with the findings mentioned above provide a 

contributory explanation behind increased mortality rates associated with prostate 

cancer with increasing patient age. It also highlights another potential therapeutic 

target for affected individuals. 

 

1.7 Cellular migration 

Cell motility is a basic function underlying various physiological processes from 

tissue formation during embryogenesis to the migration of fibroblasts and vascular 

endothelial cells for wound healing and the deployment of leukocytes during an 

inflammatory response (Lambrechts et al., 2004). Along with cell integrity, 

membrane trafficking and cell morphology changes; cell migration relies on the 

dynamic restructuring of the actin cytoskeleton.  

A succession of four steps steer directional motility: protrusion of the cell leading 

edge, adhesion to the substrate, retraction, and de-adhesion of the tail. Extension of 

the cell’s membrane at the leading edge can be accomplished via the formation of 

various cell protrusions. Filopodia are thin actin-rich membrane projections and act 

as sensory antennae for the cell to explore the surrounding environment. These 

structures are commonly found within or protruding from lamelliopodia. These flat 

sheet extensions are a characteristic feature at the leading edge and are proposed to 

be the motor pulling the cell forward during cell migration. The mechanism that 

directs the plasma membrane forward within filopodia and lamellipodia is actin 

polymerisation (Ridley., 2011). The cyclic progression of these cell migratory steps 

is depicted in Figure 1.10. 
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Cytoskeletal changes occur in response to extracellular stimuli and are coordinated 

via a multitude of signalling factors comprising G-protein-coupled membrane 

receptors, Rho-GTPase family proteins and protein kinases. The precise mechanisms 

linking these signalling factors to actin reorganisation at the leading edge of the cell 

remains obscure. Even so, downstream cytoskeletal targets which play a cardinal role 

in actin polymerisation, resulting in cell motility and morphology changes, are well 

documented and encompass proteins involved in specific actin polymerisation stages. 
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Figure 1.10 Cell migration is driven by cyclic steps dependent on cytoskeletal reorganisation. (a) 

Protrusive structures such as filopodia and lamellipodia at the leading edge extend out in the direction 

of movement (b) The leading edge adheres to the substrate (c) (d) The tail end of the cell is detached 

and retracted (Image taken from Mattila and Lappalainen., 2008). 
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1.8 Rho GTPases 

The Rho family of guanosine triphosphatases (GTPases) are a group of small GTP-

binding proteins which are a subgroup of the Ras superfamily. They are small 

proteins (21-25kDa) which share structural homology (40-95%) and become 

activated upon GTP association. The participation of Rho GTPases in processes such 

as cell polarity, gene transcription, cell proliferation, cell polarity and apoptosis 

highlights the immense versatility and complexity of these proteins. This diversity is 

attributed to the existence of numerous Rho GTPase family members and their 

targets as well as the ability of these proteins to become post-translationally modified 

by isoprenoid lipids at their C-terminal, influencing subcellular localisation and 

interaction with cellular structures (Parri and Chiarugi., 2010).   

Mammalian cells express 22 Rho GTPases with the best characterised members of 

this GTPase subgroup being three Rho isoforms (A, B and C), three Rac isoforms (1, 

2 and 3) and Cdc42. Despite their ability to catalyse the same chemical reactions and 

share many cellular targets, the roles played by these small GTPases are also 

distinctly different. Characteristically, Rho activation through Rho-associated protein 

kinase (ROCK) influences stress fibre and focal adhesion formation, whilst Rac and 

Cdc42 are involved with lamellipodia and filopodium formation, respectively (Katoh 

et al., 2001; Ridley et al., 1999). 

The cell protrusive effects elicited by these proteins emphasises their pivotal role in 

cytoskeletal organisation which is perhaps the best characterised process associated 

with the Rho GTPase family. Like all GTP-binding proteins, these protein family 

members contain a sequence motif required for GDP and GTP binding with high 

affinity. The distinguishing structural feature of Rho GTPases is the Rho insert 
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domain present between a β and α helix within the GTPase domain (Zong et al., 

2001).  

The importance of these GTPases in regulating a plethora of downstream signalling 

pathways lies in them being sensitive molecular switches which are either in an 

inactive GDP-bound form or an active GTP-bound form (refer to Figure 1.11). The 

switch between active and inactive forms in Rho GTPases is orchestrated by three 

classes of GTPase regulatory proteins: guanine nucleotide exchange factors (GEFs), 

GTPase activating proteins (GAPs) and guanine nucleotide dissociation inhibitors 

(GDIs). 

GEFs catalyse the conversion of GDP to GTP and are therefore key in activating Rho 

GTPases which will subsequently interact with a multitude of various effectors of 

different signalling pathways (Schmidt and Hall., 2002). As the human genome 

encodes over 60 GEFs, and these proteins are the target for numerous extracellular 

signals, it is not surprising that with so many different effectors, Rho GTPases have 

the capacity to engage with such a diversity of cellular functions. Fine tuning specific 

Rho GTPase activity is achieved through tissue specific GTPase effectors and 

directing specific intracellular localisation via different lipid modifications as well as 

phosphorlyation by a variety of different kinases (Etienne-Manneville and Hall., 

2002; Ellerbroek et al., 2003). 
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Figure 1.11 The cyclic transition between an active GTP-bound state and inactive GDP-bound state 

of Rho GTPases facilitated by guanine nucleotide exchange factors (GEF); GTPase activating proteins 

(GAP) and guanine nucleotide dissociation inhibitors (GDI). Pi denotes a phosphate group which is 

released upon GTPase hydrolysis (Figure taken from Etienne-Manneville and Hall., 2002). 
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Rho GTPases exhibit intrinsic GTPase activity, with the ability to hydrolyse GTP to 

GDP and therefore provide a mechanism for self inactivation. Even so, levels of 

GTPase activity displayed by these proteins are insufficient to account for the rapid 

conversion of active GTPases to an inactive form and are instead attributed to GAPs. 

The GAP family comprises a vast number of members with the human genome 

encoding approximately 100 GAPs. As with GEFs, GAPs can be induced by several 

factors due to this protein group manifesting a multitude of protein structures and 

functions (Etienne-Manneville and Hall., 2002). 

The mode of action of GDIs differs from that described by GEFs and GAPs as this 

class of proteins does not regulate Rho GTPases through their GDP/GTP state. In 

contrast, GDIs maintain Rho GTPases in an inactive form by suppressing GDP 

dissociation and hinder activation by GEFs. Additionally, GDIs are able to associate 

with GTP-bound Rho GTPases; this inhibits GTP hydrolysis both intrinsically and by 

GAPs, but more importantly prevents activated Rho GTPases from interacting with 

downstream targets. Furthermore, the ability of GDIs to sequester Rho GTPases in 

the cytosol means that Rho proteins are unable to associate with the plasma 

membrane and become activated by GEFs (Hart et al., 1992) (Leonard et al., 1992) 

(Oloffsson., 1999). Together these points affirm a multifaceted inhibitory function by 

GDIs to control Rho GTPase activity. 

 

  



54 
 

1.8.1 Rho GTPases in cancer 

The plethora of physiological processes requiring Rho GTPases reflects their 

considerable contribution and importance in normal cell function. Unsurprisingly, 

these proteins are also known to contribute to various stages of cancer progression 

including cell migration and invasion; traits well established as early stages of 

metastasis. The motile ability of cancer cells is dependent on cell adhesion and 

dynamic cytoskeletal restructuring, both of which are regulated by the Rho GTPase 

family. Whilst activating mutations in the proto-oncogene family Ras are well 

documented in human solid tumours, Rho GTPase mutations are rarely associated 

with such tumours. Conversely, aberrant expression and elevated GTPase activity is 

frequently observed in human tumours (Gomez del Pulgar et al., 2005). Such traits in 

isoforms belonging to the subgroups Rho, Rac and Cdc42 of the Rho GTPase family 

have been associated with cancer advancement. Elevated RhoA and RhoC expression 

is commonly seen in human tumours whilst RhoB is downregulated; such 

observations can be explained by the different roles of these Rho isoforms in the cell. 

Cell-cell contact and cell polarity in epithelial cells is maintained by RhoA, however, 

disruption of these integral measures by RhoA aberrance is a prerequisite of tumour 

progression. Additionally, in vitro studies have revealed an ability of constitutively 

active RhoA to induce malignant transformation (Vega et al., 2008). The 

contribution of Rho GTPases to cancer progression is emphasized by the interaction 

of these proteins with pathways which direct cadherin-dependent cell-cell contacts 

and the finding that the production of MMPs is also regulated by Rho GTPases, thus 

emphasising the interplay of these proteins in cell adhesion and migration (Lozano et 

al., 2003). In addition to transformation, it appears RhoA also has the ability to 

influence cancer metastasis. A study demonstrated how perturbing the RhoA 
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pathway in prostate cancer cells significantly inhibited cell migration across the bone 

marrow endothelial barrier with some influence on changes in MMP expression and 

their associated inhibitors, tissue inhibitor of metalloproteinase (TIMPs) (Montague 

et al., 2004). 

Conversely, the role played by RhoC in cell invasion and migration suggests this 

influences cancer metastasis as opposed to transformation upon its atypical 

expression. A study demonstrated EMT coincided with elevated RhoC expression 

and activity in colon cancer cells. Moreover, RhoC expression and poor patient 

outcome was observed in colorectal cancer patients (Bellovin et al., 2006). The 

clinical significance of RhoC has also been observed in breast and lung cancer and 

melanoma metastasis (Ma et al., 2007; Clark et al., 2000).  Additionally, a 

correlation was shown between nodal involvement and metastasis with raised levels 

of RhoC, in breast tumour tissue and significantly higher levels of RhoC in patients 

with advanced breast cancer (Jiang et al., 2003).  Further investigation revealed that 

eliminating the expression of RhoC by ribozyme technology in MDA-MB-231 breast 

cancer cells reduces their in vitro invasiveness compared with wild type MDA-MB-

231 cells (Lane et al., 2010). The contributory value of RhoC to the metastatic 

potential of cancer cells is further emphasised by findings that it is involved in 

angiogenesis (Merajver et al., 2005). In contrast, RhoB is commonly found to be 

downregulated in human cancers and has a potential role as a tumour suppressor due 

to its apparent ability to hinder cell migration and invasion in addition to exhibiting 

pro-apoptotic capacities (Huang and Prendergast., 2006). 

Similarly, the three Rac isoforms Rac1, Rac2 and Rac3 are commonly overexpressed 

in various human cancers (Gomez del Pulgar et al., 2005; Abraham et al., 2001; Mira 

et al., 2000). Even so, it is interesting that in addition to aberrant Rac1 
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overexpression, mutations in this gene are observed in some human tumours (Hwang 

et al., 2004). The Rac isoforms display some distinct differences in the cancers with 

which they are associated in addition to the mechanisms with which they are 

associated. For example, Rac1 and Rac2 are both involved with macrophage 

migration, however, cell invasion is governed solely by Rac1 (Wheeler et al., 2006). 

Moreover, in vivo studies demonstrated a specific role for Rac3 in the development 

of Brc-Abl-induced lymphomas and not Rac1 nor Rac2 (Cho et al., 2005). 

As for Cdc42, correlation between its expression state and contribution to cancer 

progression suggests some tissue specificity due to the demonstration of upregulated 

expression in some cases of breast cancer, whilst Cdc42 knock-out targeting the liver 

revealed increased cancer advancement (Fritz et al., 1999; van Hengel et al., 2008). 

In normal epithelial cells, Cdc42 regulates cell polarity and motility, thus, any 

aberrations in its mode of action are likely to influence these cell traits and contribute 

to the metastatic potential of cancer cells. 

The great impact of the Rho GTPase family on normal cell function is reflected by 

their interplay with a wide variety plethora of proteins, both upstream and 

downstream, in multifaceted signalling pathways. As previously mentioned, many of 

these cell traits directed by the Rho GTPases are associated with their ability to 

manipulate cell cytoskeletal reorganisation. Pathways via which these proteins elicit 

these effects are through direct interaction with members of the Wiskott-Alrich 

Syndrome Protein (WASP) family which stimulates structures such as lamellipodia 

and filopodia. Although cell protrusions at the leading edge are essential for cell 

migration, if unregulated could easily become a precursor to cell metastasis. 
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1.9 Arp2/3 complex and activation 

Actin polymerisation is orchestrated by a plethora of proteins, but without the action 

of actin nucleating factors it cannot proceed at a rate that cell migration necessitates. 

Motile ends at the leading edge of cells have been shown to be rich in the Actin-

related protein (Arp) 2/3 protein complex, implicating its role in cell migration 

(Schafer et al., 1998). 

The Arp2/3 complex was first purified from Acanthamoeba castellanii and 

subsequently isolated from humans, Xenopus laevis and Saccharomyces cerevisiae 

(Machesky and Gould., 1999). The Arp2/3 complex is comprised of seven closely 

associated polypeptides which include a stable assembly of two Arps (actin-related 

proteins), Arp2 (ACTR2) and Arp3 (ACTR3) in addition to  five proteins; ARPC1, 

ARPC2, ARPC3, ARPC4 and ARPC5 (Beltzner and Pollard., 2002; Blessing et al., 

2004). 

The Arp2/3 complex cannot work alone and is intrinsically inactive which was 

demonstrated when purified Arp2/3 complex was shown to not (or poorly) stimulate 

actin nucleation (Pollard and Beltzner., 2002). Stimulation by nucleation promoting 

factors (NPFs) is able to activate Arp2/3 by inducing a conformational change 

whereby the activated protein complex configuration results in the subunits Arp2 and 

Arp3 being brought within close proximity to each other creating an actin pseudo-

dimer (Higgs and Pollard, 1999). As previously mentioned, spontaneous actin 

polymerisation from actin monomers is kinetically unfavourable (Mullins et al., 

1998). However, the formation of an actin dimer or trimer provides a kick start 

platform for rapid actin reorganisation. Generating an actin pseudo-dimer mimics a 

free barbed end and, through this mechanism, allows Arp2/3 to nucleate new 

filaments.  
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1.9.1 Arp2/3 complex in cancer 

The Arp2/3 complex is an essential driving force in cell migration through the 

formation of cell protrusions at the cell leading edge via actin polymerisation. Whilst 

its role in this normal physiological process is irrefutable, emerging evidence has 

also identified a potential contribution of the Arp2/3 complex in human cancer.  

In one breast cancer study, an association was established between breast cancer cells 

exhibiting HER2 gene amplification and higher expression of Arp2/3 bound to one 

of its nucleation promoting factors, WASP verprolin homologous protein (WAVE) 2.  

This Arp2/3-WAVE2 signal was weaker in breast cancer cells lacking HER2 gene 

amplification. The link between HER2 and Arp2/3-WAVE2 was further emphasised 

when cell lines devoid of HER2 gene amplification were transfected with HER2 

leading to an increase in lamellipodia formation and cell migration. Both of these 

traits were suppressed in HER2 amplified breast cancer cells when treated with a 

HER2 targeted drug. Moreover, immunohistochemical analysis of breast cancer 

sections showed a correlation between HER2 overexpression and Arp2/3-WAVE2 

co-expression (Yokotsuka et al., 2011). 

Another study focused on the significance of Arp2/3 in pancreatic cancer. Here the 

expression status of all subunits comprising the Arp2/3 complex were analysed in 

pancreatic cancer cell lines. Whilst ARPC3 was demonstrated to be one of the most 

highly expressed subunits, ARPC2 was one of the component members to be 

expressed at low levels. Each subunit was targeted by siRNA individually and this 

revealed that silencing ARPC4 reduced cell migration at the most significant levels 

(Rauhala et al., 2013).  
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The prognostic potential of Arp2/3 in human cancer was also highlighted whereby 

the expression of Arp2 and Arp3 was immunohistochemically investigated in a large 

cohort of colorectal tumours. A correlation was discerned between increased Arp2 

and Arp3 expression and tumours exhibiting an aggressive invasive phenotype 

(Otsubo et al., 2004). 

As cell motility is mediated by actin polymerisation, which is itself promoted by 

Arp2/3, it is not unreasonable to implicate a role for this protein complex as a 

contributory factor in cancer cell invasion and metastasis when aberrantly expressed 

or exhibiting enhanced activity.  

 

1.10 Actin polymerisation 

The generation of polarised projections of the cytoplasm at the cell’s leading edge 

via the formation of cell protrusions such as lamellipodia and filopodia assemble the 

prerequisite elements underlying cell locomotion. It has long been known that actin 

polymerisation is important for lamellipodia and filopodia formation. The driving 

force behind these cell protrusions and therefore cell motility is actin polymerisation 

(Ridley et al., 2003).  

Actin filaments (F-actin) constitute much of the dynamic branched framework at the 

extension of cell protrusions found at the leading edge of the cell. These filaments 

are orientated with their rapidly polymerising ends facing outwards in the direction 

of extension. Actin filaments are assembled via the reversible polymerisation of 

globular monomeric actin (G-actin) into polarised double helical polymers. These 

filaments exhibit two biochemically distinct ends where polarity reflects the rate of 

polymerisation and consequently the direction of the plasma membrane extension. 
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In the cell, the addition of ATP-bound actin monomers are favoured at the plus end 

where rapid actin polymerisation occurs. It is also referred to as the barbed end due 

to the association of myosin giving it an arrowhead appearance. In contrast, rates of 

actin polymerisation are much slower at the minus end where ADP-bound actin 

monomers dissociate, alternatively called the pointed end (Pollard., 1986). With the 

plus end orientated towards the plasma membrane in the cell, rapid actin 

polymerisation at this terminal gives rise to the cell membrane protrusions at the 

leading edge during cell motility. 

The dynamics of actin assembly at the plus and minus ends of actin filaments relates 

to their different critical concentrations. This describes the dissociation equilibrium 

constant for G-actin binding at the filament terminal. As the rate of actin 

polymerisation is dependent on the concentration of G-actin, all actin above the 

critical concentration polymerises. Owing to a lower critical concentration at the 

barbed end relative to the pointed end, the barbed end is the fast growing terminal of 

the actin filament. 

The spontaneous assembly of pure actin monomers into filaments is kinetically 

unfavourable due to the relative instability of actin dimers and trimers, making this 

the rate-limiting step in actin polymerisation. However, beyond the formation of an 

actin trimer, known as the nucleus, into what is essentially a free barbed end, 

filament elongation proceeds quickly with the rapid addition of actin monomers at 

the plus end. Actin monomer diffusion is responsible for the rate of filament growth 

and is dependent on subunit collision at the plus end with only 2% of collisions 

successful in incorporation of subunits in the correct orientation (Drenckhahn and 

Pollard., 1986). However, diffusion alone cannot account for the behaviour of highly 

motile cells. 
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The process of actin addition at the barbed end is transient and the polymerisation of 

actin filaments does not continue infinitely as the pool of unpolymerised actin is not 

limitless and the action of capping proteins at the barbed end terminates filament 

elongation. To overcome the problem of finite actin monomer availability, they are 

recycled from the pointed end and can be re-used at the barbed end to enable cell 

migration in the desired direction. The dendritic nucleation/array treadmilling model 

is used to understand actin assembly and dissociation at the leading edge of the cell 

and is depicted in Figure 1.12. Cells contain a pool of actin monomers bound to 

sequestering proteins such as profilin or thymosin-β4. This acts as one of many 

mechanisms to moderate actin polymerisation. In response to nucleation signals, 

actin is added to an existing free barbed end. Upon polymerisation, rapid ATP 

hydrolysis occurs with a half time of approximately 2 seconds (Carlier et al., 1988), 

whilst release of the resulting phosphate group is slow and can remain bound to 

ADP-actin for a much longer period with a half-life of about 350 seconds (Carlier 

and Pantaloni., 1986). Consequently, these half-lives result in newly assembled actin 

filaments comprised mainly of ADP-Pi-actin intermediates which exist for a 

comparatively lengthy duration. 

The eventual dissociation of the phosphate group is responsible for actin filament 

disassembly by inducing the action of ADF (actin-depolymerizing factor)/cofilin 

which promotes the dissociation of ADP-actin from the filament pointed end. 

Severing ADP-actin from the pointed end can also be brought about by the action of 

ADF/cofilin as a mechanism of removing ADP-actin from the filament ends. The 

dynamic turnover in this process is facilitated by the additional role played by 

profilin as a nucleotide exchange factor for actin. ADP-bound actin is converted into 
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ATP and is returned to the pool of ATP-bound actin sequestered to profilin for the 

next cycle of actin assembly at the barbed end (Pollard and Borisy., 2003). 

All actin polymerisation is dependent on free barbed ends. At present, there exist 

three proposed mechanisms to explain the generation of free barbed ends in the cell.  

Firstly, capping proteins such as gelsolin, are able to associate with the barbed end to 

inhibit actin polymerisation and therefore provide a mechanism to regulate this 

process. The involvement of membrane phosphoinositides have been shown to 

prevent the action of capping proteins and therefore expose the free barbed end of 

actin filaments to allow filament elongation to proceed (Hartwig., 1995). 

Alternatively, the action of ADF/cofilin family of proteins severs pre-existing 

filaments to produce free barbed ends (Ichetovkin, et al., 2002). Providing there is a 

sufficient concentration of unsequestered G-actin, ADF/cofilin can rapidly facilitate 

the rate of actin polymerisation at the barbed end. 

In addition to these two mechanisms is de novo nucleation. As previously mentioned, 

spontaneous assembly of actin filaments is kinetically unfavourable. Despite this, the 

involvement of proteins such as the Arp2/3 complex has been shown to accelerate 

actin polymerisation by acting as the nucleation template and creating a nucleation 

core.  
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Figure 1.12 Dendritic nucleation model which depicts the assembly and disassembly of actin 

filaments at the cell’s leading edge. The chronological sequence of events during this process is 

described numerically (Image taken from Pollard and Beltzner., 2002).  
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1.11 Wiskott-Aldrich Syndrome Protein (WASP) 

The human family of Wiskott-Alrich syndrome proteins (WASP) currently includes 

five members: WASP, N-WASP, WAVE1, WAVE2 and WAVE3. The first member 

of this protein family to be isolated was WASP in 1994, through linkage studies 

which associated the mutated gene to Wiskott-Alrich syndrome (WAS), an X-linked 

recessive disorder defined by immunodeficiency, thromocytopenia, ezcema as well 

as an increased risk of malignancies (Derry et al., 1994; Thrasher., 2009). The 

human WASP gene is located at Xp11.22-p11.23 which spans over 1Mb and is 

expressed exclusively in haematopoietic cell lineages. This fact underlies the WAS 

inheritance pattern and the immunodeficiency and platelet function defects seen in 

affected individuals as well as the observation of defective cell migration in several 

patient cell lineages including macrophage, dendritic, T and B lymphocytes and 

haematopoietic stem cells (Binks et al., 1998; Burns et al., 2001). A 137 bp region 

upstream of the transcription start site is responsible for the restricted expression of 

WASP to haematopoietic cells (Petrella et al., 1998). 

Analysis of the WASP cDNA sequence identified a region rich in proline residues 

which is proposed to act as a ligand for Src homology 3 (SH3) domains. Following 

proteomic searches for proteins that interact with SH3 domains, a novel 65 kDa 

protein was identified and named neural (N-) WASP as it was first isolated in the 

brain, although it is now established to be ubiquitously expressed. The N-WASP 

gene is localised to chromosome region 7q31.3 (Miki et al., 1996). 

Although both proteins contain regions implicated in SH3 domain association, more 

important is the carboxyl (C-) terminus which contains protein domains cardinal to 

their role during actin polymerisation. Characteristic of this protein family, they 

contain a WH2 (WASP homology 2) sequence alternatively named the verprolin 
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homology (V) domain, followed by a short central (C) sequence, also known as the 

cofilin homology domain and finally an acidic (A) sequence. Collectively, they 

comprise the VCA region where each domain orchestrates their functional roles to 

confer actin polymerising properties to the protein. The WH2 domain binds to an 

actin monomer whilst both the cofilin homology domain and acidic region work 

together to interact with the actin polymerisation activator, Arp2/3 protein complex. 

Only N-WASP contains two WH2 domains and accordingly exhibits a much higher 

nucleation rate associated with the VCA region in contrast to the other members 

within the mammalian WASP protein family (Yamaguchi et al., 2000). 

The proline rich region of these proteins allows the binding of SH3 containing 

proteins such as Ash/Grb2 (Miki et al., 1996; She et al., 1997), Nck (Rivero-Lezcano 

et al., 1995) and proline-serine-threonine phosphatase interacting protein (PSTPIP) 

(Wu et al., 1995). This stretch of residues separates the C-terminus from the amino 

(N-) terminus. At the N-terminus is the WH1 (WASP homology 1) domain which is 

known to be related to the EVH1 [Ena (Drosphila enabled)/VASP (vasodilator-

stimulated phosphoprotein) homology 1] domain seen in members of the Ena/VASP 

protein family. The WH1 domain facilities association with WIP (WASP-interacting 

protein) which is implicated in protecting WASP from protease degradation (Ramesh 

et al., 1997; de la Fuente et al., 2007). Adjacent to this region is a basic stretch which 

is involved with phospholipid PIP2 (phosphatidylinositol 4,5-bisphosphate) 

interaction and is postulated to coordinate with Cdc42 to drive actin polymerisation 

(Prehoda et al., 2000). Proximal to this basic stretch, and integral to the role played 

by WASP and N-WASP in actin polymerisation, is the presence of the CRIB (Cdc42 

and Rac interactive binding) domain alternatively named GBD (GTPase binding 

domain). This region allows Cdc42 binding, a GTPase involved with filopodium 
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formation and cell polarity (Higgs and Pollard., 2000; Miki et al., 1998). The 

presence of these domains in WASP and N-WASP defines the N-terminus of these 

proteins as being essential for protein regulation. 

 

1.11.1 WASP activation 

WASP and N-WASP are intrinsically inactive due to intramolecular interactions 

between the VCA region and the CRIB domain at the C-terminal and N-terminal, 

respectively. This folded conformation masks the VCA region and therefore prevents 

the C and A domains from activating the Arp2/3 complex (Kim et al., 2000). 

Disrupting intramolecular interactions relieves the inhibited state of the protein and 

can be brought about via the competitive binding of various ligands such as the Rho 

GTPase, Cdc42 and phosphatidyl inositol 4.5-bisphosphate (PIP2) which can 

associate with the GBD and basic-rich region of the protein, respectively and exposes 

the VCA region for subsequent Arp2/3 activation (Rohatgi et al., 2000; Kim et al., 

2000; Prehoda et al., 2000).  

Other mechanisms of protein activation include the binding of proteins containing 

SH3-domains to the proline-rich region of WASP and N-WASP. Such proteins 

include Nck, whose actin nucleation activity is further stimulated by PIP2; Ash/Grb2 

which cooperates with Cdc42 to enable full WASP/N-WASP activation, whilst 

WASP-interacting SH3 protein (WISH) stimulates optimal WASP/N-WASP activity 

independent of Cdc42 (Carlier et al., 2000; Rohatgi et al., 2001; Fukuoka et al., 

2001).  
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Serine and tyrosine residues within WASP and N-WASP are subject to 

phosphorylation by numerous kinases which are able to influence their activity and 

localisation. For instance, it has been shown that releasing WASP and N-WASP 

intramolecular interactions occurred following protein phosphorylation by the Src 

family of tyrosine kinases adjacent to the CRIB region (Cory et al., 2002). 

Additionally, focal adhesion kinase (FAK) phosphorylates tyrosine residue 256 of N-

WASP which affects its nuclear localisation and promotes cell migration (Wu et al., 

2004). A potential explanation for this link between FAK and N-WASP is that 

activated FAK recruits Cdc42 which promotes N-WASP activation thus stimulating 

Arp2/3 and promoting actin polymerisation, a necessary step in cell motility 

(Sanchez et al., 2010). The equivalent conserved tyrosine residue described in 

WASP is at position 291 in N-WASP and is also subject to tyrosine kinase 

phosphorylation which leads to subsequent actin polymerisation and filopodium 

formation (Cory et al., 2002). Furthermore, two serine residues found in the VCA 

domain of WASP are targeted by casein kinase 2. Phosphorylation of these serine 

residues dramatically increases VCA domain and Arp2/3 interaction which 

significantly influences actin nucleation (Cory et al., 2003). 

Described above are two main mechanisms through which WASP and N-WASP can 

be released from their intrinsically inactive state. However, these two modes of 

activation are not independent of each other as some interplay has been discovered. 

Coupling protein phosphorylation with Cdc42 intervention was found to have an 

enhanced effect on WASP activation (Torres and Rosen., 2003). Another study 

demonstrated how Cdc42 was able to recruit WASP to the plasma membrane where 

it was subjected to phosphorylation by Lyn and Btk (Guinamard et al., 1998). 
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1.11.2 WASP and human disease 

Discovery of the WASP gene stemmed from the identification of mutations in the 

gene in patients affected by Wiskott-Alrich syndrome (WAS). Affected individuals 

present a broad spectrum of symptoms and severity, with some patients exhibiting 

the full triad of clinical manifestations with poor survival rates compared to those 

with a milder phenotype and who survive to adulthood. The genetics underlying 

WAS have been linked to several hundred mutations in the WASP gene with some 

evidence of a genotype to phenotype relationship (Imai et al., 2003). For example, 

missense mutations within the first three exons of the WASP gene are associated with 

individuals displaying mild symptoms whilst those with nonsense, frameshift, splice 

site, insertion or deletion mutations in the WASP gene are linked with symptoms of a 

more aggressive nature (Orange et al., 2004). On a molecular level, such mutations 

within the WASP gene would result in a defective protein product and could cause a 

decline in WASP activity. Alternatively, mutations within important domains of 

WASP could disrupt its specified function. For instance, amongst the missense 

mutations identified in the WASP gene, the vast majority of these are found within 

the regions that encode the WH1 domain. Aberrations within this protein domain 

could potentially interfere with WIP interaction. 

In addition to platelet abnormalities, immunological defects and eczema being 

commonly observed in affected individuals, many WAS patients are at an increased 

risk of developing malignancies, especially those presenting with autoimmune 

disorders (Sullivan et al., 1994). Accordingly, the majority of these malignancies are 

lymphoreticular in origin and such malignant tumours can establish at a young age, 

although the frequency at which they occur is higher in adolescents through to 

adulthood. Statistics from a North American group of WAS patients found 
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malignancies were present in 13% of the cohort with a mean age of onset of 9.5 

years. The most common malignancy reported is B-cell lymphoma testing positive 

for Epstein-Barr virus (Sullivan et al., 1994). 

Beyond the human malignancies associated with the WAS clinical phenotypes, the 

WASP family of proteins have also been linked to other cancers. Using 

immunohistochemical approaches, N-WASP expression was demonstrated to be 

lower in breast tumour tissue compared to normal mammary epithelial cells. The 

same study also revealed a link between tumours from patients with a poor prognosis 

and significantly lower N-WASP levels compared to those with a good prognosis. 

Forced expression of N-WASP was induced in the breast cancer cell line MDA-MB-

231 which displayed significantly reduced invasiveness and motility (Martin et al., 

2008). Another study using the metastatic breast cancer cell line, MTLn3 revealed 

the use of either dominant negative N-WASP cells or treatment of cells with shRNA 

targeting N-WASP considerably decreased the ability of invadopodia formation, 

fundamental cell protrusions for cell invasion (Gligorijevic et al., 2012). Despite the 

contradicting conclusions drawn from these studies, it would be logical to associate 

WASP abnormalities with human cancer due to their role in actin polymerisation, a 

driver of cell motility, a contributory trait to cancer progression upon its aberration. 

 

1.12 WASP family verprolin homologous (WAVE) protein family 

A novel WASP-related protein was identified following database searches using the 

verprolin-homology (VPH) domain sequence due to its sequence conservation 

between WASP and N-WASP and its actin polymerising properties (Machesky et al., 

1998; Miki et al., 1998). This newly identified protein was subsequently named 
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WASP-family verprolin-homologous (WAVE) protein. Following this discovery, 

two additional WAVE proteins were identified, thus the original protein is now 

known as WAVE1 (alternatively named suppressor of cAR; SCAR1) and the latter 

two as WAVE 2 and WAVE 3 (Suetsugu et al., 1999). The WAVE1 gene is located at 

chromosomal region 6q21 and encodes a gene product of 80,186 bp. The translated 

protein is 559 amino acids long and whilst there is evidence that it is widely 

expressed, it is expressed particularly strongly in the brain. At the chromosomal 

region 1p36.11 resides the WAVE2 gene which encodes a product of 85,940 bp. The 

corresponding protein is 498 amino acids long and is ubiquitously expressed but 

more so in peripheral blood leukocytes. The remaining protein of this subfamily is 

WAVE 3 whose gene, found at chromosomal region 13q12.13, encodes a product of 

131,246 bp which when translated into a protein of 502 amino acids is found 

expressed mainly in the ovary and brain (GeneCards, 2014; UniProt, 2014; Kurisu 

and Takenawa., 2009). 

WAVE homologs of those defined in human are evident in a diverse variety of 

eukaryotes. WAVE1 is known also as Scar1 due to the initial discovery that it was a 

mammalian homologue of SCAR in Dictyostelium discoideum (Machesky and 

Insall., 1998).  WAVE homologs have also been identified in Caenorhabditis 

elegans (WVE-1), Drosophila melanogaster (SCAR) and Arabidopsis thaliana 

(SCAR1-4), Mus musculus (WAVE1-3) and Pongo abelii (WAVE1) (Kurisu and 

Takenawa., 2009; UniProt, 2014). Evidence of WAVE homologs in a wide diversity 

of eukaryotes exemplifies their importance in controlling actin polymerisation in 

cytoskeletal reorganisation. 

All WAVE proteins share a common carboxyl- (C-) terminus comprised of the 

verprolin homology domain (V) also known as WASP homology 2 (WH2) domain, 



71 
 

central/cofilin homology sequence (C) and an acidic region (A) which together 

comprise the VCA region which is homologous with and serves the same purpose as 

the WASP and N-WASP C-terminal in actin monomer and Arp2/3 complex 

interaction. Moreover, the similarity seen in protein domains of all five WASP and 

WAVE members extends to the presence of a highly basic region and a long proline 

region between the amino- (N-) terminus and C-terminus of these proteins. The 

distinguishing factor between the WASP and WAVE proteins is the WH1 and GBD 

domains characteristically seen at the N-terminus of WASP proteins which is absent 

in the WAVE proteins. In contrast, the N-terminus of WAVE proteins possesses the 

WAVE homology domain/SCAR homology domain (WHD/SHD). The conserved 

WAVE protein domains are shown in Figure 1.13. 
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1.12.1 WAVE activation 

Unlike the WASP proteins which exist independently in cells, each WAVE protein 

needs to associate with four additional proteins via its WHD to form the WAVE 

regulatory complex (WRC) and it is only in this arrangement that WAVE is able to 

confer its actin polymerising capacity. The components of this 400kDa pentameric 

heterocomplex are Abi (Abelson-interacting protein), Nap1/Hem-2, Sra1/Cyfip1 and 

HSPC300/Brick1 (Eden et al., 2002). In this complex, Abi and HSPC300 bind 

directly to the WHD domain of the WAVE proteins and stabilise WRC formation. 

Abi links WAVE to Nap1 which is itself linked to Sra1 (Takenawa and Suetsugu., 

2007). As mentioned previously, WAVE proteins lack a GBD but can be activated 

indirectly via the association of Sra1 with the Rho GTPase Rac leading to WRC 

activation (Kobayashi et al., 1998). Additionally, proteins comprising the WRC have 

shown the ability to become phosphorylated at various residues with some 

modifications showing enhanced signalling activity of the complex (Ardern et al., 

2006; Leng et al., 2005; Sossey-Alaoui et al., 2007). Figure 1.14 demonstrates the 

configuration of WRC components and the principle behind WRC activation for 

subsequent actin polymerisation. 
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Figure 1.14. WAVE regulatory complex (WRC) structure and regulation. (A) Structure of WRC. 

Sra1 (green), Nap1 (blue), HSPC300 (yellow), WAVE1 (magenta) and Abi2 (orange). The WAVE 

proline rich domain has been replaced with a short linker (dashed line) whilst the Abi2 SH3 domain 

has been removed. This image is taken from Chen et al, 2010. (B) Simplified schematic demonstrating 

protein interactions between components of the WRC in addition to mode of activation. The WAVE 

VCA region is sequestered by WRC components in its inactive state. Upon Rac1 association with 

Sra1, WRC is recruited to the plasma membrane and the VCA is released whereby interactions with 

the negatively charged phospholipids at the plasma membrane induce the VCA domain into the 

correct orientation for actin polymerisation at the cell leading edge (This image is taken from 

Davidson and Insall., 2011). 
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Integration of the WAVE protein with other subunits to create a protein 

conglomerate is also an intra-complex mechanism to inhibit WAVE. Within the 

WRC, the V and C regions of WAVE1 are sequestered by Sra1 as a way to block 

WAVE activation. Actin-binding residues of the V region are concealed by Sra1 

binding making it impossible for monomeric actin to associate. Coupled with a 

combination of inter-protein contacts within the WAVE1 structure, the V region is 

rendered inactive and the WRC is induced into a configuration which is incompatible 

with actin association and therefore suppresses actin polymerisation. Studies have 

shown how mutations of certain Sra1 residues, important for actin V region binding, 

enable WRC association with the Arp2/3 complex and consequently stimulates actin 

filament branching. Moreover, the effects of mutations at particular residues within 

the C region have been found to reduce WRC activity towards the Arp2/3 complex 

(Chen et al., 2010).  

The WRC is constitutively inactive without intervention by Rac GTPases, 

phosphatidylinositols and/or kinases. Recruitment of the WAVE proteins to the 

plasma membrane is facilitated by Rac GTPases. However, WAVE proteins are 

unable to interact directly with Rac in the same way WASP and N-WASP do with 

Cdc42. Alternatively, WAVE relies on components of the WRC to elicit these 

effects. RNA interference studies have shown how the removal of either Sra-1 or 

Nap1 prevented the ability of cells to produce Rac-dependent lamellipodia (Steffen et 

al., 2004). Whether Rho GTPase dependent activation of WASP or WAVE is direct 

or not, regulating their activity is controlled via the competitive binding of GTPases.  

The competitive binding of Cdc42 which disrupts intramolecular interactions 

between the CRIB domain and VCA region, induces WASP out of its intrinsically 

inactive state. In a similar way, deletion of the VCA region of WAVE was found to 
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increase the affinity between WRC and Rac1 as VCA deletion released Sra1 for 

Rac1 binding (Chen et al., 2010). This could explain previous findings that certain 

Sra1 mutations impeded Arp2/3 complex activation by WRC; this is likely to be due 

to reduced affinity of Rac1 for WRC. 

Although the relationship between Rac and WAVE in cell motility has been long 

established, it would seem that Rac is not the sole GTPase activator of the WRC. In 

vitro approaches have demonstrated the affinity of Rac1 for WRC interaction was 

relatively low as was the case for WRC activation by Arf1 GTPase alone. However, 

upon the coordinated efforts of Rac1 and Arf1 together, WRC recruitment and 

activity at the plasma membrane were greatly enhanced (Koronakis et al., 2011). 

Although not a GTPase, the Src homology 2 and 3 domain (SH2 and SH3, 

respectively) containing adaptor protein Nck, has been shown to facilitate actin 

polymerisation by perturbing trans-inhibition within the WRC (Eden et al., 2002). 

The relationship between Rac and WAVE appears to be indirect, presumably 

mediated through auxiliary proteins to the WRC. For example, Rac was discovered 

to associate with the N-terminus of IRSp53 whilst the SH3 domain of IRSp53 binds 

to WAVE2 and IRSp53 knockdown suppressed lamellipodia formation (Miki et al., 

2000; Suetsugu et al., 2006). Furthermore, these protein interactions were promoted 

by phosphatidylinositol (3,4,5) trisphosphate (PIP3) containing liposomes. The 

recruitment of WAVE to the plasma membrane has been demonstrated to be 

mediated by PIP3 which binds to the basic domain of WAVE2 (Oikawa et al., 2004). 

These negatively charged lipids at the plasma membrane are proposed to bind to the 

positive face of WRC and orientate the complex in a configuration that positions the 

VCA region extending into the cytoplasm where it promotes actin polymerisation 

(Davidson and Insall., 2011). 
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Phosphorylation of residues within regions of WAVE has been shown to be an 

influential factor in WRC activity with the potential to facilitate actin polymerisation 

(Sossey-Alaoui et al., 2007). It has been proposed that specific phosphorylation 

modifications could affect the stability of helix structures of the VCA motif and thus 

Sra1 interaction. WAVE1 phosphorylation of serine residues by cyclin-dependent 

kinase 5 (Cdk5) suppresses its ability to activate actin polymerisation through the 

Arp2/3 complex (Kim et al., 2006). However, phosphorylation of WAVE1 at 

tyrosine residue 125 by the non-receptor tyrosine kinase Src was shown to enhance 

both Arp2/3 complex association and activity in vitro and in vivo (Ardern et al., 

2006). Likewise, phosphorylation of the tyrosine residue 150 in WAVE2 by Ableson 

(Abl) non-receptor tyrosine kinase was found to be essential in actin polymerisation 

and cytoskeletal remodelling, as Y150 mutations hindered these effects (Leng et al., 

2005). Furthermore, Abl-mediated WAVE3 phosphorylation was shown to 

phosphorylate four tyrosine residues in WAVE3 (Y151, Y248, Y337 and Y486) and 

promoted lamellipodia formation and cell motility (Sossey-Alaoui et al., 2007).  

 

1.12.2 WAVE and cancer 

Identification of the WAVE1/Scar1 protein by two independent research groups 

revealed it to be a downstream effector of the Rac GTPase and for itself to target the 

Arp2/3 complex with the result of promoting actin polymerisation (Machesky and 

Insall., 1998; Miki et al., 1998). With this discovery came a flourish of interest 

surrounding members of the WAVE protein subfamily and their influence on 

lamellipodia formation with regards to their importance in cell migration as an 

essential physiologically relevant process. Migrating cells form cytoplasmic 

protrusions rich in actin at their leading edge comprised of protrusive structures such 
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as lamellipodia, filopodia and microspikes. Aberrations in upstream molecular 

signalling which regulate actin polymerisation can result in abnormal invasive 

phenotypes such as invadopodia, fundamental perquisites to cancer cell metastasis. 

With this logic, it became apparent that aberrations in WAVE activity were linked to 

invasive and metastatic cell phenotypes. This was highlighted in a study which 

demonstrated higher levels of WAVE1 and WAVE2 expression in addition to 

increased Rac activity in malignant B16F10 mouse melanoma cells which exhibit 

invasive and metastatic potential compared to parental B16 cells which lack both of 

these traits. WAVE2 knockdown demonstrated a dramatic reduction in membrane 

ruffling, cell motility and invasion in addition to suppression of B16F10 cell 

metastasis (Kurisu et al., 2005). 

The prognostic importance of WAVE2 in human disease has been further 

emphasised whereby immunohistochemical approaches revealed that co-expression 

of WAVE2 and ARP2 was significantly higher in lung adenocarcinoma sections 

from patients presenting with lymph-node metastasis compared to those with 

bronchioalveolar carcinoma which lacked these metastatic traits. Sections from 

patients who had a shorter disease-free survival time and overall survival time also 

revealed cancer cells that stained for both WAVE2 and ARP2 (Semba et al., 2006). 

These findings were mirrored in a report from the same research group detailing 

WAVE2 and ARP2 immunohistochemical status of specimens from colorectal 

cancer patients, with tissue blocks from the primary tumour in addition to liver 

sections from patients who exhibited metastatic spread to the liver. Co-localisation of 

WAVE2 and ARP2 was apparent in approximately 36% of the cancer cohort whilst a 

distinct absence of co-localisation was observed when staining for these proteins in 

normal epithelial cells. This study concluded that WAVE2 and ARP2 co-localisation 
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was a risk factor for colorectal cancer derived liver metastasis (Iwaya et al., 2007). 

Previous to this study, the clinical relevance of WAVE2 in liver cancer was explored 

whereby 112 samples from hepatocellular carcinoma patients were analysed using 

reverse transcription PCR, Western blotting and immunhistochemistry. The majority 

of cases displayed significantly increased WAVE2 expression in addition to a 

correlation with characteristics associated with more aggressive cancers such as 

higher Edmondson-Steiner grade and reduced median survival time (Yang et al., 

2006). 

The clinical importance of WAVE3 was first documented by Sossey-Alaoui’s 

research team whereby WAVE3 was identified as a potential tumour suppressor gene 

in a ganglioneuroblastoma case study. The affected patient was discovered to 

harbour a truncation within the WAVE3 gene and thus rendering it inactivate. Since 

this work, Sossey-Alaoui’s research group has focused heavily on the role of 

WAVE3 in cell motility and cancer metastasis as well its prognostic value in human 

cancer (Sossey-Alaoui et al., 2002). 

Subsequent work by Sossey-Alaoui’s research group screened WAVE3 levels in 

breast tumour specimens from a spectrum of breast cancer stages and grades. Whilst 

normal breast tissue and grade I tumours showed little or no levels of WAVE3, in 

contrast, specimens derived from grade III tumours demonstrated higher levels of 

WAVE3 by approximately threefold. With a potential link between elevated levels of 

WAVE3 and advanced breast cancer tissues, they proceeded to investigate the effects 

of WAVE3 expression knockdown in the MDA-MB-231 cell line. Doing so revealed 

the suppression of in vitro cell invasive capabilities and accordingly, injection of 

these cells into a xenograft mouse model not only reduced the rate of tumour growth 

at the primary site but also inhibited the metastatic spread of the cells to distant 
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organs as is normally seen in mice implanted with MDA-MB-231 cells (Sossey-

Alaoui et al., 2007). 

Another study analysing WAVE and its association with breast cancer demonstrated 

an overall trend of elevated expression in all three isoforms in the breast tumour 

tissues relative to normal breast tissue. This pattern of expression was also evident 

for patients who died from breast cancer with WAVE2 levels showing statistical 

significance. Furthermore, node-positive specimens and moderately and poorly 

differentiated tumours exhibited significant WAVE2 overexpression (Fernando et 

al., 2007). 

The clinical significance of WAVE in cancer was further implicated by Fernando et 

al who demonstrated higher expression levels of WAVE1 and WAVE3 in the 

metastatic prostate cancer cell lines, PC-3 and DU-145 in comparison to epithelial 

prostate cancer cells. Accordingly, immunohistochemistry techniques revealed 

stronger staining for WAVE1 and WAVE3 in prostate tumour specimens compared 

to normal prostate specimens. WAVE1 expression knockdown in PC-3 and DU-145 

cells revealed a significant reduction in growth rate and invasive capacities of the 

cells whilst the same approaches were utilised to knockdown WAVE3 expression 

which showed a significant decrease in cell invasion (Fernando et al., 2008; 

Fernando et al., 2010). An independent research group also demonstrated 

suppression of in vitro cell invasion following WASF3 gene inactivation in metastatic 

prostate cancer cells, PC-3 and DU-145. Furthermore, they were able to show a 

reduction in cell motility as well as decreased proliferative abilities which contrast 

with findings published by Fernando which showed no significant change in cell 

growth. The same group also evaluated the in vivo effects by injecting WAVE3 

knockdown prostate cancer cells into the flanks of mice. Tumour growth rate was 
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significantly reduced with no evidence of metastatic spread to the lungs in mice 

injected with WAVE3 knockdown cells compared to the control group (Teng et al., 

2010). These findings mirror those of breast cancer in vivo and the effects of 

WAVE3 knockdown mentioned previously (Sossey-Alaoui et al., 2007). The 

relationship between WAVE and their associated cancer are listed in Table 1.4. 

 

Table 1.4 The relationship between WAVE aberrations and their associated cancers 

Molecule Aberration Associated cancer Reference 

N-WASP Decreased 

expression 

Breast cancer Martin et al., 2008 

WAVE1 

 

Increased 

expression 

Breast cancer Fernando et al., 

2007 
 

Prostate cancer Fernando et al., 

2008 
 

WAVE2 

 

Co-expressed with 

ARP2 

Lung 

adenocarcinoma 
Semba et al., 2006 

 

Co-localised with 

ARP2 

Colorectal cancer Iwaya et al., 2007 
 

Increased 

expression 

 

Liver cancer Yang et al., 2006 
 

Breast cancer Fernando et al., 

2007 
 

WAVE3 

 

Increased 

expression 

Breast cancer 

 
Sossey-Alaouiet 

al., 2007 
 

Fernando et al., 

2007 
 

Increased 

expression 

Prostate cancer 

 

Fernando et al., 

2010 
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Whilst WAVE proteins are heavily implicated in cell motility, it is interesting to note 

their invasive potential may result from the regulation of downstream targets. 

WAVE3 knockdown experiments in the breast cancer cell line MDA-MB-231 

displayed cell motility and invasion inhibition. Expression analysis revealed a 

reduction of MMP-1, MMP-3 and MMP-9 coupled with decreased p38 MAPK levels 

(Sossey-Alaoui et al., 2005). The association between WAVE3 and MMP-9 was 

investigated more recently in a large cohort of colorectal cancer samples whereby 

their mRNA and protein levels were analysed using quantitative PCR and 

immunohistochemistry, respectively. Both approaches revealed over-expression of 

WAVE3 and MMP-9 in the colorectal cancer tissues compared to their 

corresponding normal mucosa (Zhang et al., 2012). These findings reveal an insight 

into the WAVE signalling pathway which appears to function through the p38 

MAPK pathway to regulate MMP activity, giving rise to the motile and invasive 

phenotypes commonly attributed to cancer cell metastasis. 

 

1.13 Aims and Objectives 

The importance of the WAVE family of proteins as a signal messenger between Rac 

GTPase and the actin polymerisation promoter Arp2/3 in cell migration is well 

established. Linking this knowledge to the wealth of literature surrounding 

uncontrolled migratory potential of cells as a contributory factor in cancer metastasis, 

has led to the WAVE proteins being a focus of interest in cancer research. Whilst a 

clear association between aberrant expression of different WAVEs and certain 

human cancers has been made, the wider picture, encapsulating the molecular 

mechanisms underlying WAVE mode of action in cell migration, is still poorly 



83 
 

understood. Cell motility is a complex process involving a vast array of proteins 

influencing different signalling cascades in addition to pathway interplay.  

Identifying interactions between proteins which impact cell motility will provide 

insights into the network in which WAVE influences cell function in cancer 

metastasis. Moreover, due to functional differences between the WAVE isoforms, 

which may reflect why different WAVEs are linked with pathogenesis of certain 

cancers, it is important to discern differences in their modes of action and protein 

cooperation. As a clear link has been made between WAVE1 and 3 with prostate 

cancer these two isoforms were investigated. With these objectives in mind, the aims 

of this study are to: 

1) Establish WAVE1 and WAVE3 knockdown prostate cancer cell lines to 

ensure replication of previously published cell function findings  

2) Elucidate potential pathways through which WAVE interacts by conducting 

cell function assays using small molecule inhibitor treatments and utilising 

confocal microscopy approaches 

3) Determine any influence on phosphorylation states of proteins involved in 

cell motility following WAVE1 or WAVE3 knockdown  
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Chapter 2 

Materials and Methods 
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2.1 Standard solutions and reagents 

All standard chemicals and reagents, unless otherwise stated, were obtained from 

Sigma-Aldrich (Dorset, UK). 

 

2.1.1 Solutions for cell culture work 

0.05M EDTA 

One gram KCl (Fisons Scientific Equipment, Loughborough, UK), 5.72g Na2HPO4, 

1g KH2PO4, 40g NaCl and 1.4g EDTA (Duchefa Biochemie, Haarlem, The 

Netherlands) were dissolved in distilled water to make a final volume of 5L. The 

solution was adjusted to pH 7.4 before autoclaving and storing for use. 

Trypsin (25mg/ml) 

Five hundred milligrams trypsin were dissolved in 20ml 0.05M EDTA. The solution 

was mixed and filtered through a 0.2μm Minisart Syringe filter (Sartorius, Epsom, 

UK), distributed into 10ml aliquots and stored at -20˚C. When required for cell 

detachment, one 5ml aliquot was diluted in 100ml of 0.05M EDTA. 

Antibiotic and antifungal mix for tissue culture 

An antibiotic and antifugal mixture for tissue culture were made consisting of 5g 

streptomycin, 3.3g penicillin and 12.5mg amphotericin B (2ml of 6.25mg/ml 

amphotericin B in DMSO). These components were fully dissolved topped up to a 

total volume of 500ml with BSS, filtered through a 0.2μm Minisart Syringe filter 

(Sartorius, Epsom, UK) and pipetted into 5ml aliquots. When a 5ml aliquot of this 

100x concentrated mix was added to 500ml medium the concentrations of the 
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antibiotics and antifugal agents were as follows: 100U/ml penicillin, 0.1mg/ml 

streptomycin and 0.25µg/ml amphotericin B. 

Balanced Saline Solution (BSS) 

Seventy nine point five grams NaCl, 2.2g KCl, 2.1g KH2PO4, and 1.1g Na2HPO4 

were dissolved in distilled water to make a final volume of 10L. The pH was 

adjusted to 7.2 before use. 

 

2.1.2 Solutions for cloning work 

LB agar 

Ten grams of tryptone, 5g yeast extract, 10g NaCl and 15g agar were dissolved in 

distilled water to a final volume of 1L, the pH adjusted to 7.0 and the solution 

autoclaved. When required, the solution was heated to yield a liquid state and cooled 

slightly before adding selective antibiotic (if required). The solution was then poured 

into 10cm
2
 petri dish plates (Bibby Sterilin Ltd., Staffs, UK), allowed to cool and 

solidify then inverted for storage at 4˚C until required. 

LB broth 

Ten grams of tryptone (Duchefa Biochemie, Haarlem, The Netherlands), 5g yeast 

extract (Duchefa Biochemie, Haarlem, The Netherlands) and 10g NaCl were 

dissolved in distilled water to a final volume of 1L and the pH adjusted to 7.0. This 

was autoclaved and allowed to cool before adding selective antibiotic (if required) 

and stored at room temperature. 
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2.1.3 Solutions for use in RNA and DNA molecular biology 

DEPC water 

Two hundred and fifty microlitres diethyl pyrocarbonate (DEPC) were added to 5ml 

distilled water. This solution was then autoclaved before use. 

5x Tris, Boric acid, EDTA (TBE) 

Five hundred and forty grams of tris-Cl (Melford Laboratories Ltd., Suffolk, UK), 

275g Boric acid (Duchefa Biochemie, Haarlem, The Netherlands) and 46.5g of 

disodium EDTA were dissolved in distilled water, made up to a final volume of 10L 

and stored at room temperature. When required, the solution was diluted 1:5 in 

distilled water prior to use in agarose gel electrophoresis. 

SYBR®Safe DNA Gel Stain 

A 1:10,000 dilution of SYBR®Safe DNA Gel Stain (Invitrogen, Life Technologies 

Ltd, Paisley, UK) was used to stain DNA in the agarose gel following electrophoresis 

as specified by manufacture’s intructions. 

 

2.1.4 Solutions for protein work 

2X Lysis Buffer 

A mixture of solutions comprising one hundred and fifty millimolar NaCl (8.76g/l), 

50mM Tris (6.05g/l), 0.02% sodium azide (200mg/l), 0.5% sodium deoxycholate 

(5g/l) and 1.5% Triton X-100 (15ml/l, v/v) was diluted in 1L distilled water and 

stored at 4˚C until required. 
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2X Inhibitor buffer 

Five millimolar Na3VO4 (919.5mg/l), 1µg/ml aprotinin (1mg/L) and 1µg/ml 

leupeptin (1mg/L) were dissolved in 1L distilled water and kept at 4˚C until required. 

Phenylmethanesulphonylfluoride (PMSF)  

Five millilitres of phenylmethanesulphonylfluoride (10mg/ml) were dissolved in 

495ml isopropanol to obtain a concentration of 100µg/ml. 

Dithiothreitol (DTT) 

Five millilitres of DTT (10mM) were diluted in 495ml distilled water to yield a final 

concentration of 100µM. 

10% Sodium dodecyl sulphate (SDS) 

One gram of sodium dodecyl sulphate was dissolved in 10ml of distilled water and 

stored at room temperature until required. 

10% Ammonium Persulphate (APS) 

One gram of ammonium persulphate was dissolved in 10ml of distilled water and 

stored at 4˚C until required. 

10x Running buffer 

Three hundred and three grams Tris, 1.44Kg Glycine and 100g SDS were dissolved 

in distilled water to a final volume of 10L. The solution was further diluted to 1X 

strength before use. 
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Transfer buffer 

Seventy two grams of glycine, 15.15g Tris and 1L Methanol (Fisher Scientific, 

Leicestershire, UK) were dissolved in distilled water to a final volume of 5 litres. 

10X TBS 

One hundred and twenty one point one grams of Tris and 400.3g NaCl were 

dissolved in distilled water, made up to a final volume of 5L and adjusted to pH 7.4. 

 

2.2 Cell line work 

2.2.1 Cell line 

Cell lines used throughout this thesis were cultured under conditions listed in section 

2.2.4. The PC-3 cell is derived from bone metastases of a grade IV prostatic 

adenocarcinoma from a 62 year old male. PC-3 cells are adherent and epithelial in 

morphology. The cell line is androgen insensitive and is highly tumorigenic. The PC-

3 cell line was obtained from the American type culture collection (ATCC, 

Rockville, Maryland, USA). 

 

2.2.2 Preparation of cell medium 

Cells were routinely cultured in Dulbecco’s Modified Eagle’s medium (DMEM / 

Ham’s F12 with L-Glutamine), pH 7.3 containing 2mM L-glutamine and 4.5mM 

NaHCO3 supplemented with streptomycin, penicillin, amphotericin B and 10% heat 

inactivated foetal calf serum. Cell lines transfected with the pEF6 plasmid were 
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cultured in blasticidin S (Melford Laboratories Ltd, Suffolk, UK) selection medium 

at a concentration of 5μg/ml for at least 7 days and subsequently in a blasticidin S 

maintenance medium at a concentration of 0.5μg/ml (according to manufacturer’s 

recommendation and routine protocol in the research laboratory). 

 

2.2.3 Revival of cells from liquid nitrogen 

When cells were required, cryotubes (Greiner Bio-One Ltd, Gloucestershire, UK) 

containing the desired cells were removed from storage in liquid nitrogen and 

revived for culture using the following steps. Cells were thawed rapidly following 

their removal from liquid nitrogen before the transfer of contents into a universal 

container containing 10ml of pre-warmed medium to immediately dilute the DMSO 

present in the storage medium. This was then centrifuged at 1,800 RPM for 10 

minutes to form a cell pellet. The medium was aspirated to remove any traces of 

DMSO, the cell pellet resuspended in 5ml of pre-warmed medium, placed into a 

fresh 25cm
2
 tissue culture flask (Greiner Bio-One Ltd, Gloucestershire, UK) and 

incubated for 4 - 5 hours. Following examination under a microscope to determine 

adherence of cells to the flask, the medium was changed to remove dead cells and 

residual DMSO then returned to the incubator. 

 

2.2.4 Maintenance of cells 

Cells were maintained in supplemented DMEM medium prepared as described in 

Section 2.2.2, and routinely sub-cultured upon reaching 60-80% confluency as 

described later in Section 2.3.5. Confluence was assessed by visualising the 
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approximate coverage of cells over the surface of the tissue culture flask using a light 

microscope. Cells were maintained and grown in either 25cm
2
 or 75cm

2
 tissue 

culture flasks (Greiner Bio-One Ltd, Gloucestershire, UK), in an incubator at 37°C, 

5% CO2 and 95% humidity. All tissue culture techniques were carried out following 

aseptic techniques using autoclaved and sterile equipment inside a Class II laminar 

flow cabinet which had been cleaned prior to and following use with 70% ethanol. 

 

2.2.5 Detachment of adherent cells and cell counting 

Upon reaching approximately 60-80% confluency, medium was aspirated and 

adherent cells were detached from the tissue culture flask by incubating with 1-2ml 

of trypsin/EDTA for several minutes. Once detached the cell suspension was placed 

in a 30ml universal container (Greiner Bio-One Ltd, Gloucestershire, UK) and 

centrifuged at 1,800 RPM for 10 minutes to form a cell pellet. The cell pellet was 

typically resuspended in 1ml fresh medium to allow a determination of cell density. 

Cells were counted in a haemocytometer counting chamber (Hawksley, Sussex, UK) 

using an inverted microscope (Ceti Microscopes; Medline,Oxon, UK) under 10 x 10 

magnification. Each 16 square area of the haemocytometer counting chamber 

measuring 1mm x 1mm x 0.2mm allowed calculation of the number of cells per 

millilitre using the following equation: 

 

Cell no. / ml = (number of cell in 16 square area ÷ 2) X 10
4
 

 

Two 16 square areas of the haemocytometer counting chamber were counted and the 

mean was used to calculate cell number per millilitre which was then used to 
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calculate volume of resuspended cells for use in the appropriate in vitro cell function 

assays. 

 

2.2.6 Storage of cell stocks in liquid nitrogen 

Stocks of low passage cells were stored in liquid nitrogen. Cells were first detached 

from their flasks using EDTA/Trypsin as described in Section 2.2.5 and pelleted in a 

centrifuge at 1,800 RPM for 10 minutes. These cells were resuspended in the 

required volume (dependent on the number of samples to be frozen) of a protective 

medium consisting of 10% dimethyl sulphoxide (DMSO) in normal growth medium. 

Following resuspension, cells were aliquoted into pre-labelled 1.8ml cryotubes 

(Greiner Bio-One Ltd, Gloucestershire, UK), in 1 ml volumes, wrapped loosely in 

tissue paper and stored overnight at -80°C in a deep freezer. Cells were later 

transferred to liquid nitrogen tanks for long term storage. 

 

2.3 Generation of mutant PC-3 cell lines 

2.3.1 Production of ribozyme transgenes 

Ribozyme transgenes were designed to specifically target and cleave either WAVE1 

or WAVE3 messenger RNA transcripts to down regulate their expression. These 

ribozyme constructs were developed previous to this study by Fernando et al (2008; 

2010) however the steps are outlined here. The secondary structure of the WAVE 1 

and WAVE 3 transcript was initially predicted using Zuker’s RNA mFold software 

(Zuker, 2003) (Predicted structures shown in Figures 2.1a and 2.1b). Doing so 

allowed identification of loop structures which are unpaired regions and are less 
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stable than paired stemmed regions and therefore make them good ribozyme targets. 

Suitable GUC or AUC ribozyme target sites were selected from the predicted 

secondary structure loop structures and a ribozyme was designed for that region, 

allowing it to specifically bind to the sequence surrounding the target GUC or AUC 

codon regions. Doing so, allowed the hammerhead catalytic region of the ribozyme 

transgene to interact with and accurately cleave the mRNA transcript of interest at 

the specific GUC codon sequence. The secondary structure of the hammerhead 

ribozyme is shown in Figure 2.1c whilst its mode of action is depicted in Figure 2.2. 
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Figure 2.1a. Secondary structure of human WAVE1 mRNA based on the Zuker programme  
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Figure 2.1b. Secondary structure of human WAVE3 mRNA based on the Zuker programme  
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Figure 2.1c. Representative diagram of the secondary structure of a hammerhead ribozyme and its 

associated substrate (Figure taken from Shaw et al, 2001) 
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Once designed, the oligo sequences for the ribozyme transgene were synthesised by 

Invitrogen as sense/antisense strands (ribozyme transgene sequences are shown in 

Table 2.1). Incorporation of these strands into the transgene was achieved using 

touchdown PCR. The touchdown PCR parameters were as follows: 

 

• Step 1: Initial denaturing period – 94°C for 5 minutes 

• Step 2: Denaturing step – 94°C for 10 seconds 

• Step 3: Various annealing steps – 70°C for 15 seconds, 65°C for 15 seconds, 60°C 

for 15 seconds, 57°C for 15 seconds, 54°C for 15 seconds and 50°C for 15 seconds. 

• Step 4: Extension step – 72°C for 20 seconds 

• Step 5: Final extension period – 72°C for 7 minutes 

 

Step 2 – 4 was repeated over 48 cycles, each different annealing temperature 

comprising 8 cycles. 

 

Once combined, the transgenes were electrophoresed on a 2% agarose gel to confirm 

presence and correct size before being inserted into the pEF6 plasmid in the TOPO 

cloning reaction, as described in a later section. 
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Table 2.1. Ribozyme transgene sequences used for the TOPO cloning step 

 

Target 

gene 

Ribozyme Ribozyme sequence 5’-3’ 

WAVE1 

 

WAVE1Rib1F 

 

CTGCAGCATCATCTTCAGCCAGCTCTGCTGATG

AGTCCGTGAGGA 

WAVE1Rib1R 

ACTAGTTGGCAGAAGCTGGCCCAAGTTTCGTCC

TCACGGACT 

WAVE1Rib2F 

 

CTGCAGTTCATGAGGAAGATCTACTGATGAGTC

CGTGAGGA 

WAVE1Rib2R 

CTAGTCATGACAGGCAGAAAAATTTCGTCCTCA

CGGACT 

WAVE3 

 

WAVE3Rib1F 

 

CTGCAGTTGTAAATATCAGCAACAGCTGATGA

GTCCGTGAGGA 

WAVE3Rib1R 

ACTAGTTTCAAAGAACAGCATTCCTAATTTCGT

CCTCACGGACT 

WAVE3Rib2F 

 

CTGCAGCCCCCTCTGGGGCCTGAGGGGCTGATG

AGTCCGTGAGG 

WAVE3Rib2R 

ACTAGTCAGCCGCCCCCCCGGCGTTTCGTCCTC

ACGGACT 
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2.3.2 TOPO cloning reaction 

Cloning of all ribozyme transgene sequences was achieved using the pEF6/V5-His 

TOPO TA Expression Kit (Invitrogen, Life Technologies Ltd , UK) following the 

manufacturer’s protocol provided described here. This kit allows fast effective 

cloning of Taq polymerase amplified products for expression in mammalian cells. 

The following TOPO cloning reaction was set up in a pre-labelled eppendorf tube for 

each ribozyme transgene sequence used: 

 

• PCR product (ribozyme transgene) – 4μl 

• Salt solution     – 1μl 

• TOPO vector     – 1μl 

 

This reaction was gently mixed and incubated at room temperature for 30 minutes 

and stored in ice before proceeding to One Shot Chemical Transformation. 

 

2.3.3 Transformation of chemically competent Escherichia coli 

A 5µl volume from the TOPO cloning reaction outlined in Section 2.3.2 was added 

to a vial of One Shot TOP10 Chemically Competent E. coli and gently mixed by 

stirring the mixture in the eppendorf tube using the pipette tip as opposed to pipetting 

up and down to avoid damage to the bacteria. The vial was placed in ice for 30 

minutes, exposed to heat-shock treatment at 42˚C for 30 seconds and immediately 

placed back into ice. To each tube, 250µl of SOC medium (2% Tryptone, 0.5% yeast 

extract, 10nM NaCl, 2.5mM KCl, 10mM MgCl2, 10mM MgSO4 and 20mM glucose) 

at room temperature were added followed by shaking at 200 RPM on a horizontal 
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orbital shaker (Bibby Stuart Scientific, UK), at 37°C for 1 hour.  Following this 

incubation period, the contents of the tube were spread at a high and low seeding 

density onto two separate selective agar plates containing 100μg/ml ampicillin 

(Melford Laboratories Ltd., Suffolk, UK) and allowed to grow overnight at 37˚C in 

an incubator. As the pEF6 plasmid contains two antibiotic resistance genes that allow 

cells containing the plasmid to grow in the presence of ampicillin and blasticidin S 

selection, any colonies successfully growing on these plates should theoretically 

contain the pEF6 plasmid (refer to Figure 2.3). 

 

2.3.4 Selection and orientation analysis of positive colonies 

Confirmation of correct insertion and orientation of the ribozyme sequence in the 

pEF6 plasmid was analysed to ensure whether transcription of the sequence would 

generate the transcript of interest. The colonies were tested using polymerase chain 

reaction (PCR) using primers specific to either the plasmid or the ribozyme 

sequence. To check the orientation of the ribozyme sequences a combination of T7F 

vs RbToP and T7F vs RbBMR were used (refer to Table 2.2). RbToP and RbBMR 

recognise and bind to sequences within the ribozyme transgene that are common to 

all of the ribozymes used. There are approximately 90bp between the T7F promoter 

and the beginning of the insert. Thus, correct orientation and ribozyme size (based on 

approximate ribozyme size of 50bp), would be confirmed by a band of 

approximately 140bp in the T7F vs RbBMR reaction. Likewise, a band of 

approximately 140bp in the T7F vs RbToP would indicate incorrect orientation of 

the sequence. 
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Table 2.2 Plasmid/ribozyme specific primers 

 

Primer name Primer sequence 

T7F TAATACGACTCACTATAGGG 

RbBMR TTCGTCCTCACGGACTCATCAG 

RbToP CTGATGAGTCCGTGAGGACGA 
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Figure 2.3 Schematic diagram of the pEF6 plasmid used during cell transfection. Figure was 

taken from the pEF6/V5-His TOPO TA Expression Kit protocol (Invitrogen, Life Technologies Ltd, 

UK) 
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Following overnight incubation, the plates were examined for colony growth. 

Colonies were selected for orientation analysis and labelled on the Petri dishes. Two 

PCR reactions were carried out for each selected colony using the following 

parameters (full primer sequences are given in Table 2.3 shown in the RT-PCR 

Section 2.4.4): 

Ribozyme orientation reaction 1 

• 8μl – 2x GoTaq Green Master mix (Promega, Dorset, UK) 

• 1μl – T7F plasmid specific forward primer 

• 1μl – Ribozyme specific forward primer (RbToP) 

• 6μl – PCR water 

Ribozyme orientation reaction 2 

• 8μl – 2x GoTaq Green Master mix (Promega, Dorset, UK) 

• 1μl – T7F plasmid specific primer 

• 1μl – Ribozyme specific reverse primer (RbBMR) 

• 6μl – PCR water 

 

In order to test the orientation of the inserted ribozyme sequence present in the 

colonies, a sample was picked from the plate using a sterile pipette tip and inoculated 

into both mixes before the addition of the specific primers. Each reaction mix was 

then placed in a thermal cycler and subjected to the following conditions: 

• Step 1: Initial denaturing period – 95˚C for 10 minutes 

• Step 2: Denaturing step – 94˚C for 1 minute 

• Step 3: Annealing step – 55˚C for 1 minute   34 cycles 

• Step 4: Extension step – 72˚C for 1 minute 

• Step 5: Final extension period – 72˚C for 10 minutes 
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The mixture was run on a 2% agarose gel and visualized under ultra violet light. 

Colonies showing correct orientation of the insert were picked off the plate, used to 

inoculate 10ml of ampicillin selective LB broth and incubated overnight whilst being 

horizontally shaken at 225 RPM. 

 

2.3.5 Plasmid extraction, purification and quantification 

Plasmid extraction was undertaken using the Sigma GenElute Plasmid MiniPrep Kit 

according to the manufacturer’s protocol. Five millilitres of the LB broth, previously 

inoculated with the correct colony and cultured overnight, were centrifuged at 3,000 

RPM for 10 minutes to obtain a pellet of bacteria. The supernatant was discarded and 

the bacterial pellet was resuspended in 200μl of resuspension solution (containing 

RNase A) and mixed through repetitive pipetting. Two hundred microlitres of lysis 

solution were then added to the container and inverted 5 - 6 times. This stage was 

completed within 5 minutes before adding 350μl of the neutralisation solution, 

inverting 4 – 6 times and centrifuging at 12,000 RPM in a microcentrifuge. Plasmid 

DNA was bound to the column by transferring the cleared lysate to a Mini Spin 

Column placed inside a collection tube, spinning at 12,000 RPM for 30 seconds to 1 

minute and discarding the flow through. Seven hundred and fifty microlitres of wash 

solution (containing ethanol) were added to the column before spinning at 12,000 

RPM for 30 seconds to 1 minute and again discarding flow through. The column was 

spun at 12,000 RPM for 30 seconds – 1 minute to remove any remaining flow 

through before transferring the Mini Spin Column to a fresh collection tube. 

Plasmid DNA was eluted by the addition of 100μl of elution solution and spinning 

the column at 12,000 RPM for 1 minute. The eluted plasmid solution was then 
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electrophoresed on a 0.8% agarose gel to confirm presence and correct size of the 

plasmid. 

 

2.3.6 Transfection of mammalian cells using electroporation 

Following plasmid purification and quantification (quantification carried out utilising 

protocol as described for RNA quantification in Section 2.4.2 with a configuration to 

detect double stranded DNA and DEPC water substituted for elution solution) 1-

10µg of the extracted plasmid was used to transform the PC-3 prostate cancer cell 

line. Confluent PC-3 wild type cells were detached from tissue culture flasks using 

trypsin/EDTA, pelleted and resuspensed in the required volume of medium. Six 

hundred microlitres of this cell suspension was added to an electroporation cuvette 

(Eurgenetech, Southampton, UK) together with the purified plasmid. This was mixed 

briefly before being subjected to an electrical pulse of 290V and 1500 capacitance 

from an electroporator (Easyject, Flowgene, Surrey, UK). Following this pulse, the 

cell and plasmid suspension was quickly transferred into 10ml of pre-warmed 

medium and placed in an incubator to allow any surviving cells to fully recover from 

the electroporation process. 

 

2.3.7 Establishment of stably transformed PC-3 prostate cancer cell lines 

The pEF6 plasmid used to transform the cells, encodes two antibiotic resistance 

genes. As previously described, the ampicillin resistance gene allows initial selection 

of bacterial cells containing the plasmid. The plasmid also contains a blasticidin S 

resistance gene. Blasticidin S is a potent microbial antibiotic that inhibits protein 
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synthesis in both prokaryotes and eukaryotes and is used to specifically select for 

mammalian cells containing the pEF6 plasmid. The use of two antibiotic resistance 

genes allows an accurate selection of plasmid containing cells throughout the cloning 

process. Following overnight incubation, the cells were subjected to an initial intense 

selection period of 7 days. During this 7 day period, the cells were incubated in 

medium that had been supplemented with 5μg/ml of the blasticidin S antibiotic 

(Melford Laboratories Ltd., Suffolk, UK) to kill all cells that did not contain the 

pEF6 plasmid. After this initial intense selection the cells were maintained in 

maintenance medium containing 0.5μg/ml of blasticidin S, this maintains a selection 

pressure on the cells to retain the plasmid and results in long term transformation of 

the cells. 

All cells were tested initially and following routine use, to estimate the efficacy and 

stability of both the transformation and the ribozyme transgene or expression 

sequence using RT-PCR and Western blot analysis. This methodology for altering 

the expression levels of various proteins within mammalian cells is well established 

within our research group. 

 

2.4 Synthesis of complementary DNA for use in PCR analysis 

2.4.1 Total RNA isolation 

RNA isolation was completed using the TRI Reagent RNA Isolation Reagent and 

protocol. Cells were cultured until 60-80% confluent; the medium was aspirated 

prior to the addition of 1ml TRI Reagent which aids the detachment of the cell 

monoloayer and induces cell lysis. After approximately 5 minutes at room 
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temperature, a cell scraper was used to physically remove the cell monoloayer into 

the TRI Reagent allowing transfer of the cell lysate into an Eppendorf tube. After the 

addition of 200µl chloroform to the cell lysate, the Eppendorf was shaken 

vigorously, inverted multiple times for 15 seconds and then centrifuged in a 

refrigerated centrifuge at 4-5°C (Boeco, Germany) for 15 minutes at 12,000 RPM. 

After centrifugation, the homogenate separates into three phases: the lower pink 

organic phase contains protein, the murky inter phase contains DNA whilst the upper 

aqueous phase contains RNA. This upper aqueous layer was transferred to a fresh 

Eppendorf tube containing 500µl isopropanol and left at room temperature for 10 

minutes before centrifugation at 12,000 RPM for 10 minutes at 4˚C. Due to the 

insolubility of RNA in isopropanol, this step precipitates RNA out of the solution 

and forms a visible pellet at the bottom of the Eppendorf tube. The supernatant was 

discarded, 1ml 75% ethanol (3:1 ratio of ethanol to DEPC water) added to the pellet 

and the mixture was then centrifuged at 7,500 RPM for 5 minutes at 4˚C. The ethanol 

was removed leaving the pellet which was dried in a drying oven (Techne 

Hybridiser, UK) at 55˚C for 5-10 minutes. The remaining RNA pellet was dissolved 

in 40-60µl DEPC water (dependent on pellet size) via repetitive pipetting and 

vortexing for subsequent RNA quantification. The inclusion of histidine-specific 

alkylating agents in DEPC water inhibits the action of RNases which would 

otherwise affect RNA sample quality and concentration. 
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2.4.2 RNA quantitation 

Concentration of isolated RNA was determined using a UV1101 Biotech Photometer 

(WPA, Cambridge, UK) set to read absorbance measurements at 260nm wavelength 

and was configured to detect single stranded RNA samples at a 1:10 dilution. Prior to 

RNA sample quantification, the photometer was normalised with DEPC water. All 

samples and blanks were pipetted into a glass cuvette (StamaBrand, Optiglass 

Limited, UK). 

 

2.4.3 Reverse transcription-polymerase chain reaction (RT-PCR) of RNA 

RNA was used as template for reverse transcription to complementary DNA (cDNA) 

using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Life 

Technologies Ltd, UK) following the manufacturer’s protocol as described here. The 

quantified RNA was prepared with PCR water to provide a final concentration of 

250ng in 10µl which was added to 10µl of 2xRT master mix in a thin-walled 200µl 

PCR tube (ABgene, Surrey, UK). This was placed into an ABi 2720 Thermal cycler 

(Applied Biosystems, Life Technologies Ltd, UK) and the following parameters 

applied: 

 

 25°C for 10 minutes 

 37°C for 120 minutes 

 85°C for 5 minutes 
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The newly generated cDNA was diluted 1:4 with PCR water and stored at -20°C 

until required. 

2.4.4 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) is a method devised for detecting and amplifying a 

specific target DNA sequence. PCR was carried out using GoTaq Green Master mix 

(Promega, Dorset, UK). PCR reactions were set up for each cDNA sample with a 

total reaction volume of 16µl containing the following reagents: 

 

• 8μl – 2x GreenTaq ReadyMix PCR Reaction mix 

• 1μl – Specific forward primer 

• 1μl – Specific reverse primer 

• 5μl – PCR water 

• 1μl – cDNA 

 

Primers were designed using the Beacon Designer programme (Palo Alto, California, 

USA) and were synthesised by Invitrogen (Paisley, UK). These are listed in Table 

2.3. Primers were diluted to a concentration of 10pM before being used in the PCR 

reaction. The PCR reaction was set up in a 200μl PCR tube (ABgene, Surrey, UK), 

mixed briefly and centrifuged before being placed in an ABi 2720 Thermocycler 

(Applied Biosystems; Life Technologies Ltd, Paiseley, UK) and subjected to the 

following temperature parameters: 

 

• Step 1: Initial denaturing period – 94°C for 5 minutes 

• Step 2: Denaturing step – 94°C for 40 seconds  
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• Step 3: Annealing step – 55°C for 40 seconds 

• Step 4: Extension step – 72°C for 40 seconds 

• Step 5: Final extension period – 72°C for 10 minutes 

 

Steps 2 – 4 were repeated for typically 34 cycles. Primer binding sites and predicted 

product sizes were verified using the Primer3 (v.0.4.0) software available online 

(http://frodo.wi.mit.edu/). RT-PCR products which corresponded with this predicted 

size following electrophoresis (refer to Section 2.4.5) and staining were taken as 

being accurate. A negative control which replaced cDNA with PCR water was also 

included to assess any contamination. 
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Table 2.3 Primer used for polymerase chain reaction. Primers listed ‘ZR’ include Z sequences 

designed for quantitative PCR WAVE1 and 3 primers were previously published (Fernando et al 

2008; 2010). 

Gene Primer Primer sequence 5’-3’ 

WAVE1 

WAVE1F11 CCTCCTCCACCACCTCTTC 

WAVE1R11 GCACACTCCTGGCATCAC 

WAVE3 

WAVE3F11 TACTCTTGCCGCTATCATACG 

WAVE3R11 TGCCATCATATTCCACTCCTG 

ARP2 

ARP2F1 ATTGAGCAAGAGCAGAAACT 

ARP2ZR 
ACTGAACCTGACCGTACATTCTGGTGCTTCAAA

TCTCT 

ARP3 

ARP3F1 AGAAGTAGGAATCCCTCCCTCCAG 

ARP3ZR 

ACTGAACCTGACCGTACATTAATCCATTTTGAC

CCATC 

N-WASP 

NWASPF8 AGTCCCTCTTCACTTTCCTC 

NWASPR8 GCTTTTCCCTTCTTCTTTTC 

ROCK-I 

ROCK1F1 ATGGAAGAGAATGTGACTGG 

ROCK1ZR 
ACTGAACCTGACCGTACAGCTGTAAGTTCCAAC

CAAAG 

ROCK-II 

ROCKF1 CATATGGACAAAAAGGAGGA 

ROCK2ZR 
ACTGAACCTGACCGTACACTGCTTCTGTAGAAT

TTGC 

GAPDH 

GAPDHF8 GGCTGCTTTTAACTCTGGTA 

GAPDHR8 GACTGTGGTCATGAGTCCTT 

 

 

PDPN 

 

PDPLF8 GAATCATCGTTGTGGTTATG 

 

PDPLZR 

 

ACTGAACCTGACCGTACACTTTCATTTGCCTAT

CACAT 
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2.4.5 Agarose gel electrophoresis 

The amplified PCR product outlined in the previous section was separated according 

to product size using agarose gel electrophoresis. Generally, PCR product sizes were 

approximately 500bp, thus a 0.8% agarose gel was used. For PCR products amplified 

using primers designed for quantitative PCR (QPCR), these were typically 100-

200bp and therefore a 2% agarose gel was used. Powdered agarose (Melford 

Laboratories Ltd., Suffolk, UK) was added to 1xTBE solution and heated to fully 

dissolve the agarose. The molten solution was poured into an electrophoresis cassette 

(Scie-Plas Ltd., Cambridge, UK)  prepared with plastic combs creating loading wells 

once the gel had set. The set agarose gel was placed into the electrophoresis tank and 

submerged in 1xTBE buffer before the loading of 8µl PCR product and a 100bp 

DNA ladder (GenScript, New Jersey, USA) after the removal of the combs. The 

samples were electrophoretically separated at 95 volts for approximately 30 minutes 

(depending on the degree of separation required) by connecting a power pack to the 

electrophoretic tank (Gibco BRL, Life Technologies Inc.). 

 

2.4.6 DNA staining and visualisation 

Following the separation of PCR products electrophoretically, the agarose gel was 

placed in SYBR® SAFE (Invitrogen, UK) diluted in 1xTBE buffer at a dilution of 

1:10000. The gel was left to stain for approximately 20 minutes with constant 

agitation to ensure even staining of the gel before visualisation under blue light using 

the U-Genius3 gel imaging system (Syngene, Cambridge, UK). Images were 

captured with the integrated camera imaging system, and printed with a SONY 

thermo printer (SONY UK, London, UK) or saved as a TIFF file. If insufficient 
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staining was found, the gel was returned to in the SYBR® SAFE solution for further 

staining or distilled water to destain the gel if it was observed to show too much 

background staining. Alternatively, 5µl SYBR® SAFE solution was added to 50ml 

molten agarose before pouring. Following electrophoresis, the gel was visualised 

under blue light. 

 

2.4.7 Quantitative RT-PCR (Q-RT-PCR) 

Q-RT-PCR is a sensitive technique that is capable of detecting very small quantities 

of cDNA within a sample and also allows an accurate determination of template copy 

number or gene expression. This technique is based on the principle of a sequence-

specific DNA based fluorescent reporter probe which allows the quantification of 

DNA templates containing the probe sequence (refer to Figure 2.4). 

The Q-PCR protocol used in this study utilised the Amplifluor™ Uniprimer™ 

Universal system (Intergen company®, New York, USA) to quantify transcript copy 

number. The amplifluor probe carries a 3’region which is complementary to the Z-

sequence (ACTGAACCTGACCGTACA) which has been incorporated into one of 

the primers included in the QPCR reaction. This is used at a 1/10 concentration of 

the other primer and the amplifluor probe. In addition to the Z sequence specific 

region found at the 3’ end of the probe is the presence of a 5’hairpin structure 

labelled with a fluorophore tag (FAM). In this hairpin structure the fluorophore tag 

associates with an acceptor moiety (DABSYL) which quenches fluorescence and 

therefore produces no signal. During PCR, the specificity of the amplifluor’s 3’ 

region to the Z sequence present in the PCR primer generates PCR products with an 

incorporation of the amplifluor. This sequence itself acts as a template for subsequent 
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steps in DNA polymerisation resulting in the disruption of the hairpin structure 

causing fluorescence which can be detected and quantified. The fluorescent signal 

emitted during QPCR reaction is compared to a range of standards of known 

transcript copy number thus allowing the calculation of transcript copy number 

within each sample. The same samples are also run in parallel using primers specific 

for the gene GAPDH whose transcript copy numbers are used to standardise and 

normalise the calculation of transcript copy number for the gene of interest in the 

samples. 

The cDNA for use in Q-RT-PCR was generated as described in the sections above; 

this cDNA was then used in the following Q-PCR reaction mix: 

 

Component Volume 

iQSupermix (Bio-Rad, UK) 5μl 

Forward primer (10pmol/μl) 0.3μl 

Reverse Z primer (1pmol/μl) 0.3μl 

Probe Ampifluor (10pmol/μl) 0.3μl 

PCR water 2.1 μl 

cDNA 2μl 
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Each sample was placed into a 96-well plate (BioRad laboratories, Hemel 

Hampstead, UK) in parallel with the standards mentioned previously (copy numbers 

ranging from 10
1
 to 10

8
) which would permit quantitation of samples (refer to Figure 

2.5). The standards used for this purpose were amplified using primers targeting the 

PDPN gene (Podoplanin). Sample cDNA was amplified and quantified over a large 

number of shorter cycles using an iCycler IQ thermal cycler and detection software 

(Bio-Rad, UK) and experimental conditions as outlined below: 

 

• Step 1: Initial denaturing period – 95°C for 7 minutes 

• Step 2: Denaturing step – 95°C for 10 seconds 

• Step 3: Annealing step – 55°C for 35 seconds 

• Step 4: Extension step – 72°C for 20 seconds 

 

Step 2 – 4 was repeated over 90 cycles. The camera used in this system was set to 

detect fluorescent signals during the annealing stage. The calculation of sample copy 

number depends on the point at which the sample crosses threshold (CT) in 

comparison to the standards, automatically generated by the instrument software.  
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Figure 2.4 Schematic diagram depicting the key steps underlying quantitative PCR when using the 

uniprimer fluorescent probe 
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Figure 2.5 Standardisation of transcript copy number (A) Qunatitative PCR was carried out on a 

series of standard samples ranging from 10
1 

to 10
8 

(B) A standard curve was generated from the 

standard samples and was used to determine copy number in tested samples  
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2.5 SDS-PAGE and Western blotting 

2.5.1 Cellular lysis and protein extraction 

Upon a cell monolayer reaching sufficient confluency, medium was aspirated from 

the flask and the cells washed with BSS. A small volume of BSS was added to the 

flasks for the detachment of the cell monolayer using a sterile cell scraper. Both the 

detached cells and BSS were transferred to a universal container. The cell suspension 

was centrifuged at 2,000 RPM for 20 minutes to form a cell pellet. Following 

centrifugation, BSS was aspirated and the cells were lysed in 200 – 250μl (depending 

on pellet size) of either SDS or NP40 lysis buffer (depending on application). SDS 

lysis buffer was made by mixing 4.85ml 2x lysis buffer, 4.85ml 2x inhibitor buffer, 

100µl PMSF, 100µl DTT and 100µl SDS (10%), whilst NP40 lysis buffer was made 

with the same quantities and components but substituting SDS with NP40. Protein 

extraction using lysis buffer containing SDS totally disrupts the cell membrane and 

protein:protein interactions. For applications such as immunoprecipitation 

techniques, where protein interaction is being investigated, SDS lysis buffer is thus 

not suitable. Alternatively, lysis buffer containing NP40 does not disrupt these 

protein interactions. 

The cell lysate was transferred into a 1.8ml Eppendorf tube (Greiner Bio-One Ltd, 

Gloucestershire, UK) and placed on a Labinco rotating wheel (Wolf laboratories, 

York, UK) for approximately 1 hour in a refrigerator (4-5°C). The lysis solution was 

then spun at 13,000 RPM in a microcentrifuge for 15 minutes to pellet insoluble 

material. The subsequent protein concentration of the aspirated supernatant was 

determined as described in Section 2.5.2. 
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2.5.2 Protein quantification 

Prior to their use in Western blotting, determination of protein concentration in the 

samples were quantified using a Bio-Rad DC Protein Assay kit (Bio-Rad, UK) 

following the 96-well plate protocol as described here. Bovine serum albumin (BSA) 

at a concentration of 100mg/ml was used to make serial standard dilutions in lysis 

buffer ranging from 50 mg/ml to 0.02 mg/ml. Five microlitres of either the sample or 

standard was pipetted into an empty well before adding 25μl of ‘working reagent A’ 

followed by 200μl of reagent B. ‘Working reagent A’ was prepared by combining 

each millilitre of reagent A with 20μl of reagent S which was used for detergent 

containing samples. Following addition of reagent B, samples were mixed briefly 

and then left for approximately 45 minutes to allow the colorimetric reaction to fully 

occur. Absorbance of samples and standards at 620nm was then measured using an 

ELx800 plate reading spectrophotometer (Bio-Tek, North Star Scientific, Leeds, 

UK). A standard curve was constructed based on the absorbance of the BSA 

standards which allowed determination of the protein sample concentrations. All 

samples were normalised to the desired final concentration of between 1.0 and 

1.5mg/ml by dilution in an appropriate amount of lysis buffer (as described in section 

2.5.1) and further diluted at a 1:1 ratio with 2x Lamelli sample buffer concentrate. 

Samples were then boiled at 100°C for 5 minutes and stored at -20°C prior to use. 

 

2.5.3 Immunoprecipitation 

When assessing protein interactions, immunoprecipitation techniques were utilised 

prior to the subsequent steps outlined in Sections 2.5.4 to 2.5.7. In this case, proteins 

were first extracted with a lysis buffer free of SDS but substituted with NP40. After 
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protein quantification, the samples were standardised to a final concentration of 1-

2mg/ml via dilution with lysis buffer in a total volume of 100µl in an Eppendorf 

tube. An additional protein sample was prepared at the same concentration but to a 

final volume of 30µl, this comprised the raw lysate for subsequent use. A 100µl 

volume of antibody specific for the initial protein of interest was added to the 100µl 

protein volume tube at a dilution of 1:5 and was then placed on a rotating wheel for 

1-2 hours at 4°C. The antibodies used for this step are listed in Table 2.4. After this 

time, 20µl of Protein AG agarose immunoprecipitation reagent beads (Santa Cruz 

Biotechnology, California) were pipetted into each tube and returned to the rotating 

wheel for at least 2 hours. The Eppendorfs tubes were centrifuged at 8,000 RPM for 

5 minutes after which the supernatant was removed for the addition of 300µl lysis 

buffer to the tube and centrifuged again at 8,000 RPM for 5 minutes. This step was 

repeated to provide a total of three washes. After the final wash, the supernatant was 

removed for the addition of 50µl of 1x Laemmli buffer and boiled for 5 minutes. The 

raw lysate samples were also boiled for 5 minutes following the addition of an equal 

volume of 2x Laemmli buffer. These samples were then stored at -20°C until 

required for SDS-PAGE. 

 

2.5.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to detect the presence, or absence, of specific proteins. SDS-

PAGE was undertaken using an OmniPAGE VS10 vertical electrophoresis system 

(Cleaver Scientific, Warwickshire, UK). Resolving gels of a particular acrylamide 

percentage (depending on the predicted size of the protein of interest) were made up 

in a universal container and added in-between glass plates held in place in a loading 
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cassette. Typically, proteins ranging from approximately 50-100kDa were separated 

with an 8% resolving gel whilst a 10% resolving gel was prepared for proteins of 

approximately 20-90kDa. The components and their quantities for making these gels 

at a total volume of 15ml (sufficient for two gels) are as follows: 

 

Resolving gel component 

 

10% acrylamide gel 

 

8% acrylamide gel 

 

Distilled water 
5.9ml 

 

6.9ml 

 

30% acrylamide mix 
5.0ml 

 

4.0ml 

 

1.5M Tris (pH 8.8) 

 

3.8ml 

 

3.8ml 

 

10% SDS 
150µl 

 

150µl 

 

10% APS 
150µl 

 

150µl 

 

TEMED 
6µl 

 
9µl 
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Once the resolving gel had set, the stacking gel was prepared and added to the top of 

the resolving gel. A plastic comb was placed in the unset stacking gel and the 

mixture was left to harden. The components and quantities required to prepare 5ml of 

stacking gel solution (enough for two gels) are as follows: 

 

 

Stacking gel component Volume 

Distilled water 3.4ml 

30% acrylamide mix 830µl 

1.5M Tris (pH 6.8) 630µl 

10% SDS 50µl 

10% APS 50µl 

TEMED 5µl 

 

 

Once both resolving and stacking gels had set, the loading cassette was placed into 

an electrophoresis tank and submerged in 1x running buffer. The combs were 

removed for the addition of 10μl of broad range marker whilst a volume of 10-18μl 

of protein sample was added to separate wells (volume loaded dependant on protein 

concentration). The proteins were then electrophoretically separated according to 

molecular weight at 100V, 50mA and 50W for approximately 2.5-3 hours (dependent 

on protein size and acrylamide gel percentage). 
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2.5.5 Western blotting 

Following PAGE of the protein samples the bands were transferred to a 

nitrocellulose membrane using Western blotting. Gels were removed from the 

electrophoretic tank and unclipped from the loading cassette; the stacking gel was cut 

away and the resolving gel placed on top of UltraCruz™ Nitrocellulose Pure 

Transfer Membrane with a 0.45µM pore size (Santa Cruz Biotechnology, California) 

which had been pre-soaked in 1x transfer buffer and assembled in a SD10 SemiDry 

Maxi System blotting unit (SemiDRY, Wolf Laboratories, York, UK). The 

arrangement of 3 sheets of pre-soaked 3mm chromatography paper (Whatman 

International Ltd., Maidstone, UK) as filter paper, the acrylamide gel and 

nitrocellulose membrane within this blotting platform is depicted in Figure 2.6.  

Electroblotting was undertaken at 15V, 500mA, 8W over a 1 hour period. Once 

complete, the membranes were carefully removed for subsequent steps. 

 

 

Figure 2.6 Schematic diagram of the arrangement of components for transferring proteins separated 

during SDS-PAGE in acrylamide gels onto nitrocellulose membrane utilising Western blotting  
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2.5.6 Staining of proteins 

2.5.6.1 Nitrocellulose membrane staining 

Membranes were stained prior to probing with specific antibodies to confirm 

successful transfer or to aid in the sectioning of the membrane. Membranes were 

placed in Ponceau S solution for several minutes to allow visualisation of protein 

bands on the membrane, the membrane was then cut into the required number of 

sections before washing off the stain several times in distilled water. 

 

2.5.6.2 Detection of proteins using specific antibody probing 

Membranes were probed with protein specific antibodies utilising the SNAP i.d. 

Protein Detection System (Merck Millipore, Darmstadt, Germany). This vacuum-

driven platform incorporates the blocking, antibody incubation and washing steps 

which can all be completed within 30 minutes. Prior to these steps, distilled water 

was used to wet the membrane layer of the blot holder before placing the 

nitrocellulose membrane protein side down. A membrane roller was used to remove 

air bubbles before placing a blot spacer on top and rolled again. The blot holder was 

clipped shut and then placed and secured into the chamber of the SNAP i.d. system 

with the protein side up. A volume of 30ml blocking buffer comprised of 0.2% milk 

(Marvel dried skimmed milk), 0.1% TWEEN 1xTBS was added to the wells of the 

blot holder and vacuum was applied. Following passage of blocking buffer, 3ml 

primary antibody at a 1:350 dilution was added to the well with the vacuum switched 

off to allow the antibody to incubate for 10 minutes at room temperature. A list of the 

primary antibodies used are outlined in Table 2.4. Following this incubation, the 
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vacuum was applied and wash buffer (0.1% TWEEN 1x TBS) was passed through 

the membrane three times. Once the well was empty, 3ml secondary antibody at a 

1:350 dilution was added to the well with the vacuum turned off and left to incubate 

for a further 10 minutes at room temperature before three washes with wash buffer. 

The secondary antibodies that were used are listed in Table 2.5. 
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Table 2.4 Primary antibodies used for probing proteins following transfer onto nitrocellulose 

membrane , immunoprecipitation and confocal microscopy setup 

 

  

Primary 

antibody 

Molecular 

weight (kDa) 
Supplier Product code Application 

Goat anti-

WAVE1 
84 

Santa Cruz 

Biotechnology 
SC-10388 WB/IP 

Goat anti-

WAVE3 
70 R&D Systems AF5515 WB 

Mouse anti-

ARP2 
43 

Santa Cruz 

Biotechnology 
SC-137250 WB/IP 

Goat anti-ARP3 53 
Santa Cruz 

Biotechnology 
SC-10130 WB/IP 

Goat anti-N-

WASP 
65 

Santa Cruz 

Biotechnology 
SC-10122 WB/IP 

Mouse anti-

ROCK-I 
160 

Santa Cruz 

Biotechnology 
SC-17794 WB/IP 

Rabbit anti-

ROCK-II 
160 

Santa Cruz 

Biotechnology 
SC-5561 WB/IP 

Mouse anti-

GAPDH 
37 

Santa Cruz 

Biotechnology 
SC-32233 WB/IP 

GOAT anti-

WAVE3 
70 

Santa Cruz 

Biotechnology 
SC-26499 IP 

Mouse anti-

Phosphotyrosine 

(PY20) 

 

Dependent on 

protein 

Santa Cruz 

Biotechnology 

 

SC-508 

 

IP 

Mouse anti-

phosphotyrosine 

(PY99) 

 

Dependent on 

protein 

Santa Cruz 

Biotechnology 

 

SC-7020 

 

IP 
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Table 2.5 Secondary antibodies used for probing the appropriate primary antibodies listed in Table 

2.4 following the steps outlined in Section 2.5.6.2 

 

 

Secondary 

antibody 

Molecular weight 

(kDa) 

Supplier Product code 

Rabbit anti-mouse 

(whole molecule) 

IgG peroxidise 

conjugate 

Dependent 

on primary 

Sigma-Aldrich Ltd, 

Dorset, UK 
A-9044 

Goat anti-rabbit 

(whole molecule) 

IgG peroxidise 

conjugate 

Dependent 

on primary 

Sigma-Aldrich Ltd, 

Dorset, UK 
A-9169 

Rabbit anti-goat 

(whole molecule) 

IgG peroxidise 

conjugate 

Dependent 

on primary 

Sigma-Aldrich Ltd, 

Dorset, UK 
A-5420 
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2.5.7 Chemiluminescent detection of antibody-antigen complex 

Following antibody incubation and buffer washes, the membrane was carefully 

removed from the blot holder and placed into a weighing boat for the addition of 1ml 

Luminata Forte Western HRP Substrate (Merck Millipore, Darmstadt, Germany) 

which was left to incubate for 5-10 minutes at room temperature away from light 

exposure. Excess substrate was removed before placing the membrane into the 

UVITec imager (UVItec Limited, Cambridge, UK). The image was captured by a 

camera in the imager which also includes an illuminator. Membranes were subjected 

to various exposure times and captured images were analysed on a connected 

computer using UVIprochem software (UVItec Limited, Cambridge, UK).  



2.6 Tumour cell functional assays 

2.6.1 In vitro tumour cell growth assay 

Cells were detached from the culture flask and cell density (per millilitre) was 

established as described previously. Cells were then seeded into a 96 well plate 

(Greiner Bio-One Ltd, Gloucestershire, UK) at a seeding density of 3,000 cells in 

200μl of normal medium. Triplicate plates were set up to obtain a cell density 

reading following 24, 72 and 120 hour incubation periods. Following the appropriate 

incubation period, the medium was removed and cells were fixed in 4% 

formaldehyde in BSS for at least 5 minutes before rinsing and staining in 0.5% (w/v) 

crystal violet in distilled water for 5 minutes. The stain was then extracted from the 

cells using 10% acetic acid and cell density determined by measuring the absorbance 

at 540nm on an ELx800 plate reading spectrophotometer (Bio-Tek, North Star 
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Scientific, Leeds, UK).  The sensitivity of crystal violet staining as a method to 

quantify cell number is shown in Figure 2.7. Cell growth was presented as 

percentage increase and calculated by comparing the absorbances obtained for each 

incubation period using the following equation: 

 

Percentage increase = ((day 3 or 5 absorbance) – day 1 absorbance / day 1 

absorbance) X 100 

 

Six replicate wells were set up for each experiment and the entire experiment was 

repeated at least three times. The in vitro cell growth assay outlined here has 

previously been described and is well established in our research group (Fernando et 

al., 2008). 

 

 

 

Figure 2.7 Sensitivity of crystal violet assay Graph shows level of absorbance for crystal violet 

staining and relationship with number of cells  
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2.6.2 In vitro tumour cell Matrigel invasion assay 

The invasive capacity of the cells used in this study was determined using an in vitro 

Matrigel invasion assay. This assay measures the cells ability to degrade and invade 

through an artificial basement membrane and migrate through 8μm pores. Cell 

culture plate inserts (BD Biosciences, Oxford, UK) containing 8.0μm pores were 

coated in 50μg of Matrigel (BD Biosciences, Oxford, UK). The working 

concentration of Matrigel at 500µg/ml was made up in serum free medium where 

100μl was added to each insert and allowed to set in a HB-1D Techne Hybridiser 

drying oven (Techne, Staffordshire, UK). Once dried, these inserts were placed into 

sterile 24 well plates and the artificial membrane was rehydrated in 200μl of serum 

free medium for approximately 40 minutes. Once rehydrated, the serum free medium 

was aspirated and 1ml of normal medium was added to the well containing the insert 

in order to sustain any cells that may have invaded through the insert. Twenty 

thousand cells in 200μl of normal medium were then added to the insert over the top 

of the artificial basement membrane. The arrangement of this invasion assay is 

depicted in Figure 2.8.  

The plate was then incubated for 72 hours at 37˚C, 5% CO2 and 95% humidity. After 

72 hours, the inserts were removed from the plate and the inside of the insert (which 

was initially seeded with cells) was cleaned thoroughly with tissue paper to remove 

Matrigel and non-invaded cells. Any cells which had invaded through the membrane 

and passed to the underside of the insert were fixed with 4% formaldehyde (v/v) in 

BSS for 5 minutes before being stained with 0.5% crystal violet solution (w/v) in 

distilled water. Excess crystal violet was washed away and the inserts were left to 

dry. These cells were then visualised under the microscope under x20 objective 

magnification and the random fields captured using Motic Plus 2.0 imaging software 
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(Motic, Wetzlar, Germany). Three random fields per insert were counted and the 

experimental procedure was repeated a minimum of three times. The in vitro cell 

invasion  assay outlined here has previously been described and is well established in 

our research group (Fernando et al., 2008). 

 

 

 

 

Figure 2.8 Schematic diagram showing the setup of the invasion insert in a 24-well plate. Invasive 

cells would invade through the Matrigel layer and the 8.0µm pores of the insert membrane. 
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2.6.3 In vitro tumour cell Matrigel adhesion assay 

The ability of tumour cells to adhere to an artificial Matrigel basement membrane 

was examined using an in vitro Matrigel adhesion assay.  A working concentration of 

Matrigel at 50µg/ml was made in serum free medium whereby 100µl were pipetted 

into each well of a 96-well plate and placed into an oven to dry to form an artificial 

basement membrane. This membrane was then rehydrated in 100μl of serum free 

medium for 40 minutes before cell seeding. Forty five thousand cells were seeded 

onto the Matrigel basement membrane in 200μl of normal medium and incubated for 

45 minutes. Following this incubation period, the medium was removed and the 

membrane washed five times with BSS to remove non- and loosely attached cells. 

Adherent cells were then fixed with 4% formaldehyde (v/v) in BSS for 5 minutes 

before being stained with 0.5% crystal violet solution (w/v) in distilled water. 

Adherent cells were then visualised under the microscope under x20 objective 

magnification and random fields captured using Motic Plus 2.0 imaging software 

(Motic, Wetzlar, Germany). Three random fields per insert were counted, with 6 

replicate wells each run and the experimental procedure was repeated a minimum of 

three times. The in vitro cell adhesion assay outlined here has previously been 

described and is well established in our research group (Fernando et al., 2008). 

 

2.6.4 In vitro tumour cell motility assay 

Cellular motility was assessed using a cytodex-2 bead motility assay whereby one 

million cells for each cell type were incubated in 10ml of growth medium containing 

100μl of cytodex-2 beads (GE Healthcare, Cardiff, UK) overnight to allow the cells 

to adhere to the beads. The beads were then washed twice in 5ml of normal growth 
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medium to remove non-adherent or dead cells. After the second wash the beads were 

resuspended in 1ml of growth medium. One hundred microlitres of this solution were 

then added to a 96-well plate containing a further 100μl of normal medium and 

incubated for 4 hours. Following incubation, any cells that had migrated from the 

cytodex-2 beads and adhered to the base of the well were fixed with 4% 

formaldehyde (v/v) for 5 minutes and stained with 0.5% crystal violet (w/v). The 

stain was then extracted from the cells using 10% acetic acid and density of migrated 

cells was determined by measuring the absorbance at 540nm on an ELx800 plate 

reading spectrophotometer (Bio-Tek, North Star Scientific, Leeds, UK).  Each 

experimental run included at least triplicate repeats and the entire experiment 

protocol was repeated at least three times. The in vitro cell motility assay outlined 

here has previously been described and is well established in our research group 

(Davies et al., 2008). 

 

2.7 Confocal microscopy 

Confocal microscopy was used to investigate protein co-localisation and cell 

morphology. A volume of 400µl medium containing 30,000 cells was added to each 

well of a Millicell® EZ Slide (Merck Millipore, Darmstadt, Germany) before 

incubation overnight. The following day, the cells were fixed with 4% formaldehyde 

before rehydration in BSS for 20 minutes at room temperature. Cells were 

permeabilised with 0.1% TritonX100 prepared in BSS for 5 minutes for subsequent 

blocking using a diluent consisting of BSS/5-10% horse serum for 20 minutes. The 

wells were washed three times with BSS for the addition of 100µl of each primary 

antibody at 1:100 dilution made up in the diluent (one primary antibody of different 
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species for each protein being investigated for protein co-localisation) then incubated 

at room temperature for 1 hour (The primary antibodies used are outlined in Table 

2.4). Each well was washed three times with BSS for the addition of 100µl of each 

appropriate FITC or TRITC secondary antibodies at 1:250 dilution made up in the 

diluent and left to incubate at room temperature for 1 hour (one secondary antibody 

for each appropriate primary antibody used in prior steps; all secondary antibodies 

used are listed in Table 2.6). Each well was washed three times with BSS. The 

plastic frame was removed from the Millicell® EZ Slide for a coverslide to be 

mounted using FluorSave Reagent (Merck Millipore, Darmstadt, Germany) before 

storage in a refrigerator. Cells were visualised using the Olympus Fluoview FV10i 

confocal laser-scanning microscope under X60 magnification and analysed with the 

accompanying manufacturer’s software (Olympus, Southend-on-Sea, UK). 

 

2.8 Statistical analysis 

Statistical analysis was performed using SigmaPlot 11.0 statistical software (Systat 

Software Inc, London, UK). Data was analysed using a two-sample, two-tailed t-test. 

Normality of data to perform these parametric tests was assessed by the Sigmaplot 

software and if deemed non-parametric, Mann-Whitney was performed. Each assay 

was performed at least three times. P-values＜0.05 were considered statistically 

significant. 
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Table 2.6 Fluorescent tagged secondary antibodies used for probing the appropriate primary 

antibodies listed in Table 2.4 during following the confocal microscopy protocol. 

 

Secondary antibody Supplier Product code 

Anti-Goat IgG (whole molecule)-

FITC antibody produced in rabbit 

Sigma-Aldrich Ltd, 

Dorset, UK 
F7367 

Anti-Mouse IgG (whole molecule)-

TRITC antibody produced in goat. 

IgG fraction of antiserum 

Sigma-Aldrich Ltd, 

Dorset, UK 
T5393 

Anti-Rabbit IgG (whole molecule)-

FITC antibody produced in goat 

Sigma-Aldrich Ltd, 

Dorset, UK 
T6778 
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Chapter 3 

The effects of WAVE1 and WAVE3 knockdown 

in PC-3 cells 
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3.1 Introduction 

As discussed in Chapter 1, the WASP family of proteins contains five members, of 

which three form a subgroup referred to as the WAVE protein family. The pivotal 

role of WAVE proteins in cell motility through their interactions with a network of 

proteins is well documented (Fernando et al., 2009).  

The ability of a cell to migrate is dependent on the formation of protrusions at the 

cell leading edge. Dynamic rearrangement of the actin cytoskeleton is a major 

mechanism driving the formation of cell protrusions and is dependent on the Arp2/3 

protein complex (Figure 3.1). The association between cell motility and the Arp2/3 

complex is related to the well known ability of this protein complex to stimulate 

actin polymerisation (Welch, 1999). The assembly of actin filaments by Arp2/3 at 

the cell leading edge results in the generation of polarised projections of the 

cytoplasm, an essential step in cell locomotion. 

Despite the ability of Arp2/3 to elicit these actin polymerising effects, it is unable to 

do so without firstly becoming activated by members of the WAVE family. Arp2/3 

activation is stimulated by WAVE which induces the complex into a conformational 

change which causes the two subunits, Arp2 and Arp3 to be brought into close 

proximity (Higgs and Pollard, 1999). In this configuration, these two subunits mimic 

an actin dimer which is able to induce rapid actin polymerisation. However, prior to 

this interaction between WAVE and Arp2/3, it is necessary for WAVE itself to 

become activated which occurs indirectly between the Sra1 subunit component of the 

WAVE regulatory complex and Rac, a member of the Rho GTPase family. It is now 

understood that WAVE acts as a ‘middle man’ between Rac GTPases and the Arp 

2/3 protein complex.  
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Cell migration is an essential mechanism that underlies a plethora of normal cellular 

processes including wound healing, immune response and tissue formation during 

embryonic development. Whilst the migration of normal, healthy cells is 

physiologically important to ensure such mechanisms function properly, it also has 

the potential to drive the migration of abnormal cells. When uncontrolled, cell 

motility has the ability to contribute to the aggressive spread of cancer cells and is 

recognised as a promoting factor of cancer metastasis (Wang et al., 2005). 

This link between aberrant cell migration and its influence on cancer metastasis has 

long been established (Liotta, 1986). An in vivo study comparing the gene expression 

profiles of invasive tumour cells to the primary tumour cell population in a xenograft 

tumour model discovered an up-regulation of genes involved in pathways central to 

cell motility including actin polymerisation. Up-regulated genes included subunits 

comprising the Arp2/3 complex (Arp2 and Arp5) as well as Cdc42, an upstream 

stimulator of Arp2/3 known to regulate N-WASP (Wang et al., 2007) (Refer to 

Figure 3.1). 

Although work in this field has heavily focused on the relevance of the Rho GTPases 

in cancer metastasis through their role in cell motility (as outlined in Chapter 1), the 

significance of their downstream proteins has been explored to a lesser extent. With 

links between several proteins implicated in cell motility and the findings of their up-

regulated expression and/or activity in aggressive and metastatic cancers, it is logical 

to explore the potential contribution of WAVE proteins in cancer metastasis. 
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Figure 3.1 Cell motility pathways outlining the protein interaction networks which regulate the 

Arp2/3 complex, capping protein and cofilin pathways. All these pathways have implications on actin 

polymerisation at the cell leading edge and therefore regulate cell locomotion. 
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The relevance of the WASP protein family in human disease has been well 

documented with particular interest focusing on the WAVE proteins and their 

significance in cancer metastasis. An association between aberrant WAVE 

expression and several metastatic cancers has been identified (Kurisu et al., 2005; 

Iwaya et al., 2007; Sossey-Alaoui et al., 2007). In line with these findings is the 

suggestion of a potential contribution of WAVE1 and WAVE3 to prostate cancer 

metastasis (Fernando et al, 2008; Fernando et al, 2010).  The expression levels of 

WAVE1 and 3 were found to be up-regulated in the metastatic prostate cancer cell 

lines, PC-3 and DU-145 compared to non-cancerous prostatic epithelial cell lines. 

Knockdown of WAVE1 and 3 was independently carried out in the metastatic 

prostate cancer cell lines, PC-3 and DU-145 with the aim to determine the effects of 

knockdown on several cell functions in relation to cancer metastasis. This research 

described a decrease in cell invasive and growth capabilities in both cell lines with 

WAVE1 knockdown, whilst WAVE3 knockdown was only shown to reduce cell 

invasion but no effect on proliferation. Neither WAVE1 nor 3 knockdown was 

shown to affect cell adhesive ability. 

These findings implicate aberrant WAVE expression as a potential contributor to the 

metastatic traits seen in aggressive prostate cancer cell lines. This chapter aims to 

firstly independently reproduce the findings of Fernando et al (2008; 2010) and to 

supplement the initial study by investigating the effect of WAVE1 or 3 knockdown 

on cell motility. Given the role of WAVE1 and 3 in cell motility, expression 

knockdown of either isoform in the PC-3 cell line should see suppression in their 

cellular motile potential. 
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3.2 Methods and materials 

3.2.1 Cell lines 

PC-3 cells were cultured as outlined in Chapter 2. 

 

3.2.2 Generation of WAVE 1 and 3 knockdown PC-3 cell lines 

Ribozyme transgenes that specifically target and cleave WAVE 1 or 3 mRNA were 

generated and cloned into the PC-3 prostate cancer cell line. The full protocol 

followed to generate ribozymes, insertion into the plasmid vector, amplify the 

plasmid in E.coli, plasmid extraction and electroporation to introduce the plasmid 

into PC-3 cells are outlined in Section 2.3. Ribozyme sequence data are displayed in 

Table 2.1 in Section 2.3. 

 

3.2.3 Synthesis of complementary DNA and reverse transcription polymerase 

chain reaction 

This is fully described in Section 2.4.3. RNA was isolated from wild type PC-3 cells 

and its plasmid transfected equivalents. Complementary DNA (cDNA) was 

generated from the standardised RNA extractions using reverse transcription 

polymerase chain reaction (RT-PCR) for subsequent expression analysis using 

conventional and quantitative PCR using primer sequences shown in Table 2.3 of 

Section 2.4.4. 
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3.3 Results 

3.3.1 Generation of WAVE 1 and WAVE 3 ribozyme transgene pEF6 plasmids 

In order to generate WAVE 1 and WAVE 3 ribozyme transgenes, ribozymes were 

designed to target a specific site on the predicted secondary structure of the WAVE 1 

and 3 mRNA transcripts. This was achieved using a predictive mRNA folding 

software programme as described in Section 2.3.1. Initial synthesis of WAVE 1 and 

3 ribozyme transgenes was carried out following the touchdown PCR parameters as 

outlined in Section 2.3.1. Following plasmid integration and amplification in E.coli, 

these plasmids were extracted for subsequent analysis. Ensuring the ribozyme 

transgenes were integrated into the plasmid vector in the correct orientation is 

crucial, therefore orientation checks were carried out with PCR and electrophoresis. 

Bands of approximately 140 bp resulting from a T7F vs RbBMR reaction indicated 

correct orientation whereas a 140bp band from a T7F vs RbToP reaction 

demonstrated incorrect orientation of the ribozyme transgene insert. 

As  Figure 3.2 demonstrates, colonies 4 and 7 display bands of 140bp for T7F and 

RbBMR PCR reactions for WAVE1 ribozyme 1 samples which indicates correct 

orientation of the ribozyme insert into the plasmid vector. Therefore these colonies 

were chosen to be used for plasmid amplification, purification and transfection into 

the PC-3 cell line. Similarly, colonies 2 and 6 were identified as colonies carrying 

ribozyme 2 for WAVE1 whilst colonies 1 and 4 were selected for WAVE 3 

ribozyme 1 and colony 8 was chosen for WAVE 3 ribozyme 2. 
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Figure 3.2 Plasmid insertion and orientation analysis of the ribozyme transgenes into the pEF6 

plasmid vector. Colonies picked for orientation analysis are labelled 1 to 8. Correct orientation checks 

with a T7F and RbBMR reaction are labelled B whilst a T7F and RbToP reaction tested for incorrect 

orientation and is labelled A. A 140bp band present for either reaction A or B provides an indication 

of insert orientation into the plasmid vector. 
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3.3.2 Confirmation of WAVE 1 and WAVE 3 knockdown in PC-3 cells at the 

mRNA level with polymerase chain reaction (PCR) and quantitative PCR (Q-

PCR) 

The results of the expression analysis and knockdown verification at the mRNA level 

are shown in Figures 3.3 and 3.4. WAVE1 and 3 expression is similar for PC-3 WT 

and the control cell line PC-3 pEF6 when using both conventional and 

quantitative/real time PCR (Q-PCR). Using conventional PCR, PC-3 cells transfected 

with either ribozyme 1 or 2 targeting WAVE1 were shown to have a reduced 

WAVE1 mRNA expression level. The expression levels of WAVE3 were also seen 

to be lower  in PC-3 cells transfected with either WAVE3 specific ribozyme 1 or 2. 

The expression analysis was performed in parallel with that of the housekeeping 

gene, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) as a control to ensure 

that the band intensity seen in the agarose gel following staining reflected expression 

level differences and not differences in cDNA starting quantities. Expression analysis 

of the cDNA samples showed no change in GAPDH expression level. Additionally, a 

negative control was set up with cDNA substituted for water to help indicate any 

contamination. PCR of all PC-3 cDNA samples revealed no sign of DNA 

contamination in the primers or PCR water used as suggested by the lack of PCR 

product band when using WAVE1, WAVE3 or GAPDH primers. The knockdown of 

WAVE1 or 3 was quantitatively analysed by Q-PCR which focused on cell lines 

transfected with ribozyme 2 targeting WAVE1 (W1R2) and ribozyme 1 specific for 

WAVE3 (W3R1) which were the cell lines used in subsequent experiments. 

Expression analysis using this method was undertaken in parallel with the 

housekeeping gene, GAPDH to normalise the values obtained for WAVE1 and 3. 

Additionally, standards of known transcript level were simultaneously amplified 
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alongside these experiments which allowed a calculation of the expression level in 

the samples being analysed. Q-PCR experiments were repeated at least three times. 

This method also revealed a knockdown in mRNA expression of WAVE1 in PC-3 

cells transfected with W1R2 and WAVE3 with W3R1. 

 

 

 

 

Figure 3.3 Expression analysis of WAVE1 and WAVE3 following targeted ribozyme transgene 

transfection of PC-3 wild type cells. The expression of both WAVE1 and 3 was shown to be knocked 

down at the mRNA level following transfection by either ribozyme 1 or 2. 
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Figure 3.4 WAVE1 and 3 knockdown confirmed at the mRNA level using Q-PCR. (A) WAVE 1 

expression knockdown in PC-3 cells transfected with WAVE1 ribozyme 2 (W1R2) compared to both 

wild type (WT) and pEF6 control cell lines. (B) WAVE3 expression knockdown in PC-3 cells 

transfected with WAVE3 ribozyme 1 (W3R1) compared to both wild type (WT) and pEF6 control cell 

lines. Expression levels of WAVE1 and 3 were normalised against the housekeeping gene, GAPDH. 

Experiments were repeated at least three times.  
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3.3.3 Confirmation of WAVE 1 and WAVE 3 knockdown in PC-3 cells at the 

protein level with Western blotting 

Western blotting was used to determine protein expression levels of WAVE1 and 3 

in wild type control and ribozyme transfected PC-3 cells and verify protein 

knockdown as shown in Figure 3.5. Whilst WAVE1 protein expression was observed 

to be at similar levels for wild type and pEF6 PC-3 cells, the band intensity for 

protein derived from PC-3 cells transfected with WAVE1 ribozyme 1 was also seen 

to be at similar band intensity to these control counterparts. Even so, WAVE1 

knockdown was observed in PC-3 cells transfected with ribozyme 2, indicated by 

weak band intensity relative to the wild type and pEF6 controls. WAVE3 protein 

expression was also seen to be reduced in PC-3 W3R1 cells in comparison to PC-3 

WT and pEF6 controls. Protein expression levels for the housekeeping gene GAPDH 

were also analysed to ensure that any differences in band intensity for WAVE (in 

comparison to wild type and pEF6 to ribozyme transfected cells) were due to 

differences in expression level as opposed to initial starting protein quantities. 

 

 

 

 

 

 

 

 



149 
 

 

 

 

Figure 3.5 Protein expression analysis of WAVE1 and WAVE3 following targeted ribozyme 

transgene transfection of PC-3 wild type cells. (A) Band intensity for PC-3 cells transfected with the 

ribozyme transgene 1 targeting WAVE1 (W1R1) was not dissimilar to the protein bands 

corresponding to wild type (WT) and pEF6. However, PC-3 cells carrying the WAVE1 ribozyme 

transgene 2 (W1R2) clearly show WAVE1 expression knockdown at the protein level. Protein 

expression for GAPDH is consistent for both control and transfected cell lines. (B) Protein expression 

analysis was carried out on PC-3 cells transfected with ribozyme 1 specific for WAVE3 expression 

knockdown (W3R1). Band intensity for WAVE3 expression is seen to be fainter in W3R1 compared 

to wild type and pEF6 control cells. GAPDH protein expression is observed to be consistent overall in 

control and transfected PC-3 cells.  

(A) 

(B) 
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3.3.4 WAVE 1 or WAVE 3 knockdown reduces cell growth rate in the PC-3 cell 

line 

Wild type PC-3 cells were incubated in parallel with the control equivalent PC-3 

pEF6 and the WAVE 1 and WAVE 3 knockdown counterparts. Seeding the cells in 

three separate plates allowed them to be fixed after 24, 72 and 120 hours. 

As described in Chapter 2, these cell lines were examined after 120 hours of 

incubation using an in vitro cell growth assay; the results are displayed in Figure 3.6. 

As no significant differences were discerned when comparing the growth rates of 

wild type and pEF6 cells, pEF6 cells were subsequently used as the control cell line 

for comparing the effects of WAVE1 or 3 knockdown in PC-3 cells. The effects on 

proliferation for cells exhibiting either of the two ribozymes targeting WAVE1 were 

found to be similar, therefore future experiments focused on using WAVE1 

ribozyme 2 (W1R2). Similarly, the use of either of the two PC-3 cell lines 

transfected with either of the two available WAVE3 specific ribozymes revealed 

similar effects on cell growth, therefore WAVE3 ribozyme 1 (W3R1) was selected 

for future experiments in this study.  These transgenes were also seen to give the best 

levels of knockdown of the respective WAVE proteins. 

A significant decrease in cell growth rate was observed after 5 days of incubation 

when comparing the PC-3 pEF6 control cells to WAVE1 knockdown cells (p>0.001)  

(Figure 3.6A). A similar trend was observed in PC-3 cells exhibiting decreased 

WAVE3 expression. This decrease in cell growth potential for PC-3 cells exhibiting 

WAVE3 knockdown was more pronounced than that for WAVE1 knockdown 

(p>0.001) (Figure 3.6B).  
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Figure 3.6 The effects of WAVE knockdown in the PC-3 cell line on cell growth over a 5 day 

incubation period. (A) WAVE1 knockdown was shown to have a significant inhibitory effect on cell 

growth when compared to the pEF6 control. Similarly, (B) WAVE3 knockdown also significantly 

reduced cell growth compared to pEF6 control cells. Shown are mean data from a minimum of three 

independent repeats, values represent percentage pEF6 control, error bars represent SEM.  * 

represents p<0.05.  
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3.3.5 WAVE 3 knockdown decreases cell invasiveness in the PC-3 cell line 

The invasive capacity of PC-3 cells was examined using an in vitro Matrigel invasion 

assay comparing wild type and pEF6 cells to PC-3 cells carrying either WAVE 1 

(Figure 3.7) or WAVE 3 (Figure 3.8) ribozyme transgenes. The number of cells 

which had degraded the Matrigel and invaded through the pores of the insert was 

counted under the microscope allowing for calculation of the percentage change 

between the pEF6 control cells with either the WAVE1 or 3 knockdown cells. These 

values were collated to provide an overall appreciation of the effects of WAVE 

knockdown in the PC-3 cell line. When comparing the overall percentage change in 

cell invasiveness of WAVE1 knockdown cells to pEF6 controls, there appears to be a 

decrease in cell invasive ability which was found to be significant (p<0.001). 

However, the extent of this decrease was modest compared to the effects of WAVE3 

knockdown in PC-3 cells compared to pEF6 controls where it was shown to potently 

inhibit cell invasion (p<0.001).  
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Figure 3.7 The cell invasion effects of WAVE1 knockdown in the PC-3 cell line A) Displayed above 

the graph is a representative image acquired under a microscope for its corresponding cell line in the 

cell invasion assay. B) WAVE1 knockdown was shown to significantly decrease cell invasion when 

compared to pEF6 control. Images acquired at 200X magnification. Shown are mean data from a 

minimum of three independent repeats, values represent percentage pEF6 control, error bars represent 

SEM.  * represents p <0.05. 
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Figure 3.8 The cell invasion effects of WAVE3 knockdown in the PC-3 cell line A) Displayed above 

the graph is a representative image acquired under a microscope for its corresponding cell line in the 

cell invasion assay. B) WAVE3 knockdown was shown to significantly decrease cell invasion of PC-3 

cells compared to the pEF6 control cell line. Images acquired at 200X magnification. Shown are mean 

data from a minimum of three independent repeats, values represent percentage pEF6 control, error 

bars represent SEM.  * represents p <0.05.  
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3.3.6 WAVE 1 or WAVE 3 knockdown does not influence cell adhesiveness in 

the PC-3 cell line 

Cells were seeded on a Matrigel layer to mimic the substrate to which cells would 

typically adhere in an in vivo environment. After a 45 minute incubation period, the 

cells were examined under a microscope to compare the adherence of PC-3 pEF6 

control cells to the WAVE 1 (Figure 3.9) and 3 (Figure 3.10) knockdown cells to this 

Matrigel layer. Overall, a non-significant increase in adhesion was observed in 

WAVE1 knockdown PC-3 cells whilst no changes were seen for WAVE3 

knockdown cells (p=1.00; p=0.712). 
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Figure 3.9 The effects of WAVE1 knockdown in the PC-3 cell line on cell adhesion. A) Displayed 

above the graph is a representative image acquired under a microscope for its corresponding cell line 

in the cell adhesion assay.B) Knockdown of WAVE1 expression revealed no significant effect on cell 

adhesion in PC-3 cells when compared to pEF6 control. Images acquired at 200X magnification. 

Shown are mean data from a minimum of three independent repeats, values represent percentage 

pEF6 control, error bars represent SEM. 
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Figure 3.10 The effects of WAVE3 knockdown in the PC-3 cell line on cell adhesion. A) Displayed 

above the graph is a representative image acquired under a microscope for its corresponding cell line 

in the cell adhesion assay. B) Knockdown of WAVE3 expression revealed no significant effect on cell 

adhesion in PC-3 cells when compared to pEF6 controls. Images acquired at 200X magnification. 

Shown are mean data from a minimum of three independent repeats, values represent percentage 

pEF6 control, error bars represent SEM.  
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3.3.7 WAVE 3 knockdown is associated with decreased cell motility in the PC-3 

cell line 

A Cytodex-2 bead motility assay was used to examine the effects of WAVE 1 

(Figure 3.11A) or WAVE 3 (Figure 3.11B) knockdown in PC-3 cells compared to 

the pEF6 control cell line. WAVE 3 suppression was found to decrease cell motility 

in the Cytodex-2 bead assay in PC-3 cells (p<0.001) relative to both wild type and 

pEF6 cells. However, the motility of PC-3 cell carrying the WAVE 1 ribozyme 

transgene was not found to be significantly altered (p=0.474). 
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Figure 3.11 The effects of WAVE knockdown in the PC-3 cell line on cell motility. (A) PC-3 cells 

with WAVE1 knockdown show no significant change in cell motility whilst a significant decrease in 

the motile ability of cells was observed in WAVE3 knockdown cells compared to pEF6 control cells 

(B). Shown are mean data from a minimum of three independent repeats, values represent percentage 

pEF6 control, error bars represent SEM.  * represents p <0.05.  
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3.4 Discussion 

Due to the partially known role of WAVE proteins in cell migration, it was a logical 

step to postulate a role for these proteins in cancer metastasis; a process associated 

with uncontrolled levels of cell migration. Indeed, expression levels of WAVE1 and 

WAVE3 have been found to be elevated in aggressive prostate cancer cell lines 

compared to epithelial prostate cell lines (Fernando et al, 2008a; Fernando et al, 

2008b).  

Transfection of wild type PC-3 with either of the two ribozyme transgenes designed 

to target WAVE1 (W1R1 and W1R2) resulted in the successful knockdown of the 

target gene at the mRNA level as demonstrated using PCR  and Q-PCR techniques. 

However, only W1R2 showed knockdown at the protein level using Western blotting 

methods. Similarly, use of either of the two ribozymes available specifically for 

WAVE3 (W3R1 and W3R2) was also successful in achieving WAVE3 expression 

knockdown in PC-3 wild type cells at the mRNA level but protein knockdown was 

only evident for W3R1. Therefore, the PC-3 W1R2 and W3R1 cell line was used for 

subsequent experiments. It is important to bear in mind the potentiality for 

heterogeneous cell populations to be generated this way which may affect expression 

levels of WAVE isoforms and possibly the data collected, however, the aims of 

WAVE knockdown were to determine overall effect on cell function. 

Additionally, wild type PC-3 cells were transfected with the empty vector, pEF6, to 

generate a PC-3 pEF6 control cell line. Similarly, mRNA and protein expression 

levels were deduced for wild type and pEF6 cell lines using PCR and Western 

blotting, respectively. This control confirmed that any decrease of WAVE 1 or 3 

expression in WAVE ribozyme transfected cells was attributable to specific gene 

targeting as opposed to artefacts arising from the process of gene manipulation 
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through plasmid transfection. With this in mind, the PC-3 pEF6 cell line was used as 

a control for comparison in subsequent experiments. 

Changes in the cellular properties investigated (growth, invasion, adhesion and 

motility) were calculated as a percentage change compared to the pEF6 control cell 

line. As a result of WAVE1 expression knockdown, the proliferative rate of PC-3 

cells was reduced by approximately 15%. A similar trend was also observed for 

WAVE3 knockdown cells, although this significant reduction was seen to a much 

greater extent. Similarly, cell invasiveness was also significantly reduced in both 

WAVE1 and WAVE3 knockdown PC-3 cells compared to the pEF6 control cell line. 

WAVE1 and 3 knockdown resulted in a significant reduction in cell invasion which 

was much more pronounced with WAVE3 knockdown when compared to pEF6 

cells. Assays carried out to determine the effects of WAVE knockdown on cell 

adhesion revealed an overall increase in adhesiveness following WAVE1 

knockdown, however, the values obtained from this assay were widely distributed, 

thus yielding a very large standard error resulting in the conclusion that the overall 

change in adhesiveness was insignificant. When analysing the consequences of 

WAVE knockdown on cell motility in PC-3 cells, it was found that a decrease in 

WAVE1 expression resulted in a moderate increase in cell motility, which did not 

reach significance. In contrast, WAVE3 knockdown was shown to very significantly 

reduce the motility of PC-3 cells. 

These functional assays revealed similar roles for WAVE1 and 3 in PC-3 cells with 

particular regard to cell growth and cell invasion where both traits were suppressed 

following WAVE1 or 3 knockdown. Even so, the extent of trait suppression differed 

between the WAVE members as the WAVE3 knockdown was observed to suppress 

proliferative and invasive ability to a greater extent than WAVE1 knockdown when 
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compared to PC-3 pEF6 control cells. Although WAVE1 knockdown was seen to 

promote adhesiveness, these changes were not significant; as for WAVE3 

knockdown, cell adhesion was not found to be altered. Some of the findings 

described here such as the cell invasion experiments concur with those outlined by 

Fernando et al (2008; 2010), however, there were some conflicting results. 

The findings outlined here and the studies published by Fernando et al (2008; 2010) 

describe a reduction in cell proliferation as a result of WAVE1 knockdown. Similarly 

both studies demonstrate a suppressed proliferative potential of PC-3 cells following 

WAVE3 knockdown. Fernando et al showed this change to be very moderate and 

was not found to be significant whereas in contrast WAVE3 knockdown in PC-3 

potently decreased proliferation by approximately 35% and was found to be 

statistically significant. 

The discrepancy between these two studies is possibly due to the different statistical 

tests used and the number of independent repeats used. Five independent repeats 

were tested using ANOVA by Fernando et al whilst in this present study Mann-

Whitney test was used to analyse at least nine independent experiments, thus making 

it a more robust experiment. Furthermore, the results presented here agree with those 

published by an independent research group which observed a reduction in cell 

proliferation with a decrease in WAVE3 expression. In addition to these in vitro 

experiments, the same group discovered a significant reduction of tumour growth 

rate within in vivo experiments (Teng et al., 2010). 

As mentioned previously, the effects on cell migration were investigated using a 

Cytodex motility bead assay. Whilst WAVE3 knockdown was shown to significantly 

repress cell motility, this was not observed for PC-3 cells exhibiting WAVE1 
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knockdown. This is a surprising result as the involvement of the WAVE proteins 

during cell migration is well established (Fernando et al., 2009).  

Investigations of the above mentioned cell properties show how WAVE1 and 3 

display both similar and dissimilar effects on cell function when their expression is 

knocked down in the metastatic prostate cancer cell line, PC-3.  Such findings 

suggest that they are potentially involved in both common and distinct signalling 

pathways in facilitating cell motility and that they have an effect on proliferation and 

invasion, two traits over which they are less attributed to having influence. The 

contrasting observations of WAVE knockdown on motility may suggest that their 

roles in the cell are not entirely genetically redundant. Whilst WAVE1 and 3 share 

the same protein domains fundamental to their functional roles in the cell, an 

alignment of their protein sequences reveal only 49.7% identity (Pearson et al, 1997). 

With these two proteins sharing a relatively low similarity in protein sequence, it can 

be postulated that any divergence could translate into different traits due to the ability 

to regulate or be regulated by different protein partners and thus potentially influence 

different signalling pathways. 

Originally, both PC-3 and DU-145 cell lines were used as these are androgen-

independent cells and are popular models of metastatic prostate cancer. However, 

cell function assays with DU-145 showed considerable spread of data and were 

therefore not included in this study. 

The findings of this chapter indicate the potential for the WAVE1 and 3 to influence 

the PC-3 prostate cancer cell line and thus further implicate these proteins in the 

processes of cell metastasis and cancer progression.  Future chapters will aim to 

explore further the mechanistic action of these proteins. 
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Chapter 4 

The association between WAVE 1 and 3 and the 

Arp2/3 complex in the PC-3 cell line 
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4.1 Introduction 

Coordinating the dynamic process of cell migration requires numerous diverse 

networks of proteins and complexes which interact within a complicated signalling 

cascade. Instigation of this signalling pathway begins with an exchange of GDP for 

GTP in the Rho GTPase cycle which occurs in response to upstream signals. This 

message is conveyed to targets downstream of activated Rho GTPase and thus 

triggers a sequence of protein interactions including WAVE activation which induces 

conformational changes in the Arp2/3 complex (Kobayashi et al., 1998; Machesky 

and Insall., 1998; Miki et al., 1998). These steps promote actin polymerisation at the 

cell leading edge and form a rudimentary principle underpinning cell migration. 

Although this order of events and its associated cell function is well defined, it is still 

not clear whether auxiliary proteins are involved in this complex mechanism and 

ultimately what these collaborating proteins are. 

Increasing evidence points towards an association between WAVE and human 

cancer. As described in Chapter 1, the general trend suggests elevated levels of 

WAVE to be linked with more aggressive cancer traits such as increased invasive 

and motile abilities as seen in both in vitro and in vivo assays (Fernando et al, 2008; 

Fernando et al, 2010; Teng et al, 2010). Furthermore, this trend appears to be of 

clinical importance as shown by the observation of aberrant WAVE expression levels 

in cancers that  have progressed to a more advanced stage (Semba et al., 2006; Iwaya 

et al., 2007; Yang et al., 2006; Sossey-Alaoui et al., 2007). 

Whilst the research interests of this project are focused towards the role of WAVE in 

prostate cancer metastasis, the metastatic potential of cancer cells is not solely 

limited to their motile ability but also their capacity to proliferate and establish 

secondary tumours. Furthermore, cancer metastasis is also dependent on the ability 
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of tumour cells to resist apoptosis and induce angiogenesis. With a comprehension of 

how multi-layered cancer metastasis can be, being able to define WAVE interacting 

proteins in this signalling cascade would allow a greater appreciation of the 

mechanism. 

Actin polymerisation as a driver of cell migration is dependent on the Arp2/3 

complex and is unable to elicit this function without stimulation by its nucleation 

promoting factors (NPF) (Higgs and Pollard, 1999). As previously mentioned, the 

WAVE proteins are well defined NPFs of Arp2/3 (Goley and Welch, 2006). 

Although WAVE is only functional when coordinated with four additional 

components to comprise the WAVE regulatory complex (WRC) (Eden et al., 2002), 

it is unclear whether actin polymerisation occurs in response to the interaction of 

solely Arp2/3 and WRC or whether additional proteins are required. Also, as humans 

exhibit three WAVE isoforms, WAVE1, 2 and 3; it would be interesting to 

investigate whether any functional redundancy exists in this signalling pathway and 

whether different WAVE isoforms require the interplay of different proteins or if the 

different WAVE proteins regulate different downstream targets. 

The protein domains of WAVE are integral to their ability to interact with Arp2/3 

and their association with the other four subunits that comprise the WAVE 

regulatory complex (Eden et al., 2002; Takenawa and Suetsugu., 2007). Whilst the 

domains of WAVE proteins do not appear to confer the ability of the protein to 

phosphorylate downstream targets, the effects of WAVE knockdown on the 

phosphorylation state of Arp2 and 3 were investigated. As a result, it was hoped that 

this would reveal insight into the molecular consequences of WAVE knockdown and 

whether other cell migration pathways directly or indirectly interplay with WAVE. 
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With this in mind, the initial section of this chapter describes work to firstly 

determine the effect on Arp 2 and 3 expression in response to the knockdown of 

WAVE 1 or 3 expression in the metastatic prostate cancer cell line, PC-3. Following 

this, the cell function assays described previously in Chapter 3 were utilised to 

investigate the effects of a small protein inhibitor specifically targeting the Arp2/3 

complex. These findings were compared to experiments outlined in Chapter 3 to 

permit a comparison between PC-3 control cells and WAVE knockdown cells with 

and without Arp2/3 inhibitor treatment. Additionally, the effects of WAVE 

knockdown on Arp2 and 3 protein phosphorylation in PC-3 cells were analysed. 

Consequently, this would allow a better understanding of the mode of action of 

WAVE in the context of prostate cancer metastasis.  

Given the well documented relationship between WAVE and the Arp2/3 complex 

and their contributory role in actin polymerisation, it would plausible to predict 

similar functional effects when comparing WAVE knockdown and Arp2/3 

inhibition. 
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4.2 Methods and materials 

4.2.1 Cell lines 

PC-3 cells were cultured and maintained as described in Section 2.2.4. 

 

4.2.2 Synthesis of complementary DNA and RT-PCR 

Complementary DNA was generated as described in Section 3.2.3, whilst the same 

RT-PCR techniques were used to determine expression levels of Arp2 and 3 using 

primers designed specifically for these genes. These primer sequences are shown in 

Chapter 2, Table 2.3. RT-PCR was also run in parallel to the housekeeping gene 

GAPDH to allow a validation of cDNA quality and enable a demonstration of 

normalised expression levels of the cDNA within the separate cell lines. 

 

4.2.3 In vitro cell growth assay 

The method for the cell growth assay is described in Section 2.6.1. When setting up 

the inhibitor treatment groups of the same cell lines to target Arp2/3, the small 

molecule inhibitor, CK-0944636 (Sigma-Aldrich, Dorset, UK), was used at a 

concentration of 200nM (inhibitor concentration based on cytotoxic assays 

performed within the laboratory). This small molecule inhibitor blocks the Arp2 and 

Arp3 subunits of the Arp2/3 complex moving into close proximity and therefore into 

a conformation that activates the protein complex, the basic principle behind actin 

polymerisation. The molecular structure of CK-0944636 is shown in Figure 4.1. 
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Figure 4.1 Molecular structure of the Arp2/3 inhibitor CK-0944636 (image taken from Nolen et al, 

2009) 

 

 

4.2.4 In vitro cell Matrigel invasion assay 

The preparation of the cell invasion assay is outlined in Section 2.6.2. For the 

treatment groups, the inhibitor and the corresponding concentration used is described 

in Section 4.2.3. 

 

4.2.5 In vitro cell motility assay 

The preparation of the cell motility assay is outlined in Section 2.6.4. For the 

treatment groups, the inhibitor and the corresponding concentration used is described 

in Section 4.2.3. 
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4.2.6 Protein extraction, SDS-PAGE and Western blotting 

To study proteins in their native, non-denatured form, lysis buffer with SDS 

substituted for NP-40 detergent was used to extract protein from control and WAVE 

knockdown PC-3 cells. Protein quantification allowed standardisation of the samples 

to ensure consistent loading of total protein. The protocol followed is outlined in 

Section 2.5. 

 

4.2.7 Immunoprecipitation 

The procedure for the immunoprecipitation of proteins and appropriate antibodies 

used is described in Section 2.3.3. To set up a positive control when analysing 

protein tyrosine phosphorylation, wild type PC-3 cells were cultured until 60-80% 

confluent. Medium was aspirated for the washing of cells with BSS then aspirated 

for the addition of 10mM sodium orthovanadate in 5ml serum free medium and 

hydrogen peroxide to make the final concentration 0.8%. After 10 minutes, this was 

aspirated for subsequent protein extraction outlined in Section 2.5.1. 

 

4.2.8 Confocal microscopy 

The confocal microscopy procedure is outlined in Section 2.7 and the primary and 

secondary antibodies used are shown in Tables 2.4 and 2.6, respectively. 
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4.3 Results 

4.3.1 Expression analysis of Arp2 and Arp3 in WAVE1 and WAVE3 

knockdown PC-3 cells 

Overall, expression levels of both Arp2 and 3 in the wild type and pEF6 control PC-3 

cells were observed to be similar. PC-3 cells shown to exhibit either WAVE1 or 3 

knockdown displayed no significant change in Arp2 or 3 expression. As expected, 

expression levels of GAPDH are seen to remain similar across all PC-3 cell lines 

analysed. The negative control, which substituted cDNA by PCR water, revealed no 

signs of contamination. The results of the expression analysis utilising PCR are 

shown in Figure 4.2. 

 

 

Figure 4.2 Arp2 and 3 mRNA expression analysis following knockdown of either WAVE 1 or 3 

revealed no significant effect on levels of Arp2 or 3 expressed in PC-3 cells. GAPDH expression 

remained unaffected regardless of WAVE1 or 3 knockdown whilst the negative control revealed no 

signs of contamination. 
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4.3.2 Arp inhibitor treatment affects cell growth in WAVE knockdown PC-3 

cells but shows little effect on pEF6 control cells  

Treatment of pEF6 control PC-3 cells with an Arp2/3 inhibitor, CK-0944636  

resulted in no significant change in cell growth (p=0.109). Treatment of PC-3 cells 

which had been shown to exhibit WAVE1 knockdown with the same Arp2/3 

inhibitor showed a non-significant decrease in cell growth compared to the untreated 

PC-3 W1R2 cells (p=0.182). WAVE3 knockdown PC-3 cells showed a significant 

reduction in cell growth with Arp inhibitor treatment compared to cells without Arp 

inhibition (p=0.045). These cell growth results are displayed in Figure in 4.3.  
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Figure 4.3 Arp2/3 inhibitor treatment showed little effect on cell growth in pEF6 control PC-3 cells 

however a moderate decrease in cell growth was observed in WAVE1 knockdown cells (A) whilst this 

treatment showed a greater reduction of cell growth in WAVE3 knockdown cells (B). Shown are 

mean data from a minimum of three independent repeats, values represent percentage change to pEF6 

cells without treatment (control). Error bars represent SEM. * represents p <0.05. 
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4.3.3 Arp2/3 inhibitor treatment affects cell invasion in PC-3 cells with WAVE1 

knockdown but not with WAVE3 knockdown 

The number of cells which invaded the Matrigel layer of the invasion insert after 72 

hours of incubation was compared between those with and those without Arp2/3 

inhibitor treatment. This comparison revealed a moderate decrease in cell invasion in 

pEF6 control PC-3 cells in response to Arp2/3 inhibitor treatment compared to 

untreated PC-3 pEF6 cells (p=0.214). No significant change in cell invasiveness was 

observed in WAVE3 knockdown cells following treatment with the Arp2/3 inhibitor, 

CK-0944636 compared to untreated PC-3 W3R1 cells (p=0.652) (shown in Figure 

4.5). When examining the data for PC-3 cells showing WAVE1 knockdown, an 

overall increase in invaded cells was observed in cells treated with the Arp2/3 

inhibitor relative to no treatment. However, this change was not found to be 

significant (p=0.216). These cell invasion results are displayed in Figure in 4.4. 
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PC-3 pEF6 (control)    PC-3 W1R2 (control) 

PC-3 pEF6 (Arp2/3 inhibitor)   PC-3 W1R2 (Arp2/3 inhibitor) 

 

 

Figure 4.4 Arp2/3 inhibitor treatment showed a small reduction in cell invasion in the pEF6 control 

cell line. In contrast, an increase in cell invasion was observed in WAVE1 knockdown (W1R2) PC-3 

cells following Arp2/3 inhibitor treatment. Figure 4.4A displays representative images acquired for 

PC-3 pEF6 and W1R2 cells with/without Arp2/3 inhibitor treatment. Images were acquired from at 

least three independent experiments where cells were counted to calculate percentage change in cell 

invasion compared to PC-3 pEF6 cells without Arp2/3 inhibitor treatment (shown in Figure 4.4B). 

Images acquired at 200X magnification. Shown are mean data with error bars representing SEM. 
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PC-3 pEF6 (control)    PC-3 W3R1 (control) 

PC-3 pEF6 (Arp2/3 inhibitor)   PC-3 W3R1 (Arp2/3 inhibitor) 

 

 

Figure 4.5 Arp2/3 inhibitor treatment showed a small reduction in cell invasion in the pEF6 control 

cell line whilst the same but non-significant trend was also seen for WAVE3 knockdown (W3R1) PC-

3 cells. Figure 4.5A displays representative images acquired for PC-3 pEF6 and W3R1 cells 

with/without Arp2/3 inhibitor treatment. Images were acquired from at least three independent 

experiments where cells were counted to calculate percentage change in cell invasion compared to 

PC-3 pEF6 cells without Arp2/3 inhibitor treatment (shown in Figure 4.5B). Images acquired at 200X 

magnification. Shown are mean data with error bars representing SEM.  
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4.3.4 Arp2/3 inhibitor treatment increases cell motility in PC-3 cells 

An overall trend of increased cell motility was observed with a four hour treatment 

of the Arp2/3 inhibitor. PC-3 pEF6 cells as well as both W1 and W3 knockdown 

cells appeared to be more motile following treatment with the Arp2/3 inhibitor. 

However, this increase in motile ability was only significant in pEF6 control cells 

(p<0.001) whilst it was not found to be significant for either WAVE1 or WAVE3 

knockdown cells when compared to the untreated equivalent cell lines (p=0.078; 

p=0.421, respectively).  These cell motility results are displayed in Figure in 4.6. 
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Figure 4.6 Arp2/3 inhibitor treatment increased cell motility in pEF6 control, WAVE1 (A) and 

WAVE3 (B) knockdown PC-3 cells. However, this increase was found to be insignificant for PC-3  

W1R2 and W3R1 cell lines. Shown are mean data from a minimum of three independent repeats, 

values represent percentage change to pEF6 cells without treatment. Error bars represent SEM. * 

represents p <0.05. 
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4.3.5 ARP2 co-localises with WAVE1 and 3 in PC-3 cells 

Confocal microscopy approaches were employed to further investigate the 

relationship between WAVE and ARP proteins in the PC-3 cell line. Firstly, 

WAVE1 and 3 proteins were probed with a FITC-conjugated antibody which 

fluoresces green whilst ARP2 was probed with a TRITC-conjugated antibody and 

fluoresces red. The acquired images revealed co-localisation of WAVE1 and ARP2 

to the perimeter of the cell lamellipodia of PC-3 pEF6 cells (refer to Figure 4.7A), 

however, this was less prominent in PC-3 WAVE1 knockdown cells (W1R2) (refer 

to Figure 4.7B). Furthermore, lamellipodia of pEF6 cells encompassed a larger area 

than W1R2 cells. 

Similarly, analysis of WAVE3 and ARP2 protein location in PC-3 pEF6 cells 

revealed co-localisation of these proteins to the lamellipodia edge (refer to Figure 

4.8A). In contrast, WAVE3 knockdown cells (W3R1) demonstrated a lack of 

WAVE3 and ARP2 co-localisation (refer to Figure 4.8B). Moreover, the 

lamellipodia of PC-3 W3R1 cells were also less pronounced than those of pEF6 

cells.  
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Figure 4.7A Confocal microscopy images of PC-3 pEF6 cells stained for WAVE1 (FITC) and ARP2 

(TRITC) reveal co-localisation of these proteins (represented by arrows). Also shown are FITC and 

TRITC merged images (MERGE) and the phase contrast image (PHASE). Representative images 

shown. Images acquired at 600X magnification.  

WAVE 1 ARP 2 

MERGE PHASE 
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Figure 4.7B Confocal microscopy images of PC-3 W1R2 cells stained for WAVE1 (FITC) and ARP2 

(TRITC). Also shown are FITC and TRITC merged images (MERGE) and the phase contrast image 

(PHASE). Representative images shown. Images acquired at 600X magnification.  

WAVE 1 ARP 2 

MERGE PHASE 
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Figure 4.8A Confocal microscopy images of PC-3 pEF6 cells stained for WAVE3 (FITC) and ARP2 

(TRITC) reveal co-localisation of these proteins (represented by arrows). Also shown are FITC and 

TRITC merged images (MERGE) and the phase contrast image (PHASE). Representative images 

shown. Images acquired at 600X magnification. 

WAVE 3 ARP 2 
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Figure 4.8B Confocal microscopy images of PC-3 W3R1 cells stained for WAVE3 (FITC) and ARP2 

(TRITC). Also shown are FITC and TRITC merged images (MERGE) and the phase contrast image 

(PHASE). Representative images shown. Images acquired at 600X magnification. 
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4.3.6 WAVE3 knockdown increases ARP2 tyrosine phosphorylation in PC-3 

cells 

Proteins were immunoprecipitated with the anti-phosphotyrosine antibody, PY20 and 

subsequently probed with ARP2 and 3 antibodies. This approach revealed a higher 

level of tyrosine phosphorylation of ARP2 in PC-3 cells exhibiting WAVE3 

knockdown relative to wild type and pEF6 control cells (Figure 4.9A). Levels of 

ARP2 tyrosine phosphorylation in WAVE3 knockdown cells were comparable to the 

positive control. In contrast, PC-3 cells expressing lower levels of WAVE1 were 

found to have similar ARP2 tyrosine phosphorylation levels as the wild type and 

pEF6 control cells. Similar levels of ARP2 protein were observed in the raw lysate 

for all PC-3 protein samples and levels of GAPDH protein were consistent in all 

samples probed. 

Using the same techniques revealed no changes in ARP3 tyrosine phosphorylation 

levels following WAVE1 or 3 knockdown in PC-3 cells as the intensity of the bands 

were observed to be similar. Moreover, the ARP3 tyrosine phosphorylation levels of 

PC-3 wild type, pEF6 control, WAVE1 and 3 knockdown were seen to be lower than 

the positive control. Overall, ARP3 and GAPDH protein levels were demonstrated to 

be the same in the cell lysates examined (Figure 4.9B). 
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Figure 4.9 Proteins immunoprecipitated with the anti-phosphotyrosine antibody, PY20, revealed 

increased tyrosine phosophorylation of ARP2 in WAVE3 knockdown (W3R1) PC-3 cells. This was 

similar to levels in the positive control. Wild type (WT) and pEF6 control PC-3 cells showed similar 

levels of tyrosine phosphorylation which were comparable with levels observed for WAVE1 

knockdown (W1R2) PC-3 cells. ARP2 and GAPDH levels in the cell lysate were observed to be the 

same in all protein samples (A). The same approaches revealed no changes in tyrosine 

phosphorylation when comparing protein extracted from PC-3 WT and pEF6 to either W1R2 or 

W3R1 cells. Levels of ARP3 and GAPDH are similar in these protein samples (B).  

(A) 

 

(B) 
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4.4 Discussion 

The mechanism of Arp2/3 complex activation by WAVE proteins for driving actin 

polymerisation is well established. WAVE induces the integral subunits of this 

complex, Arp2 and Arp3, into a conformation which resembles an actin nucleation 

seed (actin dimer), which is essential for actin polymerisation and the resulting 

cellular function, cell migration (Higgs and Pollard, 1999). The finding of aberrant 

WAVE expression and elevated Arp2 levels associated with some metastatic human 

cancers (Kurisu et al., 2005; Iwaya et al., 2007; Sossey-Alaoui et al., 2007) are not 

surprising considering their role in cell motility. When unregulated, cell motility is 

known to benefit the spread of aggressive cancer to both local and distant sites. 

Accordingly, by studying the possible mechanism underlying the relationship 

between WAVE and the Arp2/3 complex further, it was hoped that this would enable 

a better understanding of how their association contributes to metastatic prostate 

cancer. 

In the current study, expression analysis in control and WAVE knockdown PC-3 

cells revealed WAVE1 or 3 expression knockdown had no significant effect on Arp2 

or 3 expression. This implies that the regulation of WAVE1 and 3 expression could 

be independent to Arp2 and 3 expression. Whilst Figure 4.2 appears to show a 

slightly higher Arp3 expression in PC-3 pEF6, this difference is minor and not 

reflected in ARP3 protein expression as shown for the cell lysate in Figure 4.9B. 

Therefore, the role of WAVE1 and 3 in this actin polymerisation pathway is to 

regulate Arp2/3 activation and not the expression of its protein subunits. 

An investigation into the effects of WAVE1 and 3 expression knockdown was found 

to have implications on the proliferative and invasive ability of PC-3 cells whilst 

motility was affected by WAVE3 downregulation (as outlined in Chapter 3). With 
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these WAVE knockdown PC-3 cell lines established, the relationship between 

WAVE1 and 3 and the Arp2/3 complex, in the context of these cell functions, was 

explored with the use of a small molecule inhibitor (CK-0944636) targeting the 

Arp2/3 complex. Treatment of PC-3 pEF6 control cells with the Arp inhibitor was 

found to have little effect on cell growth; this is in contrast to the findings of 

significant suppression of cell proliferation in PC-3 cells with WAVE3 knockdown 

whereas these inhibitory effects were modest in WAVE1 knockdown cells. Whilst 

pEF6 cells appear to be unaffected by Arp inhibition, it is interesting to find that the 

response when replicated in both WAVE1 and 3 knockdown cells is a dramatic drop 

in levels of growth (p=0.016 for both W1R2 and W3R1 when compared to treated 

pEF6 cells). It would appear that coupling WAVE knockdown and Arp inhibition 

achieves the most dramatic inhibitory effects on cell proliferation in PC-3 cells with 

WAVE3 knockdown and Arp inhibition producing the most pronounced effect 

(p=0.045) compared to WAVE1 (p=0.182). These observations suggest both 

WAVE1 and 3 and Arp2/3 play a role in cell growth although the influence of 

WAVE on proliferation is greater than the Arp2/3 complex. These findings highlight 

a complexity to the cell proliferation pathway which extends beyond WAVE and 

Arp2/3 and involves auxiliary proteins (proposed in Figure 4.10). As the treatment of 

pEF6 cells with the Arp2/3 inhibitor show little change in cell growth, this implies 

WAVE may target downstream proteins in a pathway independent of Arp2/3 to 

regulate proliferation of PC-3 cells. Furthermore, it is likely that the Arp2/3 complex 

is influenced by an upstream regulator separate to WAVE as inhibition of Arp2/3 

activity reduces cell proliferation further when coupled to WAVE knockdown. This 

upstream protein could be WASP and/or N-WASP as they are both known activators 

of the Arp2/3 complex (Machesky and Insall., 1998). 
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Figure 4.10 Hypothesised WAVE-Arp2/3 cell proliferation pathway. (A) WAVE regulates 

downstream targets including Arp2/3 and others yet unidentified. Both influence cell proliferation. 

Other proteins besides WAVE regulate Arp2/3. This diagram depicts the hypothesised cell growth 

signalling in pEF6 cells without Arp inhibitor treatment (B) pEF6 cells with Arp inhibitor has no 

effect on cell growth due to an independent pathway to Arp2/3 (C) Arp2/3 is unable to be activated by 

WAVE in WAVE knockdown cells but is stimulated by unidentified upstream proteins, but overall 

cell growth is reduced (D) Both WAVE and Arp2/3 are out of action in WAVE knockdown cells 

treated with Arp2/3 inhibitor. Cell growth is greatly suppressed. Figure 4.3B depicting WAVE3 

knockdown was used to represent hypothetical cell proliferation signalling involving Arp2/3 for 

WAVE1 and 3.  
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Cell invasion showed a moderate decrease in pEF6 cells treated with Arp2/3 

inhibitor and very little effect in WAVE3 knockdown cells. On the contrary, the 

suppressed cell invasive effect which was observed in response to WAVE1 

knockdown was seen to be rescued by Arp inhibitor treatment to levels comparable 

with untreated pEF6 cells. This was a very surprising effect which highlights a 

distinction between WAVE1 and 3 functions. It would not be unreasonable to 

interpret these contrasting effects of Arp2/3 inhibitor treatment, when comparing 

WAVE1 and 3 knockdown cells, as a consequence of specific and different functions 

served by these two proteins in the cell. 

Although cell invasion was significantly suppressed with WAVE1 knockdown, when 

Arp2/3 complex activity was blocked with Arp2/3 inhibitor treatment, these 

repressed levels of cell invasion were rescued to levels similar to those observed in 

pEF6 control cells without Arp inhibitor treatment.  Whilst WAVE1 or 3 knockdown 

is shown to suppress the ability for PC-3 cells to invade the Matrigel layer in the in 

vitro invasion assay, it is apparent that an independent mechanism is utilised by 

WAVE1 during cell invasion to that used by WAVE3. The ability of cancer cells to 

invade into the surrounding tissue requires deconstruction of the extracellular matrix 

(ECM) and is facilitated by matrix metalloproteases (MMPs) which have the ability 

to degrade components of the ECM (Deryugina and Quigley., 2006). An association 

between WAVE3 and various MMPs in cell invasion and motility has been proposed 

as a contributory factor to cancer metastasis (Sossey-Alaoui et al., 2005; 2009; 

Zhang et al., 2012). These studies focused on elucidating the relationship between 

WAVE3 and MMP expression and in particular how the former affected the latter in 

addition to exploring their co-expression in colorectal cancer tissues. Whilst this link 

has been established, the mechanism that underlies this WAVE3-dependent MMP 
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regulation is not well understood. It would be interesting to investigate the signalling 

cascade which links these proteins together and to discover what other proteins 

interplay along this pathway and additionally their function. In doing so, it would be 

interesting to see where the Arp2/3 complex lies in the pathway and whether it is 

involved with a signalling cascade that controls WAVE1 directed cell invasion and 

not that regulated by WAVE3. Alternatively, it may be the case that Arp2/3 is indeed 

involved with WAVE3 controlled cell invasion but there may be an inclusion of 

auxiliary proteins adding an extra dimension of complexity to this hypothetical 

MMP-WAVE3-Arp2/3 cell invasion pathway. 

Cell invasion is dependent on the ability of the cell to migrate; repressing actin 

polymerisation by inhibiting Arp2/3 would hinder cell motility and likewise, 

downregulating WAVE1 expression would also produce this outcome due to the 

requirement of WAVE1 to activate Arp2/3. Indeed, these effects were found to be 

the case, however, coupling Arp2/3 inhibition and WAVE1 knockdown together was 

found to rescue this suppressed effect to yield levels of cell invasion similar to pEF6 

control cells. This interesting observation could be explained by the fact that 

WAVE3 is still functional in WAVE1 knockdown cells. Although Arp2/3 activity is 

inhibited, WAVE3 is able to regulate MMPs which can digest the Matrigel layer of 

the in vitro invasion insert. As this is the first hurdle to be overcome by cancer cells 

in the metastatic cascade, it makes it possible for alternative cell motility signalling 

pathways to come into play. However, the effects of Arp2/3 inhibition in WAVE1 

knockdown cells were not seen for WAVE3 knockdown cells. This would imply that 

whilst WAVE3 could be responsible for the invasiveness of WAVE1 knockdown 

cells through its interaction with MMPs, WAVE1 does not have the same ability to 
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regulate MMPs in WAVE3 knockdown cells and is therefore unable to rescue 

suppressed cell invasiveness seen with WAVE3 knockdown and Arp2/3 inhibition.  

Alternative cell motility signalling pathways could also explain the observation that 

PC-3 cells exhibited increased motile abilities with Arp2/3 inhibitor treatment 

regardless of whether WAVE was knocked down or not and regardless of which 

WAVE was targeted. These alternative signalling cascades would have to be 

independent of WAVE as the increased motility trend is seen in both control and 

WAVE knockdown cells. The increase in cell motility would have to be attributed to 

these alternative signalling pathways which are not Arp2/3 dependent but are 

possibly regulated to a certain degree by Arp2/3. It could be postulated that the role 

of Arp2/3 is to drive cell motility via actin polymerisation whilst regulating it to an 

appropriate level by suppressing these alternative cell motility pathways. 

Previous studies have highlighted the clinical importance of WAVE and ARP 

proteins in human cancer. These studies demonstrated the co-expression of ARP2 

and WAVE2 in lung adenocarcinoma sections and their co-localisation in colon 

cancer cell lines metastasis (Semba et al, 2006; Iwaya et al, 2007). 

Immunofluorescence analysis of PC-3 pEF6 cells in this study demonstrated the co-

localisation of ARP2 with both WAVE1 and 3 to the outer boundaries of the cell 

lamellipodia. Proteins responsible for actin polymerisation are commonly recruited 

to these cell protrusions to cope with the dynamic nature of cytoskeleton remodelling 

to facilitate cell migration (Insall and Machesky, 2009). The co-localisation of ARP2 

with both WAVE1 and 3 at the PC-3 pEF6 cell edge corresponds with previous 

findings. The PC-3 cell line was derived from a patient presenting aggressive 

metastatic prostate cancer and the finding that these proteins, known for their role in 

cell migration by co-localising at the cell edge, is unsurprising. Furthermore, the 
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observation of a reduced area encompassed by the cell in WAVE1 or 3 knockdown 

cells implies a suppressed ability of the cell to generate cell protrusions. Coupling 

this observation with reduced ARP2/WAVE co-localisation implies that, by 

knocking down WAVE1 or 3 expression, these proteins are unable to activate the 

Arp2/3 complex to stimulate actin polymerisation. 

The regulatory role of WAVE to stimulate Arp2/3 activity has been well established, 

however, as the in vitro cell models have demonstrated, this relationship is not as 

linear as: Rho GTPase  WAVE  Arp2/3  cell function. Experiments described 

in this chapter hint at the action of auxiliary proteins adding a layer of complexity to 

pathways which impact on cell growth, invasion and motility. Protein tyrosine 

kinases are integral to regulating intracellular signalling transduction pathways. Their 

activity influences several cellular properties including proliferation and survival. 

With such an essential role in the cell, it is unsurprising to find deregulated cell traits 

such as uncontrolled growth attributed to aberrant tyrosine kinase activity in human 

cancer (Blume-Jensen and Hunter, 2001).  A knockdown in WAVE3 expression was 

shown to increase levels of tyrosine phosphorylation of Arp2 in PC-3 cells whilst 

WAVE1 knockdown was found to show no change. These observations suggest 

WAVE3 functions upstream of a protein regulator of a tyrosine kinase which is able 

to target Arp2 of the Arp2/3 complex. At present, five sites of tyrosine 

phosphorylation have been identified in Arp2: Y22, Y72, Y91, Y225 and Y378. The 

majority of these modifications are associated with different manifestations of 

leukaemia and lymphoma (Phosphosite). However, the cell functional consequences 

from the phosphorylation of these tyrosine residues have not been investigated. 

Whilst it is uncertain in this study which tyrosine residues are phosphorylated, it is 
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evident that WAVE3 knockdown has an influence on the phosphorylation of tyrosine 

residues in Arp2 which may affect its activity. 

The effects of WAVE1 and 3 knockdown coupled with Arp2/3 inhibitor treatment 

has revealed their influence on several cell traits. Whilst some of the trends observed 

were shared by both WAVEs investigated (cell growth and motility), the intriguing 

finding that Arp2/3 inhibitor treatment was able to rescue the suppressed cell 

invasive properties in response to WAVE1 knockdown was not found to be the same 

with WAVE3 knockdown. Additionally, WAVE3 knockdown was shown to affect 

Arp2 tyrosine phosphorylation whilst WAVE1 did not. Overall, the in vitro cell 

experiments described along with the phospho-immunoprecipitation approaches, 

emphasise both shared and distinct roles for WAVE1 and 3 in PC-3 cells. More 

importantly, the use of a small protein inhibitor targeting the Arp2/3 complex 

highlights the relationship between WAVE1 and 3 with Arp2/3 involving a multiplex 

and elaborate network of proteins. Ideally, future work will aim to identify these 

collaborating proteins. However, the work presented here has revealed additional 

paths which show that WAVE1 and 3 are able to regulate Arp2/3 and its 

consequential effect on cell properties. Moreover, it would be interesting to explore 

the interaction between WAVE and MMP in future work. 
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Chapter 5 

Investigating the association between WAVE 1 

and 3 and ROCK-I and II in the PC-3 cell line 
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5.1 Introduction 

A series of dynamic protein interactions upstream of the actin polymerisation 

stimulator, Arp2/3 complex, drives the formation of cell protrusions at the cell 

leading edge to drive cell migration (Schafer et al., 1998). The Arp2/3 complex 

requires stimulation by members of the WASP proteins which themselves need to be 

activated by members of the Rho GTPases (Kim et al., 2000; Kobayashi et al., 

1998). The extensive contribution of this GTPase family to cell function is attributed 

to the diversity of family members in addition to the vast number of upstream and 

downstream regulators.  

Rho-associated protein kinase (ROCK) is involved in influencing cell motility and 

has been identified as a downstream effector of one of the main Rho GTPase 

isoforms, RhoA . These protein serine/threonine kinases of approximately 160kDa 

consist of two mammalian isoforms, ROCK-I and II (as shown in Figure 5.1). The 

amino-acid sequences of these ROCK isoforms are highly homologous 

(approximately 65%) with 92% identity at the kinase domains. The ROCK kinase 

domain resides at the amino-terminus with the Rho binding domain (RBD), 

pleckstrin homology (PH) domain and internal cysteine-rich region/domain (CRD) 

found at the carboxyl-terminus. Separating these functional domains is a region 

predicted to be a coiled-coil-forming region (Riento and Ridley, 2003). 
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The role of ROCK proteins is to relay signals to multiple targets influencing focal 

adhesion, actomyosin contractility as well as actin nucleation and polymerisation 

(Lee et al., 2010; Kimura et al., 1996; Ohashi et al., 2000). With its contribution 

weighted towards an involvement with actin filament dynamics, ROCK regulates the 

morphology and movement of cells through cytoskeletal remodelling. Due to the 

ability of the RBD and PH domains to bind with the amino-terminus, this is an 

intramolecular mechanism exists which inhibits ROCK kinase activity (Chen et al., 

2002). However, activated Rho is able to interact with the RBD and relieve the 

inhibitory effects of carboxyl-terminal binding to the amino-terminal allowing 

ROCK to phosphorylate its downstream substrates. Of particular relevance to cell 

migration is the signalling cascade downstream of ROCK which regulates LIM 

domain kinase (LIMK) (Sumi et al.,2001). ROCK phosphorylates specific threonine 

residues of LIMK which enhances the ability of LIMK to phosphorylate cofilin. 

Doing so suppresses the ability of cofilin to dissociate and sever actin filaments at 

the pointed end. However when phosphorylated by LIM kinase this function is 

suppressed and thus stabilises filamentous actin (Arber et al., 1998). 

Through its association with many mechanisms, including those that govern actin 

filament maintenance and cell motility regulation, it is apparent that ROCK has an 

essential role in the cell (Amano et al., 2010). The relationship between the ROCK 

and WAVE isoforms was investigated due to their important contributions to cell 

migration and to elucidate their significance in relation to prostate cancer metastasis. 

As WAVE and ROCK both play an important role in actin filament dynamics to 

drive cell motility through separate mechanistic approaches, coupling WAVE 

knockdown with ROCK inhibition should see a decrease in cell traits such as cell 

migration which is a contributory feature in cell metastasis. 
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5.2 Methods and materials 

5.2.1 Cell lines 

PC-3 cells were cultured and maintained as outlined in Section 2.2.4. 

 

5.2.2 Synthesis of complementary DNA and RT-PCR 

Complementary DNA was generated as described in Section 2.4 whilst the same RT-

PCR techniques were used to determine expression levels of ROCK-I and II using 

primers designed specifically for these genes. These primer sequences are shown 

Table 2.3 (Chapter 2). RT-PCR was also run in parallel to the housekeeping gene 

GAPDH to allow a validation of cDNA quality and enable a demonstration of 

normalised expression levels of the cDNA within the separate cell lines. 

 

5.2.3 In vitro cell growth assay 

The preparation of the cell growth assay is outlined in Section 2.6.1. The small 

molecule inhibitor, Y-27632 (dihydrochloride monohydrate) (sc-3536, Santa-Cruz, 

USA), targets both mammalian ROCK isoforms (ROCK-I and II) (Ishizaki et al., 

2000). Y-27632 was used for inhibitor treatment groups at a concentration of 100nM 

(inhibitor concentration based on cytotoxic assays performed within the laboratory) 

(Mediero et al, 2008). Y-27632 is a selective inhibitor which acts as an ATP-

competitive inhibitor of ROCK. The molecular structure of Y-27632 is shown in 

Figure 5.2. 
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Figure 5.2 Molecular structure of the ROCK inhibitor Y-27632 dihydrochloride monohydrate (image 

taken from Sigma-Aldrich) 

 

 

5.2.4 In vitro cell Matrigel invasion assay 

The preparation of the cell invasion assay as outlined in Section 2.6.2. For the 

treatment groups, the inhibitor and the corresponding concentration used is described 

in Section 5.2.3. 

 

5.2.5 In vitro cell motility assay 

The preparation of the cell motility assay is outlined in Section 2.6.4. For the 

treatment groups, the inhibitor and the corresponding concentration used are 

described in Section 5.2.3. 
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5.2.6 Protein extraction, SDS-PAGE and Western blotting 

To study proteins in their native, non-denatured form, lysis buffer with SDS 

substituted for NP-40 detergent was used to extract protein from control and WAVE 

knockdown PC-3 cells. Protein quantification allowed standardisation of the samples 

to ensure consistent loading of total protein. The protocol followed is outlined in 

Section 2.5. 

 

5.2.7 Immunoprecipitation 

The procedure for the immunoprecipitation of proteins with the antibody of choice is 

described in Section 2.3.3. To set up a positive control when analysing protein 

tyrosine phosphorylation, wild type PC-3 cells were cultured until 60-80% confluent. 

Medium was aspirated for the washing of cells with BSS then aspirated for the 

addition of 10mM sodium orthovanadate in 5ml serum free medium and hydrogen 

peroxide to make the final concentration 0.8%. After 10 minutes, this was aspirated 

for subsequent protein extraction outlined in Section 2.5.1. 

 

5.2.8 Confocal microscopy 

The confocal microscopy procedure is outlined in Section 2.7 and the primary and 

secondary antibodies used are shown in Tables 2.4 and 2.6, respectively. 
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5.3 Results 

5.3.1 Expression analysis of ROCK-I and ROCK-II in WAVE1 and WAVE3 

knockdown PC-3 cells 

ROCK-I and II mRNA expression was investigated in PC-3 cell lines using 

conventional PCR; the results of this analysis are shown in Figure 5.3. A comparison 

of both ROCK-I and II expression between the wild type and pEF6 control cells with 

their equivalents following either WAVE 1 or 3 expression knockdown show no 

change in expression levels. Likewise, GAPDH expression levels are seen to be 

consistent across the cell lines tested which indicates no bias due to sample loading. 

The use of negative control ROCK-I, II and GAPDH primer sets indicates no 

contamination; although a weak band for ROCK-I can be observed, this is unlikely to 

be due to contaminants in any of the reagents as the band size is dissimilar, and 

therefore may be due to background noise. 

 

Figure 5.3 ROCK-I and II expression analysis in PC-3 cells comparing wild type, pEF6 control, 

WAVE1 and 3 knockdown cells demonstrate consistent expression levels. Analysis of the same cell 

lines found consistent GAPDH expression throughout the samples. Negative controls revealed no 

obvious signs of contamination.  

101bp 

 

110bp 

 

475bp 
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5.3.2 Impact of ROCK inhibitor treatment on cell growth 

As mRNA expression analysis revealed no obvious differences between wild type 

and pEF6 control PC-3 cells along with similar observations in in vitro cell function 

assays, pEF6 cells were used for subsequent experiments to compare the effects of 

WAVE knockdown with and without ROCK inhibitor treatment. 

After a period of 120 hours, treatment with the broad range ROCK inhibitor, Y-

27632, was seen to moderately increase cell growth in the PC-3 pEF6 control cell 

line compared to untreated pEF6 cells. However, this change was observed to be 

non-significant (p=0.476). A similar trend of increased cell growth was also observed 

for PC-3 cells exhibiting reduced WAVE1 expression with ROCK inhibitor 

treatment compared to untreated PC-3 W1R2 cells. This change was also observed to 

be non-significant (p=0.755). Unlike the moderate increase in cell growth for pEF6 

and W1R2 with ROCK inhibition, there was no overall change in cell growth in 

WAVE3 knockdown cells following ROCK inhibition (p=0.710). The results from 

these findings are shown in Figure 5.4.  
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Figure 5.4 ROCK inhibition showed a moderate cell growth increase in both pEF6 and WAVE1 

knockdown (W1R2) cells (A). WAVE3 knockdown (W3R1) cells showed little change in cell growth 

levels when treated with the ROCK inhibitor, Y-27632 (B). Shown are mean data from a minimum of 

three independent repeats, values represent percentage change to pEF6 cells without treatment 

(control). Error bars represent SEM.  
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5.3.3 Impact of ROCK inhibitor treatment on cell invasion 

Following an incubation period of 72 hours, the number of PC-3 pEF6 control cells 

which had invaded the Matrigel layer of the in vitro invasion assays was lower when 

treated with the ROCK inhibitor, Y-27632, when compared to pEF6 cells without 

treatment (p=0.093). In contrast, PC-3 cells exhibiting WAVE1 knockdown showed 

an overall increase in the number of invaded cells  with ROCK inhibition although 

this was not significant  when compared to untreated PC-3 W1R2 cells (p=0.365) 

(refer to Figure 5.5). ROCK inhibitor treatment of WAVE3 knockdown PC-3 cells 

was not observed to influence cell invasion when compared to untreated W3R1 cells 

(p=0.490) (see to Figure 5.6).  
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PC-3 pEF6 (control)     PC-3 W1R2 (control) 

PC-3 pEF6 (ROCK inhibitor)   PC-3 W1R2 (ROCK inhibitor) 

 

 

Figure 5.5 ROCK inhibitor treatment reduced cell invasion of pEF6 control cells whilst it increased 

the invasiveness of PC-3 cells with WAVE1 knockdown. A) Representative images acquired for PC-3 

pEF6 and W1R2 cells without ROCK inhibitor treatment (control) and with. Images were acquired 

from at least three independent experiments. B) Cells were counted to calculate percentage change in 

cell invasion compared to PC-3 pEF6 cells without ROCK inhibitor treatment. Images acquired at 

200X magnification. Shown are mean data with error bars representing SEM. 
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PC-3 pEF6 (control)     PC-3 W3R1 (control) 

PC-3 pEF6 (ROCK inhibitor)   PC-3 W3R1 (ROCK inhibitor) 

 

 

 

Figure 5.6 ROCK inhibitor treatment reduced cell invasion of pEF6 control cells but had little effect 

on WAVE3 knockdown cells. A) Representative images acquired for PC-3 pEF6 and W3R1 cells 

without ROCK inhibitor treatment (control) and with. Images were acquired from at least three 

independent experiments. B) Cells were counted to calculate percentage change in cell invasion 

compared to PC-3 pEF6 cells without ROCK inhibitor treatment. Images acquired at 200X 

magnification. Shown are mean data with error bars representing SEM.  
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5.3.4 Impact of ROCK inhibitor treatment on cell motility  

The motile abilities of pEF6 control PC-3 cells were found to be significantly 

upregulated in response to the ROCK inhibitor, Y-27632 compared to their untreated 

equivalents (p<0.001). A similar trend of increased cell motility was also observed 

for both WAVE1 and 3 knockdown PC-3 cells with ROCK inhibitor treatment, 

however, this did not reach significance when compared to untreated equivalents 

(p=0.489; p=0.151, respectively). These results are shown in Figure 5.7.  
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Figure 5.7 ROCK inhibitor treatment increases cell motility in pEF6 control, WAVE1 (A) and 

WAVE3 (B) knockdown PC-3 cells. Shown are mean data from a minimum of three independent 

repeats, values represent percentage change to pEF6 cells without treatment. Error bars represent 

SEM. 
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5.3.5 ROCK I co-localisation with WAVE1 and 3 in PC-3 cells 

The relationship between the WAVE and ROCK protein family was explored using 

immunofluorescence and confocal microscope techniques. A FITC-conjugated 

antibody was used to probe WAVE1 or 3 in the PC-3 cell lines, pEF6, W1R2 

(WAVE1 knockdown) and W3R1 (WAVE3 knockdown) whilst a TRITC-conjugated 

antibody was used to probe ROCK-I. The outermost boundaries of pEF6 cells 

showed moderate ROCK-I and WAVE1 co-localisation (refer to Figure 5.8A). There 

was no evidence of these proteins co-localising at the edge of the cell lamellipodia in 

W1R2 cells (refer to Figure 5.8B). Reduced WAVE1 in these confocal images also 

reconfirms its knockdown in PC-3 W1R2 cells compared to pEF6 controls. Notably, 

the cell morphology of PC-3 cells is distinctly altered with WAVE1 knockdown as 

implied by the lack of cell protrusions generated in the W1R2 cell line compared to 

pEF6 cells. 

ROCK-I and WAVE3 showed very little co-localisation to the cell perimeter in PC-3 

pEF6 cells whilst W3R1 cells show no co-localisation of these proteins (refer to 

Figures 5.9A and B, respectively). Similarly, the finding of reduced WAVE3 in PC-3 

W3R1 under confocal analysis supports WAVE3 knockdown in this cell line 

compared to pEF6 cells. Much like the effects of WAVE1 knockdown in PC-3 cells, 

PC-3 W3R1 cells appear to lack the ability to form broad flat sheets which is 

characteristic of lamellipodia generation. It is also difficult to discern the outline of 

W1R2 and W3R1 cells when analysing FITC and TRITC images compared to the 

phase contrast images. This suggests that knocking down WAVE1 or 3 affects not 

only the localisation of ROCK-I to the outermost fringes of the cell but also to areas 

of the cytoplasm towards the main body of the cell. 
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Figure 5.8A Confocal microscopy images of PC-3 pEF6 cells stained for WAVE1 (FITC) and 

ROCK-I (TRITC) reveal co-localisation of these proteins (represented by arrows). Also shown are 

FITC and TRITC merged images (MERGE) and the phase contrast image (PHASE). Representative 

images are shown. Images acquired at 600X magnification.  

WAVE 1 ROCK-1 

MERGE PHASE 
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Figure 5.8B Confocal microscopy images of PC-3 W1R2 cells stained for WAVE1 (FITC) and 

ROCK-I (TRITC). Also shown are FITC and TRITC merged images (MERGE) and the phase contrast 

image (PHASE). Representative images are shown. Images acquired at 600X magnification.  

WAVE 1 ROCK-1 

MERGE PHASE 
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Figure 5.9A Confocal microscopy images of PC-3 pEF6 cells stained for WAVE3 (FITC) and 

ROCK-I (TRITC) reveal some co-localisation of these proteins (represented by arrow). Also shown 

are FITC and TRITC merged images (MERGE) and the phase contrast image (PHASE). 

Representative images are shown. Images acquired at 600X magnification.  

WAVE 3 ROCK-1 

MERGE PHASE 
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Figure 5.9B Confocal microscopy images of PC-3 W1R2 cells stained for WAVE3 (FITC) and 

ROCK-I (TRITC). Also shown are FITC and TRITC merged images (MERGE) and the phase contrast 

image (PHASE). Representative images are shown. Images acquired at 600X magnification.  

WAVE 3 ROCK-1 

MERGE PHASE 
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5.3.6 WAVE1 knockdown increases ROCK-II tyrosine phosphorylation in PC-3 

cells 

Protein extracted from PC-3 cells with a NP-40 based lysis buffer was 

immunoprecipitated with a phosphotyrosine antibody (PY99) following 

standardisation. These immunoprecipitated proteins were separated by SDS-PAGE 

then transferred to a nitrocellulose membrane for probing with either ROCK-I or II 

primary antibodies. Using these techniques demonstrated no change in ROCK-I 

tyrosine phosphorylation in W1R2 or W3R1 cells relative to wild type or pEF6 cells 

and showed levels lower than positive control (refer to Figure 5.10A). However, a 

higher level of ROCK-II tyrosine phosphorylation was observed in WAVE1 

knockdown PC-3 cells compared to either wild type or pEF6 control PC-3 cells. 

Levels of ROCK-II tyrosine phosphorylation in PC-3 cells demonstrating WAVE 1 

knockdown were comparable to the positive control used. Levels of tyrosine 

phosphorylation of ROCK-II protein also appeared to be moderately higher in 

WAVE3 knockdown PC-3 cells compared to wild type and pEF6 cells although this 

was lower than levels seen for the positive control. (Figure 5.10B). Total ROCK-II 

protein levels (labelled as ‘Raw lysate’) appear marginally higher in wild type and 

pEF6 cells compared to WAVE1 and 3 knockdown PC-3 cells as well as the positive 

control used. GAPDH protein levels were consistent in all samples probed. 
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Figure 5.10 ROCK-I and II tyrosine phosphorylation status in PC-3 cells in response to WAVE1 or 3 

knockdown. A) Proteins immunoprecipitated with a phospho-tyrosine antibody (PY99) revealed no 

change in ROCK-1 tyrosine phosphorylation following WAVE1 or 3 knockdown. B) Increased 

tyrosine phosophorylation of ROCK-II in WAVE1 knockdown (W1R2) PC-3 cells. Levels of tyrosine 

phosphorylation also appeared slightly higher with WAVE1 knockdown compared to wild type and 

pEF6 control cells. Wild type and pEF6 cells showed similar levels of tyrosine phosphorylation. 

Representative images are shown.  

(A) 

 

(B) 
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5.4 Discussion 

Cancer progression is driven by multistep events including aberrations in cell 

invasion and metastasis. Remodelling of the actin cytoskeleton can alter cell 

adhesion, invasion and migration thus advancing cells through epithelial-

mesenchymal or mesenchymal-epithelial transition ultimately contributing to the 

metastasis of cancer cells (Rubin et al., 2001; Cavallaro and Christofori., 2004). A 

plethora of proteins are involved in actin polymerisation/depolymerisation, capping 

and bundling of actin filaments which help to coordinate actin cytoskeletal dynamics 

(Ayscough, 1998). A main driver of actin cytoskeletal remodelling is the Rho 

GTPase family of which the most prominent members are Rho, Rac and Cdc42 

(Nobes and Hall, 1995).  The ability of the Rho GTPase family to elicit so many cell 

functions is due to the vast number of downstream effectors. ROCK is a downstream 

target of Rho GTPase whilst members of the WASP family are targeted by Rac and 

Cdc42 (WAVE and WASP, respectively) (Kobayashi et al., 1998; Miki et al, 1998). 

Following activation by Rho GTPases, ROCK and WASP/WAVE are able to relay 

this signal by targeting their own downstream proteins. As previously stated, 

WASP/WAVE stimulates the Arp2/3 complex which is then able to accelerate actin 

polymerisation (Higgs and Pollard., 1999). Both ROCK isoforms are also able to 

influence actin cytoskeleton remodelling as well as regulate cell migration through 

interaction with a number of protein targets (Riento and Ridley, 2003). 

It is unsurprising that aberrations in the expression and activity of ROCK-I and II 

have been linked to several human cancers. Gene mutations which relieve the 

autoinhibitory state of these ROCK isoforms have been linked with increased kinase 

activity in addition to having been identified in several human cancer genomes 
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(Greenman et al, 2007). Increased ROCK-I and II protein levels were demonstrated 

in human breast cancer whilst elevated ROCK-I expression was correlated with 

increased tumour grade (Lane et al, 2008), whilst conditionally activated ROCK 

demonstrated enhanced tumour dissemination and angiogenesis (Croft et al, 2004). 

As ROCK and the WASP/WAVE proteins have an influence on cell migration 

through their role in actin cytoskeletal dynamics, a trait which is implicated in human 

cancer, the relationship between these two protein groups and their pathways was 

investigated. 

Expression analysis of control and WAVE knockdown PC-3 cells revealed no effect 

on either ROCKI or II mRNA level in response to reduced WAVE1 or 3 expression. 

These observations indicate that WAVE1 and 3 are not involved in a pathway that 

regulates the transcript expression of ROCK-I and II. Therefore it is postulated that 

there is not expected to be a signalling cascade downstream of WAVE1 or 3 that 

controls ROCK-I and II expression. 

As described in Chapter 3, in vitro cell function assays revealed a role for WAVE1 

and 3 in cell growth and invasion, whilst only WAVE3 was found to influence cell 

motility. To gain an understanding of the association between WAVE and ROCK in 

relation to prostate cancer metastasis, the in vitro experiments described here were 

coupled with experiments using the ROCK inhibitor, Y-27632 to determine its effect 

on cell function. The treatment of pEF6 control PC-3 cells with a ROCK inhibitor 

was shown to increase cell growth. However, this change was found to be very 

moderate and not significant (p=0.476). The same trend was displayed in PC-3 cells 

exhibiting WAVE1 knockdown (p=0.755). For WAVE3 knockdown cells, no change 

in cell growth was observed (p=0.710). 
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These findings are perplexing as treatment with the ROCK inhibitor, Y-27632 has 

been previously shown to reduce cell proliferation in a glioblastoma cell line 

(Zohrabian et al, 2009). Despite this, a study that demonstrated ROCK inhibitor 

treatment to suppress actin polymerisation also inhibited apoptosis in the metastatic 

prostate cancer cell line, DU-145 (Papadopoulou et al, 2008). Given the Y-27632 

treatment of PC-3 cell lines displayed increased cell growth in pEF6 and W1R2 cells, 

this could in part be explained by apoptosis inhibition. However, as Figure 5.4 

shows, this does not explain why ROCK inhibition in WAVE3 knockdown PC-3 

cells moderately suppresses cell proliferation. The LDOC1 (Leucine Zipper, Down 

Regulated in Cancer 1) gene encodes a protein able to bind directly to the verprolin 

homology domain of WAVE3 and has been characterised as an inducer of cell 

apoptosis. However, WAVE3 expression promotes translocation of LDOC1 thus 

inhibiting LDOC1-induced apoptosis (Mizutani et al, 2005). WAVE3 knockdown 

may prevent its ability to negatively regulate LDOC1 and therefore promote 

apoptosis. This not only helps to explain how WAVE3 knockdown results in a 

decrease in cell growth but also the differing effects of WAVE1 and 3 in response to 

ROCK inhibition. As WAVE3 is still active in pEF6 and W1R2 cells, it is still able 

to negatively regulate LDOC1-induced apoptosis. Whilst ROCK inhibition has been 

linked with inhibited apoptosis and WAVE3 knockdown with promoted apoptosis, 

when coupled together this showed little change compared to cells without ROCK 

inhibitor treatment. This would suggest that WAVE3 regulates apoptosis in a 

pathway upstream of ROCK-regulated apoptosis. Future work examining apoptosis 

in WAVE1 and 3 knockdown cells with and without ROCK inhibition is required to 

fully understand this phenomenon. 
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ROCK inhibitor treatment of pEF6 control PC-3 cells was shown to reduce the 

number of invaded cells through the Matrigel layer compared to cells without ROCK 

inhibition. Whilst this finding was not quite found to be significant (p=0.093), this 

contrasted to the effects of ROCK inhibitor treatment in WAVE1 knockdown cells 

which was shown to increase cell invasion in relation to cells without treatment 

(p=0.365). PC-3 cells exhibiting WAVE3 knockdown was not found to have an 

effect on cell invasion when treated with the ROCK inhibitor, Y-27632 (p=0.490). In 

the previous chapter, it was postulated that the regulation of matrix 

metalloproteinases by WAVE3 was responsible for increased cell invasion in 

WAVE1 knockdown PC-3 cells treated with the Arp2/3 inhibitor, CK-0944636. 

However, the finding that human articular chondrocytes cultured in the presence of 

Y-27632 suppressed MMP-3 expression would contradict this (Furumatsu et al, 

2013). It would appear that proteins belonging to ROCK or WAVE subgroups have a 

role in cell invasion through their MMP regulatory role (Vishnubhotla et al., 2007; 

Sossey-Alaoui K et al., 2005). However, the contradictory finding of increased 

invasion when coupling WAVE1 knockdown with ROCK inhibition could be 

explained by the cells still retaining functional WAVE3, with the ability to regulate 

MMPs. It would be interesting to hypothesise a feedback mechanism whereby the 

regulation of MMPs by WAVE3 or other upstream proteins is upregulated in 

response to suppression of both WAVE1 and ROCK activity. It is of note that 

WAVE knockdown or ROCK inhibition suppresses the quantity of invaded cells. 

However, WAVE1 knockdown and ROCK inhibition together results in increased 

cell number suggesting that there is an association between these two proteins with 

regards to control of cell invasion.  
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The role of ROCK-I and -II in cell migration is well defined (Riento and Ridley, 

2003), yet treatment with the ROCK inhibitor, Y-27632, was demonstrated to elevate 

cell motility in pEF6 control and WAVE1 or 3 knockdown PC-3 cells. Whilst this 

seemingly contradictory effect of ROCK inhibition is surprising, other studies have 

also demonstrated conflicting effects of ROCK inhibition on cell invasion which is 

dependent on the microenvironment in which the cells were cultured (Vishnubhotla 

et al., 2012). Reasons underlying the increased motile ability may stem from the 

finding that ROCK-I knockdown results in decreased cell adhesion in keratinocytes 

cultured on fibronectin (Lock and Hotchin., 2009). This loss of adhesion will affect 

the ability of the cell to remain stably attached within its microenvironment and may 

facilitate cell motility. This fact may explain increased cell motility in both control 

and WAVE knockdown PC-3 cells when subjected to ROCK inhibition. The finding 

that this trend is observed in all of these PC-3 cell lines also suggests that the 

increased cell motility effect is not WAVE1 or 3 dependent.  

An additional theory which may explain the elevated cell motility results has been 

mentioned in the previous chapter whereby alternative signalling cascades with a role 

in cell migration may become activated when ROCK is inhibited.  Signalling 

cascades which cooperate to induce a cell function are integral to a physiologically 

healthy cell, however, if conditionally activated this can lead to the progression of 

cancer traits. It was hypothesised that signalling cascades with a role in cell motility 

not only drive this function but also regulate other cell migration pathways. As 

discussed in the previous chapter, it was indicated that the trend towards increased 

cell motility observed with the treatment of cells with an Arp2/3 inhibitor was as a 

result of alternative cell migration pathways i.e. ROCK-I and II. It may be postulated 
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therefore that the ability of the cell to migrate in the absence of ROCK function is 

driven by Arp2/3 or other unrelated pathways. 

A key role of ROCK in the cell lies with its ability to regulate actin cytoskeletal 

dynamics through the phosphorylation of LIMK serine/threonine residues to drive 

cell migration. Even so, ROCK is not the sole effector that links Rho GTPases to 

cytoskeletal reorganisation through LIMK. Rac and Cdc42 are able to activate p21-

activated kinase 1 (PAK1) which in turn is able to target a number of downstream 

proteins including LIMK. Phosphorylation of LIMK1 at threonine residue 508 was 

shown to increase its kinase activity targeted at cofilin with the effect of stabilising 

actin filament assembly (Edwards et al., 1999). This is a possible pathway utilised by 

the cell to facilitate actin cytoskeletal dynamics which is LIMK dependent but 

ROCK independent (shown in Figure 5.11). The in vitro experiments outlining the 

impact of WAVE knockdown and ROCK inhibition implicate little association 

between these two groups of proteins. However, there appeared to be differing 

effects of ROCK inhibitor treatment on cell invasion depending on whether PC-3 

cells exhibited WAVE knockdown and which WAVE (1 or 3) was knocked down. 

These findings seem to suggest a role for WAVE and ROCK in cell invasion as well 

as a potential relationship between these two protein groups. 
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Figure 5.11 LIM domain kinase (LIMK) phosphorylation by Rho-associated protein kinase (ROCK) 

and p21-activated kinase (PAK). ROCK and PAK are activated by Rho and Rac, respectively. LIMK 

phosphorlation in turn leads to phosphorylation of cofilin which suppresses its actin filament 

depolymerising activity and thus promotes actin filament stability and polymerisation (Adapted from 

Ridley, 2006) 
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The relationship between WAVE and ROCK was further hinted at with the 

observation of some specific co-localisation of ROCK-I with WAVE1 and 3 to the 

outer perimeter of PC-3 cells which was not evident with either WAVE1 or 3 

knockdown. Interestingly, the immunofluorescent images also implied a role for 

WAVE1 and 3 to localise ROCK-I to general cytoplasmic areas of the cell as 

suggested by the lack of ROCK-I in these areas in WAVE1 or 3 knockdown PC-3 

cells (W1R2 and W3R1, respectively). There was a distinct lack of lamellipodia in 

W1R2 and W3R1 cells which greatly altered the cell’s morphology compared to 

pEF6 cells. The finding that knockdown of either WAVE1 or 3 in PC-3 cells had a 

profound effect on lamellipodia generation suggests that this process and ROCK-I 

localisation in the cell is reliant on both of these proteins. 

These observations imply the ability of WAVE1 and 3 to influence ROCK-I 

localisation and to an extent, function, in the cell. This could in part explain the 

insignificant findings in the in vitro cell assays when comparing the effects on cell 

function with and without the ROCK inhibitor, Y-27632. When coupling a WAVE 

knockdown cell line with Y-27632, it is possible that ROCK activity is already 

suppressed due to its localisation in the cell being hampered by the absence of 

WAVE1 and 3. Even so, this does still leave the finding of increased cell motility 

with Y-27632 a puzzling observation. However, these immunofluorescence and 

confocal microscopy approaches have highlighted some interesting findings on the 

relationship between the WAVE and ROCK-I protein family in PC-3 cells. 

Increased levels of ROCK-II tyrosine phosphorylation were observed in PC-3 cells 

following WAVE1 knockdown compared to wild type and pEF6 control cells, both 

of which were at similar levels. Elevated ROCK-II tyrosine phosphorylation levels in 
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WAVE1 knockdown of PC-3 cells were comparable to those seen in the positive 

control used. At present, six tyrosine phosphorylation sites have been identified in 

ROCKII: Y256, Y692, Y722, Y936, Y1232 and Y1319. Little is known about the 

functional consequences of tyrosine phosphorylation at these sites apart from Y722 

which has been linked to disease tissue originating from gastric cancer, acute 

myelogenous leukemia, lung cancer and neuroblastoma (Phosphosite). Tyrosine 

phosphorylation at this site reduces RhoA binding to ROCKII which is important for 

focal adhesion dynamics. Increased cell adhesion of a myeloid leukemia cell line was 

observed with tyrosine phosphorylation at this site (Lee and Chang, 2008). 

PC-3 cells exhibiting WAVE1 knockdown were demonstrated to exhibit reduced cell 

invasiveness as well as increased tyrosine phosphorylation of ROCK-II. Given the 

link between phosphorylation at specific tyrosine residues with increased cell 

adhesion, it seems that these findings are conflicting. However, it is important to 

emphasise that the tyrosine phosphorylation findings outlined in this chapter do not 

specify which particular residues are being targeted. Furthermore, it is worth noting 

that the roles of ROCK-I and -II in the cell are subtly different. Whilst ROCK-I is 

involved in destabilising the actin cytoskeleton and cell detachment; ROCK-II is 

essential for stabilising the actin cytoskeleton and cell adhesion (Shi et al, 2013). 

Although the functional consequence of phosphorylation at Y722 was deliberated in 

the case of ROCK-II, there is no evidence of a homologous site in ROCK-I being 

subjected to phosphorylation. This highlights a distinction between these two ROCK 

isoforms which emphasizes their functionally non-redundant roles in the cell. Despite 

these points, it is very interesting to note that whilst WAVE1 knockdown was shown 

to decrease cell invasion and increase tyrosine phosphorylation, ROCK inhibition in 

these cells was shown to moderately rescue these suppressed cell invasion effects. 
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Ideally, further work would investigate the tyrosine phosphorylation levels in 

WAVE1 knockdown cells compared to those treated with the ROCK inhibitor, Y-

27632. This would allow an insight into whether there exists an association between 

post-translational modification and functional consequence to the cell.  
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Chapter 6 

WAVE 1 and 3 and N-WASP in the PC-3 cell 

line 

  



227 
 

6.1 Introduction 

Actin polymerisation is the driving force underlying cell migration and is initiated 

through a multitude of mechanisms including the pathway that utilises the Arp2/3 

complex. Besides the stimulation of this complex by the WAVE protein subgroup, 

other nucleation promoting factors include the related proteins, WASP and N-WASP 

(Kurisu and Takenawa., 2009). The ability of these proteins to initiate actin 

polymerisation is attributed to the presence of specific protein domains at the 

carboxy-terminal. Known collectively as the VCA region, this is comprised of the 

verprolin homology domain, the cofilin homology domain and the acidic region; 

together they confer the ability of the protein to bind to and activate the Arp2/3 

complex (Kurisu and Takenawa, 2009). Although the VCA region is a defining 

characteristic of WASP and WAVE proteins, the presence of different domains 

located at the amino-terminal places these proteins into two distinct subgroups (refer 

to Figure 6.1).  

The presence of the WASP homology 1/Ena-VASP homology 1 (WH1/EVH1) 

domain and GTPase binding domain (GBD) in WASP and N-WASP but absent from 

WAVE1, 2 and 3 is one obvious distinction between these proteins which is a prime 

defining factor that makes the role of these proteins subtly different. Having a 

WH1/EVH1 domain in WASP and N-WASP allows these proteins to bind with 

members of the WASP-interacting protein (WIP) family which includes WIP, CR16 

(corticosteroids and regional expression-16), and WICH/WIRE (WIP- and CR14-

homologous protein/WIP-related) in mammals (Antón et al, 2007; Ho et al, 2001; 

Kato et al, 2002). The functional importance of this protein domain is emphasized by 

the finding that the vast majority of missense mutations are located in regions that 

encode the WH1 domain with the potential to interfere with WIP interaction.  
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Figure 6.1 The protein structure of the WASP and WAVE proteins in homo sapiens. The percentage 

displayed under the WH1/EVH1 and WHD/SHD represent the amino acid similarity of these domains 

between the WASP and WAVE subgroup, respectively. WH1/EVH1: WASP homology 1/Ena-VASP 

homology 1; CRIB/GBD: Cdc42 and Rac interactive binding domain/GTPase binding domain; 

WHD/SHD: WAVE homology domain/Scar homology domain; V/WH2: verprolin homology 

domain/WASP homology 2; C: cofilin homology; A: acidic region  

(Image adapted from Kurisu and Takenawa, 2009). 
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Whilst specific Rho GTPases are associated with the generation of particular actin-

rich formations at the cell leading edge, it is apparent that these effects are in fact 

mediated through WASP and WAVE proteins (Hall, 1998; Kurisu and Takenawa; 

2009). It is reasonable to link the presence or absence of WH1/EVH1 in WASP and 

WAVE proteins, respectively, with the formation of filopodia or lamellipodia, 

respectively. Whilst WASP proteins have been show to stimulate actin filament 

bundling, targeting these effects to the cell leading edge is driven by WIP proteins 

and together they influence filopodia formation (Martinez-Quiles et al., 2001). 

Moreover, the generation of invadopodia and podosomes resulting in cell migratory 

and matrix degradation effects has also been attributed to WIP and WASP proteins 

(García et al., 2012). In contrast, WAVE proteins lack a WH1/EVH1 domain and 

therefore do not allow direct interaction with proteins such as members of the WIP 

protein family.  

Also specific to WASP and N-WASP is the GBD which is responsible for Cdc42 

interaction and alleviation of WASP proteins from their intrinsically inactivate state 

(Kim et al, 2000). Whilst the WASP and N-WASP proteins are able to bind directly 

with multiple proteins partners through their WH1/EVH1 and GBD domains, these 

functional domains are absent in the WAVE proteins. Instead, WAVE proteins elicit 

their cell motility properties indirectly through the pentameric formation of the 

WAVE regulatory complex (WRC) which is comprised of four additional proteins: 

Sra1, Nap1, HSPC300 and Abi2. The lack of a GBD domain in WAVE is overcome 

by the ability of Rac to bind with the Sra1 subunit which recruits WAVE to the cell 

membrane and drives lamellipodia formation (Soto et al., 2002). Furthermore, the 

WHD (WAVE homology domain) in WAVE proteins, which is absent in WASP 

proteins, has been found to associate with Abi2 and HSPC300 and has been 

http://www.ncbi.nlm.nih.gov/pubmed?term=Garc%C3%ADa%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22823953
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suggested to contribute to WRC formation (Gautreau et al, 2004). The close 

association of the five proteins in the WRC, where each has the potential to bind with 

multiple binding partners, implicates the complex with several signalling pathways in 

which WAVE may interplay either directly or indirectly. 

In addition to the obvious structural variations between WASP and WAVE, the 

ability for specific Rho GTPases to activate these proteins may also account for the 

different actin formations generated at the cell leading edge. As mentioned 

previously, the cellular functions associated with Rho GTPases are not only vast but 

also diverse (Jaffe and Hall., 2005). This is attributed to the numerous protein 

interactions involving each Rho GTPase. Due to the elaborate nature of actin 

cytoskeleton maintenance, contemporaneous stimulation of proteins involved in 

different signalling pathways by Rho GTPases may have the potential to influence 

actin filament dynamics through mechanisms alternative to those that involve 

WASP/WAVE. Despite both WASP and WAVE proteins stimulating Arp2/3 

through their VCA regions, the association of these proteins with specific binding 

partners and the possibility of alternative signalling pathways via the different Rho 

GTPases could be responsible for their physiologically specific roles in the cell. 

Although WASP and WAVE are characterised by their ability to activate Arp2/3, it 

is apparent that they do not function independently of each other during cell 

migration. Previous studies have demonstrated the suppressive effects of WAVE 

expression knockdown on invasive and motility ability in breast and prostate cancer 

cells (Sossey-Alaoui et al.,2007; Fernando et al., 2008). Interestingly, a similar study 

presented contrasting results with the loss of WRC activity in epithelial cells (Tang et 

al., 2013). Depletion of WRC activity was found to correlate with an increase in N-

WASP recruitment to the leading edges of cells to drive 3D cell migration. A loss of 
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WRC subunits also correlated with an increase in focal adhesion kinase (FAK) 

expression, a protein involved in cell adhesion and a known driver of cancer cell 

invasion (Brunton and Frame, 2008). Furthermore, the ability of FAK to 

phosphorylate N-WASP, a process that enhances N-WASP function and recruitment 

to the cell leading edge was also demonstrated. This study emphasises the intricate 

nature of mechanisms that regulate cell migration and highlights an important 

synergy between WASP and WAVE proteins.  

Cancer metastasis is a common characteristic of aggressive and advanced stage 

cancer and is often associated with uncontrolled cell migration. With integral roles in 

cell migration, it is not surprising that several members of the WASP protein family 

have been implicated in a number of human cancers as both prognostic indicators 

and therapeutic targets (Matrin et al., 2011; Kurisu et al., 2005; Iwaya et al., 2007; 

Sossey-Alaoui et al., 2007). Given this link with cancer and their roles as nucleating 

promoting factors of Arp2/3, it would be interesting to investigate the relationship 

between the WASP and WAVE protein subgroups and ascertain any role for their 

association in prostate cancer metastasis. As both WAVE and N-WASP proteins 

interact with the Arp2/3 complex to activate it in a similar manner, it would be 

logical to predict that WAVE knockdown will show comparable effects on cell traits 

to N-WASP inhibition whilst a these cell characteristics may shown to be effected to 

a greater extent when coupling both WAVE knockdown and N-WASP inhibition.  
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6.2 Methods and materials 

6.2.1 Cell lines 

PC-3 cells were cultured and maintained as outlined in Section 2.2.4. 

 

6.2.2 Synthesis of complementary DNA and RT-PCR 

Complementary DNA was generated as described in the Section 2.4 whilst the same 

RT-PCR techniques were used to determine expression levels of N-WASP using 

primers designed specifically for this gene. The forward and reverse primer 

sequences are shown Table 2.3 (Chapter 2). RT-PCR was also run in parallel with 

the housekeeping gene GAPDH to allow a validation of cDNA quality and enable a 

demonstration of normalised expression levels of the cDNA within the separate cell 

lines. 

 

6.2.3 In vitro cell growth assay 

The preparation of the cell growth assay is outlined in Section 2.6.1. When setting up 

the inhibitor treatment groups of the same cell lines to target N-WASP, the small 

molecule inhibitor, Wiskostatin, was used at a concentration of 100nM (inhibitor 

concentration based on cytotoxic assays performed within the laboratory). This small 

molecule inhibitor interacts with the regulatory GTPase binding domain of N-WASP 

thus preventing Arp2/3 activation. The molecular structure of Wiskostatin (681525 

1MG) from Calbiochem, Merck Millipore (Darmstadt, Germany) is shown in Figure 

6.2 (Peterson et al, 2004). 
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Figure 6.2 Molecular structure of the N-WASP inhibitor, Wiskostatin (image taken from Sigma 

Aldrich) 

 

 

6.2.4 In vitro cell Matrigel invasion assay 

 

The preparation of the cell invasion assay is outlined in Section 2.6.2. For the 

treatment groups, the inhibitor and the corresponding concentration used is described 

in Section 6.2.3. 

 

6.2.5 In vitro cell motility assay 

The preparation of the cell motility assay is outlined in Section 2.6.4. For the 

treatment groups, the inhibitor and the corresponding concentration used is described 

in Section 6.2.3. 
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6.2.6 Protein extraction, SDS-PAGE and Western blotting 

Protein was extracted from control and WAVE knockdown PC-3 cells using a SDS-

free lysis buffer (NP-40 based). Protein quantification allowed standardisation of the 

samples to ensure consistent loading of total protein. The protocol followed is 

outlined in Section 2.5. 

 

6.2.7 Immunoprecipitation  

The procedure for the immunoprecipitation of proteins with the antibody of choice is 

described in Section 2.3.3. To set up a positive control when analysing protein 

tyrosine phosphorylation, wild type PC-3 cells were cultured until 60-80% confluent. 

Medium was aspirated for the washing of cells with BSS then aspirated for the 

addition of 10mM sodium orthovanadate in 5ml serum free medium and hydrogen 

peroxide to make the final concentration 0.8%. After 10 minutes, this was aspirated 

for subsequent protein extraction outlined in Section 2.5.1. 

 

6.2.8 Confocal microscopy 

The confocal microscopy procedure is outlined in Section 2.7 and the primary and 

secondary antibodies used are shown in Chapter 2, Tables 2.4 and 2.6, respectively.  
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6.3 Results 

6.3.1 Expression analysis of N-WASP in WAVE1 and WAVE3 knockdown PC-3 

cells 

The mRNA levels of N-WASP were analysed to gain an insight as to whether 

WAVE 1 or 3 knockdown in PC-3 cells would affect its expression. Knockdown of 

WAVE 1 or 3 expression was not observed to affect N-WASP expression as 

indicated by the similar band intensity of both wild type and pEF6 PC-3 samples in 

WAVE 1 and 3 knockdown samples. Expression levels of GAPDH were also 

observed to be at consistent levels across the PC-3 cell derived samples thus 

indicating consistent loading of samples. The negative control used in this analysis 

was a substitution of cDNA in polymerase chain reaction for PCR water. As no 

bands were detected for negative controls, this indicated no sign of contamination. 

This expression analysis is shown in Figure 6.3. 

 

 

Figure 6.3 N-WASP mRNA expression analysis following knockdown of either WAVE 1 or 3 

revealed no significant effect on levels of N-WASP expressed in PC-3 cells. GAPDH expression 

remained unaffected regardless of WAVE1 or 3 knockdown whilst the negative control revealed no 

signs of contamination. 

  

496bp 

 

475bp 
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6.3.2 Impact of N-WASP inhibitor treatment on PC-3 cell growth 

PC-3 cells were treated with the N-WASP inhibitor, Wiskostatin to compare its 

effect on cell growth to cells without Wiskostatin treatment. In pEF6 control PC-3 

cells, cell growth was observed to be upregulated in reponse to N-WASP inhibition 

(p<0.001). Similarly, WAVE3 knockdown cells treated with the N-WASP inhibitor 

were found to increase cell growth compared to cells without inhibitor treatment, 

however, this was not found to be statistically significant (p=0.143). In contrast, a 

marginal decrease in cell growth was demonstrated in WAVE1 knockdown PC-3 

cells when treated with Wiskostatin, however, this change was not found to be 

statistically significant (p=0.589) (refer to Figure 6.4).  
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Figure 6.4 N-WASP inhibition showed cell growth increase in PC-3 pEF6 control whilst WAVE1 

knockdown PC-3 cells (W1R2) showed a decrease (A). PC-3 cells exhibiting WAVE3 knockdown 

showed cell growth increase in response to the N-WASP inhibitor, Wiskostatin (B). Shown are mean 

data from a minimum of three independent repeats, values represent percentage change to pEF6 

control cells without treatment (control). Error bars represent SEM. * represents p <0.05. 
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6.3.3 Impact of N-WASP inhibitor treatment on cell invasion 

Cell invasion was compared in PC-3 cell lines with and without the N-WASP 

inhibitor, Wiskostatin. A very moderate decrease in cell invasiveness was seen in 

pEF6 control PC-3 cells when treated with Wiskostatin relative to untreated cells, 

whilst N-WASP inhibitor treatment was shown to moderately increase cell invasivon 

in WAVE1 knockdown PC-3 cells. However, these cell invasion changes following 

N-WASP inhibitor were found to be insignificant in both pEF6 and WAVE1 

knockdown PC-3 cells compared to their untreated equivalents (p=0.497; p=0.586, 

respectively) (refer to Figure 6.5). 

Wiskostatin treatment of PC-3 cell exhibiting WAVE3 knockdown was shown to 

have no overall effect on cell invasion (p=0.985) (refer to Figure 6.6). 
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PC-3 pEF6 (control)    PC-3 W1R2 (control) 

 

 

 

 

 

 

PC-3 pEF6 (Wiskostatin)  PC-3 W1R2 (Wiskostatin) 

 

 

Figure 6.5 N-WASP inhibitor treatment reduced cell invasion of pEF6 control cells whilst it increases 

the invasiveness of PC-3 cells with WAVE1 knockdown. A) Representative images acquired for PC-3 

pEF6 and W1R2 cells without N-WASP inhibitor treatment (control) and with (Wiskostatin). Images 

were acquired from at least three independent experiments. B) Cells were counted to calculate 

percentage change in cell invasion compared to PC-3 pEF6 cells without N-WASP inhibitor 

treatment. Images acquired at 200X magnification. Shown are mean data with error bars representing 

SEM.  
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PC-3 pEF6 (Wiskostatin)    PC-3 W3R1 (Wiskostatin) 

 

 

 

Figure 6.6 N-WASP inhibitor treatment marginally reduced cell invasion of pEF6 control cells but 

had little effect on WAVE3 knockdown cells. A) Representative images acquired for PC-3 pEF6 and 

W3R1 cells without N-WASP inhibitor treatment (control) and with (Wiskostatin). Images were 

acquired from at least three independent experiments. B) Cells were counted to calculate percentage 

change in cell invasion compared to PC-3 pEF6 cells without N-WASP inhibitor treatment. Images 

acquired at 200X magnification. Shown are mean data with error bars representing SEM.  
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6.3.4 Impact of N-WASP inhibitor treatment on cell motility 

Treatment of PC-3 pEF6 cells with Wiskostatin was found to significantly increase 

cell motility when compared to untreated cells (p=0.012). An overall trend of 

increased cell motility was also observed for WAVE1 knockdown PC-3 cells 

following treatment with Wiskostatin, although this was not found to be significant 

when compared to untreated PC-3 W1R2 cells (p=0.71). Inhibition of N-WASP in 

WAVE3 knockdown PC-3 cells was not shown to affect cell motility compared 

W3R1 without N-WASP inhibition (p=0.89).  
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Figure 6.7 Wiskostatin treatment moderately increased cell motility in PC-3 pEF6 control and 

WAVE1 knockdown cells (A). On the contrary, little effect on cell motility was observed in WAVE3 

knockdown cells with N-WASP inhibition (B). Shown are mean data from a minimum of three 

independent repeats, values represent percentage change to pEF6 cells without treatment. Error bars 

represent SEM. * represents p <0.05. 
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6.3.5 WAVE knockdown has no impact on N-WASP tyrosine phosphorylation 

Protein extracted from PC-3 cells with a NP-40 based lysis buffer was 

immunoprecipitated with a phosphotyrosine antibody (PY20) following 

standardisation. These immunoprecipitated proteins were separated by SDS-PAGE 

then transferred to a nitrocellulose membrane for probing with N-WASP antibody. 

As Figure 6.8 shows, there appears to be no obvious changes in N-WASP tyrosine 

phosphorylation levels in PC-3 cells following either WAVE 1 or WAVE 3 

knockdown (W1R2 and W3R1, respectively). Notably, levels of tyrosine 

phosphorylation in the majority of protein samples were comparable to the positive 

control. On the whole, similar levels of N-WASP protein were observed in the cell 

lysate for the PC-3 protein samples analysed. Consistent levels of GAPDH were 

observed in all samples probed. 
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Figure 6.8 Protein immunoprecipitated with the anti-phosphotyrosine antibody PY20 revealed no 

changes in phosphorylated tyrosine levels of N-WASP protein in PC-3 cells. Even so, levels of 

tyrosine phosphorylation in these protein samples were similar to the positive control.  
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6.4 Discussion 

Dynamic remodelling of the actin cytoskeleton is a major driving force underlying 

cell migration. The ability of monomeric actin to form filamentous actin which 

comprises the cytoskeleton is stimulated by the Arp2/3 complex. Actin 

polymerisation requires activation of the Arp2/3 complex by nucleation promoting 

factors which include members of the WASP family; WASP and WAVE proteins 

(Higgs and Pollard, 1999). 

The association of WASP and WAVE proteins with Arp2/3 is analogous; both have 

the consequence of influencing cell migration. Even though the role of WASP 

proteins in the cell is similar to that served by the WAVEs, these subgroups can be 

characterised by their ability to generate physiologically distinct cell protrusions at 

the cell leading edge (Ridley, 2011). Their specific roles in the cell are defined by the 

ability of WASP and N-WASP to drive filopodia formation and WAVE1, 2 and 3 

with the generation of lamellipodia; both of which are an integral mechanism that 

facilitates cell motility. Despite serving analogous roles in the cell, WRC activity has 

been demonstrated to affect the recruitment and therefore the function of N-WASP at 

the cell leading edge and was shown to effect cell migration and invasion (Tang et al, 

2013). The ability of WASP and WAVE to generate different cell formations and the 

implication that each may influence the activity of the other suggest that these two 

protein subgroups are not functionally redundant. 

Disrupting WRC activity was shown to effect cell migration and invasion with 

evidence of N-WASP being a contributing factor. Since the implication is that there 

is signalling between these related protein groups and given the association of their 

aberrant expression and/or activity with several human cancers, the aim of this 
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section of the project was to analyse the relationship between WAVE1 and 3 with N-

WASP in metastatic prostate cancer cells. 

N-WASP expression was analysed in the metastatic prostate cancer cell line, PC-3 

following successful WAVE1 or 3 knockdown. A comparison of WAVE1 or 3 

knockdown cells with wild type or pEF6 control cells revealed no change in N-

WASP expression. This could suggest that WAVE1 or 3 does not regulate N-WASP 

expression and the expression of these two protein subgroups are regulated 

independently of each other. 

The in vitro function assays outlined in Chapter 3 revealed a decrease in cell growth 

in both WAVE1 and 3 knockdown PC-3 cells compared to pEF6 control cells. For 

this section of the study, the same experiments were coupled with the N-WASP 

inhibitor, Wiskostatin. In doing so, it was hoped that this would provide insight into 

the relationship between WAVE1 and 3 with N-WASP during the process of cell 

growth, invasion and motility. Treating pEF6 cells with the N-WASP inhibitor, 

Wiskostatin was demonstrated to moderately increase cell growth with a similar 

trend observed with WAVE3 knockdown cells when compared to untreated 

equivalent cells (p<0.001 and p=0.143, respectively). In contrast, N-WASP 

inhibition was seen to further decrease cell growth in WAVE1 knockdown PC-3 

cells, however this was not found to be statistically significant (p=0.589). The 

different cell growth response to Wiskostatin in PC-3 cells exhibiting WAVE1 and 

WAVE3 knockdown highlighted functional differences in these cells and emphasised 

distinctive roles for these proteins in the cell. Whilst either WAVE1 or 3 knockdown 

in PC-3 cells was shown to decrease cell growth, coupling WAVE1 knockdown with 

N-WASP inhibition was shown to decrease growth further, whereas the opposite was 

observed in either PC-3 pEF6 or WAVE3 knockdown cells with Wiskostatin 



247 
 

treatment. These findings may implicate that N-WASP activity inhibition reduces 

cell growth only when cells are also exhibiting a knockdown in WAVE1 activity. It 

is of interest to note that Wiskostatin treatment of pEF6 control cells showed a 

similar trend of increased cell growth as Wiskostatin treatment of WAVE3 

knockdown cells. Having discussed the relationship between WAVE1 and N-WASP 

in the context of growth in PC-3 cells is it reasonable to suggest that WAVE1 is still 

functional in pEF6 and W3R1 cells. In a hypothesised signalling cascade, cell growth 

is increased despite N-WASP inhibition as it results in a feedback loop that involves 

WAVE1. This theory is not too dissimilar to the findings previously described where 

the depletion of WRC activity resulted in the unexpected finding of increased cell 

motility which was dependent on N-WASP activity (Tang et al, 2013).  

As described in Chapter 3, the knockdown of either WAVE1 or 3 was shown to 

potently decrease cell invasiveness (Figure 3.7). However, the treatment of PC-3 

pEF6 control cells with Wiskostatin was shown to have very little effect on cell 

invasion. This implies that the role of WAVE1 and 3 in cell invasion is more 

important than that of N-WASP. Interestingly, when W1R2 cells were treated with 

Wiskostatin, the effects of decreased cell invasion seen with WAVE1 knockdown 

were moderately alleviated. However, this was not observed for cells exhibiting 

WAVE3 knockdown coupled with N-WASP inhibition. Whist this demonstrates 

fundamental differences between WAVE1 and 3, it also emphasises a relationship 

between N-WASP and WAVE1 which is not so apparent with WAVE3 in cell 

invasion. To reiterate the points made in Chapter 4, MMPs have a cardinal role in 

cell invasion due to their ability to digest components of the ECM. Much work has 

demonstrated a regulatory role for WAVE3 with MMPs, therefore, whilst PC-3 
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W1R2 cells lack functional WAVE1, WAVE3 is still active and able to promote 

MMP activity. 

Cell motility was found to be greatly decreased with WAVE3 knockdown in PC-3 

cells when compared to pEF6 control cells. On the other hand, a moderate increase in 

the motile abilities of PC-3 cells was observed with WAVE1 knockdown, although 

this was found to be statistically insignificant (refer to Chapter 3, Section 3.3.7). The 

small molecule inhibitior, Wiskostatin was used to inhibit N-WASP in PC-3 cells to 

investigate the relationship with WAVE1 or 3 in cell motility. Wiskostatin treatment 

of pEF6 control cells showed a moderate increase in cell motility which was similar 

to the effects of N-WASP inhibition in WAVE1 knockdown cells, however, this was 

found to be non-significant. On the contrary, PC-3 cells exhibiting WAVE3 

knockdown showed very little change in cell motility in response to N-WASP 

inhibition.  It is interesting to note that the effects of WAVE knockdown on PC-3 

cell motility appeared to be moderately enhanced by N-WASP inhibition with 

Wiskostatin treatment (i.e. WAVE1 knockdown increased cell motility, when 

coupled with N-WASP inhibition, cell motility was increased further. WAVE3 

knockdown decreased cell motility, whilst combining with N-WASP inhibition 

decreased cell motility further). Despite differing effects of WAVE1 or 3 

knockdown, these observations suggest a regulatory role of N-WASP with both 

WAVE1 and 3 in facilitating cell motility. 

As Figures 6.3 and 6.8 demonstrate, neither WAVE1 nor 3 knockdown was shown to 

affect N-WASP mRNA and protein expression. However, it has previously been 

reported that N-WASP activity can be influenced by WAVE (Tang et al, 2013). Due 

to the important regulatory role played by tyrosine kinases in signalling transduction 

pathways, it is unsurprising that abnormal tyrosine kinase activity is implicated in 
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several human cancers (Blume-Jensen and Hunter, 2001). Due to the complex 

network of protein interactions that could be involved in moderating N-WASP 

activity, the effects of WAVE knockdown on N-WASP tyrosine phosphorylation 

levels was investigated in PC-3 cells to understand the regulatory relationship 

between these proteins. Immunoprecipitation approaches revealed no change in 

tyrosine phosphorylation levels of N-WASP in PC-3 cells following WAVE1 or 3 

knockdown. N-WASP tyrosine phosphorylation was observed to be at similar levels 

in PC-3 wild type, pEF6 control, WAVE1 and 3 knockdown cells; interestingly, 

these levels were also similar to the positive control that was run in parallel. 

Although previous studies implicate a regulatory relationship between WAVE and 

N-WASP, the findings outlined here suggest tyrosine phosphorylation is not part of 

the mechanism utilised by WAVE1 or 3 to moderate N-WASP activity. Furthermore, 

there is an implication that levels of N-WASP tyrosine phosphorylation are 

intrinsically high in PC-3 cells as a comparison to positive control showed similar 

levels. Currently there are two tyrosine phosphorylation sites identified for N-WASP: 

Y175 and Y256. Whilst the former has been linked to gastric cancer, the latter 

residue site has been characterised in bladder, gastric, breast and lung cancer tissue. 

Furthermore, tyrosine phosphorylation at this site has been linked to altered cell 

adhesion and cytoskeletal reorganisation (Phosphosite). 

Treating PC-3 cells with Wiskostatin resulted in contrasting cell growth, invasion 

and motility effects when comparing those cells exhibiting WAVE1 or 3 knockdown. 

The main point emphasised by these observations is that these two proteins play 

particular roles in the cell, but while this is the case, it is also apparent that with the 

knockdown of a specific WAVE activity, the other WAVE protein is still functional. 

As previously mentioned, Wiskostatin was used at a concentration of 100nM and 
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was based on cytotoxic assays performed in the lab. Although these cell function 

assays show intruging results for Wiskostatin in this study, other studies used this 

small molecule inhibitor at concentrations varying from 10 to 50µM (Guerriero and 

Weisz, 2007). However, Wiskostatin at concentrations above 10µM was linked with 

an irreversible dose-dependent drop in cellular ATP levels with the potential to affect 

cell function. If given the opportunity, this study would be repeated with Wiskostatin 

at a higher concentration than 100nM to confirm the results presented here. 

Whilst the N-WASP tyrosine phosphorylation levels of WAVE1 or 3 knockdown 

cells were observed to remain the same as wild type and pEF6 controls, these levels 

were also at similar levels as the positive control. Given that the phosphorylation of a 

particular tyrosine residue is linked with altered cell adhesion, in retrospect, it would 

possibly have been useful to have included cell adhesion assays in this study. 

However, what this current work conveys is that whilst WASP and WAVE proteins 

work at the same level by relaying messages from Rho GTPases to the Asp2/3 

complex, their roles in the cell are not interchangeable. In fact, the findings from the 

in vitro studies outlined here suggest the influence of auxiliary proteins from 

additional signalling pathways that work alongside WASP and WAVE to impact cell 

growth, invasion and motility. Given the role of both N-WASP and WAVE1 and 3 in 

cytoskeletal dynamics, the inclusion of confocal approaches would be a sensible step 

to progress the findings outlined here. 
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General discussion 
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Cancer metastasis is a complex process governed by a multitude of possible 

aberrations in normal molecular machinery of the cell. Whilst cell migration is an 

integral process which facilitates many physiologically important processes, when 

uncontrolled it is major contributor to cancer metastasis (Lambrechts et al., 2004). 

Dynamic remodelling of the actin filament network, the major constituent of the 

cytoskeleton, enables cells to migrate. The ability of the Arp2/3 complex to stimulate 

rapid actin polymerisation defines this protein complex as an integral cell migration 

mechanism (Schafer et al., 1998; Higgs and Pollard., 1999). 

The clinical importance of WASP Verprolin homologous proteins (WAVE) was first 

demonstrated in a ganglioneuroblastoma case study (Sossey-Alaoui et al., 2002). A 

flourish of research has since stemmed from this work which has highlighted 

significant links between this protein family and human cancer. Identifying their 

influence on actin polymerisation through their interaction with the Arp2/3 complex 

has helped to shed light on how abnormal function in the cell can have potential 

clinical implications manifesting as cancer metastasis. This point has been 

extensively emphasised by findings that the increased expression and/or activity of 

particular WAVE proteins was associated with several human cancers (Kurisu et al., 

2005, Sossey-Alaoui et al., 2007). Furthermore, a trend of higher WAVE expression 

was linked with cancers that had progressed to a more advanced stage and/or with 

those which had metastasised (Iwaya et al., 2007). The expression of WAVE1 and 3 

was demonstrated to be higher in metastatic prostate tissue compared to normal 

epithelial tissue. The clinical importance of these proteins was further emphasised 

when it was found that several metastatic traits were suppressed with the knockdown 

of WAVE1 or 3 expression in metastatic prostate cancer cells (Fernando et al., 2008; 

Fernando et al., 2010).  



253 
 

7.1 The role of WAVE1 and 3 in PC-3 cell proliferation 

Cell growth data from the present study demonstrated WAVE1 or 3 knockdown has 

the ability to suppress cell growth and suggests a role for these proteins in cell 

proliferation. Whilst work by Fernando et al, concurred with the effects of WAVE1 

knockdown on cell growth data presented here, WAVE3 knockdown was not 

previously shown to have any effect (Fernando et al., 2008; Fernando et al., 2010). 

However, the integrity of the results described here is supported by the role of 

WAVE3 as a negative regulator of LDOC1-induced apoptosis (Mizutani et al, 2005). 

Apoptosis through this pathway is promoted with reduced WAVE3 expression and 

therefore successful knockdown of WAVE3 would see a decrease in viable cells. 

Arp2/3 inhibition was observed to decrease cell growth furthermore in both WAVE1 

or 3 knockdown cells whilst showing little effect in pEF6 cells. This implies that 

both WAVE1 and 3 interact with Arp2/3 but have additional signalling partners to 

drive cell proliferation (see Figure 4.10). Whilst targeting Arp2/3 with the inhibitor 

CK-0944636 suggests analogous roles for both WAVE proteins in cell proliferation, 

experiments using Y-27632 to target ROCK activity dispelled this theory. Cell 

growth was observed to increase with ROCK inhibition in pEF6 and W1R2 cells 

whilst having little effect in W3R1 cells. Previous findings suggest that ROCK 

inhibition has been linked to suppressed apoptosis (Papadopoulou et al, 2008). The 

data presented here is not wholly surprising since it highlighted significant cell 

growth differences in response to ROCK inhibition when comparing PC-3 cells 

exhibiting WAVE1 or 3 knockdown. As previously mentioned, the ability of 

WAVE3 to suppress apoptosis through LDOC1 mediates an understanding of these 

observations and emphasises the complex signalling networks that are influenced by 

WAVE proteins. 
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Functional differences between WAVE 1 and 3 were further reiterated in cell growth 

experiments coupled with the N-WASP inhibitor, Wiskostatin. Targeting N-WASP 

in pEF6 cells increased cell growth which was a trend also seen in PC-3 W3R1 cells. 

In contrast, Wiskostatin reduced cell growth in W1R2 cells. It is difficult to ascertain 

whether N-WASP regulates cell proliferation through WAVE1 and 3 or vice versa, 

however, as it has been postulated that WAVE3 can influence apoptosis as a separate 

mechanism to its relationship with Arp2/3 to drive cell proliferation, it is possible 

that N-WASP has a role in apoptosis. There is no literature that makes this link, 

however, disruption of the WASP gene, a related member of N-WASP, has been 

shown to impair apoptosis (Sato et al, 2012). If this were also a mechanism utilised 

by N-WASP, its inhibition would suppress apoptosis and therefore an increase in cell 

growth. However, given the different ways WAVE1 and 3 knockdown cells 

responded to Wiskostatin, it is apparent that these WAVE proteins interact 

differently with N-WASP. 

 

7.2 The role of WAVE1 and 3 in PC-3 cell invasion 

Knockdown of either WAVE1 or 3 expression in PC-3 cells was demonstrated to 

decrease cell invasion as described and agrees with findings outlined in previous 

studies (Fernando et al., 2008; Fernando et al., 2010). Interestingly, experiments 

coupling these findings with small molecule inhibitors targeting either ARP2/3, 

ROCK-I/II or N-WASP all showed similar results; increased cell invasion in 

WAVE1 knockdown cells and very little effect in WAVE3 knockdown cells.   

The ability for WAVE proteins to promote actin polymerisation can help to explain 

why knockdown of their expression sees a suppression of PC-3 cell invasion. 
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Moreover, the regulatory role of WAVE3 on matrix metalloprotease (MMP) activity 

is well known and offers an explanation for the dramatic cell invasion decrease in 

WAVE3 knockdown cells compared to PC-3 cells exhibiting WAVE1 knockdown 

(Sossey-Alaoui K et al., 2005; 2009; Zhang Y et al., 2012). Due to the specificity of 

ribozyme transfection, PC-3 cells targeted with WAVE1 ribozyme would still exhibit 

functional WAVE3, able to promote MMP activity. It is not entirely clear whether 

the increased cell invasion changes in W1R2 cells following CK-0944636, Y-27632 

and Wiskostatin treatment is due to a regulatory role for ARP, ROCK and N-WASP 

proteins on MMP activity. Findings that Y-27632 suppressed MMP-3 expression in 

human articular chondrocytes would contradict this (Furumatsu et al, 2013), 

however, it is important to consider that this may not reflect cell invasion signalling 

in metastatic prostate cancer cell lines. 

Although there is no literature describing a link between MMPs with either the 

Arp2/3 complex or N-WASP, these proteins may have a cell invasion regulatory role 

through pathways independently of MMPs. Loss of WRC has been found to 

upregulate N-WASP activity and cell invasiveness (Tang et al, 2013). N-WASP 

activity is proposed to be upregulated by Focal Adhesion Kinase (FAK) in response 

to abolished WRC activity. As FAK has a role in matrix attachment and degradation, 

it is possible to hypothesise that despite N-WASP inhibition with Wiskostatin 

treatment, WAVE1 knockdown simulates loss of WRC activity and promotes FAK 

activity. With a role in matrix degradation, FAK enables functional WAVE3 to drive 

the invasion of PC-3 cells. 
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7.3 The role of WAVE1 and 3 in cell motility 

The role of both WAVE 1 and 3 in cell proliferation, invasion and migration is well 

established (Zhang et al, 2013; Fernando et al, 2010; Teng et al, 2013). The cell 

motility data presented here which shows a decrease with WAVE3 knockdown is 

unsurprising, however, the motility increase observed when targeting WAVE1 

expression in PC-3 cells is puzzling. It is possible that WAVE3 plays a bigger 

regulatory role in cell motility relative to WAVE1 and therefore limiting its 

expression will produce a more pronounced change in cell motility (see Figure 3.9). 

As for the cell motility increase with WAVE1 knockdown, it is possible that 

knocking down WAVE1 expression upregulates WAVE3 activity through an 

unknown mechanism that is intrinsically buffered by WAVE1 by the cell. 

Inhibitors targeting proteins known to play a role in cell migration were paired with 

these cell motility assays. Treatment with CK-0944636, Y-27632 or Wiskostatin to 

target Arp2/3, ROCK and N-WASP, respectively was shown to increase cell motility 

in PC-3 pEF6, W1R2 and W3R1 cells. The one exception seen was with Wiskostatin 

treatment of WAVE3 knockdown cells which had very little effect on cell motility. It 

is not clear whether the similar cell motility trend demonstrated in all the cells treated 

with CK-0944636, Y-27632 or Wiskostatin is indeed a true result of the inhibitors 

used or whether the Cytodex bead assay is suitable for this application. Despite an 

overall increase in cell motility observed, as Figures 4.6, 5.7 and 6.7 show, the error 

bars representing standard error of the mean show a relatively large spread of data. 

To validate the data presented here, alternative assays would need to be used 

including wound healing assays and those utilised by different research groups (Teng 

et al, 2013; Zhang et al, 2013). Furthermore, increasing evidence suggests that 

signalling pathways that drive two dimensional (2D) migration differ to those that 
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govern motility in three dimensional (3D) microenvironments; these different modes 

of migration have been demonstrated for the same cell line and were found to be 

dependent on physical properties of the extracellular matrix (Petrie and Yamada, 

2012; Giri et al, 2013 ). Therefore, an analysis of WAVE proteins using a 3D cell 

migration model would simulate the microenvironment faced by metastatic prostate 

cancer cells. 

 

7.4 WAVE1 and 3 co-localisation with other cell motility proteins in PC-3 cells 

Confocal microscopy approaches demonstrated that both WAVE1 and 3 co-localise 

with both ARP 2 and ROCK-I to the boundaries of PC-3 cells as seen in pEF6 

control cells. A distinct reduction of WAVE1 was apparent in WAVE1 knockdown 

cells in both the cell edges and the cytoplasmic areas. Likewise, WAVE3 knockdown 

cells also showed a decrease in WAVE3 protein in PC-3 cells. In parallel, ARP2 and 

ROCK-I was also less distinguishable in both WAVE1 and 3 knockdown cells. 

These findings suggest co-localisation of WAVE1 and 3 with ARP2 and ROCK-I in 

PC-3 cells and in particular to the outermost fringes of the cell which are discernable 

as flat broad sheets extending out from the cell which is a characteristic of 

lamellipodia. The reduced prominence of these cell protrusions following WAVE1 or 

3 knockdown alter the overall morphology of the cell and suggest an important role 

for WAVE1 and 3 in generating such cell formations. 

These findings suggest ARP2 associates closely with WAVE1 and 3 in PC-3 cells, 

particularly to the cell edge. Similarly, WAVE1 and 3 appear to influence the 

localisation of ROCK-I in this cell line. This highlights an important relationship 

between WAVE and Arp2/3 in addition to a relationship between WAVE and ROCK 
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in the PC- 3 cell line. Ultimately, the relationship between ARP3 and ROCK-II with 

WAVE1 and 3 will have to be explored in order to gain a complete picture of the 

relationship between these protein networks and their significance in metastatic 

prostate cancer cells. Co-immunoprecipitation approaches would allow a better 

understanding of the protein relationship between WAVE proteins with ARP and 

ROCK proteins. 

 

7.5 Effects of WAVE1 and 3 knockdown on protein tyrosine phosphorylation 

levels of cell motility related proteins in PC-3 cells 

Protein tyrosine phosphorylation plays an essential role in many cell functions 

including cell proliferation and survival. Protein tyrosine kinases are key regulators 

of tyrosine phosphorylation and their dysregulated expression and/or activity have 

been implicated as a potential contributor to cancer development. Whilst the present 

study did not focus on the expression or activity of particular protein tyrosine 

kinases, levels of tyrosine phosphorylation in the proteins of interest were examined 

in response to WAVE1 or 3 knockdown. In doing so, PC-3 cells exhibiting WAVE3 

knockdown were observed to show elevated levels of ARP2 tyrosine 

phosphorylation. Phosphosite database searches revealed five potential sites of 

tyrosine phosphorylation in the ARP2 protein that have been linked to several forms 

of leukaemia and lymphoma (Gu TL et al, 2010; Weber C et al, 2012). However, 

there is no literature that explains the functional significance of tyrosine 

phosphorylation in either ARP2 or 3. 

Additionally, increased ROCK-II tyrosine phosphorylation levels were observed in 

WAVE1 knockdown PC-3 cells. Several tyrosine residues of ROCK-II were 
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identified to be phosphorylated with one site, Y722, being associated with disease 

tissue including those originating from gastric and lung cancer. Functionally, Y722 

phosphorylation of ROCK-II has been linked with its reduced binding to RhoA and 

is important for focal adhesion dynamics; this was demonstrated in a myeloid 

leukemia cell line (Lee and Chang, 2008). Whilst the data here does not signify 

which specific tyrosine residues are targeted, an overall picture of tyrosine 

phosphorylation in ARP2 and ROCK-II is presented for the PC-3 cell line and may 

be of importance in understanding prostate cancer metastasis. 

 

7.6 Future work 

This study has provided an insight into the functional importance of WAVE1 and 3 

and their implications in prostate cancer cell lines derived from metastases. It is clear 

that these proteins govern cell proliferation, invasion and motility through complex 

signalling networks which are not well defined. In vitro experiments coupling PC-3 

cells exhibiting WAVE1 or 3 knockdown with specific protein inhibitors have 

indicated a role for Arp2/3, ROCK-I/II and N-WASP with WAVE1 and 3 in cell 

growth and invasion. However, the relationship between the WAVE proteins with 

these proteins of interest is not clear and requires further work. Immunopreciptation 

approaches exploring phosphorylated tyrosine levels highlighted potential regulatory 

relationships between WAVE3 with ARP2 and WAVE1 with ROCK-II. The 

functional significance of these findings will need to be explored in detail. It is clear 

that further investigation into the relationship between WAVE1 and 3 with ARP2/3, 

ROCK-I/II and N-WASP in prostate cancer metastasis is essential. Future work is 

required in the following areas to clarify some of the question raised by this thesis: 
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1) Growth: In addition to the assay outlined to investigate cell proliferation in PC-3 

cells, pairing this with an apoptosis and cell cycle assay would provide another 

insight into the cell growth effects of WAVE1 and 3. As WAVE3 and LDOC1 have 

been linked in apoptosis, the significance of this mechanism could be explored in 

prostate cancer metastasis. Also, alternative approaches could be employed to 

determine cell number such as the colourimetric based MTT assay to assess viable 

cells. Furthermore, as FAK plays a role in cell migration and its function as a 

molecular scaffold, it is worth exploring its relationship with WAVE especially due 

to the finding that WRC regulates N-WASP through FAK. 

2) Invasion: As WAVE3 is known as a regulator of MMPs and has a role in cell 

invasion, it would be useful to establish whether ARP2/3, ROCK-I/II and N-WASP 

have a role in moderating their activity and whether this mechanism involves either 

WAVE1 or 3.  

3) Motility: A 3D cell migration model to mimic the microenvironment faced by 

prostate cancer cells would provide an insight into signalling pathways that may 

differ to those used by cells during 2D cell migration 

4) Generation of dual WAVE1 and 3 knockdown cell lines to further explore the 

redundancy of two molecules and compare results to those described in this study 

5) As the experiments described in this study were in vitro assays, the use of in vivo 

models would allow a better indication of the therapeutic implications of WAVE1 

and 3 in prostate cancer metastasis. 

6) The use of inhibitors to target ARP2/3, ROCK-I/II and N-WASP in WAVE 

knockdown cells and an investigation into its effects on tyrosine phosphorylation 
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lead to some interesting findings. However, co-immunoprecipitation approaches 

would provide an insight into interactions between these proteins. 

7) Due to the regulatory role of WAVE, N-WASP, ARP2/3 and ROCK in actin 

filament dynamics, confocal techniques and live cell motion tracking imaging would 

be ideal to investigate the effects on cell morphology and motility following WAVE1 

or 3 knockdown and the use of the small protein inhibitors, CK-0944636, Y-27632 or 

Wiskostatin. 
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