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Summary 
 

 

This thesis presents details of a numerical programme of study on the themo-hygro-

chemical (THC) processes occurring during the self-healing of cementitious materials. 

 

A comprehensive THC model, which is mechanistic in nature, is proposed and 

implemented in the framework of the finite element method. The aim of this model is to 

develop a useful computational tool that is capable of realistically predicting damage 

recovery in terms of the crack filling observed under specific environmental conditions. 

The early age and long term behaviour of the cementitious materials is simulated by 

solving a boundary value problem which couples moisture-temperature-ion transport 

mechanisms by means of mass and enthalpy balance equations. The model assumes 

that all the transport processes occur at the capillary pore level and that the self-

healing is driven by ongoing hydration. In this context, attention is focused on 

developing an innovative microstructural model that can predict the quantitative 

evolution of the capillary porosity. The microstructural model is based on an existing 

colloidal classification of the water forms present in the clinker hydrates, on hydration 

kinetics principles and on the stoichiometry of the Portland cement. The effect of the 

aggregate absorption on the capillary porosity is also examined.  

 

Firstly, the adopted theoretical considerations regarding the transport of moisture and 

temperature in cement-based materials are validated by comparing the numerical 

findings of the TH component with the reported results of three different sets of drying 

experiments. Then the THC model is applied to the simulation of a crack recovery 

experiment undertaken at Cardiff University. In both cases the proposed model was 

found to capture the essential characteristics of the thermo-hygro-chemical behaviour 

of cementitious materials. 
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Nomenclature 
 

Symbols: 

kA , pA , vA  material constants 

1A  - 3A   material constants 

A , ΓA   material parameters 

specimenA  area of the specimen 

a   material constant 

B  Blaine specific surface area  

vB , 1B  - 4B  material constants  

b , 1b  - 3b  material parameters 

C   integrand of the elemental secant capacitance matrix 


pC   specific heat capacity of phase    

j
XC _  material coefficient of the j  porosity computed with the X  method 

ΓC   integrand of the hydration component of eF  

Ĉ   global secant capacitance matrix 

c   initial mass of cement per unit volume of material 

vc   concentration of the vapour phase 

j
FAc   j  porosity coefficient accounting for the fly ash 

c , c , 1c , 2c   material constants 

cD  diffusion coefficient 

ij
dispD   tensor of hydrodynamic dispersion 

effD   effective diffusion coefficient  

molD  molecular diffusivity coefficient 

0vD   diffusion coefficient of vapour at reference temperature and pressure 

XD  diffusion coefficient controlling the hydration X   

div   divergence  

E   activation energy of the reaction 

eF   vector of elemental body and boundary “forces” 
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qF   integrand of the boundary condition component of eF  

F̂  global load vector 

f , Bf , Df  arbitrary functions 

ult
capf  volume fraction of capillary pores at the end of hydration 

convf   conversion factor of the time  

gf   integrand of the gravitational component of eF  

if   weight/mass ratio of i   

sf   Knudsen effect coefficient  

g   gravity vector 

grad   gradient 

iH  heat release/specific enthalpy of i   

cH   heat of hydration of cement at complete hydration 

totH   total heat release at complete reaction of cementitious material 

FAh   heat of hydration of the fly ash 

hx distance in x direction 

hy distance in y direction 

itime  step number 

41 ii    saturation intervals 

j
iJ   j  flux of i  

K  integrand of the elemental secant hydraulic conductivity matrix 

XK   order of reaction of mineral X   

K̂   global secant hydraulic conductivity matrix 

0
iwk   intrinsic permeability of the matured paste 

ik   intrinsic permeability coefficient of    

rk   hysteretic relative permeability of    

Xk   rate constant of the hydration of the mineral X   

k   permeability of the medium with respect to    

lM   mass of liquid phase 

sM   mass of dry solid (unreacted cement + precipitated material) 

M   molar mass of    

m   material constant 
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lossm   relative weight loss 
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specimenm   mass of the specimen 
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2

  mass of the total liquid phase 

capgel
wm

  mass of water expelled from the gel pores into the capillary pores 

Xm   mass percentage of mineral X   

Yprecdepl
Xm

_/  mass of depleted/precipitated X  during the hydration of Y  

STZprecdepl
Xm

_/  mass of depleted/precipitated X  during the Z  hydration stage of X  

Ydepl
BRZSTZXm

_
21_  mass of depleted X  during the 2Z  branch of the 1Z  hydration stage of 

the mineral Y  

m  mass rate or sink/source term of    

im  sink/source term of   due to i   

N   shape function 

N   vector of shape function 

n   time step 

n   unit normal vector to the boundary flux 

ne   number of finite elements 

nn   number of nodes of a finite element 

STZ
Xnstop   time step at which the Z  hydration stage of X  stops 

Xnstop   time step at which all the stages of the hydration of X  stops 

atmp   atmospheric pressure 

cp   capillary pressure 

sat
vp   water vapour saturation pressure 

p   pressure of the fluid phase    
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q  imposed flux of phase    

q   heat flux of phase    
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R   ideal gas constant 
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RH   relative humidity 

crRH   critical relative humidity 

D
Xt 0,   initiation time of the diffusion controlled hydration of the mineral X  

I
Xt   duration of the induction period of the mineral X  

j
wS   water saturation degree corresponding to the j  porosity 

0wS  initial degree of saturation 

S   degree of saturation with respect to the phase   

wS   water degree of saturation vector 

0t   initial time 
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T   temperature 

crT   critical temperature of water 

envT  temperature of the surrounding environment 

rT , refT   reference temperature  

0T   initial temperature 

T   temperature of phase    

T   temperature vector 

t   time 

iV   volume of i   

ult
iV   volume of water form i  at the end of hydration  

mixV   volume of the mix  

 ΓVs   volumetric strain due to shrinkage 

specimenV   volumetric of the specimen 

ult
voidsV  volume of voids at the end of hydration 

v   mass-averaged velocity of phase   with respect to phase   

v   mass-averaged velocity of phase   

W   weight function 
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
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w
  lowest/effective/initial water-cement ratio of the mix 

ult
iw   mass of water form i  per unit volume of material at the end of hydration 

lossmoistw _   relative moisture loss per unit exposed area 

wc   water content 

X   principal variable 

z   vertical distance from the reference level 

zi  stoichiometric coefficient 

  basic constant 

L , T   longitudinal/transversal dispersivity parameter 

P   material parameter 

P   order of the process 

sf   hydration shape parameter 

SP   retardation time accounting for the superplasticizer 

CΔ ˆ   global tangent capacitance matrix 

hH   heat of hydration 

PH   heat of precipitation 

vH   heat of evaporation 

KΔ ˆ   global hydraulic conductivity matrix 

t  time increment  

ij   the Kronecker delta 

   transfer coefficient of phase    

δΦ   increment of the global vector of unknowns 

Φ   global vector of principal variables 

Γ , PCΓ   degree of hydration of the Portland cement 

XΓ   degree of hydration of the mineral X   

D
XΓ   critical degree of hydration of the mineral X   

I
XΓ   degree of hydration of the mineral X  at the end of the induction period  

eq
Γ   boundary of the elemental domain 

qiΓ   i th boundary of the domain
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0Γ   percolation threshold of the degree of hydration 

   porosity 

j   j  type porosity 

̂   local parametric coordinate 

0   initial porosity 

eff
dry   effective thermal conductivity of a completely desaturated material 

eff
T   effective thermal conductivity of the moist material 

T   effective thermal conductivity of phase   

0T
   effective thermal conductivity at reference temperature 

chem   chemical potential 

pure
w   viscosity of pure water 

   viscosity of the fluid phase    

   parameter of the finite difference approximation 

X   characteristic time of the hydration of the mineral X   

sf   hydration time parameter 

SP
sf   hydration time parameter of the superplasticizer 

dry   apparent density 

i   intrinsic phase averaged density of i   

loss   average density loss 

envv   water vapour density in the surrounding environment 

tot
w   intrinsic phase-averaged total water density  


 h   heat source term of phase    


 HR   exchange of energy due to phase conversion and mechanical 

interactions of phase    

pC   heat storage capacity of the porous medium 

cap
w   phase-averaged capillary water density 

   phase-averaged density of phase    


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Ω   domain 

eΩ   elemental domain 

   concentration of the solute 

ω   concentration vector 

env   concentration of solute in the surrounding environment 

0   initial concentration 

̂   local parametric coordinate 

Ψ   residual vector 

G   gravitational potential 

m   matric potential of phase   

 t   total potential of phase   

   gradient 

“  ”,
Dt

D
 derivative with respect to time 

 









l

llHm   exchange term of phase   accounting for the latent heat of evaporation 
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DD   diffusion-dispersion 
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Chapter 1. Introduction 
 

 

1.1 Background of Research 

 

Cementitious or cement-based materials are fine powder minerals that react with water 

to form a plastic mass, called cement paste, that hardens in time and binds together 

aggregate particles. They contain mainly Portland cement, but may also include 

mineral admixtures like fly ash, Ground Granulated Blastfurnace Slag (GGBS), and 

Pozzolanic materials. If sand and coarse aggregate are present in the mix, concrete is 

produced. 

Imposing structural masterpieces such as the Colloseum, the Panthenon and the Pont 

du Gard bridge aqueduct were erected in Europe during the Roman Empire using a 

primitive cementitious mix that incorporated a volcanic sand called pozzolana. This 

material was not widely available and this may explain why, for many centuries after 

the fall of the Roman Empire, stone and brick masonry were the dominant building 

materials. Shaeffer (1992) reports that the use of cementitious mortars became 

fashionable again in the eighteenth-century, when Francois Cointeraux discovered that 

the addition of a cement-based binder into a mix of the ancient pisé made the 

compaction process unnecessary. Moreover, the discovery in 1824 of Portland cement 

by Joseph Aspin was the first step in the development of modern cementitious binding 

agents. Since then, concrete and mortars have continuously gained ground in Europe 

and cement has now become the most widely used man-made structural material (U. 

S. Geological Survey, 2009). To confirm this statement, information about the main 

world producers of cements, gathered by the European Cement Association in 

(Cembureau, 2014), is given in Table 1.1. According to this report, the global cement 

production was expected to increase from 3.7 billion tonnes in 2012 to 4 billion tonnes 

in 2013. 

Concrete represents an artificial unsaturated sedimentary rock that contains pores 

(empty and/or filled with moisture) and solid mass. The skeleton matrix can be 

decomposed into three main parts according to the size of its constitutive components. 

Hydrates are found at the nanoscale, unreacted cement particles at the microscale and 

fine and coarse aggregates at the mesoscale.  
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Table 1.1  Main world cement producers – the G20 Group according to Cembureau 

(2014) 

 

The voids, on the other hand, initially appear because of the chemical shrinkage that 

occurs during hydration. The configuration of the pore network (size and pore 

distribution) changes continuously and is influenced, amongst other things, by external 

environment or boundary conditions that cause damage. It is worth mentioning at this 

point that the cement-based materials are quasi-brittle. They behave satisfactorily 

under compression, but cannot withstand high tension forces. For this reason, steel 

reinforcing bars or fibres are usually embedded in the mass of the material to prevent 

tensile failure. Nevertheless, this solution does not prevent the development of the 

microcracks and implicitly, the increase in porosity. If damaged concrete is exposed to 

harmful environmental conditions, such as drying-wetting cycles, high temperatures or 

corrosion agents, the associated increase in moisture and heat flow can result in 

shrinkage or swelling. When these volume variations are restrained, further cracking 

can occur and the durability and strength of the material can be dramatically reduced. 

The water tightness of concrete, which is essential in the case of dams, storage tanks, 

nuclear reactors and disposal facilities for radioactive waste, becomes compromised. 

Moreover, an infiltrating fluid may chemically attack the reinforcement and weaken the 

structural elements. Repair and maintenance work is frequently needed to address 
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these problems, but sometimes even the most advanced inspection and remediation 

techniques are unable to improve the performance of the deteriorated structures. 

Furthermore, monitoring and maintenance programmes are fairly expensive; for 

example in Figure 1.1 two sets of statistics, released in 2013 and 2014, show that in all 

British public and private construction projects, repair and maintenance costs were 

44.8% and 47.5% of the expenditure on new works, of which concrete structures form 

a large proportion. 

 

Figure 1.1 The expenditure on the construction works in Great Britain taken from 

(Office for National Statistics, 2013) and (Office for National Statistics, 

2014) 

 

Last but not least, it must be stated that the production of cementitious materials has 

considerable environmental impact. The exhaust products, released from the chemical 

reactions of the raw materials and from the combustion of fuels, include carbon and 

sulphur dioxide, nitrogen oxides and dust. CO2 emissions are considered to be the 

most harmful of all and are evaluated to be in order of 5-7% of the total carbon dioxide 

global production (Joseph et al., 2009).  

 

Recent trends in concrete mix design indicate that it is possible to obtain engineered 

cementitious materials capable of adapting to the environment. In short, these new and 

smart materials are able to heal cracks naturally, by continuous hydration, or artificially, 

by releasing a healing agent into the damaged zone. Many experimental investigations, 

showing the benefits of using self-healing cementitious materials, have been reported 

in the literature, but few investigations have been carried out on the numerical 

modelling of these self-healing processes. The current thesis seeks to address 
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precisely this issue by proposing a model that replicates the self-healing of ordinary 

cementitious materials. 

 

1.2 Overall Motivation of Research 

 

The motivation for this study consists in the desire to find a numerical approach that 

can assess the most efficient concrete mix design in terms of achieving the most 

effective and rapid autogenous healing of cracks. The proposed thermo-hygro-

chemical (THC) model is formulated so that it can predict crack recovery capacities for 

different initial water - binder ratios and predict drying and hydration behaviour for 

different curing and exposure conditions. This will enable comprehensive, successful 

and cost-effective healing strategy to be developed and implemented in structural 

elements. 

 

In the current thesis the objectives of the main body of research are as follows: 

1. Develop a reliable theoretical model for the coupled transport of moisture and 

temperature that is capable of simulating the early-age and long term thermo-

hygral (TH) behaviour of ordinary cementitious materials; 

2. Integrate a microstructural model into the proposed TH framework in order to 

realistically reproduce the hydration reaction and the evolution of the pore 

network; 

3. Investigate the coupled TH model under different curing conditions and 

compare the results with experimental findings; 

4. Couple the theoretical principles describing the reactive transport of solutes to 

the TH model and thereby develop a novel THC model for the self-healing of 

cement-based materials; 

5. Simulate by means of the finite element method, the self-healing process and 

validate the results against laboratory data. 

 

1.3 Outline of the Thesis  

 

This thesis is divided into 7 Chapters and 2 Appendices. Chapter 2 presents the 

overview of the most recent theories applicable for simulating the thermo-hygro-

chemical behaviour of ordinary cementitious materials. Attention is directed especially 

towards the representation of the hydration kinetics and towards the understanding of 

the multiple physical and chemical processes occurring in unsaturated conditions. This 
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chapter also provides a brief description of existing numerical models as well as giving 

information on the healing techniques that are usually applied to cement-based 

materials. 

 

The theoretical formulations necessary for the development of a comprehensive THC 

model are included in Chapter 3. The constitutive laws necessary for predicting the 

filling of a crack and the entropy and moisture evolutions within the building material 

considered are enumerated and discussed. 

 

Chapter 4 focuses specifically on the fundamental aspects of the finite element 

modelling method by which a computer code is created. This part of the thesis gives 

insight into the procedure adopted for the spatial and temporal discretisations. 

 

In Chapter 5 a microstructural model for the cementitious materials is proposed. Its 

results in terms of volume fraction variation of reactants and reaction products are 

validated with numerical data found in the literature. The volume fractions of the liquid 

phase are then used to formulate porosity functions required in the TH model and a 

comparison between these functions and the reported results found in other research 

works is done. 

 

The validation of the TH model is described in Chapter 6. The accuracy of the thermo-

hygral computer code is evaluated via three main examples that simulate self and 

external desiccation processes of cement pastes and concrete mixes with different 

water - binder ratios. 

 

In Chapter 7 the application of the finite element method to the modelling of the self-

healing process in an ordinary mortar is presented. A quantitative analysis of the 

amount of precipitated material is carried out and the results are compared to 

experimental data to confirm the efficiency of the model. 

 

Finally, Chapter 8 enumerates the general conclusions and suggests future research 

trends in this area. 
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Chapter 2. Literature Review 
 

 

2.1 Introduction 

 

Cementitious materials have been among the most widely used building materials in 

civil engineering for decades. Various researchers have investigated both 

experimentally and numerically the physical processes occurring from the moment 

when the binder and the water are mixed up until the hydration reaction ceases. This 

study proposes a mathematical apparatus for simulating self-healing of ordinary 

cement-based materials and therefore the coupled thermo-hygro-chemical (THC) 

behaviour of the material needs to be considered. Implicitly, it is significant to grasp the 

importance of the kinetics of the hydration reactions, since the inner structure of the 

hardened paste varies considerably in time. In the current chapter, a selective review of 

the important aspects related to the THC modelling, found in various research studies, 

will be conducted. 

Section 2.2 presents the chemical facets of the cement paste hardening. Attention is 

focused on describing the stages of the hydration kinetics of ordinary Portland cement 

and on establishing a set of reactions able to provide in time the hydrates identified in 

the reported chemical analyses. 

The fundaments of the physical phenomena pertinent to the early age and long term 

behaviour of cement-based materials are covered in Section 2.3. The main constitutive 

laws related to drying and to the transport mechanisms of fluids, dissolved species and 

heat are listed in this section as they are formulated. 

In section 2.4 the most recent numerical models utilized for simulating the complex 

behaviour of unsaturated cementitious materials are reviewed. All the examples 

revolve around the idea of crystal precipitation and are chosen in order to exemplify 

how this chemical process is dealt with from the computational point of view. 

Section 2.5 is dedicated to the self-healing of cracks in cement paste or concrete 

structures. The classification of this phenomenon is succeeded by the quest of 

establishing the nature of the filler (i.e. the material that fills a crack). 
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The description of the existing models related to the self-healing is found in section 0. 

Attention is directed mainly to the numerical solutions proposed for quantifying the 

ongoing hydration. 

The last section presents the summary and the conclusions of the above mentioned 

examinations. 

 

2.2 Hydration of Ordinary Cementitious Materials 

 

The hydration reaction is a complex process that occurs at the microscopic level of the 

cement powder. Its result is the formation of reaction products that will ensure the 

skeleton solidification. The complexity of the process resides in the intricacy of the 

chemical composition of Portland cement that leads initially to the appearance of an 

unstable chemical system with varying physical and chemical properties. The hydration 

is intimately linked to the characterisation of the cement paste from the thermo-hygral 

point of view and it is crucial that the progress of these thermo-hygro processes be 

included in a model aimed at simulating the behaviour of hydrated cementitious 

materials in time. 

 

2.2.1 Chemical Composition of Portland Cement 

 

The Portland cement is a mixture of 4 main impure minerals: alite, belite, aluminate and 

aluminoferrite representing 90-95 wt% of the total amount of the Portland cement 

(Illston and Domone, 2010) and other chemical species remnant from the clinkering 

and grinding processes. Although impure, these minerals are denoted by the same 

shorthand notation as the pure minerals, as can be seen in Table 2.1. 

The minerals are the result of a burning process in rotary kilns, at extremely high 

temperatures, where the raw materials providing the source of calcium, silicon, 

aluminium and iron, react with each other and with the atmospheric oxygen to form 

oxide compounds. There are 4 main oxides in the composition of the clinker phases 

which are listed in Table 2.2 together with some residual compounds found in minor 

quantities (Illston and Domone 2010).  

In order to improve the workability of the paste, gypsum is also added to the clinker 

before grinding. 
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Table 2.1 Common reactants and hydrates in the cement powder 
 

Chemical name Mineral name 
Cement 

notation 

tricalcium silicate alite C3S 

dicalcium silicate belite C2S 

tricalcium aluminate aluminate C3A 

tetracalcium aluminoferrite aluminoferrite C4AF 

calcium sulfate dihydrate gypsum 
2H

_
SC  

hexacalcium aluminate 

trisulfate 32-hydrate/AFt phase 
ettringite 

3236 H
_
SAC  

tetracalcium aluminate 

monosulfate 12-hydrate/AFm phase 
– 

124 H
_
SAC  

calcium hydroxide portlandite CH 

tetracalcium aluminate 13-hydrate – 134AHC  

tricalcium aluminate 6-hydrate hydrogarnet 63AHC  

tricalcium aluminoferrite 6-hydrate impure hydrogarnet 63 F)H(A,C  

AFt phase – 3236 HSF)(A,C  

AFm phase – 124 HSF)(A,C  

impure iron (III) hydroxide – 3A)H(F,  

calcium sulfate hemihydrate bassanite 
0.5H

_
SC  
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Table 2.2 Common oxides in the cement powder 
 

Chemical 
formula 

Cement 
chemistry 
notation 

Chemical name 
Percentages 

by weight 

principal oxides 
CaO C quicklime 60–67% 
SiO2 S silicon dioxide/silica 17–25% 
Al2O3 A aluminium (III) oxide/alumina 3–8% 
Fe2O3 F iron (III)/ferric oxide 0.5–6% 

minor cement constituents 
Na2O  sodium oxide  
K2O  potassium oxide  
MgO  magnesium oxide  

SO3 S  sulphur trioxide  

K2SO4  alkali sulphate  

Na2SO    

free CaO    

 

 

2.2.2 Characterisation of the Hydration Kinetics 

 

Although in the last 70 years a considerable number of both experimental and 

numerical studies have been published, the controlling mechanisms of hydration 

kinetics still remain controversial. Bullard et al. (2011) admit that the development of 

the hydration rate and its translation into a numerical algorithm -model similar to the 

ones used in geomechanics, is hampered by the inability of to isolating -isolate the 

individual chemical reactions. Even though advances in the understanding of gel 

nucleation and dissolution of alite are substantial, Bullard acknowledges that further 

research is needed on the chemistry of aluminate and gypsum hydration. The scope of 

the current thesis is not to elucidate the mechanisms of the hydration of cement paste. 

Nevertheless, a brief overview of the latest discoveries is required in order to provide 

the background of the model adopted for the evolution of the microstructure of the 

material. 

Three main processes control the rate of reaction: (1) the dissolution of cement, (2) the 

diffusion of dissociated ions toward the precipitation sites and (3) the nucleation and 

growth of the new products. The dissolved ions continuously accumulate during the 

initial reaction period (Taylor, 1997; Bullard et al., 2011) until the dissolution rate 

decelerates very quickly (the period of slow reaction). Some authors report that the 

decrease is due to the appearance of a metastable barrier of calcium silicate hydrate 
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(C-S-H) (Stein and Stevels, 1964; Jennings and Pratt, 1979; Livingston et al., 2001), 

while others identify the crystallisation of a superficially, little soluble hydroxylated layer 

on the surface of the grain (Damidot et al., 1990; Garrault-Gauffinet and Nonat, 1999; 

Garrault et al., 2005). The period of slow reaction is followed by the acceleration 

period, when the nucleation and growth of the hydrates occur. At this point, it should 

be mentioned that the scope of the majority of the published studies is confined solely 

to C-S-H precipitation, despite the fact that all the four main clinker compounds react in 

the presence of water. Hubler et al. (2011) explain the acceleration period by a 

heterogeneous nucleation on the surfaces of pre-existing nanoparticles in conjunction 

with an aggregation process. Gartner (1997), on the other hand, points to the formation 

of a tobermorite-like or jennite-like structure. His study suggests that, after nucleation, 

silicate tetrahedral attach to the perimeter of the existing embryo and creates sheets of 

silicate chains which incorporate between them the calcium and hydroxyls ions. The 

experimental data demonstrate that the rate of growth, intimately linked to the reaction 

activity, reduces in time. Several hypothesis have been put forward on this 

deceleration period: the lack of water and space for the new hydrates, the excessive 

size of the still unhydrated minerals or the transition towards a diffusion rate control 

transport of free ions. The last hypothesis is based on the substantial amount of 

laboratory evidence which shows that the deposition of the low-density products 

develops right next to the anhydrous particles, whilst the precipitation of hydrates takes 

place much further away from these particles (Hadley et al., 2000; Kjellsen and 

Lagerblad, 2007; Gallucci et al., 2010). Bullard et al. (2011), however, are not entirely 

convinced of such behaviour and state that if the - diffusion driven transport ever 

occurs, it proceeds well after the impingement of different domains of the growing 

hydrates, when the heat release approaches zero. 

 

2.2.3 Chemical Reactions in Hydrated Portland Cements 

 

Knowledge about the behaviour of cement in the presence of water is largely based on 

the individual hydration of each mineral, either in a pure state or as a clinker 

compound, and thus it overlooks the interaction between the dissociated species of the 

principal constituents. Despite this drawback, the above mentioned approach is widely 

accepted by the science community since it is the least complex and it provides a good 

estimate of the holistic behaviour of the Portland cement (Mindess et al., 2003). Up to 

now, different researchers have proposed distinct sets of chemical reactions for the 

hydration of the same mineral. Some common features related to the nature of the 

products and their chemical stability can be distinguished though, especially when 
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decoding the shape of the calorimetric curve (see Figure 2.1). The following part of the 

thesis will be dedicated to the review of the stoichiometry of cement hydration. Under 

the assumption of a fully saturated paste, the main stages of cement-water reaction will 

be highlighted. It is noted that Table 2.1 gives the names of the common minerals 

encountered in cement chemistry that are used in the remainder of this thesis. 

 

2.2.3.1 Rehydration of Gypsum 

 

Gypsum is the raw material added in order to hinder the so called “set flash” of 

Portland cement, that leads to a quick setting of the paste due to the reaction between 

C3A and water. The exothermic process that occurs during the cement manufacture (70 

- 200°C) may partially dehydrate the gypsum (Taylor, 1997). The new compounds are 

the hemihydrates or the γ-CaSO4 (“soluble anhydrite”), which differ essentially in the 

number of water molecules found in their structure. The experimental work performed 

by Fujii and Kondo (1986) demonstrated that 0.5H
_
SC  reconverts into 2H

_
SC  in about 

four hours if the paste contains only water and hemihydrate in a weight ratio equal to 

0.4. The corresponding chemical reaction describing the rehydration is (Singh and 

Middendorf, 2007): 

 
20.5 H

_
SC1.5HH

_
SC   (2.1) 

 
All the calcium sulphate phases are highly soluble and dissolute rapidly in the pore 

solution (at most 24 hours) into calcium and sulphate (Taylor, 1997). These ions will 

react later on with two of the existing clinker minerals. 

 

2.2.3.2 Hydration of Aluminate 

 

The hydration path of aluminate, the most soluble mineral of the clinker mix (Jennings 

and Thomas, 2009), takes place in multiple stages depending largely on the amount of 

sulphate ions (SO4
2-) sourcing from the dissociated gypsum. Initially, the impure 

ettringite is formed (Taylor, 1997; Mindess et al., 2003): 

 
32623 H3

_
SAC26HH

_
S3CAC   (2.2) 

 
This hydrate is composed of loose packed hexagonal rods which adhere to the surface  

of aluminate grains (Scrivener and Pratt, 1984). In a preliminary phase, it absorbs free 

sulphate ions from the pore solution, but later on, due to a dynamic imbalance, the 
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SO4
2- are released again in the liquid (Minard et al., 2007). Analysing the calorimetric 

curve, Bullard et al. (2011) reported that the ion liberation generates the second peak 

of the heat histogram which arises sometime between 20 and 30h after mixing (see 

Figure 2.1). 

 

 
Figure 2.1 Typical isothermal calorimetric curve of an ordinary 

Portland cement adjusted from (Bullard et al., 2011) 

 

Due to its instability in the absence of sulphate ions, the AFt starts to dissolve and react 

with the remnant aluminate and water according to the reaction given in equation (2.3) 

(Taylor, 1997; Mindess et al., 2003). This represents the second stage of hydration of 

the aluminate. 

 
A low broad peak appears in the calorimetric curve (see Figure 2.1) as the AFm phase 

precipitates. Mindess et al. (2003) admits that if the supply of sulphate ions is slower 

than the rate of ettringite formation, the mono- may appear prior to the 

trisulphoaluminate. Mindess et al. (2003) and Jennings and Thomas (2009) point out, 

in addition, that it is common to also find hydrogarnet in the hardened paste, even 

though the molar ratio A/CH
_
SC 32  is not zero. This is possible because of the high 

reactivity of aluminate which enables the reaction chain: 
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12432363 H

_
SAC4HH

_
SACA2C   (2.3)
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The monosulphoaluminate from reaction (2.3) is also an unstable compound. Mindess 

et al. (2003) suggest that if the amount of aluminate, portlandite and water is sufficient, 

the third stage of aluminate hydration takes place, leading to the depletion of AFm: 

 
1231243 ,CH)H

_
SA(C2C12HCHH

_
SACAC   (2.5) 

 
On the other hand, Taylor (1997) mentions that 134AHC  can also be identified in the 

composition of hydrated aluminate. This product, precipitated as a result of equation 

(2.6), characterises therefore the situation when AFm is depleted before the total 

consumption of C3A: 

 1343 AHC12HCHAC   (2.6) 

 

 

2.2.3.3 Hydration of Alite and Belite 

 

Alite is the most encountered mineral in the cement powder (40-70%) and its hydration 

activity is much more intense than the activity of belite (Jennings and Thomas, 2009; 

Mindess et al., 2003). The stoichiometry of the hydration of these two phases has been 

widely investigated (Fujii and Kondo, 1974; Locher, 1966; Peterson et al., 2005) and 

the conclusion from these studies is that the reaction products are almost similar, 

although their formation and accumulation is strongly related to the specific rate of 

each reaction. The difference between these phases is mainly attributed to the amount 

of water measured within the gel structure, which was slightly greater when probing the 

alite (Kantro et al., 1966; Brouwers, 2004). The precipitation of calcium silicate hydrate 

gel and of portlandite generates, in 4 to 8 hours, the main peak present in the 

calorimetric curve of the Portland cement (see Figure 2.1). Tennis and Jennings (2000) 

mention the following chemical reactions for completely saturated hydrates: 

 1.3CHSHC5.3HSC 41.73   

0.3CHSHC4.3HSC 41.72   

(2.7) 

(2.8) 

 
The hydrated gel in this case has a CaO/SiO2 ratio equal to 1.7 in contrast to 1.5 

reported by Mindess et al. (2003) and Peterson et al. (2005). Regarding this 

discrepancy, it should be mentioned that Locher (1966) performed a set of tests on C3S 

pastes in which he has shown that the lime content in the C-S-H varies with the amount 

of initial mix water and with the degree of hydration. According to his data, in pastes 

with a considerable water content (≥ 0.6 g H2O/g C3S), the ratio varies between 1.4 to 

 9HAH2CAHCAHC21HA2C 63821343   (2.4) 
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1.6. The rest of the pastes are richer-in-lime calcium silicate hydrates having a 

CaO/SiO2 ratio that can reach 2.3. 

 

2.2.3.4 Hydration of Aluminoferrite 

 

The hydration of aluminoferrite is comparable in complexity to the hydration of the 

aluminate phase, but is slower and more exothermic (Mindess et al., 2003; Taylor, 

1997). Again, the presence of SO4
2- is crucial in setting the reaction path, but this time 

the aluminium ions alternate in the crystalline structure of the precipitated products with 

iron ions. As long as gypsum is available, the chemical reaction proceeds as in 

equation (2.9), while in its absence, the reaction (2.10) takes place (Jennings and 

Thomas, 2009; Mindess et al., 2003): 

 
3323624 A)H0.5(F,HSF)(A,C27.5HHS3CAF0.75C   

312432364 A)H(F,HSF)(A,3C7HHSF)(A,CAF1.5C   

(2.9)

(2.10)

 
Regarding the hydration of the ferrite phase, in the model of Tennis and Jennings 

(2000) for the structure of calcium silicate hydrate, only impure hydrogarnet is formed: 

 634 F)H(A,2C10H2CHAFC   (2.11)
 
In contrast with C3A, the reaction rate of C4AF is slower and according to Pratt et al. 

(1983) it is visible in the form of the less distinctive third shoulder of the typical 

calorimetric curve. In his textbook, Taylor (1997) states that the exothermic feature of 

both C3A and C4AF hydrations is given in a larger extent by the reaction of the 

anhydrous with water and not by the subsequent stages of precipitation. 

 

2.3 Physical Processes in Unsaturated Ordinary Cementitious 

Materials 

 
The hygro-thermal characterisation of cementitious materials is centred around the 

transient transport mechanisms within the material that dictate implicitly the saturation 

state of the material. These processes, “rediscovered” and extensively investigated 

during the last 80 years, alter the behaviour of cement/concrete pastes over time by 

changing the saturation state (Otieno et al., 2010). The effects are in the majority of 

cases detrimental: leaching (Gawin et al., 2008), chloride or carbonation-induced 

corrosion (Baroghel-Bouny et al., 2011; Otieno et al., 2010), freeze and thaw 

(Jacobsen and Sellevold, 1996). The entire body of literature agrees that, in cement-

based materials, the substances being transported through the pore network have a 



Chapter 2 Literature Review 
 

16 
 

much more complex structure than in the majority of much more elaborated mobility 

capacity than in the preponderance of the porous materials because of the continuous 

change in shape and diameter of pores during hydration (Xi et al., 1994). The air, water 

or dissolved ions found in the pore network travel in time from one location to the other 

driven by gradients in different potentials (e.g. pressure, temperature, chemical 

concentration). 

 

2.3.1 Drying of Cementitious Materials 

 
The movement of liquid and gaseous phases within cement-based materials causes 

the moisture content to decrease, which is accentuated during hydration by self-

desiccation, as can be seen in Figure 2.2 (Kim and Lee, 1999; Kang et al., 2012). Lura 

et al. (2003) link the initiation of autogenous drying to the moment when chemical 

shrinkage ceases to be totally converted into an external volume change and the 

stiffness of the newly formed hydrates is capable of sustaining the compression arising 

from the internal fluid menisci. The tests performed by Kim and his co-workers revealed 

the fact that for concretes with low water-cement (w/c) ratios, which have denser 

microstructures than ordinary concretes, the rate of fluid transfer is hindered, while the 

autogenous drying is enhanced. They also showed that in concretes with low w/c ratios 

the rate of moisture diffusion is much lower than that of concretes with high w/c ratios. 

  
Figure 2.2 Schematic representation of drying according to Kim and Lee (1999) 

 

2.3.2 Transport Mechanisms of Fluids in Cementitious Materials 

 

When speaking about the numerical modelling of moisture transfer, there are two main 

schools of thought, each of which has a different perspective. The first, known as the 

mechanistic approach, considers and examines individually the various causes that 

enable the movement of the aqueous and vapour phases. The second is more 
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phenomenological and is based on the assumption that a single flux term describes all 

the possible transport phenomena. The following sections will present the physical 

aspects of the transport mechanisms in cementitious materials in the context of these 

two perspectives.  

 

2.3.2.1 Advection 

 
Scherer (1990), a proponent of the mechanistic approach, reports in his review 

dedicated to the theory of drying that once a liquid/vapour interface is present, the 

evaporation process triggers the movement of liquid due to an imbalance in energy. 

The liquid water is pulled away from the saturated zones towards the empty void areas 

to impede the energy increase of the system and so, a water pressure driven gradient 

is generated. Many researchers share the same opinion and describe the flux by 

means of Darcy’s law (Koniorczyk and Gawin, 2012; Bary et al., 2012; Gawin et al., 

2011b; Baroghel-Bouny et al., 2011; Davie et al., 2014): 

 





 

p
k

J A   (2.12)

where: AJ  represents the advective flux of the fluid, k  is the permeability of the 

medium with respect to the fluid,   is the viscosity and p  is the pressure of the fluid. 

Scherer (1990) suggests that the law is suitable even for transport in small pores as 

long as the liquid phase remains in a funicular state (Figure 2.3.a). Difficulties arise 

when the drying front reaches the gel pore level and the water is found mostly in the 

absorbed layer. The permeability decreases and, at low relative humidity, the 

movement of water becomes diffusive in nature due to the disjoining pressures which 

predominate (Figure 2.3.b). 

Although extensive research has been carried out on water permeability in 

cementitious materials, no single experimental procedure is able to adequately cover 

and identify all the transformations that occur in the internal structure of the material, 

especially those that occur in early age cementitious materials. Aldea et al. (1999) and  

 
(a) 

 
(b) 

 
Figure 2.3 Transport mechanisms in pores from (Scherer, 1990):  

Flow

Diffusion
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Flow

Diffusion

Evaporation
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(a) funicular and (b) funicular and pendular state  

 
Marsavina et al. (2009) conclude that permeability is related to porosity, in undamaged 

concrete, and to crack properties, in damaged concrete. When the amount of cracking 

becomes significant, Rodriguez and Doug Hooton (2003), Poursaee and Hansson 

(2008) and Jaffer and Hansson (2008) have found that the permeability increases by 

several orders of magnitude. Martys (1995) conducted a survey on direct and indirect 

methods of measuring the permeability and reported that the values for cement-based 

materials are much smaller than for other porous materials such as most rocks or soils: 

10-22 m2 for high strength cement pastes and 10-18 m2 for typical concrete. In addition, 

he acknowledged that the unsaturated state reduces this magnitude even more by a 

factor known as the hysteretic relative permeability, rk : 

  ri kkk   (2.13) 
 
where ik  is the intrinsic permeability coefficient. 

In their numerical analyses, which examined the significance of several permeability 

values and functions, Davie et al. (2012) showed that having an accurate expression 

for the relative permeability is crucial. According to their investigation, it is difficult to 

establish precisely the order of magnitude of the permeability coefficients for a specific 

material type since “different formulations could result in the prediction of apparently 

different intrinsic permeabilities for the same concrete”. Therefore, in current THC 

models, the trend is to calibrate these parameters rather than to use standardised 

values. 

 

2.3.2.2 Diffusion 

 

In the case of cementitious materials, the interstitial liquid is an electrolyte solution. In 

these circumstances the evaporation creates a local imbalance of concentration that 

triggers the diffusion of vapour in order to maintain the equilibrium (Scherer, 1990; Li et 

al., 2009). The movement of the gaseous phase of water is described by Fick’s law: 

 
chem

vc
vc

D
v RT

cD
cDJ   (2.14) 

 
where: D

vJ  symbolizes the diffusive flux, cD  is the diffusion coefficient, vc  is the 

concentration of the vapour phase, R  is the ideal gas constant, T  is the temperature 

and chem  is the chemical potential. 
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The phenomenological approach, mentioned in the beginning of section 0, treats 

diffusion as a physical process (Di Luzio and Cusatis, 2009; Li et al., 2009; Xi et al., 

1994; Kang et al., 2012). No attempt is made to differentiate between various water 

states and a unique moisture flux term, integrated in a unique mass conservation 

equation, is used. Di Luzio and Cusatis (2009) and Xi et al. (1994) state that diffusion is 

a combination of molecular, Knudsen and surface diffusion which becomes active 

between specific relative humidities and pore size intervals. The diffusive flux adopted, 

preserves the mathematical pattern given in equation (2.14). Di Luzio and Cusatis 

(2009) account for the variation of water/cement ratio and of relative humidity. They 

indicate that at low humidities, the transport capacity is constant whereas at high 

humidities, it increases. Li et al. (2009), on the other hand, consider that the phase 

change of water is instantaneous and prefer to express the diffusive flux in terms of a 

relative humidity gradient. 

 

2.3.3 Transport Mechanisms of Chemical Species in Cementitious 

Materials 

 

In cementitious materials, the interstitial fluid contains molecules or charged chemical 

species that may interact with each other and with the solid. Various dissolved ions 

were identified in the pore solutions: Ca2+, Na+, K+, Cl-, OH-, SiO4H2
2-, SiO4H3

-, SiO7H4
2-, 

SiO4H2
2-, SO4

2-, Al(OH)4
-, AlO2

-
 (Baroghel-Bouny, 1994; Samson, 2003; Baur et al., 

2004; Bullard et al., 2010; Wan et al., 2013). When describing the transport of solute in 

cement-based materials, the majority of the existing studies refer to the movement of 

ions. One frequent approach is to consider a mobile multiple ionic system (Barbarulo et 

al., 2000; Baroghel-Bouny et al., 2011; Koniorczyk, 2012). The second, does not 

account explicitly for the movement of individual ions, but considers a generalised flux 

for all the chemical species of interest (Koniorczyk and Gawin, 2008; Pesavento et al., 

2012). Either way, the principal hygro/chemical potentials are the combined advective, 

diffusive (molecular and thermal) and dispersive fluxes (Gawin et al., 2008; Koniorczyk 

and Gawin, 2008; Baroghel-Bouny et al., 2011; Sedighi, 2011; Koniorczyk, 2012; 

Pesavento et al., 2012). 

The dissolved ions are transported mainly by the water flow, so the essential advective 

mechanisms are the same as those described above in section 2.3.2.1. The advective 

flux is altered only by the concentration of the chemical species under consideration 

and by the capacity of the cementitious materials to behave like a semi-permeable 

membrane (Jennings and Pratt, 1979; Koniorczyk and Gawin, 2008; Hou et al., 2013). 
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The study on solution concentrations by Double et al. (1978) shows, for example, that 

the hydrate which is formed around the alite surface, allows the transport of dissociated 

calcium ions, but blocks the movement of silicate ions. The diffusion of the solute, on 

the other hand, is triggered by other physical phenomena as will be detailed below. In 

her investigation of chloride ingress, Baroghel-Bouny coupled the chemical and 

electrical potentials by means of the modified Nernst-Planck equation (Baroghel-Bouny 

et al., 2011). Because of the Coulombic interactions (Boudreau et al., 2004), this 

equation represents, in fact, an extension of Fick’s law. In Baroghel-Bouny’s study, the 

ionic diffusion depends upon the gradient of concentration, the electrical field and the 

gradient of chemical affinity due to a highly concentrated salt solution. This approach 

has a widespread use for both cement-based materials and clays (Barbarulo et al., 

2000; Boudreau et al., 2004; Samson et al., 2005). Some authors take it to a more 

complex level adding the Soret effect that considers the influence of temperature 

gradient upon diffusion (Sedighi, 2011). A simplified expression of the diffusive flux is 

presented in (Gawin et al., 2008), where the migration of the Ca2+ ions is described by 

the traditional Fick’s law expressed in terms of a concentration gradient. The diffusion 

coefficient in this case is defined using a five parameter electrolyte diffusion model 

formulated initially by Onsager and Fuoss (1931) and applied later to cementitious 

materials by Kuhl and Meschke (2003, 2007). When investigating the diffusivity of 

multispecies solutions, (Baroghel-Bouny et al., 2011) found that the physico-chemical 

properties of the solvent and the solution, produce preferential flow paths for each 

cation and anion. 

It is worth mentioning that some studies refer to hydrodymanimc dispersion as the third 

type of transport mechanism of a solute (Bear and Bachmat, 1991; Sedighi, 2011). 

Although from the mathematical point of view its expression is similar to Fick’s law, the 

specific nature of this movement resides in merging the effects of mechanical 

dispersion and molecular diffusion. Bear and Bachmat (1991) state that dispersivity is 

manifested in both longitudinal and transverse flow directions due to the variation of 

molecular velocities along the pore cross-section and also from one pore to the other. 

Koniorczyk and Gawin (2008, 2012), on the other hand, prefer to use a single term to 

describe simultaneously the diffusive and dispersive fluxes. The tensor of 

hydrodynamic dispersion combines the coefficients of molecular and mechanical 

dispersion, but also of molecular diffusion: 
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TLij
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where: ij
dispD  represents the tensor of hydrodynamic dispersion, T  and L  are the 

transverse and the longitudinal dispersivity parameters, wsv  symbolises the absolute 

velocity of the water phase, ij  is the Kronecker delta,   represents the porosity, wS  is 

the water degree of saturation and molD  is the molecular diffusivity coefficient. 

 

2.3.4 Transport Mechanisms of Heat in Cementitious Materials 

 

The thermal performance of structures made of cementitious materials and subjected 

to extreme environmental temperature has been investigated in detail. Koniorczyk and 

Gawin (2012) and Davie et al. (2010) demonstrate that a theory developed for extreme 

boundary conditions is suitable for both characterising the early age behaviour or the 

chemical degradation under normal thermal conditions. Regarding the transport of 

energy in cement-based materials, the convection, the conduction and the latent heat 

of vaporisation are usually considered, while the radiation is commonly disregarded. 

Heat conduction obeys Fourier’s law: 

 TJ eff
T

CD
T    

(2.16)

 
in which eff

T  is the effective thermal conductivity that invariably changes with 

temperature (Davie et al., 2012), but also with the saturation degree and with the 

porosity (Gawin et al., 2006) or with the amount of water lost during dehydration (Bary 

et al., 2012). The heat convection, enabled by the bulk movement of both liquid and 

gaseous phases, is influenced by the permeability of the porous medium with respect 

to the existing fluids (Gawin et al., 2006; Sedighi, 2011; Pesavento et al., 2012; Bary et 

al., 2012). Gawin et al. (2011a) state that for a moderate temperature range, both 

conductive and convective components are active, but above the critical point of water, 

the conduction predominates and the convection can be omitted. Davie et al. (2010), 

on the other hand, obtain satisfactory results even when they disregard the convective 

flux in the problem describing the TH behaviour at low temperatures. The heat transfer 

is usually a rapid phenomenon. In their investigation dedicated to the study of creep 

and shrinkage in concrete structures, Acker and Ulm (2001) remark that the thermal 

diffusion occurs much more quickly than the drying of cement. 
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2.4 Developments in Thermo-Hygro-Chemical Models for 

Cementitious Materials 

 

A review of existing coupled THC models is presented below, which follows on 

naturally from the preceding discussion on transport mechanisms in cement-based 

materials. Koniorczyk (2012) and Koniorczyk and Gawin (2012) developed a finite 

element code for salt crystallisation in concrete structures using five macroscopic 

balance equations for enthalpy, linear momentum and the mass of dry-air, moisture 

and salt. The numerical simulation is built on previous work on cementitious materials 

subjected to elevated temperatures (Gawin et al., 1999; Gawin et al., 2006) or on the 

leaching of calcium ions (Gawin et al., 2008; Gawin et al., 2009). The governing 

equations for moisture and dry-air take into account the variation in time of the 

saturation degrees and of the density of the phase considered, in addition to the 

change of porosity caused by variations of temperature and by the deformation of solid 

skeleton. The transport mechanisms considered are the advection of water, vapour and 

dry air in conjunction with the diffusion of the gaseous phases. Similar terms describe 

the variation of the amount of salt, but in this case, a dispersive flux composed of 

mechanical dispersion and molecular diffusion is employed. Besides self-desiccation, 

the authors subjected a number of specimens to external drying which triggered the 

movement of salt from the core to the surface. The salt phase change occurs by means 

of a Freundlich non-equilibrium isotherm, where the kinetics of crystallisation 

incorporates two stages: the dissolution of the salt crystals during the partly saturated 

state with respect to salt and the precipitation of the reaction product during the 

saturated state. The supersaturation ratio, computed using the Pitzer model, is the 

parameter that makes the switch between these two processes. Koniorczyk and his co-

workers acknowledge that salt formation is an exothermic process. Therefore, in the 

enthalpy balance equation, apart from the conductive and convective flows, separate 

terms for the heat release of the precipitation reaction and also of the vaporisation are 

accounted for. 

The HC model created by Baroghel-Bouny et al. (2011), used to investigate the 

isothermal coupled moisture-ion transport, is based on the Darcian and Fickian flows of 

bulk water, vapours and dry air. The innovation in their investigation resides in the fact 

that Baroghel-Bouny et al. use different expressions to define the relative permeability 

with respect to the liquid and gaseous phases. In their opinion, the traditional analytical 

relationship proposed in Van Genuchten (1980) is suited solely to absorption and thus, 

the numerical derivation given in Mualem (1976) is preferred in the case of the liquid 
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phase. Moreover, the experimental data gathered from desorption tests shows that 

below 40% water saturation degree, the relative permeability decreases dramatically 

and thus, the advection may be neglected. The diffusive transport of ions is 

characterised by the Nernst-Planck equation and is driven by the diffusion under 

concentration gradient, the movement under chemical activity effects and the migration 

under (local) electrical field. Baroghel-Bouny’s model includes the mass balance 

equations for four chemical species (Cl-, OH-, Na+ and K+) and considers only the 

binding of the chloride ions. The physical absorption of Cl- to the existing C-S-H 

proceeds via a Freundlich type binding isotherm and the instantaneous precipitation of 

Friedel’s salt. 

In a distinct series of papers, Bary et al. (2008), de Morais et al. (2009) and Bary et al. 

(2012) describe simulations of coupled water flow and heat transfer in concrete 

structures (plain or reinforced) subjected to high temperature. The data collected from 

the experimental simulation program MAQBETH were validated by means of a 

simplified THM model. The computational technique neglected the existence of the dry 

air by eliminating its corresponding mass balance equation, but took into account the 

presence of cracks. A single mass balance equation for both vapour and bulk water 

phases was employed. The porosity change due to the dehydration process was 

accounted for and the transport mechanisms were represented exclusively by the 

advective flux. Regarding this precise term, it should be mentioned Bary et al. (2008) 

formulated a Generalized Effective Media (GEM), which can be used to compute an 

overall permeability coefficient. The coefficient depends upon the permeability of the 

undamaged material and upon the permeability of the cracks.  

In 2012, Pesavento et al. published a thermo-hygro-chemical model, also based on the 

mechanics of multiphase porous media (Pesavento et al., 2012). Its purpose was to 

analyse the alkali-silica reaction (ASR) that generates an amorphous swelling gel that 

compresses the already existing solid skeleton. The authors though cast doubt on the 

nature of the gel-water combination mechanism and do not clarify if the water 

molecules chemically react or are absorbed. The proposed mass balance equation of 

moisture has a similar form as that given by Gawin et al. (2011a), but a mass sink term 

is introduced to account for the consumption of H2O molecules during the formation of 

the alkali-silica gel. This mass sink, which considers the loss of the swelling capacity 

due to the aging of the material, is proportional to the overall normalized gel formation 

rate. The progress of the alkali-silica gel accumulation follows the thermodynamics of 

chemical reactions proposed by Steffens et al. (2003) and is proportional to an 

empirically determined water combination coefficient that expresses the variability of 
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the reaction with the water saturation degree. In Pesavento et al.’s model, the volume 

averaged enthalpy balance equation includes convective and conductive heat 

transfers, but excludes any contribution from the ASR. 

 

2.5 Self-healing in Cementitious Materials 

 

Due to the widespread interest in materials that recover after being damaged, the 

healing capacity of hardened cement and concrete pastes has become a central issue 

for many researchers. The phenomenon of crack repair was discussed for the first time 

in the scientific literature by Turner (1937), but experimental research on this 

phenomenon has greatly expanded in the last 15 years. The starting point for inducing 

and enhancing crack healing were the laboratory investigations conducted by Dry 

(1994). Since then, an impressive amount of experimental work has been undertaken 

and different approaches propounded. 

 

2.5.1 Classification 

 

Recently, Van Tittelboom and De Belie (2013) provided an extensive description of the 

existing structural recovery mechanisms and identified three main groups of self-

healing techniques. The first two, called capsule and vascular based self-healing, are 

very similar and work by damage or temperature activation. These two are categorised 

as autonomic healing techniques, where the material is intentionally designed to have 

an increased repair potential (Schlangen and Joseph, 2009). The operating principle is 

simple: spherical and cylindrical shells, embedded in the paste (capsule based 

approach), or tubular elements connecting the interior and the exterior of the structure 

(vascular based approach), release – upon breakage – single or multi-component 

healing agents which react in specific environmental conditions and fill the openings. 

The third technique, on the other hand, known as intrinsic self-healing, is based on the 

chemical reactions that take place exclusively between the components of the 

cementitious matrix. In this case, the recovery is enabled by autogenous healing (basic 

or improved) or by healing in the polymer modified concrete. From the point of view of 

human interference, the mechanism of self-healing is either “active” – when it requires 

intervention or “passive smart” (Li et al., 1998). 

In the forthcoming chapters a method for the numerical simulation of autogenous 

healing mechanisms will be proposed and therefore only this type of structural recovery 
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will be reviewed in the next paragraphs. For additional information on the other types of 

self-healing mechanisms, the following references are recommended (Li and Yang, 

2008; Joseph et al., 2010; Van Tittelboom and De Belie, 2013; Schlangen and 

Sangadji, 2013). 

 

2.5.2 Autogenous Healing 

 

It is generally agreed that the crucial compounds for autogenous healing are the water 

and the unreacted cement (Lauer and Slate, 1956; Neville, 2002; Granger et al., 2007; 

Van Tittelboom and De Belie, 2013). The degree of efficiency increases if continuous, 

total wetting (100% relative humidity) is maintained (Lauer and Slate, 1956). Initially, 

Turner (1937) described the healing process as an ongoing hydration of remnant 

clinker and also as an intercrystallisation of the fractured crystals. Later on, other 

petrographic results confirmed the presence of calcium hydroxide produced by the 

hydration of alite or belite, but also revealed the formation of calcium carbonate (Lauer 

and Slate, 1956; Wagner, 1974). In this context Edvardsen (1999) stated that calcite 

precipitation is “almost the sole cause for the autogenous healing”. Clear (1985), on the 

other hand, claimed that the small cavities are clogged by debris based on 

observations that indicated a reduced amount of CaCO3 for young concrete and a 

substantial quantity of carbonate in late stages of curing. The current trend in the 

cement industry further complicates the situation because modern mixes contain 

additional cementitious materials that often contribute to autogenous healing. However, 

in engineered strain hardening cementitious composite (SHCC), containing polyvinyl 

alcohol fibres and local waste materials (blast furnace slag + limestone powder), Qian 

et al. (2009) report that the principal filler after 28 days is still the calcite. Hence, it 

seems that previous investigators have failed to reach a consensus on the nature of 

the fill product. Nevertheless, the latest tendency, consistent with the opinion of Neville 

(2002), is to consider that autogenous healing of ordinary cementitious materials is 

achieved by continuous hydration in the first weeks, when the amount of unreacted 

cement is rather high, and by carbonation thereafter (Van Tittelboom and De Belie, 

2013). This hypothesis is sustained also by the results of Jacobsen et al. (1995) and 

Granger et al. (2007), who found that the composition of the new precipitate, sampled 

at 12 and 20 weeks after casting, was mainly C-S-H. 

From the physical point of view, the ongoing reaction between clinker and H2O 

molecules improves the transport and the mechanical properties of the hardened 

cement paste, diminished previously by internal shrinkage, creep or any external 
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loading. Tests show a decrease of water permeability (Edvardsen, 1999; Hearn and 

Morley, 1997; Hearn, 1998; Neville, 2002), a return of the global stiffness to the pre-

damage value and a potential regain of compressive and flexural strengths (Jacobsen 

et al., 1995; Pimienta and Chanvillard, 2004; ter Heide and Schlangen, 2007; Granger 

et al., 2007). Amongst the material properties considered in these investigations, the 

greatest degree of recovery was in water tightness. Granger et al. (2007) consider that 

the reaction products bridge cracks easily, but that the arrangement of the new crystals 

does not possess the same sturdiness as that of the original matrix. Some of the 

factors influencing the efficiency of autogenous healing and their effects are listed 

below: 

 the mix may contain chemical components that expand during carbonation or 

moisture ingress (Hosoda et al., 2009; Sisomphon et al., 2011), 

 a low w/c ratio augments the volume fraction of unreacted cement grains, 

 the heat treatment accelerates the hydration kinetics (Neville, 2002; Granger et 

al., 2007), 

 the sustained compression across the plane of the crack amplifies the repair 

potential (Ngab and Nilson, 1981). 

The accretion of new hydrates from the opposing surfaces of a crack leads to a 

satisfactory degree of healing only if the crack opening is sufficiently small. In Table 

2.3, some reported values of healable crack widths are given. 

  



Chapter 2 Literature Review 
 

27 
 

 

E
xp

er
im

en
ta

l r
es

ul
ts

 o
f s

el
f-

he
al

in
g 

T
ab

le
 2

.3
 

R
ef

er
en

ce
 

(Q
ia

n 
et

 a
l.,

 
20

09
) 

(E
dv

ar
ds

en
, 

19
99

) 

Ş
ah

m
ar

an
 e

t 
al

.,
 2

00
8)

 

(J
ac

ob
se

n 
an

d 
S

el
le

vo
ld

, 
19

96
) 

(R
ei

nh
ar

dt
 

an
d 

Jo
os

s,
 

20
03

) 

 

E
xp

er
im

en
ta

l 
re

su
lt

s 

10
0%

 h
ea

le
d 

pa
rt

ia
lly

 h
ea

le
d 

50
%

 h
ea

le
d 

co
m

pl
et

el
y 

af
te

r 
7 

w
ee

ks
 

4%
 r

ec
ov

er
y 

85
-9

8%
 r

ec
ov

er
y 

4-
5%

 r
ec

ov
er

y 

fa
ll 

of
 in

iti
al

 fl
ow

 
ra

te
 to

 ≈
 2

%
 

fa
ll 

of
 in

iti
al

 fl
ow

 
ra

te
 to

 ≈
 6

%
 

fa
ll 

of
 in

iti
al

 fl
ow

 
ra

te
 to

 ≈
 1

5%
 

C
ra

ck
 

w
id

th
 

[μ
m

] 

10
-6

0 

>
60

 

20
0 - - 50
 

10
0 

15
0 

V
al

id
at

io
n

 o
f 

se
lf

-h
ea

lin
g

 

E
S

E
M

 
in

ve
st

ig
at

io
n 

pe
rm

ea
bi

lit
y 

te
st

 

co
m

pr
es

si
ve

 
st

re
ng

th
 

re
so

na
nc

e 
fr

eq
ue

nc
y 

co
m

pr
es

si
ve

 
st

re
ng

th
 

pe
rm

ea
bi

lit
y 

te
st

 

T
yp

e 
o

f 
m

ix
 

fib
er

 r
ei

nf
or

ce
d 

st
ra

in
 

ha
rd

en
in

g 
ce

m
en

tit
io

us
 

co
m

po
si

te
 +

 lo
ca

l w
as

te
 

m
at

er
ia

l +
 b

yp
ro

du
ct

 

- 

se
lf-

co
ns

ol
id

at
ed

 c
on

cr
et

e 
+

 h
ig

h 
vo

lu
m

e 
fly

 a
sh

/lo
w

 
lim

e 
fly

 a
sh

 

6 
di

ff
er

en
t c

on
cr

et
e 

m
ix

es
 

hi
gh

-p
er

fo
rm

an
ce

 
co

nc
re

te
 (

H
P

C
) 

w
ith

 
w

/c
=

0.
37

 

A
u

to
g

en
o

u
s 

h
ea

li
n

g
 

co
n

d
it

io
n

s 

cr
ac

ke
d 

sa
m

pl
e 

cu
re

d 
in

 w
at

er
 fo

r 
28

 d
ay

s 

cr
ac

ke
d 

sa
m

pl
e 

ex
po

se
d 

to
 w

at
er

 
flo

w
 

cr
ac

ke
d 

sa
m

pl
e 

cu
re

d 
in

 w
at

er
 fo

r 
30

 d
ay

s 

cr
ac

ke
d 

sa
m

pl
e 

cu
re

d 
in

 w
at

er
 fo

r 
3 

m
on

th
s 

cr
ac

ke
d 

sa
m

pl
e 

ex
po

se
d 

to
 w

at
er

 
flo

w
 a

t T
=

20
°C

 
fo

r 
33

6 
ho

ur
s 

C
ra

ck
in

g
 

m
et

h
o

d
 

fo
ur

 p
oi

nt
 

be
nd

in
g 

- 

pr
el

oa
di

ng
 to

 
70

%
 a

nd
 9

0%
 

of
 

co
m

pr
es

si
ve

 
st

re
ng

th
 

fr
ee

ze
/th

aw
 

cy
cl

es
  i

n 
w

at
er

 

sp
lit

tin
g 

te
ns

ile
 t

es
t 

 

  



Chapter 2 Literature Review 
 

28 
 

2.6 Numerical Models on Autogenous Healing 

 

There have been a limited number of numerical studies on autogenous healing. The 

ability of these models to realistically describe the relevant processes at a large scale is 

rather limited. The most frequently reported computational approach was developed by 

a team of researchers from Delft University of Technology who have used the 

HYMOSTRUC model (van Breugel, 1991) to find the distribution of the unreacted 

cement particles and have simulated further hydration considering diffusion and 

thermodynamic principles. In the HYMOSTRUC model, cement particles are 

represented by spherical elements dispersed in an aqueous medium and hydrate in a 

two stage process simulated using boundary and diffusion controlled mechanisms. In a 

preliminary phase, ter Heide (2005) modelled autogenous healing with bridging 

particles that filled the existing gaps between clusters of hydrates. These clusters are 

the result of the expansion of unhydrated cement particles (UCP) and are modelled 

using HYMOSTRUC. The transition to self-healing is done by incorporating the bar and 

the ribbon models developed by Lokhorst (1999) and Koenders (1997). The clusters, 

converted into a set of horizontal bars, are bridged by vertical elements when a size 

criterion is satisfied. Ye and van Breugel (2007) upgraded HYMOSTRUC to allow for a 

3D analysis and concluded that there exists a considerable potential for the self-healing 

of microcracks even in the case of one year old specimens. In the following years, 

Huang and Ye (2011, 2012) and Huang et al. (2013) published a set of articles which 

describe the simulation of further hydration, enabled by the breaking of embedded 

water capsules, using thermodynamic principles and that account for diffusion of both 

unhydrated cement grains and hydrated products formed before cracking. Initially, they 

investigated autogenous healing using a 3D model, in which there was a prescribed 

percentage of anhydrous cement particles. The micrometric analysed area, comprising 

two crack surfaces and a crack space filled with C-S-H, UCP and pore phases, was 

divided into 1 μm x 1 μm x 1 μm voxels. At each iteration step, the concentration of 

each voxel was calculated using the Fickian type transport mechanism of dissociated 

ions. The same computational algorithm was used in Huang and Ye (2012), but this 

time the microstructure of the cement paste before cracking was given by 

HYMOSTRUC 3D. In Huang et al. (2013) the following improvements were carried out: 

a non-flat crack surface was assumed, the inner C-S-H did not contribute to the 

intrinsic material recovery and the leaching of Ca2+ was assessed.  

In 2007, another group of researchers, also based at Delft University, focused their 

attention on expressing the capacity of self-healing by estimating the amount and 
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distribution of remnant unhydrated cement in the interfacial transition zone (ITZ) and in 

the bulk paste (He et al., 2007). In their simulation system, named SPACE, created by 

Stroeven and Stroeven (1999), they dynamically generated in a container a 3D 

distribution of unhydrated cement nuclei and described the reaction between clinker 

and water roughly as in HYMOSTRUC. Their conclusion, predominantly qualitative, 

stated that the fine cement types produce an increased surface area density of the 

UCP in the ITZ, which can be further related to the probability of crack filling. A more 

quantitative evaluation of structural repair was presented by He (2010). In this article, 

the author predicts the optimum location of the crack with respect to the distance 

between two aggregate particles, such that the healed crack width is a maximum. A 

different set of self-healing studies centred on the investigation of two possible cracking 

modes was performed in (Lv and Chen, 2012) and (Lv and Chen, 2013). Again, 

spherical unhydrated particles were randomly distributed in a cubic representative 

volume element and the volume of hydrated product per area of crack surface was 

estimated by means of probabilistic calculus. The hydration kinetics followed an 

empirical law of thickness expansion based on the measurements of Kondo and Ueda 

(1968) and Knudsen (1980). The proposed curve, however, varied solely with time and 

ignored the nature of nuclei, the surface density and the external environment (curing 

temperature and water content). The efficiency of self-healing was calculated and 

shown explicitly only for a dome-like cracks (Lv and Chen, 2013). 

The mechanical recovery of the cracked cement paste is discussed by Remmers and 

de Borst (2008) and Hilloulin et al. (2013). The first two authors propose a finite 

element model to describe the three principal stages of the self-healing: the cracking, 

the transport of material and the filling of the cracks. Although attention is focused 

mainly on the simulation of fracture, Remmers and de Borst are among the first to 

introduce the momentum and mass balance equations for a fluid-saturated porous 

medium in order to advance a macroscale level numerical self-healing strategy. No 

consideration is given to the chemical reactions, but instead, the fluid pressure is 

assumed to initiate the healing mechanism. In the authors’ view, at a certain time 

moment (unspecified in the paper), the crack rebonding occurs by adding a strength 

and stiffness increment of the interface to the constitutive relation that governs the 

crack opening. Hilloulin et al. (2013) solve a hydro-mechanical cellular problem in a 

RVE and estimate the partial volumes of the hydrates that have precipitated after water 

penetration. The evolution of a homogenous Young’s modulus is then obtained by 

applying a self-consistent scheme. The filling material has an explicit chemical 

composition and its quantity is computed from a set of clinker-water reactions and from 

the evolution of the degree of hydration. The stages of the normalized chemical affinity 
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(dissolution, nucleation and diffusion-controlled phase) are highlighted and the 

characteristic time of reaction given by the Arrhenius law influences the rate of 

hydration. 

 

2.7 Conclusions 

 

This chapter presented a state-of-the-art review of the understanding and modelling of 

thermo-hygro-chemical behaviour and of the hydration kinetics of cementitious 

materials in relation to the autogenous healing phenomenon. There is not yet 

agreement on the mechanisms that govern the autogenous filling of cracks, but there is 

agreement in a large and growing body of literature that the structural recovery is due 

to the ongoing hydration of the UCP. Recent theoretical and experimental findings 

show that the hydrates are formed during a multistage process. Regarding the 

stoichiometry of these reactions, there is a consensus among scientists, mainly driven 

by pragmatism, that the interactions between the ions of the four clinker phases can be 

neglected and that only the stoichiometries of the individual minerals need be 

considered. 

Researchers agree that the fluids are generally subjected to drying, advection and 

diffusion. The drying via self-desiccation, triggers the appearance of pores within the 

mix. The advective flow depends on the microstructure of the material including the 

quantity of empty pores, cracks and the liquid phase form, while the diffusive flow 

depends on the w/c ratio and the relative humidity within the pores. The heat transfer 

mechanisms, on the other hand, consist of convection, conduction and vaporisation. 

The chemical behaviour of cementitious materials deals, besides hydration, with the 

transport of dissolved ions inside the porous medium. This movement is due to 

advection, diffusion and dispersion. The diffusion, in this case, couples the chemical 

and the electrical potentials and produces differential flows if multiple ions are 

considered. 

It was also highlighted that the existing models, related to the autogenous healing, are 

formulated mostly without coupling between thermal, hygral and chemical components. 

The only study in which such an approach is mentioned, concentrates more on crack 

formation and fails to propose a comprehensive solution for transport processes and 

self-healing. Thus, the need to develop a computational code able to rigorously 

represent all the THC aspects is justified. 
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Chapter 3. Theoretical Formulation 
 

 

3.1 Introduction 

 

The third chapter of this thesis brings to the fore the interactions between the hygral, 

thermal and chemical components of the computational model that simulates 

autogenous healing of cement-based materials. The major aim of this chapter is to 

present the mathematical framework necessary to analyse the behaviour of this type of 

porous material. 

Section 3.2 is dedicated to the theoretical formulation of the hydration kinetics of the 

cement powder. The focus is mainly on two aspects. The first is the estimation of the 

water forms populating the porous network at various size scales that enables the 

determination of the porosity functions. The second is the computation of the rate of 

heat generation which follows closely the hydration approach advanced by Schindler 

and Folliard (2005). 

The transport mechanisms characterising the moisture phase are dealt with in the 

subsequent section 3.3. The two governing differential equations pertinent to the 

masses of liquid and vapour are expressed with respect to the solid skeleton and then 

the flow parameters included in these relationships are defined highlighting the 

diversity of the fluxes considered. 

The principles regarding the simulation of the reactive transport are presented in 

section 3.4. An overall mass balance law is formulated for a single solute accounting 

for all the chemical elements carried by the interstitial liquid that will combine and heal 

the cracks. Three distinctive fluxes: advection, molecular diffusion and dispersion 

dictate the movement of ions, while a sink/source term based on a Freundlich type 

isotherm is utilized to represent the production of the hydrates. 

Section 3.5 presents the transport mechanisms encountered during the heat transfer. 

The macroscopic energy balance equation for the entire porous medium is derived and 

some simplifying assumptions are made. The governing relationships employed in this 

equilibrium equations are listed and defined. 

Finally, section 3.6 resumes the theoretical aspects presented in detail up to that point 

and stresses the innovations introduced in the current THC model. 
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3.2 Hydration Kinetics 

 

In a number of papers the hydration degree is defined as the ratio between the mass of 

hydrated material at time t  and the mass of hydrated material at theoretical complete 

hydration (Gawin et al., 2006). However, the present work uses the definition 

suggested by Schindler and Folliard (2005) which originates from the calorimetric 

analysis of the cement hydrolysis. According to these authors, the hydration curve may 

also be determined by tracking in time the ratio between  tH  - the heat released at 

time t  and totH  - the total heat released when all the cement has reacted.  

 
 
totH

tH
tΓ )(  (3.1) 

Theoretically, the hydration degree should range between 0 – at the initiation of the 

crystallisation process – and 1 – at the cessation of any chemical activity. In practice 

however, a value equal to unity may never be reached and instead a smaller computed 

ultimate degree of hydration needs to be considered. 

Consideration of hydration kinetics enables the characterisation of the cement 

hardening process from hygral, thermal and chemical point of view. The stages of the 

reaction, the nature of the resultant chemical products, the development and evolution 

of the porous medium together with the advancement of the heat release are all related 

to the progress of the hydration and have to be included in a holistic THC model. 

 

3.2.1 Evolution of the Hydration Degree 

 

Portland cement is composed of polymineralic grains dominated by impure C3S that 

fluctuates usually between 40–70% by weight (Jennings and Thomas, 2009). The 

reaction kinetics of alite consist of three distinctive steps (Taylor, 1997; Fujii and 

Kondo, 1974) which are extrapolated in this study to all the remaining minerals in a 

similar manner to that described in Bernard et al. (2003). A short description of these 

stages is presented below together with the formulae characterising the time evolution 

of the hydration degree in which the subscript X  refers to one of the four possible 

clinker minerals existing within the cement powder. 

1. The induction period. Throughout this initial step the outermost layers of the 

clinker mineral dissociate into constitutive ions. The remaining grains are covered with 
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3 to 4 layers of absorbed water molecules (Fujii and Kondo, 1974) and the hydrolysis 

advances with a constant reaction rate given by the equation: 

 t
t

Γ
tΓ

I
X

I
X

X )(   (3.2)

where I
XΓ  is the degree of hydration threshold at the end of the induction period, I

Xt  is 

the duration of the induction period and t  is the current time. 

2. The nucleation and growth controlled hydration. During this interval the 

volume of hydrates increases considerably and fills the capillary pores. The 

crystallisation kinetics is described by an Avrami type equation (Bernard et al., 2003): 

   XKI
XXX ttktΓ )(exp1)(   (3.3)

 
where Xk  is the rate constant equal to the product of XK  and the characteristic time 

X , whilst XK  is a parameter giving the order of reaction. 

3. Diffusion controlled hydration. According to Fujii and Kondo (1974), once a 

critical hydration degree is exceeded, the reaction enters a final phase where the 

already formed precipitates coat the unhydrated grains and reduce the free movement 

of the dissociated ions. The expression proposed for the reaction advancement beyond 

this point reads: 
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in which D
XΓ  is the critical hydration degree, D

Xt 0,  denotes the initiation time of the 

diffusion controlled hydration, ckR  represents the average radius of the clinker phases 

and XD  is the diffusion coefficient controlling the final hydration stage. 

 

3.2.2 Evaluation of Water Forms in Hardened Cement Pastes 

 

Many properties of cement-based materials, including the mechanical and mass 

transport potentials, originate from the nanostructure level of the hydrated paste. The 

reaction between cement and water gives rise to a complex physical and chemical 

structure which comprises a range of hydration products, pores and unreacted cement 

grains. During the hydrolysis, the liquid phase is stored in a multitude of locations that 

vary in dimension and intensity of the attraction forces between the H2O molecules. 

This leads to the existence of several aqueous phases with distinctive thermodynamic 

properties. 
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3.2.2.1 Classification of Water Forms 

 

This section provides a summary of the author’s interpretation of the colloidal model 

proposed by Jennings (2008), which deals with the classification of the water forms in 

cement paste and, in particular, in calcium silicate hydrate gels. A brief description of 

these water phases, used to determine some of the hygral characteristics of the current 

numerical model, is presented in the following paragraphs along with a schematic 

illustration given in Figure 3.1. 

The C-S-H gel represents a nanometric non-crystalline product that incorporates solid 

particles and pores. Depending on the saturation state of the paste, the pores are 

either full of water or partially empty. Because of their location, these voids are 

generally termed gel pores and, to the first approximation, form the so-called gel 

porosity. However, the behaviour of the water in the largest gel voids is more like the 

behaviour of the water in the capillary network. Thus, these voids are included in the 

capillary porosity rather than in the gel porosity. 

Jennings states that the silicate globule – the basic unit block of the C-S-H gel – has a 

platelet shape and an internal sheet like structure similar to that of tobermorite and 

jennite. It comprises Ca2+, Si2+ and O2- ions which constitute the solid skeleton of the 

reacted clinker (SSRC), OH- groups strongly bound to the solid skeleton representing 

the non-evaporable/chemically bound water (CBW) and water molecules frequently 

called globular evaporable water, that can be slowly removed during medium to 

extreme drying conditions. The potentially mobile aqueous phase is situated in 

intraglobular pores and in interlayer spaces, both less than 1nm in size. According to 

their specific location, these liquid phases will be referred from now on as 

intraglobular (IGW) and interlayer water (ILW), respectively. The globular evaporable 

water is subjected to strong adsorption forces, has a high density (1.2 to 2 mg/m3) and 

collapses the globule when it is removed. 

The silicate globules are surrounded by adsorbed water (AW) with the same 

thermodynamic behaviour as the globular evaporable water. During hydration, the 

globules pack in flocs ranging between 30 to 60 nm in size that have variable densities 

and that encapsulate small gel pores (SGP) (1-3 nm) filled with constrained water. 

This aqueous form together with the sum of the adsorbed, interlayer and intraglobular 

water represents the effective gel water which in this study is taken into account when 

assessing the gel porosity. The large gel pores (LGP), on the other hand, are between 

3 to12 nm in diameter and separate two neighbouring globule flocs. They contain H2O 
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molecules that form a meniscus at the interface with the gaseous phase and behave 

similarly to the bulk/capillary water situated outside the gel boundaries. 

As far as the capillary network is concerned, its presence is due to the colloidal 

precipitates that are too dense to fill all the available space and that entrap regions of 

pore solution during the short-term syneresis. After the setting of the paste though, the 

newly created non-gel phases restrain the contraction of the solid network in the 

absence of heat treatment, thus preventing further syneresis. Thereafter, the volume of 

the capillary pores begins to decrease as a consequence of the ongoing hydration. 

 

Figure 3.1 Representation of water forms within the C-S-H gel 

according to Jennings (2008) 

 
Before moving to the next section, it should be mentioned that, in the current 

investigation, the classification of the water forms corresponding to the C-S-H gel was 

also extended to the reaction products resulting from the hydration of aluminate and 

aluminoferrite. The following section provides the mass fractions associated with these 

water forms. 

 

 

 

C-S-H 
gel 

globule

globule floc (GF)

globular 
evaporable 
water

physically
adsorbed
water

: constrained water

GW (gel water)

bulk water



Chapter 3 Theoretical Formulation 
 

36 
 

3.2.2.2 Estimation of Mass Fractions of the Water Forms 

 

Returning to the theoretical considerations enumerated in section 3.2.1, the function 

representing the degree of hydration pertinent to a specific clinker compound is: 
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where in order to satisfy the continuity condition D
Xt 0,  has the expression: 

   
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Following the approach adopted by Bernard et al. (2003), the hydration degree of the 

Portland cement can be computed as a weighted average of these individual hydration 

degrees: 
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

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X
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tΓm

tΓ )(  (3.7) 

 
in which Xm  is the mass percentage of the clinker mineral X  and XΓ  is its 

corresponding degree of hydration. 

In order to evaluate the masses per unit volume of material of each water form present 

in the paste, a numerical algorithm is proposed based on reaction stoichiometry. Firstly, 

the duration required to reach theoretical complete hydration ( 1)( tΓ PC ) is computed 

and then partitioned in small time steps. For each temporal division, the individual 

hydration curve (3.5) provides a mass of consumed clinker used to calculate afterwards 

the depleted amount of water in compliance with the chemical reactions from Appendix 

A, Table A. 1. It is necessary to draw attention to the fact that Powers and Brownyard 

(1948), Tennis and Jennings (2000) and Jennings (2008) acknowledge that the 

variation of the water saturation degree of the medium decreases the number of water 

moles within the hydrates, which is interpreted here as a decrease in the stoichiometric 

coefficients. Jennings suggests that in the case of C-S-H, distinct water forms are 

expelled from their location during four relative humidity intervals delimited in terms of 

water content by four H2O mole thresholds and implicitly by four stoichiometric 
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numbers. These intervals, denoted in this thesis by i1, i2, i3 and i4, correspond to ≈0%, 

(0%, 11%], (11%, 40%] and (40%, 60%], respectively and are also preserved for the 

rest of the precipitates. For these other hydrates however, the stoichiometry is adjusted 

according to the available experimental data, as can be seen in Appendix A, Table A. 

2. By solving the chemical reactions, the values 1iw , 2iw , 3iw , and 4iw  (the quantities 

of water per unit volume of material consumed at 60%, 40%, 11% and ≈0% RH, 

repectively) are estimated. The masses of LGP, SGP, AW+ILW+IGW and CBW per 

unit volume of material are then found by using the relationships in (3.8): 

 
     twtwtw iiLGP 34   

     twtwtw iiSGP 23   

     twtwtw iiIGWILWAW 12   

   twtw iCBW 1  
(3.8)

 
The proposed algorithm employs an iterative procedure applied to each clinker mineral 

that aims to mathematically simulate a multistage chemical phenomenon involving the 

potential interactions between both intermediate precipitates and reactants. It is thus 

necessary at this point to clarify some numerical aspects regarding the modelling of the 

reactions. The hydration of alite and belite is a one stage process controlled solely by 

the available quantity of the solid reactant. In this case, the iteration stops when the 

accumulated mass of consumed C3S and C2S surpasses their initial amounts. The 

reactions involving the aluminate and aluminoferrite, on the other hand, are more 

complex and occur in three phases. In the primer stage, the presence of gypsum 

influences the precipitation path. If 2HSC  is the first to be depleted, the hydration 

enters in the second phase. Otherwise, due to the absence of C3A and/or C4AF, the 

reaction ceases completely. A similar pattern holds during the second phase of 

hydration, but this time gypsum is replaced by 3236 H
_
SAC  (for the aluminate) or by 

3236
HSF)(A,C  (for the aluminoferrite). In the third stage, the portlandite precipitated 

from alite and belite is consumed. In the case of C3A, two simultaneous reactions which 

have the same reaction rates occur, while in the case of C4AF a single hydrolysis takes 

place. It should also be added that at each time step, the amount of available CH is 

compared to the required amount. If the formed portlandite is insufficient, the hydration 

Stage 3 of C3A and C4AF is not simulated. More details about the numerical algorithm 

are presented in the form of pseudo codes in Appendix A, Figure A. 1 to Figure A. 2. 
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3.2.3 Estimation of the Ultimate Degree of Hydration 

 

Another parameter characterising the reaction kinetics is the ultimate degree of 

hydration, 
ultΓ , which represents the final stage reached by the chemical process. 

The stoichiometric based algorithm presented above is able to determine this value 

which depends on the chemical and physical features of the cement paste/concrete 

mix. Theoretically, 
ultΓ  should be equal to one, but in the majority of cases there is 

either insufficient water with respect to the initial unhydrated quantity of cement and/or 

there is not enough space required for full crystal nucleation. Powers (1964) states that 

although the chemical equilibrium is not reached, the reaction may stop before the 

complete consumption of clinker compounds and thus the following expression for the 

ultimate degree of hydration is applicable: 

 1
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where 
effc

w






  is the effective water-cement ratio of the mix (takes into account the 

water absorption of the aggregate) and 
*



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

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w
 denotes the lowest water-cement ratio 

that would permit complete hydration. This last term is equal to: 
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3.2.4 Porosity 

 

As will be seen in the forthcoming section 3.3.1, explaining the governing balance 

equations employed in the THC model, the capillary and total porosities play a crucial 

role in the mathematical description of the flow problems (moisture and heat). The 

capillary porosity includes all the voids that may store the water forms that have the 

same behaviour as the bulk water. On the other hand, the total porosity equals to the 

sum of capillary and gel porosities. As previously stated, the emergence in the mass of 

the hardened cement paste of encapsulated capillary pores is triggered during the 

syneresis process. In time though, the volume of these large size interstices decreases 

especially when C3S and C2S begin to hydrate (Jennings, 2008; Cook and Hover, 
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1999). Throughout the syneresis, the chemical shrinkage predominates and is 

converted almost exclusively into an external volume change. Therefore, the degree of 

water saturation remains constant and close to 1. In order to numerically capture this 

effect, the expression of the porosity for this short time period is given by: 

   00
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where j  stands for the porosity type (capillary or gel), w  is the mass of the mix water 

per unit volume of material, ult
iw  is the mass of the component i  of the gel water at the 

end of hydration per unit volume of material ( i  = CBW, AW+ILW+IGW, SGW) and 0Γ   

is the percolation threshold of the degree of hydration. When this limit is surpassed, the 

paste starts to gain stiffness. The chemical shrinkage begins to be restrained by the 

hydration products and empty voids form within the mix (Lura et al., 2003). In addition, 

the aggregate (if unsaturated) absorbs part of the bulk water (Buenfeld and Okundi, 

1999). 

For 0ΓΓ   the porosity has the same general form as in (Neville and Brooks, 1987) 

and follows the principles of Powers’ model (Powers and Brownyard, 1948). Its 

expression is estimated from the quantity of cement paste constituents at the end of 

hydration, considering that the reaction products advance proportionally with the overall 

hydration degree from (3.7). Experimental evidence suggests an essentially linear 

relationship between porosity and degree of hydration (Neville and Brooks, 1987; 

Young and Hansen, 1987; Halamickova et al., 1995; Cook and Hover, 1999). In the 

current investigation the adopted formula for porosity uses the above considerations 

and the quantities of the water forms obtained from the iterative stoichiometric 

algorithm: 
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In this relationship wV , eaV , cV , aggV  and SCMV  are the volumes of mix water, entrapped 

air , mix cement, aggregate and supplementary cementing materials (SCM),  ΓVs  is 

the volumetric strain due to shrinkage and ult
iV  is the volume of the component i  of the 

gel water at the cessation of hydration. Making use of the initial water cement ratio and 

also of the densities, (3.12) may be rearranged to give: 
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where w , c  and i  are the densities of bulk water, cement and component i  of the 

gel water, respectively. Multiplying top and bottom by 
c
w , (3.13) leads to: 
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in which j
SC _  is a material coefficient corresponding to the porosity type j . 

The volumetric strain is determined experimentally, but can be neglected if drying takes 

place under sealed conditions, since it is relatively small (≈ 1300 μstrains for ordinary 

cement and ≈ 200 μstrains for ordinary concrete at ≈ 700 days from casting (Baroghel-

Bouny, 1994)). j
SC _ , on the other hand, is obtained using the reaction stoichiometry 

and quantifies the amount of water excluded from the j  type porosity at complete 

theoretical hydration: 
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3.2.5 Rate of Heat Generation 

 

In order to quantify the variation in time of the rate of heat generation, this thesis uses 

the definition of the hydration degree suggested by Schindler and Folliard (2005) and 

presented in equation (3.1): 

 
Schindler and Folliard’s general hydration model is employed in order to calculate the 

magnitude of several enthropy based physical properties. The model has a large 

applicability and is capable of predicting the in-place temperature variation of various 

cement types (including mixes that incorporate supplementary cementing materials like 
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fly ash (FA) and/or ground-granulated blast-furnace slag cement (GGBF)). The rate of 

heat generation develops according to the relationship: 

      
ΓH

dt

tΓHd

dt

tHd
Q tot

tot
h

  (3.17)

 

where Γ  represents the rate of the degree of hydration. In Schindler and Folliard’s 

approach, the overall hydration degree function is obtained by fitting the experimental 

data recorded during the semi-adiabatic calorimetric probing of various cement types. 

Its expression has the form: 
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where ultΓ  is the ultimate degree of hydration, sf  and sf  are hydration time and 

shape parameters while convf  is a conversion factor based on Arrhenius’ rate theory 

and dependent upon temperature. Carino and Lew (2001) proposed the following 

relationship for this last term: 
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in which E  is the activation energy of the reaction, rT  is the reference temperature 

equal to 294.1°K and T  is the concrete temperature corresponding to the chronological 

time t . The formulae for the parameters sf , sf  and E , as well as the total heat of 

reaction totH , account for the fact that the cement is a multiphase material which 

undergoes more than one reaction during hydration. The effect of the chemical species 

is embodied in the forthcoming relationships by the weight ratio of component i  in 

terms of total cement content denoted here by if . Using multivariate Regression 

Analysis, Schindler and Folliard (2005) obtained the following expressions for sf  and 

sf : 

 GGBFSOSCACsf ffBff   647.0exp4.181 558.0535.0227.0146.0
333

  (3.20)

SP
sfCaOFAFAGGBFSOSCACsf ffffBff   

 )5.9187.2exp(78.66 758.0804.0401.0154.0
333

 (3.21)

 
where B  is the specific surface area of the cement obtained with Blaine’s method 

(m2/kg) and SP
sf  is the hydration time parameter given in (3.22) which takes into 

account the effect of the superplasticizer (SP) by means of the retardation time SP : 
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The activation energy depends on the chemical composition and on the fineness of the 

mix: 
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Returning to the equation (3.17), the total heat of reaction at full hydration equals to: 

  FAFAGGBFcementctot fhffHcH  461  (3.24) 

 
where c  is the initial mass of cement per unit volume of material, FAh  is the heat of 

hydration of the fly ash and cH  represents the heat of hydration of cement at complete 

hydration. This last term takes into account the contribution of each clinker mineral and 

other oxides and is equal to: 

MgOfreeCaOSOAFCACSCSCc fffffffH 8501186624420866260500
34323

  (3.25)

 
Deriving (3.18) in terms of chronological time and using (3.17), (3.24) and (3.25), the 

expression for the rate of heat generation of an ordinary Portland cement without any 

additions becomes (Schindler and Folliard, 2005): 
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(3.26) 

 

 

3.3 Moisture Flow 

 

In cementitious materials the moisture flow comprises the transport of the water and 

vapour phases. Individual mass balance equations will be derived below for inclusion in 

the THC model. Moreover, the main transfer mechanisms will be highlighted and their 

mathematical representation, capable of simulating the autogenous healing of cement-

based materials, will be provided. 
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3.3.1 Governing Differential Equation for Moisture Flow 

 

For a given material phase ( ) the generalised expression of the macroscopic volume 

averaged mass balance equation has the form (Lewis and Schrefler, 1998): 

   








mvdiv

Dt

D
  (3.27)

where 
Dt

D

 is the material time derivative with respect to phase  ,   stands for the 

phase-averaged density, v  is the mass-averaged velocity and m  signifies the 

sink/source term accounting for phase change. The phase-averaged density 

represents the mass of phase   per volume of the entire porous medium and has the 

mathematical expression: 

 
  S  (3.28)

 
in which   is the porosity, while S  and   are the degree of saturation and the 

intrinsic phase averaged density, respectively. The vapour and the dry air are miscible 

(Dalton’s law: avg ppp  ) and therefore it is commonly agreed that they share the 

same volume fraction gS , gS  being the degree of saturation with respect to the 

gaseous phase (vapour + dry air). In the current thesis the approach adopted by de 

Morais et al. (2009) is used and therefore, the mass balance of the dry air is neglected. 

For the water vapour, equation (3.27) becomes: 

   v
v

v
v

v

mvdiv
Dt

D
 


 (3.29)

 
while for the liquid water phase the equation is: 

   w
w

w
w

w

mvdiv
Dt

D
 


 (3.30)

 
In order to account for the coexistence of dry air and vapour within the gas phase, the 

material time derivative 
Dt

D v
v

 changes into 
Dt

D v
g

 according to: 

   gv
v

v
v

v
g

vgrad
Dt

D

Dt

D



  (3.31)

 
where gvv  is the relative velocity of phase v  with respect to phase g . But gvv  can be 

decomposed into:  
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 vgvggv vvvv   (3.32) 

 
gv  and vv  being the velocities of the phases g  and v , respectively. Therefore, 

substituting (3.32) into (3.31) and (3.31) into (3.29), the mass conservation equation of 

the water vapour written with respect to the gaseous phase is: 

        v
g

v
vg

v
vg

v
v

g

mvdivvdivvgrad
Dt

D
 


 (3.33) 

 
Moreover, the above relationship can be further simplified as in (3.35) if the equality 

(3.34) is applied: 

      vg
v

vg
v

vg
v vdivvdivvgrad    (3.34) 

     v
g

v
vg

v
v

g

mvdivvdiv
Dt

D
 


 (3.35) 

 
In order to solve the moisture flow problem and to implement it in a numerical model, it 

is necessary to write all the mass balance equations with respect to the same material 

phase. If the solid skeleton is chosen as the common reference, 
Dt

D v
g

 and 
Dt

D w
w

 are 

replaced by: 

   sg
v

v
s

v
g

vgrad
Dt

D

Dt

D



  (3.36) 

   sw
w

w
s

w
w

vgrad
Dt

D

Dt

D



  (3.37) 

 
The relative velocities of the gas and water with respect to the solid skeleton ( sgv  and 

swv ) can be dissociated in a similar manner as in (3.32). The resulting expressions of 

wv  and gv  are then substituted into equations (3.30) and (3.33), in which the 

relationships (3.36) and (3.37) are also introduced and the following equalities are 

obtained: 

 
Grouping the terms in the squared brackets according to a vector identity analogous to 

(3.34), the two mass balance equations finally become: 

          v
vg

v
sg

v
sg

v
s

v
v

s

mvdivvdivvgradvdiv
Dt

D
 


 (3.38) 

        w
sw

w
sw

w
s

w
w

s

mvdivvgradvdiv
Dt

D
 


 (3.39) 
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  w
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(3.41)

 
Before employing this system of equations to examine the moisture flow in 

cementitious materials, it should be stated that the model uses the capillary water 

saturation degree, cap
wS , as the hygral variable. The first consequence of this is that all 

the existing fluxes (diffusion and advection), expressed in (3.40) and (3.41), occur at 

the capillary pore level. In this context the precise formula of w  becomes: 

 
w

cap
wcap

cap
ww S    (3.42)

 
The second implication concerns the physical meaning of the right hand side term in 

equations (3.40) and (3.41). While vm  represents the source of water vapour due to 

vaporisation, wm  accounts simultaneously for the depletion of the liquid phase due to 

evaporation ( vm ), hydration ( hyd
wm ) and water adsorption/desorption by the aggregate  

( aggda
wm

_/ ) and for the water supply in the capillary pores due to the desorption of the 

gel network ( des
wm ): 

 des
w

aggda
w

hyd
wvw mmmmm   _/  (3.43)

 
Some clarification related to this last source term is needed at this point. During drying, 

the evaporation successively empties the capillary pores until the desiccation front 

reaches the gel interstices. In these circumstances, the mass balance equation (3.41) 

can no longer be applied because cap
wS  is null. Experimental evidence though, 

suggests that the phase change of water continues to manifest even beyond this 

moment (Scherer, 1990). The current thesis accounts for the ongoing desiccation by 

assuming that after a critical relative humidity level, crRH , estimated to be somewhere 

between 40-50% (Baroghel-Bouny, 2007; Jennings, 2008; Illston and Domone, 2010), 

both globular evaporable and chemically bound water, denoted here by capgel
wm

 , feed 

the capillary pores. The mass of supplied aqueous phase is: 
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m
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,  (3.44) 

 

where the expression of capgel
wm

  derives from the definition of the water content, wc , 

given by Baroghel-Bouny et al. (1999): 

 cap
w

dry

w
capdrydry

capgel
w Smwcmm


  (3.45) 

 
In the above relationship drym  stands for the mass of the dry sample, dry  is the ratio 

between drym  and the total volume of the paste and cap
wS  is a sorption isotherm 

obtained by fitting experimental measurements (see equation (3.66)). Using these 

terms, the rate of water intake by the capillary network may be expressed as: 
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
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
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
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

cr

cr
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wcap

w
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w
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w
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S

m
m

,0

,
  (3.46) 

 
Considering now the water consumed by the hydration process, its rate equals the 

product of the ultimate quantity of the gel water (computed using the stoichiometric 

model) and the time derivative of the degree of hydration: 

 
 Γwm

i

ult
i

hyd
w

   

 CBWIGWILWAWSGPi ,,   
(3.47) 

 
The rate of absorption/desorption by the aggregate is a sink/source term that accounts 

for the transport of liquid water towards and from the pores of the aggregate during 

drying. Often, aggregates used in concretes are in an air-dry state and have interstices 

comparable to – or larger than – those found in C-S-H gels (Neville and Brooks, 1987). 

This means in theory that, depending on the level of the relative humidity reached in 

the proximity of the aggregate particle, bulk water can be absorbed from and 

subsequently expelled into the capillary network (Buenfeld and Okundi, 1999). 

However, after a few hours, the hydrated cement paste creates a protective layer of gel 

products on the surface of the aggregate and hinders the further transport of water 

(Neville and Brooks, 1987; Verbeck and Landgren, 1960). In general, the coarse 

aggregate is significantly more absorbent than the sand (fine aggregate), particularly if 

crushed limestone is used. In this thesis, an experimental procedure, described in 

Chapter 5, was carried on in order to evaluate aggda
wm

_/ . 
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3.3.2 Mechanisms of Liquid Water Flow 

 

Having defined the governing moisture mass conservation equations, the thesis will 

now move on to detail the mathematical expressions used for the dominant 

mechanisms facilitating the movement of the aqueous phase within the porous 

medium. The velocity of the water with respect to the solid phase obeys Darcy’s law 

and is proportional to the hydraulic permeability wk  and to the gradient of the total water 

potential w
t : 

 w
tcap

wcap

wws

S

k
v 


  (3.48)

 
Among the mechanisms capable of generating the transfer of water from one point to 

the other, the matric and gravitational potentials, w
m  and G , are dominant. Thus: 

 
G

w
m

w
t    (3.49)

 
According to Sedighi (2011), the matric potential encompasses in its meaning the 

capillary action together with the absorption effect exerted on the water molecules by 

the London-van der Walls forces and the chemical binding process. As long as there 

exists a continuous wetting fluid, the matric potential equals the water pressure wp . If 

the interstices of the porous medium are partially filled by water, a difference in 

pressure develops across the interface separating the gas and the liquid: 

 
wac ppp   (3.50)

 
where cp  and ap  are the capillary and the air pressures. An equilibrium relation given 

by Kelvin’s law exists between the capillary water and the water vapour: 

  RH
p

p

RT

Mp
sat
v

vw

w

c lnln 










 (3.51)

 
in which wM  is the molar mass of liquid water, vp  represents the water vapour 

pressure, sat
vp  is the water vapour saturation pressure and RH  is the relative 

humidity. The variation of sat
vp  follows Antoine’s equation and depends solely on 

temperature: 

   Tb

b
b

sat
v Tp 



 3

2
1

10  (3.52)
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where 1b , 2b  and 3b  are material parameters. Hence, in funicular saturation state, the 

matric potential is described by: 

 
cgw

w
m ppp   (3.53) 

 
However, in the case of pendular state, there is just a very thin film of H2O molecules 

surrounding the cement grains and the amount of both vapour and dry air overrides the 

amount of the liquid phase. The water and capillary pressures are meaningless from 

the physical point of view. The matric potential is obtained in these circumstances after 

integrating the differential of the Gibbs function for vapour from sat
vp  to vp  (Lewis and 

Schrefler, 1998): 

 



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


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


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


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vww
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p

RT
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1

  (3.54) 

 
This matric potential, if multiplied by w , equals to the expression of cp  derived from 

the equation (3.51). In (Gawin et al. 2006a) the capillary pressure is redefined 

according to the above observation and the relationship presented in (3.55) is 

employed along the whole moisture content range. 
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
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The water density ( w ) is temperature dependent and is assumed to obey the Thiesen-

Scheel-Diesselhorst equation (McCutcheon et al., 1993): 

    
    













 29863.3
12963.682.508929

9414.288
11000 T

T

T
Tw  (3.56) 

 
The second mechanism producing liquid movement has a smaller impact in 

comparison with the matric potential and, as a result, some researchers simply ignore it 

(Baroghel-Bouny et al., 2011; de Morais et al., 2009). However, in the proposed 

analysis the gravitational potential is taken into account. 

 gwG    (3.57) 

 
In which g  is the gravitational acceleration. 

The formulae for the other terms in equation (3.48), that have not been defined so far, 

are given in the following paragraphs. Numerical investigations such as those 

conducted by de Morais et al. (2009), Gawin et al. (2011a), Baroghel-Bouny et al. 
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(2011) and Koniorczyk (2012) have shown that the hydraulic permeability is 

proportional to the intrinsic ( iwk ) and the relative permeability ( rwk ) of the liquid and 

inverse proportional to the aqueous viscosity, w : 

 
w

rwiw
w

kk
k


  (3.58)

 
In this thesis iwk  is obtained by superposing the relationships reported in (Gawin et al., 

1999, 2006a) and is dependent upon both hydration degree and temperature as it is 

illustrated in Figure 3.2. The formula (3.59), adopted in here, accounts for the effect of 

the intrinsic permeability of the matured paste 0
iwk , for the reference temperature refT  = 

273.15 °K, for the atmospheric pressure atmp  and for the material constants kA , ΓA  

and pA . It can be seen that during a normal positive temperature range (T<373.15°K), 

iwk  may vary up to 2 orders of magnitude throughout the hydration process. 

    
p

Γrefk

A

atm

gΓATTA
iwiw p

p
kk 








  10 10  (3.59)

 

 
(a) (b) 

Figure 3.2 Variation of iwk  with (a) degree of hydration and (b) temperature

 
Concerning the relative permeability with respect to the water phase, a number of 

numerical expressions have been given in the literature. Among these are: the formula 

given by Mualem’s model valid for both adsorption and desorption processes 

(Baroghel-Bouny et al., 2011), the formula based on the irreducible saturation (Gawin 

et al., 1999) and the overall permeability function advanced in the Generalised 

Effective Media approach that considers the contribution of the cracks (Bary et al., 

2012). The relationship employed in the current work uses the reactive transport 

models for cementitious materials and was originally proposed by van Genuchten 

(Koniorczyk, 2012; de Morais et al., 2009; Gawin et al., 2008): 
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where m  is a material constant. The variation of the relative water permeability with the 

capillary water saturation degree is plotted in Figure 3.3 (a). 

 
(a) (b) 

Figure 3.3 Variation of (a) rwk  and (b) w
 
Last but not least, the magnitude of the viscosity of the pore liquid is generally agreed 

to vary both with temperature and concentration of the solute. Koniorczyk and Gawin 

(2008) suggested equation (3.61) when studying the influence of NaCl on moisture and 

energy transfer, whilst Baroghel-Bouny et al. (2011) adopted the extended Jones-Dole 

equation from (3.62) to analyse the isothermal coupled moisture–ion transport in 

cementitious materials: 
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ww   (3.61) 
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In these two relationships,   represents the concentration of the solute (kg salt / kg 

solution), the parameters 1A , 2A , 3A  and 1B , 2B , 3B , 4B  stand for material 

constants, while the function  Tpure
w  describes the change of viscosity of pure water 

with temperature. The latter term has been identified as the major contributing factor for 

the evolution of w  in the early age of cement hydration. Therefore, in the current 

numerical simulation, which is focused on the autogenous healing phenomenon, the 

formula used by Gawin et al. (1999), depicted in Figure 3.3 (b) and valid for 273 < T < 

373°K, is employed: 

       562.12296612.0  TTT pure
ww   (3.63) 
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Summarising all the above information, the specific discharge due to the advection of 

the water phase can be replaced in the mass balance equation in the form: 
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 (3.64)

 

Before passing to the next section it must be also noted that a relationship between the 

two hygric parameters cap
wS  and cp  is needed in order to solve the mass balance 

equations from section 3.3.1. At present however, there is no purely analytical formula 

to describe such relationship and instead experimental data are used to develop the so 

called ‘capillary curves’. The disadvantage with cement-based materials is that 

because of their weak permeability, the capillary curve cannot be obtained directly via 

drainage or suction as for rocks and sands. Baroghel-Bouny et al. (1999) carried out an 

alternative experimental procedure which led to a ‘sorption curve’ expressed in terms of 

weight loss versus relative humidity. Desorption tests on 1.5 year old ordinary concrete 

and cement paste specimens were performed and an s-shaped function was proposed 

based on the derivations of Van Genuchten (1980): 
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The curve relates the total liquid water saturation to the capillary pressure and was 

derived using mature concrete samples in which the hydration reactions were 

effectively complete. This means that during the early age drying, when the porous 

network has not yet stabilised, the above capillary curve needs to be adjusted in order 

to give a realistic estimation. In the current thesis, the function   takes into 

consideration the impact of porosity development upon the capillary curve. Thus, the 

equation (3.65) is modified into: 
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that also accounts for the effect of temperature upon the capillary curve (Edlefsen and 

Andersen, 1943; Cleall, 1998). The expressions of   is: 

  TT  00001516.01171.0  (3.67)
 
whilst   is equal to: 
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


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c  being a material parameter. 

The early-age properties of the desorption tests are difficult to measure and there is no 

available experimental evidence to validate equation (3.66). However, this relationship 

is comparable to the capillary curve proposed by Sciumè et al. (2013), which is also 

dependent on the hydration degree. Therefore it was decided to use (3.66) in the TH 

component in the self-healing model. 

The validity of the capillary curve for the whole moisture spectrum is another point of 

debate. During the hygroscopic moisture range there is enough water in the pores to 

have a liquid-gas interface and therefore to have a real capillary pressure. But the 

evaporation triggered by the decrease of vapour pressure successively empties the 

pores until the desiccation front reaches very small voids filled with an insufficient 

number of water molecules to create a meniscus. This stage corresponds to the critical 

gel point ( crRH ), which represents the moment when the gel water begins to be 

expelled from the gel pores. At this RH level the physical meaning of capillary pressure, 

and implicitly the applicability of the capillary curve, is questionable. However, 

experimental evidence suggests that the phase change of water continues to manifest 

even after this point and Gawin et al. (2006a) propose that a water potential, similar in 

form to that used for the capillary pressure, controls further desiccation. In this thesis it 

is acknowledged the fact that other drying mechanisms become operational below a 

certain moisture limit, but it is considered that on the basis of the work of Powers and 

Brownyard (1948), Feldman (1973) and Jennings (2008) it is justify the use of a 

capillary curve below the critical RH level. In brief, it is assumed that when water starts 

to be removed from the gel pores, it does not immediately change phase, but feeds the 

capillary network with liquid water and thus maintains the liquid-gas interface.  

 

3.3.3 Mechanisms of Water Vapour Flow 

 

The relationship (3.40) describing the conservation equation of the water vapour 

accounts for the transfer of the gaseous phase that occurs by both advection and 

diffusion. The transport due to the bulk motion of this fluid is sustained by the matric 

potential, written below as a product of the permeability of the porous medium with 

respect to the gaseous phase, gk  and the gas pressure gradient gp : 
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gg

gs pkv   (3.69)

 
In the current thesis it is assumed that the combined dry-air vapour mix is always at 

atmospheric pressure ( atmg pp  ) and vapour diffuses through the gas phase. Gardner 

et al. (2008) have found that the time to reach steady state of the gas flow is relatively 

short and would be negligible in comparison with the time scale of drying shrinkage. In 

the absence of rapidly changing temperature gradients, they consider that the current 

assumption is valid and thus the gsv  term is neglected in equation (3.40). 

The diffusive flow, on the other hand, is assumed to obey Fick’s law (de Morais et al., 

2009): 
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where aM , wM  and gM  are the molar mass of dry air, liquid water and gas and effD  

denotes the effective diffusion coefficient. This expression can be simplified as follows 

if it is assumed that ga MM   and if g  is written in terms of gp  via the ideal gas law: 

 












g

v
eff

w
g

gcap

vg

p

p
D

RT

M
p

S
v


1

 (3.71)

 
The movement of the vapour species is intimately linked to the development of the 

internal structure of the paste, as can be easily seen in the formula for the effective 

diffusion coefficient (Gawin et al., 2011): 

   
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
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T
DfSD

v

v

0  (3.72)

 
In the above relationship vA  and vB  are material constants, sf  represents the 

structure coefficient accounting for the Knudsen effect that considers the number of 

collisions of the H2O molecules with the solid skeleton and 0vD  is the diffusion 

coefficient of the water vapour in the air at reference temperature and pressure. It is 

evident from Figure 3.4 that effD  increases with temperature and reduces with the 

saturation of the porous network. 
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(a) (b) 

Figure 3.4 Variation of effD  with (a) cap
wS  and (b) temperature 

 

 

3.4 Reactive Transport 

 

The autogenous healing of cementitious materials during the first few months is caused 

by the continuous hydration of the unreacted clinker (Jacobsen et al., 1995; Granger et 

al., 2007). The cement grains dissociate in the presence of pore water and release 

various ions that are transported and accumulate inside the porous medium. When the 

concentration of these electrically charged particles reaches a supersaturation state, a 

chemical reaction takes place and the new hydrates start to crystallise filling the 

existing voids. In a cement-based material, the amount of a chemical species in the 

pore solution can be traced spatially and temporally via a mass balance equation 

written in terms of the solute under consideration: 

   










mvdiv
Dt

D
  (3.73) 

 
In this case, the phase-averaged density (  ) refers to the dissociated ions and is 

equal to w
cap
wcap S   where   represents the mass of unreacted cement per mass of 

solution in the capillary pores. The other undefined terms, v  and m , stand for the 

velocity of the solute and for the sink/source term integrating all the chemical 

processes occurring within the capillary network. By successively changing the material 

derivative ( sw ), (3.73) becomes: 
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(3.74) 

 
The first transport mechanism appearing in the above relationship is similar to the bulk 

movement of the water phase because it is driven by the relative velocity of the liquid 
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with respect to the solid skeleton. Therefore, the constitutive laws mentioned in section 

3.3.2 remain valid even for the advective flow of the unhydrated cement grains. 

The second transport mechanism describes two distinct types of movement driven by 

the gradient of concentration   and mathematically described by the extended linear 

Fick’s law (Koniorczyk, 2012): 

    


  ij
mdiff

ij
mdispw

DDw DDJv  (3.75)

 
ij
mdispD  is a diffusion function that accounts for the mechanical and molecular hydraulic 

dispersion that enables the movement of chemical particles under a concentration 

difference and is dependent upon the longitudinal and transversal dispersion 

coefficients, L  and T  (Bear and Bachmat, 1991): 
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Defined by Koniorczyk (2010) as “the effect of the microscopic variations of velocity 

near the considered point”, the molecular diffusion ij
mdiffD  has the formula: 
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in which molD  is the molecular diffusion coefficient. 

In the proposed model the sink/source term in equation (3.74) accounts mainly for the 

precipitation of C-S-H gel. In essence, this process is analogous to other numerical 

chemical transformations found in the literature that simulate either the salt 

crystallisation (Koniorczyk, 2010; Koniorczyk, 2012), the salt ingress (Baroghel-Bouny 

et al., 2011), the alkali-silica reaction (Pesavento et al., 2012) or the leaching of Ca2+ 

ions (Gawin et al., 2008). Therefore, it was decided in the current thesis to adapt these 

existing theories for the formation of the filling hydrates. The precipitates that result 

during autogenous healing develop in the empty spaces according to a Freundlich type 

isotherm which assumes thermodynamic equilibrium between the dissolved and the 

crystallised material: 

   capw

Freundlich

Pcap
wPSm  

 
  (3.78)
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In the above formula, P  is a parameter that depends on the binder composition and 

P  is the order of the process. The sink/source term m  is therefore the derivative of 

the equation (3.78). 

 

3.5 Heat Transfer 

 

The thermal effect is coupled to the hygric flow by adding a macroscopic energy 

balance equation to the algebraic system composed of equations (3.40) and (3.41). 

Conventionally, for the phase   of a cementitious paste, the governing relationship 

describing the heat flow reads (Lewis and Schrefler, 1998): 
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where 
 pC , T  and q  represent the heat capacity, the temperature and the heat 

flux of the considered phase, 
 HR  is the exchange of energy due to phase 

conversion and mechanical interactions, 
 h  denotes the heat source term and 

 









l

llHm  is the exchange term accounting for the latent heat of evaporation and 

chemical interactions. The heat flux is described by Fourier’s law: 

    Tq T  (3.80) 

 

in which T  is the effective thermal conductivity of phase  . 

By means of a procedure resembling the algorithm utilized for the mass balance 

equations of moisture, equation (3.79) will be formulated in terms of the derivative of 

the solid phase. Furthermore, since the model assumes that all the material phases are 

in thermodynamic equilibrium, their corresponding temperatures are all equal to T . 

Hence, the individual entropy equilibrium equations become: 
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But, as in geomechanics, the heat source terms, 
 h , are ignored and the total 

balance of energy exchange between all the phases,  



 HR  is null (Lewis and 

Schrefler, 1998). Hence, adding (3.81), (3.82) and (3.83), the heat transfer equation for 

the entire porous medium which considers a reactive transport reads: 
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where  



 pp CC  stands for the heat storage capacity of the porous medium, 




 T
eff
T  represents the effective thermal conductivity of the moist material, vH , 

PH  and hH  are the heat of evaporation, precipitation and hydration, respectively, 

while vm , Pm  and hm  are the mass rates of evaporated water, precipitates and 

hydrated material, respectively. Some remarks are needed at this point. Firstly, de 

Morais et al. (2009) and Bary et al. (2012) considered that the energy transfer enabled 

by the bulk movement of the fluids can be neglected. Secondly, when simulating the 

autogenous healing, the precipitated material coincides with the hydrates and implicitly 

the heat of hydration matches the heat of precipitations. Thus, equation (3.84) 

simplifies into: 
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where hQ , defined earlier in (3.26), is the heat release accounting for the combined 

precipitation and hydration processes. 

As stated previously, in this work the author has considered the reactive transport of 

cementitious materials and accounted for the distinct physical properties of all the 

water forms translated mainly in different density values. Thus the following expression 

of the thermal storage capacity was used: 
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where s  and s
pC  are the density and specific heat capacity of the solids, ult

cww  and 

cw
pC  are the mass of combined water phases (SGP + AW + ILW +IGW + CBW) per 

unit volume of the paste at the end of hydration and its corresponding heat capacity, 

while p  and P
pC  are the density and specific heat capacity of the precipitated material. 

In the case of a concrete mix, the properties of the solid obey the adjusted law of 

mixtures as given by Bentz (2007): 
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p fCCC  (3.87) 

 
where if  denotes the mass fraction of the component i  ( c  = cement, fagg  = fine 

aggregate, cagg  = coarse aggregate, GGBF  = ground-granulated blast-furnace slag, 

FA  = fly ash and SP  = superplasticizer). A comparable relationship, based on the 

masses per unit volume and the volumes of each component, is applied to compute s  
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Regarding the effective thermal conductivity of a completely desaturated material, 

Harmathy (1970) states that, in normal conditions, it varies linearly with temperature. 

Gawin et al. (1999) propose the following thermal dependency: 

   refT
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dry TTA   1

0
 (3.89) 

 
in which 

0T
  is the effective thermal conductivity at reference temperature and A  is a 

material parameter. At the same time, the effective thermal conductivity in a system 

with fluctuant moisture content is equal to: 
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where lM  is the mass of the total liquid phase and sM  is the mass of the dry solid 

(unreacted cement and precipitated material): 
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wtotl SM   (3.91) 

   stotsM  1  (3.92) 
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In the above two relationships, tot
w  represents the intrinsic phase-averaged total water 

density obtained from equation (3.93), that considers the contribution of all the water 

forms, while tot
wS  is the total saturation degree calculated with relation (3.94). 
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Finally, it is noted that the phase change in enthalpy due to vaporisation manifests 

below the critical temperature of water, crT  = 647.3°K and is a result of the difference 

between the specific enthalpies of vapour and liquid water. The Watson formula 

provided in (Gawin et al., 2011a) describes its evolution: 
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 (3.95)

 
 

3.6 Summary 

 

The purpose of the present chapter was to give the underlying scientific principles 

behind the thermo-hygro-chemical model for the autogenous healing of cement-based 

materials. The governing equations largely follow those given in the theoretical 

formulations of THM models (Lewis and Schrefler, 1998; Gawin et al., 2006; de Morais 

et al., 2009), but focus on the transfer within the capillary network. The hygric variable 

encountered in the mass balance equation of the liquid phase is the capillary water 

saturation degree and the phase changes are assumed to occur exclusively inside the 

capillary pores. This implies that the sink/source term embodies, in addition, the water 

absorption of the aggregate from the capillary network and the water release from the 

gel pores into the capillary interstices at low relative humidities. In terms of entropy 

balance, the rate of the released total heat is computed from the hydration model 

proposed by Schindler and Folliard (2005), in which the hydration degree depends on 

temperature according to the Arrhenius’ rate theory. Schindler and Folliard’s model 

captures the change in the chemical composition of the cement and it is adjusted here 

to allow for the presence of the superplasticizers. 
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One of the main contributions of this chapter is the stoichiometric algorithm based on 

the colloid model proposed by Jennings (2008), that is incorporated in order to estimate 

the porosity function as well as the ultimate degree of hydration. This formulation 

accounts for the three main stages of the hydration reaction mentioned by Fujii and 

Kondo (1974) and Bernard et al. (2003) and evaluates the water forms existing within 

the voids of the cement paste considering the interaction between the clinker phases 

and the intermediate hydrates. The proposed expression for the porosity comprises two 

components. The first accounts for the plastic behaviour of the cement paste during the 

time interval limited by the percolation hydration degree and thereupon leads to a 

constant and close to 1 value of the water saturation degree. The second component 

complies with the traditional models for porosity evaluation and employs predominantly 

the data of the stoichiometric algorithm. 

The proposed THC model accounts for the reactive transport occurring during the 

autogenous healing of the cementitious materials. An individual mass balance equation 

considering the transport of solute and the crystallisation of hydrates was added to the 

algebraic system. The transfer of a generic solute that comprises a number of 

electrically charged particles takes place by advection, diffusion and dispersion. The 

sink/source term, which represents the chemical reactions, is based on a Freundlich 

type isotherm that establishes a thermodynamic balance between the reactants and 

the precipitates. In the present analysis, the self-healing phenomenon affects the 

porosity function due to the production of the filling material. Implicitly flow parameters 

such as hydraulic conductivity, diffusion and dispersion coefficients as well as the heat 

storage capacity change because of the crack recovery. 
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Chapter 4. Numerical Formulation 
 

 

4.1 Introduction 

 
Having defined in the previous chapter the differential equations describing the 

transport mechanisms in cement-based materials and the laws governing the physical 

and chemical processes occurring during autogenous healing, the author will now 

move on to discuss the numerical procedure that gives the solution of the derived 

system of equations. The numerical methods employed for simulating the transport of 

heat, moisture and solute in porous media was dealt with in several investigations 

including Lewis and Schrefler (1998), Gawin et al. (2006b) and Koniorczyk (2012). The 

literature provides two main computational techniques which can be classified as 

uncoupled and coupled solutions. The first, cited by Lewis and Schrefler (1998) in the 

case of surface subsidence analysis, reduces the model complexity by solving 

separately the governing equations. In contrast, the coupled procedures are suited for 

modelling a situation in which none of the fields can be solved separately and none of 

the variables can be eliminated (Zienkiewicz and Chan, 1989). Because of the strong 

interaction between humidity, temperature and crack recovery, the latter approach is 

selected in the current investigation and is detailed in this chapter. 

A spatial discretisation, by means of the finite element method (FEM), is used to solve 

the non-linear system, while time discretisation, achieved using the finite difference 

technique, estimates the time derivatives. Section 4.2 sets the boundary value problem 

pertinent to the autogenous healing of cement and introduces the basic concepts 

behind the FEM. Section 4.3 deals with the numerical technique that provides the 

temporal discretisation. In this part of the chapter, a Newton-Raphson incremental 

iterative scheme for solving the nonlinear system of equations is described. Finally, 

section 4.4 highlights some important information related to the selected numerical 

formulations. 

 

4.2 Spatial Discretisation 

 
Before detailing the topic of this part of the thesis, a few remarks need to be made. The 

current investigation is aimed solely at the simulation of coupled thermo-hygro-

chemical processes of the self-healing of the cracks. The mechanical component is not 
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taken into account and therefore the divergence of the velocity of the solid skeleton, 

 svdiv  in the equations (3.40), (3.41) and (3.74) is neglected. Additionally, the author 

adopts in this study the assumption cited in Chapter 3 which states that the gas 

pressure equals the atmospheric pressure. This leads to the removal of the term 

 gsvvdiv   from equation (3.40). 

 

4.2.1 Formulation of the Boundary Value Problem 

 

The governing balance equations describing the thermo-hygral behaviour of the 

cementitious materials, which have been previously presented in Chapter 3, are 

summarized below using the shorthand notations listed in the Nomenclature section. 

 0_/  des
w

aggda
w

hyd
wv

A
ww mmmmJ   (4.1) 

 0 v
D
vv mJ   (4.2) 

 0  mJJ DDA   (4.3) 

 0 hvv
CD
Tp QHmJTC   (4.4) 

Adding equations (4.1) (4.1) and (4.2), the vapour mass term ( vm ) is eliminated and a 

simpler formulation for moisture balance is obtained:  

 0_/  des
w

aggda
w

hyd
w

D
v

A
wvw mmmJJ    (4.5) 

 
However, from the relationship (4.1) it can be immediately verified that: 

  des
w

aggda
w

hyd
w

A
wwv mmmJm   _/  (4.6) 

 
which is substituted into the entropy conservation law (4.4) to give: 

   0_/  hv
des
w

aggda
w

hyd
w

A
ww

CD
Tp QHmmmJJTC    (4.7) 

 
Hence, the system to be solved (that has three principal variables wS , T  and   and 

an internal variable Γ ) becomes: 

 0_/  des
w

aggda
w

hyd
w

D
v

A
wvw mmmJJ    (4.8) 

   0_/  hv
des
w

aggda
w

hyd
w

A
ww

CD
Tp QHmmmJJTC    (4.9) 

 0  mJJ DDA   (4.10) 

The initial conditions which are imposed set the values of the unknowns at time 0t  in all 

points of the domain: 

 000   TTSS ww q
ΓΩon   (4.11) 

The boundary conditions, on the other hand, are of Cauchy’s type: 
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     0
envvvwvwv

D
v

A
w qJJ n 1qΓon  (4.12)

     0 envTTv
A
w

CD
T TTqHJJ n 2qΓon  (4.13)

     0 env
DDA qJJ  n 3qΓon  (4.14)

 
where n  is the unit normal vector to the boundary flux, the two sets ( wvq , Tq , q ) and  

( wv , T ,  ) are the imposed fluxes and transfer coefficients of the moisture, heat 

and precipitated material, respectively, 
envv , envT  and env  are the water vapour 

density, temperature and concentration of precipitated material in the undisturbed 

environmental phases and 1qΓ , 2qΓ  and 3qΓ  form the boundary of the domain  

 321 qqqq ΓΓΓΓ  .  

 

4.2.2 Finite Element Discretisation 

 

Due to the nature of the constitutive relations listed in Chapter 3, the boundary value 

problem defined above is always nonlinear. Therefore, its solution is commonly 

deduced by means of a numerical procedure that takes the form of the finite element 

method (Lewis and Schrefler, 1998; Gawin et al., 2006; Koniorczyk, 2012). A concise 

description of essential FEM theory is provided to explain the numerical algorithms 

implemented in the computer code, but further background may be found in 

(Zienkiewicz et al., 2013). In broad terms the finite element process consists in 

minimising the residual obtained after substituting some approximate functions (see 

equation (4.15)) into the partial differential equation and into the boundary conditions. 

 XNX T
nn

i
ii XN  

1

 (4.15)

 
where nn  represents the number of nodes corresponding to the particular finite 

elements into which the domain is divided, i  is the point at which both the shape 

function N  and the principal variables X  are evaluated, whilst “T ” denotes the 

transpose of the vector. The finite element method splits the domain into multiple 

subcomponents ( eΩ  and 
eq

Γ ) and uses for each material phase the weighted residual 

method which multiplies the integral statements applied over Ω  and over qΓ  with 

some arbitrary functions W . In the end, the discrete components are assembled 

according to the relationship: 
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          
 















ne

e
eΩ

q

eq
Γ

BeD

Ω Γ

BD ΓdWfΩdWfdWfΩdWf
1

e
Γ XXXX  (4.16) 

 
The above  XDf  and  XBf  functions represent, at this stage, unspecified 

governing equations and boundary conditions, while ne  is the parameter that specifies 

the number of finite elements. Having in mind the configuration of the current boundary 

value problem, the weight functions satisfy the following: 

 



 ,

,

W

W

eq

e

Γfor
Ωfor

 (4.17) 

 

4.2.2.1 Development of the Integral Statement 

 

In the case of the autogenous healing of cement based materials, the above mentioned 

spatial discretisation, applied to a single finite element, leads to the following integral 

statements: 

  
eΩ

e
des
w

aggda
w

hyd
w

D
v

A
wvw ΩdmmmJJW  _/

     01

1

  eq

Γ
envvvwvwv

D
v

A
w dqJJW

eq

Γn  
(4.18) 

    e

Ω

hv
des
w

aggda
w

hyd
w

A
ww

CD
Tp ΩdQHmmmJJTCW

e

 _/

     02

2

  eq

Γ

envTTv
A
w

CD
T ΓdTTqHJJW

eq

n  
(4.19) 

   e

Ω

DDA ΩdmJJW
e

 

     0
3

3  
eq

eqenv
DDA dqJJW

Γ

Γ n  
(4.20) 

 
If the properties of the divergence operator are considered, these relationships can be 

rearranged as follows: 

     
e eΩ Ω

e
D
v

A
we

des
w

aggda
w

hyd
wvw ΩdJJWΩdmmmW  _/

      0
11

11  
eqeq

eqvenvvwvwveq
D
v

A
w dqWdJJW

ΓΓ

ΓΓ n  
(4.21)
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    e

Ω

hv
des
w

aggda
w

hyd
wwp ΩdQHmmmTCW

e

 _/

    e

Ω

v
A
w

CD
T ΩdHJJW

e

      022

22

  eq

Γ

envTTeq

Γ

v
A
w

CD
T ΓdTTqWΓdHJJW

eqeq

n  

(4.22)

      e

Ω

DDA
e

Ω

ΩdJJWΩdmW
ee

 

      033

33

  eqenveq
DDA dqWdJJW

eqeq

ΓΓ
ΓΓ

 n  
(4.23)

 
It is convenient at this point to obtain the weak form of these equations by performing 

an integration by parts of the  
eΩ

e
j
i ΩdJW  terms, based on the Gauss-Green 

Divergence Theorem (Zienkiewicz et al., 2013). The second-order derivatives, included 

in the j
iJ  gradients, transform into first-order derivatives allowing the cancellation of 

the boundary defined integrals containing the flux terms: 

  
eΩ

e
des
w

aggda
w

hyd
wvw dΩmmmW  _/

      0
11

11  
eqeq

eqvenvvwvwveq
D
v

A
w dqWdJJW

ΓΓ

ΓΓ n  

(4.24)

   
eΩ

ehv
des
w

aggda
w

hyd
wwp dΩQHmmmTCW  _/

       e

Ω

v
A
w

CD
Teq

Γ

v
A
w

CD
T ΩdHJJWΓdHJJW

eeq

2

2

n

      022

22

  eq

Γ

envTTeq

Γ

v
A
w

CD
T ΓdTTqWΓdHJJW

eqeq

n  

(4.25)

   e

Ω

ΩdmW
e

                              

       e

Ω

DDA

eq
DDA ΩdJJWdJJW

eeq

 3

3

Γ
Γ

n

      033

33

  eqenveq
DDA dqWdJJW

eqeq

ΓΓ
ΓΓ

 n  

(4.26)

 

The simplified system of integrals becomes: 

       e

Ω

D
w

A
weq

D
w

A
w ΩdJJWdJJW

eeq

1

1

Γ
Γ

n
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     
    



wv

eΩ

e
D
w

A
w

wv

eΩ

e
des
w

aggda
w

hyd
wvw

II

dΩJJW

I

dΩmmmW _/

   0
1

1  
eq

eqenvvvwvwv dqW
Γ

Γ  

(4.27)

   
  



T

eΩ

ehv
des
w

aggda
w

hyd
wwp

I

dΩQHmmmTCW _/

 
  

T

eΩ

ev
A
w

CD
T

II

dΩHJJW     02

2

  eq

Γ

envTT ΓdTTqW
eq

  
(4.28)

       03

3

  eqenve

Ω

DDA
e

Ω

dqW

II

ΩdJJW

I

ΩdmW
eqee

Γ
Γ

 



    



(4.29)

 
In order to express equations (4.27) to (4.29) in matrix form, the phase-averaged 

densities in the I  type integrals are decomposed into separate components that 

highlight the principal variables and their derivatives. As was discussed in Chapter 3, 

the phase-averaged densities are functions of wS , T , Γ  and   and thus, the 

expression of the representative   term is: 





 
 
















 Γ
Γ

T
T

S
S w
w

 (4.30) 

 
At the same time the derivative of m  previously defined in equation (3.78) gives: 




 
 


 w

P
PwPw

P
wP

wP
wPww

P
P SST

T
SSm

1










Γ
Γ

 (4.31)

 
The adopted spatial discretisation facilitates an expression for the time derivative of the 

unknowns similar to (4.15): 

 XNX  T
nn

i
ii XN  

1

 (4.32) 

Thus, recalling the equations (3.46) and (3.47), the terms iI  ( i  = wv , T  and  ) from 

(4.27) to (4.29) yield: 
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(4.33)
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In the theoretical considerations presented at the beginning of section 3.3.3, the gas 

pressure was assumed to be equal to the atmospheric pressure. This means that it is 

constant in space and hence the conductivity flux yields: 

  gwcww
A
w pkJ    (4.36)

But having in mind the link between cp  and wS , the spatial differential of the capillary 

pressure in terms of the variables considered equals: 

    Γ
Γ

Γ 

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

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

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c
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p
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T

p
S

S

p
TSpp ,,  (4.37)

 
In this expression, the spatial derivative of the hydration degree is replaced by equation 

(4.38) which is consistent with the hydration model proposed by Schindler and Folliard 

(2005). 

   T
T






Γ

TΓΓ  (4.38)

Regarding the diffusive flux of the water vapours, the spatial invariability of the gas 

pressure implies that: 

 v
w
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D
v p
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M
DDJ    (4.39)

in which: 
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
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 ,  (4.40)
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For the precipitated material, the diffusive-dispersive flux is employed in its condensed 

shape: 

 
  ij

mddw
DD DJ  

ij
mdiff

ij
mdisp

ij
mdd DDD   

(4.41) 

 
while the advective flux develops into: 
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Finally, the conductive heat flux found in the entropy balance equation is given by: 
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As a result, the terms iII  (  = ,  and ) can be rewritten in the following form, if 

the approximation (4.15) is taken into consideration: 
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Using iI  and iII  in equations (4.27) to (4.29) and extracting common factors when 

possible, the weak form of the integral statements becomes: 
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This set of equations may be summarised in a concise matrix notation as: 
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4.2.2.2 Weighting by the Galerkin Method 

 

The Galerkin method is applied in order to choose the W  function (Galerkin, 1915). 

Consequently, the shape function N  weights the integral of all the residuals. This 

option is preferred because, due to the multiplication between the shape function and 

its transpose, it generally results in symmetric matrices. Thus, from the last three 

equations mentioned in the previous subsection, the condensed elemental system of 

equations to be solved is: 
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(4.53)

 
The components of eF  are a combination of body (the integrals over eΩ ) and 

boundary (the integrals over 
eq

Γ ) “forces”: 
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whilst the shape function vector is a differentiable function prescribed only in terms of 

coordinates. In the case of a 2D 4 noded finite element, N  is expressed as follows: 
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where ̂  and ̂ , defined over [-1,1], are the local parametric coordinates 

isoparametrically “mapped” to the Cartesian coordinates by interpolation. Equation 

(4.53) can be condensed even more and extrapolated to the entire domain if an 

assembly procedure similar to the one showed in (4.16) is adopted. Its ultimate format, 

presented in (4.58), introduces: 
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 FΦKΦC ˆˆˆ   (4.58)

 
Before ending this section it should also be stated that for the numerical integration of 

the above matrices, the Gauss-Legendre rules are employed. In a 2D domain, these 

rules, defined between the local parametric coordinates 1ˆ1    and 1ˆ1   , 

operate with respect to four sampling points with the coordinates 
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 11111111
3,3,3,3,3,3,3,3  and the 

corresponding weights 1, 1, 1, 1. In this procedure, illustrated in equation (4.59), the 

surface integral of an arbitrary function f  equals to the sum of the products between 

the values of the given integrand in the Gauss points and their weights (Zienkiewicz et 

al., 2013). 
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4.3 Time Discretisation 

 

The time derivative of the main variables is obtained from a generalised midpoint rule 

(Lewis and Schrefler, 1998): 

  1

1
-nnn t

ΦΦΦ 



  (4.60)

 n1-nn ΦΦΦ  )1(  (4.61)

 
in which nΦ  and 1-nΦ  are the principal variables at the time steps nt  and 1-nt   

( ttt 1-nn  ; t  is a time increment), whilst   represents a parameter ranging 

between 0 and 1. In the current investigation an implicit finite difference approximation 
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is chosen and thus   equals to unity. (4.61) is also applied to the forcing vector F̂  

and so by replacing (4.60) into (4.58) it leads to: 

   nn-nnt
FΦKΦΦC ˆˆ1ˆ

1 


 (4.62) 

where Ĉ  and K̂  need to be evaluated for the current step n . Theoretically, the 

solution could be determined based on direct iteration: 
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However, due to the level of nonlinearity, it is impossible to embrace such an approach 

and instead a Newton-Raphson method is used. In this numerical scheme the above 

true root, nΦ , is successively approximated by several values until the below residual 

Ψ  is minimised. 

      FΦKΦΦCΦΨ ˆˆˆ
1  t-n  (4.64) 

 

in which Ĉ , K̂  and F̂  are evaluated at the approximated Φ . Consequently, within the 

current step n , a loop that computes the new nΦ  and that breaks when the L2 norm of 

the residual reaches a certain specified tolerance is introduced. Mathematically, the 

reduction of the time approximation error is achieved by equating to 0 the truncated 

form of the Taylor’s series expansion for the Ψ  at the new value 1k
n
Φ , about the 

known: 
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The quantity required to revise the vector of variables within a loop step is: 
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and the revised nΦ  equals to: 
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In the above formula 
ts

DΦ is the difference between the current and the previous value 

of the unknown 
ts

Φ , while 
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


























































nnr

tnn

2r

tnn

1r

tnn

nnr

t

2r

t

1r

t

nnr

t

2r

t

1r

t

t

Φ

X

Φ

X

Φ

X

Φ

X

Φ

X

Φ

X

Φ

X

Φ

X

Φ

X

,,,

,2,2,2

,1,1,1









rΦ

X       1,3r

   
1

ji,nn11v12111ji,

v1

ji,

Φ

XΦΦΦΦΦX

Φ

X







 32132 ΦΦΦΦΦ ,,,,,,,,, 

   
2

ji,nn22v22212ji,

v2

ji,

Φ

XΦΦΦΦΦ,X

Φ

X







 32131 ΦΦΦΦΦ ,,,,,,,, 

   
3

ji,nn33v32313ji,

v3

ji,

Φ

XΦΦΦΦΦ,X

Φ

X







 32121 ΦΦΦΦΦ ,,,,,,,, 

 

(4.69)

 
where X  stands for either psĈ  or psK̂ . 

In this way, by replacing (4.68) into (4.66), one finally obtains equation (4.70) in which 
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(4.70)

 
Returning now to the equation (4.64), and having in mind the structure of its 

components, the partitioned expression of the time residual has the form: 
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(4.71) 

Figure 4.1 shows the pseudocode incorporated in the proposed THC model to solve 

the boundary value problem. 

 

Figure 4.1 The pseudocode used to solve the boundary value problem 
 

4.4 Summary 

 

The numerical formulation used to find the temporal and spatial evolution of moisture, 

heat and concentration of the precipitates has been presented in this chapter. The 
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solution is obtained after solving a coupled system of equations by means of a finite 

element and a finite difference approximation. During the spatial discretisation, the 

continuum is split into non-overlaping subdomains over which the integrals 

corresponding to the Galerkin type weighted residual method are applied. The outcome 

represents a set of elemental matrix equations that are assembled to give a single set 

of non-linear ordinary first order differential equations with respect to time. Its variable 

is a single vector of unknowns that condenses the three principal variables 

characterising the moisture, temperature and chemical precipitation fields. The 

temporal discretisation is performed via an implicit forward finite difference 

approximation and the Newton-Raphson method. During a given time step, the initial 

value assigned to the vector of unknowns is updated iteratively until a convergence 

criterion is satisfied by an increment ensued from the truncated Taylor series 

expansion of the approximation error. 
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Chapter 5. Application and validation of the 

Microstructural Model and porosity 

function 
 

 

5.1 Introduction 

 

The proposed microstructural model STOICH_HC2 traces the hydration kinetics of the 

Portland cement and replicates the quantitative evolution and chemical reactions of the 

mix constituents together with the transformation of the porous network. This is a 

stand-alone model able to provide a realistic development of the porosity function that 

is consistent with the sink term hyd
wm . Therefore, the results from STOICH_HC2 are 

used as an input in all the subsequent numerical simulations presented in this thesis 

which predict the thermo-hygral behaviour of the cement-based materials subjected to 

various curing conditions. 

The algorithm derived for replicating the development of the internal configuration of 

the cement paste provides information about the consumption and formation of the 

reactants and reaction products, the modification of the capillary and gel pore networks 

and also about the intensity of chemical shrinkage. The microstructural model 

incorporates a component defining the kinetics of the hydrolysis of the main clinker 

minerals that is further employed to solve the stoichiometry of the Portland cement 

hydration for four different saturation states. The resulting mass of consumed H2O is 

used to quantify the ultimate degree of hydration and the water forms present in the gel 

hydrates. These liquid phases enable the computation of the capillary and total porosity 

functions that are needed in the TH and the THC formulation. 

Section 5.2 deals with the validation of the STOICH_HC2 model. First, the adopted 

hydration curve and stoichiometry are briefly specified. Then, data from two available 

plots found in the literature (Tennis and Jennings, 2000; Bernard et al., 2003) are 

considered for numerical comparison. These represent the numerically deduced 

variation of the relative volumes of the reacted cement phases with the hydration 

degree. In the first example the influence of the hydration curve is analysed by 

presenting an additional temporal distribution of hydrates obtained when using the 
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simplified hydration curve HC1, which takes into account only the nucleation and 

growth stage. 

The validation of the adopted porosity function is described in Section 5.3. Some 

clarifying theoretical aspects needed to quantify the gel water forms and also the 

capillary and total porosities are introduced. Then, two porosity functions taken from 

the literature are presented. A set of predicted volume fractions, related to the gel water 

forms, are compared with existing experimental measurements. Also, stoichiometry-

based porosity function is validated using data from the literature. Furthermore, this 

section presents a study on the influence of aggregates on the porosity development.  

Finally, Section 5.4 provides the conclusions from the above work. 

 

5.2 Application and Validation of the Microstructural Model 

 

5.2.1 Introduction to examples 

 

In the current microstructural model the evolution in time of the relative volumes of the 

reactants and reaction products is obtained by computing for each clinker phase the 

mass of mineral reacting during a given time step t . This mass is estimated by means 

of the hydration curve (3.5), taken from (Bernard et al., 2003) that considers the 

induction period, the nucleation and growth controlled hydration and the diffusive 

hydrolysis: 
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This curve will be referred from now on as HC2 and its kinetic hydration parameters, 

defined in Chapter 3, are given in Appendix A, Table A. 3. 

The quantity of the produced hydrates is calculated using the stoichiometric reactions 

from the Appendix A, Table A. 1 that account for the formation of C-S-H, CH, 

sulphoaluminates, sulphoaluminoferrites, 134AHC , 3A)H(F, , 123 CH)H,SA(CC  and 

hydrogarnet. These stoichiometric equations in conjunction with the HC2 curve form 
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the STOICH_HC2 model which is validated in the following paragraphs. The numerical 

results in terms of relative volumes of reactants and hydrates are compared with the 

volume fractions estimated by Tennis and Jennings (2000) and Bernard et al. (2003). 

 

5.2.2 Example 1: (Tennis and Jennings, 2000) 

 

Tennis and Jennings (2000) have created a computational code for simulating the 

structure of the C-S-H gel using a set of chemical reactions that does not reflect the 

production of sulphoaluminoferrites, 3A)H(F,  and 123 CH)H,SA(CC  which were 

reported in other research works (Jennings and Thomas, 2009; Mindess et al., 2003). 

They considered that the hydration curve (5.1), denoted from now on by HC1, is valid 

throughout the entire hydration process of each cement mineral: 
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where t  is the hydration time (in hours), Xk  is the rate constant, I
Xt  is the initiation of 

the hydration in terms of time and XK  represents the reaction order. These parameters 

are listed in Appendix A, Table A. 3.  

It must be noted that HC1 disregards the induction period and the diffusion controlled 

hydration and, as Tennis and Jennings acknowledge, is “best suited to describing the 

nucleation and growth reactions” (Tennis and Jennings, 2000). In order to highlight the 

influence of the hydration curve on the proposed microstructural model, HC1 will be 

employed in the current example in conjunction with the stoichiometric reactions from 

Table A. 1 to form the STOICH_HC1 model. However, this version of the 

microstructural model will not be used to simulate the autogenous healing of 

cementitious materials and represents only a tool for validating STOICH_HC2. 

Figure 5.1 and Table 5.1 illustrate the differences between the evolution of the 

reactions (individual or as a whole) when using HC1 and HC2. All the degrees of 

hydration given by HC1 are higher after the 10th day and therefore the hydrolysis is 

more rapid: in less than 60 days, between 91 and 100% of the reaction has occurred in 

the case of C3A, C3S and C4AF. In contrast, when utilizing HC2, only 75% to 87% of 

the same three clinker phases have chemically combined with H2O by the end of the 

60th day. Furthermore, the slope of the HC1 curves becomes more gentle after 
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approximately the 40th day, which means that for this type of hydrolysis, the amount of 

consumed/precipitated substance during a reference time interval t  is smaller. 

 

Figure 5.1 Hydration curves of the individual clinker minerals and of the overall 
cement paste according to HC1 and HC2; water/cement ratio = 0.5 

 

Table 5.1 Early-age behaviour of HC1 and HC2 functions
 

HC1 HC2 
Time 

interval 
[days] 

XΓ  
Time 

interval 
[days] 

XΓ  

0...0.2 > > > SCΓ 2
 0...0.9 only C2S reacts 

0.2...8 > > >  0.9...1.1 > > >  

8...15 > > >  1.1...1.6 > > >  

15...21 > > >  1.6...2.3 > > >  

>21 > > >  2.3...3.2 > > >  

 

3.2...3.9 > > >  

3.9...4.9 > > >  

>4.9 ACΓ 3
> > >  

 
Table 5.1 suggests that in the first part of the hydration reaction, STOICH_HC1 and 

STOICH_HC2 models will produce distinct evolutions of the volume fractions of the 

hydrates since according to the HC1 curves, the most consumed minerals are C4AF 

and C3A, whilst according to the HC2 curves, C2S and C3A are the most reactive 

compounds. Nevertheless, after the point exceeding XΓ  = 0.52 (for HC1) and 0.38 (for 
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HC2) until the end of the hydrolysis, the magnitude of the individual hydration degrees 

follow the same trend for both types of curves: ACΓ 3
 > SCΓ 3

 > AFCΓ 4
 > SCΓ 2

. 

 

5.2.2.1 Model Data 

 
This example investigates the hydration of the average Type I Portland cement 

considered in (Tennis and Jennings, 2000). The reported mix, denoted here by PC1, 

has the mass characteristics and chemical composition given in Table 5.2 and Table 

5.3. 

Table 5.2 Mix characteristics of the investigated cement pastes and concretes
 

 PC1 PC2 CO BO M L H 

c

w
  0.500 0.500 0.348 0.487 0.400 0.280 0.680

c  [kg/m3] 507 620 1501 353 423 310 541 

faggw [kg/m3] 1519 1241 - 744 736 782 647 

caggw [kg/m3] - - - 1192 1016 955 1055 

c

wSP  % - - - - 0.5 - 2.0 

c [kg/m3] 3168 3168 3168 3168 3150 3150 3150 

fagg [kg/m3] 2560 2650 - 2650 2650 2650 2650 

cagg [kg/m3] - - - 2770 2770 2770 2770 

SP [kg/m3] - - - - 2300 - 2300 

dry  [kg/m3] - - 1498 2290 2176 2046 2252 

eaV [m3/m3] 0.003 0.025 0.005 0.005 0.051 0.051 0.048

 

The resulting masses of reactants and reaction products are transformed into volume 

fractions considering the densities specified in Appendix A, Table A. 4. 
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Table 5.3 Chemical composition of the investigated Portland cements 
 

 PC1 PC2 CO / BO M / L / H 

ACf 3
 [%] 10.00 7.60 3.03 10.00 

SCf 3
 [%] 55.00 54.30 57.28 57.00 

SCf 2
 [%] 18.00 18.70 23.98 14.00 

AFCf 4
 [%] 8.00 7.30 7.59 8.00 

3SOf  [%] – – 2.04 3.50 

GGBFf  [%] – – 0 – 

FAf  [%] – – 0 – 

CaOFAf   [%] – – 0 – 

MgOf  [%] – – 0.80 1.30 

freeCaOf  [%] – – 0.53 0.53 

cemf  [%] – – 100 99.50 / 0 / 98.00 

gypsumf  [%] 4.00 5.70 4.39 7.52 

inertf  [%] 5.00 4.80 3.73 3.48 
B  Blaine fineness [m2/kg] – – 311.6 358.0 

 

 

5.2.2.2 Results and Discussions 

 
Figure 5.2 illustrates the development of the relative volumes of the phases of the 

paste PC1 versus the overall hydration degree when STOICH_HC2 is employed. The 

capillary water existing in the porous medium is represented by the H2O volume 

fraction, whilst the liquid phases encountered in the gel precipitates are implicitly 

included in the volume fractions of the hydrates. The plot shows that both the 

unreacted and the combined water vary linearly with the hydration degree. C3S, C3A, 

C4AF and gypsum are depleted by the time PCΓ  reaches unity. All the three hydration 

stages of C3A and C4AF are reached. Stage 2 initiates at PCΓ  = 0.1 due to the 

exhaustion of the calcium sulphate. Stage 3, on the other hand, triggered by the 

depletion of the trisulphoaluminate and trisulphoaluminoferrite respectively, begins at 

PCΓ  = 0.32 for C3A and at PCΓ  = 0.60 for C4AF. It should be specified as well that only 

the second branch from Stage 3 is active during the last 26% of the overall hydration of 

the C3A. The distribution given by the STOICH_HC2 model overlaps in Figure 5.3 (a) 

with the numerical outcome computed by Tennis and Jennings (2000). In 

STOICH_HC2 all the four minerals combine with H2O as soon as they are mixed. 
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Figure 5.2 Evolution of the relative volumes of the phases of the PC1 paste when 

using STOICH_HC2  

 
This fact generates an evolution of the volume fractions less compliant with Tennis and 

Jennings’ findings during Stage 1 and Stage 2, since the values presented by these 

researchers were computed using a HC1 curve. However, after PCΓ  = 0.50 the results 

provided by the STOICH_HC2 model begin to substantially approach the values cited 

in (Tennis and Jennings, 2000), especially in terms of water in the capillary pores. On 

the other hand, the distribution obtained when employing STOICH_HC1 (Figure 5.3 

(b)) follows more closely the findings published by Tennis and Jennings (2000) during 

Stages 1 and 2, but generates an overestimation of the capillary porosity and an 

underestimation of the gel products towards the complete hydration. This behaviour is 

due to the different stoichiometry used in (Tennis and Jennings, 2000). 

Table 5.5 summaries part of the results calculated at PCΓ  = 1 and shows that there is 

a better match between STOICH_HC2 and Tennis and Jennings’ results in terms of 

capillary porosity, volume fraction of C-S-H and volume fraction of total gel hydrates. 
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(a) 

 

For 
legend 
see 
Table 
5.4 

(b) 

 

For 
legend 
see 
Table 
5.4 

 
Figure 5.3 Superposition of the hydration representation using data from (Tennis and 

Jennings, 2000) (black lines) and from the models (a) STOICH_HC2 (red 
lines) and (b) STOICH_HC1 (blue lines) 
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Table 5.4 Description of the legend of Figure 5.3 
  

(Tennis and Jennings, 2000) STOICH_HC2 and STOICH_HC1 models 
Area between 

lines 
Hydration product 

Area between 
lines 

Hydration product 

15-0 inert material 15’-0’ inert material 

0-1 C3S 0’-1’ C3S 
1-2 C2S 1’-2’ C2S 
2-3 C3A 2’-3’ C3A 
3-4 C4AF 3’-4’ C4AF 

4-5 2HSC  4’-5’ 2HSC   

4-6 CH 4’-6’ CH 

6-7 trisulphoaluminate 
6’-6’’ trisulphoaluminate 
6’’-7’ trisulphoaluminoferrite 

7-8 monosulphoaluminate
7’-7’’ monosulphoaluminate 
7’’-8’ monosulphoaluminoferrite 

8-9 134AHC  8’-9’ 134AHC  

9-10 hydrogarnet 

9’-9’’ hydrogarnet 

9’’-9’’’ 3A)H(F,  

9’’’-10’ 123 CH)H,SA(CC  

10-12 high density C-S-H 10’-10’’ C-S-H from hydration of C3S
12-13 low density C-S-H 

10’’-11’ C-S-H from hydration of C2S13-11 C-S-H porosity 

11-14 capillary porosity 
11’-11’’ H2O in capillary pores 
11’’-14’ voids 

 
 

Table 5.5 Comparison of ultimate volume fractions for the hydration of PC1
 

Volume fractions at 

PCΓ  = 1 STOICH_HC2 STOICH_HC1 (Tennis and Jennings, 2000)

capillary pores 0.18 0.25 0.16 
C-S-H 0.47 0.43 0.50 

total gel hydrates 
(C-S-H + aluminates+ 

aluminoferrites) 
0.68 0.65 0.70 

 

These three relative volumes are in fact sufficient to decide upon the efficiency of the 

proposed microstructural model because, for the evaluation of the capillary and gel 

porosities, solely the ultimate masses of the water forms are required. Thus it is 

reasonable to conclude that the STOICH_HC2 model provides a good quantitative 

approximation of the pore network.  
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5.2.3 Example 2: (Bernard et al., 2003) 

 

5.2.3.1 Model Data 

 
The second example is taken from the work of Bernard et al. (2003), which examines 

the hydrolysis of the Type I ordinary Portland cement PC2 described in Table 5.2 and 

Table 5.3. The hydration kinetics obey the principles of the STOICH_HC2 model and 

are evaluated by means of the parameters provided in Appendix A, Table A. 3. 

 

5.2.3.2 Results and Discussions 

 
Under the above conditions, the evolution of the relative volumes in Figure 5.4 shows, 

on one hand, that PCΓ  = 0.17 and PCΓ  = 0.43 delineate the three stages of the 

hydration of C3A and, on the other, that the reaction pattern of C4AF stops in Stage 2 

because the previously precipitated amount of 3236 HS(A,F)C  is sufficient to consume 

all the remaining C4AF.  

  
Figure 5.4 Evolution of the relative volumes of the phases of the PC2 paste from 

STOICH_HC2 highlighting all the phases  
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(b)

 

For legend 
see Table 5.6

 
Figure 5.5 Evolution of the relative volumes of the phases of the PC2 paste from 

STOICH_HC2 (blue lines) and from (Bernard et al., 2003) (black lines) 
 

Table 5.6 Representation of hydration product development from Figure 5.5
 

(Bernard et al., 2003) STOICH_HC2 

Area 
between 

lines 
Hydration product 

Area 
between 

lines 
Hydration product 

0-1 C3S 0’-1’ C3S 

1-2 C2S 1’-2’ C2S 

2-3 C3A 2’-3’ C3A 

3-4 C4AF 3’-4’ C4AF 

4-4’’’ low density C-S-H 4’-4’’ C-S-H from hydration of C3S 

4’’’-5 high density C-S-H 4’’-5’ C-S-H from hydration of C2S 

5-6 CH 5’-6’ CH 

6-7 aluminates 6’-7’ 

gypsum + tri- and monosulphoaluminate +
+ tri- and monosulphoaluminoferrites + 
+ hydrogarnet + 134AHC + 3A)H(F,  +  

+ 123 CH)H,SA(CC + 

7-8 H2O 7’-8’ H2O in capillary pores 

8-9 voids 8’-9’ voids 

 
If compared with Bernard et al.’s results (Figure 5.5), one can observe a slightly larger 

discrepancy in the variations of C3S and aluminates, but a smaller difference for the 

formation of C-S-H and CH. These deviations are most likely related to the 

stoichiometric reactions, unspecified in Bernard et al. (2003). Despite this situation, the 
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fact that the current ultimate volume fraction of capillary pores ( ult
capf  = 0.19) matches 

reasonably the reported value ( ult
capf  = 0.14) justifies the conclusion that the overall 

capillary and gel water are well estimated by the STOICH_HC2 model.  

 

5.3 Application and Validation of porosity functions 

 

5.3.1 Introduction to examples 

 

5.3.1.1 Adopted porosity function 

 
The proposed microstructural model enables the computation of the porosity function 

which is an essential parameter in the governing equilibrium equations, used in the 

THC model. As was pointed out previously, the numerical simulation of the hydration 

reaction suggests a linear dependency of both capillary and gel porosities on PCΓ . In 

the following section equations (3.11) and (3.14) are put together into equation (5.2) in 

order to define the variation of the pore network through the entire hydrolysis of the 

Portland cement.  
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(5.2) 

 
This equation will be used in the current thesis to validate both the TH and THC 

models. The terms ult
iw  that represents the amount of water forms populating the gel 

structure of the hydrates at the end of hydration are evaluated, as was discussed in 

Chapter 3, using the colloid model presented in (Jennings, 2008). Jennings has 

correlated the liquid phases with the number of water moles remaining within the C-S-H 

during drying experiments and summarised his findings regarding the water distribution 

along a desiccation process in an isotherm similar to the one presented in Figure 5.6. 

Four main relative humidity intervals and their associated mole numbers, listed in 

Appendix A, Table A. 2, dictate the type of H2O found within the hydrate. It should be 

remarked that although the desorption curve indicates 2.3 moles of H2O at 11% RH, a 



Chapter 5 Application and validation of the Microstructural 
Model and porosity function 

 

91 
 

threshold equal to 2.1 is considered in the calculations since it is used by Jennings and 

Thomas (2009). 

 
Figure 5.6 Distribution of the water forms within the C-S-H gel based on the data 

collected from (Jennings, 2008) 
 
Regarding the  ΓVs  term, it should be said that the variations given in equations (5.3) 

and (5.4) where chosen for the investigated cement paste and concrete mixes, 

respectively. These relationships were obtained by fitting the laboratory measurements 

of the autogenous shrinkage performed in (Baroghel-Bouny, 1994). 
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5.3.1.2 Alternative porosity functions 

 
In their textbook dedicated to the concrete technology Neville and Brooks (2003), 

derive the following capillary and total porosity functions based on the experimental 

data taken from Powers and Brownyard (1948) and presented here in Table 5.7: 
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where the superscript BN&  shows that the formula was proposed by Neville and 

Brooks (2003), the subscript j  represents the type of porosity (capillary or total), whilst 

the constants j
BNC &_  are equal to 0.36 for the capillary porosity and to 0.17 for the 

total porosity. 

Table 5.7 Results of the STOICH_HC2 model in terms of gel water forms 
 

 
 PC1 PC2 CO BO 

(Neville and 
Brooks, 2003)  

(1) 
c

wultCBW  0.165 0.169 0.173 0.173

0.230 

(2) 
c

ww ult
IGWILWAW

ult
CBW 

 0.245 0.239 0.243 0.243

(3) ult
IGWILWAW

ult
SGP

ult
LGP

ult
CBWSSRC

ult
IGWILWAW

ult
SGP

ult
LGP

VVVV

VVV








0.327 0.315 0.315 0.313 0.280 

(4) 
C

ult
voids

V

V
 0.222 0.195 0.184 0.158 0.185 

 
Baroghel-Bouny and Chaussadent, on the other hand, have found that for a specific 

cement paste and concrete mix (t.i. CO and BO, respectively, from Table 5.2 and Table 

5.3), the capillary and total porosities  CBcap Γ &  and  CBtot Γ &  reach 5.2% and 

30.3% at the degree of hydration CO
C&BΓ  = 0.76 and 5.8% and 12.2% at BO

C&BΓ  = 0.9, 

respectively (Baroghel-Bouny and Chaussadent, 1995). In the current investigation 

these values are employed in the linear relationship (5.6): 
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where the superscript CB&  shows that the formula was proposed by Baroghel-Bouny 

and Chaussadent (1995) and 0  is the initial volume fraction of the pore system. 

 

5.3.2 Comparison of various estimates of water form quantities.  
 
The cement mixtures enumerated in Table 5.2 and Table 5.3 are examined via the 

STOICH_HC2 model for each saturation range. The masses of the water forms are 



Chapter 5 Application and validation of the Microstructural 
Model and porosity function 

 

93 
 

computed according to equation (3.8), while the volumes are estimated using the 

densities given in Appendix A, Table A. 2. The results are compared with data available 

in the literature (Neville and Brooks, 2003) in Table 5.7.  

The row (1) estimates the quantity of combined water per mass of dry cement. After 

drying at 105°C, the normally cited average value equals to 0.23. This quantity exceeds 

the mass fraction of CBW (obtained after a D-drying – vacuum drying to the equilibrium 

vapour pressure above ice at – 79˚C (~ 6.7 x 10-2 Pa)), but if the AW+ILW+IGW is 

added (the RH approaches 11%), then the two values are comparable, as can be seen 

in row (2). The row (3) assesses the ratio between the volumes of gel water and 

cement gel. In this case the discrepancy in magnitude might be attributed to the liquid 

found in LGP. This water form populates the gel pores, but has a similar behaviour as 

the capillary water and so, during a desiccations experiment, part of it may be 

neglected. The last volume fraction given in (4) measures the chemical shrinkage built 

up due to the density difference between reactants and reaction products. In this 

instance, the ratio depends heavily on the densities of the reaction products 

considered. 

 

5.3.3 Validation of the Porosity functions. Results and Discussion 

 
Figure 5.7 depicts the progression of the stoichiometry and experimentally-based 

porosity functions for the CO and BO mixes. According to the STOICH_HC2 model, the 

hydration of CO ceases at PCΓ  = 0.83 due to an insufficient water cement ratio, while 

the hydrolysis of BO reaches PCΓ  = 1. The resulting material coefficients are equal to 

cap
SC _  = 0.237 and tot

SC _  = 0.122 for CO and cap
SC _  = 0.279 and tot

SC _  = 0.144 for BO.  

When comparing with Baroghel-Bouny and Chaussadent’s results, the observed 

discrepancies appear because the considered pore radii limits for the capillary, gel and 

total porosities are different from the pore radii provided in Jennings’ colloidal model. In 

their article, Baroghel-Bouny and Chaussadent assume the radii of the capillary pores 

to vary between 37 - 40Å and 60μm and the total porosity to include pores with radii 

from 10Å to 60μm. On the other hand, in the stoichiometry-based approach, the 

capillary system excludes GW (see Figure 3.1) and goes down to pores having the 

radius equal to 60Å, while the total porosity includes also the voids smaller than 5Å. It 

is therefore expected that the total porosity will be greater if equation (5.2) is used. If 

the total porosity is consistent with a demarcating pore radius of approximately 10Å, 

that is it disregards the chemically bound and half of the absorbed water, then the 
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updated stoichiometry-based function (5.2) (red long-dash double-dot lines) almost 

coincides with the porosity development from (Neville and Brooks, 1987) and is very 

close to that given by Baroghel-Bouny and Chaussadent (1995).  

(a)

(b)

 
Figure 5.7 Porosity development for (a) CO and (b) BO

 

 

5.3.4 Impact of Aggregates on the Porosity Development 

 
The current hygro-thermal model for concrete takes into account the contribution of the 

internal porosity of the aggregate on the behaviour of the investigated material. As was 

described in Chapter 3, in the current simulations the pores of the aggregates particles 

are modelled as water reservoirs that are filled with liquid during the first minutes of 

curing and then are emptied due to desiccation. This transfer takes place as long as 

the aggregate particle is not covered by a gel-like barrier. Detailed experimental data 

on the water absorption capacity of the aggregate embedded in the cement paste is 
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rather scarce in the literature. Therefore, a basic experimental study, focused on early-

age behaviour, was performed in order to include in the modelling the effect of the 

aggregate absorption. 8 sets of samples comprising 6 to 7 oven-dried (for 24 hours) 

limestone particles with sizes between 10 and 14 mm, were weighed and immersed in 

110 cm3 steel containers, partially filled with a grout having the water/cement ratio = 

0.5. The containers were then emptied at 1 hour intervals and the aggregate particles 

weighed after being cleaned with a cloth soaked in acetone. The last reading was 

taken at 8 hours because after that moment it was no longer possible to extract the 

individual particles without the use of impact tools. The whole procedure was repeated 

3 times and the average results in terms of absorption percentages are displayed in 

Figure 5.8. The formation of the gel-like barrier is assumed to occur around Γ  = 30%, 

which corresponds to approximately 24 hours. Thus, the decreasing trend of the 

absorption curve, shown in Figure 5.8, persists until the end of the first day of curing. 

After this point, the water is blocked in the aggregate pores, which means that the 

absorption is constant and that aggda
wm

_/  – the rate of absorption/desorption by the 

aggregate – is zero.  

 
Figure 5.8 Water absorption of a representative coarse aggregate 

 

The variation of aggregate water content, from the time of mixing, may be 

approximated using the formula given in equation (5.7): 
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where pm  = 0.578 is the fully saturated moisture content, r  = 0.5 represents the 

residual proportion of pm  present when the concrete first hardens, 0r  = 0 is the initial 

moisture content as a proportion of pm , pt  = 1 is the time in hours at which peak 

absorption is reached, whilst 1c , 2c  and   are basic constant fixed at 0.5, 2.178 and 
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1.035, respectively. 

The error bars in Figure 5.8 denote the considerable variability of the measured values. 

However, the amount of water penetrating the pores of the limestone particles may be 

considered second order in comparison with that used in hydration and thus the 

moderate inaccuracies in the derived aggregate sink-source function are unlikely to 

have a significant effect on overall computations of moisture content or porosity. 

Nevertheless, this may not be the case if a more absorbent aggregate was used. 

 

5.4 Conclusions 

 
This chapter presents and validates the theoretical considerations employed in the 

proposed microstructural model STOICH_HC2, which is able to simulate the hydration 

reaction of the ordinary Portland cements. STOICH_HC2 considers the formation of 

aluminium-bearing compounds and accounts for the induction period, the nucleation 

and growth controlled hydration and the diffusive hydrolysis. These features permit the 

estimation of the ultimate degree of hydration which corresponds to the complete 

consumption of the capillary water. The microstructural model suggests a linear 

dependency of the capillary and total porosities with respect to the degree of hydration. 

The proposed functions account for the autogenous shrinkage and highlight the role of 

the masses of the water forms populating the gel structure. Moreover, the numerical 

model suggests that the capillary network comprises the effective capillary pores and 

also the large gel pores, while the gel network includes the small gel pores and the 

interstices containing the adsorbed, interlayer and intraglobular water. Under such 

conditions, the demarcation between the capillary and the gel pores is assumed to be 

at 60Å. The microstructural model considers also the amount of water 

absorbed/expelled from aggregate in the first hours after mixing. The comparison 

between the numerical and the experimental results demonstrates that STOICH_HC2 

emerges as a reliable quantitative predictor of the microstructure of Portland cements 

and can be used to provide the hygral input required when simulating the moisture and 

temperature transport within cementitious materials. The study is however limited by 

the lack of information on the reaction rate under sealed conditions, which slows down 

the hydration kinetics. 
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Chapter 6. Validation of Moisture and 

Temperature Transport in 

Cementitious Materials 
 

 

6.1 Introduction 

 

This part of the thesis presents a series of numerical simulations aimed at validating 

the moisture evolution of samples subject to different types of drying conditions by 

means of the finite element discretisation presented in Chapter 4. The THC model 

previously described can be split into two main sections: the first focuses on the 

transport processes of both fluids and heat, whilst the second couples the reactive 

transport of dissolved ions in the context of the autogenous healing of cementitious 

materials. The experimental conditions of the examples presented in this chapter 

inactivate the reactive transport component of the THC model and thus, the numerical 

results presented in this chapter are obtained by applying the spatial and temporal 

discretisation within a classic TH boundary value problem. This mathematical 

framework is constructed employing hygral data from the microstructural model which 

was introduced and validated in Chapter 5. 

The moisture and temperature distributions given by the proposed TH model are 

compared in Section 6.2 with those from a series of laboratory investigated desiccation 

tests performed by Kim and Lee (1999), Baroghel-Bouny (1994) and Baroghel-Bouny 

et al. (1999). The materials considered, which are either hardened cement pastes or 

concretes with different water-cement ratios, are exposed from 3 to 24 months to both 

self-desiccation and external drying. 

Conclusions from all the above work are provided in Section 6.3. 
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6.2 Validation of the Boundary Value Problem for Moisture 

and Heat Flows 

 
In all the following numerical examples, there is a set of parameters employed in the 

governing balance equations which are common to all the analysed drying tests (see 

Table 6.1). Moreover, the imposed boundary conditions facilitate mainly unilateral flows  

of heat and moisture which allows the formulation of the boundary value problem in 1D.  

Table 6.1 Common constants used in the Examples 1, 2 and 3 
 

sat
vp  

equation (3.52) 

1b   8.071  
Antoine’s law 
parameters 2b   1731 

3b   233.4 

pC  

equation (3.86) 

c
pC  

[J/(°K*kg)] 

840 

Cerny and 
Rovnonikova 
(2002) 

fagg
pC  835 

cagg
pC  920 

cw
pC  4180 

 da
p

v
p CC  1400 

ult
cww  [kg/m3] from STOICH_HC2 

effD  

equation (3.72) 

vA  

 

1 

Gawin et al. (1999) 
vB  1.667 

sf  1*10-3 

0vD  [m2/s] 2*10-5 
eff
dry  

equation (3.89) 

0T
  [W/(m*°K)] 1.7 

Gawin et al. (1999) 
A  [1/°K] 5*10-4 

iwk  
equation (3.59) 

0T  [°K] 273.2 
Gawin et al. (1999) 

kA   5*10-3 

pA   1 

Rate of heat 
generation model 

(3.19), (3.22), (3.26) 

SP  [hours] 3 

rT  [°K] 294.1 

 
atmp  [Pa] 1.01325*105 

wM  [kg/kmol] 18 

R  [J/(°K*kmol)] 8314.47 
 

The optimum spatial discretisation is obtained after a mesh convergence study, 

performed with 2D 4-noded finite elements, which has provided the smallest number of 

finite elements giving reliable results with a minimum level of computational cost. This 

preliminary analysis showed that in the case of autogenous drying, the refinement of 
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the discretisation does not affect the numerical outcome. On the contrary, when 

exposing one side of the sample to the surrounding environment, it was found that the 

results are divergent until at least 20 bilinear elements are employed along the flow 

direction. Three representative mesh convergence studies are illustrated in Figure 6.1 

to confirm these conclusions. In this plot the number in front of FE shows how many 

finite elements were used in the modelling. 

 
Figure 6.1 Variation of results depending on the number of finite elements used: 

 (a) self-desiccation and (b) external drying;  

 

 

6.2.1 Example 1: Self-desiccation of Ordinary Hardened Cement Pastes 

and Concretes 

 

The TH boundary value solution is first applied to simulate the self-desiccation 

processes presented in (Baroghel-Bouny, 1994). In this case the inner relative humidity 

of the samples drops because of the cement hydration and as a consequence, the 

capillary porosity function and implicitly the capillary curve are the sole constitutive 

relationships controlling the intensity of the drying.  

 

6.2.1.1 Numerical Model Conditions 

 
A type I normal Portland cement is used to prepare the mixes CO (hardened cement 

paste) and BO (concrete). The chemical composition of the binder, computed with 

Bogue’s formula, can be found in Table 5.3, whilst the mix characteristics are provided 

in Table 5.2. In this experiment, schematically represented in Figure 6.2 (a), no 
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exchange of moisture with the exterior is allowed, but heat transfer is permitted. The 

temperature of the environment is maintained constant at T = 21°C and the samples 

are placed in a sealed desiccator. The relative humidity is measured by means of a 

Vaisala thermohygrometer of ± 1% RH accuracy for a period of 2 years. In the absence 

of any information about the size of the specimen, a cube of 10 X 10 X 10 cm is 

considered during the numerical analysis. 

 
Figure 6.2 Experimental set-up for (a) the sealed and (b) the external drying 

 
 

Table 6.2 Examples 1 and 2: Drying parameters of CO and BO mixes 
 

 CO BO 

iwk  equation (3.58) 
0
iwk  [m2] 6*10-22 5*10-21 

ΓA   3 3 

rwk  equation (3.59) m   0.461 0.440 

 ΓSp cap
wc ,  equations 

(3.66), (3.68) 

a [MPa] 37.55 18.62 
b  2.168 2.275 

c   -11 -10 

)(Γj  equation (3.13) 

ult
CBWw  [kg/m3] 219.9 60.99 

ult
IGWILWAWw  [kg/m3] 89.21 24.65 

ult
SGPw  [kg/m3] 118.2 32.63 
ult
LGPw  [kg/m3] 95.71 26.41 
ult
CWw  [kg/m3] 0.075 27.24 
cap
SC _   0.237 0.279 

tot
SC _   0.122 0.144 

equations (4.12), (4.13) 
wv  [m/s] 2.5*10-4 2.5*10-4 

T  [W/(°K*m2)] 8.3 4 

 ultΓ   0.85 1 

 

 (a) 

 

 
(b)
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As was explained earlier, only the material constants employed in the functions )(Γj  

and  ΓSp cap
wc ,  play an active role in the desiccation process. In Table 6.2, the 

parameters describing the change in porosity and ultΓ  are extracted from the 

STOICH_HC2 model, while the coefficients defining the capillary curve are established 

by means of a “trial and error” procedure.  

As was discussed in the previous section, the domain is split into 20 equally sized 4-

noded planar elements. Variable time-steps are considered (see (6.1)) in the temporal 

discretisation and a 1*10-3 convergence tolerance is adopted for Ψ  in the Newton-

Raphson iterations.  

 













itimes

itimes

itimes

tBO
400,14400

40048,8640

481,360

 






















itimes

itimes

itimes

itimes

itimes

tCO

3000,14400

30001000,10800

1000400,8640

40048,4320

481,360

 (6.1)

 
where itime is the current number step. The initial values of the principal variables are 

0T  = 294°K and 

ea
w

wcap
w

V
w

w

S







0

 = 0.99 (CO) / 0.97 (BO). The numerical analysis starts 

at 0Γ  ≈ 0 by taking the initial time equal to 1 second. 

 

6.2.1.2 Results and Discussion 

 

As shown in Figure 6.3 (a), the model predicts that the hydrolysis of BO is quicker than 

that of CO, but both slow down considerably after 300 days. This trend is followed 

inevitably by the porosity function – Figure 6.3 (b) – and implicitly by the water 

saturation degree – Figure 6.3 (c). Regarding the latter variable, it is interesting to 

notice that in the case of autogenous drying, an extremely small difference between the 

cap
wS  of CO and BO exists. This aspect clearly suggests that the intensity of the self-

desiccation, quantified by the relative humidity, depends almost exclusively on the 

capillary curve. Baroghel-Bouny reports that during the two years of testing, the RH 

exceeds 0.87 for CO and 0.93 for BO. In these circumstances, if Kelvin’s law is applied, 

the expected cp  cannot exceed 18.9 MPa for CO and 9.84 MPa for BO. For this 
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reason, the correlation between cap
wS  and cp , depicted in Figure 6.4, needs to be 

provided by the capillary curve coefficients a , b and c . 

 
Figure 6.3 Example 1: Evolution of (a) degree of hydration, (b) porosity and (c) water 

saturation degree under sealed drying 

 

 

Figure 6.4 Examples 1 and 2: Capillary curves of BO and CO 
 
The predictive capability of the model in terms of RH is generally reasonable during the 

testing period, the largest percentage error being observed in the case of BO. The 

comparison between the numerical and the experimental findings is plotted in Figure 
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6.5. The histogram (a) shows that for the cement paste, the modelled drying process is 

slightly more intense by the end of the 3rd month. Nevertheless, it can be remarked that 

in the first 70 days, the estimated relative humidity values are greater than the 

measured ones. For example, the RH values (experimental, numerical) at t  = 18.24 

days are (0.97,0.99), whilst at t  = 180 days they equal to (0.93, 0.92). In time though, 

the simulated desiccation slows down in intensity and the percentage error decreases 

to 0.89% at 1 year and to 0.06% at 2 years. From the graph (b) of Figure 6.5, it can be 

seen that during the initial 3 months, the water consumption from the capillary network 

of the BO is mildly overestimated (the maximum RH percentage error being 1.86%). 

 
Figure 6.5 Example 1: Variation of RH of samples (a) CO and (b) BO 

 

By analysing Baroghel-Bouny’s data for the concrete sample, a striking observation 

emerges. Up to t  = 6.5 days, a nearly constant relative humidity close to unity is 

measured that. This behaviour is understandable for concrete in the plastic state in 

which the percolation threshold hydration degree is not reached ( Γ  ≤ 0.1). However, 

the duration given by the experiment is unexpectedly long since in 6 days, the degree 
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of hydration of an ordinary mix with 0.5 water-cement ratio is expected to be 

approximately around 0.60 (Tennis and Jennings, 2000), regardless of the curing 

conditions (Bentz et al., 1997). Therefore, since in the current investigation the porosity 

curve takes into consideration the percolation threshold, the desiccation initiates 

sooner, after only 4.3 hours. On the other hand, the proposed model produces a more 

optimistic forecast of the relative humidities in the long term. At 12 months the 

laboratory and numerical results are almost the same (0.940 versus 0.941), whilst at 

the end of the experiment (2 years) the values to be compared are 0.930 and 0.927. 

 

6.2.2 Example 2: External Drying of Ordinary Hardened Cement Pastes 

and Concretes 

 

The next validation example models the external drying of two specimens cured under 

sealed conditions for 2 years that are made of the previously investigated materials: 

CO and BO (Baroghel-Bouny et al., 1999). In their research work, Baroghel-Bouny and 

her collaborators determined the relative weight and density losses. Regarding the 

latter physical property, the values were obtained at 6, 62, 128 and 353 days using a 

gamma ray attenuation procedure applied in 14 positions along the length of the 

specimen. 

In the present validation example, the following formula is used to compute the relative 

weight loss at t :  

      
 

100
0

0 



tm

tmtm
tm

specimen

specimenspecimen
loss  (6.2) 

where the mass of the specimen, 
specimen
m , quantifies the mass of all the existing water 

phases (liquid and gaseous) and the mass of the solid matrix.  

Regarding the second physical property, an average density loss is estimated 

according to: 

      
 

100
0

0 



t

tt
tloss 


  (6.3) 

 

specimen

solidOtotH

V

mm




 2  (6.4) 

Equations (6.5) and (6.6) assess OtotHm
2

 and solidm  by taking into account the drying 

shrinkage of the cylinders. 
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    

2

2
1   

(6.5)

specimendrysolid Vm    (6.6)

In the above relationships specimenV  denotes the difference between the initial volume 

of the specimens and the experimentally measured volumetric shrinkage reported in 

(Baroghel-Bouny, 1997) and presented here in Figure 6.6. 

 

Figure 6.6 Measured shrinkage dependence on RH from (Baroghel-Bouny, 1997)
 

6.2.2.1 Numerical Model Conditions 

 

The relative humidity instrumentation presented in Figure 6.2 (b) was applied to 

cylindrical samples having the dimensions Φ16 X 10 cm. The lateral surface of the 

specimens was wrapped with aluminium foil sheets, while the two ends were exposed 

to the environment conditions maintained at 50 ± 5% relative humidity and 20 ± 1°C. 

This experimental information was used to define the boundary conditions. 

The modelling is done by considering the material parameters listed in Table 6.2. The 

same capillary curve as in the first example is employed because this test represents a 

continuation of the previous drying experiment. The open sides of the specimen enable 

advective transport mechanisms within the porous material whose parameters are 

determined by a trial and error technique. Once again 20 finite elements and a 1*10-3 

convergence tolerance are used, but the time discretisation is now more refined as can  

be seen in equation (6.7). 
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 (6.7) 

The simulation starts exactly from the end point of the first example. The initial 

temperature, capillary saturation degree, effective time and degree of hydration are 

hence 0T  = 294°K, 0
cap
wS  = 0.771 (CO) / 0.769 (BO), 0t  = 730 days and 0Γ  = 0.81 

(CO) / 0.96 (BO). 

 

6.2.2.2 Results and Discussions 

 

Figure 6.7 (a) indicates an apparent stagnation of the hydration processes for both CO 

and BO and a considerable stabilisation of the porous network.  

 
Figure 6.7 Example 2: Evolution of (a) degree of hydration and porosity and water 

saturation degrees at (b) 2.5mm and (c) 47.5mm 

Figure 6.7 (b) and (c), on the other hand, show that the model is able to capture the 

different drying kinetics of the materials. One should remark that although at the 
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beginning of the simulation, both samples have in all their points a similar initial 

capillary water saturation degree, after about 360 days of external drying, the cap
wS  of 

the BO drops to 0.25 at the edge and 0.46 at the middle of the sample in comparison to 

the cap
wS  of the CO that reduces to 0.36 towards the exposed sides but is 0.63 at the 

core. In addition, the TH model highlights the importance of the advective flux of the 

liquid water in the external drying and confirms that the moisture flow in the cement 

paste is smaller than the flow in the concrete. 

The validation of Example 2 continues with the presentation of the experimental and 

numerical plots of the relative weight and density losses (Figure 6.8 and Figure 6.9).  

 
Figure 6.8 Example 2: Relative weight loss under external drying 

 
The solution of the boundary value problem in terms of relative weight loss of both CO 

and BO closely matches the data reported by Baroghel-Bouny et al.. The largest 

difference – 0.37 (experimental) versus 0.46 (numerical) – occurs in the case of the 

hardened cement paste at 5.3 days. The changes in relative density loss, on the other 

hand, are slightly more difficult to exactly predict. The laboratory work suggests an 

irregular variation along the length of the specimens despite the symmetrically applied 

boundary conditions. The modelling fails to reproduce this behaviour, but it is promising 

to see that at least one of the two predicted moisture gradients is close to that 

measured. In the case of the hardened cement pastes, the amount of water remaining 

in the cylinders at the 128th and the 353rd day is less than expected for the right-hand 

side part of the specimen. However, the moisture distributions within the 6th and the 

62nd day are much more satisfactory. The numerical simulation tends to perform better 

when the relative density loss of the BO is analysed. The most pronounced 

inaccuracies can be observed on the left-hand side of Figure 6.9, along the first 20 mm 

of the sample where the intensity of the drying process is underestimated during the 

last 3 sets of measurements. 
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(a)

 

 
(b)

 

 
Figure 6.9 Example 2: Relative density loss under external drying along the sample: 

(a) CO and (b) BO  
 
 

6.2.3 Example 3: Drying of Concrete Mixes with Different w/c Ratios 
 

The last series of simulations are aimed at examining the efficiency of the proposed TH 

model in predicting the moisture change of three concretes with low, medium and high 

compressive strengths during different curing conditions. The example replicates the 

results taken from (Kim and Lee, 1999) in terms of relative humidity and moisture loss 

weight per unit exposed area (kg/m2). In which concerns the computation of the latter 

physical property, the following relationship is used in the current findings: 

       
specimen

specimen
OtotHOtotHlossmoist A

V
twtwtw 

22
0_  (6.8) 

Kim and Lee (1999) provide no information related to the chemistry of the binder and a 

standard ASTM Type I cement composition taken from (Schindler and Folliard, 2005) is 

selected. The accuracy of the final numerical data is therefore influenced more than 

ever by the output from the STOICH_HC2 model. 
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6.2.3.1 Model Domain and Time Step Discretisation 

 

In Kim and Lee’s paper, totally sealed specimens of 10 x 10 x 10 cm and drying 

specimens of 20 x 10 x 10 cm were demoulded after 1 day and moist-cured for another 

3 days before testing. Paraffin wax was used as a seal material, but in the case of the 

drying specimens, one of the two 10 x 10 sides was left free to permit a uniaxial 

moisture flow. During the desiccation, the specimens were subjected to 50 ± 2% RH 

and 20 ± 1°C. The relative humidity values were measured by means of Vaisala 

HMP44 probes and Vaisala HMI41 indicators placed at 3, 7, and 12 cm from the 

exposed surface. The experimental set-up is illustrated in Figure 6.10. 

 
Figure 6.10 Experiment 3: Schematic representation of samples 

 

Table 5.2 and Table 5.3 provide the necessary mix characteristics and mass 

percentages of the used clinker minerals. It is interesting to observe that the 

STOICH_HC2 model forecasts an incomplete hydration of the high and medium 

strength concretes due to insufficient water. The ultimate Γ  for these two mixes 

reaches only 0.63 and 0.93, respectively, whereas the low strength concrete has ultΓ  = 

1. The coefficients of the capillary curve  TΓSp cap
wc ,,  are taken from the self-

desiccation experiment simulated in Example 2, while the coefficients of the advective 

flux of the water phase are calibrated using a “trial and error” procedure. Table 6.3 lists 

the parameters specific to the example 3.  

The analysis is performed with: 20 equally sized, 4-noded planar elements, 1*10-3 

convergence tolerance for Ψ  in the Newton-Raphson iterations and 0t  = 4 days. 
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Table 6.3 Example 3: Parameters characterising the drying of M, L and H mixes 
 

Mix M L H 

iwk  
equation (3.58) 

0
iwk *1020 [m2] 7.5 4.0 9.0 4.5 3.5 1.3 

ΓA   0.9 0.9 0.9 

rwk  equation (3.59) m   0.440 0.440 0.440 

 ΓSp cap
wc ,   

equations (3.66), 
(3.68) 

a  [MPa] 18.62 18.62 18.62 
b  2.275 2.275 2.275 

c   -7 -12.3 -11.5 

)(Γj   

equations (3.13), 
(3.15)and (3.16) 

ult
CBWw  [kg/m3] 70.09 54.82 63.56 

ult
IGWILWAWw   [kg/m3] 28.85 21.91 25.75 

ult
SGPw  [kg/m3] 38.82 29.39 34.31 
ult
LGPw  [kg/m3] 31.43 23.79 27.77 
ult
CWw  [kg/m3] 0 80.89 0 
cap
SC _   0.271 0.285 0.190 

tot
SC _   0.138 0.147 0.098 

equations (4.12), 
 (4.13) 

wv *104 [m/s] 9 5 4 

T  [W/(°K*m2)] 8.3 8.3 8.3 

 ultΓ   0.93 1.00 0.63 

 
The time-steps are equals to: 
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 (6.9) 

The water absorption, occurring during the moist curing, is taken into account indirectly 

by means of the initial 0RH  – 0.999 (L) / 0.987 (M) / 0.970 (H) – reported by Kim and 

Lee (1999). The initial values of the principal variables are 0T  = 293 °K and 
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= 0.73 (L) / 0.87 

(M) / 1.00 (H) where 0Γ  equals to 0.80 (L) / 0.65 (M) / 0.44 (H).  
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6.2.3.2 Results and Discussions 

 

Figure 6.11 shows that by the end of the testing period, both the hydrolysis of the 

clinker minerals and the formation of the capillary pores have almost reached their 

ultimate values. Regardless of the water-cement ratio, 91% of the reaction has taken 

place at 124 days after casting. 

 
Figure 6.11 Example 3: Evolution of (a) degree of hydration and (b) porosity 

 

In the case of the self-desiccation experiment, the distributions of the water saturation 

degrees depicted in Figure 6.12 (a) reflects the expected behaviour of the three types 

of concretes.  

 
Figure 6.12 Example 3: Evolution of (a) water saturation degree and 

(b) relative humidity under sealed conditions 
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The specimen with the highest water-cement ratio has the slowest drying kinetics and 

loses only 2% of the capillary water. The numerically estimated inner relative humidities 

agree with the values reported by Kim and Lee (1999), as can be seen in Figure 6.12 

(b), especially in the case of the M sample. However, the TH model is unable to predict 

the hindered self-desiccation during the first 20 days of the low strength concrete and it 

slightly overestimates the drying of the high strength concrete during the first 60 days. 

 
Figure 6.13 Example 3 – variant 1: Evolution of RHs and moisture losses; 

 (a) M, (b) L and (c) H 
 
Regarding the external drying, the values of the intrinsic permeability (shown in bold in 

Table 6.3) of the matured paste are initially considered and the results are plotted in 

Figure 6.13. The estimated drying evolutions capture the moisture gradients existing 

(a) (b) 

(c) (d) 
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along the specimens. The RH values measured at 7 and 12 cm from the free side of 

the sample are best predicted in the modelling of M and H, whilst the most satisfactory 

RHs at 3 cm are seen for the L concrete. Concerning the moisture loss, one can easily 

see that the results are not very close to the experimental data since the drying 

mechanisms are overall underestimated after approximately the 20th day. 

This is the reason why an additional series of simulations was undertaken using the 

second set of 0
iwk  values. 

 
Figure 6.14 Example 3 – variant 2: Evolution of RHs and moisture losses;

 (a) M, (b) L and (c) H. 
 
In this case, the match between the numerical evolution of lossmoistw _  from diagram 

Figure 6.14 (d) and the values reported by Kim and Lee (1999) is much more 

satisfactory. The variation in time of the relative humidities shifts towards a more 

saturated state, but essentially it does not improve too much. As a general rule, the 
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drying in all the three locations is less intense and a better correspondence of RHs 

values is observed at 12 cm.  

 

6.3 Conclusions 
 

The purpose of this chapter was to validate the theoretical formulations describing the 

thermo-hygral behaviour of the ordinary cementitious materials. The model simulating 

the transport processes of both fluids and heat is composed of a TH boundary value 

problem which replicates the change of moisture and entropy in space and time that 

uses the porosity development provided by a microstructural model that simulates the 

hydration reaction of the ordinary Portland cements. 

Three main sets of simulations with different types of curing conditions were performed. 

In the first two examples, the simulations of the self-desiccation and the external drying 

of a hardened cement paste and a concrete mix were compared with laboratory 

measured results. The numerical findings were found to be in close agreement with the 

experimental values and confirmed that when the samples are submitted to a lower 

environmental RH, a moisture gradient between the core and the cover of the 

specimen appears that is smaller for the cement paste than for the concrete. The last 

example investigated the humidity distribution of three types of concrete subjected to 

sealed and unsealed boundary conditions. Although the model response has 

successfully demonstrated that the hygral behaviour is replicated fairly well during self-

desiccation, it has certain limitations in terms of accurately modelling the spread of the 

humidity levels during external drying. 
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Chapter 7. Validation of the Self-Healing Model 

for Cementitious Materials 
 

 

7.1 Introduction 

 

The overall thermo-hygro-chemical response observed during the self-healing of 

cementitious materials brings to the fore complex physical and chemical processes that 

are linked directly to the phenomenon of crack bridging and indirectly to the regain of 

strength. The self-healing in the first weeks after casting is thought to be a result of 

ongoing hydration rather than a result of carbonation (Van Tittelboom and De Belie, 

2013; Jacobsen et al., 1995; Granger et al., 2007). The efficiency of crack recovery is 

dependent not only on the crack opening, but also on the mix characteristics and the 

starting time of the self-healing phenomenon (Hosoda et al., 2009; Sisomphon et al., 

2011). The speed of the crack recovery is affected by the moisture content, the 

ambient temperature and the amount of unreacted cement grains existing in the paste 

(Neville, 2002; Granger et al., 2007). 

The majority of the available strategies for numerical self-healing modelling are 

developed at microscale and investigate the hydration kinetics of some spherical 

elements dispersed in an aqueous medium (Ye and van Breugel, 2007). The 

alternative to this approach is to enlarge the modelling scale and to account for the 

moisture, the temperature and the solute transfer using a mechanistic representation. It 

is this latter approach that will be explored in the current chapter.  

The finite element method, as outlined in Chapter 4, is implemented here to model the 

self-healing mechanisms. The physical laws describing the reactive transport of the 

unreacted cement particles are calibrated so as to provide numerical results 

comparable to available laboratory data.  

Section 7.2 describes briefly the chosen experimental study and its conclusions related 

to the THC behaviour of the investigated samples. In addition it discusses the effect of 

the laboratory procedure upon the modelling approach and presents some required 

adjustments of the theoretical formulations. Section 7.3 shows how the finite element 

discretisation was performed and presents comparisons between the laboratory and 
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the numerical findings, whilst section 7.4 provides the conclusions from all the above 

work. 

 

7.2 Review of the Experimental Study 

 
An experimental programme undertaken in Cardiff University and dedicated to the 

autogenous healing of cementitious materials was selected for the validation of the 

THC model (Davies, 2014). Its primary scope was to provide information about the 

mechanical properties of the filler located in the crack in order to simulate mechanical 

recovery of the damaged cementitious material. However, some data, related to the 

transport and chemical mechanisms occurring during self-healing, is also available and 

has been used in the present work. The observations made in these experiments were 

not wholly consistent and had high variability; therefore they are used tentatively for the 

model validation. In these circumstances it is more appropriate to say that the current 

chapter is aimed to establish the “functionality” of the THC model rather than its 

validity.  

 

7.2.1  Description of the Experimental Setup 

 

A plain mortar (CEM II/B-V 32.5R + sand) sample of 255 X 75 X 75 mm was poured in 

a wooden mould in order to cast a beam with a narrow preformed central notch in the 

lower face as in Figure 7.1. The notch was intended to replicate a uniform width crack 

of 0.2 mm and it was obtained by first embedding and then removing a steel shim.  

 

 
Figure 7.1 Schematic representation of the experimental setup 

 
The metal plate was introduced uncoated, to prevent any undesired chemical reactions 

between the mould release oil and the paste, and after its removal (at 6 hours after 

casting) the crack was prevented from dry out by covering the beam with wet hessian 

sack. The sample was demoulded after approximately one day (26 hours) and was 
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immediately immersed in water for 14, 27 and 41 days. At the end of these curing 

periods the sample was broken by means of a three-point bending test in order to 

measure the gain in strength and also to look for visual and chemical evidence of self-

healing. Camera images of the beam cross section were taken and chemical probes 

with the new deposited material were collected for chemical investigation. On the 

external surface of the crack a white crystalline substance appeared, but the crack 

reduction was not measured since it was not considered “a reliable way of achieving 

repeatable experimental observations”. On the other hand, a ridge of material build up 

having the same colour as the bulk sample was formed on the crack surface. In 

addition, a white crystalline material, believed to be calcium carbonate, could often be 

distinguished in a distinctive pattern by the naked eye. This substance became more 

visible once the fractured surface of the crack was exposed to the air. The SEM tests 

detected portlandite, ettringite and calcium-silicate-hydrate in the composition of the 

deposited material, while the XRD tests identified portlandite, silica and calcite. Davies 

(2014) concluded that “continued hydration is the dominant process taking place in the 

narrow notched cracks”. 

 

7.2.2  The Effect of the Experimental Procedure upon the Modelling 

Approach 

 

Considering the above laboratory procedure, it can be concluded that the investigated 

sample is subjected to two different types of curing conditions that divide the 

experiment into two main stages. The first represents a classical drying process similar 

to the examples discussed in Chapter 5, whilst the second triggers a transport process 

in almost saturated conditions that activates the reactive transfer of the unhydrated 

cement particles. In these circumstances, during the first type of curing, the solute 

transport is neglected in the THC model, while, during the second type of curing, the 

boundary conditions take into account the fact that the elements located in the narrow 

notch are always saturated. For this region of the modelled sample, the amount of 

water penetrating the notch diminishes in time due to the deposition of new material 

and for this reason the porosity function defined in (7.1) is adopted in the crack zone: 

 
crack

P
Pj V

V
VΓ 1),(  (7.1)

 

where PV  is the volume of self-healed material precipitated in the crack and crackV  is 

the initial volume of the crack. During each time step PV  is evaluated according to: 
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P

P
P

m
V


  (7.2)

 
in which Pm  – the mass of precipitated material – is equivalent to the term m  from 

(3.78) and is therefore equal to: 

 CW
P

PP mmm


   (7.3)

 
In the above equation CWm  quantifies the mass of capillary water, as follows: 

 
w

CW

totcap
cap
wCW

V

VSm 


  
(7.4)

 
It should be also stated that the microstructural model STOICH_HC2, which was used 

in the previous chapter to estimate the water forms, was designed to investigate only 

the hydration of the clinker minerals. This limitation requires the introduction of an 

additional coefficient ( j
FAc ) that increases the porosity when fly ash is present: 
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 (7.5)

 
The cement type CEM II/B-V 32.5R is obtained by adding 65 to 79 % clinker and 21 to 

35 % siliceous fly ash, which is composed mainly of siliceous, aluminium and ferric 

oxides. The latent hydraulic properties of the fly ash are activated by portlandite during 

the pozzolanic reactions as can be seen below (Stefanović et al., 2007):  

 323 HSC3CH2S   (7.6)

 12423 HSAC10CHHSCAC   (7.7)

 1242 HSAC7H3CHHSCA   (7.8)

 134AHC9H4CHA   (7.9)
 
Chindaprasirt et al. (2005) have examined the effect of this type of cement replacement 

on the porosity and obtained the results from Figure 7.2. Under the assumption of a 

30% by weight Portland cement replacement, the plots from Figure 7.2 were used in 

the current investigation in an interpolation-based procedure to identify the ratio 

between the porosity of the pure Portland cement paste and the porosity of the blended 

cement paste. The coefficients j
FAc  were established by fitting the computed ratios with 

the porosity function (7.5). Doing so resulted in the values cap
FAc  = 0.4 and tot

FAc  = 0.1. 
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Figure 7.2 Capillary and total porosity evolution of various cement blends measured 

by Chindaprasirt et al. (2005) 

 
 

7.3 Numerical Modelling of the Experimental Study 

 

7.3.1 Numerical Model Conditions for Stage 1 (Moist Air Curing) 

 
The mould oil, used to facilite demoulding, effectively seals (with respect to moisture 

transport) three sides of the specimen and enables unidirectional moisture flow. The 

coverage of the beam with a hessian sack during the first 26 hours is taken into 

account in the modelling by considering an external relative humidity equal to 50%. In 

terms of heat flow, the environmental temperature is set to envT  = 20°C.  

The domain is divided into 20 X 10 equally sized 4-noded planar finite elements having 

two active degrees of freedom per node ( cap
wS  and T ). A schematic representation of 

the chosen mesh configuration is illustrated in Figure 7.3.  

The time discretisation uses steps of 3600 seconds and a convergence tolerance of 

1*10-3 for the Newton-Raphson iterations, based on an L2 norm of the error in the 

governing equations. The initial values of the principal variables were 0T  = 293°K and 

ea
w

wcap
w

V
w

w

S







0

 = 0.95. The numerical analysis starts at 0Γ  ≈ 0 by taking the initial 

time equal to 1 second. 
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Figure 7.3 Meshing used for the stage 1 of curing; node numbers are written in italics 

 
During the first stage of curing, no experimental results describing the heat and 

moisture development in the mortar beam were available. Consequently, it was 

decided to adopt the drying parameters of the concrete used in the numerical example 

discussed in section 6.2. Their values are enumerated in Table 6.1 and Table 6.2. The 

cement composition of BO, given in Table 5.3, was also employed in this numerical 

examination of autogenous healing. 

Additionally, in both stages of the current simulation:  

 the mortar paste has the mix characteristics given in Table 7.1; 

Table 7.1 Mix characteristics of the mortar paste SH 
 

 bw

w
 

bw  c  FAw  w  faggw c  FA  fagg  dry  eaV  

 [kg/m3] [m3/m3]
SH 0.500 571.4 400 171.4 285.7 1200 3168 2330 2400 1770 0.015 

 
 the hydration model developed by Schindler and Folliard (2005) has the 

following parameters accounting for the contribution of the fly ash: FAf  = 30%, 

CaOFAf   = 12.67%, FAh  = 209 J/g and cemf  = 70% and 

 the required output from the STOICH_HC2 model equals to: 
cap
SC _  = 0.279 and  

tot
SC _  = 0.144 ( ult

CBWw  = 69.140, ult
IGWILWAWw   = 27.924, ult

SGPw  = 36.959, ult
LGPw  = 

29.919, ult
CWw  = 121.772) and ultΓ  = 1. 

  

0

20 X FE1

10
 X

 F
E

1

y

x... ...

... ...



Chapter 7 Validation of the Self-Healing Model for 
Cementitious Materials 

 

121 
 

7.3.2 Results and Discussions 

 
The moisture and temperature distributions after 26 hours of curing are presented in 

Figure 7.4 and Figure 7.5. The existing difference in relative humidity between the 

external surroundings and the interior of the paste triggers an expected desiccation 

process.  

 
see Figure 7.3 for identifying the position of the nodes 

(a)

 

(b)

 
Figure 7.4 Distribution of (a) cap

wS and (b) T  in y direction at 20 and 26 hours after 
casting 

 
A part of the initial volume of capillary water is either consumed by the hydration or 

evaporates during the external drying. Figure 7.4 (a) and Figure 7.5 (a) indicate, on one 

hand, an almost uniform distribution of the moisture content along the length of the 

sample and on the other hand, a positive gradient in cap
wS  between the notched bottom 

and its corresponding opposite side. This trend however is not followed by the 

temperature variation presented in Figure 7.4 (b) and Figure 7.5 (b) because the 

applied thermal boundary conditions are different. Instead, in this case, the magnitude 

of the heat gradients in both longitudinal and transversal directions is comparable. 

Before passing to the description of the model conditions employed in the second type 

of curing, it must be also mentioned that the current thermo-hygral state reached at 26 

hours after casting represents the starting point of the TH evolution in the effective self-

healing process simulated in the following section. 
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(a) 

(b) 

(c) 

see Figure 7.3 for identifying the position of the node 
 
Figure 7.5 Distribution of (a) cap

wS and (b) T  at the end of stage 1 along the x direction
 
 

7.3.3 Numerical Model Conditions for Stage 2 (Immersed Water Curing) 

 
In the second stage of the experimental study, the mortar beam was immersed in 

water, its sides were continuously saturated and the crack was filled with H2O due to 

the capillary rise effect as it is showed in Figure 7.6 (a). Since the environmental 

conditions were symmetrical with respect to the middle cross section of the specimen 

and since the attention in this thesis is focused on the healing effect, the discretisation 

is done solely for the beam section included in the detail B from Figure 7.6 (b). This 
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beam section is divided into two parts. The first part, which has a volume equal to 

127.4 X 37.5 X 75 mm, is filled with mortar and is discretised into 10 X 5 4-noded 

planar finite elements. The second part, representing the notch filled with water, is filled 

in time with hydrates and is split into other 10 X 5 4-noded planar finite elements. A 

schematic representation of the mesh is illustrated in Figure 7.7.  

(a) (b) 
 

Figure 7.6 Schematic representation of the stage 2 of curing  
 

(a) (b) 
 
Figure 7.7 Meshing used for the stage 2 of curing; node numbers are written in italics 
 
Due to the distinct nature of the internal structure of the materials and, having in mind 

the previous observations regarding the porosity function, it was decided to split the 

used finite elements into two categories as can be seen in Figure 7.7 (a) and (b). In the 

case of FE1 elements, employed in the mortar region, the initial nodal values of cap
wS  

and T  are exactly the values returned by the THC model at the end of stage 1, while 

0  is the ratio between the mass of unreacted cement particles – equation (7.11) – 

and the mass of the capillary water – equation (7.12) – existing at the initial time of the 

analysis 0t : 
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where UCPn  is the mass fraction of unhydrated cement particles that can be transported 

through the capillary pore network. For this category of elements a fixed hygral 

boundary condition ( cap
wS  = 0.99) is applied on the peripheral black nodes visible in 

Figure 7.7 (b), whilst the green nodes, which are in contact with the mortar paste, are 

free from any type of boundary constraint. 

In the case of FE2 elements, employed in the crack zone, it is assumed that the pores 

are always full of water and so the nodes have a fixed cap
wS  = 0.99 along the entire 

modelling period. The two remaining degrees of freedom have the following initial 

values, 0T  = 293°K and 0Γ  = 10-6, but are free to change in time.  

Regarding the spatial discretisation, varying time steps of: 

 














itimes

itimes

itimes

t

350,12000

350250,7200

2501,3600

 (7.13)

and a constant convergence tolerance (10-3) were used during the numerical analysis. 

Next, Table 7.2 provides the values of the parameters used to characterise the reactive 

transport of the unreacted cement grains. It is important to specify at this point that the 

magnitudes of P , P , L , molD ,   are calibrated such as to obtain a satisfactory 

estimation of the self-healing phenomenon at the end of the longest curing period (41 

days). 

Table 7.2 Parameters used in the reactive transport   

m  equation (3.78)  P   2.5 

P   0.07 

pC  

equation (3.86)  

P
pC  [J/(°K*kg)] 840 

FA
pC  [J/(°K*kg)] 713 

P  [kg/m3] 2600 
ij
mdispD  and ij

mdiffD  

equations (3.76) and (3.77)  

L  [m] 5*10-3 

molD [m/s] 10-8 

initial volume of precipitated material 0PV  [m3/ m3] 10-9 

equation (4.14)    [kg/(s*m2)] 10-6 

0  equation (7.10) UCPn  30% 
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7.3.4 Results and Discussions 

 
Before presenting the results of the proposed THC model, a short discussion regarding 

the available experimental evidences is needed. The images from (Davies, 2014) with 

the healed cross-sections of the artificially created narrow notches (see the blue region 

in Figure 7.6) are processed using ImageJ, a Java-based image processing program 

developed at the National Institutes of Health (Schneider et al., 2012) in order to obtain 

relevant quantities. The degree of self-healing in terms of area fraction of deposited 

material is established using the Analyze Particles command. Prior to running this 

command, the two dimensional healed zones are manually selected by means of 

brightness and colour-based criteria following the steps enumerated in ImageJ (2013). 

Examples of experimental and processed images are shown in Figure 7.8, while the 

summary of the visual analysis is presented in Table 7.3. The rest of the processed 

images are included in the Appendix B. 

(a) 

 

(b) 

 

(c) 

 
Figure 7.8 Self-healed area fractions at 13 days: (a) 18.33%; (b) 17.62%; (c) 21.17%;

all the cross sections are positioned at 127.4mm on x direction 
 
The proposed THC model estimates only the concentration of the UCP and the volume 

of precipitated material that appears during the crack recovery. No experimental data 

was available regarding the thickness of the self-healed area and therefore, in the 
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current investigation it is assumed that within the self-healed region of the cross 

section, the notch is completely bridged by the new deposited material. In this context 

the numerical estimation of the self-healed area fraction produces the values reported 

in Table 7.3 which are indicating an ascending trend of crack recovery which is in 

agreement with the experimental observations. 

Table 7.3 Experimentally based data regarding the self-healing process 

Duration of the  
self-healing process 

13 
days 

27 
days 

41 
days 

Experimentally evaluated self-healed area fraction [%] 19.04 21.15 24.89

Numerically evaluated self-healed area fraction [%] 23.80 24.39 24.60
 
The values from the above mentioned table indicate that, when the calibration of the 

model targets the accurate estimation of the most prolonged self-healing condition (41 

days), the filling of the crack is overestimated at the intermediate time periods (13 and 

27 days). However, Figure 7.9 to Figure 7.12 confirm that the proposed THC model is 

able to predict a realistic trend for the crack recovery. The volume of precipitated 

material increases in time throughout the sample, but the magnitude of the deposition 

is significantly higher in the crack region as can be easily seen in Figure 7.10. Another 

interesting observation is that the mass accumulation is always intensified in the early-

age period of the self-healing process. Regarding the spatial distribution of the filler, 

Figure 7.9 and Figure 7.11 show that in the transverse direction of the mortar zone 

there is a predominantly higher quantity of precipitated substance towards the mid 

height (i.e. at hy=37.5 mm), whilst in the transverse direction of the notch the deposition 

occurs towards the opposite side. From Figure 7.12 it is apparent that in the 

longitudinal direction, the accumulation process in the mortar region changes in time 

towards a uniform distribution state. It is evident that the volume gradient along the 

length of the sample, visible at the 13th day of water immersed curing (Figure 7.12 (a)), 

reduces dramatically during the following 2 weeks and then stabilises in time (Figure 

7.12 (b) and (c)). On the other hand, from Figure 7.9 (b) and (c) and Figure 7.11 (b) it is 

clear that in the crack zone the new material builds up in the same percentage in all the 

nodes located at the same height. 
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(a) 

see Figure 7.7
for identifying 
the position of 
the nodes (b) 

 

(c) 

  
Figure 7.9  Distribution of Pm  per unit volume in x direction
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(a)

see Figure 7.7 for 
identifying the 
position of the 
nodes 

(b)

 
Figure 7.10 Evolution of Pm  per unit volume during the modelled self-healing process

  

(a)

see Figure 7.7 for 
identifying the position of 
the node 

(b)

 
 

Figure 7.11 Distribution of Pm  per unit volume in y direction 
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(a)

(b)

(c) 

 
Figure 7.12 Evolution of Pm  per unit volume in x direction in the mortar zone

 

 

7.4 Conclusions 

 
The objective of this chapter was to demonstrate that a comprehensive THC model 

proves to be a useful tool in predicting the autogenous healing capacity of cementitious 

materials. In order to fulfil this task an experimental study, in which an artificially 

induced crack is filled with precipitates under specific curing conditions, was simulated. 

The numerically results were reasonably encouraging even if it is acknowledged that 

there is still room for improvement.  

2.585

2.59

2.595

2.6

2.605

2.61

2.615

2.62

2.625

2.63

0 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75

M
a

ss
 o

f 
p

re
ci

p
ita

te
d

 m
a

te
ri

a
l 

p
e

r 
u

n
it 

vo
lu

m
e

 (
g

/m
m

3
)

Length in x direction (mm)

nodes with hy=0mm
nodes with hy=7.5mm
nodes with hy=15mm
nodes with hy=22.5mm
nodes with hy=30mm
nodes with hy=37.5mm

t =13 days

2.6415

2.642

2.6425

2.643

2.6435

2.644

2.6445

2.645

0 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75

M
a

ss
 o

f 
p

re
ci

p
ita

te
d

 m
a

te
ri

a
l 

p
e

r 
u

n
it 

vo
lu

m
e

 (
g

/m
m

3
)

Length in x direction (mm)

nodes with hy=0mm
nodes with hy=7.5mm
nodes with hy=15mm
nodes with hy=22.5mm
nodes with hy=30mm
nodes with hy=37.5mm

t = 27 days

2.656

2.6565

2.657

2.6575

2.658

2.6585

2.659

2.6595

2.66

0 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75

M
a

ss
 o

f 
p

re
ci

p
ita

te
d

 m
a

te
ri

a
l 

p
e

r 
u

n
it 

vo
lu

m
e

 (
g

/m
m

3
)

Length in x direction (mm)

nodes with hy=0mm
nodes with hy=7.5mm
nodes with hy=15mm
nodes with hy=22.5mm
nodes with hy=30mm
nodes with hy=37.5mm

t = 41 days



Chapter 7 Validation of the Self-Healing Model for 
Cementitious Materials 

 

130 
 

The THC model assumes that the crack recovery of the cementitious materials is due 

to the ongoing hydration of the UCP that can be transported within the saturated 

capillary network via advective and diffusive-dispersive fluxes driven by the gradients of 

the total water potential and chemical concentration. The model offers a macroscale 

image of the reactive transport mechanisms since its focus is not the movement of the 

dissolved clinker ions, but the movement of the unreacted cement particles as a whole. 

The nature of the modelling approach is mechanistic and requires several laboratory 

derived parameters to describe the reactive transport of the solute which were 

unavailable in this initial phase of the research. To overcome this shortcoming, the 

simulation consisted in effect of an inverse parameter identification exercise that 

enabled a qualitative validation of the theoretical considerations underlying the 

proposed THC model. A greater experimental focus on the reactive transport 

mechanisms could produce interesting findings that may considerably improve the 

predicted crack recovery capacity. 

The simulation of the self-healing process was carried out within the framework of the 

finite element method which allows the application of a complete range of boundary 

conditions. It is envisaged that in the future a micromechanical model to be included 

into the existing finite element method in order also asses the mechanical strength 

gain. Taken together, this numerical investigation represents the starting point towards 

a holistic thermo-hygro-chemo-mechanical model that can predict the healing capacity 

of cementitious materials.  
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Chapter 8. Conclusions 
 

 

The present study was conducted to develop a computational code that can 

satisfactorily simulate the autogenous healing of cementitious materials. A coupled 

THC model, that is specifically designed to account for crack recovery from the 

durability point of view, has been described in Chapters 3 and 4. In the following 

paragraphs the conclusions corresponding to the proposed computational 

developments are synthesised and suggestions are made for further research and 

developments.  

The conclusions that can be drawn are directly linked to the aims of the current 

research highlighted in the first chapter. The study presented in this thesis involved : 

1. The development of a reliable theoretical model for the coupled transport of 

moisture and temperature that is capable of simulating the early-age and long 

term thermo-hygral behaviour of ordinary cementitious materials; 

2. The integration of a microstructural model into the proposed TH framework in 

order to realistically reproduce the hydration reaction and the evolution of the 

pore network; 

3. The investigation of the coupled TH model under different curing conditions and 

the comparison of the results with experimental findings; 

4. The coupling of the theoretical principles describing the reactive transport of 

solutes to the TH model and thereby the development of a novel thermo-hygro-

chemical model for the autogenous healing of cement-based materials; 

5. The simulation by means of the finite element method of the autogenous 

healing process and the validation of the results against laboratory data. 

In respect to the first three objectives, that provide the spatial and temporal evolution of 

moisture and heat within the porous network, the following conclusions were reached: 

 The proposed mass and entropy balance equations, in which the transport 

mechanism of moisture is assumed to occur at the capillary pore level, allow a 

wide range of cementitious materials types and curing conditions to be 

considered. The mathematical formulation accounts for consumption of capillary 

water due to hydration, for water adsorption/desorption by the unsaturated 

aggregate and for water desorption from the gel pores at low relative humidities. 

The model gives good predictions of the early age and long term thermo-hygral 
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behaviour of cement-based materials subjected to self-desiccation and external 

drying, but additional experimental work is required in order to correctly 

determine the material parameters related to the transport mechanisms of 

moisture and heat. In this connection, a high priority should be given to the 

thorough investigation of the effect of porosity development upon the 

constitutive law between the capillary pressure and the water saturation degree.  
 
 The accuracy of the simulated TH behaviour depends greatly on the correlation 

between hydration kinetics and porosity evolution. The innovative proposed 

microstructural model, that incorporates a colloidal model for the C-S-H gel 

pores together with the hydration kinetics and stoichiometry of Portland cement, 

provides realistic estimates of the volume fractions of pores and hydrates. The 

model is capable of identifying the minimum w/c ratio necessary for the 

complete hydration of Portland cement and suggests a linear variation of both 

total and capillary porosity with respect to the degree of hydration. 

Nevertheless, further development of this microstructural model is needed in 

order to capture the effect of the addition of cement replacement materials (fly 

ash, ground-granulated blast-furnace slag cement and others) upon the porosity 

development and also the effect of the curing conditions upon the reaction rates 

of the clinker minerals. 
 
 The experimental procedure designed to examine the water absorption of the 

aggregate has shown that the quantity of bulk water transferred from the mix 

into the unsaturated pores of the aggregate may be considered second order in 

comparison with the quantity of water used in hydration.  

In respect to the last two objectives of the thesis, the conclusions are as follows: 

 The proposed self-healing model represents a promising tool for assessing the 

durability improvement of damaged concrete structures. The numerical 

investigation focused mainly on simulating the deposition of new materials in 

cracks, since the available experimental measurements allowed only the 

validation of this process. Whilst the accumulation of precipitates in the empty 

or water filled pores is likely to decrease the permeability of the hardened 

concrete, and thus improve their durability, this needs to be confirmed in future 

work.  
 
 Although the qualitative predictions are good, there is scope for the accuracy of 

these predictions to be improved. An inverse parameter identification exercise, 

aimed at validating the theoretical assumptions underlying the proposed THC 

model, was performed in this study. A logical further step would be a 
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comprehensive investigation of the reactive transport mechanisms, which 

should be supported by detailed experimental evidence. The model assumed 

the movement of the unreacted cement particles towards the crack location as 

a whole, but in the context of new data regarding the reactive transport, it might 

be necessary to narrow the scale of the modelling towards the movement of the 

dissolved clinker ions.  

 
 The finite element method has proved to be an effective numerical framework 

for the THC model which gives accurate predictions of moisture contents, 

entropy distributions and chemical concentrations . Its limitations related to the 

computational cost may be overcome by developing an efficient equation 

solution method. Moreover, the FEM is a suitable choice because it facilitates 

the future coupling of a mechanical component that can simulate the strength 

recovery and, in certain circumstances, the enhancement of healed 

cementitious composites. 
 
 The ability of the proposed THC model to capture self-healing behaviour due to 

ongoing hydration of Portland cement serves as further evidence of its flexibility 

and augurs well for its future application at capturing other healing phenomena. 
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Appendix A. Input for the Microstructural Model 
 

Table A. 1 Stoichiometric reactions for ordinary Portland cements 
 

Process Stage Stoichiometry of the reaction 

Hydration 
C3A 

I 
323

_

62

_

3 HSAC26HHS3CAC  a,b 

1zHSACH6(zHS3CAC 3

_

612

_

3  )  

II 
12

_

4323

_

63 HSA3C4HHSACA2C  a,b 

 
2z1z HSA3CHz-3zHSACA2C

_

4123

_

63   

III 

12

_

312

_

43 CH)H,SA(C2C12HCHHSACAC  b 

 
3z2z CH)H,SA(C2CHz-2zCHHSACAC

_

323

_

43   

1343 AHC12HCHAC   a 

 
4zAHCH1-zCHAC 443   

Hydration 
C3S 

 
1.3CHSHC5.3HSC 41.73   c 

  1.3CHSHCHy1.3SC y1.73   

Hydration 
C2S 

 
0.3CHSHC4.3HSC 41.72   c

  0.3CHSHCHy0.3SC y1.72   

Hydration 
of C4AF 

I 

  3323

_

62

_

4 A)H0.5(F,HSFA,C27.5HHS3CAF0.75C  b,d 

    H60.5zzHS3CAF0.75C 652

_

4  

 
6z5z A)H0.5(F,HSFA,C 3

_

6   

II 

    3123

_

4323

_

64 A)H(F,HSFA,3C7HHSFA,CAF1.5C   

b,d 

 
 

 
6z7z A)H(F,HSFA,3C 3

_

4   

III 
634 F)H(A,2C10H2CHAFC   c 

 
8zF)H(A,2CH2-2z2CHAFC 384   

bolted reactions = saturated stoichiometry 
a: (Taylor, 1997); b: (Mindess et al., 2003); c: (Tennis and Jennings, 2000);  
d: (Jennings and Thomas, 2009)  

     Hzz3zHSFA,CAF1.5C 567z3

_

64 5
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Table A. 2 Stoichiometric coefficients used for saturated and partially saturated 

hydration reactions 
 

 

RH range 

i4 

[60%, 40%) 

i3 

 [40%,11%) 

i2 

[11%,0%) 

i1 

≈0% 

Expelled 

water form 

LGP  

bulk water 

SGP  

constraint water 
AW+ILW+IGW CBW 

y 4a 3.15a 2.10a 1.30a 

z1 32 25.06* 14.41* 7b 

z2 12 10.89* 9.19* 8b 

z3 12 9.75* 6.30* 4.40* 

z4 13 10.56* 6.83* 4.23* 

z5 32 26* 16.80* 10.40* 

z6 3 2.43* 1.58* 0.98* 

z7 12 9.75* 6.30* 3.90* 

z8 6 4.88* 3.15* 1.95* 

Density 

[kg/m3] 
1000 1200 1200 1200 

a – (Jennings, 2008); b – (Powers and Brownyard, 1948; Tennis and Jennings, 2000);  

* - linear interpolation 
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Table A. 3 Kinetics parameters for the investigated Portland cements
 

Kinetics 

parameters c

w
 

Hydration 

curve 

Clinker mineral 

C3S C2S C3A C4AF 

Xk  

0.5 

HC1 0.25 0.46 0.28 0.26 

HC2 

XX
X

K
k


1

  

0.05 0.02 0.02 0.02 

0.348 0.04 0.01 0.02 0.02 

0.487 0.05 0.02 0.02 0.02 

0.4 0.04 0.01 0.02 0.02 

I
Xt  

0.5 

HC1 [hours] 0.9 0 0.9 0.9 

HC2 [days] 

I
XX

I
X Γt   

0.24 0 1.97 8.56 

0.348 0.26 0 2.23 10.26 

0.487 0.24 0 1.99 8.71 

0.4 0.25 0 2.14 9.68 

XK  

0.5 
HC1 1.72 0.96 1.00 2.30 

HC2 

0.70 0.12 0.77 0.55 

0.348 1.83 1.07 1.11 2.40 

0.487 1.73 0.97 1.01 2.31 

0.4 1.79 1.03 1.07 2.37 

I
XΓ   HC2 0.02 1*10-6 0.04 0.4 

D
XΓ   HC2 0.27 0.21 0.19 0.45 

0,X  

0.5 

HC2 

11.90 60.90 49.20 21.40 

0.348 13.12 68.73 55.66 25.66 

0.487 12.00 61.60 49.80 21.80 

0.4 12.70 66.05 53.45 24.20 

D
Xt 0,  [hours] 

0.5 

HC2 

deduced from equation (3.5)Error! Reference 

source not found. 

10.16 12.98 9.96 22.09 

0.348 12.37 18.90 14.15 28.23 

0.487 10.34 13.43 10.28 22.59 

0.4 11.59 16.73 12.61 26.06 

XD [cm2/hours]  HC2 2.5*10-12 8*10-13 4*10-12 9*10-13 

ckR  [cm]  HC2 2.51*10-4 
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Table A. 4 Densities of reactants and reaction products
 

Compound C3A C3S C2S C4AF 

Density [kg/m3] 3030a 3150a 3280a 3730a 

     

Compound 
12

_

3 CH)H,SA(CC  134AHC  41.7SHC  
323

_

6 HSF)(A,C  

Density [kg/m3] 2030c 2044b 2040d 1804b 

     

Compound 3A)H(F,  63 F)H(A,C  CH 
323

_

6 HSAC  

Density [kg/m3] 2711b 2670b 2240a 1750a 

     

Compound 
2

_

HSC  12

_

4 HSF)(A,C 12

_

4 HSAC  

Density [kg/m3] 2320a 2089b 1990a  

a: (Tennis and Jennings, 2000) 
b: (Balonis and Glasser, 2009): individual aluminate and ferrite phases  

c: (Balonis and Glasser, 2009): average of 12

_

4 HSAC  and 134 AHC  
d: (Bernard et al., 2003) 
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Figure A. 1 Algorithm for modelling the hydration of C3A and C4AF (Stage 1) 
 

 

Figure A. 2 Algorithm for modelling the hydration of C3A (Stage 2) 
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Figure A. 3 Algorithm for modelling the hydration of C3A (Stage 3) 

 

 

Figure A. 4 Algorithm for modelling the hydration of C4AF (Stage 2) 
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Figure A. 5 Algorithm for modelling the hydration of C4AF (Stage 3) 

 

 

Figure A. 6 Algorithm for modelling the hydration of C3S and C2S  
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Appendix B. Processed Experimental Data for 

the Self-healing Model 
 

(a) 

(b) 

 

 
Figure B.1 Self-healed area fractions at 27 days: (a) 22.76%; (b) 21.55%; 

all the cross sections are positioned at 127.4mm on x direction
 
 

(a)

 

(b)

 

 
Figure B.2  Self healed area fractions at 41 days: (a) 24.27%; (b) 25.51%; 

all the cross sections are positioned at 127.4mm on x direction



 

 

 


