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Abstract

The dissemination of Electronic Health Records (EHRs) can be highly beneficial

for a range of medical studies, spanning from clinical trials to epidemic control

studies, but it must be performed in a way that preserves patients’ privacy. This

is not straightforward, because the disseminated data need to be protected against

several privacy threats, while remaining useful for subsequent analysis tasks. In

this work, we present a systematic review of algorithms that have been proposed

for publishing structured patient data, in a privacy-preserving way. We review

more than 45 popular algorithms, derive insights on their operation, and high-

light their advantages and disadvantages. We also provide a discussion of some

promising directions for future research in this area.

Keywords: privacy, electronic health records, anonymization, algorithms, survey

1. Introduction

Electronic Medical Record / Electronic Health Record (EMR/EHR) systems

are increasingly adopted to collect and store various types of patient data, which

contain information about patients’ demographics, diagnosis codes, medication,
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allergies, and laboratory test results [22, 90, 63]. For instance, the use of EMR/EHR

systems, among office-based physicians, increased from 18% in 2001 to 72% in

2012 and is estimated to exceed 90% by the end of the decade [56].

Data from EMR/EHR systems are increasingly disseminated, for purposes be-

yond primary care, and this has been shown to be a promising avenue for improv-

ing research [63]. This is because it allows data recipients to perform large-scale,

low-cost analytic tasks, which require applying statistical tests (e.g., to study cor-

relations between BMI and diabetes), data mining tasks, such as classification

(e.g., to predict domestic violence [107]) and clustering (e.g., to control epidemics

[117]), or query answering. To facilitate the dissemination and reuse of patient-

specific data and help the advancement of research, a number of repositories have

been established, such as the the Database of Genotype and Phenotype (dbGaP)

[89], in the U.S., and the U.K. Biobank [104], in the United Kingdom.

1.1. Motivation

While the dissemination of patient data is greatly beneficial, it must be per-

formed in a way that preserves patients’ privacy. Many approaches have been

proposed to achieve this, by employing various techniques [43, 5], such as cryp-

tography (e.g., [73, 55, 121, 11]) and access control (e.g., [110, 71]). However,

these approaches are not able to offer patient anonymity (i.e., that patients’ private

and confidential information will not be disclosed) when data about patients are

disseminated [39]. This is because the data need to be disseminated to a wide (and

potentially unknown) set of recipients.

Towards preserving anonymity, policies that restrict the sharing of patient-

specific medical data are emerging worldwide [91]. For example, in the U.S., the

Privacy Rule of the Health Insurance Portability and Accountability Act (HIPAA)

2



[120] outlines two policies for protecting anonymity, namely Safe Harbor, and

Expert Determination. The first of these policies enumerates eighteen direct iden-

tifiers that must be removed from data, prior to their dissemination, while, accord-

ing to the Expert Determination policy, an expert needs to certify that the data to

be disseminated pose a low privacy risk before the data can be shared with ex-

ternal parties. Similar policies are in place in countries, such as the U.K. [2] and

Canada [3], as well as in the European Union [1]. These policies focus on prevent-

ing the privacy threat of identity disclosure (also referred to as re-identification),

which involves the association of an identified individual with their record in the

disseminated data. However, it is important to note that they do not provide any

computational guarantees for thwarting identity disclosure nor aim at preserving

the usefulness of disseminated data in analytic tasks.

To address re-identification, as well as other privacy threats, the computer

science and health informatics communities have developed various techniques.

Most of these techniques aim at publishing a dataset of patient records, while satis-

fying certain privacy and data usefulness objectives. Typically, privacy objectives

are formulated using privacy models, and enforced by algorithms that transform

a given dataset (to facilitate privacy protection) to the minimum necessary extent.

The majority of the proposed algorithms are applicable to data containing demo-

graphics or diagnosis codes1, focus on preventing the threats of identity, attribute,

and/or membership disclosure (to be defined in subsequent sections), and operate

by transforming the data using generalization and/or suppression techniques.

1These algorithms deal with either relational or transaction (set-valued) attributes. However,

following [34, 75, 76, 87], we discuss them in the context of demographic and diagnosis informa-

tion, which is modeled using relational and transaction attributes, respectively.
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1.2. Contributions

In this work, we present a survey of algorithms for publishing patient-specific

data in a privacy-preserving way. We begin by discussing the main privacy threats

that publishing such data entails, and the privacy models that have been designed

to prevent these threats. Subsequently, we provide a systematic review of algo-

rithms, for each of these threats, which explains the strategies these algorithms

employ for: (i) transforming data, (ii) preserving data usefulness, and (iii) search-

ing the space of potential solutions. Based on these strategies, we then classify

over 45 popular privacy algorithms. This allows deriving interesting insights on

the operation of these algorithms, as well as on their advantages and limitations.

In addition, we provide an overview of techniques for preserving privacy that are

designed for different settings and types of data, and identify a number of impor-

tant research directions for future work.

To the best of our knowledge, this is the first survey on algorithms for facilitat-

ing the privacy-preserving sharing of structured medical data. However, there are

surveys in the computer science literature that do not focus on methods applicable

to such data [39], as well as surveys that focus on privacy preservation methods

for text data [94], privacy policies [91, 93], or system security [36] issues. In ad-

dition, we would like to note that the aim of this paper is to provide insights on

the tasks and objectives of a wide range of algorithms. Thus, we have omitted

the technical details and analysis of specific algorithms and refer the reader to the

publications describing the algorithms for them.

1.2.1. Organization

The remainder of this work is organized as follows. Section 2 presents the

privacy threats and models that have been proposed for preventing them. Sec-
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tion 3 discusses the two scenarios for privacy-preserving data sharing. Section

4 surveys algorithms for publishing data, in the non-interactive scenario. Sec-

tion 5 discusses other classes of related techniques. Section 6 presents possible

directions for future research, and Section 7 concludes the paper.

2. Privacy threats and models

In this section, we first discuss the major privacy threats that are related to the

disclosure of individuals’ private and/or sensitive information. Then, we present

privacy models that can be used to guard against each of these threats. The impor-

tance of discussing privacy models is twofold. First, privacy models can be used

to evaluate how safe data are prior to their release. Second, privacy models can be

incorporated into algorithms to ensure that the data can be transformed in a way

that preserves privacy.

2.1. Privacy threats

Privacy threats relate to three different types of attributes, direct identifiers,

quasi-identifiers, and sensitive attributes. Direct identifiers are attributes that can

explicitly re-identify individuals, such as name, mailing address, phone number,

social security number, other national IDs, and email address. On the other hand,

quasi-identifiers are attributes which in combination can lead to identity disclo-

sure, such as demographics (e.g., gender, date of birth, and zip code) [109, 128]

and diagnosis codes [75]. Last, sensitive attributes are those that patients are not

willing to be associated with. Examples of these attributes are specific diagnosis

codes (e.g., psychiatric diseases, HIV, cancer, etc.) and genomic information. In

Table 1, we present an example dataset, in which Name and Phone Number
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are direct identifiers, Date of birth, Zip Code, and Gender are quasi-

identifiers, and DNA is a sensitive attribute.

Direct identifiers Quasi-identifiers Sensitive Attribute

Name Phone Number Date of birth Zip Code Gender DNA

Tom Green 6152541261 11.02.1980 55432 Male AT. . .G

Johanna Marer 6152532126 17.01.1982 55454 Female CG. . .A

Maria Durhame 6151531562 17.01.1982 55332 Female TG. . .C

Helen Tulid 6153553230 10.07.1977 55454 Female AA. . .G

Tim Lee 6155837612 15.04.1984 55332 Male GC. . .T

Table 1: An example of different types of attributes in a relational table

Based on the above-mentioned types of attributes, we can consider the follow-

ing classes of privacy threats:

• Identity disclosure (or re-identification) [112, 128]: This is arguably the

most notorious threat in publishing medical data. It occurs when an attacker

can associate a patient with their record in a published dataset. For exam-

ple, an attacker may re-identify Maria in Table 1, even if the table is pub-

lished deprived of the direct identifiers (i.e., Name and Phone Number).

This is because Maria is the only person in the table who was born on

17.01.1982 and also lives in zip code 55332.

• Membership disclosure [100]: This threat occurs when an attacker can infer

with high probability that an individual’s record is contained in the pub-

lished data. For example, consider a dataset which contains information on

only HIV-positive patients.The fact that a patient’s record is contained in

the dataset allows inferring that the patient is HIV-positive, and thus poses

a threat to privacy. Note that membership disclosure may occur even when

the data are protected from identity disclosure, and that there are several
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real-world scenarios where protection against membership disclosure is re-

quired. Such interesting scenarios were discussed in detail in [100, 101].

• Attribute disclosure (or sensitive information disclosure) [88]: This threat

occurs when an individual is associated with information about their sensi-

tive attributes. This information can be, for example, the individual’s value

for the sensitive attribute (e.g., the value in DNA in Figure 1), or a range

of values which contain an individual’s sensitive value (e.g., if the sensitive

attribute is Hospitalization Cost, then knowledge that a patient’s value in

this attribute lies in a narrow range, say [5400, 5500], may be considered as

sensitive, as it provides a near accurate estimate of the actual cost incurred,

which may be considered to be high, rare, etc.).

There have been several incidents of patient data publishing, where identity

disclosure has transpired. For instance, Sweeney [112] first demonstrated the

problem in 2002, by linking a claims database, which contains information of

about 135K patients and was disseminated by the Group Insurance Commission,

to the voter list of Cambridge, Massachusetts. The linkage was performed, based

on patient demographics (e.g., Date of birth, Zip code, and Gender) and led to the

re-identification of, William Weld, then governor of Massachusetts. It was also

suggested that more than 87% of U.S. citizens could be re-identified, based on

such attacks. Many other identity disclosure incidents have been reported since

[33]. These include attacks in which (i) students re-identified individuals in the

Chicago homicide database by linking it with the social security death index, (ii)

an expert witness re-identified most of the individuals represented in a neurob-

lastoma registry, and (iii) a national broadcaster re-identified a patient, who died
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while taking a drug, by combining the adverse drug event database with public

obituaries.

Membership and attribute disclosure have not led yet to documented privacy

breaches in the healthcare domain. However, they have raised serious privacy

concerns and were shown to be feasible in various domains. For example, in-

dividuals who were opposed to their potential association with sensitive movies

(e.g., movies related to their sexual orientation) took legal action when it was

shown that data published by Netflix may be susceptible to attribute disclosure

attacks [99].

2.2. Privacy models

In this section, we present some well-established privacy models that guard

against the aforementioned threats. These privacy models: (i) model what leads

to one or more privacy threats, and (ii) describe a computational strategy to en-

force protection against the threat. Privacy models are subsequently categorized

according to the privacy threats they protect from, as also presented in Table 2.

2.2.1. Models against identity disclosure

A plethora of privacy models have been proposed to prevent identity disclo-

sure in medical data publishing. These models can be grouped, based on they

type of data to which they are applied, into two major categories: (i) models for

demographics, and (ii) models for diagnosis codes.

Models for demographics. The most popular privacy model for protecting demo-

graphics is k-anonymity [109, 112]. k-anonymity requires each record in a dataset

D to contain the same values in the set of Quasi-IDentifier attributes (QIDs) with

at least k−1 other tuples in D. Recall that quasi-identifiers are typically innocuous
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Attack Type Privacy Models

Demographics Diagnosis codes

Identity disclosure

k-anonymity [112]

k-map [34] complete k-anonymity [52]

(1, k)-anonymity [45] km-anonymity [115]

(k, 1)-anonymity [45] privacy-constrained anonymity [76]

(k, k)-anonymity [45]

Membership disclosure
δ-presence [100]

c-confident δ-presence [103]

Attribute disclosure

l-diversity [88, 69]

(a,k)-anonymity [126]

p-sensitive-k-anonymity [118] ρ-uncertainty [16]

t-closeness [69] (h, k, p)-coherence [130]

range-based [81, 60] PS-rule based anonymity [80]

variance-based [64]

Worst Group Protection [84]

Table 2: Privacy models to guard against different attacks

attributes that can be used in combination to link external data sources with the

published dataset. Satisfying k-anonymity offers protection against identity dis-

closure, because it limits the probability of linking an individual to their record,

based on QIDs, to 1/k. The parameter k controls the level of offered privacy and

is set by data publishers, usually to 5 in the context of patient demographics [92].

Another privacy model that has been proposed for demographics is k-map

[113]. This model is similar to k-anonymity but considers that the linking is per-

formed based on larger datasets (called population tables), from which the pub-

lished dataset has been derived. Thus, k-map is less restrictive than k-anonymity,

typically allowing the publishing of more detailed patient information, which

helps data utility preservation. On the negative side, however, the k-map pri-

vacy model is weaker (in terms of offered privacy protection) than k-anonymity

because it assumes that: (i) attackers do not know whether a record is included in

the published dataset, and (ii) data publishers have access to the population table.

El Emam et al. [34] provide a discussion of the k-anonymity and k-map mod-
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els and propose risk-based measures, which approximate k-map and are more

applicable in certain re-identification scenarios. Three privacy models, called

(1, k)-anonymity, (k, 1)-anonymity and (k, k)-anonymity, which follow a simi-

lar concept to k-map, and are relaxations to k-anonymity, have been proposed by

Gionis et al. [45]. These models differ in their assumptions about the capabilities

of attackers and can offer higher data utility but weaker privacy than k-anonymity.

Models for diagnosis codes. Several privacy models have been proposed to pro-

tect identity disclosure attacks when sharing diagnosis codes. The work of He and

Naughton [52] proposed complete k-anonymity, a model which assumes that any

combination of diagnosis codes can lead to identity disclosure and requires at least

k records, in the published dataset, to have the same diagnosis codes. Complete k-

anonymity, however, may harm data utility unnecessarily because it is extremely

difficult for attackers to know all the diagnoses in a patient record [75].

A more flexible privacy model, called km-anonymity, was proposed by Ter-

rovitis et al. in [115]. km-anonymity uses a parameter m to control the maximum

number of diagnosis codes that may be known to an attacker, and it requires each

combination of m diagnosis codes to appear in at least k records of the released

dataset. This privacy model is useful in scenarios in which data publishers are

unable (or unwilling) to specify certain sets of diagnosis codes that may lead to

identity disclosure attacks.

Recently, a privacy model, called privacy-constrained anonymity, was intro-

duced by Loukides et al. in [76]. Privacy-constrained anonymity is based on

the notion of privacy constraints. These are sets of diagnosis codes that may be

known to an attacker and, collectively, they form the privacy policy. Given an

owner-specified privacy policy, the privacy-constrained anonymity model limits
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the probability of performing identity disclosure to at most 1/k, by requiring the

set of diagnoses in each privacy constraint to appear at least k times in the dataset

(or not appear at all).

By definition, privacy-constrained anonymity assumes that attackers know

whether a patient’s record is contained in the released dataset. This assumption is

made by most research in the field (e.g., [115, 130, 52, 78]), because such knowl-

edge can be obtained by applying the procedure used to create the released data

from a larger patient population, which is often described in the literature [75].

Relaxing this assumption, however, is straightforward by following an approach

similar to that of the k-map model, and can potentially offer more utility at the

expense of privacy. Privacy-constrained anonymity allows protecting only sets of

diagnosis codes that may be used in identity disclosure attacks, as specified by

the privacy policy. Thus, it addresses a significant limitation of both complete

k-anonymity and km-anonymity which tend to overly protect the data (i.e., by

protecting all or all m combinations of diagnosis codes), as well as preserving

data utility significantly better.

2.2.2. Models against membership disclosure

The privacy models that have been discussed so far are not adequate for pre-

venting membership disclosure, as explained in [100]. To address this shortcom-

ing, two privacy models have been proposed by Nergiz et al. in [100] and [101].

The first of these models, called δ-presence [100], aims at limiting the attacker’s

ability to infer that an individual’s record is contained in a relational dataset D,

given a version D̃ of dataset D that is to be published and a public, population

table P . The latter table is assumed to contain “all publicly known data” (i.e.,

the direct identifiers and quasi-identifiers of all individuals in the population, in-
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cluding those in D). Satisfying δ-presence offers protection against membership

disclosure, because the probability of inferring that an individual’s record is con-

tained in table D, using D̃ and P , will be within a range (δmin, δmax) of acceptable

probabilities. A record that is inferred with a probability within this range is called

δ-present, and the parameters δmin and δmax are set by data publishers, who also

need to possess the population table P .

The fact that δ-presence requires data owners to have access to complete in-

formation about the population, in the form of table P , limits its applicability. To

address this issue, Nergiz et al. [103] proposed the c-confident δ-presence privacy

model. This model assumes a set of distribution functions for the population (i.e.,

attackers know the probability that an individual is associated with one or more

values, over one or more attributes) instead of table P , and ensures that a record

is δ-present with respect to the population with an owner-specified probability c.

2.2.3. Models against attribute disclosure

Privacy models against sensitive attribute disclosure can be classified into two

groups, according to the type of attributes they are applied to: (i) models for

patient demographics, and (ii) models for diagnosis codes. In what follows, we

describe some representative privacy models from each group.

Models for demographics. The most popular privacy model that thwarts attribute

disclosure attacks in patient demographics is l-diversity [88]. It requires each

anonymized group in a dataset D to contain at least l “well represented” sensitive

attribute (SA) values [88]. In most cases, an anonymized group is k-anonymous

(i.e., it contains at least k records with the same values over the set of quasi-

identifiers), although this is not a requirement of the definition of l-diversity. The
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simplest interpretation of “well represented” is distinct and leads to distinct l-

diversity [69], which requires each anonymized group to contain at least l distinct

SA values. Another interpretation leads to recursive (c, l)-diversity [88], which

requires each group in D to contain a large number of distinct SA values, none

of which appears “too” often. Other principles that guard against value disclo-

sure by limiting the number of distinct SA values in an anonymized group are

(a,k)-anonymity [126] and p-sensitive-k-anonymity [118]. However, these pri-

vacy principles still allow attackers to infer that an individual is likely to have a

certain SA value when that value appears much more frequently than other values

in the group.

t-closeness [69] is another privacy model for protecting demographics from

attribute disclosure attacks. This model aims at limiting the distance between the

probability distribution of the SA values in an anonymized group and that of SA

values in the entire dataset. This prevents an attacker from learning information

about an individual’s SA value that is not available from the dataset. Consider, for

example, a dataset in which 60% of tuples have the value Flu in a SA Disease,

and we form an anonymous group, which also has 60% of its disease values as

Flu. Then, although an attacker can infer that an individual in the group suf-

fers from Flu with relatively high probability (i.e. 60%), the group is protected

according to t-closeness, since this fact can be inferred from the dataset itself.

Privacy models to guard against the disclosure of sensitive ranges of values

in numerical attributes have also been proposed. Models that work by limiting

the maximum range of SA values in a group of tuples have been proposed by

Loukides et al. [81] and Koudas et al. [60], while LeFevre et al. [64] proposed

limiting the variance of SA values instead. A privacy model, called Worst Group
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Protection (WGP), which prevents range disclosure and can be enforced without

generalization of SA values was introduced in [84]. WGP measures the probabil-

ity of disclosing any range in the least protected group of a table, and captures the

way SA values form ranges in a group, based on their frequency and similarity.

Models for diagnosis codes. Several privacy models have been proposed to pro-

tect attribute disclosure attacks when sharing diagnosis codes (e.g., the associa-

tion of patients with sensitive diagnosis codes, such as those representing sex-

ually transmitted diseases). One such model, proposed by Cao et al. [16], is

ρ-uncertainty, which limits the probability of associating an individual with any

(single) diagnosis code to less than ρ. This model makes the (stringent) assump-

tion that each diagnosis code in a patient record can be sensitive, and all the re-

maining codes in the record may be used for its inference.

Another privacy model, called (h, k, p)-coherence, was proposed in [130] and

guards against both identity and sensitive information disclosure. This model

treats non-sensitive diagnosis codes similarly to km-anonymity and limits the

probability of inferring sensitive diagnosis codes. In fact, parameters k and p

have a similar role to k and m in km-anonymity, and h limits the probability of

attribute disclosure.

The PS-rule based anonymity model (PS-rule stands for Privacy Sensitive

rule), proposed by Loukides et al. in [80], also thwarts both identity and sensitive

information disclosure. Similarly to association rules [7], PS-rules consist of two

sets of diagnosis codes, the antecedent and consequent, which contain diagnosis

codes that may be used in identity and sensitive information disclosure attacks,

respectively. Given a PS-rule A → B, where A and B is the antecedent and con-

sequent of the rule, respectively, PS-rule based anonymity requires that the set of
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diagnosis codes in A appears in at least k records of the published dataset, while

at most c · 100% of the records that contain the diagnosis codes in A, also contain

the diagnosis codes in B. Thus, it protects against attackers who know whether

a patient’s record is contained in the published dataset. The parameter c is spec-

ified by data publishers, takes values between 0 and 1, and is analogous to the

confidence threshold in association rule mining [7]. The PS-rule based anonymity

model offers three significant benefits compared to previously discussed models

for diagnosis codes: (i) it protects against both identity and sensitive information

disclosure, (ii) it allows data publishers to specify detailed privacy requirements,

and (iii) it is more general than these models (i.e., the models in [115, 130, 52] are

special cases of PS-rule based anonymity).

3. Privacy scenarios

There are two popular scenarios for privacy-preserving data sharing, as illus-

trated in Figure 1. In this paper, we survey privacy models and algorithms that

belong to the non-interactive data sharing scenario. This scenario has certain ben-

efits: (i) it offers constant data availability (since the original dataset is published

after being anonymized), (ii) it does not require any infrastructure costs, and (iii) it

is good for hypothesis generation and testing (since patient records are published

in a utility-aware, anonymized form). However, the non-interactive scenario suf-

fers from two important shortcomings. First, data owners need to specify privacy

and utility requirements prior to sharing their data, in order to ensure that the re-

leased dataset is adequately protected and highly useful. Second, data owners have

no control over the released dataset. Thus, the released dataset may be susceptible

to attacks that had not been discovered at the time of data release.
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Figure 1: Privacy-preserving data sharing scenarios: (a) interactive vs. (b) non-

interactive

Privacy-preserving data sharing can also be facilitated in the non-interactive

scenario. This scenario assumes that the data are deposited into a (secure) repos-

itory and can be queried by external data users. Thus, the users receive protected

answers to their queries, and not the entire dataset, as in the non-interactive sce-

nario. The interactive scenario offers three main benefits, which stem from the

fact that data are kept in-house to the hosting organization.

First, data owners can audit the use of their data and apply access control

policies. This ensures that attackers can be identified and held accountable, a ca-

pability that is not offered by techniques that are designed for the non-interactive

scenario. Furthermore, the enforced protection mechanism for the repository can
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be improved at any time based on new privacy threats that are identified, thus data

owners can provide state-of-the-art protection of the sensitive data in the reposi-

tory. Second, the interactive scenario allows the enforcement of strong, semantic

privacy models that will be discussed later. Third, the fact that the types of posed

queries are known a-priori to data owners helps deciding on an appropriate level

of privacy that should be offered when answering the queries.

On the other hand, complex queries are difficult to support in the interactive

setting, while there are often restrictions on the number of queries that can be an-

swered. Additionally, several analytic tasks (e.g., visualization) require individual

records, as opposed to aggregate results or models. These tasks are difficult to be

supported in the interactive scenario. In general, it is interesting to observe that

the advantages of the interactive scenario are disadvantages of the non-interactive

scenario, and vice versa. Consequently, data publishers need to carefully select

the appropriate privacy-preserving data sharing scenario based on their needs.

A popular class of algorithms that are designed for the interactive scenario

enforce privacy by adding noise to each query answer, thereby offering output

privacy. The goal of these algorithms is to tune the magnitude of the added noise

so that privacy is preserved, while accurate, high-level statistics can still be com-

puted using queries. For instance, several algorithms that enforce differential pri-

vacy [29], a strong privacy model to be discussed later, in the interactive setting,

are surveyed in [30]. In addition to constructing protected query answers, these

algorithms monitor the number of queries posed to the system and stop answer-

ing queries, when the maximum number of queries that can be answered, while

satisfying differential privacy, is reached. The release of statistics in a privacy-

preserving way has also been thoroughly investigated by the statistical disclosure
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Attack Type Privacy Models

Demographics Diagnosis codes

Identity disclosure

k-Minimal Generalization [109]

OLA [32]

Incognito [65]

Genetic [58]

Mondrian [66, 67] UGACLIP [76]

TDS [40] CBA [87]

NNG [28] UAR [86]

Greedy [129] Apriori [115]

k-Member [15] LRA [116]

KACA [68] VPA [116]

Agglomerative [45] mHgHs [74]

(k, k)-anonymizer [45] Recursive Partition [52]

Hilb [44]

iDist [44]

MDAV [25]

CBFS [62]

Membership disclosure

SPALM [100]

MPALM [100]

SFALM [101]

Attribute disclosure

Incognito with l-diversity [88]

Incognito with t-closeness [69]

Incognito with (a, k)-anonymity [126] Greedy [130]

p-sensitive k-anonymity [118] SuppressControl [16]

Mondrian with l-diversity [127] TDControl [16]

Mondrian with t-closeness [70] RBAT [79]

Top Down [126] Tree-based [80]

Greedy algorithm [81] Sample-based [80]

Hilb with l-diversity [44]

iDist with l-diversity [44]

Anatomize [127]

Table 3: Algorithms to prevent against different attacks

control community (see [4] for a survey). However, the techniques in [4] do not

guarantee privacy preservation using a rigorous privacy model [29].

4. Privacy techniques

In this section, we provide a classification of algorithms that employ the pri-

vacy models in Section 2 and have been designed for the non-interactive scenario.

These algorithms are summarized in Table 3. For each class of algorithms, we

also discuss techniques that are employed in their operation.
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4.1. Algorithms against identity disclosure

The prevention of identity disclosure requires transforming quasi-identifiers to

enforce a privacy model in a way that preserves data utility. Since transforming

the data to achieve privacy and optimal utility is computationally infeasible (see

for example [109]), most algorithms adopt heuristic strategies to explore the space

of possible solutions. That is, they consider different ways of transforming quasi-

identifiers in order to find a “good” solution that satisfies privacy and the utility

objective. After discussing approaches to transform quasi-identifiers, we survey

utility objectives and heuristic strategies. Based on this, we subsequently present

a classification of popular algorithms.

4.1.1. Transforming quasi-identifiers

There are three main techniques to transform quasi-identifiers in order to pre-

vent identity disclosure: (i) microaggregation [24], (ii) generalization [109], and

(iii) suppression [109]. Microaggregation involves replacing a group of values in

a QID using a summary statistic (e.g., centroid or median for numerical and cate-

gorical QIDs, respectively). This technique has been applied to demographics but

not to diagnosis codes. Generalization, on the other hand, suggests replacing QID

values by more general, but semantically consistent, values. Two generalization

models, called global and local recoding, have been proposed in the literature (see

[102] for an excellent survey of generalization models). Global recoding involves

mapping the domain of QIDs into generalized values. These values correspond to

aggregate concepts (e.g., British instead of English, for Ethnicity) or collections

of values (e.g., English or Welsh, for Ethnicity, or 18 to 30, for Age). Thus, all

occurrences of a certain value (e.g., English) in a dataset will be generalized to

the same value (e.g., European). On the other hand, local recoding involves map-
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ping QID values of individual records into generalized ones on a group-by-group

basis. Therefore, the value English in two different records may be replaced by

British in one record, and by European, in another. Similarly, diagnosis codes

can be replaced either by aggregate concepts (e.g., Diseases of Other Endocrine

Glands instead of Diabetes melitus type I) or by sets of diagnosis codes (e.g.,

{Diabetes melitus type I, Diabetes melitus type II}), which are interpreted as any

(non-empty) subset of diagnosis codes contained in the set. Last, suppression

involves the deletion of specific QID values from the data.

Although each technique has its benefits, generalization is typically preferred

over microaggregation and suppression. This is because microaggregation may

harm data truthfulness (i.e., the centroid may not appear in the data), while sup-

pression incurs high information loss. Interestingly, there are techniques that em-

ploy more than one of these operations. For example, the work of [76] employs

suppression when it is not possible to apply generalization while satisfying some

utility requirements.

4.1.2. Utility objectives

Preventing identity disclosure may lower the utility of data, as it involves data

transformation. Thus, existing methods aim at preserving data utility by following

one of the following general strategies: (i) they quantify information loss using an

optimization measure, which they attempt to minimize, (ii) they assume that data

will be used in a specific data analysis task and attempt to preserve the accuracy

of performing this task using the published data, and (iii) they take into account

utility requirements, specified by data owners, and aim at generating data that

satisfy these requirements. In what follows, we discuss each of these strategies.

One way to capture data utility is by measuring the level of information loss
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incurred by data transformation. The measures that have been proposed are based

on (i) the size of anonymization groups, or (ii) the characteristics of generalized

values. Measures of the first category are based on the intuition that all records

in an anonymization group are indistinguishable from one another, as they have

the same value over QIDs. Thus, larger groups incur more information loss. Ex-

amples of these measures are Discernability Metric (DM) [9] and Normalized

Average Equivalence Class Size [66], which differ from one another in the way

they penalize groups. The main drawback of these measures is that they neglect

the way values are transformed within an anonymized group. These measures,

for example, would assign the same penalty to a group of records with values

{14, 15, 16} in a QID Age that are generalized to 14 to 16 or Underage. However,

using the generalized value 14 to 16 incurs lower information loss, as this is more

specific than Underage.

The above-mentioned limitation is addressed by the second category of mea-

sures, which take into account the way values are generalized. Examples of these

measures are Generalization Cost (GC) [6], Normalized Certainty Penalty (NCP)

[129], and Loss Metric (LM) [58]. All of these measures are applicable to de-

mographics and penalize less specific generalized values (i.e., they favor British

over European) but the latter two (i.e., NCP and LM) are more flexible, as they

can be applied to both numerical and categorical attributes. A recently proposed

information-loss measure for diagnosis codes is Information Loss Metric (ILM)

[87]. ILM quantifies information loss of a generalized diagnosis code by impos-

ing a large penalty on generalized terms that contain many diagnosis codes and

appear in many records of the dataset.

Another way to capture data utility is based on measuring the accuracy of a
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specific task performed on anonymized data. Iyengar [58], for example, observed

that generalization can make it difficult to build an accurate classification model.

This is because records with different class labels become indistinguishable from

one another, when they fall into the same anonymization group. For example,

assume that all records, whose value in Ethnicity is Welsh, have a classification la-

bel Yes, whereas all records with English have a label No. Generalizing the values

Welsh and English to British does not allow to distinguish between records that

have different classification labels. To capture data utility, Iyengar introduced the

Classification Metric (CM), which is expressed as the number of records whose

class labels are different from that of the majority of records in their anonymized

group, normalized by the dataset size.

LeFevre et al. [66] considered measuring the utility of anonymized data when

used for aggregate query answering purposes and proposed a measure, called Av-

erage Relative Error (ARE). ARE quantifies data utility by measuring the differ-

ence between the answers to a query using the anonymized and using the original

data. This measure has been widely employed, as it is applicable to different types

of data (e.g., both demographics and diagnosis codes) and is independent of the

way data are anonymized. Fung et al. [41], on the other hand, considered cluster-

ing and proposed comparing the cluster structures of the original and anonymized

data, using the F-measure [122] and Match point. Although these measures are

also general, currently they have only been applied to demographics.

Several publishing scenarios involve the release of an anonymized dataset to

support a specific medical study, or to data recipients having certain data analysis

requirements. In such scenarios, knowledge of how the dataset will be analyzed

can be exploited during anonymization to better preserve data utility. For example,
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consider a dataset which contains Age, Gender, Ethnicity, and Marital

Status, as quasi-identifiers, and needs to be released for performing a study

on the age of female patients. Intuitively, distorting the values of the first two

attributes should be avoided, as the result of the study depends on their values.

Samarati proposed modeling data analysis requirements based on the minimum

number of suppressed tuples, or on the height of hierarchies for categorical QID

values [109]. However, such requirements are difficult to be specified by data

publishers, as they require knowledge of how the dataset will be anonymized.

Xu et al. [129] prioritized the anonymization of certain quasi-identifier at-

tributes by using data-owner specified weights. The proposed approach, however,

cannot guarantee that some attributes will not be overdistorted (e.g., gender infor-

mation can be lost, even when the generalization of Ethnicity is preferred to

that of Gender). To guarantee that the anonymized data will remain useful for

the specified analysis requirements, Loukides et al. [85] proposed a model for ex-

pressing data utility requirements and an algorithm for anonymizing data, based

on this model. Utility requirements can be expressed at an attribute level (e.g.,

imposing the length of range, or the size of set that anonymized groups may have

in a given quasi-identifier attribute), or at a value level (e.g., imposing ranges or

sets allowed for specified values). The approach of [85] can be applied to patient

demographics but not to diagnosis codes.

Anonymizing diagnosis codes in a way that satisfies data utility requirements

has been considered in [76]. The proposed approach models data utility require-

ments using sets of diagnosis codes, referred to as utility constraints. A utility

constraint represents the ways the codes, contained in it, can be generalized in

order to preserve data utility. Thus, utility constraints specify the information that
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the anonymized data should retain in order to be useful in intended medical anal-

ysis tasks. For example, assume that the disseminated data must support a study

that requires counting the number of patients with Diabetes. To achieve this, a

utility constraint for Diabetes, which is comprised of all different types of dia-

betes, must be specified. By anonymizing data according to this utility constraint,

we can ensure that the number of patients with Diabetes in the anonymized data

will be the same as in the original data. Thus, the anonymized dataset will be as

useful as the original one, for the medical study on diabetes.

4.1.3. Heuristic strategies

Optimally anonymizing data with respect to the aforementioned utility criteria

is computationally infeasible (see for example [66, 129, 78]). Consequently, many

anonymization methods employ heuristic search strategies to form anonymous

groups. In what follows, we discuss search strategies that have been applied to

demographics and diagnosis codes.

Algorithms for demographics. Algorithms for demographics typically employ: (i)

binary search on the lattice of possible generalizations [109], (ii) a lattice search

strategy similar in principle to the Apriori [7] used in association rule mining, (iii)

genetic search on the lattice of possible generalizations [58], (iv) data partitioning

[66, 57], (v) data clustering [102, 129, 81, 68], or (vi) space mapping [44].

The main idea behind strategies (i) to (iii) is to represent the possible ways to

generalize a value in a quasi-identifier attribute, using a taxonomy, and then com-

bine the taxonomies for all quasi-identifier attributes, to obtain a lattice. For in-

stance, English and Welsh are the leaf-level nodes of a taxonomy for Ethnicity

and their immediate ascendant is the generalized value British. Similarly, Male
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and Female are the leaf-level nodes of a taxonomy for Gender, whose root value

and immediate ascendant of the leaves is Any. Thus, we can combine these two

taxonomies to get a lattice for Ethnicity and Gender. Each node in this lat-

tice represents a different set of generalized values for Ethnicity and Gender,

such as {English, Male}, {English, Female}, {Welsh, Male}, and {British, Any}.

Thus, finding a way to generalize values can be performed by exploring the lattice

using heuristics that avoid considering certain lattice nodes for efficiency reasons.

The strategy (i) prunes the ascendants of lattice nodes that are sufficient to satisfy

a privacy model, while the strategies (ii) and (iii) prune lattice nodes that are likely

to incur high utility loss. The latter nodes are identified while considering nodes

that represent incrementally larger sets of generalized values, for strategy (i), or

while selecting nodes by combining their descendants, as specified by a genetic

algorithm, in the case of strategy (ii).

Binary and Apriori-like lattice search strategies explore a small space of po-

tential solutions and thus may fail to preserve data utility to the extent that genetic

search strategies can do. However, genetic search is computationally intensive

(e.g., the algorithm in [58] is orders of magnitude slower than the partitioning-

based method of [66]) and may converge slowly. Consequently, more recent re-

search has focused on developing methods that use strategies (iv) and (v), which

are applied to the records of a dataset, and not to attribute values as strategies (i) to

(iii) are. The objective of the former strategies is to organize records into carefully

selected groups that help the preservation of privacy and the satisfaction of a util-

ity objective. Both data partitioning and clustering-based strategies create groups

iteratively, but they differ in the task they perform in an iteration. Specifically,

partition-based strategies split records into groups, based on the value that these
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records have in a single quasi-identifier attribute (i.e., an iteration creates two typ-

ically large groups of records that are similar with respect to a quasi-identifier),

while clustering-based strategies merge two groups of records, based on the values

of the records in all quasi-identifier attributes together. Therefore, partitioning-

based methods tend to incur higher utility loss when compared to clustering-based

methods [129, 81], and they are sensitive to the choice of the splitting attribute,

performing poorly particularly when the dataset is skewed [102]. However, par-

titioning is faster than clustering by orders of magnitude, requiring O(n · log(n))

time instead of O(n2), where n is the cardinality of the dataset.

A different heuristic search strategy relies on space mapping techniques [44].

These techniques create a ranking of records, such that records with similar values

in quasi-identifiers have similar ranks. Based on this ranking, groups of records

are subsequently formed by considering a number of records (e.g., at least k for

k-anonymity) that have consecutive ranks. Space mapping techniques achieve

good efficiency, as the ranking can be calculated in linear time, as well as being

effective at preserving data utility.

Algorithms for diagnosis codes. Algorithms for diagnosis codes employ: (i) space

partitioning in a bottom-up [76] or top-down [16] fashion, (ii) space clustering

[46], or (iii) data partitioning in a top-down [52], vertical or horizontal [116] way.

Clearly, lattice search cannot be used in the context of diagnosis codes, because

there is a single, set-valued attribute to consider. Thus, one taxonomy which orga-

nizes diagnosis codes, and not a lattice of taxonomies, is used to model the ways

these codes can be generalized. In addition, the space mapping techniques consid-

ered by Ghinita et al. in [44] are not applicable to diagnosis codes because there

is a single, set-valued quasi-identifier attribute (i.e., a patient can be re-identified
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using a set of their diagnosis codes) and not many quasi-identifier attributes, as in

the case of patient demographics.

Both strategies (i) and (ii) attempt to find a set of generalized diagnosis codes

that can be used to replace diagnosis codes in the original dataset (e.g., “diabetes”

that replaces “diabetes mellitus type I” and “diabetes mellitus type II”). However,

they differ in the way they operate. Specifically, space partitioning strategies re-

quire a taxonomy for diagnosis codes, which is provided by data owners (e.g., a

healthcare institution), and dictate that the generalized diagnosis codes are part

of the taxonomy. Space clustering strategies lift this requirement and are more

effective in terms of preserving data utility. On the other hand, data partition-

ing strategies are applied to transactions (records) instead of diagnosis codes, and

they aim to create groups of transactions that can be subsequently anonymized

with low data utility loss. For example, assume that privacy is preserved by ap-

plying km-anonymity with k = 2 and m = 2. Two transactions with exactly the

same diagnosis codes are already 22-anonymous, and thus they do not incur data

utility loss as they can be released intact.

Space partitioning allows searching only a smaller space of possible solutions

and typically results in incurring high information loss when compared to space

clustering strategies. On the other hand, space clustering-based strategies are com-

putationally intensive. It is important to note that the worst-case complexity of all

strategies is exponential to the number of distinct diagnosis codes in a dataset,

which can be in the order of several hundreds. This explains need for developing

more effective and efficient strategies.
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Algorithm Privacy model Transformation Utility Objective Heuristic strategy

k-Minimal k-anonymity generalization min. inf. loss binary lattice

Generalization [109] and suppression search

OLA [32] k-anonymity generalization min. inf. loss binary lattice

search

Incognito [65] k-anonymity generalization min. inf. loss apriori-like lattice

and suppression search

Genetic [58] k-anonymity generalization classification genetic search

accuracy

Mondrian [66] k-anonymity generalization min. inf. loss data partitioning

LSD Mondrian [67] k-anonymity generalization regression data partitioning

accuracy

Infogain Mondrian [67] k-anonymity generalization classification data partitioning

accuracy

TDS [40] k-anonymity generalization classification data partitioning

accuracy

NNG [28] k-anonymity generalization min. inf. loss data partitioning

Greedy [129] k-anonymity generalization min. inf. loss data clustering

k-Member [15] k-anonymity generalization min. inf. loss data clustering

KACA [68] k-anonymity generalization min. inf. loss data clustering

Agglomerative [45] k-anonymity generalization min. inf. loss data clustering

(k,k)-anonymizer [45] (k,k)-anonymity generalization min. inf. loss data clustering

Hilb [44] k-anonymity generalization min. inf. loss space mapping

iDist [44] k-anonymity generalization min. inf. loss space mapping

MDAV [25] k-anonymity microaggregation min. inf. loss data clustering

CBFS [62] k-anonymity microaggregation min. inf. loss data clustering

Table 4: Algorithms for preventing identity disclosure based on demographics

4.1.4. Classification of algorithms

We now present a classification of algorithms for preventing identity disclo-

sure, based on the strategies they adopt for (i) transforming quasi-identifiers, (ii)

preserving utility, and (iii) heuristically searching for a “good” solution.

Algorithms for demographics. Table 4 presents a classification of algorithms for

demographics. As can be seen, these algorithms employ various data transfor-

mation and heuristic strategies, and aim at satisfying different utility objectives.

All algorithms adopt k-anonymity, with the exception of (k, k)-anonymizer [45]

which adopts the (k, k)-anonymity model, discussed in Section 2.2. The fact that

(k, k)-anonymity is a relaxation of k-anonymity allows the algorithm in [45] to

preserve more data utility than the Agglomerative algorithm, which is also pro-
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posed in [45]. Furthermore, most algorithms use generalization to anonymize

data, except (i) the algorithms in [109, 65], which use suppression in addition to

generalization in order to deal with a typically small number of values that would

incur excessive information loss if generalized, and (ii) the algorithms in [25, 62],

which use microaggregation.

In addition, it can be observed that the majority of algorithms aim at min-

imizing information loss and that no algorithm takes into account specific util-

ity requirements, such as limiting the set of allowable ways for generalizing a

value in a quasi-identifier. At the same time, the Genetic [58], Infogain Mon-

drian [67], and TDS [40] algorithms aim at releasing data in a way that allows for

building accurate classifiers. These algorithms were compared in terms of how

well they can support classification tasks, using publicly available demographic

datasets [53, 119]. The results are reported in [67] and [40], and demonstrate that

Infogain Mondrian outperforms TDS which, in turn, outperforms the Genetic al-

gorithm. The LSD Mondrian [67] algorithm is similar to Infogain Mondrian but

uses a different utility objective measure, as its goal is to preserve the ability of

using the released data for linear regression.

It is also interesting to observe that several algorithms implement data par-

titioning heuristic strategies. Specifically, the algorithms proposed in [66, 67]

follow a top-down partitioning strategy inspired by kd-trees [38], while the TDS

algorithm [40] employs a different strategy that takes into account the partition

size and data utility in terms of classification accuracy. Interestingly, the partition-

ing strategy of NNG [28] is based on the distance of values and allows creating

k-anonymous datasets, whose utility is no more than 6 · q times worse than that

of the optimal solution, where q is the number of quasi-identifiers in the dataset.
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On the other hand, the algorithms that employ clustering [129, 15, 98, 45] fol-

low a similar greedy, bottom-up procedure, which aims at building clusters of at

least k records by iteratively merging together smaller clusters (of one or more

records), in a way that helps data utility preservation. A detailed discussion and

evaluation of clustering-based algorithms that employ generalization has been re-

ported in [82], while the authors of [25] and [26] provide a rigorous analysis of

clustering-based algorithms for microaggregation.

The use of space mapping techniques in algorithms iHilb and iDist, both of

which were proposed in [44], enables them to preserve data utility equally well

or even better than the Mondrian algorithm [66] and to anonymize data more

efficiently. To map the space of quasi-identifiers, iHilb uses the Hilbert curve,

which can preserve the locality of points (i.e., values in quasi-identifiers) fairly

well [97]. The intuition behind using this curve is that, with high probability, two

records with similar values in quasi-identifiers will also be similar with respect to

their rank that is produced based on the curve. The iDist algorithm employs iDis-

tance [131], a technique that measures similarity based on sampling and clustering

of points, and is shown to be slightly inferior than iHilb in terms of data utility.

Last, the algorithms in [109, 65, 32] use lattice-search strategies. An experimen-

tal evaluation using a publicly available dataset containing demographics [53], as

well as 5 hospital discharge summaries, shows that the OLA algorithm [32] per-

forms similarly to Incognito [65] and better than k-Minimal Generalization [109]

in terms of preserving data utility. The authors of [32] also suggest that the way

OLA generalizes data might help medical data analysts. Nevertheless, algorithms

that use lattice-based search strategies typically explore a smaller number of gen-

eralizations than algorithms that employ data partitioning or clustering, and are
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generally less effective at preserving data utility.

Algorithms for diagnosis codes. Algorithms for anonymizing diagnosis codes are

summarized in Table 5. Observe that these algorithms adopt different privacy

models, but they all use either a combination of generalization and suppression,

or generalization alone in order to anonymize datasets. More specifically, the al-

gorithms in [76, 87, 86] use suppression as a secondary operation and only when

generalization alone cannot be used to satisfy the specified utility constraints.

However, they differ in that CBA and UAR consider suppressing individual di-

agnosis codes, whereas UGACLIP suppresses sets of typically more than one di-

agnosis codes. Experiments using patient records derived from the Electronic

Medical Record (EMR) system of Vanderbilt University Medical Center, which

are reported in [87, 86], showed that the suppression strategy that is employed by

CBA and UAR is more effective than that of UGACLIP.

Algorithm Privacy model Transformation Utility Objective Heuristic strategy

UGACLIP [76] privacy-constrained generalization utility bottom-up space

anonymity and suppression requirements partitioning

CBA [87] privacy-constrained generalization utility space clustering

anonymity and suppression requirements

UAR [86] privacy-constrained generalization utility space clustering

anonymity and suppression requirements

Apriori [115] km-anonymity generalization min. inf. loss top-down space

partitioning

LRA [116] km-anonymity generalization min. inf. loss horizontal data

km-anonymity partitioning

VPA [116] km-anonymity generalization min. inf. loss vertical data

km-anonymity partitioning

mHgHs [74] km-anonymity generalization min. inf. loss top-down space

and suppression partitioning

Recursive complete generalization min. inf. loss data partitioning

partition [52] k-anonymity

Table 5: Algorithms for preventing identity disclosure based on diagnosis codes

Furthermore, the algorithms in Table 5 aim at either satisfying utility require-

ments, or at minimizing information loss. The UGACLIP, CBA, and UAR al-
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gorithms adopt utility constraints to formulate utility requirements and attempt

to satisfy them. However, these algorithms still favor solutions with low infor-

mation loss, among those that satisfy the specified utility constraints. All other

algorithms attempt to minimize information loss, which they quantify using two

different measures; a variation of the Normalized Certainty Penalty (NCP) mea-

sure [129] for the algorithms in [115, 116, 52], or the Loss Metric (LM) [58] for

the mHgHs algorithm [74]. However, to our knowledge, there are no algorithms

for diagnosis codes that aim at preserving data utility for intended mining tasks,

such as classification. Given the extensive use of diagnosis codes in these tasks,

we believe that the development of such algorithms merits further investigation.

It is also interesting to observe that several algorithms implement data par-

titioning heuristic strategies. Specifically, the algorithms proposed in [66, 67]

follow a top-down partitioning strategy inspired by kd-trees [38], while the TDS

algorithm [40] employs a different strategy that takes into account the partition

size and data utility in terms of classification accuracy. Interestingly, the partition-

ing strategy of NNG [28] is based on the distance of values and allows creating

a k-anonymous dataset, whose utility is no more than 6 · q times worse than that

of the optimal solution, where q is the number of quasi-identifiers in the dataset.

On the other hand, the algorithms that employ clustering [129, 15, 98, 45] fol-

low a similar greedy, bottom-up procedure, which aims at building clusters of at

least k records by iteratively merging together smaller clusters of records, in a

way that helps data utility preservation. A detailed discussion and evaluation of

clustering-based algorithms that employ generalization has been reported in [82].

Moreover, it can be seen that all algorithms in Table 5 operate on either the

space of diagnosis codes, or on that of the records of the dataset to be published.

32



Specifically, UGACLIP [76] partitions the space of diagnosis codes in a bottom-

up manner, whereas Apriori [115] and mHgHs [74] employ top-down partitioning

strategies. The strategy of UGACLIP considers a significantly larger number of

ways to generalize diagnosis codes than that of Apriori, which allows for bet-

ter data utility preservation. In addition, the space clustering strategies of CBA

and UAR are far more effective than the bottom-up space partitioning strategy of

UGACLIP, but they are also more computationally demanding.

Data partitioning strategies are employed by the Recursive partition [52], LRA

[116] and VPA [116] algorithms. The first of these algorithms employs a top-

down partitioning strategy, which is applied recursively. That is, it starts by a

dataset which contains (i) all transactions of the dataset to be published, and (ii)

a single generalized diagnosis code Any, which replaces all diagnosis codes. This

dataset is split into subpartitions of at least k transactions, which contain progres-

sively less general diagnosis codes (e.g., Any is replaced by Diabetes and then by

Diabetes mellitus type I). The strategy employed by the Recursive partition algo-

rithm enforces complete k-anonymity with lower utility loss than that of Apriori

[52]. On the other hand, LRA and VPA use horizontal and vertical data parti-

tioning strategies, respectively. Specifically, LRA attempts to create subpartitions

of transactions with “similar” items that can be generalized with low informa-

tion loss. To achieve this, it sorts the transactions in the dataset to be published

based on Gray ordering [106] and then groups these transactions into subparti-

tions of approximately equal size. VPA partitions data records vertically in order

to create sub-records (i.e., parts of transactions) with “similar” items. The Apri-

ori algorithm, discussed above, is then used by the LRA and VPA algorithms for

anonymizing each of the created subpartitions, separately.
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4.2. Techniques against membership disclosure

The fact that membership disclosure cannot be forestalled by simply prevent-

ing identity disclosure, calls for specialized algorithms. However, as can be seen

in Table 6, the proposed algorithms for membership disclosure share the same

main components (i.e., quasi-identifier transformation strategy, utility objective,

and heuristic strategy) with the algorithms that protect from identity disclosure.

Furthermore, these algorithms are all applied to demographics.

Algorithm Data type Privacy model Transformation Utility Objective Heuristic strategy

SPALM [100] demographics δ-presence generalization min. inf. loss top-down lattice search

MPALM [100] demographics δ-presence generalization min. inf. loss top-down lattice search

SFALM [101] demographics c-confident generalization min. inf. loss top-down lattice search

δ-presence

Table 6: Algorithms for preventing membership disclosure

All existing algorithms against membership disclosure have been proposed by

Nergiz et al. [100, 101], to the best of our knowledge. In [100], they proposed

two algorithms, called SPALM and MPALM, which transform quasi-identifiers,

using generalization, and aim at finding a solution that satisfies δ-presence with

low information loss. Both algorithms adopt a top-down search on the lattice of all

possible generalizations, but they differ in their generalization model. Specifically,

the SPALM algorithm generalizes the values of each quasi-identifier separately,

requiring all values in a quasi-identifier to be generalized in the same way (e.g.,

all values English, in Ethnicity, are generalized to British). On the contrary, the

MPALM algorithm drops this requirement, allowing two records with the same

value in a quasi-identifier to be generalized differently (e.g., one value English to

be generalized to British and another to European). In a subsequent work [101],

Nergiz et al. proposed an algorithm called SFALM, which is similar to SPALM
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but employs c-confident δ-presence. The fact that the latter privacy model does

not require complete information about the population, as discussed above, greatly

improves the applicability of SFALM in practice.

The aforementioned algorithms against membership disclosure are limited in

their choice of data transformation strategies and utility objectives, since they all

employ generalization and aim at minimizing information loss. We believe that

developing algorithms that adopt different data transformation strategies (e.g., mi-

croaggregation) and utility objectives (e.g., utility requirements) is worthwhile. At

the same time, the algorithms in [100, 101] are not applicable to diagnosis codes,

because diagnosis codes have different semantics than demographics. However,

it is easy to see that membership disclosure attacks based on diagnosis codes are

possible, because diagnosis codes can be used to reveal the fact that a patient’s

record is contained in the published dataset. This calls for developing algorithms

for sharing diagnosis codes in a way that forestalls membership disclosure.

4.2.1. Techniques against attribute disclosure

In what follows, we discuss privacy considerations that are specific for al-

gorithms that aim at thwarting attribute disclosure. Subsequently, we present a

classification of these algorithms.

Algorithms for preventing attribute disclosure enforce privacy principles that

govern the associations between quasi-identifier and sensitive values (e.g., In-

come in a demographics dataset or Schizophrenia in a dataset containing diag-

nosis codes). To enforce these principles, they create anonymous groups and

then merge them iteratively, until the associations between these attributes and

sensitive values become protected, according to a certain privacy model (e.g., l-

diversity) [88, 118, 126, 69, 67]. While this can be achieved using generalization
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and / or suppression, a technique called bucketization has been proposed in [127]

as a viable alternative. Bucketization works by releasing: (i) a projection Dq of

the dataset D on the set of quasi-identifiers, and another projection, Ds, on the

sensitive attribute, and (ii) a group membership attribute that specifies the associ-

ations between records in Dq and Ds. By carefully constructing Dq and Ds, it is

possible to enforce l-diversity with low information loss [127], as values in quasi-

identifiers are released intact. However, the algorithm in [127] does not guarantee

that identity disclosure will be prevented.

Many of the algorithms considered in this section follow the same data trans-

formation strategies and utility objectives, with the algorithms examined in Sec-

tion 4, but they additionally ensure that sensitive values are protected within each

anonymized group. This approach helps data publishers construct data that are no

more distorted than necessary to thwart attribute disclosure, and the algorithms

following this approach are termed protection constrained. Alternatively, data

publishers may want to produce data with a desired trade-off between data utility

and privacy protection against identity disclosure. This is possible using trade-off

constrained algorithms [81, 83, 84]. These algorithms quantify and aim at opti-

mizing the trade-off between the distortion caused by generalization and the level

of data protection against attribute disclosure.

Algorithms for demographics. A classification of algorithms for demographics is

presented in Table 7. As can be seen, the majority of these algorithms follow the

protection-constrained approach and are based on algorithms for identity disclo-

sure, such as Incognito [65], Mondrian [66], iHilb [44], or iDist [44]. Further-

more, most of these algorithms employ generalization, or a combination of gen-

eralization and suppression, and they enforce l-diversity, t-closeness, p-sensitive
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Algorithm Privacy model Transformation Approach Heuristic strategy

Incognito with l-diversity generalization protection constrained apriori-like lattice

l-diversity [88] and suppression search

Incognito with t-closeness generalization protection constrained apriori-like lattice

t-closeness [69] and suppression search

Incognito with (a, k)-anonymity generalization protection constrained apriori-like lattice

(a, k)-anonymity [126] and suppression search

p-sens k-anon [118] p-sensitive generalization protection constrained apriori-like lattice

k-anonymity search

Mondrian with l-diversity [127] l-diversity generalization protection constrained data partitioning

Mondrian with t-closeness [70] t-closeness generalization protection constrained data partitioning

Top Down [126] (a, k)-anonymity generalization protection constrained data partitioning

Greedy algorithm [81] tuple diversity generalization trade-off constrained data clustering

and suppression

Hilb with l-diversity [44] l-diversity generalization protection constrained space mapping

iDist with l-diversity [44] l-diversity generalization protection constrained space mapping

Anatomize [127] l-diversity bucketization protection constrained quasi-identifiers are

released intact

Table 7: Algorithms for preventing attribute disclosure based on demographics

k-anonymity, (a, k)-anonymity, or tuple-diversity. An exception is the Anatomize

algorithm [127], which was specifically developed for enforcing l-diversity using

bucketization. This algorithm works by creating buckets with the records that have

the same value in the sensitive attribute and then constructing groups with at least l

different values in the sensitive attribute. The construction of groups is performed

by selecting records from appropriate buckets, in a round-robin fashion. Inter-

estingly, the Anatomize algorithm requires an amount of memory that is linear

to the number of distinct values of the sensitive attribute and creates anonymized

data with bounded reconstruction error, which quantifies how well correlations

among values in quasi-identifiers and the sensitive attribute are preserved. In fact,

the authors of [127] demonstrated experimentally that the Anatomize algorithm

outperforms an adaption of the Mondrian algorithm that enforces l-diversity in

terms of preserving data utility. Moreover, it is worth noting that the algorithms in

[118, 126, 81], which employ p-sensitive k-anonymity, (a, k)-anonymity, or tuple
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Algorithm Privacy model Transformation Approach Heuristic strategy

Greedy [130] (h, k, p)-coherence suppression protection constrained greedy search

SuppressControl [16] ρ-uncertainty suppression protection constrained greedy search

TDControl [16] ρ-uncertainty generalization protection constrained top-down space

and suppression partitioning

RBAT [79] PS-rule based generalization protection constrained top-down space

anonymity partitioning

Tree-based [80] PS-rule based generalization protection constrained top-down space

anonymity partitioing

Sample-based [80] PS-rule based generalization protection constrained top-down and bottom-up

anonymity space partitioning

Table 8: Algorithms for preventing attribute disclosure based on diagnosis codes

diversity, are applied to both quasi-identifiers and sensitive attributes and provide

protection from identity and attribute disclosure together. On the other hand, the

Anatomize algorithm does not provide protection guarantees against identity dis-

closure, as all values in quasi-identifiers are released intact.

Algorithms for diagnosis codes. Algorithms for anonymizing diagnosis codes

against attribute disclosure are summarized in Table 8. As can be seen, the algo-

rithms adopt different privacy models, namely (h, k, p)-coherence, ρ-uncertainty,

or PS-rule based anonymity, and they use suppression, generalization, or a combi-

nation of suppression and generalization. Specifically, the authors in [16] propose

an algorithm, called TDControl, which applies suppression when generalization

alone cannot enforce ρ-uncertainty, and a second algorithm, called SuppressCon-

trol, which only employs suppression. Through experiments, they demonstrate

that combining suppression with generalization is beneficial for both data utility

preservation and efficiency.

Another algorithm that uses suppression only is the Greedy algorithm, which

was proposed by Xu et al. [130] to enforce (h, k, p)-coherence. This algorithm

discovers all unprotected combinations of diagnosis codes with minimal size and
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protects each identified combination, by iteratively suppressing the diagnosis code

contained in the greatest number of these combinations. On the other hand, the

RBAT [79], Tree-based [80], and Sample-based [80] algorithms employ general-

ization alone. All algorithms follow the protection-constrained approach, as they

minimize information loss no more than necessary to prevent attribute disclosure.

In terms of heuristic search strategies, the algorithms in Table 8 employ a

greedy search and operate on either the space of diagnosis codes, or on the trans-

actions of the dataset to be published. Specifically, UGACLIP [76] partitions

the space of diagnosis codes in a bottom-up manner, whereas Apriori [115] and

mHgHs [74] employ top-down partitioning strategies. The strategy of UGACLIP

considers a significantly larger number of ways to generalize diagnosis codes than

that of Apriori, which allows better data utility preservation. In addition, the space

clustering strategies of CBA and UAR are more effective than the bottom-up space

partitioning strategy of UGACLIP, but they are more computationally demanding.

Moreover, all algorithms in Table 8 operate on the space of diagnosis codes

and either perform greedy search to discover diagnosis codes that can be sup-

pressed with low data utility loss, or they employ space partitioning strategies.

Specifically, TDControl, RBAT, and the Tree-based algorithm all employ top-

down partitioning, while Sample-based uses both top-down and bottom-up par-

titioning strategies. The main difference between the strategy of TDControl and

that of RBAT is that the former is based on a taxonomy, which is used to organize

diagnosis codes. This restricts the possible ways of partitioning diagnosis codes

to those that can be expressed as cuts in the taxonomy2, whereas the strategy of

2A cut is a set of generalized diagnosis codes that correspond to nodes of the taxonomy and

replace (map) one or more diagnosis codes in the original dataset. Furthermore, the mapping

39



RBAT partitions the space in a more flexible way as it does not employ this re-

striction. This helps the preservation of data utility, as it allows exploring more

ways to generalize data. The process of partitioning employed by RBAT can be

thought of as “growing” a tree, where the nodes correspond to increasingly less

generalized diagnosis codes. However, it was shown in [80] that the strategy em-

ployed in RBAT might fail to preserve data utility well, as the “growing” of the

tree may stop “early”. That is, a replacement of diagnosis codes with less general

ones, which is beneficial for data utility, is possible but has not been considered

by the strategy employed by RBAT.

To address this issue, a different strategy that examines such replacements,

when partitioning the space of diagnosis codes, was proposed in [80]. This strat-

egy examines certain branches of the tree that are not examined by the strategy

of RBAT and its use allows the Tree-based algorithm to preserve data utility bet-

ter than RBAT. Moreover, to further increase the number of ways to generalize

data, the authors of [80] proposed a way to combine top-down with bottom-up

partitioning strategies, by first growing the tree as long as identity disclosure is

prevented, and then backtracking (i.e., traversing the tree in a bottom-up way) to

ensure that attribute disclosure is guarded against.

5. Relevant techniques

This section provides a discussion of privacy-preserving techniques that are

relevant, but not directly related, to those surveyed in this paper. These techniques

are applied to different types of medical data, or aim at privately releasing aggre-

must be such that each diagnosis code in the original dataset is mapped to exactly one of these

generalized codes.
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gate information about the data.

5.1. Privacy-preserving sharing of genomic and text data

While many works investigate threats related to the publishing of demograph-

ics and diagnosis codes, there have been considerable efforts by the computer

science and health informatics communities to preserve the privacy of other types

of data, such as genomic and text. In the following, we briefly discuss techniques

that have been proposed for the protection of each of the latter types of data.

5.1.1. Genomic privacy

It is worth noting that a patient’s record may be distinguishable with respect

to genomic data. Lin et al. [88], for example, estimated that an individual is

unique with respect to a small number (approximately 100) of Single Nucleotide

Polymorphisms (SNPs), i.e., DNA sequence variations occurring when a single

nucleotide in the genome differs between paired chromosomes in an individual.

In addition, the release of aggregate genomic information may threaten privacy, as

genomic sequences contain sensitive information, such as the ancestral origin of

an individual [108], and genetic information about the individual’s family mem-

bers [17]). For instance, Homer et al. [54] showed that such information may

allow an attacker to infer whether an individual belongs to the case or control

group of GWAS data (i.e., if the individual is diagnosed with a GWAS-related

disease or not), while Wang et al. [123] presented two attacks; one that can sta-

tistically determine the presence of an individual in the case group, based upon a

measure of the correlation between alleles, and another that allows the inference

of the SNP sequences of many individuals that are present in the GWAS data,

based on correlations between SNPs.
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To protect the privacy of genomic information, there are several techniques

that are based on cryptography (e.g., see [8] and the references therein) or on per-

turbation (e.g., see [37]). For instance, Wang et al. [124] proposed cryptographic

techniques for the computation of edit distance on genomic data, while Baldi et al.

[8] considered different operations, including paternity and genetic compatibility

tests. On the other hand, Fienberg et al. [37] examined how to release aggregate

statistics for GWAS while satisfying differential privacy through perturbation. In

particular, the authors of [37] proposed two methods; one that focuses on the pub-

lication of the χ2 statistic and p-values and works by adding Laplace noise to the

original statistics, and a second method that allows releasing noisy versions of

these statistics for the most relevant SNPs.

5.1.2. Text de-identification

A considerable amount of information about patients is contained in textual

data, such as clinical notes, SOAP (Subjective, Objective, Assessment, Patient

care plan) notes, radiology and pathology reports, and discharge summaries. Text

data contain much confidential information about a patient, including their name,

medical record identifier, and social security number, which must be protected

before data release. This involves two steps: (i) detecting direct identifiers and

(ii) transforming the detected identifiers, in a way that preserves the integrity of

medical information. The latter step is called de-identification. In the following,

we briefly discuss some techniques that have been proposed for both detecting and

transforming direct identifiers. We refer the reader to the survey by Meystre et al.

[94], for an extensive review.

Techniques for discovering direct identifiers are based on: (i) Named Entity

Recognition (NER), (ii) Grammars (or Rules), and (iii) Statistical learning. NER-
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based techniques work by locating direct identifiers in text and then classifying

them into pre-defined categories. For instance, the atomic elements Tom Green

and 6152541261 in a clinical note would be classified into the category for

Name and Phone Number, respectively.

The second type of techniques use hand-coded rules and dictionaries to iden-

tify direct identifiers, or regular expressions for identifiers that follow certain syn-

tactic patterns (e.g., a phone number must start with a valid area code), while the

the last type of techniques are typically based on classification. That is, they aim

at classifying the terms of previously unseen elements, contained in test data, as

direct identifiers or as non-identifiers, based on knowledge of training data.

The main advantage of NER and grammar-based approaches is that they need

little or no training data, and can be easily modified (e.g., by adding a new regular

expression). However, their configuration typically requires significant domain

expertise (e.g., to specify rules) and, in many cases, knowledge of the specific

dataset (e.g., naming conventions). On the other hand, techniques that are based

on statistical learning can “learn” the characteristics of data, using different meth-

ods, such as Support Vector Machines (SVM) [14] or Conditional Random Fields

(CRF) [61]. However, they are limited in that they typically require large training

datasets, such as manually annotated text data with pre-labeled identifiers, whose

construction is challenging [13].

After the discovery of direct identifiers, there are several transformation strate-

gies that can be applied to them. These include the replacement of direct identi-

fiers with fake, but realistic-looking, elements [111, 12, 50], suppression [18], and

generalization [59]. Most of the works on protecting text data aim at transforming

direct identifiers without offering specific privacy guarantees. On the contrary, the
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works of Chakaravarthy et al. [18] and Jiang et al. [59] offer such guarantees by

employing privacy models. The first of these works proposes the K-safety model,

which prevents the matching of documents to entities, based on terms that co-

occur in a document. This is achieved by lower-bounding the number of entities

that these terms correspond to. The work of Jiang et al. [59] proposes a different

privacy model, called t-plausibility, which, given word ontologies and a threshold

t, requires the sanitized text to be associated with at least t plausible texts, any of

which could be the original text.

5.1.3. Aggregate information release

There are certain applications in which data recipients are interested in learn-

ing aggregate information from the data, instead of detailed information about

individual records. Such aggregate information can range from simple statistics

that are directly computed from the data to complex patterns that are discovered

through the application of data mining techniques. The interest for supporting

these applications has been fueled by recent advances in the development of se-

mantic privacy models. These models dictate that the mechanism chosen for re-

leasing the aggregate information (e.g., in the form of a noisy summary of the

data), must satisfy certain properties.

One of the most established semantic models is differential privacy [49], which

requires the outcome of a calculation to be insensitive to any particular record in

the dataset. More formally, given an arbitrary, randomized function K and a sub-

set S of its possible outputs, a dataset D is differentially private if

P (K(D) ∈ S) ≤ eǫ · P (K(D′) ∈ S) (1)

44



where D′ is a dataset that differs from D in only one record, and P (K(D) ∈ S)

(respectively, P (K(D′) ∈ S)) is the probability that the result of applying K

to D (respectively, D′), is contained in the subset S. For instance, the result of

statistical analysis carried out on a differentially private data summary must be

insensitive to the insertion (or deletion) of a record in (from) the original dataset

from which the summary is produced. This offers privacy, because the inferences

an attacker can make about an individual will be approximately independent of

whether any individual’s record is included in the original dataset or not. On the

negative side, the enforcement of differential privacy only allows the release of

noisy summary statistics3, and it does not guarantee the prevention of all attacks.

Cormode, for example, showed that an attacker can infer the sensitive value of an

individual fairly accurately, by applying a classification algorithm on differentially

private data [21].

Differential privacy has led to the development of several other semantic mod-

els, which are surveyed in [23]. These models relax the (strong) privacy require-

ments posed by differential privacy by: (i) introducing an additive factor δ to the

right part of Equation (1) [31], or (ii) considering attackers with limited compu-

tational resources (i.e., attackers with polynomial time computation bounds) [95].

This offers the advantage of limiting noise addition at the expense of weaker pri-

vacy guarantees than those offered by differential privacy.

At the same time, there are algorithms for enforcing differential privacy which

are applicable to demographics or diagnosis codes. For example, Mohammed et

al. [96] proposed a method to release a noisy summary of a dataset containing

3This is similar to knowing the queries posed to a technique for enforcing differential private in

the interactive setting and releasing the noisy answers to these queries in the form of a summary.
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demographics that aims at preserving classification accuracy, while Chen et al.

[20] showed how to release noisy answers to certain count queries involving sets

of diagnosis codes. Interestingly, both techniques apply partitioning strategies

similar in principle to those used by the TDS algorithm [40] and the Recursive

partition [52] algorithm, respectively. In addition, systems that allow the differen-

tially private release of aggregate information from electronic health records are

emerging. For instance, SHARE [42] is a recently proposed system for releasing

multidimensional histograms and longitudinal patterns.

6. Future research directions

Disseminating person-specific data from electronic health records offers the

potential for allowing large-scale, low-cost medical studies, in areas including

epidemic detection and post-marketing safety evaluation. At the same time, pre-

serving patient privacy is necessary and, in many cases, this can be achieved based

on the techniques presented in this survey. However, there are several directions

that warrant further research.

First, it is important to study privacy threats posed when releasing patient data,

from both a theoretical and practical perspective. This requires the identification

and modeling of privacy attacks, beyond those discussed in the paper, and an eval-

uation of their feasibility on large cohorts of patient data. In fact, it is currently

difficult to automatically detect threats for many types of medical data (e.g., for

data containing diagnosis codes, or for genomic data), despite some interesting

work [10, 35], on demographics, towards this direction. Furthermore, knowledge

of: (i) dependencies between quasi-identifiers and sensitive values (e.g., the fact

that male patients are less likely to be diagnosed with breast cancer than female
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ones) [72, 27], (ii) quasi-identifier values of particular individuals [114] and/or

their family members [19], and (iii) the operations of anonymization algorithms

[125], may pose privacy risks. However, none of these threats has been investi-

gated in the context of medical data, and it is not clear whether or not the solutions

proposed by the computer science community to tackle them are suitable for use

in healthcare settings.

Second, the mining of published data may reveal privacy-intrusive inferences

about individuals [47, 48, 51], which cannot be eliminated by applying the privacy

models discussed so far. Intuitively, this is because mining reveals knowledge

patterns that apply to a large number of individuals, and these patterns are not

considered as sensitive by the aforementioned privacy models. Consider, for ex-

ample, that an insurance company applies classification to the data obtained from

a healthcare institution to discover that patients over 40 years old, who live in an

area with Zip Code 55413, are likely to be diagnosed with diseases that have a

very high hospitalization cost. Based on this (sensitive) knowledge, the insurance

company may decide to offer more expensive insurance coverage to these patients.

To avoid such inferences, sensitive knowledge patterns need to be identified prior

to data publishing and be concealed, so that they cannot be discovered when the

data are shared.

Third, the large growth in the complexity and size of medical datasets that are

being disseminated poses significant challenges to existing privacy-preserving al-

gorithms. As an example of a complex data type, consider a set of records that

contain both demographics and diagnosis codes. Despite the need for analyz-

ing demographics and diagnosis codes together, in the context of medical tasks

(e.g., for predictive modeling), preserving the privacy of such datasets is very
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challenging. This is because, it is not safe to protect demographics and diagnosis

codes independently, using existing techniques (e.g., the Mondrian [66] algorithm

for demographics and the UGACLIP [76] algorithm for diagnosis codes), while

guarding against this threat and minimizing information loss is computationally

infeasible [105]. In addition, the vast majority of existing techniques assume that

the dataset to be protected is relatively small, so that it fits into the main memory.

However, datasets with sizes of several GBs or even TBs may need to be dissem-

inated in practice. Thus, it would be worthwhile to develop scalable techniques

that potentially take advantage of parallel architectures to solve this problem.

Fourth, privacy approaches that apply to complex data sharing scenarios need

to be proposed. As an example, consider the case of multiple healthcare providers

and data recipients who wish to build a common data repository. Healthcare

providers may, for example, contribute different parts of patients’ EHR data to

the repository, whereas data recipients may be querying these data, to obtain

anonymized views (i.e., anonymized parts of one or more datasets in the reposi-

tory), for different purposes [77]. This scenario presents several interesting chal-

lenges. First, data contributed by different providers need to be integrated in an

efficient and privacy-preserving way. Second, user queries posed to the repository

need to be audited and the anonymized views to be produced, so as to adhere to the

imposed privacy requirements. Achieving privacy in this scenario is non-trivial,

because malicious users may combine their obtained views to breach privacy, even

when each query answer is safe when examined independently of others.

Last but not least, it is important to note that the overall assurance of health

data privacy requires appropriate policy, in addition to technical means that are

exceedingly important.
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7. Conclusions

In this work, we presented a systematic review of privacy algorithms that have

been proposed for publishing structured patient data. We reviewed more than 45

popular privacy algorithms, derived insights on their operation, and highlighted

their advantages and disadvantages. Subsequently, we provided a discussion of

some promising directions for future research in this area.
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