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Abstract

Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These
responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at
pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their
spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous
plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and
germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying
molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P.
capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic
pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a
fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays,
we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters
the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates
towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence
related phytoalexins.
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Introduction

Plants are exposed to a variety of disease causing organisms,

including viruses, bacteria, fungi, oomycetes, nematodes, insects,

and parasitic plants [1,2]. Yet, one concept in plant pathology is

that in general plants are resistant to most pathogens. Plants have

evolved a defense system that enables them to produce compounds

that affect microbes in various ways. Some of these compounds are

broad spectrum, whereas others are not. Among such defence

compounds are phytoalexins, which are antimicrobial specialized

metabolites that are induced under stress conditions or upon

infection by a pathogen [3–5]. The spectrum of action of

phytoalexins remains poorly understood and, surprisingly, their

contribution to species-level (also known as nonhost) resistance is

not always fully appreciated.

One well-studied phytoalexin is capsidiol, which is produced by

the solanaceous plants Capsicum annuum (pepper) or Nicotiana
tabacum (tobacco) after infection by pathogens such as the

oomycete Phytophthora capsici [6,7]. Remarkably, capsidiol affects

diverse pathogens such as fungi and oomycetes. [3–6,8–11].

Capsidiol is a bicyclic sesquiterpenoid compound and member of

the isoprenoid class of phytoalexins. Like all sesquiterpenes,

capsidiol derives from a common substrate farnesyl diphosphate

(FPP) [12]. Two key enzymes are responsible for the biosynthesis

of capsidiol. 5-epi-aristolochene synthase (EAS) catalyzes the

cyclization of FPP to the intermediate 5-epi-aristolochene, then

5-epi-aristolochene dihydroxylase (EAH) mediates the two hy-

droxylation steps at positions C-1 and C-3 of 5-epi-aristolochene to

yield capsidiol [13]. The dihydroxylase works in parallel with a

cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein

reductase), which transfers electron equivalents for EAH reactions.
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The oomycete genus Phytophthora includes some of the most

destructive plant pathogens [14]. Several Phytophthora spp. infect

solanaceous plants, including important crops like potato, tomato

and pepper. Two of the most notorious species are the potato and

tomato late blight pathogen Phytophthora infestans and the

vegetable pathogen P. capsici. Both P. infestans and P. capsici
have emerged as model systems to study oomycete pathogens and

they have been extensively studied at the genomic level [15–19].

These species follow a hemibiotrophic life style and adopt two

separate phases during infection. In the early stage of infection,

both pathogens need living host cells. This biotrophic phase is

followed by extensive necrosis of host tissue (necrotrophic phase)

[20]. The host range of P. infestans is limited to solanaceous

plants, particularly potato and tomato, whereas P. capsici affects a

wide range of hosts in the Cucurbitaceae, Fabaceae, and

Solanaceae families [14]. Although these two Phytophthora species

share a common host in tomato, P. infestans cannot infect several

host plants of P. capsici, notably pepper. Nonhost resistance to P.
infestans is associated with a plant localized cell death response

also known as the hypersensitive response (HR) [21].

The molecular basis of host-specificity of Phytophthora species,

such as P. infestans and P. capsici is unknown. Although disease

resistance genes that operate at the nonhost level are likely to be

implicated [22], early work has also suggested a role for

phytoalexins. For example, in the 1970s, several studies have

shown that capsidiol has differential activity against P. infestans
and P. capsici [4,5]. Jones et al. showed that P. infestans is more

sensitive (,10 fold) to capsidiol than P. capsici, both in spore

germination and growth assays [4]. Jones et al. also showed that,

below a certain threshold, capsidiol has a reversible effect on both

Phytophthora species [4]. This level of capsidiol is only reached

in vivo in pepper varieties that are resistant to P. capsici, which led

Figure 1. P. infestans is more sensitive to capsidiol than P. capsici. (A) Verification of capsidiol purity as tested by NMR spectroscopy (Nuclear
Magnetic Resonance Spectroscopy). 1H NMR (CDCl3, 600 MHz) spectrum of capsidiol. NMR integrations of the diagnostic methyl doublet at dH

0.88 ppm (expansion) reveal a purity of greater than 98.8%. (*) Represents the impurity. (B) Growth inhibition assay of P. infestans and P. capsici after
10 days of exposure of mycelial plugs to capsidiol. Pink bar delineates the lowest concentration with an inhibitory effect and the red bar the
concentration after which there is no longer growth. This experiment was performed 4 times.
doi:10.1371/journal.pone.0107462.g001
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the authors to suggest sensitivity to capsidiol and differential

accumulation of this phytoalexin might determine host suscepti-

bility [23]. Apart from these pioneering studies that date back to

the 1970s, only few publications have examined the role of

capsidiol in Phytophthora pathosystems except to use it as a marker

for defense [6,8,10,24]. Nonetheless, Shibata et al. showed that

silencing of NbEAS and NbEAH, two ethylene-regulated genes for

capsidiol biosynthesis, negatively impact the resistance of Nicoti-
ana benthamiana against P. infestans suggesting a positive role of

capsidiol in this interaction [25,26].

In this study, we revisited the effect of capsidiol on P. infestans
and P. capsici, and the variation in sensitivity to this phytoalexin.

Compared to the earlier studies [4,11,23,27] we used highly pure

preparations obtained from yeast engineered to express the

capsidiol biosynthetic pathway [28]. We also assayed the effect

of capsidiol on both mycelial growth and zoospores, using a novel

fluorescence-based assay taking advantage of transgenic Phy-
tophthora strains expressing fluorescent markers for biomass

quantification. We confirmed major differences in capsidiol

sensitivity between P. infestans and P. capsici. We also showed

that capsidiol alters the growth behaviour of both Phytophthora
species. Finally, we monitored the intraspecific variation within P.
infestans isolates to capsidiol.

Results

P. infestans is more sensitive to capsidiol than P. capsici
To examine the effect of capsidiol on Phytophthora spp., we

conducted inhibition assays using mycelial plugs of 2 to 3 week-old

plates of P. infestans and P. capsici, which were placed in sterilised

26-well plates (Greiner Bio-one) in a rich medium, supplemented

with varying concentrations of capsidiol. In our experiments, we

used a metabolically engineered yeast system [28] to produce high

purity capsidiol as shown by Nuclear Magnetic Resonance (NMR)

Spectroscopy (Fig. 1A). Mycelial growth was assessed by visual

inspection after 10 days of incubation of agar-grown mycelial plugs

in capsidiol- or control-containing liquid medium at 20uC in the

dark for P. infestans and 25uC and illumination for P. capsici. We

observed reduced P. infestans growth at capsidiol concentrations

of 50 mM or above and no growth was observed at concentrations

of 120 mM and higher. P. capsici growth was affected at capsidiol

concentrations of 1.5 mM or higher, but was not fully inhibited in

any of the tested capsidiol concentrations (Fig. 1B). Since capsidiol

stock solution was dissolved in DMSO, we also tested whether

DMSO affects mycelial growth of Phytophthora. We found, that

DMSO did not affect Phytophthora growth at concentrations

below 2.5% (v/v), which is equivalent to the highest relative

DMSO concentration that was used during the experiment. In

summary, our results confirm earlier indications that P. capsici
displays a higher degree of resistance to capsidiol than P. infestans.
However, in our hands complete growth inhibition of P. infestans
was achieved with 120 mM capsidiol, a value 2 times less than

previously reported [4].

Capsidiol arrest of P. infestans growth is reversible
It has been reported [4,23] that growth inhibiting effects of

capsidiol are reversible at concentrations below 5 mM, while

higher capsidiol concentrations are considered to be fungitoxic

[23]. Following our plug inhibition assays, we studied the

reversibility of capsidiol growth inhibition using the previously

established P. infestans microtitre plate assay. The capsidiol-

containing medium was removed from the wells and the mycelia

were washed 3 times with deionised water, after which fresh liquid

culture medium (Plich) was added. Growth restoration was

observed 24 hours after washing and 10 days later the extent of

mycelial growth was similar to the control that was grown without

any capsidiol (Fig. 2B). This finding is consistent with reports that

low capsidiol concentrations reversibly inhibit Phytophthora
growth [4].

Quantitative evaluation of differential growth inhibition
of P. infestans and P. capsici by capsidiol

In order to quantify the effect of capsidiol on the growth of

Phytophthora strains, we developed and applied an inhibition assay

with zoospore suspension solutions and measured the amount of

growing mycelia using either optical density or emitted fluores-

cence of transgenic Phytophthora strains. For this experiment we

used P. infestans 88069td, P. infestans 88069 [29], P. capsici
LT1534 tdtom and P. capsici LT1534 [16] strains (td and tdtom

strains are transgenic strains expressing the red fluorescent marker

tandem dimer RFP, known as tdTomato). Zoospores were

Figure 2. Capsidiol inhibits P. infestans growth reversibly. (A) Growth inhibition assay of P. infestans after 10 days of exposure of mycelial plugs
to capsidiol. (B) Restoration of growth after washing treatment. Green line indicates the point after which the washing treatment was applied. The
experiment was performed 3 times. Picture was taken 10 days after the washing and 20 days after initial exposure to capsidiol.
doi:10.1371/journal.pone.0107462.g002
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harvested from Phytophthora plates and incubated with various

concentrations of capsidiol in Plich medium in microtitre plates.

The plates were scanned at 1 to 3 day intervals for OD600

(Optical Density at 600 nm) and red fluorescence intensity. Dose

response curves were obtained by measuring both red fluorescence

intensity and OD600 at increasing capsidiol concentrations to

directly compare the difference in sensitivity between P. infestans
and P. capsici (Fig. 3).

Results from measurements of red fluorescence intensity under

capsidiol treatment, revealed statistically significant difference

between P. infestans and P. capsici (Fig. 4). All concentrations of

capsidiol above 50 mM dramatically affected the ability of P.
infestans 88069td to emit red fluorescence. The given values were

at a range of 0.3 red fluorescent units (RFU) after 10 days, close to

the value obtained with the non-fluorescent 88069 strain (Fig. 4A

and S1). On the contrary, P. capsici tdtom retained its ability to

emit red fluorescence up to a concentration of 650 mM of

capsidiol, after which RFU levels dropped down to the non-

fluorescent P. capsici strain values (Fig. 4B and S1).

The observed growth differences could also be reported using

OD600 measurements (Fig. 5). Capsidiol concentrations of 50 mM

or greater were detrimental for P. infestans growth, after which it

was suppressed at OD600 levels lower than the control strain

(Fig. 5A and S1). P. capsici growth was severely affected by

capsidiol concentrations of 650 mM and higher, where the OD600

values were close to the ones of the control strain (Fig. 5B).

These results corroborate the findings that P. capsici is more

resistant to capsidiol than P. infestans and revealed that the

difference in sensitivity is almost 13 fold. DMSO did not affect the

red fluorescence intensity or OD600 of any of the Phytophthora
strains at concentrations below 2.36% (v/v), a value equivalent

with the maximum capsidiol solution that was used during the

experiment.

Figure 3. Capsidiol is not affecting P. capsici growth as severely as it does P. infestans. (A) Dose response curves of P. infestans 88069td
calculated at 4, 7 and 10 days for both Fluorescence intensity and OD600. (B) Dose response curves of P. capsici tdtom calculated at 4, 7 and 10 days
for both Fluorescence intensity and OD600.
doi:10.1371/journal.pone.0107462.g003
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Capsidiol alters P. infestans and P. capsici mycelial growth
In order to study the effects of capsidiol-mediated inhibition of

mycelial growth of Phytophthora we microscopically monitored the

hyphal morphology during a capsidiol time course treatment at 2–

4 day intervals in microtitre plates. When monitoring hyphal

growth of P. infestans 88069td (Fig. 6) and P. capsici tdtom

(Fig. 7) we observed that capsidiol alters P. infestans growth more

severely and is effective at concentrations of 10 mM, whereas P.
capsici remains unaffected. Stunted branching of P. capsici tdtom

mycelia was observed at capsidiol concentrations of 400 mM.

DMSO did not have any effect on growth for either P. infestans
88069td or P. capsici tdtom (Fig. S2). These results are in

agreement with the limiting capsidiol concentrations obtained in

zoospore inhibition assays for both species.

Variation in sensitivity to capsidiol among P. infestans
isolates

To identify differences in sensitivity towards capsidiol between

various P. infestans isolates, we conducted an experiment

exposing mycelial plugs to various concentrations of capsidiol, as

described above. For this experiment we used the following P.
infestans isolates: 88069 [30], 88069td [31,32], T30-4 [15],

06_3928A [18], VK98014 [33], EC1-3527, EC1-3626,

2004_7804B [18], 2011_8410B [18] and NL08645 [15] (Table 1).

We found that only one isolate, 06_3928A, displayed a similar

level of resistance to capsidiol as our reference isolate, 88069,

whereas the other isolates were more sensitive with isolate

NL08645 being the most sensitive to capsidiol (Fig. 8). DMSO

did not have any effect on Phytophthora growth in the

concentrations used to dilute capsidiol. Our results support

Figure 4. Scatter plots correlating fluorescence intensity and capsidiol concentration. The plots illustrate fluorescence intensity of P.
infestans 88069td (A) and P. capsici tdtom (B) strains over time for a maximum of 10 days. The experiment was performed 3 times.
doi:10.1371/journal.pone.0107462.g004
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strain-specific variation of P. infestans isolates to capsidiol growth

inhibition, the genetic basis of which remains to be studied.

Discussion

In this work, we developed new assays to examine the effect of

the phytoalexin capsidiol on two Phytophthora species with

differing host ranges. Our results are overall consistent with a

1975 report [4] that P. infestans is more sensitive to capsidiol than

P. capsici using highly pure preparations of capsidiol. A major

(.10-fold) differential effect of capsidiol between species was noted

using both mycelial and zoospore assays. Considering that this

phytoalexin is produced by pepper but not potato, our findings are

consistent with the hypothesis that capsidiol contributes to nonhost

resistance of pepper to P. infestans.
Previous studies used capsidiol purified from pepper fruits or

tobacco cell cultures [4,11,23,27]. We used a recently developed

method to produce highly pure capsidiol synthesized in yeast [28].

This reduced the likelihood that contaminating phytochemicals

may have affected the experiments. It allowed us to directly test

the effect of capsidiol on Phytophthora species and helped us to

more accurately estimate the inhibitory doses of capsidiol on

Phytophthora growth. Furthermore, we took advantage of

fluorescently labelled Phytophthora strains to measure biomass

and growth. Although our findings are consistent with the earlier

studies, we could more accurately estimate the difference in

Figure 5. Scatter plots correlating 0D600 and capsidiol concentration. The plots illustrate growth of P. infestans 88069td (A) and P. capsici
tdtom (B) strains over time for a maximum of 10 days. The experiment was performed 3 times.
doi:10.1371/journal.pone.0107462.g005
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sensitivity. We found that 120 mM of capsidiol completely

inhibited growth of P. infestans both in mycelial and zoospore

assays, whereas Jones et al. concluded that this effect started at

200 mM of capsidiol [4]. Furthermore, in our mycelial plug assays

P. capsici was not completely inhibited even at a concentration of

2 mM capsidiol, whereas according to Jones et al. 1.5 mM is a

completely inhibitory concentration [4]. However, these differ-

ences are probably due to the assays used. Our zoospore assays

were more consistent with the results of Jones et al. who concluded

that capsidiol has a fungistatic effect at 3.75 mM and is fungitoxic

at concentrations that exceed 5 mM [4,23]. We also found that the

difference in sensitivity to capsidiol between the two Phytophthora
species is approximately 13 fold, which is in agreement with earlier

studies that showed P. capsici to be at least 10 times more resistant

to capsidiol than P. infestans [4]. Finally we extended our studies

and showed that the level of sensitivity between different P.

Figure 6. Growth behaviour of P. infestans 88069td, after 10 days of exposure to different capsidiol concentrations. The experiment
was performed 3 times.
doi:10.1371/journal.pone.0107462.g006

Figure 7. Growth behaviour of P. capsici tdtom, after 10 days of exposure to different capsidiol concentrations. The experiment was
performed 3 times.
doi:10.1371/journal.pone.0107462.g007
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infestans isolates varies, providing a basis for studying the

underlying genetic variation.

Earlier studies have showed that similar to capsidiol, other

phytoalexins show a differential toxicity to phytopathogenic fungi.

Hargreaves et al. [34] showed that the major phytoalexins from

Vicia faba including isoflavoinoid medicarpin and wyerone acid

had a greater impact on germ tubes produced by the necrotrophic

fungus Botrytis cinerea, than B. fabae. They further highlighted a

differential toxicity in wyerone derivatives than medicarpin [34].

Also, another study on the effect of the phytoalexins pisatin and

maackiain from garden pea and red clover, respectively, against 19

fungal species revealed that nonhost phytoalexins have a greater

effect inhibiting growth of the pathogens tested than the

phytoalexins naturally occurring in the host [35]. These studies

point out that differential activity of phytoalexins is a common

phenomenon, and highlight the importance of understanding how

different pathogens have evolved to cope with them.

What could be the nature of the differential effect of capsidiol on

the two Phytophthora species? Ward and Stoessl [36] argued that

P. capsici detoxification of capsidiol is unlikely and instead

proposed that P. capsici does not induce high enough levels of

capsidiol during infection of its host plant pepper [4,36,37].

Detoxification would probably involve oxidation of capsidiol to a

less fungitoxic ketone, capsenone, as noted in in vitro assays with

the fungi Botryris cinerea and Fusarium spp. [3,36]. Importantly,

capsenone was not detected in pepper tissue infected with P.
capsici indicating that the pathogen may evade the phytoalexin by

limiting its induction [36]. Alternatively, ATP-binding cassette

(ABC) transporters may be involved as an efflux pump. Coleman

et al. showed that the rot causing ascomycete Nectria haemato-
cocca can overcome the effect of the pea phytoalexin pisatin using

a specific ABC transporter, NhABC1, that enhances the fungus

tolerance to the phytoalexin [38]. Since there is no evidence that

P. capsici can detoxify capsidiol [36,37], P. capsici may rely on

ABC transporters to cope with capsidiol. A more recent study on

the role of ABC transporters in fungicide sensitivity in P. infestans
failed to show correlation between up-regulation of ABC

transporter genes in strains that are less sensitive to fungicides

[39]. Whether inter- or intra-specific variation in expression of

ABC transporter genes explains differences in capsidiol sensitivity

in Phytophthora remains to be determined.

A genetic difference in the target of capsidiol could underpin the

difference in sensitivity between the P. capsici and P. infestans. De

Marino et al. [40] showed that capsidiol has a bacteriostatic effect

against the human gastritis pathogen Helicobacter pylori in vitro

but the mode of action remains unknown. It would be interesting

to identify the molecules that are targeted by capsidiol in

Phytophthora. Given that the genome sequences of P. capsici
and P. infestans are available [15,41,42], a promising approach

would be to determine transcriptome dynamics in response to

capsidiol. From an evolutionary perspective, it would be of great

interest to examine the response of Phytophthora to other

sesquiterpenes that emerged during the functional divergence of

terpene synthases in solanaceous plants [43].

The differences in capsidiol sensitivity observed among various

P. infestans isolates reflect the remarkable level of diversity noted

in this highly adaptable plant pathogen species [18,21]. This

variation is similar to what has been noted for sensitivity to

fungicides in P. infestans and other oomycetes [44–46]. In some

cases the genetic basis of chemical sensitivity has been identified.

Randall et al. determined that sequence polymorphisms in the

large subunit of RNA polymerase I (RPA190) contributes to P.
infestans insensitivity to the oomycete-specific control chemical

Mefenoxam [44]. Also, Blum et al. demonstrated that for two

oomycetes, the causal agent of downy mildew in grape,

Plasmopara viticola and P. infestans, an amino acid change in a

protein known to be involved in cellulose biosynthesis (PiCESA3

and PvCESA3 in the two pathogens respectively) confers

insensitivity to Mandipropamide [45,46].

We observed that sensitivity to capsidiol ranged ,5 fold in the

P. infestans isolates tested. Is there a biological significance for

these differences? Although potato does not produce capsidiol, it is

possible that P. infestans has evolved mechanisms to tolerate other

terpenoids produced by potato, which might contribute to host

immunity. Indeed, potato is known to accumulate rishitin, another

bicyclic sesquiterpene phytoalexin that is related to capsidiol [22].

In the future, it would be interesting to examine whether there is

any correlation between aggressiveness and tolerance to capsidiol

among various P. infestans isolates.

Finally, our work points to a biotechnological approach to

engineer resistance to P. infestans. Genetic manipulation of

capsidiol production in Nicotiana benthamiana, a P. infestans host

plant that produces capsidiol, has already indicated that this

phytoalexin contributes to disease resistance [25,26]. Interestingly,

P. capsici is markedly more aggressive pathogen of N. benthami-
ana than P. infestans [29], possibly because it can tolerate the

capsidiol produced by this plant. Ultimately, capsidiol biosynthetic

genes could be transferred from pepper or tobacco to potato and

tomato as a potential strategy for disease resistance against P.
infestans.

Table 1. Provenance of Phytophthora samples.

Isolate ID Country of origin Collection year Host species Reference

88069 The Netherlands 1988 Solanum lycopersicum Van West et al. (1998)

88069td Whisson SC et al. (2007)

T30–4 Haas et al. (2009)

06_3928A United Kingdom 2006 Solanum tuberosum Cooke, Cano et al. (2012)

VK98014 The Netherlands 1998 Solanum tuberosum G. J. T. Kessel et al. (2012)

EC13527 Ecuador 2002 Solanum andreanum World Oomycete Genetic Resource Collection at UC Riverside, CA

EC13626 Ecuador 2003 Solanum tuberosum World Oomycete Genetic Resource Collection at UC Riverside, CA

2004_7804B Scotland 2004 Solanum tuberosum Cooke, Cano et. al, (2012)

2011_8410B United Kingdom 2011 Solanum tuberosum Cooke, Cano et. al, (2012)

NL08645 The Netherlands 2008 Solanum venturii G. J. T. Kessel et al. (2012)

doi:10.1371/journal.pone.0107462.t001
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Materials and Methods

Yeast growth
The yeast strain EPY300 was engineered to express the

capsidiol biosynthetic pathway [28] and was used to produce

capsidiol by fermentation. In brief a starter culture (ca. 20 ml) was

prepared and inoculated into a 5 L-bioreactor containing rich

media to full capacity. The media consisted in 1% Bacto yeast

extract, 2% Bacto peptone (BD Biosciences, Oxford, UK), 1.8%

galactose, 0.2% glucose, 150 mg/L methionine and 80 mg/L

adenine hemisulphate (Sigma Aldrich Co Lt, Dorset, UK). The

bioreactor was set to 30uC, with constant stirring (180 rmp) and

aeration at 4 L/min. After 96 hours both stirring and aeration

were stopped, and the temperature was reduced to 5uC. Once

Figure 8. Different P. infestans isolates have different sensitivity to capsidiol. Isolates are clustered according to their sensitivity, starting
from the most sensitive to the least. Top row of wells of each isolate represents capsidiol treatment (capsidiol was dissolved in DMSO/Plich media) in
mM and the lower row represents treatment with 1% (v/v) DMSO/Plich (negative control). The experiment was performed 3 times.
doi:10.1371/journal.pone.0107462.g008
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yeast cells had settled (24–48 h), the media containing the yeast-

produced capsidiol was decanted for extraction.

Capsidiol extraction and purification
Capsidiol was isolated by dichloromethane extractions of the

media. The combined extracts (eg 5 L total volume) were dried,

filtered and evaporated to dryness using a rotary evaporator. The

crude extract (ca. 1,500 mg) was re-dissolved in a minimum

volume of 1:1 hexane/ethyl acetate (EA) and applied to a glass

sinter funnel 40 mm640 mm containing silica gel (previously

equilibrated with hexane), and connected to an on-house pump.

Purification of capsidiol was accomplished by vacuum filtration

using a gradient (0–66%) of ethyl acetate/hexane. Each fraction

(25 mL) was assessed for capsidiol (Rf = 0. 363) content by

analytical TLC (Merck silica gel 60 (F254) 767 cm aluminium-

coated plates), using 66% ethyl acetate/hexane as the developing

solvent and visualization with CAM solution (cerium ammonium

molybdate). Fractions judged to contain exclusively capsidiol were

combined together and evaporated under reduced pressure.

Further (and final) purification of this material was effected by

preparative TLC (Merck silica gel 60 (F254) 20620 cm glass-

coated plates) previously sprayed with a 0.5% berberine chloride

ethanolic solution (non-destructive visualization of capsidiol by

UV at 365 nm). Briefly, the silica gel TLC plates were divided

horizontally in two halves by removing a thing line of silica coating

and the sample (containing around 25 mg of product) was placed

in a continuous line 1 cm above the bottom of the plate. After

loading, the band was ‘focused/concentrated’ twice by standing

the plate in a tank containing pure EA until the solvent front

reached 2 cm. After air-drying, the plate was finally developed

using 66% ethyl acetate/hexane. The band corresponding to

capsidiol (Rf = 0.363) after visualization by UV light (365 nm) was

marked and scraped off avoiding the very bottom of the band,

which was shown to contain an as yet unidentified more polar

terpene compound. The silica gel scrapings were loaded into a

pipette-column and washed using ethyl acetate.

Typically we found that 5 L fermentation yielded around

1,500 mg of crude extract, which is reduced to about 700 mg after

silica column, to produce 300–400 mg of essentially pure capsidiol

(.97% by 1H-NMR) after preparative TLC.

Identification of capsidiol
The unambiguous identification and purity estimation of the

yeast-produced capsidiol was carried out by NMR spectroscopy

and combined liquid chromatography-mass spectroscopy (LC/

MS) following the method of Literakova et al. [27] with slight

modifications. In brief, we used an isocratic 75% methanol: water

solvent mixture, in a C8 reverse column (Agilent 1100 MSD) with

negative mode TIC and SIM at m/z 201, 219, 259.

Phytophthora cultivation
Phytophthora strains were grown on rye sucrose agar as

previously described [47] at 20uC in the dark (P. infestans) or

on V8 vegetable juice agar [7] plates (P. capsici) at 25uC and

illumination. For the plug inhibition assays, 5 mm diameter plugs

were taken from 2–3 week-old Phytophthora plates and placed in

the wells of a 24-well plate, previously filled with 1 ml of Plich

medium [2.4 gr sucrose, 0.27 gr asparagine, 0.15 g KH2P04, 0.10

gr MgS04 7H2O, 10 mg cholesterol, 10 mg ascorbic acid, 2 mg

thiamine HCl, 4.4 mg ZnSO4 7H2O, 1 mg FeSO4 7H2O,

0.07 mg MnCl2 4H2O and 20 g agar (Difco) dissolved in 1 L

deionized water [48]. For the zoospores inhibition assays, spores

were harvested as previously described [47,49] and diluted to

50,000 spores/ml. Droplets of 10 ml were added to each well of a

96-well plate, previously filled with 250 ml of Plich medium. Plates

were kept at 20uC in the dark and 25uC and illumination for P.
infestans and P. capsici respectively. Washes were applied to the

plates containing the Phytophthora plugs by carefully removing the

Plich media from the wells, adding distilled water, expose for 1 to

2 minutes and remove. This step was repeated at least 2 times.

Finally 1 ml of fresh Plich media was added and plates were kept

at 20uC in the dark (P. infestans) and 25uC and illumination for P.
capsici.

Spectroscopic growth assays
For the zoospore inhibition assays, 10 ml zoospore solution per

well was distributed into 96-well microtitre plates (Greiner bio-

one), covered with a plastic lid (Greiner bio-one), sealed with

Parafilm (Pechiney Plastic Packaging Company) and incubated at

25uC in the dark for P. infestans and at 25uC and illumination for

P. capsici, over 10 days. At regular intervals, mycelial growth was

monitored using a Varioscan Flash Multimode Reader (Thermo

Scientific) by measuring light absorption at OD600 as well as

emission of red fluorescence (excitation at 360 nm, emission at

465 nm).

Light microscopy
Mycelia grown in 96-well microtitre plates were imaged using a

Zeiss Axiovert 25 microscope in transmission light mode with 10x

magnification. Pictures were taken using a Cannon E0S-D30

camera.

Supporting Information

Figure S1 Fluorescence intensity of the non-fluorescent
stains P. infestans 88069 and P. capsici LT1534. These

strains were used as controls to verify that the signal in the

fluorescent strains corresponds to fluorescence.

(TIF)

Figure S2 Growth behaviour of P. infestans 88069 and
P. capsici LT1534 after exposure to DMSO. Both

Phytophthora strains were exposed to 1.5% and 2.36% (v/v)

DMSO/Plich for 10 days. DMSO levels correspond to the

maximum capsidiol solution that was used in each experiment.

The experiment was performed 3 times.

(TIF)
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