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ABSTRACT. 

 

This study examines the potential for increasing natural L-DOPA drug biosynthesis in 

Mucuna pruriens by silencing or “knocking down” expression of putative 

DOPA/tyrosine decarboxylase (Mp-ty/ddc) in situ.  Mp-ty/ddc codes for 

DOPA/tyrosine decarboxylase (Mp-TY/DDC) which converts L-DOPA to dopamine in 

plants.  The hypothesis of the work was that silencing the Mp-ty/ddc gene would 

result in accumulation of L-DOPA in the plant tissues.  This work involved isolation 

and characterisation of 1.73 kb putative full-length ORF of Mp-ty/ddc.  The gene 

showed 74% homology with TY/DDC protein alignments of other plants in the same 

taxa, although no enzyme activity was detected when the gene product was 

heterologously expressed.  In addition, a protocol was developed for Agrobacterium 

mediated transformation of M. pruriens so as to be able to manipulate expression of 

the DOPA genes in situ. The cotyledonary nodal and hypocotyl tip explants 

regenerated shoots on M.S media supplemented with 50 μM BA, 0.5 μM NAA and 

50 mg l-1 kanamycin selection also the nptII transgene was detected by PCR.  The 

Agrobacteria strains GV3101 harbouring a pGREEN vector and carrying an Mp-

ty/ddc antisense were used for the plant transformation experiments.  Further work 

showed that the Mp-ty/ddc gene copy number was 1, the gene expression was 

highest in roots and stems, followed by seeds and was very low in leaves.  On the 

other hand, L-DOPA-content in seeds was 17-fold higher relative to leaves and 15 

fold relative to stems and roots. 
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CHAPTER 1: GENERAL INTRODUCTION. 

 

1.1: Introduction. 

 

L- 3, 4-Dihydroxyphenylalanine (L-DOPA, Figure 1.1) is a naturally occurring amino 

acid produced by animals and has been detected in a few species belong to 44 plant 

families (Kuklin and Konger, 1995).  In plants L-DOPA is produced as an 

allelochemical to deter competition with other plants and as anti-herbivore (Awang et 

al., 1997; Nishihara et al., 2005).  L-DOPA and is a leading drug used in the 

treatment of Parkinson’s disease (Jaunarajs et al., 2011).  

Parkinson’s disease is a clinical condition where the brain loses control over 

movement of motor muscles often leading to body tremors and uncoordinated 

movement of body limbs (Jaunarajs et al., 2011).  The loss of coordination control by 

the brain is caused by degeneration of dopamine production by the Substantia Nigra 

(Figure 1.2) in the basal ganglia (midbrain) and as a consequence disables 

neurotransmission across the synaptic junction between the motor and dopaminergic 

neurons in the brain (Chan et al., 2010).  In the treatment of Parkinson’s disease, L-

DOPA is administered to the patient intravenously or orally and transferred through 

the blood circulatory system to the dopamine deficient cells in the brain where it is 

converted by DOPA decarboxylase to dopamine and used for neurotransmission 

across synapses with motor neurons (Swiedrych et al., 2004).  L-DOPA unlike 

dopamine is capable of crossing the blood brain barrier to enter the dopamine 

deficient cells and is thus used as a drug for treatment of Parkinson’s disease 

(Swiedrych et al., 2004; Jaunarajs et al., 2011). 
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Figure 1.1 chemical structure of L-DOPA.  It is formed by addition of a hydroxyl group at position-6 on 

an L-tyrosine molecule.  

 

 

 

                         

                         

 
 
 

Figure 1.2 Longitudinal section through the human brain.  The Substantia Nigra produces dopamine 

which is then transported to synaptic regions of motor neurons in the cortex region.  This diagram was 

adapted from the website: http://gofree.indigo.ie/~pdpals/pdn1.htm. 

http://gofree.indigo.ie/~pdpals/pdn1.htm
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Besides treatment of Parkinson’s disease, L-DOPA is reported to be effective in the 

management of DOPA-responsive dystonia and that 750 mg/day of L-DOPA 

administration caused complete symptomatic relief and improvement in the patients 

(Rajput et al., 1994).  Figure 1.1 shows the chemical structure of L-DOPA.  

 

 
 
1.2: Sources of L-DOPA. 
 

1.2.1: Industrial synthesis of L-DOPA. 

 

Commercial L-DOPA is largely produced by chemical synthesis as described in the 

method by Knowles et al., (1977).  Other sources produce smaller quantities of the 

L-DOPA possibly due to low enzymatic protein production levels than the target of 10 

mg l-1 required for sustainable commercial scale biosynthesis to meet the desired 

profit margins (Xu et al., 2011).  The initial steps for large scale chemical synthesis of 

L-DOPA using the method described by Knowles et al., (1977) involve a reaction 

between precursors; 3-alkoxy-4-hydroxybenzaldehyde (derived from natural vanillin) 

and acetylglycine in the presence of sodium acetate to form 2-methyl-4-(3'-alkoxy-4'-

acetoxybenzal)-5-oxazolone (Figure 1.3).  
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Figure 1.3 Synthesis of 2-methyl-4-(3'-alkoxy-4'-acetoxybenzal)-5-oxazolone by catalytic 

condensation of precursors 3-alkoxy-4-hydroxybenzaldehyde (derived from natural vanillin) and 

acetylglycine.  R denotes an alkyl group of 1 - 3 carbon atoms (Diagram adapted from 

http://www.google.com/patents/US4005127 with slight modification). 

 

The resulting 2-methyl-4-(3'-alkoxy-4'-acetoxybenzal)-5-oxazolone is then subjected 

to mild hydrolysis (Figure 1.4) to obtain α-acetamido-4-hydroxy-3-alkoxy-cinnamic 

acid acetate.  The acetyl group in the 4-position on the benzal group facilitates 

recovery of the L-enantiomer hence should not be lost during hydrolysis (Knowles et 

al., 1977). 

 

 

 

Figure 1.4 Synthesis of intermediate product α-acetamido-4-hydroxy-3-alkoxy-cinnamic acid acetate 

by hydrolysis.  R denotes an alkyl group of 1 - 3 carbon atoms.  (Diagram adapted from 

http://www.google.com/patents/US4005127 with slight modification). 

http://www.google.com/patents/US4005127
http://www.google.com/patents/US4005127
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α-acetamido-4-hydroxy-3-alkoxy-cinnamic acid acetate is then converted to L-N-

acetyl-3-(4-hydroxy-3-alkoxyphenyl)-alanine acetate (major product) and the D 

enantiomer (minor product) by catalytic asymmetric hydrogenation (Figure 1.5).  

 

 

 

 

Figure 1.5 Synthesis of N-acetyl-3-(4-hydroxy-3-alkoxyphenyl)-alanine acetate by catalytic 

hydrogenation of α-acetamido-4-hydroxy-3-alkoxy-cinnamic acid acetate.  R denotes an alkyl group 

of 1 - 3 carbon atoms.  (Diagram adapted from http://www.google.com/patents/US4005127 with slight 

modification). 

 

 

The L enantiomer of N-actetyl-3-(4-hydroxy-3-alkoxyphenyl)-alanine acetate is 

purified from the racemic mixture by crystallisation (Figure1.6).  Using this method 

the purified product contained 98% L and 2% D enantiomer (Knowles et al., 1977).   

 

 



24 
 

 

 

Figure 1.6 Purification of L enantiomorph of N-actetyl-3-(4-hydroxy-3-alkoxyphenyl)-alanine acetate 

from the mixture containing the D enantiomorph by crystallisation.  R denotes an alkyl group of 1 - 3 

carbon atoms.  (Diagram adapted from http://www.google.com/patents/US4005127 with slight 

modification). 

 

The L enantiomer is hydrolysed to remove acetyl groups to form L-3-alkoxy-tyrosine 

or by strong hydrolysis of the L enantiomorph wherein the alkyl group at position-3 

on the phenyl ring is also removed resulting in formation of L-DOPA (Figure 1.6). 

 

 

 

Figure 1.6 Hydrolysis of the N-actetyl-3-(4-hydroxy-3-alkoxyphenyl)-alanine acetate-L to L-3-alkoxy-

tyrosine and L-DOPA.  (Diagram adapted from http://www.google.com/patents/US4005127 with slight 

modification). 

http://www.google.com/patents/US4005127
http://www.google.com/patents/US4005127


25 
 

1.2.2: Natural sources of L-DOPA. 
 

The natural sources of L-DOPA are diverse (See Table 1.1) (Facchini and De Luca, 

1994; Patil et al., 2013).  L-DOPA is postulated to be produced and in low 

concentration by about 1000 plant species belonging to the 135 taxonomic families 

which produce benzylisoquinoline alkaloids (Facchini, 2001).  In plants, L-DOPA is 

converted to dopamine, itself a distant precursor for morphine and 

benzylisoquinoline alkaloids (Facchini, 2001).  In animals on the other hand L-DOPA 

and dopamine are precursors for the catecholamines; norepinephrine and 

epinephrine which control the sympathetic and parasympathetic homeostatic 

responses (Cheng et al., 1996).   

Natural sources produce pure L-DOPA or other pharmaceutical products but often in 

smaller quantities than required for commercial extraction.  In light of the above, 

natural products provide chemical models and formulae which are then used for 

large scale chemical synthesis (Farnsworth, 1985; Xu et al., 2011).   

However, total elimination of minor impurities from synthetic products is almost 

unattainable and chemically synthesised L-DOPA is reported not to exceed 98% 

purity and is contaminated with D-DOPA which could not be removed by 

downstream processing as discussed in Section 1.2.2 below.  These minor 

impurities are postulated to account for some of the side effects experienced by 

patients in the long term (Daughton and Ruhoy, 2013; Schuster, et al., 2005).  In 

light of the above, efforts have been made to improve the quantity of L-DOPA and 

other products produced by natural sources.  The approaches include; heterologous 

expression of product biosynthesis pathway genes by using bacteria or yeast cells 
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and manipulation of the metabolic pathway genes in situ to create transgenics which 

produce higher L-DOPA levels among other strategies as further discussed in 

Section 1.5 below.    

Table 1.0 shows the quantity of L-DOPA produced by different natural sources (This 

table was adapted with modification from Patil et al., 2013). 

 

Natural sources  Yield of L-DOPA 

Enzymatic synthesis  

E. intermedia cells (polyacrylamide gels) 5.4 g·l−1 

E. intermedia cells (carrageenan gel)  7.8 g·l−1 

Mushroom tyrosinase (Nylon 66)  0.143 g.l-1 

Chitosan flakes  

Non optimized batch reaction  44.86 mg·l−1·h−1 

Optimized batch reaction  54 mg·l−1·h−1 

Mushroom tyrosinase (zeolite) 36 mg·l−1·h−1 

Cu-alginate  4.5 mg·l−1·h−1 

Fungi   

Aspergillus oryzae (mutant)  1.28 mg/ml 

Aspergillus oryzae  1.28 mg/ml 

Aspergillus oryzae UV7 (double mutant)  1.28 mg ml 

Aspergillus oryzae  1.86 mg/ml 

Aspergillus oryzae ME2 (Illite) 1.686 mg/ml 

Aspergillus oryzae ME2 (Celite)  0.428 mg/ml 

Aspergillus oryzae IIB-6  1.34 mg/ml 

Acremonium retilum  0.89 mg/ml 

Aspergillus niger  0.365 mg/ml 

Yeast  

Yarrowia lipolytica NRRL-143  2.96 mg/ml  

Egyptian halophilic black yeast  66 ug/ml 
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Bacteria   

Vibrio tyrosinaticus 4 mg/ml 

Pseudomonas melanogenum  8 mg/ml  

E. coli W(ATCC 11105) (p-hydroxyphenyl 

acetate 3-hydroxylase)  

48 mM in reaction mixture 

Bacillus sp. JPJ  0.497 mg/ml  

Recombinant Erwinia herbicola cells 

strain AJ2985  

15 g/l/h 

Brevundimonas sp. SGJ  3.81 mg/ml  

Brevundimonas sp. SGJ 3.361 mg/ml 

Plants   

Mucuna atterrima  4.5% 

Vicia faba (Fava bean)  3.4 mg/g Dry weight  

Stizolobium hassjoo  2 g/l 

Mucuna pruriens  3.54% Dry weight  

Mucuna pruriens var utilis (velvet bean)  6.36% Weight by weight  

Portulaca grandiflora  48.8 mg/l/h  

Mucuna monosperma  5.48% Dry weight  

 

In the table above, the range for L-DOPA production by enzymatic synthesis was 

reported to be 0.14 to 7.8 g l-1 while that for batch reactions was 44 to 54 mg l-1 h-1.  

On the other hand, L-DOPA production by fungi ranged from 0.36 to 1.67 mg l-1, 

while that in plants ranged from 3.5 to 5.4% of total dry weight (DW).  The maximum 

L-DOPA production by from bacterial cell cultures was 48 mM per reaction mixture. 

Among the natural sources of L-DOPA, Mucuna pruriens was selected for this work 

towards optimization of L-DOPA biosynthesis for commercial extraction because it is 

one of the few plant species which produce fairly high quantities of L-DOPA (5.4% 

DW) and 6.8% weight by weight (Wichers et al., 1994).   
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1.2.3: A brief account of Mucuna pruriens – a potential bio-
factory for L-DOPA. 

 

M. pruriens is a diploid (2n= 22), herbaceous tropical plant originally from Asia (India 

and China) (Duke, 1981; Adepoju and Odubena, 2009).  The common English 

names of Mucuna are cowitch, cowhage and velvet bean.  According to the 

Integrated Taxonomic Information System (ITIS, serial number 26797), Mucuna 

pruriens is classified under kingdom- Plantae, Super division-Spermatophyta (seed 

plant), division-Magnoliophyta (flowering plant), class-Magnoliopsida (dicot), order-

Fabales, family-Fabaceae (pea family), sub-family-Faboideae, tribe-Phaseoleae, 

genus-Mucuna and species-Mucuna pruriens L.  The plants were reported to grow 

on moist soils, flower in short-day photoperiods under natural conditions with 

vernalisation as a pre-requisite for flowering (Duke, 1981).  The process is stimulated 

by cooler night temperatures below 21˚C (Hartkamp et al., 2002).  The vine cultivar 

grows up to 15 metres long and flowers after 5 months while the non-vine cultivars 

have a life-cycle ranging from 100 to 300 days (Duke, 1981).  Seed supply 

laboratories market different cultivars of M. pruriens under brand names which 

describe the seed’s physical and growth properties such as the “90-day”, “Bush 

echo”, “Bishop black”, “Tropical”, “Early maturing” and the “vine” cultivars.  The “90 

day” non-vine cultivar of M. pruriens (Figure 1.7) adapted better to growth in the 

greenhouse and was thus selected for detailed study in this work.  

The major chemical components of economic interest produced by M. pruriens 

include proteins-27%, L-DOPA, hallucinogenic tryptamines, phenols and tannins 

(Ravindran and Ravindran, 1988; Awang et al., 1997).  Manyam et al. (1995) 

reported the common uses of Mucuna as a food with large protein reserves, an anti-

Parkinson’s drug, an aphrodisiac, a mental alertness enhancer, an anti-diabetic, and 
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a beverage used to make “South American Nescafe” (Ravindran and Ravindran, 

1988), while Burkill et al. (1966) reported that M. pruriens produces fairly high 

quantities of L-DOPA, a leading anti-Parkinson’s drug.  However, although M. 

pruriens is edible, over consumption of the bean causes development of a confused 

state of mind, a side effect associated with L-DOPA.  Once ingested, L-DOPA 

undergoes extensive decarboxylation reactions in the gastro-intestinal tract and liver 

before entering the systemic circulation and the consequent effect of the above 

reactions is a feeling of dizziness (Garzon-Aburbeh et al., 1985; Awang et al., 1997).  

 

 

 

  

 

 

Figure 1.7 shows seed pods Mucuna pruriens (“90 day” cultivar) grown in the greenhouse. 
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1.2.4: Biosynthesis and biochemistry of L-DOPA in M. 
pruriens. 

 

L-tyrosine, is the starting point in the synthesis of L-DOPA (Chattopadhay et al., 

1994).  In plants, L-tyrosine is produced via prephenate, an intermediate in the 

shikimic acid pathway (Figure 1.8), while in mammals, L-tyrosine is synthesized from 

phenylalanine (phe) by the action of the monooxygenase phenylalanine hydroxylase 

(Swiedrych et al., 2004).  In plants, L-tyrosine is converted to L-DOPA by tyrosine 

hydroxylase and in turn L-DOPA is converted to dopamine by DOPA/tyrosine 

decarboxylase (Facchini, 2001) (Figure 1.9).  
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Figure 1.8 Schematic diagrams for the biosynthesis of L-tyrosine in the Shikimic acid pathway in 

plants.  L-tyrosine is a precursor for biosynthesis of L-DOPA.  The diagram was adapted with 

modification from Anderson, (2001).  
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Figure 1.9 Schematic diagram for the L-DOPA biosynthesis from L-tyrosine.  L-tyrosine is 

bioconverted to L-DOPA by tyrosine hydroxylase.  L-DOPA is further bioconverted to dopamine by 

enzymatic action of DOPA decarboxylase in M. pruriens and a few plant species. 

 

 
 
 

Figure 1.10 illustrates that both tyramine and dopamine are intermediate precursors 

for the synthesis of several alkaloids in plants (Facchini, 2001; Taiz and Zeiger, 

2006). 
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Figure 1.10 Conversion of L-tyrosine to tyramine by action of tyrosine decarboxylase.  L-DOPA and 

tyramine are intermediate precursors for the synthesis of bisbenzylisoquinoline alkaloids which are of 

high pharmacological value.  The diagram was adapted with modifications from Facchini, (2001). 

 

 

In some plants such as Musa species and Monostroma fuscum, tyramine can be 

hydroxylated to dopamine (Facchini and De Luca, 1995; Facchini, 2001) (Figure 

1.11). 
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Figure 1.11 Biosynthesis of tyramine from L-tyrosine in plants, the alternate metabolic pathway to 

conversion of L-tyrosine to L-DOPA.   

 

 

1.3: Molecular pharming and Advances in Applied 
Biotechnology. 

 

Molecular pharming refers to the generation transgenic plants which are genetically 

engineered to maximise production of pharmaceutical and industrial proteins 

(Obembe et al., 2011).  Hacker et al., (2009) reported that about 100 human 

therapeutic proteins are on the market and work is on-going to develop over 370 

more.  Molecular approaches which show prospect for high-yield production of L-

DOPA or natural product pharmaceuticals both in situ or heterologously in vitro could 

include; enhancement of gene transcription and translation efficiency by using 

optimised constitutive or inducible promoters, engineering enhancers, activators or 

repressors.  Xu et al., (2011) reported that a hybrid promoter comprised of CaM35S 
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elements and a mannopine synthase promoter of Agrobacterium Ti plasmid 

increased GUS expression by 3 - 5 folds higher when compared to the double 

enhanced CaMV35S promoter.  In another study to enhance promoter efficiency, 

Lee et al., (2006) demonstrated that foreign protein expression in plant cells 

increased by 30 folds when an oxidative stress-inducible peroxidase (SWAP2) 

promoter was used instead the constitutive CaMV35S.  In addition, the use of 5’ 

leader sequences from tobacco etch virus or Alfalfa mosaic virus among others as 

translation elements could enable efficient translation at the 3’end sequence of the 

transgene (Xu et al., 2011).  Other molecular approaches for enhancing yield of 

natural biopharmaceutical product both in vitro and in vivo, include strategies for 

reducing post-translation degradation by for instance co-expressing of protease 

inhibitors with recombinant proteins (Komarnytsky et al., 2006). 

Besides molecular approaches, the yields of natural L-DOPA and other natural 

pharmaceutical products could be enhanced by using M. pruriens cell cultures 

approaches such as; optimisation of culture medium by supplementing with 

hormones, precursors or protein stabilising agents such as polyvinyl pyrrolidone 

(PVP).  Other strategies include; immobilisation of exponential growth stage cells a 

on a porous matrix or alginate which protect the cells from hydrodynamic shear 

(Bodeutsh et al., 2001).  On the other hand, cells cultures used for heterologous 

expression of foreign proteins could also potentially produce harmful effects to the 

cells (Joo et al., 2006).  The a fore mentioned potential harmful effects could 

however be avoided by; using a two-phase aqueous culture system such as 

polyethylene glycol (PEG) and dextran in which cultured cells get immobilised in the 

PEG phase along with substrates and nutrients while the generated recombinant 

proteins collect in the dextrin culture phase (Cabral, 2007).  Alternatively protein 
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binding resins binds to the recombinant protein and protects it from proteolysis.  

James et al., (2002) reported an 8-fold increase in the production mouse HCmAb 

protein upon supplementing the culture medium of N. tabacum cells with protein G 

resin.                                                

However, there is a limit to which biological systems could be manipulated to 

enhance production of natural products such L-DOPA or therapeutical proteins 

besides environmental and related policy matters.  In light of the above, using non 

biological approaches such as improving the engineering designs of bioreactors to 

achieve commercial scale production of natural products or therapeutic proteins.  

Optimising bioreactors to enhance sterile culture environment, improved aeration 

and reduction of shear stress on cells could lead to more efficient natural product 

synthesis (Paul and Ma, 2011; Xu et al., 2011).  A stirred tank bioreactor could for 

instance improve aeration required especially by rapidly growing bacterial cells 

during heterologous expression experiments (Sambrook et al., 1989).  Disposable 

plastic or polyvinyl bioreactors could be used to further reduce risks of contamination 

especially when human pathogens are used in the experiments.  On the other hand 

advanced bioreactors such as fed-batch cultures, perfusion culture, continuous and 

semi-continuous culture bioreactors allow either continuous nutrient enrichment or 

replacement with fresh media at intervals.  As a consequence of constant nutrient 

supply and replacement of old cells with new, the cells production potential is 

maintained at the exponential stage production which could result in increased yield 

of the natural product (Paul and Ma, 2011; Xu et al., 2011).  Besides enhancing 

production of natural products or recombinant proteins, equally important is devising 

an efficient method for recovery and purification of natural products such as L-DOPA 

or recombinant proteins from cultured cells (Sambrook et al., 1989).  In both bacterial 
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and plant cell systems, the target recombinant proteins are either secreted into the 

medium or are retained inside the cells (Sambrook et al., 1989; Xu, et al., 2011).  

Proteins secreted into the media are often get diluted, become unstable and tend to 

require quick purification whereas proteins retained in the cytosol of cells tend to be 

pure, stable and in high concentration (Ma and Paul, 2011; Xu et al., 2011).  

Molecular pharming has consistently shown great potential to emerge as source for 

commercial production pure natural products such as L-DOPA and therapeutical 

proteins by using plant and bacterial cells as bio-factories.  The fact there is a 

growing number of patients who are allergic to some synthetic medical drugs and 

while many drugs have been recalled from the market (Ma and Paul, 2011).  The 

natural product industry on the other hand is increasingly being accepted world-wide 

as an alternative source for natural pharmaceutical products. 

We still depend upon biological sources for a number of secondary metabolites 

including pharmaceuticals (Pezzuto, 1995), over 80% of the approximately 30,000 

known natural products are of plant origin (Balandrin and Klocke, 1988; Fowler and 

Scragg, 1988; Phillipson, 1990).  In 1985, of the 3,500 new chemical structures 

identified, 2,600 came from higher plants.  In addition 75% of the World population 

rely on plants for traditional medicine and 25% of the pharmaceuticals are based on 

plant-derived chemicals (Farnsworth, 1985; Payne et al., 1991).  The chemistry of 

Mucuna pruriens and for most other plants needs to be characterised so as to 

explore the potential new chemical models for novel drugs (Cox and Balick, 1994). 
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1.4: Aim and objectives of the PhD work. 

The aim of my PhD was to develop a protocol for genetic transformation of Mucuna 

pruriens.  Further aim was to determine the effect on L-DOPA biosynthesis in 

different tissues of M. pruriens by manipulating expression of the putative 

DOPA/tyrosine decarboxylase gene (Mp-ty/ddc).  To achieve this, the Mp-ty/ddc 

gene was isolated from M. pruriens.  The protein encoded by Mp-ty/ddc was then 

characterised to determine whether its enzyme properties were similar to those for 

DOPA/tyrosine decarboxylase which is responsible for conversion of L-DOPA to 

dopamine.  My hypothesis was that Mp-ty/ddc codes for the DOPA/tyrosine 

decarboxylase enzyme (TY/DDC) which is responsible for conversion of L-DOPA to 

dopamine in plants.  In light of the above, down regulation or “knock out” of the Mp-

ty/ddc gene disables encoding for TY/DDC and as a consequence could potentially 

lead to accumulation of L-DOPA in tissues of M. pruriens.  
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CHAPTER 2: GENERAL MATERIALS AND 

METHODS. 

 
 
2.1: Plant material growth conditions and harvesting 
of material. 
 
 
2.1.1: Plant material. 

 

Preliminary studies were made on five cultivars of Mucuna pruriens namely; cv. bush 

echo, cv.tropical, cv.early maturing, cv.90 day and cv.vining.  The “90 day” cultivar 

was then selected for use in this work because it showed better growth and flowering 

rates.  M. pruriens seeds were procured from Echo seed bank (USA).  Besides M. 

pruriens, some preliminary studies were conducted on N. tabacum (TN90) provided 

by the University greenhouse.  

 

 

2.1.2: Growth conditions. 

 

M. pruriens is a tropical plant and hence required greenhouse conditions to be grown 

in the U.K.  Seeds were grown in the Cardiff University greenhouse on fine structure 

peat compost with sand at pH 7, relative humidity of 95, vents at 23˚C, temperature 

range of 18 - 25 ˚C and at an average light regime of 16 h photoperiod until seed 

production stage.  The vine cultivar of M. pruriens flowered after 6 months and 

produced seed pods after 6.5 - 7 months.  On the other hand, the “90 day”, “early 

maturing”, “tropical” and “bush echo” cultivars of M. pruriens took 100 - 120 days to 
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flower and produced seed pods after 4.5 - 5 months.  Among the M. pruriens 

cultivars, the “90 day” cultivar had shortest life-cycle of 4.5 months and also had a 

higher growth rate hence it was selected as the study cultivar for my PhD research.  

N. tabacum plants were grown under similar greenhouse conditions as M. pruriens.   

 

 

2.1.3: Harvesting and storage of plant material. 

 

Samples of seeds, leaves, stem and roots were collected from M. pruriens plants at 

14, 28 and 35 day old seed pod stages.  Each tissue sample was collected from 30 

plants, wrapped in aluminium foil and immediately frozen in liquid nitrogen and 

transferred to -80 ˚C until used.  Before use, each sample of tissue was separately 

homogenised under liquid nitrogen to fine powder, using a mortar and pestle.  

Homogenisation of tissues from 30 plants minimised variations among individual 

plants from being overrepresented in the samples used in this work.   

 

 

2.2: Molecular Biology procedures. 

 

2.2.1: Genomic DNA extraction. 
 
 
2.2.1.1: Large scale extraction. 
 
 
  
Genomic DNA was extracted from the five cultivars of M. pruriens by following the 

method described by Dellaporta et al. (1983).  Leaf tissue (2 g) was ground to fine 

powder under liquid nitrogen and then mixed with 15 ml of extraction buffer (500 mM 



41 
 

NaCl, 100 mM Tris HCl - pH 8.0 at 25 ˚C, 50 mM EDTA – pH 8.0 and 10 mM β-

mercaptoethanol) in a 50 ml centrifuge tube.  The tissue was allowed to thaw and 

then vortexed well before 1 ml of 10% (w/v) SDS was added.  The mixture was 

incubated at 65 ˚C for 10 minutes.  Potassium acetate (5 M; 5 µl) was then added 

and the mixture was incubated on ice for 30 minutes.  The mixture was then 

centrifuged at 3,600 xg using a centrifuge (Beckman Coulter Avanti J-E, USA).  The 

supernatant was filtered through a miracloth (Merck4Bisociences) into a fresh tube 

containing 10 ml of isopropanol and mixed well.  The nucleic acids were precipitated 

by incubating the mixture at -20 ˚C for 40 minutes.  The nucleic acid was then 

pelleted by centrifugation at 3,600 X g using a centrifuge (Beckman Coulter Avanti J-

E, USA) for 30 minutes at 4 ˚C.  The supernatant was discarded and the pellet was 

drained for 5 minutes on a tissue.  This was followed by re-suspending the pellet in 

700 µl of 5 X TE (50 mM Tris HCl, 10 mM EDTA, pH 8.0) and transferred to a new 

1.5 ml tube.  RNAse A (20 µl of 10 mg/ml) was added and then allowed to incubate 

at 37˚C for one hour.  Sodium acetate (3 M; 75 µl) was added by flicking and then 

the mixture was centrifuged for 15 minutes at 8,000 X g using a microcentrifuge 

(Biofuge 13, Heraeus Instruments, Germany).  The supernatant was transferred to a 

fresh tube followed by addition of 500 µl isopropanol to precipitate the DNA.  After 5 

minutes of incubation at room temperature, the precipitated DNA was pelleted by 

centrifugation at 8,000 X g for 10 minutes using a microcentrifuge (Biofuge 13, 

Heraeus Instruments, Germany).  The DNA pellet was rinsed with 500 µl of 70% 

ethanol and then centrifuged at 8,000 X g for 3 minutes using a microcentrifuge 

(Biofuge 13, Heraeus Instruments, Germany).  The supernatant was discarded and 

the DNA pellet was air dried. The DNA pellet was re-suspended in sterile distilled 

water (35 µl).   
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2.2.1.2: Small scale crude genomic DNA quick extraction protocol 
for PCR amplification. 
 

 

The small scale crude DNA was extracted by following the method described in the 

Plant genomic DNA extraction kit protocol (Sigma).  A disc was obtained from a leaf 

by using the cap and flange of a 0.5 ml PCR microfuge tube.  Extraction solution (E) 

(40 µl) was added to the tube with the leaf disc.  Using a micro pestle, the leaf disk 

was submerged and stabbed in the tube until the buffer turned green.  The tube 

containing the leaf extract was incubated at 95 ˚C for 10 minutes using a PTC-100 

thermocycler (MJ Research Inc., Waltham, USA).  Dilution buffer (40 µl of D) was 

then added and the tube was flicked (but not vortexed) to break the tissue.  This was 

then followed by centrifugation at 8,000 X g for 1 minute in a microcentrifuge.  1-2 µl 

of the supernatant solution was used for analysis by PCR. 

 

 

 

2.2.2: RNA extraction. 
  

2.2.2.1: Methods of RNA extraction from leaves, stems and roots of 
M. pruriens.  
 
 
Different methods and protocols were found to be suited for RNA extraction from the 

stems, seeds, leaves and roots of M. pruriens owing to the substantial differences in 

their chemical constituents and properties.  M. pruriens leaf RNA was extracted by 

following the method described in the RNeasy plant mini kit protocol (Qiagen, 

Germany).   

For RNA extraction from seeds, stems and roots of M. pruriens, the tissues were 

softened by overnight lyophilisation at -60 ˚C using a lab scale lyophiliser (Liaoning, 
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China) prior to homogenisation in liquid nitrogen using an RNAse free mortar and 

pestle.  Stem and root RNA was extracted by using 0.1% DEPC treated extraction 

solutions and buffers as follows: Tissue from younger stem parts or roots (200 mg) 

were ground in liquid nitrogen to a fine powder using a mortar and pestle and then 

transferred to a 1.5 ml microcentrifuge tube.  RNA extraction buffer (650 µl) 

containing 8 M guanidine-hydrochloride, 20 mM methylethylsulfonate (MES) at pH 7, 

20 mM EDTA and 50 mM ß-mercaptoethanol (added just before use, in a chemical 

fume hood) were added to the tissue powder and the tissue was homogenised by 

vortexing for 2 minutes.  The homogenate was incubated on ice for 5 minutes and 

centrifuged at 8,000 X g for 10 minutes, at 4 ˚C.  To the supernatant, an equal 

volume of a mixture of phenol (pH 4.3), chloroform and isoamylalcohol in a ratio of 

25:24:1 respectively was mixed well under a chemical fume hood, and centrifuged at 

8,000 X g for 10 minutes, at 4 ˚C.  The resultant supernatant was then collected and 

to it, 0.2 volume of 1 M acetic acid, and 0.7 volume absolute ethanol were added.  

The mixture was thoroughly agitated and then incubated for 1 hour at -70 ˚C before 

centrifugation at 8,000 X g for 10 minutes, at 4 ˚C.  The precipitate was washed 

twice by resuspending in 70% ethanol followed by centrifugation at 8,000 X g for 10 

minutes at 4 ˚C to obtain an RNA pellet which was then resuspended in RNAse free 

water (30 µl). 
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2.2.2.2: Extraction of RNA from M. pruriens seeds. 

 

A different RNA extraction method described by Ding et al. (2007) was used to 

extract RNA successfully from the protein rich seeds of M. pruriens.  This RNA 

extraction method was also used to extract good quality RNA from leaves, stems 

and roots of M. pruriens. The RNA extraction procedure was as follows:  

M. pruriens seed or plant tissues (0.5 g) were frozen in liquid nitrogen and ground 

into a fine powder that was immediately mixed with 400 µl of extraction buffer (5 M 

NaCl and 100 mM Tris-HCl [pH 8.0]), 100 µl of 2-mercaptoethanol), and 1 ml of Tris-

saturated phenol/chloroform (1:1; pH 8.0) in 2-ml polyethylene tubes (Anachem, UK).  

After vortexing and incubating at RT for 1 minute, the mixture was centrifuged at 

8000 X g for 1 minute using a microcentrifuge (Biofuge 13, Heraeus Instruments, 

Germany).  The aqueous phase was transferred to a new 2-ml tube.  Then 25 µl of 

10% polyvinylpyrrolidone (PVP, Sigma P-5288) solution, 25 µl of 5% N-lauroyl-

sarcosine (Sigma L-5125), 300 µl of 3 M sodium acetate (pH 4.8), and 1 ml of water-

saturated phenol/chloroform (1:1) were added and vortexed several times.  The 

mixture was then centrifuged for 5 minutes at 8,000 X g using a microcentrifuge 

(Biofuge 13, Heraeus Instruments, Germany) and the aqueous phase was 

transferred to a 1.5 ml tube (Anachem, UK), followed by the addition of 200 µl 

ethanol and 100 µl silica suspension (1 g/ml) (Sigma-S5631) to absorb the RNA.  

The mixture was vortexed and incubated for 1 minute at room temperature and then 

centrifuged at 8,000 X g for 15 seconds using a microcentrifuge (Biofuge 13, 

Heraeus Instruments, Germany) to precipitate the silica particles.  The pellet was 

washed with 70% ethanol twice to completely remove the detergent and salts from 

the silica particles.  The pellet was collected by centrifugation at 8,000 X g for 15 

seconds using a microcentrifuge (Biofuge 13, Heraeus Instruments, Germany) and 
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dried by draining the tube in a laminar flow hood to remove residual ethanol.  The 

RNA was eluted by resuspending the silica pellet in 35 µl of sterile water, incubating 

at room temperature for 2 minutes and was then centrifuged at 8,000 X g for 5 

minutes.  The supernatant (RNA) was transferred to a new tube without disturbing 

the silica pellet. 

 

The silica suspension (1 g/ml) used in the RNA extraction protocol above was 

prepared as follows: 6 g silica (Sigma S-5631) was resuspended in 50 ml of 0.1% 

DEPC treated sterile water, vortexed and allowed to settle for 24 hours.  The 

supernatant containing very fine particles was aspirated and discarded.  This 

process guaranteed that the silica particles used in the purification step were of the 

correct size (1 - 5 µm) that could be completely recovered by centrifugation.  The 

pellet was then resuspended in 6 ml of 0.1 M HCl, aliquoted and stored in darkness 

at 4 ˚C. 

 

 

2.2.3: DNAse treatment. 
 
 
In order to degrade any genomic DNA “contamination” in the RNA samples, a 

DNAse treatment / digestion reaction was set up as follows: 10 µg RNA, 10 µl of 10X 

DNAse 1 buffer (New England Biolabs, Hertfordshire, UK), 2 units of DNAse 1 (New 

England Biolabs, Hertfordshire, UK) and sterile distilled water up to a total volume of 

100 µl.  The samples were incubated at 37 ˚C for 30 minutes.  Following the 

incubation, 1 µl of 0.5 M EDTA (Sigma, USA) was added to terminate the reaction.  

Finally the samples were incubated at 75 ˚C for 10 minutes to inactivate the DNAse 

1.  
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2.2.4: cDNA synthesis. 
 
 
cDNA was synthesised as follows: 2 µg RNA and Oligo(dT)15 (500 µg µl-1) (Promega, 

Madison, WI, USA) were made to a total volume of 20 µl with sterile distilled water.  

The samples were incubated at 70 ˚C for 10 minutes and then cooled at 4 ˚C for 10 

minutes.  The samples were mixed with 6 µl of 10 X M-MLV RT buffer (Promega, 

Madison, WI, USA), 2 µl of 0.1 M Dithiothreitol (DTT) and 1 µl of 10 mM dNTPs 

(Promega, Madison, WI, USA), and then incubated at 42 ˚C for 2 minutes.  Finally, 1 

µl of M-MLV reverse transcriptase (Promega, Madison, WI, USA) was added and the 

reaction incubated at 42 ˚C for 50 minutes followed by inactivation at 70 ˚C for 15 

minutes. 

 

 

2.2.5: Designing primers. 
 
2.2.5.1: Gene specific primers. 
 
 
 
DNA oligo primers based on the partially sequenced Mp-ty/ddc gene sequence 

portion on the NCBI data bank were designed using the primer 3 software program 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi).  To enhance primer-PCR 

template annealing efficiency during PCR reactions, primers were further screened 

using the Oligo analyzer program: 

 (http://eu.idtdna.com/analyzer/applications/oligoanalyzer/).  Primer sequences which 

formed dimers or hairpin-like structures during screening analysis were discarded or 

modified.  Desalted DNA oligos of scale 0.025 µmol, were synthesised at Sigma 

(USA).    

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://eu.idtdna.com/analyzer/applications/oligoanalyzer/
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2.2.5.2: Degenerate primers. 
 

 

To isolate L-DOPA and dopamine biosynthesis and metabolic pathway genes of M. 

pruriens whose sequence information was not available on the NCBI data bank 

(www.ncbi.nlm.nih.gov), degenerate primers were designed based on sequence 

homology.  The protein sequences coding for similar genes to the above but in other 

plant species which are taxonomically related to M. pruriens were aligned using the 

genedoc software program (http://www.nrbsc.org/gfx/genedoc/).  Degenerate 

primers were designed from the conserved protein sequence regions by reverse 

translation to nucleotide sequence, allowing a degeneracy of 2 - 3 bases at different 

positions.  Desalted DNA oligos of scale 0.025 µmol, were synthesised at Sigma 

(USA). 

 

 

2.2.6: Polymerase Chain Reaction (PCR). 
 
 
PCR amplifications were carried out in a 25 µl volume by following the procedure 

described in the GoTaq DNA Polymerase kit protocol (Promega, USA).  The PCR 

contained: 5 µl of 5 X GoTaq reaction buffer, 0.5 µl of dNTP mix (10 mM each), 

upstream and downstream primer (each 0.25 µM), 1.25 units of GoTaq polymerase, 

10 ng DNA and the volume was made up to 25 µl using sterile distilled water.  A 

negative control reaction was set up as described above but using sterile distilled 

water as a template for PCR amplification.  This helps to verify and ensure that the 

PCR reagents are not contaminated.  General thermal cycling was performed using 

a PTC-100 thermocycler (MJ Research Inc., Waltham, USA) and the amplification 

http://www.ncbi.nlm.nih.gov/
http://www.nrbsc.org/gfx/genedoc/
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was conducted following the thermal profile: Initial denaturation at 94 ˚C for 2 

minutes; 34 - 40 cycles (94 ˚C, 30 sec; primer annealing, Tm (˚C), 30 sec; 72 ˚C, 1 

min kb-1) and a final extension at 72 ˚C for 10 minutes.   

 

 

2.2.7: Agarose gel electrophoresis. 

 

For a 1% agarose gel, 1 g of agarose (Bioline, UK), was mixed into a flask with 100 

ml of 0.5 X TBE (0.45 M Tris base, 0.44 M Boric acid, 20 ml of 0.5 M EDTA-pH 8.0 

made up to 1 litre  using sterile water) (Bochringer Mannheim GmbH, Germany).  

The solution was heated in a microwave oven until the agarose was completely 

dissolved.  Afterwards, the solution was allowed to cool at room temperature until it 

reached 50 – 55 ˚C and then 5 µl of ethidium bromide (10 mg/ml) per 100 ml of 

agarose solution was added and gently mixed.  The solution was poured into a gel 

tray and an appropriate number of combs were inserted.  The gel was allowed to set 

for 15 - 30 minutes at room temperature and then placed in an electrophoresis 

chamber (Power Pac Basic, Bio-Rad, Singapore) covered with 0.5 X TBE. 

 

DNA or RNA  samples usually in a final volume of 10 µl that were analysed by gel 

electrophoresis were mixed with 2 µl of 6 X loading buffer (50 mM Tris HCl pH 7.6, 

60% glycerol and bromophenol blue) and then loaded in the wells of the gel.  

Electrophoresis was carried out at 100 V for 30 minutes or until an optimum 

separation of the bands was observed.  DNA ladder 1 kb (Invitrogen, USA) 250 – 

500 ng was used as size marker for most of the electrophoresis experimental sets. 
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2.2.8: Purification of PCR products using a QIAquick PCR 
Purification Kit. 
 

 

PCR products and other enzymatic reactions were purified to remove enzymes and 

other reagents as follows: 5 volumes of buffer PB (Qiagen, Germany) were added to 

1 volume of the PCR sample and mixed.  The mix was placed in a QIAquick spin 

column with a 2 ml collection tube and centrifuged at room temperature for 1 minute 

at 8,000 X g using a microcentrifuge (Biofuge 13, Heraeus Instruments, Germany).  

The flow-through was discarded and in order to wash the samples, 0.75 ml buffer PE 

(Qiagen, Germany) was added to the QIAquick columns and then centrifuged at 

8,000 X g for 1 minute.  The flow-through was discarded again and the samples 

were centrifuged for an additional 1 minute at 8,000 X g to remove residual wash 

buffer.  The DNA was eluted by placing the QIAquick columns into a sterile 1.5 ml 

microcentrifuge tube and 35 µl of sterile water was added to the column.  Columns 

were centrifuged for 1 minute at 8,000 X g and the eluate containing the purified 

DNA stored at 4 ˚C or -20 ˚C until required.  

 

 

 

2.2.9: Extraction of a DNA band from agarose gels using a 
QIAquick Gel Extraction Kit. 
 

 

Bands of interest were excised from agarose gels using a clean scalpel.  3 volumes 

of buffer QG (Qiagen, Germany) was added to 1 volume of gel (100 mg ~ 100 µl) 

and the samples were incubated at 50 ˚C for 10 minutes or until the gel was 

completely dissolved.  One volume of isopropanol was added and the samples were 
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placed into QIAquick spin columns with a 2 ml collection tube, and then centrifuged 

at room temperature for 1 minute at 8,000 X g using a microcentrifuge (Heraeus 

Instruments Biofuge 13, Germany).  The flow-through was discarded and to wash, 

0.75 ml of buffer PE (Qiagen, Germany) were added to the QIAquick (Qiagen, 

Germany) column followed by centrifugation for 1 minute at 8,000 X g.  The flow-

through was discarded and the columns were centrifuged for an additional 1 minute 

at 8,000 X g to remove residual wash buffer.  Finally, the QIAquick columns were 

placed into a sterile 1.5 ml microcentrifuge tube and DNA was eluted in 35 µl of 

sterile water by centrifuging the column for 1 minute at 8,000 X g. 

 

 

 

2.2.10: Preparation of pZERO-2-T for cloning PCR 
products. 
 
 
pZERO-2-T (Invitrogen, USA) cloning vector was prepared as follows: 10 µg of 

pZERO-2 (Figure 2.1) was digested using 4 units of EcoRV (New BioLabs England, 

Hertfordshire UK) at 37 ˚C for 3 hours.  The EcoRV digestion product was column 

purified as described in Section 2.2.8 with the exception that in the final step, the 

DNA was diluted with 76.5 µl of sterile water instead of 35 µl.  In order to introduce a 

terminal Thymine (T) base at the 5’ and 3’ ends of the EcoRV digested pZERO-2 

vector DNA that enables T-A cloning, Taq polymerase PCR was performed.  The 

PCR reagents were as follows: 76.5 µl of the column purified pZERO-2-T DNA, 1 X 

Go Taq buffer (Promega, USA), 2 mM dTTP (Sigma, USA), 1.5 mM MgCl2 and 1 unit 

Go Taq polymerase (Promega, USA).  Thermal cycling was performed using a PTC-

100 thermocycler (MJ Research Inc., Waltham, USA) and the addition of an 
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overhang-T was conducted following the thermal profile: 94 ˚C for 2 minutes, 94 ˚C 

for 30 seconds and 72 ˚C for 2 hours.  The pZERO-2 plasmid with overhang-T  

(pZERO-2-T) was column purified as described in section 2.2.8 and the 

concentration was determined measuring the UV absorbance at 260 nm using a 

Nanodrop spectrophotometer (LabTech International, USA).  The final plasmid DNA 

concentration was set at 50 ng per microliter of which usually 2 µl was used in the 

cloning of PCR products.   

 

 

 

 

 

Figure 2.1 Diagram of a pZERO-2 plasmid.   
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The pZERO-2 cloning vector contains the ccdB gene fused to the C-terminus of 

LacZα.  Insertion of a DNA fragment disrupts the expression of the lacZα – ccdB 

gene fusion, permitting growth of only positive recombinants. Cells without 

recombinant vector are killed.  The ccdA and ccdB genes are found in the control of 

cell death (ccd) locus on the F plasmid and encode for CcdA and CcdB proteins 

respectively.  CcdB poisons the gyrase-DNA intermediate bond during DNA 

replication and repair leading to DNA destruction and cell (Van Melderen, 2002). 

 

 

2.2.11: Dephosphorylation of DNA 5’-termini.  

 

 

Digested DNA has a 5’ phosphate group which enables ligation.  Dephosphorylation 

of digested DNA using a phosphatase such as the Calf Intestinal Alkaline 

Phosphatase (CIAP) removes the 5’ phosphate thereby preventing self-ligation 

especially of cloning vectors without insert.  The reaction was set up following the 

procedures described in the Fermentas CIAP protocol. Digested DNA (1-20 pmoles) 

was added to 5 µl of 10 X of CIAP buffer in a 1.5 ml tube.  Then 1 unit of CIAP was 

added to the tube and the volume was adjusted to 50 µl using sterile water.  The 

reagents were gently mixed by inverting the tube a 4 - 6 times before incubating at 

37 ˚C for 30 minutes in a Heratherm Incubator (Thermo Scientific, Germany).  The 

reaction was stopped by heating the reaction to 85 ˚C in a hot water bath for 15 min 

or by extracting DNA using phenol/chloroform followed by isopropanol precipitation 

as described in Section 2.2.17. 
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2.2.12: DNA ligation in pZERO-2-T or pGEM-T easy vector. 

 

PCR products were T-A ligated into pZERO-2-T or pGEM-T vector (Promega, 

Madison, WI, USA) in a ratio of 3:1 respectively for cloning using bacterial cells.  The 

ligation reaction was set up as follows: 100 ng pZERO-2-T (Invitrogen, USA) or 25 

ng pGEM-T easy vector (Promega, Madison, WI, USA), 1 µl of 10 X rapid ligation 

buffer (Promega, Madison, WI, USA) and 1 unit of T4 ligase (Promega, Madison, WI, 

USA).  The reaction was mixed and the volume made up to 10 µl with double distilled 

water before incubation at 4 ˚C overnight.   

 

 

2.2.13: Preparation of bacterial competent cells. 

 

Competent cells were prepared for general cloning (E.coliDH5α) (Invitrogen, UK), 

protein expression (E.coli (DE3) BL21b) (Novagen, USA) and Tuner 2 (EMD 

Millipore, USA) as follows: Lysogeny broth (LB medium: 10 g l-1 NaCl; 10 g l-1 

tryptone and 5 g l-1 yeast extract, pH 7.0) supplemented with appropriate selection  

was inoculated with a single bacterial colony.  The bacterial culture was incubated 

overnight at 37˚C with shaking at 225 rpm on a rotor, Incubator Shaker-model G25, 

(Brunswick Scientific Co Inc, USA).  LB medium (50 ml) supplemented with 

appropriate selection was inoculated with 5 ml of overnight culture in a 250 ml Pyrex 

flask.  The bacterial culture was incubated at 37 ˚C with shaking at 225 rpm on a 

rotor shaker until O.D600 of 0.6 was obtained, measured using a UV/VIS 

Spectrophotometer, Sp8-400.  The culture was incubated on ice for 30 minutes and 

was then harvested by centrifugation at 3,000 X g for 3 minutes at 4 ˚C in a 
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Beckman Coulter Avanti J-E centrifuge fitted with a JA-20 rotor, (USA).  The 

supernatant was discarded and the bacterial pellet was resuspended in 1 ml of ice 

cold 20 mM CaCl2.  Aliquots of 100 µl cell suspension were frozen in liquid nitrogen 

and ultimately transferred to -80 ˚C freezer until used for gene cloning as described 

in Section 2.2.13.  

 

 

2.2.14: Transformation of competent cells. 
 
 
Competent bacterial cells were prepared as described in Section 2.2.12.  Competent 

cells (50 µl) were thawed on ice and then mixed with 10 ng (~2 µl) of the plasmid 

vector or DNA ligation reaction in 1.5 ml microcentrifuge tubes.  The tubes were kept 

on ice for 20 minutes, then exposed to 42 ˚C for 45 seconds in a water bath and 

transferred back to ice for 2 minutes.  Liquid LB medium (450 µl) without antibiotics 

was added and the mixture incubated at 37 ˚C for 30 minutes (for Ampicillin resistant 

strains) or 45 minutes (for kanamycin resistant bacterial cells) shaking at 200 rpm.  

The cells (100 µl) were plated onto solid LBA medium (LB; 10 g l-1 agar, pH 7.0) 

supplemented with appropriate antibiotics.  A positive control experiment was 

performed by transformation of competent cells (50 µl) using an intact plasmid DNA 

and were plated under the same conditions as above.  The plates were incubated at 

37 ˚C overnight and then transferred to 4 ˚C.   
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2.2.15: Colony PCR. 

 

Single colonies of bacteria generated in Section 2.2.14 above were inoculated as 

separate individual spots on LBA medium supplemented with the appropriate 

selection (50 µg ml-1 of ampicillin or kanamycin) on a 90 X 16.2 mm Petri dish.  This 

Petri dish (referred to as the “master clone plate”) was incubated at 37 ˚C overnight 

(12 - 16 hours) in a Heratherm Incubator (Thermo Scientific).  PCR was used to 

screen individual colonies to confirm the presence of cloned DNA fragments into the 

plasmid.  Colony PCR was set up as described in Section 2.2.6 but with the 

exception that the template for PCR amplification was a single colony picked from a 

“master clone plate” using a 200 µl pipette tip (Gilson, UK).  The M13 forward (5-

GTAAAACGACGGGCCAGT-3’) and reverse (5’-AACAGCTATGACCATG-3’) 

primers which flank the transgene on the plasmid used for transformation were used 

for the colony PCR.  A few colonies were further screened for successful ligation of 

the transgenes in the plasmid by PCR using a combination of an upstream 

transgene specific primer with a downstream plasmid M13 primer.  PCR 

amplification products were analysed by agarose gel electrophoresis as described in 

Section 2.2.7.  The single colonies on the “master clone plate” which produced the 

correct size PCR product were selected for recovery of the cloned plasmid as 

described in Section 2.2.14. 
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2.2.14: Plasmid DNA purification using QIAprep Spin 
Miniprep Kit. 
 
 
A QIAprep Spin Miniprep Kit protocol (Qiagen, Germany) was used for purification of 

plasmid DNA.  A single colony was used to inoculate 5 ml of liquid LB medium with 

the appropriate antibiotic selection.  The bacterial culture was incubated at 37 ˚C 

overnight with shaking at 225 rpm on a rotor, Incubator shaker-model G25 (New 

Brunswick Scientific Co. Inc, USA).  The bacterial cells were collected by 

centrifugation at 3,000 X g at room temperature (RT) for 5 minutes using a centrifuge 

(Beckman Coulter Avanti J-E, USA).  The bacterial pellet was resuspended in 250 µl 

Buffer P1 (Qiagen, Germany) and transferred to microcentrifuge tube.  Buffer P2 

(250 µl) (Qiagen, Germany) was added and mixed by inverting the tube 4 - 6 times.  

Then 350 µl of Buffer N3 was added and the tubes mixed by inverting 4 - 6 times 

followed by a centrifugation step (8,000 X g for 10 minutes) at room temperature 

using the microcentrifuge.  The supernatant was transferred to a QIAprep spin 

column (Qiagen, Germany) followed by centrifugation for 1 minute (8000 X g) at 

room temperature using a microcentrifuge and the flow through was discarded.  The 

QIAprep spin column was then washed using 0.75 ml Buffer PE (Qiagen, Germany) 

and this was followed by centrifugation at 8,000 X g for 1 minute.  The flow through 

was discarded as before followed by centrifugation at 8,000 X g at room temperature 

for an additional 1 minute to remove residual wash buffer.  To elute plasmid DNA 

from the QIAprep spin column this was placed in a sterile 1.5 ml microcentrifuge 

tube.  Sterile water 35 µl was added to the centre of the column and was let to stand 

for 1 minute at room temperature before centrifugation for 1 minute.  The DNA 

concentration was measured using a Nanodrop, ND-1000 Spectrophotometer, 

(LabTech International, UK).   
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2.2.15: Purification of Nucleic Acids using Phenol-
Chloroform. 
 
 
 

Purification of nucleic acids using the phenol-chloroform method was conducted as 

described by Sambrook et al., (1989) and Dale and Von Schantz, (2003).  The 

nucleic acid was transferred to a polypropylene 2ml tube (Anachem, UK) and an 

equal volume of phenol: chloroform (1:1), pH 8 was added.  The contents were 

mixed until an emulsion formed.  This was followed by centrifugation at 8,000 X g for 

3 minutes at room temperature using a microcentrifuge (Heraeus Instruments 

Biofuge 13, Germany).  The aqueous phase was transferred to a fresh tube.  All the 

phenol-chloroform extraction steps were repeated until no protein was visible at the 

interface of the organic and aqueous phases.  An equal volume of chloroform was 

then added and the contents were mixed until an emulsion formed as before and this 

was followed by centrifugation at 8,000 X g for 3 minutes.  The aqueous phase was 

transferred to a fresh tube.  The nucleic acid was then recovered by precipitation 

using isopropanol as described in Section 2.2.16 or by ethanol precipitation as an 

alternative method described by Sambrook et al., (1989). 

  

 

2.2.16: Purification and concentration of nucleic acids by 
Isopropanol precipitation. 
 

Nucleic acids which were partitioned into the protein free aqueous phase during 

phenol-chloroform extraction as described in Section 2.2.15 contained salts and 

other non-protein impurities.  To obtain purified nucleic acids and with higher 

concentration, isopropanol precipitation was carried out as described by Sambrook 
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et al., (1989) and Dale and Schantz, (2003).  To the nucleic acid extract obtained in 

Section 2.2.17 in the aqueous phase, 0.1 volume of sodium acetate (3 M; pH 4.8) 

(Sigma, USA) was added by flicking.  This was then followed by centrifugation at 

8,000 X g at room temperature for 10 minutes using a microcentrifuge (Biofuge 13, 

Heraeus Instruments, Germany).  The supernatant was transferred to a fresh tube 

and 0.7 volume of isopropanol was added and mixed well.  The reaction mix was 

incubated at room temperature for 5 minutes before centrifugation at 8,000 X g for 

10 minutes to pellet the DNA using a microcentrifuge.  The DNA pellet was rinsed 

thoroughly with 100 - 200 µl of 70 % ethanol.  The pellet was then collected by 

centrifugation at 8,000 X g for 3 minutes.  Finally the DNA pellet was resuspended in 

20 - 35 µl of sterile water.  

 

 

2.2.17: Restriction enzyme digestion of plasmid DNA. 
 

 

Digestion reactions were set up as follows: 1 unit of restriction enzyme(s), 2.5 µl of 

10 X Buffer (NEB)  and 400 ng of plasmid DNA were made up to 25 µl using sterile 

distilled water in a 1.5 ml tube and were incubated at 37 ˚C for 2 h.  

 

 

2.2.18: Analysis of sequence data. 

 

Plasmids were sequenced at an external company (Eurofins MWG Sequencing, 

Germany).  Sequence results were analysed using Vector screen (used to delete 

plasmid vector sequence from that of the transgene clone) and Blast (used to draw 
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protein alignments).  Both Vector screen and Blast software programs are available 

on the NCBI webpage (www.ncbi.nih.gov/BLAST/).  Further analysis of sequences 

was performed using the generunner (http://www.generunner.net/) and Bioedit 

software programs.  For high precision analysis very long sequences (>1 kb) of 

multiple clones, a combination of the 4.8 Sequencher 

(http://sequencher.software.informer.com/4.8/ and Bioedit 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html) software programs were used.    

Sequence alignments were drawn using the genedoc software 

(programhttp://www.nrbsc.org/gfx/genedoc/). 

 

 

 

2.2.19: SDS-PAGE. 

 

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) was used 

for protein analysis (Laemmli).  For protein separation, using a BIORAD Mini-

PROTEAN Tetra Cell unit, 10% SDS-PAGE gels were prepared by mixing 6.6 ml of 

30% acrylamide/bis-acrylamide (Melford Laboratories), 5.2 ml 1 X separation buffer 

(1.5 M Tris-HCl, pH 8.8; 10% SDS), 8.0 ml sterile water, 200 µl of freshly prepared 

10% ammonium persulfate (APS), 8 µl N,N,N,N’-tetramethyl-ethylenediamine 

(TEMED) (Sigma) in a total of 20 ml.  The gel mix was cast between two glass plates 

(Bio-Rad) and let to solidify for about 15 minutes.  Stacking gels containing 1.66 ml 

30% acrylamide/bis-acrylamide, 1.36 ml 1 X stacking buffer (1.0 M Tris-HCl, pH 6.8; 

10% SDS), 6.8 ml sterile water, 0.1 ml 10% APS, 10 µl TEMED were cast on top of 

the separation gel and let to set for about 5 minutes.  At the same time, protein 

samples were mixed with appropriate amount of 2 X protein loading buffer (0.125 M 

http://www.ncbi.nih.gov/BLAST/
http://www.generunner.net/
http://sequencher.software.informer.com/4.8/
http://www.mbio.ncsu.edu/bioedit/bioedit.html
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Tris-HCl, pH 6.8; 4% SDS, 20% glycerol, 0.5 M DDT, 0.004% Bromophenol blue) 

and boiled for 5 minutes, then allowed to cool for 3 minutes before loading on the 

SDS-PAGE gel.  During SDS-PAGE gel electrophoresis, the protein samples were 

size separated in 1 X SDS-PAGE gel electrophoresis buffer (0.025 M Tris-HCl; 0.2 M 

Glycine; 1% SDS) at 120 V for about 2 hours in a Bio-Rad gel system.  Finally, the 

protein bands were visualised by staining the gel with Coomassie Brilliant Blue 

staining solution: 0.25% Coomassie Brilliant Blue R-250 (Sigma); 20% methanol, 

10% glacial acetic acid and sterile water for about 1 hour.  The excess Coomassie 

stain was then destained from the SDS-PAGE gel using destaining solution (10% 

acetic acid; 40% methanol).  The size of protein bands was estimated from the 

protein size marker loaded alongside the samples in a separate well (Bio-Rad).   
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CHAPTER 3: L-DOPA PROFILE IN MUCUNA 

PRURIENS. 

 

3.1: INTRODUCTION. 

 

M. pruriens is a herbaceous plant in the family Leguminosae and is reported to 

produce L-DOPA, dopamine and tyramine naturally (Duke, 1981; Pras, et al., 1993) 

as well as a number of other secondary metabolites.  Besides L-DOPA, M. pruriens 

seeds are reported to contain other alkaloids such as Mucunine, tryptamine, 

prurienine and prurieninine (Awang et al., 1997).  Bell and Nulu (1971) also showed 

that M. pruriens contains 1-methy-3-carboxy-6, 7-hydroxy-1, 2, 3, 4-

tetrahydroisoquinoline and L-3-carboxy-6,7-dihydroxy-1, 2, 3, 4-

tetrahydroisoquinoline in addition to L-DOPA.  Only a few plant species have been 

reported to produce L-DOPA.  These include some species of Mucuna, Vicia faba, 

Papaver somniferum, Baptisia and Lupinus (Huizing, et al., 1985).  However levels of 

L-DOPA are modulated by the presence of enzymes that catabolise L-DOPA to 

dopamine.  There are four pathways for L-DOPA metabolism in living systems and 

the principal pathway is decarboxylation to produce dopamine by enzymatic action of 

aromatic dopa decarboxylase.  The second but less prominent metabolic pathway is 

the methylation of L-DOPA to 3-O-methyldopa by catechol-O-methyltrasferase. 

Other pathways are transamination and oxidation (Muzzi, et al., 2008).  In addition, 

Bell and Nulu (1971) and Saito et al., (1982) reported that besides conversion to 

melanine by polymerisation, L-DOPA and dopamine could serve as early stage 

precursors for the synthesis of tetrahyroisoquinolines in M. pruriens and other plants.   
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L-DOPA has been detected in several organs of the plant.  Reports differ on the level 

of L-DOPA in M. pruriens seeds: Siddhuraju and Becker (2001) reported 4.96% of L-

DOPA with no information on L-DOPA-content in other tissues of the plant provided, 

while Bell and Janzen (1971) reported 5.9 - 6.4% (excluding seed coat which 

represented 15-20% of seed weight).  Wichers, et al., (1993) demonstrated that L-

DOPA-content in leaves, stems and roots of M. pruriens plants drastically decreased 

within 3 weeks after germination (See Table 3.1).  

 

 
Table 3.1 shows L-DOPA content in tissues of germinating M. pruriens (L.) DC f. 
utilis (Wall. ex Wight) Back cv White plants during the first 30 days after germination. 
 

M. pruriens tissue L-DOPA on  

Day-1 (% of DW) 

L-DOPA on  

Day-21 (% of DW) 

L-DOPA on  

Day-30 (% of DW)  

Leaf 9.8 1.0 0.5 

Stem 5.0 2.2 1.8 

Root 9.8 1.8 1.0 

 

 

On the other hand, dopamine was detected in the leaves but not in the stem and 

roots of germinating M. pruriens plants.  The dopamine-content of the leaves of M. 

pruriens was shown to drastically increase to a maximum concentration during the 

first 3 weeks after germination before a sharp decline and a consequent stabilisation 

at a significantly higher concentration than for L-DOPA (Wichers et al., 1993) (See 

Table 3.2).   
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Table 3.2 shows dopamine content in tissues of M. pruriens. 
 
L.) DC f. utilis (Wall. ex Wgh) Back cv White plants g the first 30 days after germinat 

M. pruriens tissue  Dopamine on  

Day-1 (% of DW) 

Dopamine on  

Day-21 (% of DW) 

Dopamine on  

Day-30 (% of DW) 

Leaf 1.8 7.7 4.0 

 

           

In contrast, L-DOPA-content in cell suspension cultures of M. pruriens was 16 - 80 

fold higher than dopamine (Wichers et al., 1993) suggesting that this might be a 

promising route to producing higher concentrations of this compound.  It was also 

reported that addition of 2,4-Dichlorophenoxyacetic acid (2,4-D) to cell suspension 

cultures of M. pruriens induced accumulation of dopamine but caused a decrease in 

L-DOPA levels in addition to inhibition of biomass production (Wichers et al., 1985).  

In order to discern whether the effect of 2,4-D on cell biomass and L-DOPA 

production was not due to salt stress but rather a hormonal response, sodium 

chloride salt was added to M. pruriens cell suspension culture.  Consequently, 

Wichers et al., (1993) reported that addition of sodium chloride at concentrations 

higher than 0.25 mol l-1 to M. pruriens cell suspension cultures, caused a very 

significant increase in the L-DOPA levels besides plasmolysing the cells.  The 

maximum increase in L-DOPA levels in the M. pruriens cell suspension cultures was 

74% and was caused by addition of sodium chlororide at concentration of 0.5 mol l-1.  

Notably, no dopamine could be detected in the plasmolysed cell cultures (Wichers, 

et al., (1993).  The above observation suggested that the lowering of L-DOPA 

concentration and biomass production in cell cultures was not due to salt stress.  In 

an earlier study, Brain (1976) reported high L-DOPA production (15 mg l-1) by M. 

pruriens cotyledonary cell culture grown on M.S suspension medium supplemented  
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with 2.5 mg l-1 2,4-D and 10% coconut milk.  In a later study, Chattopadhyay et al., 

(1994) reported enhancement of L-DOPA production by over 2.5% of dry weight and 

a 14-fold increase in growth rate in two-stage M. pruriens cell suspension cultures 

grown in constant light.  The first-stage was reported to significantly enhance cell 

biomass production and it involved growing cells in M.S supplemented with 2% 

sucrose (M.S.I) but without calcium chloride.  On the other hand the second-stage 

was reported to enhance L-DOPA production and it involved growing cells harvested 

from the first-stage culture in M.S.I medium supplemented with 42.5 mg l-1 KH2PO4 

and 4% sucrose (Chattopadhyay et al., 1994).  The occurrence of L-DOPA and 

dopamine in tissues of M. pruriens and other plants will be the result of either of the 

following two biosynthetic pathways:  1.) the primary metabolite, tyrosine a product 

from the shikimic acid pathway could be ortho-hydroxylated into L-DOPA by tyrosine 

hydroxylase.  L-DOPA was then converted to dopamine by DOPA decarboxylase;  

2.) tyrosine could be decarboxylated into tyramine by tyrosine decarboxylase and 

tyramine ortho-hydroxylated into dopamine by phenoloxidase (Wichers, et al., 1984; 

Facchini, 2001).  However, whereas tyrosine was detected in extracts from leaves 

and in cell cultures of M. pruriens, tyramine was not, suggesting that the first 

pathway may be the main biosynthetic pathway for L-DOPA in M. pruriens (Wichers, 

et al., 1984; Facchini, 2001).   

Chemical analysis of L-DOPA in plants was performed using a non-specific 

calorimetric test in early reports (Maggi and Cometti, 1972; Szent-Kiralyi, 1979).  L-

DOPA was extracted from M. pruriens seeds with hot water, purified by column 

chromatography and quantified using UV spectrophotometry (Daxenbichler et al., 

1972) or using an amino acid analyser (Bell and Janzen, 1971; Prakash and Tewari, 

1999).  A non-aqueous titration for determination of L-DOPA  is used in the British 
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Pharmacopoeia (B.P) and the US Pharmacopoeia (U.S.P), which also describes a 

UV assay (Reynolds, 1989).  These earlier methods were however laborious and 

specific only for L-DOPA detection (Modi et al., 2008).  Reverse-phase high 

performance liquid chromatography (RP-HPLC) provided a comprehensive 

separation and detection of L-DOPA, L-3-carboxy 6,7-dihydroxy-1,2,3,4-tetrahydro-

isoquinoline and 1-methyl-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydro-isoquinoline in 

M. pruriens seeds var utilis (cultivar from Tamil Nadu, India) (Siddhuraju and Becker, 

2001).  

However, different methods for extraction of L-DOPA vary significantly in efficiency 

and hence affect reported L-DOPA levels in the plant extract samples ranging from 

50% as determined by thin layer chromatography after extraction with water and 

sulphurdioxide as an antioxidant to 0.98% following re-crystallisation (Table 3.3) 

(Misra and Wagner, 2007).   

Table 3.3 Percentage recovery of L-DOPA by re-crystallisation from seed extracts of 

M. pruriens (Misra and Wagner, 2007).  

Extraction solvent L-DOPA yield (% crystallised) 

Ethanol/Water (1:1) ascorbic acid as 
antioxidant 

1.78 

Water, sulphurdioxide as anti-oxidant 0.98 

Chloroform (pH 6.6) 4.00 

 

 

Misra and Wagner (2007) demonstrated that the efficiency of extraction of L-DOPA 

and isoquinoline alkaloids from M. pruriens seeds was dependant on the type of 

alcohol.  Methanol was determined to be the most efficient alcohol used in crude 

extraction of L-DOPA (Table 3.4).  
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Table 3.4 shows the efficiency of different alcohols used in the crude extraction of a 

mixture of L-DOPA and isoquinoline alkaloids from M. pruriens seeds (Misra and 

Wagner, 2007). 

Extraction 
solvent 

Yield of L-DOPA and 
alkaloidal components (%) 

TLC identification using 
reference compounds 

n-Butanol 7.6 Amino acids, L-DOPA (minor 
product). 

Ethanol 6.7 Amino acids, L-DOPA, 
isoquinoline alkaloids. 

Methanol 9.7 Amino acids, L-DOPA (major 
product). 

 

 

Siddhuraju and Becker (2001) demonstrated an efficient method for extraction of L-

DOPA from M. pruriens seeds by using hydrochloric acid (0.1 M) as the extraction 

solvent.  Pure L-DOPA was then separated from the tetrahyroisoquinoline alkaloids 

in the extract by HPLC followed by UV detection.  The concentration of pure L-DOPA 

extracted using the method described by Siddhuraju and Becker (2001) from M. 

pruriens seeds was 4.96% of dry weight.  The second highest concentration of pure 

L-DOPA reported  to be extracted from M. pruriens seeds was 4% of dry weight and 

was achieved by using chloroform (pH 6.6) as the extraction solvent (Table 3.3) 

(Misra and Wagner, 2007).  It was observed that the use of different alcohols as 

extraction solvents generated crude L-DOPA hence it was not possible to discern the 

actual dry weight of pure L-DOPA from the data (Table 3.4).  In light of the above, the 

method described by Siddhuraju and Becker (2001) for L-DOPA extraction and 

quantification of L-DOPA using seeds of M. pruriens seems to be among the most 

efficient.  The method was thus used to determine more accurately the L-DOPA-

content in different tissues of M. pruriens in this study. 
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3.1.1: Aims, objectives and approaches used in Chapter 3. 

 

The aims of this chapter was to determine the L-DOPA-content in seeds, leaves, 

stems and roots of M. pruriens “90 day” cultivar.  
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3.2: MATERIALS AND METHODS.  

 

3.2.1: Plant material. 

Seeds of three Mucuna pruriens cultivars:  “90 day”, “early maturing” and “tropical” 

were purchased from Echo seed bank (USA) and were stored at 4 ˚C.   

M. pruriens seeds were grown in the greenhouse as described in Chapter 2 Section 

2.1.2.  Seeds, leaves, stem and roots were collected from 30 plants at 14, 28 and 35 

day old seed pod stages and were stored at -80 ˚C for future use. 

 

3.2.2: Extraction of L-DOPA from M. pruriens. 

L-DOPA and dopamine were extracted from seeds, leaves, stems and roots of M. 

pruriens by following the method described by Siddhuraju and Becker, (2001) with 

modifications as described below.  

Samples of leaf, stem, root and seeds were collected from 30 plants. Leaf, stem and 

root samples were ground to a fine powder under liquid nitrogen using mortar and 

pestle. Seeds were first ground with an electric hand blender (Bosch MSM6300GB 

Hand Blender, 600W) for 30 seconds before manual grinding with mortar and pestle 

as described above.  Powdered samples were stored at – 80 ˚C until used for L-

DOPA/dopamine extraction and analysis. 

The dry weight of M. pruriens leaf, stem, root and seeds was determined by drying 

100 mg fresh weight of powdered samples at 105 ˚C in an oven to a constant weight.  
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The fresh weight equivalent of 70, 140 and 250 mg dry weight of plant tissue 

samples were used initially for extraction of L-DOPA and analysis.  

Powdered samples were placed in glass tubes and to each; 10 ml of 0.1 N formic 

acid was added.  Samples were stirred with a magnetic stirred for 10 minutes at 

room temperature (22 ˚C), homogenized in an ice bath with an Ultra-turrax T25 

homogenizer (20500 min-1) for 30 seconds and subsequently stirred with a magnetic 

stirrer for 2 h at room temperature.  The supernatant was collected by centrifugation 

(3,000 X g, 15 min).  The pellet was re-extracted twice with 0.1 N formic as 

described above, and supernatants of the three extractions were pooled and filtered 

through miracloth (Merck4Biosciences).  The extracts were stored at 2 - 5 ˚C and 

were analysed within 8 h of preparation.   

 

3.3.3: HPLC analysis of M. pruriens extracts. 

3.3.3.1: Preparation of standards. 

Stock solution (5 mM) of L-DOPA was prepared by dissolving 9.9 mg L-DOPA (Sigma 

HPLC grade/98% Pure) in 10 ml of 0.1 N formic acid.  Similarly the stock solutions of 

dopamine (5 mM) and L-tyrosine (5 mM) ware prepared by dissolving 9.5 mg 

dopamine (Sigma, HPLC grade/98% Pure) and 9.7 mg L-tyrosine (Sigma, HPLC 

grade/98% Pure) respectively in 10 ml of 0.1 N formic acid.  The stock solutions 

were kept in darkness at 4 ˚C for 2 days.  Standard solutions for calibration were 

prepared from stocks at 1 mmol/l, 0.2 mmol/l, 0.04 mmol/l and 0.008 mmol/l level by 

dilution with 0.1 N formic acid.   



70 
 

3.3.3.2: Measurement of L-DOPA and dopamine-content by HPLC. 

Analyses were carried out on a Thermo Separation HPLC system consisting of a 

Quaternary gradient pump (P4000, Thermo Finnigan) with photo-diode array 

detection (6000LP, Thermo) and autosampler (A-7200 Model). 10 µl of standard or 

sample were resolved over a 250 X 4.6 mm I.D column Nucleosil C18 (Machery-

Nagel) with guard column at room temperature with a flow rate of 1.2 ml/min in a 

binary gradient system of A = water (975.5 mL): methanol (19.5 mL): phosphoric acid 

(1 mL),  pH 2, B = 70% methanol and the following time program: 100% (A) and 0% 

(B) up to 12 min, next 5 min solvent (B) increase from 0 to 100% with 100 to 0% 

decrease of solvent A, increase A to 100% and decrease B to 0% in the next 5 min, 

and then the column is washed with solvent A alone in the next 15 min to adjust the 

column to the starting conditions (A 100% and B 0.00%).  Isocratic elution was 

performed at room temperature (22 ˚C).  The data generated were integrated for a 

wavelength of 280 nm using Excalibur (Thermo Scientific, Germany).  However, the 

preliminary range finder trial experiments to determine the minimum detection level 

for L-DOPA were performed using RP-HPLC (Waters, Model-2006, UK). 
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3.4: RESULTS. 

3.4.1: Preliminary range finder trial.  

L-DOPA eluted after 3.4 min with an absorption maximum at 280 nm and its 

detection limit was 0.32 mg/l (= 3.2 ng/injection).  The results showed that L-DOPA 

could not be detected in extracts of 28 day old leaf, stem and root M. pruriens 

tissues of less than 100 mg dry weight.  L-DOPA was however detected in extracts 

from M. pruriens seeds of dry weight 70 and 250 mg (Figure 3.1).   

                                  

           Absorbance  

       

Figure 3.1 Chromatograms of M. pruriens seed extracts for the three cultivars under study obtained at 

3.4 minute elution time and absorption spectra of 280 nm using a Reverse phase-HPLC (Waters, UK). 
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Since L-DOPA could not be detected in extracts from 100 mg dry weight of leaf, stem 

and root, 250 mg dry weight was used for further analyses.  In this experiment a 

further analysis was carried out using a Thermo Separation HPLC system (See 

Section 3.3.3.2) to determine the purity of the L-DOPA previously extracted from the 

seed tissue (Figure 3.2 b).  Pure L-DOPA (Sigma) eluted after 9.7 min with an 

absorption maximum at 280 nm (Figure 3.2a). 

 

 

 

                     (a)                                                                                                            (b)                                                                                

 

Figure 3.2 Chromatogram for (a) pure L-DOPA (Sigma, 100 µg/ml) and (b) extract from M. pruriens 

seeds had an absorption spectrum of 280 nm and an elution time of 9.7 minutes upon analysis using 

a Thermo Separation RP-HPLC system.  
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           (c) 

 

Figure 3.2 (c) A single chromatogram with absorption spectra of 280 nm and an elution time of 9.7 

minutes which is characteristic for pure L-DOPA was obtained by analysis of a mixture of pure L-

DOPA (sigma) and extracts from M. pruriens seeds using a Thermo Separation Reverse phase-HPLC 

system (USA).  

 

 

3.4.2: L-DOPA concentrations.  

L-DOPA-content in different parts of M. pruriens at 28 day old (seed pod) stage was 

higher than at the 14 day old stage (See Table 3.1).   
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Table 3.1 L-DOPA concentration in tissues of M. pruriens at 14 and 28 d post 

flowering. 

 

M. pruriens 

tissue 

L-DOPA-content (µg g-1) 

14 d 28 d 

Seed 282.0 581.0 

Leaf  30.5 33.3 

Stem   31.1 37.2 

Root 26.7  37.5 

 

 

In each case, triplicate samples were run on the RP-HPLC and obtained the same 

value.  The L-DOPA-content in seeds obtained from 28 day old seed pods was 580.7 

µg g-1 and about two-fold higher than that in seeds from 14 day old (282.2 µg g-1) 

(Table 3.1).  L-DOPA-content in seeds from 28 day old seed pods (580.7µg g-1) was 

about 17-fold higher than in leaves at 28 day stage (33.3 µg g-1), about 15-fold 

higher than in stems and root tissues at the 28 day stage (Table 3.1).  
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3.5: DISCUSSION. 

 

 L-DOPA is produced by M. pruriens and a few other plant species during secondary 

metabolism (Facchini, 2001; Awang et a., 1997).  Siddhuraju and Becker (2001) 

reported L-DOPA-content of 4.96 g g-1 in M. pruriens seeds of a cultivar obtained 

from Tamil Nadu, India.  The L-DOPA profile analysis here for M. pruriens (90 day 

cultivar) shows the L-DOPA-content in seed tissues (0.58 mg g-1) was 17-fold more 

than that in leaves and 15-fold more than that in stem and root tissues (Table 3.1).  

However, Siddhuraju and Becker, (2001) reported a much higher L-DOPA-content 

(49.6 mg g-1) in seeds of M. pruriens cultivar grown under a natural environmental 

conditions in Tamil Nadu, India.  The finding suggests very significant differences in 

L-DOPA-content among cultivars of M. pruriens.  Similarly, the finding also suggests 

M. pruriens plants grown in their natural environmental conditions had significantly 

higher L-DOPA-content compared to those grown in a greenhouse.  Despite the 

relatively high L-DOPA-content in M. pruriens seeds, they are not a reliable source 

for constant supply of L-DOPA because most M. pruriens cultivars and especially the 

“wild type” took 3-5 months to flower, before producing seeds.  On the other hand 

leaves grow and accumulate biomass within 3 weeks and as thus would be the 

preferred tissue to target for continous large scale extraction of L-DOPA.  The 

challenge however is that the L-DOPA-content in leaves is very low (~33.3 µg g-1) as 

shown in Table 3.1, hence this would be a serious limitation for large scale extraction 

of L-DOPA.  A possible remedy could be extraction of L-DOPA from leaf cell 

suspension cultures instead leaf tissues.  Wichers et al., (1993) reported that leaf 

extracts contained more dopamine than L-DOPA, but in continuously grown M. 

pruriens cell suspension cultures, the L-DOPA-content was 16 - 80 fold higher than 
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dopamine, which could be further increased up to 74% by subjecting the cell 

suspension culture to higher salt stress which plasmolysed the cells (Wichers et al., 

1993).  These findings also  seem to suggest that L-DOPA is stored in cell vacuoles.   

The L-DOPA-content in tissues of M. pruriens plants at 28 day old seed pod stage 

was higher than at 14 day seed pod stage (Table 3.1).  L-DOPA is an alkaloid 

produced by a few plants such as M. pruriens as a secondary metabolite used in 

plant defense mechanism as an allelochemical (Nishihara et al., 2005).  The 

increase of L-DOPA content in leaf, stem and root of M. pruriens between the 14 and 

28 day old seed pod stage is relatively small when compared to that of seeds (Table 

3.1).  Wichers et al., (1993) demonstrated that L-DOPA-content in cells of M. 

pruriens increased with an increase in biomass and this relatively small increase in 

L-DOPA-content in leaf, stem and root tissues is likely to reflect such a response. On 

the other hand the L-DOPA-content in seeds obtained from 28 day old pods was 

two-fold higher than for the 14 day old seed pods of the same plants and 15 - 17 

times higher than in other tissues.  In contrast, the reported L-DOPA-content in 

leaves, stems and roots of germinating M. pruriens seedlings was reported to 

decrease drastically within 3 weeks, however, starting from intially extremely high 

concentrations (9.8%D.W) (Wichers, et al., 1993).  The high L-DOPA concentrations 

would deter herbivory of the tender young leaves due its hallucinogenic properties 

(Facchini, 2001; Taiz and Zeiger, 2006).   
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CHAPTER 4: ISOLATION, CHARACTERISATION 

AND EXPRESSION OF A MUCUNA PRURIENS 

DOPA DECARBOXYLASE LIKE-GENE (Mp-ddc) 

 

4.1:  INTRODUCTION.  
 

M. pruriens is one of the few plant species which produces L-DOPA (Bell and 

Janzen, 1971; Brain, 1976).  To better understand this process with the longer term 

aim of manipulating it, one aim of my work was to isolate the genes which encode 

enzymes in the biosynthesis and metabolism of L-DOPA in M. pruriens.  I focussed 

on two genes: tyrosine hydroxylase (Mp-tyoh) and DOPA/tyrosine decarboxylase 

(Mp-ty/ddc) (Figure 4.1).  These encode enzymes responsible for the synthesis of L-

DOPA from L-tyrosine and its conversion to dopamine respectively (Fitzpatrick, 

1999; Facchini et al., 2000).  In this chapter describes the experiments undertaken to 

try to clone these genes from M. pruriens.   

In animals, tyrosine hydroxylase (TYOH) is the first rate limiting enzyme in the 

biosynthesis of catecholamines (CA), derived from L-DOPA (Hillas and Fitzpatrick, 

1996) and is likely the first and rate limiting step also in plants (Facchini and De Luca 

1995; Kuklin and Conger, 1995) (Figure 4.1).  TYOH is an iron-containing, biopterin-

dependant amino acid hydroxylase which catalyses the hydroxylation of L-tyrosine 

produced via prephenate in the shikimic acid pathway to L-DOPA as shown in Figure 

4.1.  TYOH, phenylalanine hydroxylase and tryptophan hydroxylase belong to a 

family of catalysts that use tetrahydrobiopterin (BH4) and oxygen to hydroxylate 

tyrosine to L-DOPA, phenylalanine to tyrosine and tryptophan to 5-
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hydroxytryptophan (5-HTP) respectively (Fitzpatrick, 1999).  A monophenol 

monooxygenase with TYOH activity was isolated from M. pruriens suspension 

cultures (Wichers at el., 1985) but to date no gene sequences are available from this 

species.  

DOPA/tyrosine decarboxylase (TY/DDC) is responsible for decarboxylation of L-

DOPA to dopamine and the decarboxylation of L-tyrosine to tyramine (Figure 4.1) 

(Facchini et al., 2001).  In plants and other organisms, TY/DDC enzymes are 

dependent on coenzyme pyridoxal 5’-phosphate (PLP) (Facchini and De Luca, 

1994).  DOPA/tyrosine decarboxylase genes have been isolated from a number of 

plant species (Facchini et al., 2001).  
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Figure 4.1 Schematic diagram showing enzymes responsible for bioconversion of L-tyrosine to L-

DOPA or tyramine pathways in plants. 

 

 

The enzymatic action of tyrosine decarboxylase (TYDC) on L-tyrosine to produce 

tyramine is a more conventional pathway especially in plants which do not produce 

L-DOPA (Guillet and De Luca, 2005).  Tyramine is a precursor for the synthesis of 

important isoquinoline alkaloids and a wide range of plant defense system 

compounds (Facchini, 2001).  The chemistry of isoquinoline alkaloids is widely 

appreciated but little is known about the genes and the enzymology regulating the 

isoquinoline biosynthesis in plants (Facchini, 2001). 
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The most studied and characterised plant DOPA/tyrosine decarboxylase (TY/DDC) 

is that for Papaver somniferum (opium poppy), encoded by a gene family (Ps-ty/ddc) 

of 10 to 14 members (Facchini and De Luca, 1994).  The Ps-ty/ddc gene family is 

divided into two subsets (Ps-ty/ddc1 and Ps-ty/ddc2) based on sequence homology 

among members of the gene family and they encode proteins of predicted molar 

mass of 56,983 and 59,323 Daltons (Da) respectively (Facchini and De Luca, 1994). 

In each of the subsets (ty/ddc1 or ty/ddc2) the genes exhibit greater than 90% 

identity but share less than 75% identity between subsets.  A genomic southern 

analysis revealed that the Ps-ty/ddc gene family of P.somniferum comprised of 6-8 

and 4-6 genes in the Ps-ty/ddc1 and Ps-ty/ddc2 subsets respectively (Facchini and 

De Luca, 1994).  In situ RNA hybridisation using Ps-ty/ddc1 and Ps-ty/ddc2 probes 

was used to demonstrate the differential and organ-specific expression of Ps-ty/ddc 

genes in mature plants.  The Ps-ty/ddc1-like genes were highly expressed in roots 

although trace expression levels were detected in stems.  On the other hand, Ps-

ty/ddc2-like genes were substantially more expressed in stems than in roots. In situ 

RNA hybridisation revealed the Ps-ty/ddc gene expression is confined to the 

metaphloem and protoxylem in the vascular bundles.  This is consistent with the 

hypothetical developmental origin of alkaloid rich Latificers (internal secretory cells) 

which grow adjacent to vascular tissues (Facchini and De Luca, 1995).  In addition, 

Ps-ty/ddc2-like transcripts were detected in the calyx a day before anthesis and in 

carpels a day after anthesis.  However, carpels showed low levels of Ps-ty/ddc gene 

expression despite having abundant alkaloid-rich latex suggesting that 

carpels/capsules of P. somniferum are storage sites for the alkaloids while the actual 

biosynthesis occurs in the stems and roots (Facchini and De Luca, 1995).  The Ps-

ty/ddc differential expression and the correspondent accumulation of different 
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alkaloids in specific plant tissues suggest a coordinated regulation of specific 

biosynthetic genes under the influence of developmental programs. 

 

 

4.1.1:  Aims, objectives and approaches used in Chapter 4. 

 

The primary aim of this chapter was to isolate genes related to the rate-limiting 

enzyme steps in the biosynthesis and metabolism of L-DOPA in M. pruriens.  This 

was approached by searching publicly available databases for already annotated 

genes or sequences showing homology to genes already identified in other plants.  

Another approach attempted was to design degenerate PCR primers from 

sequences available in data bases for other plants and use them to amplify gene 

fragments from M. pruriens cDNA.  The further aims were to obtain full length cDNA 

sequences using 3’ and 5’ RACE, to study the copy number of any identified genes 

by Southern blotting and analyse their expression across different M. pruriens 

tissues.  
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4.2:  METHODS AND MATERIALS. 

 

4.2.1:  Plant Materials. 

 

M. pruriens seeds were procured from Echo seed bank (USA) and grown in the 

under greenhouse conditions as described in Chapter 2 Section 2.1.2.  Samples of 

M. pruriens tissues were harvested at 14 and 28 day stages after flowering as 

described in Chapter 2 Section 2.1.3.  

 

 4.2.2:  Extraction of nucleic acids and cDNA synthesis 

 

DNA and RNA were extracted from plant tissues by using the methods described in 

Chapter 2 Sections; 2.2.1 and 2.2.2.2 respectively.  cDNA synthesis was performed 

as described in Chapter 2 Section 2.2.4. 

 

 

4.2.3:  Rapid amplification of cDNA ends.  

  

4.2.3.1:  3’ RACE and Primer design. 

 

The principle of 3’ RACE is to use the characteristic poly-A nucleotide sequence at 

the 3’ terminal of a eukaryotic gene to design a 3’ adapter primer using a DNA oligo 

d(T) primer to which an adapter sequence is added.  This is then used for cDNA 

synthesis.  The oligo d(T) used for 3’ RACE cDNA synthesis here was designed by 

adding 34 bp of G-C rich “adapter” sequence to the 5’ end of the primer sequence: 

dT3RACE-GC  5’-GCGAGCACAAGAATTAATACGACTCACTATAGGT(20)TVN-3’.  The 3’ 
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adapter sequence was used to design two 3’ RACE “nested” reverse primers; R1 

(3RACE): and R2 (3RACE): for nested PCR amplification of the un-sequenced 3’ end of 

the target genes (Table 4.1).  3’ RACE “nested” forward primers F1(3RACE) and 

F2(3RACE) were designed as described in Section 2.2.5.1, from the partial Mp-ty/ddc 

gene (EF101921.1).  Figure 4.2 shows the position of the primers which were used 

in 3’ RACE PCR.  

 

 

              

 

 

 

Figure 4.2 Position of the 3’ RACE primers on the Mp-ty/ddc cDNA. 

 

 

Table 4.1 Primers used in 3’ RACE PCR on the Mp-ty/ddc gene. 

 

 

No. 3’ RACE Primers (10 nm; 1µl) Sequence 

1 3’ RACE adapter primer; 

dT3RACE-GC   

5’GCGAGCACAAGAATTAATACGACTCACTA

TAGGT(20)TVN-3’ 

2 F1 (3RACE):  5’-GCCACAGAGCTCGAAGCCTT-3’  

3 R1 (3RACE): 5’GCGAGCACAGAATTAATACGACT 3’ 

4 F2 (3RACE):  5’-CTCTGGTGAGGGTGGGGTGCTTTTGGG-

3’ 

5 R2 (3RACE):  5’- GAATTAATACGACTCACTATAG-3’ 
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4.2.3.2:  3’ RACE cDNA synthesis and PCR amplification. 

 

Total RNA (2 µg)  was extracted from 4 week (“young”) and 8 week old (“mature”) 

healthy leaf tissues of M. pruriens plants using the method described in Chapter 2 

Section 2.2.2.2.  The “young” and “mature” stages were chosen because some 

genes related to secondary metabolism are switched on or off depending on the 

developmental stage of a plant.  Total RNA was used as a template for cDNA 

synthesis by following the method described in the 3’ RACE manual (Ambion, USA) 

as follows; 2 µg of leaf or seed RNA was then mixed with 1 µl of 3’ adapter primer 

(10 nM) and incubated at 70 ˚C for 2 min and then cooled on ice for 5 min.  The 

following components were then added; 5 X AMV reverse transcriptase (RT) buffer 

(5 µl), dNTPs (10 mM; 2.5 µl) (Sigma, USA), 1 µl of Rnasin Ribonuclease inhibitor 

(Ambion, USA), AMV RT (0.5 units) (Promega, USA) and the total volume was made 

up to 25 µl with RNAse free water and mixed well.  The reaction mixture was 

incubated at 58 ˚C for one hour.  

The (3’ RACE ready) leaf cDNA (1 µl) was used as a template for the 3’ RACE PCR 

was performed using primers F1(3’RACE) and R1(3’RACE) described above (Fig 4.2). The 

PCR product from this reaction (15 ng) was used as a template for a 3’ RACE 

“nested” PCR reaction using the inner primers F2(3’RACE) and R2(3’RACE) (Figure 4.2). 

Both PCRs were carried out as follows; 94 ˚C for 2 min, 34 cycles (94 ˚C for 30 sec, 

55 ˚C for 30 sec, 72 ˚C for 2 min) and 72 ˚C for 10 min (extension time). 
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4.2.3.3:  5’ RACE and Primer design. 
 
 
 

4.2.3.3.1:  Principles of 5’ RACE. 

 

5’ RACE is a PCR based technique used to isolate a full length cDNA from a gene 

whose 5’ terminal sequence data is unknown.  5’ RACE was performed using a BD 

SMARTTM RACE cDNA Amplification kit manual (Clontech, UK).  BD SMART 

technology (Zhu et al., 2001) facilitates the amplification of full length cDNAs by the 

joint action of the BD SMART II TM A Oligonucleotide and the BD PowerScript 

Reverse Transcriptase (RT).  BD PowerScript RT is a variant of MMLV RT that, upon 

reaching the d(C)-rich cDNA tail uses it as an extended template for RT.  BD 

PowerScript RT switches templates from the mRNA molecule to the BD SMART 

oligo, generating a complete cDNA of the original RNA with the additional BD 

SMART sequence at the end (Figure 4.3).  5’-RACE-Ready cDNA was synthesized 

as described for the 3’ RACE using 12 µM of the provided 5’ RACE CDS primer (5’-

CDS;): 5’-T25VN-3’ (V = A,C,G, or T; V = A,G, or C) and 1 µg total RNA using also the 

BD SMART II Oligonucleotide 5’-AAGCAGTGGTATCAACGCAGAGTACGCGGG-3’, 

provided by the kit which anneals to the 5’ C extension and provides the template at 

the 5’ end of the cDNA for subsequent PCR.  The tubes were incubated at 70 ˚C for 

2 minutes followed by cooling on ice for 2 minutes.  The tubes were then briefly spun 

to collect the contents at the bottom before the following were added to each 

reaction: 5 X First-strand buffer (2 µl), DTT (20 mM; 1 µl), dNTP mix (10 Mm; 1 µl), 

BD PowerScript Reverse Transcriptase (1 µl).  The contents of the tubes were mixed 

by gentle pipetting before being collected to the bottom by a brief spin as above.  

The tubes were then incubated at 42 ˚C for 1.5 hours in a hot-lid PTC-100 thermal 

cycler (MJ Research Inc., Waltham, USA).    
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Figure 4.3 Mechanism of BD SMART cDNA syntheses.  First-strand synthesis is primed using a 

modified oligo d(T) primer.  After reverse transcriptase reaches the 5’ end of the mRNA template, it 

adds several d(C) residues.  The BD SMART II A Oligo nucleotide anneals to the cDNA and serves 

as an extended template for BD PowerScript RT. 

 

 

 
 
 

The first-strand reaction product was diluted with 100 µl of Tricine-EDTA buffer 

before the reaction was stopped by denaturing the enzyme at 72 ˚C for 7 minutes.  

The synthesised 5’ RACE-Ready cDNA samples were then stored at -20 ˚C for three 

months. 
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4.2.3.4:  5’ RACE and PCR amplification. 

 

PCR-grade water (34.5 µl), 10 X BD Advantage 2 PCR buffer, 50 X BD Advantage 2 

Polymerase mix (1 unit), dNTP mix (10 mM; 1 µl) and were mixed by vortexing and 

the reaction tubes briefly spun in a microcentrifuge (Biofuge 13, Heraeus 

Instruments, Germany).  The following components were then added; 5’-RACE-

Ready cDNA (2.5 µl), UPM (10 X; 5 µl), Mp-ty/ddc-R1(5’RACE) reverse primer (10 mM; 

1 µl) (Table 4.1).  Two negative control 5’ RACE experiments were set up as 

described above but lacking at least one primer; either the Mp-ty/ddc-R1(5’RACE) 

reverse primer (10 mM; 1 µl) or the UPM (10 X; 5 µl), in each case sterile water 

added to make a total volume of 50 µl.  

 

Touchdown 5’ RACE PCR was performed using a PTC-100 thermal cycler (MJ 

Research Inc., Waltham, USA) as follows: 5 cycles (94 ˚C, 30 seconds; 72 ˚C, 3 

minutes), 5 cycles (94 ˚C, 30 seconds; 70 ˚C, 30 seconds; 72 ˚C, 3 minutes), and 25 

cycles (94 ˚C, 30 seconds; 68 ˚C, 30 seconds; 72 ˚C, 3 minutes), for primers whose 

melting temperature (Tm) was greater than 70 ˚C.  For 5’ RACE gene specific 

primers whose Tm was 65 - 70 ˚C, the thermal cycler program ran was: 25 cycles 

(94 ˚C, 30 seconds; 68 ˚C; 30 seconds; 72 ˚C, 3 minutes).  In cases where the 

primary PCR reaction failed to give a distinct band of interest or produced a smear, a 

“nested” PCR reaction was performed using the NUP and the nested Mp-ty/ddc-

R2RACE primers (Table 4.1) to re-amplify from 2.5 ul of the primary 5’ RACE PCR 

product, using the thermal cycler conditions: 25 cycles (94 ˚C, 30 seconds; 68 ˚C, 30 

seconds and 72 ˚C; 3 minutes).  Other reaction components were as above. 

 



88 
 

The 5’ RACE PCR products were analysed by UV agarose gel electrophoresis as 

described in Section 2.2.7.  The DNA band of interest was purified from the agarose 

gel as described in Section 2.2.9 and was ligated in a pZERO-2-T plasmid 

(Invitrogen, USA) or pGEM-T vector (Promega, USA) as described in Section 2.2.11.  

The transgenic plasmid was transformed and cloned using E.coliDH5α as described 

in Section 2.2.12.  The bacterial cells carrying the transgene clone of interest were 

screened by colony PCR and a single transgenic bacterial colony inoculated on LB 

medium as described in Sections 2.2.13 and 2.2.14 respectively.  The transgenic 

plasmid was recovered from the bacterial culture as described in Section 2.2.14.  

The purified transgenic plasmid was further screened by double digestion using 

restriction enzymes flanking either sides of the cloned 5’ RACE PCR product as 

described in Section 2.2.14.  The size of the released 5’ RACE PCR fragment was 

confirmed by UV agarose gel electrophoresis as described in Section 2.2.7 and 

consequently a plasmid sample (80 ng µl-1) was sequenced at Eurofins MWG 

Sequencing (Germany).  The 5’ RACE sequence result was analysed using the 

generunner software program before it was analysed using Blast against the NCBI 

data bank (www.ncbi.nih.gov/BLAST/) to draw protein alignments.   

 

4.2.4: Southern analysis. 

4.2.4.1:  Principle of Southern blot analysis.  

 

Southern analysis is used for determining the copy number of a specific sequence in 

DNA samples (Sambrook et al., 1989).  It involves restriction digestion of a DNA 

sample, separation of the DNA fragments through an agarose gel by electrophoresis, 

http://www.ncbi.nih.gov/BLAST/


89 
 

and transfer of the separated DNA fragments from the gel to a nylon membrane by 

capillary action.  The DNA is fixed to the nylon membrane and used to perform 

hybridisation assays with sequences of known genes as probes.  The DNA probe 

used in this study was 1.5 kb ORF of Mp-ty/ddc, radioactively labelled with P-32.  The 

copy number of the Mp-ty/ddc gene in the genome was determined by comparing 

the number of hybridisation signals observed to the expected number of gene 

fragments from the known 1.727 kb sequence for a given restriction enzyme.  The 

copy number of a gene was deduced to be one, for a signal to fragment ratio of 1:1, 

and two for the 2:1 ratio.   

 

 

4.2.4.2:  Restriction digestion and Gel electrophoresis. 

 

Genomic DNA used for the Southern analysis was extracted from leaves of M. 

pruriens as described in Section 2.2.1.  The sequenced 1.727 bp of Mp-ty/ddc gene 

restriction map was used to select the appropriate restriction enzymes used for 

genomic DNA digestion and gene copy number analysis.  The Mp-ty/ddc gene has 

one EcoRV restriction site at position 1.5 kb (3’ end of the Mp-ty/ddc ORF) which 

upon digestion and radiolabelled probing, was predicted to produce a single 

hybridisation signal for a single copy of a gene.  HindIII on the other hand has two 

restriction sites at positions; 487 and 520 bp, hence upon digestion and probing 

should produce two visible hybridisation signals and a small invisible signal 

corresponding to the DNA fragments carrying the 487, 520 and the 33 bp Mp-ty/ddc 

gene portions respectively (See Figure 4.3).   
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M. pruriens genomic DNA was digested using HindIII and EcoRV enzymes as shown 

in Figure 4.4.  In addition EcoRI and XhoI which have no restriction sites in the 

known Mp-ty/ddc gene sequence were also used to digest genomic DNA for 

Southern analysis.  The DNA digestion reactions were set up in 1.5 ml Eppendorf 

tubes as follows: DNA (20 µg), using 10X NEB buffer 4 (15 µl) for  EcoRI-HF (10 

units); 10 X NEB buffer 3 (15 µl), 10 X BSA (15 µl) for EcoRV (10 units); 10 X NEB 

buffer 4 (15 µl), for HindIII (10 units) and 10 X Tango buffer 3 (15 µl) (Thermo 

Scientific), 10 X BSA (15 µl) for  XhoI (10 units).  The total volume was made up to 

150 µl with sterile water.  The reactions were gently mixed before incubation at 37 ˚C 

(Heratherm Incubator, Thermo Scientific) overnight for 14 - 16 hours.  The digested 

DNA was extracted by phenol-chloroform DNA purification followed by isopropanol 

precipitation as described in Sections 2.2.17 and 2.2.18 respectively.     
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Figure 4.4 shows 1.727 kb Mp-ty/ddc restriction map shows that HindIII cleaves the gene at restriction 

sites 487 and 520 bp which results in release of three Mp-ty/ddc fragments whereas EcoRV cleaves 

the DNA at position 1.5 kb and releases a single Mp-ty/ddc fragment.  

 

A positive control for the Southern blot analysis was generated by linearisation by 

EcoRI digestion of a pET21b-Mp-ty/ddc plasmid harbouring 1.5 kb Mp-ty/ddc full 

length ORF transgene.  The plasmid DNA was linearised as follows; pET21b-Mp-

ty/ddc DNA (0.6 ng; 5.5 µl), NEB buffer 4 (10 X; 3 µl), EcoRI (1 unit) and the volume 

was made up to 30 µl using sterile water.  The reaction was incubated for 3 hours at 

37 ˚C, after which the plasmid was column purified as described in Chapter 2 

Section 2.2.8.  The linearised plasmid was diluted to a concentration to 5 pg/µl, 

equivalent to a single copy Mp-ty/ddc gene expression (Sambrook et al., 1989).  

About 100 pg of the diluted linearised plasmid DNA was used a positive control on 

the Southern analysis agarose gel electrophoresis as described below. 
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 A 0.8% agarose gel stained with ethidium bromide (0.5 µg ml-1) was submerged in 

2000 ml 1X TAE [40 ml of 50x TAE: Tris base (242 g); acetic acid (100%, 57.1 ml); 

EDTA (0.5 M, 100 ml)], in a gel electrophoresis tank (Power Pac Basic, Bio-Rad, 

Singapore).  The digested DNA fragment samples and the positive control were 

loaded in separate wells and were electrophoresed at 40 volts, 35 mAmps for 16 

hours.  Separated DNA fragments were analysed by UV imaging using a genedoc 

machine (Syngene genedoc, Japan) as described in Section 2.2.7.  The separated 

DNA fragments were then denatured in situ as follows; the agarose gel was 

submerged in depurination solution (0.125 M HCl) and agitated gently for 10 - 20 

minutes.  This was followed by submerging the gel in denaturation buffer [1.5 M 

NaCl (87.66 g); 0.5 M NaOH (20 g); volume made to 1 litre with sterile water], and 

incubated for 30 minutes with gentle agitation.  This alkaline denaturation enhances 

binding of the negatively charged thymine residues of DNA to the positively charged 

amino groups of the hybond nylon membrane (Amersham, UK).  Finally the gel was 

then submerged in neutralisation buffer [1.5 M NaCl (87.66 g); 0.5 M Tris (60.5 g); 

volume made up to 1 litre with sterile water], and was incubated for 30 minutes with 

gentle agitation.   

 

 

4.2.4.3:  Southern blot 

 

The in situ denatured DNA fragment smear was transferred to a hybond nylon 

membrane (+) (Amersham, UK) by capillary blotting based on the principle of 

capillarity.  The nucleic acid transfer buffer [10 X SSC: Tri-sodium citrate (44.115 g); 

NaCl (82.82 g); sterile water added to 1 litre; pH 7.5], was drawn by capillary action 
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from the region of high water potential (plastic tray), to that of low water potential 

(paper towels) as shown in Figure 4.4 below.  During this process, DNA was 

transferred from the gel to the membrane; DNA was bound to the membrane by ion 

exchange interactions between the negative charge of the DNA and the positive 

charge of the membrane.   

A plastic tray was half filled with nucleic acid transfer buffer (10 X SSC).  Then a 

support stand was covered with 3 pieces of Whatman paper (3 MM) wick with no air 

bubbles trapped in between them was assembled in 10 X SSC buffer as shown in 

Figure 4.4.  The treated gel was placed upside down on the wick platform removing 

any air bubbles.  The gel sides were then surrounded with cling film to prevent the 

buffer from being absorbed directly into the paper towels.  A hybond nylon 

membrane of the same size as the gel was pre-soaked in 10 X SSC buffer and then 

placed on top of the gel without trapping any air bubbles.  Three sheets of Whatman 

3 MM paper cut to the size of the gel were saturated in 10 X SSC buffer and then 

placed on top the membrane.  Trapped air bubbles were removed by rolling a glass 

rod over the sheets of Whatman paper.  Finally, a stack of absorbent towels were 

placed on top of the Whatman paper sheets to enhance the capillary pressure and 

upward movement of transfer buffer through the gel.  Pressure was applied evenly to 

the gel by placing a weight of 0.5 kg on top of the absorbent towels.    
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Figure 4.5 Diagrammatic representation of the capillary blotting apparatus used to transfer the DNA 

from the agarose gel to a hybond nylon membrane (Southern blot).  The Filter paper dipped in 10 X 

SSC buffer served as a wick while the paper towels drew the solution upwards through the gel and in 

the process DNA was transferred on to the hybond nylon membrane. 

 

 

DNA was then immobilised on the membrane by UV-crosslinking (100 mJ/cm2) using 

a UV-cross linker (302 nm, 230 V; China).  The membrane was wrapped in 

aluminium foil and stored at -80 ˚C until used.  
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4.2.4.4:  Pre-hybridisation and Probe generation. 

 

The nylon membrane was pre-hybridised by rinsing in Church buffer: Phosphate 

buffer (pH 7.2) [Na2HPO4 (1 M; 171 ml), NaH2PO4 (1 M; 79 ml)]; SDS (10%, 700 ml); 

EDTA (0.5 M; pH 8) as described below.  The membrane was submerged (DNA 

side-up) in Church buffer (50 ml) and was incubated at 65 ˚C with gentle shaking on 

an orbital shaker (Helix 150, Labstrong, USA) for 6 hours.  Pre-hybridisation served 

to block the membrane surface and target DNA from non-specific binding with the 

probe.  After pre-hybridisation, the immobilised DNA fragments on the membrane 

blot were probed using a radioactive labelled Mp-ty/ddc PCR product.  The probe 

was approx. 1.5 kb Mp-ty/ddc full length ORF, previously cloned in the 3.3 kb 

pET21b expression plasmid.  The 1.5 kb probe was thus recovered from the EcoRI 

and XhoI cloning sites on the pET21b plasmid by  restriction digestion using the 

respective enzymes as follows; pET21b-Mp-ty/ddc plasmid (2 µg), NEB buffer 4 

(10X; 5 µl), EcoRI (3 units), XhoI (3 units), BSA (10 X) and the volume was made up 

to 50 µl using sterile water.  The reaction was incubated at 37 ˚C for 4 hours after 

which the DNA fragments were separated by ethidium bromide stained agarose gel 

electrophoresis as described in Chapter 2 Section 2.2.7.  The 1.5 kb Mp-ty/ddc gene 

fragment was gel purified as described in Chapter 2 Section 2.2.9.  The gene 

fragment was then diluted to a probe concentration of 100 ng/ul. 

The 1.5 kb Mp-ty/ddc gene probe was radioactively labelled by primer extension 

based on the procedure described in the Affymetrix primer-It II kit (Affymetrix, USA) 

as follows; DNA (100 ng; 5 µl) and Mp-tyddc primer mix: 5’-

CTAGACCCTGAAGAGTTCAGAAGACAAGG-3’ and 5’-
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CCACGTCCTCGTACGGTTAAGAGACAA-3’ (10 µM each; 2 µl) were denatured in a 

1.5 ml Eppendorf tube at 95 ˚C for 2 minutes, and then allowed to cool for 1 minute.  

The following reagents were then added to the reaction tube; -CTP mix (5 X; 2 µl) 

(Sigma, USA), α32P dCTP (10 µCi/0.37 MBq; 1 µl) (Sigma, USA), Exo (-) Klenow 

fragment of DNA polymerase I (2.5 U; 0.5 µl) (Affymetrix, USA).  The reagents were 

mixed gently by pipetting before incubation at 37 ˚C for 10 minutes.  During this step, 

new Mp-ty/ddc DNA strands were synthesised on a denatured DNA template and in 

the process the radioactive α32PdCTP nucleotides were incorporated in the DNA 

sequence.  The radioactively labelled DNA (probe) generated was diluted to 100 µl 

by adding Tris-EDTA buffer (pH 8).  Unincorporated nucleotides were then removed 

by passing through an autoclaved Sephadex G50 spin column (1 g/15 ml TE) 

(Sigma, USA) as shown in Figure 4.6.  The DNA bound α32PdCTP was collected by 

centrifugation (Centaur 2, UK) at 3,000 X g for 3 minutes while the small molecules 

of unbound α32PdCTP where retained in the column.  Perspex glass (5 mm thick) 

was used to shield the parts of my body exposed to radiation emitted during 

radioactive labelling of the probe, hybridisation and membrane washing.  A Geiger 

Müller counter (Series 900 mini-monitor) was used to detect any radioactive 

spillages.                  

 

                                           

Figure 4.6 Sephadex G50 spin column used to purify the Mp-ty/dcc radioactive labelled probe. 
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The specificity the probe to bind only with target DNA was enhanced by adding 

Salmon sperm (2.5 mg/ml; 250 µl) in Church buffer (10 ml). 

 

 

4.2.4.5:  Hybridisation. 

 

The pre-hybridisation buffer was replaced with 20 ml of fresh Church buffer at 65 ˚C.  

The membrane was then submerged in the buffer (DNA side-up) in a glass tray and 

the probe was then added.  The tray was sealed and incubated at 65 ˚C overnight for 

12 - 14 hours, with gentle shaking. 

 

 

4.2.4.6:  Washing and development. 

 

After hybridisation, the membrane was washed in 2 X Tri-sodium citrate (SSC)/ 

Sodium dodecylsulfate (SDS) (0.1%) low stringency buffer at 60 ˚C for 20 minutes on 

a gently shaking rotor.  This wash eliminates background and unbound probe.  The 

buffer was carefully discarded in a sink, flowing with running water.  The low 

stringency wash was repeated with fresh buffer at 65 ˚C for 15 minutes with gentle 

shaking and the buffer was discarded as described in the previous step.  The 

membrane was then washed with 0.1 X SSC/SDS (0.1%) high stringency buffer at 

65 ˚C for 10 minutes with gentle shaking before discarding the buffer as described 

above.  The high stringency wash eliminates non-specific binding of the probe to 
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DNA and membrane surface.  The membrane was then wrapped in saran wrap and 

exposed to X-ray film (Kodak, USA) in an X-ray cassette (AX-II, China) with 

intensifying screens at -80 ˚C overnight.  The X-ray cassettes were removed from 

the -80 ˚C freezer and left to warm at room temperature then developed using 

developing fluid (Kodak HC-110 developer, Kodak, USA) for 5 minutes with gentle 

agitation.  After rinsing in water it was fixed (Kodak, USA) for 5 minutes with gentle 

agitation, then rinsed in water and dried.   

 

 

4.2.5:  Real-time PCR (qRT-PCR). 

 

Real-time PCR (qRT-PCR) is a standard PCR but with the advantage of detecting 

and quantifying the copies of DNA or cDNA amplicon during each PCR cycle by 

using DNA fluorescence as described in Section 4.2.5.1 below.  qRT-PCR results 

show less variability than standard PCR due to the sensitive fluorescent chemistry 

and elimination of post-PCR detection procedures (Wong and Medrano, 2005; 

Kubista et al., 2006).  Real-time PCR (qRT-PCR) was performed to determine the 

Mp-ty/ddc expression profile across the different tissues relative to endogenous gene 

expression in “wild type” M. pruriens.     
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4.2.5.1:  Principle of Real- time PCR (qRT-PCR).  

 

The intensity of the fluorescence emitted during qRT-PCR correlates to the amount  

of DNA product formed.  Fluorescence exponentially increases as the DNA template 

is amplified until the fluorescence saturates the detector of the real-time PCR 

machine.  The SYBR-based chemistries use fluorophores or fluorescent dyes that 

can intercalate and bind within double-stranded DNA.  The fluorescent signal of 

intercalated dye is several orders of magnitude higher than that of unbound dye.  

SYBR Green is most common fluorophore used in qRT-PCR and was choice my 

study (Figure 4.7). 

 

             

Figure 4.7 SYBR-Green fluorescence-based Real-time PCR.  (1) cDNA or a single strand of 

denatured DNA and free low fluorescent SYBR-Green molecules in the reaction mix exhibit low 

fluorescence.  (2)  Primers anneal to the single stranded DNA template.  SYBR-Green molecules bind 

between the primer and the DNA.  This enhances SYBR-Green fluorescence upon excitation by light. 

(3)  DNA polymerase elongates the template and more SYBR-Green molecules bind to the product 

formed resulting in exponential increase in the fluorescence level. 
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4.2.5.2:  qRT-PCR Primer Design. 

 

4.2.5.2.1:  Designing Degenerate primers for endogenous genes in M. pruriens.  

 

Since there was very limited M. pruriens gene sequence information on NCBI and 

other public data bases, degenerate primers for endogenous genes; Elongation 

factor-1 (EF1 alpha), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

Ubiquitin and 18S ribosomal RNA (18S rRNA) were designed from conserved 

proteins/nucleotide sequence regions for similar genes in species of the family 

Phaseoleae to which M. pruriens belongs as described in Chapter 2 (Section 

2.2.5.2).   

 

 

4.2.5.2.2:  Designing Gene-specific qRT-PCR primers. 

 

Gene-specific primers were then designed to PCR-amplify 120 - 200 bp from a 

sequence region of approximately 600 bp region close to 3’ end of Mp-ty/ddc and for 

M. pruriens endogenous genes; EF1 alpha, GAPDH, Ubiquitin and 18S rRNA as 

described in Chapter 2 Section 2.2.5.1.  This was because sequences closer to the 

3’end of a gene tend be unique for a given gene (Sambrook et al., 1989; Higuchi et 

al, 1992; Wong and Medrano, 2005).  The most endogenously expressed gene of 

the above was used as the reference control in qRT-PCR.   
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Table 4.3 Primers used for qRT-PCR analysis for the Mp-ty/ddc and 18S rRNA.  

 

No. qRT-PCR Primers Sequence 

1 Forward primer, F(18S): (10 mM; 

1.75 µl) 

5’-TGA CGG AGA ATT AGG GTT CG-3’  

2 Reverse primer, R(18S): (10 mM; 

1.75 µl) 

5’-CCT CCA ATG GAT CCT CGT TA-3’  

3 Forward Primer, F(MpqRT): (10 

mM; 1.75 µl) 

5’-TTA GGA TTG CAC CAT CAG CT-3’  

4 Reverse primer, R(MpqRT): (10 

mM; 1.75 µl) 

5’-CTC CTT CAA CCT CAC CAT GA-3’  

 

 

 

4.2.5.3:  Normalisation of endogenous gene expression.  

 

RNA was extracted as described in Section 2.2.2.2, purified from DNA contamination 

by DNAse treatment (Section 2.2.3) and the concentration RNA (1 µl) was 

determined by measuring spectrophometric absorbance at 260 nm using a 

NanoDrop ND-1000 spectrophotometer (LabTech International, UK) by following 

instructions in the instrument’s user manual.  Good quality RNA had a 260/280 ratio 

of approximately 2.  RNA concentration for all samples was made uniform by adding 

appropriate volumes of sterile water calculated using the formulae: Stock 

concentration X Stock volume = Dilution concentration X Dilution volume (Sambrook 

et al., 1989).  RNA (2 µg) was used to synthesise cDNA for each sample as 

described in Section 2.2.4.  qRT-PCR was performed on endogenously expressed 
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genes; EF1 alpha, Ubiquitin, GAPDH and 18S rRNA as described in Section 4.2.6.4 

below.  The number of cycles required for the copies of DNA synthesised by qRT-

PCR to exceed the background threshold (Cycle threshold or Ct) is directly 

proportional to concentration of cDNA or DNA template.  Of these, the 18S rRNA 

gene which had minimum discrepancies in Ct values for all seed, leaf, stem and root 

cDNA samples was used as the endogenous control.  By using the formula; 1 Ct 

value = 2 X RNA concentration (Livak and Schmittgen, 2001), the Ct values for the 

18S rRNA gene expression in all cDNA samples was normalised to a common value 

in the range of 15 - 20 by adjusting the cDNAs with appropriate amount of sterile 

water.  qRT-PCR was then performed on triplicate samples of normalised cDNA 

samples.  The normalisation steps and subsequent qRT-PCR amplification were 

repeated until all samples and their triplicates had the same Ct value (+/- 0.5).  The 

normalised cDNA samples were then used as qRT-PCR templates for gene 

expression analysis of the Mp-ty/ddc gene as described in Section 4.2.6.4 below.  

 

 

4.2.5.4:  Real-time PCR Amplification. 

 

Real-time PCR amplification was performed using thermocycler DNA Engine 2 

Opticon (MJ Research Inc, USA).  Normalised cDNA samples described in Section 

4.2.6.3 above were used as templates for qRT-PCR amplification.  The qRT-PCR 

reaction mixture for was as set up as follows in triplicate samples; 2 X SYBR-Green 

Mix (Thermo Scientific) (12.5 µl), 10 mM; 1.75 µl of each primer, normalised cDNA (5 

µl) and sterile water (4 µl).  qRT-PCR amplification was performed using the 
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following program; 95 ˚C; 15 min, 49 cycles (95 ˚C; 15 sec, 55 ˚C; 30 sec, 72 ˚C; 15 

sec, Plate Read), Melting Curve (55 ˚C – 98 ˚C), read every 0.5 ˚C, hold (1 sec). 

 

 

4.2.5.5:  Analysis of Real-time PCR results.      

            

Results for gene amplification by qRT-PCR were analysed using the Opticon 3 

software program of the real-time PCR machine, DNA Engine 2 Opticon (MJ 

Research Inc, USA).  The threshold for background fluorescence was manually fixed 

at 0.012 which corresponded to the start point of the log phase on the qRT-PCR 

gene amplification curve.  Purity of the qRT-PCR product was determined by melt 

profile analysis.  A pure qRT-PCR product was denoted by; a single and sharp 

amplicon melting-curve peak obtained at a common melting temperature for all qRT-

PCR amplified samples.  The melt profile for qRT-PCR amplicons of endogenously 

expressed 18S rRNA gene of M. pruriens and the Mp-ty/ddc gene of interest, have 

different melting temperatures.  The 18S rRNA and Mp-ty/ddc gene expression in 

seed, leaf, stem and root cDNA samples was determined from their corresponding 

Ct values.  The Ct values were determined by using the Opticon 3 software program 

for the thermocycler, DNA Engine 2 Opticon (MJ Research Inc, USA).  The triplicate 

Ct values for each sample were then imported into the Microsoft Excel program.  The 

Mp-ty/ddc gene expresion, normalised to that of endogenously expressed 18S rRNA 

control as described in Section 4.2.5.3 above, was analysed based on Livak and 

Schmittgen (2001) derived equation below. 

                           Mp-ty/ddc expression = 2-ΔΔCt , 
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Where; ΔΔCt = (Ct(Mp-ty/ddc) – Ct(18S rRNA))Time X – (Ct(Mp-ty/ddc) – Ct(18S rRNA))Time 0.  Time 

X is any time point and Time 0 represents the 1 X expression of Mp-ty/ddc gene 

normalised to 18S rRNA.  The mean Ct values for both Mp-ty/ddc and the 18S rRNA 

were determined at time zero and were used in the gene expression equation above.  

The fold change in the Mp-ty/ddc gene, normalised to 18S rRNA and relative to the 

expression at time zero, was calculated for each sample the gene expression 

equation above.  The mean, standard deviation and standard error were then 

determined from the triplicate samples at each time point.  Using this analysis, the 

value of the mean fold change was expected to be very close to one (20 = 1).   
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4.3: RESULTS.  

 
 

4.3.1: Isolation of a portion of a putative M. pruriens 
DOPA/tyrosine decarboxylase gene DC1. 
 
 

A 493 bp sequence was found in the NCBI databank (EF101921.1) which was 

annotated as “Mucuna pruriens partial DOPA/tyrosine decarboxylase DC1”.  To 

verify this sequence, primers were designed from it (5’-CTCTGGTGAGGGTGGTGG-

3’ and 5’-GTAAGCTGCATCTACGTGGA-3’) as described in Section 2.2.5.1.  High 

molecular weight genomic DNA was extracted from leaf tissues of five cultivars of M. 

pruriens: “90 day”, “Tropical”, “Bush echo”, “Vine”, “Early maturing” following the 

method of Dellaporta et al. (1983) (Figure 4.8 a) as described in Section 2.2.1.  

(Plant material is described in Section 2.1).  The aim was to find out if the Mp-ty/ddc 

gene was present in the genome of different cultivars of M. pruriens and if there were 

clues to different gene family members of Mp-ty/ddc that could be deduced from the 

different cultivars.  The above primers were then used to isolate 406 bp of the Mp-

ty/ddc gene from genomic DNA of M. pruriens by PCR as described in Chapter 2 

Section 2.2.6.  The PCR product was analysed by agarose gel electrophoresis and 

UV imaging as described in Chapter 2 Section 2.2.7.  The DNA was then purified 

from the gel as described in Section 2.2.9 and ligated into pGEM-T vector (Promega, 

USA) as described in Chapter 2 Section 2.2.11.  The ligation was transformed into 

E.coliDH5α bacterial cells as described in Chapter 2 Section 2.2.13 and the 

putatively transformed white colonies that regenerated on selection media were 

screened by colony PCR (as described in Chapter 2 Section 2.2.14).  Plasmid DNA 

was extracted from the transformed bacterial cells as described in Chapter 2 Section 
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2.2.15 followed by restriction digestion using EcoRI and this led to the release the 

cloned 0.4 kb Mp-ty/ddc fragment (Figure 4.8 b).  The 0.4 kb Mp-ty/ddc gene portion 

was isolated from five cultivars of M. pruriens as described in Chapter 2 Section 

2.2.6 and sequenced as described in Chapter 2 Section 2.2.15.  The aim was to find 

out if the Mp-ty/ddc gene was present in the genome of different cultivars of M. 

pruriens and if there were clues to different gene family members of Mp-ty/ddc that 

could be deduced from the different cultivars.    

 

 

     
                     1                    2                       3                                     1           2          3          4 
 

(a)                                                                                     (b) 
 
Figure 4.8 is (a) Agarose gel electrophoresis of gDNA (5 µg) extracted from the “90 day” (lane 1) and 

vining cultivars (lane 2) of M. pruriens. (b) Gel electrophoresis of cloned 0.4 kb Mp-ty/ddc PCR 

products recovered from the pGEMT plasmid vector by EcoRI digestion (lanes 2-4).      
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4.3.2: Sequence results for the cloned 0.4 kb Mp-ty/ddc 
genomic PCR product. 
 
 
 
Sequencing yielded an identical 406 bp for the five cultivars of M. pruriens (Figure 

4.9).  This led to the decision of selecting only one cultivar (the “90 day”) for gene 

isolation.  The “90 day” cultivar had shown better germination and flowering rates in 

the greenhouse.  
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Figure 4.9 Alignment of the 406 bp genomic PCR sequence result to the Mp-ty/ddc (EF101921.1) on 

the NCBI data bank.  The 406 bp genomic PCR sequence result for the “Bush Echo” (B.E), “Tropical” 

(TRP), “Vine”, “90 day” and “Early maturing” (E.M) cultivars of M. pruriens were identical and drew 

100% complete alignment in the overlap region (82-406 bp) with the Mp-ty/ddc sequence 

(EF101921.1) on the NCBI data bank. 

 

 

 

 

The 406 bp sequence result showed 100% homology with the Mp-ty/ddc partial 

sequence (EF101921.1) on the NCBI data bank.  When the 406 bp sequence was 

Blast analysed on the NCBI data bank, very significant alignments were drawn with 

the DOPA/tyrosine decarboxylase gene (Figure 4.10 a) and protein (Figure 4.10 b) 

sequences for Glycine max and other species in family Phaseoleae of M. pruriens. 
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(a) 
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(b)      

 
 

Figure 4.10 Alignments of (a) DNA sequences (a) and amino acid sequences of the DOPA/tyrosine 

decarboxylase for; (1) the 406 bp Mp-ty/ddc sequenced DNA fragment (2) the database Mp-ty/ddc 

accession in the overlap region (616 - 1014  bp) (EF101921.1) and (3) Glyicine max (XM_003529857 

 

 

The 406 bp sequence obtained was a portion of the Mp-ty/ddc gene but the rest of 

the sequence was unknown.  In order to obtain the complete open reading frame, 3’ 

and 5’RACE PCR approaches were used on leaf and seed cDNA of M. pruriens as 

described in Sections; 4.3.3 and 4.3.4 respectively below.  Besides RACE, 

degenerate primers were designed from conserved sequence regions for the 

TY/DDC protein/genes as described in Chapter 2 Section 2.2.5.2 and were used to 

isolate more Mp-ty/ddc sequence (See Section 4.3.4). 
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4.3.3: Obtaining the full 3’ end of the Mp-ty/ddc mRNA 
using 3’ RACE. 
 
 
Firstly, there was a need to establish a protocol for RNA extraction from different 

tissues of M. pruriens for use in cDNA synthesis and gene expression analysis.  

RNA extraction from the proteinaceous seed was recalcitrant to the conventional 

guanidine-hydrochloride extraction method used in most commercial RNA extraction 

kits.  However, good quality RNA was successfully extracted using the method 

described in the protocol by Ding et al. (2007) (see Chapter 2 Section 2.2.2.1).     

3’ RACE was used to obtain the complete 3’ end of the Mp-ty/ddc mRNA using 3’ 

RACE- Ready cDNA from derived  from leaf tissue RNA (as described in Section 

4.2.1.1), as a  template.  This was PCR amplified using a gene specific primer; 

F1(3RACE): 5’-CTCTGGTGAGGGTGGTGGGGTGCTTTTGGG-3’, 406 bp from the 3’ 

end of the 493 bp of the partial Mp-ty/ddc sequence (EF101921.1) on the NCBI data 

bank and a supplied primer; R1(3RACE): (3’ RACE PCR kit, Ambion USA).  The PCR 

product was re-amplified using “nested” gene specific primer; F2(3RACE): 5’-

GAAGGAGAAGATAGGGAAGCTTGT-3’, 310 bp from the 3’ end of the genomic 

fragment cloned in Section 4.3.1 and a supplied primer; R2(3RACE) 5’-

GAATTAATACGACTCACTATAG-3’ (3’ RACE PCR kit, Ambion, USA).  A PCR 

product of approximately 1.2 kb was obtained from the 3’ RACE reaction (See Figure 

4.11 a).  To verify this product, primers; 5’-

CTCTGGTGAGGGTGGTGGGGTGCTTTTGGG-3’ and 5’-

GTAAGCTGCATCTACGTGGA-3’ previously used to PCR amplify the 406 bp Mp-

ty/ddc fragment (Section 4.3.1) were used to detect by PCR the presence of the 

sequenced 406 bp Mp-ty/ddc gene fragment in the 1.2 kb 3’ RACE PCR product 

(Figure 4.11 b ).  The 1.2 kb fragment was then cloned into pGEM-T vector 
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(Promega, USA) and transformed into E. coliDH5α as described Sections: 2.2.11 

and 2.2.13 respectively.  Colony PCR was used to identify colonies transformed with 

the pGEM-T-Mp-ty/ddc transgene plasmid (as described in Chapter 2 Section 

2.2.14).  Plasmid DNA was extracted from bacterial cultures which produced positive 

colony PCR result for the Mp-ty/ddc transgene.  Samples of the purified plasmid 

DNA were further screened for the Mp-ty/ddc transgene by double digestion using 

EcoRI.  (Figure 4.11 c).  Three independent 3’ RACE PCR product clones were each 

sequenced using the T7 and Sp6 primers designed from the plasmid vector 

sequence as described in Chapter 2 Section 2.2.5.1.  The sequence result for the 

individual clones were 100% identical in the overlapping region but varied slightly in 

length with one sequence reaching the poly A tail at the 3’ end of the Mp-ty/ddc gene 

(Figure 4.11).  

 

 

  
                   1               2                         1      2      3       4                         1          2        3         4 
 

(a)                              (b)                                               (c) 

 
Figure 4.11 Gel electrophoresis of; (a) Approximately 1.2 kb 3’ RACE PCR product (lane 2).  (b) 

Approximately 0.4 kb PCR product isolated from the 1.2 kb 3’ RACE PCR template using Mp-ty/ddc 

internal primers designed to PCR amplify 0.4 kb of the known Mp-ty/ddc gene sequence (lanes 2 - 4). 

(c) pGEM-T plasmids (lane 2 and 4) harbouring 1.2 kb 3’ RACE clones were double digested using 

EcoRI to release the clones.  The 3 kb plasmid vector and the recovered 1.2 kb clone were separated 

according to size by gel electrophoesis. 
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a) 

 
(b) 
 

 
 
 
 

Figure  4.12 (a)  A diagramatic representation of the 1.229 kb Mp-ty/ddc sequence  obtained by 3’ 

RACE.  (b) Alignment of the 3’ RACE sequences isolated from three independent clones.  The 3’ 

RACE forward primers; F1(3RACE) and F2(3RACE) designs were based on the 406 bp sequence result for 

the Mp-ty/ddc isolated by genomic PCR from M. pruriens (Section 4.3.1).  The 3’ RACE product was 

isolated from leaf cDNA using primers; F1(3RACE) and R1(3RACE) followed by “nested” PCR using 

primers; F2(3RACE) and R2(3RACE).  This generated a 310 bp overlap with the sequence result for the 406 

bp genomic PCR product (Section 4.3.1).  The sequence result for the 3’ RACE independent clones 

varied slightly in length at the 3’end (region A-B).   
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The 406 bp Mp-ty/ddc sequence isolated by genomic PCR (See Section 4.3.1) was 

extended to 1.229 kb by 3’ RACE PCR (See Figure 4.12 b).  The forward primer for 

3’RACE, F2(3RACE), was designed approximately 107 bp from 5’end of the 406 bp 

genomic PCR sequence result.  When the longest 3’ RACE sequence was aligned 

with the original 406 bp sequence cloned from genomic DNA, an overall of 100% 

homology was seen in the 310 bp overlap region (Figure 4.13).   

 

 

 

 
 
 
 
Figure 4.13 Alignment of the 406 bp Mp-ty/ddc sequence (gDNA_PCR); obtained by genomic PCR 

approach, to the 3’ RACE sequence result. 310 bp at the 5’ end of 3’ RACE sequence result showed 

100% homology with the gDNA_PCR sequence result in the overlap region (100 - 410) for the two 

sequences.  The sequence overlap confirmed the 406 bp Mp-ty/ddc sequence was enxtended to up 

to 3’ end poly A tail by 3’ RACE.  
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Analysis of the 3’ RACE sequence result by Blast on the NCBI data bank drew very 

significant alignments with DOPA/decarboxylase TY/DDC sequences of the family 

Leguminosae of M. pruriens (Figure 4.14).  Glycine max, Cicer arietinum showed the 

highest homology with the 1.229 kb 3’ RACE Mp-ty/ddc sequence result.  The 

overlap region for the three sequences showed approximately 79% of the ty/ddc 

gene was conserved (Figure 4.14).  The ty/ddc sequence for Glycine max was 

approximately 30 bp longer at the 3’ end.  The 3’ UTR for the Mp-ty/ddc 3’ RACE 

sequence was largely unconserved but extended up to the 3’ terminal end of the 

gene, characterised by poly- adenylation (Figure 4.14). 
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Figure 4.14 ty/ddc alignments for (1) Glycine max (XM_003529857.1) and (2) Cicer arietinum 

(XM_004510674.1) to (3) the 1.229 kb Mp-ty/ddc 3’RACE sequence result.  The overlap region (715 - 

1710 bp) shows 79% of the gene sequence is conserved.  The Mp-ty/ddc sequence was extended by 

3’ RACE up to the poly-A tail at the 3’ terminal end of the gene.  The alignments were drawn using the 

genedoc software program. 
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Similarly, the TY/DDC amino acid alignments for Glycine max (XP_003529905.1) 

and Cicer arietinum (XP_004510731.1) to the 3’ RACE sequence showed 

approximately 83% homology in the overlap region (190 - 530) (Figure 4.15). 

 

 

 
 
 
Figure 4.15 ty/ddc alignments for (1) Glycine max (XP_003529905.1) and (1) Cicer arietinum 

(XP_004510731.1) to (3) the 1.229 kb Mp-ty/ddc 3’ RACE sequence result.  The overlap region (190 - 

530) shows approximately 83% of the gene sequence is conserved.  The alignments were drawn 

using the genedoc software program.  

 
 
 

4.3.4: Towards obtaining the full 5’ end of the Mp-ty/ddc 
mRNA using 5’RACE. 
 
 
5’ RACE was used to isolate sequences of Mp-ty/ddc 5’ to the 406bp fragment, using 

seed cDNA (See Section 4.2.2.1 for methods).  A 0.5 kb DNA fragment (See Figure 

4.16 a) was isolated using primers; Mp-ty/ddc-R1(5’RACE), 378 bp from the 5’ end of 
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the 406 bp sequence cloned above (See Section 4.3.1) and a UPM as described in 

Section 4.2.4.3 above (Figure 4.16 a).  The 5’ RACE product was cloned in pGEMT 

plasmid (Promega, USA) using E.coliDH5α as described in Chapter 2 Section 2.2.13 

and colonies screened by PCR (Figure 4.16 b).  The plasmid containing the insert 

was isolated and sequenced as described in Chapter 2 Section 2.2.15. 

 

 

          

                 (a)     1                           2                                           (b)       2      3        4       5 

 

Figure 4.16 (a) 0.5 kb DNA band (lane 2) was isolated from M. pruriens seed cDNA by 5’ RACE PCR.  

Lane 1 is a DNA marker (Bioline, UK).  (b) Approximately 0.6 kb colony PCR products (lanes 2 - 5) 

were amplified using vector plasmid primers T7 and Sp6 primers, from single bacterial colonies 

transformed with a pGEM-T plasmid harbouring a cloned 0.5 kb 5’ RACE product.  Colony PCR 

product is 0.6 kb because the additional 0.1 kb sequence was PCR amplified from the vector plasmid 

using the T7 and Sp6 primers which flanked the 5’ RACE clone.    

 

  

The 5’ RACE sequence of 508 bp obtained showed 100% homology in the overlap 

region (227 - 508 bp) with earlier sequences obtained by 3’ RACE and the genomic 

PCR approach (Figure 4.17 a).  Besides the overlap region, the 5’ RACE sequence 

extended that for 3’ RACE by 326 bp towards the 5’ end of the Mp-ty/ddc (Figure 

4.17 b)  and the combined sequence obtained by 3’ RACE and genomic PCR was 

extended by approximately 227 bp (region 0 - 227 bp) for the Mp-ty/ddc gene (Figure 

 4.17 b).  The 100% homology in the overlapping region strongly indicating that the 

new sequence was indeed part of the same gene. 
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(a) 

 
 

(b) 

 

 
 
 
Figure 4.17 (a) Schematic diagram showing the overlap regions for Mp-ty/ddc gene portions isolated 

by  different methods (b) Alignments of Mp-ty/ddc sequence portions obtained by genomic PCR 

approach ( (Section 4.3.1) and 3’ RACE (Section 4.3.2) to the 508 bp 5’ RACE.  The overlap region 

(227 - 508 bp) for the three sequence portions showed 100% homology. 
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Analysis of the 5’ RACE sequence using Blast against the NCBI data bank drew very 

significant gene and protein alignments for DOPA/tyrosine decarboxylase of species 

in family Leguminosae of M. pruriens as well as for species in other plant taxa.  

However some of the gene sequences that drew very significant alignments to the 

Mp-ty/ddc were longer by approximately 0.3 kb at the 5’ end.  This indicated that the 

isolated Mp-ty/ddc sequence might be partial.  However, additional sequence data 

obtained from over 80 further 5’ RACE experiments including using varied 

approaches and modifications, did not reveal alignment with any known DOPA 

decarboxylase gene sequence in the NCBI data bank.  The approaches used to 

optimise the 5’ RACE experiments included; performing replica experiments as 

described in Section 4.2.4.3 above, and using different gene-specific primers.  In 

addition the integrity of the 5’ RACE-Ready cDNA quality by extraction of fresh high 

quality RNA coupled with cDNA synthesis after every 3 - 5 trial 5’ RACE experiments.  

In addition, touchdown PCR was used as described in Section 4.2.3.4 to improve 

specificity for PCR amplification.  Further approaches tried included: changing the 

enzyme used for cDNA synthesis; from GeneScript Reverse Transcriptase 

(Clontech, UK) to SuperScript Reverse Transcriptase (Takara, Japan) and lowering 

the Tm for 5’ RACE from 68 - 70 ˚C (optimal range) to 65 67 ˚C suited for 

amplification of difficult templates (BD SMART RACE protocol, Clontech, UK) (See 

Appendix IV). 

 

4.3.5: Isolation of a further 5’ fragment of the Mp-ty/ddc 
gene based on degenerate PCR primers. 
  

Since obtaining the 5’ end of the Mp-ty/ddc gene by 5’ RACE proved intractable, an 

alternative strategy was sought.  Degenerate primers (described in Chapter 2 
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Section 2.2.5.2) were designed based on nucleotide sequences for Glycine max, 

Papaver somniferum and other species in family Leguminosae of M. pruriens (Figure 

4.18).  

 

 

 
 
 

Figure 4.18 Mp-ty/ddc forward degenerate primer was designed from the conserved sequence (region 

64-95 bp) of DOPA/tyrosine decarboxylase (ty/ddc) gene.  The alignments were drawn from the 

ty/ddc 5’end sequence for Glycine max (356522541), Cicer arietinum (502157020), Thalictrum flavum 

(AF314150.1), Papaver somniferum (AF025434.1) and Theobroma cacao (XM_007030181.1) using 

the genedoc software program. 

 

 

An approximately 0.7 kb Mp-ty/ddc PCR product was isolated from M. pruriens seed 

cDNA, (Figure 4.19 a) using a forward degenerate primer; R(DEG): (5’-

CTAGAC(C/T)CTGAAG(A/G)ATTCA(G/A)AAGG-3’) for the conserved  sequence 

approximately 60 bp from to the 5’end of fully sequenced ty/ddc (Figure 4.20) and an 

Mp-ty/ddc gene specific reverse primer (GSP); R(X-DG): (5’-

CTATTGCAGTAGTGCCAACAGTTGC-3’), 102 bp from the 3’end of the 406 bp 

gene fragment isolated by genomic PCR (See Section 4.3.2).  The PCR was 

performed at an annealing temperature of 58 ˚C and the PCR product was cloned as 

described in Chapter 2, Section 2.2.13.  A 0.5 kb Mp-ty/dc transgene clone (Figure 

4.19 b) was amplified by colony PCR as described in section 2.2.14 using Mp-ty/ddc 
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gene specific primers; F(X-DG): (5’-GTGAGATGCTAAGCACTGGATTC-3’), 10 bp from 

the 5’ end of the 5’ RACE sequence and R(X-DG) primer described above.  The 

plasmids extracted from the positive colony PCR cultures were further screened by 

PCR using plasmid primer; T7: (5′-TAATACGACTCACTATAGGG-3′) and Mp-ty/ddc 

primer; R(X-DEG) at annealation temperature of 49 ˚C.  The approximately 0.7 kb 

cloned gene was PCR amplified from the transgene plasmids (Figure 4.19 c) and 

sequenced. 

 

 

(a) 

 

                1      2             3                                4  

 

(b)                                                                                                 (c) 

                                                                             
                              1       2       3                                  4                                1           2         3 
 

                                                                                                               

Figure 4.19 (a) A 0.7 kb Mp-ty/ddc PCR product isolated from seed cDNA (lane 2) and genomic DNA 

(lane 3) of M. pruriens using a degenerate primer; F(DEG)) and GSP; R(DEG).  A positive control of 0.5 kb 

(lane 4) PCR amplified from gDNA using Mp-ty/ddc primers F(X-DG) and R(X-DG).  (b) A 0.5 kb colony 

PCR products (lanes 2-3) isolated using primers; F(X-DG) and R(X-DG).  A 0.5 kb PCR product was 

isolated from gDNA (Positive control) and none from sterile distilled water (negative control).  Lane 1 

is a DNA marker (Fermentas). 
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A 0.73 kb sequence was obtained by the PCR approach using degenerate primers.  

The overlap region (272 - 720 bp) showed 100% homology with the Mp-ty/ddc 

sequence obtained earlier by 5’ RACE (See Section 4.3.3) (Figure 4.20).  The 5’ 

RACE sequence was thus extended at the 5’ end by 272 bp of Mp-ty/ddc again 

strongly indicating that the extended sequence derived from the same gene. 

 

 
 
 
 (a) 
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(b) 
 

 

 
  
 
 
 

Figure 4.20 (a) Schematic diagrams of the overlap regions for Mp-ty/ddc gene portions isolated by 5’ 

RACE and degenerate PCR.  (b) Alignment of the 5’ RACE sequence to that obtained by degenerate 

primer PCR (DEG-PCR).  The overlap region (273 - 730 bp) showed 100% homology.  The Mp-ty/ddc 

sequence obtained earlier by 5' RACE was extended by 272 nucleotides at the 5’ end. 

 

 

The sequence towards the 5’ end of Mp-ty/ddc sequence obtained was analysed 

using Blast against the NCBI data bank.  This drew very significant alignments of 

DOPA/tyrosine decarboxylase for taxonomically closely related species to M. 

pruriens (Figure 4.21). 
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(a) 

 
(b) 

 
 
 
Figure 4.21 Shows 5’ end DOPA/tyrosine decarboxylase alignments for; (1) Glycine max 

(XM_003529857.1), (2) Cicer arietinum (XM_004510674.1), (4) Papaver somniferum (AF025434.1), 

(5) C. sinensis (XP_006473252), (6) Thalictrum cacao (AF314150.1) to the Mp-ty/ddc sequence 

obtained; (a) nucleotide (b) amino acid sequences.  The alignments were assembled using the 

genedoc software program. 

 

 

 

The Mp-ty/ddc sequence obtained however appeared to be 65 bp (20 amino acids) 

shorter at the 5’ end, than the longest plant DOPA/tyrosine decarboxylase 

sequences on the NCBI data bank.  The putative missing 65 bp and 20 amino acids 

at 5’end of ty/ddc were highly divergent (Figure 4.21).  
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4.3.6: Analysis of the Mp-ty/ddc assembled sequence. 

 
 

 

The combined sequence for Mp-ty/ddc was obtained by alignment of the overlapping 

sequence portions obtained as described in Sections; 4.3.1, 4.3.2, 4.3.3 and 4.3.4.  

A continuous sequence of 1.727 kb was obtained upon assembling the overlapping 

Mp-ty/ddc sequence portions obtained as shown in the Figure 4.22 below.  Analysis 

of the sequence revealed an open reading frame (ORF) of 496 amino acids and with 

a protein size of 54.6 kd (Figure 4.22). 

 

 

 

 
 
 
Figure 4.22 a Schematic diagram showing the overlap regions for Mp-ty/ddc gene portions isolated by 

different methods.  The region (96 - 378 bp) of the genomic PCR sequence overlapped with region (0 

- 310 bp) of the 3’ RACE sequence.  Region (0 - 282 bp) of the 3’ RACE sequence overlapped with 

region (326 - 508 bp) of the 5’ RACE sequence.  The degenerate primer PCR sequence region (272 - 

730 bp) overlapped with region (0 – 459 bp).  The overall Mp-ty/ddc sequence was 1.727 kb. 
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tctagaccctgaagagttcagaagacaaggctacatgatgattgatttccttgctgattat 

  L  D  P  E  E  F  R  R  Q  G  Y  M  M  I  D  F  L  A  D  Y  

attggtaaggttggtaagtatccggttttaagtaaagtagaagctggttatcttagaaaa 

 I  G  K  V  G  K  Y  P  V  L  S  K  V  E  A  G  Y  L  R  K  

agattaccagcttctgccccatgtggtcctgaacccattgaatccatacttaaagatgtg 

 R  L  P  A  S  A  P  C  G  P  E  P  I  E  S  I  L  K  D  V  

gaagagcatatcatccctggcataacacattggcagagtcctaattattatggttacttc 

 E  E  H  I  I  P  G  I  T  H  W  Q  S  P  N  Y  Y  G  Y  F  

cccagcagtggtagcatagcagggttcatgggtgagatgctaagcactggattcaatgtg 

 P  S  S  G  S  I  A  G  F  M  G  E  M  L  S  T  G  F  N  V  

gttgggttcaattggatgtcatcgccagctgccacagagctcgaagccttagtcatggat 

 V  G  F  N  W  M  S  S  P  A  A  T  E  L  E  A  L  V  M  D  

tggcctggacaaatgctgaagctccccaaaacattccttttctctggtgagggtggtggg 

 W  P  G  Q  M  L  K  L  P  K  T  F  L  F  S  G  E  G  G  G  

gtgcttttgggaactacttgtgaggccattttgtgcactttagtggctgcaagggagaaa 

 V  L  L  G  T  T  C  E  A  I  L  C  T  L  V  A  A  R  E  K  

aagctttcacaagttgggaaggagaagatagggaagcttgttgtgtatgcctctgatcaa 

 K  L  S  Q  V  G  K  E  K  I  G  K  L  V  V  Y  A  S  D  Q  

acacacagtgcacttcagaaggctgctcaaattgctgggatccatccagcaaatttccgg 

 T  H  S  A  L  Q  K  A  A  Q  I  A  G  I  H  P  A  N  F  R  

gtcatcaaaaccaagaggtcaagtttctttgctttgtctcctgactctcttctctccacc 

 V  I  K  T  K  R  S  S  F  F  A  L  S  P  D  S  L  L  S  T  

attcttttggatgtggagaatggcttgattccttgtttcctatgtgcaactgttggcact 

 I  L  L  D  V  E  N  G  L  I  P  C  F  L  C  A  T  V  G  T  

actgcaatagacaccattgatcctgtgggaccattgtgtagtgtggccaaggactatggc 

 T  A  I  D  T  I  D  P  V  G  P  L  C  S  V  A  K  D  Y  G  

atttgggtccacgtagatgcagcttacgctggatcagcttgcatttgccctgagtttaga 

 I  W  V  H  V  D  A  A  Y  A  G  S  A  C  I  C  P  E  F  R  

tattgcattgatggggttgaagaggcaaactcctttagcctcaatgctcataagtggttt 

 Y  C  I  D  G  V  E  E  A  N  S  F  S  L  N  A  H  K  W  F  

ttgaccaatttagcatgttgttgcctttgggtgaaagatcacactgccctcacaaaatcc 

 L  T  N  L  A  C  C  C  L  W  V  K  D  H  T  A  L  T  K  S  

ttgtcagtggatcctcctttcttgaggaacaaggcttctgagtcaaagcaagtgattgac 

 L  S  V  D  P  P  F  L  R  N  K  A  S  E  S  K  Q  V  I  D  

tacaaggattggcagataccattgagtaggaaatttaatgccctcaaactatggcttgtt 

 Y  K  D  W  Q  I  P  L  S  R  K  F  N  A  L  K  L  W  L  V  

cttagaagctatggtgttgagaaccttaggaacttcctgagaaaccatgtgcaaatggcc 

 L  R  S  Y  G  V  E  N  L  R  N  F  L  R  N  H  V  Q  M  A  

aaaacttttgaagggctggtaaggttggataagaggtttgagattgttgtgcctccaaaa 

 K  T  F  E  G  L  V  R  L  D  K  R  F  E  I  V  V  P  P  K  

ttctctttggtttgctttaggattgcaccatcagctattgctaatggggtgtccaatggt 

 F  S  L  V  C  F  R  I  A  P  S  A  I  A  N  G  V  S  N  G  

actgaagcatgctataatgggaaactgatggatgatgagtatagggtgaatgaagtcaat 

 T  E  A  C  Y  N  G  K  L  M  D  D  E  Y  R  V  N  E  V  N  

cgtaaattgcttgattcaattaatagttctggcaatgtattcatgactcatggtgaggtt 

 R  K  L  L  D  S  I  N  S  S  G  N  V  F  M  T  H  G  E  V  

gaaggagcctttgtgattagatgtgctattggtgcaactttaacagaggaacaccatgtg 

 E  G  A  F  V  I  R  C  A  I  G  A  T  L  T  E  E  H  H  V  

attatgggcatggaagttggtgcaggagcatgccaattctctgttaggtaacttctaaaa 

 I  M  G  M  E  V  G  A  G  A  C  Q  F  S  V  R  -  L  L  K  

caaattgtactttcatttagttatccggttgttgatatcaaaattattcaggcagacttg 

 Q  I  V  L  S  F  S  Y  P  V  V  D  I  K  I  I  Q  A  D  L  

gaaaagtcatcgatgatagagaaccaacatcgatattgctatcaggtcggtgatgacagt 

 E  K  S  S  M  I  E  N  Q  H  R  Y  C  Y  Q  V  G  D  D  S  

tggaaattactagaagttattcctaattaaaatatttatctataaataccaatttctaca 

 W  K  L  L  E  V  I  P  N  -  N  I  Y  L  -  I  P  I  S  T  

atgtaataaagttggaactttgtcattaaaaaaaaaaaaaaaaaaa 

 

 
Figure 4.22 b The putative full-length Mp-ty/ddc gene and the encoded 496 amino acid sequence for 

the Mp-TY/DDC.  The open reading frame (ORF) is 1.489 kb (approximated to 1.5 kb).  The first in-

frame ATG and methionine as well as the in frame stop codon are shaded in red.  The active site loop 

is underlined. 
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To confirm that he assembled sequences derived from a single mRNA, primers were 

designed to amplify the whole coding region which was then cloned and sequenced. 

Primers; F(5’DC): 5’-CTAGACCCTGAAGAGTTCAGAAGACAAGG-3’ and R(3’DC): 5'-

CCTAACAGAGAATTGGCATGCTCCTGCAC-3' designed from the 5’ and end of the 

Mp-ty/ddc ORF (as described in Section 2.2.5.1) were used at an annealing 

temperature of 55˚C, to isolate approximately 1.5 kb Mp-ty/ddc ORF sequence from 

seed cDNA by PCR (as described in section 2.2.6).  The PCR product was cloned 

and sequenced (as described in sections 2.2.11, 2.2.13 and 2.2.15).  The sequence 

of 1.5 kb obtained was identical to the assembled ORF shown in Figure 4.20 and 

hence validated the assembled sequence obtained.  When the 1.5 kb ORF 

sequence was analysed using Blast against the NCBI data bank, DOPA/tyrosine 

decarboxylase protein sequences (TY/DDC) for Glycine max and Cicer arietinum of 

the family Leguminosae of M. pruriens drew very significant alignments. In addition, 

Plant DOPA/tyrosine decarboxylase genes for species of varied taxa such as P. 

somniferum, also drew significant alignments (Figure 4.23).  The Mp-TY/DDC amino 

acid sequence showed 74% homology with the TY/DDC of Glycine max and Cicer 

arietinum (overlap region 20 - 506; Figure 4.23 a).  Glycine max and Cicer arietinum 

are taxonomically related to M. pruriens in the family Leguminosae (Duke, 1981).  

However, TY/DDC alignments with plant species belonging to a cross-section of 

taxonomically diverse families other than the Leguminosae family of M. pruriens, 

showed approximately 48% homology with the Mp-TY/DDC sequence ( See Figure 

4.23 b). 
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Figure 4.23 a DOPA/tyrosine decarboxylase amino acid alignments for; (1) Glycine max 

(XM_003529857.1) and (2) Cicer arietinum (XP_004510731.1) to the 1.5 kb orf sequence of Mp-

ty/ddc.  The alignments were drawn  when the Mp-ty/ddc sequence was Blast analysed against the 

NCBI data bank.  The alignments were assembled using the genedoc software program.  The overlap 

region (20 - 506 bp) showed 74% sequence homology. 
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Figure 4.23 b TY/DDC amino acid alignments for; (1) Glycine max (XM_003529857.1), (2) Cicer 

arietinum (XP_004510731.1), (3) Thalictrum cacao (AAG60665.1), (4) Papaver somniferum 

(AAC61843.1) to the 1.5 kb ORF sequence of Mp-ty/ddc.  The alignments were drawn  when the Mp-

ty/ddc sequence was Blast analysed on the NCBI data bank.  The alignments were assembled using 

the genedoc software program.  Red arrows indicate conserved amino acids in all pyridoxal 

phosphate-dependent decarboxylases, blue arrow indicates the putative pyridoxal binding site. 
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All the amino acids previously identified as conserved in pyridoxal phosphate-

dependent decarboxylases such as L-histidine decarboxylase (Sandmeier, 1994) as 

well as L-glutamate decarboxylase (Baum et al., 1993) and are also conserved in the 

P. somniferum TY/DDC (Facchini and De Luca, 1994) are conserved in the Mp-

TY/DDC amino acid sequence (shown on Figure 4.23).  These include the putative 

pyridoxal binding site. 

 

 

4.3.7: Southern analysis and Mp-ty/dc gene copy number 
in M. pruriens genome. 
 
 
Southern analysis was performed as described in Section 4.2.3 to determine the Mp-

ty/ddc gene copy number in the genome of M. pruriens.  The Mp-ty/ddc restriction 

map reveals the EcoRI and XhoI restriction sites among others to be are absent in 

the Mp-ty/ddc gene while three restriction sites for HindIII and one for EcoRV were 

present (Figure 4.24).  These restriction sites were selected for Southern analysis 

because they tend to be randomly distribited through out the genome of many plants 

(Sambrook et al., 1989) producing fragments of approximately 2 - 7 kb on average 

depending on the species (http://tools.neb.com/~vincze/gnsites/).  The gene copy 

number was deduced from the ratio of restriction fragments to hybridisation sginals, 

were a ratio of one implied a single copy.  Four genomic DNA samples were each 

digested with one of these four restriction enzymes as described in Section 4.2.5.2 

and ethidium bromide staining following gel electrophoresis (Figure 4.24) showed 

good digestion of the DNA.    
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Figure 4.24 Gel electrophoresis of M. pruriens gDNA (20 µg) restriction digested by EcoRI (lane 2); 

EcoRV (lane 3); HindIII (lane 4) and XhoI (lane 5).  Lane 1 was labelled using a DNA size marker 

(NEB).  

 

 

The digested DNA was transferred to a membrane (See Section 4.2.3.3) and 

hybridised with a  radiolabelled 1.5 kb Mp-ty/ddc probe as described in Section 

4.2.5.4.  Hybridisation signals of 10 kb and 13 kb were produced  for EcoRI  and 

XhoI digested genomic DNA respectively.  A 4.0 kb hybrisation signal was obtained 

for EcoRV digested DNA, while a 1.0 kb and a 6.0 kb hybridisation signals were 

produced for the HindIII digested genomic DNA (Figure 4.25).  A pET2b plasmid 

harbouring an Mp-ty/ddc gene clone was used as the positive control (5) and 

produced a hybridisation signal of 8 kb. 
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Figure 4.25 (a) Autoradiograph showing radiolabelled Mp-ty/ddc probe hybridisation on the Southern 

blot of M. pruriens gDNA.  Hybridisation signals were; (lane 1) EcoRI digested DNA, (lane 2) EcoRV 

digested DNA, (lane 3) HindIII digested DNA and (lane 4) XhoI digested DNA and (lane 5) pET2b-Mp-

ty/ddc plasmid.  
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Figure 4.25 (b) Schematic diagram showing the number and size of the genomic Southern DNA 

fragments and how they relate to the observed hybridisation signals.  The ratio of DNA fragments to 

hybridisation signals was one. 

 
 
  

The Southern analysis result showed that the number of expected Mp-ty/ddc 

fragments produced by each of the four restriction enzymes used were equal to the 

number of Mp-ty/ddc probe hybridisation signals produced (See Figure 4.26).  This 

indicates there is a single copy of Mp-ty/ddc gene in the genome of M. pruriens.  

This is because gene family members often differ in size and to some extent, 

sequence homology.  This would result in the DNA fragments produced by restriction 

digestion of different gene family members to vary in size and hence different sized 

hybridisation signals would be observed.  Having established that the Mp-ty/ddc was 
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likely a single copy gene, the expression profile was determined in tissues of M. 

pruriens by real-time PCR (qRT-PCR).  The gene was intronless.  

 

 

4.3.8: Real-time PCR (qRT-PCR) for Mp-ty/ddc. 

4.3.8.1: Determining the endogenous control gene in M. pruriens.  
 

The Mp-ty/ddc gene expression in the seeds, leaves, stems and roots of M. pruriens 

was determined by quantitative real-time PCR (qRT-PCR) as described in Section 

4.2.6.  Given the lack of M. pruriens sequences on publicly available data bases it 

was necessary to first identify an endogenous control gene of M. pruriens, for use in 

real-time PCR.  Degenerate primers for, GAPDH, EF1 alpha, Ubiquitin and a gene 

specific primer for M. pruriens 18S rRNA, were designed as described in Chapter 2 

Section 2.2.5.2.  In order to determine the appropriate endogenous gene, semi-

quantitative PCR was performed on seed, leaf, stem and root cDNA for all four 

genes 18S rRNA, GAPDH, Ubiquitin and EF1 alpha.  The semi-quantitative PCR 

results showed GAPDH and EF1 alpha were suitable as control genes (Appendix-IV)  

thus the four primer sets were also tested using qRT-PCR.  However, the qRT-PCR 

analysis showed the GAPDH expression was consistently poor in seed cDNA 

samples whereas EF1 alpha expression was poor in root cDNA samples of M. 

pruriens. On the other hand, the qRT-PCR analysis for the 18S rRNA showed the 

gene was uniformly expressed.  These preliminary experiments also revealed that 

the cDNA concentration was too low as the 18S rRNA showed relatively high cycle 

threshold (Ct) values (>25).  This was remedied using 3 - 5 fold concentrated cDNA 

as described in Section 4.2.5.3.  Consequently, Ct values for the 18S rRNA gene 
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(endogenously expressed) were lowered to an optimal range of 18 - 20 (Figure 

4.26). 

 

 
 
 
 

Figure 4.26 qRT-PCR analysis graph showing the expression profile of Mp-ty/ddc (MpDc) in the cDNA 

of different M. pruriens tissues relative to the endogenously expressed 18S rRNA (18s). 

  

4.3.8.2: Mp-ty/ddc expression profile. 

 

The endogenous gene (18S rRNA) expression in seed, leaf, stem and root cDNA of 

M. pruriens was normalised as described in Section 4.2.6.3 to a cycle threshold 

reference Ct value of 18.82 (Figure 4.27).  The Mp-ty/ddc gene was then qRT-PCR 

amplified from the normalised cDNAs for each M. pruriens tissue under study as 

described in Section 4.2.5.3.  
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Purity of the qRT-PCR products was determined from their respective melting 

curves.  The melt profile analysis for the qRT-PCR products, using the Opticon 3 

software program (MJ Research Inc, USA), revealed a single pure product peak at 

79 ˚C and 84 ˚C for the Mp-ty/ddc and 18S rRNA respectively (Figure 4.27).  

 

 

 
 

 
 
 
 
Figure 4.27 Melting curves for the Mp-ty/ddc (MpDc) and 18S rRNA (18s) gene expression profile 

analysis in different tissues of M. pruriens. 

 

  

Statistical analysis of the mean, standard deviation and standard error in the Ct 

values of the triplicate qRT-PCR amplicons for seed, leaf, stem and root cDNA was 

performed, and the Mp-ty/ddc expression for each triplicate set of normalised cDNA  

of seed, leaf, stem and root relative to endogenous (18S rRNA) expression in M. 

pruriens was calculated using the equation below derived by Livak and Schmittgen 

(2001) as described in Section 4.2.5.5.  
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The results showed the Mp-ty/ddc gene expression in M. pruriens was highest in the 

roots (1.66 +/- 0.1 S.E), followed by stems (1.37 +/- 0.3 S.E), then seed (1.0) and 

least expression was observed in the leaves (0.195 +/- 0.02 S.E) (Figure 4.28).                                                                                                             

(The one-way analysis of variance (ANOVA) to be performed using the Statistica 

software program). 

 

 

 

 

Figure 4.28 Mp-ty/ddc expression profile in seeds, leaf, stem and roots of M. pruriens. Mp-ty/ddc 

expression was normalised relative to endogenous 18S rRNA expression by qRT-PCR (mean ± SE; 

n=3). 
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4.4:  DISCUSSION. 

The primary aim of this chapter was to isolate and characterise genes related to the 

biosynthesis and metabolism of L-DOPA, with a longer term aim of manipulating it.  

Initial focus was on two genes; tyrosine hydroxylase (Mp-tyoh) and DOPA/tyrosine 

decarboxylase (Mp-ty/ddc) which encode for the enzymes responsible for synthesis 

of L-DOPA from L-tyrosine and dopamine from L-DOPA respectively (Fitzpatrick, 

1999; Facchini, 2001).   

 

Attempts to isolate Mp-tyoh genes from M. pruriens using degenerate primers based 

on available sequences from the databases were not successful (Appendix IV). 

However a short sequence for a putative ty/ddc gene from M. pruriens was available 

(NCBI databank accession number EF101921.1), hence efforts were focussed on 

obtaining a full-length sequence from this gene and characterising gene copy 

number and expression in different M. pruriens tissues. 

 

Initial PCR amplification using genomic DNA from five different M. pruriens cultivars 

showed that at least in this portion of the gene, sequences were identical, indicating 

a lack of sequence divergence between cultivars.  Although several studies have 

documented differences between ecotypes and cultivars of M. pruriens 

(http://hal.archives-ouvertes.fr/docs/00/13/79/62/PDF/T304Asongwed.pdf) but very 

http://hal.archives-ouvertes.fr/docs/00/13/79/62/PDF/T304Asongwed.pdf
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little is known about sequence differences.  The cultivars used here were; ‘90 day’, 

vine, early maturing, tropical and cultivar and Bush Echo.  Clearly more sequence 

data are required but data here would indicate relatively little divergence between 

these cultivars of very different growth habits. 

Homology of the assembled Mp-ty/ddc gene to decarboxylase genes from related 

and more distant species is consistent with the putative annotation of this gene as 

encoding a TY/DDC enzyme.  Of particular significance is the conservation of the 

active site loop and the conserved amino acids in all pyridoxal phosphate-dependent 

decarboxylases, including the putative pyridoxal binding site (Facchini and de Luca, 

1994).  However in Arabidopsis very similar proteins encode tyrosine 

decarboxylases, one of which is annotated as an aromatic aldehyde synthase 

(AT2G20340) and the other as a TYDC (AT4G28680).  An important difference 

between these two genes is a change from a Y to an F in the active loop.  The Mp-

ty/ddc gene encodes an F at this position (amino acid 267), which might indicate that 

it is not in fact an active TY/DDC.  However the P. somniferum gene also encodes 

an F in this position and has been shown to have TY/DDC activity in vitro (Facchini 

and De Luca, 1994).  It is therefore difficult to assign a function to the encoded 

enzyme based solely on the sequence.      

A total of 1,727 bp of Mp-ty/ddc gene sequence was obtained with an open reading 

frame starting from the first in frame methionine to the first stop codon of 496 amino 
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acids.  However, alignment of the translated Mp-ty/ddc gene sequence to the ty/ddc 

sequences of other species, revealed that some sequences, and specifically the P. 

somniferum sequence were longer at the 5’ end.  This suggested the possibility that 

the isolated Mp-ty/ddc gene might be missing the N terminal amino acids.  One of 

the shortest sequences is that of, the TY/DDC for Cicer arietinum (XP: 004510731.1) 

which is 18 amino acids shorter at the N-terminal than the longest plant TY/DDC 

alignment (Figure 4.24).  However it is three amino acids longer than the translated 

Mp-ty/ddc sequence and the 11 amino acids upstream of the first in frame 

methionine of the Mp-ty/ddc sequenced from taxonomically closely related and less 

related species (Figure 4.23).  This strongly suggests that the Mp-ty/ddc gene 

sequence may be missing between 3 and about 20 amino acids at the N-terminus. 

Given this probability strenuous efforts were made to isolate further 5’ sequences 

using further degenerate primers and by numerous attempts with 5’RACE.  Further 

attempts were also made to isolate the missing sequences using an inverse PCR 

approach as described in appendix IV.  However, the inverse PCR product DNA was 

of low concentration but could not be re-PCR amplified us for direct sequencing or 

cloning (See Appendix IV).  Possible explanations for the difficulty could be 

secondary structure of the RNA that impedes cDNA synthesis, perhaps due to a GC-

rich region.  Although overall the GC content of Mp-ty/ddc open reading frame is only 

44%, if the missing amino acids were the same as those in C. arietum (MKP) this 
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could result in the sequence GCCC just 5’ to the sequence isolated in the Mp-ty/ddc 

gene which could potentially form strong secondary structures with any 

complementary sequences further upstream.  RACE is known to often produce 

incomplete termini (Pfeffer et al., 1995; Schramm et al., 2000) and although the kits 

used are designed to circumvent these problems, difficulties may still arise.  Inverse 

PCR is a powerful technique for the isolation of flanking sequences but it too is not 

without its difficulties (Moreau et al., 2002), again compounded by secondary 

structure. 

 

Since the TY/DDC genes in P. somniferum form a gene family, it was important to 

establish whether the Mp-ty/ddc was also the member of a gene family or is a single 

copy gene.  Southern blot analysis was therefore performed.  The general 

observation in the Southern analysis was that the number of hybridisation signals 

was equal to the number expected DNA fragments generated by restriction 

digestion.  This result is expected for genes with a single copy in the genome (Figure 

4.23).  This was an unexpected result given the multiple genes in P. somniferum 

(Facchini and De Luca, 1994).  It is however supported by all the PCR products 

sequenced for this gene from M. pruriens none of which showed any differences in 

sequence apart from slight differences in the length of the 3’ UTR.  In particular 

many enzymes involved in defence have shown linear specific expansion such as 



143 
 

the cytochrome P450 family (Lespinet et al., 2002) indicating there may be 

substantial divergence in gene family size between lineages and species.  

Unfortunately there are no data on the C-value database for this species 

(data.kew.org/c values).  The Leguminosae (Fabaceae) cover an extremely wide 

range of C-values from 0.3 pg to 27 pg.  P. somniferum has a C-value of 3.8 pg and 

is thus substantially bigger than the smallest members of the Fabaceae.   

Another possibility is that there are related genes in the M. pruriens genome but that 

that lower stringency conditions are required, and thus that they are substantially 

divergent.  This could be further explored by further Southern blot analysis. 

Transcriptome sequencing, which is now becoming much more accessible would 

also be a method to reveal whether there are other similar sequences expressed. 

 

The next task was to determine the expression profile of Mp-ty/ddc in different 

tissues of M. pruriens.  This was performed using the real-time PCR as described in 

Chapter 4 Section 4.2.6.8.  Mp-ty/ddc expression profile in different tissues of “wild-

type” M. pruriens was normalised relative to the 18S rRNA endogenous expression.  

Mp-ty/ddc expression was highest in cDNA for the roots then stems, and seed cDNA 

whereas the least expression was seen in leaf.  The high Mp-ty/ddc expression in 

mid mature stem tissues and roots of M. pruriens is in agreement with the studies by 

Facchini and De Luca (1995) in P. somniferum.  They reported that highest 
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expression of a similar gene (DOPA/tyrosine decarboxylase; Ps-ty/ddc) in Papaver 

somniferum was highest in the phloem and protoxylem of mature stems and roots, 

while the lowest gene expression was reported in the leaf tissue.  The RNA 

hybridisation studies on a cross section of leaf tissues of P. somniferum revealed 

that the Ps-ty/ddc gene was confined to the midrib region in young leaves but no 

expression was observed in leaf blade tissues (Facchini and De Luca, 1995).  

However, in P. somniferum, Ps-ty/ddc expression in reproductive tissues (Carpels) 

was also low and decreased as the seed capsule matured.  In contrast Mp-ty/ddc 

expression was relatively high in maturing/mature M. pruriens seeds.    

 

In conclusion a single copy TYDC-like gene was isolated from M. pruriens that is 

most highly expressed in stems, roots and seeds respectively.  It appears to show 

significant homology to DOPA/tyrosine decarboxylases and appears to be almost full 

length.  The next step was to determine whether the isolated sequence had 

enzymatic activity when expressed in vitro.   
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CHAPTER 5: RECOMBINANT EXPRESSION 

AND ACTIVITY OF M. PRURIENS PUTATIVE 

DOPA DECARBOXYLASE GENE.  

 

 
5.1: INTRODUCTION. 
  

 

DOPA/tyrosine decarboxylase (Mp-TY/DDC) is the putative enzyme responsible for 

decarboxylation of L-DOPA to dopamine in M. pruriens and other L-DOPA producing 

plants (Facchini, 2001).  In animals, bioconversion of L-DOPA to dopamine has been 

reported to be controlled by DOPA decarboxylase. 

M. pruriens is an ecologically endangered plant species and has been reported to be 

among the few plant species which produce L-DOPA, a drug used to treat 

Parkinson’s disease (Siddhuraju and Becker, 2001).  In M. pruriens, one of the 

primary metabolic products of the Shikimic acid pathway; L-tyrosine is converted to 

L-DOPA by enzymatic action of tyrosine hydroxylase (Mp-TYOH) (Pras et al., 1993; 

Swiedrych et al., 2004; Nishihara, et al., 2005).  Consequently, L-DOPA is converted 

to dopamine by DOPA/tyrosine decarboxylase (Mp-TY/DDC) (See Figure 1.9).  The 

Mp-TY/DDC enzyme is putatively encoded for by a single copy of Mp-ty/ddc gene 

based on the results obtained by performing a genomic Southern analysis (See 

Chapter 4, Section 4.3.6).  In contrast, DOPA/tyrosine decarboxylase (Ps-TY/DDC) 

of Papaver somniferum is encoded for by a family of 15 genes (Ps-ty/ddc), which is 

subdivided into two subsets (ty/ddc1 and ty/ddc2) based on sequence homology 

(Facchini and De Luca, 1994) (See Chapter 4, Section 4.1).  In plants, L-tyrosine has 
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also been reported to be converted to tyramine by action of tyrosine decarboxylase 

(TYDC) (Facchini, 2001) (See Figure 1.9).  In M. pruriens, P. somniferum and a few 

other L-DOPA producing plants species, tyramine and dopamine are precursors in 

the early steps of benzylisoquinoline alkaloid biosynthesis (Facchini and Park, 2003).  

Benzylisoquinoline alkaloids consist of more than 2,500 structurally defined natural 

products including a wide range of phytoalexins and several pharmacologically 

important compounds such as analgesics; morphine and codeine (Facchini and 

Park, 2003). 

DOPA/tyrosine decarboxylase, like tyrosine decarboxylase (TYDC) (See Figure 1.9) 

is an aromatic amino acid decarboxylase (AADC) present in a wide range of species 

and has substrate specificity for L-DOPA and tyrosine respectively (Facchini, 2001).  

However, studies on aromatic amino acid decarboxylase (AADC) proteins 

demonstrated that besides the decarboxylation observed in TY/DDC and TY-DDC, 

some previously annotated AADC were found to be aromatic acid synthesis (AAS) 

(Torrens-Spence, et al., 2013).  Despite sharing over 50% homology, AAS performs 

additional physiological roles when compared with the true AAADs.  The AASs 

catalysed decarboxylation-oxidative deamination process of aromatic amino acids to 

produce aromatic acetaldehydes, CO2, ammonia and hydrogen peroxide instead of 

the AAAD-derived arylalkylamines and CO2 (Torrens-Spence, et al., 2013).  Plant 

AAS enzymes have also been reported to play a role in the synthesis of volatile 

flower scents and defensive secondary metabolite, phenolic acetaldehyde (Torrens-

Spence, et al., 2013).  

This chapter focusses on characterisation of the Mp-ty/ddc gene isolated from M. 

pruriens genome.  A similar enzyme to Mp-ty/ddc referred to as DOPA 
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decarboxylase (DDC) has been characterised in a wide range of animal species 

including humans and showed sequence homology in some conserved domains.  

The predicted three-dimensional structure of DDC reveals a tight association of α2-

dimer of two monomers with each composed of three distinct domains (Figure 5.2).  

The PLP binding site is in the large domain of DDC which contains seven strands of 

mixed β-sheet at the centre, encircled by eight α-helices in a typical α/β fold.  The C-

terminal small domain has four antiparallel β-sheet strands with three helices packed 

facing the large domain.  Besides these two characteristic domains for the α-family 

enzymes, DDC has an N-terminal domain (residues 1 - 85) which comprises of two 

helices and linked by an extended strand.  The helix of one subunit aligns antiparallel 

to the equivalent helix of another resulting in a flap over-like structure.  The N-

terminal domain is unlikely to be an autonomous folding unit but stabilises by 

creating an interface between the two monomers.  The active site of DDC is 

positioned close to the interface of the two monomers although its residues are 

largely from one monomer (Figure 5.1) (Burkhard et al., 2001). 
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Figure 5.1 The two-fold symmetry axis view for the DDC polypeptide backbone shows the two 

monomers (red and green) and the large (cyan) and small (blue) domains.  The yellow ball and stick 

represents the cofactors (PLP) and the DDC inhibitor.  The picture was extracted from Burkhard et al., 

2001). 

 

 

5.1.1: An overview of the methodology. 

 

The in vitro recombinant protein expression plasmid was built by cloning the 

transgene in the lac operon of the pET21b plasmid as described in Chapter 2 

Section 2.2.14 and hence its expression required induction by IPTG.  IPTG binds to 

the lac repressor detaching it from the lac operator and thereby enabling 

transcription of the genes in the lac operon such as the recombinant Mp-ty/ddc and 
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the gene which codes for β-galactosidase (Sambrook et al., 1989; Dale and Von 

Schantz, 2003).  Recombinant protein expression in bacterial hosts is reported to be 

temperature dependent (Sambrook, et al., 1989; Francois and Mirna., 2004). 

Bacterial strains; BL21 (DE3) (Novagen, USA) and Tuner 2 cells (Novagen, USA) 

harbouring the pET21 protein expression vector which carries a cloned Mp-ty/ddc 

transgene insert were used as hosts for the in vitro recombinant protein expression.  

The BL21 (DE3) strain was designed to achieve protein overexpression upon 

induction using appropriate concentration of IPTG (BL21 cells user manual, 

Novagen, USA).  On the other hand, Tuner 2 strain is a mutant of BL21 and was 

produced by deletion of the lac ZY which consequently enabled adjustment of 

protein expression levels throughout all cells in culture (Tuner 2 cells user manual, 

Novagen, USA).  Mutation of the lac permease (lac Y) makes the bacterial cell walls 

or membranes to be uniformly permeable to IPTG.  This enhanced a more 

proportionate response in protein expression with respect to varying IPTG 

concentrations.  By lowering IPTG concentration, low level protein expression which 

could enhance solubility and activity of previously insoluble target proteins may be 

achieved (Tuner 2 user manual, Novagen, USA). 

 

5.1.2: Bioassays on L-DOPA. 

Plant enzymes have been used as biopharmaceuticals to produce novel drugs that 

are free from side effects which are largely associated with synthetic chemical 

products (Kutney, 1993 and Pras et al., 1995).  Pras et al. (1995) reports advantages 

of using plant enzymes in drug synthesis; they have the ability to catalyse the 

reactions stereospecifically to produce chirally pure products.  In addition, plant 
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enzymes can perform regiospecific modifications that are not easily carried out by 

chemical synthesis or by microorganisms.  Kutney (1993) reports that the World 

Health Organisation (WHO) has paid special attention to two of the therapeutically 

important groups of natural plant products namely the podophyllotoxin and the 

catechols including L-DOPA.  Podophyllotoxin and related ligands are used as 

starting compounds for the synthesis of anti-tumour drugs.  There are a few reports 

on L-DOPA drug synthesis by bioconversion using bacterial cells or plant cell 

cultures.  Wichers et al. (1983) used cells of M. pruriens immobilised in calcium 

alginate to bioconvert L-tyrosine to L-DOPA.  There are also reports on biosynthesis 

of L-DOPA from tyrosine using enzyme tyrosine phenol-lyase (TPL).  TPL normally 

catalyses the degradation of L-tyrosine to pyruvate, phenol and ammonia (Tsuchida 

et al., 1994).  This reaction is reversible and L-DOPA is produced when catechol is 

substituted for phenol, hence maintaining high concentrations of the substrates 

(pyruvate, catechol and ammonia), drives the equilibrium towards formation of L-

DOPA (Enei and Yamada, 1986; Foor et al., 1993; Tsuchida et al., 1994).  In another 

study, Chattopadhay and Arail (1990) reported using tyrosine hydroxylase of 

Aspergillus terreus to bioconvert L-tyrosine to L-DOPA, although the procedure 

requires sophisticated control measures to prevent further oxidation of L-DOPA by 

the enzyme to L-2, 3, 4-trihydroxy phenylalanine.  Lee and Xun (1998) reported 

obtaining relatively high levels of L-DOPA by incubating  E. coli cells of strain W 

(ATCC 11105) suspended in Luria-Bertani (LB) medium with 1 mM L-tyrosine for 2 h 

and the supernatant were analysed by HPLC.  The compound was eluted at 3.5 min 

and had a peak maximum of 280 nm which is a typical of authentic L-DOPA.  The E. 

coli strain W has a broad substrate range enzyme p-hydroxyphenylacetate 3-

hydroxylase which only recognises a hydroxyl group attached to an aromatic ring 
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and it catalyses its further hydroxylation, hence it is capable of bioconverting L-

tyrosine to L-DOPA and the energy for the process is derived from oxidation of 

NADH.  Glycerol was thus added to the incubation medium to maintain the reducing 

potential inside the cells so that NADH could be regenerated (Lee and Xun, 1998).  

On an industrial perspective using plant enzymes in bioconversion to produce 

pharmaceuticals, Pras et al. (1995) reported that phenoloxidase isolated from cell 

cultures of M. pruriens can be used to produce a new pharmaceutical, the 

dopaminergic agent 7, 8 dihydroxy N-di-n-propyl 2-aminotetralin (7, 8-(OH)2DPAT) 

by regiospecific hydroxylation of the synthetically prepared precursor 7-hydroxy N-di-

n-propyl 2-aminotetralin (7-OH DPAT). 

Plants have the potential to of being a major source for novel enzymes, 

pharmaceuticals or chemical models for drugs in the coming centuries because the 

chemistry of the majority of plants is yet to be characterised (Cox and Balick, 1994).   

 

 

5.1.3: Aims and objectives of Chapter 5. 

 

The aim of this chapter was to express the DOPA/tyrosine decarboxylase fusion 

protein (Mp-TY/DDC) using bacterial cells.  This involved isolation and sequencing 

the putative full-length Mp-ty/ddc gene and then cloning the gene in a protein 

expression vector (pET21b) using bacterial cells.  Further aims were to establish the 

optimal conditions for inducing expression of the gene product and to determine its 
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enzyme properties.  This involved establishing the specific substrate(s) requirements 

for enzyme action and the subsequent product(s) formed.  
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5.2: MATERIALS AND METHODS.  

 

5.2.1: DOPA/tyrosine decarboxylase expression in E. coli. 

 

5.2.1.1: Cloning of Mp-ty/ddc into an expression vector. 

 

To express the recombinant DOPA/tyrosine decarboxylase in vitro required; the Mp-

ty/ddc which encodes for the recombinant protein to be cloned on a protein 

expression vector in a bacterial cells as described below.  Putative full length ORF of 

Mp-ty/ddc gene (1.45 kb) was PCR amplified from a pZERO-T plasmid carrying an 

1.727 kb Mp-ty/ddc (See Chapter 4 Section 4.3.5) using  primers; F(PET-DC): 5’-

TAGAATTCATTGATTTCCTTGCTG-3’ and R(PET-DC): 5’-

ATCTCGAGCCTAACAGAGAATTGG-3’ at annealation temperature of 58 ˚C.  The 

primers were designed to incorporate flanking 5’ EcoRI and XhoI restriction 

endonuclease sites, and which enabled directional cloning of PCR products in the 

pET21b expression vector.  The primers were used to PCR amplify the Mp-ty/ddc 

gene region between the putative 5’ end translation start codon at position 37 bp and 

position 1.45 kb adjacent to the stop codon as described below.  The PCR was 

performed following the method described in the protocol for Phusion high-fidelity 

DNA polymerase (NEB, UK).  The enzyme performs DNA sequence proof-reading 

during thermocycling and produces blunt ended PCR products.  The reaction mix 

was setup as follows; Phusion high fidelity buffer (5 X; 10 µl), dNTPs (10 mM; 1 µl), 

F(PET-DC) (10  µM; 2.5 µl), R(PET-DC) (10 µM; 2.5 µl), Template DNA (80 ng), Phusion 

DNA polymerase (1 U), and the total volume was made up to 50 µl using sterile 
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distilled water.  Thermocycling was then performed using a PTC-100 thermocycler 

(MJ Research Inc., Waltham, USA) and the amplification was conducted following 

the thermal profile: Initial denaturation at 98 ˚C for 30 sec; 35 cycles (98 ˚C; 10 sec, 

60 ˚C; 30 sec, 72 ˚C; 30 sec) and final extension at 72 ˚C for 10 minutes.  

Simultaneously, a pZERO-2 plasmid (Invitrogen, USA) restriction digested at the 

EcoRV site to enable blunt end ligation of PCR products.  The digestion reaction was 

set up as follows; pZERO plasmid DNA (1 µg), EcoRV (2 units) (NEB), NEB buffer 3 

(10 X) and the volume was made up to 25 µl using sterile distilled water.  The 

reaction was incubated at 37 ˚C for 2 hours.  The plasmid vector was analysed on 

ethidium stained agarose gel by electrophoresis as described in Chapter 2 Section 

2.2.7 and was then purified from the gel as described in Chapter 2 Section 2.2.9.  

The 1.45 kb Mp-ty/ddc ORF amplified by phusion PCR was then blunt ligated into 

the prepared EcoRV site of pZERO plasmid vector as follows; pZERO-2 (Invitrogen, 

USA) (100 ng), T4 ligation buffer (Promega, Madison, WI, USA) (10X; 1 µl) and T4 

ligase (Promega, Madison, WI, USA) (1 U).  The ligation reaction volume was made 

up to 10 µl, mixed by vortexing and centrifuged for 30 sec at 8,000 X g using a 

microcentrifuge (Biofuge 13, Heraeus Instruments, Germany).  The reaction was 

then incubated at 4 ˚C overnight.  The ligation reaction was then transformed in 

EcoliDH5α and cloned (See Chapter 2 Section 2.2.14).  The plasmid was then 

purified (See Chapter 2 Section 2.2.16) and sequenced as described in Chapter 2 

Section 2.2.19.  The plasmid sample confirmed to harbour the Mp-ty/ddc clone was 

then restriction digested using EcoRI and XhoI enzymes and consequently released 

the 1.45 kb Mp-ty/ddc transgene.  The transgene was then directionally cloned in the 

EcoRI and XhoI restriction sites of a prepared pET21b plasmid as described in 

Chapter 2 Section 2.2.14 (Figure 5.3).  The resulting recombinant plasmid DNA 
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(pET-Mp-ty/ddc) was then transformed in bacterial strains; BL21(DE3) (Novagen, 

USA) and Tuner 2 (Novagen, US) as described in Chapter 2 Section 2.2.4 for in vitro 

protein expression analysis as described in Section 5.3.1.2 below.  BL21 (DE3) 

strain was designed for protein overexpression and is especially useful for proteins 

produced at very low concentrations (BL21 user manual, Novagen, USA).  On the 

other hand, Tuner 2 strain is a lac ZY deletion mutant of BL21 which enable 

adjustable levels of protein expression throughout all cells in culture (Tuner 2 user 

manual, Novagen, USA).  The lac permease (lac Y) mutation allows uniform entry of 

IPTG into cells in the population.  This allows induction with IPTG to occur in a true 

concentration-dependent fashion that is exceptionally uniform throughout the culture.   

 

  

          

 

 

Figure 5.3 A schematic diagram showing the steps involved in building the pET21b-Mp-TY/DDC 

recombinant expression vector.  The 1.45 kb Mp-ty/ddc ORF was cloned in the EcoRV site of pZERO 

plasmid vector (1-2) and the transgene was confirmed by sequencing before it was directionally 

cloned in a pET21b vector plasmid (3) for protein expression analysis using bacterial cells. 
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5.2.1.2: Induction of Mp-TY/DDC fusion protein expression in E. 
coli. 

 

The effective IPTG concentration for induction of DOPA/tyrosine decarboxylase 

fusion protein (Mp-TY/DDC) expression was determined by conducting an assay for 

IPTG/bacterial growth culture temperature as follows: LB medium (100 ml) 

supplemented with 50 mg l-1 ampicillin was inoculated with an overnight fresh single 

bacterial colony of BL21 (DE3) (Novagen) or Tuner 2 (Novagen); harbouring a 

protein expression vector carrying an Mp-ty/ddc cloned gene (pET21b-Mp-ty/ddc).  

The negative control experiment was set as described above but the BL21 (DE3) or 

Tuner 2 cells harboured a pET21b plasmid without a transgene clone.  The bacterial 

cultures were grown at temperature assays of; 18, 22, 25, 30 and 35 ˚C with shaking 

at 225 rpm in a rotary shaker (Gallenkamp cooled orbital incubator, UK) until the 

O.D600nm was 0.6 measured using a UV/VIS Spectrophotometer model Sp8-400, 

(Pye Unicam, UK).  IPTG assay of; 0.1, 0.2, 0.3, 0.4 and 0.5 mM was added to the 

bacterial cultures in order to determine the effective concentration required for 

induction of the recombinant protein expression.  The bacterial cultures were further 

incubated at the respective temperature assays (18 – 35 ˚C) with shaking at 225 rpm 

in a rotary shaker (Gallenkamp cooled orbital incubator, UK).  During the bacterial 

growth, 1 ml samples were corrected at hourly intervals for 18 h.  The samples were 

then centrifuged at 8,000 xg using a microcentrifuge (Biofuge 13, Heraeus 

Instruments, Germany) for 3 minutes and pellets kept at -80 ˚C prior cell lysis.  The 

bacterial pellet were resuspended in a buffer; Bis-Tris (Sigma) (50 mM; 200 µl; pH 7) 

and EDTA (1 mM) was added to stop protease activity.  The protein concentration of 

the samples was determined by conducting a Bradford assay as described in 

Section 5.2.1.3 below.  An equal volume of 2 X protein loading dye (4% SDS, 20% 
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glycerol, 10% β-mercaptoethanol, 0.004% Bromophenol blue and 0.125 M Tris-HCl; 

pH 6.8) was added and the mixture was boiled for 6 minutes.  The samples were 

then briefly centrifuged for 30 seconds to minimise the condensation effect. 

Recombinant protein expression was determined by analysing 20 ng of total extract 

protein by SDS-page gel electrophoresis described in Chapter 2 Section 2.2.20.  

 

 

 5.2.1.3: Bradford – BSA Protein assay. 

 

The protein concentration of the protein produced by the bacterial cultures was 

determined by following the method described in the Bradford BSA microassay 

protocol (Bio-Rad, USA) as follows: BSA (10 mg ml-1) was used to prepared 

standard BSA protein samples at concentrations (mg ml-1) of; 2, 1.5, 1.0, 0.75, 0.25 

0.125 and 0.  The standard BSA (10 µl), blank (experimental control) (10 µl)  and 

protein extract samples (10 µl)  of unknown concentration were added to separate 2 

ml cuvettes containing mixture of double distilled water (800 µl) and Bradford reagent 

(200 µl).  The samples were incubated for 5 minutes at room temperature (22˚C) 

before the respective absorbance (O.D595 nm) for each was measured using a UV/VIS 

Spectrophotometer model Sp8-400 (Pye Unicam, UK).  A standard curve of O.D595 

nm values (Y-axis) against protein concentration in µg ml-1 (X-axis) was plotted.  The 

concentrations for the protein extract samples were determined using the standard 

curve.  In cases where the samples were diluted, the protein concentrations 

determined from the standard curve was adjusted by multiplying the dilution factor 

used.  
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5.2.1.4: Expression and detection of recombinant protein in the 
soluble and insoluble fractions of bacterial host cells. 
 
 

This experiment was to determine whether recombinant protein (Mp-TY/DDC) was 

expressed in the cytosol (as soluble protein fraction) or in globular membrane bodies 

(as insoluble protein fraction) of the bacterial host cells.  The experiment was 

performed by following in the method by Sambrook et al., (1989) with modifications 

as described below.  

 

A single bacterial colony of BL21 (DE3) or Tuner 2 bacterial cells harbouring a 

pET21b-Mp-ty/ddc protein expression plasmid (or pET21b plasmid for the 

experimental control) was inoculated on 5 ml LB media supplemented with 50 mg l-1 

Ampicillin and grown overnight at 22 ˚C in a rotary shaker at 225 rpm.  The overnight 

culture was then inoculated on 100 ml LB media supplemented with 50 mg l-1 

Ampicillin and grown at 22 ˚C in a rotary shaker at 225 rpm up to O.D600 nm of 0.6.  

The bacterial culture was then supplemented with 0.4 mM IPTG to induce 

expression of the Mp-TY/DDC recombinant protein and was then allowed to continue 

growing at 22 ˚C with shaking at 225 rpm as described above.  Samples (50 ml) 

were collected after 1 and 2 hours and were centrifuged at 3,000 xg using a 

centrifuge (Beckman Coulter Avanti J-E, USA) at 4 ˚C for 10 minutes to remove the 

medium.  The bacterial pellets were resuspended in Bis-Tris buffer (Sigma) (50 mM; 

5 ml; pH 7.2) and EDTA (1 mM) and were then lysed using lysozyme (Sigma) (2 mg 

ml-1) which was added and incubated with the mixture for 20 minutes on ice.  The 

bacterial cells were further lysed by sonication at 10,000 Amps using a Sonicator 

(Model-XL 2020, Pharmacia Biotech, Sweden) for 8 seconds at a time followed by 

cooling on ice and the process was continued until the bacterial mixture formed a 
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clear solution.  The bacterial solution was then centrifuged at 8,000 xg using a 

microcentrifuge (Biofuge 13, Heraeus Instruments, Germany) for 10 minutes.  The 

supernatant (soluble protein fraction) was put in a new tube whereas the pellet 

(insoluble protein fraction) was resuspended in Bis-Tris buffer (Sigma) (50 mM; 5 ml; 

pH 7.2) and EDTA (1 mM).  The absorbance for protein samples was taken at 0.D595 

nm using a UV/VIS Spectrophotometer model Sp8-400, (Pye Unicam, UK).  The 

protein samples (10 µg) were then analysed by SDS page gel electrophoresis as 

described in Chapter 2 Section 2.2.20 to determine whether the recombinant Mp-

TY/DDC was expressed in the soluble or insoluble protein fraction.  This experiment 

provides vital data because enzymatically active proteins are reported to be in the 

cytosol (soluble protein fraction) (Sambrook et al., 1989).  However, this 

experimental method could not adequately detect fusion proteins expressed at very 

low concentrations.  In light of the above, a Western blot analysis was performed to 

investigate the possibility of Mp-TY/DDC fusion expression in the soluble fraction at 

a very low concentration as described in Section 5.2.1.5 below.  

 

 

5.2.1.5: Western blot analysis of Mp-TY/DDC fusion protein 
expression. 
 

Western blot (Immunoblot) analysis refers to size-based separation of proteins by 

SDS gel electrophoresis followed by transfer onto a membrane and detection of 

specific proteins using an antibody or a protein stain (Sambrook et al., 1989; Dale 

and von Schantz, 2002).  Immunoblot detection by antibodies is very sensitive and 

hence was used to detect the very low concentrations of Mp-TY/DDC fusion protein 

expressed in the soluble fraction of protein extracts from transformed bacteria cells 

as described below.  
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Bacterial cultures (50 ml) were grown and induced as described in Section 5.2.1.4 

and the cells were pelleted at 3,000 X g for 10 minutes using a 4 ˚C centrifuge 

(Beckman Coulter Avanti Model J.E, USA).  The bacterial pellet was then 

resuspended in 5 ml of lysis buffer; Bis-Tris (50 mM; pH7) and EDTA (1 mM) and 

were lysed using lysozyme (1 mg l-1) for 20 minutes on ice.  The cells were further 

lysed by sonication as described in Section 5.2.1.4.  The lysate was spun at 8,000 X 

g for 5 minutes using a 4 ˚C centrifuge (Beckman Coulter Avanti Model J.E, USA) 

and the supernatant (soluble fraction) was collected.  The protein concentration was 

determined from the standard graph of BSA as described in Section 5.2.1.3.  Protein 

samples (20 µg) was analysed by SDS page as described in Chapter 2 Section 

2.2.20.  The protein samples were then transferred onto a hybond membrane 

(Amersham, USA) for probing with an antibody as described below.  A western blot 

cassette (Bio-Rad, USA) was placed with the gray side down, on a lean surface.  A 

fiber pad (Bio-Rad) of same size as the gel was pre-wetted in protein transfer buffer 

(10% Methanol; 24 mM Tris; 194 mM Glycine) was placed on the gray side of 

Western blot cassette (Bio-Rad, USA).  A sheet of Whatman filter paper (3 mm) of 

the same size as the gel and pre-soaked in transfer buffer was placed on the fiber 

pad.  Then the SDS page gel pre-washed in transfer buffer was placed on the filter 

paper and on top of it a pre-wetted hybond membrane (Amersham, USA) was 

carefully placed.  The gel sandwich was completed by placing a piece of filter paper 

on the membrane.  Care was taken to remove air bubbles.  The last fiber pad was 

then placed on top the filter paper.  The Western blot cassette was then closed firmly 

using latch.  The cassette was placed in the electrophoretic tank together with a 

frozen bio-ice cooling unit.  The tank was completely filled with the protein transfer 

buffer.  A magnetic stirrer was added to maintain uniform buffer temperature and ion 
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distribution in the tank.  The protein transfer was performed at 100 V; 350 mA for 1 

hour after which the blot sandwich was unclamped and the side facing the 

membrane blot was marked.  The target proteins were detected using their 

respective specific antibodies as described below.  The membrane was blocked from 

non-specific binding by antibodies by immersing it in Tris-saline base buffer (TBS) 

(150 mM NaCl; 10 mM Tris, pH 8), supplemented with 5% non-fat dry milk powder 

and 0.05% Tween-20 and overnight at 4 ˚C with gentle shaking.  The membrane blot 

was then washed in TBS supplemented with 0.05% Tween-20 (TBS-T) for 10 

minutes, three times.  The membrane blot was then incubated with a primary 

antibody; His-Tag antibody, mAb, Mouse (0.2 µg ml-1) (GenScript, USA) in TBS-T 

supplemented with 1% BSA for 1 hour at room temperature.  Consequently the 

membrane blot was washed in TBS-T supplemented with 0.05% Tween-20 for 10 

minutes, three times before incubation with a secondary antibody; Alkaline 

phosphatase-conjugated goat anti-mouse IgG (Promega) (0.2 µg ml-1) for 1 hour at 

room temperature.  The membrane was again washed in TBS-T for 10 minutes, 

three times before it was developed as described in the method for alkaline 

phosphate detection as follows.  NBT: [70% (v/v) Dimethylformamide; 66 µl], BCIP 

[100% (v/v) Dimethylformamide; 33 µl], was added to alkaline phosphatase (AP) 

detection buffer: [NaCl (100 mM); MgCl2 (5 mM); Tris (100 mM); pH 9.5; 9.9 ml].  The 

resulting solution was poured over the membrane blot placed in a shallow basin and 

was incubated for 30 seconds to allow the secondary antibody to bind to the primary 

antibody.  The reaction was stopped by rinsing the membrane blot in water or EDTA 

(0.5 mM) and the membrane blot was scanned.   
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5.2.1.6: In vivo Mp-TY/DDC enzyme activity assay. 

 

In vivo Mp-TY/DDC enzyme activity assay was performed to investigate the putative 

enzymatic properties for the Mp-TY/DDC fusion protein extract in vivo.  This involved 

extraction of the soluble protein fraction from transformed bacterial cells expressing 

the Mp-TY/DDC fusion protein as described in Section 5.2.1.4.  The Mp-TY/DDC 

fusion protein was then probed for enzymatic activity by treatment with putative 

substrates; L-DOPA and L-tyrosine and other related compounds such as dopamine.   

The experiment was performed as described in the method by Facchini and De 

Luca, (1994) with modifications as follows.  A single colony of the transformed 

bacteria; BL21(DE3) and Tuner 2 (Novagen, USA), harbouring protein expression 

plasmid (pET21b-Mp-TY/DDC), which carries an Mp-ty/ddc transgene insert were 

separately inoculated on 200 ml LB medium supplemented with Ampicillin (50 mg/l).  

A control experiment was set up as described above but the bacteria harboured a 

pET21b plasmid which had no transgene clone.  The bacteria cultures were grown at 

22 ˚C with shaking at 225 rpm in a rotary shaker (Model G25, New Brunswick 

Scientific co.inc, USA) until the O.D600 was 0.6.  Expression of the Mp-TY/DDC 

fusion protein was induced by addition of IPTG to a final concentration of 0.4 mM.  

After 1 and 2 hours of induction by IPTG, 100 ml culture media samples were taken 

and the cells collected using a 4 ˚C centrifuge (Beckman Coulter Avant Model J.E, 

USA) at 3,000 X g for 5 minutes.  The bacterial cells were resuspended in Bis-Tris 

(200 mM; 5 ml, pH 7.2) and lysed by sonication (Model-XL 2020, Pharmacia Biotech, 

Sweden) for 4 - 8 seconds at a time followed by cooling on ice.  This process was 

continued until the bacterial mixture formed a clear solution.  The cell debris was 

removed by centrifugation at 8,000 X g for 5 minutes at 4 ˚C.  The assay mixture for 

decarboxylase activity contained Bis-Tris (50 mM; pH 7.2), EDTA (1 mM), PLP (25 
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µM), an assay of either cold L-DOPA, tyrosine or dopamine (0.25, 0.5, 0.75 and 1 

mM), and fusion protein extract (250 and 500 µl) in a total volume of 1 ml.  All 

reactions were incubated for 1 hour at 35 ˚C with constant agitation at 100 rpm.  The 

reactions were stopped by addition of 0.2 M formic acid and agitated for an 

additional 1 hr.  The supernatant was collected using microcentrifuge (Heraeus 

Instruments Biofuge 13, Germany) at 8,000 X g for 3 minutes at room temperature.   

Triplicate samples (1 ml) of the supernatant were analysed by Reverse phase-HPLC 

(Thermo Separation products, USA) to determine the bioconversion products as 

described Chapter 3 Section 3.3.3.2.  The enzyme assays thus served to determine 

whether the Mp-TY/DDC fusion protein extract exhibited the expected decarboxylase 

activity in vivo.  Besides the in vivo enzyme assay, it was also prudent to determine 

whether Mp-TY/DDC fusion protein exhibited decarboxylase activity in situ using 

bacterial host cells as described in Section 5.2.1.7 below.  

 

 

5.2.1.7: Precursor additions to bacteria cell cultures. 

 

To determine whether Mp-TY/DDC fusion protein exhibited decarboxylase activity in 

situ, transformed bacteria culture were precursor-fed and then the bioconversion 

products were analysed by RP-HPLC as described below.  Bacterial cultures were 

grown and induced as described in Section 5.2.1.6.  After 1 and 2 hours of induction 

with IPTG, the bacterial cells were pelleted by centrifugation at 3,000 xg for 5 

minutes using a 4 ˚C centrifuge (Beckman Coulter Avanti model J.E, USA).  The 

bacterial cells were then resuspended in Bis-Tris (50 mM; pH 7.2), EDTA (1 mM) 

and exogenous L-DOPA (1 mM) or L-tyrosine (1 mM) or dopamine (1 mM) were 

added to the respective assays.  The energy required for Mp-TY/DDC enzymatic 
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hydroxylation of L-tyrosine to L-DOPA in bacterial cells is derived from oxidation of 

NADH (Lee and Xun, 1998).  Glycerol (5%) was thus added to the L-tyrosine-fed 

bacterial culture to maintain the reducing potential inside the cells to regenerate 

NADH (Lee and Xun, 1998).  Cultures were grown at 22 ˚C with shaking at 225 rpm 

for 2, 4, 6 and 8 hour in the presence of exogenous substrates.  Subsequently, 

medium samples were collected after removal of cells by 4 ˚C centrifugation 

(Beckman Coulter Avanti Model J.E, USA) at 3,000 xg for 10 minutes.  Cell pellets 

and medium samples were frozen separately at -80 ˚C until analysed.  The medium 

sample (1 ml) was analysed by Reverse phase-HPLC (Thermo Separation products, 

USA) as described Chapter 3 Section 3.3.3.2 to determine the bioconversion 

products.  In situ decarboxylase activity by Mp-TY/DDC fusion protein in bacterial 

host cells was confirmed in cases when bioconversion of L-DOPA to dopamine or L-

tyrosine to tyramine occurred (Facchini, 2001). 
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5.3: RESULTS.  

 

 
5.3.1: Designing and building the Mp-TY/DDC-pET21b 
expression construct. 
 
 
A 1.45 kb PCR product of Mp-ty/ddc ORF (Figure 5.4) was successfully isolated from 

pZERO-T carrying 1.727 kb Mp-ty/ddc putative full-length sequence using Mp-ty/ddc 

gene specific primers F(PET-DC) and R(PET-DC) (See Section 5.2.1.1).  The 1.727 kb Mp-

ty/ddc full-length sequence data was prior to this experiment confirmed as described 

in Chapter 4 Section 4.3.5. 

 

 

 

Figure 5.4 Shows 1.45 kb PCR products of Mp-ty/ddc  ORF  isolated from  pZERO-T carrying 1.727 

kb putative length of Mp-ty/ddc.  

 

 

Initially the PCR product was blunt ligated into the EcoRV site of pZERO vector. 

Following transformation into E. coli DH5α cells, 7 positive colonies were identified 

by colony PCR (Figure 5.5).      
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(a)                                                                                        (b) 

 

Figure 5.5 Colony PCR products of Mp-ty/ddc in were amplified using the (a) T7 and Sp6 primers 

(lanes 1, 2, 4 - 8). (b) Mp-ty/ddc gene specific primers (5’-ctctggtgagggtggtgg-3’ and 5’-

gtaagctgcatctacgtgga-3’) (lanes 2-4).  The positive control colony PCR was performed a pZERO-T-

Mp-ty/ddc plasmid template using T7 and Sp6 primers (lane 9). 

 

 

Plasmid DNA was extracted from the positive clones and the insert size was further 

confirmed by EcoRI and XhoI restriction digestion which released a 1.45 kb fragment 

(Figure 5.6).  

 

 

 

 Figure 5.6 Shows 1.5 kb Mp-ty/ddc fragment released from pZERO-Mp-ty/ddc by EcoRI and XhoI. 
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The restriction fragment was then directional cloned in EcoRI and XhoI sites of  the 

protein overexexpression vectors (pET21b) using BL21(DE3) (Novagen, USA) and 

Tuner 2 (Novagen, USA).  Colony PCR products (1.5 kb) was obtained (see Figure 

5.7) upon using gene specific primers; 5’-TAGAATTCATTGATTTCCTTGCTG-3’ and 

5’-ATCTCGAGCCTAACAGAGAATTGG-3’ at annealation temperature of 58 ˚C.  

 

                                     

(a)                                                                                        (b) 

 

Figure 5.7 Shows (a) Colony PCR products (1.5 kb) amplified from E.coli strain BL21(DE3) 

transformed with the pET21b-Mp-tyddc plasmid (lanes 1-3).  (b) Shows 1.45 kb (~1.5 kb) of the 

cloned Mp-ty/ddc gene recovered from the 5.4 kb pET21b plasmid by EcoRI and XhoI restriction 

digestion. 

 

 

Sequencing confirmed in frame fusion of the 1.45 kb Mp-ty/ddc ORF into the pET21b 

protein expression vector.  The translation start codon on the pET21b vector was in 

frame with the N-terminus for the Mp-TY/DDC sequence (Figure 5.8 a).  Like wise 

the C-terminal for the Mp-TY/DDC sequence was in frame with the His-tag domain 

and the translation stop codon on the pET21b vector (Figure 5.8 b).  The expressed 

protein was therefore a fusion protein produced using bacterial host cells; 

BL21(DE3) and Tuner 2 (Novagen,USA) as described in Section 5.2.1.4.  
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Figure 5.8 Protein sequence shows (a) the N-terminal methionine on the pET21b vector is in frame 

with the N-terminus for the Mp-TY/DDC sequence.  (b) The C-terminal sequence for Mp-TY/DDC is in 

frame with the His-tag domain and the translation stop codon on the pET21b expression vector. 

 
 

Analysis of the Mp-TY/DDC fusion protein sequence on the Protein data bank (PDB) 

(http://www.rcsb.org/pdb/home/home.do) drew very significant alignments in 13 

http://www.rcsb.org/pdb/home/home.do
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unique sequences of dopa decarboxylase.  In addition, despite the lack of Mp-

TY/DDC data on the PDB, a crystal structure analysis of Mp-TY/DDC sequence on 

PDB drew significant similarity with the human (Homo sapiens) aromatic dopa 

decarboxylase (Structure reference: 3RBF on PDB) (Figure 5.9).  Consequently 

analysis of the Mp-TY/DDC protein sequence using BLAST on the NCBI data bank, 

drew 41% homology with the human (Homo sapiens) aromatic dopa decarboxylase. 

 

             

 

Figure 5.9 Crystal structure of Human aromatic L-amino acid decarboxylase (AADC) in apo form.  The 

AADC showed very significant alignments with the 13 Mp-TY/DDC conserved entities with the PDB  

(Structure ref:3RBF).  
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5.3.2: DOPA/tyrosine IPTG induction assays. 

The next step was to induce expression of the Mp-TY/DDC to assess its enzyme 

activity.  As described in Section 5.2.1.2 transgenic protein expression was induced 

using IPTG and proteins were visualised on Coomassie stained SDS-PAGE gels.  In 

an initial experiment cultures were grown at 22 ˚C, induced with 0.5 mM IPTG and 

sampled over an 18 h period.  After 3 h of induction a band of 56 kD corresponding 

to the expected size of the Mp-TY/DDC protein was clearly seen in the insoluble 

fraction of induced but not uninduced cultures (Figure 5.10 a).  Protein levels 

increased up to 5 h after induction but no further induction was seen after 5 hours 

(Figure 5.10 b).  

 

 

(a)                                                                  (b) 

 
Figure 5.10 A band of recombinant Mp-TY/DDC (56 kd) was clearly visible in the insoluble protein 

fraction expressed after 3 hours of induction with 0.5 mM IPTG, at 22 ˚C in E. coli BL21 (DE3).  

Induction was performed for 18 h and the samples for analysis were taken at 1 h (U-1, I-1), 2 h (U - 2, 

I - 2), 3 h (U - 3, I - 3), 4 h (U - 4, I - 4), 5 h (U - 5, I - 5), where U represents “un induced” while I is for 

Induced samples.  (Gels after 7 - 18 h of induction were not shown here). 

 

 
The results showed that induction conditions for expression of the Mp-TY/DDC 

fusion protein in the insoluble protein fraction was achieved by: Culturing the 
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BL21(DE3) bacterial cells in LB media at 22 ˚C with shaking at 225 rpm up to  -

O.D600 of 0.6, followed by induction using 0.5 mM IPTG for 3 - 5 hours.  However, for 

the expressed protein to be enzymatically active, it should be expressed in the 

soluble protein fraction found in the cytosol (Sambrook et al., 1989).  The next step 

therefore was to determine the conditions for Mp-TY/DDC fusion protein expression 

in the soluble fraction  as described in Section 5.3.3 below.  

 

 

 

5.3.3: Expression and detection of Mp-TY/DDC fusion 
protein in the soluble fraction (Cytosol). 
 
 
Putative DOPA/tyrosine decarboxylase was isolated from M. pruriens as described in 

Section 5.2.1.1, cloned and expressed in pET21b plasmid using bacterial cultures of 

BL21(DE3) and Tuner 2 (Novagen, USA) as described in Section 5.2.1.2.  However, 

Sambrook et al., (1989) reported that functional fusion proteins are expressed in the 

soluble fraction (cytosol) and that IPTG concentration and culture temperature 

influence nature of the fusion protein.  Consequently, an IPTG assay (0.1 - 0.5 mM) 

was performed at 18 ˚C, 22 ˚C, 25 ˚C, 30 ˚C and 35 ˚C to determine the 

concentration which could influence expression of the Mp-TY/DDC in the soluble 

fraction.  The results obtained from analysis by SDS page gel electrophoresis 

showed no expression of the 56 kd Mp-TY/DDC protein fusion in the soluble fraction 

for all IPTG assay concentrations at temperatures; 18 ˚C, 25 ˚C, 30 ˚C and 35 ˚C.  

However, the 56 kd Mp-TY/DDC fusion protein was expressed in the control 

experiment of insoluble fraction at IPTG concentrations of 0.3 - 0.5 mM (Figure 

5.11). 
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Figure 5.11 SDS page gel shows the 56 kd Mp-TY/DDC fusion protein expression in the IPTG 

induction assay at 35 ˚C using E.coli BL21 (DE3) culture.  Lane 1 is the protein size marker (Bio-Rad), 

lane 2 (un induced insoluble fraction), lane 3 (insoluble fraction induced by 0.4 mM IPTG), lane 4 

(insoluble fraction induced by 0.3 mM IPTG), lane 5 (un induced soluble fraction), lane 6 (soluble 

fraction induced by 0.3 mM IPTG for 1 h), lane 7 (soluble fraction induced by 0.3 mM IPTG for 2 h), 

lane 8 (soluble fraction induced by 4 mM IPTG for 1 h), lane 9 (un induced soluble fraction).  

 
 
 

On the other hand, a very faint band which corresponds to the predicted molecular 

weight of Mp-TY/DDC fusion protein seemed to appear in the soluble fractions of the 

0.3 mM IPTG assays induced for 1 and 2 hours at 22 ˚C (Figure 5.12; lanes 6 and 7 

respectively). 

 

 

 

 

 

Figure 5.12 SDS page gel shows the 56 kd Mp-TY/DDC fusion protein expression in the IPTG 

induction assay at 22˚C using E.coli BL21 (DE3) culture.  Lane 1 is the protein size marker (Bio-Rad), 

lane 2 (un induced insoluble fraction), lane 3 (56 kd Mp-TY/DDC insoluble fraction induced by 0.4 mM 

IPTG), lane 4 (56 kd Mp-TY/DDC insoluble fraction induced by 0.3 mM IPTG), lane 5 (un induced 

soluble fraction), lane 6 - 7 (a faint 56 kd soluble fraction Mp-TY/DDC induced by 0.4 mM IPTG for 1 h 

and 2 h respectively), lane 8 (soluble fraction induced by 0.3 mM IPTG for 1 h), lane 9 (un induced 

soluble fraction).    
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Following lack of substantial detection of Mp-TY/DDC fusion protein expression in 

the soluble fraction of E.coli BL21(DE3) cultures through induction by IPTG assays 

at different temperatures as described in Section 5.2.1.4.  The experiments were 

repeated as described above but using a different bacterial strain, Tuner 2 

(Novagen,USA).  The lac permease (lac Y) mutation characteristic of Tuner 2 

(Novagen, USA) bacterial strain made its membranes to be uniformly permeable to 

IPTG and hence more responsive to varying IPTG assay concentrations during 

induction of fusion protein expression experiments (Tuner 2 user manual, Novagen, 

USA).  The Tuner 2 bacteria harbouring a pET21b-Mp-TY/DDC plasmid however did 

not express explicitly the 56 kd fusion protein in the  soluble fraction of all cultures in 

the IPTG assay based on analysis by SDS page electrophoresis (see Chapter 2 

Section 2.2.20).  In addition, the Mp-TY/DDC fusion protein expression in the 

insoluble fraction of Tuner 2 cultures assays was weak when compared to that 

obtained from coressponding BL21(DE3) cultures based on analysis by SDS page 

electrophoresis (Figure 5.13). 

 

 

 

                         

 

Figure 5.13 SDS page gel shows the 56 kd Mp-TY/DDC fusion protein expression in the IPTG 

induction assay at 22 ˚C using Tuner 2 bacterial culture.  Lane 1 is the protein size marker (Bio-Rad), 

lane 2 (insolube fraction induced by 0.3 mM IPTG), lane 0.3 (un induced insoluble fraction), lane 4 

(soluble fraction induced by 0.3 mM IPTG for 2 h), lane 5 (un induced soluble fraction), lane 6 - 7 

(insoluble fraction induced by 0.3 mM IPTG for 1 and 2h respectively), lane 8 (un induced soluble 

fraction), lane 9 (soluble fraction induced by 0.3 mM IPTG for 2 h). 
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Similarly induction by an IPTG assay at temperatures of 25 ˚C, 30 ˚C  and 35 ˚C did 

explicitly result in Mp-TY/DDC fusion protein expression in the soluble fraction based 

on analysis by SDS page gel electrophoresis (Figure 5.14). 

 

 
 

  
 
                 
 
Figure 5.14 SDS page gel shows the 56 kd Mp-TY/DDC fusion protein expression in the IPTG 

induction assay at 35 ˚C using Tuner 2 bacterial culture.  Lane 1 is the protein size marker (Bio-Rad), 

lane 2 (56 kd Mp-TY/DDC induced by 0.3 mM IPTG in insolube fraction), lane 3 (insoluble fraction 

induced by 0.4 mM IPTG), lane 4 (un induced insoluble fraction), lane 5 (insoluble fraction induced by 

4 mM IPTG), lane 6 (soluble fraction induced by 0.4 mM IPTG for 2 h), lane 7 (soluble fraction 

induced by 0.4 mM IPTG for 2 h), lane 8 (un induced soluble fraction), lane 9 (soluble fraction induced 

by 0.3 mM IPTG for 1 h). 

 
 
           
 

In all, the IPTG assays revealed expression of a 56 kd protein band which 

corresponds to the predicted molecular weight of Mp-TY/DDC fusion protein.  The 56 

kd putative Mp-TY/DDC fusion protein band was observed slightly more clearly in the 

soluble fractions of BL21(DE3) cultures induced with  0.4 mM IPTG for 2 h at 22 ˚C 

(Figure 5.11).  In order to explicitly demonstrate expression of the 56 kd Mp-TY/DDC 

fusion protein, a Western blot analysis which enables amplification of expression 

signals of lowly expressed proteins was performed as described in Section 5.2.1.5.  
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5.3.3.1: Detection of Mp-TY/DDC fusion protein in the soluble 
fraction (Cytosol) by Western blot analysis. 
 
 

 
The Western blot analysis was performed to investigate whether the Mp-TY/DDC 

fusion protein was expressed in the soluble fraction produced by transformed 

bacterial cells as described in Section 5.2.1.5.  Western blot analysis is very 

sensitive and was performed it because it could detect very low quantities of 

expressed fusion protein in the soluble fraction of bacterial fusion protein extract 

unlike SDS page electrophoresis (See Chapter 2 Section 2.2.20).  The 56 kd Mp-

TY/DDC fusion protein expression signal was detected in the soluble fraction IPTG 

induced E.coli BL21 (DE3) harbouring a pET21b-Mp-ty/ddc plasmid was detected by 

Western blot analysis (Figure 5.15).  A similar experiment on the control bacterial 

samples harbouring a pET21b plasmid with no insert did not show the Mp-TY/DDC 

fusion protein expression.  However, no Mp-TY/DDC fusion protein signal could be 

detected in the soluble fraction of Tuner 2 b harbouring a pET21b-Mp-TY/DDC 

protein expression plasmid when analysed by a Western blot. 
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                                    1               2                 3                 4 

 
 
Figure 5.15 Western blot shows 56 kd Mp-TY/DDC fusion protein expression signals Lane 1 is a 

protein size marker, lane 2 is positive control sample of insoluble protein fraction of induced bacteria.  

Lane 3 shows no Mp-TY/DDC expression signal in the un induced bacterial cells and lane 4 shows a 

56 kd Mp-TY/DDC fusion protein expression in the soluble fraction. 

 
 
 

5.3.4: In vivo Mp-TY/DDC enzyme activity assay. 

 

The in vivo enzymatic potential for the Mp-TY/DDC fusion protein in the soluble 

fraction of total bacterial protein extract was investigated by incubating the putative 

enzyme with putative substrates; L-DOPA and tyrosine (See Section 5.2.1.6).  The 

bioconversion products generated by in vivo enzyme assays for L-DOPA or tyrosine 

were analysed by Reverse phase-HPLC as described in Section 5.2.1.6.  However, 

analysis by Reverse phase-HPLC on the assay media for L-DOPA, L-tyrosine or 

dopamine substrates incubated with in vivo Mp-TY/DDC fusion protein revealed no 

bioconversion products were formed.  In addition, substrate concentrations in the 

IPTG induced in vivo enzyme assays were identical to those for un induced assays.  
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Figure 5.16 shows the chromatogram and concentration of L-DOPA substrate (1 

mM) was identical in both IPTG induced and the control experiment un induced in 

vivo enzyme assays before and after the experiment.  L-DOPA had a retention time 

of 4.3 minutes and absorption spectra of 280 nm.  Hypothetically, L-DOPA was 

supposed to be bioconverted to dopamine (absorption spectra, 279 nm) whereas for 

L-tyrosine assays, tyramine was the anticipated in vivo bioconversion product but 

was also not detected in assays from any of the IPGT induced samples.  Similar 

results were obtained for IPTG induced assays performed at culture temperatures of 

22 ˚C, 25 ˚C, 30 ˚C and 35 ˚C.   

 

 

 

 

 

(a)                                                                                     (b)  
  

Figure 5.16 Reverse phase-HPLC chromatograms for L-DOPA (1 mM) substrate for in vivo enzyme 

assays of; (a) IPTG induced (b) un induced samples after the bioconversion experiment.  The L-

DOPA concentration in IPTG induced and un induced assays were identical after the bioconversion 

experiment.  L-DOPA had a retention time of 4.3 minutes and absorption spectra of 280 nm.  The 

experiment was performed at 22 ˚C.   
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5.3.5: In situ Mp-TY/DDC enzyme activity assay. 

 

5.3.5.1: Precursor additions to bacteria cell cultures. 

 

To test whether the 56 kd Mp-TY/DDC fusion protein visualised on the SDS-PAGE 

gels was an active DOPA/tyrosine decarboxylase, in situ bioconversion assay were 

performed using transformed bacterial host cells as described in Section 5.2.1.7.  

The transformed bacterial culture; BL21(DE3) and Tuner 2 (Novagen, USA) 

harbouring a pET21b-Mp-ty/ddc plasmid, were precursor fed with exogenous 

putative substrates of  L-DOPA (1 mM), L-tyrosine (1 mM) and dopamine (1 mM) in 

separate assays.  However, analysis by RP-HPLC (See Chapter 3 Section 3.3.3.2) 

of the bacterial culture medium before and after the experiments showed no 

bioconversion products were produced at the end of the experiment.  In addition, the 

concentration of the precursor fed into the culture medium was identical in the IPTG 

induced and the control experiment un induced assay samples.  Similar results were 

obtained for assays performed at culture temperatures; 22, 25, 30 and 35 ˚C.  Figure 

5.17 shows chromatograms of L-tyrosine in culture media of induced and un induced 

samples was identical after the bioconversion experiment. 
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(a)                                                                                    (b)  
 

  
Figure 5.17 Reverse phase-HPLC chromatograms for exogenous L-tyrosine (1 mM) precursor fed to 

transformed bacterial cultures of; (a) IPTG induced (b) un induced assays.  The L-tyrosine substrate 

concentrations were identical for induced and un induced samples after the bioconversion 

experiment.  L-tyrosine had a retention time of 7.5 min and absorption spectra of 274 nm. 
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5.4: DISCUSSION. 

 
 
The aim of this chapter was to express in vivo and to characterise the putative 

DOPA/tyrosine decarboxylase (Mp-TY/DDC) protein from Mucuna pruriens. 

DOPA/tyrosine decarboxylase is one of the aromatic amino acid decarboxylases 

(AADC) found in plants and animals, and share significant sequence homology but 

exhibit different substrate specificities (Facchini, 2001).  Animal AADC demonstrate 

preference for L-DOPA but to a relatively low extent also accept a few other 

substrates such as L-tyrosine, tryptophan derivatives and phenylalanine.  On the 

other hand, plant AADCs exhibit distinct substrate specificity (Facchini and De Luca, 

1994).  In Cytisus scoparius for example, DOPA decarboxylase accepts only L-DOPA 

as a substrate whilst another AADC (tryptophan decarboxylase) in C. roseus exhibits 

substrate specificity for tryptophan (Facchini and De Luca, 1994).  Mp-TY/DDC 

showed very significant homology with DOPA/tyrosine decarboxylase for Glycine 

max and Papaver somniferum (Chapter 4, Figure 4.2).  In addition, fractionation 

analysis by SDS page (See Chapter 2 Section 2.2.20) of heterologously expressed 

total insoluble protein revealed the Mp-TY/DDC fusion protein had a molecular 

weight of 56 kd (Figure 5.11).  The above preliminary findings suggest the Mp-

TY/DDC from M. pruriens is a DOPA/tyrosine decarboxylase.  However, to draw a 

conclusive identity of Mp-TY/DDC, the enzyme properties of Mp-TY/DDC were 

investigated.  This involved heterologous expression of Mp-TY/DDC using bacterial 

cells and determination of the in vivo bioconversion potential of the total soluble 

protein upon treatment with different putative substrates as described in Section 

5.2.1.6.  However, based on fractionation analysis of the total soluble protein extract 

by SDS-page electrophoresis (See Chapter 2 Section 2.2.20), the 56 kd Mp-TY/DDC 
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fusion protein expression band could not be detected or at least clearly (Section 

5.3.4).  However, a Western blot analysis performed as described in Section 5.2.1.5 

revealed expression of the 56 kd Mp-TY/DDC fusion protein in the total soluble 

protein extract heterologously expressed by bacterial culture (See Section 5.3.3.1).  

Expression of Mp-TY/DDC in the total soluble protein extract was a pre-requisite for 

studies on the bioconversion potential of Mp-TY/DDC, because the enzymatically 

active proteins are expressed in the soluble protein fraction (Sambrook et al., 1989).  

However, no Mp-TY/DDC enzyme activity was detected upon treatment of the total 

soluble protein extract neither with L-DOPA, L-tyrosine substrates nor with related 

compounds such as dopamine.  In contrast, DOPA/tyrosine decarboxylases such as 

from P. somniferum which drew homology with Mp-TY/DDC are reported to 

bioconvert L-DOPA and L-tyrosine to dopamine and tyramine respectively (Facchini 

and De Luca, 1994; Facchini, 2001).  Similarly, bacterial cultures harbouring the 

pET21b-Mp-ty/ddc plasmid for Mp-TY/DDC expression did not register bioconversion 

activity when precursor-fed with either L-DOPA or tyrosine.  The observation did not 

conform with reports on bioconversion of L-DOPA and L-tyrosine to dopamine and 

tyramine respectively using bacterial cultures harbouring a plasmid containing a 

cloned DOPA/tyrosine decarboxylase gene (Facchini and De Luca, 1994; Lee and 

Xun, 1998).  The above observations raised questions on the identity of the Mp-

ty/ddc gene coding for the Mp-TY/DDC protein, despite showing significant 

homology with plant DOPA/tyrosine decarboxylases.  However, the predicted crystal 

structure of Mp-TY/DDC based on analysis using the PDB is similar to that for 

human DOPA decarboxylase responsible for conversion of L-DOPA to dopamine 

(Figure 5.10). The finding strongly supports the view that Mp-TY/DDC is a 

DOPA/tyrosine decarboxylase based on the conserved 3 - dimensional structure, in 
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addition to amino acid homology.  Another possible reason for Mp-TY/DDC not to 

show enzyme activity could be born out fact that it was heterologously produced in 

very small quantities which could not be detected clearly by SDS page protein 

electrophoresis (See Chapter 2.2.20).  However, the Western blot analysis capable 

of detecting very low concentrations of protein fusion expression in the total soluble 

protein extract was used to successfully detect the low quantities of Mp-TY/DDC 

expressed (Sambrook et al., 1989).  It is therefore likely that Mp-TY/DDC was 

heterologously expressed in very low quantities which were below the threshold for a 

viable enzyme action.  Besides the above, it was also observed that putative full-

length amino acid sequence of Mp-TY/DDC was approximately 20 amino acids 

shorter at the N-terminal when compared to similar protein sequences which drew 

very significant homology (See Chapter 4, Figure 4.2).  The observation suggests 

probably the Mp-TY/DDC sequence is not entirely complete at the N-terminal and 

possibly this could have an effect on the either the protein folding properties resulting 

in the observed lack of enzyme activity (Dale and von Schantz, 2002). 

 

In a nutshell the possible reasons for the apparent lack of enzyme activity by Mp-

TY/DDC are diverse.  However, the strong coherent evidence based on amino acid 

homology and the predicted crystal structure analysis on PDB suggests 

 Mp-TY/DDC from M. pruriens is likely to be a DOPA/tyrosine decarboxylase. 
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CHAPTER 6.0: TRANSGENICS. 

 

6.1: INTRODUCTION.  

6.1.1: Genetic transformation of legumes. 

 

M. pruriens is a leguminous crop in family Fabaceae.  Legumes are known harbour 

symbiotic Rhizobium bacteria which help to improve soil fertility by fixing atmospheric 

nitrogen into the soil (Bajaj, 1990).  In addition, several leguminous plants such as 

Phaseolus vulgaris, Glycine max, M. pruriens and Pisum sativum are of high 

economic significance because they produce large quantities of nutritious protein 

and oil (Cho et al., 1995).  In light of the above, there is increasing demand for 

leguminous crops than can be met by conventional agriculture.  This has led to 

research on developing micropropagation strategies for growing leguminous crops 

throughout the year and independent of climatic seasons.   

Micropropagation requires the sterile culture of explants which are induced to form 

new shoots and roots through culture media. These contain a source of fixed carbon 

(usually sucrose), essential mineral ions and a supply of vitamins and/or amino acids 

(Dahleen and Bregitzer, 2002).  A widely used medium in plant tissue culture is the 

Murashige and Skoog (M.S. medium) developed by Murashige and Skoog (1962).  

To induce the production of shoots and roots, in order to regenerate whole plantlets, 

plant growth regulators are also included in the culture medium.  The choice and 

concentration of growth regulators used for this purpose is dependent on the species 

and the explant used, but in general involves a balance of auxins and cytokinins. 

Unfortunately regeneration of leguminous crops has proved challenging (Halpin, 
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2005; Eapen et al., 2008). However Faisal and Anis, (2006) reported 

micropropagation of M. pruriens using nodal explants grown on half-strength M.S 

medium supplemented with the cytokinin  6-benzylaminopurine (BA at 5.0 µM), and 

the auxin α-Naphthalene acetic acid (NAA  at 0.5 µM).  For in vitro root regeneration, 

however, they then used M.S medium supplemented with auxin indole-3-butyric acid 

(IBA at 1.0 µM).   

Like most large seeded legumes, M. pruriens has been variously reported to produce 

significant levels of phenolic compounds (Pras et al., 1993; Rajeshwar et al., 2005).  

However during tissue culture, phenolic substances tend to become oxidised 

(Arnaldos et al., 2001).  This is because when cells are damaged as is the case 

during generation of explants, the contents of cytoplasm and vacuoles are mixed as 

well as exposing phenolic compounds to air (Laukkanen et al., 1999).  Oxidised 

phenolic compounds may inhibit enzyme activity culminating in the darkening of the 

culture medium and subsequent lethal browning of explants.  Liquid media can be 

used to reduce phenolic oxidation (Compton et al., 1986 and Laukkanen et al., 

1999).  In addition, frequent subculturing, enriching the media with antioxidants such 

as citric acid, ascorbic acid, polyvinyl pyrolidone (PVP) and activated carbon, which 

are added into it can reduce phenolic oxidation and contribute to whole plant 

regeneration from explants (Toth et al., 1994). 

 

Tissue culture techniques for regeneration of plant explants are also needed in most 

protocols for generating transgenic plants (Walden and Wingender, 1995).  For many 

crops, transformation can be achieved using the soil-borne gram negative bacterium 

Agrobacterium tumefaciens (Birch, 1997) and this is the most widespread method for 

transformation of legumes (Yamada, et al., 2001), although direct gene transfer has 
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also been reported for some species.  For example, Russell et al., (1993) reported 

transformation of Phaseolus vulgaris by direct gene transfer into the apical meristem 

of seedlings.  Agrobacterium-mediated transformation has advantages over direct 

DNA delivery techniques.  These include the frequency of stable genomic 

integration, usually of single gene copy number and the transfer of relatively large 

segments of DNA (McCormac et al., 1998).   

 

A. tumefaciens infects a range of dicot plants, causing formation of crown galls or 

tumours close to the site of infection. The tumour provides the bacterium with 

unusual amino acids (opines) which are an important source of carbon and nitrogen, 

at the expense of the plant host (Hellens and Mullineaux, 2000; Zupan et al., 2000).  

The genes required to induce tumour formation and to initiate opine biosynthesis in 

the infected host plants are transferred from the Agrobacterium (Hellens and 

Mullineaux, 2000; Broothaerts et al., 2005).  Agrobacterium has a tumour-inducing 

(Ti) plasmid on which is a discrete T-DNA region delimited by 25 bp imperfect 

repeats on both sides (RB and LB) and approximately 35 virulence (vir) genes 

clustered in a vir region. The combined action of vir genes achieves the delivery of 

the T-DNA to the nucleus of the host plant, and it is in this T-DNA that genes for 

inducing tumour and opine biosynthesis are contained and which despite being of 

bacterial origin, have evolved to function only in plant cells (Dillen. et al., 1997; 

Hellens and Mullineaux, 2000).  Most Ti plasmids commonly used in Agrobacterium-

mediated transformation have been modified to remove their oncogenic genes from 

the T-DNA.  In their place, desired genes have been introduced in the T-DNA region 

to be transferred into the plant genome.  The gene substitution in the T-DNA region 

does not impede the ability of the vir genes to transfer the T-DNA from the plasmid 
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into the plant genome during transformation but does prevent formation of tumours 

(Hellens and Mullineaux, 2000; Gelvin, 2000).  Agrobacterium-mediated plant 

transformation success has been enhanced by using a range of binary Ti vector 

plasmids and a range of disarmed Agrobacterium strains.  In the binary vector 

system, the vir region resides on the disarmed Ti plasmid resident in the 

Agrobacterium strain and the T-DNA is on a separate binary Ti vector plasmid but 

still the vir genes are able to achieve the transfer of the T-DNA into the plant cell 

nucleus thereby increasing flexibility in manipulation.  The Ti vectors replicate in both 

E. coli and in Agrobacterium, which is advantageous since most in vitro gene 

manipulation techniques use E. coli (Hellens and Mullineaux, 2000).  Genes 

encoding resistance to certain antibiotics are often cloned on the Ti vector plasmid 

hence Agrobacterium transformed with the Ti vector plasmid can be selected using 

the antibiotic.  Furthermore, Agrobacterium strains are marked with antibiotic 

resistance genes that are either on the chromosome or are Ti-plasmid localised.  

This enables growth of Agrobacterium on the antibiotic selection medium (Hellens 

and Mullineaux, 2000; Zupan et al., 2000).  Suitable restriction enzyme sites and 

origin of replication sites (ORI) according to the research requirements are cloned on 

varied Ti vector plasmids to enable replication and isolation of the cloned genes.  

The pCAMBIA series of plasmids are a good example of Ti vector plasmids designed 

for T-DNA transfer into plants using vir genes on a disarmed Ti-plasmid in 

Agrobacterium (Hajdukiewicz et al., 1994).   

 

The transformation of Vigna aconitifolia by direct DNA transfer to protoplasts using 

the heat shock method was one of the early reports on transformation of legumes 

(Kohler et al., 1987).  However, since then research progress on transformation of 
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legumes has not matched that for cereals and many other crops (Birch, 1997; Dillen 

et al., 1997; Bent, 2000).  This is partly due to the difficulties in regeneration of 

legumes as discussed above although, transformation of soybean (Glycine max) has 

been very successful, and 81% of soybean now grown is transgenic 

(http://www.isaaa.org).  Despite this, transformation, especially of large seeded 

leguminous species, tends to show high levels recalcitrance (Veltcheva et al., 2005; 

Dillen et al., 1997; Yamada et al., 2001).  A comprehensive proof of successful plant 

transformation requires the transgene(s) to be correctly expressed in both the 

primary transformants and their offspring generations (Dillen et al., 1997).  There is 

no published report of a definitive genetic transformation of M. pruriens to date.  Very 

recently, Sathyanarayana et al., (2012) reported a preliminary attempt for 

Agrobacterium-mediated transformation of M. pruriens using nodal explants, 

however although PCR was used to verify the presence of transgenes, expression 

and stability were not tested.   

As well as the choice of plant growth regulators and culture medium for regeneration, 

the choice of Agrobacterium strain and explant for plant transformation is also very 

important.  The most widespread used explants for legume transformation and plant 

regeneration include; cotyledonary nodes, leaf, epicotyl, and somatic embryogenesis 

but they tend to vary from one species to another (Dillen, et al., 1997; Yamada et al., 

2001).  Successful methods for transformation of legumes have used a range of 

Agrobacterium strains, examples are shown in Table 6.1.  Yamada et al., (2001) 

reported that during transformation of Vigna angularis, each of the Agrobacterium 

strains EHA105 and AGLI, had a transformation efficiency of approximately 85% 

whereas that for LBA4404 was 50%.  

 

 

http://www.isaaa.org/
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Table 6.1 Range of Agrobacterium tumefaciens strains used for transformation of 
legume species transformation. 
 
 

Species Agrobacterium strain reference 

Phaseolus acutifolius  C58CIRif  Dillen et al., (1997) 

Vigna angularis EHA105, AGLI and 

LBA4404 

Yamada et al., (2001) 

 

 

 

6.1.2: Gene silencing constructs for plants.  

 

RNA interference (RNAi) is widely used in functional genomics studies to suppress 

gene function in plants and it is based on the principle of post-transcriptional gene 

silencing (PTG) (Helliwell and Waterhouse, 2003; Wang and Xu, 2008).   

RNAi technology involves transformation of a plant with T-DNA carrying an antisense 

copy of a plant gene targeted for expression silencing. During transcription, the 

antisense mRNA anneals to the target sense mRNA resulting in formation of dsRNA 

(Helliwell and Waterhouse, 2003; Wang and Xu, 2008).  The dsRNA stimulates the 

dicer enzyme to break down the long dsRNA into short fragments of approximately 

20 nucleotides referred to as the short interfering RNA (siRNA).  Each siRNA 

unwinds into two single-stranded (ss) ssRNA: the passenger strand which is 

degraded and the guide strand which becomes incorporated into the RNA-induced 

silencing complex (RISC) (Hanon, 2002; Helliwell and Waterhouse, 2003).  The 

guide strand in the RISC anneals to the complementary sequence on the target 

mRNA molecule and this induces the Argonaute catalytic component of RISC to 
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cleave the mRNA thereby silencing the target gene expression (Hanon, 2002; 

Helliwell and Waterhouse, 2003; Wang and Xu, 2008) (Figure 6.1). 

 

        

           

 

Figure 6.1 Schematic diagram describing the principle and mechanism of gene-silencing in plants.  

Diagram was obtained from <http://www.nature.com/nrg/journal/v4/n1/fig_tab/nrg982_F1.html>. 
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RNAi has been used successfully for manipulating metabolic pathways although 

issues of feedback control, redundancy and shared regulatory pathway control can 

arise (Cappel and Cristou, 2004). 

 

 

6.1.3: Aims, objectives and approaches used in Chapter 6 

 

The ultimate aim of this work was to use an RNAi construct based on the M. pruriens 

Mp-ty/ddc gene sequence obtained as described in Chapter 4 to silence the 

endogenous gene.  The hypothesis is that this would result in increased levels of L-

DOPA due to a reduction in its breakdown by the MP-TYDC enzyme. 

The first hurdle was to develop a protocol for genetic transformation of M. pruriens.  

The approach was to use protocols for genetic transformation of other legumes as 

models or with modification to develop a robust protocol for genetic transformation of 

M. pruriens.  

 

For the silencing approach, the next objective was to design and build an Mp-ty/ddc 

RNAi construct and use it to transform M. pruriens.  The construct to be used for 

transformation carried an nptll transgene which would enable transgenics to grow on 

kanamycin selection nutrient medium.  A kanamycin assay was therefore performed 

to determine the effective concentration for selection of M. pruriens transgenic 

plants.  Since the aim was to increase L-DOPA levels, an L-DOPA assay was also 

performed to determine the maximum concentration that could be supplemented in 

the nutrient medium without affecting the health and growth of M. pruriens explants.   
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Finally the aim was to determine whether the silencing construct was effective in any 

transgenic lines obtained by measuring Mp-ty/ddc gene expression using semi-

quantitative PCR.  

 

 

6.2 MATERIALS AND METHODS. 

6.2.1 Kanamycin assay on M. pruriens explants. 

 

Dry seeds of M. pruriens were surface sterilised in 70% ethanol for 30 seconds 

followed by 1% sodium hypochlorite for 15 minutes and two washes with sterile 

distilled water.  The seeds were plated onto basal Murashige and Skoog (MS) 

medium (Murashige and Skoog, 1962) containing 30 g l-1 sucrose and 8 g l-1 agar 

(Duchefa Biochemie) (pH 5.8).  Seeds were then germinated in the dark.  Two weeks 

after plating, the cotyledonary nodes and apical meristem were cut into pieces about 

10 mm long with a scalpel blade.  M. pruriens explants were micropropagated on 

M.S medium supplemented with 5 µM BA, 0.5 µM NAA and kanamycin 

concentrations (mg l-1) of; 0, 10, 25, 50, 100, 200 and 500.  The choice of 

concentration range used was based on those for selection of transgenic plants in 

family Fabaceae to which M. pruriens belongs (Dillen et al., 1997).  The explants 

were grown at 25˚C under cool white fluorescent light (16/8 light regime, 50 - 60 

µmol m-1 s-2).  The explants were transferred to fresh M.S medium at two week 

intervals to minimise the effect of gradual degradation of the kanamycin selection.   
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6.2.2: L-DOPA assay on M. pruriens explants.  

 

Dry seeds of M. pruriens were surface sterilised, sown and grown as described in 

Section 6.2.1.  The M.S medium was supplemented with L-DOPA concentrations (mg 

l-1) of; 0, 5, 10, 25, 50, 100, 200 and 500.  A total of 4 - 5 seeds were grown per 

tissue culture box in a triplicate sets for each L-DOPA concentration assayed.  The 

maximum concentration of L-DOPA tolerated by M. pruriens seedlings during growth 

was assessed as that at which at least 90% of seedlings survived after 30 days 

growth.  

 

 

 
6.2.3: Designing and building an Mp-ty/ddc gene silencing 
construct. 
 
 

6.2.3.1: Plasmids and bacterial strains used. 

 

The Mp-ty/ddc gene silencing construct was built by assembling the entire Mp-ty/ddc 

ORF (1.5 kb) in antisense orientation into the prepared restriction sites in the T-DNA 

region of a pGREEN-CO58 vector plasmid (Novagen, USA) as described in Section 

6.2.3.1.1 below.  PGREEN-CO58 plasmid backbone has a kanamycin resistance 

gene for bacterial selection and an nptII gene in the T-DNA region controlled by a 

CAMV35S promoter.  The pGREEN-CO58 plasmid harbouring the Mp-ty/ddc 

antisense construct was co-transformed with a pSOUP plasmid (Novagen, USA) into 

Agrobacteria strains, GV3101, LBA4404 and EHA101 (Novagen, USA) as described 

in Section 6.2.3.1.1 below.  The pSOUP plasmid has virulence genes (“vir”) which 
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direct transfer of the T-DNA region from the pGREEN plasmid to the plant genome 

when the transgenic Agrobacteria infects plant cells during the plant transformation 

experiments (Hellens and Mullineaux, 2000) as described below.  The nptII gene in 

the T-DNA region conferred the transgenic plants with kanamycin resistance while 

the Mp-ty/ddc antisense in the T-DNA was expressed by the CAMV35S to generate 

antisense transcripts which annealed to the sense Mp-ty/ddc transcripts generated 

by the plant genome.  The double stranded RNA transcripts generated initiated dicer 

action to destroy all transcripts with sequences similar to that of Mp-ty/ddc. 

 

A. tumefaciens strains used for plant transformations are detailed in Table 6.2 

 

 

Table 6.2 Agrobacterium strains I used for the experiment 

 

Strain  Type Genotype selection Helper plasmid 

GV3101  Nopaline  Cured Rifampicin 

(chromosomal) 

None 

EHA101 Nopaline pEHA101(pTiBo542DT-

DNA) 

Rifampicin 

(chromosomal 

DNA) and 

Kanamycin (Ti 

plasmid)  

None 

LBA4404 Octopine pAL4404 Rifampicin 

(chromosomal 

DNA), 

Spectinomycin 

and 

Streptomycin 

(Ti plasmid) 

None 
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6.2.3.1.1: Assembly of the Mp-ty/ddc antisense construct. 

 

Mp-ty/ddc primers; EcoRI-FDC: 5’-TAGAATTCCATTGATTTCCTTGCTG-3’ and XhoI-

RDC: 5’-ATCTCGAGTCCTAACAGAGAATTGGCATGC-3’ were designed as 

described in Chapter 2 Section 2.2.5.1 from sequence position 41 and 1,489 bp from 

the 5’ end of the Mp-ty/ddc gene sequence obtained in Chapter 4.  This corresponds 

to the putative full-length ORF for the Mp-ty/ddc.  EcoRI and XhoI restriction sites 

were incorporated at the 5’ ends of EcoRI-FDC and XhoI-RDC primers respectively, to 

facilitate directional cloning of the Mp-ty/ddc ORF in cloning vectors and in antisense 

orientation in Mp-ty/ddc gene-silencing construct.   

 

The PCR reaction mixture contained; Phusion HF buffer (5 X; 10 µl), dNTPs (10 mM; 

1 µl), EcoRI-FDC (10 µM; 2.5 µl), XhoI-RDC (10 µM; 2.5 µl), DNA (80 ng; 2.5 µl), 

Phusion DNA polymerase (1U; 0.5 µl) and sterile water (31 µl).  Proof-reading 

phusion taq polymerase (Sigma) was used in the PCR to enhance specific 

amplification and to produce blunt ended PCR products.  Thermocycling was 

performed using a PTC-100 thermocycler (MJ Research Inc., Waltham, USA) and 

the cycling conditions were; 98 ˚C; 30 seconds, 35 cycles (98 ˚C; 10 seconds, 61 ˚C; 

10 seconds, 72 ˚C; 45 seconds) and 72 ˚C, 5 minutes.  The PCR product was then 

blunt end ligated in the EcoRV site of a prepared pZERO plasmid and was cloned as 

described in Chapter 2 Section 2.2.13.  The transgenic plasmid was purified from 

bacterial cells as described in Chapter 2 Section 2.2.14.  The cloned 1.5 kb Mp-

ty/ddc phusion PCR product was recovered from the cloning plasmid by serial 

restriction digestion using SpeI and NotI enzymes.  The digestion reaction contained: 

plasmid DNA (2 µg), Yellow Tango buffer (Thermo Scientific) (2 X; 4 µl), BSA (10 X; 
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4 µl), SpeI (3 U) and the volume was made up to 40 µl with sterile water.  The 

reaction mixture was incubated at 37 ˚C for 3 hours after which the linearised 

plasmid was recovered from the digestion reaction by column purification as 

described in the Chapter 2 Section 2.2.8.  The linearised plasmid DNA was then 

digested using a NotI restriction enzyme. The digestion reaction contained: DNA (1.5 

µg), Orange Tango buffer (ThermoScientific) (2 X; 4 µl), BSA (10 X; 4 µl), NotI (2.5 

U) and the volume was made up to 40 µl using sterile water.  The reaction was then 

incubated at 37 ˚C for 3 hours after DNA fragments were separated and analysed on 

ethidium bromide stained agarose gel electrophoresis as described in Chapter 2 

Section 2.2.7.  The SpeI - NotI fragment DNA restriction fragment contained the 

cloned 1.5 kb Mp-ty/ddc gene and was purified from the gel as described in Chapter 

2 Section 2.2.9.  The 1.5 kb Mp-ty/ddc fragment was then ligated in the SpeI - NotI 

restriction sites of a pre-digested pGreen-CO58 plasmid.  In the pGreen-CO58 

plasmid, the Mp-ty/ddc was in antisense orientation and between the CaMV35S 

promoter and a Tnos terminator of the T-DNA region (Figure 6.2).   

 

 

  

Figure 6.2 Map of the Mp-ty/ddc gene silencing cassette cloned in the T-DNA region (Right border, 

RB and left border, LB) of a pGreen-CO58 plasmid vector.  The CaMV35S promoter and a Tnos 

terminator control expression of the 1.5 kb antisense Mp-ty/ddc, whereas nptII reporter gene 

expression is controlled by a Pnos promoter and a Tnos terminator.  
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6.2.3.2:  Transformation and handling of Agrobacterium cells. 

Competent cells of Agrobacterium were prepared as described in Chapter 2 Section 

2.2.12.  Transformation of Agrobacterium was performed using either a UV gene-

pulser or a liquid nitrogen freeze-thaw method.     

Transformation of competent Agrobacterium cells using the gene-pulser was 

performed according to the method described by Shen and Forde (1998) and 

Mattanovich et al., (1989) as follows:  plasmid DNA (40 ng/µl) or a mixture of 

pGREEN (20 ng; 1 µl) and pSOUP (20 ng; 1 µl) was added to competent cells of A. 

tumefaciens (50 µl) in a 1.5 ml microcentrifuge tube.  The mixture was then 

transferred to a 1 ml electroporation cuvette and the DNA was transformed into the 

bacterial cells by electroporation using a gene-pulser (Bio-Rad, USA) at 400 Ohms, 

2.5 V and at a time constant greater than 6.5 milliseconds.  LB-broth (0.9 ml) was 

immediately added to the transformed bacterial cells and this was followed by 

incubation on a rotary shaker at 225 rpm for 1.5 h.  Aliquots (50 – 100 µl) of the 

bacterial culture were plated onto solid LBA mediuim (LB; 10 g l-1 agar, pH 7) 

supplemented with kanamycin (50 mg l-1), and rifampicin (50 mg l-1).  In addition, 

gentamycin (20 mg l-1) and streptomycin (25 mg l-1) were added to LBA media plates 

for GV3101 and LBA4404 respectively.  The kanamycin was used for selection of 

bacterial cells transformed with the nptII transgene whereas the rifampicin, 

gentamycin and streptomycin selected for their respective antibiotic resistance genes 

on the bacterial chromosomal DNA.  The plates were incubated at 28 ˚C for 48 hours 

when single colonies of transgenic bacteria formed.   

On the other hand, transformation of competent Agrobacterium cells using the liquid 

nitrogen freeze-thaw method was essentially as described by Sambrook et al. (1989) 
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as follows:  A 100 µl aliquot of Agrobacterium competent cells in a 1.5 ml Eppendorf 

tube was taken from a -80˚C freezer and thawed on ice for about 5 minutes.  Then 

plasmid DNA (0.5 – 1 µg; < 20 µl) was added to the cells and tube was frozen in 

liquid nitrogen for 1 minute before it was allowed to thaw for 5 minutes at 37 ˚C.  LB 

medium (1 ml) was then added to the cells before the tube was incubated at 28 ˚C 

for 4 hours with shaking at 225 rpm in a rotary shaker (Incubator shaker Model G25, 

New Brunswick Scientific Co Inc, USA).  The tube was then centrifuged in a 

microcentrifuge (Heraeus Instruments Biofuge 13, Germany) at 3000 X g for 2 

minutes.  The supernatant was discarded while the pellet was resuspended in LB 

medium (100 µl).  For transformations with pSOUP and pGREEN into Agrobacterium 

strain GV3101, aliquots (50 µl) were plated on LBA supplement with kanamycin (50 

mg l-1), rifampicin (50 mg l-1) and gentamycin (20 mg l-1).  The plates were incubated 

at 28 ˚C for 48 hours when single colonies of transgenic bacteria formed.   

For long term storage of transformants a single colony of transgenic bacteria was 

inoculated in LB medium (5 ml) supplemented with kanamycin (50 mg l-1), rifampicin 

(50 mg l-1) and gentamycin (20 mg l-1) and the culture vial incubated at 28 ˚C up to 

O.D600 of 0.8.  30% glycerol stocks of the transgenic bacterial culture were prepared 

and stored at 80 ˚C.   

Before each plant transformation experiment, a needle head size loop of transgenic 

bacteria were streaked on a plate of LBA supplemented with kanamycin, rifampicin 

and gentamycin selection.  The plate was incubated at 28 ˚C for 48 h to produce 

single colonies of transgenic bacteria which were immediately used in plant 

transformation experiments as described in Sections 6.2.3.3 and 6.2.3.4. 
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6.2.3.3: Transformation of M. pruriens using the 
Agrobacterium-mediated method for transformation of 
Vigna angularis. 
  
 

A method for transformation of M. pruriens was developed based on the protocol for 

Agrobacterium-mediated transformation of V. angularis (Yamada et al., 2001).  M. 

pruriens seeds (“90 day” cultivar) were obtained from Echo seed bank (Florida).  M. 

pruriens seeds were surface sterilised and plated as described in Section 6.2.1 and 

then grown in the dark at 22 ˚C.  Meanwhile, a single colony of the transgenic A. 

tumefaciens strains; EHA105, LBA4404 and AGLI harbouring the pCAMBIA2300 

plasmid (pC23.35SECGFPHS), was freshly prepared as described in Section 

6.2.3.3.  The bacteria were grown at 28 ˚C overnight in liquid LB broth containing 

kanamycin (100 mg l-1).  They were then centrifuged at 8,000 X g for 3 minutes using 

microcentrifuge (Biofuge 13, Heraeus Instruments, Germany) and the pellet was 

resuspended to a final OD600 of 0.2 in M.S liquid medium containing glucose (15 g/l).  

After ten days growth, the elongated epicotyls of etiolated seedlings were cut into 

pieces about 10 mm long with a scalpel blade.  Then the transgenic bacterial 

suspension (2 µl) was pipetted onto the wounded sites of each explant.  About 20 to 

30 explants were plated sideways on M.S medium supplemented with BA (10 mg l-1) 

and acetosyringone (100 µM).  After 2 days of co-cultivation at 22 ˚C in the dark, 

explants were washed twice with M.S liquid medium.  Excess liquid on the plants 

was withdrawn with sterile filter paper.  Explants were plated on M.S medium 

containing BA (1 mg l-1), kanamycin (100 mg l-1), and 300 mg l-1 timentine (in place 

for lilacillin (500 mg l-1), and incubated at 25 ˚C under cool white fluorescent light 

(16/8 light regime, 50 - 60 µmol m-1 s-2).  The explants were transferred to fresh 

medium at two week intervals.   
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6.2.3.4: New protocol for Agrobacterium-mediated 
transformation of M. pruriens.  
 

Dry M. pruriens seeds were surface sterilised and plated as described in Section 

6.2.1.  On day 13 of seed germination,  a single colony of transgenic A. tumefaciens 

strain GV3101 harbouring an Mp-ty/ddc gene-silencing construct plasmid (Figure 

6.2), was grown overnight at 28 ˚C with shaking at 225 rpm in liquid LB broth 

containing kanamycin (100 mg l-1), rifampicin (50 mg l-1) and gentamycin (20 mg l-1).  

On the day scheduled for the plant transformation, 5 ml of the overnight culture of 

Agrobacterium was used to inoculate LB medium (50 ml) and was incubated at 28 ˚C 

on a rotary shaker at 225 rpm until it reached an O.D600 of 0.7.  The bacterial cells 

were then pelleted at 8,000 X g for 3 minutes using a microcentrifuge (Biofuge 13, 

Heraeus Instruments, Germany).  Finally the bacterial cells was resuspended to a 

final OD600 of 0.6 in M.S liquid medium containing glucose (15 g l-1) and were ready 

for use in plant transformation.  Germinated seedlings were aseptically excised, the 

cotyledonary nodes and apical meristems were cut into pieces of about 10 mm long 

with a scalpel blade.  The Agrobacterium culture (2 µl) was then pipetted onto the 

wounded sites of each explant.  About 8 explants were micropropagated sideways 

per Petri dish (90 mm diameter; 15 mm height) on M.S medium supplemented with 

BA (50 µM or ~ 10 mg l-1), NAA  (0.5 µM) and acetosyringone (100 µM).  After 2 days 

of co-cultivation at 22 ˚C in the dark, explants were washed twice with M.S liquid 

medium to remove Agrobacterium.  Excess liquid on the explants was withdrawn 

with a sterile filter paper.  The explants were plated on M.S shooting medium 

containing BA (50 µM), NAA (0.5 µM) and kanamycin (50 mg l-1).  In order to 

eliminate Agrobacterium from explants after transformation, timentine (350 mg l-1) 

was added to the shooting medium.  The explants were incubated at 25 ˚C under 
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cool white fluorescent light (16/8 light regime, 50 - 60 µmol m-1 s-2).  The explants 

were then transferred to fresh medium at two week intervals in order to reduce the 

effect of phenolic oxidation.  When adventitious shoots developed and after more 

than 2 leaves emerged from shoots, each shoot was excised and transferred to 

liquid M.S medium supplemented with NAA (16.2 µM), kanamycin (100 mg l-1), and 

timentine (350 mg l-1).  Rooted shoots were excised and repeatedly selected on the 

fresh medium at two week intervals. 

 

 

6.2.3.4.1: Root induction Auxin assay.  

 

Half-strength M.S liquid medium supplemented with NAA (15.6 µM; 3 ml) was 

transferred to pre-autoclaved Pyrex test tubes (16 X 100 mm).  A single shoot 

explant of M. pruriens was aseptically excised from the basal callus and transferred 

to M.S liquid medium.  A sterile Whatman paper (3 mm) fitted with a hole was used 

to keep the shoot explant in a vertical orientation in the tube and floating above the 

M.S liquid medium.  However, the base of the stem explant was dipped in M.S liquid 

medium.  The experimental set for root induction above was repeated in triplicate 

sets using M.S liquid medium supplemented with NAA concentrations of; 15.58, 

15.6, 15.62, 15.64 and 15.66 (µM).  The best NAA concentration was determined 

from the ability to induce the highest percentage of rooting in the explants. 
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6.2.3.5: Detection of the nptII transgene in putatively transformed 
M. pruriens by PCR.  

 

Total DNA was isolated from M. pruriens leaves by the method described in Section 

2.2.1.2.  PCR analysis was conducted at Tm of 49 ˚C to screen for transformed 

explants as described in Section 2.2.6.  The primer set; 5’-

CTTGGGTGGAGAGGCTAT-3’ and 5’-AGAACTCGTCAAGAAGGC-3’ was designed 

and used to amplify of 749 bp domain of the nptII transgene coding sequence from 

genomic DNA extracted from transgenic plants (Beck et al., 1982).   

  

 

6.2.3.6: Screening for Agrobacterium contamination in putative 
transgenic DNA. 
  

Putative transgenic DNA samples which tested positive for the nptII transgene by 

PCR, were further screened for post co-cultivation Agrobacteria contamination.  This 

was because the Agrobacterium strains used for plant transformation were carried 

an nptII gene on the pGREEN plasmid they harboured and this could produce false 

nptII positive PCR from untransformed plants.  Screening explants DNA for 

contamination with Agrobacterium was based on the principle that the Agrobacteria 

also a harboured a helper plasmid (pSOUP) which carry a tetracycline resistance 

gene.  The helper plasmid DNA is not transduced in to the plant genome during plant 

transformation and hence detection of the tetracycline resistance gene in plant DNA 

would confirm contamination with Agrobacterium.  In the event of post co-cultivation 

contamination of explants with Agrobacterium, then the detection of the nptII 

transgene by PCR would not be sufficient evidence for plant transformation.  In light 

of the above, tetracycline resistance gene primers; 5’-
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CGGCCTCAACCTACTACTGG-3’ and 5’-TTGAAGCTGTCCCTGATGG-3’ designed 

to PCR amplify 0.5 kb of the tetracycline resistance gene on the pSOUP plasmid, 

were used to screen by PCR for Agrobacterium contamination in DNA as described 

in Chapter 2 Section 2.2.6.  The DNA template was extracted from putative 

transgenics plants as described in Section 2.2.1.2.  
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6.3: RESULTS. 

 

6.3.1: Developing a new protocol for genetic 
transformation of M. pruriens. 

 
 

6.3.1.1: Assay to determine the effective kanamycin concentration 
for selection of the kanamycin resistant transgenic explants.  
 

 

A kanamycin assay was performed to determine the minimum but effective 

concentration for selection of M. pruriens kanamycin resistant explants (Section 

6.2.1).  Following 14 days of culture of untransformed M. pruriens on kanamycin-

containing medium, mortality was assessed.  On 10 mg l-1 and 25 mg l-1 kanamycin 

selection, 85% and 10% of the explants respectively were healthy (Table 6.1).  In 

contrast all explants on 50, 100, 200 and 500 mg l-1 kanamycin selection had died by 

day 14 of the experiment (Table 6.1).  At day 21 all the explants on kanamycin 

selection had died and only the positive control explants grown on M.S medium 

without kanamycin were healthy and green (Figure 6.3).  A kanamycin concentration 

of 50 mg l-1 was therefore the minimum assay concentration that effectively selected 

against all M. pruriens explants lacking the kanamycin resistance transgene within 

14 days of experiment (Figure 6.3).   
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Figure 6.3 M. pruriens explants after 21 days of culture; explants in tissue culture box (A) grown on 

M.S medium with no kanamycin selection were healthy and green (positive control experiment), 

whereas explants grown on 25 mg l-1 kanamycin selection medium (B) and (C) had signs of necrosis.  

Explants grown on 50 and 100 mg l-1 kanamycin selection (D) had died by day 21 of the assay. 

 

 

Table 6.1 Results for the kanamycin bioassay on untransformed M. pruriens 
explants. 
 

Kanamycin 
conc. 
(µg/ml) 

No. of healthy plants after micropropagation for 1, 14, 
21 and 30 days. 

1 d 14 d 21 d 30 d % on day 30  

0 10 10 10 10  100 

10 20 17 0 0 0 

25 20 2 0 0 0 

50 20 0 0 0 0 

100 20 0 0 0 0 

200 10 0 0 0 0 

500 10 0 0 0 0 

Total   140       
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6.3.1.2: Bioassay on L-DOPA. 

 

An L-DOPA bioassay was performed to determine the maximum concentration which 

could be supplemented in the M.S medium and tolerated by M. pruriens seedlings as 

described in Section 6.2.2.  M. pruriens seedlings were able to grow well on M.S 

medium supplemented with below 100 mg l-1 L-DOPA.  However, L-DOPA at 200 mg 

l-1 was lethal to the M. pruriens seedlings (Figure 6.4; Table 6.2).   

 

 

 

 

Figure 6.4 Bioassay to determine the concentration range of endogenous L-DOPA that M. pruriens 

seedlings can tolerate during growth.  At day 21 of the assay, the seedlings growing on M.S media 

supplemented with L-DOPA concentrations of; A (0, 5 μg l-1), B (10 μg l-1), C (25 μg l-1) and D (μg l-1),    

germinated well.  The seedlings in the assay E (100 μg l-1) show reduced germination rates when 

compared to those in A, B and C.  On the other hand seedlings in assay F (200 μg l-1) died. 
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Table 6.2 Results of L-DOPA bioassay on untransformed M. pruriens seedlings 

 

L-DOPA 
concentration 
(mg l-1) 

No. of healthy green and  
germinating seedlings on day:  

1 14 30 % on day 
30  

0 10 10 10 100.0 

5 10 10 10 100.0 

10 15 15 10 66.7 

25 15 15 15 100.0 

50 15 15 15 100.0 

100 10 08 08 80.0 

200 10 0 0 0.0 

500 10 0 0 0.0 

Total No. of 
plants 

104    

 
 
 
 
 
6.3.1.3: Transformation of M. pruriens using a protocol for V. 
angularis as a model.          
 

Attempts were made to transform M. pruriens by the method of Yamada et al., (2001) 

using epicotyl explants as described in Section 6.2.3.3.  The level of kanamycin (50 

mg l-1) used for selection was based on the result for kanamycin assay described in 

Section 6.2.1.  Three different Agrobacterium strains; LBA4404, AGLI and GV301 

were used in the M. pruriens transformation experiments with a view of determining 

the most efficient strain.  A cytokinin assay was also conducted to determine the 

optimal BA concentration required to enhance M. pruriens transformation efficiency. 

The assay was performed because the ratio of concentration of BA to 

acetosyringone significantly affects the efficiency of plant transformation (Yamada, et 

al., 2001).  BA concentrations of 1, 3, 5 and 10 mg l-1 were used to supplement the 
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co-cultivation medium with a view of determining the effective concentration for M. 

pruriens transformation.   

In general very few putatively transformed epicotyl explants survived on kanamycin 

selection for 2 months and of these no shoot regeneration occurred, while the 

greatest majority developed a lethal browning and died off. Most of the explants 

grown on media supplemented with 1 - 3 mg l-1 BA and kanamycin selection 

developed a lethal browning and died before reaching the 8 week stage.  The 

number of putatively transformed explants which survived on kanamycin selection for 

8 weeks was significantly increased with the increase in cytokinin concentration from 

5 mg l-1 to 10 mg l-1 BA (Figure 6.5).  

 

 

Figure 6.5 Putatively transformed M. pruriens epicotyl explants  at 4 week stage after co-cultivation on 

M.S medium supplemented with 50 mg l-1 kanamycin selection and an assay of BA concentrations 

(mg l-1) of; 3 (A and F), 5 (C and D), 10 (B and E).  The explants in the 10 mg l-1 BA (B and E) assay 

grew relatively larger and had better survival rates.  
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M. pruriens transformation using LBA4404 showed a highest putative transformation 

rate of 8.9% which was achieved by explants co-cultivated on M.S supplemented 

with BA at 10 mg l-1.  A lower number (6.7%) of putative transformants was obtained 

on 5 mg l-1 BA.   These putative transgenic calli  remained healthy on kanamycin (50 

mg l-1) selection 8 weeks after co-cultivation but without shoot or root regeneration 

(Table 6.3).  

 

 

Table 6.3 Efficiency of LBA4404 and BA concentration (1-10 mg l-1) supplement to 

co-cultivation medium in the transformation of M. pruriens. 

Transformed using 
LBA4404  
 
 
 

No of stem 
explants. 
 
(Day 1) 
 

No of calli   
 
 
(8 weeks)  

Positive 
control 
explants 
(Day 1) 

Positive 
control calli 
 
(8 weeks) 

BA (mg l-1) in co-
cultivation medium 

 No.  % No. No. % 

1 
 

45 0  0.0 6 2 33.3 

3 
 

45 0 0.0 6 3 50.0 

5 45 3 6.7 6 6 100.0 

10 45 4 8.9 6 5 83.3 

Total explants 180   24   

 

 

Transformation using AGLI showed a highest putative transformation rate of 17.8%, 

again achieved by explants co-cultivated on M.S supplemented with BA 10 mg l-1. 

With this experiment there was a clear dose/response relationship for BA 

concentration throughout the concentration range tested. Again putative transgenic 
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calli formed were healthy on kanamycin (50 mg ml-1) selection 8 weeks after co-

cultivation but without shoot or root regeneration (Table 6.4).   

 

Table 6.4 Efficiency of AGLI and BA concentration (1-10 mg l-1) supplement to co-

cultivation medium in the transformation of M. pruriens.  

 

Transformed using 
AGLI  
 
 
 

No of stem 
explants. 
 
(Day-1) 
 

No of calli   
 
 
(8 weeks)  

Positive 
control 
explants 
(Day-1) 

Positive 
control calli 
 
(8 weeks) 

BA (mg l-1) 
 

 No. %  No. % 

1 
 

45 2 4.4 6 3.0 50.0 

3 
 

45 3 6.7 6 4.0 66.7 

5 45 5 11.1 6 5.0 83.3 

10 45 8 17.8 6 5.0 83.3 

Total explants 180   24 17.0  

 

 

A better maximum transformation arte was obtained using GV3101 with a maximum 

transformation rate of 24.4% again achieved on with 10 mg l-1 BA, and again the 

dose-response for BA was very clear, but again there was no shoot or root 

regeneration even though calli remained healthy on kanamycin (50 mg ml-1) 

selection for 8 weeks (Table 6.5). 
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 Table 6.5 Efficiency of GV3101 and BA concentration (1-10 mg l-1) supplement to 

co-cultivation medium in the transformation of M. pruriens. 

  

Transformed using 
GV3101  
 
 
 

No of stem 
explants 
 
(Day-1) 
 

No of calli   
 
 
(8 weeks)  

Positive 
control 
explants 
(Day-1) 

Positive 
control calli 
 
(8 weeks) 

BA (mg l-1) 
 

 No. %  No. % 

1 
 

45 3 6.7 6 2.0 33.3 

3 
 

45 4 8.9 6 2.0 33.3 

5 45 7 15.6 6 5.0 83.3 

10 45 11 24.4 6 5.0 83.3 

Total explants 180      

 

 
 

 

Hence M. pruriens transformation efficiency was progressively higher with the 

different Agrobacterium strains with GV3101, AGLI and LBA4404 (Table 6.3-6.5).  

Similarly, the cytokinin assay results showed that M. pruriens transformation 

efficiency with all the Agrobacterium strains tested was progressively higher with 

increasing BA concentrations up to 10 mg l-1. 

Having established conditions that appeared to give the best levels of 

transformation, a larger scale M. pruriens transformation experiment was performed 

in triplicate sets using the using the most efficient A. tumefaciens strains: AGL1 and 

GV3101 supplemented with 10 mg l-1 BA.  After 8 weeks co-cultivation of the epicotyl 

stem explants, the majority had suffered lethal browning and died off on kanamycin 

selection.  However, 18.8% (Table 6.6) and 23.4% (Table 6.7) of the AGLI and 
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GV3101-mediated putatively transformed explants respectively survived on 

kanamycin selection (50 mg l-1) 8 weeks after co-cultivation.  The putatively 

transformed explants also showed a remarkable increase in size but no shoot or root 

regeneration occurred. 

 

Table 6.6 AGLI-mediated transformation of M. pruriens using epicotyl stem explants 

micropropagated on MS medium co-cultivation medium supplemented with 10 mg/l 

BA. 

 

Transformed using 
AGLI 
 
(10 mg l-1 BA) 

No of stem 
explants. 
 
(Day-1) 
 

No of calli   
 
 
(8 weeks)  

Positive 
control 
explants 
(Day-1) 

Positive 
control calli 
 
(8 weeks) 

  No.    %  No. % 

Set-A 
 

140 28.0 20.0 20 16.0 80.0 

Set-B 
 

140 27.0 19.3 20 13.0 65.0 

Set-C 140 24.0 17.1 20 18.0 90.0 

Total explants 420 79.0  60 47.0  

Mean  26.3 18.8  15.7 78.3 
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Table 6.7 GV3101-mediated transformation of M. pruriens using epicotyl stem 

explants micropropagated on MS co-cultivation medium supplemented with 10 mg l-1 

BA. 

  

Experimental  
set series (GV3101) 
 
(10 mg l-1BA) 

No of Stem 
explants. 
 
(Day-1) 
 

No of calli.   
 
 
(8 weeks)  

Positive 
control 
explants 
(Day-1) 

Positive 
control calli. 
 
(8 weeks) 

 No. No. %  No. % 

Set-A 140 39.0 27.9 20 20.0 100.0 

Set-B 140 32.0 22.9 20 19.0 95.0 

Total explants 280 71.0  40 73.0  

Mean                      35.5 23.4  36.5   97.5            

 
 
 
 
 
6.3.1.4: Genetic transformation of Mucuna pruriens following a 
newly developed protocol. 
 
 

Given the poor performance in terms of shoot and root development obtained with 

the protocol for V. angularis transformation, a new protocol was developed.  In the 

new protocol for M. pruriens transformation I developed, instead of using epicotyl 

stem explants, I tested different tissues such as leaf, cotyledonary nodes and apical 

meristem as explants, since in different legume species transformation success had 

been obtained using these different tissues (see Section 6.1).  In addition, the MS 

co-cultivation medium was supplemented with NAA (0.5 µM) and BA (50 µM) as 

described in Section 6.2.3.4.  The auxin NAA was included to initiate and promote 
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shoot and root regeneration (Walden and Wingender, 1997; Marion, 2001) while a 

higher level of cytokinin BA was added to culture media because in the previous 

experiment (see Section 6.3.1.3), explants survival rates and size increased with an 

increase in BA concentration.  Furthermore, M.S liquid medium supplemented with 

auxin, NAA was used to induce rooting and to reduce phenolic oxidation in the 

explants (Laukkanen, et al., 1999).  The Agrobacterium culture used for the 

transformation experiment was grown to the exponential stage at O.D600 of 0.6 – 0.8 

during which the bacterial population in the cultures is young and relatively small but 

rapidly growing due sufficient nutrient supply and proper adaptation of cells to culture 

conditions (Sambrook et al., 1989).  Agrobacterium strain GV3101 harbouring a 

pGREEN-CO58-Mp-ty/ddc-antisense plasmid was used in all subsequent plant 

transformation experiments because it had yielded the better survival rates for the 

explants than LBA4404 and AGLI in the previous experiments (See Section 6.3.1.3).   

 

 

6.3.1.4.1: M. pruriens transformation using leaf explants.  

 

An attempt to use leaf lamina as explants for transformation of M. pruriens 

succeeded in generating 17.4% putative transgenic calli which significantly increased 

in size during kanamycin selection.  However, no shoot or root formation occurred 

(Figure 6.6).  The greatest majority of the explants turned lethal brown and died off 

(Figure 6.6; Table 6.8).  
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Figure 6.6 Putatively transformed leaf explants on biweekly sub-culture to M.S medium supplemented 

with 50 µM kanamycin after 6 weeks.  A few explants formed brown callus (ringed explant) but the 

majority tended to quickly develop a lethal browning. 

 

 

 

However, it was observed that exceptionally large green calli were generated by the 

untransformed leaf explants micropropagated on M.S medium without kanamycin 

selection (Figure 6.7).  The untransformed explants were micropropagated to serve 

as a tissue culture experimental control for M. pruriens transformation. 
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Figure 6.7 Large 6 weeks old calli derived from untransformed leaf explants of M. pruriens grown on 

M.S media without selection.  The experiment was a positive control for tissue culture of transgenic M. 

pruriens. 

 
 
 

Table 6.8 Summary of results obtained for the transformation of M. pruriens using 

leaf explant tissue. 

 
 
 
 

Experimental  
set series (GV3101) 
 
 

No of leaf 
explants. 
 
(Day 1) 
 

No of calli.   
 
 
(6 weeks)  

Non-
transgenic 
control  
(Day 1) 

Non-
transgenic 
calli 
(6 weeks) 

 No. No. %  No. % 

Set-A 140 30.0 21.4 20 20.0 100 

Set-B 140 19.0 13.6 20 19.0 95.0 

Set-C 140 24.0 17.1 20 17.0 85.0 

Total explants 420   60   

Mean                      24.3 17.4  18.6 93.3  
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6.3.1.4.2: M. pruriens transformation using cotyledonary nodal explants. 

 

91.2% M. pruriens explants regenerated shoot systems on kanamycin selection (50 

mg l-1) upon Agrobacterium (GV3101)-mediated transformation of cotyledonary 

nodal explants (Table 6.9).  Co-cultivation assay on M.S medium supplemented with 

BA (50 µM), NAA (0.5 µM), 100 µM acetosyringone produced the highest percentage 

putatively transformed explants which later regenerated the shoot system on 

kanamycin selection (Figures 6.8-6.10; Table 6.9).  

 

 

  

(a)                                                                            (b) 

 

Figure 6.8 Cotyledonary nodal explants of M. pruriens regenerating shoots on M.S media 2.5 weeks 

after co-cultivation with Agrobacterium  (a) Positive control explant regenerating on growth media with 

no selection.  (b) Putatively transformed explant regenerating on growth media supplemented with 

100 µg ml-1 kanamycin.  
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Figure 6.9 Putatively transformed cotyledonary explants of M. pruriens starting to regenerate shoots 3 

weeks after co-cultivation on MS media supplemented with kanamycin selection. 
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Figure 6.10 Putatively transformed 30 day old cotyledonary node M. pruriens explants regenerating 

shoots on M.S medium supplemented with IBA (1.0 µM) and 100 µg/ml kanamycin selection. 
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Table 6.9 Agrobacterium strain, GV3101-mediated transformation of M. pruriens 

using cotyledonary nodal explants. 

 

 

Experimental  
set series (GV3101) 
 
 

No of 
cotyledonary 
nodal explants 
(Day-1) 

No of shoots   
 
 
(8 weeks)  

Non-
transgenic 
control  
(Day-1) 

Non-
trangenic 
shoots 
(8 weeks) 

 No. No.  %  No.   % 

Set-A 140 130.0 92.9 20 19.0 95.0 

Set-B 140 129.0 92.1 20 19.0 95.0 

Set-C 140 124.0 88.6 20 17.0 85.0 

Total explants 420 380.0  60   

Mean                      127.7  91.2  18.3 91.7 

 

 

 

 

6.3.1.4.3: M. pruriens transformation using epicotyl apical bud explants. 

 

Regeneration rates were also high using M. pruriens epicotyl bud explants  with 

85.5% regenerating shoot systems on kanamycin selection (50 mg l-1) (Figure 6.11; 

Table 6.91).  However, attempts to induce root regeneration in the explants by 

micropropagation on M.S solid supplemented with the auxin IBA (1.0 µM) were not 

succesful.   

 



220 
 

 

 

Figure 6.11 Putatively transformed 2 month old epicotyl apical bud shoot explants subcultured M.S 

medium supplemented with IBA (1.0 µM) and 100 µg ml-1 kanamycin selection. 

 
 
 
 
Table 6.91 Agrobacterium strain    GV3101-mediated transformation of M. pruriens 
using cotyledonary nodal explants. 
 
 

Experimental  
set series (GV3101) 
 
 

No of epicotyl 
apical bud 
explants. 
(Day-1) 
 

No of 
transgenic 
shoots   
(8 weeks)  

Non-
transgenic 
control  
(Day-1) 

Non-
transgenic 
shoots 
(8 weeks) 

 No. No.  %  No. % 

Set-A 140 110.0 78.6 20 17 85.0 

Set-B 140 115.0 82.1 20 17 85.0 

Set-C 140 134.0 95.7 20 18 90.0 

Total explants 420 359.0  60   

Mean                      119.7 85.5  17.3 86.7  
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6.3.1.4.4: Mucuna pruriens regenerating roots on liquid MS media. 

 

An auxin (NAA) assay was performed using half strength M.S liquid medium 

supplemented with a range of NAA concentrations from 15.6 - 16.6 µM in an effort to 

induce root development in the cotyledonary nodal and hypocotyl tip explants of M. 

pruriens as described in Section 6.3.1.4.1.  The NAA concentration range used for 

the assay was selected based on report by Sathyanarayana et al., (2012) that a 

concentration of 16.2 µM NAA induced rooting in Mucuna pruriens var utilis.  

Successful root development was achieved in two of the triplicate M. pruriens 

explants growing on half-strength M.S medium supplemented with NAA (16.2 µM) 

but not in any of the other explants in the NAA assay (Figure 6.12; Table 6.92).   

 

Given the above positive result, 420 cotyledonary nodal and 420 hypocotyl tip 

explants of M. pruriens (140 explants for each experimental set trial) were 

transformed and MS supplemented with NAA (16.2 µM) was used as the rooting 

media.  However, no root regeneration occurred in all subsequent experimental 

trials.  It was however observed that although the seed stock used in the root 

induction assay had better regeneration potential, they produced seeds of low 

regeneration potential and these were used in the subsequent transformation 

experiments.  The low regeneration potential could possibly have contributed to the 

lack rooting by the putative transgenic shoot explants. 
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Figure 6.12 Micropropagated M. pruriens regenerating root system on half-strength M.S liquid media 

supplemented with NAA (16 µM). 

 

 

 

Table 6.92 Agrobacterium strain GV3101-mediated transformation of M. pruriens 

using cotyledonary nodal explants. 

  
 

M.S liquid media 
supplemented with NAA (µM)  
(Non-transgenic explants) 

No. of cotyledonary 
nodal explants. 
(Day-1) 
 

No. of rooted   
Explants 
(4 weeks) 

15.6 3 0 

15.8 3 0 

16.0 3 0 

16.2 3 2 

16.4 3 0 

16.6 3 0 

Total explants 18  
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6.3.1.4.5: Detection of the nptII transgene in putatively transformed Mucuna 
pruriens by PCR. 
  
 
 
To confirm that explants growing on kanamycin had indeed been successfully 

transformed, PCR was performed using primers for the nptII (neomycin 

phosphotransferase) kanamycin resistance gene on genomic DNA extracted from 

the explants as described in Section 6.2.3.5.  The results obtained (Figure 6.13) 

show that the nptII transgene was detected by PCR analysis in 8 out of 10 genomic 

DNA samples extracted from leaf explants of putatively transformed M. pruriens.  

 

 
 

 
  
 
 
Figure 6.13 Gel electrophoresis shows the 0.749 kb nptII transgene PCR product (lanes 2, 3, 4, 5, 9, 

10, 11 and 12) amplified from genomic DNA extracted from putative transgenic M. pruriens.  Lane 6 is 

shows no nptII transgene in the genome of untransformed “wild type” M. pruriens (negative control) 

whereas lane 7 shows the approximately 0.749 kb nptII transgene PCR product amplified from a 

pGREEN-CO58 plasmid (Positive control). 
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Further validation for successful transformation of M. pruriens was by screening for 

the absence of Agrobacterium contamination on the surface of leaf explants and 

hence in the extracted DNA.  Absence of Agrobacterium contamination was 

confirmed by PCR analysis to detect the tetracycline resistance (TetR) marker gene 

on the pSOUP plasmid using DNA extracted from the putatively transformed 

explants.  No PCR product was obtained for the 0.5 kb TetR gene in the DNA 

samples of putatively transformed M. pruriens which had earlier tested positive for 

the nptII transgene (Figure 6.14).  However, the tetracycline resistance gene was 

PCR amplified from a pSOUP plasmid, used as a positive control for the PCR 

(Figure 6.14). 

  

 

  

 

Figure 6.14 Gel electrophoresis shows a 0.5 kb TetR gene PCR product isolated from a pSoup 

plasmid (lane 10) as serves as a positive control for the PCR.  However, detection of the tetracycline 

resistance gene by PCR analysis in genomic DNA extracted from putative transgenic M. pruriens was 

negative (lanes 2 - 8) and similarly, the gene could not be detected in the genomic DNA of 

untransformed M. pruriens (lane 9).  Lane is a 1 kb DNA ladder (NEB). 
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6.4: DISCUSSION. 

 

The aim of the work described in this chapter was to develop a protocol for genetic 

transformation of M. pruriens.  A further aim was to silence or knock down 

expression of the Mp-ty/ddc gene with the aim of increasing L-DOPA levels through a 

reduction in its metabolism, and this required transformation of the M. pruriens with 

an RNAi construct for Mp-ty/ddc.   

 

Firstly two experiments were conducted to establish the optimum level of kanamycin 

for selection of transgenics, and the maximum level of L-DOPA that would still allow 

normal seedling growth.  The optimum kanamycin concentration obtained for 

selection of transgenic M. pruriens was 50 mg l-1.  A comparative study on 

transformation of other Fabaceae family species showed that the effective 

kanamycin concentration for selection of transgenic explants expressing the nptII 

gene was species dependent but ranged from 50 – 300 mg l-1 (Dillen et al., 1997; 

Marion, 2001; Yamada et al., 2001).  For example Dillen et al., (1997) used 300 mg/l 

kanamycin to select transgenic Phaseolus acufolius A. Gray while Yamada et al. 

(2001) used 100 mg l-1 kanamycin to select transgenic Vigna angularis.  The optimal 

concentration for selection of transgenic M. pruriens explants is therefore at the 

lower end but within the range used in similar plant transformation experiments of 

Fabaceae.   

 

The L-DOPA assay revealed that levels of up to 50 mg l-1 did not affect germination 

and growth.  However, the slower growth rate observed in L-DOPA (100 mg l-1) 

assays suggest the plantlets were beginning to experience physiological stress due 
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to high L-DOPA levels both endogenously produced in the plant cells and that 

exogenously supplemented to M.S medium.  Thus if the silencing construct was 

effective, then DOPA/tyrosine decarboxylase would not be encoded and 

consequently the L-DOPA produced by plant tissues would not be converted to 

dopamine.  Since the gene manipulated affects the post L-DOPA synthesis stage, 

the Mp-ty/ddc gene silencing strategy may serve to conserve the amount of L-DOPA 

produced by the plant but may not affect the biosynthesis rate.  However, there is a 

possibility that accumulation of L-DOPA in the plant tissues beyond a threshold of 

200 mg l-1 for M. pruriens seedlings or explants (See Section 6.2.1.2) could initiate a 

negative feedback and stop L-DOPA biosynthesis.  However, it has been observed 

that mature M. pruriens plant tissues especially seeds produce far more L-DOPA 

than the threshold concentration for seedlings or explants (Siddhuraju and Becker, 

2001).  Mature M. pruriens plants are more likely to be tolerant to enhanced L-DOPA 

accumulation in growing seed tissues as a result of successful silencing of the ty/ddc 

gene unlike the seedlings or explants which have leaves with a low threshold for 

exogenous L-DOPA.  Clearly the L-DOPA assay experiment only tested the effect of 

exogenous L-DOPA and it would be useful to determine endogenous threshold 

levels, as uptake may not be complete.  Another factor that would need to be tested 

is the regeneration of the explants producing higher DOPA levels, which was not 

tested here due to lack of time.  

 

A number of approaches have been used to transform legumes (See Section 6.1.1). 

Critical parameters seem to be the choice of explant, regeneration media and choice 

of Agrobacterium strain.  All of these important parameters were tested here.  The 

hypocotyl, cotyledonary node, hypocotyl tip and leaf explants were tested but 
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successful plantlet regeneration and detection of the nptII transgene was achieved 

by using cotyledonary nodes and hypocotyl tip.  The hypocotyl and leaf explants only 

succeeded in forming calli, thus the success of the new protocol may be due at least 

in part to the choice plant tissue used as explant for transformation.  Some 

leguminous plants such Vigna angularis regenerated from hypocotyl stem explants 

(Yamada et al., 2001).  Some species such as Phaseolus vulgaris required direct 

gene transfer into the apical meristem of seedlings by particle bombardment (Russell 

et al., 1993).  On the other hand Arachis hypogeum was reported to be transformed 

by Agrobacterium using wounded embryonic axes as well as somatic leaf explants 

(McKently et al., 1995; Cheng et al., 1996).  In contrast, M. pruriens could only form 

calli from leaf explants but without cell re-differentiation for organogenesis or shoot 

regeneration.  A particular problem encountered was the lethal browning of explants 

caused by oxidation of phenolic compounds which are produced in large quantities 

especially in explants of higher plants like M. pruriens (Toth et al., 1994; Laukkanen 

et al., 1999; Arnaldos et al., 2001).   

 

The best nutrient media for induction of root development in M. pruriens here was 

determined to be M.S liquid media supplemented with 16.2 µM NAA (Figure 7.3; 

Table 6.92) and as reported by Sathyanarayana et al. (2008).  However, the explants 

in the consequent large scale experiments did not develop roots.  The possible 

reasons for lack of root development are diverse.  For instance      unhealthy seed 

stock could generate unhealthy explants which in turn show poor genetic 

transformation and regeneration potential (Veltcheva et al., 2005). 
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Among the factors reported to significantly influence higher plant transformation 

efficiency is the strain of Agrobacterium used (Yamada et al., 2001).  The results 

obtained in my study show that transformation efficiency obtained with A. 

tumefaciens strain GV3101 was higher than that obtained using AGLI, and the least 

efficiency was observed in LBA4404.  The Agrobacterium strains used here differ in 

their genotype with respect to their virulence genes (See Table 6.2). 

  

Yamada et al., (2001) reported maximum plant transformation efficiency when using 

higher concentrations of cytokinin and transformation inducer (acetosyringone).  

Dillen et al. (1997) too reported high transformation rates in Arachis hypogea upon 

using co-cultivation medium supplemented with high BA concentration (13 µM).  

Similarly, I obtained higher transformation rates in assays supplemented with higher 

cytokinin concentrations of BA (10 mg l-1) and transformation rates gradually 

decreased with a decrease in BA concentration.  Cytokinin induces cell division in 

plants and thus higher concentration could be required to sustain rapid cell division 

of the transgenic cell to form callus and to re-differentiate to regenerate the whole 

plant (Birch, 1997; Hellens and Mullineaux, 2000; Yamada et al., 2001).  On the 

other hand acetosyringone induces the Agrobacterium to infect the plant cells and in 

due process transfer transduce the T-DNA into the plant genome.  Both 

acetosyringone and BA play synergistic roles in ensuring gene transduction and cell 

proliferation to regenerate plant parts (Hellens and Mullineaux, 2000). 

 

However, despite the difficulties encountered with rooting of M. pruriens explants, the 

success of transformation was based on kanamycin resistance and PCR analysis for 

presence of transgene, nptII as described in Section 6.2.3.5.  The explant was also 
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screened for no Agrobacterium contamination as described in Section 6.2.3.6, before 

being confirmed as transgenic based on detection the nptII transgene by PCR 

analysis. 

 

The PCR results were very encouraging, indicating that the M. pruriens had taken up 

the nptII gene but that the positive PCR result was not due to residual Agrobacterium 

growth since the PCR result for TetR was negative.  Further work would be required 

to establish whether the transgene is being expressed and whether it is heritable.  

This requires the transgenic plants to root, grow to maturity and produce seeds.  The 

new generation seeds would then be grown and DNA would be extracted from the 

seedlings and screened by PCR for presence of nptII transgene.  Similarly, the 

successful silencing of the Mp-ty/ddc would further be confirmed by determining the 

gene expression profile in both the parent and the succeeding generation of M. 

pruriens plants.  

In all I developed two methods for transformation of Mucuna pruriens using a 

cotyledonary node and a hypocotyl tip explants.   
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CHAPTER 7: GENERAL DISCUSSION. 

 

 

The aim of the work presented in this thesis was to isolate and characterise genes 

related to L-DOPA metabolism from the legume Mucuna pruriens, and to attempt to 

manipulate levels of L-DOPA in this species through development of a 

transformation system. 

This species was chosen because unlike most other L-DOPA producing plants, M. 

pruriens produces fairly high quantities (Wichers et al., 1993; See Table 1.0).  This 

would give the best chance of success for manipulations to increase further L-DOPA 

production in tissues of M. pruriens to the target yield of 10 mg l-1 required for 

commercial pharmaceutical extraction (Hellwig et al., 2004; Xu et al., 2012).  The 

disadvantage of Mucuna pruriens is that it has not been extensively studied to date 

hence extensive gene sequence information and a plant transformation system were 

not available at the start of the project. 

In light of the above, my PhD research started with confirming the levels of L-DOPA 

in Mucuna pruriens (Chapter 3), which were indeed found to be fairly high compared 

to most other natural sources of L-DOPA (See Table 1.0).  This encouraged me to 

work on the isolation and characterisation of enzymes involved in L-DOPA 

biosynthesis and metabolism.  From work on better-studied species, the key genes 

involved are tyrosine hydroxylase (tyoh) and DOPA/tyrosine decarboxylase (ty/ddc) 

responsible for conversion of L-tyrosine to tyramine, and L-DOPA to dopamine 

respectively (Chattopadhyay et al., 1994; Figure 1.8).  Attempts to isolate, clone and 

sequence the tyrosine hydroxylase gene (tyoh) using a degenerate primer PCR 

approach as described in Chapter 2 Section 2.2.5.1 was not successful for any of the 
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primers designed from the different conserved sequence regions of the protein 

sequences (See Appendix V.II).  This was due to lack of adequate sequence data for 

plant tyoh on the NCBI data base for use to design appropriate degenerate primers 

(See Appendix V.II).  However it was possible to isolate an almost complete 

sequence for a putative L-DOPA decarboxylase gene (Chapter 4) and characterise it 

(Chapter 5).  This opened the possibility of using an antisense strategy (Sambrook et 

al., 1989) for down-regulation of this gene to increase L-DOPA levels since it was 

hypothesised that one reason for low levels of L-DOPA in plants is the activity of 

decarboxylases that metabolise it to dopamine.  The next challenge was the design 

of a functional transformation system for Mucuna pruriens (Chapter 6).    

So as a result of this work I have assembled many of the components needed to 

reach my original aims (See Section 1.4).  In this chapter I will now assess in more 

detail how far my aims have been reached and the work needed to fully reach them.  

I will also assess how this work might be taken forward. 

 

 

 

7.1: Expression of a putative DOPA/tyrosine 
decarboxylase in relation to levels of L-DOPA. 
 

The sequence evidence revealed that Mp-TY/DDC drew 74% amino acid homology 

with DOPA/tyrosine decarboxylases (TY/DDC) from species of the same taxonomic 

family as M. pruriens (See Figure 4.23).  In contrast, tyrosine decarboxylase (TYDC) 

drew 50% homology with Mp-TY/DDC for species in the same family (Fabaceae) 

with M. pruriens.  Based on percentage homology, Mp-TY/DDC can then be 

proposed to be more likely a TY/DDC rather than a TYDC.  The expression of the 

Mp-ty/ddc gene in M. pruriens was significantly higher in root and stem tissues than 
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in seed tissue while leaf tissues showed relatively very low Mp-ty/ddc expression 

(Figure 4.25).  In contrast L-DOPA-content in M. pruriens seed tissues was 15-fold 

higher than that in stem and leaf tissues and 17-fold that in root tissues (Table 3.1).  

This almost converse pattern of gene expression and L-DOPA levels suggests that if 

the Mp-ty/ddc gene is indeed a functional L-DOPA decarboxylase, it may indeed be 

important in regulating levels of L-DOPA by conversion to dopamine.  It may 

therefore be useful to measure levels of dopamine in tissues of M. pruriens. The low 

L-DOPA-content in leaves despite the low expression of Mp-ty/ddc suggests L-

DOPA is produced at low concentrations in leaves.  A similar gene, from Papaver 

somniferum Ps-ty/ddc was also expressed at low levels in leaves (Facchini and De 

Luca, 1995).  In addition, Facchini and De Luca (1995) demonstrated a relationship 

between expression of ty/ddc homologues with presence tertiary derivatives of 

dopamine such as morphine and isoquinoline alkaloids in stem and root tissues of P. 

somniferum.  However, the Ps-ty/ddc expression in seed capsule of P. somniferum 

was reported to be low despite presence of high levels of isoquinoline alkaloids (a 

tertiary derivate of dopamine) (Facchini and De Luca., 1995).  Further analysis 

suggests the isoquinoline compounds were produced in the stems and roots of P. 

somniferum and were transported to the seed capsule (Facchini and De Luca, 1994).  

Thus at least in P. somniferum the dopamine is further metabolised, hence also in M. 

pruriens analysis of dopamine levels may not be sufficient to infer the regulatory 

activity of the Mp-ty/ddc enzyme.  

 

In a bid to determine the relationship between Mp-ty/ddc gene expression and L-

DOPA or dopamine biosynthesis, I performed enzyme activity assays as described 

in Chapter 5 Section 5.2.1.6 - 7.  It was determined by SDS page fractionation 
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analysis that Mp-ty/ddc encoded a 56 kd Mp-TY/DDC protein fusion which was 

heterologously expressed in the total insoluble protein extract from bacterial culture 

although it was not clearly detected in the soluble fraction.  However, heterologously 

expressed Mp-TY/DDC did not show enzyme activity upon treatment with putative 

substrates: L-DOPA and tyrosine, or with structurally related compounds such as a 

dopamine (See Chapter 5 Section 5.3.4-5).  The possible causes for the lack of Mp-

TY/DDC fusion enzyme activity are diverse and include production of insufficient 

quantities of soluble functional proteins (Sambrook et al., 1989; Wang et al., 2010).  

Low solubility of expressed proteins is likely to be due to be misfolding of the protein 

(Wang et al., 2010).  The possible causes for protein misfolding are diverse but it 

could have been a result of over-expression leading to the aggregation of the 

majority of protein to aggregate in inclusion bodies in inactive form which is insoluble 

(Sambrook et al., 1989).  The view is supported by the report that pET21b vector 

system I used for cloning and heterologous expression of Mp-TY/DDC was designed 

for protein over-expression (pET21b expression vector system user manual, 

Novagen, USA).  However, despite several reports of proteins forming inclusion 

bodies when over-expressed, equally there reports of proteins have been over-

expressed but did not form inclusion bodies (Liu et al., 2012).  The notion that low 

levels of soluble protein production accounted for the apparent lack of enzyme 

activity exhibition by heterologous expressed Mp-TY/DDC fusion protein is further 

supported by the observation that soluble Mp-TY/DDC protein could not be detected 

by SDS page electrophoresis (Chapter 5, Figure 5.11) but was detected by western 

blot analysis (Figure 5.15).  The western blot analysis is very sensitive and able to 

detect several-fold lower concentrations of proteins in solution than could be done by 

SDS page electrophoresis (Sambrook et al., 1989).  Attempts were made to increase 
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the proportion of soluble protein by conducting assays for culture temperature and 

IPTG concentration as described in Chapter 5 Section 5.2.1.2.  Further possible 

ways of improving recombinant Mp-TY/DDC protein expression include co-

expression of molecular chaperones (proteins in E.coli which help in protein folding) 

at higher levels together with the heterologous proteins (Sambrook et al., 1989).  In 

addition, fusion of NusA or Yeast small ubiquitin-related modifier (Yeast SUMO) with 

heterologously expressed proteins is reported to increase the protein solubility when 

compared to the His-tag fusion I used for Mp-TY/DDC expression (Wang et al., 

2010).  Further options include heterologous expression using eukaryotic systems 

such as Saccharomyces cerevisiae.  This has the advantage of producing large 

quantities of recombinant protein directly into the culture media (Hellwig et al., 2004; 

Xu, et al, 2012).  In addition, heterologous expression using eukaryotic systems 

enable post-translational modifications which are normally required by many 

eukaryotic genes but cannot be performed by E.coli because they lack the necessary 

enzymes.  In addition, amino acid sequences for the cloned DOPA/tyrosine 

decarboxylases from other species in the family Fabaceae of M. pruriens, which 

drew very significant homology with Mp-TY/DDC, were 2 - 20 amino acids longer at 

the N-terminus (Figure 4.23).  This suggested presence of an incomplete N-terminus 

of the cloned putative Mp-TY/DDC from M. pruriens, which may mean that the fusion 

polypeptide chain did not fold in the correct form and hence may account for the lack 

of solubility and enzyme activity (Sambrook et al., 1989).  However, there are reports 

on heterologous expression of partial polypeptides in some proteins (Wang et al., 

2010).  

In light of the challenges involved in expressing the Mp-TY/DDC fusion protein, a 

further bid to verify whether the expressed Mp-TY/DDC was a DOPA/tyrosine 
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decarboxylase was to analyse the sequence on the Protein data bank (PDB) to draw 

similarities with characterised proteins on the data base.  Mp-TY/DDC drew 

homologies and similarities with the human DOPA decarboxylase on the PDB 

(Figure 5.9).  The fact that DOPA decarboxylase like DOPA/tyrosine decarboxylase, 

converts L-DOPA to dopamine despite being derived taxonomically from very distant 

species in animal and plant kingdoms respectively supported the suggestion that 

Mp-TY/DDC is likely to be a DOPA/tyrosine decarboxylase.  In light of the above, a 

potential way to over-come the challenge of the putative missing amino acids on the 

Mp-TY/DDC would be by generation of a synthetic N-terminus based on sequence 

homology with other plant DOPA/tyrosine decarboxylases (Fujimori, 2009).  A library 

would be constructed by allowing non-conserved residues to vary while keeping 

conserved ones the same.  Another approach would be to sequence the 

transcriptome from a plant tissue which produces the highest levels of L-DOPA to 

identify a full length sequence for this gene.  The advantage of obtaining 

transcriptome sequence is that other genes related to L-DOPA biosynthesis or 

metabolism might be identified by homology to known sequences (Sambrook et al., 

1989).  Besides DOPA/tyrosine decarboxylase, the other L-DOPA biosynthesis 

pathway, tyrosine hydroxylase (TYOH), is reported to control conversion of L-

tyrosine to L-DOPA in plants (Chattopadhay et al., 1994; Facchini, 2001).  However, 

given the lack of adequate sequence data for the tyrosine hydroxylase gene (tyoh) 

on publically available data bases, gene isolation was not possible.   

Full length sequences could then be obtained by RACE if not already derivable from 

the transcriptome sequences and could then be tested in vitro.  This would also be 

good strategy in the event that the Mp-TY/DDC is in fact a different gene from 

DOPA/tyrosine decarboxylase (Sambrook et al., 1989).   
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7.2: Putative transformation of M. pruriens. 
 

After isolation, characterisation and analysis of the Mp-ty/ddc gene and gene product 

(Mp-TY/DDC) as discussed in Section 7.2, an Mp-ty/dcc gene RNAi construct was 

designed as described in Chapter 6, Section 6.2.9.2.  The aim was to increase L-

DOPA levels in plant tissues by knocking out or down-regulation of the 

DOPA/tyrosine decarboxylase which controls the conversion L-DOPA to dopamine 

(Facchini, 2001).  A putative full-length ORF anti-sense was used in the construct to 

silence the Mp-ty/ddc because it is reported to be effective in some plants (Helliwell 

and Waterhouse, 2003; Wang and Xu, 2008).  However, for dicots the most efficient 

gene-silencing model is the “hairpin RNAi construct” designed in such a way that the 

sense portion anneals to antisense upon transformation to appear like a dsRNA or 

hairpin loop in the transgenic plant cells.  This activates dicer to cleave the RNA 

transcripts having similar sequences to that of the “hairpin” RNAi construct (Helliwell 

and Waterhouse, 2003).  The immediate challenge for this work however, was that 

the gene silencing constructs required transformation into the plant (Helliwell and 

Waterhouse, 2003; Schmidt et al., 2012) but there were no reports on transformation 

of M. pruriens.  In light of the above, efforts were geared towards establishing an 

effective transformation method for M. pruriens and after which the effectiveness of 

different gene-silencing models would be compared to determine the best model for 

optimising of L-DOPA synthesis in M. pruriens.   

I therefore developed a protocol for Agrobacterium-mediated transformation of M. 

pruriens using cotyledonary nodal and stem tip explants (See Chapter 6 Section 

6.2.3.4).  The transformation efficiency was above 80% for both cotyledonary nodal 

and stem tip explants (See Table 6.8 and 6.9 respectively) based on kanamycin 

resistance (Figure 6.11) and transgene detection by PCR (Figure 6.13) observed in 
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putative transformed plants but absent in untransformed control plants.  This 

suggests successful transformation (Hellens and Mullineaux, 2000).  Absolute 

confirmation of successful plant transformation requires the transgene to be 

expressed both in the transgenic plant and its offspring generation.  In my work, the 

transgene was confirmed as present in the transformed M. pruriens plants (See 

Figure 6.13).  However a key difficulty encountered was in developing a root system 

and as consequence it was not possible to regenerate whole plants and to further 

confirm M. pruriens transformation by PCR screening for the nptII transgene genome 

of succeeding generations. In addition due to the  long life-cycle (5 months) of M. 

pruriens (90 day cultivar), the long time required to do experiments, and a shortage 

in the supply of the parental stock of M. pruriens (“90 day” cultivar), the scope of my 

work did not therefore include studies on the offspring generation. 

   

The advent of a transformation protocol for M. pruriens in this study opens up 

opportunities for in vitro molecular analysis studies on the biochemical pathways in 

the plant including manipulation to favour production of novel products such as L-

DOPA.  Specifically a key experiment is to confirm the down-regulation of the Mp-

ty/ddc expression profile in M. pruriens explants putatively transformed with an Mp-

ty/ddc RNAi cassette and how it relates to L-DOPA levels in different tissues of M. 

pruriens putatively transformed with the Mp-ty/ddc-RNAi cassette.  The RNAi 

construct was built based on the hypothesis that Mp-ty/ddc gene codes for 

DOPA/tyrosine decarboxylase which is responsible for conversion L-DOPA to 

dopamine in M. pruriens, and hence silencing the Mp-ty/ddc would result in 

accumulation of L-DOPA.  The above hypothesis was also based on the findings 



238 
 

obtained by Southern blot analysis (Chapter 4 Section 4.3.6) that Mp-ty/ddc was a 

single copy gene.   

 

All M. pruriens (“90 day” cultivar) tissues tested had L-DOPA levels which are 

significantly lower than the L-DOPA tolerance threshold of 200 mg ml-1 L-DOPA 

concentration (Table 6.2). This therefore allows manipulation of the synthesis 

pathways to enhance L-DOPA production.  However, as the commercial production 

requirements for natural products is 10 mg ml-1 (Xu et al., 2012), additional 

approaches would be required such as using transgenic cell culture approaches and 

heterologous expression using bacterial and yeast systems (Sambrook et al., 1989). 

 

 

7.3: Future work. 

 

The short term future work include: establishing a rooting system for the transgenic 

M. pruriens plants.  The effects of the antisense construct could then be tested fully 

on the parental and the subsequent offspring generations of M. pruriens.  This would 

then enable experiments to establish an appropriate RNAi system (antisense or 

“hairpin” RNAi) (Schmidt et al., 2012) for silencing the putative DOPA/tyrosine 

decarboxylase. The effect on the L-DOPA profile in different tissues of M. pruriens 

could then be established.  Another key objective of future work would be to further 

verify the enzymatic activity of the cloned putative M. pruriens DOPA/tyrosine 

decarboxylase to establish whether it is indeed able to catabolise L-DOPA in vitro. 

 

The long term future plans include resolving the possibility of a negative feed-back 

loop (Moreno et al., 2013) being activated to stop L-DOPA levels from increasing in 
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tissues of M. pruriens after silencing the DOPA/tyrosine decarboxylase responsible 

for conversion of L-DOPA to dopamine.  One strategy would involve developing cell 

suspension cultures to secrete the L-DOPA produced into the culture medium which 

may not activate the negative feed-back loop on L-DOPA production in the plant 

cells (Xu et al., 2011).  Production of natural products by using plant cell cultures has 

many advantages over using whole plant systems and these include: the rapid 

growth of cell suspension cultures with cell doubling occurring in some cases in a 

day, products that can be produced more consistently using controlled bioreactors 

and require fewer environmental regulatory compliance requirements (Xu et al., 

2012).  In addition, natural products produced by cell suspension cultures require 

simple purification from a well-defined culture media (Sharma et al., 2004).  On the 

other hand, the yield for natural products derived from plant cell culture is currently 

too low (0.00001- 0.2 mg ml-1) for commercial purposes. However, advances in 

molecular pharming have produced yields of several natural products and proteins 

beyond the 10 mg ml-1threshold required for commercial purposes (Hellwig et al., 

2004).  Nevertheless, there is a need to further improve the product yield by 5 - 10 

fold to meet the desired target profit margins required by the molecular pharming 

industry (Xu et al., 2012).   

 

Besides silencing the Mp-ty/ddc gene in plant cell cultures, another approach to 

enhance L-DOPA production in M. pruriens would be by over-expression of tyrosine 

hydroxylase (Mp-tyoh) gene which is responsible for conversion of L-tyrosine to L-

DOPA (Chattopadhyay et al., 1994).  The Mp-tyoh gene could be isolated by 

construction of a cDNA library (Sambrook et al., 1989) or by more recent 

transcriptomic approaches.  Studies could then be performed on over expression of 
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biosynthetic genes such as the Mp-tyoh gene in vivo using whole plant systems, cell 

cultures or in vitro by heterologous expression using bacteria and yeast systems as 

highlighted in Section 7.2 above.  The relationship between the Mp-tyoh gene and L-

DOPA production in vitro or in vivo would be determined by measuring the 

corresponding changes in L-DOPA profile by Reverse phase-HPLC as described in 

Chapter 3 Section 3.3.3.  

 

Further work would involve identifying promoter regions for L-DOPA synthesis 

pathway genes of M. pruriens, whose entire nucleotide sequences and adjacent 

sequences to the gene would have been fully confirmed by sequencing.  Sequences 

flanking each of the L-DOPA synthesis or metabolic pathway genes of interest could 

be tested by reporter gene/ or eGFP reporter fusions (Fujimori, 2009) to verify 

expression patterns.  This would enable better in situ approaches for manipulation of 

the DOPA genes especially in cell-suspension cultures. 

 

In conclusion, despite the many obstacles that need to be overcome, progress has 

been made in this work towards manipulating M. pruriens for the production of 

commercially interesting levels of L-DOPA.  Although clearly this would require 

substantial investment of time and resources, there is a strong need to produce a 

product free from contaminating enantiomer and other by-products of chemical 

synthesis that result in unacceptable side effects for the use of L-DOPA in the 

treatment of Parkinson’s disease.  This becomes an increasingly pressing problem 

now in many countries with a growing elderly population. 
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APPENDIX IV: ISOLATION AND 
CHARACTERISATION OF A MUCUNA 
PRURIENS PUTATIVE DOPA 
DECARBOXYLASE GENE (Mp-ddc). 

 

 

IV.I: INVERSE PCR FOR ISOLATION OF THE FULL 
Mp-ty/ddc GENE. 

  

IV.I.I: INTRODUCTION. 

 

A 1,727 bp portion of Mp-ty/ddc was isolated from genomic DNA, leaf and seed 

cDNA of M. pruriens by a number of approaches.  These included, degenerate PCR 

on genomic DNA template which was used to obtain the initial Mp-ty/ddc gene 

sequence.  This was followed by 3’RACE on leaf cDNA template and this was used 

to isolate the 3’end of the Mp-ty/ddc gene, 5’RACE on seed and leaf cDNA which 

was used to obtain the 5’end sequence.  However, based on sequence alignments 

with DOPA/tyrosine decarboxylases of closely related species to M. pruriens, the 

Mp-TY/DDC is probably missing the first 20 amino acids at the 5’end which could not 

be isolated by 5’RACE.  Inverse PCR was therefore attempted to isolate this 

putatively missing sequence.  
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IV.I.II: MATERIALS AND METHODS.  

 

IV.I.II.I: Principle of Inverse PCR and primer design. 

 

Inverse PCR is a variant of PCR in which DNA of unknown sequence but flanking a 

known sequence can be amplified.  The principle of inverse PCR is summarised in 

Figure IV.I. 

The technique involves digestion by a restriction enzyme of genomic DNA containing 

the known sequence and its flanking region.  The individual restriction fragments are 

converted into circles by intramolecular ligation, and the circularized DNA is then 

used as a template in the PCR.  The unknown sequence is then amplified by two 

primers that bind specifically to the known sequence and point in opposite directions.  

The product of amplification reaction is a linear DNA fragment containing a single 

site for the restriction enzyme originally used to digest the DNA. 
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Figure IV.I Schematic diagram illustrating the principle of IPCR.  DNA was digested by EcoRV on 

either side of the known and adjacent unknown sequence.  At low DNA concentrations, the digested 

EcoRV sites at the 5’ and 3’ ends should re-ligate forming circular DNA joined at point X.  Two 

opposite facing primers designed from the known sequence region were used to PCR amplify into the 

unknown sequence. 

 

 

 

IPCR was used to amplify the putative missing 65 bp at the 5’ end of the Mp-ty/ddc 

gene, isolated and sequenced in Chapter 4.  The size of the complete Mp-ty/ddc 

gene sequence was estimated from the average size (1.8 kb) of the same gene in 

taxonomically closely related species to M. pruriens on the NCBI data bank 

(www.ncbi.nih.gov/BLAST/).  Suitable restriction enzyme sites present both in the 

known Mp-ty/ddc gene sequence and the 5’ UTR were determined by Southern 

analysis on genomic DNA of M. pruriens as described in Section 4.2.5.  The 

Southern analysis result (Section 4.3.6) revealed that digestion of M. pruriens 

http://www.ncbi.nih.gov/BLAST/
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genomic DNA using EcoRV produced a 4 kb signal when using the Mp-ty/ddc gene 

probe . The DNA fragment was released by double digestion with EcoRV with the 

first  site at position 1.5 kb at the 3’ end of the Mp-ty/ddc ORF shown in Figure D.2 

and the second EcoRV site deduced to be in the 5’utr due to presence of the Mp-

ty/ddc 4 kb hybridisation signal.   

 

IV.I.II.II: Isolation of the 5’end sequence of Mp-ty/ddc by IPCR. 

 

 

IPCR primers were designed as described in Section 2.2.5.1 from the known Mp-

ty/ddc gene sequence portion.  IPCR forward and reverse primers; (iF1): 5’-

CTGATGGATGATGAGTATAGGGTG-3’, and (iR1): 5’-

GTGGAGAGAAGAGAGTCAGGAG-3’ respectively, were positioned approximately 

0.7 kb apart and in opposite orientation (Figure D.3 a) on the inverse PCR template 

described below.  Nested forward and reverse IPCR primers; iF2: 5’-

GATTATGGGCATGGAAGTTG-3’ and iR2: 5'-GGAAATTTGCTGGATGGATC-3’, 

respectively positioned approximately 0.9 kb apart (Figure D.3a)  were used in an 

attempt to re-PCR amplify the IPCR product as described below.  

 

The Inverse PCR template was generated from M. pruriens genomic DNA by double 

digestion using EcoRV (New England BioLabs Inc., UK).  The DNA digestion 

reaction was set up in 1.5 ml Eppendorf tubes as follows; DNA (5 µg), 10 X NEB 

buffer 3 (15 µl) and EcoRV (4 units) (New England BioLabs Inc., UK) reagents were 

made up to 150 µl volume with sterile water.  The DNA digestion reaction tubes were 

vortexed and then spun for a maximum of 10 seconds in a microcentrifuge (Biofuge 

13, Heraeus. Instruments, Germany) and contents were collected at the bottom of 
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the tubes.  The DNA was restriction digested overnight for 14 - 16 hours in a 37 ˚C 

incubator (Heratherm Incubator - ThermoScientific, Germany).  The digested DNA 

(Figure IV.II) was then purified from the enzyme reaction mix by phenol-chloroform 

extraction followed by isopropanol precipitation as described in Section 2.2.17 and 

2.2.18 respectively. 

 

 

 

 

 

 

 

Figure IV.II A schematic diagram of the 4kb DNA fragment produced by EcoRV digestion  of gDNA 

extracted from M. pruriens.    

 

 

 

The recovered digested DNA was resuspended in sterile water to a stock 

concentration of 300 µg ml-1.  This was used to prepare low DNA concentrations of 

0.1, 0.25, 0.5 and 1 µg ml-1 which were used to set up a series of re-ligation 

reactions using;  
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template DNA                                              (40, 100, 200 and 300) ng, 

10X ligation buffer (Promega,                      50 µl 

T4 DNA ligase                                              (4 units) and 

sterile water                                                  to 400 µl 

 

 The ligation reaction was incubated for 12-16 hours at 16˚C (Figure IV.III a). 

 

 

 

 

 

 

 
Figure IV.III(a) A schematic diagram of the 4 kb DNA molecule formed by re-ligation at low 

concentration of the EcoRV digested M. pruriens genomic DNA.  The 3.3 kb DNA portion containing 

the 65 bp of unknown 5’ end Mp-ty/ddc sequence was PCR amplified using IPCR primers iF1 and 

iR1. 
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Following ligation the DNA was purified by phenol-chloroform extraction followed by 

isopropanol precipitation as described in Section 2.2.17 and 2.2.18 respectively and   

stored at -20˚C.  The 0.1 µg ml-1DNA re-ligation reaction sample was used as a 

template for inverse PCR amplification.  Separate experimental trials were performed 

for the 0.25, 0.5 and 1 µg ml-1DNA re-ligation reaction samples as templates for their 

respective inverse PCR amplification.  The inverse PCR reagents were set up in 0.5 

ml PCR tubes as described in KOD Hot Start DNA Polymerase kit protocol 

(Novagen, UK) using;  

 

 

2X Xtreme buffer                                (25 µl), 

dNTP mix                                           (2 mM; 10 µl), 

iF1                                                      (10 Mm; 15 µl) 

iR1                                                      (10 mM, 1.5 µl), 

re-ligated template DNA                     (0.1, 0.25,  0.5 and 1.0 µg ml-1), 

KOD Hot Start DNA Polymerase        (1.5 units) and 

sterile water                                        to 50 µl 

 

iF1 (10 Mm):; 15 µl) A negative control reaction was set up as described above with 

the exception of template DNA whereas for the positive control reaction, the DNA 

template was replaced with a pET21b plasmid containing a 1.5 kb Mp-ty/ddc 

transgene clone.  The control and the experiment inverse PCR reagents were run on 

a PTC-100 thermal cycler (MJ Research Inc., Waltham, USA) using the following 

thermal cycling conditions: 94 ˚C, 2 minutes; 94 ˚C, 15 seconds; 34 cycles (60 ˚C, 30 

seconds; 68 ˚C, 6 minutes); 68 ˚C, 10 minutes.  10 µl of inverse PCR reaction 
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samples (Figure IV.III b) were analysed by agarose gel electrophoresis as described 

in Section 2.2.7. 

 

 

  

 

Figure IV.III (b) A schematic diagram of the 3.3 kb inverse PCR product amplified using primers; iF1 

and iR2 from re-ligated EcoRV digested M. pruriens genomic DNA. 

 

 

 

The primers were used to PCR amplify from the re-ligated DNA template, 3.3 kb 

IPCR product that should contain the approximately 65 bp of unknown sequence at 

the 5’ end of Mp-ty/ddc (Figure IV.III b).  
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IV.I.III: RESULTS.   

   
 

 
IV.I.III.I: Isolation of the 5’ terminal sequence of the Mp-ty/ddc gene 
by inverse PCR. 
 
 
A 3.3 kb inverse PCR product  was isolated from the re-ligated circular DNA 

amplified using Forward and Reverse Mp-ty/ddc primers; iF1and 5’-iR1 as shown in 

Figure IV.IV (b).  A band, of the expected size (4.5 kb) was obtained from the 

positive control. 

 

 

              1                    2                         1                                                  2                                    3                                       

(a)                                         (b)                                                                  

Figure IV.IV (a) Gel electrophoresis showing the EcoRV DNA fragment which was re-ligated by 

joining  the EcoRV site at the 5’ UTR to that at the 3’ end of the Mp-ty/ddc gene (lane 2).  Figure 

IV.IV(b)  lane 2 shows a 3.3 kb DNA band which was generated by inverse PCR.  Lane 3 shows the 

4.5 kb Mp-ty/ddc IPCR product which was amplified from the pET21b-Mp-ty/ddc plasmid as a positive 

control. 

 
                    
 

The purified 3.3 kb inverse PCR product was however of too low concentration to be 

sequenced directly whereas attempts to re-amplify it using NEB Taq polymerase 
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(New England BioLabs, UK) and “nested” inverse PCR primers; iF2and iR2, were 

futile as shown by Figure IV.V.    

 

 

 

    

         
                       
                      1                                                       2                                         3                         4 
 
 
 
Figure IV.V Gel electrophoresis of inverse-PCR products: lane 2 shows a very weak 3.3 kb DNA band 

which was generated by IPCR using nested IPCR primers; iF2 and iR2.  Lane 3 shows no product 

was obtained upon using water a template for IPCR (negative control), whereas in lane 4, a 4.5 kb 

Mp-ty/ddc DNA band was amplified from the pET21b-Mp-ty/ddc plasmid by IPCR and served as a 

positive control experiment. 
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IV.IV: DISCUSSION. 

  
 
 

The predicted size of the re-ligation product for EcoRV digested genomic DNA of M. 

pruriens was 4 kb based on the Southern blot analysis (Section 4.3.6).   The 4 kb re-

ligated genomic DNA was used as a template for inverse PCR amplification.  

However, the size of the inverse PCR product was 3.3 kb because the primers; iF1 

and iR1 used in IPCR, were designed to anneal at positions approximately 0.7 kb 

apart and in opposite orientations on the re-ligated circularised DNA template (Figure 

IV.iii a).  The resulting first inverse PCR amplification cycle generated a 3.3 kb 

linearized DNA PCR product.  This served as template for second and subsequent 

PCR re-amplification cycles to generate the 3.3 kb inverse PCR product obtained 

(Figure IV.iv b).  However, efforts to re-amplify the IPCR product by nested PCR for 

direct sequencing or cloning were not successful.  However this approach could be 

used in further efforts to obtain the 5’ end of the gene. 
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IV.II: ISOLATION OF PUTATIVE TYROSINE 

HYDROXYLASE FROM MUCUNA PRURIENS.  

 

 

IV.II.I: INTRODUCTION. 

 

 

Tyrosine hydroxylase (TYOH) is the enzyme responsible for bioconversion of L-

tyrosine to L-DOPA in plants (Pras et al., 1995; Taiz and Zieger, 2006).  It is 

encoded by tyrosine hydroxylase gene(s) (tyoh) in plants and other organisms.  The 

aim of this experiment was to isolate and sequence tyrosine hydroxylase gene(s) 

(Mp-tyoh) from M. pruriens with a longer term aim manipulating it.  However, there 

was hardly any plant TYOH sequence on the NCBI and other publicly accessible 

data bases.  In light of the above, I designed degenerate primers (see Chapter 2 

Section 2.2.5.2) from conserved sequence regions of TYOH available even though 

they belonged to taxonomically species, which I used in attempts to isolate the Mp-

tyoh by PCR as described in Chapter 2 Section 2.2.6.   



274 
 

IV.II.II: METHODS AND MATERIALS. 

IV.II.II.I: Plant material. 

 

M. pruriens seeds were procured from Echo seed bank (USA) and grown in the 

under greenhouse conditions as described in Chapter 2 Section 2.1.2.   

  

 

IV.II.II.II: Extraction of genomic DNA. 

 

Genomic DNA was extracted from young leaves of M. pruriens plants as described 

in Chapter 2 Section 2.2.1. 

 

 

IV.II.II.III: Designing Degenerate Primers and PCR.   

 

Degenerate primers were designed as described in Chapter 2 Section 2.2.5.2 and 

were used to isolate the Mp-tyoh gene(s) by PCR approach as described in Chapter 

2 Section 2.2.6.  

 

 

IV.II.II.IV: Gene cloning, Sequencing and Analysis. 

 

This was performed as described in Chapter 2 Sections; 2.2.11 and 2.2.15 

respectively. 
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IV.II.III: RESULTS. 

 

This experiment was designed to isolate from M. pruriens genome, the tyrosine 

hydroxylase gene(s) which encodes enzymatic bioconversion of L-tyrosine to L-

DOPA in plants.  However, due to very limited sequence information for both the 

gene and M. pruriens on the NCBI and other public data bases, degenerate primers 

used in attempts to isolate the gene by PCR approach were designed from the few 

available sequences as described above despite being of diverse taxa.  TYOH 

sequences for species; Mythmna (gi:3439252) Felis (gi:7774525), D. rerio 

(gi:1692347), M. musculus (gi:6678337),, Apis (gi:5858520), Rattus (gi:339681), Tyr 

4 (gi:6981652), Tribolium (gi:163751), B. taurus (gi:1495887), S. aurata (gi:1148421) 

, G. gallus (gi:6523293) , Schistosoma (gi:2613098), Xenopus (gi:1479041), Tyr 

(gi:163797), Physcomitrella (gi:1680449) and Chlamydomonas (gi:1594636) on the 

NCBI data bank were aligned using the genedoc software program (see Chapter 2 

Section 2.2.5.2).  Conserved amino acid sequences; DHPGF (position- 260) and 

YWFTVEFG (position 440) shown in the Figure IV.I below were used to design 

forward and reverse degenerate primers respectively used to isolate the Mp-tyoh by 

PCR. 
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Figure IV.I  Tyrosine hydroxylase protein alignments sequences for; Mythmna (gi:3439252) Felis 

(gi:7774525), D. rerio (gi:1692347), M. musculus (gi:6678337),, Apis (gi:5858520), Rattus 

(gi:339681), Tyr 4 (gi:6981652), Tribolium (gi:163751), B. taurus (gi:1495887), S. aurata (gi:1148421) 

, G. gallus (gi:6523293) , Schistosoma (gi:2613098), Xenopus (gi:1479041), Tyr (gi:163797), 

Physcomitrella (gi:1680449) and Chlamydomonas (gi:1594636).  Conserved amino acid sequence, 

DHPGF (position- 260) and YWFTVEFG (position 440) were used to design forward and reverse 

degenerate primers respectively. 
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A number of degenerate primers were designed but only one primer set; produced 

PCR product (Figure IV.II) despite performing a gradient PCR (49 - 65 ˚C).  The PCR 

product however, was a stack of weak DNA bands.  The DNA band corresponding to 

the expected size of PCR product (approximately 5.4 kb) was purified from the gel, 

cloned and sequenced as described in Chapter 2 Sections; 2.2.11 and 2.2.15. 

 

 

       

                        Lane1                           Lane 2                          Lane 3 

 

Figure  IV.II shows a gel photograph of 0.4 kb PCR product (lane-3) stack of thin multiple DNA bands 

(smear-like) of varying bp size that were isolated by a PCR approach under standard conditions 

(Section 2.2.6)  at Tm of 50 ˚C from genomic DNA of M. pruriens using degenerate primers for 

tyrosine hydroxylase gene; 5’- GA(T/C) CA(T/C) CC(T/C) GG(AGC) TT(TC)-3’ and 5’-TA(TC) 

CCA (A/G)AA (AGC)GT (ACT)AC-3’. 

 

Analysis of the sequence result using Blast against the NCBI data bank did draw any 

alignment for TYOH. 
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IV.II.IV: DISCUSSION. 

The scarcity of plant tyrosine hydroxylase sequence on public data bases makes 

gene isolation using degenerate primers a less effective.  Construction of a cDNA for 

could be the most suitable approach for isolation of the highly unconserved and 

tyrosine hydroxylase. 
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APPENDIX V: RECOMBINANT EXPRESSION 

AND ACTIVITY OF M. PRURIENS PUTATIVE 

DOPA DECARBOXYLASE GENE. 

 

 

V.I: INTRODUCTION. 

 

See chapter 5 Section 5.1. 

 

V.II: METHODS AND MATERIALS. 

 

 

The putative full Mp-ty/ddc ORF (1.5 kb) sequence was directional cloned in the 

EcoRI and XhoI restriction sites of pET21b (See Figure V.I a) and in frame for 

recombinant protein expression using bacterial cells as described in Section 5.3.4-5.  

(a) 
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V.III: RESULTS. 

 

The sequence result in Figure V.I (b) confirms that the 1.5 kb Mp-ty/ddc ORF was 

directionally cloned in frame for expression using pET21b expression vector. 

 

(b) 

GATTAGAACGGCTATTCCCTCTAGAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCT

AGCATGACTGGTGGACAGCAAATGGGTCGGGATCCGAATTCCATTGATTTCCTTGCTGATTATAT

TGGTAAGGTTGGAAAGTATCCGGTTTTAAGTAAAGTAGAAGCTGGTTATCTTAGAAAAAGATTACC

AGCTTCTGCCCCATGTGGTCCTGAACCCATTGAATCCATACTTAAAGATGTGGAAGAGCATATCA

TCCCTGGCATAACACATTGGCAGAGTCCTAATTATTATGGTTACTTCCCCAGCAGTGGTAGCATA

GCAGGGTTCATGGGTGAGATGCTAAGCACTGGATTCAATGTGGTTGGGTTCAATTGGATGTCAT

CTCCATCTGCCACTGAGCTTGAAGCCTTAGTCATGGATTGGCTTGGACAAATGCTGAAGCTCCCC

AAGACATTCCTTTTCTCTGGTGAGGGTGGTGGGGTGCTTTTGGGGACTACTTGTGAGGCCATTTT

GTGCACTTTGGTGGCTGCAAGGGAGAAAAAGCTTTCACAAGTTGGGAAGGAGAAGATAGGGAAG

CTTGTTGTGTATGCCTCTGATCAAACACACAGTGCACTTCAGAAGGCTGCTCAAATTGCTGGGAT

CCATCCAGCAAATTTCCGGGTCATCAAAACCAAGAGGTCAAGTTTCTTTGCTTTGTCTCCTGACT

CTCTTCTCTCCACCATTCTTTTGGATGTGGAGAATGGCTTGATTCCTTGTTTCCTATGTGCAACTG

TTGGCACTACTGCAATAGCCACCATTGATCCTGTGGGGCCATTGTGTAGTGTGGCCAAGGACTA

TGGCATTTGGGTCCATGTTGATGCTGCTTATGCAGGCTCAGCTTGCATTTGCCCTGAGTTTAGAT

ATTGCATTGATGGGGTTGAAGAGGCAAACTCCTTTAGCCTCAATGCTCATAAGTGGTTTTTGACC

AATTTAGCATGTTGTTGCCTTTGGGTGAAAGATCACACTGCCCTCACAAAATCCTTGTCAGTGGA

TCCTCCTTTCTTGAGGAACAAGGCTTCTGAGTCAAAGCAAGTGATTGACTACAAGGATTGGCAGA

TACCATTGAGTAGGAAATTTAATGCCCTCAAACTATGGCTTGTTCTTAGAAGCTATGGTGTTGAGA

ACCTTAGGAACTTCCTGAGAAACCATGTGCAAATGGCCAAAACTTTTGAAGGGCTGGTAAGGTTG

GATAAGAGGTTTGAGATTGTTGTGCCTCCAAAATTCTCTTTGGTTTGCTTTAGGATTGCACCATCA

GCTATTGCTAATGGGGTGTCCAATGGTACTGAAGCATGCTATAATGGGAAACTGATGAATGATGA

GTATAGGGTGAATGAAGTCAATCGTAAATTGCTTGATTCAATTAATAGTTCTGGCAATGTATTCAT

GACTCATGGTGAGGTTGAAGGAGCCTTTGTGATTAGATGTGCTATTGGTGCAACTTTAACAGAGG

AACACCATGTGATTATGGCATGGAAGTTGGTGCAGGAGCATGCCAATTCTCTGTTAGGACTCGA

GCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGAAGCTAGGCAC  

 

 

Figure V.I (b) Sequence result for (a) the fusion of Mp-ty/ddc into pET21b.  (b) Map of the pET21b 

expression vector the EcoRI and XhoI sites into which the Mp-ty/ddc sequence was cloned.  The map 

also for shows the pET21b sequence coding the His-tag fusion protein, the lac operator, T7 promoter 

and T7 terminator.  

 



281 
 

Crystal structure analysis of the Mp-TY/DDC fusion protein on Protein data bank 

(PDB) showed the predicted protein structure was similar to that human (Homo 

sapiens) aromatic dopa decarboxylase (Structure reference:3RBF on the Protein 

data bank).  The Mp-TY/DDC protein sequence (Figure V.I (a)) drew significant 

homology with 69.2% of the 13 connserved entities of Mp-TY/DDC showed 100% 

homology with the human DOPA decarboxylase on PDB (Figure V.II (b)).  76.9% of 

the 13 conserved entities in Mp-TY/DDC showed 100% homology with the human 

DOPA decarboxylase (Figure V.II c).  Based on x-ray ressolution analysis, the Mp-

TY/DDC was classified as a DOPA decarboxylase enzyme on PDB (Figuresd-h). 

 

 

 

 

 

Figure V.I (a) Mp-TY/DDC protein sequence blast analysis on the Protein data bank (PDB) drew very 

significant alignments in 13 unique sequences of dopa decarboxylase. 
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(b)                                                                                          (c) 

Figure V.I (b) 69.2% of the 13 conserved entities in the Mp-TY/DDC sequence when blast analysed 

on the PDB very significant homology with dopa decarboxylase of Homo sapiens.  (c) 76.9% of the 13 

conserved entities in Mp-TY/DDC sequence show 100% homology with the human dopa 

decarboxylase. 

 

 

 

 

       

                            (d )                                                                         (e) 

Figure V.I (d) 2 of the 13 conserved  entities for the Mp-TY/DDc and the PDB show 100% homology 

to dopa decarboxylase.  (e) Polymer analysis for all the conserved entities between Mp-TY/DDC and 

PDB  reveal  the sequence is for a protein.   
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(f) 

Figure V.I (f) X-ray resolution of the Mp-TY/DDC sequence on the PDB was characteristic for aromatic 

dopa decarboxylase.  

 

 

 

 

                (h )  

 

Figure V.I (h) Enzyme classification of the Mp-TY/DDC sequence on the PDB shows 58% of the 

conserved sequence domains correspond to Aromatic DOPA decarboxylase.  
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Mp-TY/DDC sequence from M. pruriens plant showed 41% sequence homology with 

the human DOPA decarboxylase when analysed by blast on the NCBI data bank.  

The high sequence homology for the two taxonomic distant species suggests the 

gene plays the same role in both (Figure IV.I). 

 

 

 

 

Figure IV.I Mp-TY/DDC alignment with the human DOPA decarboxylase on the NCBI data bank show 

41% homology. 
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V.IV: DISCUSSION. 

 

Analysis of the Mp-TY/DDC on the NCBI data bank and on PDB all drew significant 

alignments with plant DOPA/tyrosine decarboxylase and human DOPA 

decarboxylase respectively. The Mp-TY/DDC drew 74% sequence homology with 

TY/DDC of Glycine max which like M. pruriens belongs to the family Fabaceae but in 

addition drew 41% homology with human DOPA decarboxylase when analysed on 

the PDB.  Based on the above, the Mp-TY/DDC is likely to be a DOPA tyrosine 

decarboxylase.  However, the further characterisation to determine the enzyme 

properties is required to confirm the identity of the protein. 
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APPENDIX VI: TRANGENICS.  

 

VI.I: INTRODUCTION. 

 

Preliminary higher plant transformation experiments were performed on Nicotiana 

tabacum following the method by described by Draper et al. (1988) and Gallois and 

Marinho (1995) before I developed a new protocol for putative transformation of 

Mucuna pruriens.  N. tabacum was chosen as a model for plant transformation 

training because it is reported to have high transformation efficiency and it is a dicot 

like my PhD study plant-Mucuna pruriens (Marion, 2001).  

 

 

VI.II: METHODS AND MATERIALS. 

 

 
VI.II.I: Agrobacterium strains and plasmids used.  

A. tumefaciens strains AGL1, LBA4404 and GV301 were transformed with a 

pCAMBIA plasmid pC23.35S.ECGFPHS which carry transgenes; nptII and GFP 

genes in the T-DNA region.  The nptII and GFP gene encode for kanamycin 

resistance and green fluorescence proteins respectively in the putatively transformed 

plants. 
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VI.II.II: Agrobacterium–mediated transformation of Nicotiana 
tabacum leaf discs. 
 

The methods for preparation and use of Agrobacterium tumefaciens 

electrocompetent cells were based on Shen and Forde (1989), and Mattanovich et 

al. (1989) as described in Chapter 6 Section 6.2.3.2. 

N. tabacum leaf explants were then transformed was then conducted following the 

method described by Draper et al. (1988) and Gallois & Marinho (1995) summarised 

below.  Surface sterilised fully expanded tobacco leaves were sliced into small discs, 

immersed in MSO/LBA4404 culture for 20 minutes with gentle shaking.  The leaf 

discs were then blotted with a sterile tissue and a total of 8 discs per plate were 

immersed adaxial side up in MSD4X2 media plates with no selection.  The plates 

were sealed with a parafilm and incubated  in 16 h light regime for 2 days before 

they were transferred to shooting media plates containing MSO /150 µg/µl 

cefotaxime/50 µg/µl kanamycin  and 4.44µl 6-BAP.  The cefotaxime was used to kill 

the Agrobacteria after leaf transformation, kanamycin was selection for the 

transformed explants while BAP induced shoot development.  The callus appeared 

approximately after two weeks and shoot development occurred approximately after 

4 weeks of post co-cultivation.  The transformed shoots were excised at the base 

from the callus and only one shoot per leaf disc was transplanted into tissue culture 

boxes containing the rooting medium MSO/ 50 µg/µl kanamycin/150 µg/µl 

cefotaxime/5.37 µM NAA.  NAA induced root formation.  At 4 leaf stage, the shoots 

were cut between internodes and transferred to fresh MSO rooting medium with 

selection described above.  The transformed plantlets were transferred to soil soon 

after the roots appeared and grown under greenhouse conditions.  
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VI.II.III: Detection of transgene nptII gene in putatively transformed 
plants by PCR method. 
 

Total DNA was isolated by the method of Draper and Scott (1988) and used to 

investigate the presence of the transgene.  Primer set for nptII gene was designed 

and used to isolate the 800 bp transgene DNA; Sequences are 5’- 

ATACCGTAAAGCACGA GG-3’ and -ATCTCACCTTGCTCCTGC-3.  Thermocycling 

was performed at 49˚C as described in Chapter 2 Section 2.2.6. 

 

 

VI.II.IV: Detection of putatively transformed plants by GFP imaging. 

 

The presence of the GFP in the transformants was detected by blue light excitation 

(Chiu et al., 1996).  Root tips of the putatively transformed plants were observed 

under a fluorescent microscope with a filter set providing 455 - 490 nm excitation and 

emission above 515 nm. 
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VI.III: RESULTS. 

 

VI.III.I: Agrobacterium-mediated transformation of N. 

tabacum. 

 

The results for tobacco transformation were 95% successful, based on regeneration 

on antibiotic selection, PCR analysis and isolation of the nptII transgene from 

genomic DNA and image analysis of the green fluorescent protein product of 

transgene GFP observed in the root tips.  Table VI.I shows the data obtained from 

transformation of N. tabacum. 

 

 

Table VI.I Shows data for transformation of N. tabacum. 

 

Trials Leaf explants Shoot explants 

on selection 

media. 

Root 

regeneration 

on selection 

media 

% 

Transformation 

 

Set-A 80 75 75 93.8 

Set-B 80 77 76 95 

Set-C 80 75 75 93.8 

Set-D 80 78 78 97.5 

Total explants 320   95.03% 
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After 2 weeks of callus formation on kanamycin selection medium, shoots began to 

emerge by forming two cotyledonary leaves and a distinct stem was observed at four 

leaf stage.  Figure VI.II shows shoot formation from putatively transformed calli.  

 

 

 

 

 

 

 

 

 

Figure VI.II (a) shows 2 weeks old putatively transformed N. tabacum calli regenerating shoot 

systems on kanamycin selection media. 

 

 

 

The shoots excised from the calli continue to grow on M.S media supplemented with 

kanamycin and after 8 weeks, a distinct root system had been regenerated (See 

Figure VI.II (b). 
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Figure VI.II (b) shows 7 weeks old putatively transformed N. tabacum explants on rooting media 

supplemented 50 mg l-1 kanamycin selection. 

 
 
 
 
VI.III.II: Detection of presence of the nptII transgene in putatively 
transformed N.tabacum by PCR analysis. 
 

 

The 749 bp kb nptII transgene was detected by PCR analysis in the genomic DNA 

extracted from putatively transformed N. tabacum by PCR analysis (See Figure 

VI.III).  

 

 

 

                      1             2             3              4             5              6              7 

 

Figure VI.III shows 749 bp kb PCR product of transgene nptII isolated from genomic DNA extracted 

from different transformed tobacco plants (1, 2, 3, 4 and 5) and from pCAMBIA2300 plasmid DNA 

used as a positive control (lane 7) using primer set;  5’-CTTGGGTGGAGAGGCTAT-3’ and 5’-

AGAACTCGTCAAGAAGGC-3’.  No PCR product was obtained for the negative control (lane - 6).  
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VI.III.III: GFP analysis of root tips of putatively transformed 
N. tabacum. 
 

 

 

GFP Image analysis of the root tips of N. tabacum under blue light excitation of a 

GFP microscope showed green fluorescence for the putatively transformed plants 

(Figure VI.IV a).   

 

 

 

                        

(a)                                                                        (b) 
 

 
Figure VI.IV shows image analysis of root tips of putatively transformed N. tabacum using a GFP 

microscope.  Figure (a) Green fluorescence was observed in the root tips under blue light excitation.  

Figure (b) Root tip of putatively transformed N. tabacum observed under normal light. 

 
 
 
 

On the other hand, no green fluorescence was observed in the root tips of un 

transformed N. tabacum plants (Figure VI.V). 
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                            (c)                                                             (d) 
 

Figure IV.V No green fluorescence was observed the root tips of un transformed N. tabacum 

(negative experimental control). 

 

 

 

VI.IV: DISCUSSION. 

 

 

The transformation of N. tabacum was confirmed by detection of the transgenes; 

nptII and GFP encoding gene by PCR and GFP image analysis respectively.  The 

nptII transgene conferred kanamycin resistance to the transgenic plants which 

enabled them to grow on kanamycin selection (Hellens, R and Mullineaux).  On the 

other hand, the GFP gene encoded for green fluorescence proteins observed in the 

root tips of putatively transformed N. tabacum plants (See Figure VI.IV).  The high 

transformation efficiency of 95% (See Table VI.I) justified the choice of N. tabacum 

as a model for preliminary work on plant transformation before I developed a new 

protocol for putative transformation of Mucuna pruriens. 


