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Summary: 

 
Human cardiac ryanodine receptors (hRyR2) are major Ca2+ release channels in the 

heart, which form quaternary complexes with luminal proteins, calsequestrin (CSQ2), 

junctin (JUN) and triadin (TRD1). These proteins facilitate Ca2+ release during 

excitation-contraction coupling, modulating the response of hRyR2 to luminal Ca2+ 

changes. Catecholaminergic Polymorphic Ventricular Tachycardia is an 

arrhythmogenic disorder, caused by mutations in RyR2 and CSQ2 genes. Defective 

sensing of cytosolic/luminal Ca2+ by hRyR2 is a candidate mechanism underlying 

disease pathogenesis, likely caused by defective luminal protein regulation. Using a 

recombinant approach, this study aimed to evaluate if mutant (N4104K and A4556T) 

hRyR2 respond to or interact differently with, these accessory proteins.  

 

Expression constructs corresponding to CSQ2 and JUN were generated and 

expressed stably and transiently with wild-type (WT) or mutant hRyR2 in HEK293 

cells. Immunofluorescent co-localisation confirmed successful co-expression and 

association of these luminal proteins with hRyR2 in situ. Ca2+ activation of wild-

type/mutant hRyR2 in the absence/presence of CSQ2 and/or JUN was assessed by 

[3H]-ryanodine binding, while luminal Ca2+ effects were monitored using single-cell 

Ca2+ imaging - examining spontaneous Ca2+ release events. A4556T-hRyR2 displayed 

similar cytosolic and luminal Ca2+ dependence to wild-type channels, whilst N4104K-

hRyR2 displayed a remarkably different Ca2+ activation profile, demonstrating 

functional heterogeneity between hRyR2 mutants. 

 

Ca2+ imaging revealed an inhibitory effect of CSQ2 on WT and N4104K-hRyR2 

activity, both in the presence and absence of JUN. In line with this, CSQ2 was found to 

bind directly to hRyR2 by co-immunoprecipitation, an observation that has not been 

previously demonstrated in the literature.  Immunofluorescence studies suggested 

reduced CSQ2 and JUN association with A4556T-hRyR2, but this could not be 

confirmed with co-immunoprecipitation. Ca2+ imaging investigations with this mutant 

however, suggested that CSQ2 wasn’t able to regulate these channels in the same 

way as WT, implying a change in functional effect. 

 

 

 
!
!
!
!



! V 

Abstract related to this work: 

 

Maxwell, C., Williams, A.J, Mukherjee, S., & Thomas, N.L. (2013). Regulation of Wild 
Type and CPVT-linked mutant Cardiac Ryanodine Receptors by Junctin and 
Calsequestrin. Biophysical Journal, 104 (2), p441a. 
 

 

Other peer reviewed publications: 

 

Thomas, N. L., Maxwell, C., Mukherjee, S., & Williams, A. J. (2010). Ryanodine 
receptor mutations in arrhythmia: The continuing mystery of channel dysfunction. 
FEBS Letters, 584(10), pp. 2153–2160.  
 
Zissimopoulos, S., Seifan, S., Maxwell, C., Williams, A.J. and Lai, F.A. 2012. 
Disparities in the association of the ryanodine receptor and the FK506-binding 
proteins in mammalian heart. Journal of cell science 125(Pt 7), pp. 1759–1769. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! VI 

Table of Contents: 

!
 Chapter 1: General Introduction   
   
1.1 Calcium Signaling in the heart 2 
1.2 Excitation-Contraction Coupling 2 
1.2.1 The systolic phase of the cardiac cycle (muscle contraction) 2 
1.2.2 Calcium sparks and transients 3 
1.2.3 The diastolic phase of the cardiac cycle (relaxation) 4 
1.2.4 The cardiac action potential 4 
1.2.5 ß-adrenergic stimulation modulates cardiac EC coupling activity 7 
1.3 Cardiac ryanodine receptors (RyR2) 9 
1.4 Modulation of RyR2 channel gating by physiological ligands 14 
1.4.1 RyR2 regulation by Ca2+ 14 
1.4.2 RyR2 regulation by Mg2+ 17 
1.4.3 RyR2 regulation by Adenine Nucleotides (ATP) 17 
1.5 RyR2 macromolecular signalling complex 18 
1.5.1 Regulation of RyR2 by FKBP-binding proteins 18 
1.5.2 Kinase and Phosphatase regulation of RyR2 19 
1.5.3 Regulation of RyR2 by Calmodulin and Sorcin 21 
1.5.4 Regulation of RyR2 by Junctate, Junctophillin and the histidine-

rich Ca2+ binding protein 
22 

1.6 Calsequestrin, Junctin and Triadin 23 
1.6.1 Properties of cardiac calsequestrin 24 
1.6.2 Physiological role of CSQ2 and functional interaction with RyR2 25 
1.6.3 Properties of cardiac junctin and triadin 27 
1.6.4 Physiological roles of JUN and TRD1 and their functional 

interaction with RyR2 
29 

1.7 RyR2 and CSQ2 mutations cause ventricular tachycardia and 
sudden cardiac death 

32 

1.7.1 Genetic Basis of CPVT 34 
1.8 Mechanisms of mutant RyR2 dysfunction 35 
1.8.1 Disruption of the RyR2-FKBP12.6 interaction may be involved 

in the pathogenesis of CPVT 
35 

1.8.2 Defective RyR2 intermolecular domain interactions in CPVT 36 
1.8.3 CPVT mutations alter the cytoplasmic and/or luminal Ca2+ 

sensitivity of RyR2 
37 

1.8.4 Autosomal recessive form of CPVT (CPVT2) evoked by 
mutations in CSQ2 

38 

1.8.5 Newly identified CPVT-linked mutations in other EC coupling 
components 

40 

1.9 Research project aims 41 
   
 Chapter 2: Materials and Methods  
   
2.1 Materials 44 
2.1.1 General laboratory reagents and chemicals 44 
2.1.2 Molecular Biology Kits and Reagents 44 
2.1.3 Bacterial Cell Culture 46 
2.1.4 Oligonucleotides 46 
2.1.5 Plasmid Vectors 47 
2.1.6 Antibodies 49 
2.1.7 Mammalian Cell Culture Reagents 49 
2.1.8 Immunofluorescence and calcium imaging reagents 50 
2.1.9 Protein biochemistry reagents 50 
2.2 Health and Safety 52 



! VII 

2.3 Computer analysis and software 52 
2.4 Methods 53 
2.4.1 Molecular Biology Methods 53 
2.4.1.1 Polymerase Chain Reaction (PCR) 53 
2.4.1.2 Agarose Gel Electrophoresis 55 
2.4.1.3 Gel Extraction 55 
2.4.1.4 TOPO® cloning of luminal accessory protein cDNA clones 56 
2.4.1.5 Bacterial Cell Transformation 56 
2.4.1.6 Small-scale DNA propagation (mini-prep) 57 
2.4.1.7 Verification of positive transformants by restriction digest 57 
2.4.1.8 DNA sequencing 58 
2.4.1.9 Cloning of the luminal accessory protein constructs into a 

mammalian expression vector 
59 

2.4.1.10 Large-scale DNA propagation and maxi-prep purification 60 
2.4.1.11 DNA Quantification 60 
2.4.2 Mammalian Cell Culture Methods 62 
2.4.2.1 Maintenance and sub-culture of HEK293 cells 62 
2.4.2.2 Calcium phosphate transfection of HEK293 cells 62 
2.4.2.3 Effectene® transfection of stable cell lines 63 
2.4.3 Protein Biochemistry Methods 63 
2.4.3.1 Preparation of mixed membranes from transfected HEK293 

cells 
63 

2.4.3.2 Protein assay and analysis of protein expression 64 
2.4.3.3 SDS-PAGE gel electrophoresis 65 
2.4.3.3.1 Protein transfer onto a polyvinylidene difluoride (PVDF) 

membrane 
66 

2.4.3.4 Immunodetection of Western blotted proteins 66 
2.4.3.5 [3H] Ryanodine Binding Protocol 68 
2.4.3.6 Co-immunoprecipitation (Co-IP) of hRyR2 with luminal proteins 69 
2.4.3.7 Immunofluorescent co-localisation investigations 70 
2.4.3.8 Loading of transfected HEK293 cells for Ca2+ imaging studies 71 
2.4.3.9 Ca2+ imaging protocol 71 
   
 Chapter 3: Generation of recombinant luminal accessory 

protein constructs and co-expression with wild type and 
mutant hRYR2 

 

   
3.1 Introduction 73 
3.1.1 Regulation of ryanodine receptor Ca2+ release by luminal 

accessory proteins at the junctional domain of the sarcoplasmic 
reticulum membrane 

73 

3.1.2 Chapter Objectives 75 
3.2 Methods 76 
3.2.1 Strategies used for cloning and expression of luminal 

accessory protein constructs 
76 

3.2.2 Comparison of G418 and hygromycin mediated selection of 
luminal accessory protein expressing stable cell lines 

78 

3.2.3 Optimisation of eGFP-hRyR2 expression in HEK293 cells using 
calcium phosphate mediated transfection 

78 

3.2.4 Co-expression of luminal accessory protein constructs with wild 
type and mutant eGFP-hRyR2 in HEK293 cells 

80 

3.3 Results 81 
3.3.1 PCR amplification of cDNA sequences encoding the luminal 

accessory proteins JUN and TRD1 from a human cardiac 
cDNA library 

81 

3.3.1.1 Isolation of cDNA encoding CSQ2 from a pECFP-N1 
expression vector 

82 



! VIII 

3.3.2 Sequence verification of luminal accessory protein constructs 84 
3.3.3 Cloning CSQ2 and JUN constructs into mammalian expression 

vector pcDNA3.1hygro(+) 
85 

3.3.4 Hygromycin is a better selection antibiotic than G418 for 
making stable cell lines in HEK293 cells 

86 

3.3.5 Assessment of HEK293 cells transiently transfected with eGFP-
hRyR2 

91 

3.3.6 Successful expression of recombinant hRyR2, CSQ2 and JUN 
in HEK293 cells confirmed by Western Blot analysis 

96 

3.4 Discussion 99 
3.4.1 Successful generation of human cardiac CSQ2 and JUN 

mammalian expression constructs 
99 

3.4.2 Optimised co-expression of hRyR2 channels with CSQ2 and 
JUN in transient and stable HEK293 cell lines 

101 

3.4.3 Western blot analysis of recombinant protein expression in 
HEK293 cells 

103 

   
 Chapter 4: Influence of cardiac CSQ2 and JUN on the 

intracellular Ca2+ regulation of WT and mutant hRyR2 
 

   
4.1 Introduction 105 
4.1.1 Regulation of RyR2-meidated Ca2+ release by luminal 

accessory proteins at the junctional domain of the SR 
membrane 

105 

4.1.2 Spontaneous Ca2+ release events in CPVT 107 
4.1.3 CPVT-associated mutations enhance the sensitivity of 

ryanodine receptors to Ca2+ activation 
107 

4.1.4 Chapter Aims 110 
4.2 Methods 112 
4.2.1 Optimisation of the quantitative [3H]-ryanodine binding assay 112 
4.2.1.1 [3H] ryanodine binding as a measurement of hRyR2 Ca2+ 

activation 
112 

4.2.2 Examination of spontaneous Ca2+ release properties using 
single cell Ca2+ imaging 

113 

4.3 Results 117 
4.3.1 Optimisation of [3H] ryanodine binding assays using native and 

recombinant material 
117 

4.3.2 Measurement of the Ca2+ dependence of [3H]-ryanodine binding 
for WT, A4556T and N4104K hRyR2 channels in the absence 
of luminal accessory proteins 

120 

4.3.2.1 Ca2+ dependence of [3H]-ryanodine binding for WT hRyR2 
channels in the presence of CSQ2, JUN or CSQ2 and JUN 

123 

4.3.2.2 Examination of Ca2+ dependence of [3H]-ryanodine binding for 
CPVT-linked mutant hRyR2 channels in the presence of CSQ2, 
JUN or CSQ2 and JUN 

125 

4.3.2.2.1 A4556T hRyR2 channels 125 
4.3.2.2.2 N4104K hRyR2 channels 125 



! IX 

4.3.2.3 Are luminal accessory protein interactions disrupted by the 
optimised [3H] ryanodine binding conditions? 

128 

4.3.3 Imaging of spontaneous Ca2+ release events in HEK293 cells 
expressing WT and mutant hRyR2 channels in the absence of 
accessory proteins 

131 

4.3.4 Expression of CSQ2, JUN and CSQ2+JUN with WT hRyR2 
channels alters the properties of spontaneous Ca2+ release 
events 

133 

4.3.5 Examination of spontaneous Ca2+ release parameters in cells 
co-expressing mutant A4556T hRyR2 channels and the luminal 
accessory proteins CSQ2 and/or JUN 

135 

4.3.6 Examination of spontaneous Ca2+ release events in cells co-
expressing mutant N4104K hRyR2 channels and the luminal 
accessory proteins CSQ2 and/or JUN 

137 

4.4 Discussion 139 
4.4.1 Wild type and mutant hRyR2 channels expressed in the 

absence of luminal accessory proteins display differences in 
Ca2+ sensitivity 

139 

4.4.1.1 Investigations of hRyR2 mutation A4556T 140 
4.4.1.2 Investigations of hRyR2 mutation N4104K 141 
4.4.2 Assessment of the effects that CSQ2 and/or JUN co-

expression has on WT hRyR2 channel activity 
142 

4.4.2.1 Ca2+ activation as measured by [3H] ryanodine binding 143 
4.4.2.2. Single-cell Ca2+ imaging investigations 144 
4.4.3 Do mutant hRyR2s respond differently to luminal accessory 

protein co- expression? 
145 

4.4.3.1 [3H] ryanodine binding investigations 145 
4.4.3.2 Measurement of SCR parameters by single-cell Ca2+ imaging 145 
4.4.4 Concluding Remarks 147 
   
 Chapter 5: Protein-protein interactions of wild type and 

mutant (A4556T and N4104K) hRyR2 with luminal 
accessory proteins CSQ2 and JUN 

 

   
5.1 Introduction 150 
5.1.1 Interactions of calsequestrin, junctin and the cardiac ryanodine 

receptor 
150 

5.1.2 Evidence of a direct binding interaction between cardiac JUN 
and CSQ2 

150 

5.1.3 Evidence of cardiac JUN association with RyR2 152 
5.1.4 Does CSQ2 associate directly with RyR2 channels? 153 
5.1.5 Defective protein-protein interactions contribute to the 

pathophysiology of CPVT 
153 

5.1.6 Chapter Aims 154 
5.2 Methods 155 
5.2.1 Immunofluorescent detection of hRyR2 and co-localisation with 

luminal accessory proteins CSQ2 and JUN 
155 

5.2.2 Co-Immunoprecipitation of CSQ2 and JUN by WT and mutant 155 



! X 

!

hRyR2 
5.3 Results 158 
5.3.1 Determination of CSQ2 and JUN transfection efficiencies by 

immunofluorescent labelling 
158 

5.3.2 Evidence of greater CSQ2 condensation with JUN co-
expression 

160 

5.3.3 Immunofluorescence co-localisation studies to examine the 
interaction of WT and mutant hRyR2 with CSQ2 and JUN 

162 

5.3.4 Assessment of protein-protein interactions between hRyR2 and 
the luminal accessory proteins using co-immunoprecipitation 

165 

5.4 Discussion 169 
5.4.1 Immunofluorescence staining confirms successful co-

expression of CSQ2 and JUN with hRyR2 in HEK293 cells 
169 

5.4.2 Examination of the protein-protein interactions between WT or 
mutant hRyR2 with CSQ2 and/or JUN using immunofluorescent 
co-localisation and co- immunoprecipitation 

170 

 Chapter 6: General Discussion  
   
6.1 Closing discussion and future work 174 
   
 Appendix 182 
 References 190 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



! XI 

List of Figures and Tables:!
!
!
 Chapter 1: General Introduction   
   
 Figures  
1.1 Cardiac Muscle Excitation Contraction Coupling 6 
1.2 Activation of the ß-adrenergic receptor and phosphorylation of 

protein targets 
8 

1.3 Illustration of the ultrastructure of RyR channels 13 
1.4 Schematic illustrating the location of predicted RyR2 Ca2+ binding 

sites 
14 

1.5 Schematic demonstrating RyR2 mutation “hot-spots” 34 
1.6 Schematic illustrating the hRyR2 mutations investigated in this 

project 
42 

 Tables  
1.1 Functional assays investigating the role of CSQ2 in cardiac muscle 26 
1.2 Functional assays investigating the role of JUN in cardiac muscle 30 
1.3 Functional assays investigating the role of TRD1 in cardiac muscle 31 
   
 Chapter 2: Materials and Methods  
   
 Figures  
2.1 Illustration of plasmid vectors used in this study 48 
2.2 Schematic of bacterial cell DNA propagation of full-length eGFP-

hRyR2 and luminal accessory protein constructs 
61 

2.3 Apparatus used to homogenise transfected HEK293 cell pellets 64 
2.4 [3H] Ryanodine binding filter apparatus 68 
2.5 Co-immunoprecipitation investigations 70 
 Tables  
2.1 PCR reaction components 54 
2.2 PCR amplification thermal cycling conditions 54 
2.3 PCR sequencing thermal cycling conditions 58 
2.4 Luminal accessory protein and pcDNA3.1hygro(+) ligation reaction 59 
2.5 Components used to prepare SDS-PAGE gels 65 
   
 Chapter 3: Generation of recombinant luminal accessory 

protein constructs and co-expression with wild type and 
mutant hRYR2 

 

   
 Figures  
3.1 PCR primer combinations 77 
3.2 Agarose gel electrophoresis to visualise PCR recovery and gel 

extraction products 
83 

3.3 Hygromycin and G418 Kill-Curves 87 
3.4 Representative images of HEK293 cell populations following 

treatment with hygromycin 
88 

3.5 Assessment of transient hRyR2 expression in stable HEK293 cells 89 
3.6 Assessment of the Effectene®-mediated transfection protocol 90 
3.7 Transient transfection of eGFP-hRyR2 in HEK293 cells 93 
3.8 Comparison of transfection variables by protein expression, 

assessed by Western blot analysis 
94 

3.9 Immunofluorescent detection of hRyR2, CSQ2 and JUN expression 
confirms ER trafficking 

95 

3.10 Western blotting confirms transient expression of hRyR2, CSQ2 
and JUN in co-transfected HEK293 cells 

97 



! XII 

   
3.11 Stable expression of luminal proteins in HEK293 cells confirmed by 

Western blot analysis 
98 

 Tables  
3.1 Co-expression of hRyR2 and luminal accessory proteins was 

achieved by transfection of cDNA constructs in an equimolar ratio 
80 

3.2 Predicted molecular weights of CSQ2, JUN and TRD1 82 
3.3 Identification of prospective TRD amplicons using BLAST 84 
   
 Chapter 4: Influence of cardiac CSQ2 and JUN on the 

intracellular Ca2+ regulation of WT and mutant hRyR2 
 

   
 Figures  
4.1 Schematic of the store-overload induced Ca2+ release mechanism 

hypothesised for CPVT mutants 
109 

4.2 Illustration of the SCR kinetic parameters measured in transfected 
HEK293 cells 

116 

4.3 Determination of an optimal recombinant protein amount for use in 
[3H] ryanodine binding assays and a preliminary Ca2+ activation 
assay using native material 

118 

4.4 Standardisation of mixed membrane preparations for hRyR2 
expression by densitometry before use in [3H] ryanodine binding 
Ca2+ activation assays 

119 

4.5 [3H] ryanodine binding Ca2+ activation curve of WT hRyR2 channels 120 
4.6 A comparison of the [3H] ryanodine binding Ca2+ activation curves 

of WT, A4556T and N4104K hRyR2 channels 
122 

4.7 [3H] ryanodine binding Ca2+ activation curves of WThRyR2 
channels expressed alone and in the presence of luminal 
accessory proteins CSQ2 and JUN 

124 

4.8 [3H] ryanodine binding Ca2+ activation curves of A4556T hRyR2 
channels in the absence and presence of CSQ2 and/or JUN 

126 

4.9 [3H] ryanodine binding Ca2+ activation curves of N4104K hRyR2 
channels in the absence and presence of luminal proteins 

127 

4.10 [3H] ryanodine binding of WT and mutant RyR2 channels with 
increasing concentrations of KCl 

128 

4.11 Co-immunoprecipitation investigations to establish if the 
association of CSQ2 and JUN with hRyR2 is altered by high salt 
and high Ca2+ concentrations. 

130 

4.12 Representative traces of spontaneous Ca2+ release events from 
HEK293 cells expressing WT and mutant A4556T and N4104K 
hRyR2, measured by Fluo-3 AM  

131 

4.13 Assessment of the spontaneous Ca2+ release event properties in 
HEK293 cells expressing WT and mutant hRyR2 alone 

132 

4.14 Representative traces of spontaneous Ca2+ release events in 
HEK293 cells expressing WT hRyR2, in the absence and presence 
of luminal accessory proteins CSQ2 and/or JUN, measured by 
Fluo-3 AM 

133 

4.15 Assessment of the effects CSQ2 and/or JUN co-expression has on 
the spontaneous Ca2+ release events properties of WT hRyR2-
expressing cells 

134 

4.16 Representative traces of spontaneous Ca2+ release events in 
HEK293 cells expressing A4556T hRyR2 alone and in the 
presence of luminal accessory proteins CSQ2 and JUN, measured 
by Fluo-3 AM 

135 

4.17 Assessment of the effects CSQ2 and/or JUN co-expression has on 
the spontaneous Ca2+ release event properties of A4556T hRyR2-
expressing cells 

136 



! XIII 

!

4.18 Representative traces of spontaneous Ca2+ release events in 
HEK293 cells expressing N4104K hRyR2 alone and in the 
presence of luminal accessory proteins CSQ2 and JUN, measured 
by Fluo-3 AM. 

137 

4.19 Assessment of the effects CSQ2 and/or JUN co-expression has on 
the spontaneous Ca2+ release event properties of N4014K hRyR2-
expressing cells 

138 

   
 Chapter 5: Protein-protein interactions of wild type and mutant 

(A4556T and N4104K) hRyR2 with luminal accessory proteins 
CSQ2 and JUN 

 

  
Figures 

 

5.1 All mutant hRyR2 samples were standardised to WT hRyR2 
expression before use in Co-IP investigations 

157 

5.2 Comparable transfection efficiencies of HEK293 cell populations 
expressing WT/mutant hRyR2, CSQ2 and JUN 

158 

5.3 Imaging of CSQ2 and JUN co-expression with eGFP-hRyR2 in 
HEK293 cell populations 

159 

5.4 Evidence of CSQ2 condensation at the peri-nuclear region of 
imaged HEK293 cells 

161 

5.5 Evidence of reduced CSQ2 binding to the A4556T hRyR2 mutation 
by immunofluorescent co-localisation 

163 

5.6 Evidence of reduced JUN binding to the A4556T hRyR2 mutation 
by immunofluorecent co-localisation 

164 

5.7 Co-immunoprecipitation demonstrates that mutation does not alter 
the interaction of CSQ2 or JUN with hRyR2 

167 

5.8 Direct protein-protein interactions between CSQ2 and JUN 
demonstrated by co-immunoprecipitation. 

168 

   
 Chapter 6: General Discussion  
   
 Figure  
6.1 Schematic summarising the major findings of this work 179 
   
 Appendix  
Fig.1 Visualisation of PCR/gel extraction products by agarose gel 

electrophoresis 
183 

Fig.2 Comparable hRyR2 transfection efficiencies in HEK293 cell 
populations 

184 

Fig.3 Additional Western blots of hRyR2 expression 185 
Fig.4 Additional Western blots of CSQ2 and JUN expression 186 
Fig.5 Untransfected HEK293 loaded with Fluo3-AM did not display 

spontaneous Ca2+ release events or respond to caffeine addition 
187 

Fig.6 Column scatter plots of all Ca2+ imaging data 188 
Fig.7 Bar graphs of all Ca2+ imaging data 189 
!
!
!
!
!
!
!
 



! XIV 

Abbreviations List 
 

AM  Acetoxymethyl 

ANOVA  Analysis of variance 

AP  Action Potential 

ARVD  Arrhythmogenic Right Ventricular Dysplasia 

ASPH     Aspartate beta-hydroxylase 

AT or AThRyR2 A4556T mutant hRyR2 

!-AR  Beta-adrenergic 

BLAST Basic Local Alignment Search Tool 

BSA             Bovine serum albumen 

CaM             Calmodulin 

CaMKII            Calcium/Calmodulin-dependent Kinase II 

cDMEM   Complete / supplemented DMEM 

CICR    Calcium-induced calcium release 

Co-IP                                    Co-immunoprecipitation 

CPVT             Catecholaminergic polymorphic ventricular tachycardia 

Cryo-EM                               Cryo-electron microscopy 

CSQ             Calsequestrin 

CSQ1                                   Calsequestrin, skeletal isoform 1 

CSQ2                                   Calsequestrin, cardiac isoform 2 

DAD  Delayed after-depolarisation 

DMEM             Dulbecco’s modified eagles medium 

DMSO             Dimethyl sulfoxide 

Dpm                                      Decays (or disintegrations) per minute 

EAD             Early after depolarisation 

ECC                                      Excitation-contraction Coupling 

ECG                                      Electrocardiogram 

ECL  Enhanced chemiluminescence 

eGFP                                    Enhanced green fluorescent protein 

EGTA Ethylene glycol tetraacetic acid 

ER                                        Endoplasmic reticulum 

F  Fluo-3 peak signal intensity 

F0             Fluo-3 basal signal intensity 

FBS    Foetal bovine serum 

FKBP             FK506 binding protein 

F.U.                                       Fluorescence Units 

GFP             Green Fluorescent Protein 



! XV 

HEDTA                                 Hydroxyethyl Ethylenediamine Triacetic Acid 

HEK293   Human embryonic kidney 293 cells 

HF    Heart failure 

HRC                                      Histidine-rich Ca2+ binding protein 

HRP              Horseradish peroxidase 

iPSCs                                    Induced Pluripotent Stem Cells 

jSR                                        Junctional Sarcoplasmic Reticulum 

JP2                                        Junctophillin 

JUN  Junctin  

LB              Luria-Bertani medium 

LTCC                                     L-type Ca2+ channel (or Dihydropyridine receptor) 

mDMEM             Minimal / unsupplemented DMEM 

NCX              Sodium-calcium exchanger 

NK or NKhRyR2 N4104K mutant hRyR2 

NTA                                       Nitrilotriacetic Acid 

PBS              Phosphate Buffered Saline 

PCR                                       Polymerase Chain Reaction 

PKA     Protein kinase A 

PLB Phospholamban 

pmol  Picomole    

Po                                            Open probability 

PVDF               Polyvinylidene difluoride 

ROI                                         Region of Interest 

RT               Room temperature 

RyR    Ryanodine receptor 

RyR1     Ryanodine receptor, Skeletal Muscle Isoform, Type I  

RyR2   Ryanodine receptor, Cardiac Muscle Isoform, Type 2  

RyR3               Ryanodine receptor, Type 3 Isoform 

SCR                                        Spontaneous Ca2+ release 

SDS               Sodium Dodecyl Sulphate 

SDS-PAGE              SDS Polyacrylamide Gel Electrophoresis 

S.E.M.               Standard error of the mean 

SERCA2a              Sarco/endoplasmic reticulum Ca2+ ATPase 

SOC    Super optimal broth supplemented with glucose 

SOICR    Store Overload-Induced Calcium Release 

SR               Sarcoplasmic Reticulum 

TAE               Tris-acetate-EDTA 

TBS               Tris-buffered saline 



! XVI 

TBS-T               Tris-buffered saline with added 0.1% (v/v) Tween-20 

TEMED              Tetramethylethylenediamine 
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      1.1. Calcium Signalling in the heart: 
 

In cardiac muscle, ionised calcium (Ca2+) acts as a ubiquitous intracellular signalling 

messenger directly regulating a multitude of processes such as the electrical activity of the 

heart, ion channel gating and contractile processes. All of which are central to the 

synchronous systolic-diastolic cycles (ventricular contraction and relaxation, respectively) 

that produce the heartbeat. During the physiological process of Excitation-Contraction 

Coupling (ECC), intracellular Ca2+ homeostasis must be carefully regulated, such that 

cardiac myocytes can distinguish between a series of spatially and temporally discrete 

localised Ca2+ signalling pathways (occurring simultaneously within the cell) which 

combine to produce an overall global Ca2+ transient to generate muscle contraction (Bers, 

2002). Since Ca2+ cannot be metabolised, Ca2+ homeostasis is maintained by a subset of 

critical signalling molecules and protein complexes that function against a background of 

tightly regulated changes in the intracellular free Ca2+ concentration (Scoote and Williams, 

2004, Bers et al., 2008).  

 

1.2. Excitation-Contraction Coupling: 

 

ECC refers to the co-ordinated process that pairs electrical stimulation of the 

cardiomyocytes with the movement of intracellular Ca2+ around the cell to induce muscle 

contraction (Bers, 2008). Ca2+ exerts its major signalling function when elevated in the 

cytosolic compartment of cardiac cells, which is achieved by a specialised intracellular 

architecture that acts in a coordinated manner to regulate Ca2+ handling during each 

heartbeat. Figure 1.1 (A) illustrates major proteins involved in ECC within cardiac muscle.  

 

1.2.1. The systolic phase of the cardiac cycle (muscle contraction): 

 

When the heart is at rest (diastole), intracellular Ca2+ is sequestered into the sarcoplasmic 

reticulum (SR), which is the major internal Ca2+ store of cardiomyocytes. Responsible for 

elevating intracellular Ca2+ within the cytosol, the transverse tubules (or T-tubules) are a 

coalescence of the myocyte cell surface (the sarcolemma), which exist as deep 

invaginations and provide a close apposition between the sarcolemma and the 

intracellular space (the junctional SR membrane (jSR)) of cardiomyocytes (Berridge, 2003, 

Fearnley, 2011). During systole, specific ion fluxes between the extracellular space and 

cytosol initiates electrical excitation of the myocyte sarcolemma, a process known as 

depolarisation. Described further in section 1.2.4, the resultant change in membrane 

potential initiated by depolarisation is known as the action potential (AP), a phenomenon 
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that forms distinct phases which correspond to a specific membrane ion flux, as illustrated 

in Figure 1.1 (B).  

 

When the myocyte becomes depolarised, a small influx of extracellular Ca2+ enters the 

cytosolic compartment of the cell through voltage-gated L-type Ca2+ channels (LTCC) 

present on the sarcolemmal membrane. This inward Ca2+ current initiates Ca2+-induced-

Ca2+ release (CICR), where a much larger Ca2+ efflux from the SR significantly amplifies 

the cytosolic Ca2+ concentration. The amplitude of the resultant Ca2+ transient determines 

the contractile force of the cardiac myocyte (Bers and Guo 2005). A major Ca2+ release 

channel found embedded in the SR membrane facilitates this process, and plays a crucial 

role in CICR. Ryanodine receptors (cardiac isoform known as RyR2) traverse the SR 

membrane and function as regulated Ca2+release channels, allowing Ca2+ to pass from the 

intracellular store into the surrounding cytoplasm, elevating cytosolic [Ca2+] from 

approximately 100 nM during diastole to ~1 !M during the systolic phase of the cardiac 

cycle (Fearnley et al., 2011). The tenfold increase in intracellular Ca2+ induces a 

conformational change in the cardiac muscle myofilaments responsible for cardiomyocyte 

contraction (Bers and Guo, 2005).  

 

 

1.2.2. Calcium sparks and transients: 

 

Clusters of RyR2 channels are localised in discrete areas along the jSR membrane 

(known as calcium release units) and are positioned adjacent to L-type Ca2+ channels 

(Franzini-Armstrong, 2005). The global Ca2+ transient that generates contractile function is 

a summation of many localised intracellular Ca2+ release events known as Ca2+ sparks, 

which were first described as spontaneous elementary Ca2+ signals arising from the SR 

(Cheng et al., 1993, Cheng and Lederer 2008). We now know that Ca2+ sparks reflect the 

concerted opening of a cluster of RyR2 Ca2+ release channels, which were first visualised 

in the cell by fluorescent indicators (Cheng et al., 1993). It has been estimated that up to 

20 RyR2 channels may open during each Ca2+ spark, and that the Ca2+ dependence of 

spark frequency is in line with that of the Ca2+ dependence of RyR2 open probability (Po)  

(Zahradníková et al., 2012).   
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1.2.3 The diastolic phase of the cardiac cycle (relaxation): 

 
Allowing cardiac muscle relaxation (reduced activation of contractile proteins), RyR2 

channel activity declines and the cytosolic Ca2+ concentration is returned to resting levels. 

This is achieved via two primary mechanisms: the Na+/Ca2+ exchangers (NCX), located in 

the sarcolemma, and the sarco/endoplasmic reticulum Ca2+ ATPase pump (SERCA2a), 

located in the SR membrane (Figure 1.1 (A)). In human ventricles, approximately 70% of 

intracellular Ca2+ is removed by SERCA2a (the predominant isoform in the heart), 28% by 

NCX, and the remaining 2% by a mitochondrial Ca2+ uniporter, a pattern also observed in 

other species such as dog, guinea pig and rabbit (Fearnley, 2011, Bassani et al., 1994, 

Bers, 2001). SERCA2a sequesters Ca2+ back into the SR store, which is subsequently 

buffered by the luminal Ca2+ binding protein, CSQ2 (section 1.6). SERCA2a activity is 

regulated by an integral membrane protein, phospholamban (PLB). NCX catalyses the 

electrogenic exchange of Na+ and Ca2+, extruding Ca2+ from the cell and thus restoring the 

intracellular Ca2+ concentration to diastolic levels (Bridge et al., 1990). Given the fact that 

for each Ca2+ ion that is extruded, three Na+ ions enter the cell, it has also been suggested 

that RyR2 Ca2+ sparks stimulate NCX activity and contributes to the generation of a net 

inward Na+ current that is required for action potential initiation (Berridge et al., 2003). 

 

1.2.4. The cardiac action potential: 

 

Generation of an action potential (AP) at the sarcolemma causes the electrical excitation 

required to initiate ECC. The cardiac AP consists of 5 phases as shown in Figure 1.1 (B) 

and is the product of changes in the membrane potential, generated by the activation and 

deactivation of specific ion channels in a time-dependent manner (Scoote & Williams, 

2004). Under diastolic conditions, the resting membrane potential (Em) of a ventricular 

cardiomyocyte is approximately -80 mV (Bers, 2008) and is represented as Phase 4 of the 

AP cycle. Initiating excitation, Phase 0 of the AP represents activation of voltage-

dependent fast inward Na+ currents, responsible for generating rapid depolarisation of the 

sarcolemma to approximately +40 mV. This phase is represented in Figure 1.1 (B) as a 

sharp upstroke.  Once depolarisation is complete, this inward Na+ current becomes 

inactivated and a movement of K+ and Cl- ions from the cell cytosol triggers early 

repolarisation of the membrane potential, represented as a downward deflection in the AP 

cycle (Phase 1).  Phase 2 corresponds to a plateau phase, generated by the manifestation 

of an inward Ca2+ current, primarily through L-type Ca2+ channels, and a K+ efflux through 

slow delayed rectifier channels. In order to return to resting state, rapid (late) 

repolarisation (Phase 3) occurs within the myocyte, whereby the RyR2 channels prevent 

any further Ca2+ influx into the cytosolic compartment by initiating Ca2+ efflux from the SR 
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store, inactivating the L-type Ca2+ channels by the raised [Ca2+] and at the same time, 

rapid and slow delayed rectifying K+ channels remain open and allow the efflux of the 

remaining K+ ions out of the cell. This reduction in positive charge causes the cell to 

repolarise, and the K+ channels close once the membrane potential is restored to -80 mV.  

At the same time, the additional Na+ and Ca2+ that entered the cell during the course of the 

action potential are extruded by NCX, whilst SERCA2a sequesters Ca2+ back into the SR 

store. The Na+/K+ ATPase pump also facilitates the removal of excess Na+ from the cell. 

Following AP repolarisation, cytoplasmic Ca2+ falls and the myocardium relaxes (Bers, 

2008). The action potential lasts approximately 300 milliseconds during which time the cell 

remains refractory to any further activation. 
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Figure 1.1: Cardiac Muscle Excitation Contraction Coupling: Illustrated are 
the major protein components involved in ECC described in sections 1.2-1.2.3 (A) 
Depolarisation of the cardiomyocyte sarcolemma initiates an influx of Ca2+ through 
LTCC that subsequently triggers greater Ca2+ release from the SR store through 
RyR2 Ca2+ release channels. Following contraction, Ca2+ dissociates from the 
contractile proteins and is removed from the cytoplasm primarily by the SERCA2a 
pump that sequesters Ca2+ back into the SR (modulated by PLB) and via NCX, 
which extrudes Ca2+ from the cell. Distinct phases of the cardiac action potential 
are highlighted in (B) and described further in section 1.2.4.  
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1.2.5.  ß-adrenergic stimulation modulates cardiac EC coupling activity: 
 

During times of emotional stress and exercise, a rapid change in the rate (chronotropy), 

force of contraction (inotropy) and relaxation (lusitropy) of the heart is achieved by 

stimulation of the sympathetic nervous system and subsequent activation of a well-

characterised ß-adrenergic signalling cascade within the myocardium (Bers, 2002). This 

process is often known as the “fight-or-flight” response and vitally enhances cardiac 

myocyte activity in situations where there is a higher metabolic demand (Shan et al., 

2010). As summarised in Figure 1.2, neuronally released adrenaline/noradrenaline or 

circulating catecholamines bind to ß-adrenergic receptors present on the cardiomyocyte 

sarcolemma, which initiates a downstream signalling cascade that first activates adenylate 

cyclase and the production of cyclic AMP, which in turn activates phosphorylation 

enzymes such as protein kinase A (PKA). Alterations in the phosphorylation status of 

several proteins central to the regulation of contractility, leads to elevations in the Ca2+ 

mediated responses seen during normal EC coupling (Lakatta, 2004, Bers, 2004, Reiken 

et al., 2003).  

 

The proposed functional consequences of PKA phosphorylation include: (1) positive 

inotropic effects, such as increased activity of LTCC and RyR2 receptors, causing a 

greater influx of extracellular Ca2+ and larger efflux of luminal Ca2+ from the SR, 

respectively (Bers, 2002, Scoote and Williams, 2004); and (2) positive lusitropic effects, 

including phosphorylation of PLB, which relieves SERCA2a inhibition and speeds up Ca2+ 

re-uptake into the SR, increasing the ‘Ca2+ load’. In addition, a reduction in myofilament 

Ca2+ sensitivity occurs via phosphorylation of troponin I, a protein that mediates 

myofilament contraction. This lowered activity is however compensated for by the dramatic 

rise in Ca2+ transient amplitude seen after ß-adrenergic stimulation (Li et al., 2000). Taken 

together, ß-adrenergic activation elicits a cascade of phosphorylation reactions that 

increase Ca2+ levels within the SR and produce larger and faster Ca2+ transients. These 

enhanced processes combine to increase cardiac output and improve overall cardiac 

performance. It is however important to note that whilst catecholamines can improve 

contractile function and increase SR Ca2+ content, Ca2+ load can increase to a level which 

induces spontaneous Ca2+ release from the SR through RyR2 channels, as seen in 

cardiovascular disease (section 1.7-1.7.1).  
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Figure 1.2: Activation of the ß-adrenergic receptor and phosphorylation of protein 
targets: Activation of ß-adrenergic receptors by circulating catecholamines (or 
adrenaline/noradrenaline) triggers downstream signalling cascades that culminate in 
phosphorylation of protein targets. Illustrated here is the G protein (guanosine nucleotide-
binding protein) cascade and activation of PKA. Activation of the G protein complex 
stimulates adenylate cyclase to produce a secondary messenger cAMP (from ATP). This 
in turn stimulates PKA. The effects of phosphorylation of protein targets highlighted here 
with numbers: (1) LTCC, (2) RyR2, (3) PLB and (4) contractile proteins (specifically 
troponin I) is discussed further in section 1.2.5.     
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1.3. Cardiac ryanodine receptors (RyR2): 

 

Ryanodine receptors are the largest known Ca2+ channels in the human body and are 

named after the muscle-paralysing plant alkaloid, ryanodine. Ryanodine exists naturally in 

the roots and stems of the Ryania speciosa and was found in the late 1980s to bind to the 

Ca2+ release channels with very high affinity and specificity (Lai and Meissner, 1989). The 

advantages of using this property to assess RyR2 function will be discussed in Chapter 4. 

RyR channels exist as three mammalian isoforms, each encoded by a distinct gene 

(RyR1, RyR2 and RyR3) and residing on separate chromosomes (Capes et al., 2011). 

Although the regulation and expression of the three known isoforms is tissue specific, all 

three share similar characteristics, functioning as cation-selective ion channels that are 

modulated by Ca2+, Mg2+ and ATP (Lanner et al., 2010).  

 

RyR2 is the predominant isoform found in cardiac muscle (Lai et al., 1988), encoded by 

the RyR2 gene and located on chromosome 1 (1q42-q43), (Otsu et al., 1993, Tunwell et 

al., 1996). Aside from the myocardium, RyR2 is also expressed at lower levels in the 

somata of neurons, the stomach, brain, adrenal glands and ovaries (Lanner et al., 2010, 

Kuwajima et al., 1992, Giannini et al., 1995, Nakai et al., 1990). Biochemical analysis and 

three-dimensional reconstruction studies have revealed that RyR2 Ca2+ release channels 

exists as large homotetramers that traverse the SR membrane, and consist of four 

identical 565 kDa subunits, surrounding a centrally located pore (Lai et al., 1989, Sharma 

et al., 1998). The four protein monomers combine to form a 2.2 MDa complex, with 4967 

amino acids per monomer (Otsu et al., 1993, Tunwell et al., 1996). Channels are 

characterised by their large N-terminal domain which protrudes into the cytosol and is 

recognised in electron micrographs as a “foot-like” structure observed at the junction 

between terminal cisternae of SR and the T-tubule network. A number of associated 

regulatory proteins make the structure a huge macromolecular complex (Franzini-

Armstrong et al., 1999, Yano et al., 2009). Hydropathy plot analysis has revealed that the 

first 4000 amino acids of the RyR2 channel are hydrophilic and correspond to the N-

terminal region of the protein, the smaller C-terminal region is predicted to contain large 

hydrophobic stretches plus highly charged sequence repeats which are thought to be 

important for accessory protein association (Zorzato et al., 1990). The C-terminal section 

of the protein comprises a pore-forming region and approximately 6 transmembrane (TM) 

helices, with one potential TM stretch forming a pore loop from the luminal side of the 

channel, as proposed by Du et al., 2002.  

 

Figure 1.3 illustrates predicted structures of the RyR channel complex. In recent years, 

studies using single-particle cryo-electron microscopy (cryo-EM) have provided us with 
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invaluable structural information regarding the architecture of RyR Ca2+ release channels, 

as well as the identification of binding regions for a multitude of intracellular molecules 

responsible for modulating RyR activity (Hamilton and Serysheva, 2009, Huang et al., 

2012, Efremov et al., 2015, Yan et al., 2015). Numerous allosteric interactions are 

predicted to contribute to the conformational changes necessary within the channel 

domain to allow channel opening, which are largely achieved through extensive van der 

Waals contacts (Samsó et al., 2005, Yan et al., 2015). Furthermore, cryo-EM studies have 

facilitated the mapping of CPVT-associated mutation hotspots within the Ca2+ release 

complex. Closed channel structures of rabbit RyR1 (Yan et al., 2015) have recently been 

achieved at the near-atomic resolution of 3.8 Å (Figure 1.3 (A)), while the open state 

structure has been captured at 8.5 Å (Efremov et al., 2015). Figure 1.3 (A) and (B) (i) 

demonstrate the characteristic mushroom-shaped architecture of the RyR1 channel (that 

is highly conserved between RyR isoforms), which has 4-fold rotational symmetry 

(Hamilton and Serysheva, 2009) and its macromolecular assembly, generated from cryo-

EM imaging and the formation of electron microscopy density maps by Yan et al (2015). 

The distinct domains established by Yan et al (2015) are highlighted in Figure 1.3 (B) (i)-

(iii) and are colour coded for identification (see labelled domains in (B) (ii)). 

Characterisation of RyR2 channels by cryo-EM has been hindered by the difficulty to 

isolate large enough quantities of purified, structurally intact channels from cardiac muscle 

(Liu et al., 2001).  

 

As shown in (B) (i), the large N-terminal cytoplasmic domain of RyR constitutes the bulk of 

the protein (~80% (Huang et al., 2012)), which is adjoined to the C-terminal luminal 

domain via a transmembrane region (TM) that together resembles a stalk-like structure 

(Hamilton and Serysheva, 2009). A structural scaffold for the large N-terminal region is 

formed by a "-solenoid domain, which consists of ~30 "-helices packed into parallel layers 

(Yan et al., 2015). Within the cytoplasmic domain, direct interactions between the central 

and channel domain (marked in Figure 1.3 (B) (ii)) are thought to primarily regulate the 

conformational changes necessary to control RyR opening and closing (Yan et al., 2015). 

Described by Yan et al (2015) the handle and two helical structures (indicated as HD1 and 

HD2 in (B) (ii)) of the cytoplasmic central region (Figure 1.3 (B) (ii)) appear to form a 

discontinuous corona (a protein adsorption layer which surrounds the protein surface, del 

Pino et al., 2014), which is predicted to contain the interaction sites for the ligand binding 

of channel modulators such as FKBPs and CaM.  As highlighted in Figure 1.3 (B) (iii), 

FKBP12 appears to bind within a cleft situated between the N-terminal domain and the 

handle region (residues 1651-2145), and close to the SPRY domains (Yan et al., 2015). 

Earlier studies however, have reported that the binding site for FKBP12 lies between 

amino acids 2458-2468 of rabbit RyR1 (Hamilton and Serysheva, 2009 and Lanner et al., 
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2010), which in the model proposed by Yan et al (2015) locates FKBP12 binding to the 

helical HD1 region (residues 2146-2712). In further studies using cryo-EM analyses, 

Huang at al (2012) established the binding region for the Ca2+ binding protein calmodulin 

(CaM) between RyR1 residues 3614 and 3643. Interestingly, two distinct but overlapping 

areas for CaM binding have been identified, where binding at each site is governed by the 

absence or presence of Ca2+ (Samsó et al., 2005, Huang et al., 2013). When CaM 

switches between Ca2+ free- and bound states, cryo-EM studies revealed that the 

regulatory protein appears to shift approximately 30 Å along the surface of the RyR1 

channel (Huang et al., 2013). As highlighted in (B) (ii) and (iii), three SPRY domains are 

localised within the periphery of the cytoplasmic region, named according to their 

discovery within dual-specificity sp1A kinase and RyR channels (Ponting et al., 1997, 

Efremov et al., 2015). The precise function of these domains remains unclear, yet their 

positioning close to the N-terminal and helical domains (Figure 1.3 (B) (iii) suggests that 

the domains provide a scaffold and maintain structural integrity throughout this channel 

region (Yan et al., 2015, Efremov et al., 2015). As shown in Figure 1.3 (B) (iii), the SPRY 

domains (1-3) are composed primarily of ß-sheets (forming “ß-sandwiches”) and lie close 

to a phosphorylation hotspot labelled P1 (Yan et al., 2015). Another phosphorylation 

hotspot (P2) is highlighted in Figure (B) (ii), which has been predicted to reside within the 

helical domain of RyR1 between residues 2734 and 2940 (Yan et al., 2015). Within this 

region of channel phosphorylation, Zhu et al (2013) reported the presence of eleven 

disease-causing mutations.  

 

The secondary structure of the RyR1 pore formulated by Yan et al (2015) is shown in 

Figure 1.3 (C) (i)-(iii), where six "-helical transmembrane regions (labelled S1-S6) per 

monomer are predicted, which together exhibit a voltage-gated ion channel fold (although 

RyR does not exhibit voltage-dependence) (C) (ii), (Samsó et al., 2005, Yan et al., 2015). 

As highlighted in (B) (ii) and (C) (ii), VSC refers to a cytoplasmic subdomain (named 

according to its location within the voltage-sensor fold region), formed by the intervening 

sequences in between transmembrane regions S2 and S3 (Yan et al., 2015). This 

previously unknown VSC domain appears to link a previously unidentified C-terminal 

subdomain (labelled CTD) close to the S1-S4 regions (shown in (C) (i)) and together with 

the central domain forms the “column-like” structure reported in earlier investigations 

(Samsó et al., 2005, Yan et al., 2015). Finally, as shown in (C) (i)-(iii), the luminal loop is a 

hairpin loop situated between S5 and the pore helix, which projects into the SR lumen and 

sits above the selectivity filter; this structure together with the S6 transmembrane region 

forms the entire ion-conducting pore (as demonstrated in (C) (iii)).   
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The cytoplasmic region of the S6 segment (labelled in (C) and forming part of the 

transmembrane domain) is enriched in aspartic and glutamic acid residues and together 

with the selectivity filter (length ~10 Å, labelled SF in (B) (ii)), forms a long (~90 Å) 

pathway for ion-conduction, allowing rapid Ca2+ transport across the SR membrane (Yan 

et al., 2015). As proposed by Yan et al (2015) opening of the activation gate may simply 

result from twisting within this S6 bundle, this however requires further investigation. 

Interactions between the CTD and the S6 region appear to be stabilised via a zinc-finger 

motif, whereby structural transitions of these domains are predicted to determine allosteric 

regulation of the channel’s activation gate (Yan et al., 2015).  
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(iii) 
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(i) (ii) (iii) 

Figure 1.3: Illustration of the ultrastructure of RyR channels: Established by cryo-EM 
analysis (A) illustrates an EM density map of the RyR1 channel (in complex with FKBP12) 
which is colour coded to highlight the ranges of resolutions achieved by Yan et al (2015), with 
the highest being at the central region of the structure. (B) (i-iii) depicts the overall RyR1 
structure and the predicted domain organization and their orientation within the Ca2+ release 
channel. These domains are discussed in detail in section 1.3 and are colour coded according 
to the labelling shown in (B) (ii). (C) Illustrates the predicted structure of the channel domain, 
which constitutes the pore-forming region of the channel. Colour coding of structures in (ii) and 
(iii) correlates with those labelled in (C) (i). The labelled transmembrane regions (S1-6), 
luminal loops, pore helix, etc. in one RyR1 protomer are shown in (i) and per tetramer (ii); and 
are discussed in section 1.3. As mapped by cryo-EM, the pore helix and luminal loops (which 
make up the selectivity filter) of the channel are hotspots for CPVT-associated mutations (Yan 
et al., 2015). As shown in (iii) the ion-conducting pathway of the channel is predicted to consist 
of the selectivity filter and the S6 transmembrane segments. Image modified from Yan et al., 
2015.     
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1.4. Modulation of RyR2 channel gating by physiological ligands: 

 

1.4.1. RyR2 regulation by Ca2+: 

 

A variety of physiological ligands, cellular processes, accessory proteins and 

pharmacological agents can modulate RyR2 activity, but Ca2+ is by far the most important 

effector of channel function. There is still however no consensus as to how exactly 

cytoplasmic and luminal Ca2+ regulates channel activity, but at least four Ca2+-sensing 

sites on each RyR2 subunit have been proposed. As shown in Figure 1.4, using all known 

information derived from single channel recordings, Laver et al (2007) developed a model 

of RyR2 Ca2+ sensing sites and their relative contribution to channel activation is 

discussed below.  

 

 
 
 
 

 
 
 

 
 

 

Site Regulatory Effect Ligand Dissociation 

constant 

A-site Cytoplasmic Activation Ca2+ 1-10!M 

L-site Luminal Activation Ca2+ 60!M 

I1-site Cytoplasmic Inhibition Ca2+ and Mg2+ ~10mM 

I2-site Cytoplasmic Inactivation Ca2+ 1!M 

AUTHOR

cytoplasmic Ca2+-inactivation site (I2-site) causes a
reduction in channel open durations at high levels of Ca2+

feed-through. This review evaluates the evidence for the
principal aspects of the “luminal-triggered Ca2+ feed-
through” model, the properties of the various
Ca2+-dependent gating mechanisms and their likely role in
controlling Ca2+ release from the SR.
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Figure 2. The process of “luminal-triggered Ca2+ feed-
through” (after Laver, 200724). An illustration of the three
Ca2+ sensing sites that have been linked to regulation of
cardiac RyRs by luminal Ca2+: the luminal activation site
(L-site, 60 µM affinity), the cytoplasmic activation site (A-
site, 1-10 µM affinity) and the cytoplasmic Ca2+-inactiva-
tion site (I2-site, 1 µM affinity). Ca2+ binding at the L-site
is sufficient to activate channel openings whereupon Ca2+

flow through the channel (Ca2+ feed-through) causes either
additional activation via the A-site or inactivation via the
I2-site. Also shown is the so-called Ca2+/Mg2+ inhibition
site (I1-site, 10 mM affinity, pre viously referred to as the I-
site). This site plays a role in cytoplasmic regulation of
RyRs.

A-site for [Ca2+]C-activation

At an early stage RyRs were found to be activated by
µM [Ca2+] in the cytoplasm.25,26 It is now generally
recognised that this is mediated by a class of cytoplasmic
facing Ca2+ sites referred to as A-sites.27 In the absence of
luminal Ca2+ or cytoplasmic cofactors such as ATP, [Ca2+]C
activates RyR2 from a basal Po of approximately zero to Po
= 0.6 with a half-activating [Ca2+]C (Ka) of !5 µM (Figure
3A).28,29 Activation is mediated primarily via a decrease in

"c or an increase in channel opening rate (opening rate =
1/"c) whereas "o (!1 ms) showed only a minor dependence
on [Ca2+]C (Figure 3B, C). The A-site gating properties are
strongly affected by cofactors such as ATP, caffeine and
sulmazole.19,30,31 On their own these cofactors do not
trigger channel openings; instead they function to enhance
RyR response to cytoplasmic Ca2+. The result is an increase
in both "o and opening rate which decreases the [Ca2+]C
needed for activation (this is shown for the case of ATP in
Figure 3). In the presence of ATP, "o acquired a strong
dependence on [Ca2+]C (Figure 3B).

Although the precise location of the A-site is still
unknown, mutation experiments carried out on RyR1
provide an indication of its general location. Truncated
RyR1s comprised of only the C-terminal 1030 amino acids
(RyRC; aa4007-aa5037) formed Ca2+ channels with
A-sites32 indicating that the A-site resides somewhere in the
pore forming region of the RyR. Moreover, the aa4032 has
been linked to the A-site gating mechanism because the
E4032A substitution decreased RyR1 sensitivity to
cytoplasmic Ca2+-activation by four orders of magnitude33

(but also see Fessenden et al.34)

I1-site for cytoplasmic Ca2+/Mg2+-inhibition

It has been long known that RyRs can be inhibited by
mM cytoplasmic concentrations of divalent cations
including Ca2+ and Mg2+ (!1 mM for RyR1 and !10 mM
for RyR2.35) This inhibitory action is mediated by low
affinity non-specific divalent cation sites, previously dubbed
I-sites.27 In order to distinguish this process from the other
inactivation process (see next section) the sites are now
called I1-sites and the process is referred to as inhibition
rather than inactivation. The I1-sites, together with the A-
sites, produce a bell-shaped dependence of Po on [Ca2+]C
(e.g. Figure 3A). Unlike the A-sites, the divalent cation
affinity of the I1-sites is unaffected by the cytoplasmic
cofactors ATP and caffeine.27,36 The precise location of the
I1-site is unknown. RyRC does not exhibit Ca2+/Mg2+

inhibition32 indicating that the I1-sites reside somewhere in
the N-terminal 4007 amino acids. Several studies have
implicated aa1873-1903, aa1641-2437 and aa615 with the
I1-sites.37 In cardiac muscle, the role of I1-mediated
inhibition is obscure because the affinity of the I1-site is at
least an order of magnitude above the intracellular [Ca2+]
and [Mg2+]. However, the skeletal muscle isoform is much
more sensitive to I1-mediated inhibition and the binding of
cytoplasmic Mg2+ to this site has been proposed to be the
primary restraint on Ca2+ release in resting skeletal
muscle.38

I2-site for [Ca2+]C-inactivation

Early studies of SR Ca2+ release detected a
Ca2+-inactivation mechanism that operates at µM [Ca2+]C.
Measurements of global Ca2+ release in skeletal and cardiac
muscle revealed a phenomenon39-41 in which cytoplasmic
Ca2+ causes rapid (< 100 ms) and partial inactivation of SR
Ca2+ release with a half-maximal effect at 0.3 µM. The
kinetics of localised Ca2+ release “Ca2+ sparks” in cardiac

Proceedings of the Australian Physiological Society (2007) 38 61

Figure 1.4: Schematic illustrating the location of predicted RyR2 Ca2+ 
binding sites: The exact locations of these Ca2+ sensing sites remain to 
be identified. Image taken from Laver, 2007.  
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! Cytosolic Ca2+: 

 

Laver (2007) suggests that RyR2 channels are activated by low micromolar 

concentrations (1-10 !M), but inactivated at millimolar concentrations (1-10 mM) of 

cytoplasmic Ca2+.  As shown in Figure 1.4, two cytoplasmic facing Ca2+ binding sites have 

been attributed to this response, termed the A-site (activation, 1 !M affinity) and the I1-site 

(inhibition, 10 mM affinity), which is also known as the Ca2+/Mg2+ inhibition site due to its 

lack of discrimination between these divalent cations (Laver, 2007, Balog et al., 2001). 

Another high affinity inhibitory site is also predicted, termed the I2-site. This site has the 

same affinity as the A-site (1 !M) and causes brief (1 ms) channel closures upon binding 

Ca2+ (Laver, 2007). The bimodal dependence reported by Laver (2007) however has been 

contested, since other research groups including our laboratory have demonstrated that 

the effects of cytoplasmic Ca2+ on channel open probability (Po) exhibits a sigmoidal 

relationship (Li and Chen et al., 2001, Mukherjee et al., 2012). Mukherjee et al (2012) 

demonstrated that the greatest increase in purified recombinant human RyR2 Po was 

evident between 100nM-1 !M cytoplasmic Ca2+, whilst an increase in cytosolic Ca2+ 

concentration >10 !M caused channel Po to reach saturation levels. The sensitivity of 

RyR2 to inactivating Ca2+ has also been reported as heterogeneous, where the levels of 

Ca2+ imparting an inhibitory effect has been shown to vary in single recombinant mouse (Li 

and Chen, 2001) and rabbit RyR2 channels (Copello et al., 1997).  

 

! Luminal Ca2+: 

 

Recognised as early as 1975 (Fabiato and Fabiato, 1975), luminal Ca2+ also modulates 

RyR2 Ca2+ release (Sitsapesan and Williams, 1994, Györke and Györke, 1998). More than 

one model has been proposed for this, though it is likely that there is interplay between 

each of them: 

 

(1) Luminal Ca2+feed through: 

 

Luminal Ca2+ passes though the channel pore and modulates activity by binding to 

regulatory sites (A-, I1- and I2-site – Figure 1.4) on the cytoplasmic domain of RyR2 (Xu et 

al., 2004, Laver, 2007). Single channel recordings identified that activation of RyR2 by 

luminal Ca2+ was governed by the Ca2+ flux in the luminal-to-cytoplasmic direction 

(Tripathy and Meissner, 1996, Xu and Meissner, 1998). Ruling out the possibility of Ca2+-

sensing sites present on the luminal domain, Xu and Meissner (1998) reported that in the 
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absence of cytoplasmic Ca2+ (<0.1 !M) i.e. when the channel is closed, elevating the 

luminal Ca2+ up to as high as 10 mM did not activate channel activity.  

 

(2) Direct luminal Ca2+ activation: 

 

Termed the “true luminal” model by Laver in 2007, evidence also suggests that the effects 

of luminal Ca2+ could involve distinct Ca2+ binding site(s) present on the luminal face of the 

RyR2 channel (Györke and Györke, 1998). In the Laver model, this site is denoted the L-

site (Figure 1.4). Györke and Györke demonstrated that under conditions which favoured a 

net Ca2+ flux in the cytoplasmic-to-luminal direction, raising the luminal Ca2+ concentration 

from 20 !M to 10 mM produced a 10-fold increase in the channel Po, and was attributed to 

unique luminal Ca2+ sensing sites present on the RyR2 channel itself or via an associated 

protein, such as calsequestrin (Györke and Györke, 1998). Ching and co-workers reported 

similar findings, and revealed that tryptic digestion of the luminal side of the RyR channel 

altered channel activity such that an increase in luminal Ca2+ (from 10 !M to 1 mM) no 

longer enhanced RyR2 Po, but instead reduced channel activity. This observation led to 

suggestions that activation sites present on the luminal side of RyR2 channels was 

destroyed with protease digestion, but inactivating sites may also exist on the luminal side 

that remained intact after digestion (not shown on the Laver model), (Ching et al., 2000).  

 

(3) Luminal-triggered Ca2 feed-through mechanism: 

 

RyR2 gating is influenced by Ca2+ sensing mechanisms on both the luminal and 

cytoplasmic sides of the channel, which has led to the development of a unified theory of 

activation termed the “luminal-triggered Ca2+ feed-through” hypothesis. This model 

integrates all of the predicted activation (A- and L-sites) and inactivation sites (I1- and I2-

sites) that can be functionally linked by Ca2+ feed-through (Laver, 2007). During diastole, 

when Ca2+ is loaded back into the SR, channel activation may occur via the luminal, L-site, 

producing brief RyR2 openings that allow luminal Ca2+ to pass through the channel pore 

and initiate further activation at the cytosolic A-site (Laver et al., 2007). Compounds that 

enhance RyR2 activity at the A-site (such as ATP, see section 1.4.3) may therefore 

enhance luminal Ca2+-dependent activation and render the channels more sensitive to 

Ca2+ loading within the SR (Györke and Györke, 1998, Tencerová et al., 2012). This 

observation is important, since under pathological conditions enhanced activation of 

mutant RyR2 by luminal Ca2+ has been proposed as a contributing factor of channel 

dysfunction (Jiang et al., 2005). During systole, the L-site does not appear to influence 

channel activity, since under conditions of high cytosolic Ca2+, raising the luminal Ca2+ 

concentration did not appear to impart any further increase in the duration of channel 
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openings (Laver and Honen, 2008). Aside from the interplay between cytoplasmic and 

luminal Ca2+ microdomains, which are clearly critical determinants of RyR2 activity, other 

intracellular ligands such as Mg2+ and ATP are also thought to play important regulatory 

roles (Zahradníková et al., 2003). 

 
 
1.4.2. RyR2 regulation by Mg2+: 
 

Mg2+ is a physiological inhibitor of RyR2 and plays a role in shaping the cytoplasmic and 

luminal Ca2+ dependencies of channel activity within the cell (Laver and Honen, 2008). 

Mg2+ levels within the millimolar range can inflict an inhibitory effect on channel behaviour 

(reducing channel Po), which has been suggested to occur at the I1- cytoplasmic site 

(Figure 1.4), (Györke and Györke, 1998, Zahradníková et al., 2003). In cardiac muscle at 

rest, the free Mg2+ concentration has been predicted to lie within the 0.5-1.2 mM range, 

and is thought to remain relatively constant throughout the cardiac cycle (Zahradníková et 

al., 2003). It is therefore likely that the free Ca2+ concentration within the cell acts as the 

critical determinant of the degree of channel inhibition seen with Mg2+. It has also been 

proposed that when cytosolic [Ca2+] is at resting levels (during diastole) and the SR store 

is depleted of Ca2+, Mg2+ may also occupy the A- and L- activation sites and render RyR2 

inactive (Laver et al., 2010). Once the SERCA2a Ca2+-ATPase pump sequesters Ca2+ 

back into the SR store and luminal [Ca2+] is increased, Laver et al (2010) proposed that 

Ca2+ displaces Mg2+ at the L-site, relieving inhibition and allowing further RyR2 channel 

activation at the cytoplasmic A-site (Laver et al., 2010). 

 

1.4.3. RyR2 regulation by Adenine Nucleotides (ATP): 
 

Single channel recordings have revealed that the presence of millimolar concentrations of 

ATP enhances the Ca2+ induced activation of RyR2 (Györke and Györke, 1998, Kermode 

et al., 1998). Since this channel effector is unable to activate RyR2 alone, but enhances 

both channel openings and open duration in the presence of both cytosolic and luminal 

Ca2+ (Tencerová et al., 2012), it has been suggested that the primary role of ATP is to 

stabilise the open state of RyR2. Other adenosine nucleotides such as adenosine 

diphosphate (ADP) and adenosine monophosphate (AMP), which are by-products of ATP 

hydrolysis, can also potentiate RyR2 Ca2+ release, but appear less effective (Sitsapesan 

and Williams, 1998). The cytoplasm of resting cardiac muscle contains approximately 3-5 

mM total ATP, which like Mg2+ is thought to remain consistent throughout EC coupling 

(Zahradníková et al., 2003). Since most ATP in cells exists as a complex with Mg2+, under 

normal physiological conditions, it is likely that a complex of MgATP (rather that free ATP 

alone) is responsible for regulating RyR2 Ca2+ release (Lanner et al., 2010).  
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1.5. RyR2 macromolecular signalling complex: 

 

Existing as a huge macromolecular complex, a multitude of regulatory proteins interact 

directly or indirectly with RyR2 channels to modulate their activity (Wehrens, 2005). Whilst 

most regulatory proteins interact with the cytoplasmic side of the Ca2+ release channel, 

others traverse the SR membrane or function as luminal accessory proteins. In this 

chapter, the best characterised of the RyR2 accessory proteins will be discussed.  

 

1.5.1. Regulation of RyR2 by FKBP-binding proteins: 

 

Classed as immunophillins, FKBPs are a family of binding proteins for the 

immunosuppressant drugs FK506 and rapamycin, and display peptidylpropyl-cis-trans-

isomerase (PPIase) activity thought to be important for their roles in protein folding and 

trafficking (Marks, 1996, Kang et al., 2008). This enzymatic activity however, is not thought 

to contribute to their role in modulating RyR2 function (Marks, 1996). 

 

Two isoforms of FKBP are known to interact with RyR2: FKBP12.6 and FKBP12 (Chelu et 

al., 2004, Zissimopoulous et al., 2012). However, since RyR2 exhibits a higher binding 

affinity for FKBP12.6, this is considered the cardiac-specific isoform, associating with a 

stoichiometry of one FKBP12.6 molecule per RyR2 subunit (Timerman et al.,1993). 

FKBP12.6 and FKBP12 share ~85% homology, both consist of 108 amino acids and as 

determined by X-ray crystallography, their structures are nearly identical both alone and 

as a drug complex with rapamycin (Deivanayagam et al., 2000). It is thus unsurprising that 

both are predicted to physically interact with RyR2 channels to regulate their activity 

(Galfré et al., 2012, Zissimopoulous et al., 2012).  

 

It has been hypothesised that the binding of FKBP isoforms to RyR2 channels inhibit Ca2+ 

release activity and act to stabilise the channels closed state (Marx et al., 1998, 2001, 

Ondrias et al., 1998). During ß-adrenergic stimulation it has been suggested that 

FKBP12.6 is partially dissociated from RyR2 channels upon PKA phosphorylation, which 

subsequently enhances intracellular Ca2+ release and improves contractility (Wehrens et 

al., 2003). However, in disease states (discussed in section 1.8.1), defective interaction 

between the two proteins following phosphorylation is consequently proposed as a 

mechanism underlying RyR2 dysfunction. This hypothesis however has been extensively 

challenged, since not all groups have observed the same effects of the RyR2/FKBP12.6 

binding interaction as a channel ‘stabiliser’ (Xiao et al., 2007). Marx et al (2000) 

demonstrated at the single channel level that FKBP12.6-deficient RyR2 channels 

exhibited pronounced subconductance states and enhanced activity recognised by high 
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channel Po. Consistent with this study, mice with gene-targeted knockout of FKBP12.6 

displayed an enhanced predisposition to heart failure (HF) and sudden cardiac death 

(SCD), tested using a pre-designed exercise program (Wehrens et al., 2003). However, 

Xiao et al (2007) reported following single channel, Ca2+ imaging and [3H] ryanodine 

binding investigations that the addition or removal of FKBP12.6 had no observable effects 

on RyR2 channel activity.   

 

Providing a possible explanation for these discrepancies, Galfré et al demonstrated in a 

more recent single channel investigation that FKBP12, which is largely overlooked in 

cardiac cells in terms of function, activated RyR2 channels at very low concentrations, 

whilst FKBP12.6 did not. The FKBP12.6 isoform did however antagonise the effects 

imparted by FKBP12 (lowering channel Po), which led to the idea that dual regulation 

between both isoforms may be important for channel function; and that an alteration in the 

ratio of FKBP12/FKBP12.6 ultimately contributes to the defective Ca2+ handling seen in 

HF (Galfré et al., 2012). 

 

 

1.5.2. Kinase and Phosphatase regulation of RyR2: 

 

Recent studies have revealed that kinases and phosphatases are targeted directly to the 

cytoplasmic domain of RyR isoforms and modulate channel function in response to 

extracellular signals (Marx et al., 2001, Reiken et al., 2003). RyR2 channels have highly 

conserved leucine/isoleucine zipper motifs that associate with adaptor proteins (such as, 

spinophillin and muscle-specific anchoring protein (mAKAP)) that in turn bind 

serine/threonine kinases such as: protein kinase A (PKA) and Ca2+ Calmodulin Kinase II 

(CaMKII), and phosphatases: protein phosphatase 1 (PP1) and 2A (PP2A), that control 

phosphorylation/dephosphorylation in a spatially and temporally regulated manner (Marx 

et al., 2000, Hulme et al., 2004, Blayney et al., 2009).  

 

PKA is a heterodimeric protein kinase activated during the “fight and flight” response to 

enable rapid increases in the heart rate and cardiac contractility in times of stress 

(Wehrens et al., 2006). A secondary messenger, cAMP, the concentrations of which are 

elevated by adrenergic stimulation of the cardiac ß-adrenoreceptors, activates PKA 

(section 1.2.5). An increase in heart rate raises intracellular Ca2+ levels, which in turn 

activates CaMKII. The importance of these interactions in regulating RyR2 activity 

however is still debated. Phosphorylation of RyR2 is predicted to occur at three distinct 

sites: serine-2808 (PKA and CaMKII), serine-2815 (CaMKII) and serine-2030 (PKA) (Xiao 

et al., 2006, Huke et al., 2008). PKA phosphorylation at Ser-2030 has been suggested as 
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the major site that responds to ß-adrenergic stimulation (Xiao et al., 2006). However, other 

groups have reported more recently that phosphorylation of RyR2 at Ser-2030 has no 

functional effect on channel activity (Marx and Marks et al., 2013). Other phosphorylation 

sites have also been detected with mass spectrometry, the significance of which has yet to 

be investigated (Yuchi et al., 2012).  

 

Since kinases directly influence other major Ca2+ handling proteins aside from RyR2 and 

indirectly modify accessory proteins (section 1.2.5), understanding how Ca2+ release is 

regulated by phosphorylation within the cell is difficult to determine (Mackrill, 1999). It has 

therefore proved useful to study the effects of RyR2 phosphorylation using in vitro 

investigations. At the single channel level, phosphorylation with exogenous PKA and 

CaMKII has been reported to increase channel Po, enhance sensitivity to luminal (Xiao et 

al., 2007) and cytosolic Ca2+ (Marx et al., 2000) and reduce cytoplasmic Mg2+ inhibition 

(Uehara et al., 2002). However, an inhibitory component of phosphorylation has also been 

suggested, since some research groups have demonstrated a reduction in RyR2 channel 

activity with kinase association (Hain et al., 1994) and enhanced channel Po following 

RyR2 dephosphorylation (Carter et al., 2011). These differences however could be owed 

to different functional effects of different PKA-phosphorylation sites (Xiao et al., 2006). 

Carter et al proposed that at rest, RyR2 is phosphorylated up to 75% of full stoichiometry 

at S2808 and suggested the stimulatory effects of PKA only occur when channels are 

phosphorylated above this level (Carter et al., 2006). Consistent with this proposal, under 

basal conditions Li et al (2013) reported that S2808 and S2814 (in rats) displayed 

phosphorylation levels of 69% and 15%, respectively. However, these levels increased 

substantially to 83% (S2808) and 60% (S2814) following ß-adrenergic stimulation (Li et 

al., 2013). Phosphorylation of S2030 however was not included in this investigation since 

phosphorylation at this site could not be detected (Li et al., 2013).  

 

With regards to the role of phosphatases, PP1 and PP2A are thought to be responsible for 

both RyR2 (Terentyev et al., 2003a) and PLB dephosphorylation (MacDougall et al., 

1991). Terentyev et al reported that PP1 enhances RyR2 activity, whilst others report that 

channel activity is decreased upon phosphatase association (Terentyev et al., 2003a, Li et 

al., 2013). Although such discrepancies need to be investigated further, it is clear that the 

phosphorylation status of RyR2 has notable effects on Ca2+ release activity.  
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1.5.3. Regulation of RyR2 by Calmodulin and Sorcin: 

 
Sharing common structural and functional features, calmodulin (CaM) and sorcin are EF-

hand-containing Ca2+ binding proteins, proposed to inhibit Ca2+ release activity (Balshaw 

et al., 2001, Farrell et al., 2003). 

 

CaM is a 17 kDa, ubiquitously expressed cytosolic protein that associates directly with 

RyR2 channels, as well as other several other proteins and ion channels (Meissner, 2004, 

Lanner et al., 2010). In terms of structure, CaM consists of four EF-hand Ca2+ binding 

domains (two in the carboxy-terminal and two in the amino-terminal of the protein) and 

binds to one site (1:1 ratio) on each RyR2 monomer (Fruen et al., 2000). Interestingly, 

modulation of RyR2 activity by CaM, over a wide range of Ca2+ concentrations, differs 

from that of other RyR isoforms, suggesting the protein plays a unique role in EC coupling 

regulation (Tripathy et al., 1995, Hamilton et al., 2000). At the single channel level, 

application of CaM can either activate (at low luminal Ca2+ concentrations) or inhibit (at 

high luminal Ca2+) RyR1 and RyR3 channels, thus having a biphasic response, whilst the 

protein appears to only inhibit RyR2 channel function (Tripathy et al., 1995, Hamilton et 

al., 2000). Highlighted by Xu and Meissner, evidence suggests that CaM plays an 

important role in the termination of SR Ca2+ release (Xu and Meissner, 2004). CaM 

application significantly reduced the frequency of RyR2 channel openings, lowering Po, 

and increasing the mean closed times (Xu and Meissner, 2004). CaM is predicted to 

regulate RyR2 gating both in its Ca2+ free (apoCaM) and Ca2+-loaded state, and has been 

suggested to fine-tune the channels sensitivity to intracellular [Ca2+] (Tripathy et al., 1995, 

Van Petegem, 2012).  

 

First discovered in multidrug-resistant cells, sorcin is a 22 kDa Ca2+ binding protein 

identified in cardiomyocytes as directly interacting with RyR2 channels (Meyers et al., 

1998, Bers, 2004). The protein binds Ca2+ with high affinity, with half-maximal binding 

reported to occur at ~1 !M (Zamparelli et al., 2000) Although its precise role remains to be 

established, sorcin is thought to act in a similar way to CaM, causing RyR2 inhibition, as 

demonstrated with [3H]-ryanodine binding and single channel investigations (Lokuta et al., 

1997, Farrell et al., 2003). Farrell et al (2003) demonstrated that sorcin reduces the Po of 

single RyR2 channels, and that inhibition was relieved by PKA-mediated phosphorylation - 

suggesting an indirect role for this protein kinase. Other EF-hand containing proteins have 

also been predicted to regulate RyR2 activity but have not been well studied. S100A1 for 

example has been reported to enhance the opening of RyR2 channels (Prosser et al., 

2011).  
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1.5.4. Regulation of RyR2 by Junctate, Junctophillin and the histidine-rich Ca2+ 

binding protein: 

 

Junctate is a functionally distinct, 33 kDa splice variant of the aspartyl ß-hydroxylase 

(ASPH) gene (Hong et al., 2007, Scriven et al., 2013, Treves et al., 2000). Another splice 

variant of ASPH, junctin, will be discussed in section 1.6.3. Thought to regulate 

intracellular Ca2+ concentration, junctate is an SR located Ca2+ binding protein, composed 

of a single membrane-spanning transmembrane domain, a short N-terminal (cytoplasmic) 

region and a long, highly acidic C-terminal segment that protrudes into the lumen of the 

SR (Hong et al., 2007). Hong et al (2008) used a transgenic mouse model of junctate 

overexpression to assess its effect in cardiac cells, where impairment in SR function was 

reported. This was likely due to a notable downregulation in two major Ca2+ handling 

proteins, SERCA2a and CSQ2 (section 1.6.1), (Hong et al., 2008). Prolonged junctate 

overexpression led to a compensatory enhancement in sarcolemmal protein expression, 

cardiac hypertrophy and consequently a greater susceptibility to cardiac arrhythmias 

(Hong et al., 2008). Although this evidence implies that junctate plays a regulatory role in 

maintaining Ca2+ homeostasis, whether it directly modifies RyR2 activity remains to be 

elucidated.  

 

Junctophillin-2 (JP2), a component of plasma membrane/SR complexes, has a molecular 

weight of approximately 100 kDa and recognised as the primary isoform expressed in the 

heart (Takeshima et al., 2000). Spanning the SR membrane, the cytoplasmic region of the 

protein is reported to interact with the cell membrane/T-tubule network and anchors it 

close to the SR, forming T-tubule-SR junctions (Nishi et al., 2000, Takeshima et al., 2000). 

Since in heart failure, JP2 is significantly downregulated, the protein is hypothesised to be 

critical to the normal operation of CICR between L-type Ca2+ channels and RyR2 (Wu et 

al., 2012). Aside from its role as a structural protein, recent studies have revealed a direct 

interaction between JP2 and RyR2 (using immunoprecipitation, Beavers et al., 2013) and 

its ability to regulate intracellular Ca2+ release (Wang et al., 2014).  

 

Wang et al (2014) suggested that JP2, under normal circumstances, negatively regulates 

RyR2 gating, since cardiac-specific knockdown of the modulatory protein triggered severe 

RyR2-mediated SR Ca2+ leak. In JP2 knockdown mice, two notable molecular 

mechanisms were proposed to explain the arrhythmogenic Ca2+ leak through RyR2 

channels (Wang et al., 2014). Firstly, at the single channel level, the group demonstrated 

that severely low JP2 expression significantly enhanced the Po and mean open time of 

RyR2; whilst the mean closed time was reduced. An earlier single channel study carried 

out by Beavers et al (2013) was consistent with this finding, where a decrease in RyR2 Po 
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was evident when a small synthetic peptide derived from the JP2 primary sequence was 

added back to the reconstituted channel. Furthermore, Ca2+ sparks in JP2-knockdown 

cardiac myocytes showed increased width, duration and frequency, thought to result from 

the enhanced opening of RyR2 clusters (Cheng et al., 1993, Wang et al., 2014). JP2-

deficient cardiomyocytes displayed a ~50% reduction in NCX activity, with no observable 

differences in protein expression, which may also have altered the Ca2+ spark profile 

(Wang et al., 2014).   

 

Proposed to play a prominent role in maintaining Ca2+ homeostasis, the histidine-rich Ca2+ 

binding protein (HRC) is 170 kDa and resides within the SR lumen of cardiac cells 

(Arvanitis et al., 2011). Although it is not thought to interact directly with RyR2 channels, 

HRC associates with both the SERCA2a pump (section 1.2.3) and the transmembrane 

protein triadin (discussed in section 1.6.3), and has thus been implicated both in Ca2+ 

uptake (Gregory et al., 2006) and release (Lee et al., 2001). In mouse hearts with HRC 

overexpression, the rate of Ca2+ re-uptake into the SR was drastically reduced, without 

any notable effects on the SR Ca2+ load. This therefore led to the hypothesis that HRC 

directly suppresses SERCA2a function (Gregory et al., 2006). Binding of HRC to triadin is 

Ca2+-dependent and the interaction between the two proteins has been implicated in 

sensing changes in SR Ca2+ concentration (Arvanitis et al., 2011). This however requires 

further investigation. A recent study by Singh et al (2013) described a genetic variant of 

the HRC protein (Ser96Ala), which generated defective Ca2+ cycling and cardiac 

arrhythmias. The underlying mechanism of this dysfunction was attributed to a reduction in 

the stability of RyR2 channels, imparted by disrupted protein-protein associations of HRC 

with triadin (Singh et al., 2013).  

 

 

1.6. Calsequestrin, Junctin and Triadin: 

 

Existing as a quaternary complex with RyR2 channels at the jSR membrane, calsequestrin 

(CSQ2), junctin (JUN) and triadin (TRD1) are thought to directly regulate the sensitivity of 

RyR2 channels to luminal Ca2+, with CSQ2 in particular hypothesised to act as RyR2s 

luminal Ca2+ sensor (Györke et al., 2004). A key question regarding the role of these 

luminal proteins is whether they can function as direct modifiers of RyR2 channels 

independently, or if to regulate channel function they must assemble as a complex. The 

specific properties of CSQ2, JUN and TRD1, and their importance in regulating RyR2 

channel activity, will be discussed next in sections 1.6.1-1.6.4 (Tables 1.1-1.3). 
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1.6.1. Properties of cardiac calsequestrin: 

 

First identified in the early 1970s, CSQ2 is the most abundant Ca2+ binding protein present 

within the SR lumen of cardiac myocytes, binding Ca2+ with high capacity (60-80 moles of 

Ca2+ per CSQ molecule) and relatively low affinity (Kd = 1 mM) (MacLennan and Wong, 

1971, Mitchell et al., 1988). Isoform 2 (CSQ2) is the major variant expressed in cardiac 

muscle and is also found in lower quantities in skeletal slow-twitch muscle fibres (Bers et 

al., 2004). Despite dog cardiac CSQ2 being the most extensively studied, sequence 

alignment has estimated approximately 86% homology between dog and human CSQ2 

(Beard et al., 2004).  

 

Contributing to its ability to bind large amounts of Ca2+, CSQ2 is a highly acidic protein 

(Lee et al, 2012). Human CSQ2 is composed of 391 amino acids with an additional 19-

residue signal peptide at the N-terminus (Lahat et al., 2001, Lee et al., 2012), the C-

terminal region of CSQ2 is thought to contain ~60% acidic (in particular aspartate) 

residues (Shin et al., 2000) and provides the sites of interaction for other accessory 

proteins (Shin et al., 2000, Kobayashi et al., 2000). CSQ2 is not embedded in the SR 

membrane, but instead is localised to the junctional face within close proximity to RyR2 

channels by integral SR membrane proteins JUN and TRD1. The two proposed ‘anchoring 

proteins’ facilitate communication between CSQ2 and RyR2, positioning Ca2+ ions 

accumulated by CSQ2 close to the Ca2+ release sites (Györke et al., 2004, Shin et al., 

2000, Rossi and Sorrentino, 2002, Franzini-Armstrong et al., 1987, Bers, 2000). 

Preventing premature Ca2+ release, CSQ2 stores large amounts of releasable Ca2+ within 

the SR lumen, whilst at the same time, maintaining a low level of free Ca2+ that triggers 

Ca2+ re-uptake following muscle contraction (Beard et al., 2004, Novák and Soukup, 

2011). The association of CSQ2 with JUN and/or TRD1 has been suggested to strongly 

affect its disposition (Franzini-Armstrong et al., 2005). In electron micrographs, the protein 

has been reported to exist alone as linear polymers folded randomly within the SR lumen, 

yet when positioned closer to the jSR membrane, the protein appears condensed 

(described as “dense spots”), owing to its association with the two accessory proteins 

(Franzini-Armstrong et al., 2005).  

 

CSQ2 is thought to exist as a mixture of monomers, dimers and polymers, where 

polymerisation and depolymerisation occurs in a [Ca2+]-dependent manner (Beard et al., 

2009, Kim et al., 2007, Lee et al., 2012). Studied using rabbit skeletal CSQ, in the 

absence of Ca2+, the protein is predicted to exist as a random coil monomer with lowered 

alpha-helical content (~11%), which is increased to >20% upon Ca2+ binding and folding of 

CSQ2 monomers into thioredoxin-like domains (Cozens and Reithmeier, 1984, Beard et 
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al., 2009). Investigating the Ca2+-dependent conformational changes of the protein, the 

thioredoxin-like folds are required for protein compaction and subsequent Ca2+ binding at 

intracellular [Ca2+] >10 !M (He et al., 1993, Wang et al., 1998, Beard et al., 2009). Further 

increases in luminal Ca2+ induce conformational changes in CSQ2 monomers, causing 

them to self-associate and assemble into dynamic linear polymers that allow high capacity 

Ca2+ binding (Beard et al., 2004, Kim et al., 2007). CSQ2 polymers are thought to consist 

of two types of dimer termed “back-to-back” (C-terminal) and “front-to-front” (N-terminal) 

interactions, both of which are predicted to form Ca2+ binding pockets essential for storage 

(Park et al, 2003). The conformational state of CSQ2 at luminal [Ca2+] >1mM however has 

been debated in the literature, with both CSQ2 polymers (Wang et al., 1998, Kim et al., 

2007) and monomers (Wei et al., 2009b, Murphy et al., 2011) predicted as responsible for 

the proteins regulatory function.   

 

1.6.2. Physiological role of CSQ2 and functional interaction with RyR2: 

 

For a number of years, the sole purpose of CSQ2 was believed to be the maintenance of 

Ca2+ homeostasis within the SR by acting as a major Ca2+ storage protein. However, in 

recent years, substantial evidence has suggested that CSQ2 also plays a direct role in 

regulating RyR2 activity, coordinating time-dependent Ca2+ release with recovery (Györke 

et al., 2004, Beard et al., 2004, Terentyev et al., 2005). Since the role of CSQ2 in 

regulating RyR2 activity (and the relative contribution of JUN and TRD1 to this regulation) 

will be discussed further in other chapters, some of the experimental systems used to 

study CSQ2 function and their reported findings, will be summarised in Table 1.1. 
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 CSQ2 Investigations 
Study Type/species:  Ca

2+
 handling observations: Phenotypic Alterations: Further Details: 

CSQ overexpression (10-
fold) in transgenic mice 
(Jones et al., 1998). 

Whole-cell clamped isolated 
cardiomyocytes displayed a reduced 
frequency in both spontaneous and Ca

2+
-

triggered Ca
2+

 sparks. Reflecting 
increased CSQ2-stored Ca

2+
, caffeine-

induced Ca
2+

 release amplitude was 
enhanced (10-fold). 

Severe cardiac hypertrophy, 
~1.9 fold increase in heart 
mass and cell size, exercise 
intolerance. 

RyR2, JUN and TRD downregulated (~50%).  
 
SERCA and PLB expression unchanged. 

Cardiac –specific 
overexpression of CSQ2 
(20-fold) in transgenic mice 
(Sato et al., 1998). 

Reduced Ca
2+

-induced SR Ca
2+

 release 
amplitude 

Depressed contractility, 
cardiac hypertrophy  

No alterations in RyR2, JUN or TRD 
expression. 
 
Increased protein levels of SERCA and PLB.  

Adenoviral-mediated 
increase or decrease in 
CSQ2 levels in rat 
ventricular myocytes 
(Terentyev et al., 2003). 

In permeabilised myocytes, CSQ2 
overexpression slowed termination of 
Ca

2+
 release from the SR and slowed 

Ca
2+

 spark recovery time. 

Premature activation evident 
in myocytes with lower CSQ2 
expression. Upon electrical 
stimulation, arrythmogenic 
Ca

2+
 transients observed (in 

myocytes with low levels of 
CSQ2).  

Suggests CSQ2 controls Ca
2+

 release by 
prolonging the Ca

2+
 flux duration. 

 
CSQ2 may be involved in the termination of 
RyR2 Ca

2+
 release. 

 

Gene-targeted ablation of 
CSQ2 in mice (Knollmann 
et al., 2006). 

Under basal conditions normal SR Ca
2+

 
release. However, CSQ2-null myocytes 
displayed increased diastolic Ca

2+
 leak 

upon catecholamine stimulation. 
Spontaneous Ca

2+
 oscillations evident 

and an increased propensity for 
arrhythmia. 
 

Increased SR volume (size). 
 
Functional SR Ca

2+
 storage 

unaltered.  

JUN and TRD1 levels undetectable. 
 
No alterations in other Ca

2+
 handling 

proteins. 

Single channel investigation 
utilising purified canine 
CSQ2 (Györke et al., 2004)  

In the presence of JUN and TRD1, CSQ2 
added back to purified RyR2 channels 
inhibited activity (reduced channel 
openings). 

N/A First proposal that CSQ2 (together with 
anchoring proteins JUN and/or TRD1) may 
act as a luminal Ca

2+
 sensor for RyR2 

channel activity. 
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1.6.3. Properties of cardiac junctin and triadin: 

 

Human cardiac muscle JUN is a 26 kDa, 210-amino acid protein that spans the SR 

membrane and exists as a functionally distinct, non-catalytic splice variant of the 

aspartate-!-hydroxylase gene (together with junctate, section 1.5.4), (Lim et al., 2000, Wei 

et al., 2009a). Expressed as a single isoform in cardiac and skeletal muscle (Dulhunty et 

al., 2009), the protein contains a cytoplasmic N-terminal domain (residues 1-22), a single 

transmembrane segment (residues 23-44), and a longer, SR intraluminal C-terminal 

region (residues 45-210) that contains several charged sequence repeats (>13 amino 

acids) of lysine or glutamic acid residues (predicted from the dog cardiac JUN isoform, 

Jones et al., 1995). Known as “KEKE” motifs, these repeats are thought to be important 

for the binding interaction of JUN with the other luminal accessory proteins and RyR2 

(Jones et al., 1995, Shin et al., 2000, Fan et al., 2008). The current accepted model of 

RyR2 regulation by SR luminal proteins suggests JUN has the ability to bind directly to the 

luminal and/or transmembrane regions of RyR2 and acts as an anchoring protein 

(together with TRD1) to position CSQ2 near the channel (Zhang et al., 1997, Györke et al., 

2004). Although the exact physiological role of JUN in regulating the response of RyR2 

channels to luminal Ca2+ is a topic of current research, its function in maintaining normal 

Ca2+ release from the SR lumen has been highlighted in studies of HF, where the protein 

is almost undetectable (Gergs et al., 2007). 

 

JUN may serve as a direct regulator of channel activity or transduce signals from CSQ2 to 

RyR2 in a Ca2+-dependent manner, or both (Beard et al., 2009). In terms of interaction, 

Kobayashi and co-workers demonstrated that JUN does not have a single discrete binding 

domain for CSQ2, since deletions in several “KEKE” motifs along the C-terminal tail all 

reduced CSQ2 binding (Kobayashi et al., 2000). However, binding of JUN to RyR2 

channels has been predicted to occur at two distinct domains (Altschafl et al., 2011). 

Using blot overlay assays, recombinant JUN and RyR2 polypeptides designed to different 

proposed intraluminal binding regions, Altschafl et al (2011) demonstrated that the N-

proximal intraluminal domain of JUN interacted with intraluminal loop I of RyR2, whilst the 

KEKE-motif of JUN interacted with RyR2 at intraluminal loop II; with the latter being 

comparable to the single binding site for TRD1 at intraluminal loop II of the RyR1 protein 

(Goonasekera et al., 2007, Altschafl et al., 2011). The binding of JUN to different sites on 

the RyR2 channel could reflect the ability of the protein to regulate Ca2+ release activity by 

more than one mechanism (Altschafl et al., 2011). 

 

Several isoforms of triadin exist in striated muscle, all of which are splice variants of a 

single TRDN gene (Guo et al., 1996). Whilst sharing a common amino terminus (264 
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residues), each isoform is predicted to differ in their C-terminal regions, which in smaller 

proteins is truncated (Kobayashi and Jones, 1999, Dulhunty et al., 2012). Three cardiac-

specific isoforms have been identified (which are 32, 40 and 75 kDa), with TRD1 (~32 

kDa) being the most abundant, comprising of more than 95% of total TRD found in cardiac 

muscle (Kobayashi and Jones, 1999, Györke and Terentyev, 2007). Like JUN, TRD1 is an 

integral SR membrane protein and is composed of a short cytoplasmic N-terminal tail, a 

hydrophobic segment that spans the SR membrane and a longer, highly charged C-

terminal region located within the SR lumen which comprises the bulk of the protein 

(Györke and Terentyev, 2007, Beard et al., 2009). Interaction sites within TRD1 for its 

molecular partners, i.e. RyR2, CSQ2 and JUN are predicted to reside within the proteins 

C-terminus (Kobayashi et al., 2000). This region of the TRD1 sequence is characterised 

by the frequent occurrence of long stretches of alternating positively and negatively 

charged residues known as KEKE motifs, as previously identified in JUN. Interestingly, the 

CSQ2-binding domain of TRD1 has been localised to a single KEKE motif (amino acids 

210-224) of approximately 15 residues (Kobayashi et al., 2000). The binding regions on 

RyR2 for cardiac TRD1 remain undetermined (Dulhunty et al., 2012). TRD1 and JUN 

binding to CSQ2 was found to be Ca2+-dependent such that the proteins dissociate at high 

Ca2+ (10 mM), whilst TRD binding to RyR2 is thought to occur regardless of changes in 

Ca2+ concentration (Zhang et al., 1997, Kobayashi et al., 2000, Qin et al., 2008).  
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1.6.4.  Physiological roles of JUN and TRD1 and their functional interaction with 

RyR2: 

 

Although the functional role of JUN is still largely undetermined, its experimental 

manipulation, primarily in animal models, has yielded some interesting observations. Table 

1.2 summarises some of the functional studies undertaken to establish the physiological 

importance of JUN in maintaining normal cardiac function. Further investigations where 

the ability of JUN to modulate RyR2 channel activity has been explored will be discussed 

in other chapters of this project.  

 

Given the close structural homology of TRD1 and JUN and the fact that they both 

communicate with RyR2 and CSQ2, it was first anticipated that the two related proteins 

share a similar function of simply anchoring CSQ2 within close proximity to RyR2. In this 

scaffolding capacity, TRD1 is thought to facilitate SR Ca2+ release indirectly, permitting 

CSQ2 to buffer luminal Ca2+ in the vicinity of the Ca2+ release sites (Zhang et al., 1997, 

Kobayashi et al., 2000). Aside from its role as an anchoring protein, unique roles of 

cardiac TRD1 have been reported in recent years, suggesting that TRD1 and JUN may 

serve different functions to regulate EC coupling. Table 1.3 summarises some of the 

functional assays carried out to specifically investigate the role of TRD1 in cardiac muscle. 

  

 

 

 

 
 
 
 
 
 



 30 
 

JU
N

 In
ve

st
ig

at
io

ns
 

St
ud

y 
Ty

pe
/s

pe
ci

es
:  

C
a2+

 h
an

dl
in

g 
ob

se
rv

at
io

ns
: 

Ph
en

ot
yp

ic
 A

lte
ra

tio
ns

: 
Fu

rt
he

r D
et

ai
ls

: 
24

-2
9-

fo
ld

 o
ve

re
xp

re
ss

io
n 

of
 c

an
in

e 
JU

N
 in

 tr
an

sg
en

ic
 

m
ic

e 
(H

on
g 

et
 a

l.,
 2

00
2)

. 

N
/A

 
At

ria
l f

ib
ril

la
tio

n,
 fi

br
os

is
 a

nd
 

br
ad

yc
ar

di
a 

R
yR

2 
an

d 
TR

D
1 

do
w

nr
eg

ul
at

ed
. 

 L-
ty

pe
 C

a2+
 c

ha
nn

el
 u

pr
eg

ul
at

ed
. 

Ad
en

ov
ira

l-m
ed

ia
te

d 
ov

er
ex

pr
es

si
on

 o
f J

U
N

 in
 

ra
t c

ar
di

om
yo

cy
te

s 
(G

er
gs

 
et

 a
l.,

 2
00

7)
. 

D
ec

re
as

ed
 S

R
 C

a2+
 tr

an
si

en
t a

m
pl

itu
de

 
C

el
l s

ho
rte

ni
ng

 (o
bs

er
ve

d 
by

 
th

e 
ce

ll-
ed

ge
 d

et
ec

tio
n 

sy
st

em
), 

re
du

ce
d 

co
nt

ra
ct

ilit
y.

  
 

Im
pa

ire
d 

C
a2+

 h
om

eo
st

as
is

 s
ug

ge
st

ed
.  

  

Ad
en

ov
ira

l-m
ed

ia
te

d,
 4

0%
 

do
w

nr
eg

ul
at

io
n 

in
 J

U
N

 
ex

pr
es

si
on

 (b
y 

an
tis

en
se

 
m

R
N

A)
 in

 a
du

lt 
ra

t 
ca

rd
io

m
yo

cy
te

s 
(F

an
 e

t a
l.,

 
20

07
) 

Im
pr

ov
ed

 C
a2+

 k
in

et
ic

s 
– 

in
cr

ea
se

d 
C

a2+
 

tra
ns

ie
nt

 a
m

pl
itu

de
, i

nc
re

as
ed

 ra
te

 o
f 

C
a2+

 d
ec

ay
 in

 is
ol

at
ed

 c
ar

di
om

yo
cy

te
s 

 

In
cr

ea
se

d 
co

nt
ra

ct
ilit

y 
(in

cr
ea

se
d 

ra
te

 o
f 

co
nt

ra
ct

io
n/

re
la

xa
tio

n)
. 

N
o 

ch
an

ge
s 

in
 th

e 
le

ve
ls

 o
f o

th
er

 C
a2+

 
ha

nd
lin

g 
pr

ot
ei

ns
. 

  

G
en

e-
ta

rg
et

ed
 J

U
N

 a
bl

at
io

n 
in

 m
ic

e 
(Y

ua
n 

et
 a

l.,
 2

00
7)

. 
En

ha
nc

ed
 N

C
X 

cu
rre

nt
, n

o 
di

ffe
re

nc
e 

in
 

th
e 

L-
ty

pe
 C

a2+
 c

ur
re

nt
. I

nc
re

as
ed

 C
a2+

 
tra

ns
ie

nt
 a

m
pl

itu
de

, S
R

 C
a2+

 c
on

te
nt

 a
nd

 
C

a2+
 s

pa
rk

 fr
eq

ue
nc

y 
(is

ol
at

ed
 J

U
N

-n
ul

l 
ca

rd
io

m
yo

cy
te

s)
.  

In
cr

ea
se

d 
ca

rd
ia

c 
fu

nc
tio

n 
re

po
rte

d 
(a

ss
es

se
d 

by
 

ec
ho

ca
rd

io
gr

ap
hy

). 
H

ow
ev

er
, 

st
im

ul
at

io
n-

ev
ok

ed
 

ve
nt

ric
ul

ar
 ta

ch
yc

ar
di

a 
tri

gg
er

ed
 b

y 
D

AD
s.

 

25
%

 o
f m

ic
e 

di
ed

 p
re

m
at

ur
el

y 
(~

3 
m

on
th

s 
of

 
ag

e)
 w

ith
 n

o 
st

ru
ct

ur
al

 a
bn

or
m

al
iti

es
. 

 N
o 

si
gn

ifi
ca

nt
 a

lte
ra

tio
ns

 in
 C

SQ
2,

 T
R

D
1,

 
SE

R
C

A2
a,

 P
LB

,H
R

C
, F

KB
P1

2.
6,

 L
-ty

pe
 

C
a2+

 c
ha

nn
el

, p
ro

te
in

 e
xp

re
ss

io
n.

 H
ow

ev
er

 
70

%
 re

du
ct

io
n 

in
 th

e 
ex

pr
es

si
on

 o
f N

C
X.

 
In

ve
st

ig
at

io
n 

of
 in

tra
ce

llu
la

r 
C

a2+
 h

om
eo

st
as

is
 in

 J
U

N
-

de
fic

ie
nt

 c
ar

di
om

yo
cy

te
s 

(A
lts

ch
al

f e
t a

l.,
 2

01
1)

. 

In
cr

ea
se

d 
C

a2+
 tr

an
si

en
t a

m
pl

itu
de

 a
nd

 
in

cr
ea

se
d 

SR
 C

a2+
 c

on
te

nt
 in

 J
U

N
-n

ul
l 

ca
rd

io
m

yo
cy

te
s.

 D
es

pi
te

 S
R

 C
a2+

 
ov

er
lo

ad
, n

o 
di

as
to

lic
 C

a2+
 le

ak
 e

vi
de

nt
.  

 Su
gg

es
ts

 a
n 

al
te

re
d 

ab
ilit

y 
of

 R
yR

2 
ch

an
ne

ls
 to

 “s
en

se
” c

ha
ng

es
 in

 in
tra

-S
R

 
C

a2+
 lo

ad
. 

 

ß-
ad

re
ne

rg
ic

 s
tim

ul
at

io
n 

di
m

in
is

he
d 

R
yR

2 
in

hi
bi

tio
n 

an
d 

in
du

ce
d 

sp
on

ta
ne

ou
s 

C
a2+

 o
sc

illa
tio

ns
 

  

JU
N

 a
ffe

ct
s 

SR
 C

a2+
 re

le
as

e 
di

re
ct

ly
, n

o 
al

te
re

d 
ex

pr
es

si
on

 o
f o

th
er

 jS
R

 C
a2+

-h
an

dl
in

g 
pr

ot
ei

ns
.  

 D
ua

l r
es

po
ns

e 
of

 J
U

N
 s

ug
ge

st
ed

 a
t t

he
 

si
ng

le
 c

ha
nn

el
 le

ve
l, 

w
he

re
 a

t l
ow

 lu
m

in
al

 
[C

a2+
] (

<1
m

m
ol

) J
U

N
 a

ct
iv

at
es

 R
yR

2 
ac

tiv
ity

, 
bu

t i
nh

ib
its

 it
 a

t h
ig

h 
lu

m
in

al
 [C

a2+
]. 

 

   
24

 
                                    

 CSQ2 Investigations 
Study Type/species:  Ca

2+
 handling observations: Phenotypic Alterations: Further Details: 

CSQ overexpression (10-
fold) in transgenic mice 
(Jones et al., 1998). 

Whole-cell clamped isolated 
cardiomyocytes displayed a reduced 
frequency in both spontaneous and Ca

2+
-

triggered Ca
2+

 sparks. Reflecting 
increased CSQ2-stored Ca

2+
, caffeine-

induced Ca
2+

 release amplitude was 
enhanced (10-fold). 

Severe cardiac hypertrophy, 
~1.9 fold increase in heart 
mass and cell size, exercise 
intolerance. 

RyR2, JUN and TRD downregulated (~50%).  
 
SERCA and PLB expression unchanged. 

Cardiac –specific 
overexpression of CSQ2 
(20-fold) in transgenic mice 
(Sato et al., 1998). 

Reduced Ca
2+

-induced SR Ca
2+

 release 
amplitude 

Depressed contractility, 
cardiac hypertrophy  

No alterations in RyR2, JUN or TRD 
expression. 
 
Increased protein levels of SERCA and PLB.  

Adenoviral-mediated 
increase or decrease in 
CSQ2 levels in rat 
ventricular myocytes 
(Terentyev et al., 2003). 

In permeabilised myocytes, CSQ2 
overexpression slowed termination of 
Ca

2+
 release from the SR and slowed 

Ca
2+

 spark recovery time. 

Premature activation evident 
in myocytes with lower CSQ2 
expression. Upon electrical 
stimulation, arrythmogenic 
Ca

2+
 transients observed (in 

myocytes with low levels of 
CSQ2).  

Suggests CSQ2 controls Ca
2+

 release by 
prolonging the Ca

2+
 flux duration. 

 
CSQ2 may be involved in the termination of 
RyR2 Ca

2+
 release. 

 

Gene-targeted ablation of 
CSQ2 in mice (Knollmann 
et al., 2006). 

Under basal conditions normal SR Ca
2+

 
release. However, CSQ2-null myocytes 
displayed increased diastolic Ca

2+
 leak 

upon catecholamine stimulation. 
Spontaneous Ca

2+
 oscillations evident 

and an increased propensity for 
arrhythmia. 
 

Increased SR volume (size). 
 
Functional SR Ca

2+
 storage 

unaltered.  

JUN and TRD1 levels undetectable. 
 
No alterations in other Ca

2+
 handling 

proteins. 

Single channel investigation 
utilising purified canine 
CSQ2 (Györke et al., 2004)  

In the presence of JUN and TRD1, CSQ2 
added back to purified RyR2 channels 
inhibited activity (reduced channel 
openings). 

N/A First proposal that CSQ2 (together with 
anchoring proteins JUN and/or TRD1) may 
act as a luminal Ca

2+
 sensor for RyR2 

channel activity. 
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1.7. RyR2 and CSQ2 mutations cause ventricular tachycardia and sudden cardiac 

death: 

 

Linkage studies and direct sequencing has revealed that inherited mutations mapped to 

chromosome 1q42-q43 (Swan et al., 1999), of the human cardiac ryanodine receptor gene 

(hRyR2), are predominantly associated with two conditions: Catecholaminergic 

Polymorphic Ventricular Tachycardia (CPVT) and Arrhythmogenic Right Ventricular 

Cardiomyopathy/Dysplasia type 2 (ARVC/D2), both of which share the clinical feature of 

exercise- or stress-induced ventricular tachycardia and SCD (Tiso et al., 2001, George et 

al., 2003b, Priori et al., 2001, Lahat et al., 2001, Laitinen et al., 2003, Thomas et al., 

2006).  

 

CPVT is an arrhythmogenic disorder with a high mortality rate in children and young adults 

(Leenhart et al., 1995, Priori et al., 2002). The disease was recently estimated at a 

prevalence of 1:10,000 (Jabbari et al., 2013). Two genetic variants of CPVT have been 

described: an autosomal-dominant form caused by mutations in RyR2 and a recessive 

form associated with mutations in CSQ2. Mutations in the RyR2 gene are much more 

prevalent than those of CSQ2, their autosomal dominant fashion means that the 

inheritance of a single disease-linked allele is sufficient to result in a CPVT phenotype 

(Fisher et al., 1999). The majority of CPVT patients display a family history of symptoms 

associated with the disorder such as VT or SCD, suggesting that it is hereditary (Priori et 

al., 2001, Postma et al., 2005). Conversely, some patients have been found to be the only 

symptomatic family member, with neither parent carrying the mutant allele. This suggests 

that CPVT-linked mutations can also arise in a de novo manner (Postma et al., 2005). The 

phenotypic manifestation of the disorder is also very heterogeneous, even affected 

members of the same family can display symptom variations (Thomas et al., 2007).  

 

Since the majority of arrhythmias in patients affected by CPVT occur during physical 

exercise or emotional distress, ß-adrenergic stimulation (section 1.2.5) is thought to be a 

major trigger of the condition (Priori et al., 2002). Moreover, clinical electrophysiological 

investigations have revealed that exercise testing or catecholamine infusion can induce 

arrhythmias in patients with CPVT (Priori et al., 2002). Affected individuals may display 

adrenergically mediated syncopal events, seizures and arrythmogenic episodes, yet have 

structurally normal hearts and normal resting ECGs (Scheinman and Lam, 2006, 

Leenhardt et al., 1995). Arrhythmias take the form of bi-directional and/or polymorphic VT, 

both of which are capable of degenerating into ventricular fibrillation and SCD, which sadly 

often constitutes the first manifestation of the disorder (Priori et al., 2002, Sumitomo et al., 

2003). 
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Another syndrome associated with missense mutations in RyR2 is ARVC/D2, a condition 

characterised by progressive degeneration of the right ventricular myocardium (Györke et 

al., 2007). Confusion however still surrounds the link between RyR2 and the disease, 

since few RyR2 mutations are known to cause right ventricular dysplasia (Györke et al., 

2009). However, phenotypic heterogeneity in symptomatic families has suggested an 

overlap between the two conditions (Thomas et al., 2007). For example, d’Amati et al 

(2005) reported a male CPVT patient as showing right-ventricle abnormalities 

characteristic of ARVD2, whilst two female members of the same family exhibited stress-

induced polymorphic VT in the absence of any structural alterations of the heart, a 

characteristic phenotype of CPVT (d’Amati et al., 2005, Thomas et al., 2007).  

 

The current preferred treatment of arrhythmia is administration of ß-adrenergic receptor 

antagonists (ß-blockers), which target the effects of adrenergic drive activated during 

stress or exercise. Although often effective in preventing the recurrence of arrhythmia, 

approximately 30% of patients still experience at least one episode of life-threatening 

adrenergically mediated arrhythmia, leading to syncope or cardiac arrest (Priori et al., 

2002, Liu et al., 2011). In patients who display persistent reoccurrence of tachyarrhythmia, 

implantation of an automated cardioverter-defibrillator (ICD) has proved successful. 

However, this treatment is not fully effective, since shocks can cause catecholamine 

release and subsequently generate further arrhythmia (Thomas and Williams, 2012). 

Identifying new therapeutic agents for the treatment of RyR2-linked diseases is therefore 

of primary importance. In patients with RyR2 mutation and using long-term ß-blocker 

therapy, intravenous administration of verapamil (an L-type Ca2+ channel blocker) reduced 

the frequency of isolated and successive premature ventricular complexes during exercise 

stress testing by 76% (Swan et al., 2005). However, the drug has limited success since 

although attenuating VT, its use does not appear to prevent the occurrence of arrhythmias 

(Sumitomo et al., 2003). Although additional studies into the use of Ca2+ channel 

antagonists combined with other therapeutic agents may prove useful in the treatment of 

CPVT.  
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1.7.1. Genetic Basis of CPVT: 

 

There are >150 CPVT-linked RyR2 mutations discovered to date which localise in several 

discrete regions of the polypeptide (Figure 1.5), within which three clusters of mutational 

frequency are evident at the N-terminus, central domain and C-terminus of the Ca2+ 

release channel (Postma et al., 2005, Capes et al., 2011). Highlighting the importance of 

these regions, which appear highly conserved between species and isoform, similar 

clustering patterns of mutation are seen in human RyR1 channels and are implicated in 

the pathogenesis of two neuromuscular disorders, malignant hyperthermia (MH) and 

central core disease (CCD).  

 

 
 
 
 
 
 

Although the molecular mechanisms underlying the pathogenesis of CPVT remain 

unresolved, it is accepted that most mutant RyR2 channels typically display gain-of-

function defects, following ß-adrenergic stimulation (Wehrens et al., 2003, Leenhardt et 

al., 1995). Specifically, it is thought that enhanced SR Ca2+ “leak” through RyR2 channels 

during diastole increases the propensity for triggered arrhythmias (Wehrens et al., 2007, 

Novák and Soukup 2011). Triggered activity is thought be initiated by sub-threshold 

membrane depolarisations, termed afterdepolarisations, which proceed from the previous 

AP. If such membrane depolarisations occur during the repolarisation phase of the 

previous AP, they are known as early afterdepolarisations (EADs), whereas delayed 

afterdepolarisations (DADs) occur after repolarisation and are believed to be the major 

underlying cause of cardiac VT seen in CPVT (Scoote and Williams, 2002). However, 

using induced pluripotent stem cells (iPSCs) derived from a patient carrying a P2328S 

The peptide sequences involved in the transmem-
brane domains are known to some extent, although the
exact number of transmembrane sequences (!6) is still
under study. Similarly, the location of the peptide se-
quences in the cytoplasmic domains is only partially
known. The location of the peptide chains in the structure
of the Ca2! channel is still far from complete and even
farther from conclusions regarding control mechanisms
of the Po of the channel, and therefore, a detailed review
of their location (cf. Refs. 332, 334, 350, 466; see also Refs.
35, 191, 333, 334, 465, 467, 629) is beyond the scope of this
review. However, the proximity of mutations that affect
the channel in skeletal muscle in malignant hyperthermia
and central core disease and arrhythmogenic mutations in
cardiac muscle suggests that the bridge in the rhomboid
structure in the clamp is important to regulation of open-
ing of the channel. The central domain of mutations that

is involved in arrhythmias is again found in the bridge
within the rhomboid structure of the clamp, suggesting
that this structure in the clamp is important in the regu-
lation of the opening probability of the channel.

Similar to what has been hypothesized for RyR1
channel proteins (609), it appears that RyR2 structure
involves a critical interdomain interaction that plays a
role in modulation of the channel’s ability to release Ca2!.
In this hypothesis, specific domains of the NH2 terminus
interact to “zip” shut regions of the central core region.
This zipped conformation has been linked to RyR2 chan-
nels with no Ca2! “leak” (235). In disease and with RyR2
mutations, these regions can become unzipped to “leak”
Ca2! (see sect. IVA1). However, recent data also suggest
that highly reactive free radicals destabilize these inter-
domain interactions and by themselves can cause partial
dissociation of the FKBP12.6 binding protein (616).

FIG. 5. A: ultrastructure of RyR1 at
9.5 Å resolution. The receptor is com-
posed of a cytosolic assembly linked to a
transmembrane assembly (TMA) through
a neck region which conveys columns
that form the vestibule of the TMA and
the Ca2! channel in the center of the
TMA to the regulatory elements in the
clamps and handle domain of the cytoso-
lic assembly (see text for further details).
[From Samso et al. (468).] B: schematic
diagram of the reported mutation sites of
RyR1 and RyR2. NH2 terminus, central
domain, and transmembrane (channel)
regions are denoted. For more informa-
tion, see text and http://pc4.fsm.it:81/
cardmoc/. [From Yano et al. (617).]
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Figure 1.5: Schematic demonstrating RyR2 mutation “hot-spots”: RyR2 
mutations tend to cluster within three distinct regions of the protein, the N-terminal 
domain, central domain and C-terminal region (referred to as the channel region 
here). The amino acid residues comprising these regions are indicated. The figure 
highlights only a few of the >150 RyR2 mutations discovered to date. Image modified 
from Yano et al., 2006.  
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mutation in RyR2, Kujala et al (2012) recently implicated the contribution of both EADs 

and DADs in disease pathogenesis. In support of the proposal that DADs occur as a 

consequence of intracellular Ca2+ leak, cell-based assays have demonstrated that 

overexpression of mutant RyR2 channels generate a diastolic Ca2+ leak and spontaneous 

Ca2+ oscillations following catecholamine infusion or caffeine stimulation (which sensitises 

RyR2 to Ca2+), (George et al., 2003a, Jiang et al., 2004). 
 

 

1.8. Mechanisms of mutant RyR2 dysfunction: 

!

Given the dispersion of mutations across the RyR2 sequence and their phenotypic 

variability, it is unlikely that a single universal mechanism is responsible for channel 

dysfunction. Candidate mechanisms hypothesised to underlie CPVT that dominate in the 

field are discussed in sections 1.8.1-1.8.3.  

 

1.8.1 Disruption of the RyR2-FKBP12.6 interaction may be involved in the 

pathogenesis of CPVT: 

 

As aforementioned in section 1.5.1, under normal conditions, ß-adrenergic stimulation and 

subsequent phosphorylation of RyR2 channels by PKA, has been suggested to partially 

dissociate FKBP12.6 from the Ca2+ release channel (Wehrens et al., 2003).  

 

However in failing hearts, Marx et al demonstrated that the stoichiometry of FKBP12.6 to 

RyR2 was reduced significantly and implicated a mechanism of PKA 

“hyperphosphorylation” (enhanced PKA phosphorylation) as a contributing factor of 

triggered arrhythmias in HF (Marx et al., 2000). In recent years, this proposal has also 

emerged as a candidate mechanism of CPVT pathogenesis, where mutant RyR2 

channels are thought to display a reduced binding affinity for FKBP12.6 under basal 

conditions, which is further diminished by PKA phosphorylation of RyR2 (Yano et al., 

2006, Wehrens et al., 2003, 2007). Since this protein is thought to stabilise the closed 

conformational state of RyR2, it has been proposed that “hyperphosphorylation” by PKA 

and subsequent dissociation of FKBP12.6 from the channel complex, contributes to the 

diastolic SR Ca2+ release evident in RyR2 mutants (Wehrens et al., 2007).  

 

The proposed model of FKBP12.6 dissociation outlined by Marx however is not universally 

accepted. The hypothesis has been challenged by other research groups such as George 

et al, who found comparable FKBP12.6 association in WT and mutant RyR2 expressed in 

a murine cardiac cell line (HL-1) both under resting conditions and upon catecholamine 
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stimulation (George et al., 2003a). Furthermore, FKBP12.6 null-mice were not found to 

exhibit enhanced susceptibility to triggered arrhythmias in a study by Xiao et al., 2007. 

Recently, CaMKII-mediated phosphorylation has been implicated in the pathogenesis of 

CPVT whereby Liu et al demonstrated that CaMKII inhibition attenuated the enhancement 

Ca2+ sparks and diastolic Ca2+ leak induced by ß-adrenergic stimulation in the R4496C+/- 

mouse model of CPVT (Liu et al., 2011). In addition, CaMKII inhibition appears to exert its 

antiarrhythmic effect by targeting other regulatory proteins of Ca2+ homeostasis, since a 

reduction in SERCA2a function (lowered Ca2+ re-uptake into the SR) was also reported 

(Liu et al., 2011). Finally, CaMKII inhibition reduced the frequency of DADs in an induced 

pluripotent stem cell (iPSC) derived cardiomyocyte model of CPVT (Di Pasquale et al., 

2013) further suggesting the involvement of CaMKII phosphorylation in regulating mutant 

RyR2 Ca2+ leak.  

 

1.8.2. Defective RyR2 intermolecular domain interactions in CPVT: 

 

Inter-domain interactions between discrete regions of the RyR2 cytoplasmic assembly 

(and notably in mutation “hot-spots”) are thought to participate in the proper folding of the 

protein complex, acting to stabilise the closed state of RyR2 channels (Liu et al., 2010). 

Disruption of such interactions is implicated as a potential mechanism of RyR2 dysfunction 

(Yamamoto & Ikemoto, 2002, George et al, 2004). Ikemoto et al termed this disruption of 

interactions as “domain unzipping” and it is thought to be caused by RyR2 mutation, 

thereby weakening the tight ‘zipping’ of the domains that serve to stabilise the channel 

closed state, enabling the channel to remain open under resting conditions (Yamamoto 

and Ikemoto, 2002). Using a FRET-based approach to assess the distance between the 

domains, Liu et al demonstrated that the N-terminal and central domains are involved in 

inter-subunit interactions (on separate RyR2 subunits) rather than intra-subunit interaction 

(Liu et al., 2010).  

 

In support of Ikemotos’ model, peptide studies have revealed that interacting regions of 

RyR2 can be disrupted by mutation to promote channel instability and SR Ca2+ leak 

(Yamamoto and Ikemoto, 2002, Oda et al., 2005, Yang et al., 2006). In two separate 

studies, a short synthetic peptide homologous to the central domain of RyR2 (DPc10, 

Gly2460-Pro2495) was used to mimic the effect of a cardiac disease mutation found in 

CPVT patients (Yang et al., 2006, Oda et al., 2005, Liu et al., 2010). Oda et al reported 

that the peptide destabilised the interaction between the central and N-terminal domains 

and acted competitively to reversibly enhance channel activity and Ca2+ leak (Oda et al., 

2005). Furthermore, rat cardiomyocytes perfused with the DPc10 peptide displayed an 

enhanced sensitivity to activating Ca2+, increased Ca2+ spark frequency and a sustained 
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increase in resting Ca2+ levels, all indicative of an increased propensity towards diastolic 

Ca2+ leak (Yang et al., 2006). The effects of the peptide were found to be abolished 

following insertion of the CPVT-linked mutation R2474S into the central domain peptide, 

suggesting that the residue mutated is important for maintaining the interaction between 

the two domains (Yamamoto & Ikemoto, 2002, Yang et al., 2006). Other peptides located 

in the N-terminal (DP163-195) and C-terminal (DP4090-4123) regions of RyR2 that mimic 

CPVT mutations R176Q and N4104K, respectively, have also been found to alter inter-

domain interactions and enhance spontaneous Ca2+ release from the SR (Tateishi et al., 

2008, Liu et al., 2010). George et al reported that this C-terminal region, known as the I-

domain, plays an important role in RyR2 autoregulation (George et al., 2006). Mutations in 

the I-domain (including N4104K) of RyR2 were reported to enhance spontaneous Ca2+ 

release following channel activation, which is likely a consequence of channel 

destabilisation between the central domain and C-terminus of the protein (George et al., 

2006).   

 

1.8.3. CPVT mutations alter the cytoplasmic and/or luminal Ca2+ sensitivity of RyR2:  

 

Discussed in greater detail in Chapter 4, section 4.1.3, it has been demonstrated that 

several CPVT-linked RyR2 mutations alter the channels sensitivity to cytoplasmic and/or 

luminal Ca2+ activation, generating aberrant SR Ca2+ release (Jiang et al., 2002, 2004). 

Since almost all CPVT mutations occur in the cytoplasmic domain of the channel, 

however, it still remains to be established precisely how these mutations confer 

hypersensitivity to Ca2+ within the SR lumen.  

 

Yang et al demonstrated that mimicking the effects of a central domain mutation by 

peptide-induced disruption of RyR2, specifically lowered the threshold for cytoplasmic 

Ca2+ activation and generated sustained SR Ca2+ leak (Yang et al., 2006). Furthermore, a 

recent investigation reported that the RyR2 mutation G230C increases sensitivity to both 

luminal and cytosolic Ca2+ activation, as demonstrated at the single channel level (Liu et 

al., 2013). An alternative hypothesis is that RyR2 mutations principally enhance the 

channels sensitivity to luminal Ca2+  (Jiang et al., 2004). Following observations that many 

CPVT-linked mutations exhibit a similar cytoplasmic Ca2+ dependency to WT RyR2 

channels, Chen and colleagues proposed that the major functional consequence of RyR2 

mutation is an enhanced sensitivity to luminal Ca2+ and subsequently, a lowered threshold 

for Ca2+ release from the SR (Jiang et al., 2004, 2005).  This mechanism is termed “Store 

Overload-Induced Ca2+ Release” (SOICR) (Jiang et al., 2004, 2005). Examined in 

heterologous systems, the functional consequences of a number of RyR2-linked mutations 

were investigated and found to display increased spontaneous Ca2+ release, coupled with 
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a decrease in the levels of the ER Ca2+ load (Jiang et al., 2005, Jones et al., 2008). 

Highlighting the functional heterogeneity of RyR2 mutations, a decrease or complete 

ablation of luminal Ca2+ sensitivity has also been observed with some channel mutants 

(Jiang et al., 2007). This model of RyR2 dysfunction is generally favoured since is shows 

some parallels with the mechanism of aberrant Ca2+ release thought to occur in the 

autosomal recessive form of the disease (section 1.8.4). 

 

1.8.4. Autosomal recessive form of CPVT (CPVT2) evoked by mutations in CSQ2: 

 

Among suspected CPVT2 patients, alterations in CSQ2 generally arise from either 

missense mutations, that alter the functional properties of the protein, or nonsense 

mutations that completely abolish protein expression (Lahat et al., 2001, Eldar et al., 2003, 

Postma et al., 2005, Viatchenko-Karpinski et al., 2004). It is reported that CSQ2 mutations 

account for approximately 3% of CPVT patients (Katz et al., 2009).  Different animal and 

cell models of CSQ2-linked CPVT have demonstrated alterations in SR Ca2+ handling via 

different mechanisms, yet all culminate in ventricular arrhythmia and DADs following 

sympathetic stimulation (Györke et al., 2009). 

 

First identified in 7 consanguineous Bedouin families in northern Israel, the CSQ2 

missense mutation D307H converts a negatively charged aspartic acid residue into a 

histidine, in a highly conserved region of the protein identified as a putative Ca2+ binding 

site (Lahat et al., 2001, Elder et al., 2003, Houle et al., 2004). Houle et al reported that the 

D307H mutation blunts the proteins ability to interact with Ca2+, TRD1 and JUN, and thus 

its associations with RyR2 (Houle et al., 2004). Complementing this study, it was later 

proposed that this mutation caused a conformational change in the protein that prevents 

polymerisation and consequently alters the Ca2+ binding capacity of CSQ2 (Kim et al., 

2007). Overexpression studies revealed that this mutation suppressed EC coupling and 

Ca2+ spark frequency, which was consistent with an apparent reduction in Ca2+ storage 

capacity of the SR despite the presence of endogenous WT CSQ2 (Viatchenko-Karpinski 

et al., 2004, Dirksen et al., 2007). Interestingly, a reduction in the expression level of 

CSQ2 was also reported in a D307H knock-in mouse model (Song et al., 2007).  

 

Another CSQ2-linked mutant (R33Q) completely abolishes the ability of CSQ2 to inhibit 

RyR2 channels at low luminal Ca2+ (Terentyev et al., 2006, Qin et al., 2008). Terentyev et 

al also demonstrated that in rat cardiac myocytes overexpressing R33Q, EC coupling and 

Ca2+ spark frequency were enhanced and consequently promoted spontaneous diastolic 

Ca2+ release. Unlike the D307H mutation, Terentyev et al found no alteration in the Ca2+ 

storage capacity with CSQ2-R33Q overexpression (Terentyev et al., 2006). In contrast, 
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Rizzi et al reported that in CSQ2-R33Q knock-in mice, the SR Ca2+ content was 

significantly reduced (Rizzi et al., 2008). In addition, the group reported that the mutant 

caused a 50% reduction in the expression level of CSQ2, TRD1 and JUN, despite the 

presence of normal levels of mRNA (Rizzi et al., 2008). A functional knock-out phenotype 

is generated by the CSQ2 mutation L167H, identified in the first patient known to carry 

heterozygous CSQ2 mutations (di Barletta et al., 2006). Characterisation of the CSQ2-

L167H mutant in vitro has revealed that the mutant does not respond to Ca2+ and prevents 

CSQ2 polymerisation that may be required for Ca2+ binding (Kim et al., 2007, Valle et al., 

2014).  Consistent with these findings, Qin et al demonstrated that at the single channel 

level, the L167H mutant was unable to reduce RyR2 channel openings at low luminal Ca2+ 

concentrations (Qin et al., 2008). 

 

In summary, CPVT-linked mutations in CSQ2 can exert their deleterious effects by at least 

two mechanisms: (1) affecting the protein’s conformation and ability store Ca2+, and (2) 

affecting the ability of CSQ2 to regulate RyR2 function (Györke, 2009). CSQ2 mutations 

that impair the Ca2+ storage capacity of the protein or reduce its expression are suggested 

to accelerate the restitution of Ca2+ release from the RyR2 (Terentyev et al., 2006). 

Following SERCA2a-mediated Ca2+ re-uptake, a lower number of Ca2+ storage sites within 

the SR may result in an overload of free releasable Ca2+ that can no longer be buffered, 

and thus may generate spontaneous Ca2+ release and DADs (Györke et al., 2009, 

Knollmann, 2009). The CSQ2 mutant variants that abolish protein associations between 

CSQ2, other luminal proteins and RyR2, compromise Ca2+ signalling refractoriness 

following systole, by preventing the ability of CSQ2 to inhibit RyR2 activity when the SR 

Ca2+ content is low (Terentyev et al., 2006). 
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1.8.5. Newly identified CPVT-linked mutations in other EC coupling components: 

 

It has been proposed that approximately one-third of symptomatic patients referred for 

genetic screening of CPVT-linked RyR2 and CSQ2 gene mutations remain without an 

identified molecular defect and thus suggests the existence of mutations in other key EC 

coupling proteins (Roux-Buisson et al., 2012). This hypothesis has recently been 

emphasised by Roux-Buisson et al (2012) who screened 97 CPVT-patients without RyR2 

and CSQ2 mutations, and identified three patients with mutations in cardiac triadin TRD1. 

Two of the mutants were found to introduce a premature stop codon, suggesting that TRD 

is degraded in these patients. Interestingly, the identified mutations were mapped to a 

region of the TRD gene common to all isoforms, suggesting that these mutants could also 

lead to an absence of TRD in skeletal muscle (Roux-Buisson et al., 2012). Although this 

discovery of a new gene implicated in CPVT is significant, it is important to note that no 

gene mutations were identifiable in 94 patients, despite being screened for RyR2, CSQ, 

ASPH (within which JUN is a splice variant) and TRD mutants (Roux-Buisson et al., 2012). 

A later investigation by a different research group (Nyegaard et al., 2012) described the 

identification of two CaM mutations detected in screened clinical samples of 64 individuals 

with unspecified arrhythmia, a gene which was not screened by Roux-Buisson (2012) and 

co-workers. A recent investigation published this year by Hwang et al (2014) described the 

functional investigation of two CaM mutants (N54I and N98S), which were found to 

activate RyR2 activity and enhanced the frequencies if spontaneous Ca2+ waves in 

isolated mouse ventricular myocytes. Taken together, these studies not only highlight the 

limitations to a gene candidate approach, but also strongly suggest that other mutations in 

relation to CPVT have yet to be discovered. In a clinical setting these findings highlight the 

importance of assessing mutations in other EC coupling protein genes, the discovery of 

which may lead to advances in the development of patient-specific CPVT therapies.  
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1.9. Research Project Aims: 

 

Taking into consideration the proposed role of the luminal proteins CSQ2, JUN and TRD1 

in regulating the hRyR2 channels response to luminal Ca2+, altered regulation or protein-

protein association of mutant RyR2 with the accessory proteins could be a contributing 

factor in the aberrant Ca2+ release seen in CPVT patients. To investigate this hypothesis, 

this project aims to: 

 

• Co-express recombinant human RyR2 (WT or mutant) with the luminal accessory proteins 

in a heterologous cell system. Evaluate if the protein-protein interactions between the 

luminal proteins and hRyR2 can be re-created in our chosen experimental system.  

 

• Assess if CPVT-linked RyR2 mutation can disrupt protein-protein associations between the 

Ca2+ release channels and the luminal accessory proteins.  

 
• Assess the effects of luminal accessory proteins on WT hRyR2 Ca2+ release. 

 

• Assess the functional consequences of mutant hRyR2 expression on luminal accessory 

protein regulation. Two CPVT-linked mutants will be investigated in this work: N4104K and 

A4556T (Figure 1.6). These two mutants in particular were chosen firstly due to their 

location, since N4104K hRyR2 resides on the cytosolic side of the channel, whilst A4556T 

is located within the luminal region. It will be of interest to establish if an altered response 

to luminal protein regulation or interaction is specific to the location of mutation. 

Furthermore, the consequences of the A4556T hRyR2 mutation are previously 

uncharacterised; whilst N4104K hRyR2 has been studied previously by numerous research 

groups (Jiang et al., 2004, George et al., 2006), allowing the data collected in this work to 

be compared. 
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Figure 1.6: Schematic illustrating the hRyR2 mutations investigated in this 
project: As circled, the N4104K hRyR2 mutation resides on the cytosolic side of the 
channel, whilst a previously uncharacterised mutation A4556T is located on the 
luminal region of hRyR2. Image modified from Thomas et al., 2006. 
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2.1 Materials: 
 

2.1.1. General laboratory reagents and chemicals:  
 
All chemicals and reagents were of analytical grade and obtained from Sigma-Aldrich or 

Fisher Scientific and all cell culture reagents were from Life Technologies, unless 

otherwise stated. All reagents were dissolved in deionised water (dH2O) and stored at 

room temperature unless an alternative is noted. All reagents and equipment used for 

agarose and polyacrylamide gel electrophoresis were purchased from Bio-Rad, with the 

exception of the iBlot" Gel transfer system, purchased from Life Technologies. 

Centrifugation steps were undertaken using a range of Beckman Coulter centrifuges, 

solution pH was measured using a Mettler Toledo FE20 pH meter (Camlab) and adjusted 

using either 1M HCl or 1M KOH, unless otherwise stated. Solutions were filter sterilised 

where required using a 0.22!M Millex® syringe filter (Millipore). 

 

2.1.2. Molecular Biology Kits and Reagents:  

 

(A) Zero Blunt® PCR Cloning kit (Life Technologies) – stored at -20ºC 

i. pCR!-Blunt II-TOPO® vector: 10ng/!l plasmid DNA in: 50% glycerol, 50mM Tris-HCl 

(pH 7.4), 1M EDTA, 2mM DTT, 0.1% Triton X-100, 100!g/ml BSA and 30!M 

bromophenol blue 

ii. 10x Ligation Buffer: 60mM Tris-HCl (pH 7.5), 60mM MgCl2, 50mM NaCl, 1mg/ml BSA, 

70mM !-mercaptoethanol, 1mM ATP, 20mM dithiothreitol and 10mM spermidine 

iii. T4 DNA ligase: (4U/!l) 

iv. Sterile water: deionised and autoclaved 

v. M13 reverse primer: 0.1 !g/!l in Tris-EDTA buffer. Used in DNA sequencing reactions. 

 

 

(B)  Polymerase chain reaction reagents 

i. Phusion! DNA Polymerase (Finnzymes): (2 U/!l). Also provided with the enzyme: 

DMSO (100%) and 5x Phusion" reaction buffer containing 7.5mM MgCl2. 

ii. dNTP mix, 20mM (Thermo Scientific): dATP, dCTP, dGTP and dTTP neutralised in 

water (pH 7.5). 

iii. Human cardiac muscle cDNA library (BD Biosciences). 
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(C) ABI Prism® BigDye® terminator v3.1 cycle sequencing kit (Applied Biosystems) 

and sequencing reagents 

i. BigDye® Terminator Premix: containing fluorescent BigDye® terminators (ddNTPs: 

ddATP, ddTTP, ddGTP and ddCTP).  
ii. BigDye® Terminator 5x sequencing buffer: 400mM Tris, 10mM MgCl2 optimised for use 

with the BigDye® Terminator premix.  

iii. DyeEx! kit (Qiagen): Used to remove unincorporated dye terminators from sequencing 

reactions. 

 

(D) Agarose gel electrophoresis reagents 
i. TAE, 50x stock (1x diluted stock dissolved with agarose): 2M Tris, 2M glacial acetic 

acid, 50mM EDTA. 

ii. UltraPure! Ethidium Bromide (10 mg/ml stock): Used at 0.1!g/ml. 

iii. DNA loading buffer, 1x stock: 50% 1x TAE buffer, 50% (v/v) glycerol and added orange 

G to achieve the desired detection colour.  

iv. Molecular weight DNA markers: 1 kb plus DNA ladder (Life Technologies). 

 

(E) QIAquick Gel Extraction Kit (Qiagen)                                  
i.  Buffer QG: agarose gel solubilisation and binding buffer containing sodium perchlorate 

and a pH indicator. 

ii. Buffer PE: An ethanol-containing wash buffer. 

 

(F) Rapid DNA ligation kit (Roche)                                  
i. DNA dilution buffer (5x), T4 DNA ligation buffer (2x) and T4 DNA ligase (5U/!l). 

Antarctic phosphatase was used in conjunction with the kit.  

 

(G) Plasmid purification: QIAprep® miniprep spin kit and HiSpeed® maxiprep kit 

(Qiagen)                               
i. Resuspension solution (P1): 50mM Tris-HCl (pH 8), 10mM EDTA, 100 !g/ml RNase A, 

pH adjusted to 7.5 with HCl and filter sterilised. 

ii. Lysis solution (P2): 200mM NaOH, 1% (w/v) sodium dodecyl sulphate (SDS), filter 

sterilised. 

iii. Maxi-prep neutralisation solution (P3): 4.09M Guanidine-HCl, 0.759M potassium 

acetate, pH adjusted to 5.5 with glacial CH3COOH and filter sterilised.  

iv. Mini-prep neutralisation solution (N3): 4.2M Guanidine-HCl, 0.9M potassium acetate, 

and pH 4.8.  

v. Maxi-prep column equilibration buffer (QBT): 750mM NaCl, 50mM MOPS, pH 7.0, 15% 

(v/v) isopropanol, 0.15% Triton® X-100. 

vi. Maxi-prep column wash solution, medium salt (QC): 1M NaCl, 50mM MOPS, 15% (v/v) 

isopropanol, pH 7. 
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vii. Maxi-prep column elution buffer (QF): 1.25M NaCl, 50mM Tris-HCl, 15% (v/v) 

isopropanol, pH 8.5. 

viii. Mini-prep spin column wash buffer (PB): 5 M Guanidine-HCl, 30% isopropanol. 

 

(H) Restriction digest                                  
i. All restriction enzymes and optimised reaction buffers (10x) were purchased from New 

England Biolabs and stored at -20°C.  

 

 

2.1.3. Bacterial Cell Culture: 

 

All glassware and sterile plastics were purchased from Fisher Scientific or Greiner. All 

glassware was washed with dH2O and autoclaved before use. Bacterial growth media was 

also autoclaved in the same manner, before cooling to approximately 50°C prior to the 

addition of antibiotics. 

 
(A) Luria-Bertani (LB) media: 10g/L tryptone, 5g/L yeast extract, 5g/L sodium chloride, 

prepared to 1L with dH2O.  

(B) LB agar plates: Prepared with LB media components and 15g/L agar. Autoclaved 

and antibiotics added before setting within 10cm2 sterile petri dishes. 

(C) Ampicillin 100 mg/ml stock: used at a working concentration of 100!g/ml.  

Stored at -20°C. 

(D) Kanamycin 30 mg/ml stock: used at a working concentration of 30!g/ml.  

Stored at -20°C. 

 

(E) DNA Transformation – chemically competent bacterial cells and reagents    

 
i. One Shot® TOP10 chemically competent cells (Life Technologies). 

ii. XL10-Gold Ultracompetent cells with provided !-mercaptoethanol (Agilent 

Technologies). 

iii. SOC medium: 2% Tryptone, 0.5% Yeast extract, 10mM NaCl, 2.5mM KCl, 10mM 

MgCl2, 10mM MgSO4 and 20mM glucose. 

 

2.1.4. Oligonucleotides: 

 

Oligonucleotide primers (shown in Chapter 3, Figure 3.1) were designed and ordered from 

Sigma Genosys or MWG-Biotech AG and were obtained lyophilised. Following the 

manufacturers guidelines, 100!M and 20!M working stocks were prepared and stored at -

20°C. 
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2.1.5. Plasmid Vectors: 

 

• pCR!-Blunt II TOPO® vector (Life Technologies) 

 

To sequence and confirm that luminal accessory protein constructs were successfully 

amplified, PCR products were inserted into a pCR"-Blunt II TOPO® vector (Figure 2.1, 

(A)) using the Topoisomerase I system. The vector was supplied linearised with Vaccinia 

virus, DNA topoisomerase I, bound covalently to the 3’ end of each DNA strand. To enable 

accurate recombinant selection, the vector is designed to encode a lethal E.coli gene, 

ccdB fused to the C-terminus of the LacZ" fragment. Upon ligation of the blunt ended 

PCR product, LacZ"-ccdB gene fusion expression is disrupted, allowing growth of only 

positive recombinants. Since cleavage sites for restriction enzyme EcoRI are positioned 

either side of the multiple cloning site in the TOPO® vector, restriction digest with this 

enzyme was used to identify vector clones containing the desired insert. Positive clones 

were sequenced from the M13 reverse priming site. The DNA sequencing procedure is 

outlined in section 2.4.1.8.   

 

• Mammalian expression vectors – pcDNA!3 and pcDNA!3.1 Hygro (+) (Life 

Technologies) 

 

Full length WT and CPVT-linked mutant human eGFP-RyR2 constructs were obtained 

from Dr Christopher George (WT and N4104K; George et al., 2003b) and Dr Lowri 

Thomas (A4556T, unpublished), Cardiff University. The hRyR2 constructs were cloned 

into the mammalian expression vector pcDNA"3 (Figure 2.1, B) and tagged at the N-

terminus with an enhanced green fluorescent protein (eGFP), enabling identification of 

protein expression in a mammalian cell line. The coding sequence for human cardiac 

muscle CSQ2 was also obtained from Dr Lowri Thomas and isolated as described in 

Chapter 3, section 3.2.1. Luminal accessory protein constructs were cloned into 

pcDNA"3.1 Hygro(+) (Figure 2.1, C). The decision to use this vector is outlined in Chapter 

3, section 3.3.4. Both pcDNA3" and pcDNA3.1" Hygro(+) vectors contain multiple cloning 

sites in the forward (+) and reverse (-) orientations. To enable plasmid selection in 

bacteria, the vectors encode for !-lactamase allowing selection by ampicillin resistance. In 

mammalian cells, transcription is initiated in both expression vectors by the 

cytomegalovirus (CMV) promoter and terminated by a stop codon inherently encoded by 

the hRyR2 (TAA), CSQ2 (TAG) and JUN (TAA) sequences. Both vectors replicate 

autonomously in mammalian and E.coli cells from the SV40 and ColE1 origin, 

respectively. 
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Figure 2.1: Illustration of plasmid vectors used in this study: (A) pCR-Blunt II TOPO® 
vector: PCR amplified products were inserted into the vector for sequencing. As highlighted, 
EcoRI sites flanking the ligated PCR product enabled easy excision of the insert from the 
vector by restriction digest. To enhance positive selection of cloned DNA, the vector 
contains a ccdB gene, plus a kanamycin resistance gene for selection in E.Coli. Sequencing 
was carried out using the M13 reverse primer site. (B) Mammalian expression vector 
pcDNA3: full-length WT and mutant eGFP-hRyR2 were constructed in this vector (by Dr 
Christopher George), which contains an ampicillin resistance gene for positive selection in 
E.Coli and a gene encoding neomycin (a variant of geneticin/G418) resistance. Expression 
was driven at the CMV promoter. (C) Mammalian expression vector pcDNA3.1hygro(+): 
sequence verified luminal protein cDNA constructs were ligated into this vector. The vector 
enabled positive selection of transformants in mammalian cells via a hygromycin resistance 
gene. Like pcDNA3, the vector also has an ampicillin resistance gene for positive selection 
in E.Coli. All images shown were taken from the Life Technologies website 
(www.lifetechnologies.com) and modified.  
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pcDNA™3.1/Hygro (–) vectors. The complete sequences for 
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CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT TTAGGTGACA CTATAGAATA
GTGTGTCCTT TGTCGATACT GGTACTAATG CGGTTCGATA AATCCACTGT GATATCTTAT

EcoR I

pCR®-Blunt II-
TOPO®

3519 bp

Plac
lacZ! ccdB

pUC
ori

Kanam
ycin

Zeocin

CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA CTAGTAACGG CCGCCAGTGT

GCTGGAATTC GCCCTT AAGGGCGAATTCT GCAGATA

TCCATCACAC TGGCGGCCGC TCGAGCATGC ATCTAGAGGG CCCAATTCGC CCTATAGTGA

GTCGTATTAC AATTCACTGG CCGTCGTTTT ACAACGTCGT GACTGGGAAA ACCCTGGCGT

GAGTTCGATA CGTAGTTCGA ACCATGGCTC GAGCCTAGGT GATCATTGCC GGCGGTCACA

CGACCTTAAG CGGGAA TTCCCGCTTAAGA CGTCTAT

AGGTAGTGTG ACCGCCGGCG AGCTCGTACG TAGATCTCCC GGGTTAAGCG GGATATCACT

CAGCATAATG TTAAGTGACC GGCAGCAAAA TGTTGCAGCA CTGACCCTTT TGGGACCGCA

Blunt PCR Product

M13 Reverse priming site

Nsi I Hind III Kpn I Sac I BamH I Spe I

EcoR I EcoR VPst I

Not I Xho I Nsi I Xba I Apa I T7 promoter/priming site

M13 Forward (-20) priming site

201

476

SP6 promoter/priming site

Asp718 I Ecl136 II

Dra II

Comments for pCR®-Blunt II-TOPO®

    3519 nucleotides

lac promoter/operator region: bases 95-216
M13 Reverse priming site: bases 205-221
LacZ-alpha ORF: bases 217-576
SP6 promoter priming site: bases 239-256
Multiple Cloning Site: bases 269-399
TOPO®-Cloning site: bases 336-337
T7 promoter priming site: bases 406-425
M13 (-20) Forward priming site: bases 433-448
Fusion joint: bases 577-585
ccdB lethal gene ORF: bases 586-888
kan gene: bases 1099-2031
  kan promoter: bases 1099-1236
  Kanamycin resistance gene ORF: bases 1237-2031
Zeocin resistance ORF: bases 2238-2612
pUC origin: bases 2724-3397

!&#$
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2.1.6. Antibodies: 

 

(A) ab-GFP (B-2): Mouse monoclonal IgG (provided at 200!g/ml). Raised against the 

entire green fluorescent protein of Aequoria Victoria, and cross-reacts with enhanced GFP 

(eGFP). Purchased from Santa Cruz Biotechnology, stored at 4°C. Used at a 1:10,000 

dilution for Western blot analysis. 

 

(B) Anti-Calsequestrin (ab3516, "-CSQ2): Rabbit polyclonal (provided at 0.2mg/ml, 

stored in PBS, preserved with 0.05% sodium azide). Purchased from Abcam®, stored 

at -20°C. Used at a dilution 1:5,000 dilution for Western blot analysis. Used at 1:100 

for immunofluorescence analysis. 

 

(C)  Anti-Aspartate beta hydroxylase (ab72846, "-ASPH): Used for junctin detection (a 

splice variant of ASPH). Mouse polyclonal (provided at 1 mg/ml, stored in 1x PBS, pH 

7.2). Purchased from Abcam®, stored at -20°C. Used at a 1:5,000 dilution for Western blot 

analysis. Used at 1:100 for immunofluorescence analysis. 

 

 

2.1.7. Mammalian Cell Culture Reagents: 

 
(A) Dulbecco’s Modified Eagle Medium (DMEM): containing D-glucose, L-glutamine and pyruvate, 

and supplemented with 10% (v/v) heat inactivated foetal calf serum, 2mM glutamine and 100!g/ml 

penicillin/streptomycin (referred to as complete, cDMEM), and stored at 4°C. 

(B) Trypsin-EDTA 0.05%: 1x, with phenol red. Stored at -20°C. 

(C) Sodium chloride solution (saline): 0.9% (w/v) supplied by Fresenius Kabi. 

(D) Sodium butyrate (NaB (1M stock prepared)): used at 2mM.  

(E) Calcium chloride (CaCl2), 1M stock: purchased from Sigma-Aldrich, stored at -20°C (50ml 

aliquots). 

(F) Hepes Buffered Saline (HBS): 280mM NaCl, 10mM KCl, 1.5mM Na2HPO4, 10mM glucose, 

50mM HEPES, pH 7.05, filter sterilised before storing at -20°C. 

(G) Effectene® Transfection reagent kit (Qiagen): 1mg/ml Effectene® transfection reagent, 1 mg/ml 

enhancer and DNA-condensation buffer (EC). All stored at 4°C. 

(H) Cell freezing medium: 10% (v/v) dimethyl sulphoxide (DMSO) in foetal calf serum, filter 

sterilised and stored at 4°C. 

(I) Hygromycin B antibiotic: 50mg/ml stock in PBS (Life Technologies). 
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2.1.8. Immunofluorescence and calcium imaging reagents: 

 
(A) Alexa Fluor® conjugated secondary antibodies (Molecular Probes): Used at a 1/250 dilution. 

(B) Fluo-3 AM: purchased from Life Technologies, prepared in a solution of 20% Pluronic® acid in 

DMSO. Added to minimal (unsupplemented) DMEM (mDMEM) to generate a working concentration 

of 10!M. 

(C) Phosphate buffered saline (PBS): 137mM NaCl, 2.7mM KCl, 4.3mM Na2HPO4, 1.4mM KH2PO4, 

pH adjusted to 7.4 with HCl, filter sterilised. 

(D) Poly-L-lysine: 0.1% solution, stored at 4°C. Used to coat coverslips/culture dishes.  

(E) Fixing solution: 4% (w/v) paraformaldehyde in PBS. 

(F) Cell permeabilisation solution: 0.1% (v/v) Triton X-100 in PBS. 

(G) Krebs-Ringer-Hepes (KRH) buffer: 120mM NaCl, 5.5mM Glucose, 25mM Hepes, 4.8mM KCl, 

1.2mM KH2PO4, 1.2mM MgSO4, 1.3mM CaCl2, pH 7.4. Filter sterilised. 

(H) Caffeine: 100mM stock prepared in KRH buffer, diluted 1/10 to prepare a 10mM stock.  

 
2.1.9. Protein biochemistry reagents: 

 

(A)  Western blot analysis                                  
i. SDS-PAGE running buffer: 25mM Tris, 250mM Glycine, 0.1% SDS. 

ii. Acrylamide: 40% acrylamide/Bis mix solution, in 37:5:1 ratio (Bio-Rad).  

iii. Ammonium persulphate 10% (w/v): Prepared on the day of use. 

iv. SDS-PAGE loading buffer 2x: 4% (w/v) SDS, 100mM Tris buffer (pH 6.8), 20% (v/v) 

glycerol, 0.2% (w/v) bromophenol blue (with added !-mercaptoethanol 10% (v/v)). 

Stored at -20°C. 

v. Tris-buffered saline (TBS) 1x: 20mM Tris, 137mM NaCl, pH adjusted to 7.6 before 

adding 1 ml/L Tween-20 (v/v) (1x TBS-T). 

vi. Blocking solution: 5% (w/v) non-fat powdered milk in 1x TBS-T.  

vii. Wash buffer/1% blocking solution: 1% (w/v) non-fat powdered milk in 1x TBS-T. 

viii. Molecular weight markers: pre-stained Kaleidoscope marker purchased from Bio-Rad.  

ix. Tris 1.5M (separating buffer): prepared a 1.5M Tris stock, pH adjusted to 8.8.  

x. Tris 0.5M (stacking buffer): prepared a 0.5M Tris stock, pH adjusted to 6.8. 

xi. Transfer buffer (semi-dry): 48mM Tris, 39mM Glycine, 0.01% (w/v) SDS, 20% (v/v) 

methanol.  

xii. Amersham! ECL! Western blotting analysis system: membrane detection reagents 

used with ECL hyperfilm" (GE Healthcare). 
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(B) Mixed membrane preparation                                   
i. Hypo-osmotic HEK cell lysis buffer: 20mM Tris, 5mM EDTA, pH adjusted to 7.4 with 

HCl. 1 protease inhibitor cocktail tablet (Roche), dissolved per 50 ml of buffer. 

ii. Cryopreservant solution (‘Solution C’): 0.4M sucrose, 20mM Hepes and 1x protease 

inhibitor tablet dissolved per 25ml. Used to re-suspend and freeze membrane 

preparations at -80°C. 

 

(C) Protein Assay 
i. Micro BCA" protein assay kit (Pierce). Bovine Serum Albumin (BSA) ampules 

(2mg/ml) were also provided in the kit. 
 

(D) [3H] Ryanodine binding                                  
i. Ryanodine binding buffer: 1M KCl, 25mM PIPES, 100!M CaCl2, pH adjusted to 7.4 

using KOH.  

ii. ‘Cold’ Ryanodine stock (1mg): Stored at -20°C under desiccating conditions, 

purchased from Abcam®, 1 mM working stock prepared in dH2O. 

iii. ‘Hot’ [3H]-Ryanodine stock (9.25 MBq, 250 !Ci): purchased from Perkin Elmer. Stored 

at -20°C in secure conditions. 

iv. Ultima"Gold Scintillation Fluid: purchased from Perkin Elmer. 

 

(E) Immunoprecipitation studies   
i. Solubilisation buffer: 20mM Tris, 150mM NaCl, 0.4% CHAPS (w/v), pH 7.4, 25x 

protease inhibitor solution added (Roche), used at 1x. 

ii. 20mM Tris: solution prepared and used as a final stage wash buffer, pH 7.5. 

 

(F) µ-MACS! GFP Tagged Protein Isolation Kit (Miltenyi Biotec)                                
i. Anti-GFP tagged microbeads: supplied as a solution containing 0.05% sodium azide. 

Stored at 4°C. 

ii. SDS-PAGE elution buffer: 50mM Tris HCl (pH 6.8), 50mM DTT, 1% SDS, 1mM EDTA, 

0.005% bromophenol blue and 10% glycerol. 

iii. Protein A microbeads: solution supplied in 0.05% sodium azide. 
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2.2. Health and Safety: 

 
All experiments were carried out in accordance with COSHH regulations and full general 

health and safety training was received from the WHRI safety manager prior to 

commencing any laboratory work. Use of genetically manipulated organisms was 

registered and all procedures were carried out in accordance with GMAG guidelines. 

Microbiology and cell culture safety training was undertaken with the Wales Heart 

Research Institute (WHRI) biological safety officer. Radioisotope procedures were 

registered and local rules were followed for use and disposal using the IsoStock® 

radioisotope accounting software.  

 

2.3. Computer analysis and software: 

 
Microsoft Excel was used to store and plot most numerical data (expressed as mean ± 

standard error), unless otherwise stated. Statistical analyses and fitting of sigmoidal 

curves were carried out using GraphPad Prism® (GraphPad Software Inc). Co-incident 

pixels were counted using Adobe Photoshop and imaging investigations carried out using 

Leica Microsystems LAS-AF or Zeiss Axiovision software. Quantity-one (Bio-Rad) 

software was used for image processing and densitometric analysis of Western blots. 

DNA sequences were verified using the Basic Local Alignment Search Tool (BLAST, 

http://blast.ncbi.nlm.nih.gov/).  
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2.4. Methods: 
 

General molecular biology techniques were performed according to protocols outlined in 

the Molecular Cloning laboratory manual (Sambrook et al., 1989) and procedures 

optimised by the Williams laboratory or other staff members of the WHRI. When applicable 

the manufacturers guidelines were followed.   

 

 

2.4.1. Molecular Biology Methods: 

 

 

2.4.1.1. Polymerase Chain Reaction (PCR): 

 

A series of PCR reactions were carried out using a GeneAmp® PCR system 9700 thermal 

cycler (Applied Biosystems). To generate high-fidelity amplification products, Phusion™ 

DNA polymerase (a pyrococus furiosus (pfu) enzyme (Finnzymes)) was used, which 

possess 5’" 3’ DNA polymerase activity and 3’" 5’ exonuclease (proofreading) activity, 

allowing recognition and excision of any misincorporated bases during polymerisation. 

Furthermore, Phusion™ DNA polymerase generated blunt-ended PCR products, which 

could be ligated directly into a Zero Blunt® TOPO® vector for sequencing. 

 

The complete PCR reactions carried out and the thermal cycling conditions used are 

highlighted in Table 2.1 and 2.2, respectively. To enrich the PCR products generated from 

a first round of amplification (PCR reaction 1), a second round of reactions were 

undertaken using PCR1 products as a template (PCR reaction 2).   
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PCR Reaction 1 PCR Reaction 2 

5!l cDNA library template (20ng) 

1!l forward primer (20!M stock) 

1!l reverse primer (20!M stock) 

10!l reaction buffer (5x) 

0.5!l dNTPs (20mM stock) 

1!l DMSO 

0.5!l DNA polymerase 

(1 unit Phusion™) 

31!l dH2O 

 

TOTAL 50!l 

5!l PCR1 as template (20ng) 

1!l forward primer (20!M stock) 

1!l reverse primer (20!M stock) 

10!l reaction buffer (5x) 

0.5!l dNTPs (20mM stock) 

1!l DMSO 

0.5!l DNA polymerase 

(1 unit Phusion™) 

31!l dH2O 

 

TOTAL 50!l 

Step Temperature (ºC) Time  Number of cycles 

Initial Denaturation 98 30 seconds 1 

Denaturation 

Annealing 

Elongation 

98 

62 

72 

10 seconds 

20 seconds 

1 minute 30 sec 

 

30 

Final Elongation 72 10 minutes 1 

Incubation 4 Indefinite 1 

Table 2.1: PCR reaction components: PCR reaction 1 refers to the first series 
of PCR reactions undertaken, using a cardiac cDNA library as a template and 
primers outlined in Chapter 3, Figure 3.1. PCR reaction 2 refers to a second 
series of PCR reactions carried out to enrich the amplified products. Forward and 
reverse primers were used at a final concentration of 0.4 !M.   
 

Table 2.2: PCR amplification thermal cycling conditions: The annealing temperature 
was chosen according to the primer melting temperature (set 10ºC below this value). 
Elongation time was set according to the length of the expected product. 
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2.4.1.2. Agarose Gel Electrophoresis: 
 
 
Agarose gel electrophoresis was used to verify the size of DNA fragments (such as those 

generated by PCR amplification). A 1% w/v agarose gel was formed by dissolving the 

requisite amount of agarose in 1x TAE buffer before heating in a microwave oven, cooling 

to ~50°C and adding 0.1 !g/ml of ethidium bromide (EtBr). The mixture was set in a gel 

cast with a comb, forming wells for loading, and assembled according to the 

manufacturers guidelines (Bio-Rad). Each prepared gel was placed into a Bio-rad mini-

sub® gel tank and covered with 1x TAE buffer (section 2.1.2 (D) i) before the samples 

were loaded. Loading buffer (section 2.1.2 (D) iii) was added to each sample at 1x (from a 

3x buffer stock) before gel loading, and a 1 kb DNA molecular weight (MW) marker was 

run alongside the samples as a reference of fragment molecular mass. Electrophoresis 

was carried out under constant voltage (typically 90 V) until sufficient DNA fragment 

separation was evident. The Bio-Rad XRS Chemidoc Imaging System® was used to view 

the resolved EtBr stained DNA fragments by UV transillumination.   

 

2.4.1.3. Gel Extraction: 

 

The QIAquick Gel extraction kit (Qiagen), (section 2.1.2 (E)) was used to purify DNA 

fragments separated on agarose gels. The DNA fragments separated by electrophoresis 

were viewed using a U.V transilluminator light box (Syngene), using an appropriate UV 

protective face shield. Fragments were excised from the gel using a scalpel, and weighed 

such that an appropriate volume (3x mass) of a chaotropic salt buffer (QG) could be 

added, leading to solubilisation of agarose polymers and dissociation of proteins 

associated with the DNA complex. Incubating the mix at 50ºC in a water bath, for 10 

minutes, with vortexing every two minutes, encouraged this solubilisation. Once 

solubilised, 1x volume of isopropanol was added to the sample. The QG buffer contains a 

pH indicator, allowing monitoring of pH throughout the reaction, as a pH of <7.5 is 

essential for efficient DNA adsorption to the silica-gel particles lining a QIAquick 

membrane spin column. The sample was applied to a QIAquick spin column, placed into a 

2ml collection tube and centrifuged at >10,000xg for 1 minute. The flow-through was 

discarded, whilst the QIAquick membrane (with captured DNA) was washed with both 500 

!l QG buffer and 750 !l PE buffer to remove any remaining impurities such as agarose 

and salt. DNA was eluted into a 1.5 ml microcentrifuge tube in 50!l dH2O following further 

centrifugation for 1 minute.  The purified DNA was verified by agarose gel electrophoresis 

and stored at -20ºC until required.  
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2.4.1.4. TOPO® cloning of luminal accessory protein cDNA clones: 

 

Zero Blunt® TOPO® (Life Technologies) allowed fast and efficient cloning of PCR 

amplicons such that they could be propagated to sufficient quantities of cDNA for 

automatic sequencing. In contrast to traditional cloning, no restriction digest was 

necessary and only a minimal amount of insert was required for ligation (10:1 molar ratio 

of insert:vector recommended in the manufacturers guidelines for optimal efficiency). All 

reagents used in the ligation reaction were supplied in the Zero Blunt® PCR cloning kit 

(section 2.1.2, (A)). The reaction contained: 1!l pCR-Blunt TOPO® vector (25ng), 5!l blunt 

PCR product (250ng), 1!l 10x ligation reaction buffer ((A) ii), 1!l T4 DNA ligase (4U/!l) 

and 2!l dH2O (Total volume 10!l). The reaction was incubated for 1 hour at 16 ºC before 

transformation. 

 

2.4.1.5. Bacterial Cell Transformation: 

 

Transformation of smaller plasmids (i.e., luminal accessory protein constructs) was carried 

out using chemically competent OneShot®TOP10 E.coli cells. For transformation of 

TOPO® ligations (for example), 2!l (~1ng) of the mix was gently mixed into a chilled 50!l 

aliquot of TOP10® cells, incubated on ice for 30 minutes before a 30 second heat shock 

step at 42°C in a water bath. Following heat shock, vials were immediately transferred 

onto ice for a further 1 minute period, before aseptically adding 1ml SOC medium (section 

2.1.3, (E) iii) and placing the vials into a 37°C incubator with shaking at 225 rpm, for 1 

hour. Cultures were plated at two different densities onto pre-warmed LB agar containing 

100!g/ml of an appropriate antibiotic (kanamycin in the case of TOPO® selection). A cell 

spreader was used to ensure the cells were dispersed throughout the whole plate, 

encouraging growth of colonies in isolation and arising from a single transformed cell. The 

plates were incubated overnight at 37°C (Heraeus Incubator, Thermo Scientific) before 

colony selection. Individual colonies were selected and seeded under aseptic conditions 

into 6ml of pre-warmed LB growth medium (section 2.1.3 (A)) containing an appropriate 

selective antibiotic (100!g/ml), and incubated for 16-18 hours at 37°C with shaking at 225 

rpm.  

 

Due to the fragile nature of the eGFP-hRyR2 plasmid construct (primarily owed to its 

larger size), the amplification technique was executed differently, using a method 

optimised in close collaboration with my colleagues in Professor Williams’ group. 

Alteration of certain conditions aimed to avoid plasmid degradation and ensured sufficient 

quantities of purified hRyR2 DNA was generated. Using the transformation protocol 

aforementioned, the following differences were applied: full-length eGFP-hRyR2 was 
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transformed into 25!l XL-Gold Ultracompetent Epicurian coli cells (in the presence of 1!l 

ß-mercaptoethanol), which are suitable for propagation of larger plasmids. The cells were 

placed on ice for 10 minutes and subjected to gentle agitation every 2 minutes, before 

heat shock and further incubation at 37°C as described previously. After transformation, all 

culture steps were carried out at 30°C.   

 

2.4.1.6. Small-scale DNA propagation (mini-prep): 

 

To identify positive clones, overnight culture (3ml) inoculated with a single colony was 

centrifuged at 13,000xg for 2 minutes and the resultant pellet subjected to alkaline lysis 

using the QIAprep® mini-prep spin kit (section 2.1.2 (G) i-viii). Cells were resuspended in 

P1 buffer (250!l- containing RNAse A) and lysed in an equal volume of P2 containing 

sodium dodecyl sulphate (SDS) which solubilises the phospholipid components of the 

cells and sodium hydroxide which creates an alkaline environment that denatures 

chromosomal DNA and proteins. The lysate was neutralised in a high salt buffer, N3 

(350!l) containing potassium acetate, resulting in precipitation of most of the chromosomal 

DNA, bacterial cell debris and SDS which form insoluble potassium dodecyl sulphate 

complexes. The precipitated matter was removed by centrifugation at 13,000xg for 10 

minutes before adding the cleared lysate to a spin column containing a DNA binding silica 

membrane, which was subjected to further centrifugation at the same speed for 1 minute. 

The plasmid DNA bound to the membrane was washed with two ethanol-containing 

buffers (PB and PE) before elution by centrifugation (13,000xg, 1 minute) in 50!l dH2O. 

Constructs were verified by restriction digest and direct DNA sequencing. 

 

2.4.1.7. Verification of positive transformants by restriction digest:   

 

Restriction endonucleases are widely used in manipulating and analysing DNA, by 

recognising and cleaving specific short sequence elements. Appropriate enzymes were 

chosen after constructing a visual digest via http://tools.neb.com/NEBcutter2/. Restriction 

mapping (prediction of fragment MW) was used to verify all miniprep clones. Restriction 

digest was typically carried out using 1!g of DNA and 5-10 units of endonuclease 

(prepared to a total volume of 20!l with 2!l reaction buffer and dH2O). The plasmid DNA 

was digested for 2 hours in a 37°C water bath and the resultant products separated by 

agarose gel electrophoresis. The digest pattern was visualised using UV transillumination. 

Plasmid preparations that yielded restriction fragments of the expected MW were selected 

for further propagation (large-scale, maxi-prep culturing, section 2.4.1.10). For cloning, the 

desired DNA fragments were excised from the gel and purified using the QIAquick Gel 

Extraction Kit (Section 2.1.2, (E)).  
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2.4.1.8. DNA sequencing:   

 

Luminal accessory protein constructs were sequenced using a BigDye™ Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems), (section 2.1.2 (C)) following the 

manufacturers guidelines. The sequencing PCR reaction was prepared to a total volume 

of 10!l and typically consisted of ~250ng of plasmid DNA, BigDye™di-deoxyterminators, 

BigDye™ reaction buffer (x1) and a suitable sequencing primer (such as the M13 reverse 

primer provided in the TOPO® PCR cloning kit (3.5 pmol used)). The thermal cycling 

conditions are outlined in Table 2.3. Reaction products were purified using a DyeEx™ kit 

(Qiagen), where unincorporated dye terminators were removed by centrifugation of the 

samples in spin columns containing a prehydrated gel-filtration resin. Once collected from 

the columns, the samples were sent for analysis using an ABI 377 automated sequencer 

(Applied Biosystems, carried out by Central Biotechnology Services, Cardiff University). 

During analysis, the fluorescence intensities generated from the labelled di-

deoxyterminators were translated into electropherograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Temperature (ºC) Time  Number of cycles 

Initial Denaturation 96 2 minutes 1 

Denaturation 

Annealing 

Elongation 

96 

50 

60 

30 seconds 

30 seconds 

4 minutes 

 

30 

Incubation 4 Indefinite 1 
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endonuclease (prepared to a total volume of 20!l with 2!g reaction buffer and dH2O). 

The plasmid DNA was digested for 2 hours in a 37°C waterbath (unless otherwise 

stated) and the resultant products separated by agarose gel electrophoresis. The 

digest pattern was visualised using UV transillumination (section ?.?). Plasmid 

preparations which yielded restriction fragments of the expected molecular mass were 

selected for further propagation (large-scale, maxi-prep culturing, section ?.?). For 

cloning, the desired DNA fragments were excised from the gel and purified using the 

QIAquick Gel Extraction Kit (section ?.?). The resultant recovery was verified by 

further agarose gel electrophoresis.  

 

 

2.4.1.8. DNA sequencing:   

 

Luminal accessory protein constructs were sequenced utilising a BigDye™ Terminator 

v3.1 Cycle Sequencing Kit (Applied Biosystems) and following the manufacturer’s 

guidelines. The sequencing PCR reaction was prepared to a total volume of 10!l and 

typically consisted of ~250ng of plasmid DNA, BigDye™di-deoxyterminators, 

BigDye™ reaction buffer (x1) and a suitable sequencing primer (such as the M13 

reverse primer provided in the TOPO® PCR cloning kit (3.5 pmol used)). The thermal 

cycling conditions are outlined in Table 4. Reaction products were purified using a 

DyeEx™ kit (Qiagen), where unincorporated dye terminators were removed by 

centrifugation of the samples in spin columns containing a prehydrated gel-filtration 

resin. Once collected from the columns, the samples were sent for analysis using an 

ABI 377 automated sequencer (Applied Biosystems, carried out by Central 

Biotechnology Services, Cardiff University). During analysis, the fluorescence 

intensities generated from the labelled di-deoxyterminators were translated into 

electropherograms. 

 

Step Temperature (ºC) Time  Number of cycles 

Initial Denaturation 96 2 minutes 1 

Denaturation 

Annealing 

Elongation 

96 

50 

60 

30 seconds 

30 seconds 

4 minutes 

 

30 

Incubation 4 Indefinite 1 

Table 2.3: PCR sequencing thermal cycling conditions: The temperatures were 
chosen according to the BigDye™ Terminator v3.1 Cycle Sequencing Kit guidelines. 
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2.4.1.9. Cloning of the luminal accessory protein constructs into a mammalian 

expression vector:   

 

Verified constructs in pCR"-Blunt II-TOPO® were excised from the vector using a double 

restriction digest and subsequent gel extraction (sections 2.4.1.3 and 2.4.1.7), and cloned 

into the mammalian expression vector pcDNA3.1"hygro(+). Prior to preparing the ligation 

reaction, the DNA was treated with Antarctic phosphatase (5 units, 15 minutes at 37°C 

with heat inactivation at 65°C for 5 minutes) to prevent any re-ligation of the plasmid 

vector. Ligations were carried out using the Rapid DNA Ligation Kit (Roche), (section 2.1.2 

(F)) and prepared in a 3:1 (insert:vector) molar ratio, as recommended in the 

manufacturers guidelines (Table 2.4). Reactions were incubated overnight at 4°C before 

being transformed into competent bacteria (OneShot®TOP10, section 2.4.1.5) and 

screened for success, as outlined in section 2.4.1.6-2.4.1.8.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calsequestrin Junctin 

0.5!l pcDNA3.1hygro (+) vector (50ng) 

5!l CSQ2 construct (30ng) 

2!l DNA dilution buffer (x5) 

1.5!l dH2O (5x) 

--------------------------- 

10!l T4 DNA ligation buffer (2x) 

1!l T4 Ligase 

 

TOTAL 20!l 

0.5!l pcDNA3.1hygro (+) vector (50ng) 

2.5!l JUN construct (30ng) 

2!l DNA dilution buffer (x5) 

4!l dH2O (5x) 

--------------------------- 

10!l T4 DNA ligation buffer (2x) 

1!l T4 Ligase 

 

TOTAL 20!l 

Table 2.4: Luminal accessory protein and pcDNA3.1hygro(+) ligation 
reaction: The relative MW of the constructs were used to calculate the molar 
ratio for ligation reactions (pcDNA3.1hygro(+) = 5600bp, CSQ2 = 1216bp and JUN 
= 678bp). Estimates of the luminal protein concentration (per !l) were made from 
the gel recovery (for gel extraction, see section 2.4.1.3), following excision of the 
constructs from pcDNA pCR!-Blunt II-TOPO®. 
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2.4.1.10. Large-scale DNA propagation and maxi-prep purification: 

 

For large-scale plasmid isolation, typically: 2x400ml (luminal protein constructs) or 

4x400ml (full-length eGFP-hRyR2) flasks of LB medium (with ampicillin (100 !g/ml) were 

required to generate one bacterial pellet for DNA purification. Each flask was inoculated at 

a 1/400 dilution with small-scale culture (from the mini-prep process, described in section 

2.4.1.6) and incubated overnight (16-18 hours) at 37°C (luminal protein constructs) or 

30°C (full-length eGFP-hRyR2), with shaking at 225rpm (Innova™ 4300 incubator (New 

Brunswick Scientific)). The bacterial cells were harvested by centrifugation (Avanti J-25, 

Beckman with JLA16.250 fixed-angle rotor) at 7000 xg for 15 minutes at 4°C. Plasmid 

DNA was isolated from the pelleted cells using a HiSpeed® Plasmid Maxiprep Kit (Qiagen, 

section 2.1.2 (G)), which employs an ion-exchange resin method for purification. Bacterial 

cells were treated with the same alkaline lysis reagents used in the mini-prep protocol, 

before decanting the lysed, neutralised cells into the barrel of a QIAfilter cartridge and 

incubating at room temperature for 10 minutes. The precipitated cell debris (containing 

contaminant proteins, detergent and genomic DNA) was removed by filtration and the 

cleared lysate applied to an equilibrated (with QBT) HiSpeed® maxi tip (containing anion-

exchange resin). DNA bound to the resin was washed twice (with buffer QC) before 

elution in 15ml high salt buffer (QF). Plasmid DNA was desalted and concentrated by 

isopropanol precipitation; isopropanol (0.7 volumes) was added to the eluate and 

incubated at room temperature for 30 minutes, before trapping the DNA precipitate in a 

QIA precipitator® filter using a syringe. Ethanol (70% w/v) was passed through the column 

to wash the bound DNA, before elution with 1ml dH2O. Plasmids were quantified and 

verified by restriction digest, before storing at -20°C. 

 

2.4.1.11. DNA Quantification: 

 

DNA concentration (!g/ml) was established by UV spectrophotometric quantification 

(LAMBDA Bio(+) spectrophotometer (Perkin Elmer)) of a 1:50 dilution of sample in a quartz 

cuvette. Absorbance readings were taken at 260 nm (the wavelength at which DNA 

exhibits peak light absorption) and calculated according to an A260 value/optimal density 

of 1 corresponds to 50!g/ml of double stranded DNA. Plasmid purity was also quantified 

by measuring the ratio of A260/A280 (indicative of protein concentration), with values #1.8 

indicating sufficiently pure preparations.  
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2.4.2. Mammalian Cell Culture Methods: 

 

Human embryonic kidney (HEK) 293 cells were developed as an immortal cell line, 

following transformation with sheared adenoviral DNA (Graham et al., 1977) and are used 

extensively as an expression tool for recombinant proteins. Although epithelial in origin, 

the cells’ biochemical machinery is able to reproducibly express large-scale, functional, 

recombinant proteins with high efficiency whilst maintaining any essential post-

translational modifications. Importantly, HEK293 cells have no endogenous RyR2 

expression (Du et al., 1998), ensuring that the isolated proteins were derived from the 

transfected plasmid.  

 

2.4.2.1. Maintenance and sub-culture of HEK293 cells: 

 

All cell culture work was undertaken in a designated laboratory in HEPA filtered class II 

laminar flow containment hoods. Cells were incubated at 37°C, gassed with 5% CO2, 98% 

humidity and typically grown in T75 cm2 culture flasks in the presence of 10ml 

supplemented (section 2.1.7, (A)) Dulbecco’s Modified Eagles Medium (DMEM). To 

maintain a healthy adherent cell population, routine sub-culturing (passage) of the cell 

monolayer (at ~80% confluency) was essential to prevent over confluence and cell death. 

Cells were detached from the culture flasks by trypsinisation (incubated with the cells for 

no longer than 5 minutes), after washing with 10ml 0.9% w/v saline solution. Dissociated 

cells were collected as a cell suspension in cDMEM (10ml) and typically 1-1.5ml was 

subsequently centrifuged at 1000 xg for 5 minutes before the resultant pellet was 

resuspended in 10ml cDMEM and placed into a fresh sterile T75 cm2 culture flask for 

further growth.  

 

2.4.2.2. Calcium phosphate transfection of HEK293 cells: 

 

The eGFP-hRyR2 and luminal accessory protein transfection protocol is described in 

further detail in Chapter 3, section 3.2.3. To generate calcium phosphate-DNA 

precipitates, plasmid DNA (12!g DNA per 8x105 cells) was mixed with 124mM CaCl2 

solution (pH 7) and dH2O to a total volume of 500!l; and subsequently added dropwise to 

500!l of warmed 2x HBS (pH 7.05), (section 2.1.7 (F)) with continuous vortexing. To allow 

precipitate formation, the DNA/CaCl2/HBS mix was incubated for 20 minutes at room 

temperature, before adding dropwise (1000!l/plate) to the cell monolayer. It was essential 

that this process formed a fine precipitate (i.e., not clumpy), such that the DNA could be 

actively introduced into the cells by endocytosis. Cells were incubated at 37°C, 5% CO2 

for 24 hours before upregulation of expression with 2mM NaB, and determination of 
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transfection efficiency (see Chapter 3, section 3.3.5), following a further 24 hour 

incubation. Harvested by trypsinisation, the total cell numbers were established using a 

haemocytometer, before being pelleted by centrifugation (1000 xg, 5 minutes) and stored 

at -80°C.  

 

2.4.2.3. Effectene® transfection of stable cell lines: 

 

Described in Chapter 3, section 3.3.4, stable cell lines were transfected using Effectene® 

reagent (Qiagen). To prepare for Ca2+ imaging (section 2.4.3.9), the stable cells were 

seeded at a density of 1x105 cells into 35mm glass bottom dishes (MatTek" Corporation), 

which were coated with poly-lysine before seeding. The cells were maintained in 200 !l 

menisci of cDMEM for 4-5 hours (to encourage adhesion) before adding 2ml fresh cDMEM 

to each well and incubating overnight at 37°C, 5% CO2 before transfection. Briefly, 

following the manufacturers guidelines, 0.2 !g of recombinant DNA (per micro well) was 

mixed with an enhancer and a DNA-condensing buffer, and incubated for 5 minutes (room 

temperature) before addition of the Effectene® reagent. Following incubation for 10 minutes 

at room temperature, the resultant condensed Effectene®-DNA complexes were mixed with 

cDMEM and added directly to the cells. Addition of the Effectene® reagent to the DNA 

generates micelle structures that are actively taken up by the cells.  

 

2.4.3. Protein Biochemistry Methods: 

 

2.4.3.1. Preparation of mixed membranes from transfected HEK293 cells: 

 

Transfected cell pellets (produced as described in section 2.4.2.2, typically ~100x106 cells 

per pellet) were resuspended in ice-cold hypo-osmotic buffer (1ml for every 1x106 cells) 

before two stages of cell lysis (on ice), (for composition of hypo-osmotic buffer, see 

section 2.1.9 (B) i). Cells were first lysed in a glass homogeniser (x20 strokes) to manually 

disrupt the cells, followed by passing the homogenate 20x through a sterile 23G needle 

(BD Microlance™) aided by the use of an automated cell homogeniser (the 

“montygeniser”, designed and constructed by Richard Montgomery, illustrated in Figure 

2.3, A). The resultant homogenate was centrifuged at 2700 rpm (1200 xg) for 15 minutes, 

at 4°C (using an Allegra™ 6R centrifuge (Beckman Coulter)) and the supernatant 

collected (whilst the pellet consisting of cell debris and nuclear fraction was discarded). 

Microsomal membranes were collected by high-speed centrifugation for 90 minutes at 

28,000 rpm (100,000 xg), 4°C, using an Optima L-90K ultracentrifuge (50.2 Ti fixed angle 

rotor (Beckman Coulter). Membranes were resuspended in ‘solution C’ (section 2.1.9 (B) 
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ii) and homogenised further using a glass homogeniser, before storing as 30!l aliquots at -

80°C, following flash freezing in liquid nitrogen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3.2. Protein assay and analysis of protein expression: 

 

Total protein in all samples was quantified using the BCA™ system (Thermo Scientific). 

This kit uses bicinchoninic acid (BCA) as the detection reagent for Cu+1 (univalent copper), 

formed when protein reduces Cu2+ in an alkaline environment. The chelation of two BCA 

molecules with one cuprous ion (Cu+1) generates a purple coloured reaction product. The 

absorbance of which at 595 nm can be read using a spectrophotometer. Dilutions (1/50, 

1/100 and 1/200) of membrane samples along with protein standards (0-500!g/ml BSA) 

were mixed with the kit reagents according to the manufacturers guidelines, before 

incubating at 30°C for 20 minutes for chromogenic development. Absorbance readings at 

595nm were taken using a Labsystems Multiscan™ spectrophotometer and Genesis 

software. A standard curve was plotted of absorbance (595nm) vs. protein concentration 

(!g/ml). Sample protein concentration was derived from the values given by the standards, 

using the linear equation y=mx+c. Protein expression levels were ascertained by Western 

blot analysis following separation by SDS-polyacrylamide gel electrophoresis (SDS-
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Figure 2.3: Apparatus used to homogenise transfected HEK293 cell pellets:   
(A) Illustrates the automatic cell homogeniser and (B) is a schematic of a manual 
glass homogeniser.  
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PAGE). Densitometric analysis of Western signals was used to standardise protein 

samples for expression level before use in further investigations.  

 

2.4.3.3. SDS-PAGE gel electrophoresis: 

 

eGFP-hRyR2 protein samples were separated using a 4% acrylamide gel (supplemented 

with 1% agarose to strengthen), whilst luminal proteins were resolved on a 10% gel. Gels 

were cast and run using the Bio-Rad mini-gel apparatus. Separating gels were prepared 

as in Table 2.5 and set (~1 hour) between glass plates, assembled into a gel casting 

system. A stacking gel mixture (4% used for all proteins detected) was layered on top of 

the separating gel (with an inserted comb to form loading wells) and left to set for ~45 

minutes. To prepare the samples for electrophoresis, the proteins were denatured in the 

presence of SDS-containing loading buffer, for 20 minutes at 42°C. The buffer also 

contained 10% ß-merceptoethanol, a reducing agent that prevented the formation of 

protein aggregates. A Kaleidoscope protein MW marker (Bio-Rad) was loaded alongside 

the protein samples. Gel electrophoresis was carried out at a constant current (typically 20 

mA) and run until the appropriate coloured MW markers were resolved. 

 

 

 

                          Separating acrylamide gel composition 

Reagents Typical Volumes (!l) Final concentration 

 4%* 10%**  

 Acrylamide/Bis (37:5:1) 40% 1000 2500 Dependent on % 

acrylamide used 

Tris-HCl 1.5M, pH 8.8 2500 2500 25% (v/v) 

SDS 10% 100 100 1% (v/v) 

Ammonium Persulphate 10% 50 50 0.5% (v/v) 

TEMED 5 5 0.05% (v/v) 

dH2O (supplemented with 1% 

agarose in 4% gels) 

6345 4845 Up to a final volume 

Gel % determined according to the size of the proteins to be separated and is 

indicative of the amount of acrylamide required. 

* Used for running WT and mutant hRyR2 protein. 

** Used for running luminal accessory proteins. 

Table 2.5: Components used to prepare SDS-PAGE gels: The composition of SDS-
PAGE 4% and 10% separating gels are shown. Stacking gels were all 4% and prepared 
as described above (4% separating gel) but the Tris-HCl 1.5M, pH 8.8 was replaced with 
Tris-HCl 0.5M, pH 6.8.  
 



 66 

2.4.3.3.1. Protein transfer onto a polyvinylidene difluoride (PVDF) membrane: 

 

The separated proteins were transferred onto a PVDF membrane (Immobilon-P, Millipore) 

using either a semi-dry system (Bio-Rad), for CSQ2/JUN transfer or an iBlot" dry blotting 

system (Life Technologies) to transfer eGFP-hRyR2. The iBlot" system was chosen for 

hRyR2 analysis because of the reduced transfer time (14 minutes) required compared to 

using the semi-dry blotting technique (4 hours), but with equivalent transfer efficiency. For 

semi-dry transfer, the PVDF membrane was soaked in methanol for 1 minute, then for a 

further 45 minutes in transfer buffer, along with the SDS-PAGE gel (soaked for 5 minutes) 

and filter paper. The transfer apparatus was assembled as follows: the SDS-PAGE gel 

was placed on top of the PVDF membrane and both were sandwiched between six pieces 

of soaked filter paper. A roller was used to remove air bubbles. ‘Semi-dry’ transfer of 

CSQ2 and JUN was carried out at 400mA (limited to 25V) for 50 minutes at 4°C. Protein 

transfer using the iBlot"system was carried out using specialised iBlot" gel transfer 

stacks (Life Technologies), eliminating the need for any pre-soaked membranes/filter 

paper and transfer buffer. Based on a dry blotting concept, the iBlot" transfer stacks 

consisted of: (1) an anode stack (on top of which the pre-activated PVDF (0.2!M) 

membrane was placed), (2) a cathode stack (with the SDS-PAGE gel placed underneath, 

on top of the membrane) and (3) a disposable sponge with metal contact to associate the 

electrodes of the iBlot" device with the assembled gel stacks. The design of the iBlot" 

system created a shorter distance between electrodes and thus enabled the generation of 

high field strength and currents, and enhanced transfer speed. The program selected for 

hRyR2 transfer consisted of a 13 minute run at 20V.  

 

2.4.3.4. Immunodetection of Western Blotted proteins: 

 

Immediately after transfer, membranes were incubated for 1 hour at room temperature in 

blocking solution (5% non-fat milk in TBS-T, see section 2.1.9 (A) vi) on a rocker. To 

enable immunodetection, the primary antibodies were prepared in 1% blocking buffer 

(section 2.1.9 (A) vii) and applied to the membrane as a 1/5,000 or 1/10,000 dilution, as 

recommended in the manufacturers guidelines (see section 2.1.6 for antibody details), and 

incubated for 2 hours at room temperature or overnight at 4°C. The membrane was 

subsequently washed 3 times (5 minute durations) with wash buffer (section 2.1.9 (A) vii) 

before further incubating the membrane with a horseradish peroxidase (HRP)-linked 

secondary antibody, chosen according the species within which the primary antibody was 

generated. Used as a 1/10,000 dilution in 1% blocking buffer, the secondary antibody was 

incubated with the membrane at room temperature for approximately 90 minutes. Before 

the final stage of detection, the membrane was washed five times (5 minute incubations) 
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with TBS-T buffer (section 2.1.9 (A) v), to remove any remaining traces of unbound 

antibody or milk solution. 

 

To visualise the immunoreactive protein bands, enhanced chemiluminescence detection 

reagents were used (ECL" Western blotting analysis system, Amersham", GE 

Healthcare) according to the manufacturers guidelines. The membrane was then exposed 

to X-ray film (Amersham Hyperfilm", GE Healthcare) for a suitable length of time, 

determined according to the intensity of the chemiluminescence signal detected using a 

Compact x4 x-ray film developer. The obtained immunoblots were subsequently used for 

densitometric analysis, undertaken using a GS-700 imaging densitometer and Quantity 

One® software (Bio-Rad).  
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2.4.3.5. [3H] Ryanodine Binding Protocol: 

 

The details of the [3H] ryanodine binding assays undertaken in this project are discussed 

further in Chapter 4, sections 4.2.1-4.2.1.1. Each reaction contained 100!g of membrane 

proteins, 10nM [3H] ryanodine and was prepared to a final volume of 500!l using 

ryanodine binding buffer (adjusted to a given free Ca2+ concentration). To control 

reactions, the final volume of binding buffer was adjusted to accommodate the addition of 

10!M ‘cold’ (non-radiolabelled) ryanodine. All reactions were prepared in duplicate, 

materials outlined in section 2.1.9 (D) i-iv.   

 
Following thorough mixing, the reactions were incubated in a water bath at 37°C for 90 

minutes, at which equilibrium binding is achieved (Holmberg and Williams, 1990). To 

terminate the reaction, x10 excess (5 ml) ryanodine binding buffer was added. All reactions 

were then filtered through pre-soaked Whatman" glass fibre filters (0.25 !M) under 

vacuum by attaching the filter apparatus to a Heto" masterjet lab suction pump. The full 

apparatus is shown in Figure 2.4. At this stage, unbound [3H]-ryanodine passed through 

the filter with washing, whilst eGFP-hRyR2 (and any bound [3H]-ryanodine) was retained 

on the filter. Each filter was placed into a 10 ml scintillation vial (Fisher Scientific) and fully 

submerged in 5 ml Ultima" Gold Scintillation Fluid (Packard Bioscience). All samples were 

mixed and incubated at room temperature for 24 hours before reading in a Packard 

(2100TR) liquid scintillation counter. Decontamination of used plasticware was carried out 

according to local rules.  
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Figure 2.4: [3H] Ryanodine binding filter apparatus. 
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2.4.3.6. Co-immunoprecipitation (Co-IP) of hRyR2 with luminal proteins: 

 

Co-IP studies are described in Chapter 5 and were carried out using a !MACS™ GFP 

protein isolation kit (Miltenyi Biotec), (section 2.1.9 (F) i-iii), whereby WT and mutant eGFP-

hRyR2 proteins and their interacting partners were isolated from solubilised membrane 

preparations using super-paramagnetic !MACS" microbeads, conjugated to an anti-GFP 

monoclonal antibody. Using the same protocol described below, luminal protein 

associations were investigated using !MACS™ Protein A microbeads (Miltenyi Biotec).  

 

All samples used for co-IP studies were first analysed by Western blot and densitometry to 

ensure that equal amounts of both WT and mutant eGFP-hRyR2 used. Using a 

solubilisation buffer, 1-1.5 mg of ER membranes were solubilised overnight at 4°C, before 

removal of any unsolubilised, unbound material using centrifugation (10 minutes, 11500 

rpm (16,000 xg) in an Allegra 6R Beckman Coulter, at 4°C). All samples were made up to 

a total volume of 1 ml with solubilisation buffer and the appropriate volume of protease 

inhibitor. Anti-GFP paramagnetic microbeads (50!l, 50 nm in diameter) were mixed and 

incubated with the solubilised WT/mutant eGFP-tagged hRyR2 protein for at least 30 

minutes, on ice.  

 

To isolate the proteins bound to the anti-GFP-microbeads, the samples were applied to 

!MACS" columns, which were equilibrated (with solubilisation buffer, section 2.1.9 (E) i) 

and placed into a !MACS" separator (a magnetic stand, Miltenyi Biotec). !MACS" 

columns are packed with steel spheres that enhance the magnetic field necessary to 

capture the !MACS" microbeads and bound target protein/s. Assembly of the set-up is 

shown in Figure 2.5. The immunoprecipitates were applied to the !MACS" columns where 

the magnetically labelled proteins were retained. The columns were washed four times with 

200 !l solubilisation buffer, before a final wash step with 20 mM Tris, pH 7.4 (100 !l), 

ensuring removal of any non-interacting material (such as detergent and salt) that would 

interfere with analysis. The samples of interest were eluted in 50!l of an SDS-containing 

elution buffer (composition detailed in section 2.1.9), which was heated to 95°C in a hot 

block before use. Eluted proteins were analysed by SDS-PAGE and Western blotting.  
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2.4.3.7. Immunofluorescent co-localisation investigations: 

 

Transfected HEK293 cells were collected and plated as a 200!l meniscus onto poly-lysine 

coated glass coverslips (22 x 22 mm) at a density of 8x104 cells/coverslip, and left to 

adhere overnight at 37°C with 5% CO2. The cells were washed three times in 1x 

phosphate buffered saline solution (PBS, section 2.1.8 (C)) before fixing with a 4% 

paraformaldehyde/PBS solution (pH 7.4) for 10 minutes in the dark. The fixed cells were 

washed and re-hydrated with PBS solution for 60-90 minutes before permeabilisation at 

room temperature in 0.1% v/v Triton X-100 in PBS for 30 minutes. The cells were further 

washed in PBS before blocking in 10% FCS (in PBS) for 30 minutes at room temperature. 

Primary antibody (used at 1/100) was then added as a 150!l meniscus in PBS, for 90 

minutes at room temperature. Coverslips were then washed and incubated with a 

fluorescent secondary antibody (used at 1/250), again at room temperature for 90 minutes. 

Following three final wash steps in PBS and dH2O, the coverslips were dried and mounted 

onto ethanol washed glass slides using Fluorsave" (Millipore). The slides were left to dry 

for 30 minutes before storing at 4°C until required. The slides were visualised using a 

confocal Leica SP5 microscope (Leica, Heidelberg, Germany), with an oil immersion, 63x 

objective lens. Co-incident eGFP- and Alexa® Fluor- labelled cells were identified using the 

Leica LAS-AF software.  
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Figure 2.5: Co-immunoprecipitation investigations: (A) Schematic of the labelling 
of eGFP-hRyR2 with !MACS™ anti-GFP microbeads, prepared within a 
microcentrifuge tube and incubated for at least 30 minutes (B) image of the !MACS™ 
column and separator apparatus used for immunoprecipitate isolation.  
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2.4.3.8. Loading of transfected HEK293 cells for Ca2+ imaging studies: 

 

Cells for Ca2+ imaging investigations were prepared as described in section 2.4.2.3. Fluo-3 

AM (50!g) was dissolved in 15!l DMSO containing 20% w/v Pluronic® F-127, making a 

3mM stock. This was added to mDMEM at a concentration of 10!M and incubated with 

the cells at 30°C with 5% CO2 for 45 minutes. Cells were then de-esterified in mDMEM for 

10 minutes prior to Ca2+ imaging.   

 

 

2.4.3.9. Ca2+ imaging protocol:  

 
Fluo-3 loaded cells were imaged using a laser scanning confocal microscope (Leica SP5, 

Leica, Heidelberg, Germany), with an oil immersion, x63 objective lens and Argon laser, 

controlled with Leica software. To visualise Ca2+ dependent Fluo-3 fluorescence, excitation 

was initiated at a wavelength of 488 nm and fluorescence detected by a photomultiplier 

tube (PMT) at 520±28. To view, the cells were immersed in a 200!l meniscus of Krebs-

Ringer-Hepes (KRH) buffer containing 1.3 mM CaCl2 (section 2.1.8 (G)) and spontaneous 

Ca2+ release events were imaged (5 frames/second) for 2 minutes at 512 x 512 pixel 

resolution. To estimate cell ER load, the transient amplitude following 10 mM caffeine 

addition was assessed. A caffeine response also verified the presence of functional RyR2 

channels.  
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3.1 Introduction: 
 

It is now well accepted that in addition to the diverse range of interacting proteins reported 

to regulate hRyR2 activity from the cytosolic side of the channel, luminal accessory 

proteins also play a prominent role in Ca2+ release regulation. In particular, a quaternary 

complex located at the junctional SR membrane, comprising: RyR2, the Ca2+ buffering 

protein CSQ2 and two SR transmembrane proteins JUN and TRD1, are thought modulate 

the ability of RyR2 channels to sense changes in SR luminal [Ca2+]  (Zhang et al., 1997, 

Dulhunty et al., 2012). While defective Ca2+ sensing by RyR2 is a candidate mechanism in 

CPVT, it is unknown if mutant channels respond to or interact differently with luminal 

accessory proteins; a concept investigated in this project. 

 

 

3.1.1 Regulation of ryanodine receptor Ca2+ release by luminal accessory proteins at 

the junctional domain of the sarcoplasmic reticulum membrane: 

 

A detailed understanding of precisely how CSQ2, JUN and TRD1 modulate normal SR 

Ca2+ cycling (and specifically RyR2 function) as a complex or individually, is an active area 

of research (Beard et al., 2009, Lee et al., 2012, Rossi et al., 2014). Investigations using 

overexpression/knockout CSQ2/JUN/TRD1 animal models or in vitro techniques have 

provided us with an insight into how the luminal proteins may control normal SR Ca2+ 

cycling, however some functional differences have been reported (as highlighted in 

Chapter 1 (Tables 1.1-1.3)) which likely reflect species variability or inconsistencies 

between experimental conditions.   

 

To exemplify this, single channel investigations carried out by Györke et al (2004) with dog 

isoforms of the luminal accessory proteins demonstrated that CSQ2, when added back to 

the RyR2/JUN/TRD complex inhibited channel activity (decreased RyR2 Po); whilst Wei et 

al (2009b) with cardiac isoforms isolated from sheep, reported that CSQ2 activated RyR2 

channels (increased Po) when associated with RyR2/JUN/TRD1 in a lipid bilayer system 

(Wei et al., 2009b). Discrepancies in studies of protein-protein interaction have also been 

attributed to differences between species (Qin et al., 2009), whereby at physiological 

concentrations of luminal Ca2+, Zhang et al (1997) demonstrated an interaction between 

dog JUN and CSQ2, whilst using similar conditions no binding between rabbit JUN and 

CSQ2 was evident (Qin et al., 2009). Across species, CSQ2 shares ~75% homology 

(Prins and Michalak, 2011, Beard et al., 2004), whilst both JUN and TRD1 display their 

greatest divergence in C-terminal regions (Lim et al., 2000, Marty et al., 2009). Human, 

rabbit and dog JUN sequences for example, demonstrate ~97% homology in N-terminal 
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and putative transmembrane domains among species, but <72% similarity in C-terminal 

sequence (Wetzel et al., 2000), which could explain disparities in functionality. Thus, in 

order to reliably investigate the physiological roles of CSQ2, JUN and TRD1 in the human 

heart, human isoforms of the luminal accessory proteins should be used. In vitro 

techniques however have proved more useful for closely investigating the molecular 

mechanisms and protein-protein interactions that mediate RyR2 luminal Ca2+ sensitivity 

(Zhang et al., 1997, Lee et al., 2012). In transgenic animal models with gene-targeted 

over-expression, down regulation or complete ablation of CSQ2, JUN or TRD1  (Jones et 

al., 1998, Fan et al., 2008, Chopra et al., 2009, Altschafl et al., 2011), compensatory 

mechanisms are often reported, such as down regulation of other critical EC coupling 

proteins or structural remodelling (as in Chopra et al., 2009). As a consequence, the 

observed alterations in cellular Ca2+ homeostasis cannot be confidently attributed to one 

particular luminal component or their role as a complex confidently established (Dulhunty 

et al., 2012).  

 

Taking the aforementioned into consideration, a recombinant approach has been 

employed in this project, firstly to explore how the sensitivity of RyR2 channels to cytosolic 

and/or luminal Ca2+ may be modulated by luminal accessory protein co-expression and to 

assess the protein-protein interactions between them. To provide a simplified model by 

which luminal accessory protein regulation of RyR2 channels could be investigated 

(without the presence of other specialised SR proteins complicating findings), the 

recombinant proteins were expressed a mammalian HEK293 cell system, which does not 

endogenously express RyR2 or any associated proteins. Allowing the proteins to 

assemble in situ, without the need for purification, the combination of luminal accessory 

protein(s) co-expressed with RyR2 channels (for example, CSQ2 alone with hRyR2 or in 

the presence of JUN) could be manipulated. Furthermore, expression of recombinant 

RyR2 in HEK293 cells enabled the functional effects of CPVT-linked RyR2 mutations 

found in cardiac disease to be examined (Thomas et al., 2010). Although defective 

cytosolic/luminal Ca2+ sensing has been reported as a common mechanism in CPVT 

pathogenesis (Terentyev et al., 2006, Jiang et al., 2005), it is unknown if mutated RyR2 

channels respond differently to luminal accessory protein regulation or if their association 

is altered. Thus, the response and interaction of mutant hRyR2 channels (N4104K and 

A4556T) with the luminal proteins has also been explored in this investigation, and directly 

compared with data obtained using WT hRyR2.  
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3.1.2 Chapter Objectives:  

 

HEK293 cells are currently the most widely used RyR2-deficient cell line (Du et al., 1998) 

for studies of recombinant RyR2; and have been used extensively by Professor Wayne 

Chen (University of Calgary, Canada) to study the molecular mechanisms underlying Ca2+ 

release through RyR2 channels and spontaneous Ca2+ release events seen with channel 

mutation (Jiang et al., 2002, 2004, 2005; Li and Chen, 2001). This expression system has 

also been used previously by the Williams laboratory to investigate the Ca2+ handling 

dynamics of both WT and mutant RyR2 channels (Euden et al., 2013, Thomas et al., 

2005, 2004) and as a vehicle for RyR2 expression prior to purification and use in single-

channel investigations (Mukherjee et al., 2012, Mason et al., 2012). The benefits of using 

a mammalian cell system for human recombinant protein expression are significant, since 

any post-translational modifications such as glycosylation, which is important for junctional 

SR trafficking (Kiarash et al., 2004) are likely to be native or near-native (Hopkins et al., 

2012); and the expressed proteins are able to associate within a mammalian cell 

environment (section 3.3.5). This chapter will focus exclusively on generating the luminal 

accessory protein constructs and optimising recombinant protein co-expression in a 

heterologous HEK293 cell system. Specifically, the following strategies will be discussed: 

 

(1) Amplification of cDNA encoding CSQ2, JUN and TRD1 from a human cardiac muscle 

library with a view to clone and express each protein alone and in combination with 

WT and mutant eGFP-hRyR2.  

 

(2) Selection of an appropriate vector system for luminal accessory protein stable cell line 

generation in HEK293 cells for Ca2+ imaging studies (Chapter 4) and optimisation of 

expression conditions such that sufficient hRyR2/CSQ2/JUN expression levels are 

obtained for [3H] ryanodine binding (Chapter 4) and immunoprecipitation studies 

(Chapter 5). 
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3.2 Methods: 
 
3.2.1. Strategies used for cloning and expression of luminal accessory protein 

constructs: 

 

• Junctin and Triadin (isoform 1, TRD1) 

 

PCR amplification (section 2.4.1.1, Tables 2.1 and 2.2) was used to isolate the open 

reading frames (ORFs) of human cardiac muscle JUN and TRD1 in vitro, from a human 

cardiac muscle complementary DNA (cDNA) library (BD biosciences). PCR primers 

designed to the desired luminal accessory protein cDNAs (NCBI accession numbers: 

AF184241 (cardiac JUN), U18985 (TRD1 skeletal), U31540 (TRD1 rabbit) and AF165915 

(TRD1 dog) are shown in Figure 3.1 (also see results, section 3.3.1). The components of 

each PCR reaction are outlined in Table 2.1. Several different primers were used in 

attempts to amplify human cardiac muscle TRD1 (Figure 3.1, B), however this was 

unsuccessful (see section 3.3.1.). 

 

• Calsequestrin (isoform 2, CSQ2) 

 

The coding sequence for human cardiac muscle CSQ2 (accession number: NG_008802) 

was obtained by direct cloning from an existing expression construct (obtained from Dr N.L 

Thomas, cloned into the pECFP-N1 vector and inserted at the XhoI/SacII sites). The full 

open reading frame including kozak sequence and a TAG stop codon was digested from 

pECFP-N1-CSQ2 using restriction enzymes XhoI/ApaI and ligated directly into 

pcDNA3.1"hygro(+) (ligation reaction outlined in section 2.4.1.9, Table 2.4).  

 

All constructs were verified at each cloning stage by restriction mapping (using NEB cutter) 

and digest, followed by automated sequencing (sections 2.4.1.7-2.4.1.8). To sequence 

JUN and TRD1 amplicons, cDNAs were cloned into the Zero Blunt® II TOPO® vector (Life 

Technologies), transformed into bacterial cells and propagated to sufficient quantities, as 

outlined in Chapter 2, sections 2.4.1.4-2.4.1.6 and 2.4.1.10-2.4.1.11. Clones containing the 

desired insert were sequenced using the protocol described in section 2.4.1.8. Those 

successfully verified were subsequently cloned into the mammalian expression vector 

pcDNA3.1"hygro(+) (section 2.4.1.9), following PCR amplification using primers containing 

restriction sites for BamHI and NotI endonucleases (Figure 3.1, shown in bold). The 

resultant amplified fragment was cut with BamHI and NotI to enable ligation into the 

multiple cloning site of the similarly digested pcDNA3.1"hygro(+) vector. Restriction digest 
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and further automated sequencing was used to confirm ligation of the luminal proteins 

(CSQ2 and JUN) into pcDNA3.1"hygro(+).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  
 
(A) Luminal accessory protein forward (5’) and reverse (3’) primers used in 
PCR isolation of junctin from a human cardiac muscle cDNA library. The 
primers were designed to contain restriction sites for BamHI (forward primer) and 
Not I (reverse primer), found in the multiple cloning site of the mammalian 
expression vector pcDNA3.1hygro(+). Human cardiac muscle JUN exists as a splice 
variant of the ASPH gene, encoding aspartyl ß-hydroxylase (AspH) (Jones et al., 
1995).  
 
(B) Primer combinations used in the attempt to isolate cDNAs encoding 
human cardiac muscle triadin. Initial PCR reactions were carried out using 
primers designed to contain BamHI and NotI restriction sites. The sequence for 
human cardiac muscle TRD, isoform 1 (TRD1) was unknown at the time of this work 
and thus the human sequence for the skeletal isoform and rabbit and dog cardiac 
sequences were consulted for primer design. The forward primer (5’) was designed 
to a conserved region found in all known TRD isoforms, established using BLAST. 
However, since the C-terminal regions of each isoform differed in sequence (and 
each protein differed in size between species), the reverse (3’) primer was designed 
to the C-terminal end of human skeletal TRD (i). Due to unsuccessful PCR 
amplification of TRD1, alternative reserve primers were used in additional reactions 
as shown in (ii) and (iii), with the intention that the resultant product could 
subsequently be used as a template for further amplification using the reserve 
primer containing the Not I site. This will be discussed further in section 3.3.1.  

 

!
 
     pcDNA3.1hygro(+)-JUN Forward:  5’CCGCAGGGATCCACCATGGCTGAAGATAAAGAG3’ 
                                                              clamp      BamHI          hJUN sequence 
 
     pcDNA3.1hygro(+)-JUN Reverse:  3’CCATCGCGGCCGCTTAGCCGTTTCTTTTCTGGGT5’ 
                                                              clamp      Not I             hJUN sequence 
 
 
 
     pcDNA3.1hygro(+)-TRD Forward:  5’CCGCAGGGATCCACCATGACTGAGATCACTGCTG3’ 
                                                              clamp      BamHI          cTRD sequence 
 
(i)  pcDNA3.1hygro(+)-TRD Reverse:  3’CCATCGCGGCCGCTTACTGTCCTTGTTGCTTCTG5’ 
                                                              clamp      Not I             cTRD sequence 
 
(ii) Matchmaker AD pACT2 Reverse: 3’GTGAACTTGCGGGGTTTTTCAGTATCTACGA5’ 
 
(iii) Non-specific-TRD Reverse: 3’CCAYTGNATYTGYTTYTTNCCNAGNGT5’  
 
 

!"#$

!%#$
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3.2.2. Comparison of G418 and hygromycin mediated selection of luminal accessory 

protein expressing stable cell lines: 

 

Hygromycin and G418 (Geneticin Sulphate) are often used as positive selection markers 

for stable protein expression, where only cells expressing the gene of interest display 

antibiotic resistance (Massignan et al., 2010). As a consequence, transfected cells lacking 

permanent integration of the recombinant DNA are subsequently eliminated upon 

antibiotic treatment. Prior to producing the stable cell lines, comparisons were made 

between the effectiveness of the two antibiotics on HEK293 cells, and an optimal selection 

concentration established.   

 

To determine a working concentration of G418 or hygromycin treatment that would enable 

long-term selection of HEK293 cells stably expressing the luminal proteins, a series of kill 

curves were constructed (n=3 curves formulated for each antibiotic dose range). 

Untransfected HEK293 cells were plated into 6 well culture dishes, seeded at a density of 

1 x 106 cells/well and once at ~80% confluency (~24 hours later), exposed to increasing 

concentrations of G418 or hygromycin (100!g/ml-1000!g/ml). The cells were incubated in 

the presence of the given antibiotic for 48 hours before analysis. 

 

To generate each stable cell line, HEK293 cells transfected with CSQ2, JUN or 

CSQ2+JUN were cultured in the presence of the chosen antibiotic (400!g/ml hygromycin). 

To achieve a clonal population, the cells were subjected to a limiting serial dilution, 

achieved by diluting a harvested stable cell population in excess cDMEM containing 

hygromycin and plating out the generated cell suspension in a series of 1/10 dilutions 

across a 96 well plate, until only ~1 cell/well was evident. Isolated cells were grown to 

confluency in 96 well plates before seeding the cell populations into T75 cm2 culture flasks 

for further growth, and positive selection with hygromycin treatment (approximately 28 

days to obtain a confluent (70-80%) flask).   

 

 

3.2.3 Optimisation of eGFP-hRyR2 expression in HEK293 cells using calcium 

phosphate mediated transfection: 

 

To establish an effective, reproducible method of achieving high levels of recombinant 

gene expression, it was imperative that the transfection protocol was first optimised. eGFP 

tagged full-length WT and mutant (N4104K and A4556T) hRyR2 mammalian expression 

constructs (obtained from Dr Chris George and Dr N. Lowri Thomas (Cardiff University), 

respectively) allowed the transfection efficiency, established from using two different 
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calcium phosphate (CaPO4) protocols, to be effectively estimated (section 3.3.5). To 

optimise WT hRyR2 expression, the following protocols were compared:  

 

(1) Protocol A was designed by Dr N.L Thomas (modified from Sambrook et al, 1989) and 

used previously to express eGFP-hRyR2 for Ca2+ imaging investigations (as used in 

Thomas et al, 2005).   

 

(2) Protocol B was designed by Professor.W.Chen (modified from Chen and Okayama, 

1987) and used to express high levels of mouse RyR2 for single channel analysis (Li and 

Chen, 2001, Jiang et al., 2002).  

 

To establish optimum conditions that would consistently generate high protein expression, 

the transfection variables most likely to affect transfection efficiency were considered:  

 

(i) Cell density: HEK293 cells were transfected at either ~75% (Thomas et al., 2005) or 

~30% (Jiang et al., 2002) confluency, achieved by plating the cells at higher (8.5x104 

cells/cm2, plated into a 6 well culture dish with a growth area of 9.6cm2 (8x105/well)) or 

lower (1.5x104 cells/cm2, plated into a 10cm2 petri-dish with a growth area of 55cm2 

(8x105/dish)) starting cell densities respectively. Sparse distribution of cell populations will 

increase the surface area over which the condensed DNA/Ca2+ precipitates can be 

endocytosed likely leading to higher transfection efficiencies. However, a high DNA/cell 

ratio can result in a cytotoxic effect suggesting the cells need to be at a sufficient 

confluency before transfection, without being too confluent to result in too low a 

transfection efficiency or detachment of fully confluent sheets of cells. 

 

(ii) DNA concentration: Expressed as the quantity of DNA/cell (estimated according to the 

starting cell number), comparisons were made between the use of 5 pg DNA/cell (4!g DNA 

per 8x105 cells), (Thomas et al., 2005) and 15 pg DNA/cell (12!g DNA per 8x105 cells), 

(Jiang et al., 2002). Higher DNA concentrations can reduce cell growth and may become 

cytotoxic, especially if the cell density is too low. In addition overexpression could promote 

protein malfunction. However, use of lower DNA concentrations may limit CaPO4 

precipitate formation and uptake and as a consequence, produce lower transfection 

efficiencies.   

 

All transfection reactions were formed by adding the DNA and CaCl2 to 2x HBS with 

vigorous vortexing, followed by incubation of the transfection mix at room temperature (20 

minutes), to allow precipitates to form before adding to the cell monolayer. The cells were 

incubated for 24 hours, before the addition of 2mM sodium butyrate (NaB) to culture 
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medium, which upregulates transcription (Gorman et al., 1983, George et al., 1998). The 

cells were incubated for a further 24 hours (in the presence of NaB), before the 

transfection efficiency was established. Chapter 2, sections 2.4.2-2.4.2.1 and 2.4.3.1 

further describes culturing and harvesting of transfected HEK293 cell populations. 

Transfection efficiencies were calculated as outlined in section 3.3.5.   

 

3.2.4. Co-expression of luminal accessory protein constructs with wild type and 

mutant eGFP-hRyR2 in HEK293 cells: 

 

Using an optimised CaPO4 precipitation protocol (sections 3.2.3 and 3.3.5), the luminal 

accessory protein constructs were co-transfected in an equimolar ratio with WT or mutant 

eGFP-hRyR2. Typical DNA concentrations used per reaction (12 !g total) are summarised 

below (Table 3.1). Each cell population was harvested 48 hours post-transfection and 

microsomal membrane vesicles subsequently isolated from these cells, as described in 

section 2.4.3.1.  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Transcript 

Length: 

hRyR2+CSQ2+JUN hRyR2+CSQ2 hRyR2+JUN 

hRyR2  

15,219 bp 

10.7 !g (89%) 11 !g (92%) 11.5 !g (95.6%) 

CSQ2 

1216 bp 

 0.80 !g (6.7%) 1 !g (8%) - 

JUN 

678 bp 

0.5 !g (4.3%) - 0.5 !g (4.4%) 

Total DNA 12 !g 12 !g 12 !g 

Table 3.1: Co-expression of hRyR2 and luminal accessory proteins was 
achieved by transfection of cDNA constructs in an equimolar ratio: WT/mutant 
hRyR2 were transfected in equimolar quantities with each of the luminal proteins, 
individually (CSQ2/JUN) or in combination (CSQ2+JUN). The DNA transfection ratio 
was calculated according to the relative length of the transcripts.  
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3.3 Results: 
 

3.3.1 PCR amplification of cDNA sequences encoding the luminal accessory 

proteins JUN and TRD1 from a human cardiac muscle cDNA library: 

 

• Isolation of JUN cDNA 

 

Using the primers detailed in Figure 3.1 (A), initial PCR amplification from the human 

cardiac muscle cDNA library yielded a band of the expected molecular weight for human 

cardiac muscle junctin (~700bp, Table 3.2).  However, the target DNA amplified in the 

initial PCR reaction (PCR1) was not of sufficient quantity for gel extraction and needed 

further enrichment (as described in section 2.4.1.1). As demonstrated in Figure 3.2 (A) 

sufficient quantities of the target JUN cDNA were generated by a second PCR reaction 

(PCR2), achieved using the PCR1 recovered cDNA as a template (Table 2.1, section 

2.4.1.1). The desired fragment was subsequently gel extracted to eliminate non-specific 

amplification products and purified using a QIAEX® II kit (Qiagen), the recovery of which is 

shown in Figure 3.2 (D).  

 

 

• Isolation of TRD1 cDNA 

 

Using primers designed to try and target the cardiac protein (Figure 3.1, B), PCR isolation 

of human TRD1 generated four distinct cDNA fragments (Figure 3.2, B (i)), but did not 

yield any products with the predicted molecular weights of ~950-1000bp, expected of 

TRD1 (Table 3.2). The bands closest to this predicted molecular weight were evident at 

~600bp or ~1600bp (indicated with an asterisks in Figure 3.2, B (i)), which were 

subsequently sequenced. In further attempts to isolate TRD1, the variant known to be the 

predominant isoform expressed in the myocardium (Kobayashi and Jones 1999, Roux-

Buisson et al., 2012) and thus the target in this project, the amplification strategy was 

consequently re-designed. Since TRD isoforms seem to be well conserved in their N-

terminal sequences, showing great variability in their C-terminal tail (due to differential 

splicing, Feng et al., 2009), the original 5’ primer was used with less specific 3’ ones. A 

series of additional PCR reactions were carried out using the primers outlined in Figure 

3.1 B, (ii) and (iii), with the idea that the generated amplicons could be subsequently used 

as templates for additional amplification using the pcDNA3.1hygro(+)-TRD specific primers.  

 

In an attempt to amplify TRD1, repeat PCR reactions were carried out using the forward 5’ 

pcDNA3.1hygro (+)-TRD primer and the following alternative 3’ reverse primers:  
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(1) Matchmaker (pACT-2 specific) 3’ AD, targeting the human cardiac muscle cDNA 

library cloned into the pACT2 vector (Clontech). 

 

(2) A “non-specific” 3’ TRD primer designed to the 3’ end of the known TRD sequences 

and targeted towards conserved regions within the sequence (established using BLAST). 

 

The two PCR reactions yielded some prospective clones, with fragments at ~1000bp 

Figure 3.2, B, (ii) and ~1500bp, Figure 3.2, B, (iii) being of particular interest, since they 

appeared at the expected molecular weight of TRD1.  

 

3.3.1.1 Isolation of cDNA encoding CSQ2 from a pECFP-N1 expression vector: 

 

A double digest with restriction enzymes XhoI and Apal was used to excise the coding 

sequence for human cardiac muscle CSQ2 from a pECFP-N1 expression vector (section 

3.2.1). As highlighted in Figure 3.2 (C), the digest yielded two fragments at ~4486, 

corresponding to cut pECFP-N1 vector, and ~1200bp, which was at the correct molecular 

weight of the desired CSQ2 target (Table 3.2). Gel extraction and purification of this band 

generated a sufficient cDNA recovery as shown in Figure 3.2 (D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accessory protein: Base Pairs: Protein size in kDa 

CSQ2 ~1200 bp  ~45 kDa   

(Scott et al., 1988) 

JUN  ~700 bp ~26 kDa 

(Jones et al., 1995) 

 

TRD1 ~950-1000 bp ~35 kDa-40kDa   

(Kobayashi and Jones, 

1999), or 

~37 kDa  

(Roux-Buisson et al., 

2012) 

Table 3.2: Predicted molecular weights of CSQ2, JUN and TRD1. Highlighted are the 
molecular sizes of each luminal accessory protein cDNA in base pairs (bp), and 
estimates of their protein size in kilodaltons (kDa). TRD1 is thought to exist in two forms, 
glycosylated and deglycosylated, reported by Kobayashi and Jones to be appear as 40 
and 35 kDa, respectively with Western anaylsis. However, Roux-Buisson et al., 2012, 
reported that TRD1 appears as a double band at 37kDa (with no 5 kDa difference 
evident). Although CSQ2 has been predicted to exist in numerous glycosylated and 
phosphorylated states (12 structural forms in native heart tissue), all are predicted to run 
as a single band in SDS-PAGE analysis (Scott et al., 1988, O’Brian et al., 2002). 
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Figure 3.2: Agarose (1%) gel electrophoresis to visualise PCR and gel extraction 
products: A fragment corresponding to amplified JUN cDNA appeared at the expected 
molecular weight (MW) of ~700 bp (A). Initial attempts at PCR amplification of cardiac TRD1 
generated four distinct fragments, which were not at the MW expected for the cardiac isoform 
(B),(i). The amplification strategy was designed as discussed in section 3.3.1. Using a 3’ 
reverse primer designed to target the pACT2 vector (into which the human cardiac muscle 
cDNA library was cloned), a fragment at ~1000bp evident in the PCR reaction was of 
particular interest as it appeared at the expected MW of TRD1 (B),(ii). An additional PCR 
reaction carried out using a “non-specific” 3’ reverse primer, designed to target conserved 
regions within the C-terminus of the known TRD sequences, generated distinct fragments at 
~1500bp and ~550bp (B),(iii). CSQ2 cDNA was excised from an existing pECFP-N1-CSQ2 
expression construct (section 3.2.1) by a double digest with XhoI/ApaI, the desired fragment 
at ~1200bp was subsequently gel extracted and purified (C). Isolation of CSQ2 and JUN 
cDNA appeared successful, where fragments indicative of the two luminal proteins (~1200bp 
and ~700bp, respectively) was evident in the gel extraction recovery (D). The expected 
product sizes corresponding to luminal accessory protein cDNA, compared with those 
obtained, are summarised in (E). All bands highlighted by asterisks were isolated and 
sequenced as outlined in section 3.3.2. A 1 kb DNA ladder was used in all gels shown. 
Where cropped for presentation purposes, the original photos will be shown in the Appendix, 
Figure 1.   
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Figure 8: Agarose (1%) gel electrophoresis to visualise PCR recovery and gel 
extraction products: A fragment corresponding to amplified JUN cDNA appeared at the 
expected molecular weight of ~700 bp (A). Initial attempts at PCR amplification of cardiac 
TRD1 generated four distinct fragments, which were not at the molecular weight 
expected for the cardiac isoform (B),(i) and summarised in (E). The amplification strategy 
was designed as discussed in section ?.?. Utilising a 3’ reverse primer designed to target 
the pACT2 vector (into which the human cardiac cDNA library was cloned), two 
fragments at ~2100bp and ~1000bp were evident in the PCR recovery (B),(ii). An 
additional PCR reaction carried out utilising a “non-specific” 3’ reverse primer, designed 
to target conserved regions within the C-terminus of the known TRD sequences, 
generated distinct fragments at ~1500bp and ~550bp (B),(iii). CSQ2 cDNA was excised 
from an existing pECFP-N1-CSQ2 expression construct (section 3.2.1) by a double 
digest with XhoI/ApaI, the desired fragment at ~1200bp was subsequently gel extracted 
and purified (C). Isolation of CSQ2 and JUN cDNA appeared successful, where 
fragments indicative of the two luminal proteins (~1200bp and ~700bp, respectively) was 
evident in the gel extraction recovery (D). The expected product sizes corresponding to 
luminal accessory protein cDNA, compared with those obtained, are summarised in (E). 
A 1kb DNA ladder was used in all gels shown. Where cropped for presentation purposes, 
the original photos will be shown in Appendix ?.   
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3.3.2 Sequence verification of luminal accessory protein constructs: 

 

Sequences were identified and verified using the Basic Local Alignment Search Tool 

(BLAST, http://blast.ncbi.nlm.nih.gov), where an alignment report was generated against 

known, related sequences currently present within the NCBI database. The generated 

cDNA construct corresponding to JUN (in TOPO® vector) displayed exact sequence 

homology (100% identification, including start, kozak and TAG stop sequences) to the 

known human cardiac muscle JUN sequence (current accession number: AF224468 (Lim 

et al., 2000)). As discussed in section 3.2.1, the CSQ2 construct was sequenced once 

inserted into the pcDNA3.1 hygro(+) vector and was also found to display 100% sequence 

identity to the known cardiac CSQ2 sequence (current accession number: NM_001232 

(Kawamura et al., 2013)). Conversely, sequence analysis of the prospective TRD1 clones 

did not display any sequence homologies to the known TRD isoforms following a BLAST 

search. In addition, the isolated fragments were also manually aligned against the known 

TRD1 sequences of other species to assess the degree of homology, yet no significant 

similarities were found. Table 3.3 lists the outcomes of the BLAST search following 

sequencing of all prospective TRD amplicons.  As further considered in the discussion 

section of this chapter (section 3.4.1), when this section of the project was carried out, the 

human cardiac muscle TRD1 sequence was unknown, thus designing PCR primers with 

significant specificity to TRD1 proved problematic, and reliable verification of the obtained 

PCR products difficult. In light of this, and considerable evidence in the literature 

suggesting that TRD1 and JUN have functionally distinct roles in regulating RyR2 activity 

(Altschafl et al., 2011, Chopra et al., 2013), I decided to focus my investigations on the 

interaction and functional regulation of hRyR2 by luminal proteins CSQ2 and JUN. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

PCR isolated Fragment: BLAST homologous 

sequence: 

Accession Number: 

~600 bp (Figure 3.2, B (i)) 

~550 bp (Figure 3.2, B (iii)) 

Homo sapiens chromosome 

14, alternate assembly 

NC_018925.2 

~1000 bp (Figure 3.2, B (ii)) Homo sapiens chromosome 

11, alternate assembly  

NC_018922.2 

~1600 bp (Figure 3.2, B (i)) 

~1500 bp (Figure 3.2, B (iii)) 

Homo sapiens chromosome 

1, alternate assembly 

AC_000133.1 

Table 3.3: Identification of prospective TRD amplicons using BLAST. 
The obtained sequences of each isolated fragment were assessed using BLAST, 
but did not display any sequence homologies to human cardiac muscle triadin 1 
(TRD1). The human TRDN gene is located on chromosome 6 (Thevenon et al., 
2003).  
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3.3.3 Cloning CSQ2 and JUN constructs into mammalian expression vector 

pcDNA3.1hygro (+): 

 

• pcDNA3.1hygro (+)-JUN 

 

Sequence verified JUN cDNA was excised from TOPO® vector using an overnight double 

digest with BamHI and NotI restriction enzymes at 37°C and subsequently cloned into the 

pcDNA3.1 hygro(+) expression vector (Life Technologies) following the ligation protocol 

described in section 2.4.1.9.  

 

• pcDNA3.1hygro (+)-CSQ2 

 

Following an overnight digest of pcDNA3.1hygro (+) with XhoI and ApaI (section 3.2.1), a 

ligation reaction was undertaken (Table 2.4) to directly clone the isolated CSQ2 cDNA into 

the new expression vector.  

 

 

To confirm successful generation of full-length luminal protein-pcDNA3.1hygro(+) 

expression constructs, restriction enzymes Psi I (JUN-pcDNA3.1hygro(+)) and Bpu10I 

(CSQ2-pcDNA3.1hygro(+)) were used for restriction mapping (using NEB cutter, 

http://tools.neb.com) and subsequent digest, chosen on the basis that recognition sites for 

the given enzymes were present in both the pcDNA3.1hygro(+) vector and the luminal 

protein insert. Restriction fragments were resolved according to their molecular weight 

using 1% agarose gels (section 2.4.1.2) and further automated sequencing confirmed that 

the luminal protein inserts were successfully cloned into the mammalian expression vector 

before using the constructs in further investigations.    
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3.3.4 Hygromycin is a better selection antibiotic than G418 for making stable cell 

lines in HEK293 cells: 

 

Optimal concentrations of selection antibiotic were determined by plotting dose-response 

(or kill-) curves for hygromycin and G418 (Figure 3.3) carried out on untransfected 

HEK293 cells, as outlined in section 3.2.2. In contrast to hygromycin treatment, HEK293 

cells displayed a high level of resistance to G418, which resulted in very little cell death 

(Figure 3.3). In light of this, hygromycin selection was chosen as the most efficient 

treatment. As shown in Figure 3.3, a concentration of 400 !g/ml was chosen, since 

treatment of cells with this dose eliminated ~65% of cells and increases in concentration 

from here did not cause an appreciable increase in cell death.  Shown in Figure 3.4 are 

representative images of HEK293 cell death when treated with increasing doses of 

hygromycin. Three HEK293 cell lines stably expressing CSQ2, JUN or CSQ2+JUN were 

generated as described in section 3.2.2, cultured in the presence of 400 !g/ml 

hygromycin. Western Blotting was used to establish the expression levels of each protein 

(section 3.3.6).  

 

Illustrated as a bar graph in Figure 3.5 (A), the growth rate of stable cell lines was 

significantly slower than that of untransfected HEK293 cells, which consequently reduced 

transient CaPO4-mediated expression of hRyR2 (generating lower transfection 

efficiencies, examples of which are shown in Figure 3.5, (B)).  This hindered original plans 

to use luminal accessory protein-expressing stable cells for large-scale hRyR2 co-

expression. Since it was necessary for sufficient [3H] ryanodine binding and co-

immunoprecipitation investigations (discussed in Chapter 4 and 5, respectively) to produce 

large amounts of hRyR2, recombinant material was generated from transient transfection 

of hRyR2 (alone or in the presence of luminal accessory proteins) in normal HEK293 cells, 

achieved using the CaPO4 precipitation method (outlined in section 3.2.4 and Table 3.1).  

 

Since the luminal accessory proteins were not tagged with fluorescent proteins, it was 

essential to ensure that all cells imaged expressed the luminal accessory proteins of 

interest. WT or mutant hRyR2 could then be transiently expressed on top, as these cells 

would be able to be identified by their caffeine response (Thomas et al, 2004). Thus, 

stable cells were transfected with hRyR2 using the lipid-based Effectene® reagent (Life 

Technologies), (section 2.4.2.3), which requires less DNA than the CaPO4 method and is 

therefore less cytotoxic, ensuring cell viability is maintained (which is of the utmost 

importance for single-cell Ca2+ imaging studies, since damaged cells will not show agonist 

response). In addition, Effectene® does not form a precipitate and its efficacy is not 
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dependent on cell doubling rate. As illustrated in Figure 3.6 (A), sufficient transfection 

efficiencies of hRyR2 for Ca2+ imaging was achieved in stable cells using this method.  

 

However, [3H] ryanodine binding and immunoprecipitation experiments require large-scale 

transfection and high hRyR2 expression levels.  For these purposes Effectene®-mediated 

hRyR2 transfection of stables was not deemed adequate because: 1) The growth rate of 

the stable cell lines was prohibitively slow for large-scale transfection to be achieved, 2) 

the volume of Effectene® required was prohibitive, and 3) the overall expression level of 

hRyR2 was lower that that achieved using transient co-transfection of all constructs using 

CaPO4. As highlighted in Figure 3.6 (B), although Effectene® and CaPO4-mediated 

transfection of hRyR2 in HEK293 cells displayed similar transfection efficiencies (i.e. the 

percentage of cells that were green), higher protein levels per cell were achieved using 

CaPO4 precipitation, as indicated by the appearance of brighter green cells. However, due 

to higher protein expression, the cells did not appear as healthy as those transfected with 

Effectene® (which is essential for Ca2+ imaging), but this was not a concern for 

investigations which required the cells to be harvested and lysed.   
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Figure 3.3: Hygromycin and G418 Kill-Curves: HEK293 cells were seeded at a density of 1 
x 106 cells/well and exposed to increasing concentrations of hygromycin and G418. Following 
2 days culture in the presence of the antibiotic, the surviving cells were counted using 
haemocytometry. The kill-response curves were constructed using an average of the surviving 
cell number/dose determined from an n=3 experiments. HEK293 cells displayed high levels of 
resistance to G418 treatment, resulting in very little cell death. Hygromycin proved more 
effective, yielding an LD50 (the dose of antibiotic which killed 50% of cells) of 164 !g/ml 
(asterisks).  A treatment of 400 !g/ml, that killed 65% of cells (indicated with a dashed line) 
was chosen as the optimum dose to select for stable expression, since treatment at this 
concentration appeared to eliminate a significant proportion of cells without causing 
detrimental cell loss (plateau phase). 
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Figure 3.4: Representative images of HEK293 cell populations following 
treatment with hygromycin. To find an optimal dose of hygromycin treatment 
that would allow selection of transfected HEK293 cells stably expressing the 
luminal proteins, a hygromycin dose-dependence curve was constructed. Shown 
here are representative images of HEK293 cells treated with increased 
concentrations (!g/ml) of hygromycin.  Once cultured for 48 hours in the presence 
of the antibiotic, the number of surviving cells was counted. As illustrated, cell 
death increased in a dose-dependent manner.  
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Figure 14: Assessment of transient hRyR2 expression in stable HEK293 
cells: Utilising the CaPO4 precipitation method, transient transfection of WT 
hRyR2 into CSQ2 (A),(i) and JUN (A),(ii)-expressing stable cell lines, generated 
low transfection efficiencies (established by counting the percentage of green 
cells, as described in section 3.3.4). This was likely due to the slower growth rate 
of the cells compared to normal (WT) HEK293 cells, as illustrated in (B). Thus, the 
stables were not considered suitable for large-scale hRyR2 expression.  

!"#$

Figure 3.5: Assessment of transient hRyR2 expression in stable HEK293 
cells: (A) As illustrated using CSQ2 stables as an example, stable cells displayed 
a much slower growth rate than untransfected HEK293 cells and likely explains 
why using the CaPO4 precipitation method, transient transfection of WT hRyR2 
into CSQ2 (B) i and JUN (B) ii-expressing stable cell lines, generated low 
transfection efficiencies (established by counting the percentage of green cells 
from 4 fields of view). Thus, the stables were not considered suitable for large-
scale hRyR2 expression. 
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Figure 3.6: Assessment of the Effectene®-mediated transfection protocol: 
Transfection of WT hRyR2 into stable CSQ2-expressing cells (used here as an example) 
with Effectene® reagent, generated sufficient transfection efficiencies for Ca2+ imaging 
studies (A). Use of the reagent to transfect hRyR2 into wild-type HEK293 cells was also 
compared with the optimised CaPO4 precipitation protocol (for large-scale transfections) 
outlined in section 3.3.5 (Fig. 3.7 and 3.8). As shown in (B), whilst both methods 
generated similar transfection efficiencies, hRyR2 expression in cells transfected with 
CaPO4 appeared brighter (brighter green, bottom panels left and centre), indicative of 
higher protein expression per cell. Cells transfected using the Effectene® protocol 
appeared healthier (top left panel vs bottom left panel), likely due to lower protein 
expression. However, although more cytotoxic, in cells which were ultimately going to be 
harvested and lysed to produce microsomal mixed membranes necessary for further 
investigations, the CaPO4 precipitation method produced higher quantities of recombinant 
hRyR2 protein.    
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3.3.5. Assessment of HEK293 cells transiently transfected with eGFP-hRyR2: 

 

Prior to large-scale transfections of WT/mutant hRyR2 alone or in the presence of CSQ2 

and/or JUN, it was important to determine the optimal conditions required to generate 

high-levels of recombinant protein expression. Optimisation focused on the use of different 

starting cell confluency at the point of transfection and incubation with different 

concentrations of DNA. Each experiment was replicated 4 times and the results expressed 

as the mean transfection efficiency±S.E.M. Fluorescence microscopy was used to 

visualise WT eGFP-hRyR2 expression in cell populations 48 hours post-transfection, and 

images were taken of 3 fields of view (bright field and the corresponding fluorescence of 

the same field of view). To assess transfection efficiency, bright field and corresponding 

fluorescent fields of view were selected at random, cells were counted and the efficiency 

calculated as the percentage of green cells of the total number of cells in a mutual field of 

view.  

 

Figure 3.7 (A) illustrates typical fields of view of transiently transfected HEK293 cells, 

corresponding to each set of variables tested. Transfection of cells with a low DNA: cell 

ratio of 5 pg/cell (determined according to starting cell numbers) yielded transfection 

efficiencies of ~41±2% and ~30±1.5%, when at lower or higher cell densities, respectively 

(Figure 3.7, A (iii), (iv) and B). In comparison, the use of higher concentrations of DNA per 

cell (~15 pg/cell) appeared to increase the transfection efficiency to  ~51±3%, at lower cell 

densities (Figure 3.7, A (i) and B), and ~39±1% at higher cell densities (Figure 3.7, A (ii) 

and B), respectively. Taken together, optimal eGFP-hRyR2 expression was achieved 

using lower starting cell densities and a higher DNA: cell ratio, as illustrated in a bar graph, 

Figure 3.7 (B).    

 

Expression levels of WT hRyR2 achieved using the different transfection variables, were 

also assessed by Western Blot analysis (Figure 3.8 A). Consistent with calculations of 

transfection efficiency, cell populations transfected at a lower starting cell density and 

higher DNA: cell ratio (Figure 3.8, A), expressed WT hRyR2 to a significantly higher level 

than in other variable combinations tested, as measured by densitometric analysis (Figure 

3.8, B).  

 

Once optimised, all CaPO4 transfections were carried out using lower starting cell 

densities i.e. 30-40% confluency and transfected using a DNA concentration of 15 pg/cell. 

Since CSQ2 and JUN constructs were untagged, transfection efficiencies of the luminal 

proteins co-expressed with WT/mutant hRyR2 could not be assessed (48 hours post-

transfection) in the same manner as eGFP-hRyR2. Therefore, in addition to Western Blot 
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analysis (section 3.3.6), luminal protein expression was visualised by confocal microscopy 

and immunofluorescent co-localisation (the investigations of protein-protein interactions 

using this method are outlined in Chapter 5, section 5.3.3). As illustrated in Figure 3.9, the 

localisation of hRyR2 (A, (ii) and B (ii)), CSQ2 (A, (iii)) and JUN (B, (iii)) to the ER in 

transfected HEK293 cells could be assessed using this technique. Determination of the 

transfection efficiencies of CSQ2 and JUN  (together with eGFP-hRyR2) detected by 

immunofluorescent labelling is shown in Figures 5.2 and 5.3 in Chapter 5 (described in 

results section 5.3.1).     
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Figure 3.8: Comparison of transfection variables by protein expression, assessed 

by Western Blot analysis. (A) Resolved by SDS-PAGE (50!g of each mixed membrane 

preparation), transient expression of WT hRyR2 was examined by Western blotting, using 

an eGFP-specific mouse-monoclonal anybody. As indicated with an arrow, Western 

signals corresponding to hRyR2 were detected at 565 kDa, which appeared above the 

highest Kaleidoscope™ prestained marker at 250kDa (as shown in the Appendix, Figure 3 

(D)). Protein expression were much higher in cell populations transfected at a lower cell 

confluency and a high DNA:cell ratio, compared to expression detected in other 

preparations, and was in accordance with the higher transfection efficiencies calculated in 

Figure 3.7. Densitometric analyses were carried out on two experiments (following the 

generation of 1 preparation per variable, 4 in total), the results of which are presented in 

(B). Data are presented as the mean±S.E.M. Asterisked data indicates a significant 

difference in the relative densities measured in all other transfected cell populations 

compared with densitometric analysis of Western signals achieved from membrane 

preparations where higher DNA:cell ratios and low starting cell densities were used for 

transfection (one-way ANOVA, ** = p<0.01 and ***=p<0.001 (Tukey-Kramer post test)). 

 

565 kDa 

!"#$%&'()*$+,#"-#./'%+

!"
#$

%&
'(
)*

$+
01

(-
'$

(2
+34

5+

!"#$

%&#$
'"#$

%(#$

(#$

"(#$

)(#$

%(#$

'(#$

!(#$

*(#$

+,-.$/0123455$
6789$7:;$<9=$
3455$;4:>,?@$

+,-.$/0123455$
6789$7:;$+,-.$
3455$;4:>,?@$

<9=$/0123455$
6789$7:;$<9=$
3455$;4:>,?@$

<9=$/0123455$
6789$7:;$+,-.$
3455$;4:>,?@$

!"#$

!&#$

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

High DNA+Low 
Density 

High DNA+High 
Density 

Low DNA+Low 
Density 

Low DNA+High 
density 

 Transfection Variables 

D
en

si
to

m
et

ri
c 

S
ig

na
l I

nt
en

si
ty

 

$$$$$$$$$$'''$

$$$$$$$$
$
''$

$
$$$$$''$



 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!"""#$!""#$!"#$

!"#$ !""#$ !"""#$

!"#$%&'()(*+% ,-./0012%34!5/%678%&9:;*+%

,-<=>?!%34!5/%678%&@AB+%

!"""#$!""#$
!"#$%&'()(*+%

!"#$
!&#$

!"#$

Figure 3.9. Immunofluorescent detection of hRyR2, CSQ2 and JUN expression 

confirms ER trafficking. Cells co-expressing eGFP-hRyR2 and CSQ2 or JUN were 

imaged by confocal microscopy (at x63 magnification). WT hRyR2 was visualised using 

eGFP fluorescence (A (ii) and B (ii)) whereas accessory proteins were immunolocalised 

using anti-CSQ2 or anti-JUN antibodies with "-rabbit (CSQ2) or "-mouse (JUN) Alexa-594 

conjugated secondary antibodies, A (iii) and B (iii), repectively. Corresponding phase 

images are shown in A (i) and B (i).  Both eGFP and Alexa 594 signals displayed a reticular 

pattern of fluorescence, indicating trafficking of all membrane proteins to the ER in situ.   
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3.3.6 Successful expression of recombinant hRyR2, CSQ2 and JUN in HEK293 cells 

confirmed by Western Blot analysis: 

 

Prior to investigating the functional regulation and interaction of the luminal proteins with 

hRyR2, it was essential to determine the relative expression levels of each recombinant 

protein in the microsomal membranes, and confirm that full-length eGFP-hRyR2, CSQ2 

and JUN were being expressed. Western analysis confirmed successful co-expression of 

CSQ2 and/or JUN with WT/mutant hRyR2 in HEK293 cells. Figure 3.10 (A) illustrates 

typical bands detected by Western blotting, where sufficient protein expression was 

evident in all the microsomal membrane preparations generated. High levels of transient 

protein expression of (A) WT/mutant hRyR2 (~565kDa), (B) CSQ2 (~45kDa) and/or (C) 

JUN (~26kDa) was evident in all preparations assessed (n=4 blots were generated for 

each recombinant protein). Comparable levels of luminal accessory protein expression 

were seen in all microsomal membrane preparations (Figure 3.10, B). Furthermore, 

transient (co-expressed hRyR2 with CSQ2 and/or JUN) and stable expression of CSQ2 

and JUN were compared (50!g mixed membranes loaded into each lane, Figure 3.11 A, 

(i-iii)). In addition, membrane proteins from untransfected HEK293 cells were loaded 

alongside samples to verify the lack of any endogenous CSQ2 or JUN in HEK293 cells. All 

three stable cell lines appeared to sufficiently express the desired luminal proteins: (i) 

CSQ2 only, (ii) JUN only and (iii) double stables co-expressing CSQ2+JUN. However, 

levels of expression were lower than those achieved by transient expression (expression 

in CSQ2 stables was 23±2.5% less than in mixed membranes transiently expressing 

CSQ2 with WT hRyR2, whilst expression in JUN stables was 24±3% less than in 

membranes transiently expressing JUN with WT hRyR2). As discussed in section 3.3.4, 

the relative expression levels of hRyR2 achieved by transient expression in stable 

HEK293 cells was not sufficient for reliable detection by SDS-PAGE and Western blot 

analysis, and thus were deemed unsuitable for use in [3H] ryanodine binding experiments. 

Therefore, transiently transfected cell populations (Figure 3.10) were used for [3H] 

ryanodine binding experiments (Chapter 4, section 4.3.1), which required prior 

standardisation of hRyR2 expression in all mixed membrane preparations by 

densitometric analysis (described in Chapter 4, Figure 4.4).   
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Figure 3.10: Western Blotting confirms transient expression of hRyR2, CSQ2 and 

JUN in co-transfected HEK293 cells: (A) Representative bands achieved from Western 

blot analysis of (i) hRyR2 (~565kDa), (ii) CSQ2 (~45kDa), and (iii) JUN (~26kDa) 

expression (n=4), detected in the various microsomal membrane preparations generated 

(4 per recombinant protein combination). Original and additional Western blots are shown 

in the Appendix, Figures 3 and 4. (B) Expression levels of CSQ2 and JUN in mutant 

hRyR2 mixed membrane preparations were comparable to WT. Densitometric analysis 

shown here was carried out on Western signals of CSQ2 and JUN expression obtained 

from membranes expressing hRyR2+CSQ2 (i) and hRyR2+JUN (ii), respectively.     
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Figure 3.11: Stable expression of luminal proteins in HEK293 cells confirmed by Western 

Blot analysis: (A) Detected using 50!g of isolated microsomal membranes, Western blotting 

revealed significant protein levels in stable cell lines expressing: (i) CSQ2 only (~45kDa), (ii) JUN 

only (~26kDa) and (iii) CSQ2 (top bands) and JUN (bottom bands) double stables. Representative 

bands were selected from an n=3 blots. It is possible that untransfected HEK293 cells may express 

a small amount of endogenous CSQ2, suggested by the presence of bands at ~45kDa shown in A 

(i). In comparison to transient expression however, the Western signals detected were very low (as 

highlighted in A (iii)). (B) Assessed by densitometric analysis, expression levels of CSQ2 only (i) 

and JUN only (ii) in stable cell lines were less than those achieved with transient expression. 

Nevertheless, the expression levels obtained in stable cell lines were sufficient for use in further 

investigations. *=p<0.05 compared with expression in membranes expressing WT hRyR2+CSQ2 or 

JUN, respectively (one-way ANOVA, Tukey-Kramer post test). It is important to note that these 

differences could reflect the fact that Western signals for transient expression are slightly over-

exposed, leaving room for error with densitometry. However, the blots needed to be left for a longer 

exposure time in order to detect the Western signals for stable expression, thus suggesting 

transient expression is higher.    
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3.4 Discussion:   
 
• In order to assess the response and interaction of WT and mutant hRyR2 channels to 

luminal accessory protein co-expression, pcDNA3.1 hygro(+)-CSQ2 and pcDNA3.1 

hygro(+)-JUN expression constructs were generated and sequence verified. The TRD1 

sequence could not be isolated from the human cardiac library used. 

 

• High-levels of WT/mutant hRyR2 expression and subsequent luminal protein co-

expression in HEK293 cells was achieved by optimising the transfection protocols, 

using transient and stable HEK293 cell lines.  

 

• Successful expression of all recombinant proteins in HEK293 cells was confirmed by 

Western blotting, trafficking to the ER was confirmed by immunofluorescence.    

 
 

3.4.1. Successful generation of human cardiac muscle CSQ2 and JUN mammalian 

expression constructs 

 

Cloning of full-length cDNA encoding CSQ2 (~1200bp) and JUN (~700bp) into the 

mammalian expression vector pcDNA3.1hygro(+) was verified by restriction digest and 

automated sequencing (ABI 3700, Applied Biosystems). Generated constructs displayed 

100% sequence homologies with the known cDNA sequences of human cardiac muscle 

CSQ2 and JUN, respectively (NCBI, Genbank). 

 

Isolation of the open reading frame of human cardiac muscle TRD1 however, proved 

problematic and was hindered by the absence of the published human cardiac muscle 

sequence within the NCBI database at the time this work was carried out. Described in 

section 3.3.1, a series of PCR reactions were carried out using several primer 

combinations designed to target the luminal protein (Figures 3.1, B). Specifically, different 

PCR reverse 3’ primers were used (section 3.3.1), taking into consideration that: (1) the C-

terminus of TRD1 is known to contain numerous positively and negatively charged 

sequence repeats (“KEKE” motifs) which may limit primer specificity and (2) suggestions 

in the literature that each TRD isoform displays a unique C-terminal sequence, which also 

varies between species. As reported by Kobayashi and Jones (1999) the C-terminal 

regions of rabbit (Guo et al., 1996) and dog TRD1 share only ~77% homology, and it is 

likely that the human isoform also diverges from these species with its own unique C-

terminal sequence. In support of this concept, Kobayashi and colleagues (1999) described 
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that poor cross-reactivity was evident when probing human cardiac muscle microsomes 

with an antibody designed to the distinct C-terminal region of dog TRD1, and detection of 

TRD1 in the human preparation was only achieved following the use of five times more 

concentrated antiserum and much longer exposure times (Kobayashi and Jones, 1999). 

 

As shown in Figure 3.2 (B), (i)-(iii), several prospective amplicons were generated and 

subsequently sequenced, but none of which were found to show any homology to cardiac 

TRD1 using a BLAST search (Table 3.3), and manual alignment against the known TRD 

sequences (human skeletal, rabbit and dog cardiac) that were currently published. 

Kobayashi and Jones (1999), also encountered difficulties in isolating full-length cardiac 

TRD isoforms from dog cDNA libraries, where screening identified numerous partial or 

corrupt clones with unrelated sequences ligated adjacent to the correct coding sequence 

of the protein. The group carried out reverse transcription-PCR of dog left ventricle total 

RNA using dog-specific primers to predict the correct size of TRD1 and TRD3. These data 

were subsequently used to eliminate false clones and to confirm the generation of full-

length isolated cDNA of both TRD isoforms, which were assembled from overlapping 

partial clones (Kobayashi and Jones, 1999). 

 

Although released towards the end of the tenure of this project (and thus it was too late to 

obtain the clone), it is important to note here that a sequence corresponding to human 

TRD1 (also known as Trisk 32) is now accessible via the NCBI database (accession 

number: NM_006073.3), published by Roux-Buisson et al in 2012. To formulate this 

sequence, the group identified a sequence in the human TRDN gene that displayed 

significant homologies with the specific cardiac TRD1 sequence in rats. Total RNA was 

extracted from a human cardiac muscle sample obtained from the “Myobank-AFM” tissue 

bank (Paris, France) and the full-length coding sequence amplified by RT-PCR, using a 3’ 

reverse primer designed to the homologous genomic sequence identified in both the rat 

and human TRDN gene, and a 5’ forward primer designed to the first exon of the human 

TRDN gene. Using the same primers, the amplified transcript was bidirectionally 

sequenced and although differing in the specific C-terminal region (as also reported by 

Kobayashi and Jones, 1999), displayed significant homologies to rat, rabbit and dog 

protein sequences (Roux-Buisson et al., 2012). The potential TRD1 sequences obtained 

in this investigation were subsequently aligned against this new sequence, but no 

significant homologies were identified. 

 

Due to the difficulties encountered isolating human TRD1 from the cardiac cDNA library, 

the remainder of this project focussed solely on the functional effects and interactions of 

WT and mutant hRyR2 with luminal accessory proteins CSQ2 and JUN. The use of 
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cardiac TRD1 isolated from a different species was not favoured, since some 

investigations of luminal accessory protein function have reported species variability (Wei 

et al., 2009b, Qin et al., 2008). 

 

 

3.4.2 Optimised co-expression of hRyR2 channels with CSQ2 and JUN in transient 

and stable HEK293 cell lines 

 

By comparison of two calcium phosphate precipitation methods (section 3.2.3), a modified 

transfection protocol was established, and subsequently used to routinely achieve high 

transfection efficiencies. Representative images taken 48 hours post-transfection are 

shown in Figure 3.7 (A), following transfection of WT hRyR2 into HEK293 cells using 

different starting cell densities and DNA: cell ratio (section 3.3.5). As used in Jiang et al., 

2002, the use of lower starting cell densities was found to prevent over-confluence and 

provided a greater surface area over which DNA precipitates could be endocytosed. 

Furthermore, although using higher concentrations of DNA can enhance cytotoxicity, 

transfecting with 15 pg DNA/cell (providing the cells with a greater concentration of DNA 

for uptake) was found to yield significantly higher transfection efficiencies of 51±3%, 

achieved in combination with a low starting cell density. In agreement with the higher 

transfection efficiencies calculated, WT hRyR2 protein expression was found to be 

significantly higher in these cell populations as assessed by densitometric analysis of 

Western blot signals (Figure 3.8, A and B).  

 

Using the optimised transfection protocol, different combinations of the luminal accessory 

proteins CSQ2 and JUN, were transiently co-expressed with WT or mutant hRyR2 in an 

equimolar ratio (Table 3.1). Using this approach, CSQ2 and JUN constructs were 

expressed both individually and in combination (CSQ2+JUN) with hRyR2 channels. 

Transfection efficiency 48 hours post-transfection could only be monitored via eGFP 

expression (detection of hRyR2), since the luminal accessory proteins were untagged, 

however the efficiencies achieved were comparable to those obtained when hRyR2 

channels were expressed alone, suggesting that co-expression of all recombinant proteins 

did not cause any cytotoxic effects. In addition, WT and mutant hRyR2 expression yielded 

similar transfection efficiencies  (see Appendix, Figure 2).  

 

HEK293 cells stably expressing CSQ2, JUN and CSQ2+JUN (double stables) were also 

generated. Attributed to constitutive expression of the target genes and the pressures of 

antibiotic selection, cell proliferation was found to be much slower in stable cell lines 

compared to untransfected HEK293 cells (Figure 3.5, A). Consequently, using CaPO4 
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mediated transfection, hRyR2 expression was found to be much lower in the stable cell 

lines (Figure 3.5, B) and expression could not be clearly visualised by SDS-PAGE and 

Western Blotting. These cells were therefore considered unsuitable for applications where 

high levels of recombinant hRyR2 were required (e.g., for [3H] ryanodine binding, where 

sufficient counts can only be achieved using large quantities of RyR2 channels, see 

section 4.2.1). However, the stable cell lines were essential for single-cell Ca2+ imaging, 

where experiments require that all cells express both hRyR2 and the luminal protein of 

interest. As described in Chapter 5, stable cells expressing the luminal proteins which 

were also transfected with hRyR2 could be identified by the occurrence of spontaneous 

Ca2+ release events, (Jiang et al., 2004, MacLennan and Chen, 2009), which do not occur 

in the absence of hRyR2 channels.  

 

Therefore, to eliminate the potentially cytotoxic effects of the CaPO4 precipitation method 

which could diminish cell viability (Jordan and Wurm, 2004), a commercially available 

Effectene® (lipid-mediated) transfection reagent was used to introduce WT and mutant 

hRyR2 into HEK293 cells stably expressing the luminal proteins (section 2.4.2.3). Using 

this transfection reagent proved more suitable to maximise hRyR2 expression in stable 

cell lines (as demonstrated in Figure 3.6, A). This method however was not used for large-

scale transfections, since the overall protein expression generated was lower than that 

achieved when hRyR2 was transfected into normal HEK293 cells by the optimised CaPO4 

precipitation method (Figure 3.6, B). There are however limitations of using HEK cells with 

transient expression of the luminal proteins with hRyR2, since the existence of mixed 

populations of complexes are possible. For example, in cells transiently expressing 

hRyR2+JUN, there may be cells within the preparation that only express hRyR2 (though 

these will be few due to the overwhelmingly higher transfection efficiency of the accessory 

proteins, see section 5.3.1) and a larger population of cells that just express JUN. This will 

thus need to be considered when assessing the response of WT/mutant hRyR2 to luminal 

protein co-expression. Shown later in Chapter 5, Figures 5.2 and 5.3, immunofluorescent 

co-localisation studies suggest that high levels of hRyR2 and luminal protein expression 

were achieved and the given proteins of interest were predominantly expressed within the 

same cells of a population.   
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3.4.3 Western blot analysis of recombinant protein expression in HEK293 cells 

 

Western blot analysis of mixed membrane preparations from transfected HEK293 cell 

populations (section 2.4.3.3-2.4.3.4), confirmed that full-length recombinant proteins were 

being expressed (hRyR2 detected at ~565kDa, CSQ2 at ~45kDa and JUN at ~26kDa). As 

highlighted in Figure 3.10 (A), high levels of transient WT and mutant hRyR2 expression in 

the absence or presence of CSQ2 and JUN was achieved. Furthermore, mutant hRyR2 

expression did not affect the expression levels of the luminal proteins (Figure 3.10, B).  

The luminal proteins were also expressed in sufficient quantities in stable HEK293 cell 

populations (CSQ2, JUN and CSQ2+JUN), as demonstrated in Figure 3.11. Described in 

Chapter 4, densitometric analysis of Western signals was used to standardise hRyR2 

expression in all test samples before further investigation.  
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4.1 Introduction: 
 

4.1.1. Regulation of RyR2-mediated Ca2+ release by luminal accessory proteins at 

the junctional domain of the SR membrane: 

 

Intracellular Ca2+ release from the SR store through RyR2 channels is a crucial event 

during EC coupling, which must be carefully regulated for normal contraction and 

subsequent relaxation of the mammalian heart (Bers, 2004; Thomas et al., 2004; Györke 

and Terentyev 2007). As discussed in previous chapters, it is well known that RyR2 

activation is governed not only by cytosolic Ca2+, but also by Ca2+ accumulated within the 

SR lumen, where small increases in luminal Ca2+ load generate large elevations in Ca2+ 

release (Györke and Györke, 1998; Ching et al., 2000, Shannon et al., 2005; Radwanski 

et al., 2013). Situated within the SR membrane, the SERCA2a pump (Figure 1.1, A) is 

responsible for raising the free intra-SR luminal Ca2+ concentration close to 1 mM (Beard 

et al., 2005, Györke et al., 2008, Stevens et al., 2009) and acts in tandem with the luminal 

accessory protein CSQ2. This Ca2+ storage molecule acts as a major luminal Ca2+ buffer, 

which indirectly regulates RyR2 function by altering the releasable (free) Ca2+ 

concentration within the SR (Györke and Terentyev 2007; Gaburjakova et al., 2013).  

 

Independent of its role in global SR Ca2+ buffering, a growing number of investigations 

have suggested that CSQ2 also has the ability to directly regulate channel activity 

(Shannon et al., 2005, Györke, 2009, Terentyev et al., 2006). First proposed by Györke et 

al (2004), it is now believed that a quaternary complex assembles at the jSR membrane 

between RyR2, CSQ2 and two SR transmembrane proteins JUN and TRD1, and forms a 

putative luminal Ca2+ sensor which responds to changes in SR Ca2+ load and modulates 

RyR2 activity accordingly (Zhang et al., 1997; Györke et al., 2004; Terentyev et al., 2003b; 

Beard et al., 2005). Györke et al (2004) used recombinant dog cardiac CSQ2 (Kobayashi 

et al., 2000), JUN (Zhang et al., 1997) and TRD1 (Kobayashi and Jones, 1999) to 

examine the potential role of the luminal proteins in conferring RyR2 luminal [Ca2+] 

sensitivity. Purified RyR2 channels reconstituted in a lipid bilayer system were reported by 

Györke et al (2004) to be unresponsive to changes in luminal Ca2+ (ranging from 20 !M-5 

mM), and luminal Ca2+ sensing was only restored in the presence of the accessory 

proteins. Upon adding CSQ2 back to the luminal side of the channel, it was reported that 

RyR2 activity was inhibited, but only at low luminal [Ca2+] <20 !M, and in the presence of 

JUN and TRD1. This inhibition is important, since in CPVT2, CSQ2 mutation cause RyR2 

channels to display a short refractory period before release (Terentyev et al., 2006). 

Furthermore, JUN and TRD1 added back to the purified channels alone (in the absence of 

CSQ2) enhanced channel open probability, suggesting an additional activatory role of the 
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two proteins (Györke et al., 2004). Taking into account that CSQ2-RyR2 regulation 

appeared luminal Ca2+ dependent, the group concluded that the intracellular Ca2+ binding 

protein (via its associations with JUN and TRD1) acts to mediate the ability of RyR2 

channels to respond to luminal Ca2+(Györke et al., 2004). However, the individual 

contributions of JUN or TRD1 to the CSQ2-RyR2 functional interaction (since both were 

added back to the channel complex together) was not addressed in this work, or the 

potential of each protein as direct modulators of RyR2 activity established (Altschafl et al., 

2011; Dulhunty et al., 2012; Gaburjakova et al., 2013). Interestingly, a later single channel 

investigation using skeletal CSQ1, demonstrated that the inhibitory action of the accessory 

protein on RyR1 activity was only seen when expressed in the presence of JUN, leading 

to suggestions that JUN acts distinctively from TRD1, which was also investigated (Beard 

et al., 2009, Dulhunty et al., 2009).   

 

Although evidence is limited with regards to the role that JUN plays in mediating the 

effects of luminal Ca2+ on RyR2 function (Radwañski et al., 2013), the physiological 

importance of the luminal protein to Ca2+ release activity has been highlighted in animal 

models. For example, in adult rat cardiomyocytes with acute downregulation of JUN 

(~40%), (Fan et al., 2008) and in a mouse model with JUN ablation (Yuan et al., 2007), 

the frequency and amplitude of Ca2+ sparks and contractility within isolated 

cardiomyocytes were enhanced, which consequently increased the propensity for 

triggered arrhythmias and SCD. In both models, there were no notable alterations in the 

expression of other Ca2+ handling proteins (e.g., CSQ2 or RyR2), which led to the 

assumption that the effects seen were exclusively due to downregulation/ablation of 

cardiac JUN (Fan et al., 2008, Yuan et al., 2007). This may suggest that JUN has an 

inhibitory effect on RyR2 function or that it enhances the inhibitory effects of CSQ2, as 

discussed previously (Györke et al., 2004, Miller et al., 2005). This however requires 

further investigation, and will be explored in this project using single cell Ca2+ imaging.  

 

Mutations in RyR2 and CSQ2 are both implicated in the development of CPVT and 

defective luminal Ca2+ sensing is a candidate mechanism of disease pathogenesis (Priori 

and Chen 2011; Jiang et al., 2005). Since the RyR2 channels response to changes in 

luminal [Ca2+] appears to be modified by the luminal accessory proteins, a better 

understanding of how each luminal protein contributes to Ca2+ release function could also 

reveal alterations that might occur as a result of mutation. For example, although no 

CPVT-linked mutations in JUN have currently been identified, changes in the levels of 

JUN expression led to an increased incidence of arrhythmia, a symptom that defines 

CPVT (Altschafl et al., 2011; Yuan et al., 2007). In addition, CSQ2 mutations have been 

proposed to alter the proteins ability to modulate RyR2 luminal Ca2+ sensitivity (for 
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example, the R33Q mutant studied by Houle et al., 2004, Terentyev et al., 2006) or reduce 

the luminal Ca2+ buffering capacity within the SR (D307H mutant, examined by 

Viatchenko-Karpinski et al., 2004). It however remains to be elucidated whether RyR2 

mutation can alter the way in which the channels respond to luminal accessory proteins or 

whether association of the complex with RyR2 is disrupted by the mutation.  

 

4.1.2. Spontaneous Ca2+ release events in CPVT: 

 

Arrhythmogenic episodes in CPVT occur during times of physical or emotional stress, i.e., 

when the levels of circulating catecholamines are high and the ß-AR signalling cascade is 

activated (Priori et al., 2002). Known as the “fight or flight” response, increased cardiac 

output is required to meet the higher metabolic demands of the heart during periods of 

stress, and subsequently improves contractile force (Marx and Marks, 2013). Discussed 

further in Chapter 1 (section 1.2.5) stimulation of the ß-AR pathway causes dissociation of 

PLB from the SERCA2a pump, which relieves inhibition and speeds up Ca2+ re-uptake into 

the SR. As a consequence, the SR Ca2+ load is increased and thus the amount of 

releasable Ca2+ available during subsequent action potentials is enhanced. If however, SR 

Ca2+ content reaches a particular level, spontaneous Ca2+ release through RyR2 channels 

can occur in the form of Ca2+ oscillations, a phenomenon now known as “Store-Overload 

Induced Calcium Release” or SOICR (Jiang et al., 2004, Venetucci et al., 2008). In view of 

the association between Ca2+ overload, DADs and CPVT, disease-causing mutations have 

been suggested to reduced the threshold for SOICR occurrence, which in turn increases 

the susceptibility for arrhythmogenesis (Priori and Chen 2011).  

 

4.1.3. CPVT-associated mutations enhance the sensitivity of ryanodine receptors to 

Ca2+ activation: 

 

A co-ordinated change in Ca2+ concentration on both the cytosolic and luminal side of the 

jSR membrane is responsible for regulating Ca2+ release through RyR2 channels. As 

illustrated in Figure 4.1, Jiang et al (2004, 2005) proposed that in disease states such as 

CPVT, mutation causes an enhanced sensitivity of RyR2 channels to luminal Ca2+, which 

as a consequence, lowers the threshold SR Ca2+ load at which SOICR occurs. The group 

examined a number of RyR2 (recombinant mouse) mutations spanning the length of the 

protein, expressed in HEK293 cells, including the mutation studied in this project, N4104K 

(located in the C-terminal region), (Jiang et al., 2004, 2005). Using single-cell Ca2+ 

imaging, all mutations were found to enhance the frequency of spontaneous Ca2+ 

oscillations, resulting in a decrease in the ER Ca2+ store (measured by caffeine-induced 

Ca2+ release). Compared with WT RyR2 at the single channel level, mutant RyR2 
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channels displayed an increased open probability in response to luminal Ca2+, (Jiang et 

al., 2004, 2005). Consistent with this observation, Ca2+ oscillations were evident at lower 

extracellular Ca2+ concentrations in mutant expressing cells, leading to suggestions that 

spontaneous Ca2+ release manifests at a reduced ER load in CPVT. This may also explain 

how enhanced SOICR occurs with mutant RyR2 expression, despite an observed 

reduction in the SR Ca2+ content (Jiang et al., 2005). Measured using [3H]-ryanodine 

binding, mutant and WT RyR2 channels responded equivalently to activating Ca2+, which 

predominantly reflects the channel’s sensitivity to cytosolic Ca2+ (Jiang et al., 2005). A 

recent publication by Chen et al (2014) reported the discovery of a key residue (E4872) 

which may comprise the inherent luminal Ca2+ sensor of RyR2, located within the region of 

the proposed Ca2+ sensing gate (helix bundle crossing region). HEK293 cells expressing a 

mutation of this residue, E4872Q, displayed no SOICR activity, highlighting its involvement 

in sensing SR Ca2+ content. In addition, knock-in of the E4872Q mutation into a mouse 

model expressing the CPVT-mutant R4496C protected the animals against stress-induced 

arrhythmia (Chen et al., 2014). To distinguish this mechanism from that of the CSQ2-

based luminal Ca2+ sensor, the effects of RyR2 E4872Q were also examined in CSQ2-

knockout mice (Zhang et al., 2014), where comparable to the aforementioned findings, the 

mutant eliminated spontaneous Ca2+ release and triggered arrhythmia. Currently, the 

interplay between the luminal Ca2+ sensor formed by the luminal accessory proteins and 

the RyR2-resident sites remains unexplored (Chen et al., 2014).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The heterogeneous nature of RyR2 mutant dysfunction, first proposed by Thomas et al., 

2004, was highlighted in a more recent investigation by Loaiza et al (2013), where it was 

demonstrated that a CPVT-linked mutant, V2475F, displayed enhanced sensitivity to both 

cytosolic and luminal Ca2+ regulation. Compared with WT channels, the RyR2 mutant 

exhibited sensitised activation by increasing concentrations of cytosolic Ca2+, established 

using a [3H]-ryanodine binding assay. Interestingly, as found by Jiang et al (2005), the 

V2475F mutation also displayed a pronounced responsiveness to changes in luminal Ca2+ 

(measured by single channel recordings). However, when WT and mutant channels were 

expressed in HEK293 cells (as in Jiang et al., 2004, 2005) no differences in the SOICR 

threshold were evident. An earlier investigation by Meli et al (2011) reported that luminal 

Ca2+ sensing is not defective in CPVT and demonstrated that the RyR2 mutation G230C 

exclusively displays enhanced sensitivity to cytosolic Ca2+. However, characterising the 

same mutation, Liu et al (2013) provided evidence of an enhanced propensity for SOICR 

occurrence. This thus highlights the need to assess the functional alterations of RyR2 

mutants in more than one experimental system and further demonstrates the complexity in 

Figure 4.1: Schematic of the store-overload induced Ca2+ release (SOICR) 
mechanism hypothesised for CPVT mutants: When normal RyR2 are 
expressed in cardiomyocytes, the levels of free SR luminal Ca2+ (blue shading), 
largely regulated by CSQ2, is below the normal threshold for spontaneous Ca2+ 
release (solid red line, panel A), thus there is no SOICR activity (panel A). Upon 
ß-AR stimulation under conditions such as stress or exercise, when the levels of 
free luminal Ca2+ are elevated (orange shading) by enhanced SERCA2a actvity, 
the SR Ca2+ level under normal conditions still remains below the SOICR 
threshold (Panel A, right). It is however hypothesised that as a consequence of 
RyR2 mutation, the threshold for SOICR occurrence is reduced (panel B, reduced 
threshold indicated by solid red line, normal SOICR threshold dashed red line). 
Therefore, under stimulated conditions the raised free luminal Ca2+ exceeds the 
SOICR threshold (orange shading, panel B, right) and spontaneous Ca2+ release 
is generated, greatly increasing the propensity for DADs and triggered 
arrhythmias. Image modified from Jiang et al., 2004.   
 
 

RyR2 mutations, by reducing the threshold for SOICR as a result
of enhancing luminal Ca2! activation, increase the susceptibility to
VT and sudden death under conditions of Ca2! overload. Our
findings link defective luminal Ca2! activation of RyR2 to VT and
sudden death and suggest RyR2 luminal Ca2! activation as an
alternative target for antiarrhythmic treatment.

Recapitulation of Cardiac SOICR in HEK293 Cells. Investigation of the
causative mechanisms of CPVT has been hampered by the lack
of animal models for CPVT and methods for introducing large
DNA such as the RyR2 cDNA ("15 kb long) into cardiac
myocytes. The present study demonstrates that HEK293 cells
expressing RyR2 could be used as an alternative means to
investigate the behavior of RyR2 under conditions of Ca2!

overload and the molecular basis of CPVT RyR2 mutations. We
have shown that, despite the lack of a number of cardiac-specific
Ca2! handling proteins, HEK293 cells expressing RyR2 produce
SOICR at elevated [Ca2!]o in a manner virtually identical to that
observed in cardiac cells (Fig. 1). We have also shown that
HEK293 cells not expressing RyR2 do not display SOICR at
elevated [Ca2!]o (Fig. 1). These observations indicate that RyR2
is essential for SOICR, and that SOICR is not unique to cardiac
cells; rather, it reflects the intrinsic properties of RyR2. Hence,
HEK293 cells expressing RyR2 provide a readily accessible cell
model for molecular analysis of the impact of various CPVT
RyR2 mutations on SOICR.

RyR2, a Critical Determinant of the SOICR Threshold. It is well
documented that elevated [Ca2!]o produces SR Ca2! overload,
and that once a threshold level of SR Ca2! content is reached,
SOICR occurs. Interestingly, further Ca2! loading has no effect
on SR Ca2! content. SR Ca2! content increases only when there
is no SOICR (24). Essentially the same relationship between
store Ca2! content and SOICR was observed in HEK293 cells
expressing RyR2 (Fig. 1). It is also known that the activity of
RyR2 influences the threshold for SOICR in cardiac myocytes.
For instance, modest activation of RyR2 by caffeine reduced the
threshold for SOICR and SR Ca2! content, although moderate
inhibition of RyR2 by tetracaine increased both the threshold for
SOICR and SR Ca2! content (26, 27). Consistent with this view,
we have shown that mutations in RyR2, N4104K, R4496C, and
N4895D increased the occurrence of SOICR and the frequency
of Ca2! oscillations and reduced the store Ca2! content (Fig. 2).
Taken together, these observations suggest that RyR2 is a critical
determinant of the threshold for SOICR and consequently for
the SR Ca2! content.

Molecular Mechanisms Underlying the Action of CPVT RyR2 Mutations.
How do CPVT RyR2 mutations alter the threshold for SOICR?
Given that SOICR is triggered by SR Ca2! overload, and that
elevated SR luminal Ca2! activates RyR2 (28, 29), it is likely that
CPVT RyR2 mutations alter the channel sensitivity to activation
by luminal Ca2!. In support of this view, we obtained direct
evidence that the RyR2 mutations N4104K, R4496C, and
N4895D substantially increased the channel sensitivity to acti-
vation by luminal Ca2! (Fig. 3). However, it remains to be
determined how these CPVT mutations exert their effects on
RyR2 luminal Ca2! activation. One possibility is that CPVT
RyR2 mutations affect domain–domain interactions in RyR2
that mediate luminal Ca2! activation. CPVT mutations are
largely clustered in three domains of RyR2 (21). It has been
proposed that interactions among these domains are involved in
conformational changes associated with channel gating (30). It
is possible that mutations in these domains may weaken the
interactions among them and destabilize the closed state of the
channel, rendering the channel more sensitive to activation by
stimuli. Consistent with this, we found that CPVT RyR2 muta-
tions enhanced basal channel activity (Fig. 4). Another possi-

bility is that CPVT RyR2 mutations affect protein–protein
interactions among RyR2 and its associated proteins such as
FKBP12.6, CASQ2, triadin, and junctin, which may regulate
luminal Ca2! activation. Wehrens et al. (31) have shown that
CPVT RyR2 mutations reduced the affinity of FKBP12.6 bind-
ing. On the contrary, however, George et al. (32) have recently
demonstrated that CPVT RyR2 mutations augmented SR Ca2!

release in a manner independent of FKBP12.6. Thus, whether
CPVT RyR2 mutations alter FKBP12.6 binding requires addi-
tional investigations. Regardless of what the exact molecular
mechanisms might be, abnormal RyR2 luminal Ca2! activation
may underlie the ultimate outcome of CPVT RyR2 mutations.
A detailed understanding of the molecular basis and regulatory
mechanism of RyR2 luminal Ca2! activation will be necessary to
appreciate the precise impact of CPVT RyR2 mutations.

A Proposed Model of CPVT. Based on the results of the present
study and those of previous investigations, we propose a simple
model to account for CPVT (Fig. 5). In this model, we hypoth-
esize that the threshold for SOICR is primarily determined by
RyR2. In normal SR, the threshold for SOICR is higher than the
SR free Ca2! level under both resting and stimulated conditions
(catecholamines or stresses). Therefore, there is little or no Ca2!

spillover from the normal SR in either the resting or stimulated
states (Fig. 5A). On the other hand, in the CPVT SR, the
threshold for SOICR is reduced by mutations in the RyR2
channel. Under resting conditions, the reduced threshold for
SOICR is still higher than the resting SR free Ca2! level, so that
there is little or no Ca2! spillover. However, under stimulated
conditions, the CPVT SR is abruptly overloaded with Ca2!.
Because of the reduced threshold, SOICR will be more likely to

Fig. 5. A proposed mechanism for CPVT associated with RyR2 mutations. The
relationship between the threshold for SOICR and the SR-free Ca2! level in
normal (A) and CPVT SR (B) in the resting and stimulated states is schematically
shown. The threshold for SOICR, which is primarily determined by RyR2, is
depicted by a red bar. Note that the threshold for SOICR is reduced in the CPVT
SR as a consequence of the RyR2 mutations. The SR free Ca2! level, which is
predominantly determined by CASQ2, is represented by the blue area. Note
that the resting level of SR-free Ca2! in the CPVT SR might have adapted to a
reduced level due to the existence of SR autoregulation (33). An abrupt
increase of SR-free Ca2! as a result of stimulations by catecholamines or
stresses is depicted by the yellow area. When the SR-free Ca2! level reaches the
SOICR threshold, SOICR occurs, leading to a large SR Ca2! spillover, which in
turn can generate DAD and triggered arrhythmia.

13066 ! www.pnas.org"cgi"doi"10.1073"pnas.0402388101 Jiang et al.
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deciphering the mechanism behind channel dysfunction. Since the studies by Jiang et al 

(2004) and Loaiza et al (2013) used purified mouse RyR2 channels and expression in 

HEK293 cells, which are devoid of accessory proteins, the altered sensitivity of RyR2 

mutants to luminal/cytosolic Ca2+ could not be attributed to changes in channel modulation 

by the CSQ2-mediated luminal Ca2+ sensor. However, given the proposed role of the 

proteins in regulating RyR2 channel activity and the fact that CSQ2 mutations can also 

cause the CPVT phenotype (Houle et al., 2004), alterations in the function of these 

proteins may also contribute to defective RyR2 luminal Ca2+ sensing and thus needs to be 

investigated.    

 

4.1.4. Chapter Aims  

 

Luminal regulation of Ca2+ release through RyR2 channels is thought to be influenced both 

by the sensitivity of RyR2 channels themselves to activating luminal [Ca2+] (Laver et al., 

2007) and it’s ensuing effect on cytosolic Ca2+ sensitivity; and via interaction with the 

luminal accessory proteins CSQ2, JUN and/or TRD1 (Györke and Györke, 1998). It is 

possible that two luminal Ca2+ sensing mechanisms exist to regulate RyR2 function, one of 

which forms part of the RyR2 channel itself (Chen et al., 2014) and the other composed of 

the luminal accessory proteins interacting with the Ca2+ release channels (Györke and 

Györke, 1998, Wei et al., 2009b).  

 

Since it is unknown how RyR2 mutation could affect luminal accessory protein regulation, 

the behaviour of mutant channels with CSQ2 and/or JUN co-expression has been 

evaluated, and directly compared with findings using WT hRyR2. Cytosolic and luminal 

Ca2+ regulation of WT and mutant (A4556T and N4104K) channels will be examined in this 

chapter, since the two are ultimately linked.  

 

In the absence and presence of luminal accessory proteins CSQ2 and JUN, WT and 

mutant hRyR2 channel regulation by Ca2+ has been assessed as follows:  

 

• Quantitative [3H]-ryanodine binding experiments were used to evaluate the cytosolic 

Ca2+ activation profile of WT and CPVT-linked mutant RyR2 channels in the 

presence/absence of CSQ2 and/or JUN. Used extensively as an effective agent to 

examine RyR2 function, [3H] ryanodine will only bind RyR channels in their open 

conformation and thus acts as a surrogate marker of channel activity (Meissner et al., 

1988, Li and Chen, 2001, Jiang et al., 2005).  
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• Since the term SOICR, is somewhat of a misnomer, as it refers to a lowered threshold 

for spontaneous Ca2+ release as opposed to actual store overload, the Ca2+ oscillations 

analysed in this investigation will be referred to as spontaneous Ca2+ release (SCR) 

events. Using single cell Ca2+ imaging, the parameters of SCR events (such as 

amplitude, duration and frequency) were monitored to establish luminal Ca2+ effects, 

where a direct comparison was made between HEK293 cells expressing WT/mutant 

RyR2 channels alone or in the presence of accessory proteins (achieved using stable 

cell lines expressing CSQ2, JUN or CSQ2+JUN). This technique was first used to 

establish if WT and mutant RyR2 are activated differently by luminal Ca2+. The 

responses of WT and mutant channels to luminal accessory protein co-expression were 

then compared.  
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4.2 Methods: 
 

4.2.1. Optimisation of the quantitative [3H]-ryanodine binding assay: 

 

A series of [3H] ryanodine binding reactions (further details described in Chapter 2, section 

2.4.3.5, Figure 2.4) were used to test a range of different protein concentrations (50-

200!g), where each binding assay included 10nM [3H] ryanodine, prepared to a final 

volume of 500!l with a binding buffer designed to optimise the open probability of RyR2 

channels (containing 1M KCl, 100!M Ca2+ and 25mM PIPES (pH 7.4)). To distinguish any 

non-specific binding, 1000-fold excess ‘cold’, unlabelled ryanodine (10!M) was added to 

control samples. Liquid scintillation counting was used to quantify [3H]-ryanodine binding 

data, where the counts achieved were measured in decays (or disintegrations) per minute 

(dpm). Subtraction of the non-specific counts achieved in control samples (in the presence 

of excess unlabelled ryanodine) from the total counts obtained in the test samples (using 

the same protein concentration) was used to calculate specific [3H] ryanodine binding (for 

example, if a control sample yielded 2000dpm and a test sample 8000dpm, specific [3H] 

ryanodine binding was calculated as 6000dpm). In preliminary investigations, the same 

assay was also carried out using two native sources (rabbit skeletal and rat cardiac heavy 

SR membranes) where it could be guaranteed that RyR was being expressed to a very 

high level. The data established using the native material was subsequently used to gauge 

the expression levels achieved using recombinant protein, by measurement of the specific 

[3H] ryanodine bound, in pmol/mg of protein.   

 

4.2.1.1. [3H] ryanodine binding as a measurement of hRyR2 Ca2+ activation: 

 

A suitable range of Ca2+ concentrations for hRyR2 activation (0-500!M (Mukherjee et al., 

2012)) was achieved by accurately buffering stock binding solutions with three Ca2+ 

chelators: EGTA, HEDTA and NTA (see abbreviations table, Patton, 2004). To achieve a 

given free Ca2+ concentration, the appropriate amounts of CaCl2 to add to stock binding 

buffer (in the presence of 1mM of each Ca2+ chelator) were calculated using the 

Maxchelator software (http://www.standford.edu/~cpatton/maxc.html). Prior to using 

recombinant protein, the Ca2+ activation assay was tested using a native sample, as with 

previous optimisation (section 4.3.1). 

 

To establish enough material for further investigations, 48 microsomal membrane 

preparations were generated in total (n=4 per protein combination). The following eGFP-

hRyR2 and luminal protein combinations were produced: (1) WT hRyR2 alone or in the 

presence of CSQ2 and/or JUN, (2) A4556T hRyR2 alone or in the presence of CSQ2 
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and/or JUN and (3) N4104K hRyR2 alone or in the presence of CSQ2 and/or JUN. 

Harvest of  ~100x106 transfected HEK293 cells was required to generate each mixed 

membrane sample, which typically yielded a protein concentration of 4-6 mg/ml 

(established using a BCA protein assay). To undertake each [3H] ryanodine binding Ca2+ 

activation assay in duplicate, approximately 4.4 mg of protein was necessary (calculated 

based on the use of 100 !g per reaction). 

 

Densitometric analysis of Western blot signals was used to standardise expression levels 

of WT/mutant hRyR2 from each mixed membrane preparation, i.e., a representative 

WThRyR2 sample was used as a densitometric control, ensuring all test samples were 

standardised for hRyR2 expression prior to use in Ca2+ activation experiments. Each [3H] 

ryanodine binding Ca2+ activation curve was fitted using non-linear regression (variable 

slope) and statistically compared using the extra-sum of squares F-test (GraphPad Prism).   

 
 

4.2.2. Examination of spontaneous Ca2+ release properties using single cell Ca2+ 

imaging: 

 

Generation of stable HEK293 cell lines, Effectene®-mediated transfection and loading of 

cells with Fluo3-AM are described in Chapter 2 (sections 2.4.2.3 and 2.4.3.8-2.4.3.9). Prior 

to confocal imaging, mDMEM was removed from the loaded cells and replaced with a 

200!l meniscus of Krebs-Ringer-Hepes (KRH) buffer, supplemented with 1.3 mM Ca2+. As 

demonstrated by Jiang et al., 2004, raising the external Ca2+ around HEK293 cells is an 

effective way to induce SOICR-events. This is an intrinsic property of RyR2 channels 

(Jiang et al., 2004), since untransfected HEK cells loaded with Fluo3-AM did not display 

any SOICR-like events (as shown in the Appendix, Figure 5). 

 

The transfected cells were imaged using a laser scanning confocal microscope (Leica 

SP5, Leica, Heidelberg, Germany), with an oil immersion, 63x magnification objective lens 

and an argon laser, controlled with Leica software. Ca2+ dependent Fluo3-AM 

fluorescence was visualised by excitation at 488 nm and fluorescence emission detected 

over a range of 520±28 nm. Using Leica LAS AF confocal software (Leica Microsystems), 

data were collected over 2 minute recordings (5 frames/second) at 512 x 512 pixel 

resolution. Acquired as regions of interest (ROIs), all cells displaying SCR-activity 

(visualised as cell oscillations) representing global Ca2+ environments, or caffeine-

dependent Ca2+ release, were selected. All collated data were exported to Microsoft Excel 

for further analysis and statistical differences calculated using one-way ANOVA and a 

Tukey-Kramer post-test (GraphPad prism). Outliers in the collected data were identified 

using the GraphPad prism Grubbs’ test (column scatter plots of all collected data are 
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shown in the Appendix, Figure 6). Illustrated in Figure 4.2, all properties of the Ca2+ SCR 

events were examined as follows:  

 

1. Basal Signal Intensity: The basal signal intensity (F0) was measured by taking a 

mean of the fluorescence values between each SCR event (inter-SCR). F0 is 

highlighted by a dashed line in Figure 4.2 (A).  

 

2. Amplitude: Subtraction of the average inter-SCR basal signal intensity (F0) from 

peak signal intensity (F) of each event was used to determine SCR amplitude (F-

F0). F is indicated with a green arrow in Figure 4.2 (A) and (B). The amplitude was 

expressed as a proportion of the basal signal intensity (F-F0/F0, denoted as !F/F0). 

 

3. Duration: Measured in seconds (s), the duration of each SCR event was 

established by obtaining the difference between the time at which the SCR-event 

was initiated and the time when the signal intensity returns to basal levels (F0). The 

SCR event start  (red arrow) and end (brown arrow) are highlighted in Figure 4.2 

(A).  

 

4. Rate of Ca2+ Release: The rate of Ca2+ release is expressed as a change in the 

signal intensity over time (("F/F0)sec-1). Firstly, the time taken to reach peak Ca2+ 

levels was established by subtracting the time at which the SCR-event was 

initiated from the time taken to reach peak signal intensity. To calculate the rate at 

which spontaneous Ca2+ release occurred, the amplitude of the SCR event (F-

F0/F0) was divided by the time taken to reach peak Ca2+ levels.  

 

5. Rate of Ca2+ Decay: The rate of Ca2+ decay is also expressed as a change in the 

signal intensity over time (("F/F0)sec-1). The time taken for the Ca2+ peak to return 

to F0 was first established by subtracting the time at peak signal intensity from the 

time taken for the SCR-event to return to baseline levels (SCR end, indicated with 

a brown arrow in Figure 4.2 (A)). To calculate the rate at which spontaneous Ca2+ 

release decayed (indicative of it’s removal from the cytosol), the amplitude of the 

SCR event (F-F0/F0) was divided by the time taken for the signal intensity to return 

back to basal levels.   

 

6. Inter-SCR Duration: Measured in seconds (s), the inter-SCR duration 

(representing the time period in between each SCR-event) was established by 

taking the time at which a new SCR-event occurred and subtracting from it the time 

at which the previous event ended and returned to baseline.  
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7. Frequency of events: Measured as SCR-events per minute, the frequency was 

determined by first adding together the SCR event duration and the inter-SCR 

duration, which established in seconds is the duration of a full SCR-event, and 

subsequently calculating the occurrence of these events per minute.  

 

8. Estimation of ER Ca2+ load: Demonstrated in Figure 4.2 (B), ER Ca2+ load was 

estimated by calculating the Ca2+ release amplitude induced by caffeine application 

(10mM, dissolved in KRH).  Subtraction of the average basal signal intensity (F0) 

from peak signal intensity (F) was used to determine the SCR event amplitude (F-

F0). F is indicated in (B) with a green arrow. The amplitude was subsequently 

expressed as a proportion of the basal signal intensity. 
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Figure 4.2: Illustration of the SCR kinetic parameters measured in transfected 
HEK293 cells: A representative trace of SCR events obtained from Fluo-3 loaded 
HEK293 cells (in the presence of 1.3mM external Ca2+) are shown in (A), where the 
parameters assessed are indicated with blue arrows.  The start, end and peak of a 
SCR-event are highlighted with red, brown and green arrows, respectively. F0 
represents the basal Fluo-3 signal intensity. The ER Ca2+ store load, was estimated 
by measuring the amplitude of caffeine-induced Ca2 release, as demonstrated in (B).  
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4.3 Results: 
 

4.3.1. Optimisation of [3H] ryanodine binding assays using native and recombinant 

material:  

 

Demonstrated in Figure 4.3 (A), establishing a suitable protein concentration of 

recombinant hRyR2 for use in future experiments was achieved by plotting an average of 

the specific [3H] ryanodine binding counts (in dpm) generated when using the recombinant 

material, against the chosen protein concentration range (0-200!g) used in the assay. 

100!g was chosen as the optimal protein quantity for use in subsequent investigations 

since this concentration appeared to be the minimal protein amount which yielded the 

least [3H] ryanodine binding variability, and at which sufficient liquid scintillation counts 

were achieved.  

 

Since the [3H]-ryanodine binding assay requires the use of functional RyR2 channels 

expressed to a high level, it seemed rational to also carry out the same optimisation 

experiments using native sources, such that a comparison could be made between the 

data collected using the recombinant material. Illustrated in Figure 4.3 (B) as a bar graph, 

despite being lower, the specific [3H] ryanodine bound in 100!g of recombinant protein 

could be directly compared to native material, a WT hRyR2 mixed membrane preparation 

bound to 0.3 ± 0.02 pmol/mg [3H] ryanodine, compared with 1.0 ± 0.18 and 16.8 ± 1.30 

pmol/mg for native rat cardiac and rabbit skeletal membranes, respectively. Furthermore, 

native rat cardiac membranes were also used to test the Ca2+ activation assay before 

proceeding with recombinant material. As shown in Figure 4.3 (C), the resultant [3H] 

ryanodine binding Ca2+ activation curve displayed a sigmoidal relationship (EC50 = 

0.35±0.02!M), indicating that the range of Ca2+ concentrations chosen were buffered 

efficiently (section 4.2.1.1).  

 

As described previously in section 4.2.1.1, before use in [3H] ryanodine binding Ca2+ 

activation assays, all eGFP-hRyR2 mixed membranes (expressed alone/in the presence 

of CSQ2, JUN or CSQ2+JUN) were standardised for hRyR2 expression by Western 

blotting and densitometric analysis.  Highlighted in Figure 4.4 (A), the same representative 

WT hRyR2 mixed membrane preparation was loaded alongside all additional mixed 

membrane preparations during hRyR2 detection and using 100!g of recombinant protein 

as a benchmark, the concentration of a given mixed membrane sample was adjusted for 

use in Ca2+ activation assays accordingly, ensuring equivalent amounts of hRyR2 protein 

were used in each experiment (Figure 4.4,B).   
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Figure 4.3 Determination of an optimal recombinant protein amount for use in [3H] ryanodine 
binding assays and a preliminary Ca2+ activation assay using native material: To establish an 
optimal recombinant protein concentration for use in Ca2+ activation assays, the [3H] ryanodine binding 
counts (in dpm) achieved using increased amounts of recombinant WT RyR2 protein (n=3 
experiments) were determined by liquid scintillation counting and the averages plotted as shown in 
(A). To gauge the success of acquiring sufficient [3H] ryanodine binding counts using the recombinant 
material generated, two native preparations: rat cardiac and rabbit skeletal membranes were included 
as controls in optimisation investigations (n=3 experiments for each), (B). The concentration of specific 
[3H] ryanodine bound to 100!g of recombinant material was calculated as:  0.3 ± 0.02 pmol/mg of 
protein, compared with 1.0 ± 0.18 and 16.8 ± 1.30 pmol/mg of rat cardiac and rabbit skeletal 
membranes, respectively. Prior to commencing Ca2+ activation experiments, a preliminary experiment 
(n=4) was carried out using rat cardiac muscle membranes. The [3H] ryanodine binding Ca2+ curve 
obtained is shown in (C), which yielded an EC50 of 0.35±0.02!M. 
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Figure 4.4: Standardisation of mixed membrane preparations for hRyR2 expression 
by densitometry before use in [3H] ryanodine binding Ca2+ activation assays: As an 
example, standardisation of hRyR2 in mixed membrane preparations generated from 
HEK293 cells expressing mutant A4556ThRyR2+CSQ2 are shown as a Western blot 
(signal detection: 1.30 minutes) in (A), with a corresponding table of results in (B). The 
same process was carried out for all other test samples. Following SDS-PAGE and 
Western blotting, each mixed membrane sample intended for future use was checked for 
sufficient hRyR2 expression by densitometric analysis of Western signals. Using the levels 
of hRyR2 expression detected in a WT sample as a standard, 100!g (established as 
optimal to achieve sufficient [3H] ryanodine binding) of this sample was used as benchmark 
to adjust the protein concentration of other mixed membrane preparations accordingly, 
such that equivalent amounts of hRyR2 protein were used in each Ca2+ activation 
experiment.  
 
 
 

!"#$

CSQ2 
stable HEK 
cell line 

Untransfected 
HEK293 

30 kDa 
Transient 
expression 
of CSQ2 

565 kDa 

WT hRyR2 
A4556T hRyR2+CSQ2 

1 2 3 4 

!%#$
Mixed membrane 
Sample 

Density 
(ODu/mm2) 

Normalisation Protein amount 
required for [3H] 
ryanodine binding (!g) 

WT hRyR2 21.13749136 1 100 
A4556T hRyR2+CSQ2 
(Preparation 1) 

13.70498893 0.648373577 154.2319711 

A4556T hRyR2+CSQ2 
(Preparation 2) 

12.08151488 0.571567863 174.9573104 

A4556T hRyR2+CSQ2 
(Preparation 3) 

10.61617886 0.502244117 199.1064104 

A4556T hRyR2+CSQ2 
(Preparation 4) 

33.78306817 1.598253624 62.56827763 

!
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4.3.2. Measurement of the Ca2+ dependence of [3H]-ryanodine binding for WT, 

A4556T and N4104K hRyR2 channels in the absence of luminal accessory proteins:  
 

[3H]-ryanodine binding was used to assess the cytosolic Ca2+ sensitivity of WT and CPVT-

linked mutant human RyR2 when recombinantly expressed alone or co-expressed with 

CSQ2, JUN or CSQ2 and JUN. Figure 4.5 illustrates the Ca2+ activation curve for WT 

hRyR2 channels expressed alone, which yielded an EC50 of 0.58 ± 0.27µM. As 

demonstrated, the Ca2+ activation data can also be plotted as specific [3H] ryanodine 

bound in pmol/mg of protein, as used in Du et al., 1998 and Li and Chen 2001.  Using [3H]-

ryanodine binding assays, the sensitivities to Ca2+ activation of mouse (EC50 of 

0.28±0.02µM (Jiang et al., 2005) and 0.31±0.02µM (Jiang et al., 2007)) and rabbit (EC50 of 

0.79±0.08µM (Du et al., 1998)) recombinant RyR2 are not dissimilar to those obtained in 

this investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutant hRyR2 Ca2+ activation curves were compared with that obtained for WT hRyR2 

channels. Given that all protein samples used in the Ca2+ activation assays were first 

standardised for hRyR2 expression, at first glance, it was not deemed necessary to 

normalise results to maximal (max) [3H] ryanodine binding, since arguably all max binding 

should be the same. As shown in Figure 4.6, this is the case for the N4104K hRyR2 mutant 

(A), which displays similar max binding to WT hRyR2 channels. However, when A4556T 

hRyR2 channels were assessed (B), [3H] ryanodine binding appeared much higher at 

Figure 4.5: [3H] ryanodine binding Ca2+ activation curve of WT hRyR2 channels: 
The Ca2+ activation profile achieved for WThRyR2 was derived from an n=10 assays, 
where values were obtained from 4-5 separate binding experiments. The curve was 
constructed using a sigmoidal dose-response (variable slope) fit (GraphPad Prism). 
As shown, the dose-response data can be presented using the [3H] ryanodine binding 
counts achieved (in dpm), determined by liquid scintillation counting or the binding 
counts generated can subsequently be used to calculate the specific [3H] ryanodine 
bound in pmol/mg of protein.  
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every Ca2+ concentration tested and thus max binding differed significantly from the WT. 

Due to the variable nature of the data, it was therefore decided that in order to rigorously 

compare the EC50 between datasets, the Ca2+ activation curves needed to be fitted with 

constraints (as without it, statistical differences may be difficult to pinpoint), as 

recommended in the GraphPad Prism Statistics Guide (www.graphpad.com). Often used 

to exhibit [3H] ryanodine binding data in the literature (Jiang et al., 2005, Li and Chen, 

2001), the simplest way to do this was to normalise the data. The [3H] ryanodine binding 

dose-response curves generated will thus be presented both as non-normalised (raw) and 

normalised data, as in Figure 4.6.    

 

N4104K hRyR2 channels displayed a significantly sensitised cytoplasmic Ca2+ activation 

profile (seen as a left-shift in the curve) compared to WT hRyR2, which yielded an EC50 of 

0.22 ± 0.27µM (Figure 4.6 (A), normalised, right-graph). Furthermore, the mutant elevated 

channel activation at basal Ca2+ levels (as evident in the non-normalised Ca2+ activation 

curve (Figure 4.6 (A), left graph)). Normalised WT hRyR2 data yielded an EC50 of 1.63µM, 

which is almost identical to the EC50 (1.65± 0.43µM) reported by Mukherjee et al., 2012, at 

the single channel level.  

 

Displaying the [3H] ryanodine binding results both in the normalised and non-normalised 

form was important, since interesting aspects of the data might have otherwise been 

overlooked. In the raw data for example, increased [3H] ryanodine binding was evident at 

all Ca2+ concentrations >1!M with A4556T hRyR2 channels (Figure 4.6 (B), right graph, 

highlighted with asterisks). However, the Ca2+ sensitivity of A4556T hRyR2 channels to 

activation was comparable to WT hRyR2, and yielded a similar EC50 = 0.63 ± 0.08µM 

(normalised data, right graph, (B)). Discussed further in section 4.4.1.1, the fact that 

enhanced [3H] ryanodine binding was evident, yet the sensitivity to Ca2+ activation was 

similar to WT channels, may be due to an experimental error or it could reflect a bona fide 

consequence of channel mutation.  
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Figure 4.6: A comparison of the [
3
H] ryanodine binding Ca

2+
 activation curves of 

WT, A4556T and N4104K hRyR2 channels: Each dataset was fitted as a non-linear 
regression, sigmoidal (four parameter logistic) curve using GraphPad Prism. All 
statistical differences were also detected using this software, evaluated using the sum of 
squares F test (to reliably assess EC50 values), (GraphPad Prism). To normalise (right 
graphs), the data was constrained to 0 (bottom) and 100 (top) before fitting the curve. 
The tables indicate best-fit values, where (A) highlights a comparison of N4104K hRyR2 
and (B) A4556T hRyR2, where nsd = no significant difference and p<0.05 = a significant 
difference to WT hRyR2. The Ca

2+
 activation profiles achieved for N4104K and A4556T 

hRyR2 were derived from an n=6 curves (for each, i.e 12 in total), obtained from 3 
separate [

3
H]-ryanodine binding experiments and using 3-4 different mixed membrane 

preparations expressing the mutant channel of interest. The A4556T mutant (non-
normalised data, left graph (B)) displayed enhanced [

3
H] ryanodine binding at all [Ca

2+
] 

>1!M (* p = <0.05 vs WT hRyR2 response, Student’s t-test (GraphPad Prism)).  
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4.3.2.1. Ca2+ dependence of [3H]-ryanodine binding for WT hRyR2 channels in the 

presence of CSQ2, JUN or CSQ2 and JUN: 

 

Figure 4.7 shows the Ca2+ activation (determined using [3H] ryanodine binding) of 

WThRyR2 channels in the presence of the luminal accessory proteins. Examination of both 

non-normalised (left graphs) and normalised Ca2+ activation data with constraints (right 

graphs) revealed that co-expression of CSQ2, JUN or CSQ2+JUN did not significantly 

affect the cytoplasmic Ca2+ activation of WThRyR2 and yielded similar EC50 values to WT 

channels (WThRyR2+JUN = 0.58 ± 0.15µM (A), WThRyR2+CSQ2 = 0.43 ± 0.08µM (B) 

and WThRyR2+CSQ2+JUN = 0.85 ± 0.21µM (C)). Co-expression of WT channels with 

JUN alone however, did appear to have a slight activatory effect on channel activity, both 

at basal and increasing Ca2+ levels, though this was not determined as statistically 

significant. Interestingly, this effect was not evident when WThRyR2 channels were co-

expressed in the presence of both accessory proteins, suggesting CSQ2 may dampen any 

stimulatory effect observed. 
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Figure 4.7: [3H] ryanodine binding Ca2+ activation curves of WT hRyR2 channels 
expressed alone and in the presence of luminal accessory proteins CSQ2 and JUN: 
Established from 3-4 separate experiments, co-expression of WThRyR2 with (A) JUN (n=6 
assays), (B) CSQ2 (n=7 assays) and (C) CSQ2+JUN (n=7 assays) did not have any 
appreciable effects on the cytosolic Ca2+ activation profile achieved for WT channels 
expressed alone (plotted in (A)-(C)). All curves were fitted and statistically analysed as 
described in Figure 4.6, nsd = no significant differences in EC50 values compared to 
WThRyR2.  
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4.3.2.2. Examination of Ca2+ dependence of [3H]-ryanodine binding for CPVT-linked 

mutant hRyR2 channels in the presence of CSQ2, JUN or CSQ2 and JUN 

 

 

4.3.2.2.1 A4556T hRyR2 channels: 

 

As observed in the non-normalised data (left graphs), the elevated [3H] ryanodine binding 

of mutant A4556T hRyR2 channels in response to cytosolic Ca2+ was not significantly 

altered by luminal accessory co-expression, as demonstrated in Figure 4.8 (A)-(C). Each 

normalised Ca2+ activation curve yielded the following comparable EC50 values: AT 

hRyR2+JUN = EC50 of 0.50 ± 0.12µM (A), AT hRyR2+CSQ2 = EC50 of 1.0 ± 0.4µM (B) and 

AT hRyR2+CSQ2+JUN = EC50 of 1.23 ± 0.37µM (C). Interestingly, although no statistically 

significant difference was detected, the increased basal [3H] ryanodine binding seen at low 

[Ca2+] in the non-normalised curves appeared to be restored to WT levels when the 

mutants were co-expressed in the presence of both CSQ2 and JUN (Figure 4.8, (C), left 

graph).  

 

 

4.3.2.2.2 N4104K hRyR2 channels: 
 

[3H]-ryanodine binding Ca2+ activation curves obtained using mutant N4104K hRyR2 

channels are shown in Figure 4.9. As found previously with WT and A4556T hRyR2 

channels, luminal accessory protein co-expression did not significantly affect the cytosolic 

Ca2+ activation profile of this mutant. Each normalised Ca2+ activation curve yielded the 

following EC50 values, which were comparable to N4104K channels expressed alone: NK 

hRyR2+JUN = EC50 of 0.49 ± 0.4µM (A), NK hRyR2+CSQ2 = EC50 of 0.34 ± 0.1µM (B) and 

NK hRyR2+CSQ2+JUN = EC50 of 0.26 ± 0.02µM (C).  
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Figure 4.8: [3H] ryanodine binding Ca2+ activation curves of A4556T hRyR2 channels in 
the absence and presence of CSQ2 and/or JUN: Co-expression of AT hRyR2 with (A) JUN 
(n=6 assays), (B) CSQ2 (n=6 assays) and (C) CSQ2+JUN (n=6 assays) did not significantly 
alter the response of the mutant channels to increasing cytosolic Ca2+ concentrations, as 
directly compared with the Ca2+ activation curve achieved using AT hRyR2 channels 
expressed alone (A)-(C). Non-normalised (left graphs) and normalised (right graphs) data 
(collected from 3-4 separate binding experiments) was fitted and statistically analysed as 
described in Figure 4.6, nsd = no significant differences in EC50 values compared to AT hRyR2 
expressed alone.  
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Figure 4.9: [
3
H] ryanodine binding Ca

2+
 activation curves of N4104K hRyR2 channels in 

the absence and presence of luminal proteins: The dose-response curve of N4104KhRyR2 
expressed alone is shown in (A)-(C). Derived from 3-4 separate binding experiments (using 3-
4 different mixed membrane preparations for each combination), co-expression of NK hRyR2 
with (A) JUN (n=6 assays), (B) CSQ2 (n=6 assays) and (C) CSQ2+JUN (n=8 assays) did not 
significantly affect the response of the mutant channels to activating Ca

2+
. Non-normalised 

(left graphs) and normalised (right graphs) data was fitted and statistically analysed as 
described in Figure 4.6, nsd= no significant differences in EC50 values compared to NK hRyR2 
expressed alone. 
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4.3.2.3. Are luminal accessory protein interactions disrupted by the optimised [3H] 

ryanodine binding conditions?  

 

Designed to optimise the open probability of RyR2 and prevent aggregation, [3H] 

ryanodine binding experiments were carried out using a binding buffer containing 1M KCl 

(as used in Jiang et al., 2007, Chopra et al., 2009, Euden et al., 2013). As demonstrated in 

Figure 4.10 (taken from Jiang et al., 2004), when undertaking investigations with 

recombinant (mouse) RyR2, sufficient [3H] ryanodine binding of WT channels (open 

circles) was only achieved when higher concentrations of KCl were used. However, since 

no significant differences in the cytosolic Ca2+ activation profile of WT or mutant hRyR2 

were detected when co-expressed in the presence of luminal accessory proteins, it 

seemed logical to establish if the high salt conditions disrupted the binding interactions of 

CSQ2 and JUN with hRyR2 (Ahmed, 2004). Described in Chapter 5, sections 5.2.2 and 

5.3.4, the protein-protein interactions between CSQ2, JUN and hRyR2 were investigated 

by co-immunoprecipitation (Co-IP), using the !MACS" system from Miltenyi Biotec 

(section 2.4.3.6, Figure 2.5). In these experiments, a low salt buffer (containing 150mM 

NaCl) was used to solubilise all mixed membrane samples. To establish if higher salt 

disrupts the interaction of the luminal proteins with hRyR2, a series of Co-IP investigations 

(n=4) were carried out using both the standard solubilisation buffer (section 2.1.9) and the 

same buffer prepared to contain 1M NaCl. Although not the primary goal of this 

investigation, it has been reported at the single channel level that high concentrations of 

luminal Ca2+ dissociates CSQ2 from RyR2 channels (Beard et al., 2005, Qin et al., 2008). 

To test this concept biochemically, 10mM Ca2+ was added to the standard solubilisation 

buffer (150mM NaCl) and also used in Co-IP investigations.  

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.10: [3H] ryanodine binding of WT and mutant RyR2 channels with 
increasing concentrations of KCl: The aim of this investigation carried out by 
Jiang et al., 2004 was to demonstrate that RyR2 mutation enhances [3H] 
ryanodine binding at basal (~3nM) Ca2+ levels. However, the graph also 
demonstrates that optimal binding in WT recombinant RyR2 (mouse in this case) 
is achieved at higher concentrations of KCl. (Image modified from Jiang et al., 
2004).   
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A mixed membrane preparation co-expressing WT hRyR2+CSQ2+JUN was used the Co-

IP investigations, following the protocol described in Chapter 2, section 2.4.3.6. The only 

difference to this protocol was that in addition to using the standard buffer containing 

150mM NaCl (no Ca2+) for solubilisation, aliquots of the mixed membranes were also 

solubilised in the standard buffer (150mM NaCl) but with 10mM Ca2+ added and an 

equivalent buffer containing 1M rather than 150mM NaCl (Figure 4.11).   

 

Figure 4.11 (A) shows an example of the Western blot signals obtained from the detection 

of CSQ2 or JUN expression captured in immunoprecipitates (eluted from anti-GFP 

magnetic microbeads (Miltenyi Biotec)). Derived from an n=4 investigations, the results 

varied somewhat with the use of high salt solubilisation buffer. In some experiments CSQ2 

and JUN were unaffected (n=1 of 4 blots assessed), yet in another CSQ2 and/or JUN 

appeared reduced (n=1 both reduced, n=2 JUN only reduced). In the particular blot shown 

in Figure 4.11 (A), the association of JUN with hRyR2 channels appears to be diminished 

when solubilised in high salt buffer (lane 3, at ~26kDa), but the association of CSQ2 was 

unaffected (lane 3, at ~45kDa). In contrast, a reduction in the interaction of CSQ2 and 

JUN with hRyR2 channels was consistently observed when membranes were solubilised 

in the presence of 10mM Ca2+, as demonstrated in Figure 4.11 (A), lane 2 (CSQ2 at 

~45kDa and JUN at ~26kDa, respectively). Densitometric analysis was performed on all 

Co-IP Western signals  (Figure 4.11 (B)), where a reduction in the association of CSQ2 

and JUN with hRyR2 channels was only found to statistically significant when mixed 

membranes were solubilised in the presence of 10mM Ca2+.  
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Figure 4.11: Co-immunoprecipitation investigations to establish if the association of 
CSQ2 and JUN with hRyR2 is altered by high salt and high Ca2+ concentrations: An 
example of captured immunoprecipitates resolved by SDS-PAGE and detected by Western 
blotting is shown in (A), where lanes 1-3 = mixed membranes from cells expressing WT 
hRyR2, CSQ2 and JUN solubilised (at 2mg/ml) in buffer containing: (1) 150mM NaCl in 
contaminant Ca2+, (2) 150mM NaCl with 10mM Ca2+ and (3) 1M NaCl in contaminant Ca2+. 
Lanes 4,5 and 6 = mixed membranes (50!g, unsolubilised) from cells expressing 
WThRyR2, CSQ2 and JUN (4) or CSQ2 (5) or JUN (6) only. Each blot was probed with "-
CSQ2 and "-JUN antibodies to detect CSQ2 and JUN, respectively. Represented as bar 
graphs (B), densitometric analysis of Western blot signals (n=4 blots) was used to 
distinguish any significant alterations in the association of CSQ2 and/or JUN with hRyR2 
when solubilised in high salt conditions or in the presence of 10mM Ca2+ (normalised to the 
signals obtained using standard solubilisation buffer). Statistically significant differences (* 
p<0.05) were calculated using an ANOVA and a Tukey-Kramer post-test.      
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4.3.3. Imaging of spontaneous Ca2+ release events in HEK293 cells expressing WT 

and mutant hRyR2 channels in the absence of luminal accessory proteins:  

 

As illustrated in Figure 4.12, N4104K hRyR2-expressing HEK293 cells displayed markedly 

different SCR-events, compared with those observed in cells expressing WT or A4556T 

hRyR2. Presented as a series of bar graphs in Figure 4.13, the kinetic parameters of 

these events were examined. The N4104K mutant caused a significant reduction in the 

amplitude, duration and inter-SCR duration of SCR events, thereby increasing their 

frequency. In addition, the rate of Ca2+ release and decay was also reduced in N4104K 

hRyR2 expressing cells, which consequently changed the shape of the Ca2+ waves 

(Figure 4.12). Consistent with an enhanced frequency, the ER Ca2+ content (measured by 

the Ca2+ transient amplitude induced by caffeine application (10mM)) was significantly 

reduced (in comparison to cells expressing WT RyR2), which is indicative of Ca2+ leak 

through RyR2 channels (Jiang et al., 2007). In contrast, all SCR parameters in HEK293 

cells expressing A4556T hRyR2 appeared similar to WT (Figure 4.13), where no 

significant differences between the two were detected.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4.12: Representative traces of spontaneous Ca2+ release events 
from HEK293 cells expressing WT and mutant A4556T and N4104K hRyR2, 
measured by Fluo-3.  
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Figure 4.13: Assessment of the spontaneous Ca2+ release event properties in 
HEK293 cells expressing WT and mutant hRyR2 channels alone: All kinetic 
parameters of SCR-events were examined as described in section 4.2.2. As shown, 
all Ca2+ oscillation properties were significantly altered by mutant N4104K hRyR2 
expression (purple bars), compared with cells expressing WT hRyR2 (grey bars). 
Unlike expression of the N4104K mutation, HEK293 cells expressing the A4556T 
hRyR2 mutant (green bars) displayed similar SCR-event properties to the WT.  The 
data are presented for each parameter as the combined mean± S.E.M, collected 
from between 11-25 transfected cells and 3-4 separate experiments. Statistical 
significance was calculated using one-way ANOVA, Tukey-Kramer test (GraphPad 
Prism), where p<0.05 is denoted by * (vs WT hRyR2).  
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Figure 4.13: Assessment of the spontaneous Ca2+ release event properties in 
HEK293 cells expressing WT and mutant hRyR2 channels alone: All kinetic 
parameters of SCR-events were examined as described in section 4.2.2. As shown, 
all Ca2+ oscillation properties were significantly altered by mutant N4104K hRyR2 
expression (purple bars), compared with cells expressing WT hRyR2 (grey bars). 
Unlike expression of the N4104K mutation, HEK293 cells expressing the A4556T 
hRyR2 mutant (green bars) displayed similar SCR-event properties to the WT.  The 
data is presented for each parameter as the combined mean± S.E.M, collected 
from between 11-25 transfected cells and 3-4 separate experiments. Statistical 
significance was calculated using one-way ANOVA, Tukey-Kramer test (GraphPad 
Prism), where p<0.05 is denoted by * (vs WT hRyR2).  
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4.3.4. Expression of CSQ2, JUN and CSQ2+JUN with WT hRyR2 channels alters the 

properties of spontaneous Ca2+ release events: 

 

Representative traces of SCR events from WT hRyR2-expressing HEK293 cells, in the 

absence and presence of luminal accessory proteins are demonstrated in Figure 4.14. To 

assess the effects that CSQ2, JUN or CSQ2+JUN co-expression has on the Ca2+ handling 

dynamics of WT channels, the properties of the SCR-events were examined (Figure 4.15). 

Although luminal protein co-expression did not alter the SCR event amplitude, expression 

of CSQ2, JUN or CSQ2+JUN with WT hRyR2 channels significantly enhanced their 

duration, whilst decreasing the rate of Ca2+ release and decay. As shown in Figure 4.14, 

compared with cells expressing WT hRyR2 alone, these effects consequently produced 

longer Ca2+ waves and changed the shape of the SCR-events. In addition to an increase in 

event duration, co-expression with CSQ2 (both alone and in combination with JUN) notably 

lengthened the time period in between each SCR event (inter-SCR duration) and 

subsequently decreased their frequency. This effect was not observed when WT channels 

were co-expressed with JUN alone. Compared with expression of WT hRyR2 only, the ER 

Ca2+ load was found to be significantly lower in all cells co-expressing the luminal proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Representative traces of spontaneous Ca2+ 
release events in HEK293 cells expressing WT hRyR2, in 
the absence and presence of luminal accessory proteins 
CSQ2 and/or JUN, measured by Fluo-3.  
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Figure 4.15: Assessment of the effects CSQ2 and/or JUN co-expression has on 
the spontaneous Ca2+ release event properties of WT hRyR2-expressing cells: 
The kinetic parameters of SCR-events were examined as described in section 4.2.2. 
As shown, co-expression of the luminal proteins with WThRyR2 channels significantly 
altered many of the Ca2+ oscillation properties, as discussed in section 4.3.4. Data are 
presented for each parameter as the combined mean± S.E.M, collected from between 
11-25 transfected cells and 3-4 separate experiments. Statistical significance was 
calculated using one-way ANOVA, Tukey-Kramer test (GraphPad Prism), where 
p<0.05 is denoted by * (vs WT hRyR2 expressed alone).  
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Figure 4.15: Assessment of the effects CSQ2 and/or JUN co-expression 
has on the spontaneous Ca2+ release event properties of WT hRyR2-
expressing cells: The kinetic parameters of SCR-events were examined as 
described in section 4.2.2. As shown, co-expression of the luminal proteins with 
WThRyR2 channels significantly altered many of the Ca2+ oscillation properties, 
as discussed in section 4.3.4. Data is presented for each parameter as the 
combined mean± S.E.M, collected from between 11-25 transfected cells and 3-
4 separate experiments. Statistical significance was calculated using one-way 
ANOVA, Tukey-Kramer test (GraphPad Prism), where p<0.05 is denoted by * 
(vs WT hRyR2 expressed alone).  
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4.3.5. Examination of spontaneous Ca2+ release parameters in cells co-expressing 

mutant A4556T hRyR2 channels and the luminal accessory proteins CSQ2 and/or 

JUN:  

 

Although the SCR-events in cells expressing A4556T hRyR2 channels appeared similar to 

WT (Figure 4.13), some changes in the effects of luminal protein co-expression were 

detected. In particular, as presented in Figure 4.17, CSQ2 expressed alone did not appear 

to have an inhibitory effect on channel activity, suggesting that the way in which the 

mutant responds to CSQ2 differs from that of WT channels. However, co-expression with 

both accessory proteins (CSQ2+JUN), appeared to impart similar effects on A4556T as it 

did to WT SCR parameters - generating an increase in the SCR event duration and inter-

SCR duration, whilst reducing their frequency (as illustrated in Figure 4.16). Consistent 

with WT data, co-expression of both luminal proteins with A4556T channels also reduced 

the rate of Ca2+ release and decay. These data could suggest that the direct effect of 

CSQ2 on RyR2 has been affected by mutation, but that the interaction via JUN has not, 

since the effect is the same as that seen on the WT channel.  The effects of CSQ2 and 

JUN co-expression on A4556T hRyR2 Ca2+ load however had the opposite effect to that 

seen with WT hRyR2 co-expression, where ER Ca2+ content was significantly augmented 

in HEK293 expressing A4556T hRyR2+CSQ2+JUN (Figure 4.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.16: Representative traces of spontaneous Ca2+ release 
events in HEK293 cells expressing A4556T hRyR2 alone and in 
the presence of luminal accessory proteins CSQ2 and JUN, 
measured by Fluo-3. 
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Figure 4.17: Assessment of the effects CSQ2 and/or JUN co-expression 
has on the spontaneous Ca2+ release event properties of A4556T hRyR2-
expressing cells: In particular, co-expression of A4556T hRyR2 channels with 
both accessory proteins (AT+CSQ2+JUN) appeared to significantly alter the 
Ca2+ oscillation parameters, as discussed in section 4.3.5. Data are presented 
for each parameter as the combined mean± S.E.M, collected from between 11-
25 transfected cells and 3-4 separate experiments. Statistical significance was 
calculated using a one-way ANOVA, Tukey-Kramer test (GraphPad Prism), 
where p<0.05 is denoted by *** (vs A4556T hRyR2 expressed alone) and ^^ (vs 
A4556T+CSQ2+JUN.  
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4.3.6. Examination of spontaneous Ca2+ release events in cells co-expressing 

mutant N4104K hRyR2 channels and the luminal accessory proteins CSQ2 and/or 

JUN:  

 

Although the SCR-events in cells expressing N4104K hRyR2 channels appeared entirely 

different to WT hRyR2 (Figure 4.13), the effects of luminal accessory protein co-

expression were quite similar. Co-expression of CSQ2 and/or JUN with N4104K channels 

did not alter the SCR amplitude, but generated significant increases in the duration and 

inter-SCR duration of the events, thus reducing their frequency (as observed in WT hRyR2 

channels), (Figure 4.19).  Representative traces of SCR events from NK hRyR2-

expressing HEK293 cells, in the absence and presence of both luminal accessory 

proteins, are demonstrated in Figure 4.18. Differing from WT channels however, co-

expression of the luminal proteins with N4104K hRyR2 did not have any significant effects 

on the ER Ca2+ levels (Figure 4.19). However, since N4104K hRyR2 channels expressed 

alone also displayed a significantly reduced Ca2+ content, this could be a reflection of the 

store itself rather than an effect of luminal protein co-expression.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Representative traces of spontaneous Ca2+ release 
events in HEK293 cells expressing N4104K hRyR2 alone and in 
the presence of luminal accessory proteins CSQ2 and JUN, 
measured by Fluo-3. 
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Figure 4.19: Assessment of the effects CSQ2 and/or JUN co-expression has on 
the spontaneous Ca2+ release event properties of N4104K hRyR2-expressing 
cells: Examination of the kinetic SCR-event parameters in cells co-expressing the 
luminal proteins with N4104K hRyR2 channels revealed some significant alterations in 
the Ca2+ oscillation properties, as discussed in section 4.3.6. Data are presented for 
each parameter as the combined mean± S.E.M, collected from between 11-25 
transfected cells and 3-4 separate experiments. Statistical significance was calculated 
using one-way ANOVA, Tukey-Kramer test (GraphPad Prism), where p<0.05 is denoted 
by ** (vs N4104K hRyR2 expressed alone) and ^^ (vs N4104K+CSQ2+JUN).  
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4.4. Discussion: 
 
• Assessment of the cytosolic Ca2+ dependence of WT and mutant hRyR2 channel 

activation showed that CPVT mutants are functionally heterogeneous with A4556T 

having a comparable half-maximal dose of activation (EC50) comparable to that of 

the WT, whilst N4104K channels displayed a markedly sensitised response to 

activating Ca2+.  

 

• Co-expression with the luminal accessory proteins did not significantly alter the Ca2+ 

dependence of [3H] ryanodine binding to WT or mutant hRyR2. Although, as 

discussed in section 4.3.2.3, altered protein-protein interactions caused by the use 

of high ionic strength conditions in these experiments may have masked any luminal 

protein effects. 

 

• Effects on luminal Ca2+ regulation were appraised by measuring the properties of 

spontaneous Ca2+ release (SCR) events. HEK293 cells transfected with N4104K 

displayed significantly enhanced SCR parameters, which were indicative of Ca2+ 

leak through hRyR2. In contrast, A4556T channels displayed similar SCR events to 

WT hRyR2. Luminal protein co-expression revealed an inhibitory effect of CSQ2 on 

WT and N4104K hRyR2 activity, both in the presence of JUN and when expressed 

alone. A4556T hRyR2 differed in their response to CSQ2 co-expression, with no 

evidence of channel inhibition.  

 

 

4.4.1. Wild type and mutant hRyR2 channels expressed in the absence of luminal 

accessory proteins display differences in Ca2+ sensitivity:  

 

Quantitative [3H] ryanodine binding was used to directly measure the cytosolic Ca2+ 

dependence of WT and mutant hRyR2 channels expressed alone (Figures 4.5 and 4.6), 

before assessing the effects of luminal protein co-expression. As discussed in section 

4.3.2, the Ca2+ activation curves were presented in two ways: as raw (non-normalised) 

data and normalised data (fitted with constraints). Due to the variable nature of the data (in 

particular the A4556T hRyR2 mutant), without normalisation statistical differences 

between the EC50 of each dataset could not be accurately measured. As evidenced in this 

work, a steep dependence of RyR2 open probability or [3H] ryanodine binding on cytosolic 

Ca2+ is not without precedent (see Jiang et al., 2003, 2004 and 2005). Studies on single 

hRyR2 channels in our own lab have also found this to be the case, with a 10-fold 
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increase in channel open probability occurring between 100 nM-1!M Ca2+ (Mukherjee et 

al., 2012). Since [3H] ryanodine binding is activated to a greater extent at micromolar 

concentrations of Ca2+ (Pessah et al., 1987), inclusion of additional Ca2+ concentrations up 

to and above this range (between 250nM-1!M and above) could have smoothed out the 

Ca2+ activation curve to resemble a more sigmoidal relationship. When fitting the four-

parameter logistic model, the Hill slope was a measure of the curves’ steepness 

(GraphPad.com). This however, was not considered in the results, since we cannot be 

sure exactly what the Hill slope signifies in the context of this work. The Hill equation is 

commonly used to quantify the degree of cooperativity in ligand binding, which in this case 

would be a measure of the cooperativity of [3H] ryanodine binding to hRyR2 with activating 

Ca2+, in the absence/presence of luminal accessory proteins. It is however more likely to 

be a measure of the concerted cooperativity of channel activation. As shown in Figures 

4.6-4.9, this steep transition was much more apparent in experiments carried out using 

A4556T hRyR2, and when channels were co-expressed with CSQ2, the significance of 

which will be considered below (sections 4.4.1.1 and 4.4.2.1). Single cell Ca2+ imaging 

was carried out to assess the properties of spontaneous Ca2+ release events in HEK293 

cells expressing WT and mutant hRyR2. Using this technique, the sensitivity of WT or 

mutant channels to luminal Ca2+ could be examined, and any changes in the response 

following luminal accessory protein co-expression ascertained.   

 

4.4.1.1. Investigations of hRyR2 mutation A4556T:  

 

Compared with WT hRyR2, mutant A4556T hRyR2 channels (Figure 4.6 (B) left graph) 

displayed higher [3H] ryanodine binding at every Ca2+ concentration tested, which was 

statistically significant at all concentrations >1!M (Student’s t-test vs. WT hRyR2), and 

may have contributed to the sharp transition (steepness of the slope) seen with increasing 

[Ca2+]. Since binding of [3H] ryanodine reflects the open state of hRyR2 channels, it is 

possible the mutant directly affected the sensitivity of channel opening. However, the 

A4556T Ca2+ activation curve yielded a comparable EC50 to WT channels (0.63± 0.08µM 

vs. 1.63± 0.27µM normalised WThRyR2 data), (Figure 4.6 (B) right graph), suggesting that 

their Ca2+ dependence were similar. It is possible the A4556T mutant may have been 

affecting the association/dissociation rate of [3H] ryanodine itself, since the binding data 

exhibited great variability (as indicated by the larger error bars seen in the graphs). As 

demonstrated in Figure 4.4, it is unlikely that standardisation was affected by the mutation, 

since similar hRyR2 expression levels to WT were evident in mixed membranes 

expressing A4556T (assessed by densitometric analysis of Western blot signals). The 

A4556T mutation however is positioned in or near the pore-forming region of the RyR2 

channel, within which the residues deemed critical for ryanodine binding are situated, such 
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as a glutamine residue at position 4863 (Wang et al., 2003). Mutation of this amino acid 

(Q4863A) was found at the single channel level to considerably reduce the affinity of 

ryanodine for RyR2 channels (Ranatunga et al., 2005), meaning that no [3H] ryanodine 

binding was detected (Wang et al., 2003). It is possible that the A4556T mutant may have 

altered the structure of the ryanodine-binding site, such that the affinity for ryanodine was 

enhanced. The only way to prove this however would be to investigate A4556T hRyR2 

channels at the single channel level, using a reversible ryanoid (as discussed further in 

Chapter 6).  

 

In single-cell Ca2+ imaging investigations, HEK293 cells expressing WT and A4556T 

hRyR2 channels alone displayed remarkably similar SCR-events (Figure 4.12 and 4.13) 

and no statistically significant differences were found. Therefore, taking into account both 

the [3H] ryanodine binding and Ca2+ imaging together, no differences in the sensitivity of 

RyR2 channels to Ca2+ were apparent with A4556T mutation. Although listed in the human 

gene mutation database (HGMD) as a disease-causing variant (Tester et al., 2007), these 

results suggest that A4556T hRyR2 may not be causative of arrhythmia; especially since 

altered Ca2+ sensitivity in CPVT mutants is a well-documented observation (Jiang et al., 

2005, Wehrens et al., 2007, Meli et al., 2011, Loaiza et al., 2013). In agreement with this 

proposal, Jabbari et al (2013) recently concluded that the A4556T mutation is benign 

following the use of numerous prediction tools (including SIFT (Sorting Intolerant From 

Tolerant) and PolyPhen-2 (Polymorphism Phenotyping) to predict its deleterious outcome. 

Additionally, Papadakis et al (2013) reported of a 17 year old male harbouring the A4556T 

mutant, who was found in post mortem to have died due to a structural abnormality 

(marked right ventricular dilatation), unrelated to RyR2 mutation. Thus it is possible that 

A4556T could be a single nucleotide polymorphism, which can be identified in patients, 

but not usually causative of disease.  

 

4.4.1.2. Investigations of hRyR2 mutation N4104K:  

 

In contrast, the N4104K mutation was found to be markedly different to A4556T and WT 

hRyR2 channels in both experimental systems. As shown in Figure 4.6 (A), compared with 

WT channels, the CPVT-linked mutant displayed enhanced [3H] ryanodine binding at basal 

(or sub-activating) Ca2+ levels (non-normalised data, left graph), an observation also 

reported by Jiang et al., 2004. Normalisation of the binding data demonstrated that 

N4104K channels exhibit a sensitised Ca2+ activation profile, seen as a left-shift in the 

dose-response curve (Figure 4.6, (A), right graph); and yielded an EC50 that was 

statistically different from WT channels (0.22 vs. 1.63!M (normalised data)). This result 

differed from that of Jiang et al (2004) who reported that although enhanced basal levels 
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of [3H] ryanodine binding was evident, N4104K did not alter the Ca2+ dependence of [3H]-

ryanodine binding. As illustrated in Figure 4.10 however, the CPVT-linked mutants 

assessed in their study only exhibited elevated [3H] ryanodine binding at contaminant Ca2+ 

levels, when high (>800mM) concentrations of KCl were used. However, all Ca2+ 

activation experiments were undertaken in low (100mM KCl) salt conditions (Jiang et al., 

2004). Thus, it is likely that under such low salt concentrations significant differences in 

the Ca2+ dependence of mutant RyR2 channels compared with WT would not have been 

distinguished. However, the N4104K hRyR2 Ca2+ activation curve in this study appeared 

left-shifted, as found in this investigation (Jiang et al., 2004).  

 

As illustrated in Figures 4.12 and 4.18, the SCR events in cells expressing N4104K-

hRyR2 appeared much smaller and faster than those observed in HEK293 expressing WT 

(or AT) hRyR2. The kinetics of the SCR events differed significantly to WT, represented by 

a series of bar graphs in Figure 4.13. Expression of this mutant lowered the amplitude, 

duration and inter-SCR duration of the Ca2+ transients, which consequently increased their 

frequency (Figure 4.13). Furthermore, the rate of Ca2+ release and decay were also 

decreased. As established by measuring the Ca2+ transient amplitude following high-dose 

caffeine application, (which empties the ER store) the ER Ca2+ load in N4104K-hRyR2 

expressing cells was also significantly lowered and is indicative of Ca2+ leak through 

mutant RyR2 channels (Jiang et al., 2004, 2005, 2007). These findings are in line with the 

published data from Jiang et al (2004), where the N4104K mutant enhanced the 

propensity for SOICR. It was noted that N4104K hRyR2 channels in particular displayed 

greater signal variability ((noise), as shown in Figures 4.12 and 4.18), which has been 

suggested by George et al (2006) to represent conformational instability of the Ca2+ 

release channel.  

 

4.4.2.  Assessment of the effects that CSQ2 and/or JUN co-expression has on WT 

hRyR2 channel activity:  

 

When assessing the response of hRyR2 channels to CSQ2 co-expression, the 

stoichiometry of the luminal protein at the various [Ca2+] used in each experiment should 

be considered. Discussed previously in section 1.6.1, the oligomeric state of CSQ2 is 

thought to be [Ca2+]-dependent, with CSQ2 monomers predicted to self-associate to form 

dimers, tetramers and eventually polymers at higher luminal Ca2+ concentrations (>1 mM), 

where the protein becomes compacted and the Ca2+ binding capacity is enhanced (Park et 

al., 2003, 2004, Kim et al., 2007, Qin et al., 2008, Lee et al., 2012). In a study by Wei et al 

(2009b) however, even at 1 mM Ca2+ under physiological ionic strength, CSQ2 failed to 

form polymers (as assessed by chemical cross-linking), leading to suggestions by the 
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author that the cardiac isoform might not polymerise at all. This however does require 

further investigation.  

 

At low luminal [Ca2+] (<1mM), it is well documented that CSQ2 exists primarily as a 

monomer (Györke and Carnes, 2008, Murphy et al., 2011) or dimer (Park et al., 2003), 

which interacts with other luminal accessory proteins such as triadin and junctin to 

regulate RyR2 activity (Qin et al., 2008, Altschafl et al., 2011). Thus, monomeric CSQ2 (in 

association with JUN/TRD1) is thought to be responsible for regulating Ca2+ release, whilst 

CSQ2 polymers (if formed) store Ca2+ near the site of release (Qin et al., 2008). Although 

hypothesised in the literature, there is currently no published data demonstrating the ability 

of CSQ2 to regulate and bind RyR2 channels directly (in the absence of additional 

accessory proteins). Using a Ca2+ concentration range of 0-500!M for [3H] ryanodine 

binding experiments and in the presence of contaminant (~1-5 µM) Ca2+ in Co-IP 

investigations, CSQ2 was predicted to exist in monomeric/dimeric form, thereby retaining 

the ability to regulate/bind hRyR2 channels. As discussed further in Chapter 5, section 

5.3.4, reduction of CSQ2 binding to RyR2 was only observed at very high (i.e. 10mM) Ca2+ 

concentrations (Figure 4.11). The lack of effect of JUN and CSQ2 on the Ca2+ 

dependence of [3H] ryanodine binding in WT/mutant hRyR2 channels was therefore most 

likely due to the use of high ionic strength (1M KCl) conditions, rather than the use of an 

unsuitable [Ca2+] range altering CSQ2 conformation. In single-cell Ca2+ imaging 

investigations, transfected, Fluo-3 loaded cells were maintained in an extracellular Ca2+ 

concentration of 1.3mM. Within the ER, the dynamic changes in free luminal [Ca2+] during 

SCR could not be reliably measured, however, it was anticipated that CSQ2 remained as 

a monomer/dimer at a free luminal [Ca2+] <1mM, with the ability to interact and regulate 

RyR2 activity. Following analysis, this assumption was confirmed with the observation that 

CSQ2 imparted an inhibitory effect on SCR event parameters compared with hRyR2 

channels expressed alone (as discussed below in section 4.4.2.2 and sections 4.3.4-

4.3.6).   

 

4.4.2.1.  Ca2+ activation as measured by [3H] ryanodine binding:  

 

The Ca2+ dependence of [3H] ryanodine binding for WT hRyR2 channels did not appear to 

be altered by luminal accessory protein co-expression. As demonstrated in Figure 4.7, the 

Ca2+ activation curves generated using both the raw (left graphs) and normalised (right 

graphs) data appeared similar to those constructed for WT hRyR2 channels expressed 

alone and yielded EC50 values that were statistically comparable (A)-(C). The sharper 

slope evident in [3H] ryanodine binding curves when channels were co-expressed in the 

presence of CSQ2 could reflect a direct effect of the protein altering the cooperativity of 
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channel activation (i.e, affecting the population of hRyR2 channels opening). The effect of 

CSQ2 expression on [3H]-ryanodine binding has been explored previously, with both 

stimulatory (Kawasaki and Kasai, 1994) and inhibitory effects (Beard et al., 2002) being 

reported. Since no significant alterations in the Ca2+ dependence of hRyR2 channels (in 

terms of EC50) with CSQ2 co-expression were found in this investigation, it would be 

beneficial to examine the Ca2+-activation profile of hRyR2+CSQ2 and/or JUN further at the 

single channel level. JUN co-expressed alone with WT channels did seem to have a slight 

stimulatory effect on channel activity (Figure 4.7 (A), left graph), seen as a left-shift in the 

curve. However, the EC50 was not significantly different to WT hRyR2. Interestingly, an 

activatory role of JUN on RyR2 channel activity at lower Ca2+ concentrations has been 

reported in the literature (Altschafl et al., 2011 (Table 1.1)).  As tested by co-

immunoprecipitation (Figure 4.11), high salt conditions used in [3H] ryanodine binding 

assays were found to reduce the association of CSQ2 and JUN with hRyR2 channels. 

Although the difference was not calculated as statistically significant, it is possible that this 

reduction was enough to alter their functional effects. Imaging at a cellular level however, 

proved much more effective in detecting the effects of luminal protein co-expression.  

 

 4.4.2.2.  Single-cell Ca2+ imaging investigations:  

 

Co-expression of the luminal proteins with WT channels in HEK293 stable cell lines 

(section 4.2.2) were found to significantly alter the SCR parameters in Ca2+ imaging 

investigations (Figures 4.14 and 4.15). Although no effects on the SCR amplitude were 

exhibited, co-expression of all accessory protein combinations (CSQ2, JUN and 

CSQ2+JUN) with WT hRyR2 enhanced the duration of SCR events, whilst lowering the 

rate of Ca2+ release and decay. CSQ2 co-expression in particular (both alone and with 

JUN) seemed to have a profound inhibitory effect on WT hRyR2 function, where in addition 

to an increase in the duration of SCR, the time period in between each Ca2+ wave (the 

inter-SCR duration) was also significantly lengthened and the frequency of events reduced 

(Figure 4.15). This finding is consistent with the work of Györke et al (2004) where an 

inhibitory effect of CSQ2 on purified RyR2 channels at the single channel level was 

reported. However, channel inhibition was said to only occur in the presence of JUN and 

TRD1 (Györke et al., 2004). Studies of cardiac-specific CSQ2 overexpression in transgenic 

mice have also implicated an inhibitory role of the accessory protein, where impaired Ca2+ 

release was evident upon sarcolemmal depolarisation (Jones et al., 1998, Sato et al., 1998 

(Table 1.1)) and Ca2+ spark frequencies were drastically reduced (Jones et al., 1998). It 

was anticipated that the releasable Ca2+ store would be increased by WT hRyR2+CSQ2 

co-expression, as observed in CSQ2 overexpression studies (Jones et al., 1998, Sato et 

al., 1998). However, as shown in Figure 4.15, the ER Ca2+ content appeared to be 
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significantly lower in all cells expressing luminal proteins. However, a greater store 

capacity is evidenced by the fact that the SCR events in these cells exhibit a reproducibly 

longer duration. In regards to JUN co-expression, a decrease in the SR Ca2+ load has been 

previously observed in myocytes isolated from JUN-overexpressing mice, together with 

depressed relaxation kinetics of the Ca2+ transient (including a prolonged rate of Ca2+ 

decay as found in this investigation (Figure 4.15)), (Kirchhefer et al., 2006). These effects 

were attributed to JUN directly modifying RyR2 Ca2+ release to regulate the SR Ca2+ 

content (Kirchhefer et al., 2006). Furthermore, in human heart failure it has been 

suggested that diminished JUN expression may be a compensatory mechanism intended 

to raise Ca2+ levels within the SR (Yuan et al., 2007).   

 

 

4.4.3. Do mutant hRyR2s respond differently to luminal accessory protein co-

expression? 

 

When evaluating the response of mutant hRyR2 channels to luminal protein co-expression 

and comparing this data to the WT, it was important keep in mind the differences observed 

between the channels when expressed alone (4.4.1).  

 

4.4.3.1.  [3H] ryanodine binding investigations:  

 

Luminal accessory protein co-expression did not modify the enhanced [3H] ryanodine 

binding exhibited by A4556T hRyR2 channels expressed alone (Figure 4.8, non-

normalised data, left graphs) and the EC50 of each Ca2+ activation curve were comparable 

(Figure 4.8, right graphs). Similarly, the Ca2+ activation profile of mutant N4104K hRyR2 

channels, measured by [3H]-ryanodine binding, was unchanged by luminal accessory 

protein co-expression, as found in all other investigations. As discussed in section 4.4.2.1, 

the [3H] ryanodine-binding assay was not sensitive enough to pinpoint subtle differences 

imparted by CSQ2 and/or JUN co-expression (or could reflect altered protein-protein 

interactions caused by the use of high salt conditions, Figure 4.11).  

 

 4.4.3.2.  Measurement of SCR parameters by single-cell Ca2+ imaging:  

 

At the cellular level, differences in the response of mutant channels to CSQ2 and JUN 

association (compared to A4556T and WT hRyR2 alone) were detected as presented in 

Figure 4.17. In particular, the notable inhibitory effects of CSQ2 on the SCR parameters in 

cells expressing WT hRyR2 were not evident when co-expressed with A4556T channels, 

suggesting the mutant responded differently to CSQ2 association. Alternatively, this 
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difference could reflect disrupted association of CSQ2 with A4556T channels, which will 

be examined in Chapter 5. Interestingly, co-expression of A4556T channels with both 

accessory proteins (CSQ2+JUN) seemed to alter the SCR properties in a similar manner 

to WT channels, enhancing the duration of events, inter-SCR duration and causing a 

subsequent reduction in SCR event frequency, rate of Ca2+ release and decay (Figure 

4.17). Collectively, this suggests that the effects of CSQ2 on RyR2 were restored in the 

presence of JUN. Interestingly, in A4556T hRyR2 [3H] ryanodine binding experiments it 

was also noticed that CSQ2 and JUN co-expression restored the increased basal [3H] 

ryanodine binding seen at low [Ca2+] to WT levels (Figure 4.8, (C), left graph), although 

this was not a statistically significant effect. On the contrary, the ER Ca2+ load in 

A4556T+CSQ2+JUN expressing HEK293 cells appeared to be enhanced by luminal 

protein co-expression, which was the exact opposite to the effects observed in WT 

channels (Figures 4.15 and 4.17). Although it was first thought that the A4556T hRyR2 

mutation could be benign (discussed in section 4.4.1.1), the discrepancies in the response 

of the mutant (vs. WT) to luminal protein co-expression (observed in Ca2+ imaging studies) 

could reflect an effect on RyR2 activity after all, albeit because it cannot be regulated in 

the same way by luminal accessory proteins (notably CSQ2), rather than by a direct effect 

on channel gating. As discussed previously, HEK293 cells expressing N4104K hRyR2 

alone displayed an entirely different SCR profile to those expressing WT hRyR2 (Figures 

4.12 and 4.13), which therefore needed to be considered when assessing the response to 

luminal protein co-expression. With this in mind, the observed alterations in the SCR-event 

properties imparted by CSQ2 and/or JUN co-expression were surprisingly similar to those 

found in WT investigations. As demonstrated in Figure 4.19, expression of the luminal 

proteins (all combinations) with N4104K generated a significant increase in the SCR 

duration and a reduction in SCR-event frequency. The inhibitory effects of CSQ2 

(expressed alone and with JUN) exhibited in WT channels were also evident when 

expressed in combination with N4104K. In addition to the alterations aforementioned, co-

expression of CSQ2 with N4104K hRyR2 caused a prolongation of the inter-SCR duration. 

Unlike WT channels, the ER Ca2+ content in cells expressing N4104K was not significantly 

affected by luminal protein co-expression (Figure 4.19). This difference however could be 

a refection of the Ca2+ store itself, which appeared to be significantly lower in N4104K 

expressing HEK293 cells without luminal protein co-expression (Figure 4.13). 
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4.4.4. Concluding Remarks: 

 

Examining the spontaneous Ca2+ release kinetic properties in HEK293 cells appeared to 

be a much more efficient technique than [3H] ryanodine binding to detect small but notable 

changes in the response of hRyR2 channels to activating Ca2+, generated by luminal 

accessory protein co-expression. However, unlike [3H] ryanodine binding, direct Ca2+ 

activation could not be measured in these experiments. As highlighted in section 3.4.2, a 

limitation of using transient expression for [3H] ryanodine binding investigations was the 

possibility that mixed populations of WT/mutant hRyR2+luminal protein complexes could 

exist. Immunofluorescent staining however, demonstrated that most cells expressing 

hRyR2 were likely to also have CSQ2 and/or JUN co-expression, since much higher 

transfection efficiencies of the luminal proteins in comparison were achieved. Given our 

limited knowledge of the exact RyR2-JUN-CSQ2 stoichiometry in vivo (Terentyev et al., 

2006, Lee et al., 2012), it is difficult to establish precisely how such mixed populations 

could have affected the [3H] ryanodine binding data.  In particular, since the technique 

failed to generate any significant differences when WT hRyR2 channels were co-

expressed in the presence of CSQ2 and/or JUN. It is possible that without the 

physiologically relevant stoichiometry, the degree of hRyR2 channel regulation (whether it 

be stimulatory or inhibitory) would be reduced or even completely abolished.  

 

It is typically assumed that JUN binds at a stoichiometry of one JUN per RyR2 monomer 

(or 4 JUN per RyR2 tetramer), and subsequently binds CSQ2, anchoring it close to the 

site of Ca2+ release (Zhang et al., 1997, Terentyev et al., 2006). Further to simply acting as 

an anchoring protein, JUN has been suggested to also ‘sense’ changes in luminal [Ca2+] 

(Altschafl et al., 2011), (Table 1.2). Altschafl et al (2011) proposed that JUN might bind at 

two distinct sites within RyR2, the binding of which is governed according to the luminal 

[Ca2+] within the SR. In vivo, at low luminal Ca2+ (<1 mM), JUN was hypothesised to bind 

to only one RyR2 site, whilst its other binding site is occupied by CSQ2, preventing its 

binding to RyR2 (Altschafl et al., 2011). At low luminal Ca2+ (and in the absence of CSQ2), 

a stimulatory role of JUN on RyR2 gating was reported, an effect that is likely masked in 

the presence of CSQ2 (Altschafl et al., 2011). A small stimulatory effect was evident in [3H] 

ryanodine binding investigations of hRyR2 channels co-expressed with JUN only, as 

discussed in section 4.3.2.1, Figure 4.7. CSQ2+JUN and/or TRD1 (added together at the 

single channel level) were reported by Györke et al (2004) to have an inhibitory effect on 

hRyR2 channel activity. However, the single-cell Ca2+ imaging data carried out in this work 

(discussed further in section 4.3.4) revealed inhibitory effects of CSQ2 on hRyR2 activity 

both when expressed alone and in the presence of JUN, suggesting the precise 

stoichiometry in vivo needs to be examined in greater detail. As outlined in section 1.3, 
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cryo-EM analysis and discovery of CSQ2, JUN and TRD1 binding sites on RyR2 

channels, would facilitate this identification.  

 

In Ca2+ imaging studies, N4104K hRyR2 channels were considerably different to those 

observed in both WT and A4556T hRyR2-expressing cells. Thus, further highlighting how 

functional heterogeneity can exist between CPVT mutants (Thomas et al., 2004). The 

major differences in the response of WT and mutant hRyR2 channels to luminal protein 

co-expression were observed when the channels were expressed with each protein 

individually (CSQ2 or JUN).  However, mutant hRyR2 responded similarly to WT channels 

when co-expressed in the presence of both accessory proteins (hRyR2+CSQ2+JUN). All 

Ca2+ imaging data collected are summarised in the Appendix, Figure 7. Where apparent 

trends in the Ca2+ imaging data were evident, yet no statistically significant differences 

were detected, it is possible that an insufficient number of experiments were conducted. 

To test this idea, using Figure 4.17 (cells expressing A4556T hRyR2 in the 

absence/presence of luminal proteins) and assessment of the inter-SCR duration as an 

example, a post-hoc power analysis was performed on the data using G*Power 3 software 

(www.gpower.hhu.de). The power of the study was calculated according to the mean 

values and standard deviations obtained within each data set (A4556T hRyR2 only vs 

A4556ThRyR2+JUN and/or CSQ2). In those data where significant differences were 

identified, the study was considered to be highly powered (A4556T hRyR2 vs 

A4556T+JUN and vs A4556T+CSQ2+JUN) at  >99%; whilst data derived from cells 

expressing A4556T+CSQ2 (where no significance difference in inter-SCR duration to 

A4556T only was distinguished) was powered to 80%; which is still an accepted level of 

power for detecting differences between the specified data (Beck, 2013). It is therefore 

likely that the number of samples used for analysis were adequate to detect real 

differences. On the other hand, using the same data as an input for a priori sample size 

estimation (where the mean and standard deviation of each group are predicted before 

commencement of the study), it was estimated that a further 10 experiments in total (i.e, 5 

more per group (A4556T hRyR2 only and A4556T+CSQ2 compared) would be required to 

achieve a power of >95%. It is thus possible that undertaking these additional experiments 

may have revealed a statistical difference. In future experiments, finding the sample size 

necessary to achieve a high-powered investigation by use of a power calculation, could 

aid identification of statistically significant differences between datasets.  
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Chapter 5 
 

Protein-protein interactions of wild 
type and mutant (A4556T and 
N4104K) hRyR2 with luminal 

accessory proteins CSQ2 and JUN 
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5.1 Introduction: 
 

5.1.1. Interactions of calsequestrin, junctin and the cardiac ryanodine receptor:  
 
Under normal circumstances, intracellular Ca2+ handling within the myocardium relies on 

an intricate interplay between the Ca2+ release channel, RyR2, and its associated 

accessory proteins, which localise to the junctional SR membrane and form a multimeric 

signalling complex that orchestrates Ca2+ release (Guo et al., 1996, Bers, 2004). As 

discussed further in previous chapters (section 4.1.1), CSQ2 and JUN are thought to form 

part of a luminal Ca2+ sensor, together with the luminal domains of RyR2 and TRD1 

(Zhang et al., 2014; TRD1 discussed in section 1.6.3). However, the exact protein-protein 

interactions underlying assembly of this quaternary complex remain undefined. In 

particular, although CSQ2 is one of the better characterised RyR2 accessory proteins 

(Slupsky et al., 1987, Kim et al., 2007, Knollmann et al., 2009), direct evidence of whether 

CSQ2 interacts directly with hRyR2 channels or indirectly through its anchoring to JUN 

and/or TRD remains to be properly established (Terentyev et al., 2006, Dulhunty et al., 

2012, Chen et al., 2014). This chapter will first describe our current knowledge of the 

protein-protein interactions that take place between CSQ2, JUN and RyR2 in the jSR 

lumen, prior to interaction studies with mutant and WT hRyR2 carried out in this 

investigation.   

 

5.1.2. Evidence of a direct binding interaction between cardiac JUN and CSQ2:  

            

            Using an 125I-calsequestrin filter overlay assay, Mitchell et al (1988) first identified JUN as 

the predominant CSQ2-binding protein present in jSR membranes of dog cardiac muscle, 

leading to the idea that this transmembrane protein was the major physiological anchor of 

CSQ2, holding it within close proximity to RyR2 channels (Mitchell et al., 1988, Beard et 

al., 2004). However, following further investigations, it is now generally accepted that both 

TRD1 and JUN are likely to mediate the interaction between CSQ2 and RyR2 (Zhang et 

al., 1997, Györke et al., 2004), as highlighted in Chapter 1, Tables 1.2-1.3. With emphasis 

on the role of JUN, Zhang et al (1997) used several different techniques to examine the 

binding interactions of the protein with other jSR components important for Ca2+ release, 

including cardiac CSQ2 and RyR2 (Zhang et al., 1997). Evidence that JUN binds directly 

to CSQ2 was demonstrated by immunoprecipitation (IP), where endogenous JUN and 

CSQ2 were immunoprecipitated from detergent-solubilised dog cardiac jSR vesicles by 

incubation with #-CSQ2 (JUN detection) and #-JUN (CSQ2 detection) antibodies, 

respectively. Increasing [Ca2+] disrupted the binding interaction between CSQ2 and JUN, 

with half-maximal inhibition evident between 0.6-0.8 mM CaCl2 (Zhang et al., 1997). The 
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CSQ2-binding domain of JUN was localised to the luminal region of the molecule, 

determined by CSQ2-affinity chromatography with Glutathione S-transferase (GST)-fusion 

proteins corresponding to the cytoplasmic/luminal domains of JUN conjugated to affinity 

beads (Zhang et al., 1997). In contrast to IP experiments, the binding interaction between 

the two proteins remained significant at mM Ca2+ concentrations. Analysis of the JUN 

fusion protein, identified the highly charged “KEKE motif” (section 1.6.3) at the intraluminal 

region (amino acid residues 46-210) of the protein as the site that interacts with the 

aspartyl-rich region of CSQ2, and proposed that these electrostatic interactions stabilise 

protein binding (Zhang et al., 1997, Shin et al., 2000, Pritchard and Kranias, 2009). A later 

investigation by Kobayashi and co-workers however, revealed that JUN does not appear 

to have a discrete CSQ2 binding domain, since deletions in several KEKE motifs along the 

C-terminal tail of the protein significantly reduced CSQ2 binding (Kobayashi et al 2000). 

Furthermore, the aspartyl-rich region of CSQ2 has been suggested as a major Ca2+ 

binding motif, where elevations in [Ca2+] could induce a conformational change in the 

protein structure and diminish its interaction with JUN and/or TRD1 or the proteins may 

compete for the Ca2+ binding sites (Shin et al., 2000). To further examine the role of JUN 

in anchoring CSQ2 within close contact to RyR2 channels (Zhang et al., 1997, Guo et al., 

1996), the structural effects of JUN overexpression have been investigated (Zhang et al., 

2001, Tijskens et al., 2003). Cardiomyocytes isolated from transgenic mice, 

overexpressing cardiac JUN exhibited changes in cellular morphology, such as a 

narrowing of the junctional SR cisternae and compaction of its content (Zhang et al., 

2001), whilst the opposite was seen in an earlier study of CSQ2 overexpression, where 

SR cisternae were greatly enlarged and their content displayed a dispersed appearance 

(Jones et al., 1998). Complementing these findings, Tijskens et al described that although 

JUN was not necessary for targeting of CSQ2 to the terminal cisternae, enhanced 

expression of the protein produced a strong-ordering effect and tighter clustering of CSQ2 

at jSR sites, condensing the Ca2+ binding protein at the jSR membrane within close 

proximity to RyR2 channels (Tijskens et al., 2003). These findings support the view that 

JUN, either directly or indirectly (via an effect on jSR structure) has an effect on the 

functional coupling between CSQ2 and RyR2.  
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5.1.3. Evidence of cardiac JUN association with RyR2: 

 

Zhang et al (1997) also observed a direct binding interaction between cardiac JUN and 

RyR2, demonstrated by IP investigations and [3H] ryanodine binding. Dog JUN was first 

immunoprecipitated from detergent-solubilised jSR vesicles using a JUN monoclonal 

antibody (mouse 5D8) covalently coupled to protein A agarose beads. Once obtained, the 

resultant immunoprecipitate was subsequently incubated with a RyR2 specific antibody 

that detected a substantial amount of RyR2 protein adsorbed to the JUN-bound beads 

(Zhang et al., 1997). Similar to CSQ2, the RyR2 interacting domain of JUN was located to 

the luminal region, identified by [3H] ryanodine binding (established by measuring the 

percentage of purified RyR2 channels precipitated from fusion protein affinity-beads), 

(Zhang et al., 1997). To confirm direct binding between the two proteins without influence 

from other jSR components, a GST fusion protein corresponding to the luminal domain of 

JUN was shown to interact with purified RyR2 channels in a Ca2+-independent manner. 

Following predictions that a single binding site at intraluminal loop II of the RyR1 protein is 

responsible for binding the KEKE-motif of TRD (Goonasekera et al., 2007), Altschafl et al 

in 2011, examined if the KEKE-motif of JUN also binds specifically to the intraluminal loop 

II of RyR2 (Altschafl et al., 2011). Using recombinant JUN and RyR2 polypeptides 

designed to different intraluminal binding regions of the two proteins, the group 

demonstrated biochemically (via a blot overlay assay) that at least two distinct regions of 

JUN are capable of interacting with RyR2 channels, one of which contained the 

aforementioned KEKE-motif (Altschafl et al in 2011). It was suggested that the N-proximal 

intraluminal domain of JUN interacts with intraluminal loop I of RyR2 (residues 4520-

4553), whilst the KEKE-motif of JUN interacts with RyR2 at intraluminal loop II (residues 

4789-4846), (Altschafl et al., 2011). The existence of multiple protein-protein interactions 

between the two proteins strengthened the observations reported by the group that JUN 

plays a dual role in regulating RyR2 activity (as highlighted in Table 1.2.), (Altschafl et al in 

2011) and does not merely act as a linker between CSQ2 and the Ca2+ release channel. 
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5.1.4. Does CSQ2 associate directly with RyR2 channels?  
 

CSQ2 is generally considered to interact with the RyR2 Ca2+ release channel via its 

association with JUN and/or TRD1 (Györke et al., 2004, Beard et al., 2009). However, 

several groups have also proposed that CSQ2 may bind to RyR2 channels themselves 

(Szegedi et al., 1999, Wei et al., 2009b, Murray and Ohlendieck, 1998), but direct 

evidence of such an interaction and its significance to myocardial function has not been 

determined (Murray and Ohlendieck, 1998, Terentyev et al., 2006, Chen et al., 2014). 

Currently, only investigations of protein-protein interactions between the skeletal isoforms 

of the two proteins have been reported. For example, Herzog et al (2000) used surface 

plasmon resonance (SPR) to prove a high affinity molecular interaction between CSQ1 

and RyR1. In addition, Murray and Ohlendieck (1998) observed a complex formation 

between CSQ1 and RyR1 in fast- and slow-twitch muscle rabbit skeletal muscle. 

Furthermore, lipid bilayer experiments have demonstrated that purified RyR1 (absent of 

TRD1, JUN and CSQ2 associations) are activated by exogenous CSQ1 added back to the 

reconstituted channel, providing further evidence that more than one mechanism of CSQ1 

association with RyR channels may exist (Beard et al., 2009). Other unresolved questions 

include whether CSQ2 can bind directly to RyR2 in the presence of JUN and/or TRD, or if 

the anchoring proteins prevent direct binding of CSQ2 to the Ca2+ release channel. It has 

been hypothesised that the Ca2+ binding protein binds directly to RyR2 in both the 

presence and absence of JUN and/or TRD1, the response of the channel may be altered 

from activation to inhibition when bound to the anchoring proteins (Györke et al., 2004, 

Beard et al., 2004, Wei et al., 2009a).  

 

5.1.5. Defective protein-protein interactions contribute to the pathophysiology of 

CPVT 

 

As discussed previously in Chapter 1 sections 1.7-1.8.4, mutations in RyR2 and CSQ2 are 

linked to CPVT, where alterations in the two proteins generate significant Ca2+ handling 

defects that can lead to SCD (Laitinen et al., 2003, Jiang et al., 2004; Song et al., 2007; 

Venetucci et al., 2008). Abnormal expression of JUN is also associated with CPVT 

(Kirchhof et al., 2007). Taking into consideration the numerous accessory proteins that 

have been proposed to interact with the hRyR2 Ca2+ release channel, it is unsurprising 

that defective protein-protein interactions are suggested as a contributing mechanism of 

CPVT (Wehrens et al., 2003, Thomas et al., 2007). For example, a CPVT-linked mutation, 

R2474S, was found by Xu et al (2010) to disrupt regulation of RyR2 interdomain 

interactions; and as a consequence reduced the binding affinity of the accessory protein 

calmodulin (section 1.5.3). Furthermore, a regulatory protein shown by some groups to 
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stabilise the closed state of RyR2 channels, FKBP12.6 (section 1.5.1), has been 

suggested to dissociate from the channels during heart failure (Marx et al., 2000, Blayney 

et al., 2010). Furthermore, the underlying mechanism responsible for the deleterious 

effects of a CPVT2-linked CSQ2 mutation, R33Q, was ascribed to a disruption in the 

protein-protein interactions between CSQ2 and the RyR2 Ca2+ release complex; rather 

than a defective Ca2+ binding capacity which had been reported for other CSQ2 mutants 

(Terentyev et al., 2006, Rizzi et al., 2008, Venetucci and Eisner, 2008). Valle et al (2014) 

recently described how a knock-in mouse model of CSQ2-R33Q displayed not only a 

significant reduction in CSQ2-R33Q expression in early development, but also down-

regulation of JUN and TRD1, and morphological changes of the jSR, all of which may 

culminate to promote diastolic Ca2+ release from the SR (Valle et al., 2014, Knollmann et 

al., 2006). Given the proposed roles of CSQ2 and JUN in regulating the response of 

hRyR2 channels to luminal Ca2+ (Györke et al., 2004, Fan et al., 2008, Altschafl et al., 

2011) and since mutations in CSQ2 appear to alter its structure such that it can no longer 

associate with the channel (either directly or via its association with JUN and/or TRD1), it 

is plausible that CPVT-linked RyR2 mutations (in particular those located at the luminal 

domain of the channel (e.g., A4556T) could affect the interaction of these accessory 

proteins; a concept that will be investigated in this chapter. 

 

5.1.6. Chapter Aims  

 

This chapter examines the protein-protein interaction between WT/mutant hRyR2 and the 

jSR luminal accessory proteins, CSQ2 and JUN. The transfection efficiencies of co-

expressed CSQ2/JUN, and their intracellular trafficking, will be assessed using 

immunofluorescent detection. In addition, fluorescent labelling will be used to measure the 

degree of co-localisation between the luminal accessory proteins and WT/mutant hRyR2, 

where any differences in mutant protein interaction will be indicated. To specifically 

establish if defective interaction of the luminal proteins with mutant hRyR2 may be a 

contributing factor in the pathophysiology of CPVT, co-immunoprecipitation (Co-IP) 

experiments will also be carried out. Using this technique, the ability of CSQ2 and JUN to 

directly bind to hRyR2 channels (in the absence of other interacting proteins) will be 

assessed, before determining whether mutant hRyR2 channels associate differently with 

CSQ2 and/or JUN in situ. 
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5.2 Methods: 
 

5.2.1. Immunofluorescent detection of hRyR2 and co-localisation with luminal     

accessory proteins CSQ2 and JUN:  

 

HEK293 cells co-expressing hRyR2 and either CSQ or JUN (or both in combination) were 

fixed in 4% paraformaldehyde and probed with #-CSQ2 or #-JUN primary and Alexa® Fluor 

594 labelled secondary antibodies, as specified in Chapter 2, section 2.4.3.6. WT and 

mutant hRyR2 expression were detected by their eGFP epitope tag. The transfection 

efficiencies of CSQ2 and JUN within a transfected HEK293 cell population were calculated 

by imaging the cells using a Zeiss fluorescence microscope. To visualise the co-

localisation of WT/mutant hRyR2 with CSQ2 or JUN, the cells were imaged using an SP5 

confocal microscope (Leica) with an oil immersion, x63 objective. Alexa® -594 fluorescence 

was excited at 590nm with a helium-neon laser and was detected over a 617nm±33 range, 

whilst eGFP fluorescence was excited with an argon laser (peak excitation = 488nm) and 

detection of emission at 520nm±28. As described by George et al (2003a), high resolution 

overlay images of the co-incident eGFP and Alexa® Fluor pixels were captured using Leica 

Microsystems LAS-AF software, such that the “percentage overlap” of co-incident pixels 

(corresponding to eGFP-hRyR2 and CSQ2/JUN expression, respectively) could be 

calculated. Adobe Photoshop was used to quantify the percentage of eGFP (green) pixels 

that were directly co-incident with Alexa®-594 (red) pixels, which appeared as yellow pixels 

when directly overlaid (or “merged”) with each other  (George et al., 2003a).  

 

5.2.2. Co-Immunoprecipitation of CSQ2 and JUN by WT and mutant hRyR2: 

 

Mixed membrane preparations were generated from transfected HEK293 cells (section 

2.4.3.1) expressing WT or mutant hRyR2, in combination with either JUN or CSQ2 alone, 

or co-expression of both accessory proteins (JUN+CSQ2). As demonstrated in Figure 5.1 

(A-C), all samples were first standardised for hRyR2 expression by Western blotting (A) 

and densitometric analysis (B), such that comparable amounts of WT and mutant hRyR2 

protein were used in all Co-IP experiments (C). Using the !MACS" system from Miltenyi 

Biotec (Figure 2.5), detergent-solubilised ER membranes (2 mg/ml) were incubated with 

50!l anti-GFP magnetic microbeads to covalently couple the eGFP-tagged hRyR2 protein 

and the immunoprecipitated material captured using !MACS" columns. Details of the Co-

IP protocol are described in Chapter 2, section 2.4.3.6, together with those for SDS-PAGE 

and Western blotting (sections 2.4.3.3-2.4.3.4) which were used to visualise co-

immunoprecipitates eluted from the !MACS" columns. These were subsequently 
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analysed by densitometry. This protocol was also used to examine the direct association of 

CSQ2 with JUN, where detergent-solubilised microsomal membranes were captured using 

!MAC" Protein A microbeads (Miltenyi Biotec) labelled by incubation with "-CSQ2  

antibody and the resultant immunoprecipitate probed via Western blot analysis for JUN 

detection.  
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Figure 5.1: All mutant hRyR2 samples were standardised to WT hRyR2 expression before 
use in Co-IP investigations:  
 
(A) Illustrates an example of a Western blot of hRyR2 expression in mixed membranes co-
expressing WT/mutant hRyR2 and CSQ2 only (NK= N4104KhRyR2, AT=A4556ThRyR2).  
 
(B) Represented as a bar graph, to normalise for hRyR2 expression densitometric analysis was 
carried out on the Western blot signals obtained in (A).  
 
(C) Following densitometry and before use, mutant hRyR2 test samples were standardised 
against WT for hRyR2 expression, such that equivalent amounts of each were used in the Co-IP 
experiment.  
 
(D) Detection of any non-specific CSQ2/JUN binding to the !MACS" columns was established 
in preliminary Co-IPs. Shown here is an example of JUN detection by Western blot, where in 
solubilised (2mg/ml) mixed membranes expressing JUN only, no JUN expression was evident 
following elution from anti-GFP microbeads. In contrast, JUN was detected in immunopreciptates 
co-expressing the luminal protein with WT/mutant hRyR2. JUN detection in unsolubilised 
material expressing JUN only (JUN Unsol) is also demonstrated.  
 
The preparatory stages described in (A)-(D) were carried out for all test samples before use in 
Co-IP experiments.  
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5.3 Results: 
 

5.3.1. Determination of CSQ2 and JUN transfection efficiencies by 

immunofluorescent labelling:  

 

Alexa® Fluor-594 labelling enabled the transfection efficiencies of untagged CSQ2 and 

JUN constructs to be calculated. In each field of view analysed, the accessory proteins 

and eGFP-hRyR2 were expressed to a high level, and predominantly within the same cells 

of a population (assessed by the % of cells which appeared both green and red, indicative 

of hRyR2 and CSQ2/JUN expression, respectively). Co-expression of WT or mutant 

hRyR2 with the accessory proteins yielded similar transfection efficiencies as illustrated in 

Figure 5.2 (n=4 populations counted for each expressed protein). When the transfection 

efficiencies of CSQ2 and hRyR2 were assessed, the percentage of cells which appeared 

both green and red were as follows: WT: 98±1%, A4556T: 97±2% and N4104K: 97±1%. 

Assessment of JUN and hRyR2 transfection efficiencies yielded similar results (WT: 

98±2%, A4556T: 96±1% and N4104K: 98±1%), suggesting a high degree of luminal 

protein co-expression. An example of JUN and CSQ2 staining in transfected HEK293 

populations co-expressing WT hRyR2+CSQ2+JUN is shown in Figure 5.3. To detect any 

non-specific staining, two controls were used: (1) transfected HEK293 cells treated with 

the Alexa® Fluor-594 secondary antibodies only and (2) untransfected HEK293 cells 

treated with both CSQ2/JUN primary and Alexa® Fluor-594 secondary antibodies (Figure 

5.3). When imaging the cells by confocal microscopy, the negative controls were used to 

adjust the photomultiplier tube (PMT) voltage gain (red), such that the cells were imaged 

at a level where no non-specific staining could be identified.  
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Figure 5.2: Comparable transfection efficiencies of HEK293 cell populations 
(n=4) expressing WT/mutant hRyR2, CSQ2 and JUN  
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Figure 5.3: Imaging of CSQ2 and JUN co-expression with eGFP-hRyR2 in HEK293 
cell populations. Typical fields of view of cells imaged at 10x magnification are shown, 
taken using a Zeiss fluorescent microscope. Top left panels represent brightfield images 
of the transfected cells transiently expressing WT hRyR2, JUN and CSQ2. Top right 
panels display images of (A) CSQ2 detection and (B) JUN detection, following labelling 
of the accessory proteins with a red fluorescent secondary antibody. Images of eGFP 
detection are shown in the bottom left panels. Bottom right panels show immunostaining 
controls. (A) untransfected HEK293 cells were treated with the same primary and 
secondary antibodies to ensure no non-specific (background) binding was detected 
(cells shown were treated with anti-CSQ2 and Alexa®-594 anti-rabbit) and (B) 
transfected cells were treated with secondary antibodies (cells shown were treated with 
Alexa®-594 anti-mouse). As illustrated, only very low background fluorescence was 
evident. 
 

(A) 

(B) 

        150 µm 

        150 µm 

        150 µm 

        150 µm 
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5.3.2. Evidence of greater CSQ2 condensation with JUN co-expression: 

 

To ensure that any observed functional consequences of luminal protein or mutant RyR2 

co-expression was not caused by protein mis-trafficking, immunofluorescence analysis was 

first used to confirm that all co-expressed recombinant proteins were correctly localised 

within HEK293 cells (Chapter 3, Figure 3.9), where the ER is thought to be analogous to 

the junctional SR of cardiac muscle (Milstein et al., 2009; Knollmann et al., 2010). 

Illustrated in Figure 3.9, hRyR2, JUN and CSQ2 signals could be detected throughout the 

ER of the transfected HEK293 cells, both surrounding the nucleus and extending towards 

the central part of the cell. Cardiac CSQ2 has previously been shown to localise primarily 

to proximal ER compartments in non-muscle cells (Rossi and Sorrentino 2002, Houle et al., 

2006), whilst using electrospray ionisation mass spectrometry it has been demonstrated 

that in HEK293 cells, CSQ2 displays a glycan structure characteristic of an endoplasmic 

reticulum-localised glycoprotein (O’Brian et al., 2002).  

 

Consistent with these observations, most CSQ2 staining was identified in proximal ER 

regions (i.e., through the body of the cell but not immediately adjacent to the nucleus), 

however interestingly, more intense staining in the peri-nuclear membrane (i.e., adjacent to 

the nucleus) was visualised when CSQ2 was expressed in the presence of JUN. The 

brighter fluorescence signals corresponding to CSQ2 in this region are demonstrated in 

Figure 5.4: (A) WThRyR2+CSQ2+JUN, (B) N4104KhRyR2+CSQ2+JUN and (C) 

A4556ThRyR2+CSQ2+JUN. In HEK293 imaged with hRyR2+CSQ2+JUN co-expression, 

CSQ2 staining appeared brighter in 68% of cells with WThRyR2 expression, 75% of 

N4104KhRyR2 and 71% of A4456ThRyR2. In contrast, in cells expressing hRyR2+CSQ2 

only, brighter staining in the peri-nuclear membrane was only evident in 20% of cells with 

WThRyR2 expression, 30% of N4104KhRyR2 and 25% of A4456ThRyR2.  

 

Since CSQ2 does not contain any known ER targeting sequences such as the C-terminal 

KDEL tetrapeptide found in other resident ER proteins (such as calreticulin (Sönnichsen et 

al., 1994)), investigations into the molecular mechanism(s) responsible for retaining the 

Ca2+ binding protein in the junctional SR is a popular subject of current research 

(Knollmann et al., 2010; McFarland et al., 2010; Guo et al., 2012). As highlighted in Figure 

5.4, co-expression of JUN with CSQ2 seemed to cause a tighter condensing of the luminal 

protein within the ER, and thus indicates JUN binding could be an important factor involved 

in CSQ2 ER/SR retention. Consistent with this suggestion, in cardiomyocytes isolated from 

transgenic mice with overexpression of both CSQ2 and JUN, CSQ2 was found to be 

packed within close proximity to the SR membrane, whilst when expressed alone the 

protein displayed a more diffuse disposition (Tijskens et al., 2003). In this investigation, the 
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authors concluded that although JUN was not necessary for CSQ2 targeting to the terminal 

cisternae, JUN plays a significant role in retaining CSQ2 within the jSR lumen of cardiac 

muscle and that the typical SR “phenotype” is governed by expression of both luminal 

proteins (Tijskens et al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Evidence of CSQ2 condensation at the peri-nuclear region in 
imaged HEK293 cells: When co-expressed in the presence of JUN, CSQ2 staining 
appeared brighter within the peri-nuclear region of HEK293 cells (highlighted with a 
dashed box in (A)). As discussed in section 5.3.2, this brighter staining was evident 
in a much larger percentage of cells co-expressing CSQ2+JUN, compared with 
those expressing CSQ2 only; thus suggesting JUN could be condensing CSQ2 
within this region. Cells expressing WThRyR2 (A), N4104K hRyR2 (B) and A4556T 
hRyR2 (C) in the presence of the luminal accessory proteins are shown.  
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5.3.3. Immunofluorescence co-localisation studies to examine the interaction of WT 

and mutant hRyR2 with CSQ2 and JUN: 

 

Fluorescence labelling of hRyR2, JUN and CSQ2 (using an epitope tag or antibody 

labelling) enabled the degree of co-localisation between the recombinant proteins to be 

assessed. The extent of Alexa®-594 antibody (CSQ2/JUN) and eGFP (hRyR2) co-

localisation was quantified as the percentage of green pixels (eGFP) that were directly co-

incident with Alexa®-594 pixels (red) within a chosen image, which when merged (co-

incident) were presented as yellow pixels, as demonstrated in Figure 5.5 and 5.6 (right 

panels, (i) in A and B). Data (mean ± S.E.M) were obtained from the analysis of 8-12 

images in each instance and statistical differences detected using a Student’s t-test 

(GraphPad Prism).  No statistical differences were identified using ANOVA with a Tukey-

Kramer post-test. As suggested in the GraphPad Prism handbook (graphpad.com) this 

may have been due to the conservative nature of this post-test, which can result in subtle, 

but significant differences in the data being undetected. The findings are represented in 

Figures 5.5 and 5.6 as a series of bar graphs A and B, (ii).   

 

Figure 5.5 illustrates hRyR2 and CSQ2 detection, where overlay images of individual cells 

co-expressing WT/mutant hRyR2 with CSQ2 alone (A), (i) or in the presence of JUN (B), (i) 

are shown. N4104K hRyR2 appeared to co-localise with CSQ2 to a similar extent as WT 

hRyR2 channels (ii), in cells expressing CSQ2 alone (A): N4104K = 84% co-incident pixels 

± 3.0 vs. WT hRyR2 = 93.6% co-incident pixels ± 2.6, and with JUN co-expression (B): 

N4104K = 85% co-incident pixels ± 6.75 vs. WThRyR2 = 93% co-incident pixels ± 1.46. In 

cells expressing A4556T hRyR2 however, a significant reduction in the co-localisation of 

CSQ2 was evident, both when expressed alone with the Ca2+ release channel (A), (ii), 

(81% co-incident pixels ± 2.8) and in combination with JUN (B), (ii),  (80% co-incident 

pixels ± 3.0). Figure 5.6 demonstrates the detection of hRyR2 and JUN. Overlay images of 

individual cells co-expressing WT/mutant hRyR2 with JUN alone and in the presence of 

CSQ2 are shown in A, (i) and B, (i), respectively. When JUN was co-expressed alone with 

hRyR2 channels, no differences in its co-localisation with hRyR2 mutants were identified 

and a high degree of eGFP and Alexa® 594 co-localisation was evident in all cells imaged: 

WThRyR2+JUN only = 90%± 2.15, A4456T+JUN =86%± 4.0 and N4104K+JUN = 85%± 

6.75 co-incident pixels. In contrast, in the presence of both luminal proteins (CSQ2+JUN), 

JUN co-localisation appeared to be significantly reduced when co-expressed with A4556T 

hRyR2 channels B, (ii): A4556T = 79% co-incident pixels ± 6.0 vs. WT hRyR2 = 98% co-

incident pixels ± 0.89). As with CSQ2, no difference in the co-localisation of JUN with 

N4104K hRyR2 channels was evident (90% co-incident pixels ± 5.04, (B), (ii)).  
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To summarise, using immunofluorescence analysis, the A4556T hRyR2 mutation 

appeared to significantly reduce binding of CSQ2 in both the presence/absence of cardiac 

JUN. In addition, a decrease in JUN binding to this mutant was also evident, but was only 

calculated as significantly different in cells with CSQ2 co-expression (hRyR2+CSQ2+JUN). 

As discussed in the next section (5.3.4), following these observations, co-

immunoprecipitation experiments were carried out to closer examine the association of 

CSQ2 and JUN with WT/mutant hRyR2. 

 

 

Figure 5.5: Evidence of reduced CSQ2 binding to the A4556T hRyR2 mutation by 
immunofluorescent co-localisation: The top panels illustrate high-resolution images 
of transfected cells with detection of: eGFP-hRyR2 expression identified as green pixels 
(left images), CSQ2/JUN detection identified as red pixels (middle images) and a merge 
of the two (right images), which appear as yellow pixels and used to assess the degree 
of co-localisation. Immunofluorescent detection of CSQ2 in cells transfected with (A) 
hRyR2+CSQ2 only and (B) hRyR2+CSQ2+JUN are shown. The resultant pixel counting 
data (presented as the mean % co-incident pixels ± S.E.M) is represented in (A) and 
(B), (ii) as bar graphs, where 8-12 images in each instance were counted and any 
significant differences detected using a Student’s t-test (GraphPad Prism), where * = 
p<0.05 (compared with WT hRyR2+CSQ2 (A) (ii) or CSQ2+JUN (B) (ii), respectively). 
Co-localisation of CSQ2 appeared significantly reduced when co-expressed with 
A4556T mutant channels.  
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Figure 5.6: Evidence of reduced JUN binding to the A4556T hRyR2 mutation by 
immunofluorescent co-localisation: Top panels illustrate high-resolution images of 
transfected cells with detection of: eGFP-hRyR2 expression identified as green pixels (left 
images), CSQ2/JUN detection identified as red pixels (middle images) and a merge of the two 
(right images), which appeared as yellow pixels and was used to assess the degree of co-
localisation. Immunofluorescent detection of JUN in cells transfected with (A) hRyR2+JUN 
only and (B) hRyR2+CSQ2+JUN are demonstrated. The resultant pixel counting data 
(presented as the mean % co-incident pixels ± S.E.M) is represented in the bottom panels (A) 
and (B), (ii) as bar graphs, where 8-12 images in each instance were counted and any 
significant differences detected using a Student’s t-test (* = p<0.05). Compared with 
WThRyR2, co-localisation of JUN appeared significantly reduced with the A4556T mutant, but 
only when co-expressed in the presence of CSQ2 (B), (ii).   
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5.3.4. Assessment of protein-protein interactions between hRyR2 and the luminal 

accessory proteins using co-immunoprecipitation:  

 

A series of Co-IP experiments were carried out to further examine the association of WT 

and mutant hRyR2 with CSQ2 and JUN (individually and in combination (CSQ2+JUN)). 

The aim of using this technique was not only to assess the ability of each luminal 

accessory protein to directly interact with hRyR2, but also to study the effect hRyR2 

mutation may have on the ability of CSQ2 and/or JUN to bind with the Ca2+ release 

channel. In addition, although previously published by Zhang et al (1997) Co-IP was used 

to demonstrate a direct protein-protein interaction between recombinant CSQ2 and JUN in 

this investigation for completeness.   

 

Proteins captured by !MACS" columns (Figure 2.5), were eluted from anti-GFP 

microbeads (coupled to eGFP-hRyR2) and resolved by SDS-PAGE. Bound proteins were 

subsequently detected by Western blot analysis. Figure 5.7 illustrates two examples of 

Western blot detection, with protein bands corresponding to co-immunoprecipitated CSQ2 

and JUN shown in A (i) and (ii), respectively. In order to normalise the signal from the 

eluate (solubilised material) for expression of the luminal protein of interest, unsolubilised 

mixed membranes (50!g) were loaded and resolved alongside the corresponding 

experimental samples (as shown in Figure 5.7, A (i) and (ii)). Densitometric analysis was 

used to assess the signals obtained from the immunoprecipitates, where an n=5 blots were 

analysed for each mixed membrane sample tested, i.e., WT/mutant hRyR2 co-expressing 

CSQ2 and/or JUN.  

 

Interestingly, Co-IP investigations demonstrated that human cardiac muscle CSQ2 could 

directly interact with hRyR2 channels in the absence (Figure 5.7 (A), (i)) of other binding 

proteins, namely cardiac JUN in this project. To our knowledge, this is the first biochemical 

evidence to show a direct interaction of the Ca2+ binding protein with hRyR2. In the 

presence of JUN, CSQ2 was also found to be immunoprecipitated from hRyR2 channels. 

Likewise, a direct interaction of JUN with hRyR2 channels was seen in the presence 

(Figure 5.7 (A), (ii)) and absence of CSQ2 co-expression. Represented in Figure 5.7 (B), 

(i)-(iv) as a series of bar graphs, densitometric analysis of Western blot signals revealed 

that A4556T and N4104K hRyR2 channels appear to associate with CSQ2 and JUN to the 

same extent as WT, suggesting that these particular mutants do not alter the protein-

protein interactions between the luminal accessory proteins and hRyR2.   
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Although the focus in this investigation was to examine the binding of the luminal proteins 

to hRyR2 channels, further Co-IP investigations were completed to establish if CSQ2 and 

JUN interact directly with each other (as proposed by Zhang et al., 1997). Still using the 

!MACS" system, detergent-solubilised hRyR2+CSQ2+JUN mixed membranes (previously 

standardised for hRyR2 expression, as demonstrated in Figure 5.1) were instead 

incubated with !MACS" Protein A microbeads labelled with "-CSQ2 antibody (section 

2.4.3.6). As illustrated in Figure 5.8, to detect the presence of JUN in the 

immunoprecipitates, the collected eluates were resolved by SDS-PAGE and detection 

achieved by Western blot analysis. Since the primary aim of this investigation was to 

examine the interaction of CSQ2 and JUN with hRyR2 channels, densitometric analysis 

was not carried out the Western blot signals that examined the direct association between 

CSQ2 and JUN. However, JUN was successfully immunoprecipitated from solubilised 

hRyR2+CSQ2+JUN-expressing membranes by "-CSQ2 labelled microbeads (Figure 5.8), 

indicating a direct binding interaction between the luminal accessory proteins.  
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Figure 5.7: Co-immunoprecipitation demonstrates that mutation does not alter the 
interaction of CSQ2 or JUN with hRyR2: Examples of Western blot signals obtained 
from the detection of CSQ2 or JUN expression in captured immunoprecipitates are shown 
in (A) i and ii, respectively. Detection of CSQ2 in solubilised mixed membranes 
expressing hRyR2+CSQ2 only demonstrate that the luminal protein can bind directly to 
hRyR2 channels in the absence of other interacting proteins ((A),i). Unsolubilised material 
was resolved and detected alongside the experimental samples, such that the signals 
obtained in the eluate could be normalised for CSQ2/JUN expression by densitometry. 
Mutant hRyR2 channels were found to associate with CSQ2 and JUN to the same extent 
as WThRyR2 channels, as represented here as a series of bar graphs (B), i-iv. An n=5 
blots were analysed for each Co-IP study of CSQ2 or JUN immunoprecipitation when 
expressed alone or in combination (CSQ2+JUN) with hRyR2 and no statistically 
significant difference in WT/mutant RyR2 binding of luminal proteins was evident 
(assessed using one-way ANOVA and Tukey-Kramer post test (GraphPad Prism).  
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Figure 5.8: Direct protein-protein interactions between CSQ2 and JUN 
demonstrated by co-immunoprecipitation: JUN was successfully detected in 
solubilised hRyR2+CSQ2+JUN immunoprecipitates captured by protein A 
microbeads coupled with a "-CSQ2 antibody. As in previous Co-IP investigations, 
corresponding unsolubilised material was resolved alongside the experimental 
samples. JUN (+) highlights JUN detection in an unsolubilised mixed membrane 
sample expressing JUN only, included as a positive control. The appearance of an 
additional band underneath the cardiac JUN signal in some lanes during Western 
blotting has been reported in previous studies and has been attributed to the 
presence of an internal methionine at amino acid residue 30 (Lim et al., 2000). Upon 
assessing all Western signals generated that corresponded to JUN expression, only 
a single band was evident in 54% of blots, whilst in the other 46% a second band 
was evident (but appeared substantially fainter).   
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5.4 Discussion: 
   
• Immunofluorescent staining was used to identify cells co-expressing CSQ2/JUN and 

WT/mutant hRyR2 where accessory proteins routinely achieved higher transfection 

efficiencies than those seen for hRyR2. Assessment of co-incident pixels found that 

WT and N4104K hRyR2 associate with the luminal proteins to a similar extent, whilst 

A4556T hRyR2 display a significantly reduced association with CSQ2 and JUN.  

 

• Assessment of protein-protein interactions using co-immunoprecipitation and 

subsequent Western blotting demonstrated for the first time, the ability of CSQ2 to 

bind directly to hRyR2 channels, in the absence of JUN. Furthermore, direct binding 

of JUN alone and in the presence of CSQ2 to hRyR2 channels was established. 

Densitometric analysis of Western signals evidenced similar binding of CSQ2 and 

JUN to both WT and mutant hRyR2. The diminished association of CSQ2 and JUN 

with A4556T hRyR2 channels could not be replicated using this technique. 

 
 

5.4.1. Immunofluorescence staining confirms successful co-expression of CSQ2 

and JUN with hRyR2 in HEK293 cells: 

 

Following imaging of immunofluorescently labelled CSQ2 and JUN (Figure 5.3), it was 

established that high transfection efficiencies of CSQ2 and JUN were achieved by co-

expression with both WT and mutant hRyR2 channels, and that the efficiencies obtained 

were comparable (Figure 5.2).  As illustrated in Figure 5.3 and discussed in section 5.3.1, 

the luminal proteins and eGFPhRyR2 were predominantly expressed within the same cells 

of a population. This was vital to reliably assess the functional response of WT and mutant 

hRyR2 to luminal protein co-expression and indicated the ability of the proteins to 

associate in situ.   

 

Further to the immunofluorescence investigations described in Chapter 3 (section 3.3.5 

and Figure 3.9) to confirm correct trafficking of all co-expressed proteins to the ER of 

HEK293 cells, it was also recognised that JUN might play an important role in CSQ2 

retention. As demonstrated in Figure 5.4, as well as a reticular pattern of CSQ2 staining in 

proximal ER regions (also observed by Houle et al., 2006), much brighter fluorescence 

signals were observed in the peri-nuclear regions of cells when CSQ2 was co-expressed 

in the presence of JUN (i.e., cells transfected with hRyR2+CSQ2+JUN). Precisely how 

CSQ2, (being a small protein without a membrane spanning domain) is retained in the 
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junctional SR, has been the subject of a number of investigations. Milstein et al (2009) 

suggested that CSQ2 polymerisation is responsible for its retention in the jSR, since this is 

the first cellular compartment with ionic conditions favourable for CSQ2 polymerisation in 

cardiomyocytes; but did not discuss the potential involvement of the luminal accessory 

proteins (Milstein et al., 2009). It was however suggested by Knollmann et al (2010), that 

JUN (and TRD1) might help anchor a mesh of linear CSQ2 polymers to the mouth of the 

RyR2 Ca2+ release channels. The involvement of JUN in CSQ2 retention is supported by 

co-immunoprecipitation investigations in this project (Figures 5.7 and 5.8) and as 

demonstrated by Zhang et al (1997), where JUN is immunoprecipitated with both CSQ2 

and RyR2 channels.  

 

 

5.4.2. Examination of the protein-protein interactions between WT or mutant hRyR2 

with CSQ2 and/or JUN using immunofluorescent co-localisation and co-

immunoprecipitation: 

 

The possibility that hRyR2 mutation may alter protein-protein interactions between CSQ2, 

JUN and the Ca2+ release channel were investigated in this chapter. Since the N4104K 

mutant resides on the cytosolic side of the hRyR2 channel, whilst A4556T is located on 

the luminal side, another aim was to establish if the location of the mutation could be a 

determinant of altered binding.  

 

In addition to its use in the assessment of CSQ2 and JUN intracellular trafficking within 

HEK293 cells and establishing transfection efficiencies, immunofluorescence analysis was 

also used to measure the extent of co-localisation between the luminal accessory proteins 

and WT/mutant hRyR2 (Figures 5.5 and 5.6). As described in section 5.2.1, the direct 

overlay of eGFP- (hRyR2 detection) and Alexa® 594 (CSQ2 or JUN detection) images 

enabled the degree of co-localisation between the two signals to be calculated (George et 

al., 2003a). As represented as bar graphs in Figure 5.5 (A and B (ii)), co-incident pixel 

counting demonstrated that the co-localisation of CSQ2 with A4556T hRyR2 channels was 

significantly reduced, both when expressed alone and in the presence of JUN. This 

reduced binding could provide a possible explanation for the lack of CSQ2 inhibition 

evident in A4556T+CSQ2 only-expressing HEK293 cells in Ca2+ imaging investigations 

(Figure 4.17). However, inhibition of channel activity was apparent in HEK293 co-

expressing A4556T+CSQ2+JUN (Figure 4.17). Furthermore, in cells transfected with 

hRyR2+JUN or +CSQ2+JUN, JUN co-localisation also appeared significantly decreased 

when co-expressed with the A4556T mutant. However, this was only evident when the 

protein was co-expressed in the presence of CSQ2 (Figure 5.6, B (ii)).  
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It is interesting that the A4556T mutation is located on the luminal side of the Ca2+ release 

channel and positioned very close to a proposed JUN binding site on the M5-M6 linker of 

RyR2 at residues 4520-4553 (Altschafl et al., 2011, Dulhunty et al., 2012). Given the 

observed decrease in co-localisation of both CSQ2 and JUN with the A4556T hRyR2 

channel, it could be suggested that the mutant disrupts this JUN-RyR2 binding site, which 

could also be the site at which JUN anchors CSQ2 within close proximity to RyR2 

channels. Although a decrease in JUN co-localisation with the A4556T mutant was also 

evident in Figure 5.6, B (i), (when expressed alone), the reduction was not calculated as 

significantly different from WT and N4104K hRyR2 channels. JUN has however been 

shown to associate at more than one site on RyR2 channels, for example luminal residues 

78-210 also bind to a region that encompasses the pore loop at residues 4789-4846 

(Altschafl et al., 2011). 

 

Co-immunoprecipitation was used to assess the ability of CSQ2 and JUN to bind to each 

other and directly to hRyR2, in combination and individually. This technique was also used 

to further examine if the association of the luminal proteins with hRyR2 is altered by 

mutation. Co-IP investigations revealed that human cardiac muscle CSQ2 could directly 

interact with hRyR2 channels both in the absence (shown in Figure 5.7, A, (i)) and 

presence of cardiac JUN. This appears to be the first biochemical evidence to demonstrate 

a direct interaction of the Ca2+ binding protein with hRyR2 channels. Similarly, a direct 

interaction of JUN with hRyR2 channels was also observed in the presence (Figure 5.7 (A), 

(ii)) and absence of CSQ2 co-expression, consistent with previous research studies 

(section 5.1.3). Demonstrated previously by Zhang et al (1997), Co-IP was also used to 

observe a direct protein-protein interaction between recombinant CSQ2 and JUN in our 

experimental system, as illustrated in Figure 5.8.  

 

In contrast to the immunofluorescent co-localisation findings discussed previously, 

densitometric analysis of Western blot signals obtained in Co-IP experiments 

demonstrated that A4556T- and N4104K hRyR2 channels associate with CSQ2 and JUN 

to the same extent as WT hRyR2, represented in Figure 5.7, B, (i)-(iv) as a series of bar 

graphs. This may suggest that mutants do not disrupt the protein-protein interactions 

between hRyR2, CSQ2 and JUN. However, the discrepancies between the results could 

also reflect limitations of the technique. The samples for example were standardised twice, 

once for hRyR2 expression (Figure 5.1) and then for CSQ2/JUN expression, following 

densitometric analysis of Western signals. Standardisation of hRyR2 was required to 

ensure equivalent protein binding to the anti-GFP microbeads, whilst the Western signals 

corresponding to the luminal proteins needed to be normalised to account for differences 
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in the expression levels of CSQ2/JUN amongst different mixed membrane preparations. It 

is thus possible that subtle changes could be missed. The results were however also 

prepared without luminal protein normalisation (data not shown) and still no statistical 

differences were calculated. The accuracy of densitometric analysis may have been 

improved by generating a standard curve from serial dilutions of each membrane 

preparation across an SDS-PAGE gel and subsequent Western blotting, or use of a 

loading control (such as actin, ~42 kDa) alongside experimental samples to correct for any 

errors in loading or transfer efficiencies (Taylor et al., 2013). Loading excessive amounts 

of the membrane preparation such that the Western signals were near saturation when 

analysed could have also hindered the detection of true changes in protein-protein 

interaction, as suggested by Mollica et al., 2009. Due to the somewhat variable nature of 

transient transfections (see Figure 3, Appendix), loading 50!g of each mixed membrane 

preparation was deemed the most sufficient amount for adequate signal detection.  

 

Given the functional heterogeneity of CPVT-linked RyR2 mutations identified in previous 

investigations (Thomas et al., 2004, 2010) and between N4104K and A4556T hRyR2 in 

this project (see Chapter 4), the possibility that RyR2 mutants can disrupt protein-protein 

interactions of the channel complex can not be ruled out as a contributing factor in the 

pathogenesis of cardiac disease.  
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Chapter 6 
 

General Discussion 
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6.1. Closing Discussion and Future Work: 

 

The principal aim of this investigation was to establish if CPVT-linked mutant hRyR2 

channels interact or respond differently to luminal accessory protein regulation by CSQ2, 

JUN and TRD1, proteins predicted to form a quaternary complex with RyR2 and to act as 

a luminal Ca2+ sensor for channel activity (Györke et al., 2004, Zhang et al., 2014). It is 

well documented that defective cytosolic and/or luminal Ca2+ sensing by RyR2 channels 

contributes to the aberrant Ca2+ release seen in CPVT (reviewed in Thomas et al., 2010). 

In addition, some CPVT-linked CSQ2 mutations result in a nonsense transcript effectively 

causing a knockout of the protein, which results in loss of SR Ca2+ buffering and Ca2+ 

binding capacity or association with RyR2 channels, which culminates in accelerated 

restitution of Ca2+ release  (Terentyev et al., 2006, Rizzi et al., 2008). Evidently, defective 

luminal regulation of hRyR2 is implicated in arrhythmogenesis and this is the first study to 

examine how mutant hRyR2 channels respond to luminal accessory protein co-

expression.  

 

Two CPVT-linked hRyR2 mutations were examined: N4104K and A4556T, which reside 

on the cytosolic and luminal side of the channel, respectively. Since CSQ2, JUN and/or 

TRD1 are predicted to associate within the SR lumen, the location of the hRyR2 mutation 

could have been an important factor in detecting any differences in their interaction or 

response (i.e. luminal accessory protein association/effects may only be disrupted by 

mutations located on the luminal portion of the channel). Biochemical and functional 

assessment of luminal accessory protein interaction with WT hRyR2 were compared to 

that of the mutants.  WT data were also used to inform on the respective roles of the 

accessory proteins in hRyR2 regulation. 

 

To avoid species variability, often reported in the literature (described in Chapter 3, section 

3.1.1, Qin et al., 2009, Wei et al., 2009b) the aim was to use only human isoforms of both 

RyR2 and the luminal accessory proteins, where a recombinant approach was employed. 

Expression constructs in (pcDNA3.1hygro(+)) for human cardiac muscle CSQ2 and JUN 

were successfully generated, as outlined in Chapter 3, section 3.2.1 and 3.3.1-3.3.3. 

Specific amplification of cardiac TRD1 however proved problematic (Figure 3.2, section 

3.4.1), which was largely due to the fact that at the time this work was carried out, the 

human cardiac muscle TRD1 sequence was unknown. Although a number of different 

primers were used in PCR amplification reactions, in an attempt to amplify TRD1 (section 

3.3.1, Figure 3.1), without knowing the exact human sequence even undertaking a BLAST 

search for sequence homologies with the prospective amplicons isolated (cloned into 

TOPO® vector) proved difficult.  In future work, the human cardiac muscle TRD1 sequence 
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published by Roux-Buisson et al (2012), could be consulted to re-design the PCR primers, 

in particular the reverse 3’ primer, since the TRD1 sequence is reported to display its 

greatest divergence in the C-terminal region of the protein (Kobayashi and Jones, 1999, 

Roux-Buisson et al., 2012). Since TRD1 could not be successfully isolated, this project 

focussed exclusively on the response of WT/mutant hRyR2 channels to CSQ2 and JUN 

co-expression, both as a complex and expressed individually with the Ca2+ release 

channel. A mammalian HEK293 heterologous system was chosen to co-express WT and 

mutant hRyR2 with the luminal accessory proteins. Expression in HEK293 cells eliminated 

the need for purification and allowed the luminal proteins to associate with hRyR2 

channels in situ.  

 

The generation of HEK293 stable cells lines expressing CSQ2 and/or JUN is discussed in 

Chapter 3, sections 3.2.2. The original intent was to use these stable cells, and transfect 

them with eGFP-hRyR2, for use in all functional and protein-protein interaction 

investigations. However, the growth rate of the stable cell lines was much slower than 

anticipated, which consequently reduced the transfection efficiencies of transient eGFP-

hRyR2 expression (using CaPO4 precipitation). Since [3H] ryanodine binding (Chapter 4) 

and co-immunoprecipitation assays (Chapter 5) require high levels of hRyR2 expression, 

the material for use in these experiments was generated by large-scale transient 

transfection of WT/mutant eGFP-hRyR2 with CSQ2 and/or JUN in an equimolar ratio. 

Using this optimised method, high transfection efficiencies of all co-expressed proteins 

were achieved, and as immunofluorescence studies proved that the transfection efficiency 

for JUN/CSQ2 was nearly twice that of hRyR2 (being expressed in ~% of the cells), it was 

judged that cells expressing hRyR2 would likely also be expressing the luminal accessory 

protein of choice as well, enabling complex formation. Accordingly, expression levels 

obtained for all proteins were sufficiently high as assessed by Western Blotting.  

 

Stable cell lines were however essential for use in single-cell Ca2+ imaging, where it was 

necessary that each cell imaged, expressed the luminal accessory protein(s) of interest. 

Cells co-expressing WT or mutant hRyR2 could be identified by their caffeine response 

(Thomas et al., 2004). To obtain sufficient eGFP-hRyR2 transfection efficiencies in these 

cells, Effectene® reagent was used, the rationale for which included that fact that this 

method required less DNA and was therefore less cytotoxic than the CaPO4 precipitation.  

 

The functional assays used to assess the influence of CSQ2 and JUN on the intracellular 

Ca2+ regulation of WT and mutant hRyR2 are described in Chapter 4. The Ca2+ 

dependence of [3H] ryanodine binding for WT and mutant hRyR2 channels in the absence 

and presence of CSQ2 and/or JUN was examined. When assessed alone (i.e., in the 
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absence of accessory proteins), notable differences in the Ca2+ activation profile of the 

hRyR2 mutants, compared to WT channels, were found. Although the half-maximal [Ca2+] 

for activation of A4556T hRyR2 channels was not significantly different from that of the 

WT, the binding of [3H] ryanodine was significantly higher at every Ca2+ concentration 

>1!M. This may have been due to a standardisation problem, due to vastly different 

expression levels, or it could reflect a genuine effect of the mutant on the 

association/dissociation of [3H] ryanodine. If this was to be investigated further, the mutant 

could be explored at the single channel level with a reversible ryanoid (such as Ryanodol, 

used by Sigalas et al., 2009) so as to verify this assumption by the measurements of 

ryanoid association and dissociation rates (as in Tanna et al., 1998, Sigalas et al., 2009). 

The primary aim of the [3H] ryanodine assay however, was to explore the sensitivity of 

Ca2+ activation, which for this mutant was no different to WT. In contrast, N4104K hRyR2 

channels displayed a significantly sensitised Ca2+ activation profile, indicating that these 

mutations are functionally heterogeneous. Demonstration of this concept is an important 

contribution to the field, since as discussed in Chapter 1 (sections 1.8-1.8.3) the 

mechanism behind CPVT-linked hRyR2 dysfunction is often attributed in the literature to a 

single unifying factor, such as an altered interaction of FKBP12.6 with hRyR2 (section 

1.8.1). It is however likely that the form of channel dysfunction is mutation-specific, 

possibly determined by its location in the polypeptide. The different modes of channel 

dysfunction found in this work between CPVT-linked mutants N4104K and A4556T are 

summarised as a schematic in Figure 6.1, and directly compared with WT hRyR2 (A-C).  

 

To ascertain any functional effects conferred by luminal accessory protein co-expression, 

the aforementioned [3H] ryanodine binding experiments were repeated in the presence of 

CSQ2 and/or JUN.  However, no significant changes in the response of WT or mutant 

hRyR2 channels to Ca2+ activation were evident. Since differences were identified in 

single-cell Ca2+ imaging studies, it was concluded that the [3H] ryanodine binding 

technique may not have been sensitive enough to detect subtle changes in the Ca2+ 

response imparted by CSQ2 and/or JUN (section 4.4.2). Alternatively, it is possible that 

the use of high salt conditions (used to optimise RyR2 Po (Chopra et al., 2009, Euden et 

al., 2013)) could have disrupted protein-protein interactions between RyR2 channels and 

the luminal proteins, such that any functional effects were diminished. Indeed, it was 

demonstrated using co-immunoprecipitation studies that luminal protein association was 

diminished, albeit not significantly, under high salt conditions and this may have been 

enough to cause a functional effect. In future work, these experiments could be repeated 

using lower salt conditions, but it is unlikely using recombinant RyR2 that sufficient [3H] 

ryanodine binding counts would be achieved. 
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Ca2+ imaging investigations proved more suitable in examining regulation of mutant 

hRyR2 by CSQ2 and/or JUN (Chapter 4). First, the properties of the SCR parameters 

(section 4.3.3) in HEK293 cells expressing WT and mutant hRyR2 channels alone were 

assessed.  Figures 4.12 and 4.13 illustrate the similarity between the SCR properties of 

WT and A4556T channels, where no parameters were found to be statistically different. 

On the contrary, SCR events in cells expressing N4104K hRyR2 channels appeared 

completely different (Figures 4.12 and 4.13), where amplitude and duration were 

significantly reduced (compared to WT channels); whilst the SCR events appeared much 

faster (measured as an increase in SCR frequency). These differences needed to be 

considered when assessing any changes introduced by luminal protein co-expression. 

The alterations in the SCR parameters in stable HEK293 cells expressing CSQ2 and JUN 

alone or in combination with WT hRyR2 channels are described in detail in section 4.3.4, 

Figures 4.14 and 4.15. In the presence of the luminal proteins, properties such as the SCR 

event duration and inter-event duration were significantly enhanced, thereby reducing the 

frequency of events. Co-expression with CSQ2 in particular, both alone and in the 

presence of JUN, seemed to have a notable inhibitory effect on hRyR2 SCR activity 

(Figure 1.6 (A and B). This inhibition has been reported by others using different 

experimental systems (Jones et al., 1998, Beard et al., 2005, Györke et al., 2004). Despite 

the altered properties of SCR events evident in cells expressing N4104K channels alone, 

both A4556T and N4104K channels responded in a similar manner as WThRyR2 to CSQ2 

and JUN co-expression (4.16-4.19). Surprisingly however, the inhibitory effects of CSQ2 

co-expressed alone with hRyR2 channels (seen with WT and N4104K) were diminished in 

cells expressing A4556T channels (Figure 1.6 (C)). This is a novel finding of a previously 

uncharacterised, luminallly located hRyR2 mutation and will be of interest in further 

investigations.  

 

In future work, the findings of the Ca2+ imaging studies could be verified by assessing WT 

or mutant hRyR2 channels in the presence of CSQ2 and/or JUN at the single channel 

level. Both cytosolic and luminal Ca2+ activation could be assessed using this technique, 

where conditions either side of the hRyR2 channel (reconstituted into a lipid bilayer) can 

be manipulated. This however would require extensive optimisation, starting with the 

decision of whether each protein should be purified and added back to the hRyR2 channel 

(as carried out by Györke et al., 2004) or the recording of heavy ER preparations (mixed 

membranes) should be optimised. If mixed membranes were to be used, different 

permeant ions (such as K+, Cs+, Ba2+and Ca2+) would need to be tested, in order to 

establish a sufficient signal to noise ratio where the activity of RyR2 channels could be 

clearly identified amongst other ion channels (such as Cl- and K+) that would also 

incorporate into the lipid membrane. In addition, a strategy to identify changes imparted by 
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the luminal proteins would need to be devised. Purification of the luminal proteins is 

another option, which again would require the development of a reliable purification 

strategy. Györke et al (2004) used two different expression systems to purify dog CSQ2, 

JUN and TRD1, suggesting that sufficient levels of expression may have been 

problematic. Recombinant dog calsequestrin was cloned into the bacterial expression 

vector pET5a (as used in Kobayashi et al, 2000), whilst JUN (Zhang et al, 1997) and 

TRD1 (Kobayashi and Jones, 1999) were both isolated and purified by infecting Sf21 

insect cells with baculovirus encoding the recombinant proteins (Gyorke et al, 2004). 

Furthermore, in order to confidently determine the functional effects of the CSQ2 and/or 

JUN-hRyR2 interaction and establish if mutants respond differently, a reliable method to 

detect re-association/dissociation of the luminal proteins would need to be devised. 

Gaburjakova et al (2013) suggested that this issue is likely to be the reason why 

conflicting findings have been reported upon investigating the functional role of CSQ2 at 

the single channel level.    

 

Chapter 5 describes the examination of WT and mutant hRyR2 interactions with the 

luminal accessory proteins. Demonstrated by immunofluorescent co-localisation and 

subsequent co-incident pixel counting (described in section 4.3.3), the interaction of CSQ2 

with the previously uncharacterised A4556T channels was significantly reduced when 

expressed both alone and in the presence of JUN (Figure 5.5 and illustrated in Figure 1.6 

(C)). Furthermore, a decrease in JUN binding with A4556T channels was also identified, 

but only when co-expressed in the presence of CSQ2 (Figure 5.6 and 6.1 (C)). No 

differences in the association of CSQ2 or JUN with N4104K channels (compared with WT 

hRyR2) were detected. This altered interaction of A4556T channels with CSQ2 could 

explain why in Ca2+ imaging investigations, the inhibitory effects of the luminal protein on 

channel activity was reduced in cells co-expressing CSQ2 only (Figure 4.17). If this were 

the case however, I would have also expected to see the same effect in HEK293 cells 

expressing A4556T, CSQ2 and JUN.   

 

The ability of CSQ2 and JUN to bind both individually and in combination to WT/mutant 

hRyR2 channels was also explored using co-immunoprecipitation (section 5.3.4). In 

contrast to immunofluorescent co-localisation studies, both A4556T and N4104K hRyR2 

channels were found to bind to CSQ2 and JUN to the same extent as WT channels 

(Figure 5.7). It is possible that since Western blot signals used for densitometric analysis 

were standardised twice, first for hRyR2 expression and then for luminal accessory protein 

expression (which differed between mixed membrane samples, section 5.4.2), subtle 

differences in the interaction between these proteins could have been missed. As 

illustrated in Figure 1.6 (A), Co-IP experiments biochemically demonstrated for the first 
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time the ability of human cardiac CSQ2 to bind directly to hRyR2 channels in the absence 

of any additional accessory proteins (i.e, JUN). Since the literature suggests that CSQ2 is 

only anchored within close proximity to hRyR2 via its association with JUN and/or TRD1 

(as shown in Figure 1.2), this finding is a major contribution to the field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Schematic summarising the major findings of this work:  
(A) Illustrates the ability CSQ2 to bind directly to WT hRyR2 alone and via its 
association with JUN. CSQ2 co-expression appeared to have an inhibitory effect on 
hRyR2 channel activity (indicated with a red cross). (B) N4104K channels responded 
similarly to luminal protein co-expression, where an inhibitory effect on channel gating 
was observed in the presence of CSQ2 (expressed alone and with JUN). This mutant 
however displayed enhanced sensitivity to activating Ca2+ evident in both [3H] 
ryanodine binding assays and Ca2+ imaging investigations; resulting in elevated SCR 
activity and a significantly reduced ER Ca2+ load, indicative of Ca2+ leak through the 
channel. (C) In Ca2+ imaging studies, no notable inhibitory effects of CSQ2 (when 
expressed alone) on A4556T hRyR2 activity were evident. Thus, this mutant did not 
respond in the same manner as WT and N4104K hRyR2 to CSQ2 co-expression. 
Demonstrated by co-immunofluorescent co-localisation and subsequent co-incident 
pixel counting, lack of an inhibitory effect may have been due to significantly reduced 
protein-protein associations between CSQ2 and A4556T hRyR2. Furthermore, JUN 
binding (when expressed in the presence of CSQ) was also significantly diminished in 
A4556T hRyR2 channels.   
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In future work, it would be beneficial to investigate the interaction of mutant (and WT) 

hRyR2 with CSQ2 and/or JUN using a more sensitive technique, such as Surface 

Plasmon Resonance. Briefly, recombinant GST-fusion proteins corresponding to CSQ2 

and JUN could be created and immobilised to the surface of a sensor chip (Blayney et al., 

2010). To measure the affinity and binding kinetics between the proteins, WT or mutant 

hRyR2 could then be used as an analyte, and passed in solution over the chip surface, to 

which the luminal accessory proteins are bound (Hutsell et al., 2010, Blayney et al., 2010). 

Furthermore, the co-immunoprecipitation studies used in this investigation could be 

repeated, but instead using the stable HEK293 cells expressing CSQ2 and/or JUN. This 

would eliminate the need for further standardisation to account for luminal protein 

expression. However, since these investigations require high-levels of hRyR2, the protocol 

for transient transfection of hRyR2 in stable HEK293 cells would first need to be further 

optimised. In summary, these studies find that CPVT-linked hRyR2 mutant channels are 

functionally heterogeneous and that dysfunction of some mutants is unlikely to be caused 

by a lack of response to luminal accessory protein (e.g. N4104K). However, CSQ2 was 

found to bind directly to the WT channel, having a similar inhibitory effect as seen in the 

presence of JUN (its anchoring protein – Zhang et al., 1997). This study suggests that the 

A4556T mutation results in reduced CSQ2 binding to the channel resulting in altered 

regulation, however this was not found using all detection methods and requires 

verification by more sophisticated methods.  

 

As discussed in Chapter 1, section 1.7, ß-blockers represent the first line in CPVT 

treatment.  However, this treatment is often insufficient with many patients still suffering 

potentially fatal symptoms (Mackrill, 2010, Liu et al., 2011). The work carried out in this 

project provides evidence of the functional heterogeneity that exists between CPVT-linked 

mutations and demonstrates that therapeutic interventions may need to be tailored 

towards the specific pathogenic properties of a given RyR2 mutant, with consideration 

towards their location and severity.  

 

N4104K RyR2 channels showed sensitised Ca2+ activation and aberrant Ca2+ release both 

in the absence and presence of luminal accessory proteins. Previous reports have 

suggested that gain-of-function mutations, such as N4104K, alter the ability of RyR2 

channels to close during diastole, resulting in enhanced SCR release (described as Ca2+ 

leak, Jiang et al., 2004, 2005) and a decreased SR Ca2+ store (as demonstrated in Figure 

4.13). Suppression of this enhanced SCR release (or SOICR) by decreasing RyR2 luminal 

Ca2+ sensitivity has been proposed as a promising antiarrhythmic treatment for patients 

harboring such mutations (Hunt et al., 2007, Zhou et al., 2011, Chen et al., 2014). 

However, the extent to which SOICR is eliminated needs to be controlled, since complete 
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inhibition also triggers arrhythmogenesis (Chen et al., 2014). A major challenge in drug 

development is to identify compounds with the ability to reduce diastolic Ca2+ leak without 

affecting RyR2 channel gating during systole (Mackrill, 2010, McCauley and Wehrens, 

2011, Fischer et al., 2013). Hunt et al 2007 demonstrated that a 1,4-benzothiazepine 

derivative K201 (or JTV519) significantly reduced the occurrence of SOICR in HEK293 

cells expressing WT hRyR2 (in Ca2+ imaging studies) and inhibited [3H] ryanodine binding 

to both WT and N4104K RyR2 channels, diminishing the enhanced basal activity seen 

with CPVT-linked mutants (as demonstrated in this work, Figure 4.6). SOICR inhibition 

and subsequent stabilisation of the closed state (deduced from the fact that [3H] ryanodine 

binding is reduced and the activation threshold increased with K201 treatment) occurred 

the absence of FKBP12.6, despite previous reports suggesting that the effectiveness of 

the drug stems from its ability to enhance FKBP12.6-RyR2 binding (Wehrens et al, 2004). 

Altered Ca2+ sensitivity however was only evident with the use of higher (!M) K201 

concentrations, and thus seems unsuitable for use in patient clinical trials (Hunt et al., 

2007). Another drug found to successfully suppress SOICR occurrence is carvedilol, 

which interestingly is one of the most effective ß-blockers used in preventing arrhythmia in 

HF patients (Zhou et al., 2011). Independent of its ability to inhibit ß-adrenergic 

stimulation, Zhou et al (2011) demonstrated that of the 14 known ß-blockers tested, only 

carvedilol displayed a direct effect on RyR2 gating, reducing RyR2 channel Po at the 

single channel level. The concentrations of carvedilol required to effectively inhibit SOICR 

however, were much higher than those required as a ß-blocker, raising concern of 

adverse reactions when used in vivo (Zhou et al, 2011). To overcome this effect, the group 

demonstrated the use of carvedilol analogs (such as VK-II-86, tested in mice harbouring a 

CPVT-linked mutant and HEK293 cells), which retained their ability to suppress SOICR 

activity whilst having much lower actions as ß-blockers (Zhou et al, 2011). These analogs 

combined with an alternative ß-blocker (such as metoprolol) could improve protection 

against arrhythmia in CPVT patients with a mutation that displays a gain-of-function 

phenotype (Zhou et al., 2011).  A4556T hRyR2 channels displayed similar SCR event 

properties to WT hRyR2 in the absence of accessory protein expression (Figure 4.13); 

however, the inhibitory effect of CSQ2 co-expression was diminished in cells expressing 

A4556T hRyR2. As discussed previously (section 5.4.2), this effect may have been 

caused by a disruption in the protein-protein associations between CSQ2 and A4556T 

hRyR2 (Figure 5.5). To date, only a few drugs have been proposed to enhance the 

interaction of RyR2 with its accessory proteins, such as the aforementioned K201, which 

has been proposed to stabilise the binding of FKBP12.6 (Wehrens et al, 2004, Mackrill, 

2010), though this is in dispute (Hunt et al., 2007). The development of therapeutic agents 

to modify the binding interaction between RyR2 and CSQ2 may facilitate the treatment of 

CPVT mutants such as A4556T.   



 182 

 

 

 

 

 

 

Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 183 

 
 

 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

2000 bp 
1650 bp 

1000 bp 

850 bp 
600 bp 

2000 bp 
1650 bp 

1000 bp 
850 bp 
600 bp 

C
S

Q
2 

* 

JU
N

 *
 

G
el extraction recovery 

C
S

Q
2 

JU
N

 

5µl 5µl 

* 

P
C

R
 recovery 

(A) (B) 
1           2         1            2               3              4 

Figure 1: Visualisation of PCR/gel extraction products by agarose gel 
electrophoresis: Original images that were cropped for presentation purposes in 
Chapter 3, Figure 3.2 are shown. (A) Demonstrates the PCR products generated in 
attempts to isolate TRD1. As indicated with an asterisk (lane 2), these products are 
shown in (Figure 3.2, B, (ii)) which were obtained following PCR amplification using a 
reverse primer designed to target the pACT2 vector (see section 3.3.1). Lane 1 
corresponds to the same PCR recovered products shown in Figure 3.2 B, (iii), however 
the same recovery loaded on a different gel is shown in the chapter. (B) Illustrates the 
gel extraction recovery products of CSQ2 and JUN shown in Figure 3.2 (D) as 
highlighted with asterisks. Lanes 1 (CSQ2) and 2 (JUN) shown are the same as lanes 3 
and 4, respectively. However, these were not shown in Figure 3.2, due to the loading 
error in lane 2.  
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Figure 2: Comparable hRyR2 transfection efficiencies in HEK293 cell populations: Illustrated 
are representative fluorescent images (and corresponding phase images) of HEK293 cell 
populations transfected with (A) hRyR2 only, (B) hRyR2+JUN, (C) hRyR2+CSQ2 and (D) 
hRyR2+CSQ2+JUN. Comparable transfection efficiencies were obtained in cells transfected with 
WT or mutant hRyR2, and the efficiencies were unaffected by co-expression with the accessory 
proteins.  
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Figure 3: Additional Western blots of hRyR2 expression: Illustrated are representative 
Western blot signals obtained following SDS-PAGE of mixed membrane samples expressing (A) 
WT hRyR2, (B) A4556T (AT) hRyR2 and (C) N4104K (NK) hRyR2 alone and in the presence of 
CSQ2 and/or JUN. WT (+) refers to a positive WT hRyR2 only control loaded alongside test 
samples. (D) hRyR2 signals (WT shown) were detected at 565 kDa (fainter signals below this 
band are breakdown products of the protein), above the highest reference band of the pre-
stained Kaleidoscope™ marker (Bio-Rad) at 250 kDa. 
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Figure 4: Additional Western blots of CSQ2 and JUN expression: Illustrated are 
representative western blot signals obtained following SDS-PAGE of mixed membrane 
samples expressing (A) hRyR2+CSQ2 (i) and hRyR2+CSQ2+JUN (ii) – CSQ2 detection 
shown and (B) hRyR2+JUN (i) and hRyR2+CSQ2+JUN (ii) – JUN detection shown. CSQ2 
and JUN only refers to mixed membrane samples generated from HEK293 cells transfected 
with CSQ2 and JUN only, respectively.  
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Figure 5: Untransfected HEK293 loaded with Fluo-3 did not display spontaneous 
Ca2+ release events or respond to caffeine addition: As discussed in Chapter 4, 
section 4.2.2, cells successfully transfected with hRyR2 could be identified by their 
caffeine response and in Ca2+ imaging investigations these cells displayed SCR activity. 
In control experiments, untransfected HEK293 cells were loaded with Fluo-3 and 
imaged by confocal microscopy. As shown, untransfected HEK293 (5 cells selected 
here, also called regions of interest (ROI)) did not display SCR events or respond to 
10mM caffeine application.  
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Figure 6: Column scatter plots of all Ca

2+
 imaging data: Described in Chapter 4, sections 

4.3.3-4.3.6, all properties of the SCR events evident in cells expressing WT or mutant hRyR2 in 
the presence/absence of luminal accessory proteins CSQ2 and JUN were assessed. Shown here 
are column scatter plots of all the collected data, constructed using GraphPad Prism. Outliers 
were detected and removed using the GraphPad Prism Grubbs’ test (graphpad.com).  
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Rate of Ca2+ Decay (!F/F0) sec-1 

Figure 6: Column scatter plots of all Ca2+ imaging data: Described in Chapter 4, sections 
4.3.3-4.3.6, all properties of the SCR events evident in cells expressing WT or mutant hRyR2 in 
the presence/absence of luminal accessory proteins CSQ2 and JUN were assessed. Shown here 
are column scatter plots of all the collected data, constructed using GraphPad Prism. Outliers 
were detected and removed using the GraphPad Prism Grubbs’ test (graphpad.com).  
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Figure 7: Bar graphs of all Ca2+ imaging data: All experimental data generated from 
assessment of the SCR event parameters in cells expressing WT or mutant hRyR2 in the 
presence/absence of luminal accessory proteins CSQ2 and JUN (Chapter 4, sections 4.3.3-4.3.6) 
are summarised here. Calculated using one-way ANOVA and a Tukey-Kramer post-test 
(GraphPad Prism), parameters that were statistically different from WT/A4556T/N4104K only are 
indicated.  
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