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Abstract

This thesis discusses queueing systems in which decisions are made when customers arrive, either by

individual customers themselves or by a central controller. Decisions are made concerning whether

or not customers should be admitted to the system (admission control) and, if they are to be

admitted, where they should go to receive service (routing control). An important objective is to

compare the effects of “selfish” decision-making, in which customers make decisions aimed solely

at optimising their own outcomes, with those of “socially optimal” control policies, which optimise

the economic performance of the system as a whole. The problems considered are intended to be

quite general in nature, and the resulting findings are therefore broad in scope.

Initially, M/M/1 queueing systems are considered, and the results presented establish novel con-

nections between two distinct areas of the literature. Subsequently, a more complicated problem is

considered, involving routing control in a system which consists of heterogeneous, multiple-server

facilities arranged in parallel. It is shown that the multiple-facility system can be formulated math-

ematically as a Markov Decision Process (MDP), and this enables a fundamental relationship to

be proved between individually optimal and socially optimal policies which is of great theoretical

and practical importance. Structural properties of socially optimal policies are analysed rigorously,

and it is found that ‘simple’ characterisations of socially optimal policies are usually unattainable

in systems with heterogeneous facilities. Finally, the feasibility of finding ‘near-optimal’ policies for

large-scale systems by using heuristics and simulation-based methods is considered.
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1 Introduction

This thesis will discuss queueing systems in which the behaviour of individual customers is subject

to some form of control. More specifically, these systems require decisions to be made at regular

intervals which correspond to the inter-arrival times of customers who enter the system. Naturally,

given a choice between various possible decisions at a particular point in time, one would wish to

choose the option which would yield the best expected result with respect to a particular criterion.

As such, the vast majority of this thesis is concerned with a particular type of optimisation problem,

which will be discussed and analysed in rigorous detail in the chapters that follow.

Queueing systems can be formulated mathematically as stochastic processes which evolve according

to random probability distributions. The analytical study of these processes has been a popular

subject of mathematical research for many decades, and the resulting body of knowledge is usually

referred to as queueing theory ; some notable texts include [11, 67, 100, 125, 132, 178].

Classical queueing theory often involves the characterisation of the limiting or equilibrium behaviour

of a particular system, assuming that such behaviour exists. For example, one might wish to de-

termine the expected length of a queue at an arbitrary point in time, or an individual customer’s

expected waiting time in the system. Throughout this thesis, the queueing systems considered will

be associated with certain costs and rewards accrued when particular events take place (for exam-

ple, the fulfilments of customers’ service requirements), and an important measure of a system’s

performance will be the average net reward (after subtraction of costs) earned per unit time. Given

a full description of the dynamics of a particular system, and a complete specification of the be-

haviour of individual customers, it will usually be possible to use well-established techniques from

classical queueing theory to compute performance measures such as average queue lengths, average

waiting times and average net rewards. However, in order to seek a decision-making strategy which

optimises the system’s performance with respect to a particular performance measure, it will be

necessary to go slightly beyond the realms of traditional queueing theory and instead rely upon

behavioural queueing theory and the rather broader field of stochastic optimisation.

Prior to the groundbreaking work of Naor in the 1960s (see [2, 131]), applied queueing theory was

somewhat limited in scope. This state of affairs is reflected in a “letter to the editor” [115] published

1



Chapter 1 Introduction 2

by Leeman in 1964, which provides a qualitative discussion of the limitations of the field. Leeman

suggests that operational researchers seldom consider the possibility of introducing or changing

prices in order to optimise queueing systems, despite the existence of an accepted economic principle

which states that the optimal allocation of scarce resources requires that a cost be charged to users

of these resources. Leeman discusses how, for example, ‘check-out’ fees charged by supermarkets

or ‘boarding fees’ charged by taxi firms might be utilised in order to reduce queue lengths, and

concludes his argument by remarking that the role of price-setting in controlling queueing systems

ought to be an important consideration for administrators in a capitalist economy.

Another letter by Saaty [151] responds directly to Leeman’s arguments by acknowledging the po-

tential of a pricing scheme to alter behaviour in queueing systems. However, he also raises concerns

over whether these methods might have a detrimental effect on those “under-privileged” members

of society who, he suggests, should not be burdened by having to arrange their purchasing of essen-

tial items such as food in such a way as to avoid having to pay exorbitant charges. Saaty suggests

that applying congestion-related charges to “luxury-type” queues should be a feasible option, but

that queues associated with basic human needs should be treated with due caution.

Naor [131] refers to the qualitative discussions of Leeman and Saaty in his paper on the regulation

of queue sizes by levying tolls. Naor’s paper considers an observable single-server queue which

evolves according to Markovian distributions; specifically, customer arrivals occur according to a

time-homogeneous Poisson process, and service times are exponentially distributed (in Kendall’s

notation, this is an M/M/1 queue; see [98]). Customers arriving in the system observe the length

of the queue and then decide either to join it and await service, or ‘balk’ by leaving the system

immediately. Naor distinguishes between two different scenarios: one in which arriving customers

make decisions which optimise their own economic outcomes, and another in which customers adopt

a strategy which maximises the collective welfare of all customers entering the system. The former

scenario is referred to as “individually optimal”, while the latter is “socially optimal”.

In Naor’s system, the assumption of observability implies that the length of the queue is always

known when decisions are made, and this enables individually optimal and socially optimal customer

strategies to be characterised in a relatively simple way; this will be discussed further in Chapter

2 of this thesis. In fact, Naor’s results establish the general principle that exercise of narrow self-
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interest by all customers does not optimise public good (a recurring theme in much of the related

literature; see for example, [103, 203, 204]). This implies that some form of intervention is required

on the part of a central administrator in order to maximise the overall welfare of society. Indeed,

Naor’s results justify the arguments of Leeman by showing that self-interested customers can be

induced to behave in a socially optimal manner via the levying of an admission toll.

The task of finding a socially optimal strategy for customers to follow is not especially difficult in

the case of an observable M/M/1 queue, and Naor’s findings will be discussed further in Chapter 2.

However, the situation becomes more complicated when one considers systems with multiple queues.

Chapter 3 will introduce a formulation for a multiple-facility queueing system, in which the number

of queues N ≥ 2 is arbitrary, and every customer who arrives may join (or be directed to) any

one of the N queues; in addition, the option of balking will also be available. The task of finding

a socially optimal strategy for an observable multiple-facility system is far from trivial; in fact,

this represents an optimisation problem which can be tackled effectively within the mathematical

framework of a Markov Decision Process (MDP). MDPs will be discussed in much greater detail in

Chapter 3. In the meantime, this introduction will provide some background notes on the historical

development of MDPs and the related area of stochastic dynamic programming.

According to Puterman [141], the study of “sequential decision processes” can be traced back to the

work of Bellman [10] and Howard [88] in the late 1950s. Bellman himself, in his ground-breaking

work Dynamic Programming [10], refers to MDPs as “multi-stage decision processes” and coins

the term “dynamic programming” to describe their analytical treatment. He goes on to observe

that multi-stage decision processes arise in a “multitude of diverse fields”, including “economic,

industrial, scientific and even political spheres”. He also comments that such problems are “too

vast in portent and extent to be treated in the haphazard fashion that was permissible in a more

leisurely bygone era”, and advocates the development of a more rigorous approach.

Bellman demonstrates remarkable foresight by suggesting, in [10], several of the most intensely-

studied problems in operational research today as possible application areas for his work. These

areas include optimal inventory control, scheduling of patients in clinics, servicing of aircraft, in-

vestment policies and sequential testing procedures. He describes the optimal solution of such

problems as a “vast untamed jungle”, but recognises the difficulties involved and explicitly refers
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to the “curse of dimensionality” as just one example of the challenges to be faced.

Howard [88] comments that Bellman’s exposition of dynamic programming in [10] has given “hope”

to “those engaged in the analysis of complex systems”, but notes that this hope has been “quickly

diminished by the realisation that more problems could be formulated by this technique than could

be solved”. Consequently, Howard states that his objective is to provide an “analytic structure for

a decision-making system that is at the same time both general enough to be descriptive and yet

computationally feasible”. In [88], he defines many of the most familiar concepts associated with

MDPs today, including discounted costs, value iteration and policy improvement.

Further contributions from the early 1960s include those of de Ghellinck [34], who discusses the

formulation of an MDP as a linear program, d’Epenoux [36], who presents a synthesis of linear

and dynamic programming techniques applied to a problem of production and inventory control,

and Manne [124], who also focuses on the relationship between the “traditionally distinct” areas

of dynamic and linear programming in the context of an inventory control model. Other notable

contributions during the 1960s were made by White [195], Odoni [137], MacQueen [122], Strauch

[172] and Smallwood [163]. Following the pioneering works of Bellman and Howard, several other

authors published books on MDPs in the 1970s; see, for example, [37, 110, 130, 144].

Puterman’s book, Markov Decision Processes [141] has been described as “the current high-water

mark” of MDP literature by Powell [140], and is notable for its strong theoretical approach. Other

notable books on MDPs which post-date Puterman’s include those of Bertsekas [13], Filar and Vrieze

[50], Hernandez-Lerma and Lasserre [82], Hu and Yue [90] and Guo and Hernandez-Lerma [71]. The

latter is notable for its exclusive focus on continuous-time MDPs (CTMDPs). Another text which

has particular relevance to Chapter 7 of this thesis is Approximate Dynamic Programming by Powell

[140]. Powell focuses on methods for overcoming the so-called “curse of dimensionality” in MDPs

by making large-scale optimisation problems more computationally tractable.

Typical ‘real-life’ applications of MDPs are discussed in literature surveys including [94, 170, 197].

Beginning in the late 1960s and early 1970s, numerous MDP-related papers were published in areas

including inventory and production (see [99, 164, 176, 179, 196]), maintenance and repair (see [33,

42, 84, 165]) and finance and investment (see [38, 128, 136, 150]). This thesis will consider problems

involving the control of queueing systems, and a comprehensive survey of the related literature has
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been provided by Stidham and Weber [170]. Examples of queueing systems frequently arise in

areas including telecommunications, traffic systems, computer systems, manufacturing processes

and others. The field of routing problems, in which traffic must be routed through a network which

is adversely affected by congestion, may be seen as a related area (see [94]). Most of the problems

considered in this thesis will be related to admission control and routing control. Some notable

papers with relevance to this area include [46, 93, 108, 118, 129, 149, 169, 192, 201].

The preceding discussion has provided only a brief overview of the literature relevant to this thesis.

Further important references of specific interest to the topics discussed in this thesis will be provided

in the individual chapters and sections to which they have the greatest relevance.

Chapter 2 of this thesis will consider an M/M/1 queueing system. Chapter 3 will introduce a

formulation for a multiple-facility queueing system, which will form the basis of most of the work

in Chapters 3-7. Some variations of the multiple-facility system will be considered at various stages

of this thesis, but the assumptions listed below will remain consistent throughout.

• All of the queueing systems considered are subject to a cost and reward structure whereby re-

wards are earned when customers are served, but ‘holding costs’ are incurred while customers

are kept waiting in the system. Full details will be given in Chapters 2 and 3.

• When a customer arrives in the system, a routing decision is made which is permanent and

irrevocable; so for example, a customer cannot join a queue and then leave the system without

receiving service. In this respect, customers are assumed to be infinitely patient.

• The option of balking (i.e. departing from the system immediately, without joining a queue)

is available when a customer arrives. Balking does not earn any reward or cost.

The queueing systems considered throughout this thesis are intended to (potentially) be applicable

in a wide range of real-world contexts; for example, the multiple-facility queueing system introduced

in Chapter 3 may be regarded as a suitable model for a supermarket check-out area, or a telephone

call centre. It should be noted that the rewards and holding costs in a queueing system need not

necessarily represent monetary values; for example, the reward earned after a customer is served

at a particular queue might simply quantify the quality or desirability of the service received, and

similarly a ‘holding cost’ might simply quantify the amount of inconvenience or discomfort suffered
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by a customer while they experience delays. Furthermore, the ‘customers’ in a queueing system

might not necessarily represent people; for example, they might be items processed on a production

line. Indeed, the assumption of ‘infinite patience’ would tend to suggest that this type of context

would be more appropriate, since inanimate objects cannot become impatient! Due to the general

nature of the queueing systems considered in this thesis, very few references to specific real-world

applications will be made. However, this introduction will briefly discuss one particular application

which in fact provided much of the original motivation for the work in this thesis.

Individually optimal and socially optimal customer strategies were briefly discussed earlier in the

context of Naor’s paper [131]. Comparisons between these two types of customer behaviour are

particularly relevant to recent developments in the English healthcare system. Since 2006, patients

requiring specialist healthcare treatment in England have been entitled to a choice between different

providers under the National Health Service (NHS) constitution. A report published by the King’s

Fund [40] has examined the various factors which may be important to patients when choosing

between different healthcare providers, and the implications for the NHS as a whole. The report

predicts that patients will increasingly request a choice as they become more aware of their right

to choose, and that an increasing number of different factors will influence their choices. Knight

and Harper [101] have used game theoretical analyses to investigate the implications of allowing a

similar freedom of choice to patients requiring knee replacement surgery in Wales.

If one makes the plausible assumption that patients seeking hospital treatment will be inclined to

choose the most convenient option for themselves (as opposed to taking into account the possible

interests of other patients), then it is clear that allowing patients to choose their own healthcare

provider creates a queueing system in which the behaviour of customers (in this case, patients)

is individually optimal. On the other hand, if patients are denied a free choice and are instead

directed by a central authority, then it is conceivable that decisions might be chosen in such a way

as to optimise some measure of the system’s performance; this would correspond to the socially

optimal case. Thus, it is clear that comparisons between individually and socially optimal customer

behaviour may be relevant in healthcare systems and other public service settings, in which it is

important to consider the effects of allowing individuals to make their own choices.

Realistically, the option of balking can be accommodated in most queueing systems which operate
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without any constraints on the proportion of customers which must receive service; for example,

a customer in a supermarket might decide to skip the queue and go home without any shopping,

or the manager of a production line might decide to withhold some items in order to avoid over-

burdening the system. In addition, the assumption that balking does not incur any cost or reward

can be made without loss of generality in the context of the optimisation problems considered

in this thesis. In many real-world contexts, one might wish to associate balking with a certain

penalty or rejection cost; for example, a shopper who enters a supermarket and then leaves without

purchasing any items has clearly wasted some of their own time, whether or not they are able to

conveniently acquire the required items from elsewhere. However, in this thesis it will be possible

to assume that balking is always costless by relying upon the principle that the rewards earned

when customers receive service can, if necessary, be adjusted by a fixed amount which corresponds

to any cost associated with balking. This will be clarified in the subsequent chapters.

In the context of patient choice in the NHS, ‘balking’ might represent the decision of a patient to

seek private treatment, or to rely upon other remedies outside the provision of the NHS. Whether

or not these options might be associated with a penalty cost is unimportant from a mathematical

perspective, due to the explanation given in the previous paragraph. However, it is also important

to note that the cost of balking should always remain the same, regardless of how often it is chosen;

in this respect, it may be regarded as a ‘fail-safe option’ which allows customers to avoid incurring

expensive waiting costs as a result of high levels of congestion in the system. In a healthcare context,

therefore, the association between balking and seeking outside treatment must rely on an implicit

assumption that the ‘attractiveness’ of outside treatment to an individual patient is not affected

in any significant way by the tendency of other patients to choose the same option. Of course,

there are always modelling issues to consider in real-world applications, and (as stated previously)

these issues are somewhat peripheral to the content of this thesis, since it considers well-defined

optimisation problems which are fairly general in terms of their physical applicability.

Brief descriptions of the remaining chapters in this thesis are provided below.

• Chapter 2 will address a problem involving admission control in an M/M/1 queue. Two

variants of the problem will be considered: one in which the queue is observable, and one

in which it is unobservable. In the latter case, decisions must be made independently of the
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length of the queue. The observable and unobservable cases will be compared with respect to

individually optimal customer behaviour, and also with respect to socially optimal behaviour.

Various novel results will be proved involving comparisons between the observable and un-

observable systems. However, Chapters 3-7 of this thesis will tend to focus on observable

queueing systems, and therefore the results in Chapter 2 should be regarded as being largely

self-contained, without a strong bearing on the results in later chapters.

• Chapter 3 will introduce a mathematical formulation for the multiple-facility queueing system

which forms the basis for most of the research in this thesis. It will be shown that the queueing

system can be formulated as a discrete-time Markov Decision Process (MDP). This enables

the techniques of dynamic programming to be applied, provided that one assumes a finite

state space. Some well-known computational algorithms from the literature will be presented.

The final part of this chapter will discuss analytical techniques for finite-state MDPs including

proofs based on dynamic programming and stochastic coupling arguments.

• Chapter 4 will prove an important relationship between individually optimal and socially

optimal policies in a multiple-facility queueing system. This property may be regarded as

a generalisation of a similar property which is already known (due to the results of Naor in

[131]) to hold in the case of an M/M/1 queue. The effect of the system demand rate (i.e.

the rate per unit time at which customers arrive in the system) on socially optimal policies

will also be investigated. The final section in this chapter will consider an extension involving

heterogeneous customer classes, which will later be revisited in Chapter 7.

• Chapter 5 will investigate the structural properties of socially optimal policies. It will be

shown that, unfortunately, certain ‘common-sense’ properties of optimal policies may be diffi-

cult (or even impossible) to prove using arguments based on dynamic programming. Certain

results will be proved for special cases of the N -facility system introduced in Chapter 3, which

will prove to be useful in later chapters. The final section in this chapter will present com-

putational algorithms (based on results from earlier sections) which appear to be capable of

improving upon the efficiency of standard dynamic programming algorithms.

• Chapter 6 will consider heuristic methods for finding near-optimal policies in systems where

dynamic programming algorithms are rendered ineffective due to the size of the finite state
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Figure 1.1: A structural map of this thesis, showing how the first seven chapters are related.

space that must be explored. These methods will be based on techniques which have been

discussed in the literature. Various interesting properties of these heuristic policies will be

proved analytically, and their ability to consistently find near-optimal policies will be tested

via numerical experiments involving randomly-generated problem instances.

• Chapter 7 will discuss an alternative method for finding near-optimal policies, referred to

as reinforcement learning (RL). Essentially, this approach involves simulating the random

evolution of a system and gradually ‘learning’ a near-optimal policy through exploration and

experience. Numerical experiments, similar to those in Chapter 6, will be conducted in order

to test the performances of certain RL algorithms. Later sections in this chapter will examine

how RL algorithms might be adapted in order to cope with extremely vast state spaces,

non-exponential distributions and systems with heterogeneous customer classes.

• Finally, Chapter 8 will present conclusions and suggest possible further work.

Throughout the chapters of this thesis, numerous theoretical results (theorems, lemmas etc.) will

be presented. Many of these will be original results for which proofs will be given, either in the

main text itself or in one of the appendices. In some cases, however, it will be necessary to state

a result which has already been published in the literature. In order to enable a distinction to be

made, an asterisk (*) will precede the statement of any theorem, lemma or corollary which is not

an original result of this thesis. In these cases, appropriate references will be provided.



2 Control of M/M/1 queues

2.1 Introduction

The study of classical queueing theory usually begins with M/M/1 queues. The basic dynamics

of M/M/1 queues are described in many texts; see, for example, [67, 132]. Essentially, customers

arrive at random intervals and await service at a single facility which serves one customer a time.

The random process by which customers arrive is a Poisson process (see, e.g. [146, 167, 171]) with an

intensity rate λ > 0, and service times are exponentially distributed with mean µ−1 > 0. Customers

are served in order of arrival, and leave the system permanently after their service is complete. If

one assumes that all customers join the queue and that λ < µ, then it is possible to formulate the

system as a continuous-time Markov chain (see Appendix A.2) and obtain its stationary or steady-

state distribution, which in turn can be used to derive remarkably simple formulae for steady-state

performance measures such as the expected length of the queue or the expected waiting time of a

customer in the system; these formulae can be found in the texts mentioned above.

Of course, the assumption that all customers join the queue implies that no control is exercised over

the system. Control, in this context, refers to the act of making a decision which influences future

events. Only one form of control will be considered in this chapter: admission control. Suppose

that when a customer arrives at the M/M/1 queue, there are two options available: they may join

the queue and await service, in which case it is assumed that they remain in the system until their

service is complete, or alternatively they may exit from the system immediately without receiving

service. The act of joining the queue will be referred to from this point onwards as joining, and

the act of leaving the system will be referred to as balking. Hence, the only points in time at which

control may be exercised are the random points in time at which new customers arrive, since the

decision for each individual customer (either ‘join’ or ‘balk’) is assumed irrevocable.

The question of whether decisions are made by individual customers themselves or whether there is

a central controller who makes decisions on their behalf has no physical bearing on the mathematical

results in this chapter. However, it is natural to suppose that if individual customers are responsible

for their own outcomes, they will be inclined to make decisions which serve their own interests.

On the other hand, if decisions are controlled centrally, then these decisions may be taken with a

10
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broader objective in mind, such as the optimisation of a particular performance measure for the

system as a whole. These contrasting objectives allude to the game-theoretic concept of selfish

versus non-selfish decision-making, which is an important theme throughout this thesis. The sub-

optimality of greedy or ‘selfish’ customer behaviour in the context of overall social welfare has been

studied in many of the classical queueing system models, including M/M/1, GI/M/1, GI/M/c

and others; see, for example, [44, 103, 120, 121, 131, 168, 203, 204]. More recently, this theme has

been explored in applications including queues with setup and closedown times [174], queues with

server breakdowns and delayed repairs [189], vacation queues with partial information [68], queues

with compartmented waiting space [43] and patient flow in healthcare systems [101, 102].

Problems involving admission control in queueing systems have been studied extensively in the

literature; a comprehensive survey of this work is provided by Hassin and Haviv [76]. However,

in the preface of their work, Hassin and Haviv comment that the field of behavioural queueing

theory is “lacking continuity” and “leaves many issues uncovered”. This is hardly surprising, since

almost every possible queueing system formulation that one might conceive has the potential to

be modified or generalised in some respect, and as such it is rare to find two independent pieces

of work which address exactly the same problem. One important consideration to be made when

formulating an admission control problem is the amount of information that should be available

to customers (or, in the case of central control, the central decision-maker). In this chapter, the

term ‘observable’ is used to refer to a system in which the decision-maker is always aware of the

number of customers present (referred to as the state of the system), and can use this information

to inform their decision-making. On the other hand, in an ‘unobservable’ system, decisions must

be taken independently of the system state, based only on knowledge of the system parameters and

the distribution of waiting times; further details will be presented in the next section.

Comparisons between observable and unobservable M/M/1 queues are related to a broad category

of problems in which the amount of information disclosed to customers (and, possibly, its complete-

ness or reliability) is at the discretion of the service provider. There has been considerable recent

interest in this area. For example, Allon et al. [3] consider an M/M/1 system in which a firm can

influence its customers’ behaviour by using “delay announcements”. It is found that some level of

“intentional vagueness” on the part of the firm may be beneficial in certain circumstances. Guo and

Zipkin [69] (see also [70, 71]) also study a single-server Markovian system and find that providing
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“more accurate delay information” may improve system performance, but this is dependent upon

other factors. Hassin [75] considers a number of sub-models of M/M/1 queues and, in each case,

examines the question of whether or not the service provider is motivated to reveal information.

The fact that all of these publications adopt the classic M/M/1 model for their analyses might

arguably be seen as an indication that the theme of restricting customer information in queueing

systems is a young and emerging one, with strong potential for future development.

Naor [131] is usually recognised as the first author to compare “self-optimisation” with “overall

optimisation” (or social optimisation) in the case of an observable M/M/1 queue with linear waiting

costs and a fixed value of service. Edelson and Hildebrand [44] consider a model similar to Naor’s,

but without the assumption of observability. While the respective properties of observable and

unobservable M/M/1 queueing systems have been analysed extensively by Naor, Edelson and

Hildebrand and many others (see [76] for further references), comparisons between the two types

of system are not abundant in the literature. Indeed, one might observe that both system types

constitute their own sub-discipline of the field. This is logical to some extent, as the mathematical

techniques that one employs will depend on whether or not the state of the system can be observed

exactly. For example, modern analysis of unobservable queueing systems often takes place in a

game theoretical setting involving flow control (see, for example, [135] for a discussion of routing

games), while a more natural framework for the modelling of an observable queueing system is a

continuous-time Markov Decision Process, as discussed in Chapter 3 of this thesis.

While the comparison of observable and unobservable queueing systems might involve the bridging

of two very different methodological areas, it is a worthy endeavour due to the potential insights

that can be gained into problems involving the optimal control of information. The results in

this chapter offer some insight into the effects of suppressing information on queue lengths from

newly-arrived customers (or, if decisions are controlled centrally, the central decision-maker). For

example, suppose there is a third party who earns a fixed amount of revenue for every customer

who joins the queue, as opposed to balking. It is not trivial to determine whether average customer

throughput rates will be greater in the observable case, or whether the interests of the third party

would be better served by making the system unobservable. Indeed, this will depend on whether or

not customers make decisions selfishly, among other factors. The first task in this chapter will be

to provide a mathematical formulation for the queueing system under consideration. It will then be
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appropriate to summarise known results from the literature concerning selfishly and socially optimal

customer behaviour, before proceeding to compare the observable and unobservable models with

respect to optimal queue-joining rates and other relevant performance measures.

2.2 Model formulation

The queueing system to be considered throughout this chapter is an M/M/1 queue with linear

holding costs and a fixed value of service, similar to Naor’s model in [131]; however, there is no

prior assumption that the system is observable, since an objective in later sections will be to

compare the observable and unobservable cases. Customers arrive according to a Poisson process

with parameter λ > 0. The definition below can be found in Ross [146], p. 304.

Definition 2.2.1. (Poisson process)

The counting process {N(t), t ≥ 0} is said to be a Poisson process with parameter λ > 0 if:

1. N(0) = 0;

2. The process has independent increments;

3. The number of events occurring in any interval of length t has a Poisson distribution with

mean λt. That is, for all values t ≥ 0 and u ≥ 0:

P
(
N(t+ u)−N(u) = n

)
= e−λt

(λt)n

n!
(n = 0, 1, ...).

It should be noted that throughout this thesis, Poisson processes are assumed to be time-homogeneous

unless stated otherwise; that is, the parameter λ does not vary with time.

Customers’ service times are independently and identically distributed according to an exponential

distribution with parameter µ > 0. There is a holding cost β > 0 per customer per unit time

for keeping customers waiting in the system, and a fixed reward α > 0 is earned after a service

completion. It is assumed that α > β/µ in order to avoid the case where a customer would be

unwilling to wait even for their service, which would lead to trivialities. The queue discipline is

First-Come-First-Served (FCFS) and each newly-arrived customer either joins the queue, in which

case they remain in the system until their service is complete, or balks from the system and does
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not return. A diagrammatic representation of the system is provided in Figure 2.1.

 Arrival rate: λ

Balkers

Service rate: μQueue joining rate: η

Waiting cost: β

Reward for service: α

Figure 2.1: A diagrammatic representation of the queueing system.

The relative traffic intensity for the system is denoted ρ = λ/µ. As mentioned in the introduction,

a typical assumption which ensures stability in an M/M/1 queue is that λ < µ and hence ρ < 1;

however, this assumption is not made in this chapter. This is because the attainment of steady-

state conditions merely requires the effective queue-joining rate (as opposed to the system arrival

rate) to be smaller than the service rate µ. It will be shown in the next section that the effective

queue-joining rate always satisfies this condition under both types of customer behaviour to be

considered in this chapter, regardless of whether or not the system is observable.

Let η̃[O] and η∗[O] denote, respectively, the steady-state selfishly and socially optimal queue-joining

rates (per unit time) when the system is observable, and let η̃[U ] and η∗[U ] denote the corresponding

measures when the system is unobservable. Of course, it is necessary to define ‘selfish optimality’

and ‘social optimality’ more concretely in order to determine what these optimal joining rates

should be; this will be done in Section 2.3. Similar notation is adopted for other system perfor-

mance measures such as expected waiting times, etc.; this is summarised in Table 2.1.

Note on terminology: The emphasis in the remainder of this chapter will be on comparisons between

observable and unobservable systems. As such, when “two types of system” are mentioned, these

two types are understood to be observable and unobservable. When “two types of optimal joining

rate” are mentioned, these two types are selfishly optimal rates and socially optimal rates, both

of which will be defined in the next section. When “the equality of selfishly (or socially) optimal

joining rates” is discussed, this refers to an observable and an unobservable system sharing the

same selfishly (or socially) optimal effective queue-joining rate per unit time.
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Output measures
Observable system Unobservable system

Selfish opt. Social opt. Selfish opt. Social opt.

Optimal joining rate per unit time η̃[O] η∗[O] η̃[U ] η∗[U ]

Prob. of n customers in system P̃
[O]
n P ∗n

[O] P̃
[U ]
n P ∗n

[U ]

Mean Busy Period (MBP) M̃BP
[O]

MBP ∗[O] M̃BP
[U ]

MBP ∗[U ]

Expected no. of customers in system L̃[O] L∗[O] L̃[U ] L∗[U ]

Mean waiting time in system W̃ [O] W ∗[O] W̃ [U ] W ∗[U ]

Table 2.1: Summary of notation for system output measures (assuming steady-state conditions in all cases).

2.3 Summary of known results

In an observable M/M/1 queue, each customer arriving in the system is able to calculate their

expected cost of waiting as a function of the number of customers already present (that is, the

number of customers either waiting in the queue or being served) upon their arrival. As mentioned

previously, the number of customers present is referred to as the state of the system. It is assumed

in this thesis that customers are risk-neutral, and hence customers acting selfishly will choose to

join the queue if their expected cost of waiting is smaller than the reward for service α. In order to

avoid ambiguity, it will also be assumed throughout this chapter (as in [131]) that self-interested

customers choose to join the queue if their expected cost of waiting is equal to α.

The expected total cost incurred by a customer for joining under state n ∈ N0 is given by (n+1)β/µ.
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It follows that there exists an integer ns such that newly-arrived self-interested customers choose

to join the queue if and only if there are fewer than ns customers present when they arrive. Naor

[131] derives the following expression for ns in terms of the system parameters:

ns =

⌊
αµ

β

⌋
, (2.3.1)

where b·c denotes the ‘floor’ function, i.e. the integer part. Equivalently, it may be said that

selfish customers follow a threshold strategy with threshold ns. In the case of social optimisation,

one aims to find a strategy for customers to follow which maximises some quantifiable measure of

the ‘overall social welfare’. In this chapter, the overall social welfare is measured by the expected

long-run average reward per unit time earned by the system. Suppose customers follow a common

threshold strategy with threshold n ∈ N; that is, joining is chosen if and only if there are fewer than

n customers in the system when the decision is made. Using standard results for finite-capacity

M/M/1 queues (see [67], p. 74), the expected long-run average reward gn is then:

gn =


λα

(
1− ρn

1− ρn+1

)
− β

(
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

)
, if ρ 6= 1,

λα

(
n

n+ 1

)
− β

(n
2

)
, if ρ = 1,

(2.3.2)

where (in each of the two cases) the expression in the first set of parentheses is the steady-state

probability that fewer than n customers are present in the system, and the expression in the second

set of parentheses is the expected number of customers in the system given that a threshold n is

in effect. Naor showed that gn is maximised by n = no = bvoc, where vo satisfies:
vo(1− ρ)− ρ(1− ρvo)

(1− ρ)2
=
αµ

β
, if ρ 6= 1,

vo(vo + 1)

2
=
αµ

β
, if ρ = 1.

(2.3.3)

Importantly, Naor also showed that no ≤ ns, which is in keeping with the general principle that

selfish users create busier systems; this principle will be seen again in later chapters of this thesis.

The selfishly and socially optimal thresholds, ns and no, can be used in conjunction with results

from finite-buffer queueing theory (see [67], p. 77) to derive expressions for the effective queue-

joining rates η̃[O] and η∗[O] which appear in Table 2.1. These expressions are:
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η̃[O] =


λ

(
1− ρns

1− ρns+1

)
, if ρ 6= 1,

λ

(
ns

ns + 1

)
, if ρ = 1.

(2.3.4)

η∗[O] =


λ

(
1− ρno

1− ρno+1

)
, if ρ 6= 1,

λ

(
no

no + 1

)
, if ρ = 1.

(2.3.5)

Naturally, it must be the case that η̃[O] ≤ µ, since otherwise the system would be unstable and

queues would become infinitely long, which would imply that customers were deviating from the

threshold strategy. In fact, from (2.3.4) it follows that if λ > µ (equivalently, ρ > 1), then η̃[O] → µ

as ns →∞. From Naor’s results it then follows that η∗[O] ≤ η̃[O] ≤ µ.

Next, suppose the system is unobservable. In this case, no information is available about the

state of the system when decisions are made. It is therefore reasonable to assume that a common

randomised strategy determines the actions of all customers to arrive; see, for example, [8, 9, 44].

Specifically, the common strategy followed by all customers may be represented by a value p ∈ [0, 1]

such that a customer joins the queue with probability p, and balks with probability (1 − p). Due

to elementary properties of Poisson processes (see [146], p. 310), it then follows that the process

by which customers join the queue is a Poisson process with parameter η = pλ.

The arguments used to derive the optimal queue-joining rates η̃[U ] and η∗[U ] are game theoretical

in nature; a complete explanation is provided by Bell and Stidham [9]. Firstly, the selfishly optimal

queue-joining rate η̃[U ] is derived from the (Nash) equilibrium strategy. Let w(η) be the expected

net reward earned by an individual customer for joining the queue when the common queue-joining

rate of all customers (determined by the strategy p) is η. In the trivial case where w(λ) ≥ 0 (so

that even the largest possible queue-joining rate, η = λ, results in customers incurring an expected

waiting cost which does not exceed the reward α), the equilibrium strategy is p = 1, since no

customer has an incentive not to join the queue. Hence, in this case, η̃[U ] = λ.

Next, consider a non-trivial case where w(λ) < 0. If η ≥ µ (which requires p > 0), the expected

waiting time of a customer is infinite, and a customer acting in their own interests will join the
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queue with probability p = 0. It follows that an equilibrium solution requires η < µ. In fact, it

is evident that in order for the common strategy of customers to be in equilibrium, w(η) = 0 is

required; otherwise, the best response of an individual customer to the strategy p ∈ (0, 1) followed

by others would be to choose either p = 1 (if w(η) > 0) or p = 0 (if w(η) < 0).

Assuming η < µ, standard results for infinite-capacity M/M/1 queues (see [67], p. 61) imply that

an expression for the individual expected net reward w(η) is given by:

w(η) = α− β

µ− η
. (2.3.6)

Hence, by solving the equation w
(
η̃[U ]

)
= 0, one finds:

η̃[U ] = min

(
µ− β

α
, λ

)
. (2.3.7)

As in the observable case, the socially optimal joining rate η∗[U ] is defined as the joining rate which

maximises the expected long-run average reward per unit time for the system. Let g(η) denote the

expected average reward given a queue-joining rate η. It is only necessary to consider η < µ, since

η ≥ µ would cause expected waiting costs to tend to infinity, which clearly would not be socially

optimal. Assuming η < µ, the average reward g(η) is given by:

g(η) = ηα− β
(

η

µ− η

)
. (2.3.8)

By differentiating, one finds that g(η) is maximised by setting η = η∗[U ], where:

η∗[U ] = min

(
µ

(
1−

√
β

αµ

)
, λ

)
. (2.3.9)

Note that both (2.3.7) and (2.3.9) are valid joining rates only if α ≥ β/µ, which follows by one

of the initial assumptions in this chapter. Finally, it is easy to verify that η∗[U ] ≤ η̃[U ] by direct

comparison, which again shows that selfish behaviour causes a busier system.

Example 2.3.1. (Optimal joining rates in an unobservable M/M/1 queue)

Consider an unobservable M/M/1 system with demand rate λ = 1.9, service rate µ = 2, holding

cost β = 5 per unit time and reward for service α = 25. Figure 2.2 shows the results of a simulation

experiment, in which 100,000 customer arrivals have been simulated for each of 180 different,



Chapter 2 Control of M/M/1 queues 19

uniformly-spaced values of the Poisson queue-joining rate η between 1 and 1.9. For each value of η,

the average net reward w(η) earned by a customer (resulting from a full simulation run) is plotted.

These simulated results may be compared to the expected theoretical values given by the formula

in (2.3.6), which have also been plotted. The simulated results closely match the expected values,

and show that the unique value of η which equates the average net reward of a customer to zero is

indeed given by η̃[O] = µ− β/α = 1.8; this is the selfishly optimal joining rate.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
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customer

(η[U]2=21.8)~

Figure 2.2: Simulated values of w(η) for 180 different queue-joining rates η.

On the other hand, consider the problem of social optimisation. Figure 2.3 shows the results of

another simulation experiment (using the same values for the system parameters) in which 100, 000

customer arrivals have been simulated for 250 different, uniformly-spaced values of the queue-joining

rate η between 0.5 and 1.75. For each value of η, the long-run average net reward per unit time g(η)

has been plotted. Again, these simulation results may be compared to the theoretical values given

by (2.3.8), which have also been plotted. The results confirm that the function g(η) is maximised

by η∗[U ] = µ
(

1−
√
β/(αµ)

)
≈ 1.368, which is the socially optimal joining rate.

This example has assumed an unobservable system. One may be interested to determine whether

the effective queue-joining rates η̃[O] and η∗[O] in an observable system would take the same values

(1.8 and 1.368 respectively), given the same configuration for the system parameters. The next

section will address the question of whether or not it is possible for the two types of system to

share the same selfishly and socially optimal queue-joining rates. �
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Figure 2.3: Simulated values of g(η) for 250 different queue-joining rates η.

2.4 Equality of queue-joining rates

Summarising the results from Section 2.3, the selfishly optimal queue-joining rates η̃[O] and η̃[U ] for

the observable and unobservable system respectively are given by:

η̃[O] =


λ

(
1− ρns

1− ρns+1

)
, if ρ 6= 1,

λ

(
ns

ns + 1

)
, if ρ = 1,

(2.4.1)

η̃[U ] = min (µ− β/α, λ) . (2.4.2)

On the other hand, the socially optimal joining rates are given by:

η∗[O] =


λ

(
1− ρno

1− ρno+1

)
, if ρ 6= 1,

λ

(
no

no + 1

)
, if ρ = 1,

(2.4.3)

η∗[U ] = min
(
µ
(

1−
√
β/(αµ)

)
, λ
)
. (2.4.4)

In this section, the focus is on investigating the conditions which prescribe the equality of optimal

queue-joining rates for the two types of system. The next result establishes the useful fact that,

given λ > 0, the equalities η̃[O] = η̃[U ] and η∗[O] = η∗[U ] both require 0 < ρ < 1.
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Lemma 2.4.1.

1. The equality of selfishly optimal joining rates, η̃[O] = η̃[U ], requires 0 < ρ < 1.

2. The equality of socially optimal joining rates, η∗[O] = η∗[U ], requires 0 < ρ < 1.

Proof. The proof begins with the selfishly optimal case. First, consider ρ = 1. Here, the equality of

selfishly optimal joining rates implies λns/(ns+1) = µ−β/α. Since ρ = λ/µ = 1, this is equivalent

to ns + 1 = αµ/β. However, ns = bαµ/βc by definition, so this is not possible. Indeed, ns + 1 is

strictly greater than αµ/β, which implies that η̃[O] > η̃[U ] when ρ = 1.

Now suppose ρ > 1. Since the input parameters α, β and µ are assumed finite, ns is also finite and

hence η̃[O] < λ, which in turn implies that the equality η̃[O] = η̃[U ] cannot hold in the case where

η̃[U ] = λ. It therefore suffices to consider solutions to the equation λ(1−ρns)/(1−ρns+1) = µ−β/α.

Upon dividing by µ, this equation may be cast into a simpler form:

αµ

β
=

1− ρns+1

1− ρ
=

ns∑
i=0

ρi. (2.4.5)

Given that ρ > 1, (2.4.5) implies αµ/β > ns + 1. However, the definition of ns in (2.3.1) implies

ns ≤ αµ/β < ns + 1, so there is no solution to (2.4.5) when ρ > 1. From these arguments it follows

that η̃[O] > η̃[U ] when ρ > 1, which completes the proof of the first statement.

Remark. For the case ρ = 1, the argument given above relies on the assumption that selfish

customers join the queue if their expected net reward is exactly equal to zero. If it were assumed

that customers opted to balk under this scenario, then the selfishly optimal threshold (in the

observable case) would be given by ns = dαµ/βe−1, where d·e denotes the ceiling function. In this

case the equality ns + 1 = αµ/β would be satisfied for all integer values of αµ/β, and it would be

necessary to change “0 < ρ < 1” in the statement of the lemma to “0 < ρ ≤ 1”.

Next, consider the socially optimal joining rates. First, suppose ρ = 1. In this case, the equality

η∗[O] = η∗[U ] implies λno/(no + 1) = µ
(

1−
√
β/(αµ)

)
, which simplifies to:

αµ

β
= (no + 1)2. (2.4.6)

However, by setting ρ = 1 in (2.3.3), it follows that αµ/β must also satisfy:

αµ

β
=
vo(vo + 1)

2
. (2.4.7)
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Since no = bvoc by definition, it follows that vo < no+1 and hence vo(vo+1)/2 < (no+1)(no+2)/2.

Since (no + 1)(no + 2)/2 ≤ (no + 1)2 for all no ∈ N, it then follows that (2.4.6) fails to hold when

ρ = 1. In fact, these arguments imply that η∗[O] > η∗[U ] when ρ = 1.

Next, suppose ρ > 1. In this case, the equality η∗[O] = η∗[U ] implies λ(1 − ρno)/(1 − ρno+1) =

µ
(

1−
√
β/(αµ)

)
, which may be cast into the more simple form:(

1− ρno+1

1− ρ

)2

=
αµ

β
. (2.4.8)

Suppose, for a contradiction, that (2.4.8) holds with ρ > 1. Due to (2.3.3), this implies:

(1− ρno+1)2 = vo(1− ρ)− ρ(1− ρvo). (2.4.9)

Hence, since vo < no + 1 and the right-hand side of (2.4.9) is strictly increasing in vo:

(1− ρno+1)2 < (no + 1)(1− ρ)− ρ(1− ρno+1). (2.4.10)

Noting that (1− ρ) < 0, (2.4.10) may be put into the following form:

(1− ρ)

(
no∑
i=0

ρi

)2

> no + 1− ρ
no∑
i=0

ρi.

It is therefore sufficient (in order to obtain a contradiction) to show:

(1− ρ)

(
n∑
i=0

ρi

)2

≤ n+ 1− ρ
n∑
i=0

ρi, (2.4.11)

where n ∈ N is arbitrary and ρ > 1. One may proceed to show that (2.4.11) holds for all integers

n ≥ 1 using induction. When n = 1, (2.4.11) simplifies to:

ρ3 − 2ρ+ 1 ≥ 0. (2.4.12)

Let f(ρ) = ρ3 − 2ρ+ 1. Then f(1) = 0 and f ′(ρ) = 3ρ2 − 2, which is positive for ρ > 1, so (2.4.11)

holds when n = 1. As an inductive hypothesis, assume that for arbitrary k ∈ N:

(1− ρ)

(
k∑
i=0

ρi

)2

≤ k + 1− ρ
k∑
i=0

ρi. (2.4.13)

Let fn(ρ) = (1− ρ)
(∑n

i=0 ρ
i
)2− (n+ 1) + ρ

∑n
i=0 ρ

i for n ≥ 1. In order to show that (2.4.11) holds

when n = k + 1, then (using (2.4.13)) it suffices to show fk+1(ρ) ≤ fk(ρ). That is:

(1− ρ)

(
ρ2(k+1) + 2ρk+1

k∑
i=0

ρi

)
− 1 + ρk+2 ≤ 0.
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Given that (1− ρ)ρ2(k+1) < 0 for ρ > 1, it is then sufficient to show:

2ρk+1(1− ρ)

k∑
i=0

ρi − 1 + ρk+2 ≤ 0. (2.4.14)

It will be convenient to write (2.4.14) in the following equivalent form:

(
2ρk+1 − 1

) k∑
i=0

ρi − ρk+1 ≥ 0. (2.4.15)

Induction can be used for a second time to show that, given ρ > 1, the inequality (2.4.15) holds for

all integers k ≥ 1. Indeed, when k = 1, (2.4.15) reduces to:

2ρ3 + ρ2 − ρ− 1 ≥ 0,

which obviously holds when ρ > 1. Let gk(ρ) :=
(
2ρk+1 − 1

)∑k
i=0 ρ

i − ρk+1 for k ≥ 1, and assume

(as an inductive hypothesis) that gk(ρ) ≥ 0. It is then sufficient to show that gk+1(ρ) ≥ gk(ρ).

Indeed, one may show that gk+1(ρ) ≥ gk(ρ) is equivalent to the following:

2ρk+1(ρ− 1)

k∑
i=0

ρi + ρk+2
(

2ρk+1 − 1
)
≥ 0,

which clearly holds for ρ > 1. This completes the inductive proof that (2.4.11) holds for all n ∈ N

and ρ > 1. By the previous arguments, this is sufficient to imply that the equality η∗[O] = η∗[U ]

cannot hold when ρ > 1; in fact, it is the case that η∗[O] > η∗[U ] when ρ > 1. This completes the

proof of the second statement (the socially optimal case) in the lemma. �

The proof of Lemma 2.4.1 provides a necessary and sufficient condition for the equality of selfishly

optimal joining rates (η̃[O] = η̃[U ]), and a similar condition for the equality of socially optimal

joining rates (η∗[O] = η∗[U ]). These conditions are now stated as a theorem.

Theorem 2.4.2.

1. The equality η̃[O] = η̃[U ] holds if and only if:

1− ρns+1

1− ρ
=
αµ

β
.

2. The equality η∗[O] = η∗[U ] holds if and only if:

1− ρno+1

1− ρ
=

√
αµ

β
.
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Proof. By Lemma 2.4.1, the equalities η̃[O] = η̃[U ] and η∗[O] = η∗[U ] both require ρ < 1, and the

results follow immediately by referring to (2.4.1)-(2.4.4). �

The quantity αµ/β could, in many types of applications, be controlled as part of the system design;

for example, a firm will have some measure of control over the quality of the product that it produces

(represented by the value of α). Suppose ρ is fixed at some value in the range (0, 1). The value of

αµ/β which prescribes the equality η̃[O] = η̃[U ] need not be unique. This is due to the fact that

η̃[O] behaves as a step function of αµ/β, as shown by the next example.

Example 2.4.3. (Intersections between selfishly optimal joining rates)

Consider a system with λ = 0.9, µ = 1 (hence ρ = 0.9) and suppose at least one of the parameters

α and β can be chosen arbitrarily. Figure 2.4 shows the selfishly optimal joining rates η̃[O] =

λ(1− ρns)/(1− ρns+1) and η̃[U ] = µ− β/α, plotted for 1 ≤ αµ/β ≤ 5.
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Figure 2.4: Intersections between the selfishly optimal joining rates η̃[O] and η̃[U ].

Figure 2.4 shows that there are four intersection points between η̃[O] and η̃[U ]. The values of αµ/β

that result in these intersections are (approximately) 1.90, 2.71, 3.44 and 4.10 (it is as expected

that these values represent four distinct values of the integer ns = bαµ/βc). The selfishly optimal

rates at these points are, respectively, 0.47, 0.63, 0.71 and 0.76. It can be checked that multiple

intersection points are also possible in the case of the socially optimal rates. �

The next result concerns the number of distinct values of the quantity αµ/β for which it is possible
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to have η̃[O] = η̃[U ]. These are referred to informally as intersection points.

Theorem 2.4.4. Let J(ρ) be the number of distinct values of αµ/β for which η̃[O] = η̃[U ]. Then

J(ρ) is monotonically increasing for ρ ∈ (0, 1), and J(ρ)→∞ as ρ→ 1.

(The number of intersection points between the selfishly optimal joining rates is monotonically

increasing with the traffic intensity ρ, and tends to infinity as ρ→ 1.)

Proof. By Theorem 2.4.2, a necessary and sufficient condition for η̃[O] = η̃[U ] is:

1− ρns+1

1− ρ
=
αµ

β
,

where ns = bαµ/βc. It therefore makes sense to consider solutions to the following inequalities,

where n ≥ 1 is an integer and (in view of Lemma 2.4.1) ρ ∈ (0, 1):

n ≤ 1− ρn+1

1− ρ
< n+ 1. (2.4.16)

Let fn(ρ) = (1−ρn+1)/(1−ρ) for n ∈ N, ρ ∈ (0, 1). It can be shown that fn(ρ) is strictly increasing

and convex in ρ and limρ→1 fn(ρ) = n + 1. Hence, for any n ∈ N, there exists a value ρn ∈ [0, 1)

such that the inequalities in (2.4.16) are satisfied if and only if ρ ∈ [ρn, 1).

It may be observed that ρn, which is the value of ρ for which fn(ρ) = n, actually increases with n.

In the case n = 1, one finds ρ1 = 0 since (2.4.16) simplifies to 1 ≤ 1+ρ < 2, which is satisfied for all

ρ ∈ [0, 1). For n = 2, (2.4.16) implies ρ3 − 2ρ+ 1 ≤ 0 < 3(1− ρ), which is satisfied for ρ ∈ [φ−1, 1),

where φ is the well-known golden ratio; hence, ρ2 = φ−1 ≈ 0.618. Similarly it can be checked that

ρ3 ≈ 0.811, ρ4 ≈ 0.888, etc. Each value of n for which (2.4.16) holds implies the existence of a

distinct value of αµ/β for which the selfishly optimal joining rates are equal for the two types of

system. Therefore, in order to show that J(ρ) is monotonically increasing for ρ ∈ (0, 1), it suffices

to show that the sequence (ρn)n∈N (where ρn is the unique solution to the equation fn(ρ) = n) is

strictly increasing. This will imply that any value of ρ ∈ (0, 1) satisfying (2.4.16) for a particular

integer n ∈ N also satisfies the same inequalities for all smaller values of n.

Given that fn(ρn) = n, (2.4.16) implies that ρn is the unique solution to:

ρn+1 − nρ+ n− 1 = 0.
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Let gn(ρ) := ρn+1 − nρ+ n− 1 for n ∈ N, ρ ∈ (0, 1). It may be shown that:

gn(ρ) = (1− ρ)

(
n− 1−

n∑
i=1

ρi

)
. (2.4.17)

Here, let hn(ρ) := n− 1−
∑n

i=1 ρ
i for n ∈ N, ρ ∈ (0, 1). Since (1− ρ) 6= 0 and in view of the fact

that gn(ρn) = 0, ρn must satisfy hn(ρn) = 0. One has the recurrence relation:

hn+1(ρ) = hn(ρ) + 1− ρn+1. (2.4.18)

If ρ = ρn then hn(ρ) = 0 but then, since 1 − ρn+1 > 0, one finds that hn+1(ρ) > 0 and so the

equality hn+1(ρn) = 0 does not hold. Since hn(ρ) is a decreasing function of ρ, one must have

ρn+1 > ρn in order for the equality hn+1(ρn+1) = 0 to hold and therefore (ρn)n∈N is a strictly

increasing sequence, which completes the proof. The fact that J(ρ)→∞ as ρ→ 1 follows from the

fact that fn(ρ) = (1− ρn+1)/(1− ρ) attains a value of n+ 1 at ρ = 1, implying that ρ can always

be chosen to be large enough to satisfy fn(ρ) ≥ n for arbitrarily large n ∈ N. �

Notably, Theorem 2.4.4 differs from most of the results in this chapter in that it is exclusive to the

case of selfishly optimal queue-joining rates. Investigating whether or not a similar result holds for

the socially optimal joining rates is a potential avenue for further work.

Theorem 2.4.4 implies that if the value of ρ ∈ (0, 1) is sufficiently large, it is possible to find multiple

values of αµ/β for which η̃[O] = η̃[U ]. On the other hand, if one considers fixed values of αµ/β, it

is clear that there is a unique value of ρ ∈ (0, 1) which satisfies (1− ρns+1)/(1− ρ) = αµ/β. This

is because fn(ρ) = (1− ρn+1)/(1− ρ) is a strictly increasing function of ρ > 0.

By Theorem 2.4.2, the condition required for the equality of socially optimal joining rates is (1−

ρno+1)/(1 − ρ) =
√
αµ/β. However, recalling (2.3.3), no (unlike ns) has a dependence on ρ.

Increasing the value of ρ may result in a decrease in the integer value no. Therefore it cannot be

said that, for a fixed value of αµ/β, there is a unique value of ρ ∈ (0, 1) which yields η∗[O] = η∗[U ].

Indeed, consider an example with αµ/β = 2.5. In this case, the equation η∗[O] = η∗[U ] is satisfied

with ρ ≈ 0.581, in which case no = 1, but also ρ ≈ 0.412, in which case no = 2.

Theorem 2.4.2 established a condition on the system input parameters which ensures η̃[O] = η̃[U ],

and a separate condition which ensures η∗[O] = η∗[U ]. The remainder of this section addresses

the question of whether or not it is possible for an observable system and an unobservable system
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which share the same input parameters λ, µ, α and β to simultaneously share the same selfishly

and socially optimal joining rates. In posing this question, it is important to emphasise that the

parameter values λ, µ, α and β are assumed common to both systems; indeed, it is not difficult to

construct an example of an observable system which has a selfishly optimal joining rate η̃ > 0 and

a socially optimal joining rate η∗ > 0 (with η∗ ≤ η̃ ≤ λ) and a separate example of an unobservable

system which has the same two values, η̃ and η∗, for its respective optimal joining rates if the

parameters λ, µ, α and β are not required to be identical for the two systems.

Theorem 2.4.5. It is not possible for an observable and an unobservable system with the common

parameter values λ, µ, α and β to share the same selfishly and socially optimal joining rates; that

is, the equalities η̃[O] = η̃[U ], and η∗[O] = η∗[U ] cannot hold simultaneously.

Proof. In view of Lemma 2.4.1, it is only necessary to consider ρ ∈ (0, 1). By Theorem 2.4.2, in

order to have η̃[O] = η̃[U ], and η∗[O] = η∗[U ] both of the following must hold:

1− ρns+1

1− ρ
=
αµ

β
,

1− ρno+1

1− ρ
=

√
αµ

β
.

Hence, the simultaneous equalities η̃[O] = η̃[U ] and η∗[O] = η∗[U ] would require:(
1− ρno+1

1− ρ

)2

=
1− ρns+1

1− ρ
.

Therefore, in order to prove the theorem, it is sufficient to show that for all ρ ∈ (0, 1):

(
1− ρno+1

)2
> (1− ρ)(1− ρns+1). (2.4.19)

Consider the relationship between ns and no. On one hand, ns = bαµ/βc (hence ns ≤ αµ/β) and

from (2.3.3) one obtains αµ/β <
(
(no + 1)(1− ρ)− ρ(1− ρno+1)

)
/(1− ρ)2. Hence:

ns <
(no + 1)(1− ρ)− ρ(1− ρno+1)

(1− ρ)2
. (2.4.20)

Here, let fn(ρ) :=
(
(n+ 1)(1− ρ)− ρ(1− ρn+1)

)
/(1 − ρ)2 for n ∈ N and note that fn(ρ) is

an increasing function of ρ; indeed, it may be shown that fn(ρ) =
∑n

i=0(n + 1 − i)ρi. Also,

limρ→1 fn(ρ) = (n+ 1)(n+ 2)/2. Therefore (2.4.20) implies:

ns <
(no + 1)(no + 2)

2
.
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Moreover, since ns and no are integers, one may also write:

ns + 1 ≤ (no + 1)(no + 2)

2
.

So, in order to show that the inequality (2.4.19) holds, it is sufficient to establish the more general

fact that for all integers n ≥ 2 and ρ ∈ (0, 1):

(1− ρn)2 > (1− ρ)(1− ρn(n+1)/2). (2.4.21)

It will be convenient to write (2.4.21) in the equivalent form:(
n−1∑
i=0

ρi

)2

>

n(n+1)/2−1∑
i=0

ρi. (2.4.22)

This will enable a proof by induction. Indeed, for n = 2, (2.4.22) reduces to:

(1 + ρ)2 > 1 + ρ+ ρ2,

which holds for all ρ > 0. Let gn(ρ) := (
∑n−1

i=0 ρ
i)2 −

∑n(n+1)/2−1
i=0 ρi for n ∈ N and assume, as

an inductive hypothesis, that gk(ρ) > 0 for some k ∈ N. It will then be sufficient to show that

gk+1(ρ) ≥ gk(ρ). Indeed, one can show that this is equivalent to:

ρk + 2
k−1∑
i=0

ρi − ρk(k−1)/2
k∑
i=0

ρi ≥ 0.

Further manipulations yield the equivalent condition:

(2− ρk(k−1)/2)

k−1∑
i=0

ρi + (1− ρk(k−1)/2)ρk ≥ 0. (2.4.23)

It is clear that (2.4.23) holds for 0 < ρ < 1, which completes the inductive proof that (2.4.22) holds

for all n ∈ N. In view of the previous arguments, this completes the proof. �

As an additional note, the fact that (1 − ρno+1)2 > (1 − ρ)(1 − ρns+1) implies that the value of

αµ/β required for the equality of socially optimal joining rates is greater than the corresponding

value required for the equality of selfishly optimal joining rates.

Corollary 2.4.6.

1. If η̃[O] = η̃[U ], then η∗[O] > η∗[U ].
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2. If η∗[O] = η∗[U ], then η̃[O] < η̃[U ].

Proof. From the proof of Theorem 2.4.5, it may be inferred that the inequality(
(1− ρno+1)/(1− ρ)

)2
> (1− ρns+1)/(1− ρ) holds for all ρ ∈ (0, 1) and all choices of αµ/β > 1. If

η̃[O] = η̃[U ] then (1− ρns+1)/(1− ρ) = αµ/β, hence
(
(1− ρno+1)/(1− ρ)

)2
> αµ/β, which implies

η∗[O] > η∗[U ]. On the other hand, if η∗[O] = η∗[U ] then
(
(1− ρno+1)/(1− ρ)

)2
= αµ/β, hence

(1− ρns+1)/(1− ρ) < αµ/β, which implies η̃[O] < η̃[U ] as required. �

The result of Corollary 2.4.6 is illustrated by Figure 2.5. The figure shows that, under both types

of optimal customer behaviour, it is possible to make some general observations about the rela-

tionship between the joining rates for the two types of system if 0 < ρ < 1. (Recall that, from

the proof of Lemma 2.4.1, ρ ≥ 1 implies η̃[O] > η̃[U ] and η∗[O] > η∗[U ].) In a low-reward system,

where αµ/β ≈ 1, the optimal joining rates will tend to be higher if the system is observable. On

the other hand, in a high-reward system where αµ/β is large, the optimal joining rates will tend

to be higher if the queue is unobservable. Thus, for a system designer who wishes to maximise the

rate at which customers join the queue for service, it appears that the incentive to reveal the queue

length is greater when the value of service (relative to the cost of waiting) is low.
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Figure 2.5: Illustration of the result of Corollary 2.4.6.
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2.5 Performance measures

The purpose of this section is to compare performance measures for the observable and unobservable

systems under selfishly and socially optimal conditions; that is, one assumes either that η̃[O] = η̃[U ]

or that η∗[O] = η∗[U ] (noting that, due to Theorem 2.4.5, one cannot have both) and considers the

implications for steady-state probabilities, mean waiting times etc. Recall that the notation for

these performance measures was summarised in Table 2.1. The next result concerns the stationary

distributions for the respective system types under both types of optimisation.

Theorem 2.5.1.

1. If η̃[O] = η̃[U ] then P̃
[U ]
m ≤ P̃ [O]

m for all 0 ≤ m ≤ ns, with equality if and only if m = 0.

2. If η∗[O] = η∗[U ] then P ∗m
[U ] ≤ P ∗m[O] for all 0 ≤ m ≤ no, with equality if and only if m = 0.

Proof. Consider the case m = 0. Standard results from finite-buffer queueing theory ([67], p.

77) imply, for a buffer size n, P0 = (1 − ρ)/(1 − ρn+1). In the case of observable queues with

balking, one effectively has (in the selfishly optimal case) a buffer size of ns and hence P̃
[O]
0 =

(1 − ρ)/(1 − ρns+1). In the unobservable case, one has a Poisson arrival rate of η̃[U ] = µ − β/α

to a system with no finite buffer. Using standard results for infinite capacity queues, it follows

that P̃
[U ]
0 = 1 − (η̃[U ]/µ) = β/(αµ). Then, recalling Theorem 2.4.2, it may be observed that the

necessary and sufficient condition for η̃[O] = η̃[U ] states exactly that P̃
[O]
0 = P̃

[U ]
0 .

Next, consider m ≥ 1. Using standard results again, P̃
[O]
m = ρmP̃

[O]
0 for 1 ≤ m ≤ ns. Here, of

course, ρ = λ/µ where λ is the arrival rate for the system, which is the same as the queue-joining

rate provided that there are fewer than ns customers present. In the case of the unobservable

system, the corresponding relation is P̃
[U ]
m = (η̃[U ]/µ)mP̃

[U ]
0 for 1 ≤ m ≤ no. Given that η̃[U ] < λ

(which is implied by η̃[O] = η̃[U ]), it follows that P̃
[U ]
m < P̃

[O]
m for m ≥ 1.

The proof for the socially optimal case is similar, except that in this case one has P ∗0
[O] = (1 −

ρ)/(1 − ρno+1), and P ∗0
[U ] = 1 − (η∗[U ]/µ) =

√
β/(αµ). Therefore, recalling Theorem 2.4.2, the

equality P ∗0
[U ] = P ∗0

[O] is equivalent to the necessary and sufficient condition for the equality of

socially optimal joining rates, η∗[O] = η∗[U ]. The fact that P ∗m
[U ] < P ∗m

[O] for 1 ≤ m ≤ no is shown

using arguments analogous to those used for the selfishly optimal case. �



Chapter 2 Control of M/M/1 queues 31

Remark. The fact that η̃[O] = η̃[U ] implies P̃
[O]
0 = P̃

[U ]
0 (with an analogous result for social opti-

misation) actually follows immediately from a basic property of queueing systems in steady state.

Under steady-state conditions, the queue-joining rate must be equal to the rate at which customers

exit the system, which is given (for a general system) by µ(1 − P0). Hence, η̃[O] = η̃[U ] implies

µ(1− P̃ [O]
0 ) = µ(1− P̃ [U ]

0 ) and the result follows since µ is a fixed parameter.

The next result of this section concerns the average lengths of idle periods and busy periods for the

two types of system under selfishly and socially optimal conditions.

Theorem 2.5.2. Let M̃BP
[O]

(M̃BP
[U ]

) and MBP ∗[O] (MBP ∗[U ]) be the mean busy periods for

the observable (unobservable) system under selfish and social optimisation respectively. Also let

M̃IP
[O]

(M̃IP
[U ]

) and MIP ∗[O] (MIP ∗[U ]) be the corresponding mean idle periods.

1. If η̃[O] = η̃[U ], then M̃BP
[O]

< M̃BP
[U ]

and M̃IP
[O]

< M̃IP
[U ]

. Specifically:

M̃BP
[O]

M̃BP
[U ]

=
M̃IP

[O]

M̃IP
[U ]

=
1− ρns

1− ρns+1
.

2. If η∗[O] = η∗[U ], then MBP ∗[O] < MBP ∗[U ] and MIP ∗[O] < MIP ∗[U ]. Specifically:

MBP ∗[O]

MBP ∗[U ]
=
MIP ∗[O]

MIP ∗[U ]
=

1− ρno
1− ρno+1

.

(Under the equality of selfishly or socially optimal joining rates, the mean busy period and mean

idle period are both shorter in the observable case than in the unobservable case.)

Proof. The proof is given for the selfishly optimal case (the socially optimal case is analogous).

Consider the mean idle periods. If the system is observable and it is empty, then (assuming α > β/µ)

the next customer to arrive in the system will join the queue. The mean idle period is thus 1/λ.

In the unobservable case, customers join the queue at the Poisson rate η̃[U ] regardless of the state

of the system. Given that η̃[O] = η̃[U ], the mean idle period is 1/η̃[O] = (1 − ρns+1)/(λ(1 − ρns)).

The result M̃IP
[O]
/M̃IP

[U ]
= (1− ρns)/(1− ρns+1) then follows.

For the mean busy periods, it can be established using standard results for M/M/1 queues that

M̃BP
[O]

= (1 − ρns)/(µ(1 − ρ)) and M̃BP
[U ]

= (1 − ρns+1)/(µ(1 − ρ)), which gives the required

result. However, in order to show that M̃BP
[O]
/M̃BP

[U ]
= (1 − ρns)/(1 − ρns+1), it is sufficient
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to observe that, by Theorem 2.5.1, the equalities η̃[O] = η̃[U ] and P̃
[O]
0 = P̃

[U ]
0 are equivalent.

In order for the equality P̃
[O]
0 = P̃

[U ]
0 to hold, the mean busy periods for the observable and

unobservable systems must be in the same ratio as the mean idle periods. That is, one must have

M̃BP
[O]
/M̃BP

[U ]
= M̃IP

[O]
/M̃IP

[U ]
= (1− ρns)/(1− ρns+1) as required. �

Finally, consider the mean number of customers present in the system. The next result shows that,

in the observable case, the congestion in the system is lower on average under selfish (or social)

optimisation than in the unobservable case. This is a consequence of the fact that in the observable

case, customers may join the queue only in the most favourable circumstances. The fact that mean

waiting times are shorter in the observable case is implied by this result.

Theorem 2.5.3. Let L̃[O] (L̃[U ]) and L∗[O] (L∗[U ]) be the steady-state expected numbers of customers

in the observable (unobservable) system under selfish and social optimisation respectively. Also, let

W̃ [O] (W̃ [U ]) and W ∗[O] (W ∗[U ]) be the corresponding mean waiting times. Then:

1. If η̃[O] = η̃[U ] then L̃[O] < L̃[U ] and W̃ [O] < W̃ [U ].

2. If η∗[O] = η∗[U ] then L∗[O] < L∗[U ] and W ∗[O] < W ∗[U ].

Proof. The proof is given for the selfishly optimal case (the socially optimal case is analogous).

Assume ρ ∈ (0, 1), which is implied by the condition η̃[O] = η̃[U ]. Then:

L̃[O] =
ρ

1− ρ
− (ns + 1)ρns+1

1− ρns+1
,

L̃[U ] =
η̃[U ]

µ− η̃[U ]
=

η̃[O]

µ− η̃[O]
=
ρ(1− ρns)

1− ρ
.

One can show that the inequality L̃[O] < L̃[U ] is equivalent to:

ρns+1 − (ns + 1)ρ+ ns > 0.

Let fn(ρ) := ρn+1 − (n + 1)ρ + n for n ∈ N. Then f ′n(ρ) = (ρn − 1)(n + 1) < 0. Thus, fn(ρ) is

strictly decreasing for ρ ∈ (0, 1), and since fn(1) = 0, the result L̃[O] < L̃[U ] follows. Little’s formula

(see [67], p. 10) gives L̃[O] = η̃[O]W̃ [O] and, similarly, L̃[U ] = η̃[U ]W̃ [U ]. Hence, by the previous

arguments, η̃[O] = η̃[U ] implies L̃[O] < L̃[U ], which in turn implies W̃ [O] < W̃ [U ]. �

Figure 2.6 illustrates the result of Theorem 2.5.3 for the selfishly optimal case. In the figure, the

relationship αµ/β = 1 + ρ has been assumed in order to ensure that the equality η̃[O] = η̃[U ] holds.
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It can be seen that for the parameter values used, η̃[O] = η̃[U ] implies L̃[O] < L̃[U ]. The other results

of this section can be illustrated using similar diagrams.
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Figure 2.6: Relationships of L̃[O] and L̃[U ] with ρ assuming the equality η̃[O] = η̃[U ].

2.6 Conclusions

As discussed in Section 2.1, the strategic behaviour of customers (or the authority making decisions

on their behalf) under varying levels of information has received considerable recent attention in

the literature due to the insights that may be gained into whether or not a service provider should

restrict the amount of information available to its users. This chapter has considered an M/M/1

queueing system under two levels of information. The main results are as follows:

• The equality of selfishly optimal queue-joining rates is achievable only if ρ ∈ (0, 1), and the

same also applies to the equality of socially optimal joining rates.

• A necessary and sufficient condition can be derived for the equality of selfishly optimal queue-

joining rates in terms of the system parameters λ, µ, α and β, and a similar condition can

also be found for the equality of socially optimal joining rates.

• The number of intersection points between the selfishly optimal joining rates is monotonically

increasing with ρ in the interval (0, 1) and tends to infinity as ρ→ 1.
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• It is not possible to find a set of system parameters for which the selfishly optimal joining

rates are equal and the socially optimal joining rates are also equal.

• Small values of αµ/β will tend to imply that selfishly and socially optimal joining rates are

greater in the observable case. On the other hand, large values of αµ/β imply that (on

average) customers will join more frequently in the unobservable case.

• Various performance measures, including mean busy periods, expected queue lengths and av-

erage waiting times are smaller in the observable case than in the unobservable case, assuming

the equality of either selfishly or socially optimal joining rates.

The extent to which the system input parameters are controllable via the system design will vary

according to particular applications. It has been shown that the decision of a service provider to

reveal or suppress information on queue length may or may not affect customer queue-joining rates,

depending on the values of the system parameters and the type of customer behaviour assumed.

The general principle is that the incentive to reveal the queue length is greater if the value of service

(relative to the cost of waiting) is low. However, in general it is not possible to specify a unique

‘cut-off’ value of αµ/β which defines the optimal strategy of a decision-maker.

One might conjecture that, in many practical situations, if a revenue-maximising server (with the

singular aim of maximising customer throughput rates) finds itself in the particular scenario where

the average customer throughput rate per unit time is independent of the decision to reveal or

suppress information on queue length, then the most sensible decision will be to reveal the queue

length in order to generate greater goodwill from customers. The results in Section 2.5 have shown

that in the observable case, customers can expect to enjoy shorter waiting times, and greater net

benefits for receiving service as a result. One might explore this further by modelling a situation in

which the quality of service enjoyed by customers is worth some quantifiable benefit to the server.

This would obviously broaden the range of circumstances in which revealing the queue length would

be the optimal decision for the revenue-maximising server. The analysis of optimal server policies

in models with this type of extra complexity is a possible avenue for future work.



3 MDP formulation

3.1 The basic queueing system

This chapter introduces a mathematical model for the multiple-facility queueing system to be

analysed throughout the rest of this thesis. Various modifications to the model will be made in

later chapters, but at this early stage it is desirable to adopt a formulation which enables the

classical techniques of dynamic programming to be employed without any major difficulty. The

queueing system consists of a finite number N of heterogeneous service facilities, each of which has

a dedicated queue and is subject to a cost and reward scheme similar to that of Naor’s single-server

model in [131]. The fundamental assumptions of the model are as follows:

• Customers arrive according to a Poisson process with demand rate λ > 0.

• Each facility i ∈ {1, 2, ..., N} possesses ci identical service channels, and service times at any

channel of facility i are exponentially distributed with mean µ−1
i > 0.

• Newly-arrived customers may proceed to any one of the N service facilities or, alternatively,

exit the system immediately without incurring any cost or reward (referred to as balking).

Thus, there are N + 1 possible destinations for any individual customer. Customers who

proceed to facility i ∈ {1, 2, ..., N} will either wait in the queue for facility i or go directly to

an empty service channel and begin their service immediately, depending on whether or not

they find all of the ci service channels occupied upon their arrival.

• The queue discipline at each facility is First-Come-First-Served (FCFS).

• The system incurs a linear holding cost βi > 0 per unit time for each customer waiting at

facility i ∈ {1, 2, ..., N} (whether in the queue or in service).

• The system earns a fixed reward αi > 0 for each customer who completes service at facility

i ∈ {1, 2, ..., N}. The units of αi and βi are assumed to be comparable.

• The system is fully observable, in the sense that the number of customers present at each

facility is always known and can be used to inform decision-making.

35
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• The decision made upon a customer’s arrival is irrevocable; the system does not allow reneging,

jockeying between queues or postponement of decision-making.

• The decision made upon a customer’s arrival is made without any knowledge of the exact

times at which arrivals or service completions will occur in the future.

• For each i ∈ {1, 2, ..., N}, αi, βi and µi satisfy the relationship αi > βi/µi.

Essentially, the model may be regarded as anN -fold generalisation of theM/M/1 system considered

in Chapter 2, in which customers may be served at any one of N different facilities arranged in

parallel (with the option of balking also available) and each facility i is capable of serving up

to ci customers at the same time. As alluded to in Chapter 2, the assumption that αi > βi/µi

for all facilities i ∈ {1, 2, ..., N} is made in order to avoid degeneracy in the system. If one had

α − βi/µi < 0 for some facility i, then it would never be worthwhile in an economic sense for a

customer to receive service there, since the expected cost incurred during their service time would

exceed the reward obtained for service. In fact, all of the results in this thesis remain valid under

the weaker assumption that αi ≥ βi/µi for each facility i, with only some extra discussion required

in some cases in order to deal with trivialities that occur if αi − βi/µi = 0. In order to avoid these

trivialities, it will be simpler to assume the strict inequality αi > βi/µi throughout.

Another point to be made is that, in the queueing theoretic literature, it is common practice to

make an assumption concerning the rate of demand λ in order to ensure system stability. Typical

assumptions might be that λ <
∑

i ciµi, or (more restrictively) λ < ciµi for all i ∈ {1, 2, ..., N}.

However, no such assumption is made in this thesis. This is due to the fact that the option of

balking is always available, and therefore it is always possible to find a means of controlling the

system such that the system is stable, in the sense that the total number of customers present is not

at risk of escalating in an unbounded fashion. It is therefore not necessary to consider any scenario

in which customers ‘flood’ the system at a rate which exceeds its maximum service completion rate,

since this type of behaviour does not achieve any economic objective of interest.

A diagrammatic representation of the system is given in Figure 3.1. It is clear that the dynamics

of the system are influenced not only by the input parameters (arrival rate, service rates etc.) but

also by the decisions made at the ‘routing point’ labelled in the diagram. As in Chapter 2, there is

no explicit assumption as to whether these decisions are made by customers themselves, or whether
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Figure 3.1: A diagrammatic representation of the queueing system.

there is a central decision-maker who controls the destination of each individual; that is, a customer

may be viewed as an intelligent entity with the ability to exercise control over his/her own outcome,

or on the other hand he/she may be compliant with directions received from a greater authority.

The implications of allowing customers to act of their own free will are of great interest when the

plausible assumption is made that individuals will tend to make short-sighted decisions aimed at

optimising their own individual outcomes; this topic will be expounded upon later.

3.2 Continuous-time MDPs

The queueing system described in Section 3.1 may be controlled by means of a decision-making

scheme which determines the routing decision to be made upon each customer’s arrival. Such

a scheme is referred to as a policy for controlling the system. In general, a policy may be as

elaborate as desired; the decision to be made upon a customer’s arrival may depend on several

factors, including the amount of time elapsed since the initialisation of the process, the congestion

levels at the various facilities at the time of decision-making, the history of decisions made in the

past and their consequences. One might even make a decision according to a random probability
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distribution. Various types of policies will be discussed in greater detail in Section 3.6, but at this

stage it suffices to adopt the general notion of a policy as some form of decision-making scheme

which efficiently determines the actions of customers arriving in the system. The next example

illustrates how the consequences of adopting a particular policy may be analysed.

Example 3.2.1. (Joining the shortest queue)

Suppose there is a demand rate λ = 1 and only two service facilities (N = 2), each with only one

server available (c1 = c2 = 1). Parameters for the two facilities are as follows:

µ1 = 0.8, β1 = 2, α1 = 6,

µ2 = 0.4, β2 = 1, α2 = 4.
(3.2.1)

For the purposes of this example it will be assumed that an extra constraint is imposed, whereby

the number of customers present at the first facility may not exceed two at any time, and there

may be at most one customer present at the second facility (equivalently, the second facility will

not allow anyone to queue, while its neighbour will permit a queue size of one).

Let it be assumed that the system begins with no customers present. Then the state of the system

at any given time may be denoted by a vector x ∈ S, where S is given by:

S =
{

(x1, x2) : x1, x2 ∈ N0, x1 ≤ 2, x2 ≤ 1
}
.

Let it be assumed that the system is controlled by means of the following simple policy, which

depends only on the state of the system upon arrival of a customer:

• If the system is in state (2, 1), customers are forced to balk.

• If the system is in any other state in S, customers go to the facility with the fewest customers

already present. In the case of a tie, they always go to facility 1.

The policy described above may be represented as a function θ : S → Ax which associates a unique

action a ∈ Ax with each state x ∈ S, where Ax is the set of actions available at state x. It is clear

that the policy θ induces a continuous-time Markov chain (CTMC) over the 6 states in S, with

state-dependent sojourn times determined by the arrival and service rates. It is natural to adopt a

lexicographical ordering of the states, with the component x1 taking precedence over x2. Using the
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approach described in Appendix A.2, the infinitesimal generator matrix Q, consisting of transition

rates q(x,y) (for states x,y ∈ S), may be constructed as follows:

Q =



q((0, 0), (0, 0)) q((0, 0), (0, 1)) ... q((0, 0), (2, 1))

q((0, 1), (0, 0)) q((0, 1), (0, 1)) ... q((0, 1), (2, 1))

q((1, 0), (0, 0)) q((1, 0), (0, 1)) ... q((1, 0), (2, 1))

q((1, 1), (0, 0)) q((1, 1), (0, 1)) ... q((1, 1), (2, 1))

q((2, 0), (0, 0)) q((2, 0), (0, 1)) ... q((2, 0), (2, 1))

q((2, 1), (0, 0)) q((2, 1), (0, 1)) ... q((2, 1), (2, 1))



=



−λ 0 λ 0 0 0

µ2 −(λ+ µ2) 0 λ 0 0

µ1 0 −(λ+ µ1) λ 0 0

0 µ1 µ2 −(λ+ µ1 + µ2) 0 λ

0 0 µ1 0 −(λ+ µ1) λ

0 0 0 µ1 µ2 −(µ1 + µ2)


.

This is a finite-state CTMC consisting of a single communicating class. Theorem A.2.1 in Appendix

A.2 implies that the chain has a stationary distribution {π(x)}x∈S satisfying:

∑
y∈S

π(y)q(y,x) = 0 (x ∈ S), (3.2.2)

where π(x) is the limiting (stationary) probability for state x ∈ S. Note that the stationary

probabilities π(x) and transition rates q(x,y) actually have a dependence on the policy θ, but since

there is only one policy of interest in this example it is reasonable to suppress this θ-dependence

in order to simplify the notation. The equations in (3.2.2) may be written:

λπ((0, 0)) = µ1π((1, 0)) + µ2π((0, 1)),

(λ+ µ2)π((0, 1)) = µ1π((1, 1)),

(λ+ µ1)π((1, 0)) = λπ((0, 0)) + µ1π((2, 0)) + µ2π((1, 1)),

(λ+ µ1 + µ2)π((1, 1)) = λ
(
π((0, 1)) + π((1, 0))

)
+ µ1π((2, 1)),

(λ+ µ1)π((2, 0)) = µ2π((2, 1)),

(µ1 + µ2)π((2, 1)) = λ
(
π((1, 1)) + π((2, 0))

)
.

(3.2.3)
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Upon imposing the normalising condition
∑

x∈S π(x) = 1, the equations in (3.2.3) may be solved

to obtain the stationary distribution for the CTMC. In most of the examples considered in this

thesis, it will not be practical (or useful) to give expressions for the steady-state probabilities π(x)

in terms of the parameters λ, µ1, µ2 etc. Indeed, even in this simple example involving only 6

states, the expressions for π((0, 0)), π((0, 1)) etc. in terms of λ, µ1 and µ2 are not ‘neat’ enough to

be worth reproducing here. It is feasible, however, to simply calculate the approximate numerical

values (to 4 decimal places) using the values for λ, µ1 and µ2 given in (3.2.1):

π((0, 0)) ≈ 0.1945, π((0, 1)) ≈ 0.1267, π((1, 0)) ≈ 0.1797,

π((1, 1)) ≈ 0.2218, π((2, 0)) ≈ 0.0504, π((2, 1)) ≈ 0.2268.
(3.2.4)

For each state x ∈ S, (3.2.4) provides an approximation for the expected long-run proportion of

time π(x) spent in state x when the policy θ is followed. So far, the holding costs βi and rewards

for service αi have not featured in this analysis. In order to assess whether or not the policy θ is

a sensible one, it would be useful to have a measure of its economic performance; such a measure

could then be compared with those of other (possibly more desirable) policies. For this purpose,

the concept of expected long-run average reward per unit time is required.

Consider an arbitrary state x ∈ S. For every unit of time spent in x, the holding costs incurred

are given by β1x1 +β2x2. However, if xi ≥ 1 (for i = 1, 2), then service completions occur at a rate

µi at facility i, and each completion earns a reward αi. It therefore makes sense to define the net

reward function (referred to more simply as the reward function) for x ∈ S as:

r(x) :=
2∑
i=1

(min(xi, 1)αiµi − βixi) . (3.2.5)

Thus, r(x) is a measure of the expected net reward for each unit of time spent in state x. The

expected long-run average net reward (more simply, average reward) gθ is then:

gθ :=
∑
x∈S

π(x)r(x) ≈ 1.6913. (3.2.6)

The value of gθ quantifies the performance of the policy θ. There are other performance measures

that may be used as alternatives to the expected long-run average reward, including those based

on discounting of future costs and rewards; these will be discussed later. �
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Example 3.2.1 introduced the concepts of system states, decisions, transition rates and net rewards.

Of course, the steady-state probabilities in (3.2.4) and average reward calculated in (3.2.6) were

consequences of the particular policy θ being followed. In Chapter 2, policies for observable M/M/1

queues were represented by thresholds; for example, it was shown that a socially optimal policy

could be defined by a threshold no ∈ N, such that customers join the facility if and only if they

observe fewer than no customers in the system when they arrive. In the case of multiple facilities,

one may still adopt the notion of a socially optimal policy as a policy which maximises expected

average reward (as in the M/M/1 case); however, the search for such a policy becomes more

complicated, as the problem involves both routing control and admission control.

The problem of finding a socially optimal policy which maximises average reward (or optimises some

alternative performance measure of interest) over all policies may be tackled within the framework

of a continuous-time Markov Decision Process (CTMDP). This is defined below.

Definition 3.2.2. (Continuous-time Markov Decision Process)

A continuous-time Markov Decision Process (CTMDP) is a collection of objects:

Ψ =
{
S,Ax, τ(x, a), σ(x, a,y), ξ(x, a), ξγ(x, a), γ

}
,

where S is the state space of the process (assumed either finite or countably infinite), Ax is the

set of actions available at state x ∈ S (also assumed either finite or countably finite), τ(x, a) is

the sojourn time parameter which determines the distribution of the time spent in state x ∈ S

given that action a ∈ Ax is chosen, σ(x, a,y) is the probability that the process transfers from state

x ∈ S to y ∈ S at its next transition given that action a ∈ Ax is chosen, ξ(x, a) and ξγ(x, a) are

(respectively) the undiscounted and discounted net rewards earned for choosing action a ∈ Ax at

state x ∈ S, and γ ∈ (0,∞) is a continuous discount rate applied to future rewards.

Some generalisations of Definition 3.2.2 are certainly possible. The use of vectors x, y etc. to

represent system states is specific to the needs of this thesis, but in the general field of CTMDPs,

system states may be scalar quantities, matrices or various other objects; moreover, continuous

state and action spaces may be considered (see [14, 41, 81]). In Chapter 4 and onwards, system

states will usually be denoted by vectors x = (x1, x2, ..., xN ) except in the case where only a single

facility is being considered (N = 1), in which case it will be appropriate to use a scalar x ∈ N0



Chapter 3 MDP formulation 42

to denote the state. In addition, some authors include a subscript t on the reward function and

transition rates to indicate possible time-dependence. In this thesis it will be assumed that rewards

and transition rates are stationary ; that is, they remain the same at all times.

The continuous discount rate γ ∈ (0,∞) is relevant only in problems where the economic perfor-

mance measure of interest is the expected total discounted reward. Further details of this criterion

will be given later in this section. If one is interested only in the expected long-run average reward

for the system (as in Example 3.2.1), then the discount rate γ may be ignored.

The remainder of this section examines how the N -facility queueing system presented in Section

3.1 fits within the framework of a CTMDP. First, however, some general comments about the

evolution of a CTMDP are in order. In fact, a CTMDP is a special case of a Semi-Markov

Decision Process (SMDP) (see [141, 197]), in which the time spent in a particular state follows an

arbitrary probability distribution, and the system controller is required to make a decision every

time the system state changes. Essentially, an SMDP evolves by remaining in a particular state

for a randomly distributed amount of time and then ‘jumping’ to a different state, also determined

randomly. Typical applications of SMDPs include the control of GI/M/c and M/G/c queueing

systems (examples may be found in [157] and [159]). If the inter-transition times are exponentially

distributed and actions are chosen at every transition, then the SMDP is a CTMDP.

Let Ψ be a CTMDP in some arbitrary state x ∈ S at time t0 ≥ 0, and suppose an action a ∈ Ax

is chosen by the decision-maker. Then the time until the next state transition is exponentially

distributed with parameter τ(x, a), which depends on the action chosen as well as the state. Let

t1 > t0 denote the time of the next transition. Then, for each y ∈ S, σ(x, a,y) denotes the

probability that the system jumps to state y at time t1, given that action a is chosen at t0. The

transition times t0, t1 etc. are the decision epochs at which control may be exercised.

Returning to the queueing system described in Section 3.1, it is clear that the designated decision

epochs for the system should be the times at which customers arrive, since these are the only

times at which decisions are made. Furthermore, assuming that a newly-arrived customer always

has the option to join any of the N facilities (or balk), it would seem logical to use {0, 1, 2, ..., N}

as the set of actions available at every state, where 0 denotes balking and i ≥ 1 denotes joining

facility i (i = 1, 2, ..., N). However, some thought must be applied to the formulation of the state
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space S. It would seem natural to simply define the state space as the (countably infinite) set of

N -vectors (x1, x2, ..., xN ), where xi ∈ N0 is the number of customers present at facility i, but in a

continuous-time setting this approach has some limitations, as described below.

The general formulation of a CTMDP requires that the action chosen at a particular decision epoch

(equivalently, transition time) t0 ≥ 0 determines the expected sojourn time in the present state, and

also the probability distribution for the state reached at the next transition. Suppose the system

state at time t0 is represented by a vector (x1, x2, ..., xN ) as described above, an action is chosen at

t0, and the next transition occurs at some future point in time t1 > t0. A problem arises in that,

according to the sequence of events in a CTMDP, the state transition at t1 takes place before the

decision at t1 is made. Thus, there is no option but to use the action chosen at t0 to determine

the fate of a customer who arrives at t1. Essentially, by adopting this formulation, one requires

the system controller to make anticipative decisions in advance of customer arrivals; he/she must

decide what action will be taken if the next random event to take place is an arrival (as opposed

to a service completion), irrespective of when this arrival might actually occur.

In fact, while this might initially appear to be a serious drawback, in purely mathematical terms

it only presents a problem if the system controller wishes to implement a time-dependent policy.

If a policy is employed which is not time-dependent and selects actions based only on the state of

the system upon each customer’s arrival, then the controller is always aware of the action he/she

will choose if an arrival occurs before any other transition; in other words, the time until the next

transition is irrelevant for decision-making purposes. Thus, the policy θ considered in Example

3.2.1, being a simple state-dependent policy, can be modelled within this framework. On the other

hand, if the system controller wishes to implement a time-dependent policy, the question of whether

or not to send a customer to a particular facility i may depend on whether or not that customer

arrives before some ‘cut-off’ point t′ > t0; for example, a customer may be sent to facility i if

their arrival occurs before t′, but refused admission otherwise. Hence, the state space formulation

described earlier must be refined in order to accommodate time-dependent policies.

It is sensible to follow an approach similar to that of Puterman [141] (p. 568), who considers an

admission control problem for an M/M/1 queue. The principle is to consider decision epochs some-

what more generally as the points in time at which random events (arrivals and service completions)
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take place, and amend the system state description so that it includes information about the latest

random event to have occurred. Specifically, let the system state at some arbitrary decision epoch

be given by ((x1, x2, ..., xN ), ω), where (as before) (x1, x2, ..., xN ) is a vector of head counts at the

various facilities, and ω is the random event that occurs at the epoch in question. The symbol

Λ will be used to denote the event that an arrival has occurred, and Mi (for i = 1, 2, ..., N) will

denote a service completion at facility i. The state space S is then given by:

S =
{(

(x1, x2, ..., xN ), ω
)

: x1, x2, ..., xN ∈ N0, ω ∈ {Λ,M1,M2, ...,MN}
}
. (3.2.7)

It is important to specify that if w = Mi for some i ∈ {1, 2, ..., N}, then this indicates that the

number of customers present at facility i has just decreased from xi + 1 to xi as a result of a

service completion, and not that the number of customers at i is ‘about’ to decrease from xi to

xi − 1. For example, suppose one has a system with only two facilities (N = 2), and both facilities

have one customer present at some arbitrary point in time. If the next random event to occur is

a service completion at facility 1, then the system state at the next decision epoch is
(
(0, 1),M1

)
,

and not
(
(1, 1),M1

)
. Indeed, if the latter convention was adopted then some of the states in S

(as defined in (3.2.7)) would become redundant, as it would not be possible for the random event

ω = Mi to accompany any vector (x1, x2, ..., xN ) with xi = 0. On the other hand, consider the

same two-facility scenario and suppose the next event to occur is an arrival. Then the state at the

next decision epoch is
(
(1, 1),Λ

)
, indicating that the head count at one of the facilities may be

about to increase by one, depending on the action chosen by the decision-maker.

Let (x, ω) denote a generic state in S, where x = (x1, x2, ..., xN ). The action sets A(x,ω) for the

N -facility queueing system under consideration may be described as follows:

A(x,ω) =


{0, 1, ..., N}, if ω = Λ,

{0}, otherwise.

(3.2.8)

At any state (x, ω) ∈ S associated with an arrival (i.e. ω = Λ), one assumes that all of the actions

0, 1, ..., N are available to the decision-maker. On the other hand, if ω = Mi for some facility

i ∈ {1, 2, ..., N} (indicating a service completion), then in physical terms there is no decision to

make and as such one may use the degenerate set A(x,ω) = {0} to represent the set of actions

available, where 0 indicates that no customer is admitted to the system (since there is no customer
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to admit). Thus, the action sets A(x,ω) in (3.3.7) have no x-dependence. However, in later sections

it will sometimes be appropriate to consider a finite state space, in which case the action sets for

states (x, ω) which lie on the ‘boundary’ of the finite space will need to be restricted in order to

ensure that the process remains ‘contained’ within the finite state space of interest.

Next, consider the sojourn time parameters τ((x, ω), a) for the system. If action a ∈ A(x,ω) is

chosen at state (x, ω) ∈ S, then the time until the next decision epoch should be exponentially

distributed with mean (τ((x, ω), a))−1 > 0. This implies the following definition:

τ((x, ω), a) =


λ+

N∑
j=1

min(xj , cj)µj + µi, if ω = Λ, a = i for some i ∈ {1, 2, ..., N} and xi < ci,

λ+
N∑
j=1

min(xj , cj)µj , otherwise.

(3.2.9)

Thus, the sojourn time parameter τ((x, ω), a) is given by adding the total rate at which service

completions take place in the system immediately following a visit to state (x, ω) (which depends

on the choice of action a) to the system demand rate λ. After a sojourn in state (x, ω) ∈ S, the

system ‘jumps’ to a new state (x′, ω′) ∈ S with transition probability σ((x, ω), a, (x′, ω′)). These

transition probabilities can be expressed most intelligibly by letting (x, ω) be an arbitrary state in

S and writing the probabilities σ((x, ω), a, (x′, ω′)) for all states (x′, ω′) ∈ S which are accessible

from (x, ω) in a single transition. Before doing so, it will be convenient to define xi+ as the N -

vector which is identical to x = (x1, x2, ..., xN ) except that the ith component is increased by one;

similarly, for N -vectors x with xi ≥ 1 for some arbitrary i ∈ {1, 2, ..., N}, let xi− denote the vector

which is identical to x except that the ith component is reduced by one. That is:

xi+ := x + ei,

xi− := x− ei,

where ei is the ith vector in the standard orthonormal basis of RN . The components of the vector

xi+ (respectively, xi−) will be written xi+1 , xi+2 , ..., xi+N (resp. xi−1 , xi−2 , ..., xi−N ), so that xi+j (resp.

xi−j ) denotes the jth component of the vector xi+ (resp. xi−) for j ∈ {1, 2, ..., N}. Let (x, ω) be an

arbitrary state in S. The cases ω = Λ and ω 6= Λ will be considered separately. If ω = Λ, then the
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probabilities σ((x,Λ), a, (x′, ω′)) may be summarised for i, j ∈ {1, 2, ..., N} as follows:

σ((x,Λ), i, (xi+,Λ)) = λ/τ((x,Λ), i),

σ((x,Λ), 0, (x,Λ)) = λ/τ((x,Λ), 0),

σ((x,Λ), i, ((xi+)j−,Mj)) = min(xi+j , cj)µj/τ((x,Λ), i),

σ((x,Λ), 0, (xj−,Mj)) = min(xj , cj)µj/τ((x,Λ), 0), (3.2.10)

and σ((x,Λ), a, (x′, ω′)) = 0 for any destination state (x′, ω′) ∈ S and action a ∈ A(x,ω) not already

accounted for in (3.2.10). On the other hand, for states (x, ω) with ω = Mi for some i ∈ {1, 2, ..., N},

the only action available is a = 0. Hence, for j ∈ {1, 2, ..., N}:

σ((x,Mi), 0, (x,Λ)) = λ/τ((x,Mi), 0),

σ((x,Mi), 0, (x
j−,Mj)) = min(xj , cj)µj/τ((x,Mi), 0), (3.2.11)

and σ((x,Mi), 0, (x
′, ω′)) = 0 for any destination state (x′, ω′) ∈ S not accounted for in (3.2.11).

The subtlety of the CTMDP formulation given thus far is that the action chosen at a particular de-

cision epoch determines (in conjunction with the underlying probabilistic structure) what happens

only up to the point when the next decision is due to be made, i.e. when the next customer arrival

occurs. In a sense, the naive formulation that was briefly discussed earlier (in which the system

state was simply an N -vector (x1, x2, ..., xN )) went a step too far, by using the action chosen at

time t0 ≥ 0 to dictate the routing decision made at the next decision epoch t1 > t0.

Referring to Definition 3.2.2, it is also necessary to define suitable reward functions ξ((x, ω), a) and

ξγ((x, ω), a) in order to complete the CTMDP formulation. In Example 3.2.1, the expected long-run

average reward per unit time under policy θ was defined as gθ =
∑

x∈S π(x)r(x). This definition for

gθ was made possible by the fact that the policy θ under consideration chose actions based only on

the current system state (thereby enabling states to be represented simply by vectors x, as opposed

to pairs (x, ω)). Consequently, it was possible to represent the evolution of the system under θ

using a time-homogeneous CTMC and derive the stationary distribution {π(x)}x∈S . However, a

somewhat more general definition for gθ is required in order to accommodate policies which do

not enable such an approach. Consider a new definition for the expected long-run average reward

gθ((x, ω)) under an arbitrary policy θ, given some initial state (x, ω) ∈ S:
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gθ((x, ω)) = lim inf
t→∞

1

t
Eθ

[
Nt∑
n=0

ξ((xn, ωn), an)

∣∣∣∣∣(x0, ω0) = (x, ω)

]
, (3.2.12)

where Nt denotes the number of decision epochs (equivalently, the number of transitions or ‘jumps’)

occurring in time [0, t], (xn, ωn) is the state of the system at the nth decision epoch, an is the

corresponding action chosen, and ξ((x, ω), a) is the (undiscounted) reward earned for a sojourn in

state (x, ω) ∈ S given that action a ∈ A(x,ω) is chosen. Let Tn denote the time of the nth decision

epoch, so that Nt = max{n : Tn ≤ t}. It makes sense to follow Puterman [141] (p. 567) in defining

ξ((x, ω), a) as the expected reward accumulated during a sojourn in state (x, ω) after choosing action

a, but in doing so one must be mindful of the non-uniformity of the expected inter-transition times

E[Tn+1 − Tn] caused by the dependence of the sojourn parameters τ((x, ω), a) on (x, ω) and a.

In fact, as will become clear throughout this chapter, there are a number of equally valid ways of

defining the expected single-sojourn reward ξ((x, ω), a). Two alternative formulations will be given

here, but it is not difficult to conceive other variants which are equally suitable.

It is logical to begin with the reward formulation which most literally follows the description

of the system given in Section 3.1. Given that a reward αi > 0 is earned each time a service

completion occurs at facility i ∈ {1, 2, ..., N}, it is reasonable to propose that the reward function

ξ((x, ω), a) should incorporate a term αi if and only if ω = Mi. On the other hand, holding costs

are accumulated continuously over time; specifically, the rate per unit time at which holding costs

are accrued immediately following a visit to state (x, ω) ∈ S is given by
∑N

j=1 βjxj , with the

possibility of an extra cost βi if a new customer is admitted to facility i at the relevant decision

epoch. Using the additional property that the length of a sojourn in state (x, ω) after choosing

action a is exponentially distributed with mean 1/τ((x, ω), a), the expected single-sojourn reward

ξ((x, ω), a) may be defined for states (x, ω) ∈ S and actions a ∈ A(x,ω) as follows:

ξ((x, ω), a) =



αi −
∑N

j=1 βjxj

τ((x, ω), a)
, if ω = Mi for some i ∈ {1, 2, ..., N},

−
∑N

j=1 βjxj + βi

τ((x, ω), a)
, if ω = Λ and a = i for some i ∈ {1, 2, ..., N},

−
∑N

j=1 βjxj

τ((x, ω), a)
, otherwise.

(3.2.13)

On the other hand, an alternative approach might involve the system earning rewards corresponding
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to the expected (net) payoffs of individual customers themselves, calculated at their times of arrival.

Let wi(x) be the expected net reward earned by an individual customer for joining facility i ∈

{1, 2, ..., N} when there are already x ∈ N0 customers present there. Since it is assumed that

customers do not renege or jockey between queues, it is simple to calculate wi(x) for each x ∈ N0

as a function of the system parameters. Indeed, if x < ci then one simply has:

wi(x) = αi −
βi
µi

(x < ci). (3.2.14)

If a customer joins facility i when there are already x ≥ ci customers present (so that they have to

wait before beginning service), then the number of service completions that must occur at facility

i before their service begins is x− ci + 1. Formally, their expected waiting time in the queue has a

gamma distribution with parameters x− ci + 1 and ciµi (see [103], p. 518). Hence:

wi(x) = αi −
βi(x− ci + 1)

ciµi
− βi
µi

= αi −
βi(x+ 1)

ciµi
(x ≥ ci). (3.2.15)

Therefore, using (3.2.14) and (3.2.15), one may derive the following single-sojourn reward function

as an alternative to the function ξ((x, ω), a) given in (3.2.13):

ξ̂((x, ω), a) =



αi −
βi
µi
, if ω = Λ, a = i for some i ∈ {1, 2, ..., N} and xi < ci,

αi −
βi(xi + 1)

ciµi
, if ω = Λ, a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

(3.2.16)

It is clear that both of the reward formulations ξ((x, ω), a) and ξ̂((x, ω), a) are logical. Indeed,

the formulation in (3.2.13) is based on the real-time holding costs and rewards accrued during the

system’s evolution, while the alternative formulation in (3.2.16) is based on an unbiased estimate of

each individual customer’s contribution to the aggregate net reward, made at the time of their entry

to the system. For ease of reference, the function ξ(·) in (3.2.13) will be called the real-time reward

function, while the function ξ̂(·) in (3.2.16) will be referred to as the anticipatory reward function.

Intuitively, one would expect both functions to yield an accurate measurement for the expected

average reward under a particular policy θ when used within (3.2.12), and a formal equivalence

between the two formulations in a discrete-time setting will be proved in Section 3.5.
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Figure 3.2 shows the results of a simulation experiment involving the parameters in Example 3.2.1,

designed for the purpose of comparing the two reward formulations in (3.2.13) and (3.2.16). For

the two-facility system under consideration, a CTMDP was formulated exactly as described in

this section thus far (i.e. with the same state space and action sets, etc.) and allowed to evolve

randomly according to the sojourn time and transition probability distributions given in (3.2.9)

and (3.2.11) respectively. The figure shows the evolution of the average reward per unit time over

a short time period of 5000 time units. Two simulation runs were performed, with the reward

formulations (3.2.13) and (3.2.16) used alternately and ((0, 0),Λ) chosen as the initial state. Under

both formulations, the average reward quickly converges towards the value 1.6913 calculated in

Example 3.2.1. When the original reward formulation (3.2.13) is used, the aggregate net reward

tends to take negative values for very small values of t (the amount of time elapsed), since the

rewards for service α1 and α2 are not earned until service completions occur; on the other hand,

when the formulation (3.2.16) is used, the aggregate net reward takes comparatively large positive

values when t is small, since the system is immediately credited for customers’ expected net rewards

(which are always non-negative under the policy θ) upon their entry to the system.
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Figure 3.2: Comparison of the average rewards under ξ(·) and ξ̂(·) for the system in Example 3.2.1.

Before concluding this section, it will also be useful to discuss the discounting of future rewards.

Recall (from Definition 3.2.2) that the parameter γ ∈ (0,∞) represents a continuous discount

rate. The expected total discounted reward vγ,θ((x, ω)) under a particular policy θ and initial state
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(x, ω) ∈ S may be used as an alternative to the expected long-run average reward in (3.2.12) for

measuring the performance of the system under θ. It is defined as follows:

vγ,θ((x, ω)) = Eθ

[ ∞∑
n=0

e−γTn ξγ((xn, ωn), an)

∣∣∣∣∣(x0, ω0) = (x, ω)

]
, (3.2.17)

where Tn is the time of the nth ‘jump’ of the process to state (xn, ωn) ∈ S, and an ∈ A(xn,ωn)

is the corresponding action chosen. The new function ξγ(·) is used for the single-sojourn rewards

because, in the case of continuous discounting, it is not entirely accurate to use the same reward

function as in the average reward case; indeed, the expected single-sojourn reward ξγ((x, ω), a) for

a sojourn in state (x, ω) (following selection of action a) must take into account the continuous

depreciation of the rewards earned while the sojourn is in progress. The standard approach used in

the literature for defining single-sojourn rewards in CTMDPs with discounting (see, for example,

[160]) is to allow ‘lump sum’ rewards to be earned at the beginning and end of a sojourn (which

can be set equal to zero if appropriate), and also to allow an additional portion of the reward to be

earned at a continuous rate during the sojourn itself. In order to be consistent with this approach,

the function ξγ((xn, ωn), an) in (3.2.17) should take the following general form:

ξγ((xn, ωn), an) = R1((xn, ωn), an)

+R2((xn, ωn), an)

∫ ∞
0

τ((xn, ωn), an)e−τ((xn,ωn),an)t

∫ t

0
e−γu dudt

+R3((xn, ωn), an)

∫ ∞
0

τ((xn, ωn), an)e−(γ+τ((xn,ωn),an))t dt,

where R1((xn, ωn), an) and R3((xn, ωn), an) are the lump sum portions of the reward received at the

start and end of the sojourn respectively, and R2((xn, ωn), an) is the reward rate while the sojourn

is in progress. In the case of the N -facility queueing system under consideration, the rewards for

service αi are earned instantaneously upon completions of service, and therefore these rewards can

be paid immediately as lump sums at states (x, ω) ∈ S with ω = Mi. On the other hand, holding

costs must be handled in a different way, as these are subject to continuous discounting. For

example, suppose the system is in some state (xn, ωn) ∈ S at its nth decision epoch, and suppose

also that ωn = Mi for some i ∈ {1, 2, ..., N}. Then, noting that the time until the next transition is

exponentially distributed with parameter τ((xn, ωn), an), the expected contribution of the reward
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earned during the next sojourn to the cumulative value vγ,θ((x, ω)) is given by:

e−γTn
∫ ∞

0
τ((xn, ωn), an)e−τ((xn,ωn),an)t

αi − N∑
j=1

βj(xn)j

∫ t

0
e−γudu

 dt

= e−γTn

(
αi −

∑N
j=1 βj(xn)j

γ + τ((xn, ωn), an)

)
,

where (xn)j denotes the jth component of xn. In general, if one wishes to compute the expected

total discounted reward using a ‘real-time’ reward formulation similar to (3.2.13), then in order to

ensure compatibility with the definition of vγ,θ((x, ω)) in (3.2.17) (in which the factor e−γTn already

appears), ξγ((x, ω), a) should be defined for (x, ω) ∈ S and a ∈ A(x,ω) as follows:

ξγ((x, ω), a) =



αi −
∑N

j=1 βjxj

γ + τ((x, ω), a)
, if ω = Mi for some i ∈ {1, 2, ..., N},

−
∑N

j=1 βjxj + βi

γ + τ((x, ω), a)
, if ω = Λ and a = i for some i ∈ {1, 2, ..., N},

−
∑N

j=1 βjxj

γ + τ((x, ω), a)
, otherwise.

(3.2.18)

On the other hand, if one wishes to compute vγ,θ((x, ω)) using an ‘anticipatory’ reward formulation

similar to that given in (3.2.16), then the effect of the discount rate γ on the single-sojourn rewards

is even more significant. In this case, it is necessary to find an expression for the expected net reward

earned by an individual customer, taking into account the continuous discounting. If a customer

joins some facility i ∈ {1, 2, ..., N} when there are fewer than ci customers already present (so that

they begin service immediately), then their expected discounted reward is given by:∫ ∞
0

µie
−µit

(
αie
−γt − βi

∫ t

0
e−γudu

)
dt

=
αiµi − βi
γ + µi

.

On the other hand, if a customer joins facility i when the number of customers present xi is greater

than or equal to ci, then their expected holding costs incurred while waiting in the queue must also

be taken into account. In this case, their expected waiting time in the queue (before entering service)

is gamma-distributed with parameters xi − ci + 1 and ciµi (please note that ‘gamma-distributed’
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here refers to the gamma distribution from probability theory, and should not be confused with the

discount rate γ). Since their service time must also be accounted for, it follows that the customer’s

expected discounted net reward may be computed via the following integral:∫ ∞
0

(ciµi)
xi−ci+1

(xi − ci)!
txi−cie−ciµit

∫ ∞
0

µie
−µiu

(
αie
−γ(t+u) − βi

∫ t+u

0
e−γsds

)
dudt

=
1

γ(γ + µi)

[(
ciµi

γ + ciµi

)xi−ci+1

(γαiµi − βiµi)− βi(γ + µi)

]
.

Summarising these arguments, if one wishes to apply an ‘anticipatory’ reward formulation similar

to (3.2.16) to a problem with continuous discounting at a rate γ ∈ (0,∞), then the reward function

ξ̂γ((x, ω), a) (taking the place of ξγ((x, ω), a) in (3.2.17)) should be given by:

ξ̂γ((x, ω), a) =



αiµi − βi
γ + µi

, if ω = Λ, a = i for

some i ∈ {1, 2, ..., N}
and xi < ci,

1

γ(γ + µi)

[(
ciµi

γ + ciµi

)xi−ci+1

(γαiµi − βiµi)− βi(γ + µi)

]
, if ω = Λ, a = i for

some i ∈ {1, 2, ..., N}
and xi ≥ ci,

0, otherwise.

(3.2.19)

Figure 3.3 shows the results of another simulation experiment, again using the parameters from

Example 3.2.1, designed to compare the discounted reward formulations (3.2.18) and (3.2.19).

First, the ‘real-time’ formulation (3.2.18) was adopted and 50,000 simulation runs were carried

out in order to estimate the total discounted reward for the system operating under the policy

θ described in the example, with the discount rate γ set to a value of 0.1 and the initial state

(x0, ω0) = ((0, 0),Λ) used. On each simulation run, sojourn times and transitions were generated

randomly according to (3.2.9) and (3.2.10)-(3.2.11) and the process was allowed to continue until

the value of e−γt (where t denotes the total amount of time elapsed) eventually became negligibly

small. The procedure was then repeated (i.e. another 50,000 simulation runs were performed)

under the alternative formulation (3.2.19), with the same discount rate γ = 0.1 and initial state

((0, 0),Λ) used. For both reward formulations, the figure shows the evolution of the average total

discounted reward (over all trials) as the number of trials increases from 0 to 50,000.
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Figure 3.3: Comparison of average total discounted rewards under reward formulations ξγ(·) and ξ̂γ(·) for

the system in Example 3.2.1, with a discount rate γ = 0.1 and initial state (x0, ω0) = ((0, 0),Λ).

Figure 3.3 shows that under both formulations, the average total discounted reward appears to

converge towards a value of approximately 17.4. It should always be the case that the expected

value vγ,θ((0,Λ)) as defined in (3.2.17) takes the same value under both of the formulations ξγ(·)

and ξ̂γ(·), so that there is an equivalence between the two reward formulations similar to the

equivalence between the formulations (3.2.13) and (3.2.16) (for average reward problems) discussed

previously. However, it is important to note that this equivalence applies only when the initial state

is (0,Λ); that is, for any given system, it will generally not be the case that the expected total

discounted reward vγ,θ((x, ω)) takes the same value under both reward formulations if the initial

state (x, ω) ∈ S is arbitrary. To understand why this is, suppose the system is initialised in some

state (x0, ω0) with x0 6= 0, so that there is already at least one customer present in the system. If the

real-time formulation ξγ(·) is used, then the single-sojourn rewards earned in the early stages of the

process include the holding costs for the customer(s) present initially, and also the rewards earned

when their services are finally completed. On the other hand, if the anticipatory formulation is

used, then these single-sojourn rewards include only the expected holding costs and rewards for new

customers who enter the system. Similarly, if the initial state is (0,Mi) for some i ∈ {1, 2, ..., N},

then the initial reward under the real-time formulation ξγ((0,Mi)) includes a ‘payment’ for the

service which has just been completed, whereas the anticipatory reward ξ̂γ((0,Mi)) does not. It is
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only when the initial state is (0,Λ) that the two formulations are equivalent.

The specification of the reward functions ξ((x, ω), a) and ξγ((x, ω), a) (with ξ̂((x, ω), a) and

ξ̂γ((x, ω), a) as alternatives) completes the formulation of the queueing system described in Section

3.1 as a CTMDP. The next section will introduce an important and useful technique, known as

uniformisation, whereby a CTMDP can be analysed in a discrete-time setting.

3.3 Uniformisation

Section 3.2 explained how to formulate the queueing system presented in Section 3.1 as a continuous-

time MDP. In fact, there exists an equivalence between continuous-time MDPs and discrete-time

MDPs which is similar in principle to the equivalence between discrete-time and continuous-time

Markov chains discussed in Appendix A.2. This can be exploited using an extremely useful tech-

nique, known as uniformisation, which will be relied upon extensively throughout this thesis. The

result itself is usually credited to Lippman [119], who applied the technique in the context of a

queueing control problem involving an M/M/c queueing system. Using what he refers to as a “new

device”, which involves using uniformisation to enlarge the set of decision epochs, Lippman suc-

cessfully characterises optimal policies for a number of classical queueing control problems. Serfozo

[160] also provides a somewhat more concise explanation of the same technique.

Continuous-time MDPs have already been defined in Section 3.2. Before proceeding with the

equivalence result, it is necessary to provide a definition for discrete-time MDPs.

Definition 3.3.1. (Discrete-time Markov Decision Process)

A discrete-time Markov Decision Process (MDP) is a collection of objects:

Φ =
{
S,Ax, p(x, a,y), r(x, a), rφ(x, a), φ

}
,

where S is the state space of the process (assumed either finite or countably infinite), Ax is the

set of actions available at state x ∈ S (also assumed either finite or countably finite), p(x, a,y)

is the one-step transition probability for transferring from x ∈ S to y ∈ S given that a ∈ Ax is

chosen, r(x, a) and rφ(x, a) are (respectively) the undiscounted and discounted net rewards earned

by choosing action a ∈ Ax at state x ∈ S, and φ ∈ (0, 1) is a discount factor.
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Thus, the definition of a discrete-time MDP is similar to that of a continuous-time MDP; the

essential difference is that transitions (or equivalently, decision epochs) occur at uniformly-spaced

intervals, so that sojourn times are fixed as opposed to being randomly distributed. In this thesis,

problems will usually be formulated as discrete-time MDPs rather than CTMDPs, and therefore

“MDP” will be used to refer to a discrete-time MDP unless otherwise stated. Note that Definition

3.3.1 relates to a general scenario in which the state of the system can be represented adequately by

a vector x ∈ S; however, in the previous section it was deemed necessary to represent the state of

the N -facility queueing system under consideration using a pair (x, ω), where ω represents a random

event. Since the early part of this section summarises some general results from the literature, it

will be convenient to retain the ‘simplified’ notation (with vectors x, y etc. to represent states) in

order to express the relevant theoretical concepts in a more concise manner. Later in this section,

the queueing system from earlier in this chapter will be considered again specifically.

The definition of the expected long-run average reward for a discrete-time MDP, given some policy

θ and initial state x ∈ S, differs only slightly from the CTMDP case. Specifically:

gθ(x) := lim inf
m→∞

m−1Eθ

[
m−1∑
n=0

r(xn, an)
∣∣∣x0 = x

]
, (3.3.1)

where xn is the system state at the nth time epoch, and an is the corresponding action chosen.

Note that due to the limit infimum in (3.3.1), the worst-case scenario is considered when the limit

fails to exist. On the other hand, suppose rewards are discounted by a factor φ ∈ (0, 1) on each

discrete time step. Then the expected total discounted reward under θ is given by:

vφ,θ(x) := Eθ

[ ∞∑
n=0

φnrφ(xn, an)
∣∣∣x0 = x

]
, (3.3.2)

Thus, a reward earned n steps into the future is discounted by a factor φn (relative to an imme-

diate reward). As observed by Sennott [156], vφ,θ(x) may be infinite if the rewards rφ(xn, an) are

unbounded. It is also worthwhile to note that the discount factor φ in a discrete-time MDP has a

somewhat contrary meaning to the discount rate γ used in a CTMDP, in the sense that small values

of φ (e.g. φ ≈ 0) represent very severe discounting rates, whereas if φ ≈ 1 then the total discounted

reward over a finite number of time steps n is almost equal to the total undiscounted reward over

the same number of time steps. Contrastingly, it is clear from (3.2.17) that in a continuous-time

process, small values of the discount rate γ (e.g. γ ≈ 0) represent very mild discounting rates,
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whereas the effect of discounting becomes increasingly severe as γ tends to infinity.

Before proceeding further, it is necessary to introduce a definition for a particular kind of policy

which applies to both discrete-time and continuous-time MDPs. So far in this chapter, the term

‘policy’ has been used in a somewhat vague manner to refer to the general strategy of a decision-

maker for controlling the system. In Section 3.6, various types of policies will be defined and

classified in a more formal way. However, the next definition is required immediately.

Definition 3.3.2. (Stationary policy)

Let Φ be either a discrete-time or a continuous-time MDP, with state space S and action sets Ax

for x ∈ S. Suppose the system is controlled by means of a policy θ which associates a unique action

θ(x) ∈ Ax with any given state x ∈ S; that is, at any decision epoch where the process is in state

x, the unique action θ(x) is chosen. Then θ is referred to as a stationary policy.

Thus, a stationary policy may be regarded as a direct mapping θ : S → Ax. The next result, found

in [160], explains the equivalence between MDPs and CTMDPs with respect to expected long-run

average rewards and total discounted rewards under a fixed stationary policy.

* Theorem 3.3.3. Let Ψ be a continuous-time Markov Decision Process (CTMDP) with state

space S and action sets Ax for x ∈ S. For each state-action pair (x, a) ∈ S × Ax one associates

the sojourn time parameter τ(x, a) and transition probabilities σ(x, a,y) (for y ∈ S). The single-

sojourn reward function is denoted by ξγ(x, a) if rewards are continuously discounted with rate

γ ∈ (0,∞), and ξ(x, a) if there is no discounting. Assume that there exists C > 0 such that

(1−σ(x, a,x))τ(x, a) ≤ C <∞ for all x ∈ S and a ∈ Ax. Let Ψ̂ be a CTMDP with the same state

and action sets as Ψ, with transition probabilities and reward functions given by:

p(x, a,y) =


1− (1− σ(x, a,x))τ(x, a)

C
, if y = x,

σ(x, a,y)τ(x, a)

C
, if y 6= x,

(3.3.3)

r(x, a) =
ξ(x, a)τ(x, a)

C
, (3.3.4)

rγ(x, a) = ξγ(x, a)

(
γ + τ(x, a)

γ + C

)
, (3.3.5)
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and suppose Ψ̂ has sojourn time parameter C for all (x, a) ∈ S×Ax. Let Φ denote a discrete-time

MDP with the same state and action spaces as Ψ and Ψ̂, single-step reward function r(x, a) or

rγ(x, a) (depending on whether or not discounting is used), transition probabilities p(x, a,y) and

discount factor φ := C/(γ + C), so that Φ is identical in construction to Ψ̂ except with respect to

its discounting structure. If Ψ, Ψ̂ and Φ are all controlled by the same stationary policy θ, then Ψ

and Ψ̂ yield the same expected long-run average reward under θ and this is equal to Cg†θ(x), where

g†θ(x) is the expected long-run average reward for the process Φ. Furthermore, all three processes

yield the same expected total discounted reward vγ,θ(x) for any initial state x ∈ S.

For the proof of the theorem, please refer to Serfozo [160].

A valuable observation made by Serfozo is that, while the continuous-time processes Ψ̂ and Ψ have

a larger class of non-stationary policies than the discrete-time process Φ, all three processes have

the same class of stationary policies. Thus, if a stationary policy can be found for any one of Ψ̂, Ψ

and Φ which maximises the expected average reward over all stationary policies, then it must also

do so for the other two processes. In this sense, the three processes are equivalent.

Typically, the principle of uniformisation is used to treat a continuous-time problem within a

discrete-time setting, and indeed this will be the approach taken throughout most of this thesis.

However, it is useful to bear in mind that when uniformisation is applied, there are actually three

processes involved: the original CTMDP Ψ, the discrete-time MDP Φ and an intermediate process

Ψ̂ which, as specified by Theorem 3.3.3, is a continuous-time process with uniformly-distributed

sojourn times. Of course, the fact that sojourn times for Ψ̂ are uniformly distributed does not imply

that all sojourn times for the process are identical; it simply means that each sojourn time follows

the same random distribution (specifically, an exponential distribution with parameter C). The

technique of uniformisation may be illustrated using a diagram similar to that given in Puterman

[141] (p. 567); see Figure 3.4 below. In some of the results later in this chapter, the equivalence

between Ψ and Ψ̂ (referred to as the “uniformised CTMDP”) will prove to be useful.

In the case of the N -facility queueing system described in Section 3.1, the results of Theorem 3.3.3

(with some minor modifications) can be applied in order to convert the continuous-time MDP Ψ

formulated in Section 3.2 to a discrete-time MDP Φ which yields the same expected long-run average

reward gθ((x, ω)) and expected total discounted reward vγ,θ((x, ω)) under a given stationary policy
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CONTINUOUS-TIME
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ActionDsetsDDAx
Trans.DprobsDDσ(x,a,y)

RewardsDDξ(x,a) or ξγ(x,a)
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DiscountDrateDDγ

Ψ
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ActionDsetsDDAx
Trans.DprobsDDp(x,a,y)

RewardsDDr(x,a) or rγ(x,a)
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Ψ
DISCRETE-TIME

PROCESSD

StateDspaceDDS
ActionDsetsDDAx
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Figure 3.4: The process of uniformisation involving the three processes Ψ, Ψ̂ and Φ.

θ and initial state (x, ω) ∈ S. An explicit formulation for Φ is given below.

Discrete-time MDP formulation

The state space (denoted S) for Φ is the same as for the CTMDP in Section 3.2. That is:

S =
{(

(x1, x2, ..., xN ), ω
)

: x1, x2, ..., xN ∈ N0, ω ∈ {Λ,M1,M2, ...,MN}
}
. (3.3.6)

The action sets (denoted A(x,ω)) for states (x, ω) ∈ S are also the same as in Section 3.2:

A(x,ω) =


{0, 1, ..., N}, if ω = Λ,

{0}, otherwise.

(3.3.7)

In order to define the transition probabilities for the MDP, which will be denoted (in this partic-

ular formulation) by P((x, ω), a, (x′, ω′)) for (x, ω), (x′, ω′) ∈ S, it is necessary to find a constant

C such that τ((x, ω), a) ≤ C for all (x, ω) ∈ S and a ∈ A(x,ω), where τ((x, ω), a) is the sojourn

time parameter defined in (3.2.9). Clearly, it is sufficient to choose any positive value C satisfying

C ≥ λ +
∑N

i=1 ciµi. Then, by applying the result of Theorem 3.3.3 to the ‘jump’ probabili-

ties σ((x, ω), a, (x′, ω′)) defined in (3.2.10)-(3.2.11), the probabilities P((x, ω), a, (x′, ω′)) for states

(x, ω) ∈ S with ω = Λ may be summarised for i, j ∈ {1, 2, ..., N} as follows:

P((x,Λ), i, (xi+,Λ)) = λ∆,

P((x,Λ), i, ((xi+)j−,Mj)) = min(xi+j , cj)µj∆,

P((x,Λ), i, (x,Λ)) = 1− λ∆−
N∑
k=1

min(xi+k , ck)µk∆,
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P((x,Λ), 0, (xj−,Mj)) = min(xj , cj)µj∆,

P((x,Λ), 0, (x,Λ)) = 1−
N∑
k=1

min(xk, ck)µk∆, (3.3.8)

and P((x,Λ), 0, (x′, ω′)) = 0 for any state (x′, ω′) ∈ S not already accounted for in (3.3.8). Here,

∆ := 1/C is the discrete-time step size, which is assumed to satisfy:

0 < ∆ ≤

(
λ+

N∑
i=1

ciµi

)−1

. (3.3.9)

Note that (3.3.8) specifies a non-zero value for the self-transition probability P((x,Λ), i, (x,Λ)),

whereas the corresponding ‘jump’ probability σ((x,Λ), i, (x,Λ)) in the CTMDP formulation of

Section 3.2 was equal to zero. Similarly, although the value of σ((x,Λ), 0, (x,Λ)) was non-zero in

the CTMDP formulation (due to the fact that self-transitions may occur in the continuous-time

process when balking is chosen at states with ω = Λ), its value was smaller than that of the

self-transition probability P((x,Λ), 0, (x,Λ)) in (3.3.8). This illustrates the general principle that

uniformisation causes extra ‘self-transitions’ by reducing the time in between successive decision

epochs (see [141], p. 562). For states (x, ω) ∈ S with ω = Mi for some facility i, the probabilities

P((x, ω), a, (x′, ω′)) may be summarised for facilities j ∈ {1, 2, ..., N} as follows:

P((x,Mi), 0, (x,Λ)) = λ∆,

P((x,Mi), 0, (x
j−,Mj)) = min(xj , cj)µj∆,

P((x,Mi), 0, (x,Mi)) = 1− λ∆−
N∑
k=1

min(xk, ck)µk∆, (3.3.10)

and P((x,Mi), 0, (x
′, ω′)) = 0 for any state (x′, ω′) ∈ S not accounted for in (3.3.10). Once

again, there is a non-zero ‘self-transition’ probability P((x,Mi), 0, (x,Mi)) which does not appear

in (3.2.11). The remaining task, in order to complete the discrete-time MDP formulation, is to

define the undiscounted and discounted reward functions for the process. These will be denoted

here by R((x, ω), a) and Rφ((x, ω), a) respectively. As discussed in the previous section, there

are at least two different approaches that may be taken as far as the single-transition rewards

are concerned; one approach is to define these rewards based on the ‘real-time’ holding costs and

service completions incurred by the system in a single transition, while an alternative method is to

adopt an ‘anticipatory’ formulation and reward the system based on the expected net rewards of
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individual customers as they enter the system. In this particular case, suppose that a ‘real-time’

reward formulation is used. By applying the result of Theorem 3.3.3 with the continuous-time

reward function ξ((x, ω), a) as defined in (3.2.13) and τ((x, ω), a) as defined in (3.2.9), one obtains

the following discretised function R((x, ω), a) (for use in undiscounted problems):

R((x, ω), a) =



αi

λ+
N∑
j=1

min(xj , cj)µj

− N∑
j=1

βjxj , if ω = Mi for some i ∈ {1, 2, ..., N},

−
N∑
j=1

βjx
i+
j , if ω = Λ and a = i for some

i ∈ {1, 2, ..., N},

−
N∑
j=1

βjxj , otherwise.

(3.3.11)

Note that the discrete-time step size ∆ = 1/C (henceforth referred to as the uniformisation param-

eter) has been omitted from (3.3.11). If the definition of the uniformised reward given in Theorem

3.3.3 was adhered to exactly, then the parameter ∆ would be included as a multiplicative factor.

However, in that case, the expected long-run average reward g†θ(x) for the discretised process Φ

operating under some stationary policy θ would (as stated by the theorem) be equal to ∆ times

the average reward of the continuous-time processes Ψ and Ψ̂ under the same policy. Essentially,

by omitting the factor ∆ in (3.3.11), one may ensure that the expected long-run average reward

obtained by using (3.3.11) within (3.3.1) gives the correct value for the average reward per unit

time, as opposed to the average reward per discrete time step. Next, by applying the result of

Theorem 3.3.3 to the continuous-time function ξγ((x, ω), a) defined in (3.2.18), one obtains the

following reward function Rφ(·) for use in discounted problems (recall that the discount factor φ is

obtained from γ via the transformation φ = 1/(1 + γ∆), hence γ = (1− φ)/(φ∆)):

Rφ((x, ω), a) =



αi
(
1− φ(1− λ∆)

)
+ φ∆

N∑
j=1

(
αi min(xj , cj)µj − βjxj

)
, if ω = Mi for some

i ∈ {1, 2, ..., N},

−φ∆

N∑
j=1

βjx
i+
j , if ω = Λ and a = i for

some i ∈ {1, 2, ..., N},

−φ∆

N∑
j=1

βjxj , otherwise.

(3.3.12)
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Naturally, it is also possible to apply the result of Theorem 3.3.3 to the anticipatory reward functions

in (3.2.16) and (3.2.19) in order to obtain alternative reward functions for the discretised process,

but the resulting expressions are not particularly elegant and in later sections it will be sufficient

to restrict attention to the ‘real-time’ formulations given in (3.3.11) and (3.3.12).

Before concluding this section, it is appropriate to make a further comment regarding the uniformi-

sation parameter ∆. In applications involving the uniformisation of CTMDPs, it is quite common

for the assumption to be made that the supremum of the sojourn time parameters τ(·) over all

state-action pairs is bounded above by one, so that ∆ = 1 is a valid choice for the uniformisation

parameter (see, for example, [35]). This assumption can usually be made without loss of generality,

since the units of time can always be re-scaled; for example, in the queueing system under consid-

eration, one might reasonably assume that the arrival rate λ and service rates µi are scaled in such

a way that λ+
∑N

i=1 ciµi = 1. By making this assumption, one would then be able to suppress the

appearance of the parameter ∆ in the transition probabilities (3.3.8)-(3.3.10).

While the assumption that λ+
∑N

i=1 ciµi = 1 is quite reasonable if λ and µ1, µ2, ..., µN are treated

as fixed parameters, it becomes somewhat impractical when these parameters are allowed to vary.

Some of the results in later chapters of this thesis will involve treating the demand rate λ as a

variable, in order to investigate the effect of increasing or decreasing λ on the performance of the

system. When the value of λ changes, there is an implicit effect on the range of positive values which

∆ may take; as such, it becomes somewhat awkward to suppress ∆ completely from the relevant

analyses (although there are ways in which this can be done). Clearly, it would not be desirable to

create unnecessary confusion by suppressing the parameter ∆ in some results and including it in

others. It will therefore be deemed appropriate in this thesis to simply include the uniformisation

parameter ∆ throughout; that is, there is no assumption made that λ+
∑N

i=1 ciµi = 1, and ∆ will

be included in all transition probabilities associated with uniformised MDPs.

In some of the results to follow later, it will be necessary to specify a particular value for the uni-

formisation parameter ∆; for example, ∆ = (λ+
∑N

i=1 ciµi)
−1 will be an obvious choice. However,

unless otherwise stated, it may be assumed somewhat more generally that:

∆ ∈

0,

(
λ+

N∑
i=1

ciµi

)−1
 .
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The fact that there always exists a range of possible values for ∆ when uniformisation is applied is

a very important principle, which can be exploited in a similar way to the principle of introducing

extra ‘self-transitions’ in a discrete-time Markov chain without affecting the underlying stationary

distribution of the chain (see, for example, the convergence proof for relative value iteration found

in Bertsekas [13] (p. 191), which will be discussed briefly in Section 3.7).

Further results involving stationary policies will be discussed in the next section.

3.4 Optimality of stationary policies

An important theme in later chapters of this thesis will be the identification and characterisation

of policies θ which maximise the expected long-run average reward for the system gθ((x, ω)), de-

fined in (3.2.12). In keeping with the terminology introduced in Chapter 2, policies which achieve

this objective will be referred to as socially optimal. Policies which maximise the expected total

discounted reward vγ,θ((x, ω)) in (3.2.17), given some continuous discounting rate γ ∈ (0,∞), will

not be expressly of interest in this thesis. However, it transpires that various important theoretical

results involving average reward problems (i.e. those in which the objective is to maximise the

average reward gθ((x, ω))) may be proved by treating an average reward problem as a limiting case

of a discounted reward problem, as the continuous discount rate γ tends to zero.

The next definition clarifies exactly what is meant by an optimal policy.

Definition 3.4.1. (Average reward optimal and γ-discount optimal policies)

An average reward optimal policy is any admissible policy θ∗ for which:

gθ∗((x, ω)) = sup
θ
gθ((x, ω)) ∀ (x, ω) ∈ S,

where the supremum is taken over all admissible policies for the system. Similarly, a γ-discount

optimal policy is any admissible policy θ∗γ for which:

vγ,θ∗γ ((x, ω)) = sup
θ
vγ,θ((x, ω)) ∀ (x, ω) ∈ S.

In Definition 3.4.1, the term “admissible policy” in fact refers to any strategy for controlling the

system which does not fundamentally violate the assumptions of Section 3.1 (by, for example,
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postponing the decision made when a customer arrives, or using knowledge of the arrival times

of future customers to inform decision-making). In particular, an admissible policy might make

decisions based on the history of actions chosen in the past, or the amount of time elapsed since

the initialisation of the process. A formal classification for admissible policies will be provided in

Section 3.6, but in this section the only important distinction is between stationary policies (which

select actions based only on the current system state) and non-stationary policies.

As discussed in Section 3.2, the augmented state space formulation given in (3.2.7) (with (x, ω) used

to denote a generic system state) was deemed necessary in order to enable the implementation of

time-dependent policies. However, if it were possible to restrict attention to stationary policies only,

then it would be sufficient to represent the system state using only an N -vector x = (x1, x2, ..., xN ),

since this would contain all information required by the decision-maker; in particular, the exact

time of a customer’s arrival would be irrelevant for decision-making purposes. In general, the

analysis of CTMDPs and MDPs becomes much simpler if one considers stationary policies only.

As observed by Sennott [159], “the advantages for implementation of a stationary policy are clear,

since it necessitates the storage of less information than required to implement a general policy”.

However, some justification is required in order to simplify the problem in this way.

Recall that Ψ denotes the CTMDP formulated in Section 3.2. The purpose of this section is to

prove that there exists an average reward optimal policy for Ψ which is also a stationary policy. In

order to do this, it will be sufficient to prove certain properties of the optimal value function vγ(·)

associated with a γ-discounted problem. This function is defined for (x, ω) ∈ S by:

vγ((x, ω)) := vθ∗γ ((x, ω)) = sup
θ
vγ,θ((x, ω)).

Given any continuous discount-rate γ ∈ (0,∞), results from the literature imply that there exists

a γ-discount optimal stationary policy for the process Ψ. The next result, which is adapted from

Sennott [157] and relies upon results in [12] and [155], establishes this fact.

* Theorem 3.4.2. Let the discount rate γ ∈ (0,∞) be fixed. The optimal value function vγ((x, ω)) =

supθ vγ,θ((x, ω)) satisfies the following γ-discount optimality equations:

vγ((x, ω)) = max
a∈A(x,ω)

ξγ((x, ω), a) + Lγ((x, ω), a)
∑

(x′,ω′)∈S

σ((x, ω), a, (x′, ω′))vγ((x′, ω′))

 , (3.4.1)
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where, for states (x, ω) ∈ S and actions a ∈ A(x,ω), Lγ((x, ω), a) is given by:

Lγ((x, ω), a) =

∫ ∞
0

τ((x, ω), a)e−(γ+τ((x,ω),a))t dt =
τ((x, ω), a)

γ + τ((x, ω), a)
. (3.4.2)

Moreover, let θ∗γ be any stationary policy such that for all (x, ω) ∈ S, the action θ∗γ((x, ω)) chosen

by θ∗γ attains the maximum in (3.4.1). Then θ∗γ is γ-discount optimal.

Proof. The proof relies upon some assumptions, and therefore it is necessary to verify that these

hold in the case of the CTMDP Ψ formulated in Section 3.2. It is assumed that:

1. The single-sojourn rewards are bounded above (but not necessarily bounded below); that is,

there exists R ∈ R such that ξγ((x, ω), a) ≤ R for all ((x, ω), a) ∈ S ×A(x,ω).

2. There exist ε > 0 and t0 > 0 such that e−τ((x,ω),a)t0 ≥ ε for all ((x, ω), a) ∈ S ×A(x,ω).

3. For all states (x, ω) ∈ S, it is the case that vγ((x, ω)) > −∞.

Indeed, let α∗ := max(α1, α2, ..., αN ) denote the maximum value of service across all facilities.

Then it can be verified from (3.2.18) that ξγ((x, ω), a) ≤ α∗ for all ((x, ω), a) ∈ S × A(x,ω) and

γ ∈ (0,∞), so the first assumption holds. In order to verify the second assumption, one may choose

t0 = (λ +
∑N

i=1 ciµi)
−1 > 0. Then, since the sojourn time parameters τ((x, ω), a) are uniformly

bounded above by λ +
∑N

i=1 ciµi, it follows that e−τ((x,ω),a)t0 ≥ e−1 > 0 for all state-action pairs

((x, ω), a). This condition ensures that the process is ‘regular’, in the sense that it makes only

finitely many transitions in any finite amount of time (see [157], p. 250). Finally, let θ0 denote the

degenerate policy which chooses to balk at any state (x, ω) with ω = Λ, and consider an arbitrary

initial state (x, ω) ∈ S. Obviously, since no customers are admitted under the degenerate policy

θ0, the rate at which holding costs are incurred is steepest at the beginning of the process. Hence,

since the rewards αi are non-negative, it follows from (3.2.17) and (3.2.18) that:

vγ,θ0((x, ω)) ≥ −
N∑
j=1

βjxj

∫ ∞
0

e−γtdt = −
∑N

j=1 βjxj

γ
.

Thus, since vγ((x, ω)) ≥ vγ,θ0((x, ω)) for all (x, ω) ∈ S by definition of vγ , this confirms that

vγ((x, ω)) may always be bounded below by some finite negative value, which verifies the third

assumption. The optimality equations (3.4.1) and existence of a γ-discount optimal stationary

policy are then established using the arguments in [155] (see also [12], p. 251). �
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Recall that, by Theorem 3.3.3, one may apply uniformisation and deduce that the expected total

discounted reward vγ,θ((x, ω)) under some stationary policy θ is equivalent to:

vφ,θ((x, ω)) := Eθ

[ ∞∑
n=0

φnRφ((xn, ωn), an)
∣∣∣(x0, ω0) = (x, ω)

]
, (3.4.3)

where the state evolution of the discrete-time process in (3.4.3) is determined by the transition

probabilities P((x, ω), a, (x′ ω′)) in (3.3.8)-(3.3.10), the discounted reward function Rφ((x, ω), a)

is as defined in (3.3.12) and the discount factor φ is given by φ = (1 + γ∆)−1, with ∆ ∈

(0, (λ+
∑N

i=1 ciµi)
−1]. For clarity, it will be assumed throughout the rest of this section that vφ,θ(·)

represents the expected total discounted reward function for the discrete-time MDP Φ obtained by

applying uniformisation to the CTMDP Ψ, where the policy θ is arbitrary. An explicit formulation

for Φ was given in the previous section. Also, vφ(·) will be used to denote the corresponding optimal

value function, so that vφ((x, ω)) = supθ vφ,θ((x, ω)) for all states (x, ω) ∈ S.

The fact that (by Theorem 3.4.2) a stationary γ-discount optimal policy exists for Ψ, together

with the equivalence of the expected total discounted reward functions vγ,θ(·) and vφ,θ(·) in the

case of stationary policies θ (established by Theorem 3.3.3), justifies the approach of evaluating

vγ((x, ω)) for any given discount rate γ ∈ (0,∞) and state (x, ω) ∈ S by restricting attention

to stationary policies in the uniformised process Φ. Some essential results from the literature

concerning discounted rewards in discrete-time MDPs are summarised below.

* Theorem 3.4.3. The optimal value function vφ((x, ω)) = supθ vφ,θ((x, ω)) for the discrete-time

MDP Φ satisfies the following φ-discount optimality equations:

vφ((x, ω)) = max
a∈A(x,ω)

Rφ((x, ω), a) + φ
∑

(x′,ω′)∈S

P((x, ω), a, (x′, ω′))vφ((x′, ω′))

 , (3.4.4)

where Rφ(·) and P(·) are as given in (3.3.12) and (3.3.8)-(3.3.10) respectively. Furthermore, let

θ∗φ be any stationary policy such that for all (x, ω) ∈ S, the action θ∗φ((x, ω)) chosen by θ∗φ attains

the maximum in (3.4.4). Then the stationary policy θ∗φ is φ-discount optimal.

Proof. This result actually follows immediately from previous results. Let Ψ̂ be the CTMDP

referred to in the statement of Theorem 3.3.3, with uniform sojourn time parameter C for all

((x, ω), a) ∈ S ×A(x,ω) (where C ≥ λ+
∑N

i=1 ciµi) and transition probabilities and rewards defined

as in (3.3.12) and (3.3.8)-(3.3.10) respectively. Theorem 3.3.3 implies that, for any stationary policy
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θ, the expected total discounted reward function for Ψ̂ is equivalent to both vγ,θ(·) and vφ,θ(·), so

it will be convenient to denote this also by vφ,θ(·). The result of Theorem 3.4.2 in fact applies to

any CTMDP which satisfies the assumptions stated at the beginning of the proof (refer to [157],

p. 251). Since it can easily be verified that the process Ψ̂ satisfies these assumptions, the theorem

implies that the optimal value function vφ(·) satisfies the optimality equations:

vφ((x, ω)) = max
a∈A(x,ω)

Rφ((x, ω), a) +

(
C

γ + C

) ∑
(x′,ω′)∈S

P((x, ω), a, (x′, ω′))vφ((x′, ω′))

 ,

where the factor C/(γ+C) is obtained by analogy to (3.4.2) and the uniformity of the sojourn time

parameters in the process Ψ̂. By Theorem 3.3.3, the discount factor φ used for the discrete-time

MDP Φ is also given by φ = C/(γ + C) = (1 + γ∆)−1, so the result follows. �

The next result is sometimes referred to as the “method of successive approximations”, and may

be used to prove properties of vφ(·) using an inductive procedure.

* Theorem 3.4.4. Define the function v
(0)
φ : S → R by v

(0)
φ ((x, ω)) = 0 for all (x, ω) ∈ S. Let the

functions v
(n+1)
φ : S → R be defined for integers n ≥ 0 as follows:

v
(n+1)
φ ((x, ω)) = max

a∈A(x,ω)

Rφ((x, ω), a) + φ
∑

(x′,ω′)∈S

P((x, ω), a, (x′, ω′))v
(n)
φ ((x′, ω′))

 . (3.4.5)

Then, for each ((x, ω)) ∈ S, v
(n)
φ ((x, ω)) converges uniformly to vφ((x, ω)) as n→∞.

Proof. A proof is given by Ross [145] (p. 60). However, the proof depends on some technical details

which should be discussed. These details can be found in Appendix A.3, page 408.

As discussed previously, the main objective in this section is to prove the existence of a stationary

average reward optimal policy for the CTMDP Ψ. However, this can be done by establishing certain

properties of the optimal value function vγ(·) (or equivalently, the function vφ(·) associated with

the uniformised process Φ) in a discounted reward problem. The approach taken in the remainder

of this section will be to verify that vγ(·) satisfies the conditions proposed by Sennott [157] (p. 250)

which imply the existence of a stationary average reward optimal policy. First, it will be useful to

establish a property of the discounted reward function Rφ(·) defined in (3.3.12).



Chapter 3 MDP formulation 67

Lemma 3.4.5. Let α∗ = max(α1, α2, ..., αN ). Then for all states (x, ω) ∈ S, actions a ∈ A(x,ω),

facilities i ∈ {1, 2, ..., N} and discount factors φ ∈ (0, 1):

Rφ((xi+, ω), a)−Rφ((x, ω), a) ≤ (α∗µi − βi) ∆. (3.4.6)

Proof. Note that the random event ω is the same for the states (x, ω) and (xi+, ω). Hence, due to

the formulation of the action spaces in (3.3.7), any action a ∈ A(x,ω) also belongs to A(xi+,ω). If

ω = Λ then, for arbitrary a ∈ A(x,ω) and i ∈ {1, 2, ..., N}, one simply has:

Rφ((xi+,Λ), a)−Rφ((x,Λ), a) = −φ∆βi, (3.4.7)

which is negative for all φ ∈ (0, 1). On the other hand, α∗µi − βi is strictly positive due to the

assumption in Section 3.1 that αi − βi/µi > 0 for all i ∈ {1, 2, ..., N}, so (3.4.6) holds. If ω = Mj

for some j ∈ {1, 2, ..., N}, then for a ∈ A(x,ω) = {0} and i ∈ {1, 2, ..., N}:

Rφ((xi+,Mj), a)−Rφ((x,Mj), a) =


φ∆ (αjµi − βi) , if xi < ci,

−φ∆βi, if xi ≥ ci,
(3.4.8)

and the upper bound in (3.4.6) then follows since φ ∈ (0, 1) and αj ≤ α∗. �

The next result establishes some properties of the optimal value function vγ(·) which appear at

first sight to be somewhat remarkable, but can be reasoned using intuition.

Lemma 3.4.6. Let θ∗γ be a stationary γ-discount optimal policy. Consider a state (x, ω) ∈ S with

ω = Λ, and let a∗ ∈ {0, 1, ..., N} denote the action chosen by θ∗γ at (x,Λ). Furthermore, let the

notational convention be assumed whereby x0+ = x. Then, for i ∈ {1, 2, ..., N}:

vγ((xa
∗+,Mi))− vγ((x,Λ)) = αi. (3.4.9)

In addition, for any two distinct facilities i, j ∈ {1, 2, ..., N} and any vector x ∈ NN0 :

vγ((x,Mi))− vγ((x,Mj)) = αi − αj . (3.4.10)

Proof. The results can be proved directly using the continuous-time optimality equations (3.4.1).

However, for the purposes of later results, it will be useful to begin by considering the discrete-time
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MDP Φ obtained from Ψ via uniformisation, and prove using the method of successive approxima-

tions (Theorem 3.4.4) that the following properties hold at all stages n ∈ N:

v
(n)
φ ((xa

∗
n+,Mi))− v(n)

φ ((x,Λ)) ≤ αi,

v
(n)
φ ((x,Mi))− v(n)

φ ((x,Mj)) ≤ max(αi − αj , 0), (3.4.11)

where φ = 1/(1 + γ∆) is the discount factor for Φ, and a∗n ∈ {0, 1, ..., N} is an action attaining the

maximum on the right-hand side of (3.4.5) for the state (x,Λ) with n replaced by n− 1; that is, a∗n

is an optimal action at state (x,Λ) in a finite-stage problem with n stages. These properties may

be proved by induction on n; details can be found in Appendix A.3 (p. 409). �

The next result establishes a uniform upper bound for the first-order differences vγ((xi+, ω)) −

vγ((x, ω)), applicable for all (x, ω) ∈ S, i ∈ {1, 2, ..., N} and γ ∈ (0,∞).

Lemma 3.4.7. For all (x, ω) ∈ S, i ∈ {1, 2, ..., N} and γ ∈ (0,∞):

vγ((xi+, ω))− vγ((x, ω)) ≤ α∗ − βi
µi
. (3.4.12)

Proof. Again, this result may be proved on induction using the finite-stage functions v
(n)
φ associated

with the uniformised process Φ. For details, see Appendix A.3 (p. 412). �

The next two results verify that the optimal value function vγ satisfies certain conditions which are

known from the literature (in particular, [157]) to imply the existence of an average reward optimal

stationary policy. First it will be shown, using an argument similar to that of Proposition 3 in

[157], that the differences vγ((x, ω))− vγ((0,Λ)) are uniformly bounded above.

Lemma 3.4.8. Let 0 = (0, 0, ..., 0) denote the zero vector. There exists γ0 ∈ (0,∞) and a constant

K ∈ R such that, for all states (x, ω) ∈ S and discount rates γ ∈ (0, γ0):

vγ((x, ω))− vγ((0,Λ)) ≤ K.

Proof. This proof will proceed in stages. An outline of the proof is given below.

1. First, the CTMDP Ψ formulated in Section 3.2 will be transformed into an equivalent CTMDP

Ψ† which has the same class of γ-discount optimal policies. The transformation will be made

by re-defining the single-sojourn reward function for the process.
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2. By considering the transformed process Ψ†, it will be shown that there exists a finite subset

U of the infinite state space S such that the expected total discounted reward vγ((x, ω)) for

any state (x, ω) outside U is bounded above by max(x,ω)∈U vγ((x, ω)).

3. Finally, an explicit upper bound will be found for max(x,ω)∈U vγ((x, ω))− vγ((0,Λ)).

Let γ ∈ (0,∞) be fixed. As in the previous two lemmas, let α∗ = max(α1, α2, ..., αN ). Next, define

a function ζγ((x, ω), a) for (x, ω) ∈ S and a ∈ A(x,ω) as follows:

ζγ((x, ω), a) := α∗
(

γ + C

γ + τ((x, ω), a)

)
, (3.4.13)

where τ((x, ω), a) is defined as in (3.2.9) and, as in Theorem 3.3.3, C is any constant satisfying

C ≥ λ +
∑N

j=1 cjµj . Consider a transformation of the CTMDP Ψ formulated in Section 3.2

whereby an amount ζγ((x, ω), a) is subtracted from the reward ξγ((x, ω), a) earned every time the

process visits state (x, ω) ∈ S at some decision epoch and the action a ∈ A(x,ω) is chosen. Note

that ζγ((x, ω), a) is effectively a ‘lump sum’ deduction, rather than a penalty charged continuously

while the next sojourn is in progress. Let Ψ† denote the CTMDP formulated as in Section 3.2 (with

a real-time reward formulation used, similar to (3.2.18)) but taking into account the new reward

structure. Referring to (3.2.17), the expected total discounted reward under an arbitrary policy θ,

given some initial state (x, ω) ∈ S, may be written for the CTMDP Ψ† as follows:

v†γ,θ((x, ω)) = Eθ

[ ∞∑
n=0

e−γTn
(
ξγ((xn, ωn), an)− ζγ((xn, ωn), an)

)∣∣∣∣∣(x0, ω0) = (x, ω)

]

= Eθ

 ∞∑
n=0

e−γTn

J†γ((xn, ωn), an)−
N∑
j=1

βj(x
an+
n )j

∫ δn+1

0
e−γtdt

∣∣∣∣∣(x0, ω0) = (x, ω)

 ,
(3.4.14)

where Tn is the time of the nth decision epoch, (xn, ωn) ∈ S is the corresponding state, an is

the action chosen under the policy θ, δn+1 = Tn+1 − Tn is the length of the (n + 1)th sojourn of

the process, (xan+
n )j denotes the jth component of the vector xan+

n , and the non-positive function

J†γ((x, ω), a) is defined for state-action pairs ((x, ω), a) ∈ S ×A(x,ω) as follows:

J†γ((x, ω), a) =


αi − ζγ((x, ω), a), if ω = Mi for some i ∈ {1, 2, ..., N},

−ζγ((x, ω), a), otherwise.
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By Theorem 3.3.3, v†γ,θ((x, ω)) may be obtained equivalently by considering a CTMDP with

uniformly-distributed sojourn times (these being exponentially distributed with parameter C), but

in order for this to be a valid procedure the single-sojourn rewards must be multiplied by a factor

(γ + τ((x, ω), a))/(γ + C). By applying this procedure, one obtains the following single-sojourn

reward function R†γ((x, ω), a) for use in the uniformised version of Ψ†:

R†γ((x, ω), a) =

(
γ + τ((x, ω), a)

γ + C

)(
ξγ((x, ω), a)− ζγ((x, ω), a)

)
= Rγ((x, ω), a)− α∗,

whereRγ((x, ω), a) is the reward function obtained by applying uniformisation to the single-sojourn

rewards ξγ((x, ω), a) for the original process Ψ. Hence, due to the equivalence of the uniformised

CTMDP proved by Theorem 3.3.3, an alternative expression for v†γ,θ((x, ω)) is:

v†γ,θ((x, ω)) = Eθ

[ ∞∑
n=0

e−γTn
(
Rγ((xn, ωn), an)− α∗

)∣∣∣∣∣(x0, ω0) = (x, ω)

]

= vγ,θ((x, ω))− α∗Eθ

[ ∞∑
n=0

e−γTn

∣∣∣∣∣(x0, ω0) = (x, ω)

]
, (3.4.15)

where the expectation is now taken with respect to the random (uniformly distributed) transition

times and jump probabilities P((x, ω), a, (x′, ω′)) for the uniformised process operating under θ.

Since, in the uniformised process, the time of the nth decision epoch (for n ≥ 1) is gamma-

distributed with parameters n and C, (3.4.15) can be simplified further:

v†γ,θ((x, ω)) = vγ,θ((x, ω))− α∗
(

1 +
∞∑
n=1

∫ ∞
0

Cn

(n− 1)!
tn−1e−(γ+C)tdt

)

= vγ,θ((x, ω))− α∗
(

1 +

∞∑
n=1

(
C

γ + C

)n)

= vγ,θ((x, ω))− α∗
(
γ + C

γ

)
. (3.4.16)

It follows from (3.4.16) that, for any two states (x, ω), (x′, ω′) ∈ S:

v†γ,θ((x, ω))− v†γ,θ((x
′, ω′)) = vγ,θ((x, ω))− vγ,θ((x′, ω′)). (3.4.17)

In particular, since this principle applies to a γ-discount optimal policy:

v†γ((x, ω))− v†γ((x′, ω′)) = vγ((x, ω))− vγ((x′, ω′)), (3.4.18)
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where v†γ((x, ω)) = supθ v
†
γ,θ((x, ω)) for (x, ω) ∈ S. Essentially, the purpose of making the trans-

formation from Ψ to Ψ† is that in the transformed process Ψ†, all of the single-sojourn rewards

(given by ξγ((x, ω), a) − ζγ((x, ω), a)) are non-positive, which can easily be seen from the fact

that ξγ((x, ω), a) is uniformly bounded above by α∗ and ζγ((x, ω), a) ≥ α∗ for all (x, ω) ∈ S and

a ∈ A(x,ω). This non-positivity of the rewards will be required later. The results given in [157]

(which relate to a cost minimisation problem) assume that all costs are non-negative, and as the

author observes, this assumption can be made without loss of generality since it is always possible

to make a transformation which eradicates negative costs without affecting the optimality crite-

rion of interest. Analogously, (3.4.16) implies that any policy θ which is γ-discount optimal in the

original process Ψ must remain likewise optimal in the transformed process Ψ†.

In order to proceed, some general theoretical results for CTMDPs are needed. Let g†θ((x, ω)) denote

the expected long-run average (undiscounted) reward for the transformed process Ψ† under policy

θ. For clarification, when average rewards are considered the single-sojourn rewards for Ψ† are

given by ξ((x, ω), a)− ζ((x, ω), a), where ξ((x, ω), a) is as defined in (3.2.13) and:

ζ((x, ω), a) = lim
γ↓0

ζγ((x, ω), a) =
α∗C

τ((x, ω), a)
.

By applying uniformisation, one can show that g†θ((x, ω)) is related to gθ((x, ω)) (the expected

long-run average reward for the original process Ψ) as follows:

g†θ((x, ω)) = gθ((x, ω))− α∗C, (3.4.19)

and thus any policy which is average reward optimal for Ψ will also be similarly optimal for Ψ†.

Naturally, both g†θ((x, ω)) and v†γ,θ((x, ω)) are non-positive since all rewards for Ψ† are non-positive.

The following result is found in [157] (p. 251) and the proof relies upon certain results from analysis

which can be found in [199]. It is the case that for any policy θ and (x, ω) ∈ S :

lim inf
γ↓0

γv†γ,θ((x, ω)) ≥ g†θ((x, ω)). (3.4.20)

Furthermore, let θ be any stationary policy which induces an irreducible, ergodic Markov chain

on some finite set of states Sθ ⊂ S with steady-state probability distribution {πθ((x, ω))}(x,ω)∈Sθ .

Then it can be shown that for all states (x, ω) ∈ S, the following holds:

g†θ((x, ω)) = g†θ, (3.4.21)
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where g†θ is a constant. Verification of this fact may be carried out by first noting that under the

policy θ, the following two (somewhat trivial) conditions are satisfied:

∑
(x,ω)∈Sθ

πθ((x, ω))
(
ξ((x, ω), θ)− ζ((x, ω), θ)

)
> −∞, (3.4.22)

∑
(x,ω)∈Sθ

πθ((x, ω))

τ((x, ω), θ)
> −∞, (3.4.23)

where the notation ((x, ω), θ) denotes a state-action pair in which the action chosen is prescribed

by the policy θ. Indeed, (3.4.22) is implied by the finiteness of Sθ, while (3.4.23) follows from the

fact that τ((x, ω), a) ≤ C for all ((x, ω), a) ∈ S × A(x,ω). Using these properties, it can then be

shown using the arguments given in [83] (p. 326) that the continuous-time Markov chain induced

by θ on Sθ is ergodic, which in turn implies (3.4.21) (see [157], p. 254). From (3.4.16) it follows

that γv†γ,θ((x, ω)) = γvγ,θ((x, ω)) − α∗(γ + C). Since α∗(γ + C) → α∗C as γ ↓ 0, it can then

be shown easily using (3.4.19) and (3.4.20) that, given any initial state (x, ω) ∈ S, policy θ and

positive number ε, there exists a value γ1 ∈ (0,∞) such that for all γ ∈ (0, γ1):

γv†γ,θ((x, ω)) > g†θ − ε, (3.4.24)

The next part of the proof proceeds similarly to that of Proposition 3 in [157]. Let θ be a fixed

stationary policy which induces an ergodic, irreducible Markov chain defined on a finite set Sθ ⊂ S,

so that (3.4.21) applies for all (x, ω) ∈ S. Let the set Uθ be defined as follows:

Uθ :=

(x, ω) ∈ S : −
N∑
j=1

βjxj ≥ g†θ − ε

 , (3.4.25)

where ε > 0 is arbitrary. That is, Uθ is the set of states in S for which the associated holding

costs are bounded above by the non-negative quantity ε− g†θ. Clearly, for any fixed ε > 0, Uθ is a

finite set. Hence, due to (3.4.24), there exists γ0 ∈ (0,∞) such that γv†γ,θ((x, ω)) > g†θ − ε for all

(x, ω) ∈ Uθ and γ ∈ (0, γ0). The remainder of the proof will consider an arbitrary, fixed discount

rate γ ∈ (0, γ0). Since Uθ is finite, there exists a state (x, ω)∗ ∈ Uθ such that:

v†γ((x, ω)∗) ≥ v†γ((x, ω)) ∀ (x, ω) ∈ Uθ. (3.4.26)

(Note that the optimal value function v†γ is used in (3.4.26), as opposed to v†γ,θ.) Suppose the

transformed process Ψ† is initialised in some initial state (x, ω) /∈ Uθ and follows a γ-discount
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optimal policy θ∗γ . The claim of this proof is that, given (x, ω) /∈ Uθ, the quantity v†γ((x, ω)) cannot

possibly exceed v†γ((x, ω)∗), and hence the state (x, ω)∗ referred to in (3.4.26) must be a maximiser

of v†γ(·) over all states in S. Let the random variable Z be defined as follows:

Z := min
{
n ∈ N : (xn, ωn) ∈ Uθ

∣∣ (x0, ω0) = (x, ω)
}
.

Hence, Z is the first decision epoch at which the system state is an element of Uθ. Then, in view

of (3.4.14), the (optimal) expected total discounted reward v†γ((x, ω)) satisfies:

v†γ((x, ω)) = Eθ∗γ

 ∞∑
n=0

e−γTn

J†γ((xn, ωn), an)−
N∑
j=1

βj(x
an+
n )j

∫ δn+1

0
e−γtdt

∣∣∣∣∣(x0, ω0) = (x, ω)



≤ Eθ∗γ

[(
Z−1∑
n=0

e−γTn(g†θ − ε)
∫ δn+1

0
e−γtdt+ e−γTZv†γ((x, ω)∗)

) ∣∣∣∣∣ (x0, ω0) = (x, ω)

]

= Eθ∗γ

[(
(g†θ − ε)

∫ TZ

0
e−γtdt+ e−γTZv†γ((x, ω)∗)

) ∣∣∣∣∣ (x0, ω0) = (x, ω)

]

= Eθ∗γ

[(
(g†θ − ε)

(
1− e−γTZ

γ

)
+ e−γTZv†γ((x, ω)∗)

) ∣∣∣∣∣ (x0, ω0) = (x, ω)

]
, (3.4.27)

where the inequality is due to the non-positivity of J†γ((xn, ωn), an), the definition of Uθ in (3.4.25)

and (3.4.26). By the previous arguments, the following holds for all (x, ω) ∈ Uθ:

γv†γ((x, ω)∗) ≥ γv†γ((x, ω)) ≥ γv†γ,θ((x, ω)) ≥ g†θ − ε. (3.4.28)

Hence, (3.4.27) implies:

v†γ((x, ω)) ≤ Eθ∗γ

[(
γv†γ((x, ω)∗)

(
1− e−γTZ

γ

)
+ e−γTZv†γ((x, ω)∗)

) ∣∣∣∣∣ (x0, ω0) = (x, ω)

]
= v†γ((x, ω)∗). (3.4.29)

Note that in (3.4.27) and (3.4.29), the assumption is made that Z is finite (and hence TZ is also

finite); however, by considering the limiting behaviour as TZ → ∞, it is clear that the result also

holds when Z is infinite. Thus, due to (3.4.18), one may conclude that vγ((x, ω)) ≤ vγ((x, ω)∗)

for all (x, ω) /∈ Uθ. The proof of the lemma will therefore be complete if it can be shown that

there exists some constant K such that vγ((x, ω)∗) − vγ((0,Λ)) ≤ K (recall that γ ∈ (0, γ0) is

arbitrary). This may be done by taking an approach similar to that in [157], and arguing that
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v†γ((0,Λ))−v†γ((x, ω)∗) is bounded below by the expected total (non-positive) undiscounted reward

accumulated during a sojourn from state (0,Λ) to (x, ω)∗ in the process Ψ† operating under the

discount-optimal policy θ∗γ ; however, in order to use this approach one must establish that this

quantity is finite. In fact, it will be simpler to take a somewhat more direct approach here and

make use of Lemma 3.4.7. For all j ∈ {1, 2, ..., N}, let uj ∈ N0 be defined as follows:

uj := max
{
n ∈ N0 : xj = n for some x ∈ Uθ

}
.

Clearly, each integer uj is finite due to the finiteness of Uθ. By using (3.4.18) and also making use

of a telescoping sum, one can establish the following upper bound:

vγ((x, ω)∗)− vγ((0, ω))

=
N∑
i=1

x∗i−1∑
j=0

(
vγ

((
0 +

i−1∑
k=1

x∗kek + (j + 1)ei, ω

))
− vγ

((
0 +

i−1∑
k=1

x∗kek + jei, ω

)))
,

≤
N∑
i=1

x∗i

(
α∗ − βi

µi

)

≤
N∑
i=1

ui

(
α∗ − βi

µi

)
, (3.4.30)

where x∗i denotes the ith component of the vector x associated with the state (x, ω)∗ ∈ Uθ, and (as

previously) ei denotes the vector with ith component equal to one and all other components equal

to zero. It should also be clarified that the event ω associated with the state (0, ω) in the first line of

(3.4.30) corresponds to the event ω associated with (x, ω)∗. The first inequality in (3.4.30) results

from applying the result of Lemma 3.4.7 a total of
∑N

i=1 x
∗
i times, while the second inequality is

due to the fact that x∗i ≤ ui for each facility i ∈ {1, 2, ..., N}. If the random event ω is equal to Λ

then the claim of the lemma is proved, since one may then write for any (x, ω) ∈ S:

vγ((x, ω))− vγ((0,Λ)) ≤ vγ((x,Λ)∗)− vγ((0,Λ)) ≤
N∑
i=1

ui

(
α∗ − βi

µi

)
. (3.4.31)

On the other hand, if the random event ω associated with (x, ω)∗ is equal to Mi for some i ∈

{1, 2, ..., N}, then one may still apply (3.4.30) and write for any (x, ω) ∈ S:

vγ((x, ω))− vγ((0,Λ)) ≤ vγ((x,Mi)
∗)− vγ((0,Λ))
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= vγ((x,Mi)
∗)− vγ((0,Mi)) + vγ((0,Mi))− vγ((0,Λ))

≤
N∑
i=1

ui

(
α∗ − βi

µi

)
+ vγ((0,Mi))− vγ((0,Λ)). (3.4.32)

In this case, it remains to establish a γ-independent upper bound for the extra term vγ((0,Mi))−

vγ((0,Λ)). This is not a difficult task, since the only possible transition from state (0,Mi) is to

(0,Λ) and hence the discount optimality equations in (3.4.1) imply:

vγ((0,Mi)) = αi +
λ

γ + λ
vγ((0,Λ))

≤ α∗ + vγ((0,Λ)). (3.4.33)

Note that (3.4.33) assumes that vγ((0,Λ)) is non-negative, which follows from the fact that in the

original (non-transformed) process Ψ, vγ((0,Λ)) is bounded below by the expected total discounted

reward vγ,θ0((0,Λ)) for the policy θ0 which always chooses to balk, and clearly this quantity is equal

to zero. From (3.4.33) it follows that vγ((0,Mi))− vγ((0,Λ)) ≤ α∗ for all i ∈ {1, 2, ..., N}. Hence,

in view of (3.4.31) and (3.4.32), one can write for any state (x, ω) ∈ S:

vγ((x, ω))− vγ((0,Λ)) ≤ α∗ +
N∑
i=1

ui

(
α∗ − βi

µi

)
. (3.4.34)

The quantity on the right-hand side of (3.4.34) may be regarded as a constant whose value depends

only on the system parameters and the choice of the policy θ which determines the finite set Uθ.

Any policy which induces an ergodic, irreducible CTMC on some finite subset of S will yield, via

(3.4.34), a valid upper bound for vγ((x, ω))−vγ((0,Λ)) which applies for all (x, ω) ∈ S. The choice

of θ (and ε > 0) effectively determines the tightness of the upper bound obtained. For example, if a

‘poor’ policy θ is chosen under which the expected long-run average reward g†θ for the transformed

process Ψ† is very small, then the set Uθ defined in (3.4.18) will be relatively large, and hence the

upper bound in (3.4.34) will also be large; on the other hand, if the policy θ is close to (or attains)

average reward optimality, then the upper bound will be smaller. Since the same choice of θ and ε

will work for any discount rate γ ∈ (0, γ0), this completes the proof of the lemma. �

Before stating the main result of this section, one further property of vγ must also be proved;

specifically, it must be shown that, given any (x, ω) ∈ S, a state-dependent lower bound can be

found for vγ((x, ω))− vγ((0,Λ)) which holds for any discount rate γ ∈ (0,∞).
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Lemma 3.4.9. For every state (x, ω) ∈ S, there exists a non-negative value f((x, ω)) < ∞ such

that for all discount rates γ ∈ (0,∞), the following holds:

vγ((x, ω))− vγ((0,Λ)) ≥ −f((x, ω)). (3.4.35)

Proof. Let γ ∈ (0,∞) be fixed. Consider the same transformation as described in the proof of

Lemma 3.4.8, whereby an amount ζγ((x, ω), a) = α∗(γ + C)/(γ + τ((x, ω), a)) is deducted from

the reward ξγ((x, ω), a) earned at each decision epoch. Given that α∗ = max(α1, α2, ..., αN ) and

C ≥ λ +
∑N

i=1 ciµi, this ensures that each single-sojourn reward is non-positive and hence the

expected total discounted reward v†γ,θ((x, ω)) for the transformed process Ψ† is non-positive under

any policy θ and initial state (x, ω) ∈ S. It will be convenient to begin by proving the result

for states (0,Mi), where i ∈ {1, 2, ..., N} is arbitrary. Using the non-positivity of v†γ((0,Λ)), the

discount optimality equations (3.4.1) for the transformed process Ψ† imply:

v†γ((0,Mi)) = ξγ((0,Mi), 0)− ζγ((0,Mi), 0) +
τ((0,Mi), 0)

γ + τ((0,Mi), 0)
v†γ((0,Λ))

= αi − α∗
(
γ + C

γ + λ

)
+

λ

γ + λ
v†γ((0,Λ))

≥ αi −
α∗C

λ
+ v†γ((0,Λ))

= ξ((0,Mi), 0)− ζ((0,Mi), 0) + v†γ((0,Λ)), (3.4.36)

where ξ((x, ω), a) is the undiscounted reward function defined in (3.2.13) and (as in Lemma 3.4.8)

ζ((x, ω), a) = α∗C/τ((x, ω), a) for (x, ω) ∈ S. Hence, (3.4.36) implies:

v†γ((0,Mi))− v†γ((0,Λ)) ≥ ξ((0,Mi), 0)− ζ((0,Mi), 0) =: −f((0,Mi)),

so a negative lower bound for v†γ((0,Mi)) − v†γ((0,Λ)) has been found, which is independent of γ

as required. Due to the property (3.4.17), the same lower bound also applies for vγ((0,Mi)) −

vγ((0,Λ)). The rest of this proof will use induction over the state space S. Consider an arbitrary

state (x, ω) ∈ S, and suppose (as an inductive assumption) that a non-negative value f((y, ω′))

satisfying (3.4.35) has been found for all states (y, ω′) ∈ S such that the componentwise inequality

y < x holds (i.e. yi ≤ xi for all i ∈ {1, 2, ..., N}, with strict inequality in at least one component).

The claim has been shown to be true when x = 0i+ for any i ∈ {1, 2, ..., N}, due to the fact that

0 is the only vector strictly smaller than 0i+ in the partial order. It will then be sufficient to show
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that there exists a γ-independent lower bound for vγ((x, ω)) − vγ((0,Λ)). First, suppose one has

ω = Λ. The optimality equations (3.4.1) imply that for any action a ∈ {0, 1, ..., N}:

v†γ((x,Λ)) ≥ ξγ((x,Λ), a)− ζγ((x,Λ), a) + Lγ((x,Λ), a)
∑

(x′,ω′)∈S

σ((x,Λ), a, (x′, ω′))v†γ((x′, ω′)).

(3.4.37)

Hence, by considering the action a = 0 (i.e. balking) in (3.4.37):

v†γ((x,Λ)) ≥ ξγ((x,Λ), 0)− ζγ((x,Λ), 0)

+
λv†γ((x,Λ))

γ + τ((x,Λ), 0)
+

∑N
j=1 min(xj , cj)µjv

†
γ((xj−,Mj))

γ + τ((x,Λ), 0)

≥ ξ((x,Λ), 0)− ζ((x,Λ), 0)

+
λv†γ((x,Λ))

τ((x,Λ), 0)
+

∑N
j=1 min(xj , cj)µjv

†
γ((xj−,Mj))

τ((x,Λ), 0)
, (3.4.38)

where the second inequality is due to the non-positivity of v†γ(·) and the fact that ξγ((x,Λ), 0) −

ζγ((x,Λ), 0) ≥ ξ((x,Λ), 0) − ζ((x,Λ), 0) which may be easily verified using (3.2.18) and (3.4.13).

Hence, using the fact that τ((x,Λ), 0) = λ+
∑N

j=1 min(xj , cj)µj :∑N
j=1 min(xj , cj)µjv

†
γ((x,Λ))

τ((x,Λ), 0)

≥ ξ((x,Λ), 0)− ζ((x,Λ), 0)

+

∑N
j=1 min(xj , cj)µjv

†
γ((xj−,Mj))

τ((x,Λ), 0)
. (3.4.39)

Then, by subtracting
∑N

j=1 min(xj , cj)µjv
†
γ((0,Λ))/τ((x,Λ), 0) from both sides of (3.4.39) and ap-

plying the inductive assumption to the differences v†γ((xj−,Mj))− v†γ((0,Λ)):∑N
j=1 min(xj , cj)µj

(
v†γ((x,Λ))− v†γ((0,Λ))

)
τ((x,Λ), 0)

≥ ξ((x,Λ), 0)− ζ((x,Λ), 0)

−
∑N

j=1 min(xj , cj)µjf((xj−,Mj))

τ((x,Λ), 0)
. (3.4.40)

By multiplying both sides of (3.4.40) by τ((x,Λ), 0)/(
∑N

j=1 min(xj , cj)µj), one obtains:

v†γ((x,Λ))−v†γ((0,Λ)) ≥
τ((x,Λ), 0) (ξ((x,Λ), 0)− ζ((x,Λ), 0))−

∑N
j=1 min(xj , cj)µjf((xj−,Mj))∑N

j=1 min(xj , cj)µj
.

(3.4.41)

This implies that one can define f((x,Λ)) as follows:

f((x,Λ)) :=
τ((x,Λ), 0) (ζ((x,Λ), 0)− ξ((x,Λ), 0)) +

∑N
j=1 min(xj , cj)µjf((xj−,Mj))∑N

j=1 min(xj , cj)µj
, (3.4.42)
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with the result that v†γ((x,Λ)) − v†γ((0,Λ)) is bounded below by −f((x,Λ)). Note that f((x,Λ))

is non-negative since ζ((x,Λ), 0) ≥ ξ((x,Λ), 0) and each value f((xj−,Mj)) is non-negative by the

inductive assumption. Again, due to (3.4.17), −f((x,Λ)) will also suffice as a lower bound for the

difference vγ((x,Λ))− vγ((0,Λ)) associated with the non-transformed process Ψ.

It remains to consider the case where ω = Mi for some i ∈ {1, 2, ..., N}. However, in this case

the only possible action is a = 0, and therefore one may apply exactly the same arguments as

in the case ω = Λ; that is, the inequalities (3.4.38)-(3.4.41) remain valid with (x,Λ) replaced by

(x,Mi). In conclusion, for any state (x, ω) ∈ S it is possible to find a state-dependent lower bound

−f((x, ω)) satisfying (3.4.35) which is independent of the discount rate γ, provided that the same

can be said for any state (y, ω′) ∈ S with y < x in a partial ordering sense. Moreover, suitable

values f((x, ω)) can be obtained explicitly using (3.4.42) (which remains valid with Λ replaced by

ω), by setting f((0,Λ)) = 0 and f((0,Mi)) = ζ((0,Mi), 0)− ξ((0,Mi), 0) for each i ∈ {1, 2, ..., N}

and then using recursive substitution. This completes the proof of the lemma. �

The final result of this section states that an average reward optimal policy for the continuous-time

process Ψ may be found by restricting attention to stationary policies.

* Theorem 3.4.10. There exists a stationary policy for Ψ which is average reward optimal. More-

over, there exists a constant g∗ satisfying g∗ = limγ↓0 γvγ((x, ω)) for all (x, ω) ∈ S and a function

h : S → R with −f((x, ω)) ≤ h((x, ω)) ≤ K for all (x, ω) ∈ S (where K and f((x, ω)) are as stated

in Lemmas 3.4.8 and 3.4.9 respectively) such that for all (x, ω) ∈ S:

h((x, ω)) = max
a∈A(x,ω)

{
ξ((x, ω), a)− g∗

τ((x, ω), a)
+

∑
(x′,ω′)∈S

σ((x, ω), a, (x′, ω′))h((x′, ω′))

}
.

(3.4.43)

Proof. The proof relies upon showing that Ψ satisfies a set of conditions which have been shown

by Sennott [157] to be sufficient for the existence of a stationary average reward optimal policy

in a general Semi-Markov Decision Process (SMDP). Sennott’s paper concerns the minimisation

of expected long-run average costs, assuming that costs are bounded below (but not necessarily

above). After translation to the equivalent problem of maximising long-run average rewards (with

rewards bounded above), Sennott’s conditions may be stated as follows:

1. The single-sojourn rewards are bounded above (but not necessarily bounded below); that is,
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there exists R ∈ R such that ξγ((x, ω), a) ≤ R for all ((x, ω), a) ∈ S ×A(x,ω).

2. There exist ε > 0 and t0 > 0 such that e−τ((x,ω),a)t0 ≥ ε for all ((x, ω), a) ∈ S ×A(x,ω).

3. For all states (x, ω) ∈ S, it is the case that vγ((x, ω)) > −∞.

4. There exists H ∈ R such that 1/τ((x, ω), a) ≤ H for all ((x, ω), a) ∈ S ×A(x,ω).

5. There exists γ0 ∈ (0,∞) and a constant K ∈ R such that, for all states (x, ω) ∈ S and

discount rates γ ∈ (0, γ0), vγ((x, ω))− vγ((0,Λ)) ≤ K.

6. For every state (x, ω) ∈ S, there exists a non-negative value f((x, ω)) < ∞ such that for all

discount rates γ ∈ (0,∞), vγ((x, ω))− vγ((0,Λ)) ≥ −f((x, ω)).

7. For every (x, ω) ∈ S, and a ∈ A(x,ω) it is the case that
∑

(x′,ω′)∈S σ((x, ω), a, (x′, ω′))f((x′, ω′))

<∞, where f((x′, ω′)) is as stated in the previous condition.

Conditions (1), (2) and (3) have already been verified in the proof of Theorem 3.4.2. The fact

that condition (4) holds is immediate by choosing H = 1/λ. Conditions (5) and (6) are implied

by the results of Lemmas 3.4.8 and 3.4.9 respectively. Finally, condition (7) follows by noting that

the number of states (x′, ω′) that can be reached in a single transition from an arbitrary state

(x, ω) ∈ S is finite and each value f((x′, ω′)) is finite, regardless of the action a ∈ A(x,ω) chosen.

Details of the rest of the proof may be found in [157] (see also [141], p. 559). �

The existence of a stationary average reward optimal policy for the continuous-time MDP Ψ justifies

the approach of uniformising the process as described by Theorem 3.3.3 and then searching for an

average reward optimal policy for the discrete-time MDP Φ, since any policy which maximises

the expected long-run average reward among stationary policies in Φ must also do so in Ψ, and

therefore (by Theorem 3.4.10) such a policy must be average reward optimal among all admissible

policies in Ψ. In addition, restricting attention to stationary policies will enable a simplification of

the state space to be made. Further details will be given in the next section.
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3.5 Alternative MDP formulations

In this section and onwards, attention will be focused on the discrete-time MDP which is obtained

by uniformising (and discretising) the continuous-time MDP Ψ formulated in Section 3.2. In later

chapters, it will simplify matters considerably to use an MDP formulation in which the system

state at any discrete time epoch is simply an N -vector x = (x1, x2, ..., xN ), as opposed to a pair

(x, ω) as in previous sections. As discussed in Section 3.2, this simplification of the state space is

justified if one wishes to consider only stationary policies; indeed, the previous formulation was used

only in order to accommodate time-dependent (non-stationary) policies. The results in Section 3.4

have established that it is possible to find both an average reward optimal policy and a γ-discount

optimal policy for Ψ (given any discount rate γ ∈ (0,∞)) by considering only stationary policies.

This is an important fact, since if it were not known to be true then (in view of the fact that

Theorem 3.3.3 applies specifically to stationary policies) one would not be able to rule out the

possibility of a non-stationary policy being strictly superior to any stationary policy in the process

Ψ, but being either sub-optimal or inadmissible in the discretised process Φ, and therefore the

application of uniformisation would not have rigorous theoretical justification.

In order to avoid unnecessarily lengthy discussions, the approach taken in this section will be

to simply introduce a new MDP formulation and then prove that it is equivalent (with respect

to expected long-run average rewards earned by stationary policies) to the previous discrete-time

MDP formulation Φ given in (3.3.6)-(3.3.12), as opposed to explaining the rationale of the new

formulation in detail. However, some explanatory comments will be given following the equivalence

proof. The previous MDP formulation inherited the same state space description as Ψ, but the

new formulation will involve a simplified state space. Details are given below.

Simplified discrete-time MDP formulation

• The state space S and action sets Ax (for x ∈ S) are given by:

S =
{

(x1, x2, ..., xN ) : x1, x2, ..., xN ∈ N0

}
, (3.5.1)

Ax = A =
{

0, 1, 2, ..., N
}

∀ x ∈ S. (3.5.2)
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• The one-step transition probabilities p(x, a,y) for x,y ∈ S and a ∈ A are given by:

p(x, a,y) =



λ∆, if a = i for some

i ∈ {1, 2, ..., N} and y = xi+,

min(xi, ci)µi∆, if y = xi−

for some i ∈ {1, 2, ..., N},

1− I(a 6= 0)λ∆−
N∑
i=1

min(xi, ci)µi∆, if y = x,

0, otherwise,

(3.5.3)

where ∆ ∈
(

0, (λ+
∑N

i=1 ciµi)
−1
]

represents the discrete time step size and I is the indicator

function; that is, I(a 6= 0) takes a value of 1 if a 6= 0 and 0 otherwise.

• The reward function r(x) is independent of the action a, and is given for x ∈ S by:

r(x) =

N∑
i=1

(
αi min(xi, ci)µi − βixi

)
. (3.5.4)

.

Figure 3.5: Transition probabilities (marked next to arrows) from an arbitrary state x ∈ S in Υ.

The formulation in (3.5.1)-(3.5.4) will be denoted by Υ, whereas Φ denotes the formulation given

in (3.3.6)-(3.3.12). The next lemma establishes an equivalence between the two.
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Lemma 3.5.1. Suppose the process Φ operates under a stationary policy θ which induces an ergodic,

irreducible Markov chain on some set of states Sθ ⊆ S, with S as defined in (3.2.7). Assume also

that the stationary distribution {πθ((x, ω))}(x,ω)∈S exists under θ, where πθ((x, ω)) is the steady-

state probability of the process Φ being in state (x, ω) ∈ S and
∑

(x,ω) πθ((x, ω)) = 1. For each

N -vector x = (x1, x2, ..., xN ), let the ‘aggregate set’ Hx be defined as follows:

Hx := Fx ∪Gx,

where the disjoint sets Fx and Gx are given by:

Fx :=
{

(y, ω) ∈ S : y = xi− for some i ∈ {1, 2, ..., N}, ω = Λ and θ((y, ω)) = i
}
,

Gx :=
{

(y, ω) ∈ S : y = x and ω = Mi for some i ∈ {1, 2, ..., N}
}
, (3.5.5)

where θ((y, ω)) is the action chosen by θ at state (y, ω) ∈ S. Let (H0, H1, ...) denote the sequence

of aggregate states visited by the process Φ under the stationary policy described above. Then the

sequence (H0, H1, ...) is a Markov chain. That is, for x ∈ S and n ≥ 0:

P (Hn+1 = Hx | Hn, Hn−1..., H1, H0) = P (Hn+1 = Hx | Hn) .

Furthermore, suppose the ‘simplified’ process Υ operates under a stationary policy whereby the

action chosen at state x ∈ S is equal to the action chosen by θ at state (x,Λ) ∈ S in the process

Φ, and let {πθ(x)}x∈S denote the resulting stationary distribution for Υ. Then:

πθ(x) =
∑

(y,ω)∈Hx

πθ((y, ω)) =: πθ(Hx) ∀ x ∈ S. (3.5.6)

That is, the processes Φ and Υ have analogous steady-state distributions.

Proof. The proof can be accomplished using partitioning arguments. The details are somewhat

laborious, and therefore they have been placed in Appendix A.3 (page 416).

Using the result of Lemma 3.5.1, it is possible to establish an equivalence between the processes Φ

and Υ with respect to expected long-run average rewards under a stationary policy.

Lemma 3.5.2. Suppose the processes Φ and Υ operate in the same manner as described in Lemma

3.5.1; that is, Φ follows a stationary policy θ which induces an ergodic, irreducible Markov chain

with stationary distribution {πθ((x, ω))}(x,ω)∈S , and Υ follows a policy whereby the action chosen

at any state x ∈ S is equal to the action chosen by the policy θ at state (x,Λ) ∈ S in the process

Φ. Then the processes Φ and Υ earn the same expected long-run average reward.
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Proof. It will be convenient to consider the rewards for service αi and holding costs βi separately.

The fact that the two processes incur the same expected long-run average holding costs per unit

time can be shown very easily, since (3.3.11) implies that if the state (xn, ωn) of process Φ at

some epoch of time n ≥ 0 is any state belonging to the aggregate set Hx (for some x ∈ S), then

the ‘negative portion’ of the reward R((xn, ωn), θ((xn, ωn))) earned by Φ is given by −
∑N

j=1 βjxj .

Hence, the expected long-run average holding costs incurred by Φ are given by:

∑
x∈S

πθ(Hx)
N∑
j=1

βjxj . (3.5.7)

On the other hand, (3.5.4) implies that the long-run average holding costs for Υ are:

∑
x∈S

πθ(x)
N∑
j=1

βjxj . (3.5.8)

The fact that (3.5.7) and (3.5.8) are equal then follows by the equivalence of the stationary distri-

butions for the two processes, established by Lemma 3.5.1. The problem of verifying that the two

processes earn the same long-run average rewards for service completions is slightly more difficult.

Consider an arbitrary facility i ∈ {1, 2, ..., N} and vector x ∈ S, and then consider the rate per unit

time at which service completions occur at facility i and cause the process Φ to enter some state

(xn, ωn) belonging to the aggregate set Hx. This steady-state rate is given by:

πθ(Hx) lim
n→∞

P
(
ωn = Mi

∣∣∣(xn, ωn) ∈ Hx

)
= πθ((x,Mi)). (3.5.9)

Consider the possible ways in which one might have (xn, ωn) = (x,Mi) at some time step n ≥ 1.

By definition of Hx, it is clear that this can only occur if the state of the process Φ belongs to

either Hxi+ or Hx at time step n − 1. If (xn−1, ωn−1) ∈ Hxi+ , then by (3.3.8)-(3.3.10) there

is a probability min(xi+i , ci)µi∆ that one will have (xn, ωn) = (x,Mi); on the other hand, if

(xn−1, ωn−1) ∈ Hx then it can be verified using (3.3.8)-(3.3.10) that a transition to (x,Mi) is

only possible if (xn−1, ωn−1) = (x,Mi), in which case the relevant probability is the ‘self-transition’

probability P((x,Mi), 0, (x,Mi)) = 1− λ∆−
∑N

j=1 min(xj , cj)µj∆. Hence:

P
(

(xn, ωn) = (x,Mi)
)

= min(xi+i , ci)µi∆P
(

(xn−1, ωn−1) ∈ Hxi+

)
+

1− λ∆−
N∑
j=1

min(xj , cj)µj∆

P
(

(xn−1, ωn−1) = (x,Mi)
)
.

(3.5.10)
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By then taking limits as n→∞, re-arranging and cancelling out ∆:

πθ((x,Mi)) =
πθ(Hxi+) min(xi+i , ci)µi

λ+
∑N

j=1 min(xj , cj)µj
.

Let R+((x, ω), a) be the ‘positive portion’ of the single-step reward R((x, ω), a) defined in (3.3.11).

That is, for state-action pairs ((x, ω), a) ∈ S ×A(x,ω):

R+((x, ω), a) =


αi

λ+
N∑
j=1

min(xj , cj)µj

 , if ω = Mi for some i ∈ {1, 2, ..., N},

0, otherwise.

Thus, by the previous results, the expected long-run average rate at which the process Φ earns

positive rewards as a result of service completions at facility i is given by:

∑
x∈S

πθ((x,Mi))R+((x,Mi), 0)

=
∑
x∈S

πθ(Hxi+) min(xi+i , ci)µi

λ+
∑N

j=1 min(xj , cj)µj
αi

λ+

N∑
j=1

min(xj , cj)µj


=
∑
x∈S

πθ(Hxi+)αi min(xi+i , ci)µi. (3.5.11)

On the other hand, (3.5.4) implies that the expected long-run average rewards for the process Υ

attributable to service completions at facility i are given by:

∑
x∈S

πθ(x)αi min(xi, ci)µi. (3.5.12)

Note that the infinite summations
∑

x∈S πθ(Hxi+) min(xi+i , ci) and
∑

x∈S πθ(Hx) min(xi, ci) dif-

fer only in that the first summation excludes terms of the form πθ(Hx) min(xi, ci) where the ith

component of x is zero, but these terms are equal to zero. Hence, due to (3.5.6):

∑
x∈S

πθ(Hxi+)αi min(xi+i , ci)µi =
∑
x∈S

πθ(Hx)αi min(xi, ci)µi =
∑
x∈S

πθ(x)αi min(xi, ci)µi.

Therefore (3.5.11) and (3.5.12) are equal. Since these arguments can be repeated for any facility

i ∈ {1, 2, ..., N}, it follows that the two processes Φ and Υ earn the same expected long-run average

rewards as a result of service completions. Since their equivalence with respect to expected long-run

average holding costs has already been established, this completes the proof. �



Chapter 3 MDP formulation 85

Obviously, in the discretised processes Φ and Υ, arrivals and service completions can only occur at

discrete epochs of time n = 0, 1, 2, etc. An interesting feature of the ‘simplified’ MDP formulation

Υ described in (3.5.1)-(3.5.4) is that rewards are applied ‘retrospectively’, in the sense that at any

time step n, the reward r(xn) is based on the service completion rates and holding costs incurred

by the system over the previous time interval [n− 1, n] as opposed to the next interval [n, n+ 1]. It

is this characteristic which enables the single-step reward r(xn) to be determined independently of

the action an chosen at time n. For example, consider a scenario in which a new customer arrives

at time n ≥ 0 when the system is in state x ∈ S, and joins some facility i ∈ {1, 2, ..., N}. The

rate at which holding costs are incurred at facility i immediately prior to time n is βixi, whereas

the corresponding rate immediately after time n is βi(xi + 1). The reward r(x) earned at time n

incorporates the former quantity, rather than the latter. Similarly, the reward r(x) also includes

a term αi min(xi, ci)µi (representing the rate of service completions at facility i), which takes no

account of the new customer who arrives and joins facility i at the nth time step.

The retrospective nature of the reward function r(x) offers some advantages, not least of which is

the fact that its lack of explicit dependence on actions chosen creates the appearance of greater

simplicity (obviously, the actions chosen do affect the rewards indirectly, since they determine the

transition probabilities for the process). However, some trivialities can occur when one considers

finite time horizon problems, since the action chosen by the decision-maker with only one stage of

the process remaining will have no bearing on the total reward earned (assuming that there are no

terminal rewards earned when the horizon is reached); as such, the concept of an ‘optimal one-stage

policy’ becomes somewhat meaningless. This is not a major issue, and is relevant to the results in

the thesis only to the extent that it will sometimes be appropriate to ignore the case n = 1 when

proving properties of optimal policies over a finite number of stages n ∈ N.

In the remainder of this section it will be shown that the reward function r(x) defined in (3.5.4)

may be replaced with a different function r̂(x, a) (to be defined shortly), without affecting the

expected long-run average reward earned by the process Υ under a fixed stationary policy. The

interchangeability of the two functions r(x) and r̂(x, a) will be extremely useful for proving various

results later in this thesis. Suppose a new customer joins facility i ∈ {1, 2, ..., N} under the state

x ∈ S. Recalling (3.2.14)-(3.2.15), the customer’s individual expected net reward wi(xi), taking into
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account their expected waiting costs and the value of service αi, is given by:

wi(xi) =


αi −

βi
µi
, if xi < ci,

αi −
βi(xi + 1)

ciµi
, if xi ≥ ci.

(3.5.13)

The transition probabilities (3.5.3) for Υ imply that for any i ∈ {1, 2, ..., N}, the process makes a

transition from state x to xi+ with probability λ∆ if action a = i is chosen. There is an implicit

assumption here that an action is chosen by the decision-maker at every discrete time step. However,

this action only affects the state-evolution of the process if a customer arrives at the time step in

question (which occurs with probability λ∆); if no arrival occurs at a particular time step, then

the action chosen at that step has no effect on the state transitions of the system. This echoes the

discussion in Section 3.2, in which it was observed that when a simplified state space formulation

such as (3.5.1) is used, the decision-maker is effectively required to make an anticipative decision

at each decision epoch, without any knowledge of when the next arrival will occur. In this section,

a discrete-time formulation is being considered rather than a continuous-time formulation, which

effectively provides the decision-maker with extra opportunities to make decisions (since the effect

of uniformisation is to increase the frequency of decision epochs by introducing self-transitions).

As such, the decision-maker is not required to ‘look as far ahead’ as in the continuous-time case,

but nevertheless the principle of making anticipative decisions remains the same.

To use an analogy, one may imagine the choice of an action in the discretised process Υ as being

similar to the setting of points on a railway track. The switching of points on a track has no effect

on railway traffic until the next train passes through. Similarly, in the process Υ, the decision-

maker chooses an action at a particular time step which determines the route of any customer to

arrive at that step, but if no customer arrives then the decision made has no effect.

Although the transition probabilities for Υ are defined in such a way that actions may not necessarily

have consequences, the new reward function r̂(·) will be defined in such a way that the reward

r̂(xn, an) earned at a particular time step n ≥ 0 always depends on the action chosen, regardless of

whether or not an arrival occurs at time n. This will be achieved by setting the reward r̂(xn, an)

equal to the expected total of individuals’ expected net rewards at time step n. Obviously, the

phrase “expected total of individuals’ expected net rewards” is somewhat unwieldy; fortunately, it
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is required here only for the purpose of motivating the definition of r̂(x, a), and will not need to

be used again. Suppose the system is in some state x ∈ S at a particular time step and an action

a ∈ A is chosen. The number of customer arrivals at that step will either be one or zero, with

probabilities λ∆ and 1− λ∆ respectively. If a customer arrives, then their individual expected net

reward is equal to wi(xi) if a = i for some i ∈ {1, 2, ..., N} and zero otherwise. Hence, referring to

(3.5.13), the expected total of individuals’ expected net rewards is simply given by:

λ∆

(
αi −

βi
µi

)
, if a = i for some i ∈ {1, 2, ..., N} and xi < ci,

λ∆

(
αi −

βi(xi + 1)

ciµi

)
, if a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

(3.5.14)

If (3.5.14) was used as the definition for r̂(x, a), then the formula for the expected long-run average

reward in (3.3.1) would yield the average reward per discrete time step, as opposed to the average

reward per unit time. This minor problem can be resolved by simply dividing by ∆ in (3.5.14)

(recall that a similar adjustment was made to the reward function R((x, ω), a) for the process Φ,

defined in (3.3.11)). Accordingly, the new reward function r̂(x, a) is given by:

r̂(x, a) =



λ

(
αi −

βi
µi

)
, if a = i for some i ∈ {1, 2, ..., N} and xi < ci,

λ

(
αi −

βi(xi + 1)

ciµi

)
, if a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

(3.5.15)

It is important to emphasise once again that when the reward formulation (3.5.15) is used for Υ, a

reward r̂(x, a) is earned for choosing a ∈ A at state x ∈ S, regardless of whether or not an arrival

occurs. Although this may result in the system earning ‘fictitious’ rewards based on the expected

individual rewards of customers who do not arrive, the mathematical validity of this formulation

is ensured by the fact that it is based on an expectation, as explained previously.

In fact, it is possible to define the rewards in the discretised process so that they are associated with

transitions between states. One may define r̂(x, a,y) as the (anticipatory) reward for transferring

from state x ∈ S to y ∈ S, given that action a ∈ A is chosen. In this case, in order to obtain an
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equivalence with (3.5.15), it is appropriate to define r̂(x, a,y) as follows:

r̂(x, a,y) =


wi(xi), if a = i for some i ∈ {1, 2, ..., N} and y = xi+,

0, otherwise,

where wi(xi) is as defined in (3.5.13). The equivalence with (3.5.15) may be easily verified; indeed,

the expected reward for choosing facility i at state x is then given by:

∑
y∈S

p(x, a,y) r̂(x, a,y) = λ∆wi(xi),

which corresponds with the (fixed) reward for choosing facility i at state x in (3.5.14). One might

suggest that the r̂(x, a,y) formulation is somewhat more natural, since it enables rewards to be

earned only at the times at which customers arrive; however, the r̂(x, a) formulation is clearly

simpler from a notational point of view. In later chapters it will occasionally prove useful to

switch between the real-time and anticipatory reward functions r(x) and r̂(x, a), but it will not be

necessary to use any transition-based reward functions of the form r̂(x, a,y).

The reward formulations r(x) and r̂(x, a) in (3.5.4) and (3.5.15) respectively are both logical for

the process Υ, and their relationship bears analogy to the relationship between the continuous-

time reward formulations ξ((x, ω), a) and ξ̂((x, ω), a) in (3.2.13) and (3.2.16). Specifically, (3.5.4)

is based on the real-time holding costs and rewards incurred during the system’s evolution, while

(3.5.15) is based on an unbiased estimate of each arriving customer’s contribution to the aggregate

net reward. Using the same terminology as in Section 3.2, the formulation (3.5.4) will be referred

to as the real-time reward formulation, while its counterpart (3.5.15) will be referred to as the

anticipatory formulation. The next result establishes an equivalence between the two formulations

which, as mentioned earlier, will be of tremendous use throughout this thesis.

Theorem 3.5.3. Assume the process Υ operates under a stationary policy θ. Let gθ(x, r) and

gθ(x, r̂) denote the expected long-run average rewards under the reward formulations r(x) and r̂(x, a)

respectively, given that the policy θ is followed and the initial state is x ∈ S. Then:

gθ(x, r) = gθ(x, r̂), (3.5.16)

That is, the average reward under θ is the same under either reward formulation.
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Proof. Let it be assumed that the policy θ induces an irreducible, ergodic Markov chain with

stationary distribution {πθ(x)}x∈S , where πθ(x) is the steady state probability of being in state

x ∈ S and
∑

x∈S πθ(x) = 1. If this is not the case, then the system is unstable and both quantities

in (3.5.16) are (negatively) infinite. Hence, gθ(x, r) and gθ(x, r̂) are given by:

gθ(x, r) =
∑
x∈S

πθ(x)r(x),

gθ(x, r̂) =
∑
x∈S

πθ(x) r̂
(
x, θ(x)

)
,

where θ(x) denotes the action chosen by θ under state x. (Recall that r, unlike r̂, is independent

of the action chosen.) For each x ∈ S, the steady-state probability πθ(x) is the same under either

reward formulation since the policy θ is fixed. The objective is to show:∑
x∈S

πθ(x)r(x) =
∑
x∈S

πθ(x) r̂
(
x, θ(x)

)
.

The state space S may be partitioned into disjoint subsets. For each facility i ∈ {1, 2, .., N}, let

Si denote the set of states at which the action chosen (under the policy θ) is to join i. Then

Si := Si− ∪ Si+, where Si− and Si+ are defined in the following way:

Si− :=
{
x ∈ S : θ(x) = i and xi < ci

}
,

Si+ :=
{
x ∈ S : θ(x) = i and xi ≥ ci

}
.

Also, let S0 denote the set of states at which the action chosen under θ is to balk. Now let gθ(x, r)

and gθ(x, r̂) be divided into ‘positive’ and ‘negative’ constituents as follows:

g+
θ (x, r) :=

∑
x∈S

N∑
i=1

πθ(x) min(xi, ci)αiµi,

g−θ (x, r) := −
∑
x∈S

N∑
i=1

πθ(x)βixi, (3.5.17)

g+
θ (x, r̂) := λ

N∑
i=1

∑
x∈Si

πθ(x)αi, (3.5.18)

g−θ (x, r̂) := −λ
N∑
i=1

∑
x∈Si−

πθ(x)
βi
µi

+
∑
x∈Si+

πθ(x)
βi(xi + 1)

ciµi

 . (3.5.19)
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By referring to (3.5.4) and (3.5.15), it can be checked that gθ(x, r) = g+
θ (x, r) + g−θ (x, r) and

gθ(x, r̂) = g+
θ (x, r̂) + g−θ (x, r̂). It will be sufficient to show that g+

θ (x, r) = g+
θ (x, r̂) and g−θ (x, r) =

g−θ (x, r̂). Let Si,k ⊆ Si (for k = 0, 1, 2, ...) be the set of states at which the action chosen under θ

is to join facility i, given that there are k customers present at i. That is:

Si,k :=
{
x ∈ S : θ(x) = i and xi = k

}
.

Using the detailed balance equations for ergodic Markov chains under steady state conditions (see

[171] p. 148) it follows that for every facility i and k ≥ 0, the ‘rate of flow’ exiting the class of

states in S with xi ≤ k must be equal to the rate of flow entering this class, hence:

λ
∑

x∈Si,k

πθ(x) =
∑

x∈S
xi=k+1

πθ(x) min(xi, ci)µi. (3.5.20)

Summing over all k ∈ N0, the following relationship is obtained:

λ
∑
x∈Si

πθ(x) =
∑
x∈S

πθ(x) min(xi, ci)µi, (3.5.21)

for i ∈ {1, 2, ..., N}. The physical interpretation of (3.5.21) is that, under steady state conditions,

the rate at which customers join facility i is equal to the rate at which service completions occur

at i. Multiplying both sides of (3.5.21) by αi and summing over i ∈ {1, 2, ..., N} gives:

λ

N∑
i=1

∑
x∈Si

πθ(x)αi =

N∑
i=1

∑
x∈S

πθ(x) min(xi, ci)αiµi,

which states that g+
θ (x, r̂) = g+

θ (x, r) as required. It remains to show that g−θ (x, r̂) = g−θ (x, r). In

(3.5.20) (which holds for all k ∈ N and i ∈ {1, 2, .., N}), putting k = ci yields:

λ
∑

x∈Si,ci

πθ(x) =
∑

x∈S
xi=ci+1

πθ(x)ciµi. (3.5.22)

Suppose both sides of (3.5.22) are multiplied by ci + 1. Since the sum on the left-hand side is over

x ∈ Si,ci and the sum on the right-hand side is over states with xi = ci + 1, this is equivalent to

multiplying each summand on the left-hand side by xi + 1 and each summand on the right-hand

side by xi. In addition, multiplying both sides by βi/(ciµi) yields:

λ
∑

x∈Si,ci

πθ(x)
βi(xi + 1)

ciµi
=

∑
x∈S
xi=ci+1

πθ(x)βixi. (3.5.23)
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Similar expressions result from putting k = ci + 1, ci + 2 etc. Recall that
⋃∞
k=ci

Si,k = Si+ by

definition. Hence, summing over all k ≥ ci in (3.5.23) gives:

λ
∑

x∈Si+

πθ(x)
βi(xi + 1)

ciµi
=

∑
x∈S
xi≥ci+1

πθ(x)βixi. (3.5.24)

Note also that multiplying both sides of (3.5.20) by βi/µi and summing over k ∈ {1, 2, ..., ci − 1}

(and also recalling that
⋃ci−1
k=0 Si,k = Si−) gives:

λ
∑

x∈Si−

πθ(x)
βi
µi

=
∑
x∈S
xi≤ci

πθ(x)βixi. (3.5.25)

Hence, from (3.5.24) and (3.5.25) the following is obtained:

λ

 ∑
x∈Si−

πθ(x)
βi
µi

+
∑

x∈Si+

πθ(x)
βi(xi + 1)

ciµi

 =
∑
x∈S

πθ(x)βixi.

Summing over i ∈ {1, 2, ..., N} gives g−θ (x, r̂) = g−θ (x, r) as required. It has already been shown

that g+
θ (x, r̂) = g+

θ (x, r), so this completes the proof that gθ(x, r̂) = gθ(x, r). �

It follows from Theorem 3.5.3 that any stationary policy which maximises the expected long-run

average reward for Υ when the real-time reward formulation (3.5.4) is used must also do so when

the anticipatory formulation (3.5.15) is adopted instead. Both formulations offer certain practical

advantages, and (as stated earlier) both will be relied upon to prove later results.

As a further point, in Theorem 3.5.3 it was proved that g+
θ (x, r) = g+

θ (x, r̂) (with g+
θ (x, r) and

g+
θ (x, r̂) as defined in (3.5.19)), and similarly g−θ (x, r) = g−θ (x, r̂). These facts, together with the

fact that gθ(x, r̂) = gθ(x, r), make it possible to ‘mix’ the two formulations by noting:

gθ(x, r) = gθ(x, r̂) = g+
θ (x, r) + g−θ (x, r̂) = g−θ (x, r) + g+

θ (x, r̂).

This relationship enables ‘hybrid’ reward functions to be created using the ‘positive’ and ‘negative’

components of r and r̂. For example, by taking the positive component of r̂(x, a) and the negative

component of r(x), a new reward function r̄(x, a) may be defined as follows:

r̄(x, a) =


λαi −

N∑
j=1

βjxj , if a = i for some i ∈ {1, 2, ..., N},

−
N∑
j=1

βjxj , otherwise.

(3.5.26)
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The arguments in the proof of Theorem 3.5.3 show that the average reward gθ(x, r̄) under the

new ‘hybrid’ function r̄ is equal to both gθ(x, r) and gθ(x, r̂); that is, the three reward functions

r, r̂ and r̄ can be used interchangeably. It is somewhat interesting to note that the ‘real-time’

reward function r in (3.5.4) has no explicit dependence on λ, while the ‘hybrid’ reward function

r̄ in (3.5.26) has no explicit dependence on any of the service rates µi or service capacities ci. Of

course, there is an implicit dependence on these parameters due to the detailed balance equations

for Markov chains, which imply that the steady-state relationship (3.5.21) holds.

Much of the work in this chapter so far has been concerned with presenting and comparing dif-

ferent CTMDP and MDP formulations. Comparisons have been made between continuous-time

and discrete-time formulations, the two state space formulations (3.2.7) and (3.5.1), and different

reward formulations such as (3.5.4) and (3.5.15) (or, in the CTMDP case, (3.2.13) and (3.2.16)).

Throughout the vast majority of the remainder of this thesis, attention will be restricted to the

‘simplified’ discrete-time MDP Υ, with the two reward formulations r(x) and r̂(x, a) being inter-

changed at various points. However, one should not lose sight of the fact that the queueing system

described in Section 3.1 is a continuous-time system; essentially, the discrete-time MDP Υ is simply

a vehicle through which analysis of the continuous-time system can be performed.

Broadly speaking, the problems of interest in later chapters will involve either the analysis of certain

stationary policies, or the identification and characterisation of average reward optimal policies. It

is considered self-evident that the continuous-time MDP Ψ formulated in Section 3.2 is an accurate

mathematical model for the real-world process described in Section 3.1. As such, identifying an

optimal control policy for this real-world process should be equivalent to finding an optimal policy

for the process Ψ. The fact that this task may be accomplished via analysis of the discrete-time

MDP Υ may be argued by citing the main results of this chapter so far:

• Any policy θ∗ which is average reward optimal among all stationary policies for the process

Υ under the anticipatory reward formulation r̂(x, a) must also be likewise optimal under the

real-time formulation r(x), and vice versa. This is due to Theorem 3.5.3.

• If θ∗ maximises the average reward among stationary policies in Υ then, by Lemma 3.5.2,

it must also do so in Φ, the MDP formulated in Section 3.3 (with a more complicated state

space representation). This assumes that actions are mapped so that the action chosen at
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state (x,Λ) ∈ S in Φ matches the action chosen at state x ∈ S in Υ by θ∗.

• If θ∗ is average reward optimal among stationary policies in Φ then it must also be average

reward optimal among stationary policies in the continuous-time process Ψ. This is due to

Theorem 3.3.3, noting that Φ is obtained directly from Ψ via uniformisation.

• If θ∗ maximises the average reward among stationary policies in Ψ then, by Theorem 3.4.10,

it must also maximise average reward among all admissible policies in Ψ.

Thus, a chain of arguments can be used to show that optimising the average reward over stationary

policies in Υ (using either reward formulation) is equivalent to optimising the average reward over

the (much larger) class of all admissible policies in Ψ. If one only wishes to investigate the properties

of a fixed stationary policy (or compare certain stationary policies), then the equivalence between

Υ and Ψ is much easier to argue; this requires only Lemma 3.5.2 and Theorem 3.3.3.

The next section will provide a formal classification for admissible policies in an MDP.

3.6 Decision rules and policies

So far, the term policy has been used in a somewhat informal manner to refer to the decision-

making scheme used by the system controller in a CTMDP or MDP. It is important to provide

a proper definition for this term, and also the related concept of a decision rule. As mentioned

in Section 3.2, it is generally assumed that the rewards and transition rates are stationary, and

have no dependence on the time index (i.e. the amount of time for which the process has been

running); however, there is not necessarily any similar assumption for the decision-making criteria

used by the system controller. In fact, the action chosen when the system is in a particular state

may depend not only on the state itself, but also on the time index and the entire history of states

visited and actions chosen up to that point. Furthermore, an action may be chosen according to a

random probability distribution as opposed to being selected deterministically.

This thesis will adopt the classification of decision rules and policies proposed by Puterman [141]

(p. 533), with one exception: a stationary policy (see Definition 3.3.2) will always be assumed to

be non-randomised. By contrast, Puterman allows stationary policies to be either randomised or
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deterministic. The classification here will be given in the context of a general discrete-time MDP

(see Definition 3.3.1), but the corresponding classification for a CTMDP would be analogous. As

discussed in the previous section, attention will generally be restricted to discrete-time MDPs from

this point onwards, so the continuous-time classification is somewhat less relevant.

Suppose an MDP is initialised in some state x0 ∈ S, and an action a0 ∈ Ax is chosen. The history

of the process up to the nth decision epoch is defined as a sequence Hn, given by:

Hn = (x0, a0, ω0,x1, a1, ω1, ...,xn), (3.6.1)

where xm ∈ S (for m = 0, 1, ..., n) is the state of the process at the nth decision epoch, am ∈ Axm is

the corresponding action chosen, and ωm is the random event that occurs. In the case of the MDP

Υ (see (3.5.1)-(3.5.4)) the random events ωm may be represented using similar notation to that in

Section 3.2, except that since a discrete-time MDP is being considered, the event that occurs at

a particular time step may not necessarily be either an arrival or a service completion; one must

also consider the possibility that no event occurs (i.e. the MDP makes a ‘self-transition’). As such,

the set of possible events should also include an extra symbol to denote a ‘non-event’. It will be

convenient to use 0 for this purpose, so that each random event ωm satisfies:

ωm ∈ {Λ,M1,M2, ...,MN , 0}.

It should be noted that including the random events ωm in the history of the process Hn does

not complicate the formulation or analysis of the MDP Υ in any way. In fact, the random events

are included for the sole purpose of ensuring that the history Hn includes the arrival times of all

customers since the initialisation of the process. Obviously, it is sometimes possible to deduce a

customer’s arrival time from the state-transitions of the process; for example, if the state of the

system is x ∈ S at time step n and xi+ at time step n + 1 (for some i ∈ {1, 2, ..., N}), then this

implies a customer arrival at the nth time step. However, if the history records the process being

in state x at both of the time steps n and n + 1, with the action an = 0 (i.e. balking) having

been chosen at time n, then it is impossible to deduce from this information whether a customer

has arrived at time n, or whether a ‘non-event’ has occurred (recall that actions a ∈ A are always

chosen at every discrete time step, regardless of whether or not a customer arrives). There is no

reason why the history of the process should not record the arrival times of customers, so for this

reason it is desirable for the events ωm to be ‘logged’ as part of the process history.
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Let dn be the decision rule which prescribes the procedure for selecting an action at time n.

Puterman’s categorisation scheme for decision rules ([141], p. 21) is summarised below.

Definition 3.6.1. (Classification of decision rules)

Let dn be the decision rule applied by the system controller at the nth decision epoch.

• If dn is a function dn : S → Axn, i.e. it chooses an action with certainty depending only on

the present state xn, then dn is deterministic Markovian (abbreviated as MD).

• If dn is a function dn : Hn → Axn, i.e. it chooses an action with certainty depending on the

history of past states, actions and random events (including the present state xn), then the

decision rule is deterministic and history-dependent (HD).

• If dn specifies a probability pdn(xn)(a) for choosing each action a ∈ Axn which depends only

on the present state xn, then dn is randomised Markovian (MR).

• If dn specifies a probability pdn(Hn)(a) for choosing each action a ∈ Axn, and this probability

distribution depends on the history of past states, actions and random events (including the

present state xn), then dn is randomised and history-dependent (HR).

It follows that a deterministic policy is a special case of a randomised policy in which the probability

distribution is degenerate, i.e. pdn(xn)(a) = 1 (or pdn(Hn)(a) = 1) for some a ∈ Axn . Clearly, a

deterministic Markovian (MD) decision rule is the easiest to apply, but this may be too restrictive

in some applications. A randomised and history dependent (HR) rule is the most general type of

rule. Note that in general, there is no requirement for the same decision rule to be used at each

decision epoch; that is, a deterministic decision rule may be applied at one point in time, but a

randomised rule may be chosen at another. A policy is a means of specifying the decision rules

employed at different epochs of time during the evolution of the process.

Definition 3.6.2. (Policies) A policy θ is a sequence of decision rules (d0, d1, ...), where dn is

the decision rule applied by the system controller at the nth decision epoch.

Thus, according to Definition 3.3.2, a stationary policy is one in which the same deterministic

Markovian decision rule is applied at every decision epoch. The results in earlier sections have
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established that an average reward optimal policy for the process Ψ can always be found by re-

stricting attention to stationary policies in Υ. However, this does not mean that non-stationary

policies (which fit somewhere within the broader classification of policies provided in Definition

3.6.2) will not be relevant to consider in later chapters. In fact, it is sometimes possible to prove

that a particular stationary policy is not average reward optimal by showing that it is inferior to

a carefully-constructed non-stationary policy. Examples will be provided later.

The next section will present some general results from the literature related to average reward

optimal policies for discrete-time MDPs, including computational algorithms.

3.7 Finite state spaces

The purpose of this section is to discuss methods for computing average reward optimal policies

for discrete-time MDPs, but before doing so it is necessary to discuss some of the related theory.

Consider the discrete-time MDP Υ formulated in (3.5.1)-(3.5.4). By direct analogy to (3.3.1), the

expected long-run average reward for Υ under an arbitrary policy θ, given an initial state x0 ∈ S

and assuming that the real-time reward formulation (3.5.4) is used, is defined as:

gθ(x) = lim inf
t→∞

t−1Eθ

[
t−1∑
n=0

r(xn)
∣∣∣x0 = x

]
, (3.7.1)

where the expectation is with respect to the random transitions that occur under θ. Due to

Theorem 3.5.3, the rewards r(xn) in (3.7.1) may be replaced by the rewards r̂(xn, an) defined in

(3.5.15) without affecting the value of gθ(x). Indeed, it should be noted that all of the results in

this section remain valid under either of the reward formulations r(·) and r̂(·).

The state space S for Υ, defined in (3.5.1), is countably infinite. Unfortunately, it is the case that

certain theoretical results for MDPs rely on the assumption of a finite state space. Furthermore, the

computational algorithms presented later in this section cannot be applied, in their conventional

forms, to a problem in which the state space S is infinite. In practice, one can work around this

problem by truncating the state space, but only if it can safely be assumed that there exists a

finite subset R ⊂ S and an optimal policy θ∗ such that R contains any state that could possibly be

visited under θ∗. This approach will be discussed further in the next chapter.
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Let Υ̃ denote an MDP which is similar to Υ except that the action sets Ax for x ∈ S are restricted

as follows: for each facility i ∈ {1, 2, ..., N}, there exists a threshold Bi ∈ N such that the action i

is not available at any state x with xi ≥ Bi. Then, assuming that the system is initialised in state

0, the state space for the process may be described by the finite set S̃ given by:

S̃ :=
{

(x1, x2, ..., xN ) : xi ∈ N0, xi ≤ Bi (i = 1, 2, ..., N)
}
. (3.7.2)

All of the results in this section will assume a finite state space S̃, with S̃ as defined in (3.7.2).

For the time being, the choice of non-negative integers B1, B2, ..., BN is understood to be arbitrary.

Two immediate consequences of the finiteness of S̃ are as follows:

1. Any stationary policy induces a Markov chain with an irreducible, aperiodic class of states.

2. The rewards are bounded; that is, there exists M > 0 such that |r(x)| ≤M for all x ∈ S̃.

Indeed, to establish the first of the above properties, let θ be a stationary policy and let Rθ ⊆ S̃

denote the set of states accessible from state 0 in the Markov chain induced by θ (please refer

to Appendix A.1 for the definition of accessibility). Then Rθ is a single communicating class and

hence is irreducible. It is also aperiodic, since the state 0 can be reached from itself via a single

transition. The second property follows directly from (3.5.4) and the finiteness of S̃.

It will be useful to refer to some results from the literature for finite-state MDPs. Let θ be a

stationary policy which induces a Markov chain with transition probabilities pθ(x,y) for x,y ∈ S̃

and let the expected total reward over n time epochs, V
(n)
θ (x), be defined as:

V
(n)
θ (x) := Eθ

[
n−1∑
k=0

r(xk)
∣∣∣x0 = x

]
. (3.7.3)

The next result addresses the existence of the limit in (3.7.1).

* Lemma 3.7.1. Let θ be any stationary policy in the MDP Υ̃ with finite state space S̃. Then,

for each state x ∈ S̃, the limit limn→∞ V
(n)
θ (x)/n exists, and:

gθ(x) = lim
n→∞

1

n
V

(n)
θ (x) =

∑
y∈S̃

πθ(y)r(y), (3.7.4)

where
{
πθ(y)

}
y∈S̃ is the stationary distribution of the MDP under θ.
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Proof. Please refer to Bertsekas [12] (p. 330) or Puterman [141] (p. 333).

From Lemma 3.7.1 it follows that, for any stationary policy θ, the limit in (3.7.1) is guaranteed to

exist, so it is not necessary to write ‘lim inf’. Furthermore, it is immediate from (3.7.4) that gθ(x)

is independent of x; that is, gθ is a constant function, so the average reward is independent of the

initial state. Henceforth, gθ will be regarded as a scalar quantity in this section.

The quantity gθ is sometimes referred to as the gain of the stationary policy θ. Puterman [141] (p.

334) explains that this term originates from control engineering, in which it refers to “the ratio of

the output of a system to its input”. The next result introduces a functional equation which can

be used to compute the gain, or average reward, of a fixed policy in Υ̂.

* Theorem 3.7.2. Consider a fixed stationary policy θ. Suppose there exists a scalar quantity g

and a function h : S̃ → R, where S̃ is the finite state space, such that:

g + h(x) = r(x) +
∑
y∈S̃

pθ(x,y)h(y) ∀ x ∈ S̃. (3.7.5)

Then g = gθ, i.e. g is the average reward associated with the policy θ.

Proof. The simplest method of proof, as given in Bertsekas [12] (p. 334), is to consider a problem

where, for each state x ∈ S̃, the action set Ax is replaced by {θ(x)}; that is, Ax consists of only

a single element corresponding to the action prescribed by the stationary policy θ. Then Theorem

3.7.2 actually follows as a corollary from Theorem 3.7.3 (to be stated shortly). �

The result of Theorem 3.7.2 can be used to evaluate the performance of a fixed policy. Indeed,

(3.7.5) is a system of |S̃| equations in |S̃| + 1 unknowns, namely the set of h(x) values and the

average reward g itself. One may impose the extra condition h(z) = 0, where z ∈ S̃ is an arbitrary

‘reference state’ (z = 0 is the simplest choice), in order to obtain a unique solution. In principle,

one may use Gaussian elimination or similar techniques to solve (3.7.5); however, if |S̃| is large, it is

somewhat easier computationally to use an algorithmic approach. The Policy Evaluation Algorithm

detailed below has its origins in the early MDP literature; see, for example, [88, 195].

Policy Evaluation Algorithm (PEA)

1. Input θ, the stationary policy to be evaluated.
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2. Set n = 0, h0(x) = 0 and w0(x) = 0 for all x ∈ S̃.

3. For each x ∈ S̃, let wn+1(x) = r(x) +
∑
y∈S̃

p(x, a,y)hn(y).

4. Set hn+1(x) = wn+1(x)− wn+1(z) for all x ∈ S̃, where z ∈ S̃ is a fixed ‘reference state’.

5. If n = 0, set δ = 1; otherwise set δ = maxx∈S̃ |hn+1(x)− hn(x)|. If δ < ε, where ε is a small

positive number, go to step 6; otherwise, increment n by 1 and return to step 3.

6. Output the value hn(x) for each x ∈ S̃. The average reward gθ under policy θ can be evaluated

by putting x = 0 in (3.7.5). Then, since r(0) = 0 and hn(0) = 0:

gθ = λ∆hn(0a+),

where a = θ(0), i.e. a is the action chosen by θ at state 0.

The policy evaluation equations in (3.7.5) may be employed in a creative manner to compute various

performance measures for the system. Indeed, consider two reward functions rL(x) and rW (x, a)

(where only the latter has an action-dependence), defined as follows:

rL(x) :=
N∑
i=1

xi,

rW (x, a) =


1/µi, if a = i for some i ∈ {1, 2, ..., N} and xi < ci,

(xi + 1)/(ciµi), if a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

Then, given that rL(x) represents the total number of customers present in the system under state

x, replacing r(x) with rL(x) in (3.7.5) enables gθ to measure the average number of customers

present in the system under policy θ. Similarly, replacing r(x) with rW (x, θ(x)) in (3.7.5) enables

gθ to measure the average time spent by customers in the system (taking into account customers who

balk and thereby spend no time in the system). One might even extend this notion by introducing

a family of |S̃| reward functions ry(x) (one function for each y ∈ S̃), defined by:

ry(x) :=


1, if x = y,

0, otherwise.
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Then replacing r(x) with ry(x) in (3.7.5) enables gθ to measure the stationary probability πθ(y)

under policy θ. One might modify the steps in the Policy Evaluation Algorithm so that each state

y ∈ S̃ has its own sets of values vy(x), wy(x) and hy(x) which are updated on each iteration,

then a set of values gy(x) is output at the end of the algorithm which gives the entire stationary

distribution {πθ(·)}; however, it is easy to see that this is somewhat cumbersome.

The Policy Evaluation Algorithm considers only a fixed stationary policy. The next topic to be

discussed is optimality. Recall that average reward optimal policies have already been defined

in Section 3.4 (see Definition 3.4.1). The next result introduces the average reward optimality

equations, which form a theoretical basis for various algorithms to be discussed later.

* Theorem 3.7.3. Suppose there exists a scalar quantity g∗ and a function h : S̃ → R such that:

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 ∀ x ∈ S̃. (3.7.6)

Let θ∗ be a stationary policy such that, for all states x ∈ S̃, the action θ∗(x) chosen by θ∗ attains

the maximum in (3.7.6). Then the stationary policy θ∗ is average reward optimal for the process

Υ̂, and gθ∗(x) = g∗ for every x ∈ S̃, i.e. g∗ is the optimal average reward.

Proof. This result is found in many texts. See, for example, Bertsekas [12] (p. 332).

Clearly, it is desirable to establish sufficient conditions for the existence of a constant g∗ and

function h satisfying the average reward optimality equations (3.7.6). Several such conditions have

been proposed in the literature, some of which can easily be shown to hold in the case of the

finite-state MDP Υ̃. For example, since the state 0 is accessible from any state in S̃, there cannot

be two disjoint, closed communicating classes under any stationary policy; it then follows that any

stationary policy induces a Markov chain which is unichain (see Appendix A.1) and the existence

of a solution to (3.7.6) then follows from Proposition 2.6 in [13] (p. 198). For more examples of

sufficient existence conditions, see [12] (pp. 335-340), [13] (p. 198) or [141] (p. 358).

It is possible to take a somewhat more constructive approach to establishing the existence of a

solution to (3.7.6). A popular technique for computing average reward optimal policies in finite-

state MDPs is known as relative value iteration; this technique was first proposed in undiscounted

problems by White [195] (see also [12, 47]). The details of the Relative Value Iteration Algorithm
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(abbreviated as RVIA) are given below. A proof that the algorithm converges to a solution to the

optimality equations (3.7.6) when applied to a finite-state MDP will be cited later.

Relative Value Iteration Algorithm (RVIA)

1. Set n = 0, h0(x) = 0 and w0(x) = 0 for all x ∈ S̃.

2. For each x ∈ S̃, let wn+1(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)hn(y)

.

3. Set hn+1(x) = wn+1(x)− wn+1(z) for all x ∈ S̃, where z ∈ S̃ is a fixed ‘reference state’.

4. If n = 0, set δ = 1; otherwise set δ = max
x∈S̃

∣∣hn+1(x) − hn(x)
∣∣. If δ < ε, where ε is a small

positive number, go to step 5; otherwise, increment n by 1 and return to step 2.

5. Output hn(x) for all x ∈ S̃ and a stationary policy θ∗ such that, for each x ∈ S̃, θ∗(x)

maximises

{
r(x) +

∑
y∈S̃

p(x, a,y)hn(y)

}
over all actions a ∈ Ax. The optimal average reward

g∗ can be evaluated by putting x = 0 in (3.7.6). Then, since r(0) = hn(0) = 0:

g∗ = λ∆hn(0a+),

where a = θ∗(0), i.e. a is the action chosen by θ∗ at state 0.

The subtraction of wn+1(z) on step 3 of the algorithm ensures that the hn(·) and wn(·) values remain

bounded, rather than diverging to infinity. The choice of the reference state z ∈ S̃ is arbitrary,

but in the case of the MDP Υ̃, taking z = 0 will be most convenient. Note that the Policy

Evaluation Algorithm on page 98 is essentially a modified version of the RVIA which considers

only one allowable action (dependent on the fixed policy θ) at each state x ∈ S̃. The next result

guarantees the convergence of the RVIA, and also provides a constructive proof of the existence of

a constant g∗ and function h satisfying the average reward optimality equations (3.7.6).

* Theorem 3.7.4. Consider the MDP Υ̃ with finite state space S̃. Let h0(x) = 0 for all x ∈ S̃.

For each state x ∈ S̃ and integer k ≥ 0, let hk+1(x) be defined as follows:

hk+1(x) := max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)hk(y)

− max
a∈A0

r(0) +
∑
y∈S̃

p(0, a,y)hk(y)

 . (3.7.7)
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Then, for each x ∈ S̃, the following limit exists:

h(x) := lim
k→∞

hk(x).

Moreover, let g∗ be a scalar quantity defined by:

g∗ := max
a∈A0

r(0) +
∑
y∈S̃

p(0, a,y)h(y)

 .

The constant g∗ and set of values
{
h(x)

}
x∈S̃ satisfy the average reward optimality equations:

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 ∀ x ∈ S̃. (3.7.8)

Furthermore, the solution obtained is the unique solution to (3.7.8) with h(0) = 0.

Proof. This result has been proved by Bertsekas [13] (p. 206) (see also [62, 141, 182]). However,

the proof relies upon an additional assumption which should be discussed here.

Let θ = (d0, d1, ...) denote an arbitrary policy, where dn (n = 0, 1, 2, ...) is the decision rule used

at the nth discrete time epoch, and let Pdn denote the transition matrix associated with the rule

dn. The assumption relied upon by the proof is that there exists an integer m > 0 and a positive

number ε > 0 such that, for all admissible policies θ and all states x ∈ S̃:

(
PdmPdm−1 ...Pd1

)
x0
≥ ε,(

Pdm−1Pdm−2 ...Pd0
)
x0
≥ ε, (3.7.9)

where Px0 denotes the element in the row corresponding to state x and the column corresponding

to state 0 of the matrix P . Indeed, given a finite state space S̃ with the property that for each

i ∈ {1, 2, ..., N} there exists Bi ∈ N0 such that xi ≤ Bi for all x ∈ S̃, it is sufficient to take

m =
∑N

i=1Bi in order to establish (3.7.9). To see this, note that at each state x ∈ S̃ \ {0} there is

a positive probability of a service completion. Moreover, according to the transition probabilities

formulated in (3.5.3), if the system is in state 0 at any time step, then there is a probability

(1−λ∆) ≥
∑N

i=1 ciµi∆ that it remains in state 0 at the next step. Suppose the process is initialised

in an arbitrary state x ∈ S̃ and an unbroken sequence of service completions occurs on consecutive

time steps, causing the process to reach state 0, and no further arrivals occur until a total of m
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time steps have elapsed (since initialisation). By the previous arguments, the probability of this

chain of events occurring is at least (µmin∆)m, where µmin is the minimum of the N service rates.

(Note that the decision rules d0, d1, ..., dm are irrelevant to this argument, since it considers a chain

of events in which no arrivals occur, therefore the actions chosen have no effect.)

It follows that for all x ∈ S̃, the conditions (3.7.9) can be satisfied by choosing:

m :=
N∑
i=1

Bi,

ε := (µmin∆)m.

(3.7.10)

Bertsekas [13] (p. 213) proves that the conditions (3.7.9) hold in the more general case of a

finite-state MDP where every stationary policy is unichain. His arguments involve making a ‘data

transformation’ which effectively ensures that p(x, a,x) > 0 for all x ∈ S̃ and a ∈ Ax; i.e. each

state in S̃ has a positive probability of a ‘self-transition’, regardless of the action chosen. The afore-

mentioned data transformation can be made without fundamentally altering the original problem,

since it transpires that the average reward under any stationary policy is unaffected. In the case of

the process Υ̃ considered in this section, it is actually possible to ensure that p(x, a,x) > 0 for all

x ∈ S̃ and a ∈ Ax by simply choosing the uniformisation parameter ∆ to be any positive number

smaller than
(
λ+

∑N
i=1 ciµi

)−1
; in view of (3.5.3), this achieves exactly the same effect as the

data transformation discussed in [13]. Moreover, Theorem 3.3.3 implies that the average reward

under any stationary policy is unaffected by reducing the value of ∆ in this way.

For details of the remainder of the proof, please refer to [13] (p. 206). �

By Theorems 3.7.3 and 3.7.4, it follows that that the stationary policy obtained in step 5 of the

RVIA is average reward optimal. Note that although the values g∗ and h(x) which satisfy (3.7.6)

(assuming the extra condition h(0) = 0) are unique, a stationary average reward optimal policy

θ∗ need not be unique; indeed, there may be more than one action which attains the maximum

on the right-hand side of (3.7.6) for a particular state x ∈ S̃. The next example illustrates how

comparisons may be drawn between two different average reward optimal policies.

Example 3.7.5. (Bias optimality)

Consider a single-facility system (N = 1) with only one service channel, a demand rate λ = 1, a



Chapter 3 MDP formulation 104

service rate µ = 2 and holding cost rate β = 5. In keeping with the assumption of a finite state

space, a constraint will be imposed whereby joining the queue is not allowed at any state x ∈ N0

with x ≥ 5. As a result, the state space may be described by the set S̃ = {0, 1, ..., 5}, with two

possible actions (joining or balking) permitted at every state except x = 5.

Given that the system is M/M/1, the results from Section 2.3 imply that an average reward optimal

policy (referred to as a socially optimal policy in Chapter 2) is characterised by a threshold no such

that joining the queue is chosen at a state x ∈ S̃ if and only if x < no. Furthermore, (2.3.3) states

that a socially optimal threshold no is given by bvoc, where vo satisfies:

vo(1− ρ)− ρ(1− ρvo)
(1− ρ)2

=
αµ

β
, (3.7.11)

where ρ = λ/µ = 1/2. Naor’s analysis [131] shows that although the value of vo satisfying (3.7.11)

will be unique (with the other parameters fixed), if vo is a positive integer then the thresholds vo

and vo−1 will both be socially optimal. As such, it is possible to manipulate the value of α in order

to ensure the existence of non-unique optimal policies. For example, setting α = 645/32 leads to a

solution vo = 5 in (3.7.11), and hence the thresholds 4 and 5 are both optimal.

Let θ4 and θ5 denote the stationary policies with thresholds 4 and 5 respectively, and also let it

be assumed that α = 645/32 and the system is formulated as an MDP with reward function r(x)

defined in (3.5.4) and transition probabilities given by (3.5.3) with ∆ = (λ + µ)−1. Using relative

value iteration (page 101), one may obtain the optimal average reward g∗ = 245/16 and the unique

set of values h(x) (with h(0) = 0) satisfying the average reward optimality equations (3.7.6); these

values are shown in Table 3.1. The policies θ4 and θ5 differ only at the state x = 4, and it may

be checked that both of the actions a = 0 (balking) and a = 1 (joining) maximise the expression

r(x) +
∑

y∈S̃ p(x, a, y)h(y) at x = 4. Moreover, both policies maximise the same expression at all

other states x ∈ S̃; that is, they both satisfy the optimality equations as expected.

State x 0 1 2 3 4 5

h(x) 0.0000 45.9375 77.8125 96.5625 104.0625 104.0625

Table 3.1: Values of h(x) for states x ∈ {0, 1, ..., 5} with the reward formulation r(x) used.

Naturally, given the relationship between the RVIA and PEA algorithms discussed earlier, applying
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the Policy Evaluation Algorithm (page 98) to either of the two policies θ4 and θ5 yields the same

set of h(x) values shown in Table 3.1. Given that both of the policies θ4 and θ5 yield the same

average reward and the same set of relative values h(x), one might be tempted to conclude that the

two policies are indistinguishable with respect to any performance measure of interest (assuming

undiscounted rewards); in other words, there is no way to rank one policy above the other. However,

the purpose of this example is to show that the more conservative policy θ4 is preferable to θ5 with

respect to a criterion which might, in practice, be of interest to a decision-maker.

The expected total reward V
(n)
θ (x) over n stages under an arbitrary policy θ and initial state x ∈ N0

was defined in (3.7.3). One may calculate V
(n)
θ (x) for n ≥ 0 recursively, using:

V
(n)
θ (x) =


0, if n = 0,

r(x) +
∑
y∈S̃

pθ(x, y)V
(n−1)
θ (y), if n ≥ 1.

The expected average reward over n stages is then given by V
(n)
θ (x)/n for n ≥ 1. Figure 3.6 shows

the finite-stage average rewards V
(n)
θ (x)/n plotted under both of the policies θ4 and θ5 for n ≤ 50,

assuming that the initial state is x = 4 (the only state at which the two policies differ). Although

both of these average rewards converge towards the optimal value g∗ as n→∞, it transpires that

the average reward under θ4 is always strictly greater than the average reward under θ5 over any

finite number of stages n ≥ 1. This can be explained intuitively. When joining is chosen by θ5

at state x = 4, the process incurs an extra holding cost which would not be incurred under the

alternative policy θ4. Thus, θ4 earns an advantage over θ5 which is not ‘equalised’ by θ5 until, at

some point in the future, the process operating under θ5 has a service in progress which would not

have taken place if the policy θ4 had been followed instead. In other words, θ4 consistently earns

advantages over θ5 which are not ‘equalised’ by θ5 until a later point in time, or (in a sense) θ5 is

constantly trying to ‘catch up’ with θ4 with respect to expected total reward. Since θ5 can never

catch up with θ4 over all possible random trajectories, it makes sense that the expected average

reward over a finite number of stages is always strictly greater under θ4 than under θ5.

Given that θ4 is strictly superior to θ5 over any finite number of stages, one would imagine that a

decision-maker would prefer to follow the policy θ4 if they were interested in optimising the system’s

performance over a finite amount of time (which, realistically, would always be the case in practice!).
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Figure 3.6: Expected average rewards over n stages under the policies θ4 and θ5 with initial state x = 4,

assuming that the ‘real-time’ reward formulation r(x) = αµmin(x, 1)− βx is used.

However, the fact remains that both policies are average reward optimal according to Definition

3.4.1. In order to differentiate between θ4 and θ5 with respect to performance, the stronger concept

of bias optimality is needed. In general, suppose one has an average reward optimal stationary

policy θ∗. The bias of θ∗, given an initial state x ∈ S̃ (see [78, 117]), is given by:

bθ∗(x) := lim
n→∞

Eθ∗

[
n−1∑
t=0

(r(xn)− g∗)

∣∣∣∣∣x0 = x

]
.

Hence, the bias corresponds to the expected (finite) total reward in a new process where the optimal

gain g∗ is subtracted from each single-stage reward r(xn). An average reward optimal policy θ∗0 is

said to be bias optimal if, for all other average reward optimal policies θ∗:

bθ∗0 (x) ≥ bθ∗(x) ∀ x ∈ S̃.

Suitable conditions which imply that a particular average reward optimal policy is also bias optimal

have been discussed in the literature; see [78] (p. 146). The easiest way to compute the bias values

bθ∗(x) for an average reward optimal policy θ∗ is to use the fact that the function bθ∗ : S̃ → R must

satisfy, together with some other function kθ∗ : S̃ → R, all of the following equations:

bθ∗(x) = r(x)− g∗ +
∑
y∈S̃

pθ∗(x, y)bθ∗(y) ∀ x ∈ S̃,

kθ∗(x) = −bθ∗(x) +
∑
y∈S̃

pθ∗(x, y)kθ∗(y) ∀ x ∈ S̃.
(3.7.12)
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In fact, for a given average reward optimal policy θ∗ there will be infinitely many sets of values

{kθ∗(x)}x∈S̃ which satisfy (3.7.12), so it is necessary to impose an extra condition such as kθ∗(0) = 0

in order to obtain an unique solution. However, the bias values bθ∗(x) which satisfy (3.7.12) will

always be unique. Table 3.2 shows the values bθ4(x) and bθ5(x) for the optimal policies θ4 and θ5

respectively. Note that, since the functions bθ4(·) and bθ5(·) both satisfy the first set of equations

in (3.7.12), it must be the case that they differ from the relative value function h(·) only by an

additive constant. Indeed, comparing Tables 3.1 and 3.2 confirms that this is true.

State x 0 1 2 3 4 5

bθ4(x) -31.4819 14.4556 46.3306 65.0806 72.5806 72.5806

bθ5(x) -32.6339 13.3036 45.1786 63.9286 71.4286 71.4286

Table 3.2: Values of bθ4(x) and bθ5(x) for states x ∈ {0, 1, ..., 5} with reward formulation r(x) used.

Table 3.2 shows that bθ4(x) > bθ5(x) for all x ∈ {0, 1, ..., 5}. Since it can easily be verified that θ4

and θ5 are the only stationary average reward optimal policies in this example, it follows that θ4 is

bias optimal, whereas θ5 is not. However, the most interesting aspect of this example is that the

same conclusion does not hold when the reward function r(x) is replaced by the alternative function

r̂(x, a), previously referred to as the anticipatory reward function. Indeed, when the alternative

function r̂(x, a) is used, the process earns a positive reward by allowing a customer to join at state

x = 4, whereas a zero reward is earned by balking. Hence, the policy θ5 earns an advantage over

θ4 by allowing an extra customer to join, but this is compensated for by the fact that customers

who join the queue at later points in time suffer increased waiting times (and hence, the process

earns smaller single-stage rewards) as a result of an extra customer being present in the system. In

a sense, therefore, switching to the alternative reward formulation r̂(x, a) reverses the roles of θ4

and θ5 by allowing θ5 to earn an advantage over θ4 at state x = 4 and then forcing the policy θ4 to

‘play catch-up’ to θ5 with respect to the expected total reward earned over n stages.

Figure 3.7 shows the expected finite-stage average rewards over 50 stages under the policies θ4 and

θ5, with the reward function r̂(x, a) used instead of r(x). In this case, θ5 earns a strictly greater

expected total reward than θ4 over any finite number of stages n ≥ 1, although the difference tends

to zero as n→∞. By Theorem 3.5.3, the optimal average reward g∗ is unaffected by switching from
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Figure 3.7: Expected average rewards over n stages under the policies θ4 and θ5 with initial state x = 4,

assuming that the ‘real-time’ reward formulation r̂(x, a) = I(a = 1) (α− β(x+ 1)/µ) is used.

r(x) to r̂(x, a), but the relative values satisfying (3.7.6) are affected and so it will be appropriate

to denote these by ĥ(x) in the case of anticipatory rewards. Similarly, the bias functions under the

policies θ4 and θ5 will be denoted by b̂θ4(·) and b̂θ5(·) respectively. Table 3.3 shows the values of

ĥ(x), (with ĥ(0) = 0), b̂θ4(x) and b̂θ5(x) for x ∈ {0, 1, ..., 5}. It can be seen that b̂θ4(x) < b̂θ5(x) for

all x ∈ S̃, confirming that the policy θ5 is bias optimal in this case, whereas θ4 is not.

State x 0 1 2 3 4 5

ĥ(x) 0.00000 -7.03125 -20.62500 -39.84375 -52.81250 -85.78125

b̂θ4(x) 9.07258 2.04133 -11.55242 -30.77117 -53.73992 -76.70867

b̂θ5(x) 10.29018 3.25893 -10.33482 -29.55357 -52.52232 -75.49107

Table 3.3: Values of ĥ(x), b̂θ4(x) and b̂θ5(x) for x ∈ {0, 1, ..., 5} with reward formulation r̂(x, a) used.

The conclusion of this example is that, although any policy which is average reward optimal for the

MDP Υ̂ under reward formulation r(x) must also be likewise optimal under the formulation r̂(x, a)

due to Theorem 3.5.3, this equivalence does not necessarily hold when a more sensitive optimality

criterion such as bias optimality is considered. Indeed, one may find two average reward optimal

policies such that only one is bias optimal, with the identity of the bias optimal policy depending

on the reward formulation used. The results of the present example appear to suggest that a
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more conservative policy will be favoured by the bias optimality criterion when the function r(x) is

used, whereas the converse statement should apply when r̂(x, a) is used. Indeed, some results have

been published in the literature which lend support to this notion, although the results in question

involve slightly different problem formulations; see [78, 116] for further details. �

Another well-established method for computing average reward optimal policies in finite-state

MDPs is known as policy improvement (or sometimes policy iteration). This method was in-

troduced by Howard [88], although a similar method called “approximation in policy space” was

also described by Bellman [10]. Essentially, one begins with an arbitrary stationary policy θ, and

then finds corresponding values gθ and hθ(x) which satisfy the evaluation equations in (3.7.5).

Each action θ(x) prescribed by θ is then checked to see whether it maximises the expression

r(x) +
∑

y∈S̃ p(x, a,y)hθ(y) over all permissible actions a ∈ Ax. If this test is passed for all

x ∈ S̃, then by Theorem 3.7.3, θ is average reward optimal; otherwise, the policy is modified and

the procedure is repeated until eventually an optimal policy is obtained. The Policy Improvement

Algorithm, in the form presented by Puterman [141] (p. 378), is given as follows:

Policy Improvement Algorithm (PIA)

1. Set n = 0 and select an arbitrary stationary policy θ0.

2. (Policy evaluation.) Find a scalar gn and a function hn which satisfy the equations:

gn + hn(x) = r(x) +
∑
y∈S̃

pθn(x,y)hn(y) ∀ x ∈ S̃, (3.7.13)

together with the extra condition hn(0) = 0. (Note: The Policy Evaluation Algorithm given

on page 98 may be used to perform this step.)

3. (Policy improvement.) For each x ∈ S̃, choose an action θn+1(x) to satisfy:

θn+1(x) ∈ arg max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)hn(y)

 , (3.7.14)

setting θn+1(x) = θn(x) if possible.

4. If θn+1(x) = θn(x) for all x ∈ S̃ then stop; the policy θn+1 is average reward optimal.

Otherwise, increment n by 1 and return to step 2.
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The specification that, if possible, θn+1(x) should be chosen to be equal to θn(x) is made to

avoid cycling between policies which yield the same average reward. The algorithm is designed

to terminate if it finds any policy which is optimal, rather than cycling between multiple optimal

policies. The convergence of the PIA is ensured by the following result.

* Theorem 3.7.6. The Policy Improvement Algorithm, applied to the finite-state MDP Υ̃, con-

verges in a finite number of iterations to a solution of the optimality equations:

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 ∀ x ∈ S̃, (3.7.15)

and an average reward optimal stationary policy θ∗.

Proof. Please refer to Bertsekas [13] (p. 214), or Puterman [141] (p. 383).

Example 3.7.7. (Policy improvement)

This example revisits the two-facility system in Example 3.2.1 in order to demonstrate how the

Policy Improvement Algorithm (PIA) can be used to find an average reward optimal policy. Recall

that the demand rate is λ = 1, there are two service facilities with one service channel each, and

the service rates, holding costs and fixed rewards for the two facilities are given by:

µ1 = 0.8, β1 = 2, α1 = 6,

µ2 = 0.4, β2 = 1, α2 = 4.

The state space S consists of only 6 states, and the stationary policy θ operates as follows:

θ((0, 0)) = 1, θ((0, 1)) = 1, θ((1, 0)) = 2,

θ((1, 1)) = 1, θ((2, 0)) = 2, θ((2, 1)) = 0.

Let the system be uniformised as described in Section 3.3, with ∆ = (λ+µ1 +µ2)−1 = 5/11. After

initialising the PIA with θ0 = θ, using the condition h((0, 0)) = 0 enables the system of equations

(3.7.13) to be solved uniquely. The solution, with figures rounded to 4 d.p., is:

g0 = 1.6913, h0((0, 0)) = 0, h0((0, 1)) = 1.3268, h0((1, 0)) = 3.7209,

h0((1, 1)) = 4.2584, h0((2, 0)) = 2.2641, h0((2, 1)) = 3.0596.
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Consider the state (0, 0). In step 3 of the PIA, It is necessary to identify the action a ∈ A(0,0) which

maximises r((0, 0)) +
∑

y p((0, 0), a,y)h0(y). The reward r((0, 0)) is independent of the action

chosen, so (enumerating the transition probabilities) a must satisfy:

a ∈ arg max
a∈A(0,0)

{
(1− λ∆)h0((0, 0)) + λ∆h0

(
(0, 0)a+

)}
,

Since max (h0((0, 0)), h0((0, 1)), h0((1, 0))) = h0((1, 0)), it transpires that the action a = 1 chosen

by policy θ0 at x = (0, 0) attains the maximum in step 3. Similarly, it can be checked that the

actions chosen by θ0 at states (0, 1), (1, 0), (2, 0) and (2, 1) pass the optimality test; hence, the new

policy θ1 derived in step 3 chooses the same actions as θ0 at each of these states. On the other

hand, checking the permissible actions a ∈ A(1,1) = {0, 1} at the state (1, 1), one finds:

max
a∈A(1,1)

{
r((1, 1)) +

∑
y

p((1, 1), a,y)h0(y)

}

= r((1, 1)) + µ1∆h0((0, 1)) + µ2∆h0((1, 0)) + λ∆ max (h0((1, 1)), h0((2, 1))) ,

and since h0((1, 1)) > h0((2, 1)), the maximum is attained by the action a = 0; that is, the new

policy θ1 differs from θ0 by choosing to balk at x = (1, 1). Replacing the policy θ0 with θ1 and

re-solving the equations in (3.7.13) (with h1((0, 0)) = 0) yields the solution:

g1 = 1.8772, h1((0, 0)) = 0, h1((0, 1)) = 1.8526, h1((1, 0)) = 4.1298,

h1((1, 1)) = 5.4035, h1((2, 0)) = 2.4965, h1((2, 1)) = 3.5596.

As expected, the average reward is greater under the new policy θ1. Furthermore, it can be checked

that each action θ1(x) maximises r(x) +
∑

y p(x, a,y)h1(y), so by Theorem 3.7.3 the new policy

θ1 is optimal. To summarise, the original policy θ0 differs from the optimal policy θ1 only in the

action chosen at the state (1, 1), and the PIA finds the optimal policy θ1 on its first improvement

step. The sub-optimality of the original policy θ0 is given by (g1 − g0)/g1 ≈ 10%. �

The PEA, RVIA and PIA algorithms presented in this section are examples of dynamic programming

(DP) algorithms which can be useful for theoretical purposes as well as practical ones, as later results

will demonstrate. Before concluding this chapter, it will be useful to introduce a further technique

which will be relied upon in later chapters; this is known as stochastic coupling.
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3.8 Stochastic coupling

Section 3.7 introduced the technique of relative value iteration as a means of obtaining a constant

g∗ and set of values {h(x)}x∈S̃ satisfying the average reward optimality equations in (3.7.6). By

Theorem 3.7.4, the values h(x) can be obtained as limits of the finite-stage values hn(x) defined

in (3.7.7) as n→∞. This creates the possibility of using inductive arguments based on the finite-

stage functions hn to establish properties of the limiting function h, which in turn can be used to

deduce properties of average reward optimal policies and potentially gain other interesting insights

into the evolution of a particular process; examples of this technique will be given in later chapters.

However, the purpose of this section is to introduce an alternative method of proof, known as

stochastic coupling, which bears certain analogies to inductive arguments based on value iteration

while at the same time being somewhat more transparent and intuitively appealing.

Stochastic coupling is an important topic in probability theory, although there are relatively few

texts dedicated entirely to the subject. An excellent reference is Thorisson [181], in which a broad

range of applications are described. In [181], Thorisson describes a coupling as a “joint construc-

tion of two or more random variables (or processes), usually in order to deduce properties of the

individual variables or gain insight into distributional similarities or relations between them.” Nat-

urally, a formal mathematical definition is possible; however, for the purposes of this thesis, it will

be desirable to define a coupling in a somewhat simplified way in order to fit the requirements

of the queueing systems under consideration without being unnecessarily general. The following

definition introduces the notion of a stochastic coupling as a device for establishing relationships

and similarities between two processes in the manner alluded to by Thorisson.

Definition 3.8.1. (Coupling)

Let Φ1 and Φ2 be discrete-time MDPs as defined in (3.3.1), with state spaces S1 and S2 respectively,

and suppose both processes may be uniformised with a common uniformisation parameter ∆ > 0.

The two processes are assumed to follow arbitrary (separate) policies. Let (xn)n∈N0 and (yn)n∈N0

denote the state-time evolutions of Φ1 and Φ2 respectively; that is, xn ∈ S1 (respectively, yn ∈ S2)

is the state of Φ1 (respectively, Φ2) at the nth discrete time step. The initial states of Φ1 and Φ2

are, respectively, x0 ∈ S1 and y0 ∈ S2. Consider a new discrete-time Markov chain Φc with state

space S1 × S2, also uniformised with the same parameter ∆, whose state-time evolution is denoted
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by (x̂n, ŷn)n∈N0. Furthermore, assume that the initial state of Φc, (x̂0, ŷ0), satisfies x̂0 = x0 and

ŷ0 = y0. Then Φc is said to be a coupling of Φ1 and Φ2 if, for all n ∈ N0, the probability

distributions of x̂n and ŷn are identical to those of xn and yn respectively.

For convenience, the pair (x̂n, ŷn) will occasionally be referred to as a coupling rather than the

process Φc itself; that is, a coupling may be referred to by its state-time evolution. Also, the terms

“coupled process” and “coupling” will be used interchangeably in this section.

Assuming that Φ1 and Φ2 can both be uniformised as described in Section 3.3, the subsequent

assumption that the same uniformisation parameter ∆ can be used for both processes is non-

restrictive. Indeed, suppose ∆1 > 0 and ∆2 > 0 are valid choices for the uniformisation parameters

of Φ1 and Φ2 respectively; then, due to Theorem 3.3.3, any value ∆ ∈ (0,∆1) may also be used

for the uniformisation of Φ1, and an analogous statement applies to Φ2. Therefore one can simply

choose ∆ := min(∆1,∆2) as a uniformisation parameter for both processes.

Note that, although the distributions of x̂n and ŷn must be identical to those of xn and yn respec-

tively for all n ∈ N0, there is no requirement for the joint distribution of x̂n and ŷn to be the same

as that of xn and yn. For example, given two processes Φ1 and Φ2, one may be able to construct

a coupling (x̂n, ŷn) satisfying Definition 3.8.1 such that the componentwise inequality x̂n ≥ ŷn is

guaranteed to hold for all n ∈ N0, and yet the inequality xn ≥ yn may not necessarily hold with

Φ1 and Φ2 operating independently. It is the fact that couplings may be created using artificial

rules for their transition probabilities and yet still preserve the required distributional equalities

that makes them such a useful tool. In practice, the equivalence between the distributions of x̂n

and xn (similarly for ŷn and yn) may be accomplished by defining the transition probabilities for

the coupling in such a way that for all x,x′ ∈ S1, y,y′ ∈ S2 and stages n ∈ N0:

P
(
xn+1 = x′|xn = x

)
= P

(
x̂n+1 = x′|x̂n = x

)
, (3.8.1)

P
(
yn+1 = y′|yn = y

)
= P

(
ŷn+1 = y′|ŷn = y

)
. (3.8.2)

The probabilities on the left-hand sides of (3.8.1) and (3.8.2) in fact depend on the policies θ1 and

θ2 followed by Φ1 and Φ2; on the other hand, Φc is merely a Markov chain rather than an MDP,

whose transition probabilities are assumed to be chosen based on the policies followed by Φ1 and

Φ2 in order to ensure the required equivalence. An example will be presented shortly in order to
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demonstrate the technique. First, however, it will be useful to introduce the concept of a sample

path as a means of representing the random trajectory of a stochastic process.

Definition 3.8.2. (Sample path)

Let Ω = (Ω0,Ω1,Ω2, ...) be a sequence of i.i.d. random variables, and let the support (i.e. set of all

possible values) of each Ωi be denoted by W , where it is assumed that W is non-empty and finite. A

sample path is a vector ω = (ω0, ω1, ω2, ...) belonging to the set W ×W ×W × ... which completely

determines the evolution of a given discrete-time stochastic process.

The random variables Ωi (i = 0, 1, 2, ...) are in fact categorical random variables whose values

govern the random transitions of a given process. At any given time step n, the value ωn ∈ W

(henceforth referred to as the event that occurs at time n) is completely independent of the state

of the system, and also of the events that preceded it. One might imagine simply rolling a dice at

each discrete time step to determine the random event that occurs, with the same dice used at all

times, regardless of the system state. If the common distribution of the Ωi is chosen appropriately,

then each random transition of a discrete-time MDP can be determined as a consequence of the

state, action chosen and random event occurring at the relevant point in time; the same applies

to discrete-time Markov chains, except that obviously actions are not chosen. It is the fact that a

sample path may be used to determine the evolution of a coupling (which, according to Definition

3.8.1, is simply a discrete-time Markov chain) that is of primary interest here.

A number of results in this thesis which involve comparisons between two or more processes will

be established by first constructing a coupling for the relevant processes, and then examining the

possible sample paths that may be followed by the coupled process. In practice, the construction

of the coupling will involve listing the possible events that may occur (i.e. the events in the finite

set W ) at any time step n and, for each event, specifying the probability of occurrence and also the

effect on the state of the coupled process if the event occurs. Several of the results in later chapters

will involve comparisons between different policies in order to prove or disprove optimality, but in

this chapter it will be useful to provide an example of how an argument based on coupling and

sample paths can be used to prove an elementary property of M/M/c queues.
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Example 3.8.3. (Coupling of M/M/c queues)

Consider two M/M/c queues operating independently. Both queues have a common arrival rate

λ > 0 and serve customers at a rate µ > 0 at any service channel. Let c1 and c2 be the service

capacities at the first and second queue respectively. It is assumed that c1 > c2 ≥ 1; that is, the

first queue has more service channels than the second. Rewards and holding costs are not relevant

in this example. Suppose both queues operate a trivial policy of always allowing customers to join

the queue, i.e. there is no balking; it will be assumed that λ < c2µ in order to ensure system

stability. let L1 and L2 denote the expected numbers of customers present at the first and second

queues respectively under steady-state conditions. The aim is to show:

L1 ≤ L2,

using a coupling argument. Of course, this fact may be established using more direct arguments

based on standard formulae for M/M/c queues (see, e.g. [67], p. 69), but the purpose of this

example is simply to demonstrate the coupling technique. Let Φ1 and Φ2 be MDPs formulated

using the transition probabilities defined in (3.5.3), with c = c1 for the first process and c = c2 for

the second; naturally, both processes have state space N0. In order to create a coupling, it will be

assumed that both processes are uniformised with parameter ∆ = (λ + c1µ)−1. Let (xn)n∈N0 and

(yn)n∈N0 denote the state-time evolutions of Φ1 and Φ2 respectively (there is some conflict here

with earlier notation since xi has previously been used to denote the ith component of the vector

x, but this does not cause problems in this particular example since the states are not vectors.) It

may be assumed that x0 = y0 = 0, since an M/M/c queue will eventually converge to its stationary

distribution and hence L1 and L2 are not affected by the choice of initial states.

Let (x̂n, ŷn) be a coupling with state space N2
0, initialised in state (0, 0). At any time step n, the

random event ωn that occurs is an element of the following set:

W :=
{

Λ,M (1),M (2), ...,M (c1)
}
,

where the events Λ,M (1),M (2), ...,M (c1) are defined as follows:

• Λ is the event that a customer arrives, which occurs with probability λ∆. This event is

seen by both of the marginal processes (x̂n) and (ŷn). If ωn = Λ, then x̂n+1 = x̂n + 1 and

ŷn+1 = ŷn + 1; that is, both processes gain an extra customer.
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• M (i) (for i = 1, 2, ..., c1) is the event that a service completes at the ith service channel, which

occurs with probability µ∆. This event is seen by the marginal process (x̂n) if and only if

i ≤ x̂n, and it is seen by the process (ŷn) if and only if i ≤ min(ŷn, c2). If it is seen by either

marginal process, then that process loses a customer. That is:

– x̂n+1 = x̂n − 1 if and only if ωn = M (i) for some i ≤ x̂n;

– ŷn+1 = ŷn − 1 if and only if ωn = M (i) for some i ≤ min(ŷn, c2).

The use of the phrase “seen by” is quite common in the literature to indicate that a particular event

may affect one process without affecting another. For example, if a service completion is “seen by”

one process but not another, this means that only the process which “sees” the service completion

has one fewer customer present at the next time step; the other process is unaffected. If an event

is not “seen” by a particular marginal process, then that process remains in the same state; that

is, x̂n+1 = x̂n if (x̂n) is the marginal process in question. As a point of terminology, it should be

understood that even if an event is not “seen” by any process, this does not alter the fact that the

event has occurred; for example, a service completion is said to “occur” even if it is not seen by any

process, in which case there is no change in the state of the coupling. In future coupling proofs, the

descriptions of the various events in W (as given in the two bullet points above) will be somewhat

shortened in order to avoid extraneous detail; for example, if a customer arrival is seen by both of

the marginal processes (x̂n) and (ŷn), then this will be stated without the extra information that

x̂n+1 = x̂n + 1 and ŷn+1 = ŷn + 1 as a result. The marginal processes (x̂n) and (ŷn) will also be

referred to simply as processes; so, for example, it will be deemed sufficient to state that “the event

Λ occurs with probability λ∆ and causes an arrival to be seen by both processes”.

The coupled process (x̂n, ŷn) evolves according to a sample path (ω0, ω1, ω2, ...), where each ωi is

one of the random events in the set W =
{

Λ,M (1),M (2), ...,M (c1)
}

. According to the definitions

of these events given previously, there is a probability λ∆ of an arrival at any time step. Also, it

can easily be checked from the definition of the events M (i) (noting that each M (i) has the same

probability of occurrence, µ∆) that the probability of a service completion being seen by process

(x̂n) at time step n is min(x̂n, c1)µ∆, and the corresponding probability for the process (ŷn) is

min(ŷn, c2)µ∆. If no event is seen by a particular process at time step n, then it remains in the

same state at time step n+ 1. It follows that the transition probabilities P (x̂n+1 = x̂′|x̂n = x̂) and

P (ŷn+1 = ŷ′|ŷn = ŷ) correspond exactly with the transition probabilities defined in (3.5.3) which
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govern the transitions of the MDPs Φ1 and Φ2 respectively. Therefore, for all n ∈ N0, x̂n has the

same distribution as xn and ŷn has the same distribution as yn. Of course, this is a requirement of

the coupling construction. In order to show that L1 ≤ L2, it will therefore be sufficient to restrict

attention to the coupled variables and prove that E[x̂n] ≤ E[ŷn] for all n ∈ N0.

In fact, in this particular example one can prove the stronger property that, given any sample path

ω = (ω0, ω1, ω2, ...), one must have x̂n ≤ ŷn for all n ∈ N0. This can be shown using a somewhat

trivial inductive argument. It is assumed that the x̂0 = ŷ0 = 0, so the inequality holds when n = 0.

Assume that x̂k ≤ ŷk, for arbitrary k ∈ N0. If the event Λ occurs at stage k, then it is seen by

both processes, so x̂k+1 ≤ ŷk+1 follows. Next, suppose x̂k < ŷk holds with strict inequality. It is

not possible for an event to occur which causes x̂k+1 to be greater than x̂k while simultaneously

causing ŷk+1 to be smaller than ŷk, and since the state of (ŷn) can decrease by at most one in a

single time step, it must be the case that x̂k < ŷk implies x̂k+1 ≤ ŷk+1. The only remaining case to

check is the case where x̂k = ŷk and an event other than Λ occurs. If ŷk ≥ c2, then the only service

completion events that would be seen by (ŷn) at stage k are the events M (1),M (2), ...,M (c2), but

due to the definition of these events and the fact that x̂k = ŷk, these events are also seen by the

process (x̂n) at the same stage. Similarly, if ŷk < c2 then the only service completion events that

would be seen by (ŷn) are the events M (1),M (2), ...,M (ŷk), but these events are also seen by (x̂n)

at the same stage. In summary, it is not possible for the process (ŷn) to see a service completion

which is not seen by (x̂n) unless (ŷn) has more customers present than (x̂n) at the stage in question.

It follows that x̂k+1 ≤ ŷk+1, which proves by induction that x̂n ≤ ŷn for all n ∈ N0.

Given that x̂n ≤ ŷn for all n ∈ N0 along any random sample path ω, it follows trivially that

E[x̂n] ≤ E[ŷn] for all n ∈ N0. Hence, due to the coupling construction, E[xn] ≤ E[yn] for all

n ∈ N0, where (xn) and (yn) represent the respective evolutions of the original MDPs Φ1 and Φ2

which are naturally independent of each other. It follows that limn→∞E[xn] ≤ limn→∞E[yn], or

equivalently L1 ≤ L2, which completes the proof of the required property. �

Figure 3.8 illustrates the transition probabilities for the coupled process (x̂n, ŷn) in the case where

c1 = 2 and c2 = 1. Self-transitions (i.e. transitions from a state to itself) are not shown in the

diagram in order to avoid over-cluttering, and neither are transitions to or from non-recurrent

states. Given that the initial state is (0, 0), any state (x̂, ŷ) with x̂ > ŷ can never be visited and



Chapter 3 MDP formulation 118

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(0,2)

(1,2)

(2,2)

(3,2)

(0,3)

(1,3)

(2,3)

(3,3)

(1,4)

(2,4)

(3,4)

(0,4) (0,5)

(1,5)

(2,5)

(3,5)

Figure 3.8: The transitions probabilities for the coupled process (x̂n, ŷn) in Example 3.8.3 with c1 = 2 and

c2 = 1, not including self-transitions or transitions to or from non-recurrent states.

therefore the Markov chain has an ‘upper triangular’ structure. The reason for states with x̂ < ŷ

being accessible is that, in any state (x̂, ŷ) with x̂ ≥ 2, there is a positive probability that a service

completion will be the seen by the first process but not by the second process; this is the reason

for the ‘upward’ transitions in the diagram at states with x̂ ≥ 2. Note that customer arrivals are

always seen by both processes, so these events always cause ‘diagonal’ transitions.

It was mentioned earlier that proofs involving the construction of a coupling for two discrete-time

processes are in some sense analogous to inductive proofs based on the functions hn(·) derived using

relative value iteration. Indeed, although various results later in this thesis will be proved using

coupling formulations, these results are generally not beyond the realms of being achievable using

dynamic programming methods. It is not considered necessary to prove any formal equivalence

between the two methodologies here; in fact, it will be quite evident from the style of some of the
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coupling-based proofs in later chapters that the analogous proofs based on relative value iteration

would follow extremely similar arguments. To some extent, therefore, the question of whether

to prove certain results using coupling constructions or to rely merely on the finite-stage value

functions of dynamic programming is simply a question of presentation.

The proof given in Example 3.8.3 relies on the principle that, after the coupling (x̂n, ŷn) has

been constructed, the marginal processes (x̂n) and (ŷn) evolve according to identical sequences of

random events. Essentially, the sole purpose of the coupling construction is to provide a theoretical

justification for the strategy of ‘forcing’ the two processes to follow the same random trajectory. This

suggests that any proof based on a stochastic coupling argument may be considerably shortened

by not explicitly formulating the coupling itself ; while this might sound somewhat bizarre, in fact

it is quite reasonable (and much more convenient from a notational point of view) to write a proof

which directly tackles the processes (xn) and (yn) by assuming that these processes follow the

same sample path, as opposed to performing an analysis on the coupled process (x̂n, ŷn). To make

this idea more clear, the proof given in Example 3.8.3 could have avoided an explicit coupling

construction by proceeding (roughly) along the following lines:

• Assume that the processes (xn) and (yn) follow the same (arbitrary) sample path ω.

• Show that xn ≤ yn for all n ∈ N0, assuming (naturally) that the two processes are both

initialised in state 0 and evolve according to the same sequence of events.

• Conclude that L1 ≤ L2 by considering expectations over all possible sample paths.

The idea of a coupling between (xn) and (yn) would be implicit in such an argument, but the

coupling would not need to be constructed explicitly, or even referred to in the proof. The coupling-

based proofs given in later chapters will take advantage of this ‘shortcut strategy’ in order to avoid

tedious details as much as possible, but the general methodology explained in this chapter will be

referred to as and when it becomes appropriate to be more rigorous.

Before concluding this section, it will be useful to address a minor issue that may arise in the

conversion of a stochastic coupling argument to a dynamic programming argument. The issue

concerns the effect of the value of ∆ (the uniformisation parameter) on the values h(x) obtained

from relative value iteration, which (due to Theorem 3.7.4) are known to satisfy the average reward
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optimality equations in (3.7.6). Recall that, due to Theorem 3.3.3, the parameter ∆ may take any

value between zero and a certain positive upper bound (dependent upon the transition rates of

the CTMDP) without affecting the expected long-run average reward under a particular stationary

policy. Theorem 3.7.4 establishes the existence of a stationary optimal policy, assuming that the

state space is finite. It therefore seems reasonable to conclude that the optimal long-run average

reward g∗ should be unaffected by the exact value of ∆, and indeed this is the case. One might

also assume that the relative values h(x) satisfying the equations (3.7.6) should be independent of

the choice of ∆; however, this assumption would be incorrect. In fact, the h(x) values do depend

on the value of ∆. The following lemma clarifies the nature of this dependence.

Lemma 3.8.4. Consider the finite-state MDP Υ̃ discussed in Section 3.7, and assume that Υ̃ is

uniformised with parameter ∆ ∈
(
0, (λ+

∑
i ciµi)

−1
]
. Let h : S̃ → R be a function which, together

with the constant g∗, satisfies the average reward optimality equations:

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 ∀ x ∈ S̃. (3.8.3)

Furthermore, assume that h(0) = 0 in order to determine the h(x) values uniquely. Let ∆† ∈ (0,∆)

be arbitrary, and consider an MDP Υ† identical to Υ̃ except that it is uniformised with parameter

∆†. Let h† be a function which, together with the constant g†, satisfies:

g† + h†(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p†(x, a,y)h†(y)

 ∀ x ∈ S̃, (3.8.4)

where h†(0) = 0 is assumed, and the transition probabilities p†(x, a,y) are obtained by replacing ∆

with ∆† in (3.5.3). Then g† = g∗, and for each x ∈ S̃:

h†(x) = (∆/∆†)h(x).

Proof. It is clear from the definition of the transition probabilities p(x, a,y) in (3.5.3) that the

effect of reducing the value of ∆ is to increase the probability of a ‘self-transition’. To be specific,

the probabilities p†(x, a,y) satisfy the following for all x,y ∈ S̃ and a ∈ Ax:

p†(x, a,y) =


(∆†/∆)p(x, a,y), if y 6= x,

1−
∑
y 6=x

(∆†/∆)p(x, a,y), if y = x.
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However, the expression for p†(x, a,x) can be re-written as follows:

1−
∑
y 6=x

(∆†/∆)p(x, a,y) = 1− (∆†/∆) (1− p(x, a,x)) = (∆†/∆)p(x, a,x) + 1− (∆†/∆).

This enables the optimality equations in (3.8.4) to be put into the form:

g† + h†(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)(∆†/∆)h†(y)

+ (1−∆†/∆)h†(x) ∀ x ∈ S̃, (3.8.5)

Then, after cancellation of h†(x):

g† + (∆†/∆)h†(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)(∆†/∆)h†(y)

 ∀ x ∈ S̃, (3.8.6)

Recall that the values h(x) satisfying the equations (3.8.3) are unique, assuming that h(0) = 0.

Hence, by direct comparison between (3.8.3) and (3.8.6):

h†(x) = (∆/∆†)h(x) ∀ x ∈ S̃,

and g† is a constant satisfying the average reward optimality equations, which must therefore (by

Theorem 3.7.3) be equal to the optimal long-run average reward, g∗. �

Lemma 3.8.4 states that the effect of reducing the value of the uniformisation parameter from ∆

to ∆† ∈ (0,∆) is that the relative values h(x) are increased by the multiplicative factor ∆/∆†.

However, from (3.8.5) it may be seen that the terms within the maximisation operator are unaffected

by the transformation from h(y) to h†(y), since (∆†/∆)h†(y) = h(y) for all y ∈ S̃. It follows that

any action a which attains the maximum in the original optimality equations (3.8.3) also does so

in the transformed optimality equations (3.8.4). In conclusion, changing the value of ∆ modifies

the relative values for all x ∈ S̃, but does not affect the class of optimal policies.

3.9 Conclusions

This chapter began by introducing a mathematical model for a multiple-facility queueing system

with heterogeneous service facilities, which evolves according to Markovian probability distribu-

tions. Most of the assumptions listed in Section 3.1 will be retained throughout this thesis, although
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some will occasionally be relaxed in order to allow a broader range of problems to be addressed;

for example, heterogeneous customers will be considered in Chapters 4 and 7.

It is important not to lose sight of the fact that the queueing system in Section 3.1 operates in

continuous time rather than discrete time, and this is why a continuous-time MDP formulation

was given in Section 3.2. However, the various results in Sections 3.3, 3.4 and 3.5 have shown that

any stationary policy θ earns the same expected long-run average reward in the continuous-time

process Ψ as an equivalent stationary policy (related to θ via a bijective relationship, as explained

in Lemma 3.5.2) in the discrete-time MDP Υ formulated in Section 3.5. Since Theorem 3.4.10 has

established the existence of a stationary policy which maximises the average reward for Ψ, it follows

that in order to find an average reward optimal policy for Ψ it is sufficient to restrict attention to

stationary policies in Υ. Accordingly, most of the results given in subsequent chapters will assume

the context of a discrete-time MDP with a simplified state space given by (3.5.1).

The practical task of finding an average reward optimal stationary policy for Υ can be accomplished

using the dynamic programming algorithms discussed in Section 3.7, but this requires a finite

truncation to be made to the state space S which can only be justified if it can be shown that

there exists an optimal policy θ which induces a Markov chain restricted to some finite set of states

Sθ ⊂ S. The results in the next chapter will examine whether or not it is feasible to make such a

truncation, by investigating the characteristics of average reward optimal policies.



4 Containment and demand

Methods for obtaining average reward optimal policies for the queueing system introduced in Sec-

tion 3.1 will be of interest throughout this thesis. A further objective will be to identify the

characteristics of these optimal policies. It will become evident later that certain structural proper-

ties of optimal policies can be proved only by making additional assumptions about the system; for

example, some of the results in Chapter 5 will require restrictions to be imposed on the number of

facilities N . However, throughout this chapter the model described in Section 3.1 will be considered

in its full generality, without any extra conditions on the system parameters.

Section 4.1 will revisit the themes of selfish and social optimisation discussed in Chapter 2, and

explain how these may be generalised to a system consisting of N facilities. Section 4.2 will establish

a set of optimality equations for MDPs defined on an infinite state space. These equations will then

be used to prove an important ‘containment’ property of socially optimal policies which will be of

great practical use in later chapters. Section 4.3 will prove a further property of socially optimal

policies which complements the main result of the preceding section. Section 4.4 will prove various

interesting results involving the effect of the demand rate λ on optimal policies, and finally Section

4.5 will consider an extension of the problem involving heterogeneous customers.

4.1 Selfish and social optimisation

This section explores the themes of selfish optimisation and social optimisation in the multiple-

facility queueing system introduced in Chapter 3. Informally speaking, selfish behaviour occurs

when individual customers take actions aimed solely at optimising their own outcomes; social

optimisation, on the other hand, involves the adherence of customers to a common behavioural

scheme which optimises their collective welfare. It is natural to suppose that selfish behaviour

arises when customers act of their own free will, whereas socially optimal behaviour may be induced

by a central authority (essentially, a ‘benign dictatorship’) which controls the fate of each newly-

arrived customer; however, the mathematical results developed in this chapter do not require such

assumptions to be made. It will be shown later that socially optimal policies possess an interesting

‘containment’ property which has useful implications for computational algorithms.

123
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The assumptions of Section 3.1 apply throughout this chapter. By using the technique of uni-

formisation described in Section 3.3, it is valid to model the N -facility queueing system within a

discrete-time framework, using the MDP Υ formulated in Section 3.5. At this point, it is worth

noting that the state space S of this discrete-time MDP is countably infinite; as such, the various

results of Section 3.7 (which assume a finite state space) cannot be applied unless there is a justifi-

cation for truncating the state space. Policies for discrete-time MDPs have been defined in Section

3.6. Before proceeding, it is necessary to establish the exact criteria for determining whether a

particular policy is selfishly optimal and/or socially optimal in a given system.

Selfishly optimal policies will be discussed first. Suppose that each customer arriving in the system

is allowed to make his or her own decision, as opposed to being directed by a central decision-maker.

As stated in Section 3.1, it is assumed that the queueing system is fully observable, and therefore

each customer is able to observe the exact state of the system x ∈ S before making a decision

(the case of unobservable queues will be discussed in Chapter 6). Under this scenario, a customer

may calculate their expected net reward (taking into account the expected cost of waiting and the

value of service) at each facility based on the number of customers present. Let w(x, a) denote an

individual customer’s expected net reward for choosing action a ∈ {0, 1, ..., N} under state x ∈ S

(recall that a = 0 denotes balking). Then, by analogy to the results in Section 3.2:

w(x, a) :=



αi −
βi
µi
, if a = i for some i ∈ {1, 2, ..., N} and xi < ci,

αi −
βi(xi + 1)

ciµi
, if a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

(4.1.1)

If customers act selfishly, they will simply choose the action a which maximises w(x, a). Naturally,

this implies that if the expected net rewards w(x, i) for all facilities i ∈ {1, 2, ..., N} are negative,

then a selfish customer’s decision will be to balk. In the case of ties, a convention will be used

whereby the facility with the smallest index i is chosen; however, balking will never be preferred

to joining any facility i for which w(x, i) = 0. It is interesting to note that since the FCFS queue

discipline is assumed at each facility, a selfish customer’s behaviour depends only on the existing

state, and is not influenced by the knowledge that other customers act selfishly.
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With this definition of selfish behaviour it is easy to see that the selfishly optimal policy, denoted

by θ̃, is a stationary policy which, somewhat curiously, is independent of the demand rate λ. Given

that selfish customers refuse to choose facility i if w(x, i) < 0, it follows that for i = 1, 2, ..., N there

exists an upper threshold B̃i which represents the greatest possible number of customers at i under

steady state conditions. The threshold B̃i can be derived from (4.1.1) as:

B̃i :=

⌊
αiciµi
βi

⌋
, (4.1.2)

where b·c denotes the integer part. Thus, a selfishly optimal policy θ̃ induces an ergodic Markov

chain defined on a finite set of states S̃. Formally, S̃ is given by:

S̃ :=
{

(x1, x2, ..., xN ) ∈ S : xi ≤ B̃i for all i
}
. (4.1.3)

Henceforth, S̃ will be referred to as the selfishly optimal state space, since it consists of all states

which are positive recurrent under the policy θ̃. The size of S̃ is given by:

∣∣∣S̃∣∣∣ =
N∏
i=1

(B̃i + 1).

As stated previously, a socially optimal policy is one which maximises the collective welfare of all

customers. As in Chapter 2, expected long-run average reward will be used to measure ‘collective

welfare’. Recall from Chapter 3 that the average reward gθ(x) is defined as:

gθ(x) := lim inf
t→∞

t−1Eθ

[
t−1∑
n=0

r(xn)
∣∣∣x0 = x

]
, (4.1.4)

where θ is an arbitrary policy, xn ∈ S is the state of the process at time step n ∈ N0 and x ∈ S

is the initial state. In (4.1.4), the real-time reward function defined in (3.5.4) is used, but if θ is

a stationary policy then this can be replaced by the anticipatory reward function r̂(x, a) defined

in (3.5.15) without affecting the value of gθ(x) (this equivalence is due to Theorem 3.5.3). In this

chapter, a socially optimal policy is defined as any policy θ∗ which satisfies:

gθ∗(x) = sup
θ
gθ(x) =: g∗(x) ∀ x ∈ S,

and hence attains average reward optimality as defined in Chapter 3. It should be noted that a

socially optimal policy will generally not be unique, whereas the selfishly optimal policy θ̃ and the

selfishly optimal state space S̃ are both determined uniquely (assuming the conventions discussed
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earlier for dealing with ties, etc.). Changing the ordering of the facilities (and thereby the tie-

breaking rules) affects the policy θ̃, but does not alter the boundaries of S̃. Two important ways

in which the selfish policy θ̃ differs from a socially optimal policy are as follows:

1. The decisions made under θ̃ are entirely independent of the demand rate λ;

2. The threshold B̃i (representing the steady-state maximum occupancy at facility i) is inde-

pendent of the parameters for the other facilities j 6= i.

Given an arbitrary stationary policy θ, let Sθ denote the set of states in S which are positive

recurrent in the Markov chain induced by θ. A major result to be proved in this chapter is that if

θ∗ is a socially optimal policy, then the following relationship holds:

Sθ∗ ⊆ S̃.

That is, the set of states which are positive recurrent under θ∗ (equivalently, the set of states

accessible from the state 0 under θ∗) is contained within the selfishly optimal state space S̃. This

principle may be illustrated using a simple example with two facilities.

Example 4.1.1. (Containment in two dimensions)

Consider a system with demand rate λ = 10 and only two facilities. The first facility has two

channels available (c1 = 2) and a service rate µ1 = 8, holding cost β1 = 10 and fixed reward

α1 = 2. The parameters for the second facility are c2 = 2, µ2 = 2, β2 = 10 and α2 = 6, so it offers

a higher reward but a slower service rate. The system may be uniformised by taking ∆ = 1/30, so

that (λ+
∑

i ciµi) ∆ = 1. The selfishly optimal state space S̃ for this system consists of 12 states.

Table 4.1 shows the decisions taken at these states under the selfishly optimal policy θ̃, and also

the corresponding decisions taken under a socially optimal policy θ∗. (Verification of the fact that

θ∗ is socially optimal requires results which will be established in Section 4.2.)

By referring to Table 4.1, the differences between the two policies θ̃ and θ∗ may be observed. At

the states (0, 1), (1, 1) and (2, 2), the socially optimal policy θ∗ deviates from the selfish policy θ̃.

More striking, however, is the fact that under the socially optimal policy, some of the states in S̃

are actually unattainable under steady state conditions. Indeed, the recurrent state space Sθ∗ of
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the socially optimal policy consists of only 9 states (coloured grey in Table 4.1). Thus, for this

system, Sθ∗ ⊆ S̃ and in this chapter it will be proved that this principle holds in general. �

Selfishly optimal policy θ̃ Socially optimal policy θ∗

x2 = 0 x2 = 1 x2 = 2 x2 = 0 x2 = 1 x2 = 2

x1 = 0 2 2 1 x1 = 0 2 1 1

x1 = 1 2 2 1 x1 = 1 2 1 1

x1 = 2 2 2 1 x1 = 2 2 2 0

x1 = 3 2 2 0 x1 = 3 2 2 0

Table 4.1: Selfishly and socially optimal policies for the system considered in Example 4.1.1. For each state

x = (x1, x2) ∈ S̃, the corresponding decisions under the respective policies are shown.

In order to develop the topic of socially optimal policies for MDPs defined on an infinite state space,

certain extra theoretical results are needed. These are discussed in the next section.

4.2 Containment of socially optimal policies

In Example 4.1.1 it was claimed that the policy θ∗ (illustrated in Table 4.1) was socially optimal,

but no details were given regarding the method for deriving this policy or proving its optimality.

Recall that Section 3.7 introduced two algorithms for computing average reward optimal policies,

but these required the assumption of a finite state space. In (3.7.6), the average reward optimality

equations for MDPs defined on a finite state space S̃ were given as follows:

g∗ + h(x) = max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 ∀ x ∈ S̃. (4.2.1)

The conditions under which these equations can be used to characterise average reward optimal

policies for MDPs defined on infinite state spaces have been explored by various authors. Derman

[37] has shown, under the assumption of bounded rewards, that if a constant g∗ and function h can

be found which satisfy (4.2.1), then any stationary policy determined by this equation is average

reward optimal. Ross [145] considered the optimal discounted value function vφ(·) (see Definition

3.4.1) and showed that if the differences |vφ(x) − vφ(z)| (where z ∈ S is a fixed reference state)
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are uniformly bounded in x and φ, then a constant g∗ and function h satisfying (4.2.1) must exist.

Zijm [205] also assumed bounded rewards and provided a number of equivalent conditions, each of

which ensure the existence of a bounded solution to (4.2.1). Other notable references for average

reward optimisation in denumerable-state MDPs include [25, 26, 27, 28, 153].

The results in this section will make use of the conditions provided by Sennott [156] for the existence

of an average reward optimal stationary policy satisfying the equations (4.2.1) in the case of a

countably infinite state space. These conditions rely on properties of the optimal value function

vφ(·) in a discounted reward problem and are largely analogous to the conditions discussed in Section

3.4 which relate to a continuous-time MDP. The expected total discounted reward for the MDP Υ

operating under an arbitrary policy θ, given a discount factor φ ∈ (0, 1), is given by:

vφ,θ(x) := Eθ

[ ∞∑
n=0

φnr(xn)
∣∣∣x0 = x

]
, (4.2.2)

where x ∈ S is the initial state. In (4.2.2) it is assumed that the real-time reward formulation

(3.5.4) is used. Similarly, under the alternative reward formulation (3.5.15), one has:

v̂φ,θ(x) := Eθ

[ ∞∑
n=0

φnr̂(xn, an)
∣∣∣x0 = x

]
. (4.2.3)

As discussed in Section 3.5 (and proved by Theorem 3.5.3), the two reward formulations r and

r̂ are equivalent with respect to the expected long-run average reward earned under a stationary

policy. However, in general it is not the case that vφ,θ(x) and v̂φ,θ(x) are equal for a fixed x ∈ S.

Indeed, given some discount factor φ ∈ (0, 1) and state x ∈ S, it is perfectly possible to have

vφ,θ1(x) > vφ,θ2(x) and v̂φ,θ1(x) < v̂φ,θ2(x) for two different stationary policies θ1 and θ2. Typically,

this scenario would require θ1 to be a more conservative policy than θ2; that is, the set of states

accessible from 0 under θ1 would be smaller than the corresponding set under θ2.

Despite the fact that vφ,θ(·) and v̂φ,θ(·) are not equivalent, the existence of an average reward

optimal policy satisfying the equations (4.2.1) may be proved under either reward formulation,

although the arguments are slightly different depending on the formulation used. In order to avoid

unnecessarily lengthy arguments, it will therefore be convenient to concentrate on only one of the

two formulations. As such, let it be assumed that the anticipatory formulation is used, so that

the expected total discounted reward is given by (4.2.3). Then, in order to qualify as φ-discount
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optimal, a policy θ∗ must satisfy the following condition for all admissible policies θ:

v̂φ,θ∗(x) ≥ v̂φ,θ(x) ∀ x ∈ S.

Furthermore, v̂φ(x) = supθ v̂φ,θ(x) will be used to denote the optimal value function. By analogy

to (3.4.4), the function v̂φ(·) satisfies the following discount optimality equations:

v̂φ(x) = max
a∈A

r̂(x, a) + φ
∑
y∈S

p(x, a,y) v̂φ(y)

 (x ∈ S). (4.2.4)

The next result establishes an important monotonicity property of v̂φ(x) (which, incidentally, does

not hold for its counterpart vφ(x) under the real-time formulation (3.5.4)).

Lemma 4.2.1. For every state x ∈ S, discount factor φ ∈ (0, 1) and facility i ∈ {1, 2, ..., N}:

v̂φ(xi+) ≤ v̂φ(x).

Proof. The proof relies upon the method of successive approximations (see Theorem 3.4.4) and is

based on induction. Details can be found in Appendix A.4, page 421.

The next lemma establishes a property of v̂φ(·) which will be needed in order to state one of the

main results of this section. Specifically, it must be shown that there exists a state-dependent lower

bound for the difference v̂φ(x)− v̂φ(0) which holds for any discount factor φ ∈ (0, 1). The proof of

the lemma is similar to that of its continuous-time analogue, Lemma 3.4.9.

Lemma 4.2.2. For every state x ∈ S, there exists a non-negative value f(x) < ∞ such that for

all discount factors φ ∈ (0, 1), the following holds:

v̂φ(x)− v̂φ(0) ≥ −f(x). (4.2.5)

Proof. The proof emulates that of Lemma 3.4.9 by considering a transformed MDP in which all

rewards are non-positive. Details can be found in Appendix A.4, page 423.

The results of the previous two lemmas may be used to show that the MDP Υ satisfies Sennott’s

conditions in [156] for the extension of the average reward optimality equations (4.2.1) to an MDP

with an infinite state space. This important result is stated below as a theorem.
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* Theorem 4.2.3. Consider the MDP Υ formulated in (3.5.1)-(3.5.4). There exists a constant g∗

and a function ĥ(x), with g∗ = limφ↑1(1− φ)v̂φ(x) and −f(x) ≤ ĥ(x) ≤ 0 for x ∈ S, such that:

g∗ + ĥ(x) = max
a∈A

r̂(x, a) +
∑
y∈S

p(x, a,y)ĥ(y)

 ∀ x ∈ S. (4.2.6)

Moreover, let θ∗ be a stationary policy and suppose θ∗(x) attains the maximum in (4.2.6) for every

state x ∈ S. Then θ∗ is average reward optimal, with an average reward g∗.

Proof. This result is proved in [156], but it requires certain conditions to be met, so it should be

checked that these conditions hold for the MDP Υ. The conditions are as follows:

1. Rewards are bounded above, but not below; that is, there exists a constant R <∞ such that

for every state x ∈ S and action a ∈ A, r̂(x, a) ≤ R.

2. For each state x ∈ S and discount factor φ ∈ (0, 1), v̂φ(x) > −∞.

3. Define ĥφ(x) = v̂φ(x) − v̂φ(z) for some fixed reference state z ∈ S. There exists a constant

K <∞ such that, for each state x ∈ S, ĥφ(x) ≤ K for all φ ∈ (0, 1).

4. For each x ∈ S, there exists a non-negative value f(x) <∞ such that ĥφ(x) ≥ −f(x) for all

φ ∈ (0, 1). Also,
∑

y∈S p(x, a,y)f(y) <∞ for all x ∈ S and a ∈ A.

Condition (1) is obviously satisfied by Υ, since r̂(x, a) ≤ λα∗ for all state-action pairs (x, a) ∈ S×A.

In order to verify the second condition, let θ0 denote the degenerate policy which always chooses

to balk. Then, under θ0, all of the single-step rewards r̂(xn, an) are equal to zero and hence

v̂φ,θ0(x) = 0 for all x ∈ S, which in turn implies that v̂φ(x) ≥ 0 since v̂φ(x) ≥ v̂φ,θ0(x). Thus,

condition (2) holds. In condition (3), one can simply take K = 0 and z = 0. Indeed, Lemma 4.2.1

has shown that v̂φ(xi+) ≤ v̂φ(x) for all x ∈ S and i ∈ {1, 2, ..., N}, and therefore a trivial inductive

argument shows that v̂φ(x) − v̂φ(0) ≤ 0 for x ∈ S. This is why the theorem states that ĥ(x) ≤ 0

for all x ∈ S. Finally, the existence of a non-negative value f(x) satisfying ĥφ(x) ≥ −f(x) for each

x ∈ S and φ ∈ (0, 1) has been proved by Lemma 4.2.2. Since the action set A is finite and each

value f(x) is finite, it follows that
∑

y∈S p(x, a,y)f(y) <∞ for each (x, a) ∈ S ×A.

Under the conditions stated, the theorem can be proved using the arguments given by Sennott [156]

(p. 632), which are analogous to those required in the proof of Theorem 3.4.10. �
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Interestingly, Sennott’s proof of Theorem 4.2.3 (see [156]) involves obtaining an average reward

optimal policy as a limit of φ-discount optimal policies as the discount factor φ tends to 1. The

fact that an average reward optimal policy can be obtained in this manner offers the possibility of

proving further results by exploiting the properties of discount-optimal policies.

The next result establishes the ‘containment principle’ of socially optimal policies.

Theorem 4.2.4. The MDP Υ permits a stationary policy θ∗ satisfying the optimality equations

(4.2.6) which induces an ergodic Markov chain defined on a finite set of states Sθ∗ ⊆ S̃.

Informally, it may be said that for some socially optimal policy θ∗, “the socially optimal state space

is contained within the selfishly optimal state space”.

Proof. Due to the definition of S̃ in (4.1.3) it is sufficient to show that for some stationary optimal

policy θ∗, the action θ∗(x) prescribed under state x ∈ S is never to join facility i when xi = B̃i (for

i = 1, 2, ..., N). Let (φn)n∈N be a sequence of discount factors converging to 1, and let (θ∗φn)n∈N

be a corresponding sequence of discount-optimal policies; that is, for each n ∈ N, θ∗φn is φn-

discount optimal. Referring to the proof of Theorem 4.2.3 (see [156], p. 632), an average reward

optimal policy θ∗ may be obtained as a limit of some sequence (θ∗φnk)k∈N which is a subsequence

of (θ∗φn)n∈N. It follows that for each x ∈ S, there exists an integer U(x) such that θφnk(x) = θ∗(x)

for all k ≥ U(x), and therefore it suffices to show that for any discount factor φ ∈ (0, 1), the

discount-optimal policy θ∗φ forbids joining facility i at any state x with xi = B̃i.

For a contradiction, suppose xi = B̃i and θ∗φ(x) = i for some state x ∈ S and discount factor

φ ∈ (0, 1). Then the discount optimality equations in (4.2.4) imply:

r̂(x, i) + φλ∆v̂φ(xi+) ≥ φλ∆v̂φ(x), (4.2.7)

i.e. joining i is preferable to balking at state x. Given that xi = B̃i, it follows that r̂(x, i) < 0 and

therefore (4.2.7) implies v̂φ(xi+) > v̂φ(x), but this contradicts Lemma 4.2.1. �

Theorem 4.2.4 may be regarded as a generalisation of the famous result of Naor [131] discussed

in Chapter 2. Naor showed, in the context of a single M/M/1 queue, that the selfishly optimal

and socially optimal strategies are threshold strategies with thresholds ns and no respectively, and

that no ≤ ns. This is the M/M/1 version of the containment property which Theorem 4.2.4 proves
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for multiple, heterogeneous facilities (each with multiple service channels allowed). The theorem

also implies that a socially optimal policy may be found by searching within the class of stationary

policies ‘contained’ in the finite set S̃. Thus, it is possible to apply the techniques of dynamic

programming discussed in Section 3.7 (e.g. value iteration, policy improvement) by restricting the

state space so that it consists only of states in S̃; any policy that would cause a state outside S̃

to become positive recurrent may be ignored, since it is not necessary to consider such policies in

order to find an optimal policy. For example, value iteration may be performed by looping over

all states in S̃ on each iteration and simply restricting the set of actions so that joining facility i is

not allowed at any state x ∈ S̃ with xi = B̃i. This ‘capping’ technique avoids the use of alternative

techniques which have been proposed in the literature for searching for optimal policies on infinite

state spaces, such as the method of ‘approximating sequences’ proposed by Sennott in [158], or

Ha’s method of approximating the limiting behaviour of the value function in [73].

As discussed in Section 3.7, value iteration is useful for theoretical as well as practical purposes.

The technique of proving structural properties of optimal policies using induction on the finite-

stage value functions obtained using dynamic programming is well-established in the literature; for

example, Hajek [74] used this technique to demonstrate the optimality of a ‘switching-curve’ policy

in a model consisting of two interacting service stations, while Stidham [169] discussed the use of

inductive analysis to establish the optimality of monotone policies in various types of problems

involving control of admissions to a queueing system. Koole [105] (see also [106]) developed a more

general approach for proving monotonicity properties of optimal policies based on analysing the

form of the value function, rather than the specification of the function itself. Structural properties

of optimal policies will be discussed in much greater depth in Chapter 5 of this thesis.

The proof of Theorem 4.2.4 makes use of a structural property of the value function v̂φ proved

earlier (specifically, the monotonicity property proved in Lemma 4.2.1) in order to establish the

existence of a socially optimal policy with the required ‘containment’ property. In fact, it is possible

to use an alternative method of proof to establish an even stronger result. The proof of the next

result uses a stochastic coupling argument; please refer to Section 3.8 for details of this approach,

including definitions of the terms ‘stochastic coupling’ and ‘sample path’.

Theorem 4.2.5. Any stationary policy θ∗ which maximises the expected long-run average reward
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for the process Υ induces an ergodic Markov chain on some set of states contained in S̃.

Proof. Let θ be a stationary policy which maximises (4.1.4). Evidently, there must exist a stationary

distribution {πθ(x)}x∈S , where πθ(x) is the steady-state probability of the process being in state

x ∈ S under θ and
∑

x∈S πθ(x) = 1; if this were not the case, then the system would be unstable

under θ and the expected long-run average reward would be (negatively) infinite.

Suppose, for a contradiction, that there exists a state x /∈ S̃ which is positive recurrent under θ.

Clearly, such a state must be accessible from within S̃ and hence there exists z ∈ S̃ with zi = B̃i

for some i ∈ {1, 2, ..., N}, πθ(z) > 0 and θ(z) = i; that is, z is on the boundary of the selfish state

space S̃ and is positive recurrent, and the decision taken at z causes the system to pass outside

S̃. The aim of the proof is to show, using a sample path argument, that θ is inferior (in terms of

average reward) to a particular non-stationary policy ψ, to be defined shortly.

Let Υ1 and Υ2 be discrete-time MDPs with the same formulation (i.e. the same rewards, transition

probabilities etc.) as Υ. It will also be convenient to assume that both Υ1 and Υ2 are uniformised

with parameter ∆ = (λ+
∑

i ciµi)
−1. The processes Υ1 and Υ2 evolve as follows:

• Υ1 is initialised in an arbitrary state x0 ∈ S and follows the policy θ at all times;

• Υ2 is also initialised in state x0 and follows the policy ψ at all times.

Here, ψ is a non-stationary policy which chooses the same actions as θ at all times, unless Υ1 is

in state z, in which case ψ chooses to balk instead of joining facility i. One might think of ψ as a

‘copying’ policy, which copies the actions chosen by θ unless Υ1 is in state z. Let (xn)n∈N0 be the

sequence of states visited by the first process Υ1, and let (yn)n∈N0 be the corresponding sequence

for the second process Υ2. In notation, ψ operates as follows (for all n ∈ N0):

ψ(yn) =


θ(xn), if xn 6= z,

0, if xn = z.

(4.2.8)

Assume that the processes (xn) and (yn) evolve according to identical sequences of random events;

that is, the two processes follow the same sample path (ω0, ω1, ω2, ...). The justification for this

assumption is provided in Section 3.8 and depends on the implicit construction of a stochastic
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coupling between the processes (xn) and (yn); please refer to the discussion beginning on page 119

for further explanation. At any time step n, the random event ωn satisfies:

ωn ∈ {Λ} ∪
N⋃
i=1

{
M

(k)
i

}ci
k=1

.

The random events Λ and M
(k)
i (for i ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., ci}) are defined below. In

order to reduce the amount of unnecessary mathematical detail, the consequences of these events

are described ’physically’ rather than mathematically; for example, when it is said that the process

(xn) ‘gains a customer at facility i’, this naturally means that the ith component of xn increases

by one, so that xn+1 ≥ xn with strict inequality in only the ith component.

• The event Λ occurs with probability λ∆ and causes an arrival to be seen by both of the

marginal processes (xn) and (yn). In this case, (xn) gains a customer at the facility corre-

sponding to the action θ(xn) if this action is non-zero; similarly, (yn) gains a customer at the

facility corresponding to action ψ(yn) if this action is non-zero.

• For i = 1, 2, ..., N and k = 1, 2, ..., ci, the event M
(k)
i occurs with probability µi∆. If this

event occurs at the nth time step, then the process (xn) (respectively, (yn)) sees a service

completion at facility i if and only if there are at least k customers present at i under state

xn (respectively, yn). Recall that any event that goes unseen by a particular process causes

that process to remain in the same state at the next time step.

At any time step n, the number of possibilities for ωn is 1 +
∑N

i=1 ci. Since it is assumed that

∆ = (λ+
∑

i ciµi)
−1, the probabilities of these events sum to 1 as required.

The general strategy of this proof is to show that the long-run average reward earned by Υ2 along

some arbitrary sample path is greater than the average reward earned by Υ1 on the same path.

Clearly, if this is the case for any sample path, then the policy ψ followed by Υ2 must be superior

to the policy θ followed by Υ1 in terms of expected long-run average reward.

For all n ∈ N0, xn dominates yn in the sense that each facility i has at least as many customers

present under xn as under yn. This can be shown using an inductive argument:

• The (componentwise) inequality x0 ≥ y0 holds trivially since the two processes Υ1 and Υ2

are initialised in the same state.
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• Suppose xn ≥ yn for some n ∈ N0. Let (xn)j and (yn)j denote the jth components of xn and

yn respectively (for j = 1, 2, ..., N). If ωn = Λ then, for some j ∈ {1, 2, ..., N}, (yn+1)j may

be one greater than (yn)j ; however, due to the definition of ψ in (4.2.8), this can only be the

case if (xn+1)j is also one greater than (xn)j . Also, any event M
(k)
j which causes (xn+1)j to

be smaller than (xn)j must also cause the same discrepancy to occur between (yn+1)j and

(yn)j , unless (yn)j is strictly smaller than (xn)j (and also smaller than k), in which case

(yn+1)j is guaranteed to be less than or equal to (xn+1)j because (xn+1)j can differ from

(xn)j by at most one. By these arguments, it follows that xn+1 ≥ yn+1.

The argument in the second of the bullet points above may be expressed more succinctly (albeit

informally) as follows: any customer who joins facility j at a certain point during the evolution of

Υ2 also does so at the same point during the evolution of Υ1. Any service completion which is seen

by Υ1 is also seen by Υ2, unless the service completion in question takes place at some facility j

which has more customers present under Υ1 than under Υ2, in which case there must still be at

least as many customers present under Υ1 as there are under Υ2 after the service completion takes

place. This establishes the required inequality, xn ≥ yn for n ∈ N0. Moreover, note that due to the

definition of ψ, the only component for which this inequality may be strict is the ith component,

which corresponds to the action chosen by θ at state z; in other words, facility i is the only facility

at which there may be more customers present under Υ1 than under Υ2.

Consider the process Υ1 initialised in state x0 and evolving along an arbitrary sample path ω =

(ω0, ω1, ω2, ...). Since the state z is positive recurrent under θ, z is visited infinitely many times by

Υ1 with probability one. Let t1 ∈ N0 denote the first discrete time epoch at which Υ1 is in state z

and an arrival occurs (obviously, t1 has a dependence on the path ω). That is:

t1 := inf {n ∈ N0 : xn = z and ωn = Λ} .

Assuming that the process Υ2 is also initialised in state x0 and follows the same path ω, it must

also be in state z at time t1, since the ‘copying’ policy ψ chooses exactly the same actions as θ in

the interval [0, t1) and the same pattern of arrivals and service completions occurs.

Let u1 denote the next time, after t1, that Υ1 returns to the regenerative state 0. At time step

t1, the first process Υ1 earns a negative reward r̂(z, i) by choosing to join facility i when there

are B̃i customers present, whereas Υ2 earns a reward of zero by choosing to balk. Moreover, for
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all n ∈ (t1, u1] it may be seen from the formulation of r̂ in (3.5.15) that the single-step reward

r̂(xn, θ(xn)) earned by Υ1 cannot possibly exceed the corresponding reward r̂(yn, ψ(yn)) earned by

Υ2; this is because the presence of extra customers at facility i results in either a smaller reward

being earned (if facility i is chosen) or an equal reward (if a different facility, or balking, is chosen).

Therefore the total reward earned by Υ1 over the interval [t1, u1] must be strictly smaller than that

earned by Υ2. At time u1, since Υ1 has no customers present, neither does Υ2, so the two processes

are in the same state (this is referred to as a ‘joining’ of the two processes; in fact, depending on

the path ω being followed, the joining may occur at some point before u1, but it must happen by

time u1 at the latest, given that xn ≥ yn for all n ∈ N0 and hence xu1 = 0 ≥ yu1).

Using similar arguments, it can be said that if t2 denotes the time of the next visit (after u1) of

Υ1 to state z, then Υ2 must earn a strictly greater total reward than Υ1 over the interval [t2, u2],

where u2 is the time of the next visit (after t2) of Υ1 to state 0. As noted previously, the state z

is visited infinitely often by Υ1 with probability one. Hence, by repetition of this argument, it is

easy to see that θ is strictly inferior to the non-stationary policy ψ in terms of expected long-run

average reward. Furthermore, Theorem 4.2.3 states that an optimal stationary policy exists for Υ,

so there must exist some other stationary policy θ∗ which is superior to θ. �

In the proof of Theorem 4.2.5, ψ is described as a ‘copying policy’ applied to a parallel process Υ2,

which simply copies the action chosen by θ on the process Υ1, unless Υ1 is in state z. Given the

nature of the dependence of ψ on θ, it is reasonable to question whether ψ is actually a permissible

policy, in the sense that it fits within the classification of policies for MDPs introduced in Section

3.6. After all, what does it actually mean for a policy to ‘copy’ another policy? Does it mean that

the policy ψ cannot be implemented in its own right, since it needs to ‘copy’ the actions of θ, and

therefore it requires θ to be running side-by-side on some parallel process?

In fact, ψ is a permissible policy because it is an example of a history-dependent policy. The history

of the process Υ, as defined in Section 3.6, includes a record of all states visited, actions chosen

and random events occurring since the process began. At any point in time, given the initial state

x0 and the history of random events, it is possible to determine what the latest system state would

have been if the policy θ had been followed since initialisation; moreover, since θ is a stationary

policy, the action θ(xn) is determined by the state xn only. Therefore, at any discrete time step n,
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the action ψ(yn) chosen by ψ can be determined uniquely according to the history of the process

and the definition of ψ itself; that is, ψ is an admissible history-dependent policy.

Finally, it is worthwhile to note that the proof of Theorem 4.2.5 assumed that the anticipatory

reward formulation (3.5.15) was used. However, the lemma was intentionally stated without making

reference to this assumption. Indeed, the equivalence of the reward formulations r̂(x, a) and r(x)

with respect to average rewards under fixed stationary policies (see Theorem 3.5.3) ensures that it

is sufficient to prove the result under only one of the two reward formulations.

The results in this section have shown that it is necessary for socially optimal policies to be ‘con-

tained’ on the finite set S̃. The next section will establish that socially optimal policies should also

possess another intuitively sensible property, referred to as a non-idling property.

4.3 Non-idling policies

The results in Section 4.2 have established that there exists a stationary socially optimal policy

satisfying the optimality equations in (4.2.6), and that the set of states which are positive recurrent

under this policy must be a subset of the selfishly optimal state space, S̃. It follows that a policy

of this form may be found by searching within the finite set S̃, using the techniques of dynamic

programming described in Section 3.7. In this section, θ∗ will be used to denote the particular

policy found using the Relative Value Iteration Algorithm (RVIA), which (due to Theorem 3.7.4)

is average reward optimal. For each state x ∈ S̃, the action θ∗(x) satisfies:

θ∗(x) ∈ arg max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)h(y)

 , (4.3.1)

where the values h(x) may be computed using relative value iteration. Note that (4.3.1) assumes

that the real-time reward formulation (3.5.4) is used; under this formulation, the single-step reward

r(x) is independent of a. Moreover, the transition probabilities p(x, a,y) depend on a only to the

extent that there is a probability λ∆ of transferring from state x to xa+ in a single time step (recall

the notational convention that x0+ = x). Therefore, (4.3.1) may be simplified to:

θ∗(x) ∈ arg max
a∈Ax

h(xa+).



Chapter 4 Containment and demand 138

Hence, if there exists an action a∗ such that h(xa
∗+) > h(xa+) for all a ∈ {0, 1, 2, ..., N}\{a∗}, then

a∗ is the action chosen by θ∗ at state x. This creates the possibility of using inductive arguments

based on the finite-stage functions hn(·) defined in Theorem 3.7.4 to show that certain actions cannot

be chosen by θ∗ at particular states. In particular, if it can be shown that hn(xa1+)−hn(xa2+) ≥ ε

for some actions a1, a2 ∈ {0, 1, 2, ..., N} and constant ε > 0 at all stages n ∈ N0, then since

h(x) = limn→∞ hn(x), it follows that a2 cannot be the action chosen by θ∗ at x.

The result to be proved shortly utilises these arguments in order to establish further properties of

the policy θ∗ which will be useful in later chapters. First, it is necessary to introduce a definition

for a particular type of stationary policy, referred to as a non-idling policy.

Definition 4.3.1. (Non-idling policies)

Let θ be a stationary policy, and suppose θ(x) 6= 0 for all states x ∈ S with xi < ci for at least one

facility i ∈ {1, 2, ..., N}; that is, θ never chooses to balk when there is at least one facility with one

or more idle service channels. Then θ is said to be a non-idling policy.

In this section it will be shown that the policy θ∗ obtained by relative value iteration is a non-idling

policy. First, a property of the relative value function h(x) must be proved.

Lemma 4.3.2. Let x ∈ S̃ be a state with xi < ci for some i ∈ {1, 2, ..., N}. Then:

h(xi+) > h(x),

where h is the relative value function satisfying the equations (4.2.1).

Proof. The proof is accomplished using induction on the functions hn(·) defined in (3.7.7). Indeed,

it can be shown that for all states x ∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N}:

hn(xi+)− hn(x) ≥ αiµi − βi ∀ n ∈ N0,

which is sufficient to establish the result. For details, refer to Appendix A.4, page 425.

Lemma 4.3.2 directly implies the next theorem.

Theorem 4.3.3. There exists a socially optimal policy θ∗ which is a non-idling policy.
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Proof. Consider the stationary policy θ∗ obtained by relative value iteration on the finite state

space S̃, using the real-time reward formulation defined in (3.5.4). As discussed earlier, the action

θ∗(x) chosen by policy θ∗ at any state x ∈ S̃ satisfies:

θ∗(x) ∈ arg max
a∈Ax

h(xa+). (4.3.2)

For any state x ∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N}, Lemma 4.3.2 states that h(xi+) > h(x),

and hence the action of balking fails to attain the maximum in (4.3.2). Moreover, one can assume

that the actions chosen by θ∗ at states x /∈ S̃ satisfy the requirement that balking is not chosen

at any state with xi < ci for some i ∈ {1, 2, ..., N}, since these decisions do not affect the average

reward earned by θ∗. Hence, θ∗ is a non-idling policy which also attains social optimality due to

Theorem 3.7.4 and the results proved in Section 4.2, which imply that a socially optimal policy can

be found by restricting attention to the process Υ̃ with finite state space S̃. �

It is worth noting that the definition of non-idling policies (Definition 4.3.1) does not make it

possible to say that any stationary socially optimal policy must be a non-idling policy. Indeed, as

noted in the proof of Theorem 4.3.3, the decisions chosen at states x /∈ S̃ by the policy θ∗ cannot

affect its optimality. Since the set S \ S̃ includes infinitely many states with xi < ci for at least

one i ∈ {1, 2, ..., N}, one can simply consider a stationary policy θ which matches θ∗ at all states

x ∈ S̃ but chooses to balk at some transient state x /∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N}.

The resulting policy θ is socially optimal, but obviously is not a non-idling policy. However, it is

possible to prove a slightly weaker property which will prove to be useful later.

Theorem 4.3.4. Let θ∗ be any stationary socially optimal policy, and let Sθ∗ be the set of states

which are positive recurrent under θ∗. Let the set S◦ ⊆ S̃ be defined as follows:

S◦ =
{

x ∈ S̃ : xi ≤ ci ∀ i ∈ {1, 2, ..., N}
}
. (4.3.3)

That is, S◦ is the set of states at which no customers are waiting in queues. Then:

S◦ ⊆ Sθ∗ .

Proof. Let θ∗ be a stationary socially optimal policy. Suppose the process is in the regenerative

state 0 at some discrete time epoch n0 ∈ N0 and then a sequence of B̃ + 1 consecutive customer

arrivals occurs (without any service completions), where B̃ =
∑N

i=1 B̃i and B̃i is the selfish threshold
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for facility i defined in (4.1.2). Recall that, by Theorem 4.2.5, it must be the case that Sθ∗ ⊆ S̃

and therefore the policy θ∗ must choose to balk at least once during this sequence of B̃+ 1 arrivals,

otherwise the process would pass outside the set S̃. Let n1 ≥ n0 denote the first time epoch after

n0 at which balking is chosen. Consider the following two possibilities:

1. At time n1, θ∗ chooses to balk at some x ∈ S̃ with xi ≥ ci for all i ∈ {1, 2, ..., N}.

2. At time n1, θ∗ chooses to balk at some x ∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N}.

In the first case, the state x (with xi ≥ ci for all i) must be positive recurrent under θ∗, since it

is accessible from 0. Furthermore, all states y ∈ S̃ which satisfy the componentwise inequality

yi ≤ xi for all i ∈ {1, 2, ..., N} are also positive recurrent under θ∗, since they are accessible from

x via an appropriate sequence of service completions. This implies that all states belonging to S◦

are positive recurrent under θ∗, so in this case the claim of the theorem is proved.

In the second case, one may again note that the state x is positive recurrent under θ∗, since it

is accessible from 0. The proof will proceed that by showing that, in this case, a contradiction

is obtained with the fact that θ∗ is an optimal policy. This will be accomplished using a sample

path argument, somewhat similar to the proof of Theorem 4.2.5 except that in this case it will be

necessary to make use of the real-time reward formulation (used throughout this section) rather

than the anticipatory formulation. Let ψ denote a non-stationary policy which operates by ‘copying’

the actions of policy θ∗ at all times, unless either of the following scenarios apply:

1. θ∗ chooses to balk at the state x (with xi < ci), in which case ψ chooses to join facility i if

the process following policy ψ is also in state x, and otherwise chooses to balk.

2. θ∗ chooses to join facility i at some point in time at which the process following policy ψ has

more customers at i than the process following θ∗, in which case ψ chooses to balk.

Let (xn)n∈N0 and (yn)n∈N0 denote the state evolutions of two processes Υ1 and Υ2 which follow

policies θ∗ and ψ respectively. Then, in notation, ψ operates as follows:

ψ(yn) =


i, if xn = yn = x,

0, if θ∗(xn) = i and (xn)i < (yn)i,

θ∗(xn), otherwise,
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where (xn)i and (yn)i denote the ith components of xn and yn respectively. Suppose that both

of the processes Υ1 and Υ2 are initialised in state 0 and evolve according to the same sequence of

random events ω = (ω0, ω1, ...) (again, this relies upon the implicit idea of a stochastic coupling

between the two processes, as explained in Section 3.8). Let t0 ≥ 0 be the first discrete time epoch

at which both processes are in state x and an arrival occurs. Then, t0 + 1 will be the first point in

time at which the two processes are not in the same state. Noting that xi < ci, it follows from the

reward formulation (3.5.4) that the process Υ2 following ψ will earn a single-stage reward at time

epoch t0 + 1 which is strictly greater than that of Υ1, since it has an extra customer being served

at facility i. Furthermore, let u0 denote the next time epoch (after t0) at which the processes Υ1

are Υ2 are once again in the same state (referred to as a joining of the two processes); this may

occur as a result of a service completion at facility i being seen by Υ2 but not by Υ1, or as a result

of θ∗ choosing to join facility i while the process Υ2 already has an extra customer present at i. In

either case, it can easily be checked using the definition of the policy ψ that:

(xn)i < (yn)i ≤ ci ∀ n ∈ [t0 + 1, u0 − 1]. (4.3.4)

Noting that u0 ≥ t0 + 2 (since the two processes must first ‘un-join’ before joining again), it follows

from (4.3.4) and the reward formulation (3.5.4) that Υ2 earns a strictly greater total reward than

Υ1 over the interval [t0, u0]. Since x is positive recurrent under θ∗, the two processes make infinitely

many visits to state x with probability one. Hence, one may define tn as the nth time that an arrival

occurs when both processes are in state x, and un as the next time (after tn) that the two processes

‘join’ again, with the result that Υ2 earns a strictly greater total reward than Υ1 over the interval

[tn, un] for each n ∈ N. It then follows that the policy ψ is superior to θ∗ with respect to the average

reward criterion, which contradicts the fact that θ∗ is a socially optimal policy.

These arguments confirm that if θ∗ is a stationary socially optimal policy, then there must be a

positive recurrent state x ∈ S̃ with xi ≥ ci for all i ∈ {1, 2, ..., N}, which in turn implies that all

states in S◦ are positive recurrent under θ∗. This completes the proof. �

Theorem 4.3.4 may be regarded as a complement of Theorem 4.2.5, since it effectively establishes

a lower bound for the set Sθ∗ associated with a socially optimal policy θ∗, whereas Theorem 4.2.5

established an upper bound. By combining these two results, one can conclude:

S◦ ⊆ Sθ∗ ⊆ S̃,
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for any stationary socially optimal policy θ∗. In Section 4.5, the ‘containment’ property will be

generalised to a problem involving heterogeneous customers. However, the topic of the next section

will be the effect of varying the demand rate λ on socially optimal policies.

4.4 Relationships with demand

Section 4.1 introduced the definitions of selfishly optimal and socially optimal policies. It is of

interest to investigate how optimal policies are affected by varying the system demand rate λ.

In particular, the sub-optimality of the selfish policy θ̃ in the context of overall social welfare has

important implications in applications where customers may or may not be given freedom of control

over their own outcomes. If it can be shown that this sub-optimality increases or decreases as λ

becomes larger, the insights gained can potentially be useful (see [101] for applications in healthcare

systems). It will also be of interest to examine light-traffic and heavy-traffic limits (λ → 0 and

λ→∞ respectively) and the characterisation of optimal policies in these limits.

It was already noted in Section 4.1 that the selfish policy θ̃ is independent of the demand rate

λ. As such, the focus in this section will be on socially optimal policies. It should be noted that

throughout this section, ‘optimal’ means ‘socially optimal’ unless stated otherwise.

The next result shows that if socially optimal policies are followed, then increasing the demand

rate cannot be harmful in terms of the expected long-run average reward earned.

Theorem 4.4.1. The optimal expected long-run average reward, g∗ which satisfies the optimality

equations in (4.2.6) is monotonically increasing with the demand rate λ.

Proof. Consider two demand rates λ1 and λ2, with λ1 < λ2. Let θ∗1 denote an average reward

optimal stationary policy under demand rate λ1; such a policy is known to exist by Theorem 4.2.3.

Let θ∗2 be a randomised policy which, when in state x ∈ S, operates as follows:

• With probability (λ2 − λ1)/λ2, θ∗2 chooses to balk, regardless of the state x.

• With probability λ1/λ2, θ∗2 chooses the same action θ∗1(x) that would be chosen by the sta-

tionary policy θ∗1 at the current state x ∈ S.
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Consider the system operating under policy θ∗2 with demand rate λ2. This policy operates by

splitting the original Poisson process by which customers arrive, so that there are two separate

Poisson processes with demand rates λ2 − λ1 and λ1 respectively. Customers arriving via the first

process (with demand rate λ2 − λ1) invariably balk, and therefore make no contribution to the

aggregate reward and have no effect on the state of the system. Thus, the only customers who may

join a facility and receive service are those who arrive via the second Poisson process (with demand

rate λ1), and these customers are subject to the same state-dependent routing decisions as those

who follow the stationary policy θ∗1. It follows that the policy θ∗2 earns exactly the same expected

long-run average reward under demand rate λ2 as θ∗1 earns under demand rate λ1.

An optimal policy under demand rate λ2 must perform at least as well as the policy θ∗2; that is, the

optimal expected long-run average reward under λ2 must be at least as great as the average reward

earned by θ∗1 under the smaller demand rate λ1, which (by definition of θ∗1) is also the optimal

average reward under λ1. This completes the proof of the theorem. �

The proof of Theorem 4.4.1 essentially argues that when the demand rate is increased from λ1 to

λ2, it is always possible to ‘match’ the performance of an optimal stationary policy under λ1 by

simply ‘forcing the extra traffic to balk’. It should also be noted that if a randomised policy is able

to achieve a certain expected long-run average reward, then (by Theorem 4.2.3) there must also

exist a stationary policy which yields at least the same value. Hence, the statement of Theorem

4.4.1 is true whether or not one restricts attention to stationary policies.

As discussed earlier in this chapter, it is reasonable to regard a selfish policy θ̃ as a policy which

is followed when customers make decisions as individuals, whereas a socially optimal policy θ∗ is

a consequence of exercising central control in such a way as to maximise the collective welfare of

all customers. A natural extension of this idea is to consider a scenario in which some customers,

but not all, are subject to central control. That is, a certain proportion q ∈ [0, 1] of customers

are ‘selfish’ and follow decisions which maximise their individual expected net reward as defined in

(4.1.1), whereas the remaining proportion (1 − q) act in order to maximise the expected long-run

average reward, taking due account of the actions of selfish customers. The next result captures the

natural idea that the optimal average reward g∗ is monotonically decreasing with q, the proportion

of selfish customers. The proof is somewhat similar to that of Theorem 4.4.1.
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Theorem 4.4.2. Consider an MDP which is identical to Υ except that there are two Poisson

arrival streams: a ‘selfish’ stream with demand rate qλ and a ‘social’ stream with demand rate

(1− q)λ, where q ∈ [0, 1] is the proportion of selfish customers. Customers arriving via the selfish

stream when the system is in state x ∈ S choose an action a ∈ arg maxaw(x, a), where:

w(x, a) =



αi −
βi
µi
, if a = i for some i ∈ {1, 2, ..., N} and xi < ci,

αi −
βi(xi + 1)

ciµi
, if a = i for some i ∈ {1, 2, ..., N} and xi ≥ ci,

0, otherwise.

Meanwhile, customers arriving via the social stream follow a ‘sub-policy’ ψ which may or may not

be stationary. Let gψ(x) denote the average reward given an initial state x ∈ S when the sub-policy

ψ is followed, and let g∗(x) = supψ gψ(x) denote the optimal average reward over all permissible

sub-policies. Then, for all x ∈ S, g∗(x) is monotonically decreasing with q.

Proof. It will be somewhat easier from a mathematical point of view to consider a system with a

single Poisson arrival stream λ operating under a randomised policy θ, which selects ‘selfish’ actions

with probability q and other (possibly non-selfish) actions with probability 1− q.

Consider two different values q1, q2 ∈ [0, 1], with q1 < q2. It is sufficient to show that, given any

policy θ2 which earns an average reward gθ2(x) when q = q2, there exists a policy θ1 which earns

the same average reward gθ2(x) when q = q1. Note that the only restriction on the policy θ1 is that

selfish decisions must be chosen with a probability of at least q1, which is smaller than q2. Hence,

one can simply define θ1 in such a way that selfish decisions are chosen with probability q2 and

decisions are taken otherwise (with probability 1− q2) which are identical to those which would be

chosen by θ2 given the same current state and process history, with the result that θ1 is exactly

equivalent to θ2 and earns the same average reward. This completes the proof. �

The statement of Theorem 4.4.2 assumes the existence of an optimal ‘sub-policy’ ψ, for customers

arriving via the social stream. As the proof of the theorem makes clear, an optimal sub-policy

followed by the social customers only is equivalent to an optimal policy followed by all customers

which operates subject to the constraint that selfishly optimal decisions are chosen with probability

q or greater. One might argue, therefore, that the results of this thesis thus far are not sufficient
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to guarantee the existence of ψ, since they do not address the existence of constrained, randomised

policies which are optimal within the class of similarly-constrained policies.

In considering how previous results might be adapted to deal with the scenario where a certain

proportion q of customers make selfish decisions, it is useful to observe that, given any current

state x ∈ S, there is a minimum probability qλ∆ of transferring to the state xθ̃(x)+ in a single time

step, where θ̃(x) is the selfishly optimal decision under state x. There still exists a Poisson stream

of arrivals whose destinations are fully controllable, but these customers arrive at a rate (1 − q)λ

rather than λ. The finite-stage discount optimality equations from (A.4.2) can be modified in the

following way to take into account the behaviour of selfish customers:

v̂
(n+1)
φ (x) = max

a

{
(1− q)λw(x, a) + φ(1− q)λ∆v̂

(n)
φ (xa+)

}
+ φqλ∆v̂

(n)
φ (xθ̃(x)+)

+ φ
N∑
i=1

min(xi, ci)µi∆v̂
(n)
φ (xi−) + φ

(
1− λ∆−

N∑
i=1

min(xi, ci)µi∆

)
v̂

(n)
φ (x), (4.4.1)

where w(x, a) is as defined in the statement of Theorem 4.4.2. One may then proceed to verify

that the conditions of Theorem 4.2.3 (which guarantee the existence of an average reward optimal

stationary policy) hold when the value functions v̂
(n)
φ are defined as in (4.4.1); however, the proofs

of Lemmas 4.2.1 and 4.2.2 will require some modifications. Details of these modifications will not

be provided here; instead, it suffices to note that an alternative approach would involve using an

argument very similar to the sample path argument given in the proof of Theorem 4.2.5 to show

that a policy which is not ‘contained’ on the selfish state space S̃ cannot be optimal. This provides

a justification for searching for an optimal policy within the finite set S̃, and it then follows by

Theorem 3.7.4 that an optimal stationary policy exists which is contained on S̃.

The next example illustrates how the proportion of selfish customers q ∈ [0, 1] affects the optimal

expected long-run average reward for various different values of the demand rate λ.

Example 4.4.3. (Mixtures of selfish and non-selfish customers)

Consider a system with 3 facilities, with the parameters shown below:

c1 = 2, µ1 = 2, β1 = 4, α1 = 10,
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c2 = 2, µ2 = 3, β2 = 3, α2 = 6,

c3 = 1, µ3 = 4, β3 = 7, α3 = 20.

Figure 4.1 illustrates the relationship between the optimal expected long-run average reward and

the proportion of selfish customers, q ∈ [0, 1], for various different values of the demand rate λ > 0.

To clarify, it is assumed (as in Theorem 4.4.2) that non-selfish customers follow an optimal ‘sub-

policy’ which takes due account of the actions of selfish customers; they do not simply follow the

same policy that they would follow if all customers acted to maximise the average reward. The

optimal average rewards shown in the figure have been computed using relative value iteration as

described in Section 3.7, with the recursive equations (3.7.7) modified in an appropriate way in

order to take into account transitions caused by the actions of selfish customers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

Proportionwofwselfishwcustomerswq

O
pt

im
al

wa
ve

ra
ge

wr
e

w
ar

d λw=w2.5 λw=w5 λw=w7.5

λw=w10 λw=w12.5 λw=w15

λw=w50

Figure 4.1: The relationship between the proportion of selfish customers q ∈ [0, 1] and the optimal expected

long-run average reward for various different values of the demand rate λ.

Figure 4.1 shows that, as expected, the optimal expected long-run average reward is monotonically

decreasing with q for all of the demand rates considered. It is somewhat interesting to note that the

effect of selfish decision-making appears to become more dramatic as the demand rate increases;

indeed, the line in the figure representing λ = 2.5 is almost horizontal, indicating that the average

reward is almost unaffected by whether or not customers make selfish decisions, whereas the average

rewards for larger values of λ appear to decrease much more steeply with q. The case λ = 50 is

an extreme case, in which the value of λ is much greater than the system’s maximum service

completion rate,
∑N

i=1 ciµi. The fact that selfish decision-making appears to be almost socially
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optimal for small values of λ will be explained by the next result in this section.

It may also be noted that Figure 4.1 is consistent with the result of Theorem 4.4.1, which implies

that when all customers are non-selfish (i.e. q = 0), the optimal average reward is monotonically

increasing with the demand rate λ. However, the figure also shows that when a non-zero proportion

of customers make selfish decisions, the optimal average reward (given by non-selfish customers

following an optimal sub-policy) may not be monotonically increasing with λ. �

The next results in this section address the characterisation of average reward optimal (i.e. socially

optimal) policies in light-traffic and heavy-traffic limits. As discussed in Section 4.1, a selfishly

optimal policy may be regarded as a simple heuristic rule which maximises immediate rewards, i.e.

the expected net rewards of newly-arriving customers, without taking due account of longer-term

consequences. Specifically, the ‘longer-term consequences’ of a selfish customer’s decision are the

potential increases in the waiting times of customers who arrive after their decision has been made,

and the possible re-routing of future customers (with implications for the aggregate rewards and

holding costs incurred by the system). It is clear that, although a selfish customer’s action may

have undesirable effects on the state of the system for a certain period of time, this period of time

will only be finite; indeed, under any stationary policy (including the selfishly optimal policy) the

state 0 is positive recurrent and so the system must eventually return to the state of being empty,

at which point the process regenerates. Thus, it is natural to suppose that if the demand rate λ

is small, then the ‘long-term’ consequences of a selfish customer’s decision will be minimal, for the

intuitively simple reason that only a small number of customers will arrive during the finite period

of time in which their outcomes stand to be affected by an earlier selfish decision.

Building upon these arguments, the next result shows that in fact, the selfishly optimal policy is

asymptotically average reward optimal in a light-traffic limit, i.e. as the demand rate λ tends to

zero. The concept of ‘asymptotic optimality’ requires some explanation. It can trivially be shown

that for any permissible policy θ, the expected long-run average reward gθ(x) (given any initial

state x ∈ S) tends to zero as λ→ 0. It follows that, for any arbitrary policy θ:

lim
λ→0

(
gθ(x)− g∗

)
= 0 ∀ x ∈ S,

where g∗ is the optimal value for the average reward which satisfies the equations (4.2.6). Therefore,

in order to show that the selfishly optimal policy θ̃ is light-traffic optimal in a sense that is actually
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meaningful, it is necessary to show that the relative sub-optimality (or percentage sub-optimality)

of θ̃ tends to zero as λ→ 0. The next theorem formalises this result.

Theorem 4.4.4. Given a demand rate λ > 0, let g̃(λ) denote the expected long-run average reward

attained by the selfishly optimal policy θ̃, and let g∗(λ) denote the optimal value for the average

reward which satisfies the equations (4.2.6). Then:

lim
λ→0

(
g∗(λ)− g̃(λ)

g∗(λ)

)
= 0. (4.4.2)

That is, the policy θ̃ is asymptotically (socially) optimal in a light-traffic limit.

Proof. Throughout this proof, it will be assumed that single-stage rewards for the MDP Υ are

given by the anticipatory formulation (3.5.15). Recall that αi > βi/µi for all i ∈ {1, 2, ..., N}; as

discussed in Section 3.1, this is an assumption made in order to avoid degenerate cases where at

least one facility fails to offer any reasonable incentive for joining (even when it is empty). It follows

that, given any λ > 0, g∗(λ) must be strictly positive. This can be shown by observing that it is

possible to construct a stationary policy which earns a strictly positive average reward. Indeed,

consider the stationary policy θ with θ(0) = i 6= 0 and θ(x) = 0 for all x 6= 0, i.e. joining facility

i is chosen when the system is empty and balking is chosen otherwise. Since αi > βi/µi, it follows

that r̂(0, i) > 0. Then, since 0 and 0i+ are the only positive recurrent states under θ, the average

reward under θ is given by πθ(0) r̂(0, i) + πθ(0
i+) r̂(0i+, 0), where πθ(0) r̂(0, i) is positive (since the

stationary probability πθ(0) is non-zero) and πθ(0
i+) r̂(0i+, 0) = 0. Since g∗(λ) must be at least as

great as the average reward under θ, it then follows that g∗(λ) > 0 for all λ > 0.

Next, consider a fixed demand rate λ > 0. The selfishly optimal policy θ̃, as defined in Section 4.1,

is independent of λ and induces an irreducible, ergodic Markov chain defined on the finite set S̃.

By Theorem 4.2.4, there exists a stationary policy θ∗λ (with a dependence on λ) which attains the

optimal average reward g∗(λ), and this policy induces an irreducible, ergodic Markov chain defined

on some finite set Sθ∗λ which is contained in S̃. Hence, g̃(λ) and g∗(λ) can be expressed in terms of

the stationary distributions under policies θ̃ and θ∗λ respectively as follows:

g̃(λ) =
∑
x∈S̃

πθ̃(x) r̂
(
x, θ̃(x)

)
,

g∗(λ) =
∑
x∈S̃

πθ∗λ(x) r̂
(
x, θ∗λ(x)

)
,

(4.4.3)
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where the dependence of the stationary distributions {πθ̃(x)} and {πθ∗λ(x)} on λ has been suppressed

for notational convenience. Note that πθ̃(x) = πθ∗λ(x) = 0 for all x /∈ S̃ due to Theorem 4.2.5, which

is why the summations in (4.4.3) can be taken over S̃ rather than S. Recall that r̂(x, a) = λw(x, a)

for any state-action pair (x, a) ∈ S ×A, where w(x, a) is the expected net reward for an individual

customer defined in (4.1.1). Hence, following cancellation of λ, one can write:

g∗(λ)− g̃(λ)

g∗(λ)
=

∑
x∈S̃ πθ∗λ(x)w

(
x, θ∗λ(x)

)
−
∑

x∈S̃ πθ̃(x)w
(
x, θ̃(x)

)∑
x∈S̃ πθ∗λ(x)w

(
x, θ∗λ(x)

) . (4.4.4)

The advantage of using the formulation in (4.4.4) is that, for all pairs (x, a) ∈ S̃×Ax, w(x, a) (unlike

r̂(x, a)) is independent of λ. Next, it will be useful to characterise the stationary distributions

{πθ̃(x)} and {πθ∗λ(x)} in the light-traffic limit. Naturally, one ought to have:

lim
λ→0

πθ̃(x) = lim
λ→0

πθ∗λ(x) =


1, if x = 0,

0, otherwise.

(4.4.5)

Indeed, the limits in (4.4.5) can be proved using stochastic bounding arguments. For convenience,

define B̃ :=
∑

i B̃i, with B̃i as defined in (4.1.2), and µmin := min(µ1, µ2, ..., µN ). Suppose the

system is initialised in state 0. Then, under the selfish policy θ̃, customers balk at a particular

state x ∈ S if and only if
∑

i xi = B̃. Hence, given any λ > 0, the total number of customers

present in the system is stochastically bounded above by the number of customers present in an

M/M/1/B̃ queue with demand rate λ, service rate µmin and finite capacity B̃.

To show this in greater detail, first note that the M/M/1/B̃ queue can be discretised using the

technique of uniformisation described in Section 3.3 and choosing the discrete step size ∆ to be

any positive value not exceeding (λ+µmin)−1. In particular, ∆ = (λ+
∑

i ciµi)
−1 is a valid choice;

so the M/M/1/B̃ queue and the MDP Υ can both be discretised using the same value of ∆. Let

yn ∈ N0 be the state of the M/M/1/B̃ queue at the nth time step, i.e. the number of customers

present. One can construct a coupled process (x̂n, ŷn)n∈N0 with state space S × N0, initialised in

state (0, 0), which evolves according to the following transition probabilities:

• With probability λ∆, both of the marginal processes (x̂n) and (ŷn) see a new customer arrival.

In the case of (x̂n), the new customer takes action θ̃(x̂n). In the case of (ŷn), the new customer

joins the queue if ŷn < B̃, and balks otherwise.
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• With probability µmin∆, the process (x̂n) sees a service completion at some arbitrary non-

empty facility j (say, for example, j = min{i ∈ {1, 2, ..., N} : xi ≥ 1}) if and only if x̂n 6= 0,

and the process (ŷn) sees a service completion if and only if ŷn ≥ 1.

• If x̂n 6= 0, then there is an additional probability (min(xj , cj)µj − µmin)∆ that the process

(x̂n) sees a service completion at facility j and the process (ŷn) sees no event. Here, j is the

non-empty facility referred to in the previous bullet point.

• For all facilities i 6= j, there is a probability min(xi, ci)µi∆ that the process (x̂n) sees a service

completion at facility i and the process (ŷn) sees no event.

• With probability 1− λ∆−
∑N

i=1 min(xi, ci)µi∆, both processes see no event.

Let (x̂n)i denote the ith component of state x̂n ∈ S. It can easily be checked from the above that

if
∑

i(x̂n)i ≤ ŷn for some n ∈ N0, then
∑

i(x̂n+1)i ≤ ŷn+1 also. Given that (x̂0, ŷ0) = (0, 0) by

assumption, it follows that
∑

i(x̂n)i ≤ ŷn for all n ∈ N0. Due to the coupling construction, the nth

‘marginal’ state ŷn has a distribution identical to that of yn, the nth state of the M/M/1/B̃ queue

(see Section 3.8 for further explanation of the stochastic coupling technique). Utilising standard

formulae for M/M/1 queues with finite buffers (see [67], p. 74):

lim
λ→0

(
lim
n→∞

P (yn = 0)
)

= 1.

Hence, since
∑

i(x̂n)i ≤ ŷn for all n ∈ N0:

lim
λ→0

(
lim
n→∞

P

(
N∑
i=1

(x̂n)i = 0

))
= 1,

and due to the equivalence between (x̂n) and the process Υ following policy θ̃:

lim
λ→0

πθ̃(0) = 1,

which obviously implies limλ→0 πθ̃(x) = 0 for all x 6= 0. The argument to show that limλ→0 πθ∗λ(0) =

1 is similar, except that it must be remembered that the policy θ∗λ is dependent on λ. Nevertheless,

using the ‘containment’ principle (Theorem 4.2.5), one may observe that given any λ > 0 (and

assuming that the system is initialised in state 0), the total number of customers in the system will

never exceed B̃ under θ∗λ. Hence, this total may be bounded above by the number of customers
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present in an M/M/1/B̃ queue with the same demand rate and a service rate µmin, in exactly the

same way as for θ̃. Given any λ > 0, one may therefore write the following:

lim
n→∞

P (yn = 0) ≤ lim
n→∞

P

(
N∑
i=1

(xn)i = 0

)
≤ 1, (4.4.6)

where, in this case, xn denotes the nth state of the process Υ following a policy θ∗λ which is socially

optimal under demand rate λ, and yn is the nth state of an M/M/1/B̃ queue which has been

uniformised in the same way as described previously. Since limn→∞ P (yn = 0) → 1 as λ → 0, the

‘squeeze theorem’ from analysis (see [166], p. 909) may be applied to (4.4.6) in order to show that

limλ→0 πθ∗λ(0) = 1. These arguments confirm that the limits in (4.4.5) hold.

Consider the ‘non-zero’ states x ∈ S̃ \ {0}. Given any λ > 0, the individual expected net rewards

w(x, θ̃(x)) and w(x, θ∗λ(x)) are finite for all such states; indeed, both quantities may be bounded

above by max(α1, α2, ..., αN ), and bounded below by zero. Hence:

lim
λ→0

(
πθ∗λ(x)w

(
x, θ∗λ(x)

))
= lim

λ→0

(
πθ̃(x)w

(
x, θ̃(x)

))
= 0 ∀ x ∈ S̃ \ {0}.

Recalling that r̂(x, a) = λw(x, a) for all (x, a) ∈ S̃ ×Ax, it then follows from (4.4.3) that:

lim
λ→0

g̃(λ)

λ
= lim

λ→0

(
πθ̃(0)w

(
0, θ̃(0)

))
,

lim
λ→0

g∗(λ)

λ
= lim

λ→0

(
πθ∗λ(0)w

(
0, θ∗λ(0)

))
, (4.4.7)

assuming, of course, that these limits exist. The remainder of the proof will confirm this. It has

already been shown that limλ→0 πθ̃(0) = 1. Also, by definition of the selfishly optimal policy θ̃,

w
(
0, θ̃(0)

)
= maxi {αi − βi/µi} for all λ > 0. Hence:

lim
λ→0

g̃(λ)

λ
= lim

λ→0

(
πθ̃(0)w

(
0, θ̃(0)

))
= max

i

{
αi −

βi
µi

}
> 0. (4.4.8)

Also, for any demand rate λ > 0, one must have:

g̃(λ)

λ
≤ g∗(λ)

λ
≤ max

i

{
αi −

βi
µi

}
,

where the left-hand inequality is due to the fact that g∗(λ) ≥ g̃(λ) by definition of the optimal

average reward, and the right-hand inequality is due to the fact that λmaxi{αi − βi/µi} is the

maximum value of r̂(x, a) over all state-action pairs (x, a) ∈ S̃ × Ax, and hence it can be seen
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from (4.4.3) that g∗(λ) ≤ λmaxi{αi − βi/µi}. Thus, using (4.4.8) and again applying the ‘squeeze

theorem’ ([166], p. 909), one obtains the same limit for g∗(λ)/λ as for g̃(λ)/λ:

lim
λ→0

g∗(λ)

λ
= max

i

{
αi −

βi
µi

}
> 0. (4.4.9)

Finally, by combining (4.4.8) and (4.4.9):

lim
λ→0

(
g∗(λ)− g̃(λ)

g∗(λ)

)
=

maxi{αi − βi/µi} −maxi{αi − βi/µi}
maxi{αi − βi/µi}

= 0,

which completes the proof of the theorem. �

In fact, the proof of Theorem 4.4.4 shows that any stationary policy which chooses an action a at

state 0 maximising w(0, a) is asymptotically optimal in a light-traffic limit; the selfishly optimal

policy θ̃ is merely a special case. It will be useful to state this as a corollary.

Corollary 4.4.5. Let θ be any stationary policy satisfying the following criterion:

θ(0) ∈ arg max
i∈{1,2,...,N}

{
αi −

βi
µi

}
,

and let gθ(λ) be the expected long-run average reward earned by θ given a demand rate λ > 0. Then

θ is asymptotically optimal in a light-traffic limit. That is:

lim
λ→0

(
g∗(λ)− gθ(λ)

g∗(λ)

)
= 0.

Proof. The proof follows the same arguments as that of Theorem 4.4.4. The important principle is

that as λ→ 0, the decisions made by θ at states x 6= 0 become irrelevant.

It should be noted that if θ is a policy which does not induce a Markov chain on some finite set

of states contained in S̃, then the stochastic bounding argument given in the proof of Theorem

4.4.4 will need to be modified in order to show that πθ(0) → 1 as λ → 0. This should not be

problematic; indeed, the stationary probability πθ(0) associated with any stationary policy θ may

be shown to be stochastically bounded below by the steady-state probability of an infinite-capacity

M/M/1 queue with demand rate λ and service rate µmin = mini µi being empty. �

The next result in this section concerns the characterisation of socially optimal policies in the heavy-

traffic limit, where λ → ∞. First, it will be convenient to introduce a definition for a particular

type of stationary policy, which will be referred to as a vacancy policy.
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Definition 4.4.6. (Vacancy policy)

Let θ be a stationary policy which satisfies the following conditions:

• If xi < ci for at least one i ∈ {1, 2, ..., N}, then θ(x) ∈ {i ∈ {1, 2, ..., N} : xi < ci}.

• If xi ≥ ci for all i ∈ {1, 2, ..., N}, then θ(x) = 0.

Then θ is referred to as a vacancy policy.

In words, a vacancy policy always chooses to send a customer to a facility with an idle service

channel if such a facility is available; otherwise, it chooses to balk. Naturally, no queues are formed

under such a policy, since all customers either balk or begin service immediately. The next result

shows that vacancy policies are optimal in a heavy-traffic limit, i.e. as λ→∞.

Theorem 4.4.7. Let θ be a vacancy policy, and let gθ(λ) denote the expected long-run average

reward attained under θ given a demand rate λ > 0. Then:

lim
λ→∞

(
g∗(λ)− gθ(λ)

)
= 0.

That is, θ is socially optimal in the heavy-traffic limit.

Proof. This proof will assume the real-time formulation (3.5.4) for the single-stage rewards earned

by Υ. Given any demand rate λ > 0, Theorem 4.2.4 implies that there exists a stationary policy

θ∗λ which attains the optimal average reward g∗(λ) and also induces an irreducible, ergodic Markov

chain on some set of states Sθ∗λ contained in S̃. Hence, for any λ > 0:

g∗(λ) =
∑
x∈S̃

πθ∗λ(x)r(x).

By definition of r(x) and the assumption that αiµi − βi > 0 for all i ∈ {1, 2, ..., N}, it can be seen

that for all states x ∈ S the following upper bound holds:

r(x) ≤
N∑
i=1

ci (αiµi − βi) . (4.4.10)

Moreover, equality holds in (4.4.10) if and only if x = c, where c ∈ S is the unique state with

xi = ci for all i ∈ {1, 2, ..., N}. Let θ be an arbitrary vacancy policy, and (as in Section 4.3) let S◦

denote the set of states in S with no customers queueing. That is:

S◦ := {x ∈ S : xi ≤ ci ∀ i ∈ {1, 2, ..., N}} .
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Clearly, S◦ is identical to the set of states Sθ which are positive recurrent in the Markov chain

induced by θ. Hence, the average reward gθ(λ) can be written as:

gθ(λ) =
∑
x∈S◦

πθ(x)r(x), (4.4.11)

where {πθ(x)}x∈S is the stationary distribution under the vacancy policy θ. The aim of this

proof is to show that gθ(λ) tends to
∑

i ci (αiµi − βi) as λ → ∞. In view of (4.4.11), this can be

accomplished by showing that the stationary probabilities πθ(x) satisfy:

lim
λ→∞

πθ(x) =


1, if x = c,

0, otherwise.

(4.4.12)

The limits in (4.4.12) can be proved using a stochastic bounding argument, similar to that used to

establish the limits (4.4.5) in the proof of Theorem 4.4.4. Indeed, consider the process Υ initialised

in state 0 and operating under the vacancy policy θ. A customer arriving under state x ∈ S joins

some facility i ∈ {1, 2, ..., N} if and only if
∑

j xj < K, where K =
∑

i ci is the total number of

service channels across all facilities. It follows that, given any λ > 0, the total number of customers

in the system under θ is stochastically bounded below by the number of customers in an M/M/1/K

queue with finite capacity K, demand rate λ and service rate µT , where:

µT :=
N∑
i=1

ciµi.

Let the M/M/1/K queue and the process Υ both be uniformised with the same parameter, ∆ =

(λ+
∑

i ciµi)
−1 = (λ+ µT )−1. Let yn ∈ N0 denote the state of the M/M/1/K queue at the

nth discrete time step. It is possible to construct a coupled process (x̂n, ŷn) with state space

S × N0 similar to the coupled process used in the proof of Theorem 4.4.4. In this case, one can

show that
∑

i(x̂n)i ≥ ŷn for all n ∈ N0 (where (x̂n)i is the ith component of x̂n), assuming that

(x̂0, ŷ0) = (0, 0). The transition rules for (x̂n, ŷn) may be defined as follows:

• With probability λ∆, both of the marginal processes (x̂n) and (ŷn) see a new customer arrival.

In the case of (x̂n), the new customer takes action θ(x̂n). In the case of (ŷn), the new customer

joins the queue if ŷn < K, and balks otherwise.

• With probability min(xi, ci)µi∆ (for i = 1, 2, ..., N), the process (x̂n) sees a service completion

at facility i and the process (ŷn) also sees a service completion if and only if ŷn ≥ 1.
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• With probability (µT −
∑

i min(xi, ci)µi) ∆, the process (ŷn) sees a service completion if and

only if ŷn ≥ 1, and the process (x̂n) sees no event.

• With probability 1− λ∆−
∑

i ciµi∆, both processes see no event.

It can be verified that if
∑

i(x̂n)i ≥ ŷn for some n ∈ N0 then one must have
∑

i(x̂n+1)i ≥ ŷn+1 also.

Given that (x̂0, ŷ0) = (0, 0) by assumption, it follows that
∑

i(x̂n)i ≥ ŷn for all n ∈ N0. Due to the

coupling construction, each ‘marginal’ state ŷn has a distribution identical to that of yn. Hence,

standard formulae for finite-buffer M/M/1 queues (see, e.g. [67]) imply:

lim
λ→∞

(
lim
n→∞

P (ŷn = K)
)

= 1.

Therefore, since ŷn ≤
∑

i(x̂n)i ≤ K for all n ∈ N0:

lim
λ→∞

(
lim
n→∞

P

(
N∑
i=1

(x̂n)i = K

))
= 1.

Of course, by construction of the policy θ and the fact that x̂0 = 0,
∑N

i=1(x̂n)i = K if and only if

x̂n = c. Hence, by the equivalence of (x̂n) and the process Υ following θ:

lim
λ→∞

πθ(c) = 1,

and limλ→∞ πθ(x) = 0 for all x 6= c, which establishes (4.4.12). Then, since the rewards r(x) are

independent of λ, taking limits in (4.4.11) immediately yields:

lim
λ→∞

gθ(λ) = r(c) =

N∑
i=1

ci (αiµi − βi) . (4.4.13)

Recall that, by (4.4.10), the single-step rewards r(xn) (for n = 0, 1, 2, ...) are bounded above by∑N
i=1 ci (αiµi − βi). Hence, given any λ > 0, the expected long-run average reward g∗(λ) must also

be bounded above by the same quantity. This implies, for all λ > 0:

gθ(λ) ≤ g∗(λ) ≤
N∑
i=1

ci (αiµi − βi) .

Hence, again relying on the ‘squeeze theorem’ from analysis ([166], p. 909):

lim
λ→∞

g∗(λ) =
N∑
i=1

ci (αiµi − βi) . (4.4.14)
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Finally, in view of (4.4.13) and (4.4.14):

lim
λ→∞

(
g∗(λ)− gθ(λ)

)
= lim

λ→∞
g∗(λ)− lim

λ→∞
gθ(λ) = 0,

which completes the proof that the vacancy policy θ is optimal in heavy traffic. �

The proof of Theorem 4.4.7 offers some insight into the behaviour of optimal policies in general.

In particular, the fact that r(c) > r(x) for all x 6= c is insightful. The state c, with all service

channels occupied and no customers queueing, may be perceived as a ‘Utopian’ state; clearly, if

it were possible for the system to remain permanently in state c, then this would be the ideal

scenario in order to maximise the long-run average reward. As λ→∞, it becomes possible for the

system to spend (almost) all its time in state c, since any service completion is followed almost

immediately by a new customer arrival, so the system can almost immediately ‘refill’ any service

channel that becomes idle. Of course, customers who arrive when all service channels are occupied

can simply be rejected. This explains the optimality of vacancy policies as λ → ∞. On the other

hand, when λ is small, it may be optimal to admit customers to the system under state c in order

to compensate for the negative drift (due to an increase in the frequency of service completions

relative to arrivals) which moves the system towards sparsely-populated states.

It is also interesting to note that the ‘anticipatory’ reward formulation with reward function r̂(x, a)

was used to prove Theorem 4.4.4, whereas the ‘real-time’ formulation with reward function r(x)

was used in the proof of Theorem 4.4.7. These formulations were not chosen arbitrarily; in fact,

the anticipatory formulation was used to prove the light-traffic result due to the fact that under

this formulation, r̂
(
0, θ̃(0)

)
≥ r̂(0, a) for any action a, where θ̃(0) is the action chosen by the selfish

policy at state 0. No such convenient property holds under the real-time reward formulation; in

fact, r(0) = 0 regardless of the action chosen. On the other hand, the real-time formulation was

used to prove the heavy-traffic result due to the fact that r(c) > r(x) for all x 6= c, whereas the

rewards under the anticipatory formulation do not attain their largest values at x = c. The con-

trasting properties of the two reward formulations and their respective uses highlight the practical

advantages to be gained from proving the equivalence result in Theorem 3.5.3.

The following corollary summarises the relationship between g∗(λ) and λ.

Corollary 4.4.8. As the demand rate λ increases, the optimal expected long-run average reward
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g∗(λ) converges monotonically to the following limit:

lim
λ→∞

g∗(λ) =
N∑
i=1

ci (αiµi − βi) .

Proof. The limit itself has been shown in the proof of Theorem 4.4.7. The fact that the convergence

is monotonic follows from Theorem 4.4.1. �

It is interesting to note that ‘real-time’ reward formulations such as (3.5.4) may be used to prove the

optimality of vacancy policies in more general types of problems. The reader is invited to refer to

Appendix A.7 for an example involving a Jackson network, which differs from the queueing system

described in Section 3.1 in that customers who complete service at any facility may be re-routed

to another facility (or the same facility) as opposed to departing from the system. The example

describes a particular type of Jackson network problem in which optimal policies are extremely

simple to characterise, despite the complexity of the underlying MDP formulation.

The results proved in this section will be used to examine the light-traffic and heavy-traffic opti-

mality (or sub-optimality) of certain heuristic policies considered in Chapter 6. This chapter will

conclude by discussing an extension involving heterogeneous customers.

4.5 Extension: Heterogeneous customers

This section will consider an extension of the queueing system described in Section 3.1 in which

customers belong to heterogeneous groups, or classes. Let M ≥ 2 be the number of classes, so that

each customer belongs to some class in {1, 2, ...,M}. Each class has its own independent Poisson

arrival stream, set of holding costs and set of fixed rewards. To be precise:

• Customers of class i ∈ {1, 2, ...,M} arrive via their own independent, time-homogeneous

Poisson process with demand rate λi > 0.

• Suppose a customer of class i ∈ {1, 2, ...,M} goes to be served at facility j ∈ {1, 2, ..., N}.

Then a holding cost βij > 0 is incurred per unit time until they exit the system, and a reward

αij > 0 is earned after they complete service.
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Note that, at this stage, the service rates µj and service capacities cj at the various facilities

remain independent of customer class. Incorporating class-dependent service rates within an MDP

framework causes a significant amount of extra complexity due to the effect on the transition

probabilities and the complexity of the state space required; for this reason, an alternative approach

to dealing with class-dependent service rates will be discussed in Chapter 7.

The system may be modelled using an MDP which is uniformised as described in Section 3.3, so

that it evolves in discrete time steps of size ∆, where 0 < ∆ ≤
(∑

i λi +
∑

j cjµj
)−1

. In Section

4.2, the anticipatory reward formulation (3.5.15) was used in order to prove certain properties of

the associated discounted-reward value function v̂φ(·) which are sufficient to imply the existence of

an average reward optimal stationary policy satisfying the equations (4.2.6).

A further advantage of the anticipatory reward formulation is that it enables the results in Sections

4.2 to be extended to a scenario involving heterogeneous customers without a re-description of the

state space S being required. Suppose one wanted to use a ‘real-time’ reward formulation, similar to

(3.5.4), for the reward r(·) in the heterogeneous customers problem. Then the system state would

need to include information about the classes of customers in service at each facility, and also

the classes of all customers waiting in queues. On the other hand, using an ‘anticipatory’ reward

formulation, it is possible to allow the state space representation to be the same as before; that is,

one may define S =
{
x = (x1, x2, ..., xN ) : x1, x2, ..., xN ∈ N0

}
, where xj is simply the number of

customers present (irrespective of class) at facility j, for j = 1, 2, ..., N . On the other hand, the set

of actions A available at each state x ∈ S now requires a more complicated representation in order

to allow actions to depend upon customer class. Let the set A be given by:

A =
{

a = (a1, a2, ..., aM ) : a1, a2, ..., aM ∈ {0, 1, ..., N}
}
. (4.5.1)

That is, the action a is a vector which prescribes, for each customer class i ∈ {1, 2, ...,M}, the

destination ai of any customer of class i who arrives at the present discrete epoch of time. The

reward r̂(x,a) for choosing action a ∈ A at state x is then given by:

r̂(x,a) =
M∑
i=1

r̂i(x, ai), (4.5.2)

where ai is the ith component of a, and r̂i(x, ai) is defined for i ∈ {1, 2, ...,M} by:
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r̂i(x, ai) :=



λi

(
αij −

βij
µj

)
, if ai = j for some j ∈ {1, 2, ..., N} and xj < cj ,

λi

(
αij −

βij(xj + 1)

cjµj

)
, if ai = j for some j ∈ {1, 2, ..., N} and xj ≥ cj ,

0, otherwise.

(4.5.3)

In fact, expanding the action set in this manner is not the only possible way of formulating the

extended model (with heterogeneous customers) as an MDP, but it is the natural extension of the

MDP Υ formulated in Section 3.5. An alternative approach would be to augment the state space

so that information about the class of the most recent customer to arrive is included in the state

description; this would involve using a state space formulation similar to (3.2.7), with the random

event Λ replaced by a set of events {Λi}Mi=1 in order to indicate the class of the latest customer

to arrive. Actions would then need to be chosen only at arrival epochs, and these actions would

simply be integers in the set {0, 1, ..., N} as opposed to vectors. By keeping the state space S

unchanged, however, it is possible to show that the results of Section 4.2 can be generalised quite

easily. Under the new MDP formulation, the discount optimality equations (using the anticipatory

reward functions r̂i in (4.5.3)) are given for states x ∈ S and φ ∈ (0, 1) by:

v̂φ(x) =
M∑
i=1

max
ai∈A

{
r̂i(x, ai) + φλi∆v̂φ(xai+)

}
+ φ

N∑
j=1

min(xj , cj)µj∆v̂φ(xj−)

+ φ

1−
M∑
i=1

λi∆−
N∑
j=1

min(xj , cj)µj∆

 v̂φ(x). (4.5.4)

From a practical perspective, it is worthwhile to note that the maximisation in (4.5.4) is carried

out in a componentwise fashion. This means that instead of having to find the maximiser among

all vectors a in A (of which the total number is (N +1)M ), it is sufficient to find, for each customer

class i ∈ {1, 2, ...,M}, the ‘marginal’ action ai which maximises r̂i(x, ai) +φλi∆v̂φ(xai+). This can

be exploited in the implementation of dynamic programming algorithms (e.g. value iteration), so

that computation times increase only in proportion to the number of classes M .
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As before, the selfishly optimal policy is defined as the policy under which the action chosen for

each customer arriving in the system is the action which maximises r̂i(x, ai) (obviously this action

is dependent upon the class i). A selfish customer of class i accepts service at facility j if and only

if, prior to joining, the number xj of customers at facility j, satisfies xj ≤ B̃ij , where:

B̃ij :=

⌊
αijcjµj
βij

⌋
. (4.5.5)

Consequently, under steady-state conditions, the number of customers present at facility j is

bounded above by maxi B̃ij . The selfishly optimal state space S̃ is then given by:

S̃ :=

{
(x1, x2, ..., xN ) : xj ≤ max

i
B̃ij , j = 1, 2, ..., N

}
. (4.5.6)

Example 4.5.1. (Containment in two dimensions with two customer classes)

Consider a system with two facilities, both with two service channels (c1 = c2 = 2) and service rates

µ1 = 5 and µ2 = 1. It will be useful to begin by examining the selfishly and socially optimal policies

in the case where all customers belong to the same class. Suppose customers arrive at a Poisson

rate λ1 = 12 and earn fixed rewards α11 = 1 and α12 = 3 at facilities 1 and 2 respectively, while

the corresponding holding costs β11 and β12 are both equal to 3. Figure 4.2 shows that the selfishly

optimal policy for these customers induces a Markov chain with 12 positive recurrent states, while

the socially optimal policy induces a Markov chain with only 6 recurrent states.

Selfish Policy Social Policy

Figure 4.2: Selfishly and socially optimal policies in Example 4.5.1, with only one customer class. For each

state x = (x1, x2) ∈ S̃, the corresponding decisions under the respective policies are shown.

Now suppose that a second stream of customers also arrives with demand rate λ2 = 10, so that

the system receives two independent arrival streams. Customers in the second class have steeper
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holding costs and a much greater value of service at the second facility: β21 = β22 = 5, α21 = 1,

α22 = 12. The service rates µ1 = 5 and µ2 = 1 remain independent of customer class. The system

may be uniformised with step-size parameter ∆ =
(∑

i λi +
∑

i ciµi
)−1

= 1/34.

Figure 4.3 shows the selfishly and socially optimal policies for the system with two classes of

customer arriving. It is clear that the incorporation of a second class of customer has no effect on

the selfish decisions made by the first class of customer, so (as shown by the figure) these decisions

remain the same as shown in Figure 4.2 previously. The first table in Figure 4.3 shows that selfish

customers of the second class are unwilling to join the first facility when x1 ≥ 2; however, under

certain states they will choose to join the second facility when x2 = 3 (but never when x2 > 3). As

a result, the new selfish space S̃ as defined in (4.5.6) is expanded from 12 states to 20.

Figure 4.3 shows that the new selfish state space S̃ may be represented diagrammatically as the

smallest rectangle which encompasses both S̃1 and S̃2, where (for i = 1, 2):

S̃i :=
{

(x1, x2, ..., xN ) : xj ≤ B̃ij , j = 1, 2, ..., N
}
.

It is somewhat interesting to observe that the selfish state space S̃ includes states in the ‘intersection

of complements’ S̃c1 ∩ S̃c2, consisting of the states (3, 3) and (3, 4). These states would not occur

(under steady-state conditions) if the system operated with only a single (selfish) class of customer

of either type, but they do occur with both classes of customer in attendance.

The policy θ∗ depicted in the second table in Figure 4.3 has been obtained using relative value

iteration, and illustrates the containment property for systems with heterogeneous customer classes.

It may be seen that the socially optimal state space Sθ∗ consists of only 9 states; under steady-

state conditions, the system remains within this set of 9 states. It is also apparent that, unlike the

selfish decisions, the socially optimal decisions for a particular class of customer are affected by

the decisions made by the other class of customer (as can be seen, in the case of the first customer

class, by direct comparison with Figure 4.2). Indeed, under θ∗, customers of the first class never

join facility 2, while customers of the second class never join facility 1. �

It can be verified that the results of Lemmas 4.2.1 and 4.2.2, Theorems 4.2.3 and 4.2.4 and Theorem

4.2.5 apply to the extended model with heterogeneous customers, with only small modifications

required to the proofs. For example, in Lemma 4.2.1 the inequality v̂φ(xj+) ≤ v̂φ(x) may be proved
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Selfish Policy

Social Policy

Figure 4.3: Selfishly and socially optimal policies for the system in Example 4.5.1, with two customer classes.

For each state x = (x1, x2), the corresponding decision vector a = (a1, a2) is shown.

by showing that, for all classes i ∈ {1, 2, ...,M} and facilities j ∈ {1, 2, ..., N}:

max
ai

{
r̂i(x

j+, ai) + φλi∆v̂
(k)
φ

(
(xj+)ai+

)}
≤ max

bi

{
r̂i(x, bi) + φλi∆v̂

(k)
φ

(
xbi+

)}
,

for all k ∈ N0. In Lemma 4.2.2, one may define α∗ = maxi,j αij as the maximum value of service

across all facilities and customer classes, and establish a lower bound for v̂φ(0j+) − v̂φ(0) similar

to (A.4.9) by writing r̂(0j+,0) and p(0j+,0,y) instead of r̂(0j+, 0) and p(0j+, 0,y) respectively

(so that the action at state 0j+ is the zero vector 0, i.e. all customer classes balk); the rest of the

inductive proof goes through using similar adjustments. Theorem 4.2.4 holds because if Sθ∗ was

not contained in S̃, then the discount optimality equations would imply:

r̂i(x, j) + φλi∆v̂φ(xj+) ≥ φλi∆v̂φ(x),

for some class i ∈ {1, 2, ...,M} and facility j ∈ {1, 2, ..., N} with r̂i(x, j) < 0, thus contradicting

the result of (the modified) Lemma 4.2.1. The sample path argument used to prove Theorem 4.2.5

can be applied to a customer of any class, with only trivial adjustments needed.
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This section has shown that it is a straightforward task to generalise the results of Section 4.2 to

a problem involving heterogeneous customers. However, this generalisation of the problem is still

somewhat restricted, since it must be assumed that the service rates µj and service capacities cj

at the various facilities remain independent of customers’ classes in order for the complexity of

the resulting MDP formulation to be manageable. One can easily imagine that the assumption

of non-discriminatory service rates would be unsatisfactory in many applications; for example, the

length of stay of a patient in a hospital would typically depend upon many factors, including their

age and medical history. For this reason, the heterogeneous customers model described in this

section will not be considered again until Chapter 7, at which point it will become possible (using

techniques to be discussed later) to incorporate class-dependent service rates.

4.6 Conclusions

Section 4.1 explained how the themes of selfish and social optimisation discussed in Chapter 2

may be generalised to a problem involving N multiple-server facilities. The principle of socially

optimal policies being ‘contained’ in the selfishly optimal state space S̃, as discussed in Section 4.2,

can be exploited by truncating the infinite state space and restricting attention to the finite set of

states S̃ when searching for a socially optimal policy. The results of Section 4.3 are also useful in

order to establish the inequality S◦ ⊆ Sθ∗ ⊆ S̃ for any socially optimal policy θ∗. Unfortunately,

it is difficult to prove further characteristics of socially optimal policies which hold in complete

generality for the system introduced in Section 3.1, as the next chapter will show.

The results in Section 4.4 will prove useful later in order to determine whether certain types of

stationary policies achieve light-traffic and/or heavy-traffic optimality. In particular, when heuristic

policies are considered in Chapter 6, it will be possible to determine whether or not these policies

are optimal in light or heavy-traffic limits by referring to the aforementioned results.

Section 4.5 considered a more intricate problem involving heterogeneous customers. While it was

shown that certain results from earlier sections could be applied successfully to this more general

problem under suitable conditions, the assumptions required (in particular, the lack of dependence

of service rates on customer classes) were also observed to be somewhat restrictive. Problems

involving heterogeneous customers will be revisited later, using a different approach.



5 Monotonicity and structure

The results in Chapter 4 established certain properties of socially optimal policies by drawing

comparisons with selfishly optimal policies; in particular, an important result is Theorem 4.2.4,

which states that it is possible to find a stationary socially optimal policy which induces an ergodic,

irreducible Markov chain on a set of states contained in the (finite) selfishly optimal state space S̃.

The results in Section 4.4 also provide some insight into the effect of varying the demand rate λ on

socially optimal policies. The results in this chapter are concerned with the structure of socially

optimal policies given an arbitrary and (usually) fixed set of input parameters. More specifically, it

is of interest to determine whether the decision made at a particular state x ∈ S by some socially

optimal policy θ∗ can be inferred from the decision chosen at another state in S.

Certain structural properties of the selfishly optimal policy θ̃ (as defined in Section 4.1) can be

shown trivially. For example, if θ̃ chooses to balk at some state x ∈ S, then it must also choose

to balk at state xj+, for any j ∈ {1, 2, ..., N}. This is referred to as a monotonicity property, in

the sense that if balking is chosen at state x, then balking is also chosen at any state y ∈ S which

satisfies the componentwise inequality x ≤ y (that is, xi ≤ yi for all i ∈ {1, 2, ..., N}). It is of

considerable interest to establish whether or not socially optimal policies exist which satisfy similar

monotonicity properties. If such policies exist, then it may be possible to construct specialised

algorithms (as alternatives to conventional dynamic programming algorithms) in order to find

them efficiently. Unfortunately, establishing monotonicity properties of an N -facility queueing

system with heterogeneous servers is far from an easy task; indeed, counter-examples can be found

to disprove many reasonable theories (see Appendix A.8). For this reason, most of the results given

in this chapter apply only to systems which are significantly reduced in complexity.

For clarity, all of the results in this chapter assume a single Poisson arrival stream of customers,

without the extension to heterogeneous customers discussed in Section 4.5; that is, the rewards αi

and holding costs βi at the various facilities are assumed to be the same for all customers. The MDP

Υ formulated in Section 3.5 will be considered throughout, with the real-time reward formulation

(3.5.4) used in some results and the anticipatory formulation (3.5.15) used in others. Section 5.1

will consider single-facility systems. Section 5.2 will discuss ‘2DSS’ systems, consisting of two

facilities with a single server each. Section 5.3 will briefly consider N -facility systems where all

164
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facilities are homogeneous (i.e. they share the same set of parameters). Section 5.4 will introduce

some computational algorithms which are based on results proved in the preceding sections. In

addition, Appendix A.8 provides various counter-examples to show that many of the results proved

for smaller systems cannot be generalised easily in systems of greater complexity.

5.1 A single facility

This section considers the special case N = 1 in the queueing system described in Section 3.1. As

such, it will be convenient to drop the facility index i, so that the number of channels, service

rate, fixed reward and holding cost per unit time are given by c, µ, α and β (all > 0) respectively.

Customers arrive at a rate λ > 0 and may either join or balk (denoted by actions 1 and 0 respec-

tively), so that essentially the system consists of a single M/M/c queue with admission control.

Given that the assumption of multiple, heterogeneous facilities is fundamental to much of the work

in this thesis, it is reasonable to question whether a problem involving a single M/M/c queue is

actually worthy of consideration at all. In fact, there are several justifications for examining this

single-facility problem before moving on to larger-scale problems. For example:

• A number of interesting results involving contrasts between selfishly and socially optimal

customer behaviour can be proved in single-facility problems, which are difficult (or, unfor-

tunately, impossible) to generalise for multiple-facility problems.

• Structural properties of optimal policies in single-facility problems offer clues regarding the

nature of policies which may perform extremely well in multiple-facility problems, even if

they do not necessarily achieve optimality; this will be explored later on.

• Deriving the heuristic policies which are the subject of Chapter 6 in this thesis depends, to

some extent, on analysing individual facilities as if they were operating in isolation. The

subsequent analysis of these heuristic policies can be greatly simplified if certain properties

of socially optimal policies in single-facility systems are already known.

Unsurprisingly, the control of single-facility queueing systems has already been treated extensively

in the literature. Naor [131] considered admission control in an observable M/M/1 queue, and

Knudsen [103] extended some of Naor’s results to observable M/M/c queues. Other significant
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early contributions include those of Yechiali [203, 204], Littlechild [121] and Lippman and Stidham

[120]. Hassin and Haviv [76] have provided a comprehensive survey of the literature. In view of

these existing works, it must be acknowledged that some of the results in this section are already

‘known’; this will be indicated where appropriate. However, several of the proofs presented will

be original ones based on dynamic programming arguments. It will be useful to demonstrate the

use of inductive arguments based on relative value iteration to prove structural properties in the

one-facility case, since this technique will be relied upon throughout this chapter.

All of the results in this section assume N = 1 (a single facility), so this assumption will be omitted

from the statements of lemmas, theorems etc. in order to avoid unnecessary repetition. Since there

is a single facility, let the system state be denoted by a scalar x ∈ N0. As mentioned previously,

there are two possible actions at each state: a customer may join (a = 1) or balk (a = 0). Before

proceeding, it will be useful to recall results from previous chapters which will simplify the analysis

of the single-facility system. Firstly, it may be observed that a customer’s individual expected net

reward w(x, a) for taking action a ∈ {0, 1} under some state x ∈ N0 is given by:

w(x, a) :=



α− β

µ
, if a = 1 and x < c,

α− β(x+ 1)

cµ
, if a = 1 and x ≥ c,

0, if a = 0.

(5.1.1)

According to the definition of the selfishly optimal policy θ̃ in Section 4.1, θ̃(x) = 1 if and only if

w(x, 1) ≥ 0. Using (5.1.1), it then follows that θ̃(x) = 1 if and only if:

x <

⌊
αcµ

β

⌋
=: T̃ .

So, in the single-facility case, the selfishly optimal state space S̃ is the set of integers {0, 1, 2, ..., T̃}.

Theorem 4.2.4, which holds for arbitrary N ∈ N, implies that there exists a stationary socially

optimal policy θ∗ which induces a Markov chain with a positive recurrent state space contained in

{0, 1, 2, ..., T̃}. Moreover, at any state x ∈ N0, one may assume that θ∗ chooses the action a ∈ {0, 1}

which attains the maximum in the average reward optimality equations:

g∗ + h(x) = max
a∈{0,1}

r(x) +
∑
y∈N0

p(x, a, y)h(y)

 (x ∈ N0), (5.1.2)



Chapter 5 Monotonicity and structure 167

where g∗ is the optimal expected long-run average reward, h(·) is a relative value function, and r(·)

is the real-time reward function defined in (3.5.4). Specifically:

r(x) = min(x, c)αµ− βx. (5.1.3)

The anticipatory reward function r̂ is defined for state-action pairs (x, a) ∈ N0 × {0, 1} as:

r̂(x, a) = λw(x, a). (5.1.4)

Using the technique of uniformisation (see Section 3.3), the transition probabilities p(x, a, y) are as

defined in (3.5.3) (after appropriate translation to the N = 1 case), with ∆ ∈ (0, (λ+ cµ)−1] as the

discrete-time step size. Hence, the optimality equations (5.1.2) may be written:

g∗ + h(x) = r(x) + λ∆ max(h(x), h(x+ 1))

+ min(x, c)µ∆h(x− 1)

+ (1− λ∆−min(x, c)µ∆)h(x) (x ∈ N0), (5.1.5)

where it should be noted that min(x, c)µ∆ = 0 if x = 0, so that the non-existence of h(x − 1) in

this case constitutes only a minor abuse of notation rather than an invalidation of the equation.

Throughout this chapter, extensive use will be made of the principle (justified by Theorem 4.2.4)

that a socially optimal policy θ∗ can be found by applying relative value iteration on the finite state

space S̃. Accordingly, in this section, the following conventions are assumed:

• The values h(x) satisfying the equations (5.1.2) for states x ∈ {0, 1, ..., T̃} are assumed to be

found by relative value iteration on {0, 1, ..., T̃}, with x = 0 chosen as a reference state and

the real-time reward formulation (5.1.3) used. Thus, these values can be found by considering

a problem in which balking (a = 0) is the only action permitted at state T̃ .

• Similarly, the notation ĥ(·) is used to represent the function satisfying the equations which

are obtained by replacing h with ĥ and r(x) with r̂(x, a) in (5.1.2), and the values ĥ(x) for

states x ∈ {0, 1, ..., T̃} are obtained by relative value iteration on {0, 1, ..., T̃}.

• θ∗ denotes the socially optimal policy which chooses the action attaining the maximum in

(5.1.2) for each state x ∈ {0, 1, ..., T̃ − 1}, with joining (a = 1) chosen in the event of a tie. It

may be assumed that balking is chosen by θ∗ at all states x ≥ T̃ .



Chapter 5 Monotonicity and structure 168

These conventions will help to avoid some ambiguity, since socially optimal policies are generally

non-unique, even when attention is restricted to the stationary class (see, for example, [78]). Fur-

thermore, they enable inductive proofs to be constructed in a straightforward way. Many of the

results in this section are proved using somewhat repetitive arguments, so it will be desirable to

keep these proofs as brief as possible. Accordingly, it will be useful to introduce some shorthand

notation for the first-order difference h(x + 1) − h(x). Given any state x ∈ N0 and an arbitrary

real-valued function f : N0 → R, let the operator D(x, f) be defined as follows:

D(x, f) := f(x+ 1)− f(x).

Also, in order to shorten some of the proofs that follow later, it will be useful to state a general

principle which will be relied upon frequently. The result is stated in the context of a general

N -facility system, since it will be useful to refer to it in later sections.

Lemma 5.1.1. (Action Selection Principle (ASP))

Let x1,x2, ...,xn and y1,y2, ...,yn be arbitrary states in S, for some n ∈ N. Suppose there exist

actions a1, a2, ..., an permissible at states x1,x2, ...,xn respectively, such that:

n∑
i=1

f(xai+i )−
n∑
i=1

max
a∈Ayi

f(ya+
i ) ≥ 0, (5.1.6)

where f(·) is an arbitrary real-valued function. Then the following also holds:

n∑
i=1

max
a∈Axi

f(xa+
i )−

n∑
i=1

max
a∈Ayi

f(ya+
i ) ≥ 0, (5.1.7)

Similarly, suppose that for some actions b1, b2, ..., bn permissible at y1,y2, ...,yn respectively:

n∑
i=1

max
a∈Axi

f(xa+
i )−

n∑
i=1

f(ybi+i ) ≤ 0. (5.1.8)

Then the following also holds:

n∑
i=1

max
a∈Axi

f(xa+
i )−

n∑
i=1

max
a∈Ayi

f(ya+
i ) ≤ 0. (5.1.9)

Proof. The proof is immediate by definition of the maximisation operator; specifically,

maxa∈Ax f(xa+) ≥ f(xb+) for any state x ∈ S and action b ∈ Ax. �
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The implication of Lemma 5.1.1 is that, in order to show that an inequality of the form (5.1.7)

holds, it is sufficient to select some ‘convenient’ actions a1, a2, ..., an for which it can be shown

that (5.1.6) holds (with a similar procedure for establishing an inequality of the form (5.1.9)). In

the proofs that follow, it will often be possible to show that the same actions a1, a2, ..., an which

maximise f(ya+
1 ), f(ya+

2 ), ..., f(ya+
n ) can also be chosen at states x1,x2, ...,xn, with the result that

(5.1.6) holds. This will be an important strategy throughout this chapter.

The next result establishes important structural properties of the relative value functions h and

ĥ. Specifically, the properties of uniform upper boundedness and monotonicity for the first-order

differences D(x, h) = h(x+ 1)− h(x) and D(x, ĥ) = ĥ(x+ 1)− ĥ(x) will be proved.

Lemma 5.1.2. The function h satisfies the properties:

D(x, h) ≤ (α− β/µ) /∆ ∀ x ∈ {0, 1, ..., T̃ − 1}, (5.1.10)

D(x+ 1, h)−D(x, h) ≤ 0 ∀ x ∈ {0, 1, ..., T̃ − 2}. (5.1.11)

On the other hand, the function ĥ satisfies:

D(x, ĥ) ≤ 0 ∀ x ∈ {0, 1, ..., T̃ − 1}, (5.1.12)

r̂(x+ 1, 1)− r̂(x, 1) + λ∆
(
D(x+ 1, ĥ)−D(x, ĥ)

)
≤ 0 ∀ x ∈ {0, 1, ..., T̃ − 2}. (5.1.13)

Proof. By Theorem 3.7.4, it is sufficient to consider the finite-stage functions hn and ĥn obtained

during relative value iteration and show that for all integers n ≥ 0:

D(x, hn) ≤ (α− β/µ) /∆ ∀ x ∈ {0, 1, ..., T̃ − 1}, (5.1.14)

D(x+ 1, hn) ≤ D(x, hn) ∀ x ∈ {0, 1, ..., T̃ − 2}, (5.1.15)

D(x, ĥn) ≤ 0 ∀ x ∈ {0, 1, ..., T̃ − 1}, (5.1.16)

r̂(x+ 1, 1) + λ∆D(x+ 1, ĥn) ≤ r̂(x, 1) + λ∆D(x, ĥn) ∀ x ∈ {0, 1, ..., T̃ − 2}. (5.1.17)

The proof can be accomplished using induction. For details, see Appendix A.5, page 426. �

The results of Lemma 5.1.2 can be used to establish the optimality of threshold policies in single-

facility systems. Threshold policies for M/M/1 queues have already been discussed in Chapter 2,

and they have an identical definition in the M/M/c case, as stated below.
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Definition 5.1.3. (Threshold policy)

Let θ be a stationary policy. If there exists an integer T ∈ N0 such that θ(x) = 0 if and only if

x ≥ T ; then θ is said to be a threshold policy with threshold T .

The next result introduces the concept of a monotone control policy by showing that it is possible

to find selfishly and socially optimal policies for the system which are threshold policies. This has

also been shown by Knudsen [103] using a different approach. Recall that θ∗ denotes the stationary

policy for which θ∗(x) attains the maximum in (5.1.2) for all x ∈ {0, 1, ..., T̃}, with joining chosen

over balking in the event of a tie and balking chosen at all states x ≥ T̃ .

Theorem 5.1.4. The selfishly optimal and socially optimal policies θ̃ and θ∗ are both threshold

policies with thresholds T̃ ≥ 1 and T ∗ ≥ 1 respectively. Moreover:

T ∗ ≤ T̃ .

Proof. First, consider the selfishly optimal case. As discussed earlier, θ̃(x) = 1 if and only if:

x <

⌊
αcµ

β

⌋
,

so T̃ = bαcµ/βc is the selfishly optimal threshold. The fact that T̃ ≥ 1 follows from the assumption

(made in Section 3.1) that α− β/µ > 0, and hence αµ/β > 1. Next, consider the socially optimal

case. The policy θ∗ chooses to balk at state x ∈ {0, 1, ..., T̃ − 1} if and only if:

h(x+ 1) < h(x).

In order to show that θ∗ is a threshold policy, it suffices to show that if balking is chosen by θ∗ at

some state x ∈ {0, 1, ..., T̃ − 2}, then it must also be chosen at state x+ 1. That is:

θ∗(x) = 0 ⇒ θ∗(x+ 1) = 0.

Equivalently, since θ∗(x) = 0 if and only if h(x+ 1) < h(x):

h(x+ 1) < h(x) ⇒ h(x+ 2) < h(x+ 1).

This follows directly from the property D(x + 1, h) ≤ D(x, h) proved in Lemma 5.1.2, so θ∗ is a

socially optimal policy which is also a threshold policy with some threshold T ∗ ∈ N. Finally, the
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fact that T ∗ ≤ T̃ is a direct consequence of the containment property for socially optimal policies

established (in greater generality) by Theorem 4.2.4 and Theorem 4.2.5. �

The next lemma addresses the progression of the first-order differences D(x, hn) and D(x, ĥn)

obtained during relative value iteration, and in doing so highlights an interesting contrast between

the real-time and anticipatory reward formulations in (5.1.3) and (5.1.4) respectively.

Lemma 5.1.5. The finite-stage relative value functions hn and ĥn corresponding to the reward

formulations (5.1.3) and (5.1.4) respectively satisfy, for all integers n ∈ N0:

D(x, ĥn+1) ≤ D(x, ĥn) ∀ x ∈ {0, 1, ..., T̃ − 1}, (5.1.18)

D(x, hn+1) ≥ 0 ⇒ D(x, hn+2) ≥ 0 ∀ x ∈ {0, 1, ..., T̃ − 1}. (5.1.19)

Proof. Again, the results can be proved by induction. See Appendix A.5, page 433.

An implication of Lemma 5.1.5 is that if the anticipatory reward formulation is used and D(x, ĥn) <

0 for some x ∈ {0, 1, ..., T̃ − 1} on iteration n ≥ 0 of relative value iteration, then D(x, ĥm) ≤

D(x, ĥn) < 0 for all m > n and (by taking limits) D(x, ĥ) < 0. Therefore if one considers a finite

horizon problem with n stages, it may be said that balking becomes a ‘more attractive’ option at x

as the finite horizon n increases in length. On the other hand, under the real-time formulation, the

converse result is true. That is, if D(x, hn) ≥ 0 on iteration n ≥ 1 of relative value iteration, then

D(x, hm) ≥ 0 for all m > n and hence D(x, h) ≥ 0. So, under this formulation, joining becomes

more attractive as n increases. These insights into the nature of optimal finite-horizon policies

under the respective reward formulations will prove to be useful in Section 5.4.

Naturally, by definition of the socially optimal policy, the expected long-run average reward attained

under the optimal threshold T ∗ must be greater than or equal to that attained under the selfish

policy with threshold T̃ . The next result shows that in fact, any of the ‘intermediate’ thresholds T

satisfying T ∗ < T < T̃ yield a better performance than the selfish threshold T̃ .

Lemma 5.1.6. Let gT denote the expected long-run average reward attained under a threshold

policy with threshold T ∈ N0. Then:

gT ∗ ≥ gT ∗+1 ≥ ... ≥ gT̃−1 ≥ gT̃ , (5.1.20)

where T̃ and T ∗ are, respectively, the thresholds corresponding to the selfishly optimal policy θ̃ and

the socially optimal policy θ∗ found by relative value iteration.
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Proof. If T ∗ = T̃ or T ∗ = T̃ − 1 then the result is immediate since gT ∗ ≥ gT̃ by definition of the

policy θ∗. Suppose T ∗ ≤ T̃ −2. The aim of this proof is to show that gT ≥ gT+1 for any threshold T

satisfying T ∗ ≤ T < T̃ . Consider the evolution of the Relative Value Iteration Algorithm (RVIA),

assuming that the anticipatory reward formulation (5.1.4) is used. Since the RVIA converges to

the policy with threshold T ∗, there exists an integer k such that for all n ≥ k:

r̂(x, 1) + λ∆D(x, ĥn) ≥ 0 ∀ x ∈ {0, 1, ..., T ∗ − 1}, (5.1.21)

r̂(x, 1) + λ∆D(x, ĥn) < 0 ∀ x ∈ {T ∗, T ∗ + 1, ..., T̃ − 1}. (5.1.22)

Importantly, this implies that (5.1.21) holds for all integers n ≥ 0, since if the left-hand side of

(5.1.21) was negative at some stage n = n0, then Lemma 5.1.5 would imply that it would remain

negative at all subsequent stages n > n0. Let Un be defined for n ≥ 1 as follows:

Un := min
{
x ∈ {0, 1, ..., T̃ − 1} : r̂(x, 1) + λ∆D(x, ĥn−1) < 0

}
. (5.1.23)

In cases where {x ∈ {0, 1, ..., T̃ − 1} : r̂(x, 1) + λ∆D(x, ĥn−1) < 0} is an empty set, Un = T̃ will

be assumed. Hence, Un may be referred to as the ‘optimal finite-stage threshold’ at stage n of the

RVIA. Clearly, U1 = T̃ since ĥ0(x) = 0 for all x ∈ {0, 1, ..., T̃} and r̂(x, 1) < 0 if and only if x ≥ T̃ .

The sequence (U1, U2, U3, ...) must be monotonically decreasing due to Lemma 5.1.5. Furthermore,

limn→∞ Un = T ∗ since the RVIA eventually converges to the T ∗-threshold policy.

Given some threshold T ∈ N0 satisfying T ∗ < T < T̃ , consider a re-defined problem where balking is

not allowed at any state x < T ; that is, the action set at any state x < T consists only of the single

action a = 1. Suppose the RVIA is applied to this problem, again assuming that the anticipatory

reward formulation is used. It can easily be verified that the inequality (5.1.18) in Lemma 5.1.5

still holds when the problem is re-defined in this way. Indeed, this can be done without having to

rely upon Lemma 5.1.2, since Lemma 5.1.2 was used in the proof of Lemma 5.1.5 only in order to

rule out the decision-making case a1 = 1 and b0 = 0 in (A.5.20), but even if this case is allowed

then one can simply choose a0 = 0 and b1 = 1 in order to show that (A.5.20) holds.

Let Un be defined as in (5.1.23), and also let nT ∈ N0 be defined as follows:

nT := min {n ∈ N0 : Un ≤ T} .

That is, nT is the earliest iteration of the RVIA at which the threshold ‘drops’ to T . It must be the

case that nT is finite, i.e. the algorithm will reach a threshold of T at some point. This is because,
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for n < nT , the iterates ĥn(·) take exactly the same values in the re-defined problem as they do

in the original problem (with balking allowed at all states). The fact that balking is forbidden at

states x < T makes no difference during the early iterations n < nT , since balking would not be

chosen at any state x < T on these iterations in the original problem. So, given that the RVIA

converges to the threshold T ∗ < T in the original problem, there must be a stage nT during its

evolution at which r̂(T, 1) +λ∆D(T, ĥnT ) < 0, and therefore the same inequality holds at the same

stage in the re-defined problem. Due to (5.1.18), this implies that for all n ≥ nT :

r̂(x, 1) + λ∆D(x, ĥn) < 0 ∀ x ≥ T.

Hence, the RVIA converges to the threshold policy with threshold T in the re-defined problem,

which implies that the T -threshold policy is superior (or at least equal) to any larger-threshold

policy in terms of expected long-run average reward. In particular, it is superior to the policy

with threshold T + 1; that is, gT ≥ gT+1 as required. Since this argument can be applied to any

threshold T satisfying T ∗ < T < T̃ , this completes the proof of the lemma. �

Incidentally, it is also possible to use an argument very similar to that in the previous proof which

uses the real-time reward formulation (5.1.3) and the property (5.1.19) proved in Lemma 5.1.5 in

order to show that the average rewards g0, g1, ...., gT ∗ (where gT again denotes the average reward

earned under the threshold policy with threshold T ) satisfy the relationship:

g0 ≤ g1 ≤ ... ≤ gT ∗ . (5.1.24)

Combining (5.1.24) with the result (5.1.20) proved by Lemma 5.1.6 then shows that the average

reward gT is unimodal in T ; that is, a local maximum is also a global maximum. This is a result

also proved by Knudsen [103] (p. 520), and is illustrated in Figure 5.1. This unimodality property

will not be needed in subsequent results, but Lemma 5.1.6 will prove to be useful.

The next result concerns the effect of varying the demand rate λ on the relative values h(x) and the

first-order differences D(x, h). The result is given for the real-time reward formulation (5.1.3) only,

although it would be possible to obtain a similar result under the alternative formulation (5.1.4).

For each x ∈ {0, 1, ..., T̃}, let h(x, λ) denote the relative value h(x) (as determined by relative value

iteration) given a demand rate λ > 0. Also, for each x ∈ {0, 1, ..., T̃ − 1}, define:

D(x, λ, h) := h(x+ 1, λ)− h(x, λ),
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Figure 5.1: Expected long-run average rewards under various different threshold policies in a system with

λ = 6, c = 3, µ = 2, α = 9, β = 5. The selfishly and socially optimal thresholds are T̃ = 10 and T ∗ = 5.

D(x, λ, hn) := hn(x+ 1, λ)− hn(x, λ) ∀ n ∈ N0.

Lemma 5.1.7. Suppose that, for some demand rate λ0 > 0 and state x ∈ {0, 1, ...., T̃ − 1}:

D(x, λ0, h) < 0.

Then, for all demand rates λ ∈ (λ0,∞):

D(x, λ, h) < 0. (5.1.25)

Proof. The proof again relies upon induction. See Appendix A.5, page 436.

From Lemma 5.1.7 one obtains the following important result.

Theorem 5.1.8. Let T ∗(λ) denote the threshold associated with the socially optimal policy θ∗λ

obtained using relative value iteration, given a demand rate λ > 0. Then:

• T ∗(λ) is monotonically decreasing with λ;

• lim
λ→∞

T ∗(λ) = c.

Proof. Note that the fact that θ∗λ is a threshold policy is already known from Theorem 5.1.4. Given

a demand rate λ > 0, the policy θ∗λ chooses actions in the following way:

θ∗λ(x) =


1, if D(x, λ, h) ≥ 0,

0, otherwise.



Chapter 5 Monotonicity and structure 175

The socially optimal threshold T ∗(λ) may therefore be defined as:

T ∗(λ) = min
{
x ∈ {0, 1, ..., T̃ − 1} : D(x, λ, h) < 0

}
, (5.1.26)

with T ∗(λ) = T̃ in the case where {x ∈ {0, 1, ..., T̃ − 1} : D(x, λ, h) < 0} is an empty set. Lemma

5.1.7 states that if D(x, λ0, h) < 0 for some demand rate λ0 > 0, then D(x, λ1, h) < 0 for all

demand rates λ1 > λ0. Therefore, given λ0 < λ1, (5.1.26) implies that:

T ∗(λ1) ≤ T ∗(λ0).

The fact that limλ→∞ T
∗(λ) = c can be argued using the fact that, for sufficiently large values of

λ, the policy with threshold T ∗(λ) = c is the only threshold policy which attains average reward

optimality. Note that the fact that the c-threshold policy is optimal in a heavy-traffic limit is

already known from Theorem 4.4.7, since it is an example of a vacancy policy (see Definition

4.4.6). However, it is desirable to show that the c-threshold policy is the only socially optimal

threshold policy in heavy traffic, in order to establish that it is not possible for relative value

iteration to converge to any other policy. Let σ > 0 be defined as follows:

σ := max (r(c− 1), r(c+ 1)) .

Due to the fact that the reward r(x) is strictly increasing with x when x < c and strictly decreasing

when x > c, it follows that σ ≥ r(x) for any x 6= c. Let θ be a policy with threshold T 6= c. Using

standard results for finite-buffer M/M/c queues (see, for example, [67], p. 75), the steady-state

probability πθ(x) of the system being in state x ∈ N0 satisfies the following:

lim
λ→∞

πθ(x) =


1, if x = T,

0, otherwise.

(5.1.27)

Let ε be a positive quantity whose value is given by:

ε :=
r(c)− σ

r(c)− σ + αcµ
> 0. (5.1.28)

Note that ε depends only on the parameters α, β, µ and c, and not on the demand rate λ. Due to

(5.1.27), there exists a value δ(ε) > 0 such that, for all λ > δ(ε):

gθ(λ) = πθ(T )r(T ) +
∑
x 6=T

πθ(x)r(x) < (1− ε)σ + εαcµ, (5.1.29)
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where gθ(λ) is the long-run average reward under policy θ given demand rate λ, and the inequality

is due to the fact that r(x) < αcµ for all x ∈ N0 and (since T 6= c), r(T ) ≤ σ. Meanwhile, let θ∗

be the threshold policy with threshold c. Then, for all demand rates λ > δ(ε), using the fact that

only states x ≤ c are positive recurrent under θ∗, one may write:

gθ∗(λ) = πθ(c)r(c) +
∑
x<c

πθ(x)r(x) > (1− ε)r(c), (5.1.30)

where the inequality is due to the fact that r(x) ≥ 0 for all x ≤ c. Suppose, for a contradiction,

that gθ(λ) ≥ gθ∗(λ) for some λ > δ(ε). Then, in view of (5.1.29) and (5.1.30):

(1− ε)σ + εαcµ > (1− ε)r(c).

However, this is equivalent to:

ε >
r(c)− σ

r(c)− σ + αcµ
,

which contradicts the definition of ε in (5.1.28). The conclusion is that, for sufficiently large

demand rates, the policy θ∗ with threshold c attains a strictly greater average reward than any

other threshold policy. This completes the proof of the theorem. �

The next lemma is required in order to prove the final result of this section.

Lemma 5.1.9. Let g̃(λ) be the expected long-run average reward attained under the selfish policy

θ̃ given a demand rate λ > 0, and let g∗(λ) be the optimal expected long-run average reward under

the same demand rate. Then g̃(λ) and g∗(λ) are both continuous in λ.

Proof. In the case of the selfish policy θ̃, it suffices to show that the expected long-run average

reward under a fixed threshold policy (where the threshold is independent of λ) is continuous in λ.

In the case of the optimal value g∗(λ), one may consider the threshold T ∗(λ) associated with the

policy θ∗λ found by relative value iteration, and show that g∗(λ) is continuous at the critical values

of λ where T ∗(λ) changes. For details, see Appendix A.5, page 438. �

The next result brings together all of the previous results in order to prove an interesting result for

M/M/1 queues. In the special case c = 1, it is possible to show that the (absolute) sub-optimality

of the selfishly optimal policy θ̃ increases monotonically with the demand rate λ. The proof relies
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on the construction of a stochastic coupling (see Section 3.8); however, in this particular case it is

possible to obtain the stationary distribution for the coupling explicitly and then prove the result

by examining the derivatives of the stationary probabilities with respect to λ.

Theorem 5.1.10. Consider an M/M/1 system (c = 1). Given a demand rate λ > 0, let L(λ) be

the ‘loss per unit time’ due to selfish decision-making, defined as follows:

L(λ) = g∗(λ)− g̃(λ),

where g∗(λ) and g̃(λ) are (respectively) the optimal expected long-run average reward and the average

reward under the selfish policy θ̃. Then L(λ) is monotonically increasing with λ.

Proof. Naturally, all of the previous results in this section apply to the M/M/1 queue since it is

merely a special case of an M/M/c queue. For any demand rate λ > 0, Theorem 5.1.4 implies that

the optimal expected long-run average reward g∗(λ) is attained by a policy θ∗λ with a threshold

T ∗(λ) satisfying T ∗(λ) ≤ T̃ , where T̃ = bαµ/βc is the selfishly optimal threshold. By Theorem

5.1.8, T ∗(λ) is monotonically decreasing with λ and limλ→∞ T
∗(λ) = c = 1, assuming that T ∗(λ)

corresponds to the policy found by relative value iteration. As stated in the proof of Lemma

5.1.9, it follows that there exist m demand rates λ1 < λ2 < ... < λm and m + 1 thresholds

T ∗0 > T ∗1 > ... > T ∗m−1 > T ∗m = 1, such that, for i = 0, 1, ...,m− 1:

T ∗(λ) = T ∗i ∀ λ ∈ (λi, λi+1], (5.1.31)

where λ0 = 0 and T ∗(λ) = 1 for λ > λm. Let gT (λ) denote the average reward under the policy with

threshold T ∈ N0 given a demand rate λ > 0. For any fixed λ > 0, one has L(λ) = gT ∗i (λ) − g̃(λ)

for some i ∈ {0, 1, ..,m}. Due to the continuity of g̃(λ) and g∗(λ) proved by Lemma 5.1.9, L(λ)

is continuous at the points λi where the optimal threshold changes. Therefore it remains only to

show that L(λ) is monotonically increasing in each of the intervals where the optimal threshold

remains constant. More specifically, it is sufficient to show that L(λ) is monotonically increasing

with λ in the intervals (λi, λi+1] (for i ∈ {0, 1, ..,m− 1}) and also (λm,∞).

Given any λ > 0, one has L(λ) = gT ∗i (λ)− g̃(λ) for some i ∈ {0, 1, ...,m}. Equivalently:

L(λ) =
(
gT ∗i (λ)− gT ∗i +1(λ)

)
+
(
gT ∗i +1(λ)− gT ∗i +2(λ)

)
+ ...+

(
gT̃−1(λ)− gT̃ (λ)

)
, (5.1.32)



Chapter 5 Monotonicity and structure 178

where the bracketed expressions are all non-negative due to Lemma 5.1.6. Let i ∈ {0, 1, ...,m}

be fixed. Due to (5.1.32), it will be sufficient to consider two threshold policies with thresholds

T and T + 1 respectively, where it is assumed that T ∗i ≤ T < T̃ , and show that the difference

gT (λ)− gT+1(λ) is monotonically increasing with λ in the interval (λi, λi+1]. Given a fixed service

rate µ, holding cost β and reward for service α, let (xn)n∈N0 and (yn)n∈N0 denote the state-time

evolutions of two processes following threshold policies with thresholds T and T + 1 respectively.

Furthermore, let (x̂n, ŷn)n∈N0 be a coupled process, constructed in such a way that the marginal

processes (x̂n) and (ŷn) have distributions identical to those of (xn) and (yn) respectively (refer to

Section 3.8 for some background details on the coupling technique). Specifically, let it be assumed

that the random transitions of the coupling (x̂n, ŷn) obey the following rules:

• At any time step n, there is a probability λ∆ that both of the marginal processes (x̂n) and

(ŷn) see an arrival. In the case of (x̂n), the new customer joins if and only if x̂n < T ; in the

case of (ŷn), the customer joins if and only if ŷn < T + 1.

• With the remaining probability µ∆ = 1−λ∆, a service completion occurs; this event is ‘seen

by’ (i.e. affects) the marginal process (x̂n) if and only if x̂n ≥ 1, and similarly it is seen by

the other marginal process (ŷn) if and only if ŷn ≥ 1.

It is easy to see that these transition rules ensure that, given any n ∈ N0, the distributions of x̂n

and ŷn are identical to those of xn and yn respectively. Furthermore, it is guaranteed that one must

have either ŷn = x̂n or ŷn = x̂n + 1 at all times steps n. Assuming that the coupling is initialised

in state (0, 0), the set of attainable states for (x̂n) is {0, 1, ..., T}, and it follows that the number

of attainable states for the coupling (x̂n, ŷn) during its evolution is 2(T + 1). This may be seen

from Figure 5.2, which illustrates the state transitions for the coupling. Let R denote the set of

states in the coupled process with x̂n = ŷn ≤ T (i.e. the bottom row of states in Figure 5.2), and

let G denote the complementary set of states with x̂n = ŷn − 1 ≤ T . Here, ‘R’ and ‘G’ stand for

‘Regular’ and ‘Ghost’ respectively; one might imagine that the states belonging to the set G are

those which represent the smaller-threshold process (xn) carrying the ‘ghost’ of a customer who

would have been present if the policy with threshold T + 1 had been followed. Suppose the coupled
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Figure 5.2: Transition diagram for the coupled process (x̂n, ŷn).

process (x̂n, ŷn) earns state-dependent rewards rc((x̂n, ŷn)), defined as follows:

rc((x̂n, ŷn)) :=


β − αµ, if(x̂n, ŷn) = (0, 1),

β, if (x̂n, ŷn) ∈ G \ {(0, 1)},

0, if (x̂n, ŷn) ∈ R.

(5.1.33)

Let π((x̂n, ŷn)) denote the steady-state probability of the coupled process being in state (x̂n, ŷn),

with the dependence of π((x̂n, ŷn)) on λ suppressed for notational convenience. It may be seen

that, given any λ > 0, the expected long-run average reward gc(λ) =
∑

(x̂n,ŷn) π((x̂n, ŷn))rc((x̂n, ŷn))

earned by the coupled process corresponds exactly to gT (λ)−gT+1(λ), the (non-negative) difference

between the average rewards under the policies with thresholds T and T+1. Indeed, the state (0, 1)

represents the scenario where the process (yn) has one customer in service, whereas (xn) has no

customers present. By the definition of the rewards in (5.1.3), (yn) earns a positive reward αµ− β

under this scenario, whereas (xn) earns a zero reward; in fact, this represents the only scenario in

which the larger-threshold process (yn) is ‘winning’ against (xn). If (x̂n, ŷn) ∈ G \ {(0, 1)}, this

represents a scenario where both of the processes (xn) and (yn) have one customer in service, but

(yn) has one extra customer waiting in the queue and thereby incurs an extra holding cost; hence,

(xn) is at an advantage of β over (yn) in terms of the single-step reward at that instance. Finally,

the case (x̂n, ŷn) ∈ R represents a scenario where (xn) and (yn) have the same number of customers
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present; hence, rc((x̂n, ŷn)) = 0 since there is no advantage earned by either process.

Let π(R) =
∑

(x̂n,ŷn)∈R π((x̂n, ŷn)) be the stationary probability of the coupled process being in

one of the ‘regular’ states, and let π(G) = 1 − π(R) denote the corresponding probability for the

‘ghost’ states. By the previous arguments, the following convenient formula relates the stationary

probabilities of the coupled process to the average rewards gT (λ) and gT+1(λ):

gT (λ)− gT+1(λ) = βπ(G)− αµπ((0, 1)).

This may equivalently be written as:

gT (λ)− gT+1(λ) = π(G)

(
β − αµπ((0, 1))

π(G)

)
, (5.1.34)

where π((0, 1))/π(G) (naturally) represents the conditional probability of the coupled process being

in state (0, 1), given that it is in the set G. Note that β − αµπ((0, 1))/π(G) must be non-negative,

because it is known (from Lemma 5.1.6) that gT (λ) ≥ gT+1(λ). In order to show that gT (λ) −

gT+1(λ) is monotonically increasing with λ, it therefore suffices to show:

1. π(G) is monotonically increasing with λ,

2. π((0, 1))/π(G) is monotonically decreasing with λ.

One may proceed by deriving the stationary probabilities for the coupled process explicitly. First,

consider the states belonging to the set R = {(0, 0), (1, 1), ..., (T, T )}. Given a demand rate λ > 0,

let ρ = λ/µ. Obviously, showing that a certain quantity is increasing (decreasing) with λ is

equivalent to showing that it is increasing (decreasing) with ρ. The steady-state balance equations

(see, for example, [167]) may be derived for states (x̂n, ŷn) ∈ R as follows:

ρπ((0, 0)) = π((1, 1)) + π((0, 1))

(1 + ρ)π((1, 1)) = π((2, 2)) + ρπ((0, 0))

(1 + ρ)π((2, 2)) = π((3, 3)) + ρπ((1, 1))

...

(1 + ρ)π((T − 1, T − 1)) = π((T, T )) + ρπ((T − 2, T − 2))

(1 + ρ)π((T, T )) = ρπ((T − 1, T − 1)). (5.1.35)
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Also, using the detailed balance equations for ergodic Markov chains (see, e.g. [167]), the ‘rate of

flow’ into the set G must equal the ‘rate of flow’ out of G. Hence:

ρπ((T, T )) = π((0, 1)). (5.1.36)

Therefore, by replacing π((0, 1)) with ρπ((T, T )) in the first equation in (5.1.35), one obtains

a system of T + 1 linear equations in the T + 1 unknowns π((0, 0)), π((1, 1)), ..., π((T, T )) only.

Using recursive substitution, it can then be shown that the stationary probabilities π((n, n)) (for

n = 0, 1, ..., T ) may be expressed in terms of the probability π((T, T )) as follows:

π((n, n)) =

(
1 + ρ+ ρ2 + ...+ ρT−n

ρT−n

)
π((T, T )).

Equivalently, for n ∈ {0, 1, ..., T}:

π((n.n)) =


1− ρT−n+1

ρT−n(1− ρ)
π((T, T )), ρ 6= 1,

(T − n+ 1)π((T, T )), ρ = 1.

(5.1.37)

Now consider the complementary set G = {(0, 1), (1, 2), ..., (T, T + 1)}. The steady-state balance

equations for states in G may be derived in a similar fashion:

(1 + ρ)π((0, 1)) = π((1, 2))

(1 + ρ)π((1, 2)) = π((2, 3)) + ρπ((0, 1))

(1 + ρ)π((2, 3)) = π((3, 4)) + ρπ((1, 2))

...

(1 + ρ)π((T − 1, T )) = π((T, T + 1)) + ρπ((T − 2, T − 1))

π((T, T + 1)) = ρπ((T − 1, T )) + ρπ((T, 0)). (5.1.38)

Recalling that ρπ((T, T )) = π((0, 1)), the last equation in (5.1.38) can be re-written as:

π((T, T + 1)) = ρπ((T − 1, T )) + π((0, 1)),

which yields a closed system of T + 1 linear equations in the T + 1 unknowns π((0, 1)), π((1, 2)), ...,

π((T, T + 1)). Then, again by recursive substitution, the stationary probabilities π((n, n+ 1)) (for
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n = 0, 1, ..., T ) may be written in terms of π((0, 1)) as follows:

π((n, n+ 1)) = (1 + ρ+ ...+ ρn) π((0, 1)) =


1− ρn+1

1− ρ
π((0, 1)), ρ 6= 1,

(n+ 1)π((0, 1)), ρ = 1.

Equivalently, for n = 0, 1, ..., T , due to (5.1.36):

π((n, n+ 1)) =


ρ(1− ρn+1)

1− ρ
π((T, T )), ρ 6= 1,

(n+ 1)π((T, T )), ρ = 1.

(5.1.39)

The expressions for the stationary probabilities in (5.1.37) and (5.1.39) are given in terms of the un-

known π((T, T )), so it is obviously desirable to obtain an expression for π((T, T )) in terms of ρ only.

This can be done using the standard normalisation condition that
∑T

n=0 (π((n, n)) + π((n, n+ 1))) =

1. After some simplifications, one obtains the following:

π((T, T )) =


(

T∑
n=0

1− ρT+2

ρT−n(1− ρ)

)−1

, ρ 6= 1,

1

(T + 1)(T + 2)
, ρ = 1.

(5.1.40)

Then, using (5.1.37) and (5.1.39), the expressions for π(R) and π(G) are:

π(R) =


1− ρT+1 (T (1− ρ)− ρ+ 2)

1− ρT+1 (1 + ρ− ρT+2)
, ρ 6= 1,

1/2, ρ = 1.

(5.1.41)

π(G) =


ρT+1

(
T (1− ρ) + 1− 2ρ+ ρT+2

)
1− ρT+1 (1 + ρ− ρT+2)

, ρ 6= 1,

1/2, ρ = 1.

(5.1.42)

In order to show that π(R) is monotonically decreasing with λ (equivalently, π(G) = 1 − π(R) is

increasing with λ), it will be useful to put (5.1.41) and (5.1.42) into an alternative form. First,

note that the expression for π((T, T )) in (5.1.40) may be re-written as:

π((T, T )) =

(
T∑
n=0

1 + ρ+ ...+ ρT+1

ρT−n

)−1

=

(
(1 + ρ+ ...+ ρT+1)

(
1 +

1

ρ
+ ...+

1

ρT

))−1

=
ρT

(1 + ρ+ ...+ ρT+1)(1 + ρ+ ...+ ρT )
=

ρT

T∑
n=0

(n+ 1)ρn + ρT+1

T∑
n=0

(T + 1− n)ρn

. (5.1.43)
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Then, after substituting (5.1.43) into (5.1.37), further manipulations yield:

π(R) =

T∑
n=0

(n+ 1)ρn

T∑
n=0

(n+ 1)ρn + ρT+1

T∑
n=0

(T + 1− n)ρn

=

1 +

ρT+1
T∑
n=0

(T + 1− n)ρn

T∑
n=0

(n+ 1)ρn


−1

, (5.1.44)

π(G) =

ρT+1
T∑
n=0

(T + 1− n)ρn

T∑
n=0

(n+ 1)ρn + ρT+1

T∑
n=0

(T + 1− n)ρn

=

1 +

T∑
n=0

(n+ 1)ρn

ρT+1

T∑
n=0

(T + 1− n)ρn


−1

. (5.1.45)

For ρ > 0, let the function f(ρ) be defined as:

f(ρ) :=

ρT+1
T∑
n=0

(T + 1− n)ρn

T∑
n=0

(n+ 1)ρn

. (5.1.46)

Then, referring to (5.1.44), it suffices to show (in order to show that π(R) is monotonically de-

creasing with ρ) that f(ρ) is increasing with ρ. This can be done by splitting up the numerator in

(5.1.46) and then differentiating term-by-term. Firstly, one may write:

f(ρ) =
T∑
n=0

(T + 1− n)ρT+n+1∑T
j=0(j + 1)ρj

. (5.1.47)

Then, differentiating term-by-term yields the following:

∂f

∂ρ
=

T∑
n=0

(T + 1− n)ρT+n
(

(T + 1 + n)
∑T

j=0(j + 1)ρj −
∑T

j=0 j(j + 1)ρj
)

(∑T
j=0(j + 1)ρj

)2 . (5.1.48)

Therefore in order to show ∂f/∂ρ ≥ 0, it suffices to show that for n ∈ {0, 1, ..., T}:

(T + 1 + n)

T∑
j=0

(j + 1)ρj −
T∑
j=0

j(j + 1)ρj ≥ 0. (5.1.49)

This is equivalent to showing, for n ∈ {0, 1, ..., T}:

T∑
j=0

(T + 1 + n− j)(j + 1)ρj ≥ 0, (5.1.50)
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and this is clearly true since (T + 1 + n − j) is positive for j ∈ {0, 1, ..., T}. The remaining task,

in order to show that the difference gT (λ) − gT+1(λ) is increasing with λ, is to show that the

conditional probability π((0, 1))/π(G) is monotonically decreasing with λ. This can be done very

easily using the previous results. Indeed, using (5.1.36) and (5.1.43):

π((0, 1)) = ρπ((T, T )) =
ρT+1

T∑
n=0

(n+ 1)ρn + ρT+1

T∑
n=0

(T + 1− n)ρn

. (5.1.51)

Due to (5.1.45), this implies the following:

π((0, 1))

π(G)
=

(
T∑
n=0

(T + 1− n)ρn

)−1

. (5.1.52)

This immediately implies that π((0, 1))/π(G) is monotonically decreasing with ρ as required. In

view of (5.1.34), this is sufficient to show that the difference gT (λ) − gT+1(λ) is monotonically

increasing in the interval λ ∈ (λi, λi+1], for any threshold T satisfying T ∗i ≤ T < T̃ . Hence, due to

(5.1.32), the same must be true for L(λ) = g∗(λ)− g̃(λ). Since this argument can be repeated for

any fixed i ∈ {0, 1, ...,m}, this completes the proof of the theorem. �

Figure 5.3 illustrates the result of Theorem 5.1.10 by showing the relationship between L(λ) and λ

in the case of an M/M/1 system with parameters µ = 5, α = 20 and β = 10.
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Figure 5.3: The relationship between L(λ) and λ in an M/M/1 system with µ = 5, α = 20, β = 10.

The ‘loss per unit time’ L(λ) referred to in Theorem 5.1.10 is only one means of quantifying the

sub-optimality of the selfish policy θ̃. An alternative would be to consider the ratio g∗(λ)/g̃(λ) of
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the average rewards under the socially optimal and selfishly optimal policies. In problems involving

routing games, where the objective is to minimise long-run average costs, there exists a well-studied

measure known as the Price of Anarchy (PoA) which quantifies the inefficiency of a system due

to selfish decision-making; see, for example, Roughgarden [147]. The PoA is sometimes studied

in problems involving routing of customers in queueing systems (see [54, 79, 101]) although the

context is usually slightly different, as static routing policies (in which decisions are made in a

randomised fashion, without any dependence on the state of the system) are usually considered. In

the context of the queueing systems considered in this thesis, let PoA(λ) be defined by:

PoA(λ) =
g∗(λ)

g̃(λ)
,

where g∗(λ) and g̃(λ) are as defined in Theorem 5.1.10. Thus, PoA(λ) ≥ 1 for all λ > 0 due

to the definition of g∗(λ), and large values of PoA(λ) indicate a dramatic difference between the

performances of the selfish and socially optimal policies. In the present context, the term “Price of

Anarchy” may be regarded as something of a misnomer, since PoA(λ) in fact quantifies the relative

extra benefit (or reward) of following a socially optimal policy as opposed to a selfish policy; the

term makes more sense in the context of cost minimisation problems, in which it is defined as the

ratio of the selfish cost to the optimal cost and thereby represents the extra relative cost of following

a selfish policy. Obviously, this is only a minor point and the PoA has essentially the same meaning

regardless of whether one considers cost minimisation or reward maximisation.

Theorem 5.1.10 states that the loss per unit time L(λ) is monotonically increasing with λ. Numer-

ical experiments involving M/M/1 queues appear to indicate that PoA(λ) is also monotonically

increasing with λ, but this appears to be much more difficult to prove than the corresponding

result for L(λ) and therefore no proof will be given here. Figure 5.4 shows the relationship between

PoA(λ) and λ in a system with µ = 5, α = 20 and β = 10 (as used in Figure 5.3).

An interesting way of converting the reward maximisation problem considered in this section (which

is solved by a socially optimal policy) into a cost minimisation problem is to re-interpret the

parameter α so that it becomes a cost for balking, as opposed to a reward for service. This can

be done by altering the problem formulation so that the system incurs a penalty α > 0 for every

customer who balks, and customers do not earn rewards for service but are still charged holding
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Figure 5.4: The relationship between PoA(λ) and λ in an M/M/1 system with µ = 5, α = 20, β = 10.

costs in the same way as before. Effectively, this simply means that the value α is deducted from

each customer’s individual expected net reward (whether or not they balk), and it follows that

selfishly and socially optimal policies are unaffected by the change. The problem then becomes

a reward maximisation problem involving non-positive rewards, which can equivalently be treated

as a cost minimisation problem in which all costs are non-negative. The interpretation of α as a

cost for balking rather than a reward for service not only ensures comparability with routing game

problems (in which costs are generally assumed non-negative), but also makes sense in healthcare

applications and other public service settings; refer to [101] for further discussion.

It is easy to see that, given any set of system parameters, altering the problem formulation as

described above will not change the value of |g∗(λ) − g̃(λ)|. As such, the loss per unit time L(λ)

is unaffected (except that it becomes a cost increase per unit time, rather than a loss in reward).

However, PoA(λ) is affected, due to the contribution made to the aggregate cost made by customers

who balk. Indeed, large values of λ will generally result in values of PoA(λ) close to 1, since (under

either of the policies θ̃ and θ∗) the majority of customers will tend to balk, and therefore balking

costs will dominate over customers’ holding costs. As a result, PoA(λ) is no longer monotonically

increasing with λ in the new problem formulation; instead, it appears to attain a peak value at

some finite value of λ, and then decrease towards 1 as λ becomes large. Figure 5.5 illustrates the

shape of the PoA(λ) curve when the new problem formulation (with balking costs) is used. It may

be observed that the shape is similar to those of the PoA curves found in [101].
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Figure 5.5: The relationship between PoA(λ) and λ in an M/M/1 system with µ = 5, α = 20, β = 10, after

re-formulation of the problem so that α is a cost for balking as opposed to a reward for service.

The next section will consider the possible extension of the structural properties proved in this

section to a problem involving two facilities with only one service channel each.

5.2 Two facilities, one server each

In Section 5.1, various properties of socially optimal policies for systems consisting of a single,

multiple-server queue were established by appealing to structural properties of the relative value

functions h(x) and ĥ(x). In general, inductive proofs based on value iteration are quite thematic in

the literature; unfortunately, however, such proofs may not necessarily be achievable in systems of

greater complexity. Indeed, it appears to be the case that optimal policies for larger-scale systems

may exhibit quite counter-intuitive characteristics; this is shown by the examples in Appendix A.8.

This section, like the previous one, considers a special case of the general N -facility, multiple-server

queueing system introduced in Section 3.1. In this case, it is assumed that there are two facilities

(N = 2), both of which have only a single service channel available (c1 = c2 = 1).

Before proceeding, it will be useful to define certain properties of real-valued functions defined on

a lattice, i.e. a partially-ordered set which contains both the least upper bound and the greatest

lower bound of any two constituent elements. As discussed in earlier sections, the N -dimensional

state space S defined in (3.5.1) is a partially ordered set according to the ordering relation where,

for any two states x,y ∈ S, x ≤ y if and only if xi ≤ yi for all components i ∈ {1, 2, ..., N}. The
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following terms are commonly used in lattice theory (see, for example, [183] p. 13):

• The least upper bound of two elements x,y ∈ S is called their join and denoted x ∨ y.

• The greatest lower bound of two elements x,y ∈ S is called their meet and denoted x ∧ y.

For example, given the partial ordering of states described above, one may write (2, 5)∨(3, 4) = (3, 5)

or (in a higher-dimensional state space) (4, 1, 7, 5, 3) ∧ (6, 8, 3, 9, 2) = (4, 1, 3, 5, 2). Using this

vocabulary, one may define the property of submodularity as follows:

Definition 5.2.1. (Submodularity)

Let S be a lattice and let f : S → R be an arbitrary real-valued function. Then f is said to be

submodular on S if, for all pairs of elements x,y ∈ S:

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). (5.2.1)

If (−f) is submodular on S, then f is said to be supermodular on S.

The following lemma implies that an inductive method can be used to check a function for sub-

modularity in the case where the state space S is two-dimensional.

Lemma 5.2.2. A function f : S → R is submodular on the two-dimensional state space S =

{(x1, x2) : x1, x2 ∈ N0} if and only if, for all elements x ∈ S and i, j ∈ {1, 2} with i 6= j:

f((xi+)j+) + f(x) ≤ f(xi+) + f(xj+). (5.2.2)

Proof. If f is submodular on S, then (5.2.2) follows immediately from Definition 5.2.1, since (xi+)j+

and x are (respectively) the join and the meet of the states xi+ and xj+. It must also be shown

that (5.2.2) implies (5.2.1). Note that if x ≤ y (or x ≥ y) with respect to the partial ordering, then

(5.2.1) holds trivially, since the terms on the left-hand side are identical to those on the right-hand

side. Hence, in order to eliminate trivial cases, one may assume that x and y are incomparable;

that is, xi > yi and xj < yj for some permutation (i, j) ∈ {1, 2}2 with i 6= j. For convenience,

let z = x ∧ y ∈ S. If x and y are incomparable, then (without loss of generality) one may write

x = (z1 +m, z2) and y = (z1, z2 + n) for some strictly positive integers m and n. Hence, it suffices

to show that the following inequality holds for arbitrary z ∈ S and m,n ∈ N:

f(z1 +m, z2 + n) + f(z1, z2) ≤ f(z1 +m, z2) + f(z1, z2 + n). (5.2.3)



Chapter 5 Monotonicity and structure 189

Due to (5.2.2), this inequality holds when m = n = 1. As an inductive assumption, let (k1, k2) ∈ N2

be an arbitrary pair of positive integers and assume that (5.2.3) holds for any state z ∈ S and

positive integers m,n satisfying m ≤ k1 and n ≤ k2. This implies:

f(z1 + k1, z2 + k2) + f(z1, z2) ≤ f(z1 + k1, z2) + f(z1, z2 + k2),

f(z1 + k1 + 1, z2 + k2) + f(z1 + k1, z2) ≤ f(z1 + k1 + 1, z2) + f(z1 + k1, z2 + k2).

Combining these two inequalities, one obtains:

f(z1 + k1 + 1, z2 + k2) + f(z1, z2) ≤ f(z1 + k1 + 1, z2) + f(z1, z2 + k2),

which states that (5.2.3) holds when m = k1 + 1 and n = k2. Analogously, one can show that it

also holds when m = k1 and n = k2 + 1. This completes the inductive proof that (5.2.3) holds for

all z ∈ S and m,n ∈ N, which confirms that (5.2.2) implies (5.2.1). �

Example 5.2.3. (Submodularity on N2)

Let f : N2 → R be defined by f(x1, x2) = x1x2 for pairs (x1, x2) ∈ N2. In order to show that f is

supermodular on N2, it suffices to show that for arbitrary (x1, x2) ∈ N2 and m,n ∈ N:

f(x1 +m,x2 + n) + f(x1, x2) ≥ f(x1 +m,x2) + f(x1, x2 + n). (5.2.4)

Indeed, given that f(x1, x2) = x1x2, the inequality (5.2.4) is equivalent to:

2x1x2 + nx1 +mx2 +mn ≥ 2x1x2 + nx1 +mx2,

which holds trivially for all m,n ∈ N. Since f is supermodular on N2, it follows that the function

g : N2 → R defined by g(x1, x2) := −x1x2 is submodular on N2. �

Two further properties of real-valued functions defined on the N -dimensional integer lattice S =

{(x1, x2, ..., xN ) : x1, x2, ..., xN ∈ N0} are defined below.

Definition 5.2.4. (Concavity)

Let f : S → R be an arbitrary real-valued function, with S as defined in (3.5.1). Then f is said to

be concave on S if, for all x ∈ S and j ∈ {1, 2, ..., N}:

f((xj+)j+)− f(xj+) ≤ f(xj+)− f(x). (5.2.5)

If (−f) is concave on S, then f is said to be convex on S.
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Definition 5.2.5. (Diagonal submissiveness)

Let f : S → R be an arbitrary real-valued function, with S as defined in (3.5.1). Then f is said to

be diagonally submissive on S if, for all x ∈ S and i, j ∈ {1, 2, ..., N} with i 6= j:

f((xj+)j+)− f((xi+)j+) ≤ f(xj+)− f(xi+). (5.2.6)

If (−f) is diagonally submissive on S, then f is said to be diagonally dominant on S.

Examples are given below of functions which possess the properties defined above.

Example 5.2.6. (Concavity on N2)

Let f : N2 → R be defined by f(x1, x2) = (x1 + x2)2 for pairs (x1, x2) ∈ N2. In order to show that

f is convex on N2, it suffices to show that for an arbitrary pair (x1, x2) ∈ N2:

f(x1 + 2, x2)− f(x1 + 1, x2) ≥ f(x1 + 1, x2)− f(x1, x2). (5.2.7)

Indeed, given that f(x1, x2) = (x1 + x2)2, the inequality (5.2.7) is equivalent to:

2x+ 2y + 3 ≥ 2x+ 2y + 1

which holds trivially for all (x1, x2) ∈ N2. Since f is convex on N2, it then follows that the function

g : N2 → R defined by g(x1, x2) := −(x1 + x2)2 is concave on N2. �

Example 5.2.7. (Diagonal submissiveness on N2)

Let f : N2 → R be defined as in Example 5.2.3; that is, f(x1, x2) = x1x2 for (x1, x2) ∈ N2. In order

to show that f is diagonally submissive on N2 it suffices to show, for (x1, x2) ∈ N2:

f(x1 + 2, x2)− f(x1 + 1, x2 + 1) ≤ f(x1 + 1, x2)− f(x1, x2 + 1). (5.2.8)

Indeed, given that f(x1, x2) = x1x2, the inequality (5.2.8) is equivalent to:

x2 − x1 − 1 ≤ x2 − x1

which holds trivially for all (x1, x2) ∈ N2. So, f is diagonally submissive on N2. �
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It will be convenient to introduce some operator notation, similar to the notation D(x, f) used in

Section 5.1 to represent the first-order difference f(x+ 1)− f(x). For an arbitrary function f and

state x ∈ S, let the first-order difference with respect to component j be defined as:

Dj(x, f) := f(xj+)− f(x). (5.2.9)

In addition, let the second-order differences Djj(x, f) and Dij(x, f) be defined as:

Djj(x, f) := Dj(x, Dj(x, f)) = f((xj+)j+)− f(xj+)− f(xj+) + f(x), (5.2.10)

Dij(x, f) := Di(x, Dj(x, f)) = f((xi+)j+)− f(xi+)− f(xj+) + f(x). (5.2.11)

From (5.2.10) and (5.2.11) one obtains the following characterisations of submodularity, concavity

and diagonal submissiveness as defined in Definitions (5.2.1), (5.2.4) and (5.2.5):

• A real-valued function f : S → R is submodular if and only if Dij(x, f) ≤ 0 for all states

x ∈ S and components i, j ∈ {1, 2, ..., N} with i 6= j.

• A real-valued function f : S → R is concave if and only if Djj(x, f) ≤ 0 for all states x ∈ S

and components j ∈ {1, 2, ..., N}.

• A real-valued function f : S → R is diagonally submissive if and only if Djj(x, f) ≤ Dij(x, f)

for all states x ∈ S and components i, j ∈ {1, 2, ..., N} with i 6= j.

Thus, it is immediate that if f is both submodular and diagonally submissive on S, then it must

also be concave on S. It is easy to show that the ‘real-time’ reward formulation (3.5.4) possesses

all three of these structural properties. This is stated below as a lemma.

Lemma 5.2.8. The reward function r defined in (3.5.4) is submodular, concave and diagonally

submissive on the N -dimensional state space S = {(x1, x2, ..., xN ) : x1, x2, ..., xN ∈ N0}.

Proof. Using (3.5.4) one may write, for any x ∈ S and i, j ∈ {1, 2, ..., N} with i 6= j:

Dij(x, r) = 0,

Djj(x, r) = Djj(x, r)−Dij(x, r) =


−αjµj , if xj = cj − 1,

0, otherwise.
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So Dij(x, r), Djj(x, r) and Djj(x, r)−Dij(x, r) are all non-positive as required. �

Another result which will be required later is that, when the real-time reward function r is used,

the first-order differences Dj(x, h) are uniformly bounded above. Here, h denotes the relative value

function which, together with the optimal average reward g∗, satisfies the optimality equations

(4.2.1). As in the previous section, the assumption will be made that h(0) = 0 in order to determine

the h(x) values uniquely. The result of the next lemma actually applies to a system with an

arbitrary number of facilities, each with multiple servers allowed (i.e. without any restriction on

the parameters N or {ci}Ni=1) and therefore the proof will be given in the general context of the

MDP Υ described in Section 3.5, so that the result can be used in later sections.

Recall that S̃ denotes the selfishly optimal state space, defined in (4.1.3).

Lemma 5.2.9. Assume that the reward function r(x) defined in (3.5.4) is used. Then, for all

x ∈ S̃ and j ∈ {1, 2, ..., N} such that xj+ ∈ S̃, the relative value function h satisfies:

Dj(x, h) ≤ αjµj − βj
µj∆

. (5.2.12)

Proof. Like many of the earlier proofs in this chapter, the result is proved using induction on the

iterates hn(x) obtained by relative value iteration. See Appendix A.5, page 440.

The definitions provided earlier for submodularity, concavity and diagonal submissiveness may be

applied to value functions (or any other functions of interest) related to queueing systems with

an arbitrary number of facilities N ∈ N. However, throughout the remainder of this section,

attention will be restricted to systems with only two facilities, each with a single server. The

abbreviation 2DSS (meaning ‘2 Dimensions, Single Server’) will henceforth be used to describe

any queueing system with these properties; i.e. a ‘2DSS system’ is a queueing system which

satisfies the assumptions of Section 3.1 and also has N = 2 and c1 = c2 = 1.

The next lemma establishes structural properties of the relative value function h in a 2DSS system,

assuming (once again) that the real-time reward formulation is used.

Lemma 5.2.10. Assume that the system is 2DSS and the reward function r(x) defined in (3.5.4)

is used. Then the relative value function h is submodular, concave and diagonally submissive on

the two-dimensional selfish state space S̃ = {(x1, x2) : x1, x2 ∈ N0, x1 ≤ B̃1, x2 ≤ B̃2}.
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Proof. Again, the proof relies upon induction on the finite-stage iterates hn(x). The three structural

properties (submodularity, concavity and diagonal submissiveness) actually depend upon each other

to some extent, and therefore the inductive hypothesis must be that all three properties hold at an

arbitrary stage n = k. For details of the proof, refer to Appendix A.5, page 441.

Naturally, there is a purpose for showing that the function h possesses the three structural properties

discussed in Lemma 5.2.10. Indeed, the next result exploits these properties to show that, in a

2DSS system, the optimal policy θ∗ found by relative value iteration on the finite state space S̃ is

monotonic with respect to the actions prescribed at the various states x ∈ S̃.

Theorem 5.2.11. (Optimality of monotone policies)

Assume that the system is 2DSS and let θ∗ be the optimal policy found by relative value iteration

on the selfish state space S̃. Then, for all x ∈ S̃ and j ∈ {1, 2} such that xj+ ∈ S̃:

• If balking is chosen by θ∗ at x, then it is also chosen at xj+. That is:

θ∗(x) = 0⇒ θ∗(xj+) = 0.

• If joining facility j is chosen by θ∗ at xj+, then it is also chosen at x. That is:

θ∗(xj+) = j ⇒ θ∗(x) = j.

Proof. Assume that the real-time reward function as defined in (3.5.4) is used. Let x ∈ S̃ be an

arbitrary state and let i, j ∈ {1, 2} be distinct (i 6= j). Then, using the structural properties of the

relative value function h proved by Lemma 5.2.10, one may write:

h(x) > h(xj+) ⇒ h(xi+) > h((xi+)j+), (5.2.13)

h(x) > h(xj+) ⇒ h(xj+) > h((xj+)j+), (5.2.14)

h((xj+)j+) ≥ h((xi+)j+) ⇒ h(xj+) ≥ h(xi+), (5.2.15)

assuming, of course, that all of the states referred to in (5.2.13)-(5.2.15) are elements of S̃. Fur-

thermore, the actions θ∗(x) are related to the values h(x) as follows:

θ∗(x) =


0, if h(xj+) < h(x) and h(xi+) < h(x),

j, if h(xj+) ≥ h(x) and h(xj+) ≥ h(xi+),

i, otherwise.

(5.2.16)
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If h(xj+) = h(xi+), it is assumed that the stationary policy θ∗ uses an arbitrary tie-breaking rule

to choose between facilities j and i at state x (not a randomised rule, since this would make the

policy non-stationary); accordingly, (5.2.16) assumes without loss of generality that j is preferred

over i in such cases. Using (5.2.13)-(5.2.15) and (5.2.16), the results follow:

θ∗(x) = 0⇒ h(x) > max
(
h(xi+), h(xj+)

)
⇒ h(xj+) > max

(
h((xi+)j+), h((xj+)j+)

)
⇒ θ∗(xj+) = 0,

θ∗(xj+) = j ⇒ h((xj+)j+) ≥ max
(
h(xj+), h((xi+)j+)

)
⇒ h(xj+) ≥ max

(
h(x), h(xi+)

)
⇒ θ∗(x) = j,

θ∗(xi+) = i⇒ h((xi+)i+) ≥ h(xi+) and h((xi+)i+) > h((xi+)j+)

⇒ h(xi+) ≥ h(x) and h(xi+) > h(xj+)⇒ θ∗(x) = i.

So θ∗ possesses the monotonicity properties stated by the theorem. �

So far, all of the results in this section have assumed that the real-time reward formulation (3.5.4)

is used. It is worth noting that if the alternative (anticipatory) reward formulation (3.5.15) is

adopted instead, it is possible to prove structural properties of the relative value function which

are similar (but not identical) to those in (A.5.42)-(A.5.44). Indeed, let ĥ denote the relative value

function under the formulation (3.5.15). Then, using similar arguments to those in the proof of

Lemma 5.2.10, one can show that for states x ∈ S̃ and i, j ∈ {1, 2} with i 6= j:

ĥ((xi+)j+)− ĥ(xi+) ≤ ĥ(xj+)− ĥ(x), (5.2.17)

r̂(xj+, j) + λ∆
(
ĥ((xj+)j+)− ĥ(xj+)

)
≤ r̂(x, j) + λ∆

(
ĥ(xj+)− ĥ(x)

)
, (5.2.18)

r̂(xj+, j) + λ∆
(
ĥ((xj+)j+)− ĥ((xi+)j+)

)
≤ r̂(x, j) + λ∆

(
ĥ(xj+)− ĥ(xi+)

)
, (5.2.19)

where it is again assumed that all of the states referred to in (5.2.17)-(5.2.19) are elements of S̃.

Thus, ĥ possesses the submodularity property, but (in general) it does not possess the concavity

or diagonal submissiveness properties. However, (5.2.17)-(5.2.19) are sufficient to establish the

monotonicity properties of θ∗ stated by Theorem 5.2.11. That is, the optimality of monotone

policies in a 2DSS system can be established using either of the two reward formulations.

Recall that, by Theorem 4.2.4, the set Sθ∗ of states which are positive recurrent under θ∗ is a

subset of the selfish state space S̃. Let B̃1 and B̃2 be the boundaries of S̃, defined in (4.1.2).
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Lemma 5.2.10 implies that there exists a set of values {C∗(0), C∗(1), ..., C∗(B̃1)} such that, for

x1 ∈ {0, 1, ..., B̃1}, h(x1+) ≥ h(x2+) if and only if x2 ≥ C∗(x1). Similarly, there exists a set of

values {B∗(0), B∗(1), ..., B∗(B̃1)} such that, for x1 ∈ {0, 1, ..., B̃1}, h(x) > max
(
h(x1+), h(x2+)

)
if

and only if x2 ≥ B∗(x1). To be precise, for x1 ∈ {0, 1, ..., B̃1} one may define:

C∗(x1) := min
{
x2 ∈ {0, 1, ..., B̃2} : D1(x, h) ≥ D2(x, h)

}
, (5.2.20)

B∗(x1) := min
{
x2 ∈ {0, 1, ..., B̃2} : D1(x, h) < 0 and D2(x, h) < 0

}
. (5.2.21)

At this stage, there is no theoretical guarantee that {x2 ∈ {0, 1, ..., B̃2} : D1(x, h) ≥ D2(x, h)}

and {x2 ∈ {0, 1, ..., B̃2} : D1(x, h) < 0 and D2(x, h) < 0} are non-empty sets, so a convention

will be adopted whereby C∗(x1) = +∞ when the former set is empty, and B∗(x1) = +∞ when

the latter set is empty. In words, C∗(x1) is the smallest number of customers at facility 2 which

would cause the socially optimal policy θ∗ to ‘prefer’ joining facility 1 over facility 2 when there

are x1 customers at facility 1. Similarly, B∗(x1) is the smallest number of customers at facility

2 which would cause the policy θ∗ to choose to balk when there are x1 customers at facility 1.

The set of values {C∗(0), C∗(1), ..., C∗(B̃1)} may be referred to as a switching curve, since each

value C∗(x1) is the critical value of x2 for which the policy θ∗ ‘switches’ from choosing facility 2 to

facility 1; similarly, the set {B∗(0), B∗(1), ..., B∗(B̃1)} may be referred to as a balking curve. The

use of switching and balking curves to characterise optimal policies is a theme which has received

considerable attention in the MDP literature; see, for example, [56, 73, 74, 105, 106].

The next result establishes monotonicity properties of the switching and balking curves.

Lemma 5.2.12. For x1 ∈ {0, 1, ..., B̃1}, let C∗(x1) and B∗(x1) be as defined in (5.2.20) and

(5.2.21) respectively. Then C∗(x1) and B∗(x1) have the following properties:

• C∗(x1) is monotonically increasing with x1;

• B∗(x1) is monotonically decreasing with x1.

Proof. The monotonicity of C∗(x1) will be shown first. Consider an arbitrary x1 ∈ {0, 1, ..., B̃1−1}.

By definition, C∗(x1) is the smallest value of x2 such that h((x1 + 1, x2)) ≥ h((x1, x2 + 1)). Hence,

for any non-negative integer k < C∗(x1), it is the case that h((x1 + 1, k)) < h((x1, k + 1)). By

the diagonal submissiveness property of h proved in Lemma 5.2.10, h((x1 + 2, k))− h((x1 + 1, k +
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1)) ≤ h((x1 + 1, k)) − h((x1, k + 1)) (equivalently, D11((x1, k), h) ≤ D12((x1, k), h)) and hence

h((x1 + 2, k)) < h((x1 + 1, k + 1)), which implies that the value of C∗(x1 + 1) must be strictly

greater than k. Hence, C∗(x1) is monotonically increasing with x1 as required.

Meanwhile, by definition B∗(x1) is the smallest value of x2 such that h((x1, x2)) is strictly greater

than both h((x1 +1, x2)) and h((x1, x2 +1)). Let x1 ∈ {1, 2, ..., B̃1} be arbitrary. Then, for any non-

negative integer k < B∗(x1), it is the case that either h((x1, k+ 1)) ≥ h((x1, k)) or h((x1 + 1, k)) ≥

h((x1, k)). If h((x1, k + 1)) ≥ h((x1, k)), then due to the submodularity property of h proved in

Lemma 5.2.10, h((x1 − 1, k+ 1)) ≥ h((x1 − 1, k)). On the other hand, if h((x1 + 1, k)) ≥ h((x1, k))

then the concavity of h implies h((x1, k)) ≥ h((x1 − 1, k)). So in either case, h((x1 − 1, k)) is

bounded above by max
(
h((x1 − 1, k+ 1)), h((x1, k))

)
, implying that B∗(x1 − 1) is strictly greater

than k. It follows that B∗(x1) is monotonically decreasing with x1 as required. �

Naturally, the selfishly optimal policy θ̃ in a 2DSS system may also be described using a switching

curve, since for each integer x1 ∈ {0, 1, ..., B̃1} there will be some value x2 ∈ {0, 1, ..., B̃2} such

that w((x1, x2), 1) ≥ w((x1, x2), 2) (with w(x, a) as defined in (4.1.1)), and hence w((x1, k), 1) ≥

w((x1, k), 2) for all k ≥ x2. That is, for each x1 ∈ {0, 1, ..., B̃1}, one may define:

C̃(x1) := min
{
x2 ∈ {0, 1, ..., B̃2} : w((x1, x2), 1) ≥ w((x1, x2), 2)

}
, (5.2.22)

B̃(x1) :=


∞, if x1 < B̃1,

B̃2, if x1 = B̃1,

(5.2.23)

with the result that the selfish policy θ̃ is characterised for (x1, x2) ∈ S̃ as follows:

θ̃((x1, x2)) =


1, if x2 < B̃(x1) and x2 ≥ C̃(x1),

2, if x2 < B̃(x1) and x2 < C̃(x1),

0, if x2 ≥ B̃(x1).

The next example shows how the switching and balking curves (for both the optimal policy θ∗ and

the selfish policy θ̃) may be represented graphically in a 2DSS system.

Example 5.2.13. (Switching and balking curves)

Consider a system with two single-server facilities (N = 2, c1 = c2 = 1) and a demand rate λ = 4.
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The parameters for the two facilities are given as follows:

µ1 = 5, β1 = 9, α1 = 14,

µ2 = 2, β2 = 3, α2 = 11.

Table 5.1 shows the selfishly and socially optimal policies for the system, with the latter having been

found using relative value iteration. The selfish state space for the system is S̃ = {(x1, x2) ∈ N2
0 :

x1 ≤ 7 and x2 ≤ 7}; that is, B̃1 = 7 and B̃2 = 7. For each state (x1, x2) ∈ S̃, the selfishly optimal

decision θ̃((x1, x2)) ∈ {0, 1, 2} is shown first, followed by the socially optimal decision θ∗((x1, x2))

(in brackets). States at which the two policies differ are highlighted in bold.

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6 x2 = 7

x1 = 0 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

x1 = 1 1 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

x1 = 2 2 (2) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

x1 = 3 2 (2) 2 (2) 1 (2) 1 (2) 1 (1) 1 (1) 1 (0) 1 (0)

x1 = 4 2 (2) 2 (2) 2 (2) 1 (2) 1 (0) 1 (0) 1 (0) 1 (0)

x1 = 5 2 (2) 2 (2) 2 (2) 2 (2) 2 (0) 1 (0) 1 (0) 1 (0)

x1 = 6 2 (2) 2 (2) 2 (2) 2 (0) 2 (0) 2 (0) 1 (0) 1 (0)

x1 = 7 2 (2) 2 (2) 2 (2) 2 (0) 2 (0) 2 (0) 2 (0) 0 (0)

Table 5.1: Selfishly (socially) optimal decisions at states x = (x1, x2) with x1 ≤ 7, x2 ≤ 7.

Table 5.1 confirms that both of the policies θ̃ and θ∗ possess the monotonicity properties discussed

earlier; for example, if joining facility 1 is chosen at some state x ∈ S̃ with x1 ≥ 1, then this implies

that facility 1 will be chosen at the state x1−. For each x1 ∈ {0, 1, ..., 7}, the values C∗(x1), B∗(x1)

and C̃(x1) as defined in (5.2.20)-(5.2.21) and (5.2.22) are plotted in Figure 5.6.

It may be observed from Figure 5.6 that the switching curve for the socially optimal policy θ∗ is

somewhat steeper than the switching curve for the selfish policy θ̃, which indicates that facility 1

is preferred to facility 2 at a greater number of states under θ̃ than under θ∗. �

It is possible to use Lemma 5.2.10 to make further inferences about the structure of the socially

optimal policy θ∗ in a 2DSS system. First, another definition is required.
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Figure 5.6: Switching curves for the policies θ̃ and θ∗, and the balking curve for θ∗, in Example 5.2.13.

Definition 5.2.14. (Sink policy)

Let θ be a stationary policy, and let Sθ denote the (possibly empty) set of states in S which are

positive recurrent under θ. Then θ is said to be a sink policy if and only if:

1. Sθ is non-empty and finite;

2. There exists exactly one state z ∈ Sθ for which θ(z) = 0.

Moreover, the unique state z ∈ Sθ with θ(z) = 0 is referred to as the ‘sink state’.

It is easy to see that the sink state of any sink policy θ must be located at the ‘corner’ of the

recurrent region Sθ, since otherwise Sθ would not be finite; see Table 5.2.

Sink policies can be constructed for systems with an arbitrary number of facilities; indeed, given

any system with N facilities, the selfish policy θ̃ defined in Section 4.1 is a sink policy with sink

state (B̃1, B̃2, ..., B̃N ). It is reasonable to suppose that in many types of system, the socially optimal

policy θ∗ found by relative value iteration should be a sink policy, but this may not be easy to

prove. The next result addresses the special case of a 2DSS system. The proof is similar to Ha’s

proof of the optimality of ‘base stock policies’ in make-to-stock production systems which follow

similar dynamics to those of the 2DSS queueing system under consideration; see [73].
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Policy θ1 Policy θ2

x2 = 0 x2 = 1 x2 = 2 x2 = 0 x2 = 1 x2 = 2

x1 = 0 1 1 1 x1 = 0 1 1 1

x1 = 1 2 1 1 x1 = 1 2 1 0

x1 = 2 2 2 0 x1 = 2 2 2 0

Table 5.2: An example of two different policies, θ1 and θ2, for a 2DSS system. θ1 is a sink policy, with

a sink state (2, 2) located at the ‘corner’ of the positive recurrent set Sθ1 . θ2 has the same set of positive

recurrent states, but is not a sink policy because balking is chosen at both of the states (1, 2) and (2, 2).

Theorem 5.2.15. Assume that the system is 2DSS and let θ∗ be the socially optimal policy found

by relative value iteration on the finite state space S̃. Then θ∗ is a sink policy.

Before proceeding with the proof, it is useful to observe that the policy θ2 shown in Table 5.2 cannot

possibly be an average reward optimal policy found by relative value iteration, assuming that the

usual conventions for tie-breaking are followed (so that balking is never preferred to joining a facility

in the case of a tie). Indeed, suppose (for a contradiction) that θ2 is an optimal policy which always

chooses actions attaining the maximum in the optimality equations (4.2.1). Then, given that facility

2 is preferred to balking at state (2, 1), it must be the case that h((2, 2)) ≥ h((2, 1). Also, given that

balking is preferred to facility 1 at state (1, 2), it must be the case that h((1, 2)) > h((2, 2)). These

two inequalities together imply h((1, 2)) > h((2, 1)). However, given that facility 1 is preferred to

facility 2 at state (1, 1), it is also the case that h((2, 1)) ≥ h((1, 2)), which gives a contradiction. If

the decision at state (1, 1) was changed from 1 to 2 in order to ensure consistency with the previous

inequalities, then the states (2, 0), (2, 1) and (2, 2) would no longer be part of the positive recurrent

region Sθ2 and the policy θ2 would then become a sink policy with sink state (1, 2). The proof

of the theorem will essentially rely upon arguments similar to these (and also the monotonicity

properties proved by Theorem 5.2.11) in order to show that θ∗ must be a sink policy.

Proof. First, note that due to Theorem 4.2.4, the set Sθ∗ of states which are positive recurrent under

θ∗ is contained within the selfish state space S̃ defined in (4.1.3), so Sθ∗ is finite and non-empty.

Let the thresholds T ∗1 and T ∗2 associated with θ∗ be defined as follows:

T ∗1 := min
{
x1 ∈ N0 : B∗(x1) <∞ and C∗(x1) ≥ B∗(x1)

}
,
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T ∗2 := B∗(T ∗1 ),

where C∗(x1) and B∗(x1) are as defined in (5.2.20) and (5.2.21) respectively. It must be the case

that T ∗1 and T ∗2 are both finite; indeed, one can show that T ∗1 ≤ B̃1 and T ∗2 ≤ B̃2, where B̃1 and B̃2

are the boundaries of S̃ defined in (4.1.2). To see this, recall that it was established in the proof of

Theorem 4.2.4 that the policy θ∗ never chooses to join facility j ∈ {1, 2} at any state x ∈ S̃ with

xj = B̃j . It follows that θ∗((B̃1, B̃2)) = 0, and θ∗((B̃1, k)) 6= 1 for all k ∈ {0, 1, ..., B̃2}, which in

turn implies B∗(B̃1) ≤ B̃2 and C∗(B̃1) ≥ B̃2 and hence C∗(B̃1) ≥ B∗(B̃1) and T ∗1 ≤ B̃1. Then

B∗(T ∗1 ) <∞ by definition of T ∗1 , implying B∗(T ∗1 ) ≤ B̃2 by definition of B∗(x1).

The aim of this proof is to show that θ∗ is a sink policy with sink state (T ∗1 , T
∗
2 ). Since T ∗2 is the

smallest value of x2 such that θ∗ chooses to balk at state (T ∗1 , x2), it follows that θ∗((T ∗1 , T
∗
2 )) = 0

and θ∗((T ∗1 , T
∗
2 − 1)) 6= 0. In addition, C∗(T ∗1 ) ≥ B∗(T1∗) = T ∗2 by definitions of T ∗1 and T ∗2 , which

implies that at least T ∗2 customers must be present at facility 2 in order for θ∗ to prefer facility 1

to facility 2 when there are T ∗1 customers present at facility 1. Hence, θ∗((T ∗1 , T
∗
2 − 1)) 6= 1. So the

only remaining option at state (T ∗1 , T
∗
2 − 1) is facility 2, i.e. θ∗((T ∗1 , T

∗
2 − 1)) = 2.

The next stage of the proof is to show that θ∗((T ∗1−1, T ∗2 )) = 1, and this is achieved by contradiction.

First suppose θ∗((T ∗1 − 1, T ∗2 )) = 0. Then B∗(T ∗1 − 1) ≤ T ∗2 by definition of B∗, i.e. the minimum

value of x2 required for θ∗ to choose to balk at state (T ∗1 − 1, x2) is at most T ∗2 . In addition,

C∗(T ∗1 − 1) < B∗(T ∗1 − 1) by definition of T ∗1 , so C∗(T ∗1 − 1) < T ∗2 . This states that, with T ∗1 − 1

customers at facility 1, the number of customers required at facility 2 in order for θ∗ to prefer facility

1 over facility 2 is smaller than T ∗2 , which implies θ∗((T ∗1 − 1, T ∗2 − 1)) 6= 2 (otherwise C∗(T ∗1 − 1)

would be at least T ∗2 ). It has already been established that θ∗((T ∗1 , T
∗
2 −1)) = 2, so it cannot be the

case that θ∗((T ∗1 − 1, T ∗2 − 1)) = 0, because this would contradict the first monotonicity property

of θ∗ stated by Theorem 5.2.11. The only remaining possibility at state (T ∗1 − 1, T ∗2 − 1) (with

θ∗((T ∗1 − 1, T ∗2 )) = 0 assumed) is θ∗((T ∗1 − 1, T ∗2 − 1)) = 1, but it may be shown that this is not

possible either. Indeed, if θ∗((T ∗1 − 1, T ∗2 − 1)) = 1 then one has:

h((T ∗1 , T
∗
2 − 1)) ≤ h((T ∗1 , T

∗
2 )) (because θ∗((T ∗1 , T

∗
2 − 1)) = 2)

< h((T ∗1 − 1, T ∗2 )) (implied by θ∗((T ∗1 − 1, T ∗2 )) = 0)

≤ h((T ∗1 , T
∗
2 − 1)) (implied by θ∗((T ∗1 − 1, T ∗2 − 1)) = 1),

which states that h((T ∗1 , T
∗
2 − 1)) < h((T ∗1 , T

∗
2 − 1)) and thereby yields a contradiction. Thus, it
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is impossible to have θ∗((T ∗1 − 1, T ∗2 )) = 0, since this does not allow any feasible choices of action

at state (T ∗1 − 1, T ∗2 − 1). Next, suppose (again for a contradiction) that θ∗((T ∗1 − 1, T ∗2 )) = 2. As

stated previously, C∗(T ∗1 − 1) < B∗(T ∗1 − 1) by definition of T ∗1 . Hence, there exists some integer

k > T ∗2 such that θ∗((T ∗1 − 1, k)) = 1 and θ∗((T ∗1 − 1, k − 1)) = 2. Given that θ∗((T ∗1 , T
∗
2 )) = 0 and

k > T ∗2 , it must be the case that θ∗((T ∗1 , k − 1)) = 0 due to the first monotonicity property of θ∗

stated in Theorem 5.2.11. As a result, one may write the following:

h((T ∗1 − 1, k)) ≤ h((T ∗1 , k)) (because θ∗((T ∗1 − 1, k)) = 1)

< h((T ∗1 , k − 1)) (because θ∗((T ∗1 , k − 1)) = 0)

≤ h((T ∗1 − 1, k)) (because θ∗((T ∗1 − 1, k − 1)) = 2),

which states that h((T ∗1 − 1, k)) < h((T ∗1 − 1, k)) and thereby yields another contradiction. In

conclusion, it is impossible to have θ∗((T ∗1 − 1, T ∗2 )) = 2. Since it has already been shown that

θ∗((T ∗1 − 1, T ∗2 )) 6= 0, the only remaining possibility is θ∗((T ∗1 − 1, T ∗2 )) = 1.

In summary, it has been shown that θ∗((T ∗1 , T
∗
2 )) = 0, θ∗((T ∗1 −1, T ∗2 )) = 1 and θ∗((T ∗1 , T

∗
2 −1)) = 2.

Given that θ∗((T ∗1 −1, T ∗2 )) = 1, it follows directly from the monotonicity properties of θ∗ stated by

Theorem 5.2.11 that θ∗((x1, T
∗
2 )) = 1 for all x1 ≤ T ∗1 −1. Similarly, given that θ∗((T ∗1 , T

∗
2 −1)) = 2,

the same monotonicity properties imply that θ∗((T ∗1 , x2)) = 2 for all x2 ≤ T ∗2 − 1. Thus, at this

point the actions chosen by θ∗ at all states along the upper boundaries of the region {(x1, x2) : x1 ≤

T ∗1 , x2 ≤ T ∗2 } have been fully established, and importantly it has been found that θ∗((x1, T
∗
2 )) 6= 0

for all x1 < T ∗1 and similarly θ∗((T ∗1 , x2)) 6= 0 for all x2 < T ∗2 . Hence, by the monotonicity of θ∗,

one cannot have θ∗((x1, x2)) = 0 for any state (x1, x2) satisfying x1 ≤ T ∗1 and x2 ≤ T ∗2 , since this

would imply θ∗((x1, T
∗
2 )) = 0 and θ∗((T ∗1 , x2)) = 0, thus yielding a contradiction.

Given that θ∗((x1, T
∗
2 )) 6= 2 for all x1 ≤ T ∗1 and θ∗((T ∗1 , x2)) 6= 1 for all x2 ≤ T ∗2 , it is clear that the

set of states which are positive recurrent under θ∗ is given by Sθ∗ = {(x1, x2) : x1 ≤ T ∗1 , x2 ≤ T ∗2 }.

Moreover, since it has also been shown that (T ∗1 , T
∗
2 ) is the only state in this set at which θ∗ chooses

to balk, it follows that θ∗ is a sink policy with sink state (T ∗1 , T
∗
2 ). �

Example 5.2.16. (Sink policies in a 2DSS system)

This example revisits the 2DSS system considered in Example 5.2.13. Table 5.1 shows the decisions

made by the policies θ̃ and θ∗ at each state in S̃. Naturally, the selfish policy θ̃ is a sink policy
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with sink state (7, 7). At first glance, it might appear that the socially optimal policy θ∗ is not

a sink policy, as there are several states within S̃ at which balking is chosen by θ∗. However,

upon closer inspection, it becomes clear that states in S̃ with x1 > 4 or x2 > 4 (or both) are

not positive recurrent under θ∗; that is, the set of states which are positive recurrent under θ∗ is

Sθ∗ =
{

(x1, x2) ∈ N2
0 : x1 ≤ 4 and x2 ≤ 4

}
. Since (4, 4) is the only state in Sθ∗ at which balking is

chosen by θ∗. it follows that θ∗ is indeed a sink policy, with sink state (4, 4). �

Of course, the thresholds T ∗1 and T ∗2 in Theorem 5.2.15 satisfy T ∗1 ≤ B̃1 and T ∗2 ≤ B̃2. This

leads to the intuitively appealing concept of the socially optimal state space Sθ∗ being a ‘rectangle

contained inside another rectangle’, with the latter being the selfishly optimal state space S̃. It

would be nice to be able to generalise this idea and say that, in a system with N facilities and

multiple servers allowed at each facility, the socially optimal and selfishly optimal state spaces are

both N -dimensional sink policies (or alternatively, N -dimensional cuboids), with the former being

contained inside the latter. However, it transpires that this is not always true (see Appendix A.8).

Of course, it is already known from Theorem 4.2.4 that Sθ∗ ⊆ S̃ holds when N and {ci}Ni=1 are

arbitrary, but this does not imply that Sθ∗ is cuboid in shape. Nevertheless, experiments have

shown that sink policies can very often be found which achieve social optimality in systems which

are not 2DSS; see Section 5.4 for further discussion, including numerical results.

In the next section, another special case of the queueing system described in Section 3.1 will be

considered; this time, it will be assumed that all facilities share the same parameters.

5.3 Homogeneous facilities

As discussed earlier in this chapter, structural properties of socially optimal policies in queueing

systems with N heterogeneous facilities are not easy to obtain in complete generality; indeed, the

results in Sections 5.1 and 5.2 apply to systems severely reduced in dimensionality. In this section,

the number of facilities N is arbitrary and multiple servers are allowed at each facility, but it is

assumed that service facilities are homogeneous. To be specific, each facility i has c ≥ 1 servers

available, a service rate µ > 0 at each server, a holding cost β > 0 per customer per unit time and

a reward for service α > 0. As one might imagine, it is possible to characterise socially optimal

policies to a much greater extent in the homogeneous facilities case than in general.
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The results in this section will again make use of the principle that, due to Theorem 4.2.4, a socially

(average reward) optimal policy for the system can be found by searching within the finite state

space S̃ =
{

(x1, x2, ..., xN ) ∈ S : xi ≤ B̃ ∀ i ∈ {1, 2, ..., N}
}

, where B̃ = bαcµ/βc. This makes it

possible to construct proofs based on the application of relative value iteration.

The first result in this section relates to a pair of states x,y ∈ S̃ which are similar, in the sense

that (x1, x2, ..., xN ) and (y1, y2, ..., yN ) are two different permutations of the same set of N integers,

or equivalently (y1, y2, ..., yN ) is simply a re-ordering of (x1, x2, ..., xN ). One might expect that,

in the homogeneous facilities case, a socially optimal policy should be indifferent between two

states x and y which are similar in this respect, and the next result confirms that this is true

by comparing the values h(x) and h(y). Note that throughout this section, it is assumed that

facilities are homogeneous (with the parameters α, β etc. stated previously), so this assumption

is omitted from the statements of lemmas, theorems, etc. in order to avoid repetition. Also, as

in the previous section, h(·) will denote the relative value function satisfying the average reward

optimality equations (4.2.1) when the real-time reward formulation (3.5.4) is used.

Lemma 5.3.1. Let x,y ∈ S̃ be two states which are ‘similar’, in the sense that (y1, y2, ..., yN ) is a

re-ordering of (x1, x2, ..., xN ). Then h(x) = h(y).

Proof. The proof can be accomplished by induction. See Appendix A.5, page 445.

Another lemma is required in order to prove the main result of this section.

Lemma 5.3.2. For all x ∈ S̃ and i, j ∈ {1, 2, ..., N} such that xi+,xj+ ∈ S̃:

xi ≤ xj ⇒ h(xi+) ≥ h(xj+).

Proof. Again, the proof is based on induction. See Appendix A.5, page 447.

Using Lemma 5.3.2 it is possible to establish the average reward optimality of an intuitively simple

type of policy known as a ‘Join the Shortest Queue’ (JSQ) policy.

Theorem 5.3.3. For the N -facility system with homogeneous facilities, there exists a stationary

average reward optimal policy θ∗ such that, for all x ∈ S̃:

θ∗(x) ∈ arg min
i

xi ∪ {0}.
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More simply, it may be said that the stationary policy θ∗ described in Theorem 5.3.3 always prefers

facility i to facility j when xi < xj ; that is, at any given state, θ∗ always chooses either to balk or

to join the shortest queue. This is why it is called a JSQ policy.

Proof. Assume that the reward formulation (3.5.4) is used. The average reward optimality equations

(4.2.1) imply that a sufficient condition for θ∗ to be optimal is that, for all x ∈ S̃:

θ∗(x) ∈ arg max
a∈Ax

h(xa+) (5.3.1)

where h(x0+) = h(x) by definition, and it may be assumed that the values h(x) are found by

relative value iteration on the finite state space S̃. Consider an arbitrary state x ∈ S̃, and let

i ∈ {1, 2, ..., N} be a facility satisfying xi < B̃ (so that joining i is a permissible action at x) and

xi ≤ xj for all j 6= i. Then, by Lemma 5.3.2, h(xi+) ≥ h(xj+) for any facility j such that xj < B̃.

Hence, the only way action i can fail to attain the maximum in (5.3.1) is if h(xi+) < h(x); that is,

at least one of the two actions i and 0 must attain the maximum in (5.3.1). It follows that one can

define a stationary policy θ∗ in such a way that, at any given state x ∈ S̃:

θ∗(x) ∈


arg min

i∈{1,2,...,N}
xi, if ∃ i ∈ {1, 2, ..., N} such that xi < B̃ and h(xi+) ≥ h(x),

{0}, otherwise,

with the result that θ∗ is an average reward optimal JSQ policy. �

The optimality of JSQ policies in queueing systems has previously been studied in a variety of

contexts. Winston [201], Weber [192], Hordijk and Koole [87], Menich and Serfozo [129] and Koole

et. al. [107] have all considered JSQ policies in queueing systems with homogeneous servers or

facilities, although all of these authors have considered objectives which are somewhat different

from the maximisation of the average net reward considered throughout this thesis. For example,

Winston and Weber both discussed queueing systems with identical servers in which the objective

is to maximise the number of service completions occurring in a finite time interval.

Interestingly, it may be shown that Lemmas 5.3.1 and 5.3.2 also hold in systems with no balking

allowed, in which all customers arriving in the system must be routed to one of the N facilities

(it is appropriate to make the assumption that λ < cµ in such systems in order to ensure system

stability). Theorem 5.3.3 then implies that, in systems with no balking allowed, socially optimal
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policies may be characterised very easily, since the decision at any state should simply be to join

the shortest queue (or one of the shortest queues, if there is a tie). When balking is allowed (as is

the case throughout this thesis), the characterisation of an optimal policy is essentially a matter

of deciding which states should be the ‘balk’ states, since the JSQ rule provides the decision at

any state where balking is not preferred. However, numerical experiments have shown that the

distribution of ‘balk states’ over the finite space S̃ may be somewhat contrary to what one would

expect, even when facilities are homogeneous; see Appendix A.8 for an example.

The next section will explore methods of searching for socially optimal policies which involve

restricting attention to stationary policies with particular structural properties.

5.4 Computational algorithms

There are certain practical advantages to be gained from proving the existence of socially optimal

policies with particular structural properties. For example, if it is known that an optimal policy

exists which is monotone in some respect, then the search for an optimal policy may be confined

to the set of policies which possess the relevant monotonicity property. Unfortunately, in a system

with an arbitrary number of heterogeneous facilities, it is not realistic to suppose that optimal

policies will necessarily possess structural properties such as monotonicity; indeed, the examples in

Appendix A.8 show that the policy θ∗ found by relative value iteration may exhibit quite surprising

characteristics. Nevertheless, by devising computational algorithms which restrict attention to

policies with ostensibly ‘logical’ properties, one might very often be able to find policies which

perform extremely well, even if their optimality is not theoretically guaranteed.

Two algorithms will be presented in this section; broadly speaking, their objectives will be to

obtain optimal or near-optimal policies in a more efficient way than the conventional dynamic

programming algorithms (e.g. RVIA, PIA) discussed in Section 3.7; in other words, they will

expend less computational effort than conventional DP algorithms, but they will also rely upon

assumptions which may not hold in complete generality. Both algorithms are applicable to systems

with any number of heterogeneous facilities N , with multiple servers permitted at all facilities.

Experimental results (to be given later) indicate that these algorithms are capable of performing

extremely well in systems where the selfish state space S̃ is of a manageable size.
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In Section 5.1, certain results were proved involving the progression of finite-stage optimal policies

in a system with only one multiple-server facility (essentially, an M/M/c queue). Recall that, by

Theorem 5.1.4, the optimal policy θ∗ found by relative value iteration in a single-facility system

is a threshold policy with some threshold T ∗ ≤ T̃ (where T̃ = bαcµ/βc is the selfishly optimal

threshold); that is, θ∗ chooses to join at state x ∈ {0, 1, ..., T̃} if and only if x < T ∗. Let the

finite-stage optimal thresholds T̂ ∗n and T ∗n be defined for n ∈ N0 as follows:

T̂ ∗n := min
{
x ∈ {0, 1, ..., T̃ − 1} : r̂(x, 1) + λ∆ĥn(x+ 1) < λ∆ĥn(x)

}
,

T ∗n := min
{
x ∈ {0, 1, ..., T̃ − 1} : hn(x+ 1) < hn(x)

}
,

where ĥn(·) is the finite-stage relative value function given that the anticipatory reward formulation

(3.5.15) is used, and hn(·) is the corresponding function when the real-time formulation (3.5.4) is

used. One may define T̂ ∗n = T̃ in the case where {x ∈ {0, 1, ..., T̃ − 1} : r̂(x, 1) + λ∆ĥn(x + 1) <

λ∆ĥn(x)} is an empty set; similarly, T ∗n = T̃ in the case where {x ∈ {0, 1, ..., T̃ − 1} : hn(x+ 1) <

hn(x)} is empty. By Lemma 5.1.5, the following may be stated about T̂ ∗n and T ∗n :

• T̂ ∗n is monotonically decreasing with n;

• T ∗n is monotonically increasing with n.

Accordingly, it may be said that when the reward formulation (3.5.15) is used, the finite-stage

optimal policies become increasingly conservative as the length of the horizon n increases, while

the opposite is true when the formulation (3.5.4) is used. This is an intuitively appealing concept,

but unfortunately Example A.8.3 in Appendix A.8 shows that it cannot be generalised to systems

with an arbitrary number of facilities. However, experiments show that in systems where N is

relatively small (so that optimal policies can be computed in a reasonable amount of time), there

is a general trend for finite-stage optimal policies to gradually become either more conservative or

less conservative as the length of the horizon increases, depending on which reward formulation is

used; in other words, although counter-examples exist to show that Lemma 5.1.5 cannot be gener-

alised completely, these counter-examples involve isolating particular iterations of the relative value

iteration procedure which go very much against the prevailing trend. Another useful observation is

that finite-stage optimal policies tend to be sink policies (see Definition 5.2.14), regardless of which

reward formulation is used. Example 5.4.1, which follows shortly, illustrates this.
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By the results in Section 4.2, the policy θ∗ found by relative value iteration on the finite state space

S̃ is average reward optimal. Of course, the set of recurrent states Sθ∗ satisfies:

Sθ∗ ⊆ S̃. (5.4.1)

Indeed, by Theorem 4.2.5, any average reward optimal policy must induce an irreducible, ergodic

Markov chain which remains ‘contained’ within S̃. Moreover, due to Theorem 4.4.4, the selfishly

optimal policy θ̃ (whose recurrent state space is S̃) is asymptotically optimal in a light-traffic limit,

so it does not appear possible to obtain a stronger result than (5.4.1) (i.e. a smaller containing set

for Sθ∗) for a general system with N heterogeneous facilities, unless further information is known

about the system parameters. This is somewhat of a drawback, since one might very conceivably

have a system where Sθ∗ is much smaller than S̃; indeed, Theorem 4.4.7 implies that if the demand

rate λ is large, then Sθ∗ may be of a similar size to the set S◦ defined in (4.3.3), in which case

relative value iteration applied to the selfish state space S̃ is likely to be inefficient due to the large

number of states outside Sθ∗ evaluated by the algorithm on each of its iterations.

It would be useful to have a DP algorithm with the ability to intelligently adjust the bounds of

the finite state space during its evolution according to the progression of the finite-stage optimal

policies, in order to avoid repeatedly sweeping through a state space loaded with states which would

become transient (and therefore redundant) under the infinite-horizon policy θ∗.

The two algorithms discussed in the remainder of this section operate by progressively altering

the bounds of the finite state space within which an optimal policy is assumed to exist, in the

manner described above. Essentially, both algorithms are variants on the same theme. It will be

convenient to introduce some extra notation at this point. Let θ̂n denote the finite-stage optimal

policy obtained on the nth iteration of relative value iteration when the reward formulation (3.5.15)

is used, and let θn denote the corresponding finite-stage policy when the formulation (3.5.4) is used.

That is, for all x ∈ S̃ and n ∈ N0, the actions θ̂n+1(x) and θn+1(x) satisfy:

θ̂n+1(x) ∈ arg max
a∈Ax

(
r̂(x, a) + λ∆ĥn(xa+)

)
,

θn+1(x) ∈ arg max
a∈Ax

hn(xa+). (5.4.2)

Also, let Ŝn and Sn denote the sets of states which are positive recurrent under θ̂n and θn respec-

tively. The next example illustrates the progressions of Ŝn and Sn as n increases.
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Example 5.4.1. (Finite-horizon sink policies)

This example illustrates the progression of optimal finite-horizon policies in a system with 2 facili-

ties. Suppose the demand rate is λ = 20 and the parameters for the facilities are:

c1 = 4, µ1 = 6, β1 = 11, α1 = 7,

c2 = 4, µ2 = 4, β2 = 6, α2 = 4.

Suppose the anticipatory reward formulation (3.5.15) is adopted. Experiments show that, for

this particular system, the finite-horizon optimal policies θ̂n obtained during the Relative Value

Iteration Algorithm (RVIA) are invariably sink policies, and that these policies tend to become

more conservative as the number of iterations increases. The selfishly optimal state space is S̃ ={
(x1, x2) ∈ N2

0 : x1 ≤ 15 and x2 ≤ 10
}

, and the algorithm converges to a policy θ∗ whose positive

recurrent state space is the smaller region Sθ∗ =
{

(x1, x2) ∈ N2
0 : x1 ≤ 8 and x2 ≤ 8

}
.

Figure 5.7 provides a somewhat crude graphical representation of the progression of finite-horizon

optimal policies during the RVIA. Six values of n (the iteration counter) have been chosen arbitrar-

ily, and for each value of n an array of small boxes has been drawn to represent the individual states

in S̃. The state in the upper-left corner of each grid is (0, 0), and the state in the lower-right corner

of each grid is (15, 10). Each small box is coloured either green or white depending on whether

the corresponding state is positive recurrent or transient under the policy θ̂n obtained after the

stated number of iterations. The figure shows that all states in S̃ are positive recurrent under the

initial policy θ̂1, but the regions Ŝn gradually become smaller as n increases, until eventually (for

all n ≥ 41) only states belonging to Sθ∗ are positive recurrent under the policy θ̂n.

On the other hand, when the real-time reward formulation (3.5.4) is used, the finite-horizon policies

θn progress in a different manner. Figure 5.8 shows that, while it remains true that each policy

θn is a sink policy, these policies become less conservative as the number of iterations n increases.

The first policy depicted in Figure 5.8, θ2, is in fact a vacancy policy (see Definition 4.4.6), but the

policies θ8, θ15 etc. are obviously somewhat less stringent. Eventually, as expected, the algorithm

converges to the same policy θ∗ arrived at under the anticipatory formulation. �

The first of the two algorithms to be presented next is applicable when the anticipatory reward

formulation (3.5.15) is used, and is based on the premise that on each iteration n, it is reasonable
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Figure 5.7: The progression of finite-horizon optimal policies for the system in Example 5.4.1, assuming the

reward formulation (3.5.15). Green (white) boxes represent positive recurrent (transient) states.

(albeit not completely sound theoretically) to suppose that an optimal policy θ∗ exists whose

recurrent state space Sθ∗ is contained within the finite set Ŝn. This is because, as illustrated by

Example 5.4.1, the finite-stage optimal policies tend to become more conservative as the horizon

length n increases when the formulation (3.5.15) is used; so if a particular state is excluded from

the recurrent state space of θ̂n, it is reasonable to suppose that it will also be excluded from the

recurrent state space of the limiting policy θ∗. Consequently, one may proceed by applying relative

value iteration with an initial finite state space S̃ and, on each iteration n, permanently ‘deleting’

any state not included in Ŝn from the finite state space, so that the set of states evaluated on

iteration n+ 1 consists only of states which are positive recurrent under θ̂n.

The procedure can also be made somewhat simpler by assuming that each finite-stage optimal

policy θ̂n is a sink policy. For each j ∈ {1, 2, ..., N}, define B̂
(n)
j as follows:

B̂
(n)
j = max

{
k ∈ N0 : ∃x ∈ Ŝn such that xj = k

}
.
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Figure 5.8: The progression of finite-horizon optimal policies for the system in Example 5.4.1, assuming the

reward formulation (3.5.4). Green (white) boxes represent positive recurrent (transient) states.

Also, let the set R̂n (for n = 0, 1, 2, ...) be defined as follows:

R̂n =
{
x ∈ S̃ : xj ≤ B̂(n)

j ∀ j ∈ {1, 2, ..., N}
}
. (5.4.3)

If θ̂n is a sink policy, then clearly R̂n is identical to the set Ŝn; that is, R̂n is equal to the set of

states which are positive recurrent under θ̂n. On the other hand, if θ̂n is not a sink policy, then

clearly R̂n contains all states in Ŝn due to the definition of B̂
(n)
j , plus (possibly) some extra states

which are not included in Ŝn. To put it another way, R̂n is the smallest N -dimensional cuboid

which contains Ŝn. The notion of a sequence of N -dimensional cuboids which become progressively

smaller being used to represent the progression of finite-horizon optimal policies during relative

value iteration provides the inspiration for the ‘Shrinking Box’ algorithm below.

Shrinking Box Algorithm

1. Set n = 0, ĥ0(x) = 0 and ŵ0(x) = 0 for all x ∈ S̃. Also set B̂
(0)
j = B̃j for all j ∈ {1, 2, ..., N},

where B̃j is the selfish threshold for facility j defined in (4.1.2).
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2. Let R̂n =
{
x ∈ S̃ : xj ≤ B̂

(n)
j ∀ j ∈ {1, 2, ..., N}

}
, as in (5.4.3). For each x ∈ R̂n, define the

set of actions A
(n)
x available at state x as follows:

A
(n)
x =

{
0, 1, ..., N

}
\
{
j ∈ {1, 2, ..., N} : xj ≥ B̂(n)

j

}
.

That is, joining facility j at state x is not permitted if xj ≥ B̂(n)
j .

3. For each x ∈ R̂n, let ŵn+1(x) = max
a∈A(n)

x

r̂(x, a) +
∑
y∈R̂n

p(x, a,y)ĥn(y)

.

4. Set ĥn+1(x) = ŵn+1(x)− ŵn+1(0) for all x ∈ R̂n.

5. If n = 0, set δ = 1; otherwise set δ = max
x∈R̂n

∣∣ĥn+1(x) − ĥn(x)
∣∣. If δ < ε, where ε is a small

positive number, go to step 7; otherwise, proceed to step 6.

6. Let θ̂n+1 be a stationary policy which satisfies, for all x ∈ R̂n:

θ̂n+1(x) ∈ arg max
a∈A(n)

x

(
r̂(x, a) + λ∆ĥn(xa+)

)
.

For each j ∈ {1, 2, ..., N}, let B̂
(n+1)
j be defined as follows:

B̂
(n+1)
j = 1 + max

{
k ∈ N0 : ∃x ∈ R̂n such that θ̂n+1(x) = j and xj = k

}
.

Then increment n by 1 and return to step 2.

7. Output ĥn+1(x) for all x ∈ R̂n and a stationary policy θ∗ such that, for each x ∈ R̂n, θ∗(x)

maximises

{
r̂(x, a) +

∑
y∈R̂n

p(x, a,y)ĥn+1(y)

}
over all actions a ∈ A(n)

x .

Note that in step 4 of the algorithm, the state 0 is used as a fixed ‘reference state’ for ensuring that

the iterates ĥn(x) do not become unboundedly large (refer to the discussion in Section 3.7). In

the standard version of the Relative Value Iteration Algorithm on page 101, this reference state is

allowed to be an arbitrary state in S̃, but in the Shrinking Box algorithm it is necessary to choose

a reference state which is not at risk of being permanently deleted from the finite state space at

some stage of the procedure. The state 0 obviously satisfies this requirement.

It is important to emphasise that the Shrinking Box algorithm assumes that the reward formulation

(3.5.15) is used. As alluded to earlier, there exists an alternative variant of this algorithm which
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utilises the ‘real-time’ reward formulation, (3.5.4). When the real-time formulation is used, the

general trend is for the finite-stage optimal policies to become less conservative as the horizon

length n increases. However, it may be seen from the proof of Lemma 4.3.2 that if x is a state

with xj < cj for some j ∈ {1, 2, ..., N}, then the inequality hn(xj+) > hn(x) holds for all n ∈ N0.

As such, all of the finite-horizon optimal policies θn satisfying (5.4.2) must be non-idling policies;

that is, none of the finite-stage optimal policies θn choose to balk at any state with at least one

idle server. Recall that, for n ∈ N0, Sn denotes the set of states which are positive recurrent under

θn. By the non-idling principle, it follows that each set Sn satisfies the following:

S◦ =
{
x ∈ S̃ : xj ≤ cj ∀ j ∈ {1, 2, ..., N}

}
⊆ Sn. (5.4.4)

When the real-time reward formulation is used, it is logical to use an algorithm which takes the

opposite approach from that of the Shrinking Box algorithm, by starting with a small subset of

S̃ as the finite state space and gradually enlarging the set of visitable states according to the

progression of the finite-stage optimal policies. Roughly speaking, the aim of the algorithm should

be to ensure that the finite set of states evaluated on some iteration n ∈ N0 includes not only the

set of all states accessible from 0 under the policy θn, but also a certain number of ‘outlying’ states

which lie slightly beyond the boundaries of Sn, so that there is some ‘leeway’ for the finite-stage

optimal policy to expand the set of states that it wishes to visit when the length of the horizon

increases by one. As the iterations progress and the finite-stage policies ‘expand’ (i.e. become less

conservative), the set of states evaluated should also expand in size, so that there is always scope

for further expansion. This idea will be made clear by the full specification of the new algorithm,

referred to as the ‘Expanding Box algorithm’, and the example that follows later.

Expanding Box Algorithm

1. Set n = 1 and h1(x) = r(x) for all x ∈ S̃. Also set B
(1)
j = min(cj + 1, B̃j) for all j ∈

{1, 2, ..., N}, where B̃j is the selfish threshold for facility j defined in (4.1.2).

2. Let Rn =
{
x ∈ S̃ : xj ≤ B

(n)
j ∀ j ∈ {1, 2, ..., N}

}
. If n ≥ 2 and Rn 6= Rn−1, then for each

newly-added state x ∈ Rn \Rn−1 initialise the value hn(x) as follows:

hn(x) = min
y∈Rn−1

hn(y).
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For each x ∈ Rn, define the set of actions A
(n)
x available at state x as follows:

A
(n)
x =

{
0, 1, ..., N

}
\
{
j ∈ {1, 2, ..., N} : xj ≥ B(n)

j

}
.

That is, joining facility j at state x is not permitted if xj ≥ B(n)
j .

3. For each x ∈ Rn, let wn+1(x) = max
a∈A(n)

x

r(x) +
∑
y∈Rn

p(x, a,y)hn(y)

.

4. Set hn+1(x) = wn+1(x)− wn+1(0) for all x ∈ Rn.

5. If n = 0, set δ = 1; otherwise set δ = max
x∈Rn

∣∣hn+1(x) − hn(x)
∣∣. If δ < ε, where ε is a small

positive number, go to step 7; otherwise, proceed to step 6.

6. Let θn+1 be a stationary policy which satisfies, for all x ∈ Rn:

θn+1(x) ∈ arg max
a∈A(n)

x

hn(xa+).

For each facility j ∈ {1, 2, ..., N}, let B
(n+1)
j be defined as follows:

B
(n+1)
j =


min(B

(n)
j + 1, B̃j), if ∃ x ∈ Rn such that θn+1(x) = j and xj = B

(n)
j − 1,

B
(n)
j , otherwise.

Then increment n by 1 and return to step 2.

7. Output hn+1(x) for all x ∈ Rn and a stationary policy θ∗ such that, for each x ∈ Rn, θ∗(x)

maximises

{
r(x) +

∑
y∈Rn

p(x, a,y)hn+1(y)

}
over all actions a ∈ A(n)

x .

Steps 1 and 2 of the Expanding Box algorithm define the initial finite state space R1 as the set{
x ∈ S̃ : xj ≤ cj+1 and xj ≤ B̃j

}
. On the first iteration, the two-stage optimal policy θ2 is derived

and this policy is forced to be ‘contained’ within the set R1 due to the definition of the action sets

A
(1)
x in step 2. For each j ∈ {1, 2, ..., N}, it may or may not be the case that the policy θ1 ‘reaches

the boundary’ of R1 by choosing to join facility j at some state x ∈ R1 with xj = B
(1)
j − 1 and

thereby causing the state y = xj+ (with yj = B
(1)
j ) to be included in the set of positive recurrent

states S1. If this occurs, then the boundary B
(1)
j is deemed to be too restrictive, and so (in step 6)

this boundary is increased by one, unless B
(1)
j is already equal to the selfish threshold B̃j defined in

(4.1.2), in which case no change is made. A similar procedure is followed on subsequent iterations,
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so that on each iteration n there is a possibility of new states being ‘added’ to the finite state space

Rn, but (in contrast to the Shrinking Box algorithm) no states are ever removed.

The strategy of ‘adding new states’ to the state space at various stages of the algorithm causes a

slight technical dilemma, which is addressed in step 2. Obviously, step 3 requires a value hn(x) to

be associated with each state x ∈ Rn. States which have been ‘retained’ from the previous iteration

will already possess a hn(x) value, but for any newly-added state x ∈ Rn\Rn−1 it becomes necessary

to define a value hn(x) artificially. The simple solution of setting hn(x) = miny∈Rn−1 hn(y) for all

such states works sufficiently well in practice, since the important principle is not to set these values

too high. If the value hn(x) for some newly-added state x ∈ Rn \ Rn−1 is set too high, this may

cause unnecessary enlargement of the finite state space Rn+1 due to x being incorrectly identified

as a ‘desirable’ state by the policy θn+1. While unnecessary enlargement of the state space Rn+1

does not jeopardise the ability of the algorithm to find an optimal policy, it does somewhat defeat

the purpose of the algorithm by slowing down computation times. It is therefore desirable to avoid

this problem by setting the value of hn(x) so that it is bounded above by hn(y) for any y ∈ Rn−1.

The next example demonstrates both of the algorithms introduced in this section.

Example 5.4.2. (Shrinking Box and Expanding Box algorithms)

This brief example demonstrates how the Shrinking Box and Expanding Box algorithms operate in

the case of a small system with only two dual-server facilities. Suppose the demand rate is λ = 12

and the parameters for the two facilities are given as follows:

c1 = 2, µ1 = 6, β1 = 11, α1 = 4,

c2 = 2, µ2 = 4, β2 = 6, α2 = 5.

The selfish thresholds for this system, as defined in (4.1.2), are B̃1 = 4 and B̃2 = 6. Suppose the

Shrinking Box algorithm is applied, which requires the reward formulation (3.5.15) to be assumed.

The policy θ̂1 obtained on the first iteration of the algorithm is shown in Table 5.3.

Clearly, the values B̂
(1)
1 and B̂

(1)
2 as defined in step 6 of the Shrinking Box algorithm are equal

to B̃1 and B̃2 respectively; this is as expected, since θ̂1 must be identical to the selfishly optimal

policy θ̃. As a result, R̂1 is equal to R̂0; that is, the state space does not ‘shrink’ after the first

iteration. On the next two iterations, it transpires that R̂2 and R̂3 are also equal to R̂0. However,
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on the fourth iteration of the algorithm, the policy shown in Table 5.4 is obtained.

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 0 2 2 2 1 1 1 1

x1 = 1 2 2 2 1 1 1 1

x1 = 2 2 2 2 2 1 1 1

x1 = 3 2 2 2 2 2 1 1

x1 = 4 2 2 2 2 2 2 0

Table 5.3: The policy θ̂1 obtained after 1 iteration of the Shrinking Box algorithm.

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 0 2 2 2 1 1 1 1

x1 = 1 2 2 2 1 1 1 1

x1 = 2 2 2 2 2 2 1 1

x1 = 3 2 2 2 2 2 2 0

x1 = 4 2 2 2 2 2 2 0

Table 5.4: The policy θ̂4 obtained after 4 iterations of the Shrinking Box algorithm.

The non-highlighted states (4, 0), (4, 1) etc. are transient states under the policy θ̂4 and are thus

excluded from the set R̂4. That is, these seven states are permanently deleted (along with their

relative values) and the action sets A
(4)
x for states x ∈ R̂4 with x1 = 3 are amended so that joining

facility 1 at these states is no longer permitted. The algorithm then continues with a ‘shrunken’

state space. The policy θ̂5 obtained on the next iteration is shown in Table 5.5.

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 x2 = 6

x1 = 0 2 2 2 1 1 1 1

x1 = 1 2 2 2 1 1 1 1

x1 = 2 2 2 2 2 2 1 1

x1 = 3 2 2 2 2 2 2 0

Table 5.5: The policy θ̂5 obtained after 5 iterations of the Shrinking Box algorithm.

Naturally, all iterations from iteration 5 onwards will be faster than the first four iterations, since
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the number of states to be evaluated is smaller. Now suppose that the Expanding Box algorithm is

applied to the same system; of course, this requires the real-time formulation (3.5.4) to be assumed.

Since both facilities have two servers, the size of the initial state space R1 is (c1 + 2)(c2 + 2) = 16.

The policy θ2 obtained on the first iteration of the algorithm is shown in Table 5.6.

x2 = 0 x2 = 1 x2 = 2 x2 = 3

x1 = 0 2 2 1 1

x1 = 1 2 2 1 1

x1 = 2 2 2 0 0

x1 = 3 2 2 0 0

Table 5.6: The policy θ2 obtained after 1 iteration of the Expanding Box algorithm.

The non-highlighted states in Table 5.6 are transient under the policy θ2, but these states are not

deleted from the finite state space, since the Expanding Box algorithm always includes an extra

‘layer’ of transient states in order to allow the finite-horizon policies room to ‘expand’ (indeed, no

states are ever deleted at any stage of the algorithm). However, the fact that the highlighted states

are transient implies that the state space does not expand after the first iteration; that is, R2 is

equal to R1. It transpires that the sets R3, R4, R5 and R6 obtained after the next four iterations

are also equal to R1. On the sixth iteration, the policy shown in Table 5.7 is found.

x2 = 0 x2 = 1 x2 = 2 x2 = 3

x1 = 0 2 2 1 1

x1 = 1 2 2 1 1

x1 = 2 2 2 2 0

x1 = 3 2 2 2 0

Table 5.7: The policy θ7 obtained after 6 iterations of the Expanding Box algorithm.

The states (0, 3), (1, 3) and (2, 3) become positive recurrent under θ7, which causes the finite state

space to expand in the x2-direction. This means that the action sets A
(7)
x for states x ∈ R6 with

x2 = 3 are defined in such a way that joining facility 2 is permitted, and the new states (0, 4),

(1, 4), (2, 4) and (3, 4) are included in the set R7. Hence, the set R7 consists of 20 states as opposed

to 16. The policy θ8 obtained on the next iteration is shown in Table 5.8.
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x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4

x1 = 0 2 2 1 1 0

x1 = 1 2 2 1 1 0

x1 = 2 2 2 2 0 0

x1 = 3 2 2 2 0 0

Table 5.8: The policy θ8 obtained after 7 iterations of the Expanding Box algorithm.

Of course, since the expansion of the state space is permanent, the sets Rn for all n ≥ 7 will

consist of at least 20 states. In this particular example, both the Shrinking Box algorithm and the

Expanding Box algorithm successfully converge to the same stationary policy θ∗ as the conventional

RVIA given in Section 3.7; that is, both algorithms yield an optimal policy. �

The next example presents the results of numerical experiments, designed to evaluate the perfor-

mances of the Shrinking Box and Expanding Box algorithms in systems with N ≤ 5.

Example 5.4.3. (Numerical results)

The Shrinking Box and Expanding Box algorithms discussed in this section thus far are intended

to attain optimal or near-optimal policies without performing as many computation steps as con-

ventional DP algorithms. As discussed earlier, this is done by making assumptions about the

progression of finite-horizon optimal policies. This example describes the results of a series of

experiments involving 15,096 randomly-generated sets of parameters. For each set of parameters,

three algorithms were executed: the RVIA (as described on page 101), the Shrinking Box algorithm,

and the Expanding Box algorithm. All three algorithms used the value ε = 10−6 as a stopping

parameter. For each system, the random parameters were generated as follows:

• The number of facilities, N , was sampled unbiasedly from the set {2, 3, 4, 5}.

• Each service rate µi was sampled from a uniform distribution between 5 and 25.

• Each service capacity ci was sampled unbiasedly from the set {2, 3, 4, 5}.

• Each holding cost βi was sampled from a uniform distribution between 5 and 25.
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• Each fixed reward αi was sampled from a uniform distribution between 2 and 12.

• The demand rate λ was sampled from a uniform distribution between 0.1 ×
N∑
i=1

ciµi and

1.1×
N∑
i=1

ciµi.

In order to allow a large number of experiments to be performed in a reasonable amount of time,

parameter sets were accepted only if they gave a value of |S̃| (where, as usual, S̃ denotes the selfish

state space) between 1000 and 100,000. In addition, all facilities i were required to satisfy the

condition αi − βi/µi > 0 in order to avoid degeneracy. Parameter sets which did not satisfy the

criteria were rejected, and in these cases all parameter values except for the number of facilities N

were re-sampled until the criteria were satisfied. The Shrinking Box and Expanding Box algorithms

both demonstrated an extremely strong performance in all of the 15,096 experiments performed in

terms of their ability to find an optimal or near-optimal policy. In summary:

• In all of the 15,096 experiments performed, the Expanding Box algorithm converged to a

policy which was identical to the RVIA policy θ∗ in terms of the decisions chosen at positive

recurrent states x ∈ Sθ∗ (and hence earned the same average reward).

• In 13,994 of the 15,096 experiments performed (92.7%), the Shrinking Box algorithm also

converged to a policy which was identical to the RVIA policy θ∗ in terms of the decisions

chosen at positive recurrent states x ∈ Sθ∗ . In cases where the Shrinking Box policy was

not identical to the RVIA policy, the average sub-optimality of the Shrinking Box policy was

approximately 0.0012%. Its maximum sub-optimality (over all trials) was 0.11%.

The next objective in this example is to examine the computational savings that the Expanding

Box and Shrinking Box algorithms offer in comparison to the RVIA (in other words, their ability

to improve upon the running time required by the RVIA). For this purpose, the number of value

function updates performed by the three algorithms during their respective running times will be

considered. For clarity, a value function update is said to occur when the finite-stage relative value

function hn(x) is updated for some state x ∈ S̃ on some iteration n. The RVIA performs |S̃|

value function updates on each iteration. The Shrinking Box algorithm begins by performing |S̃|

updates per iteration, but the number of updates per iteration decreases as the algorithm progresses.
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Conversely, the Expanding Box algorithm may begin by performing a relatively small number of

updates per iteration, but this number will increase as the algorithm progresses.

Figure 5.9 shows a percentile plot, illustrating the distribution of the total number of value function

updates performed by each of the three algorithms (RVIA, Expanding Box and Shrinking Box) over

15,096 trials. The plot shows (for each of the three algorithms) the percentage of trials in which

the total number of value function updates performed was K or less, for various different values

of K. For example, the plot indicates that the percentage of trials which required fewer than 10

million value function updates in total was about 47.8% in the case of the RVIA, and 86.9% and

92.8% in the cases of the Expanding Box and Shrinking Box algorithms respectively.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

10

20

30

40

50

60

70

80

90

100

Total)number)of)value)function)updates)required)xmillionsB

P
e

rc
e

n
ta

g
e

)o
f)
tr

ia
ls

RVIA

Expanding)Box)algorithm

Shrinking)Box)algorithm

Figure 5.9: A percentile plot illustrating the distributions of the total number of value function updates

required for the RVIA, Shrinking Box algorithm and Expanding Box algorithm.

Figure 5.10 illustrates the distributions of the percentage savings made by the Expanding Box and

Shrinking Box algorithms over all 15,096 trials. These savings are shown in terms of the number

of value function updates performed; for example, the rightmost two columns in the figure indicate

that the number of trials in which the Expanding Box algorithm improved by more than 90% on

the total number of value function updates made by the RVIA was approximately 4900, whereas

the corresponding figure for the Shrinking Box algorithm was approximately 4700.

The leftmost bar in Figure 5.10 indicates that in approximately 1% of the trials performed, the
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Figure 5.10: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, over 15,096 trials.

number of value function updates made by the Expanding Box algorithm actually exceeded the

corresponding number performed by the RVIA. Of course, the number of updates performed by

the Expanding Box algorithm on a single iteration cannot exceed |S̃|, so it cannot perform more

updates than the RVIA on a single iteration; however, it may require a larger number of iterations

than the RVIA in total before convergence is reached. The reason for this is that the Expanding

Box algorithm operates in such a way that it adds new states to the finite state space Rn each time

the state space is expanded; when these new states are added, the corresponding relative values

hn(x) must be given arbitrary initial values (see step 2). These initial values may be some distance

from the limiting values h(x), in which case convergence may be somewhat slower than one would

attain by updating the values for all states x ∈ S̃ on each iteration (as per the RVIA).

With a little thought, one realises that certain results from earlier chapters offer clues as to the

conditions on the system parameters which will cause the Expanding Box algorithm to converge

more quickly (in terms of the number of value function updates required) than the Shrinking Box

algorithm, and vice versa. In particular, the value of the demand rate λ is critical. Theorem 4.4.4

suggests that when λ is small, the recurrent state space Sθ∗ of the policy found by the RVIA should

be of roughly the same size as the selfish state space S̃. The Shrinking Box algorithm begins with
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a state space equal to S̃, so one would expect this state space to ‘shrink’ only a small number of

times during the evolution of the algorithm when λ is small; on the other hand, the Expanding

Box algorithm may have to expand the size of its state space many times in such circumstances.

Hence, the Shrinking Box algorithm appears to have an advantage over the Expanding Box when

the demand rate λ is small. Conversely, if λ is large, then Theorem 4.4.7 suggests that the recurrent

state space Sθ∗ will have dimensions similar to those of the set S◦ defined in (4.3.3). One might

suppose that the Expanding Box algorithm, which begins with a state space of similar size to S◦,

should have an advantage over the Shrinking Box algorithm in such circumstances.

Figures 5.11, 5.12 and 5.13 show the distributions of the savings made by the Expanding Box

and Shrinking Box algorithms against the RVIA (represented in the same way as in Figure 5.10),

with attention restricted to particular subsets of the data collected over the 15,096 trials. Let

ρ := λ/
∑N

i=1 ciµi be a measure of the relative traffic intensity in a particular system. Figure 5.11

shows the savings made in systems with ‘low’ traffic intensity, in which ρ is between 0.1 and 0.5

(approximately 40% of the 15,096 systems tested satisfied this criterion). Figure 5.12 shows the

savings made in systems with 0.5 < ρ < 1 (comprising about 50% of the systems tested), and

Figure 5.13 represents systems with ρ > 1 (comprising about 10% of systems tested).
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Figure 5.11: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with 0.1 < ρ < 0.5.
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Figure 5.12: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with 0.5 < ρ < 1.
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Figure 5.13: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with ρ > 1.
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Figure 5.11 suggests that, as one would expect, the Shrinking Box algorithm tends to achieve greater

savings than the Expanding Box algorithm when the demand rate λ is small. Figure 5.13 shows

that when λ is greater 1, both algorithms are able to achieve very large computational savings

indeed against the RVIA. Indeed, when ρ is large, all three algorithms will often converge to a

policy θ∗ which has a recurrent state space Sθ∗ much smaller than S̃. The RVIA will continue to

update the value functions for |S̃| states on each iteration, whereas the other two algorithms will

restrict attention to small subsets of S̃ towards the end of their running times. Figure 5.13 indicates

that, as expected, the Expanding Box algorithm tends to be more consistent than the Shrinking

Box algorithm in achieving savings greater than 90% against the RVIA when ρ > 1.

In conclusion, the Expanding Box and Shrinking Box algorithms are both capable of finding optimal

or near-optimal policies at only a fraction of the computational expense required by the conventional

RVIA. The Expanding Box algorithm appears to be somewhat more reliable than the Shrinking Box

algorithm in converging to policies which exactly correspond to the policy θ∗ found by the RVIA.

However, in many cases the Expanding Box algorithm may be more computationally expensive

than the Shrinking Box algorithm, particularly if the demand rate λ is small. �

Example 5.4.3 brings this section to an end. However, please note that Appendix A.8 is also relevant

to the topics discussed in this chapter. Appendix A.8 presents various examples in order to show

that average reward optimal policies may possess unexpected and counter-intuitive properties. As

such, structural properties of these optimal policies are difficult to prove in general.

5.5 Conclusions

It is natural to suppose that socially optimal (i.e. average reward optimal) policies should have

a logical structure, regardless of the number of facilities N or the values of the other system

parameters. The selfishly optimal policy θ̃, as defined in Section 4.1, can easily be shown to possess

intuitively ‘sensible’ properties; for example, it is monotonic with respect to the decisions made at

the various states, and the selfish state space S̃ is always ‘cuboid’ in shape. The results in Sections

5.1, 5.2 and 5.3 have shown that if one restricts attention to small values of N (e.g. N = 1 or

N = 2), or makes additional restrictive assumptions about the system parameters (such as the

assumption of homogeneous facilities in Section 5.3), it is sometimes possible to prove structural
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properties of the socially optimal policy θ∗ obtained using relative value iteration.

There are certain properties of socially optimal policies that appear to hold in most cases, but not

necessarily all; for example, the Shrinking Box and Expanding Box algorithms discussed in Section

5.4 rely on the assumption of a monotonic progression of the finite-stage optimal policies obtained

during relative value iteration. When these algorithms are applied to single-facility systems, they

are both guaranteed to converge to an average reward optimal policy due to the result of Lemma

5.1.5. However, Example A.8.3 has shown that the same guarantee is not possible in systems with

N ≥ 2. Moreover, the counter-examples in Appendix A.8 show that several properties which might

(if they were true) simplify the characterisation of the optimal policy θ∗ do not hold in general.

Indeed, counter-examples can frequently be found even in systems where N is small.

In conclusion, if one considers a general N -facility system without any restrictions on the system

parameters, it may not be possible to prove any properties of the RVIA policy θ∗ beyond those which

were already proved in Chapter 4 (see, for example, Theorems 4.2.4 and 4.3.3). This illustrates the

challenging nature of average reward optimisation in general. The next two chapters of this thesis

will investigate methods for finding near-optimal policies in systems where the size of the finite

state space S̃ prevents the efficient computation of an average reward optimal policy.
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A fundamental concept in this thesis thus far has been that of a socially optimal policy, which routes

customers to service facilities in such a way that the expected long-run average reward earned by

the system is maximised. Section 3.7 introduced methods for computing socially optimal policies

in systems with a finite number of states. Section 4.2 established that a socially optimal policy

can always be found by searching within the finite set of states S̃, where S̃ is the selfishly optimal

state space defined in Section 4.1. This result implies that, from a purely theoretical point of view,

it is always possible to find a socially optimal policy for any N -facility queueing system of the

type described in Section 3.1, by simply applying a suitable dynamic programming algorithm. One

might suggest that, in view of the results in earlier chapters, the mathematical problem of finding

a socially optimal policy for any given set of system parameters has been ‘solved’.

Unfortunately, to make such a suggestion would be to ignore practical considerations. Specifically,

the amount of time required by a dynamic programming algorithm to converge to an optimal policy

may be prohibitive. Even when the number of facilities N is relatively small (for example, less than

10), the selfishly optimal state space S̃ may comprise billions or trillions of states. Even a state-of-

the-art computer may be unable to carry out the task of finding an optimal policy using the RVIA

or PIA (see pages 101 and 109) in a reasonable amount of time; in fact, since these algorithms

require a unique value h(x) to be stored for every state x ∈ S̃, memory constraints alone may cause

a computer program to break down, before it has been able to complete its first ‘sweep’ of the state

space S̃. For larger values of N (e.g. N ≥ 100), the reality is that the amount of time required to

find an optimal policy using a DP algorithm would reach astronomical proportions.

The “curse of dimensionality” in dynamic programming has been discussed extensively by Powell

[140]. In fact, Powell argues that there are three different curses of dimensionality which hinder

DP algorithms. Arguably the most obvious problem, as alluded to in the previous paragraph, is

that of an extremely large state space. The other two problems considered by Powell are somewhat

more relevant in a more general MDP context; these are related to the action sets Ax available

at the various states x ∈ S̃, and the number of possible outcomes that may arise from choosing a

particular action a ∈ Ax at a state x ∈ S̃. In the MDP Υ formulated in Section 3.5, the number of

actions permissible at any state x ∈ S̃ (excluding actions which might cause a transition to a state

225
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y /∈ S̃) is always bounded above by N + 1, and the number of states that can be ‘reached’ from

any state x ∈ S̃ in a single discrete-time transition is at most N + 2 (see Figure 3.5); of course,

generalisations of the problem are possible (such as the incorporation of heterogeneous customers

discussed in Section 4.5), but without considering such extensions, it is clear that the dimensionality

of the state space will be the main obstacle as far as DP algorithms are concerned.

The counter-examples in Appendix A.8 show that, in general, socially optimal policies may not

possess intuitively logical properties such as monotonicity, even when attention is restricted to

optimal policies found by DP algorithms such as the RVIA. Consequently, it would seem that

there are no ‘shortcuts’ available which would enable these policies to be found without exhaustive

computation. The ‘Shrinking Box’ and ‘Expanding Box’ algorithms presented in Section 5.4 offer

the possibility of tremendous time savings in comparison to the conventional RVIA, but these

algorithms still suffer (albeit to a lesser extent) from some of the same problems as the RVIA, such

as the requirement for an array of values h(x) to be stored in the system memory; furthermore, there

is no theoretical guarantee that the policies found by these algorithms will be optimal (although

their extremely strong performance in systems with N ≤ 5 has been demonstrated).

Unfortunately, there is no alternative but to acknowledge that, from a practical point of view,

the computation of socially optimal policies in systems where S̃ is very large is infeasible. This

chapter marks a change in emphasis from previous chapters in that the objective is now to find,

and analyse the properties of, approximately optimal policies in systems which are assumed to be

too large (in the sense that S̃ is too large) for DP algorithms to be applied. This will involve

devising heuristic policies, and testing their performance. Roughly speaking, a heuristic policy is

a near-optimal policy which can be determined in a ‘reasonable’ amount of time and implemented

easily in practice. In general, the main objectives of a heuristic policy should be:

1. To generate an expected long-run average reward for the system which (at worst) is only a

small distance away from the average reward earned by an optimal policy;

2. To require a relatively small amount of computational effort in its execution, regardless of

the number of facilities N and the size of the selfish state space S̃.

An inherent difficulty lies in the fact that the success (or otherwise) of a particular heuristic ap-

proach depends on whether or not the policy obtained is ‘near-optimal’, and this may not be easy
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to determine. Ideally, one would wish to evaluate the expected average reward gθ earned by the

heuristic policy θ in question and compare this with the optimal value g∗. However, evaluating gθ

exactly requires a set of values h(x) (for x ∈ S̃) to be found which satisfy the policy evaluation

equations (3.7.5). If S̃ is large, then this task may be infeasible for the same reasons that DP al-

gorithms are infeasible. This problem may be circumvented to some extent by using discrete-event

simulation to estimate the value of gθ; if the simulation program is well-designed and allowed to

run for a moderate amount of time, then it should be able to produce a robust estimate of the

average reward earned by the fixed policy θ (this is discussed further in Chapter 7). However, even

in this case, the optimal value g∗ will generally be unknown. An approach used in this chapter

will be to show that the heuristic policies under consideration perform strongly in moderate-sized

systems for which it is possible to evaluate g∗ exactly using dynamic programming.

It is worthwhile to note that the selfish policy θ̃ may itself be regarded as a heuristic policy,

since it implements a simple decision rule which always directs customers to take the action which

maximises their expected individual net reward. The selfish policy may therefore be interpreted as

a greedy heuristic, since only the welfare of the latest customer to arrive is taken into account when

making a routing decision, without any consideration of future consequences. Clearly, θ̃ is a simple

policy to implement in any system, regardless of the number of facilities N and the size of the

state space S̃; in this respect it qualifies as a heuristic policy, although the examples from earlier

chapters indicate that its performance may be poor (especially if the demand rate λ is large). It

would obviously be desirable to find more sophisticated heuristic policies which are capable of out-

performing the selfish policy θ̃ in terms of average reward. Two heuristic policies will be considered

in this chapter, both of which are based on approaches found in the literature.

Section 6.1 will describe the Whittle index heuristic, which has its origins in the work of Gittins

[55] and Whittle [198] on deriving ‘dynamic allocation indices’ for multi-armed bandit processes.

Section 6.2 will present an alternative heuristic approach, which involves applying a single step of

policy improvement to a static routing policy; the development in this section will be similar to

that in [6]. Results from numerical experiments will be presented in Section 6.3.
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6.1 Whittle index heuristic

The first of the two heuristic methods to be considered in this chapter is motivated by the work

of Glazebrook et al. [59], who demonstrated the strong performance of an index-based heuristic in

a problem involving routing to parallel queues (see also Argon et al. [6]). Informally speaking, an

index-based policy is a policy which associates a certain, easily-computable score or index to the

various possible decision options in any given system state, and then chooses the option with the

highest index. A precise definition of indexability will be given later in this section.

In [59], the authors consider a problem which differs somewhat from the assumptions made in

this thesis; most importantly, customers are impatient and may leave the system before receiving

service (after having initially been ‘routed’ to one of the N service facilities), in which case the

system incurs a non-negative penalty. Balking also incurs a penalty, but holding costs are not

included explicitly. In addition, the authors allow for state-dependent service rates by using µi,n

to represent the rate at which service completions occur at facility i ∈ {1, 2, ..., N} when there are

n ∈ N0 customers present there; so, for example, this rate would be given by µi,n = min(n, ci)µi

under the assumptions made in Section 3.1. On the other hand, the system in [59] is comparable to

that described in Section 3.1 with respect to its formulation as a continuous-time Markov process,

the complete observability of the system at all times and the fact that the optimisation problem

of interest involves routing customers to parallel service facilities in such a way that the expected

long-run average return (after deduction of balking and reneging costs) is maximised.

Throughout this chapter, the queueing system described in Section 3.1 will be considered. The

objectives in this section are to show empirically that a heuristic policy derived in an analogous

way to that in [59] is able to attain an expected long-run average reward close to the optimal value

in many problem instances, and to analyse the properties of this heuristic policy. In particular,

since the heuristic policy will be index-based, it will be interesting to compare the indices that it

uses for decision-making with those of the selfishly optimal policy θ̃ defined in Section 4.1, which

may also be regarded as an index policy. The resulting observations may offer some insight into

why the selfish policy θ̃ is generally sub-optimal, and how its sub-optimality may be affected by

the values of the system parameters. It will also be useful to verify that the heuristic policy retains

certain structural properties which were discussed in Chapter 5, such as monotonicity.
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In order to derive the heuristic policy, it will be useful to introduce some notation. Let Θ denote

the class of stationary policies under which the system is stable and has a stationary distribution;

that is, if θ ∈ Θ then the distribution {πθ(x)}x∈S exists, where πθ(x) is the steady-state probability

of the system being in state x ∈ S under θ and
∑

x∈S πθ(x) = 1. Clearly Θ is non-empty, since

it includes the trivial policy which chooses to balk at all states in S. For each policy θ ∈ Θ and

facility i ∈ {1, 2, ..., N}, let ηi(θ) denote the effective queue-joining rate per unit time at facility i

under θ (i.e. the long-run average number of customers joining facility i per unit time), and let

Li(θ) denote the long-run expected number of customers present at facility i under θ. Then the

expected long-run average reward gθ under policy θ may be expressed in the form:

gθ =

N∑
i=1

(αiηi(θ)− βiLi(θ)) . (6.1.1)

Naturally, closed-form expressions for ηi(θ) and Li(θ) are unattainable in general when N ≥ 2, but

(6.1.1) will nevertheless prove to be useful since the heuristic policy to be discussed in this section is

derived by using a set of N independent single-facility admission control problems to approximate

a solution to the original N -facility routing problem. This heuristic policy will be referred to as

the Whittle index policy (or, more simply, the ‘Whittle heuristic’) since it was first proposed, in a

rather more general context, by Whittle [198]. In order to motivate the derivation of the Whittle

heuristic, note first that under any policy θ ∈ Θ, the sum of the effective queue-joining rates ηi(θ)

at the various facilities must be bounded above by the system demand rate. That is:

N∑
i=1

ηi(θ) ≤ λ. (6.1.2)

It will be convenient to assume that the system is uniformised as described in Section 3.3, so that

it evolves in discrete time steps of size ∆, where ∆ ∈
(

0,
(
λ+

∑N
i=1 ciµi

)−1
]
. In the discretised

system, the number of arrivals occurring at any discrete time step is at most one, and hence it is

not possible for two or more facilities to receive a new customer at the same time step. Let Un

denote the number of facilities chosen to receive a new customer at time step n ∈ N0, irrespective

of whether or not a new customer actually arrives at step n. Then, obviously:

Un ≤ 1 ∀ n ∈ N0. (6.1.3)

Following in the spirit of Whittle [198], suppose that the mechanism for allocating customers to
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service facilities is altered so that (6.1.3) is replaced by a weaker constraint:

E [Un] ≤ 1, (6.1.4)

where the expectation is with respect to the long-term average; that is, the average number of

facilities chosen to receive a new customer (over all time steps) should be at most 1. Clearly, the

requirement (6.1.4) would be met not only by all policies in Θ, but also by some policies with the

ability to choose several different destinations for the same customer. Consider a relaxed version

of the original N -facility optimisation problem involving an expanded class of stationary policies

Θ′ which are at liberty to ‘break’ the natural physical restrictions of the system, in the sense that

any new customer who arrives can be sent to any subset of the set of facilities {1, 2, ..., N}. That

is, for each state x ∈ S, the action θ(x) chosen by a policy θ ∈ Θ′ satisfies:

θ(x) ∈ P ({1, 2, ..., N}) ,

where P ({1, 2, ..., N}) is the power set (i.e. the set of all subsets, including the empty set) of

{1, 2, ..., N}. Conceptually, one now considers a new optimisation problem in which the option is

available to produce ‘copies’ of each customer who arrives, and send these copies to any number of

facilities (at most one copy per facility). For each state x ∈ S, θ(x) is the set of facilities which,

under the policy θ ∈ Θ′, receive (a copy of) a new customer if an arrival occurs under state x. If

θ(x) = ∅ then no facility receives a new customer; this is akin to balking in the original problem.

Suppose also that the constraint (6.1.2) is imposed on the new optimisation problem. Following

[59] and [198], this constraint may be incorporated in a Lagrangian fashion by letting g†(W ) denote

the optimal expected long-run average reward for the new problem, defined as:

g†(W ) := sup
θ∈Θ′

(
N∑
i=1

(αiηi(θ)− βiLi(θ)) +W

(
λ−

N∑
i=1

ηi(θ)

))
, (6.1.5)

where W ∈ R is a Lagrange multiplier which, as discussed later, may be interpreted economically

as a charge for granting entry to a new customer. Clearly, any policy θ belonging to the class of

policies Θ for the original problem may be represented by a policy θ′ in the new class Θ′ for which

the cardinality of θ′(x) is either 1 or 0 at all states x ∈ S. Hence, for W ≥ 0:

g∗ ≤ g†(W ),
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where g∗ = supθ∈Θ gθ is the optimal expected long-run average reward in the original problem. At

this point, it will be useful to re-write (6.1.5) in the equivalent form:

g†(W ) = sup
θ∈Θ′

(
N∑
i=1

(
(αi −W ) ηi(θ)− βiLi(θ)

))
+ λW. (6.1.6)

Then, as in [59] (p. 979), one obtains a facility-wise decomposition:

g†(W ) =
N∑
i=1

g†i (W ) + λW, (6.1.7)

where, for each facility i ∈ {1, 2, ..., N}:

g†i (W ) = sup
θ∈Θi

′

(
(αi −W ) ηi(θ)− βiLi(θ)

)
.

Here, Θi
′ (for i = 1, 2, ..., N) is a class of stationary policies which choose either to accept a customer

(denoted by 1) or reject (denoted by 0) at any given state. To clarify, recall that in the relaxed

version of the N -facility problem under consideration, each newly-arrived customer can be sent to

any subset of the N facilities. As such, the decision of whether or not to admit a customer at

some facility i ∈ {1, 2, ..., N} can be made independently of the decisions made in regard to the

other facilities j 6= i. It follows that an optimal solution to the relaxed N -facility problem can

be found by solving N independent single-facility problems. For each facility i ∈ {1, 2, ..., N}, the

corresponding single-facility problem involves customers arriving according to a Poisson process

with a demand rate λ (the same demand rate as for the N -facility problem), ci service channels,

and exponentially-distributed service times with mean µ−1
i . The holding cost is βi per customer

per unit time, but importantly the reward for service is now αi −W as opposed to αi. Hence, it is

natural to interpret W as an extra charge for admitting a customer; see Figure 6.1.

The single-facility problem described above exactly fits the formulation of Section 3.1 (with N = 1),

except that the reward αi −W may not be positive. However, if αi −W ≤ 0 then there is no way

for the system to earn a positive expected average reward, and hence the stationary policy which

chooses to balk at every state (thus achieving an average reward of zero) trivially attains average

reward optimality. On the other hand, assuming that αi −W > 0, results from previous chapters

imply that for the single-facility optimisation problem under consideration:

• There exists an average reward optimal stationary policy (Theorem 4.2.3);
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Figure 6.1: An M/M/ci queue with an extra admission charge W .

• There exists an average reward optimal threshold policy (Theorem 5.1.4).

Accordingly, let θ∗i denote an optimal threshold policy. This means that θ∗i is a map from N0 to

{0, 1}, where N0 is the state space for the single-facility problem and {0, 1} is the set of actions

available at any state. Re-interpreting the summary measures ηi(·) and Li(·) so that they are now

functions of policies θi belonging to the set Θi
′ associated with the single-facility problem, it follows

that (αi−W )ηi(θ
∗
i )−βiLi(θ∗i ) is a valid expression for g†i (W ), the optimal average reward for facility

i. Now, recall that the facility i ∈ {1, 2, ..., N} was arbitrary in this discussion and let θ∗1, θ
∗
2, ..., θ

∗
N

be optimal threshold policies at the various facilities. Also, let θ∗ be a stationary policy belonging

to the expanded class Θ′ which operates in such a way that, for each state x ∈ S:

θ∗(x) =
{
i ∈ {1, 2, ..., N} : θ∗i (xi) = 1

}
. (6.1.8)

That is, each time a new customer arrives, they are sent to all of the facilities i ∈ {1, 2, ..., N}

at which the optimal threshold policy θ∗i (taking into account only the number of customers xi at

facility i) would choose to accept a customer. By the previous arguments, the expected long-run

average reward earned by operating policy θ∗ in the relaxed N -facility system is maximised by

operating the optimal threshold policies θ∗i at the individual facilities i, and therefore it follows

that θ∗ attains average reward optimality in the relaxed version of the problem.

One may conclude from the above that the task of finding an optimal routing policy in the relaxed

version of the original N -facility problem is not a difficult one, since it can be accomplished by

finding optimal admission control policies for the N facilities individually. More to the point, this

solution method avoids the need to trawl through a vast N -dimensional state space, and thereby
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avoids suffering from the ‘curse of dimensionality’. In order to derive the Whittle heuristic for the

original N -facility problem, it remains to establish the connection between this heuristic and the

optimal solutions for the relaxed version of the problem discussed thus far. The Whittle heuristic

relies upon the notion of indexability of a service facility. It will therefore be appropriate to provide

a definition of indexability, similar to the definition in [198] (see also [57, 58, 59]).

Definition 6.1.1. (Indexability)

For each facility i ∈ {1, 2, ..., N}, let θ∗i (W ) be the optimal threshold policy found by relative value

iteration in a single-facility problem with demand rate λ, ci service channels, service rate µi, holding

cost βi, reward for service αi −W and finite state space {0, 1, ..., T̃i(W )}, where:

T̃i(W ) = max

(⌊
(αi −W )ciµi

βi

⌋
, 0

)
.

It is assumed that, in cases where the actions a = 0 and a = 1 both attain the maximum in the

optimality equations (5.1.2) for some state x ∈ {0, 1, ..., T̃i(W )}, the policy θ∗i (W ) chooses to join

at state x. Also define T ∗i (W ) as the threshold associated with θ∗i (W ). That is:

T ∗i (W ) = min
{
x ∈ {0, 1, ..., T̃i(W )} : θ∗i (W ) chooses to balk at state x

}
. (6.1.9)

Then facility i is said to be indexable if T ∗i (W ) satisfies the following properties:

1. T ∗i (W ) is monotonically decreasing with W . That is, for W1,W2 ∈ R:

W1 > W2 ⇒ T ∗i (W1) ≤ T ∗i (W2).

2. For any x ∈ N0, there exists Wi(x) ∈ R such that T ∗i (W ) > x if and only if W ≤Wi(x).

Defining each policy θ∗i (W ) as the optimal policy found by relative value iteration is convenient

in order to avoid any ambiguity that would be caused by the non-uniqueness of optimal policies.

Note that the approach of finding θ∗i (W ) by searching within the finite (selfishly optimal) state

space {0, 1, ..., T̃i(W )} is justified by the result of Theorem 4.2.4. The next result establishes that

the service facilities i ∈ {1, 2, ..., N} satisfy the conditions in Definition 6.1.1.

Theorem 6.1.2. Each facility i ∈ {1, 2, ..., N} is indexable.
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Proof. The proof follows arguments similar to those found in [59]. Consider an arbitrary facility

i ∈ {1, 2, ..., N}, and let gi(T,W ) denote the expected long-run average reward under a threshold

policy with threshold T ∈ N0 and admission charge W ∈ R. Then:

gi(T,W ) = λ(1− πi(T, T ))(αi −W )− βi
T∑
y=0

yπi(y, T ), (6.1.10)

where πi(y, T ) denotes the steady-state probability of the facility being in state y ∈ N0, given that

a threshold of T is applied. From (6.1.10) it follows that, given any fixed T ∈ N0, the average

reward gi(T,W ) is a linear, strictly decreasing function of W , and its gradient is:

∂gi
∂W

= −λ(1− πi(T, T )). (6.1.11)

Given some admission charge W ∈ R, let T ∗i (W ) be the optimal threshold defined in (6.1.9);

hence, gi(T
∗
i (W ),W ) ≥ gi(T,W ) for all T ∈ N0. It can be verified using standard formulae

for finite-capacity M/M/c queues (see [67], p. 74) that the steady-state probability πi(T, T ) is

strictly decreasing with T ; hence, the gradient in (6.1.11) is also strictly decreasing with T . Given

that gi(T
∗
i (W ),W ) ≥ gi(T

∗
i (W ) + n,W ) for arbitrary n ≥ 1, it must therefore be the case that

gi(T
∗
i (W ), W̃ ) > gi(T

∗
i (W ) + n, W̃ ) for any W̃ > W , and therefore the policy with threshold T + n

cannot be the optimal policy found by relative value iteration under an admission charge W̃ , since

it does not maximise the average reward. It follows that T ∗i (W̃ ) ≤ T ∗i (W ) for any two admission

charges W, W̃ ∈ R with W < W̃ , which verifies the first of the required conditions.

Using similar arguments, for any state x ∈ N there must exist some value Wi(x) ∈ R such that

gi(x,W ) ≥ gi(x − n,W ) for all n ∈ {1, 2, ..., x} if and only if W ≤ Wi(x). This is due to the fact

that the linear functions gi(x− n,W ) have larger gradients than that of gi(x,W ). Hence, it must

be the case that T ∗i (W ) > x if and only if W ≤ Wi(x), since this is the only scenario in which a

threshold policy with threshold greater than x maximises the average reward. This completes the

proof that the indexability conditions stated in Definition 6.1.1 are both satisfied. �

Given that the service facilities are indexable, it follows that for each facility i ∈ {1, 2, ..., N} and

integer x ∈ N0 there exists some value Wi(x) such that joining is chosen by the optimal threshold

policy θ∗i (W ) if and only if W ≤Wi(x). The critical value Wi(x) will be referred to in this section

as the Whittle index for facility i and state x. The next definition states this formally.
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Figure 6.2: The linear dependence of the functions gi(x,W ) on the admission charge W .

Definition 6.1.3. (Whittle index)

Suppose facility i is indexable. The Whittle index for facility i and state x ∈ N0 is given by:

Wi(x) := sup
{
W ∈ R : θ∗i (W ) chooses to join at state x

}
, (6.1.12)

where θ∗i (W ) is the optimal policy for facility i described in Definition 6.1.1.

As discussed previously, the relaxed version of the N -facility routing problem is solved by a policy

θ∗ which, upon any new customer’s arrival, sends the customer only to facilities i at which the

number of customers present xi is smaller than the threshold T ∗i (W ) associated with the optimal

policy θ∗i (W ) found by applying relative value iteration to a single-facility problem involving only

facility i. Clearly, in view of Definition 6.1.3, this is equivalent to sending the new customer to all

facilities i for which Wi(xi) ≥ W , but not to any facility j for which Wj(xj) < W . In fact, one

might replace the description of the policy θ∗ given in (6.1.8) with the following:

θ∗(x) =
{
i ∈ {1, 2, ..., N} : Wi(xi) ≥W

}
.

As observed by Glazebrook et al. [59] and Argon et al. [6], the fact that an optimal solution to the

relaxed problem may be described using the Whittle indices makes it logical to propose a heuristic

policy for the original N -facility problem, which involves sending any new customer who arrives
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under state x ∈ S to a facility i which maximises Wi(xi), or choosing to balk if all of the Wi(xi)

values are negative. The optimality of such a policy cannot be theoretically guaranteed, but its

intuitive justification lies in the fact that Wi(xi), when positive, is a measure of the amount by

which the ‘charge for admission’ W would need to be increased before the optimal policy θ∗ for the

relaxed problem would choose not to admit a customer to facility i. Thus, Wi(xi) may be regarded

somewhat crudely as a measure of the margin by which one would be ‘in favour’ of having an extra

customer present at facility i. A similar interpretation, as discussed in [59] and [6], is that Wi(xi)

is a ‘fair charge’ for admitting a customer to facility i when there are xi customers already present;

thus, the decision made by θ∗ concerning whether or not to admit a new customer to facility i

depends on whether or not the ‘real’ charge W is in excess of the fair charge Wi(xi).

As stated at the beginning of this section, the general mode of operation of an index-based policy

involves choosing actions by associating indices (scores) with all of the possible decision options at

any given state, and then choosing the action with the largest score. Moreover, these indices should

be easily computable. If calculation of the indices were to require a time-consuming algorithmic

procedure, then obviously the index-based policy in question would not be as easy to implement

in practice as one might desire. In the case of the N -facility queueing system under consideration,

the objective is to find a policy which, while being only near -optimal, is also much faster to obtain

than the optimal policy that one would find using a dynamic programming algorithm. In order to

construct a heuristic policy based on the Whittle indices Wi(xi), it is therefore highly important

to ensure that the indices Wi(xi) themselves are relatively simple to calculate.

Fortunately, the fact that the indices Wi(xi) can be easily calculated for any facility i ∈ {1, 2, ..., N}

is ensured by their independence from the indices for the other facilities j 6= i. In other words, one

may derive the index Wi(xi) for any facility i and head count xi by considering a single-facility

problem involving only facility i. Moreover, it is possible to obtain a convenient formula for Wi(xi).

This can be shown using the arguments below, which make use of Theorem 6.1.2.

Consider an arbitrary W0 ∈ R and let T ∗i (W0) be the corresponding optimal threshold. Recall

from the proof of Theorem 6.1.2 that the average rewards gi(T
∗
i (W0),W ) and gi(T

∗
i (W0) + 1,W )

are both linear functions of W and their gradients are not equal. Hence, there must exist a unique

intersection point W1 < W0 such that gi(T
∗
i (W0),W1) = gi(T

∗
i (W0) + 1,W1) (refer to Figure
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6.2). Moreover, since the optimal threshold T ∗i (W ) is monotonically decreasing with W (and it

is assumed that higher-threshold policies are preferred when average rewards are tied), it must

be the case that T ∗i (W1) > T ∗i (W0). Hence, given the unique intersection point W1 satisfying

gi(T
∗
i (W0),W1) = gi(T

∗
i (W0) + 1,W1), one can say that the threshold T ∗i (W ) is greater than

T ∗i (W0) if and only if W ≤W1. Hence, W1 is equal to the Whittle index W ∗i (T ∗i (W0)), since joining

is chosen at state T ∗i (W0) by the optimal threshold policy if and only if W ≤W1.

To summarise the preceding arguments, the Whittle index Wi(x) for any facility i and head count

x ∈ N0 may be obtained as the unique value of W which results in the thresholds T = x and

T = x + 1 both yielding the same expected long-run average reward gi(T,W ) in a single-facility

problem. Equivalently, one might say that an admission charge of Wi(x) results in the optimal

policy θ∗i (Wi(x)) being indifferent between admitting and rejecting a customer at facility i when

the head count is x. Recalling (6.1.10), it follows that Wi(x) satisfies the equation:

λ(1− πi(x, x))(αi −Wi(x))− βi
x∑
y=0

yπi(y, x)

= λ(1− πi(x+ 1, x+ 1))(αi −Wi(x))− βi
x+1∑
y=0

yπi(y, x+ 1).

Solving this equation directly for Wi(x) yields:

Wi(x) = αi −

βi

x+1∑
y=0

yπi(y, x+ 1)−
x∑
y=0

yπi(y, x)


λ (πi(x, x)− πi(x+ 1, x+ 1))

. (6.1.13)

Given that relatively simply formulae are available for the steady-state probabilities πi(y, x), (6.1.13)

provides the required convenient formula for the Whittle indices Wi(x). The Whittle index heuristic

policy θ[W ] (hereafter referred to as the Whittle policy) is defined below.

Definition 6.1.4. (Whittle index policy)

For all x ∈ S, the Whittle index policy θ[W ] chooses an action as follows:

θ[W ](x) ∈


arg max
i∈{1,2,...,N}

Wi(xi), if ∃ i ∈ {1, 2, ..., N} such that Wi(xi) ≥ 0,

{0}, otherwise,

(6.1.14)
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where, for all facilities i ∈ {1, 2, ..., N} and integers x ≥ 0:

Wi(x) = αi −

βi

x+1∑
y=0

yπi(y, x+ 1)−
x∑
y=0

yπi(y, x)


λ (πi(x, x)− πi(x+ 1, x+ 1))

.

In cases where two or more facilities attain the maximum in (6.1.14), it will be assumed that a

decision is made according to some fixed ranking order of the N facilities.

As discussed earlier, it is possible (in theory) to evaluate the average reward gθ[W ] earned by the

Whittle policy using the Policy Evaluation Algorithm in Section 3.7. However, this requires the

use of dynamic programming, which may be impractical. A much quicker method for estimating

gθ[W ] involves simulating the system operating under the Whittle policy. In doing so, it is possible

to make use of the ‘containment’ principle proved in Section 4.2; that is, due to Theorem 4.2.4, any

N -facility system may be associated with a socially optimal policy whose recurrent state space is

contained within the selfishly optimal state space S̃ defined in Section 4.1. As a result, one may

infer that only the Whittle indices at states x ∈ S̃ should be required, and therefore it is efficient

to compute the indices Wi(xi) for all i ∈ {1, 2, ..., N} and xi ∈ {0, 1, ..., B̃i} (where B̃i is the selfish

threshold defined in (4.1.2)) in the initial phase of the simulation program and store these indices

inside an array, so that they can be ‘looked up’ during the simulation phase itself as and when

required. Note that the size of the array used for this purpose would be only
∑

i(B̃i + 1), which

in general will be much smaller than
∣∣∣S̃∣∣∣. In fact, this pre-computation approach is theoretically

justified, since it can easily be shown that one must have Wi(xi) < 0 for any state x ∈ S̃ with

xi = B̃i (this is confirmed by Theorem 6.1.7 later in this section). This implies that an index-based

policy based on the Whittle indices will never choose to join facility i at a state x ∈ S with xi = B̃i,

and thus the recurrent state space of the Whittle policy must be contained in S̃.

As a further note, the fact that balking is chosen by θ[W ] at any state x ∈ S with Wi(xi) < 0 for

all i ∈ {1, 2, ..., N} is not just an arbitrary convention, but in fact is entirely consistent with the

general heuristic approach of choosing the facility with the largest index value at any given state.

To see this, one may observe that balking is essentially equivalent to joining a ‘degenerate’ facility

(which one may regard as ‘facility zero’, given that 0 is used throughout this thesis to represent

the action of balking) at which services are always completed immediately, so that holding costs
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are irrelevant, and the reward for service is zero. If one regards this extra degenerate facility as

being present in the relaxed version of the problem discussed earlier (as a conceptual alternative

to balking), then it is obvious that at any given state x ∈ S, an optimal policy for the relaxed

problem will decide to send a (copy of a) customer to the degenerate facility if and only if W ≤ 0,

since only the admission charge W is relevant to such a decision. Hence, by Definition 6.1.3, one

has W0(x) = 0 for all x ∈ N0. In effect, this states that the Whittle index associated with the

action of balking is always zero (regardless of the state), and therefore if one has Wi(xi) < 0 for all

i ∈ {1, 2, ..., N} then balking is indeed the action with the largest Whittle index.

As discussed earlier, formulae for the steady-state probabilities πi(y, x) in (6.1.13) are available from

the general theory for M/M/c/k queues; that is, M/M/c queueing systems with a finite system

capacity k ∈ N0. These formulae, while being somewhat messy, should not significantly hinder

a computer program. In the special case of a single-server queue (ci = 1), the Whittle indices

Wi(x) have a particularly simple form which enables an interesting comparison to be made with

the results for M/M/1 queues from Chapter 2. This is shown by the next example.

Example 6.1.5. (Whittle indices in a single-server queue)

This example concerns only the derivation of the Whittle indices Wi(x) for a facility i with ci = 1.

While facility i may be thought of as being part of a larger N -facility system, the indices Wi(x)

are obtained independently of the characteristics of the other facilities j 6= i and therefore it will

be convenient to drop the facility identifier i. That is, for x ∈ N0:

W (x) = α−

β

x+1∑
y=0

yπ(y, x+ 1)−
x∑
y=0

yπ(y, x)


λ (π(x, x)− π(x+ 1, x+ 1))

. (6.1.15)

Using standard results (see [67], p. 74) one has, for x, y ∈ N with y ≤ x:

π(y, x) =


ρy(1− ρ)

1− ρx+1
, if ρ 6= 1,

1/(x+ 1), if ρ = 1,

(6.1.16)

where ρ = λ/µ. Substituting (6.1.16) into (6.1.15) yields, after some manipulations:
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W (x) =


α−

β
(
(x+ 1)(1− ρ)− ρ(1− ρx+1)

)
µ(1− ρ)2

, if ρ 6= 1,

α− β(x+ 1)(x+ 2)

2µ
, if ρ = 1.

(6.1.17)

Recall that under the Whittle policy θ[W ], joining the facility in question is preferred to balking if

and only if W (x) ≥ 0. Equivalently, using (6.1.17), this condition states:
αµ

β
≥ (x+ 1)(1− ρ)− ρ(1− ρx+1)

(1− ρ)2
, if ρ 6= 1,

αµ

β
≥ (x+ 1)(x+ 2)

2
, if ρ = 1.

(6.1.18)

Recall that under the selfishly optimal policy θ̃ (in an M/M/1 queue), joining is preferred to balking

at state x ∈ N0 if and only if α− β(x+ 1)/µ ≥ 0, or equivalently:

αµ

β
≥ x+ 1. (6.1.19)

The conditions in (6.1.18) may be written equivalently as follows:
αµ

β
≥ x+ 1 +

xρ(1− ρ)− ρ2(1− ρx)

(1− ρ)2
, if ρ 6= 1,

αµ

β
≥ x+ 1 +

x(x+ 1)

2
, if ρ = 1.

(6.1.20)

It may be shown that, for any fixed x ∈ N, the function f(ρ) :=
(
xρ(1− ρ)− ρ2(1− ρx)

)
/(1− ρ)2

is positive and strictly increasing with ρ. Indeed, by differentiating, one finds:

f ′(ρ) =
x(1− ρ)(1 + ρx+1)− 2ρ(1− ρx)

(1− ρ)3
. (6.1.21)

The fact that the derivative in (6.1.21) is positive for all x ∈ N and ρ > 0 can be verified using

a proof by induction over x, treating the cases ρ ∈ (0, 1) and ρ > 1 separately. Since f(0) = 0

for any fixed x ∈ N, it then follows that the function is positive for all ρ > 0 (since it is strictly

increasing). Hence, by comparing (6.1.19) and (6.1.20), it may be seen that the condition for joining

to be preferred to balking by the Whittle policy is stronger than the corresponding condition for

the selfish policy θ̃; that is, the Whittle policy is more conservative than the selfish policy. This

result is established in proper generality (i.e. not restricted to the case of a single-server queue) by
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Theorem 6.1.7 later in this section. Moreover, since f(ρ) is increasing with ρ, the Whittle policy

for the single-server queue actually becomes more conservative as the demand rate increases. This

is consistent with results from previous chapters (in particular, Theorem 5.1.8).

The condition in (6.1.18) may also be compared with the classical results of Naor [131] which were

discussed in Chapter 2. Naor showed that the socially optimal threshold in an observable M/M/1

queue, denoted by no, must satisfy the following pair of inequalities:
no(1− ρ)− ρ(1− ρno)

(1− ρ)2
≤ αµ

β
<

(no + 1)(1− ρ)− ρ(1− ρno+1)

(1− ρ)2
, if ρ 6= 1,

no(no + 1)

2
≤ αµ

β
<

(no + 1)(no + 2)

2
, if ρ = 1.

(6.1.22)

Under the socially optimal policy, one would choose to join at state x ∈ N0 if and only if x < no.

Since no is the smallest integer for which the right-hand inequality in (6.1.22) holds, this implies

that one would prefer joining to balking at state x if and only if:
αµ

β
≥ (x+ 1)(1− ρ)− ρ(1− ρx+1)

(1− ρ)2
, if ρ 6= 1,

αµ

β
≥ (x+ 1)(x+ 2)

2
, if ρ = 1.

This is exactly the same condition as (6.1.18), showing that the Whittle indices for a single-server

queue have an equivalence with Naor’s classical results for social optimisation in an M/M/1 queue;

specifically, the conditions W (x) ≥ 0 and x < no are equivalent. Of course, this is entirely expected,

since the Whittle indices Wi(x) are defined in such a way that Wi(x) ≥ 0 if and only if joining is

preferable to balking at state x in a single-server problem involving only facility i.

Finally, it is also interesting to observe how the Whittle indices W (x) given in (6.1.17) are affected

in light-traffic and heavy-traffic limits. Let W (x, λ) denote the Whittle index for state x ∈ N0 given

a demand rate λ > 0. Then, from (6.1.17), one immediately obtains:

lim
λ→0

W (x, λ) = α− β(x+ 1)

µ
.

This states that, in a light-traffic limit (as λ→ 0), the Whittle index W (x, λ) tends to the expected

net reward for an individual customer for joining under state x. Of course, this is exactly the

same index as that used by the selfish policy θ̃, which shows that the Whittle policy θ[W ] ‘tends
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to the selfish policy’ as λ → 0. This is what one might expect, given that the selfish policy was

shown by Theorem 4.4.4 to be asymptotically optimal in a light-traffic limit. Next, considering the

heavy-traffic limit (as λ→∞), by taking limits in (6.1.17) again one obtains:

lim
λ→∞

W (x, λ) =


α− β

µ
, if x = 0,

−∞, if x ≥ 1.

Recall that α − β/µ is always strictly positive by assumption, and hence as λ → ∞ the Whittle

policy θ[W ] tends to a policy which chooses to join if and only if the system is empty. This limiting

policy is an example of a vacancy policy (see Definition 4.4.6), and Theorem 4.4.7 showed that

vacancy policies are optimal in a heavy-traffic limit, so again this is as expected.

This example has shown that if one restricts attention to single-server queues, then the Whittle

policy θ[W ] is asymptotically optimal in a light-traffic limit and also optimal in a heavy-traffic limit.

Theorem 6.1.8 later in this section will prove that these limiting properties of the Whittle policy

also hold in greater generality, i.e. when multiple servers are allowed. �

More generally, conditions implying the asymptotic optimality of Whittle’s heuristic for restless

bandit problems have been investigated in the literature; see, for example, [85, 193].

The next example is a numerical example which shows the ability of the Whittle policy θ[W ] to

closely approximate an optimal policy in a system with two dual-server facilities.

Example 6.1.6. (Whittle indices in a system with two dual-server facilities)

This example uses the same parameters as Example 4.1.1 from Chapter 4. To recap, there is a

demand rate λ = 10 and the parameters for the two facilities are as follows:

c1 = 2, µ1 = 8, β1 = 10, α1 = 2,

c2 = 2, µ2 = 2, β2 = 10, α2 = 6.

The selfishly optimal policy θ̃ and socially optimal policy θ∗ (found by relative value iteration)

for this system were shown in Table 4.1, page 127. As discussed in that example, an important

difference between θ̃ and θ∗ is that θ∗ chooses to balk at the state (2, 2), which ensures that the
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x 0 1 2 3

W1(x) 0.750 0.750 −0.416 −1.770

Table 6.1: The Whittle indices W1(x) for x ∈ {0, 1, 2, 3}.

recurrent state space Sθ∗ consists of only 9 states which form a proper subset of S̃. Table 6.1 shows

the Whittle indices W1(x) for facility 1 (computed using (6.1.13)) for x ∈ {0, 1, 2, 3}.

Similarly, Table 6.2 shows the Whittle indices W2(x) for x ∈ {0, 1, 2}.

x 0 1 2

W2(x) 1.000 1.000 −12.214

Table 6.2: The Whittle indices W2(x) for x ∈ {0, 1, 2}.

These results imply that the Whittle policy θ[W ] (for states x ∈ S̃) is as shown in Table 6.3. By

comparing θ[W ] with the socially optimal policy θ∗ in Table 4.1, one finds that θ[W ] differs from θ∗

at the states (0, 1) and (1, 1). Since the system is small, one may easily use dynamic programming

to evaluate the average reward gθ[W ] earned by θ[W ]. The resulting value is gθ[W ] ≈ 7.256, whereas

the optimal value is g∗ ≈ 7.282, implying that θ[W ] is within about 0.35% of optimality. Similarly,

it can be checked that the sub-optimality of the selfish policy θ̃ is about 3%.

x2 = 0 x2 = 1 x2 = 2

x1 = 0 2 2 1

x1 = 1 2 2 1

x1 = 2 2 2 0

x1 = 3 2 2 0

Table 6.3: The Whittle policy θ[W ] for the system in Example 6.1.6.

In this particular example, the optimal policy θ∗ has a certain subtlety in that it chooses different

decisions at the states (0, 0) and (0, 1), despite the fact that both states offer an available server

at both facilities (since the facilities are both dual-server). One may view this policy as somewhat

counter-intuitive. In fact, the Whittle policy θ[W ] is unable to replicate such a decision-making

property. This is due to the fact that at any state x ∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N}, it
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must be the case that Wi(xi) = αi − βi/µi, since an admission charge W greater than αi − βi/µi

would be required in order for balking to be preferred to joining i at x. Hence, it can never be the

case that the Whittle policy prefers facility i over facility j 6= i at some state x with xi < ci and

xj < cj , but prefers j over i at some other state y 6= x with yi < ci and yj < cj .

As a further note, the Whittle indices in Tables 6.1 and 6.2 can easily be verified by using relative

value iteration to compute optimal policies in single-facility problems with the rewards αi adjusted.

For example, Table 6.1 states that W1(2) ≈ −0.416, which implies that the reward α1 would need to

be increased by at least 0.416 in order for the optimal threshold in the corresponding single-facility

problem to exceed 2. Indeed, by computing the optimal single-facility policy for facility 1 with the

reward value α1 increased from 2 to 2.42, one obtains a threshold policy with threshold 3. On the

other hand, using the slightly smaller value α1 = 2.41 yields a threshold of 2. �

By their nature, index-based policies are appealing not only due to their ease of application but

also due to their preservation of intuitive structural properties (which may not be exhibited by a

socially optimal policy). The next result establishes that the Whittle policy θ[W ] possesses several

of the structural properties which have been thematic throughout this thesis.

Theorem 6.1.7. The Whittle policy θ[W ] possesses the following properties:

1. (Containment.) Let SW be the set of positive recurrent states under the policy θ[W ]. Then

SW ⊆ S̃, where S̃ is the corresponding set for the selfish policy θ̃.

2. (First monotonicity property.) Suppose θ[W ](x) = 0 for some state x ∈ S. Then θ[W ](xi+) = 0

for all facilities i ∈ {1, 2, ..., N}.

3. (Second monotonicity property.) Suppose θ[W ](x) = i for some state x ∈ S and facility

i ∈ {1, 2, ..., N} with xi ≥ 1. Then θ[W ](xi−) = i.

4. (Third monotonicity property.) Suppose θ[W ](x) = i for some state x ∈ S and facility i ∈

{1, 2, ..., N}. Then θ[W ](xj+) = i for all facilities j ∈ {1, 2, ..., N} \ {i}.

5. (Sink property.) The policy θ[W ] is a sink policy with a sink state z ∈ S satisfying zi =

min{x ∈ N0 : Wi(x) < 0} for all facilities i ∈ {1, 2, ..., N}.
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6. (Conservativity with demand.) Let SW (λ) be the set of positive recurrent states under the

Whittle policy θ
[W ]
λ given a demand rate λ > 0. Then, for any pair of demand rates λ1, λ2 > 0

with λ1 > λ2, it is the case that SW (λ1) ⊆ SW (λ2).

7. (Non-idling property.) The policy θ[W ] does not choose to balk at any state x ∈ S with xi < ci

for at least one facility i ∈ {1, 2, ..., N}.

Proof. The most trivial properties to prove are the monotonicity properties, numbered (2)-(4) in

the theorem, since these are direct consequences of the indexability property proved by Theorem

6.1.2. Indeed, due to Theorem 5.1.4, any admission charge W which causes joining to be preferred

to balking at some state x + 1 (with x ∈ N0) in a single-facility problem also causes joining to be

preferred at state x. By Definition 6.1.3, the largest such charge would be Wi(x+ 1) (considering

an arbitrary facility i ∈ {1, 2, ..., N}). That is, given an admission charge Wi(x + 1), one can say

that joining is preferable to balking at state x, from which it follows that Wi(x) ≥ Wi(x + 1) by

definition of Wi(x). This establishes that the indices Wi(x) are monotonically decreasing in x ∈ N0

for all i ∈ {1, 2, ..., N}, whereupon the properties (2)-(4) follow trivially from (6.1.14) (recall that

one assumes that there is a fixed ordering of the N facilities used to settle ties, so that i is always

preferred to j (or vice versa) at any state x ∈ S for which Wi(xi) = Wj(xj)).

For the containment property (1), it is sufficient to observe that due to Theorem 5.1.4, the socially

optimal threshold T ∗i for any facility i ∈ {1, 2, ..., N} satisfies T ∗i ≤ B̃i, where B̃i is the selfish

threshold defined in (4.1.2). This implies that Wi(B̃i) < 0 for any facility i, and hence the policy

θ[W ] never chooses to join facility i at any state x ∈ S with xi ≥ B̃i. In particular, balking is

chosen at any state with xi ≥ B̃i for all i ∈ {1, 2, ..., N}. It follows that no state outside S̃ can be

accessible from state 0 under θ[W ]; equivalently, the set SW must be contained in S̃.

Next, let z be the unique state in S with zi = min{x ∈ N0 : Wi(x) < 0} for all i ∈ {1, 2, ..., N}, and

let Sz =
{
x ∈ S : xi ≤ zi for all i ∈ {1, 2, ..., N}

}
. By definition of z, any state x ∈ Sz \ {z} has

Wi(xi) ≥ 0 for at least one i ∈ {1, 2, ..., N}. Hence, z is the only state in Sz at which the policy

θ[W ] chooses to balk. The state z must therefore be accessible from 0 (via an unbroken sequence

of arrivals, for example) and hence positive recurrent under θ[W ], from which it follows that any

state x ∈ Sz \{z} is positive recurrent under θ[W ] since it can be reached from z via an appropriate

sequence of service completions. Moreover, no state outside Sz is accessible from 0 under θ[W ],
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since this would require joining some facility i at a state x ∈ Sz with xi = zi and hence Wi(xi) < 0.

It follows that SW , the set of positive recurrent states under θ[W ], is equal to Sz. Since z is the

only state in Sz at which θ[W ] chooses to balk, property (5) follows by Definition 5.2.14.

Next, property (6) may be established using Theorem 5.1.8 from Chapter 5, which states that the

socially optimal threshold found by relative value iteration is monotonically decreasing with the

demand rate λ. Let λ1, λ2 > 0 be demand rates with λ1 > λ2. By property (5), the Whittle

policy θ
[W ]
λ2

corresponding to demand rate λ2 is a sink policy with a sink state z ∈ S satisfying zi =

min{x ∈ N0 : Wi(x, λ2) < 0} for all i ∈ {1, 2, ..., N}, where Wi(x, λ2) is the obvious generalisation

of Wi(x). In order for the set of recurrent states SW (λ1) not to be contained in SW (λ2), the

policy θ
[W ]
λ1

would have to choose to join some facility i ∈ {1, 2, ..., N} at a state x with xi = zi for

some i ∈ {1, 2, ..., N}. This would require θ
[W ]
λ1

to choose facility i at a state with Wi(xi, λ2) < 0,

implying the relationship Wi(xi, λ1) ≥ 0 > Wi(xi, λ2). It will therefore be sufficient to show that

Wi(xi, λ1) ≤ Wi(xi, λ2) for all x ∈ S and i ∈ {1, 2, ..., N}. Indeed, due to Theorem 5.1.8, any

admission charge W that causes joining to be preferred to balking at an arbitrary state x ∈ N0

in a single-facility problem under demand rate λ1 also causes joining to be preferred at x under

demand rate λ2. The largest such charge would be Wi(x, λ1) (considering an arbitrary facility

i ∈ {1, 2, ..., N}). That is, given an admission charge Wi(x, λ1), one can say that joining is preferable

to balking at state x under demand rate λ2, from which it follows that Wi(x, λ2) ≥ Wi(x, λ1) by

definition of Wi(x, λ2). Property (6) then follows from the previous arguments.

In order to establish property (7), consider an arbitrary facility i ∈ {1, 2, ..., N} and suppose relative

value iteration is applied to the corresponding single-facility problem, with the state space restricted

to the finite set {0, 1, ..., B̃i}. Here, B̃i is the selfishly optimal threshold for facility i defined in

(4.1.2), and B̃i ≥ ci due to the assumption that αi−βi/µi > 0. Lemma 4.3.2 (applied to the single-

facility problem) implies that joining is preferred to balking by the optimal policy θ∗i at all states

x < ci; hence, it must be the case that Wi(x) ≥ 0 for all x < ci. Since the facility i was arbitrary,

it follows that for any state x ∈ S with xi < ci for some i ∈ {1, 2, ..., N} one has Wi(xi) ≥ 0 and

hence balking is not chosen by the Whittle policy θ[W ]. This completes the proof. �

Naturally, the selfish policy θ̃ (being an index-based policy) also possesses all of the properties

discussed in Theorem 6.1.7, although property (6) is somewhat meaningless in the selfishly optimal
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case, since θ̃ is actually independent of the demand rate λ. In a sense, one might say that θ[W ] is

simply an alternative index policy which is less naive (in the context of social optimisation) than

θ̃, since it takes into account more than just the welfare of the immediate customer.

It was proved in Section 4.4 that the selfishly optimal policy θ̃ is asymptotically socially optimal

in a light-traffic limit. The next result shows that the Whittle policy θ[W ] not only emulates the

light-traffic optimality of θ̃, but also attains optimality in a heavy-traffic limit. The notation θ
[W ]
λ

will be used to denote the Whittle index policy given a fixed demand rate λ > 0.

Theorem 6.1.8. Let gθ[W ](λ) be the long-run average reward attained by the Whittle policy θ
[W ]
λ

given a demand rate λ, and let g∗(λ) be the corresponding optimal value. Then:

1. θ[W ] is asymptotically optimal in a light-traffic limit. That is:

lim
λ→0

g∗(λ)− gθ[W ](λ)

g∗(λ)
= 0.

2. θ[W ] is optimal in a heavy-traffic limit. That is:

lim
λ→∞

(
g∗(λ)− gθ[W ](λ)

)
= 0.

Proof. As before, it will be convenient to denote the Whittle indices byWi(x, λ) (for i ∈ {1, 2, ..., N},

x ∈ N0 and λ > 0) as opposed to Wi(x) in order to allow for a dependence on the demand rate

λ. Consider the light-traffic limit first. Given any demand rate λ > 0, one obtains the following

expression for Wi(0, λ) (for i ∈ {1, 2, ..., N}) by setting x = 0 in (6.1.13):

Wi(0, λ) = αi −
βi
µi
.

Of course this is as expected, since a 0-threshold policy can only be preferable to a 1-threshold policy

at facility i if the admission charge is greater than a customer’s expected net reward for joining

when a server is available. It then follows from (6.1.14) (and the assumption that αi−βi/µi > 0 for

all i ∈ {1, 2, ..., N}) that, regardless of the demand rate λ, the Whittle policy θ
[W ]
λ always chooses a

facility i at state 0 which maximises αi − βi/µi. The result then follows by Corollary 4.4.5, which

states that any such policy is asymptotically optimal in a light-traffic limit.

In the heavy-traffic case, one may invoke Theorem 5.1.8. This states that in any single-facility

problem, the socially optimal threshold T ∗(λ) tends to the number of servers c as λ → ∞. Thus,
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for each i ∈ {1, 2, .., N} there exists some δi > 0 such that, for all λ > δi:

Wi(ci, λ) < 0.

On the other hand, regardless of the value of λ, one must have Wi(xi, λ) ≥ 0 for any state x ∈ S

with xi < ci due to the monotonic nature of the convergence proved by Theorem 5.1.8. These

observations imply that for sufficiently large values of λ, the Whittle policy θ
[W ]
λ chooses to balk at

a state x ∈ S if and only if xi ≥ ci for all i ∈ {1, 2, ..., N}. That is, θ
[W ]
λ becomes a vacancy policy

(see Definition 4.4.6) for sufficiently large values of λ. The result then follows by Theorem 4.4.7,

which states that any vacancy policy must be optimal in a heavy-traffic limit. �

Before concluding this section, it will be useful to establish an insightful and interesting property

of the Whittle policy θ[W ] which involves a comparison with the optimal policy θ∗ found by relative

value iteration. In previous chapters, the term ‘conservative’ has been used to describe a policy

whose set of positive recurrent states is contained within that of another policy; for example,

Theorem 4.2.4 showed that the socially optimal policy θ∗ is more conservative than the selfish

policy θ̃. Of course, the Whittle policy θ[W ] is a heuristic policy which is intended to earn an

expected long-run average reward as close as possible to that of the optimal policy θ∗. Thus, one

might expect θ[W ] to be as similar as possible to θ∗ in terms of the decisions chosen at the various

states x ∈ S, although Example 6.1.6 has shown that it need not always be identical.

As shown by the counter-examples in Appendix A.8, structural properties of the optimal policy

θ∗ are not easy to prove in complete generality, and hence one would think that results based on

decision-making comparisons between θ∗ and θ[W ] would not be easy to obtain. It therefore comes

as something of a surprise that the Whittle policy can be shown to be more conservative than the

optimal policy θ∗; that is, the set of positive recurrent states SW associated with the Whittle policy

is contained within the corresponding set Sθ∗ under θ∗. This is an interesting result, since it is

not immediately obvious that the Whittle policy θ[W ] should have such a predisposition towards

conservative decision-making. In order to prove the result, a lemma will be needed.

Lemma 6.1.9. Let θ∗ be the optimal policy found by relative value iteration. Then, for x ∈ S̃:

θ∗(x) = 0 ⇒ θ[W ](x) = 0.

That is, the Whittle policy θ[W ] chooses to balk at any state x ∈ S̃ where θ∗ chooses to balk.
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Proof. The proof can be established using an argument based on dynamic programming. Essen-

tially, one can show that if balking is chosen at some state x ∈ S̃ by the optimal policy θ∗, then

balking would also be chosen by an optimal threshold policy in a single-facility problem involving

any of the facilities i ∈ {1, 2, ..., N} at the state with xi customers present (where xi is the ith

component of the state x in the N -facility problem). Since the Whittle policy θ[W ] makes decisions

by considering each of the N facilities operating in isolation, this is sufficient to establish the result.

The full details are somewhat messy, but can be found in Appendix A.6, page 449. �

The result of Lemma 6.1.9 enables the aforementioned conservativity property of the Whittle policy

θ[W ] to be proved for a general N -facility system. This is stated below as a theorem.

Theorem 6.1.10. (Conservativity of the Whittle policy)

Let SW denote the set of positive recurrent states under the Whittle policy θ[W ], and let Sθ∗ denote

the corresponding set under the policy θ∗ found by relative value iteration on the finite set S̃. Then:

SW ⊆ Sθ∗ .

Proof. By Theorem 4.2.4, Sθ∗ is contained in the finite set S̃ associated with the selfishly optimal

policy θ̃. Hence, there must exist some state in Sθ∗ at which the policy θ∗ chooses to balk; otherwise,

an unbroken sequence of customer arrivals would cause the process to pass outside S̃ under θ∗. Let

z ∈ Sθ∗ be a state at which θ∗ chooses to balk, and let Sz be defined as follows:

Sz :=
{

x ∈ S̃ : xi ≤ zi ∀ i ∈ {1, 2, ..., N}
}
.

That is, Sz is the set of states x ∈ S̃ which satisfy the componentwise inequality x ≤ z. Since

z ∈ Sθ∗ , it follows that all states in Sz are also included in Sθ∗ , since they are accessible from

z via service completions. Hence, Sz ⊆ Sθ∗ . On the other hand, since balking is chosen by θ∗

at z, it follows by Lemma 6.1.9 that balking is also chosen at z by the Whittle policy θ[W ]. By

definition of the Whittle policy, this implies that Wi(zi) < 0 for all i ∈ {1, 2, ..., N}. Therefore it is

impossible for any state x /∈ Sz to be accessible from state 0 under the Whittle policy, since this

would require joining some facility i ∈ {1, 2, ..., N} to be chosen at a state y ∈ Sz with yi = zi and

hence Wi(yi) < 0. It follows that SW ⊆ Sz ⊆ Sθ∗ , which completes the proof. �

As a further note, it was established in Section 4.3 that the recurrent state space Sθ∗ under any
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stationary socially optimal policy θ∗ must satisfy the following relationship:

S◦ ⊆ Sθ∗ ⊆ S̃, (6.1.23)

where S◦ is the set of states in S with no customers waiting in queues, defined in (4.3.3). It has

been established by Theorem 6.1.7 that the Whittle policy θ[W ] is always a non-idling policy, and

hence S◦ ⊆ SW . Thus, in the case where θ∗ is the optimal policy found by relative value iteration

on S̃, the result of Theorem 6.1.10 enables (6.1.23) to be strengthened as follows:

S◦ ⊆ SW ⊆ Sθ∗ ⊆ S̃.

In Section 6.3 the performance of the Whittle policy will be tested over a wide range of system

parameters. In the next section, an alternative heuristic approach will be discussed.

6.2 Static routing heuristic

The second of the two heuristic policies to be discussed in this chapter is based on an approach

which has received considerable attention in the literature, involving the derivation of a stationary

policy from a state-independent randomised policy. As a starting point, let σ denote a policy under

which, regardless of the system state, any customer who arrives is sent to facility i ∈ {1, 2, ..., N}

with probability σi ∈ [0, 1], where
∑N

i=1 σi ≤ 1. The probability of a customer balking upon arrival

is then given by σ0 := 1−
∑N

i=1 σi. This type of policy might be referred to as a static routing policy,

a Bernoulli splitting policy or simply as a state-independent routing policy. Moreover, it may be

observed that policies of this form represent a natural N -facility generalisation of the policies for

unobservable M/M/1 queueing systems discussed in Chapter 2. Throughout this section, state-

independent randomised policies such as σ will be referred to as static policies.

The heuristic policy to be developed in this section is based on applying a single step of policy

improvement to an optimal static policy (that is, a policy which performs best among all static

policies). “Policy improvement”, in this context, refers to the general strategy of improving upon

a certain ‘reference’ policy (in this case, an optimal static policy) by allowing the decision at any

state x ∈ S to be chosen in such a way as to maximise the aggregate expected net reward over

a long period of time, under the assumption that the reference policy will be followed thereafter.
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Recall that the Policy Improvement Algorithm (PIA), introduced in Section 3.7, is a dynamic

programming algorithm which is guaranteed to converge to an optimal stationary policy after a

finite number of iterations, but in order to do so it must be allowed to make as many policy

improvement steps as should be required. The heuristic policy of this section is based on applying

a single step of policy improvement, and as such its optimality is not guaranteed.

Heuristic policies of this nature have been examined by various authors. Krishnan [109] considered

the problem of assigning customers to parallel Markovian queues in such a way as to minimise the

average time spent in the system, and found that a heuristic derived from a “Bernoulli splitting”

rule was able to perform better than an individually optimal policy in many cases. Sassen et al.

[152] also considered the minimisation of average sojourn times, but assumed a general distribution

for service times at any server; their “decomposition approach” follows a similar derivation to that of

Krishnan’s heuristic. Ansell et al. [4] considered the minimisation of long-run average holding costs,

and generalised the problem further by incorporating heterogeneous customer classes; however,

their formulation also assumes single-server facilities with exponentially-distributed service times,

so that individual facilities operate as multi-class M/M/1 queues under a static routing policy.

The development in this section mainly emulates that of Argon et al. [6], who considered long-run

average cost minimisation in a problem involving single-server queues arranged in parallel with no

balking, but also incorporated a more general cost structure than that in [4].

In seeking an optimal static policy, one aims to find a vector of routing probabilities (σ1, σ2, ..., σN )

which maximises the expected long-run average reward gσ, which is given by:

gσ =
N∑
i=1

(
λσiαi − βiLi(λσi)

)
,

where Li(λσi) is the expected number of customers present at facility i, given that customers

arrive via a Poisson process with rate λσi. It should be noted that Li(λσi) is finite if and only

if λσi < ciµi, and so it will be appropriate to define gσ = −∞ for any policy σ with λσi ≥ ciµi

for at least one i ∈ {1, 2, ..., N}. Naturally, due to elementary properties of Poisson processes (see,

for example, [146] p. 310) each facility i operates as an independent M/M/ci queue with demand

rate λσi under the static policy σ. Thus, a static routing policy may be represented as a vector of

demand rates (λ1, λ2, ..., λN ), where λi = λσi for i ∈ {1, 2, ..., N}; the rate at which customers balk

is then given by λ0 := λ−
∑N

i=1 λi. Throughout this section, static policies will be represented by
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vectors (λ1, λ2, ..., λN ), with 0 ≤ λi ≤ λ for each i ∈ {1, 2, ..., N} and
∑N

i=1 λi ≤ λ.

A fundamental assumption throughout this section is the existence and uniqueness of an optimal

static policy (λ∗1, λ
∗
2, ...λ

∗
N ) which maximises the objective function:

g(λ1, λ2, ..., λN ) :=
N∑
i=1

(
λiαi − βiLi(λi)

)
. (6.2.1)

The next result shows that this assumption is theoretically justified.

Theorem 6.2.1. There exists a unique optimal static policy.

Proof. For each facility i ∈ {1, 2, ..., N}, let gi(λi) be defined as follows:

gi(λi) := λiαi − βiLi(λi). (6.2.2)

It is known from the literature (see [65, 114]) that Li(λi), the expected number of customers present

at facility i, is a strictly convex function of the demand rate λi. This implies that gi(λi) is a strictly

concave function of λi, since by differentiating twice one obtains:

gi
′′(λi) = −βiLi′′(λi) < 0.

Figure 6.3 illustrates the general shape of the function gi(λi) as λi increases. Note that the as-

sumption that αi − βi/µi > 0 for each i ∈ {1, 2, ..., N} ensures that gi(λi) is strictly positive for

sufficiently small values of λi. To see this, suppose facility i is a single-server queue (ci = 1), in

which case one has Li(λi) = ρi/(1− ρi), where ρi = λi/µi. As shown in Section 2.3, by solving the

equation gi(λi) = 0 with ci = 1 and λi assumed strictly positive, one finds:

λi = µi −
βi
αi

> 0,

Noting also that gi(0) = 0, the concavity of gi(λi) then implies that gi(λi) > 0 for demand rates

λi ∈ (0, µi − βi/αi). It is easy to show that the mean number of customers present in an M/M/c

queue is monotonically decreasing with the number of servers c; indeed, this was shown using a

sample path argument in Example 3.8.3. Hence, (6.2.2) implies that gi(λi) monotonically increases

with the number of servers, and it follows that gi(λi) > 0 for λi ∈ (0, µi − βi/αi) irrespective of

the number of servers ci ∈ N (since this has been shown to be true when ci = 1).



Chapter 6 Heuristic policies 253

Figure 6.3: The general shape of the function gi(λi) as λi increases.

For each i ∈ {1, 2, ..., N}, there exists a unique maximiser yi > 0 such that gi(yi) > gi(λi) for all

λi ∈ (0,∞)\{yi} due to the strict concavity property. If
∑N

i=1 yi ≤ λ then the result of the theorem

is trivial, since the policy with λi = yi for each i ∈ {1, 2, ..., N} is the unique optimal static policy.

On the other hand, suppose
∑N

i=1 yi > λ. Let the set B be defined as follows:

B :=

{
(λ1, λ2, ..., λN ) ∈ RN : λi ∈ [0, yi] ∀ i ∈ {1, 2, ..., N},

N∑
i=1

λi ≤ λ

}
.

It is clear that any static policy with λi > yi for some i ∈ {1, 2, ..., N} must be sub-optimal, since

one would be able to improve the performance of such a policy without violating any constraints

by setting λi = yi. Hence, any static policy which is optimal among all policies in B must be an

optimal static policy. The set B is a compact subset of RN ; that is, it is closed and bounded.

Moreover, since gi(λi) diverges to minus infinity as λi → ciµi, one must have yi < ciµi for each

i ∈ {1, 2, ..., N}, and hence the objective function (6.2.1) is well-defined and continuous on the set

B. By the Weierstrass extreme value theorem (see [96], p. 689), it follows that g(λ1, λ2, ..., λN )

attains a maximum on the set B; that is, there exists an optimal static policy.

It remains to be shown that any optimal static policy must be unique. Consider the problem

of maximising the objective function (6.2.1) subject to the requirements that λi ∈ [0, yi] for each

i ∈ {1, 2, ..., N} and
∑N

i=1 λi ≤ λ. This problem fits the general framework of a convex optimisation

problem, involving a strictly concave objective function and a set of linear constraints. It is known

from the theory of such problems (see [23], p. 19) that a unique optimal solution exists under the

stated conditions; that is, there must exist a unique static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) which maximises
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the long-run average reward g(λ1, λ2, ..., λN ) defined in (6.2.1). Indeed, it is possible to construct a

rigorous proof of the uniqueness of any optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) which exploits concavity

of the functions gi(λi); further details can be found in Appendix A.6, page 454. �

The concavity of the functions gi(λi) = λiαi − βiLi(λi) enables an interesting property of optimal

static policies to be proved, which will prove to be useful later in this section.

Theorem 6.2.2. Consider two different demand rates λ, λ̄ > 0, with λ < λ̄. Let (λ∗1, λ
∗
2, ..., λ

∗
N )

and (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) be the unique optimal static policies under the system demand rates λ and λ̄

respectively. Then, for all facilities i ∈ {1, 2, ..., N}:

λ∗i ≤ λ̄∗i .

Proof. As in the proof of Theorem 6.2.1, define gi(λi) for i ∈ {1, 2, ..., N} as follows:

gi(λi) = λiαi − βiLi(λi).

Given that the policy (λ∗1, λ
∗
2, ..., λ

∗
N ) is optimal under demand rate λ, it is possible to show that

the optimal policy (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) under demand rate λ̄ satisfies:

N∑
i=1

λ̄∗i ≥
N∑
i=1

λ∗i . (6.2.3)

Indeed, this may be argued via contradiction. Suppose the optimal policy (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) under λ̄

does not satisfy (6.2.3). In view of Theorem 6.2.1, this implies:

1. The policy (λ∗1, λ
∗
2, ..., λ

∗
N ), which is optimal under λ, is sub-optimal under λ̄.

2. There exists an optimal policy (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) under λ̄ such that

∑N
i=1 λ̄

∗
i <

∑N
i=1 λ

∗
i .

However, given that
∑N

i=1 λ̄
∗
i <

∑N
i=1 λ

∗
i ≤ λ, one may construct a policy under demand rate λ with

λi = λ̄∗i for i = 1, 2, ..., N (with λ0 = λ −
∑N

i=1 λi being the rate at which customers balk); then,

by the first of the above statements (and the fact that the constructed policy induces the same

long-run average reward under either of the demand rates λ and λ̄) this policy yields an average

reward strictly greater than that given by (λ∗1, λ
∗
2, ..., λ

∗
N ) under λ, which contradicts the optimality

of (λ∗1, λ
∗
2, ..., λ

∗
N ) under λ. It follows that the relationship in (6.2.3) holds.
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Next, arguing by contradiction, suppose the statement of the theorem is false. This implies that

there exists a non-empty subset I ⊆ {1, 2, ..., N} such that λ̄∗i < λ∗i for all facilities i ∈ I. Let the

subset M ∈ {1, 2, ..., N} and positive quantity ε be defined as follows:

M :=
{
i ∈ {1, 2, ..., N} : λ̄∗i < λ∗i

}
,

ε :=
∑
i∈M

(
λ∗i − λ̄∗i

)
.

Let R := {1, 2, ..., N} \M . Due to (6.2.3), R must be non-empty and, in addition:

λ̄∗i ≥ λ∗i ∀ i ∈ R, (6.2.4)∑
i∈R

(
λ̄∗i − λ∗i

)
≥ ε. (6.2.5)

The condition in (6.2.5) may be expressed as:∑
i∈R

(
λ̄∗i − λ∗i

)
= ε+ δ, (6.2.6)

for some δ ≥ 0. Let {εi}i∈R be any set of non-negative numbers for which
∑

i∈R εi = ε, and let

{δi}i∈R be any set of non-negative numbers with
∑

i∈R δi = δ and, in addition:

εi + δi = λ̄∗i − λ∗i ∀ i ∈ R. (6.2.7)

It is clearly always possible to find two sets {εi}i∈R and {δi}i∈R satisfying the aforementioned

conditions, given that (6.2.4) and (6.2.6) hold. Indeed one way to do this is as follows:

1. Put the facilities i ∈ R in some arbitrary order i1, i2, ..., i|R| and set j = 1.

2. Define εij as follows:

εij := min

(
λ̄∗ij − λ

∗
ij , ε−

j−1∑
k=1

εik

)
. (6.2.8)

3. If
∑j

k=1 εik = ε go to step 4; otherwise, increment j by 1 and return to step 2. Note that the

condition
∑j

k=1 εik = ε must hold after at most |R| iterations due to (6.2.5).

4. Set εik = 0 for all k ∈ {j + 1, j + 2, ..., |R|} and δi = λ̄∗i − λ∗i − εi for all i ∈ R.

Under the supposition that the theorem is false, a policy (λ1, λ2, ..., λN ) with λi = λ∗i for all i ∈M

and λi = λ∗i + δi for all i ∈ R must be sub-optimal under demand rate λ̄. In particular, such a
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policy is inferior to the optimal policy (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) under demand rate λ̄. Hence, recalling the

fact that λ̄∗i = λ∗i + δi + εi for i ∈ R due to (6.2.7), one has the following:∑
i∈M

gi(λ
∗
i ) +

∑
i∈R

gi(λ
∗
i + δi) <

∑
i∈M

gi(λ̄
∗
i ) +

∑
i∈R

gi(λ
∗
i + δi + εi). (6.2.9)

Recall that
∑

i∈M λ̄∗i =
∑

i∈M λ∗i−ε, and hence (using the fact that
∑

i∈R εi = ε) one has
∑

i∈M λ̄∗i +∑
i∈R (λ∗i + εi) ≤ λ, so the policy with λi = λ̄∗i for all i ∈ M and λi = (λ∗i + εi) for all i ∈ R is a

feasible static policy under demand rate λ in the sense that it satisfies the constraint
∑N

i=1 λi ≤ λ.

Hence, using the fact that the policy (λ∗1, λ
∗
2, ..., λ

∗
N ) is optimal under λ:∑

i∈M
gi(λ

∗
i ) +

∑
i∈R

gi(λ
∗
i ) ≥

∑
i∈M

gi(λ̄
∗
i ) +

∑
i∈R

gi(λ
∗
i + εi). (6.2.10)

By comparison between (6.2.9) and (6.2.10), one then obtains:∑
i∈R

(
gi(λ

∗
i + εi)− gi(λ∗i )

)
<
∑
i∈R

(
gi(λ

∗
i + δi + εi)− gi(λ∗i + δi)

)
. (6.2.11)

In order for (6.2.11) to hold, it must be the case that for at least one j ∈ R:

gj(λ
∗
j + εj)− gj(λ∗j ) < gj(λ

∗
j + δj + εj)− gj(λ∗j + δj). (6.2.12)

Given that δj ≥ 0 by definition, (6.2.12) can only be possible if δj > 0. However, in that case

one finds that the function fj(x) := gj(x+ εj)− gj(x) has increased over the interval [λ∗j , λ
∗
j + δj ].

Recalling that εj ≥ 0, this gives a contradiction with the fact that gj(·) is a strictly concave function

as shown in the proof of Theorem 6.2.1, and thereby completes the proof. �

The problem of finding an optimal static policy is a relatively straightforward non-linear optimisa-

tion problem which can be solved efficiently within mathematical computing packages. The next

example illustrates the result of Theorem 6.2.2 by comparing optimal static policies under various

different values of the overall demand rate λ in a system with 4 service facilities.

Example 6.2.3. (Optimal static policies)

Consider a system with 4 facilities, with parameters given as follows:

c1 = 4, µ1 = 1, β1 = 4, α1 = 17,

c2 = 3, µ2 = 2, β2 = 3, α2 = 10,

c3 = 2, µ3 = 4, β3 = 4, α3 = 10,

c4 = 3, µ4 = 5, β4 = 12, α4 = 5.
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For this example, an experiment was conducted in which optimal static policies (λ∗1, λ
∗
2, λ
∗
3, λ
∗
4) were

found under 4000 different values of the system demand rate λ ranging from 0 to 40. Figure 6.4

shows the resulting values of λ∗1, λ∗2, λ∗3 and λ∗4 for the various values of λ.

Demand rate
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Figure 6.4: Values of λ∗1, λ∗2, λ∗3 and λ∗4 for various values of λ.

Figure 6.4 shows that, as expected, the values λ∗1, λ∗2, λ∗3 and λ∗4 increase monotonically with the

overall demand rate λ. In addition, there are some interesting trends to note. For small values of

λ, facility 1 (which has the largest value of service, but the slowest service rate) is preferred to all

other facilities by the optimal static policy, but as λ becomes large, the joining rate at facility 1

eventually becomes the smallest of all the facilities. Conversely, facility 4 (which has the smallest

value of service, but the fastest service rate) attains a joining rate larger than those of the other

facilities for sufficiently large values of λ, but it is not used at all by the optimal static policy

when λ is small. As λ increases, eventually all 4 joining rates reach a ‘plateau’; naturally, this

represents the point at which each ‘marginal’ long-run average reward gi(λi) has reached its unique

maximum value (refer to Figure 6.3). Beyond this point, there is clearly no advantage to be gained

by increasing the joining rate at any facility, and as such the optimal static policy (λ∗1, λ
∗
2, λ
∗
3, λ
∗
4)

remains unchanged (except for the rate at which customers balk) as λ→∞.

Incidentally, the sub-optimality of the optimal static policy (in comparison to the socially optimal

policy found by dynamic programming) is negligible for very small values of λ, but appears to

increase steadily with λ and reaches 20% when λ ≈ 20, and 33% when λ ≈ 40. Corollary 4.4.8 from

Chapter 4 implies that the optimal long-run average reward g∗ tends to
∑N

i=1 ci(αiµi − βi) = 214
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as λ → ∞, whereas the average reward earned by the static policy remains at a stable value of

approximately 129.8 as λ becomes large, causing sub-optimality of almost 40% . �

Having shown that a unique optimal static policy exists, the next task is to derive a heuristic policy

by applying a single step of policy improvement to the optimal static policy as described in the

introduction to this section. Assume that the system has been uniformised as described in Section

3.3, so that it evolves in discrete time steps of size ∆ ∈
(

0, (λ+
∑N

i=1 ciµi)
−1
]
. Let r̂i(xi, λ

∗
i ) denote

the expected single-step reward earned by facility i ∈ {1, 2, ..., N} when the number of customers

present at i is xi ∈ N0 and the Poisson queue-joining rate at i is λ∗i ∈ [0, λ]. At any discrete time

step, the probability of facility i being selected by the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) is λ∗i /λ;

of course, this probability is independent of the system state x ∈ S. If facility i is selected at a

particular time step when the system is in state x, then the reward earned under the ‘anticipatory’

reward formulation (3.5.15) is r̂(x, i), irrespective of whether or not a new customer arrival occurs.

Hence, r̂i(xi, λ
∗
i ) is related to the reward r̂(x, i) defined in (3.5.15) as follows:

r̂i(xi, λ
∗
i ) =

λ∗i
λ
r̂(x, i) =


λ∗i

(
αi −

βi
µi

)
, if xi < ci,

λ∗i

(
αi −

βi(xi + 1)

ciµi

)
, if xi ≥ ci.

(6.2.13)

The average reward under the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) is then given by:

g(λ∗1, λ
∗
2, ..., λ

∗
N ) =

N∑
i=1

∞∑
x=0

πi(x, λ
∗
i ) r̂i(x, λ

∗
i ),

where πi(x, λ
∗
i ) is the steady-state probability of x ∈ N0 customers being present at facility i given

that it operates with a Poisson arrival rate of λ∗i ; naturally, an expression for πi(x, λ
∗
i ) is given by

standard results for M/M/c queues (see, for example, [67]). The derivation of a heuristic routing

policy from the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) to be given in this section begins by following

Argon et al. [6]. Let δ(x, i) denote the difference in the expected total net reward (over a long

period of time) that would result from choosing facility i ∈ {1, 2, ..., N} under state x ∈ S at an

arbitrary discrete time step n ∈ N0 and then following the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N )

thereafter, as opposed to simply following the optimal static policy from time n onwards. Given

that facilities operate independently under (λ∗1, λ
∗
2, ..., λ

∗
N ) and the probability of an arrival at any
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time step is λ∆, an expression for δ(x, i) analogous to that in [6] is as follows:

δ(x, i) =
N∑
j=1

λ∗j
λ

(
r̂(x, i)− r̂(x, j) + λ∆

(
Di(xi, λ

∗
i )−Dj(xj , λ

∗
j )
) )

+

1−
N∑
j=1

λ∗j
λ

(r̂(x, i) + λ∆Di(xi, λ
∗
i )
)

= r̂(x, i) + λ∆Di(xi, λ
∗
i )−

N∑
j=1

λ∗j
λ

(
r̂(x, j) + λ∆Dj(xj , λ

∗
j )
)
, (6.2.14)

where Di(xi, λ
∗
i ) is the additional long-run aggregate reward gained from having an extra customer

at facility i operating under demand rate λ∗i , given that there are xi already present. Of course, the

option of balking is also available. Since balking does not earn any cost or reward, an expression

for δ(x, 0) (where 0 represents balking) analogous to (6.2.14) is simply given by:

δ(x, 0) = −
N∑
j=1

λ∗j
λ

(
r̂(x, j) + λ∆Dj(xj , λ

∗
j )
)
. (6.2.15)

Let θ[B] denote the heuristic policy obtained by applying a single step of policy improvement to

the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ). As discussed previously, the general principle of policy

improvement dictates that the actions θ[B](x) chosen at the various states x ∈ S should optimise

the long-run aggregate reward under the assumption that the ‘reference’ policy to which the im-

provement step is applied (in this case, the optimal static policy) will be followed after the choice

is made. As such, θ[B] should simply choose an action a ∈ {0, 1, ..., N} which maximises δ(x, a) at

any given state x. Using (6.2.14) and (6.2.15), this implies that for any x ∈ S:

θ[B](x) ∈


arg max
i∈{1,2,...,N}

(
r̂(x, i) + λ∆Di(xi, λ

∗
i )
)
, if ∃ i ∈ {1, 2, ..., N} such that

r̂(x, i) + λ∆Di(xi, λ
∗
i ) ≥ 0,

{0}, otherwise.

(6.2.16)

The similarity with the criterion given in (6.1.14) for the Whittle index policy θ[W ] is clear; indeed,

both heuristic policies are index-based policies, but an explicit expression for Di(xi, λ
∗
i ) has yet to

be determined. For this purpose, it will be helpful to recall some of the notation used in previous

chapters. Recall from the discussion in Section 3.7 that the relative value function h(x) represents

the long-term advantage of initialising the system in state x ∈ S, as opposed to beginning in an

arbitrary reference state (e.g. state 0). Since each facility i ∈ {1, 2, ..., N} operates independently
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under the optimal static policy, it will be convenient to use hi(x, λ
∗
i ) to represent the expected long-

term additional net reward earned by facility i only for starting with x ∈ N0 customers present as

opposed to starting with none, given that arrivals occur at the rate λ∗i ∈ [0, λ] corresponding to the

optimal static policy. That is, for each facility i ∈ {1, 2, ..., N} and x ∈ N0:

hi(x, λ
∗
i ) := lim

n→∞

(
V

(n)
i (x, λ∗i )− V

(n)
i (0, λ∗i )

)
, (6.2.17)

where V
(n)
i (x, λ∗i ) denotes the expected total reward at facility i over n ∈ N0 discrete time steps,

given that the initial state is x and the arrival rate is λ∗i . In fact, the relative value (also referred to

as the bias) hi(x, λ
∗
i ) is analogous to the expression Ki − gTi used by the authors in [6], where (in

their notation) Ki is the expected total reward earned until a particular facility is empty and Ti is

the expected time until the facility is empty, in both cases starting with i ≥ 0 customers present,

and g is the long-run average reward earned by the facility. Then, by definition, the quantity

Di(xi, λ
∗
i ) in (6.2.15) and (6.2.16) is related to the values hi(x, λ

∗
i ) as follows:

Di(xi, λ
∗
i ) = hi(xi + 1, λ∗i )− hi(xi, λ∗i ) (i ∈ {1, 2, ..., N}, xi ∈ N0, λ

∗
i ∈ [0, λ]).

Since Di(·) and hi(·) relate to a single facility i operating independently, it will be convenient to

focus on an arbitrary facility i ∈ {1, 2, ..., N} in the arguments that follow. The random state

evolution at facility i under the optimal static policy is equivalent to that of an isolated M/M/ci

queueing system with a Poisson arrival rate λ∗i , which always chooses to accept any incoming

customer. Hence, results from earlier in this thesis (in particular, those in Section 4.2) imply that

the values hi(x, λ
∗
i ) relating to facility i satisfy the policy evaluation equations:

gi(λ
∗
i ) + hi(x, λ

∗
i ) = r̂i(x, λ

∗
i ) +

∑
y∈N0

pi(x, y, λ
∗
i )hi(y, λ

∗
i ) (x ∈ N0), (6.2.18)

where r̂i(x, λ
∗
i ) is the single-facility reward defined in (6.2.13), gi(λ

∗
i ) is as defined in (6.2.2), and

the transition probabilities pi(x, y, λ
∗
i ) are given for x, y ∈ N0 as follows:

pi(x, y, λ
∗
i ) =



λ∗i∆, if y = x+ 1,

min(x, ci)µi∆, if y = x− 1,

1− λ∗i∆−min(x, ci)µi∆, if y = x,

0, otherwise.

(6.2.19)
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Note that the parameter ∆ in (6.2.19) is the uniformisation parameter used for the N -facility

system as a whole; that is, ∆ ∈
(

0, (λ+
∑N

j=1 cjµj)
−1
]
. Since a single-facility scenario is being

considered, it would be feasible to modify the value of ∆ (e.g. by setting ∆ = (λ∗i +ciµi)
−1) in such

a way as to reduce the probability pi(x, x, λ
∗
i ) of a ‘self-transition’; however, this approach is not

necessary as the final expression obtained for the index δ(x, i) will be independent of ∆. Note that

one may define hi(0, λ
∗
i ) = 0 in order to be consistent with (6.2.17) and to determine the values

hi(x, λ
∗
i ) in (6.2.18) uniquely; effectively, this designates 0 as the ‘reference state’.

One may proceed to use the equations (6.2.18) to derive expressions for the relative values hi(x, λ
∗
i )

and differences Di(x, λ
∗
i ) in terms of the system parameters and the average reward gi(λ

∗
i ). Firstly,

however, it should be noted that although the system demand rate λ is always assumed positive,

there is a possibility that the demand rate λ∗i at facility i may be zero under the optimal static

policy. In this case, one simply has Di(xi, λ
∗
i ) = 0 for all xi ∈ N0, so that the expression r̂(x, i) +

λ∆Di(xi, λ
∗
i ) in (6.2.16) reduces to the single-step reward r̂(x, i). The explanation for this is that

Di(xi, λ
∗
i ) essentially represents the cumulative increase in the expected waiting costs for customers

following the optimal static policy as a result of an extra customer having been admitted to facility

i (indeed, it will be shown later that Di(xi, λ
∗
i ) is always non-positive). If customers never join i

under the static policy, then there are no adverse effects caused to these customers as a result of

an extra customer being present at i; thus, Di(xi, λ
∗
i ) = 0. The derivation of general expressions

for hi(x, λ
∗
i ) and Di(x, λ

∗
i ) given here will proceed under the assumption that λ∗i > 0.

By setting x = 0 in (6.2.18), one obtains the following expression for hi(1, λ
∗
i ) = 0:

hi(1, λ
∗
i ) =

gi(λ
∗
i )− r̂i(0, λ∗i )
λ∗i∆

.

Furthermore, by definition of Di(x, λ
∗
i ) and the fact that hi(0, λ

∗
i ) = 0:

Di(0, λ
∗
i ) = hi(1, λ

∗
i )− hi(0, λ∗i ) = hi(1, λ

∗
i ) =

gi(λ
∗
i )− r̂i(0, λ∗i )
λ∗i∆

. (6.2.20)

In general, for integers 1 ≤ x < ci, one obtains the following from (6.2.18):

gi(λ
∗
i ) + hi(x, λ

∗
i ) = r̂i(x, λ

∗
i ) + λ∗i∆hi(x+ 1, λ∗i ) + xµi∆hi(x− 1, λ∗i )

+ (1− λ∗i∆− xµi∆)hi(x, λ
∗
i ).
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This implies, following some simple manipulations:

hi(x+ 1, λ∗i )− hi(x, λ∗i ) =
xµi
λ∗i

(
hi(x, λ

∗
i )− hi(x− 1, λ∗i )

)
+
gi(λ

∗
i )− r̂i(x, λ∗i )
λ∗i∆

.

Thus, for 1 ≤ x < ci, one has the following recurrence relationship for Di(x, λ
∗
i ):

Di(x, λ
∗
i ) =

xµi
λ∗i

Di(x− 1, λ∗i ) +
gi(λ

∗
i )− r̂i(x, λ∗i )
λ∗i∆

. (6.2.21)

Using recursive substitution with (6.2.21) one then obtains, for 0 ≤ x < ci:

Di(x, λ
∗
i ) =

x∑
k=0

x!

k!

(
µi
λ∗i

)x−k (gi(λ∗i )− r̂i(k, λ∗i )
λ∗i∆

)
. (6.2.22)

Equivalently, using the fact that r̂i(x, λ
∗
i ) = r̂i(0, λ

∗
i ) for all non-negative integers x < ci:

Di(x, λ
∗
i ) =

(
gi(λ

∗
i )− r̂i(0, λ∗i )
λ∗i∆

) x∑
k=0

x!

k!

(
µi
λ∗i

)x−k
. (6.2.23)

On the other hand, for integers x ≥ ci, the recurrence relationship is as follows:

Di(x, λ
∗
i ) =

ciµi
λ∗i

Di(x− 1, λ∗i ) +
gi(λ

∗
i )− r̂i(x, λ∗i )
λ∗i∆

. (6.2.24)

Using (6.2.23) and (6.2.24) and applying a simple inductive argument, one can then show that for

integers x ≥ ci, the following expression is valid for Di(x, λ
∗
i ):

Di(x, λ
∗
i ) =

(
gi(λ

∗
i )− r̂i(0, λ∗i )
λ∗i∆

) ci−1∑
k=0

ci! c
x−ci
i

k!

(
µi
λ∗i

)x−k
+

x∑
k=ci

(
ciµi
λ∗i

)x−k (gi(λ∗i )− r̂i(k, λ∗i )
λ∗i∆

)
. (6.2.25)

Recall from (6.2.16) that the heuristic policy θ[B] chooses a facility i at state x ∈ S which maximises

r̂(x, i) + λ∆Di(xi, λ
∗
i ) (or chooses to balk, if all such quantities are negative). Using (6.2.23) and

(6.2.25), one may write an expression for r̂(x, i) + λ∆Di(xi, λ
∗
i ) as follows:

r̂(x, i) + λ∆Di(xi, λ
∗
i ) =



r̂(x, i) +
λ

λ∗i

(
gi(λ

∗
i )− r̂i(0, λ∗i )

) xi∑
k=0

xi!

k!

(
µi
λ∗i

)xi−k
, if xi < ci,

r̂(x, i) +
λ

λ∗i

(
gi(λ

∗
i )− r̂i(0, λ∗i )

) ci−1∑
k=0

ci!c
xi−ci
i

k!

(
µi
λ∗i

)xi−k
+
λ

λ∗i

xi∑
k=ci

(
ciµi
λ∗i

)xi−k (
gi(λ

∗
i )− r̂i(k, λ∗i )

)
, if xi ≥ ci.

(6.2.26)
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As mentioned previously, it is assumed that λ∗i > 0 in (6.2.26); if λ∗i = 0, then one trivially has

Di(xi, λ
∗
i ) = 0 for all xi ∈ N0 and hence r̂(x, i) + λ∆Di(xi, λ

∗
i ) = r̂(x, i).

The expressions for r̂(x, i) + λ∆Di(xi, λ
∗
i ) given in (6.2.26) will serve as the indices used by the

heuristic policy θ[B] for choosing its preferred facility under any given state. It is important to note

that these expressions depend only on the system parameters and the demand rates λ∗i associated

with the optimal static policy. The average rewards gi(λ
∗
i ) for the various facilities can be obtained

easily using (6.2.2) after the optimal static policy has been found. Thus, although the relative values

hi(x, λ
∗
i ) and differences Di(x, λ

∗
i ) were used in the derivation of the indices given in (6.2.26), the

quantities hi(x, λ
∗
i ) and Di(x, λ

∗
i ) do not appear in the indices themselves. This enables the policy

θ[B] to be implemented without any requirement for time-consuming algorithmic methods to be

used in order to find quantities such as hi(x, λ
∗
i ), Di(x, λ

∗
i ) or any other expressions of the type

that might be involved in a dynamic programming algorithm; essentially, all that is required is the

determination of the optimal static policy. As discussed previously, it is important that a heuristic

policy should be easy to implement without being encumbered by the dimensionality of the state

space, or any other obstacles which might be associated with a large-scale problem.

Some further manipulations of the indices in (6.2.26) are possible, although these are largely cos-

metic in nature and serve only to suppress the appearance of the factor (λ/λ∗i ). Firstly, recall

that r̂(x, i) = λw(x, i), where w(x, i) is an individual customer’s expected net reward for join-

ing facility i under state x, defined in (4.1.1). Since λ appears as a factor in all of the other

terms in (6.2.26), it is reasonable to divide by λ throughout, so that effectively one considers

the quantity w(x, i) + ∆Di(xi, λ
∗
i ) as opposed to r̂(x, i) + λ∆Di(xi, λ

∗
i ). Obviously, dividing by λ

simply re-scales the indices and does not affect the actions chosen by the policy θ[B]. Note that

whether one makes this adjustment or not, the indices remain independent of ∆. Also, consider

the expression (gi(λ
∗
i )− r̂i(x, λ∗i )) /λ∗i . By introducing a quantity wi(x) to represent a customer’s

expected net reward for joining facility i when there are x customers present, one has the relation-

ship r̂i(x, λ
∗
i ) = λ∗iwi(x), and hence (gi(λ

∗
i )− r̂i(x, λ∗i )) /λ∗i = gi(λ

∗
i )/λ

∗
i − wi(x). Then, by letting

Mi(λ
∗
i ) denote the average waiting time of customers who join facility i at a Poisson rate λ∗i , one

has Li(λ
∗
i ) = λ∗iMi(λ

∗
i ) due to Little’s formula (see, [67], p. 10) and hence:

gi(λ
∗
i )/λ

∗
i = (λ∗iαi − βiLi(λ∗i )) /λ∗i = αi − βiMi(λ

∗
i ), (6.2.27)
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where the expression obtained in (6.2.27) is obviously equal to the steady-stage average expected

net reward earned by individual customers arriving at a rate λ∗i . Let this ‘individual average reward’

be denoted by wi(λ
∗
i ). That is, for facilities i ∈ {1, 2, ..., N} and x ∈ N0:

wi(x) =


α− βi

µi
, if x < ci,

α− βi(x+ 1)

ciµi
, if x ≥ ci,

(6.2.28)

wi(λ
∗
i ) =

∞∑
x=0

πi(x, λ
∗
i )wi(x) = αi − βiMi(λ

∗
i ). (6.2.29)

Of course, Mi(λ
∗
i ) (like Li(λ

∗
i )) can be obtained using the standard M/M/c formulae in texts such as

[67] (p. 126). So, by the preceding arguments, (gi(λ
∗
i )− r̂i(x, λ∗i )) /λ∗i = wi(λ

∗
i )−wi(x); that is, the

difference between the expected long-run average reward for individual customers under demand

rate λ∗i and the expected reward for a customer who joins under state x. The next definition

formalises these arguments by providing refined formulae for the indices used by θ[B].

Definition 6.2.4. (Bernoulli index heuristic)

Let the heuristic policy θ[B] obtained by applying a single step of policy improvement to the optimal

static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) be referred to as the Bernoulli index heuristic policy. Then, for each

state x ∈ S, the action θ[B](x) chosen by the policy θ[B] satisfies:

θ[B](x) ∈


arg max
i∈{1,2,...,N}

Pi(xi, λ
∗
i ), if ∃ i ∈ {1, 2, ..., N} such that Pi(xi, λ

∗
i ) ≥ 0,

{0}, otherwise,

(6.2.30)

where, for i ∈ {1, 2, ..., N} and x ∈ N0, the index Pi(x, λ
∗
i ) is given by:

Pi(x, λ
∗
i ) =



wi(x) +
(
wi(λ

∗
i )− wi(0)

) x∑
k=0

x!

k!

(
µi
λ∗i

)x−k
, if λ∗i > 0 and x < ci,

wi(x) +
(
wi(λ

∗
i )− wi(0)

) ci−1∑
k=0

ci! c
x−ci
i

k!

(
µi
λ∗i

)x−k
+

x∑
k=ci

(
ciµi
λ∗i

)x−k (
wi(λ

∗
i )− wi(k)

)
, if λ∗i > 0 and x ≥ ci,

wi(x), if λ∗i = 0.

(6.2.31)
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In cases where two or more facilities attain the maximum in (6.2.30), it will be assumed that a

decision is made according to some fixed ranking order of the N facilities.

The next example demonstrates the performance of the Bernoulli index heuristic policy in a small

system consisting of two facilities with two servers each.

Example 6.2.5. (Bernoulli index heuristic with two dual-server facilities)

This example revisits the same set of parameters used in Examples 4.1.1 and 6.1.6. To recap, there

is a demand rate λ = 10 and the parameters for the two facilities are:

c1 = 2, µ1 = 8, β1 = 10, α1 = 2,

c2 = 2, µ2 = 2, β2 = 10, α2 = 6.

In Example 4.1.1, the selfishly optimal policy θ̃ and socially optimal policy θ∗ (found by relative

value iteration) for the system were derived; refer to Table 4.1 (page 127). As discussed in Example

6.1.6, the optimal policy θ∗ has a slightly unusual characteristic, in that it does not always choose

the same decision at states where both facilities have an idle server; specifically, the actions chosen

by θ∗ at the states (0, 0) and (0, 1) differ from each other, as do the actions chosen at (1, 0) and

(1, 1). The Whittle index policy θ[W ] discussed in the previous section always prefers the same

facility among those which have at least one idle server, regardless of how many idle servers are

available. In this particular system, it chooses facility 2 at all four of the aforementioned states

and as a result fails to attain optimality (its sub-optimality is about 0.35%).

Now consider the approach based on deriving a heuristic policy via an optimal static routing policy

as discussed in this section thus far. Using Python’s OpenOpt package [138], the optimal rates λ∗1

and λ∗2 (rounded to 3 d.p.) associated with the policy (λ∗1, λ
∗
2) are obtained as:

λ∗1 = 6.230, λ∗2 = 0.981.

Thus, the rate at which customers balk under the static policy (λ∗1, λ
∗
2) is λ−λ∗1−λ∗2 = 2.789. The

long-run average rewards g1(λ∗1) and g2(λ∗2) are then given by (6.2.2) as:

g1(λ∗1) = 3.281, g2(λ∗2) = 0.667,
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from which it follows that the overall average reward under the optimal static policy is g1(λ∗1) +

g2(λ∗2) = 3.948, which is approximately 45% short of the optimal value g∗ = 7.282. The next stage

is to derive the heuristic policy θ[B] by applying a policy improvement step. Table 6.4 shows the

Bernoulli indices P1(x, λ∗1) for facility 1 (computed using 6.2.31) for x ∈ {0, 1, 2, 3}.

x 0 1 2 3

P1(x, λ∗1) 0.526 0.239 −0.786 −1.810

Table 6.4: The Bernoulli indices P1(x, λ∗1) for x ∈ {0, 1, 2, 3}.

Similarly, Table 6.5 shows the Bernoulli indices P2(x, λ∗2) for x ∈ {0, 1, 2}.

x 0 1 2

P2(x, λ∗2) 0.680 0.028 −3.285

Table 6.5: The Bernoulli indices P2(x, λ∗2) for x ∈ {0, 1, 2}.

Note that the indices P1(0, λ∗1) and P1(1, λ∗1) differ from each other, as do P2(0, λ∗2) and P2(1, λ∗2).

This shows that the Bernoulli index policy does not suffer from the same limitation as the Whittle

policy, which (in general) always has Wi(xi) = Wi(0) for all xi < ci. The decisions chosen by θ[B]

at the various states x ∈ S̃ are then specified by (6.2.30), and are shown in Table 6.6.

x2 = 0 x2 = 1 x2 = 2

x1 = 0 2 1 1

x1 = 1 2 1 1

x1 = 2 2 2 0

x1 = 3 2 2 0

Table 6.6: The Bernoulli index policy θ[B] for the system in Example 6.2.5.

By comparison with Tables 4.1 and 6.3, it may be seen that the Bernoulli policy θ[B] is equivalent

to the optimal policy θ∗ at all states x ∈ S̃, and differs from the Whittle policy θ[W ] at states (0, 1)

and (1, 1). Thus, for this system, θ[B] succeeds in attaining optimality. Although this example has

shown that θ[B] has an advantage over θ[W ] in that it has the ability to distinguish between two

different ‘idle’ states xi < ci and yi < ci at a particular facility i, this certainly does not imply
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that θ[B] always performs better than θ[W ]; in fact, θ[W ] has certain appealing properties of its own

(discussed in Section 6.1) which are not shared by θ[B], as later results will show. �

As one might expect, the Bernoulli policy θ[B] determined by the indices in (6.2.31) possesses

various structural properties which have been discussed in previous chapters and associated with

the selfishly optimal policy θ̃, the Whittle policy θ[W ] and (in some cases only) the optimal policy

θ∗ found by relative value iteration. The next result summarises these properties.

Theorem 6.2.6. The Bernoulli index policy θ[B] possesses the following properties:

1. (Containment.) Let SB be the set of positive recurrent states under the policy θ[B]. Then

SB ⊆ S̃, where S̃ is the corresponding set for the selfish policy θ̃.

2. (First monotonicity property.) Suppose θ[B](x) = 0 for some state x ∈ S. Then θ[B](xi+) = 0

for all facilities i ∈ {1, 2, ..., N}.

3. (Second monotonicity property.) Suppose θ[B](x) = i for some state x ∈ S and facility

i ∈ {1, 2, ..., N} with xi ≥ 1. Then θ[B](xi−) = i.

4. (Third monotonicity property.) Suppose θ[B](x) = i for some state x ∈ S and facility i ∈

{1, 2, ..., N}. Then θ[B](xj+) = i for all facilities j ∈ {1, 2, ..., N} \ {i}.

5. (Sink property.) The policy θ[B] is a sink policy with a sink state z ∈ S satisfying zi =

min{x ∈ N0 : Pi(x, λ
∗
i ) < 0} for all facilities i ∈ {1, 2, ..., N}.

6. (Conservativity with demand.) Let SB(λ) be the set of positive recurrent states under the

Bernoulli index policy θ
[B]
λ given a demand rate λ > 0. Then, for any pair of demand rates

λ, λ̄ > 0 with λ < λ̄, it is the case that SB(λ̄) ⊆ SB(λ).

Proof. Recall that the index Pi(x, λ
∗
i ) defined in (6.2.31) is equivalent to the expression wi(x) +

∆Di(x, λ
∗
i ), where wi(x) is as defined in (6.2.28), Di(x, λ

∗
i ) = hi(x+1, λ∗i )−hi(x, λ∗i ) and hi(x, λ

∗
i ) =

limn→∞

(
V

(n)
i (x, λ∗i )− V

(n)
i (0, λ∗i )

)
by definition. It follows that structural properties of the indices

Pi(x, λ
∗
i ) (for example, monotonicity) can be proved using the finite-stage values V

(n)
i (x, λ∗i ), and

this can be done using inductive arguments similar to those used in previous chapters. In fact, the

arguments required in this proof are especially simple, for two main reasons:
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1. It is sufficient to consider an arbitrary facility i ∈ {1, 2, ..., N} operating in isolation, as was

done in the derivation of the indices Pi(x, λ
∗
i ) themselves;

2. Under the static policy, each facility i ∈ {1, 2, ..., N} operates as an M/M/ci queue with a

demand rate λ∗i in which every customer who arrives joins the queue, so it is not necessary

to consider different actions that may be chosen at the various states.

The proof of property (6) requires the result of Theorem 6.2.2, which states that each demand rate

λ∗i is monotonically increasing with λ. For details, see Appendix A.6, page 456. �

Theorem 6.2.6 makes no mention of a seventh structural property which was included in the anal-

ogous result (Theorem 6.1.7) for the Whittle policy θ[W ] in the previous section; specifically, the

non-idling property. Somewhat surprisingly, this property fails to hold for the Bernoulli index

policy. Indeed, the next example shows that θ[B] may be an idling policy.

Example 6.2.7. (The Bernoulli index policy θ[B] may be an idling policy)

It is sufficient to consider a system consisting of only one facility (N = 1), with a demand rate

λ = 5 and parameters for the single facility given as follows:

c = 5, µ = 2, β = 15, α = 8.

A notable characteristic of this system is that the reward for service α is only slightly greater than

the expected cost incurred during a service time, β/µ. The optimal static policy λ∗1 (representing

the optimal Poisson queue-joining rate) is, to 3 decimal places:

λ∗1 = 3.595.

Thus, customers balk at a rate λ∗0 = λ − λ∗1 = 1.405 under the static policy. Table 6.7 shows the

indices P1(x, λ∗1) for states x ∈ {0, 1, 2, 3, 4, 5} obtained using (6.2.31), and the resulting decisions

made by the Bernoulli policy θ[B]. Of course, θ[B](x) = 1 if and only if P1(x, λ∗1) ≥ 0.

Although there are 5 service channels available, θ[B](x) chooses to balk at states 3 and 4. Hence,

θ[B] fails to achieve the non-idling property. Theorem 4.3.3 has already established that, given any

number of facilities N , the optimal policy θ∗ found by relative value iteration is always a non-idling

policy, which suggests that this characteristic of θ[B] is somewhat undesirable.



Chapter 6 Heuristic policies 269

x 0 1 2 3 4 5

P1(x, λ∗1) 0.406 0.353 0.242 −0.024 −0.761 −3.103

θ[B](x) 1 1 1 0 0 0

Table 6.7: The Bernoulli indices P1(x, λ∗1) and decisions θ[B](x) for x ∈ {0, 1, 2, 3, 4, 5}.

Some comments are appropriate in order to explain why θ[B] fails to exhibit the non-idling property

in this particular system. The selfish threshold B̃1 in this system may be calculated using (4.1.2)

as bαcµ/βc = 5, which is equal to the number of service channels c. Thus, even the selfish policy θ̃

(which is the least conservative among all of the state-dependent policies considered in this thesis

thus far) chooses to balk when all of the servers are occupied. An individual customer’s expected

net reward for joining under some state x < 5 is α − β/µ = 0.5, which is drastically smaller (in

terms of absolute value) than the net reward α − 2β/µ = −7 that would be obtained by joining

under the state x = 5. In general, it is clear that for each extra service time spent waiting in

the system by a customer, the expected net reward decreases steeply, and therefore it is extremely

important to prevent customers from joining at any state x ≥ 5 if possible. The Bernoulli index

policy θ[B] chooses actions based on the assumption that the optimal static policy will be followed

at all times thereafter. Since the static policy always applies the same randomised decision rule and

allows customers to join with probability λ∗1/λ ≈ 0.7 regardless of the state, the Bernoulli policy

θ[B] is obliged to over-compensate by rejecting customers at states 3 and 4, thereby reducing the

likelihood of any state x ≥ 5 being reached after adoption of the static policy. �

In Section 6.1, it was shown that the Whittle index policy θ[W ] is asymptotically optimal in a

light-traffic limit and also optimal in a heavy-traffic limit. It is therefore of interest to investigate

whether or not the Bernoulli index policy θ[B] shares these properties. In doing so, it will also be

possible to establish whether or not the optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) itself (used to derive

the Bernoulli policy) is optimal as λ→ 0 and/or as λ→∞. Before proceeding, it will be useful to

make the observation that the optimal static policy can never be average reward optimal (over all

admissible policies) for any fixed λ > 0. This will be stated here as a theorem.

Theorem 6.2.8. Let the system demand rate λ > 0 be fixed. Then any static routing policy

(λ1, λ2, ..., λN ) is sub-optimal, in the sense that:

g(λ1, λ2, ..., λN ) < g∗,
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where g(λ1, λ2, ..., λN ) is the expected long-run average reward earned by the static policy and g∗ =

supθ gθ is the optimal average reward over all admissible policies.

Proof. Under the assumption that αi − βi/µi > 0 for all i ∈ {1, 2, ..., N}, the optimal average

reward g∗ must be strictly positive, as discussed at the beginning of the proof of Theorem 4.4.4.

Hence, the trivial static policy with λi = 0 for all i (and hence g(λ1, λ2, ..., λN ) = 0) is sub-optimal.

On the other hand, consider a static policy which has λi > 0 for some facility i. Then, assuming

that λi < ciµi (otherwise the average reward gi(λi) at facility i would be negatively infinite, again

implying sub-optimality) all ‘marginal’ states xi ∈ N0 at facility i are positive recurrent under the

static policy; indeed, the stationary probability πi(xi, λi) for any xi ∈ N0 is strictly positive and

given by standard M/M/ci queue formulae (e.g. [67], p. 69). In particular, states xi ≥ B̃i are

positive recurrent, where B̃i is the selfishly optimal threshold defined in (4.1.2).

It follows that for any marginal state xi ≥ B̃i, there will be infinitely many points in time at which

the static policy allows a customer to join facility i when it is in state xi, thereby earning a negative

reward r̂i(xi, λi). It is clear, therefore, that the static policy is strictly inferior to a non-static,

history-dependent policy ψ which chooses the same actions as the static policy (λ1, λ2, ..., λN ) at

all times, unless the static policy chooses to admit a customer to facility i under some state xi ≥ B̃i,

in which case ψ chooses to balk. This can be established formally using a sample path argument

completely analogous to the argument given in the proof of Theorem 4.2.5. �

The next result shows that, despite its sub-optimality for fixed values of λ, the optimal static policy

(λ∗1, λ
∗
2, ..., λ

∗
N ) does attain asymptotic optimality in a light-traffic limit. The fact that the Bernoulli

policy θ[B] shares the same property is an immediate consequence of this result. The notation θ
[B]
λ

will be used, as opposed to θ[B], in order to reflect the dependence of the Bernoulli policy on λ

(similar to the notation θ
[W ]
λ used for the Whittle policy in Theorem 6.1.8).

Theorem 6.2.9. The optimal static policy (λ∗1, λ
∗
2, ...λ

∗
N ) and the Bernoulli index policy θ

[B]
λ are

both asymptotically optimal in a light-traffic limit, in the sense that:

lim
λ→0

(
g∗(λ)− g(λ∗1, λ

∗
2, ...λ

∗
N )

g∗(λ)

)
= lim

λ→0

(
g∗(λ)− gθ[B](λ)

g∗(λ)

)
= 0,

where g∗(λ) and gθ[B](λ) respectively denote the optimal expected long-run average reward over all

admissible policies and the average reward earned by θ
[B]
λ , given a demand rate λ > 0.
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Proof. First, let (λ1, λ2, ..., λN ) be any static routing policy under which the system is stable; that

is, λi < ciµi for all i ∈ {1, 2, ..., N}. Then, by analogy with (6.2.27) and (6.2.28), the expected

long-run average reward g(λ1, λ2, ...λN ) earned by this policy satisfies:

g(λ1, λ2, ...λN ) =

N∑
i=1

λiwi(λi) =

N∑
i=1

λi

∞∑
x=0

πi(x, λi)wi(x). (6.2.32)

Recall that wi(λi) = αi−βiMi(λi), where Mi(λi) is the mean waiting time for customers at facility

i under demand rate λi. It is a simple matter to show, using standard M/M/c queue formulae

([67], p. 69) that Mi(λi) → 1/µi as λi → 0 (equivalently, a customer’s expected time waiting in

the queue at facility i tends to zero as λi → 0). It is also trivial to show, for each facility i, that

λi → 0 as the overall demand rate λ tends to zero. Hence, for i ∈ {1, 2, ..., N}:

lim
λ→0

wi(λi) = wi(0) = αi −
βi
µi
. (6.2.33)

Let J ⊆ {1, 2, ..., N} denote the set of facilities which maximise αi − βi/µi. That is:

J = arg max
i∈{1,2,...,N}

{
αi −

βi
µi

}
.

Let (λ̄1, λ̄2, ..., λ̄N ) be a static policy which, given any demand rate λ > 0, always chooses to join

some facility i ∈ J with probability one; that is, λ̄i = λ for some i ∈ J and λ̄j = 0 for all facilities

j 6= i. Obviously the potential instability of the system under the policy (λ̄1, λ̄2, ..., λ̄N ) is not

an issue, since the limiting behaviour as λ → 0 is being considered, and as such one can restrict

attention to demand rates λ < ciµi. Then, using (6.2.32) and (6.2.33):

lim
λ→0

g(λ̄1, λ̄2, ..., λ̄N )

λ
= lim

λ→0

N∑
i=1

λ̄i
λ
wi(λ̄i) = max

i∈{1,2,...,N}

{
αi −

βi
µi

}
. (6.2.34)

Meanwhile, since wi(x) ≤ wi(0) for each i ∈ {1, 2, ..., N} and x ∈ N0, it is clear from (6.2.32) that

the average reward g(λ∗1, λ
∗
2, ..., λ

∗
N ) for the optimal static policy must satisfy:

g(λ∗1, λ
∗
2, ..., λ

∗
N )

λ
≤ max

i∈{1,2,...,N}
wi(0) = max

i∈{1,2,...,N}

{
αi −

βi
µi

}
.

Hence, given any demand rate λ > 0, due to the (static) optimality of (λ∗1, λ
∗
2, ..., λ

∗
N ):

g(λ̄1, λ̄2, ..., λ̄N )

λ
≤
g(λ∗1, λ

∗
2, ..., λ

∗
N )

λ
≤ max

i∈{1,2,...,N}

{
αi −

βi
µi

}
.
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Then, applying the ‘squeeze theorem’ ([166], p. 909) and recalling (6.2.34):

lim
λ→0

g(λ∗1, λ
∗
2, ..., λ

∗
N )

λ
= max

i∈{1,2,...,N}

{
αi −

βi
µi

}
. (6.2.35)

In the proof of Theorem 4.4.4, it was shown (beginning on page 151) that the optimal expected

long-run average reward (over all admissible policies) g∗(λ) satisfies:

lim
λ→0

g∗(λ)

λ
= max

i∈{1,2,...,N}

{
αi −

βi
µi

}
. (6.2.36)

So, by combining (6.2.35) and (6.2.36), one can show:

lim
λ→0

(
g∗(λ)− g(λ∗1, λ

∗
2, ...λ

∗
N )

g∗(λ)

)
=

maxi{αi − βi/µi} −maxi{αi − βi/µi}
maxi{αi − βi/µi}

= 0,

which establishes the asymptotic optimality of (λ∗1, λ
∗
2, ..., λ

∗
N ) as λ → 0. Next, consider the

Bernoulli index policy θ
[B]
λ . By its construction, θ

[B]
λ should always earn an expected long-run

average reward which improves upon the average reward earned by the optimal static policy

(λ∗1, λ
∗
2, ..., λ

∗
N ), and so one would expect θ

[B]
λ to inherit the light-traffic optimality of (λ∗1, λ

∗
2, ..., λ

∗
N ).

Indeed, θ
[B]
λ is a stationary policy which (by Theorem 6.2.6) induces a Markov chain on some finite

set of states contained within the selfishly optimal state space S̃. Therefore, by Corollary 4.4.5, in

order to establish light-traffic optimality of θ
[B]
λ it is sufficient to show that:

θ
[B]
λ (0) ∈ J = arg max

i∈{1,2,...,N}

{
αi −

βi
µi

}
. (6.2.37)

It can be checked using (6.2.31) that the indices Pi(0, λ
∗
i ) for i ∈ {1, 2, ..., N} satisfy:

Pi(0, λ
∗
i ) =


wi(λ

∗
i ), if λ∗i > 0,

wi(0), if λ∗i = 0.

(6.2.38)

Let the quantities φ∗ > 0 and φ† ≥ 0 be defined as follows:

φ∗ := max
i∈{1,2,...,N}

{
αi −

βi
µi

}
,

φ† :=


max

i∈{0,1,...,N}\J

{
αi −

βi
µi

}
, if {1, 2, ..., N} \ J is non-empty,

0, otherwise.

(6.2.39)

Evidently, φ∗ − φ† yields the smallest possible deficit in a customer’s expected net reward that

would result from taking an action at state 0 other than joining a facility belonging to J . Let i, j
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be two facilities with i ∈ J and j ∈ {1, 2, ..., N} \ J , supposing that the latter set is non-empty.

By (6.2.33), one has limλ→0wk(λ
∗
k) = wk(0) for all k ∈ {1, 2, ..., N}. Hence, (6.2.38) implies that

regardless of whether or not the arrival rates λ∗i and λ∗j are non-zero, one has:

lim
λ→0

Pi(0, λ
∗
i ) = wi(0) = φ∗,

lim
λ→0

Pj(0, λ
∗
j ) = wj(0) ≤ φ†.

It follows that there exists δ > 0 such that for all demand rates λ ∈ (0, δ):

Pi(0, λ
∗
i ) > φ∗ − φ∗ − φ†

2
=
φ∗ + φ†

2
,

Pj(0, λ
∗
j ) < φ† +

φ∗ − φ†

2
=
φ∗ + φ†

2
.

Noting that (φ∗ + φ†)/2 is strictly positive, it follows that for any two facilities i, j ∈ {1, 2, ..., N}

with i ∈ J and j /∈ J , one has Pi(0, λ
∗
i ) > max(Pj(0, λ

∗
j ), 0) for sufficiently small values of λ. It

then follows directly from the criterion in 6.2.30 that θ
[B]
λ (0) ∈ J when λ < δ; that is, the Bernoulli

policy θ
[B]
λ chooses to join a facility belonging to the set J under state 0 when λ is sufficiently small.

Applying the result of Corollary 4.4.5 completes the proof of the theorem. �

In this section so far it has been shown that the heuristic index policies θ
[W ]
λ and θ

[B]
λ and the

optimal static policy (λ∗1, λ
∗
2, ..., λ

∗
N ) are all asymptotically optimal in a light-traffic limit. However,

the next example shows that the heavy-traffic optimality of the Whittle policy θ
[W ]
λ (proved by

Theorem 6.1.8) is not a property which is shared by either (λ∗1, λ
∗
2, ..., λ

∗
N ) or θ

[B]
λ .

Example 6.2.10. (Sub-optimality of (λ∗1, λ
∗
2, ..., λ

∗
N ) and θ

[B]
λ in a heavy-traffic limit)

It will be sufficient to consider the same system as in Example 6.2.7. To recap, there is a demand

rate λ = 5 and a single facility with parameters given as follows:

c = 5, µ = 2, β = 15, α = 8.

As discussed in the proof of Theorem 6.2.1, there must exist a unique value λ∗1 which maximises the

strictly concave function g(λ) = λα − βL(λ) (refer to Figure 6.3). In Example 6.2.7 it was found

that the optimal queue-joining rate (among static policies) was λ∗1 ≈ 3.595 under the demand rate

λ = 5. Given that customers balk with a non-zero probability under this policy, it must be the
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case (due to the shape of g(λ)) that λ∗1 remains constant at the same value 3.595 for all λ > 5. The

long-run average reward g(λ∗1) under this policy is approximately 1.458.

On the other hand, applying the result of Corollary 4.4.8, the optimal long-run average reward

g∗(λ) over all admissible policies approaches the following limit as λ→∞:

lim
λ→∞

g∗(λ) = c(αµ− β) = 5. (6.2.40)

Therefore the sub-optimality of the optimal static policy approaches approximately 70% as λ→∞;

that is, the static policy λ∗1 is not optimal in a heavy-traffic limit. In Example 6.2.7, it was shown

that the Bernoulli policy θ
[B]
λ chooses to balk at states 3 and 4 when the demand rate is λ = 5.

Using arguments analogous to those in the proof of Theorem 4.4.7, one can show that the expected

long-run average reward gθ(λ) under any stationary policy θ satisfies:

lim
λ→∞

gθ(λ) = min(c, Tθ)αµ− βTθ, (6.2.41)

where Tθ = min{x ∈ N0 : θ(x) = 0}; that is, Tθ is the lowest-populated state at which θ chooses

to balk (equivalently, the highest-populated state which is positive recurrent under θ). Since the

Bernoulli policy θ
[B]
λ applies a threshold T

θ
[B]
λ

= 3 when λ = 5, it follows directly from property

(6) of Theorem 6.2.6 (conservativity with demand) that states x ≥ 4 must remain excluded from

the positive recurrent set SB when λ is increased; indeed, the proof of the theorem shows that the

indices P1(x, λ∗1) are monotonically decreasing with λ, so one can say that θ
[B]
λ (x) = 0 for all x ≥ 3

when λ > 5. Hence, due to (6.2.41), the average reward gθ[B](λ) must satisfy:

gθ[B](λ) ≤ 3(αµ− β) = 3 ∀ λ ∈ (5,∞), (6.2.42)

which implies, due to (6.2.40), that the sub-optimality of θ
[B]
λ is at least 40% as λ → ∞; that is,

θ
[B]
λ also fails to attain heavy-traffic optimality. Alternatively, note that the indices Pi(x, λ

∗
i ) in

(6.2.31) are independent of the system demand rate λ, and depend only on the optimal static joining

rates λ∗1, λ
∗
2, ..., λ

∗
N and the other system parameters. It has been shown that, in this particular

example, λ∗1 remains at a constant value of approximately 3.595 for all λ > 5, which implies that

the values P1(x, λ∗1) remain unchanged for all x ∈ N0 as λ→∞; hence, the policy θ
[B]
λ also remains

unchanged as λ → ∞. This shows that the inequality in (6.2.42) becomes ‘tight’ as λ → ∞, and

limλ→∞ (g∗(λ)− gθ[B](λ)) = 5 − 3 = 2. In conclusion, θ
[B]
λ improves upon the performance of the

static policy λ∗1 by more than 100% as λ→∞, but remains 40% short of optimality.
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Intuitively, the fact that λ∗1 remains unchanged for all λ > 5 must imply that the same is true of the

Bernoulli policy θ
[B]
λ , since θ

[B]
λ decides whether or not to admit a customer at some state x ∈ N0

based on the assumption that the optimal static policy will be followed by all customers thereafter.

If the static policy remains unchanged as λ → ∞, then there is no effect on the decision-making

criterion applied by θ
[B]
λ and therefore no reason for θ

[B]
λ to change its decisions. �

Theorem 6.1.10 established that the Whittle policy θ[W ] is more conservative than the policy θ∗

found by relative value iteration. Unfortunately, the analogous comparison between θ[B] and θ∗

does not yield any conclusive result, since θ[B] may or may not be more conservative than θ∗,

depending on the system parameters. Indeed, the previous example has shown that θ[B] may be

more conservative than θ∗ (which is always a non-idling policy by Theorem 4.3.3), and in order to

show that θ[B] may not be more conservative than θ∗, it is sufficient to consider the 4-facility system

in Example 6.2.3. For the parameters used in that example, Figure 6.4 indicates that the optimal

(static) demand rate λ∗4 for facility 4 is equal to zero when the system demand rate λ is sufficiently

small. For example, suppose λ = 10. Then, using relative value iteration to compute the optimal

policy θ∗, one finds that θ∗ is a sink policy (see Definition 5.2.14) with sink state (8, 15, 11, 4).

However, given that λ∗4 = 0, it follows from (6.2.31) that P4(x, λ∗4) = w4(x) for all x ∈ N0, and

hence the Bernoulli policy θ[B] is in favour of admitting a customer to facility 4 (as opposed to

balking) at any state x ∈ S with x4 < B̃4 = 6. Indeed, it can be verified that the policy θ[B] derived

using the parameters in Example 6.2.3 is a sink policy with sink state (7, 10, 9, 6). Therefore the set

of recurrent states SB under θ[B] includes states x ∈ S with x4 > 4, and hence SB is not contained

in the set Sθ∗ associated with θ∗; that is, θ[B] is not more conservative than θ∗.

Similarly, it is not possible to compare the heuristic policies θ[W ] and θ[B] with respect to conser-

vativity. Indeed, the Whittle policy θ[W ] is always a non-idling policy (by Theorem 6.1.7) but it

is also more conservative than θ∗ (by Theorem 6.1.10). Hence, θ[B] is more conservative than θ[W ]

in the system described in Example 6.2.10, but it is not more conservative than θ[W ] when one

considers the parameters in Example 6.2.3 and sets λ = 10 (as described above).

In the next section, the performances of the Whittle policy θ[W ] and the Bernoulli policy θ[B] will

be compared using numerical tests with randomly-generated system parameters.
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6.3 Numerical results

Sections 6.1 and 6.2 introduced the Whittle index heuristic and the static routing heuristic respec-

tively. Both of these heuristic methods are designed for the purpose of obtaining near-optimal (and

easily-implementable) policies in a reasonably short amount of time. Both methods also involve

analysing the N service facilities individually, in order to derive a set of indices which characterise

a stationary routing policy for the system as a whole. In order to assess whether or not the meth-

ods are consistently successful in finding near-optimal policies, it is desirable to carry out a large

number of numerical experiments involving randomly-generated parameter sets.

The purpose of this section is to report the results of a series of experiments involving more than

60,000 randomly-generated sets of system parameters. In order to evaluate the exact sub-optimality

of a heuristic policy, it is necessary to evaluate the expected long-run average reward earned by

the relevant policy and compare this with the optimal value g∗ associated with an average reward

optimal policy. Usually, one would wish to carry out these tasks using dynamic programming

algorithms, but this is only practical if the finite state space S̃ is of relatively modest size. Of

course, the heuristic methods discussed in Sections 6.1 and 6.2 can easily be applied to systems in

which S̃ is extremely large, but it is generally not feasible to evaluate the optimal value g∗ in such

systems, and therefore the only comparisons of interest that can be made in ‘large’ systems are

comparisons between different heuristic policies (whose performances must be approximated, using

simulation) and comparisons with simple decision rules such as the selfishly optimal decision rule,

discussed in Section 4.1. As such, this section will be divided into two parts:

• In the first part, systems of relatively modest size will be considered. These are systems in

which the size of |S̃| facilitates the efficient computation of the optimal average reward g∗

using DP algorithms, and also enables similar evaluations of the average rewards earned by

the Whittle policy θ[W ], the Bernoulli policy θ[B] and the selfish policy θ̃.

• In the second part, ‘large’ systems will be considered. These are systems in which the value

of g∗ is assumed to be unattainable, and the average rewards earned by the heuristic policies

θ[W ], θ[B] and the selfish policy θ̃ must be approximated using simulation.

For the sake of distinction, a ‘modest-sized’ system will be defined in this section as a system in
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which the cardinality of S̃ is between 100 and 100,000. Although it is certainly possible to apply

DP algorithms to systems of greater size than this without an extremely long running time being

required, it is desirable to impose a relatively strict restriction on |S̃| in order to allow a large

number of experiments to be carried out in a reasonable amount of time. The remainder of this

section will proceed to present the results obtained from numerical experiments.

Part 1: 36,136 systems of small-to-moderate size

A series of experiments were conducted, involving 36,136 randomly-generated sets of system pa-

rameters. For each system, the parameters were randomly generated as follows:

• The number of facilities, N , was sampled from the set {2, 3, 4}.

• Each service rate µi was sampled from a uniform distribution between 5 and 25.

• Each service capacity ci was sampled unbiasedly from the set {2, 3, 4, 5}.

• Each holding cost βi was sampled from a uniform distribution between 5 and 25.

• Each fixed reward αi was sampled from a uniform distribution which was dependent upon the

number of facilities N . This uniform distribution was between 2 and 18 in the cases N = 2

and N = 3, and between 2 and 12 in the case N = 4.

• The demand rate λ was sampled from a uniform distribution between 0 and 1.5×
N∑
i=1

ciµi.

A constraint was imposed whereby parameter sets were accepted only if they caused the size of the

selfish space S̃ to be between 100 and 100,000 states. In addition, all facilities i were required to

satisfy the condition αi > βi/µi in order to avoid degeneracy. Parameter sets which did not satisfy

these criteria were rejected and, in these cases, all parameters were re-sampled.

Let ρ := λ/
∑N

i=1 ciµi be a measure of the relative traffic intensity for a particular system. In this

section, the three cases ρ ∈ (0, 0.5), ρ ∈ (0.5, 1) and ρ > 1 will be considered separately. Figure 6.5

illustrates the distributions of the percentage sub-optimality for the three policies θ[W ], θ[B] and

θ̃ in systems with ρ ∈ (0, 0.5). As stated earlier, these results have been obtained by using DP

algorithms to evaluate the average rewards earned by θ[W ], θ[B] and θ̃, and comparing these with

the optimal value g∗ (also obtained using DP). Figures 6.6 and 6.7 show the corresponding findings
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for the cases ρ ∈ (0.5, 1) and ρ > 1 respectively. In each of the three cases, the number of systems

tested was approximately 12,000. It should be noted that the categories on the horizontal axes in

Figures 6.5-6.7 are not mutually exclusive; so, for example, any heuristic policy which is within

0.1% of optimality in a particular system is also counted as being within 0.5%, etc.

Figure 6.5 shows that the Whittle heuristic appears to out-perform the static routing heuristic in

systems with ρ < 0.5. The selfish policy θ̃ also performs more strongly in light-demand systems

than in higher-demand systems, which is as expected. Figure 6.6 shows that in ‘medium-demand’

systems (with 0.5 < ρ < 1), all three heuristics appear to fare worse than in the low-demand case.

The Whittle heuristic again appears to out-perform the static routing heuristic in this category,

although its superiority is less obvious. Figure 6.7 shows that the Whittle heuristic appears to have

a clear superiority over the static routing heuristic in systems with ρ > 1. This may be related

to the fact that (by Theorem 6.1.8) the Whittle heuristic policy is optimal in a heavy-traffic limit,

whereas the Bernoulli policy θ[B] is not. As expected, the selfish policy performs very poorly when

the demand rate is high. Incidentally, the average reward earned by the Whittle heuristic policy

θ[W ] was within 5% of optimality in all of the systems tested across all categories.
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Figure 6.5: The distributions of the percentage sub-optimality for the Whittle policy θ[W ], the Bernoulli

policy θ[B] and the selfish policy θ̃ in ‘light-demand’ systems with ρ ∈ (0, 0.5).

Table 6.8 shows, for each of the three policies θ[W ], θ[B] and θ̃, further information about the
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Figure 6.6: The distributions of the percentage sub-optimality for the Whittle policy θ[W ], the Bernoulli

policy θ[B] and the selfish policy θ̃ in ‘medium-demand’ systems with ρ ∈ (0.5, 1).
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Figure 6.7: The distributions of the percentage sub-optimality for the Whittle policy θ[W ], the Bernoulli

policy θ[B] and the selfish policy θ̃ in ‘high-demand’ systems with ρ ∈ (1, 1.5).
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distribution of the percentage sub-optimality in each of the three categories ρ ∈ (0, 0.5), ρ ∈ (0.5, 1)

and ρ ∈ (1, 1.5). The combined results for all three categories are also given. For each policy (within

each ρ category), the table shows the 25th, 50th, 75th and 100th percentiles of the percentage sub-

optimality (over all trials), and a two-sided 99% confidence interval for the mean.

Table 6.9 shows pairwise comparisons between the three heuristic policies θ[W ], θ[B] and θ̃, with

systems again divided into categories according to the value of ρ and a fourth category included,

showing the combined results for all categories. Each figure in the table shows the percentage of

trials (within the relevant demand rate category) in which the policy referred to in the correspond-

ing row of the table achieved a strictly greater average reward than the policy referred to in the

corresponding column. For example, the Whittle policy θ[W ] out-performed the Bernoulli policy

θ[B] in 73.25% of the light-demand systems, 49.04% of the medium-demand systems and 69.03%

of the high-demand systems. It is important to note that these figures indicate the percentage

of systems in which there was a strict superiority of one policy over another. In some systems,

two heuristic methods may yield identical policies, in which case neither policy has an advantage;

indeed, this appears especially likely to happen when the demand rate λ is small.

Part 2: 24,074 systems of large size

A further series of experiments were performed, involving another 24,074 randomly-generated sets

of system parameters. For each set of parameters, the number of facilities N was between 4 and

12, the number of channels ci for each facility i was between 2 and 6, the fixed rewards αi were

sampled from a uniform distribution between 2 and 18 and the service rates µi, holding costs βi

and demand rate λ were generated in the same way as in Part 1. The intention was to investigate

‘large’ systems, in which the size of the selfish state space S̃ would preclude the use of dynamic

programming algorithms. As such, parameter sets were accepted only if they gave a value of |S̃|

greater than 100,000 states. As in the previous part, the constraint αi > βi/µi (for all facilities i)

was also enforced. The median of |S̃| over all of the 24,074 trials performed was approximately 7.3

million states, and the maximum was approximately 6.08× 1022 (60.8 sextillion).

With the use of DP algorithms assumed to be infeasible, one cannot evaluate the optimal aver-

age reward g∗ for a given system, nor is it possible to evaluate the performances of the heuristic



Chapter 6 Heuristic policies 281

All demand rates

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

Whittle θ[W ] 0.009 0.429 1.102 4.843 0.663± 0.010

Bernoulli θ[B] 0.180 0.788 1.864 20.382 1.313± 0.022

Selfish θ̃ 4.858 31.033 70.419 98.111 38.032± 0.447

Light demand (ρ ∈ (0, 0.5))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

Whittle θ[W ] 0.000 0.001 0.062 3.144 0.111± 0.004

Bernoulli θ[B] 0.002 0.162 0.703 11.768 0.488± 0.010

Selfish θ̃ 0.005 1.349 11.541 76.983 8.363± 0.180

Medium demand (ρ ∈ (0.5, 1))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

Whittle θ[W ] 0.355 0.849 1.455 4.607 0.977± 0.010

Bernoulli θ[B] 0.349 0.869 1.730 15.646 1.288± 0.019

Selfish θ̃ 12.043 26.668 42.196 86.909 28.320± 0.258

High demand (ρ ∈ (1, 1.5))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

Whittle θ[W ] 0.335 0.795 1.335 4.843 0.902± 0.010

Bernoulli θ[B] 0.744 1.731 3.002 20.382 2.160± 0.026

Selfish θ̃ 69.265 80.490 88.407 98.111 77.233± 0.198

Table 6.8: The distribution of the percentage sub-optimality under the three policies θ[W ], θ[B] and θ̃, with

results categorised according to the value of ρ. All figures are rounded to 3 decimal places.
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All systems Light demand (ρ ∈ (0, 0.5))

Whittle Bernoulli Selfish Whittle Bernoulli Selfish

Whittle x 63.81% 93.77% Whittle x 73.25% 84.19%

Bernoulli 31.61% x 91.32% Bernoulli 14.85% x 76.02%

Selfish 3.07% 6.07% x Selfish 6.37% 16.16% x

Medium demand (ρ ∈ (0.5, 1)) High demand (ρ ∈ (1, 1.5))

Whittle Bernoulli Selfish Whittle Bernoulli Selfish

Whittle x 49.04% 97.14% Whittle x 69.03% 99.99%

Bernoulli 49.80% x 97.97% Bernoulli 30.34% x 99.99%

Selfish 2.86% 2.03% x Selfish 0.00% 0.00% x

Table 6.9: Pairwise comparisons between θ[W ], θ[B] and θ̃. Each figure shows the percentage of trials in

which the policy referred to in the corresponding row out-performed the policy in the corresponding column.

policies θ[W ] and θ[B] and the selfish policy θ̃ exactly. However, as discussed in previous sections,

the indices used for decision-making by these three policies are simple to obtain (regardless of the

size of |S̃|), since they can be determined by considering individual facilities one-by-one. One can

then use simulation to estimate the average rewards earned by the three policies. Table 6.10 shows

pairwise comparisons between the estimated performances of θ[W ], θ[B] and θ̃ obtained from these

trials. All of these estimates have been obtained using discrete-time simulation, with 10 million

random transitions simulated for each of the three policies within each trial (including ‘dummy’

simulations caused by uniformisation) and the same random number seed used in all cases in order

to ensure a fair comparison. All of the policies tested used the same discrete-time step size, given

by ∆ = (λ+
∑N

i=1 ciµi)
−1. As in Table 6.9, the value of ρ = λ/

∑N
i=1 ciµi has been used to divide

the systems tested into three categories: ρ ∈ (0, 0.5), ρ ∈ (0.5, 1) and ρ ∈ (1, 1.5).

By comparing Tables 6.9 and 6.10, one may observe the effect of increasing the size of the finite

state space S̃ on the relative performances of the policies θ[W ], θ[B] and θ̃. Of course, it is important

to bear in mind that the results in Table 6.10 are subject to simulation error. In all of the four ρ

categories, the heuristic policies θ[W ] and θ[B] appear to perform slightly better in comparison to

the selfish policy θ̃ than they did in smaller-sized systems. However, the most interesting point to
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All systems Light demand (ρ ∈ (0, 0.5))

Whittle Bernoulli Selfish Whittle Bernoulli Selfish

Whittle x 58.76% 93.75% Whittle x 57.85% 81.70%

Bernoulli 37.88% x 92.53% Bernoulli 32.07% x 77.87%

Selfish 6.18% 7.42% x Selfish 18.10% 21.99% x

Medium demand (ρ ∈ (0.5, 1)) High demand (ρ ∈ (1, 1.5))

Whittle Bernoulli Selfish Whittle Bernoulli Selfish

Whittle x 32.76% 99.64% Whittle x 85.99% 99.89%

Bernoulli 67.24% x 99.80% Bernoulli 14.01% x 99.89%

Selfish 0.36% 0.20% x Selfish 0.11% 0.11% x

Table 6.10: Further comparisons between θ[W ], θ[B] and θ̃ in systems where |S̃| is large.

note is that in systems with ‘medium’ demand rates (ρ ∈ (0.5, 1)), the Whittle policy θ[W ] appears

to be clearly inferior to the Bernoulli policy θ[B]; this was not the case when smaller systems were

considered earlier. On the other hand, in systems with ‘high’ demand rates (ρ ∈ (1, 1.5)), the

Whittle policy θ[W ] appears to have a very strong advantage over the Bernoulli policy θ[B]. Thus,

taking into account the results in Tables 6.9 and 6.10, it appears that there is a general tendency

for θ[W ] to out-perform θ[B] in systems where ρ is either ‘small’ or ‘large’, but for θ[B] to gain an

advantage over θ[W ] in systems where ρ lies within the ‘intermediate’ range (0.5, 1).

6.4 Conclusions

The results in Chapter 4 (in particular, Theorem 4.2.4) have established that it is theoretically

possible to find an average reward optimal policy for the MDP Υ formulated in Section 3.5 by

truncating the state space S, and applying a dynamic programming algorithm to an MDP with

the finite state space S̃ defined in Section 4.1. Unfortunately, the finite set S̃ might itself be very

large in some problem instances, and for this reason it is necessary to look for heuristic approaches

which can be relied upon to yield near-optimal policies in a short amount of time.

The curse of dimensionality has been widely discussed in the MDP literature (see [140, 141]).
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Two heuristic methods have been introduced in this chapter, both of which are able to avoid the

problems caused by a large number of service facilities (i.e. a high-dimensional state space) by

analysing service facilities individually, and deriving a set of indices for each facility. In the case

of the Whittle index policy θ[W ] discussed in Section 6.1, these indices are based on the properties

of optimal routing policies in a Lagrangian relaxation of the original problem, while in the case

of the static routing heuristic discussed in Section 6.2, the indices are based on the application

of policy improvement to an optimal static routing policy. By relying on the simple principle of

always choosing the facility with the largest index value at any given state, one can use the indices

derived for the individual facilities to derive a heuristic stationary routing policy for the original

N -facility problem. Furthermore, the empirical results in Section 6.3 have demonstrated that both

of the policies θ[W ] and θ[B] are frequently able to achieve a strong performance.

For any given set of system parameters, the indices which characterise the heuristic policies θ[W ]

and θ[B] can be calculated in a completely deterministic way. Thus, these heuristics do not rely

on any iterative algorithm, nor do they involve any sort of randomisation. One might regard the

deterministic nature of these heuristics as both a strength and a weakness. On one hand, their

simplicity makes them extremely easy to implement; on the other hand, if the heuristics are found

to perform poorly in a particular system, then it is not necessarily easy to see how the policies

that they produce might be adjusted in order to achieve closer proximity to an optimal policy. An

alternative approach to finding a near-optimal policy might involve repeatedly making updates to a

‘test’ policy according to a procedure which is somehow stochastic. The aim of this procedure would

be to make gradual improvements to the test policy (somewhat in the style of a DP algorithm),

with the ultimate goal of achieving convergence to an optimal policy. Reinforcement learning, which

essentially utilises this type of approach, will be discussed extensively in Chapter 7.
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The challenge of finding a socially optimal policy for an MDP which models a large-scale real-

world dynamic system is an extremely formidable one. As discussed in earlier chapters, dynamic

programming algorithms might be able to accomplish the task in theory, but the time required

to execute such procedures escalates quickly as the complexity of the problem increases, to the

point where their effective use becomes unrealistic. The heuristic methods discussed in Chapter 6

have been shown to perform well in problems of reasonable size, and moreover these methods have

strong theoretical backing. This chapter is devoted to an alternative approach, based on simulation

of the real-world system under consideration. This approach is often referred to in the literature

as reinforcement learning (a term which originated in the artificial intelligence community; see,

for example, [53, 127, 188]), although various other names for it are commonly used, including

simulation-based optimisation [62] and approximate dynamic programming [140].

Section 7.1 will present an overview of the general approach of reinforcement learning, and explain

how it is applicable to the queueing system problems considered in this thesis. Section 7.2 will

provide details of certain algorithms that can be found in the literature, and demonstrate their

performances using some specific examples. Section 7.3 will present some ‘specialised’ algorithms

which exploit the particular properties of the queueing systems under consideration. Section 7.4

will explore the method of value function approximation, which is essentially a technique for coping

with problems where the state space is extremely vast. Section 7.5 will present numerical results

demonstrating the performances of the algorithms discussed in the preceding sections. Finally,

Sections 7.6 and 7.7 will consider certain generalisations of the queueing system described in Section

3.1, involving non-exponential distributions and heterogeneous customers respectively.

7.1 Introduction

Reinforcement learning differs from the optimisation methods considered in earlier chapters (such

as dynamic programming) in that it relies upon simulation of the stochastic process to be optimised.

Simulation itself is so well-established as a method for evaluating the performance of a queueing

system that the idea of using it as a tool for optimising performance is a natural and appealing

285
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one. While simulation, by its nature, cannot offer exact guarantees regarding the consequences

of implementing a particular policy, the advances in computer processing power made in recent

decades have enabled it to become an indispensable technique for mathematical modellers working

in all areas of industry (see, for example, [113, 180]). An in-depth discussion of the advantages of

simulation will not be given here, but it is appropriate to note some key points:

1. Firstly (and most obviously), creating a computer simulation of a queueing system saves time,

effort and money in comparison to conducting experiments ‘in real life’.

2. The level of detail in a simulation model can be extremely high. As such, it is often possible

to simulate (with very little effort) a system whose random transitions follow conditional

distributions which would be intractable using a more analytical approach.

3. Although the results of a simulation experiment are subject to random ‘noise’, this effect can

be mitigated by conducting multiple trials and collecting summary statistics. If the model is

designed well and a suitably large number of trials are performed, the resulting estimates of

key performance measures for the system will generally be very reliable.

In the early part of this chapter, the system under consideration will once again be the ‘basic’

N -facility queueing system described in Section 3.1. Extensions to this model will be discussed in

later sections. As discussed in Chapter 4, it is possible to find an average reward optimal policy θ∗

for the system which operates in such a way that at any state x ∈ S, the action θ∗(x) chosen by

θ∗ attains the maximum on the right-hand side of the optimality equations:

g∗ + h(x) = max
a∈Ax

r(x, a) +
∑
y∈S

p(x, a,y)h(y)

 , (7.1.1)

where (as in previous chapters) g∗ is the optimal expected long-run average reward over all ad-

missible policies, and the function h : S → R is referred to as the relative value function. Note

that in (7.1.1), r(x, a) represents a generic reward function which is assumed to be suitable for the

purpose of calculating the expected long-run average reward (results from previous chapters have

shown that various different formulations for r(x, a) are possible). Let Q(x, a) be the ‘Q-factor’

associated with choosing action a ∈ Ax under state x ∈ S, defined as follows:

Q(x, a) := r(x, a)− g∗ +
∑
y∈S

p(x, a,y)h(y). (7.1.2)
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Accordingly, for all states x ∈ S, one simply has:

h(x) = max
a∈Ax

Q(x, a). (7.1.3)

Hence, knowledge of the exact Q-factors for all state-action pairs is all that is required in order to

characterise an average reward optimal policy. By substituting (7.1.3) into (7.1.1), one obtains an

alternative set of optimality equations involving the Q-factors Q(x, a):

g∗ +Q(x, a) = r(x, a) +
∑
y∈S

p(x, a,y) max
a′∈Ay

Q(y, a′). (7.1.4)

Essentially, the objective throughout this chapter will be to obtain reliable estimates for the Q-

factors Q(x, a), under the premise that the dynamic programming algorithms relied upon in earlier

chapters are rendered unusable due to the scale and/or complexity of the problem. This task will

be accomplished using reinforcement learning (RL) algorithms. These RL algorithms will be very

much based within the mathematical framework of a Markov Decision Process, and (at least in

the first few sections) will rely upon state space, action space, transition probability and reward

formulations similar to those introduced in Chapter 3. Indeed, these algorithms will have much in

common with DP algorithms themselves; the essential difference will be that they avoid sweeping

exhaustively through all states and actions on each iteration, as DP algorithms do.

Although RL algorithms have become popular tools for optimising Markov Decision Processes,

the point should be made that reinforcement learning in general is a much broader field, with

applications in statistics, economics, game theory and other disciplines (see, for example, [29, 51,

112]). Thus, this chapter concerns only one particular application area of RL, and certainly does

not represent a comprehensive study of the field of reinforcement learning itself.

Before proceeding, some comments about the general philosophy of reinforcement learning are in

order. RL may be summarised somewhat vaguely as the process of an intelligent being (often

referred to as an agent) interacting with its environment, and learning from the consequences of

its actions. At any point in time, the agent finds itself in a particular state, with various possible

actions to choose from; it then selects an action and learns the consequences of the choice it has

made. Depending on whether or not these consequences are favourable, it may become either more

or less inclined to select the same action again in the future when it finds itself in the same state.

As the process continues, the agent gradually acquires more experience and is able to improve
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its own long-term welfare by almost always selecting actions which have resulted in favourable

outcomes in the past; although one usually assumes that, regardless of how much experience has

been gained, the agent will still make ‘experimental’ choices occasionally in order to continue the

learning process, and avoid becoming completely settled on one particular policy.

Agent in

Environment

action an selected

reward rn received
new state xn+1 reached  state xn

Next iteration:
increment n by 1

Figure 7.1: The ‘agent-environment interface’ in reinforcement learning.

Figure 7.1 is a diagram which bears similarity to illustrations found in several texts, including

Sutton and Barto [175], in which it is referred to as the ‘agent-environment interface’. For the sake

of simplicity, let it be assumed for the time being that the process evolves in discrete time (this

assumption will be relaxed in later sections). In keeping with the convention of this thesis by using

vectors to represent states, let xn denote the state of the system at some discrete time epoch n ≥ 0.

As depicted in Figure 7.1, an action an is chosen by the agent at time n, and two new pieces of

information are acquired as a result: firstly, a reward rn is received, and secondly the agent finds

itself in a new state xn+1. The reward rn may be either random or deterministic, but in either case

one would assume that its value is influenced by both xn and an. The new state xn+1 will generally

be determined at random in a stochastic problem. The agent then uses both the reward rn and the

new state xn+1 to judge how ‘favourable’ the consequences of choosing action an in state xn have

turned out to be; for example, it might be the case that a particular outcome is deemed highly

favourable by the agent even if the reward obtained is small, since it might entail a transition to
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a state which is regarded as being extremely desirable. Similarly, if a particular action results in

a transition to a state which has been associated only with poor outcomes in the past, then the

agent may look upon this outcome unfavourably, regardless of the reward earned.

In general, RL algorithms assume that the ‘new information’ acquired by an agent after making

a decision is accessible either by observation of an actual real-world process, or via a simulator;

unsurprisingly, it is the latter assumption that is made in this thesis. In order to construct an

adequate simulation model, it is necessary to have some knowledge (or inference) of the probability

distributions which govern the rewards and transition probabilities for the system. However, it

is usually not necessary to formulate exact expressions for the transition probabilities themselves.

By relying upon simulation rather than exact computation, RL algorithms are said to avoid the

“curse of modelling”. Indeed, Gosavi [62] (p. 214) comments that “the avoidance of transition

probabilities (by RL algorithms) is not a miracle, but a fact backed by mathematics”.

To illustrate this principle, consider an M/M/1 queueing system with arrival rate λ > 0 and service

rate µ > 0. Assuming that the parameters λ and µ are known, the random evolution of this system

can be completely determined by generating a sequence of exponentially-distributed inter-arrival

times, and another sequence of exponentially-distributed service times; thus, it is not necessary

to evaluate (for example) the probability of transferring from a particular state at time t0 ≥ 0 to

another state at time t1 > t0 in order to simulate the progression of states, queue lengths, waiting

times etc. Whilst the calculation of transition probabilities may not be problematic in the case of

an M/M/1 queue, it may become an extremely difficult task when one considers more complicated

queueing systems, especially in cases where it is not possible to apply uniformisation in order to

discretise the system (cases such as these will be discussed further in later sections).

Even within the specific application area of Markov Decision Processes, RL algorithms in the liter-

ature are numerous and varied. However, as discussed previously, all of the algorithms considered

in this chapter share a common purpose: to estimate the Q-factors Q(x, a) (which characterise an

average reward optimal policy) as accurately as possible. From (7.1.2), it is clear that the value

Q(x, a) for any state-action pair (x, a) ∈ S × A may be regarded informally as a measure of the

‘utility’ of choosing action a under state x. Recall (from Theorem 3.7.4) that the relative values

h(x) satisfying the average reward optimality equations (7.1.1) are unique, provided that one ‘fixes’
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one of their values (by, for example, setting h(0) = 0). It then follows from (7.1.3) that the Q-

factors Q(x, a) are also unique. Hence, the task of obtaining reliable estimates for these Q-factors is

very much akin to the classical statistical problem of estimating the values of unknown population

parameters by random sampling. Furthermore, the performance of an RL algorithm may be judged

not only by whether or not it outputs a policy which is close to optimal, but also by whether or

not the estimates obtained for the Q-factors are close to their theoretical values (assuming that one

has the luxury of knowing these values exactly, which will generally only be the case in small-scale

problems used for validation purposes). In the next section, two learning algorithms based on the

general RL methodology discussed in this section will be introduced and compared.

7.2 TD learning and R-learning

The intention in this section is to explain in greater detail how RL algorithms may be applied to

a Markov Decision Process, and to introduce some of the most well-known RL algorithms from

the literature. In terms of their theoretical foundation, all of the RL algorithms considered in this

chapter will be based (at least to some extent) on dynamic programming methods; however, these

algorithms will differ significantly from DP algorithms in their mode of operation. Two important

characteristics of the DP algorithms discussed in earlier chapters are as follows:

1. DP algorithms usually rely upon synchronous updating, which means that they update the

value function on each iteration by looping over the entire state and action space.

2. DP algorithms rely upon knowledge of a deterministic reward r(x, a) and fully-specified prob-

ability distribution {p(x, a,y)}y∈S for each state-action pair (x, a) ∈ S ×Ax.

In order to illustrate the way in which RL algorithms deviate from the characteristics of DP

algorithms noted above, consider an N -facility queueing system which satisfies the assumptions of

Section 3.1 and suppose the system is modelled by an MDP which has been uniformised as described

in Section 3.3, so that it evolves in discrete time steps of size ∆, where ∆ ∈
(

0, (λ+
∑N

i=1 ciµi)
−1
]
.

RL algorithms operate by simulating random transitions. Suppose the process is in some state

xn ∈ S at time step n ≥ 0, and an action an ∈ {0, 1, 2, ..., N} is chosen. In this case, the task of

simulating the next random transition is simply a matter of sampling a random number u from
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a uniform distribution between 0 and 1, and then using the transition probabilities in (3.5.3) to

determine the next state based on the particular range of values in which u is found. To be specific,

let u be a random number between 0 and 1. Then, given that an action an ∈ Axn is chosen at state

xn ∈ S at time n ≥ 0, the state xn+1 at time n+ 1 may be determined as follows:

xn+1 =



xi+n , if u < λ∆ and an = i for some i ∈ {1, 2, ..., N},

xi−n , if λ∆ +
∑i−1

j=1 min((xn)j , cj)µj∆ ≤ u < λ∆ +
∑i

j=1 min((xn)j , cj)µj∆

for some i ∈ {1, 2, ..., N},

xn, otherwise,

(7.2.1)

where, in keeping with the notation of previous chapters, (xn)j denotes the jth component of the

vector xn. Accordingly (making use of the RL terminology introduced in the previous section),

an agent may be deployed to ‘explore’ the system by choosing actions and moving between states

according to the simulation procedure described above. However, the question remains as to how

actions should be selected. Since the ultimate objective is for the agent to ‘learn’ a policy which will

optimise the performance of the system (i.e. a socially optimal control policy), it must obviously

be allowed to experiment with many different policies. On the other hand, the simple strategy of

selecting actions completely at random would not be the most efficient way for the agent to learn

a socially optimal policy, since this would not make effective use of past experience.

What is really needed is some sort of compromise between exploration and exploitation; that is, the

agent should sometimes choose actions randomly (in order to ensure that it explores a breadth of

different options at each state), but should also sometimes act ‘greedily’ by focusing on the action(s)

that have yielded the most favourable outcomes in the past. The importance of exploitation lies

not only in the fact that it improves the agent’s welfare in the short-term, but also in the fact

that the action(s) which are perceived to be ‘best’ at any particular state are the most important

ones to evaluate accurately, and therefore should be selected more often than actions for which

there is strong evidence of sub-optimality. Of course, these ideas need to be formalised, and an

RL algorithm must specify the exact means by which an agent selects actions. The theme of

exploration vs. exploitation is important not only in reinforcement learning, but also in the design

of meta-heuristics and the field of artificial intelligence in general (see [60, 139, 148]).
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As the agent explores the consequences of choosing different actions at the various states it visits,

it should gradually improve its estimates of the Q-factors Q(x, a) which characterise an average

reward optimal policy for the system. In practice, this means that an array of values Q̂(x, a) should

be stored, where (for each state-action pair (x, a) ∈ S×Ax) Q̂(x, a) is an estimate of Q(x, a). Each

time the agent chooses some action a ∈ Ax at state x ∈ S, it should then update its estimate

Q̂(x, a) based on the reward received and the new state reached after the resulting simulated

random transition. The next question that must be addressed is exactly how the estimates Q̂(x, a)

should be calculated. Recalling (7.1.2) and (7.1.3), the true values Q(x, a) satisfy:

Q(x, a) = r(x, a)− g∗ +
∑
y∈S

p(x, a,y) max
b
Q(y, b). (7.2.2)

Of course, the Q-factors in (7.2.2) are those associated with an average reward optimal policy. Be-

fore introducing the RL algorithms of particular interest in this section (which aim to approximate

an optimal policy), it will be useful to begin by addressing the problem of how to evaluate the

expected long-run average reward under a fixed stationary policy using RL methods. Let θ be a

stationary policy, and let Qθ(x) denote the Q-factor for choosing the action θ(x) ∈ Ax prescribed

by θ at state x ∈ S, assuming that the policy θ is followed thereafter. By analogy to the policy

evaluation equations in (3.7.5), the Q-factors Qθ(x) must satisfy (for all x ∈ S):

Qθ(x) = r(x, θ(x))− gθ +
∑
y∈S

pθ(x,y)Qθ(y), (7.2.3)

where gθ and pθ(x,y) denote (respectively) the expected average reward under θ and the transition

probabilities associated with the policy θ, and (as before) the reward function r(·) is not specified

exactly at this stage, but is assumed to be fit for the purpose at hand. It is now appropriate to

introduce the concept of temporal-difference learning (TD learning), which is discussed extensively

in (for example) Sutton and Barto [175]. The TD learning procedure for evaluating a stationary

policy θ may be described most easily by reference to the algorithm given below.

Temporal difference learning algorithm (TD learning)

1. Input θ, the stationary policy to be evaluated. Initialise values n = 0, g0 = 0 and an array of

values Q̂θ(x) with Q̂θ(x) = 0 for each x ∈ S. Choose an initial state x0 ∈ S.

2. Use simulation to determine the reward rn and the new state xn+1 reached at the next time
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step. Then, update Q̂θ(xn) according to the following update rule:

Q̂θ(xn)← (1− δn)Q̂θ(xn) + δn

[
rn − gn + Q̂θ(xn+1)

]
,

where δn ∈ [0, 1] is a ‘learning parameter’ which either remains constant or tends to zero as

n→∞. (Some possible definitions for δn are discussed later.)

3. Calculate gn+1, the latest estimate of the average reward gθ, as follows:

gn+1 := (1− ζn)gn + ζn

[
rn + Q̂θ(xn+1)− Q̂θ(xn)

]
,

where ζn ∈ [0, 1] is another learning parameter.

4. If n = nmax, where nmax is a large integer, then output the array of values Q̂θ(x) as estimates

for the values Qθ(x) satisfying (7.2.3) and also output gn+1 as an estimate for the average

reward gθ, then stop. Otherwise, increment n by 1 and return to step 2.

Note that, as a consequence of the fact that a fixed policy θ is being evaluated, the Q-factors Qθ(x)

estimated by the TD learning algorithm are exactly equivalent to the relative values h(x) in (3.7.5).

An example involving an application to a queueing system will be given shortly. First, however,

some further explanatory comments are in order. Essentially, in step 2 of the algorithm, the current

estimate of the Q-factor at state xn ∈ S (represented by Q̂θ(xn)) is compared to the ‘new’ quantity

rn− gn + Q̂θ(xn+1), where the reward rn and the new state xn+1 are both acquired via simulation.

The link between the expression rn − gn + Q̂θ(xn+1) and the expression on the right-hand side of

(7.2.3) is obvious. As such, one can easily recognise that if the algorithm achieves its ultimate goal

(rarely possible in practice!) of obtaining completely accurate estimates for the Q-factors Qθ(x) and

average reward gθ, then the estimate Q̂θ(xn) will be an unbiased estimator of the random quantity

rn − gn + Q̂θ(xn+1) generated by the simulator. The difference rn − gn + Q̂θ(xn+1) − Q̂θ(xn) is

referred to as the TD error at stage n of the algorithm, and the estimate Q̂θ(xn) is updated (in

step 2) by multiplying the TD error by the (typically small) quantity δn and ‘adjusting’ Q̂θ(xn) by

the resulting amount. Similarly, in step 3, the estimate gn+1 for the expected average reward gθ is

calculated in a manner entirely consistent with the policy evaluation equations (7.2.3).

It should also be noted that, from a practical point of view, the initialisation of an array of values

Q̂θ(x) for all x ∈ S (as described in step 1 of the algorithm) is obviously not possible if the state
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space S is infinite. However, this does not mean to say that the TD learning algorithm cannot be

applied to a problem with an infinite state space. Clearly, all that is required in the case of an

infinite state space is for a computer program to be written in such a way that new values Q̂θ(x) are

initialised for states x ∈ S as and when they are first visited during the simulated evolution of the

process under θ. Assuming that the number of states visited during the running of the algorithm

does not escalate in such a way that the system memory is unable to cope with the number of

Q-factor estimates requiring storage, the program should be capable of at least obtaining a reliable

estimate of the average reward gθ, even if it is impossible to visit (and estimate the Q-factors for)

all states in S during the finite running time of the algorithm. RL algorithms which do not need to

store a unique value for each system state (and are thereby able to cope with extremely vast state

spaces) will be discussed in Section 7.4. The fact that RL algorithms are theoretically able to cope

with infinite state spaces gives them an important advantage over conventional DP algorithms,

which are restricted by the need to sweep through all system states on each iteration.

In practice, the learning parameters δn and ζn are sometimes given small constant values; for

example, the values δn = 0.1 and ζn = 0.01 (for all n ∈ N) are used in the example given in

Chapter 6.7 of Sutton and Barto [175]. Alternatively, δn and ζn may both tend to 0 as n → ∞;

however, in this case it is desirable to ensure that ζn decays to zero more rapidly than δn (see

[18]). Generally speaking, it is not realistic to devise a rule for choosing δn and ζn which will suit

any application; some ‘tweaking’ will usually be necessary in order to find the configuration which

yields the best performance for the system under consideration. One possible approach is to allow

the parameter δn to be state-dependent, and define it in such a way that it depends on the total

number of visits made to state xn up to and including time n. As explained by Gosavi [63], this

strategy has its roots in the Robbins-Monro stochastic approximation scheme, originally introduced

in [143]. Since the use of state-dependent learning parameters will be important in the development

of this chapter, it will be useful to provide an outline of the Robbins-Monro procedure.

Robbins-Monro stochastic approximation scheme

Let X be a bounded random variable, and suppose that a sequence of samples (X1, X2, X3, ...) is

available for estimating the expected value E[X]; that is, each sample Xi is a realisation of X. Let

(Y1, Y2, Y3, ...) denote a sequence of estimates of E[X], obtained as follows:



Chapter 7 Reinforcement learning 295

1. Initialise the values n = 1 and Y0 = 0, and choose a small value ε > 0.

2. Calculate Yn, the nth estimate of E[X], as follows:

Yn := (1− dn)Yn−1 + dnXn, (7.2.4)

where it is assumed that dn satisfies the following conditions:

lim
n→∞

n∑
m=1

dm =∞, (7.2.5)

lim
n→∞

n∑
m=1

d2
m <∞. (7.2.6)

3. If |Yn − Yn−1| < ε then stop; otherwise, increment n by 1 and return to step 2.

If dn satisfies the conditions (7.2.5)-(7.2.6), then Yn is guaranteed to converge to E[X] as n → ∞

(see [63, 143]). If dn = 1/n for all n ∈ N, then it is clear from (7.2.4) that the Robbins-Monro

estimate Yn is obtained by direct averaging of the samples X1, X2, ..., Xn; that is:

Yn =
X1 +X2 + ...+Xn

n
,

in which case the convergence of Yn to E[X] is implied directly by the strong law of large numbers

(see, for example, [146], p. 78). However, the fact that alternative definitions for dn are possible

may be exploited in the choice of learning parameters for RL algorithms. Suppose that, in the

simulation of an MDP operating under a stationary policy θ, νn(x) denotes the total number of

visits made to state x ∈ S up to and including time n ≥ 0. If the learning parameters δn in step 2

of the TD learning algorithm on page 292 are given by 1/νn(xn) for all n ∈ N, then each estimate

Q̂θ(xn) is obtained via direct averaging of the ‘data pieces’ rm−gm+Q̂θ(xm+1) acquired at all time

steps m ∈ [0, n] for which xm = xn. Therefore, in view of the fact that the Qθ(x) values satisfy the

evaluation equations (7.2.3), it is clear that setting δn = 1/νn(xn) for n ∈ N is somewhat logical;

however, there may exist other specifications for δn which enable a stronger performance (in terms

of the rate of convergence of the estimates Q̂θ(x) to their true theoretical values).

It should also be noted that, unfortunately, the convergence properties of the Robbins-Monro

approximation scheme (i.e. the fact that the estimates Yn converge to E[X]) do not readily imply

that the estimates Q̂θ(x) obtained by the TD learning algorithm are guaranteed to approach the
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theoretical values Qθ(x) as the running time tends to infinity. This is mainly due to the fact that

each ‘data piece’ rn − gn + Q̂θ(xn+1) acquired in step 2 of the algorithm depends on estimates of

gθ and Qθ(xn+1) (given by gn and Q̂θ(xn+1) respectively) which, in general, will not be exact. The

task of establishing convergence properties for RL algorithms is far from trivial and presents an

ongoing challenge for researchers; this topic is discussed further in Appendix A.9.

An important difference between the task of estimating the Q-factors Qθ(x) using the ‘data pieces’

rn − gn + Q̂θ(xn+1) acquired during the TD learning algorithm and the more simple problem of

estimating an expected value E[X] using sample realisations of the random variableX (addressed by

the Robbins-Monro scheme) is that, assuming that the TD learning algorithm behaves as expected,

each data piece rn−gn+Q̂θ(xn+1) will become a more reliable estimator of Qθ(xn) as the algorithm

progresses; whereas, in the Robbins-Monro scenario, each sample realisation Xn is an equally good

estimator of E[X]. This observation suggests that the learning parameters δn should be defined in

such a way that the data pieces acquired at later stages of the algorithm are given more ‘weight’

than the data pieces acquired in the earlier stages, since the earlier-acquired data are likely to

depend on less accurate estimates of gθ and the Q-factors Qθ(x). One way to achieve this (which

again relies upon state-dependent learning parameters) is to define δn as follows:

δn :=
T

T + νn(xn)− 1
, (7.2.7)

where T is an integer greater than 1. Note that if T = 1 in (7.2.7), then δn = 1/νn(xn) and this

is again equivalent to direct averaging of the data pieces acquired at state xn over the course of

the process, with an equal ‘weight’ attached to each data piece. In experiments, values such as

T = 10 have been found to yield satisfactory results; the examples given later in this chapter will

demonstrate this. Note that, under the additional assumption that the stationary policy θ induces

an ergodic Markov chain defined on a finite set of states Sθ (which has been shown, by the results in

Section 4.2, to be true for any average reward optimal policy θ∗ in the queueing system formulated

in Section 3.1), it may be shown rigorously that the parameters δn defined in (7.2.7) satisfy the

Robbins-Monro conditions
∑∞

n=1 δn =∞ and
∑∞

n=1 δ
2
n <∞. Indeed, since T > 1 and νn(xn) ≤ n

for all n ∈ N, the property
∑∞

n=1 δn =∞ may be established by noting that:

δn =
T

T + νn(xn)− 1
>

1

n
,
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whereupon the property
∑∞

n=1 δn =∞ follows using results for comparisons between infinite series

(see [89], p. 50) and the fact that
∑∞

n=1 n
−1 =∞. On the other hand, let Sθ ⊂ S denote the finite

set of states which are positive recurrent under θ. Since any state x /∈ Sθ is visited only finitely

many times under θ, it is sufficient (in order to show that
∑∞

n=1 δ
2
n <∞) to show:

∞∑
n=1

I(xn ∈ Sθ)δ2
n <∞,

where I(·) is the indicator function. Then, again using standard results from analysis:

∞∑
n=1

I(xn ∈ Sθ)δ2
n =

∞∑
n=1

I(xn ∈ Sθ)
(

T

T + νn(xn)− 1

)2

<
∞∑
n=1

I(xn ∈ Sθ)
(

T

νn(xn)

)2

= T 2
∑
x∈Sθ

∞∑
n=1

1

n2

= T 2|Sθ|π2/6, (7.2.8)

which implies
∑∞

n=1 δ
2
n <∞ as required. The next example revisits a small-scale problem considered

earlier in this thesis, in order to graphically illustrate the speed at which the estimates Q̂θ(x)

converge to the theoretical values Qθ(x) during the TD learning algorithm.

Example 7.2.1. (Convergence of TD learning)

This example uses the same parameters as Example 3.2.1. There is a demand rate λ = 1 and two

facilities with one service channel each (c1 = c2 = 1). The other parameters are:

µ1 = 0.8, β1 = 2, α1 = 6,

µ2 = 0.4, β2 = 1, α2 = 4.

Let θ be a stationary policy which chooses actions as shown in Table 7.1. It may be seen that θ

induces an ergodic Markov chain defined on a set Sθ consisting of only 6 states.

The random transitions for the system operating under θ may be simulated by allowing each

transition to depend on the value of a uniformly-distributed random number between 0 and 1, as

described in (7.2.1). Let r(x, a,y) be defined for (x, a,y) ∈ S ×Ax × S as follows:

r(x, a,y) :=

N∑
i=1

(αi min(yi, ci)µi − βiyi) .
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x2 = 0 x2 = 1

x1 = 0 1 1

x1 = 1 2 1

x1 = 2 2 0

Table 7.1: The policy θ for the system in Example 7.2.1.

In this example, the reward rn acquired after choosing action an ∈ Axn at the nth iteration of TD

learning will be defined in terms of the next state reached xn+1 as follows:

rn := r(xn, an,xn+1). (7.2.9)

Thus, the definition of rn is similar to that of the ‘real-time’ reward r(x) used in previous chapters

except that it depends on the service completion rates and holding costs incurred at the next state

xn+1, as opposed to the current state xn. Experiments have shown that defining the rewards rn in

this way leads to a slightly improved performance for TD learning; moreover, allowing rn to depend

on the randomly-generated state xn+1 (as opposed to being completely determined by the state xn

and action an) is somewhat more consistent with the general RL framework, which assumes that

the reward rn is not revealed to the agent until after the action an has been chosen.

The learning parameters δn will be given by (7.2.7) in this example, with T = 10. For the secondary

learning parameters used in step 3 of the algorithm, it will be sufficient to use the state-independent

rule ζn = 1/(n+ 1) for all n ≥ 0 (note that adopting this definition ensures that ζn decays to zero

faster than δn). Figure 7.2 shows, for each state x ∈ Sθ, the evolution of the estimate Q̂θ(x) as the

number of iterations progresses during one trial of the TD learning algorithm. The ‘true’ values

Qθ(x) (calculated by solving the equations (7.2.3) exactly) are also shown as ‘dashed’ lines ( - -

- ), in order to enable a comparison. It should be noted that the Qθ(x) and Q̂θ(x) values shown

in the figure are relative values, with Qθ((0, 0)) set to a value of zero in order to obtain a unique

solution to the equations (7.2.3). The estimated values Q̂θ(x) are scaled in the same way, so that

Q̂θ((0, 0)) = 0; this is why the values Qθ((0, 0)) and Q̂θ((0, 0)) are not shown in the figure (since

they are both set equal to zero). The figure shows that each estimated value Q̂θ(x) appears to

converge to its expected value Qθ(x) as the number of learning iterations increases. �
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Figure 7.2: Convergence of the estimated values Q̂θ(x) to the true values Qθ(x) in Example 7.2.1.

The TD learning algorithm on page 292 estimates the Q-factors and the expected long-run average

reward under a fixed stationary policy θ. As one might expect, a more formidable challenge for an

RL algorithm is to learn the Q-factors associated with an average reward optimal policy θ∗ (without

prior knowledge of this policy!) and the corresponding value of the average reward. As discussed

earlier in this section, an RL algorithm will generally need to rely upon a mixture of exploration

and exploitation in order to accomplish this task. In the present context, exploration refers to the

act of choosing an action at random at a particular state, while exploitation refers to the choice of

an action a which maximises Q̂(x, a) (where x ∈ S is the current state, and Q̂(x, a) is the latest

available estimate of the value Q(x, a) associated with an optimal policy). One possible way for

an RL algorithm to strike a balance between exploration and exploitation is to use a so-called

epsilon-greedy rule for selecting actions. This mode of decision-making is defined below.

Definition 7.2.2. (Epsilon-greedy rule)

An ε-greedy rule is a rule for choosing actions which operates as follows:

• With probability ε ∈ (0, 1), a random choice is made; that is, each action a ∈ Ax is selected

with probability 1/|Ax| (where x ∈ S is the current state).

• With probability 1 − ε, an action a ∈ arg maxa∈Ax
Q̂(x, a) is chosen. (In the case of ties, a
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random choice can be made among actions which attain the maximum.)

An RL algorithm may simply apply an ε-greedy rule, with some fixed value of ε ∈ (0, 1), at every

decision epoch in order to ensure adequate coverage of the action sets at every state that it visits

(or, at least, the states that it visits infinitely often). Typically, the value of ε will be small, since

the priority of the algorithm (especially in its later stages) should be to ensure that the Q-factors

associated with actions that are perceived as ‘optimal’ at the various states in S are estimated

as accurately as possible, and therefore these actions should be ‘sampled’ more often than actions

that are likely to be sub-optimal. Provided that exploratory actions are chosen at least some of

the time, the RL algorithm should always have the opportunity to ‘correct itself’ by updating

the set of actions that it believes to be optimal at any particular state; as such, it should be

capable of eventually learning an optimal policy. An alternative to an ε-greedy rule is a rule for

selecting actions by which exploratory choices are made almost exclusively in the early stages of

the algorithm, but the probability of selecting exploratory actions decays towards zero (or a small

positive number) as the number of iterations increases. For example, consider a rule which is similar

to an ε-greedy rule, except that the probability of ‘exploring’ is given by:

Pn :=
K

n+K
, (7.2.10)

where n is the number of iterations completed, and K is a large integer (e.g. K = 106). The

probability of choosing an ‘exploitative’ action is then given by 1−Pn = n/(n+K), which increases

with n. Applying a rule of this form yields the desirable effect of allowing a lot of exploration to

be done in the early stages of the algorithm; however, the choice of the constant K can create a

dilemma. If K is too small, then Pn will decay too quickly and the algorithm may therefore be

unable to carry out enough exploration to find an optimal policy; instead, it may become ‘stuck’

evaluating a sub-optimal policy. On the other hand, if K is too large then the algorithm will simply

waste too much time evaluating Q-factors associated with sub-optimal actions; although one might

still expect it to find an optimal policy eventually, the convergence of the estimated values Q̂(x, a)

to their true values (if any such convergence occurs at all) will be undesirably slow.

Throughout this chapter, a number of different RL algorithms for learning average reward optimal

policies will be considered. Experiments have shown that, although there usually does exist some

value of K such that the rule given in (7.2.10) for selecting actions appears to out-perform any
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ε-greedy rule with respect to speed of convergence to a near-optimal policy, the optimal choice of

K tends to vary quite drastically according to the particular RL algorithm under consideration and

the scale of the problem (in terms of dimensionality of the state space, etc.) to which the algorithm

is applied. For the sake of simplicity and to ensure the fairest possible comparison between the

various algorithms to be discussed in this chapter, the examples given later will assume that an

ε-greedy rule is used for action selection, with the same value of ε used in each case.

It is possible to derive an RL algorithm for learning an optimal policy by making only a few minor

adjustments to the TD learning algorithm given on page 292. The first adjustment required is

that, instead of the actions selected by the agent being determined by a fixed stationary policy θ,

actions should be selected using a rule which allows for both exploration and exploitation (such

as an ε-greedy rule). The second modification involves a change to the update rule used for the

Q-factor estimates, so that the quantities being estimated are the values Q(x, a) associated with

an optimal policy, as opposed to the values Qθ(x) associated with a fixed policy θ. The update

rule used for the estimated long-run average reward gn must also be modified, so that the optimal

value g∗ is approximated, as opposed to the policy-dependent value gθ. The specific changes

required to the update rules for Q̂(x, a) and gn can easily be inferred via a comparison between the

optimality equations (7.2.2) and the policy evaluation equations (7.2.3), and details are provided

in the algorithm given below, referred to in the literature as R-learning (see [62, 154]).

R-learning algorithm

1. Initialise the values n = 0, g0 = 0 and an array of values Q̂(x, a) with Q̂(x, a) = 0 for each

state-action pair (x, a) ∈ S ×Ax. Choose an initial state x0 ∈ S.

2. Select an action an ∈ Axn according to a rule which allows for both exploration and exploita-

tion (e.g. an ε-greedy rule, or the rule described in (7.2.10)).

3. Use simulation to determine the reward rn and the new state xn+1 reached at the next time

step. Then, update Q̂(xn, an) according to the following update rule:

Q̂(xn, an)← (1− δn)Q̂(xn, an) + δn

[
rn − gn + max

a′∈Axn+1

Q̂(xn+1, a
′)

]
, (7.2.11)

where δn ∈ [0, 1] is a learning parameter which may be state-dependent.
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4. If the action chosen in step 2 was an exploitative action, calculate gn+1 as follows:

gn+1 := (1− ζn)gn + ζn

[
rn + max

a′∈Axn+1

Q̂(xn+1, a
′)− max

a∈Axn

Q̂(xn, a)

]
, (7.2.12)

where ζn ∈ [0, 1] is another learning parameter. Otherwise, set gn+1 = gn.

5. If n = nmax, where nmax is a large integer, then output a stationary policy θ[R] which, at

each state x ∈ S, chooses an action θ[R](x) maximising the expression Q̂(x, a) over all actions

a ∈ Ax. Also output gn+1 as an estimate for the optimal expected average reward g∗, then

stop. Alternatively, if n < nmax, increment n by 1 and return to step 2.

The R-learning algorithm was introduced by Schwartz [154] as a variation on a much more famous

RL algorithm known as Q-learning, which is due to Watkins [191]. Q-learning, in its conventional

form, is applicable to problems with discounted rewards, whereas R-learning applies to average

reward problems. Unfortunately, while the convergence properties of Q-learning have been proved

rigorously, there does not exist any formal proof that R-learning converges towards an average

reward optimal policy. This topic is discussed in greater detail in Appendix A.9.

Of course, the main indicator of the performance of the R-learning algorithm is the expected

long-run average reward attained under the policy θ[R] found after nmax iterations, i.e. when the

procedure is terminated. However, it is also possible to interrupt the R-learning procedure at

certain points during its running time in order to evaluate its latest ‘guess’ for an average reward

optimal policy; in other words, the procedure can be temporarily halted after nj iterations (where

nj < nmax) in order to examine the stationary policy obtained by choosing an action a at each

state x ∈ S which maximises Q̂(x, a). The evaluation of this policy can either be carried out

using dynamic programming, or by using simulation; obviously, simulation will be less exact than

dynamic programming, but also considerably faster. The use of simulation after a fixed number of

iterations of R-learning to evaluate the latest guess for an optimal policy is referred to by Gosavi [64]

as Frozen Phase (FP) updating, so-called because the latest available estimates for the Q-factors

are ‘frozen’ during the simulation, as opposed to being updated after each random transition (as

in the main phase of R-learning itself). The steps of an FP update are as follows:

Steps in ‘Frozen Phase’ (FP) updating

a) Initialise the values k = 0, rtot = 0 and ttot = 0. Choose an initial state x0 ∈ S.
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b) Choose an action ak ∈ Axk satisfying ak ∈ arg maxa∈Axk
Q̂(xk, a), where Q̂(xk, a) is the latest

available estimate of Q(xk, a) obtained via R-learning.

c) Use simulation to determine the reward rk and the new state xk+1 reached at the next time

step. Then update the quantities rtot and ttot as follows:

rtot ← rtot + rk,

ttot ← ttot + 1.

d) If k = kmax, where kmax is a large integer, then output ĝnj := rtot/ttot (where nj is the number

of iterations of R-learning completed before interrupting the procedure), then resume the R-

learning algorithm. Otherwise, increment k by 1 and return to step (b).

FP updates can be performed at regular stages of the R-learning algorithm in order to monitor its

progress towards finding an average reward optimal policy. For example, suppose these updates are

to be performed after every 1000 iterations of R-learning. Then, setting nj = 103j for j ∈ N, one

obtains a sequence of values (ĝn1 , ĝn2 , ...) which, ideally, should converge towards the optimal long-

run average reward g∗ (although it is unlikely that this convergence will be monotonic; nor should

one expect it to follow any predictable pattern). It should also be pointed out that in [64], Gosavi

relies upon FP updates as part of an algorithm which he refers to as R-SMART. In R-SMART, the

estimates ĝnj obtained from FP updates are actually retained and used as estimates of g∗ in the

main part of the algorithm itself, effectively taking the place of the estimates gn used by R-learning.

It is therefore important to emphasise here that the R-learning algorithm given on page 301 has no

dependence whatsoever on the values ĝnj obtained from FP updates; rather, FP updates (if desired)

may be performed periodically in order to monitor the performance of the R-learning algorithm,

but R-learning then resumes after each update as if no interruption had occurred.

The next example demonstrates the application of the R-learning algorithm to a problem which

(unlike the problem considered in the previous example) is non-trivial in terms of the amount

of computational effort required in order to find an average reward optimal policy via dynamic

programming. At this stage, however, it is desirable to remain within the realms of problems that

can be solved using DP in a reasonable amount of time, in order to enable a comparison between

the policy found by R-learning and an optimal policy found using value iteration.
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Example 7.2.3. (Convergence of R-learning)

Consider a system with demand rate λ = 25 and 4 service facilities, each with multiple service

channels available. The parameters for the 4 facilities are given below.

c1 = 4, µ1 = 1, β1 = 4, α1 = 14,

c2 = 3, µ2 = 4, β2 = 5, α2 = 7,

c3 = 3, µ3 = 8, β3 = 8, α3 = 4,

c4 = 2, µ4 = 16, β4 = 5, α4 = 2.

(7.2.13)

This will be a running example considered throughout this chapter. The results from Section 4.2

imply that an average reward optimal policy exists which induces an ergodic Markov chain defined

on a finite set of states contained in S̃, where S̃ is the selfishly optimal state space defined in

(4.1.3). In order to improve the performance of the R-learning algorithm, it is therefore reasonable

to restrict the action sets Ax at states x which are on the boundary of S̃ so that the process remains

contained in the set S̃, although (as discussed earlier) RL algorithms are not necessarily restricted

to a finite state space in general. In this example, the ‘selfish thresholds’ B̃1, B̃2, B̃3 and B̃4 are

equal to 14, 16, 12 and 12 respectively. Hence, S̃ consists of a total of 43,095 states.

The purpose of this example is to show the results of running the R-learning algorithm with a

value ε = 0.15 used for ε-greedy action selection, rewards rn defined as in (7.2.9) and a rule for the

learning parameters δn which depends upon states and actions as follows:

δn :=
T

T + νn(xn, an)− 1
, (7.2.14)

where νn(xn, an) denotes the total number of times that action an has been chosen at state xn up

to and including time n ≥ 0. Note that the rule given in (7.2.14) is the natural generalisation of the

rule (7.2.7) to a problem in which various decision options are available at each state, as opposed

to actions being prescribed by a fixed policy θ. As in Example 7.2.1, the value T = 10 will be used

in (7.2.14), and the secondary learning parameters ζn will be given by ζn = 1/(n+ 1).

Figure 7.3 shows the evolution of the estimated value gn over the course of 40 million iterations of

R-learning, and also the progression of the values ĝnj obtained by performing Frozen Phase (FP)

updates after every 10,000 iterations. It should be noted that the random transition occurring on a

particular iteration may be a ‘dummy’ transition, since these transitions are simulated in discrete



Chapter 7 Reinforcement learning 305

time (using the technique of uniformisation). The optimal average reward may be calculated exactly

using value iteration, and the resulting value g∗ ≈ 126.611 is indicated in the figure.
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Figure 7.3: Convergence of gn and ĝnj
to the optimal value g∗ in Example 7.2.3.

Figure 7.3 shows that, in this example, gn appears to converge in a smooth fashion towards the

optimal value g∗ as the number of iterations n increases. On the other hand, the progression of the

FP estimates is somewhat erratic in the early stages of the algorithm, but these values begin to

converge towards g∗ after approximately 100,000 iterations have been completed. The FP estimates

are, in a sense, the most important indicator of the algorithm’s performance, since each FP estimate

shows (subject to a small margin of error caused by simulation) the performance of the policy that

would be obtained by stopping the procedure at that particular point. The figure suggests that

(except in the initial stages of the algorithm) the gn values actually tend to underestimate the

long-run average reward associated with the ‘best’ policy found by R-learning thus far. After 40

million iterations, the policy θ[R] returned in step 5 of the R-learning algorithm attains an average

reward of approximately 126.28, within 0.3% of the known optimal value g∗ ≈ 126.61.

Although the R-learning algorithm succeeds in finding a policy θ[R] which almost attains average

reward optimality in this particular example, it is interesting to note that this near-optimal policy

is obtained without exploring a large proportion of the state-action pairs (x, a) ∈ S̃×Ax. This can

be seen by examining the values νn(x, a) for pairs (x, a) ∈ S̃ × Ax after 40 million iterations. The
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distribution of νn(x, a) values (with n = 40 million) is illustrated in Table 7.2.

Range No. of pairs (x, a) ∈ S̃ ×Ax Pct. of pairs (x, a) ∈ S̃ ×Ax

νn(x, a) = 0 185,259 94.806

1 ≤ νn(x, a) ≤ 9 4,183 2.141

10 ≤ νn(x, a) ≤ 99 3,090 1.581

100 ≤ νn(x, a) ≤ 999 1,793 0.918

1000 ≤ νn(x, a) ≤ 9999 754 0.386

10,000 ≤ νn(x, a) ≤ 99,999 267 0.137

100,000 ≤ νn(x, a) ≤ 999,999 55 0.028

νn(x, a) ≥ 1,000,000 7 0.004

Table 7.2: Distribution of values νn(x, a) for (x, a) ∈ S̃ ×Ax after 40 million iterations of R-learning.

Remarkably, almost 95% of state-action pairs in S̃×Ax are not visited at all during these 40 million

iterations! Of course, if a particular state-action pair (x, a) remains unvisited during the evolution

of the algorithm, then the Q-factor estimate Q̂(x, a) remains at its default value of zero. Thus, this

example shows that R-learning is capable of finding a near-optimal policy by obtaining meaningful

Q-factor estimates at only a small minority of the state-action pairs that it is allowed to explore.

This also indicates the amount of redundancy involved in using a dynamic programming algorithm

(which repeatedly sweeps through all state-action pairs) in problems consisting of tens of thousands

of system states, in which it may not be necessary to find an exact optimal policy.

In this example, an ε-greedy rule was used for action selection, with ε = 0.15. Figure 7.4 shows

the results of repeating the experiment with various alternative choices of ε (recall that ε is the

probability that an ‘exploratory’ action will be chosen on a particular iteration). The figure shows

the progression of the estimates ĝnj obtained from FP evaluations, for various different values of ε.

Since the FP estimates appear to converge quite quickly towards the optimal value g∗ in most cases,

only the behaviour observed during the first 5 million iterations of R-learning has been shown. The

most obvious conclusion to draw from the figure is that ε = 0.7 and ε = 0.9 are not good choices

in this particular example. In general, if the value of ε is set too high, the convergence of the FP

estimates towards g∗ will tend to be slow, since the algorithm will not have sufficient opportunity
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to approximate the Q-factors accurately for state-action pairs which are likely to feature as part

of an optimal policy. On the other hand, when the smallest value of ε (ε = 0.1) is used, the FP

estimates appear to behave quite erratically in the early stages of the algorithm.
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Figure 7.4: The effect of varying the exploration parameter ε in Example 7.2.3.

Further experiments (details of which are not provided here) appear to suggest that in general, the

major pitfall to be avoided when using an ε-greedy rule is a value of ε which is too high. Small values

of ε may result in quite slow convergence in the initial stages of R-learning, but this is arguably

a price worth paying in order to ensure that the algorithm focuses almost exclusively on ‘optimal’

actions in the later stages of its finite running time. In fact, as noted earlier in this section, it may

be preferable to avoid using an ε-greedy rule completely; one can instead use a rule such as (7.2.10),

under which the probability of exploring decays with time. However, in this case one is faced with

the dilemma of choosing a rate of decay which is suitable for the given problem.

It should also be noted that, although Figure 7.3 might appear to suggest that a very large number

of iterations are required before R-learning begins to approach an optimal policy, an RL algorithm

generally requires much less time than a DP algorithm to perform a fixed number of iterations.

This is because each iteration of an RL algorithm involves evaluating (via simulation) only one

state-action pair, whereas DP algorithms evaluate all such pairs on every iteration. Of course,

the estimation of g∗ is also required in R-learning, but this is insignificant in comparison to the
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computational requirements of a DP-style update. Thus, the requirement for millions of iterations

to be performed usually does not cause a significant problem for an RL algorithm. �

In general, a fast computer should be capable of performing tens of millions of iterations of the R-

learning algorithm in less than a minute. Table 7.3 shows the results of another set of experiments,

in which the running times of the R-learning algorithm were compared with those of the RVIA (see

page 101) over a number of different test systems. Ten tests were performed, and in each test, the

RVIA and R-learning algorithms were applied to a system which featured the same set of parame-

ters as in Example 7.2.3, but with the values of the rewards αi scaled either upwards or downwards

in order to increase or decrease the size of the finite state space S̃. In each test, the RVIA used a

stopping parameter ε = 10−6, and the R-learning algorithm used the same parameter settings as

specified in Example 7.2.3 (for ε, δn, etc.) and was allowed to run for 50 million iterations. The

tests were performed on a computer with an Intel Core i7 processor (∼ 2.8 Ghz) and 4GB of RAM.

It is important to clarify that Frozen Phase (FP) evaluations were not performed in any of the tests,

so the running times shown in the table for the R-learning algorithm are simply the times taken

to perform 50 million iterations, without interrupting the procedure at any stage. After each test,

the average reward earned by the R-learning policy θ[R] was evaluated using dynamic programming

and the resulting sub-optimality (relative to the known optimal value g∗) is shown.

No. of states in S̃ RVIA running time R-learning running time Sub-optimality of θ[R]

4032 6.79 secs 56.88 secs 0.04%

12,600 22.02 secs 56.20 secs 0.08%

24,624 44.65 secs 55.72 secs 0.10%

33,800 1 min, 7 secs 56.14 secs 0.08%

45,800 1 min, 31 secs 56.13 secs 1.16%

104,346 3 mins, 53 secs 56.79 secs 0.34%

257,439 11 mins, 7 secs 56.50 secs 3.84%

508,950 31 mins, 58 secs 56.66 secs 0.83%

750,288 48 mins, 35 secs 56.55 secs 0.50%

1,014,816 71 mins, 55 secs 56.71 secs 0.28%

Table 7.3: Comparisons between the running times of the RVIA and R-learning algorithms.
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The results in Table 7.3 indicate that, as expected, the running time of the RVIA increases steeply

as the number of states that it needs to ‘loop through’ on each iteration increases. However, the

running time of the R-learning algorithm (with 50 million iterations) remains almost constant at

roughly 56 seconds. It should be noted, however, that all of the 10 systems tested in this experiment

featured the same number of facilities (N = 4). If the number of facilities N was increased, then the

R-learning algorithm would require a longer running time, since it would need to inspect a greater

number of actions at any given state in order to identify the action with the largest Q-factor. In

4-facility systems, it appears that the ‘critical value’ of |S̃| which causes the RVIA to be slower than

50 million iterations of R-learning is roughly 30,000. The table also indicates that the R-learning

algorithm is consistently successful in attaining policies which earn average rewards very close to

the optimal value g∗ (although there is one apparent outlier in the seventh row).

Ideally, one would like to have a theoretical guarantee that by running an RL algorithm such as

R-learning for an indefinite amount of time (as opposed to stopping it after a finite number of

iterations), an average reward optimal policy would eventually be obtained. Unfortunately, there

does not exist any formal proof that the R-learning algorithm presented on page 301 converges

to an average reward optimal policy, although its strong performance has been demonstrated in

numerical experiments (see the discussions in [123, 154, 162]). The TD learning algorithm presented

on page 292, which evaluates a fixed stationary policy θ, may be recognised as a special case of the

R-learning algorithm with only one action allowed at each state (in the same way that the Policy

Evaluation Algorithm given on page 98 is derivable from the Relative Value Iteration Algorithm

on page 101), and as such a proof of its convergence to the theoretical value gθ is not attainable

either. However, there does exist an RL algorithm with proven convergence properties, known as

relative Q-learning, which can be applied to average reward problems. For a brief literature survey

regarding the convergence properties of RL algorithms, please refer to Appendix A.9.

7.3 Tailored RL algorithms

The RL algorithms discussed in this chapter so far have been general-purpose algorithms. Algo-

rithms such as TD learning, R-learning etc. can be applied to virtually any real-world problem

which can theoretically be cast as an MDP, with the intended result that a set of Q-factors are
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obtained which closely approximate a set of values satisfying the Bellman optimality equations (or,

in the case of TD learning, evaluation equations). The next objective is to explore ways of modi-

fying these algorithms by incorporating knowledge of the characteristics of the queueing problems

considered in this thesis, in order to improve overall efficiency. In other words, the aim is now to

tailor the RL algorithms discussed previously to the specific problem(s) at hand.

According to the general paradigm of reinforcement learning (as illustrated by Figure 7.1), an action

an is chosen by the agent at each discrete epoch of time n ∈ N0. A random transition then occurs,

which results in a reward rn being earned and a new state xn+1 being reached. In the queueing

system problems considered in this thesis, the random transition is determined by a ‘random event’,

such as a new arrival, a service completion or (possibly) neither of these. Let ωn denote the random

event that occurs at time step n (following the choice of action an). Using notation similar to that

in previous chapters, the event ωn is an element of the finite set W given by:

W := {0,Λ,M1,M2, ....,MN} ,

where 0 denotes a ‘non-event’ (i.e. no arrivals or service completions), Λ denotes a customer arrival,

and Mi (for i ∈ {1, 2, ..., N}) denotes a service completion at facility i. Suppose the simulated

random transitions of the system take place according to the transition rule given in (7.2.1). It is

clear that (7.2.1) may be expressed in terms of the random event ωn as follows:

xn+1 =


xi+n , if ωn = Λ and an = i for some i ∈ {1, 2, ..., N},

xi−n , if ωn = Mi for some i ∈ {1, 2, ..., N},

xn, otherwise.

(7.3.1)

In order for (7.3.1) to be consistent with (7.2.1), ωn should be determined as follows:

ωn =



Λ, if u < λ∆,

Mi, if λ∆ +
∑i−1

j=1 min((xn)j , cj)µj∆ ≤ u < λ∆ +
∑i

j=1 min((xn)j , cj)µj∆

for some i ∈ {1, 2, ..., N},

0, otherwise,

(7.3.2)

where u is a uniformly-distributed random number between 0 and 1. From (7.3.2), it is clear that

the event ωn has no dependence on the action an chosen at time n. To make sense of this, recall
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that in the discrete-time MDP Υ formulated in Section 3.5, the action an chosen at a particular

time step n may be interpreted as a hypothetical action which determines the fate of any customer

who arrives at time n; if no arrival occurs, then the action an has no effect on the system state. The

probability of an arrival occurring at any time step is λ∆, regardless of the action chosen; similarly,

the probability of a service completion at facility i ∈ {1, 2, ..., N} at time n is min((xn)i, ci)µi∆,

which again is independent of an. Assuming that the reward formulation (7.2.9) is used, the reward

rn is then completely determined by the current state xn, action an and random event ωn, and the

same is true of the destination state xn+1. The fact that ωn is independent of an is crucial in the

conception of the first of the ‘tailored’ RL algorithms to be discussed in this section.

In the general RL model described in Section 7.1, the agent discovers the ‘new information’ rn and

xn+1 after choosing an action an at time step n ∈ N0. Importantly, it is not assumed that the agent

has any means of knowing the reward and the new state that would have resulted from choosing a

different action at time n; that is, the agent learns only the consequences of choosing one particular

action. As such, one might say that the agent does not have the power of hindsight.

However, when one considers an N -facility queueing system which evolves according to simulated

random transitions as described by (7.3.1) and earns rewards given by (7.2.9), it becomes clear

that, in fact, a more efficient RL algorithm can be designed which makes use of the fact that the

random event ωn occurring at any time step n completely determines (in conjunction with the

state xn) both the reward rn and the new state xn+1 that would result from choosing any action

a ∈ Axn . For example, suppose the system is in some state xn ∈ S at time n, and the action

chosen is an = i for some i ∈ {1, 2, ..., N}. If the event ωn = Λ occurs, then (with certainty) the

next state is xn+1 = xi+n . However, one can also say that if the action an = j had been chosen (for

some j ∈ {1, 2, ..., N} with j 6= i), then the same random event (ωn = Λ) would have caused the

new state to be xn+1 = xj+n . In general, although the agent is only permitted to choose one action

at any given state, one can always say (following observation of the random event ωn) what the

reward rn and next state xn+1 would have been if any other action had been chosen.

By exploiting this principle, it is possible to design a new RL algorithm which is similar toR-learning

except that, on any given iteration n, the estimated values Q̂(xn, a) for all actions a ∈ Axn are

updated, as opposed to only the value Q̂(xn, an) associated with the action an actually chosen
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by the agent. In a sense, the new algorithm ‘learns from hypothetical actions’, by observing the

random event ωn at each time step n ∈ N0 and then using ‘hindsight’ to update the values Q̂(xn, a)

associated with actions a not chosen by the agent. This new RL algorithm will be referred to here

as ‘HYPOT R-learning’. A complete description of the algorithm is given below.

HYPOT R-learning algorithm

1. Initialise the values n = 0, g0 = 0 and an array of values Q̂(x, a) with Q̂(x, a) = 0 for each

state-action pair (x, a) ∈ S ×Ax. Choose an initial state x0 ∈ S.

2. Use simulation to determine the random event ωn that occurs at time step n.

3. Let y : S ×Ax ×W → S be defined for (x, a, ω) ∈ S ×Ax ×W by:

y(x, a, ω) =


xi+, if ω = Λ and a = i for some i ∈ {1, 2, ..., N},

xi−, if ω = Mi for some i ∈ {1, 2, ..., N},

x, otherwise.

Similarly, let R : S ×Ax ×W → R be defined for (x, a, ω) ∈ S ×Ax ×W by:

R(x, a, ω) :=

N∑
i=1

(αi min(yi, ci)µi − βiyi) ,

where yi is the ith component of y(x, a, ω). Then, for each action a ∈ Axn available at state

xn, update Q̂(xn, a) according to the following update rule:

Q̂(xn, a)← (1− δn(a))Q̂(xn, a) + δn(a)

[
R(xn, a, ωn)− gn + max

a′∈Ay

Q̂(y(xn, a, ωn), a′)

]
,

(7.3.3)

where Ay denotes the set of actions available at state y(xn, a, ωn), and δn(a) ∈ [0, 1] is a

learning parameter which may be dependent on the state xn and action a.

4. Select an action an ∈ Axn according to a rule which allows for both exploration and exploita-

tion (e.g. an ε-greedy rule). Then, let rn = R(xn, an, ωn) be the ‘actual’ reward earned at

time n, and similarly let xn+1 = y(xn, an, ωn) be the ‘actual’ next state.

5. If the action an chosen in step 4 was an exploitative action, calculate gn+1 as follows:

gn+1 := (1− ζn)gn + ζn

[
rn + max

a′∈Axn+1

Q̂(xn+1, a
′)− max

a∈Axn

Q̂(xn, a)

]
,
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where ζn ∈ [0, 1] is another learning parameter. Otherwise, set gn+1 = gn.

6. If n = nmax, where nmax is a large integer, then output a stationary policy θ[R] which, at

each state x ∈ S, chooses an action θ[R](x) maximising the expression Q̂(x, a) over all actions

a ∈ Ax. Also output gn+1 as an estimate for the optimal long-run average reward g∗, then

stop. Alternatively, if n < nmax, increment n by 1 and return to step 2.

On the nth iteration of HYPOT R-learning, the simulated random event ωn is used to update

the estimated Q-factors for |Axn | different state-action pairs, where |Axn | is the number of actions

available at the current state xn ∈ S. Intuitively, it is clear this procedure enables the various

decision options a ∈ Axn at state xn to be compared in a more robust way than the conventional

R-learning algorithm presented in Section 7.2, since the consequences of each action a ∈ Axn are

evaluated according to exactly the same sequence of random events. In conventional R-learning, a

particular action a ∈ Axn might erroneously be believed to be ‘superior’ to another action a′ ∈ Axn

at some stage of the procedure simply because the random events observed after choosing action a

are in some way more favourable than those observed after choosing action a′ (although this type

of error should become increasingly unlikely as the number of iterations increases).

Due to the greater use made of the random information obtained on each iteration, one would

expect the HYPOT R-learning algorithm to perform better than R-learning over a fixed number

of iterations; however, from a computational point of view there is clearly a compromise involved,

since HYPOT R-learning requires more work to be done on each iteration. A comparison between

the two algorithms with respect to the system in Example 7.2.3 will be given later.

Clearly, HYPOT R-learning has more in common with a dynamic programming algorithm than

R-learning does, since it loops over all actions a ∈ Axn on each iteration n, much in the same

way that an algorithm such as the RVIA (page 101) considers all possible actions at a given state

x ∈ S in order to determine the value of its latest iterate hn(x). However, HYPOT R-learning is

still very far from being a DP-style algorithm, since it still follows the fundamental RL principle

of updating the estimated Q-factors at states ‘as and when they are visited’ during the simulation

of the process; as such, the manner in which it updates the Q-factor estimates is still completely

asynchronous. As discussed previously, the fact that it is possible to use the random event ωn to

update the Q-factors associated with actions a ∈ Axn not chosen by the agent on iteration n is
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due to the particular MDP formulation from which the RL algorithm is derived, and would not be

possible in a more general RL scenario (e.g. a scenario unrelated to queues) in which it might be

impossible to know the consequences of a particular action without choosing it.

At this point it should be noted that there do, in fact, exist DP algorithms which do not use a

synchronous updating style; see, for example, the asynchronous DP algorithms discussed in [175].

These algorithms differ from more conventional DP algorithms by updating the value function at

only a selected number of states (or state-action pairs) per iteration, rather than sweeping through

the entire state-action space on every iteration; for example, they might update only one pair on

each iteration, based on the simulated path of an agent. Nevertheless, as explained in Section

7.2, RL algorithms such as TD learning and R-learning rely upon an update rule for the Q-factor

estimates which is derived from the theory of stochastic approximation schemes. In this respect,

they differ fundamentally from asynchronous dynamic programming algorithms.

One might reasonably ask why the similarities between HYPOT R-learning and DP algorithms

should not be extended even further. In the formulation used by HYPOT R-learning, the probabil-

ity distribution of the event ωn occurring on the nth iteration depends only on the state xn ∈ S and

can easily be determined using (7.3.2). For each a ∈ Axn , the reward R(xn, a, ωn) and the new state

y(xn, a, ωn) are then determined using xn and ωn, and this information is used to update Q̂(xn, a) in

step 3 of the algorithm. It would therefore be entirely feasible to update Q̂(xn, a) for each a ∈ Axn

based on the expected value of the new data piece R(xn, a, ωn)− gn + maxa′∈Ay Q̂(y(xn, a, ωn), a′),

rather than an actual observation of this quantity arising from a random realisation of ωn. Using

this approach, one would update Q̂(xn, a) for each a ∈ Axn in step 3 as follows:

Q̂(xn, a)← (1−δn(a))Q̂(xn, a)+δn(a)
∑
ω∈W

P (ωn = ω)

[
R(xn, a, ω)− gn + max

a′∈Ay

Q̂(y(xn, a, ω), a′)

]
.

(7.3.4)

Step 2 of the algorithm (in which a realisation of ωn is sampled using simulation) would still be

required in order to determine the value of the ‘actual’ reward rn and the next state xn+1. One

would expect the update rule (7.3.4) to be somewhat more robust than the rule (7.3.3), in which

the event ωn is sampled at random. Indeed, numerical tests using the parameters in Example 7.2.3

have shown that the update rule (7.3.4) appears to yield a slightly faster rate of convergence than

(7.3.3) with respect to the number of iterations performed (as opposed to the computation time
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elapsed). However, despite their apparent advantages, ‘expectation-style’ update rules of the form

(7.3.4) will not be considered any further in this chapter, for the following reasons:

1. The computational requirements associated with this type of update rule are significantly

greater than for those which rely on a single realisation of ωn on each iteration.

2. More importantly, the rule in (7.3.4) depends upon the probability distribution of ωn being

known. Although this is clearly not a problem in the MDP formulations considered in this

chapter thus far, the emphasis will shift later in this chapter towards formulations in which

the transition probabilities are difficult (or, from a practical point of view, impossible) to state

exactly. Recall that one of the main advantages of an RL algorithm should be its application

to MDPs in which exact expressions for transition probabilities are not available.

The second of the two points above portends the introduction of the next RL algorithm to be

discussed in this section, which is based on a re-formulation of the MDP used to derive the R-

learning and HYPOT R-learning algorithms in which the transition probabilities are much more

difficult to write down exactly. Recall that in the continuous-time MDP Ψ introduced in Chapter 3

(which was used to obtain a discrete-time MDP via uniformisation), the transitions of the system

were always associated with either a new customer’s arrival (denoted by ω = Λ) or a service

completion occurring (denoted by ω = Mi, for some i ∈ {1, 2, ..., N}). Accordingly, the set of

actions available at any decision epoch would either be {0, 1, ..., N} or the singleton {0}, depending

on whether an arrival or a service completion was associated with the relevant epoch.

The very fact that the formulation of Ψ referred to above requires (inconsequential) decisions to

be made whenever a service completion occurs would appear to suggest some kind of inherent

redundancy, even though the formulation itself is entirely sound and is consistent with CTMDP

formulations found in the literature (for example, Puterman’s M/M/1 formulation in [141], p.

568). This raises the question of whether it is possible to amend the formulation in such a way that

decision epochs are always associated with arrivals (and not service completions), so that control

can be exercised at every decision epoch, as opposed to only some decision epochs.

Assuming that the type of re-formulation described above is possible, a DP algorithm would effec-

tively be able to take ‘larger steps’ through the process, since the time in between any two decision
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epochs would always be the time in between two consecutive customer arrivals, regardless of the

number of service completions occurring in the meantime. However, in considering the number of

possible states accessible from an arbitrary state x ∈ S via a single transition, one would need to

take into account all possibilities for the numbers of service completions occurring at the various

facilities prior to the next customer’s arrival, which could be an overwhelming task.

The fact that it is possible to amend the MDP formulation in the manner described above without

losing the ability to evaluate the expected long-run average reward under any given stationary policy

can be shown using rigorous arguments. Consider the evolution of the continuous-time process Ψ

operating under some arbitrary stationary policy θ. Figure 7.5 shows a typical sample path that

might be followed by the process over a small interval of time. Decision epochs are represented by

vertical lines, and the states shown underneath these lines (e.g. (x,Λ), ((xi+)j−,Mj) etc.) are the

system states at these decision epochs; the actions chosen (under the policy θ) when new customers

arrive are also shown where appropriate. The vectors shown inside rectangles (xi+, (xi+)j−, etc.)

represent the head counts at the various facilities in between decision epochs.

(x,Λ)

Join i

((x i+) j-,Mj) ((x i+) j-,Λ)
Join j

(x,Mi) (x k-,Mk) (x k-,Λ)
Join j

x
 i+ (x i+) j-

x
 i+

x x
 k- (x j+) k-

Figure 7.5: A typical state-time evolution of the process Ψ.

For example, the figure shows that the system is in state (x,Λ) at the beginning of the time period,

at which point a new customer is sent to facility i. At the next decision epoch, the event Mj occurs

(i.e. a service completion at facility j) and accordingly the next state is ((xi+)j−,Mj). However,

in the physical process modelled by the MDP, the number of customers present at facility i in

between these two decision epochs would obviously have been xi+i (i.e. xi + 1, where xi is the ith

component of the vector x associated with the initial state (x,Λ)), since one imagines that the

new customer who arrives at the first decision epoch joins facility i immediately, and the service

completion at facility j does not occur until the second epoch is reached. Similarly, (xi+)j− is a

vector of head counts at the various facilities in between the second and third decision epochs (after
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a service completion at j has occurred), xi+ represents the head counts in between the third and

fourth epochs (after a new customer has joined facility j at the third epoch), etc.

In order to make the development in the next few pages as coherent as possible, it will be helpful

to introduce some terminology. Let the sequence of states at the decision epochs of the process (in

Figure 7.5, the sequence ((x,Λ), ((xi+)j−,Mj), ...)) be referred to as the sequence of transitional

states, and let the sequence of vectors which represent the head counts at the various facilities in

between the decision epochs (in Figure 7.5, the sequence (xi+, (xi+)j−, ...)) be referred to as the

sequence of physical states of the process. The transitional states are elements of the ‘augmented’

state space S defined in (3.2.7), whereas the physical states are elements of the simplified state

space S defined in (3.5.1). Note that, as in Chapter 3, the transitional state of the system exists

continuously over time (as opposed to being defined only at decision epochs); so, for example, if

the transitional state is (x,Λ) ∈ S then this means that the event Λ occurred at the most recent

decision epoch, at which point there were xi customers at facility i (i = 1, 2, ..., N). Assuming that

the stationary policy θ induces an ergodic, irreducible continuous-time Markov chain defined on

some subset of S, let {π(T )
θ ((x, ω))}(x,ω)∈S denote the stationary distribution for the transitional

states under θ, and let {π(P )
θ (x)}x∈S denote the corresponding distribution for the physical states.

By Lemma 3.5.1, {π(T )
θ ((x, ω))}(x,ω)∈S and {π(P )

θ (x)}x∈S are related as follows:

π
(P )
θ (x) =

∑
(x,ω)∈Fx∪Gx

π
(T )
θ ((x, ω)) (x ∈ S),

where the sets Fx and Gx (both subsets of S) are as defined in (3.5.5); however, this relationship

is somewhat incidental here. Next, let the MRA state of the system be defined as the physical

state observed by the most recent customer to arrive in the system, before joining a facility (or

balking). Here, MRA stands for ‘Most Recent Arrival’ and the MRA states are obviously elements

of S. Figure 7.6 shows the same random sample path as Figure 7.5, with the MRA states (inside

rectangles) taking the place of the physical states shown in the previous diagram.

Let {π(M)
θ (x)}x∈S denote the stationary distribution for the MRA states under θ. Obviously, the

MRA state of the system changes less frequently than the physical state. However, due to the

well-known PASTA property (Poisson Arrivals See Time Averages) for queueing systems in which

customers arrive via a Poisson process (see, for example, Wolff [202]), one can assert that the MRA

states and the physical states share the same stationary distribution; that is, π(M)(x) = π(P )(x)
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(x,Λ)

Join i

((x i+) j-,Mj) ((x i+) j-,Λ)
Join j

(x,Mi) (x k-,Mk) (x k-,Λ)
Join j

(x i+) j-
x x

 k-

Figure 7.6: The progression of the ‘MRA states’ along a typical sample path of Ψ.

for all x ∈ S. Hence, if one is able to formulate a CTMDP in which the state of the system is

always the MRA state, then by finding the stationary distribution under the policy θ, one would

also obtain the stationary distribution for the physical states under the same policy.

Consider the formulation of a CTMDP in which the system state at any given time is equal to

the MRA state (and which otherwise is based on the assumptions listed in Section 3.1). In such

a process, sojourn times will be uniformly distributed with mean 1/λ. However, specifying the

transition probabilities for such a process will not be an easy task. This is due to the fact that many

service completions may take place in between two consecutive arrivals, and as such the number of

states accessible from a given state x ∈ S via a single transition may be very large. Indeed, given

any MRA state x ∈ S and any other state y ∈ S which satisfies the componentwise inequality

y ≤ x, there will be a non-zero probability of transferring from state x to y in a single transition,

regardless of the policy being followed. It is easy to see that even if the transition probabilities for

the process can be formulated exactly, the amount of time required to evaluate a given policy θ (or

find an optimal policy) using a dynamic programming algorithm will be prohibitively large, due to

the sheer number of stored values that must be ‘looked up’ on each iteration. On the other hand,

an RL algorithm should not be encumbered by such problems, provided that it is designed in such

a way that (in keeping with the general methodology of RL) it can simulate the progression of the

MRA states without requiring knowledge of the underlying transition probabilities.

The next example demonstrates the validity of the preceding arguments in the case of an M/M/1

queue, by showing that the stationary distribution for the MRA states under a simple threshold

policy does indeed match the corresponding distribution for the physical states.



Chapter 7 Reinforcement learning 319

Example 7.3.1. (M/M/1 balance equations for the MRA process)

Let the demand rate λ > 0 be arbitrary, and suppose there is a single facility with a single service

channel and service rate µ > 0. The system is controlled by means of a threshold policy θT , whereby

customers join the facility if and only if the number of customers x present when they arrive is

smaller than the threshold T ∈ N. In order to model the evolution of the ‘physical state’ of the

system, one may construct a CTMC with infinitesimal generator matrix given by:

Q :=



−λ λ 0 0 ... 0 0 0

µ −(λ+ µ) λ 0 ... 0 0 0

0 µ −(λ+ µ) λ ... 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 ... µ −(λ+ µ) λ

0 0 0 0 ... 0 µ −µ


(7.3.5)

From (7.3.5), it is immediate that the stationary probabilities π
(P )
θT

(x) for states x ≤ T satisfy the

familiar steady-state balance equations for a finite-capacity M/M/1 queue:

λπ
(P )
θT

(0) = µπ
(P )
θT

(1),

(λ+ µ)π
(P )
θT

(x) = λπ
(P )
θT

(x− 1) + µπ
(P )
θT

(x+ 1) (1 ≤ x ≤ T − 1),

λπ
(P )
θT

(T − 1) = µπ
(P )
θT

(T ). (7.3.6)

Equivalently, for 0 ≤ x ≤ T − 1:

λπ
(P )
θT

(x) = µπ
(P )
θT

(x+ 1). (7.3.7)

Now suppose that one wishes to model the evolution of the MRA state of the system under θT ;

that is, the physical state observed by the most recent customer to arrive. If the process is in some

state x at an arbitrary point in time, where 1 ≤ x ≤ T , then (by standard results) the probability

that a service completion will occur before the next customer arrival is given by:∫ ∞
0

λe−λt
∫ t

0
µe−µsds dt =

µ

λ+ µ
.
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For k ≤ x, the probability that exactly k completions occur before the next arrival is:
λµk

(λ+ µ)k+1
, if k < x,

µx

(λ+ µ)x
, if k = x.

Hence, for any two states x, y ∈ {0, 1, ..., T} (interpreted as MRA states, rather than physical

states) the probability of transferring from state x to y in a single transition is:
λµz−y

(λ+ µ)z−y+1
, if y ≥ 1,

µz

(λ+ µ)z
, if y = 0,

(7.3.8)

where z = min(x+ 1, T ). Thus, noting that the infinitesimal transition rates for the MRA process

are obtained by multiplying the probabilities in (7.3.8) by the uniform sojourn time parameter λ,

one obtains the following generator matrix (which, like Q, is of order T + 1):

Q̂ :=



q̂00
λ2

λ+ µ
0 ... 0 0 0

λµ2

(λ+ µ)2
q̂11

λ2

λ+ µ
... 0 0 0

...
...

...
. . .

...
...

...

λµT−1

(λ+ µ)T−1

λ2µT−2

(λ+ µ)T−1

λ2µT−3

(λ+ µ)T−2
... q̂T−2,T−2

λ2

λ+ µ
0

λµT

(λ+ µ)T
λ2µT−1

(λ+ µ)T
λ2µT−2

(λ+ µ)T−1
...

λ2µ2

(λ+ µ)3
q̂T−1,T−1

λ2

λ+ µ

λµT

(λ+ µ)T
λ2µT−1

(λ+ µ)T
λ2µT−2

(λ+ µ)T−1
...

λ2µ2

(λ+ µ)3

λ2µ

(λ+ µ)2
q̂TT



,

(7.3.9)

where, as usual, the diagonal elements q̂xx (for x = 0, 1, ..., T ) satisfy:

q̂xx = −
∑
y 6=x

q̂xy.

In order to show that the stationary distribution {π(M)
θT

(x)}x∈N0 for the MRA process is iden-

tical to the corresponding distribution {π(P )
θT

(x)}x∈N0 for the physical process, it will be suffi-

cient to show that the balance equations (7.3.7) hold with π
(P )
θT

(x) replaced by π
(M)
θT

(x) for each
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x ∈ {0, 1, ..., T}. Recall that these balance equations are obtained by setting π
(P )
θT
Q = 0, where

π
(P )
θT

= (π
(P )
θT

(0), π
(P )
θT

(1), ..., π
(P )
θT

(T )). Consider the analogous set of balance equations given by

π
(M)
θT
Q̂ = 0. By inspecting the rightmost column of Q̂ in (7.3.9), one finds:

λ2

λ+ µ
π

(M)
θT

(T − 1) = π
(M)
θT

(T )

[
λ2µ

(λ+ µ)2
+

λ2µ2

(λ+ µ)3
+ ...+

λ2µT−1

(λ+ µ)T
+

λµT

(λ+ µ)T

]
. (7.3.10)

It can be shown using induction that for all integers n ∈ N:

λµ

λ+ µ
+

λµ2

(λ+ µ)2
...+

λµn−1

(λ+ µ)n−1
+

µn

(λ+ µ)n−1
= µ. (7.3.11)

Hence, after dividing by λ/(λ+ µ) in equation (7.3.10) and using (7.3.11), one obtains:

λπ
(M)
θT

(T − 1) = µπ
(M)
θT

(T ). (7.3.12)

Proceeding in an inductive fashion, consider an arbitrary state x ∈ {1, 2, ..., T −1} and assume that

the following relationship has been verified for all y ∈ {x+ 1, x+ 2, ..., T}:

λπ
(M)
θT

(y − 1) = µπ
(M)
θT

(y). (7.3.13)

Then, by inspecting the xth column of Q̂ and applying (7.3.13) repeatedly, one can show:

λ2

λ+ µ
π

(M)
θT

(x− 1) + π
(M)
θT

(x)

[
λ3µ

(λ+ µ)3
+

λ4µ

(λ+ µ)4
+ ...+

λT−x+1µ

(λ+ µ)T−x+1
+

λT−x+2

(λ+ µ)T−x+1

]

= π
(M)
θT

(x)

[
λ2

λ+ µ
+

λ2µ2

(λ+ µ)3
+ ...+

λ2µx

(λ+ µ)x+1
+

λµx+1

(λ+ µ)x+1

]
. (7.3.14)

Upon dividing by λ/(λ+ µ) and applying (7.3.11) to the right-hand side, (7.3.14) yields:

λπ
(M)
θT

(x− 1) + π
(M)
θT

(x)

[
λ2µ

(λ+ µ)2
+

λ3µ

(λ+ µ)3
+ ...+

λT−xµ

(λ+ µ)T−x
+

λT−x+1

(λ+ µ)T−x

]

= π
(M)
θT

(x)

(
λ+ µ− λµ

λ+ µ

)
. (7.3.15)

Hence, in order to establish that λπ
(M)
θT

(x−1) = µπ
(M)
θT

(x) for all x ∈ {0, 1, ..., T −1}, it is sufficient

to show that the following property holds for integers n ≥ 1:

λµ

λ+ µ
+

λ2µ

(λ+ µ)2
+ ...+

λn−1µ

(λ+ µ)n−1
+

λn

(λ+ µ)n−1
= λ. (7.3.16)

In fact, (7.3.16) is the same identity as (7.3.11) (with λ and µ interchanged). This completes the

proof that the following balance equations hold for 0 ≤ x ≤ T − 1:

λπ
(M)
θT

(x) = µπ
(M)
θT

(x+ 1).
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Therefore, as expected, π
(M)
θT

(x) = π
(P )
θT

(x) for all x ∈ {0, 1, ..., T}. That is, the stationary dis-

tribution of the number of customers in the system seen by the most recent customer to arrive

corresponds to the distribution of the physical state of the system itself. �

Example 7.3.1 addresses M/M/1 queues, but the PASTA property holds in much greater generality

(see [45, 126, 186, 202]). However, in a more general system with N facilities and multiple servers at

each facility, the transition probabilities for the so-called ‘MRA process’ will obviously be somewhat

more complicated than those in (7.3.8). Fortunately, as discussed earlier, an RL algorithm need

not rely upon knowledge of these probabilities. Indeed, in order to simulate the evolution of the

system under a particular decision-making scheme, all that is required is a sequence of inter-arrival

times sampled from an exponential distribution with parameter λ, and another randomly-generated

sequence which represents the service-time requirements of individual customers. Naturally, the

latter sequence will also depend on the actions chosen when new customers arrive.

At this point, it will be useful to make some brief comments regarding the design of a simulation

model. Suppose one wishes to simulate the evolution of a single-facility system (either an M/M/1 or

an M/M/c queueing system) with demand rate λ > 0 and service rate µ > 0, under the assumption

that every customer who arrives joins the queue (so that there is no admission control). Suppose

the first customer arrives at time t1 > 0 and let (t2, t3, ...) denote the sequence of inter-arrival times,

so that the nth customer arrives at time
∑n

j=1 tj . Also let (s1, s2, ...) be the sequence of service-time

requirements for the individual customers. For each n ∈ N, tn and sn are exponentially distributed

and can be sampled using the well-known method of inverse transform sampling (see, for example,

[146], p. 668). Using this method, one would determine tn and sn as follows:

tn = − 1

λ
log(un), sn = − 1

µ
log(vn),

where un and vn are both sampled from a uniform distribution on [0, 1]. The sequences (t1, t2, ...)

and (s1, s2, ...) then completely determine the arrival time, the amount of time spent waiting in the

queue, the time at which service begins and the service completion time for any individual customer

who arrives in the system. Moreover, the elements of these sequences are mutually independent

and, as such, there is no reason why they should not be sampled in the initial phase of a simulation

algorithm, enabling the subsequent evaluation of performance measures (such as mean waiting

times, etc.) based on observations of the resulting outcomes for individual customers.
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In an RL algorithm applied to a general N -facility system, the situation is more complicated only

in the sense that the service-time requirement of a particular customer will depend on which facility

(if any) they have been sent to, which in turn will often depend on the consequences of actions

chosen in the past; that is, there is a history-dependence for customers’ service times. However,

there is no reason why the service-time requirement for an individual customer should not be

determined immediately (using inverse transform sampling) following selection of an action by the

agent. Using this approach, one may determine the total amount of time spent in the system by a

customer immediately after their destination is chosen, and then use this information as part of a

Q-factor update. Essentially, by adopting this type of approach, one allows the agent to ‘learn’ from

consequences which (in the physical process being modelled) would not actually occur until some

time after the relevant action is chosen; the idea is to allow the agent to learn from a customer’s

overall time spent in the system following the choice of a particular action, as opposed to the

immediate changes in head counts at the various facilities caused by that action.

The RL algorithm given below is called ‘A-HYPOT R-learning’, where the A stands for ‘acceler-

ated’. This algorithm differs from HYPOT R-learning (page 312) by associating decision epochs

only with customer arrivals, and thereby taking longer ‘steps’ through the process. Q-factors are

updated based on the total time spent in the system (and associated waiting costs incurred) by

individual customers. As discussed above, this approach involves calculating the system depar-

ture times of customers immediately after they are sent to service facilities; however, it should

be emphasised that this ‘advance knowledge’ of customers’ exit times is not used as part of the

decision-making process, since this would violate the underlying assumptions of the model. It is

also worthwhile to note that, unlike the previous RL algorithms presented in this chapter, the A-

HYPOT algorithm does not rely on a discretisation of the system, and instead simulates the system

in continuous time. This will enable certain generalisations (of a somewhat heuristic nature) to be

made easily when non-exponential distributions are considered later in this chapter.

A-HYPOT R-learning algorithm

1. Initialise the values n = 1, g0 = 0, t0 = 0 and an array of values Q̂(x, a) with Q̂(x, a) = 0 for

each state-action pair (x, a) ∈ S × Ax. Assume that the system is initialised in state 0, and

accordingly set x1 = 0 (the state observed by the first customer to arrive). For each facility
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i ∈ {1, 2, ..., N} and service channel j ∈ {1, 2, ..., ci}, initialise the value:

f(i, j) = 0.

During the simulation process, f(i, j) will store the time at which the jth channel at facility

i becomes ‘free’ (which occurs when the channel is unoccupied and there are no customers

waiting in the queue at facility i); initially, all channels are free. Also, use inverse transform

sampling to determine t1 > 0, the arrival time of the first customer.

2. Use inverse transform sampling to determine dn, the time between the nth and (n + 1)th

customer arrivals, then let tn+1 = tn + dn. For each facility i ∈ {1, 2, ..., N}, determine the

number of service completions that occur between times tn and tn+1 using the known actions

a1, a2, ..., an−1 and exit times z1, z2, ..., zn−1 of previous customers. Denote these values by κi

(i = 1, 2, ..., N). Then determine the state yn ∈ S using xn as follows:

yn = xn −
N∑
i=1

κiei,

where, as previously, ei is an N -vector with ith component equal to one and all other com-

ponents equal to zero. One may interpret yn as the state of the system at time tn+1 in the

event that the nth customer balks, as opposed to joining some facility.

3. For each action a ∈ Axn , carry out the following sub-procedure:

(a) If a = i for some i ∈ {1, 2, ..., N}, then use inverse transform sampling to sample a

random service-time requirement at facility i, and denote this by s(i). Then calculate

the (hypothetical) system departure time Z(i) as follows:

Z(i) = min
j∈{1,2,...,ci}

f(i, j) + s(i).

One may interpret Z(i) as the departure time of the nth customer in the event that they

go to facility i. On the other hand, if a = 0 then set Z(a) = tn.

(b) Let the reward R(a) be given by:

R(a) =


λ
(
αi − βi

(
Z(i)− tn

))
, if a = i for some i ∈ {1, 2, ..., N},

0, if a = 0.
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(c) If a = i for some i ∈ {1, 2, ..., N} and Z(i) ≥ tn+1, update Q̂(xn, a) as follows:

Q̂(xn, a)← (1− δn(a))Q̂(xn, a) + δn(a)

[
R(a)− gn−1 + max

a′∈A
yi+n

Q̂(yi+n , a
′)

]
, (7.3.17)

where δn(a) ∈ [0, 1] is a learning parameter. Note that yi+n is the state of the system at

time tn+1 if facility i is chosen when the nth customer arrives, and this customer remains

in the system at time tn+1. On the other hand, if a = i for some i ∈ {1, 2, ..., N} and

Z(i) < tn+1, or if a = 0, then apply (7.3.17) with yi+n replaced by yn.

4. Select an action an ∈ Axn according to a rule which allows for both exploration and exploita-

tion (e.g. an ε-greedy rule). Then, let rn = R(an) and zn = Z(an), where R(an) and Z(an)

are the values obtained for action an ∈ Axn in step 3. Also, define:

xn+1 =


yi+n , if an = i for some i ∈ {1, 2, ..., N} and Z(an) ≥ tn+1,

yn, otherwise.

5. If the action an chosen in step 4 was an exploitative action, calculate gn as follows:

gn := (1− ζn−1)gn−1 + ζn−1

[
rn + max

a′∈Axn+1

Q̂(xn+1, a
′)− max

a∈Axn

Q̂(xn, a)

]
,

where ζn−1 ∈ [0, 1] is another learning parameter. Otherwise, set gn = gn−1.

6. If an = i for some i ∈ {1, 2, ..., N}, then let k be a service channel satisfying:

k ∈ arg min
j∈{1,2,...,ci}

f(i, j).

Then update the ‘channel free’ time f(i, k) as follows:

f(i, k)← f(i, k) + s(i),

where s(i) is the same service-time value obtained in step 3(a).

7. If n = nmax, where nmax is a large integer, then output a stationary policy θ[R] which, at

each state x ∈ S, chooses an action θ[R](x) maximising the expression Q̂(x, a) over all actions

a ∈ Ax. Also output gn as an estimate for the optimal long-run average reward g∗, then stop.

Alternatively, if n < nmax, increment n by 1 and return to step 2.
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The A-HYPOT R-learning algorithm emulates the previous HYPOT algorithm by, on the nth

iteration, updating the Q-factor estimates Q̂n(xn, a) for all actions a ∈ Axn . However, its two

main advantages over the HYPOT algorithm are its ability to learn from future service completion

times and the fact that it ‘steps through’ an entire inter-arrival period on each iteration, which

allows a greater amount of randomly-generated information to be used per iteration. The next

example provides a comparison between the convergence rates (per iteration) of the three versions

of R-learning considered in this chapter so far, in the case of a 4-facility system.

Example 7.3.2. (Convergence rates of HYPOT and A-HYPOT algorithms)

This example reports the results of an experiment involving the same parameters as Example 7.2.3.

Recall that the system under consideration consists of four service facilities, and the selfish state

space S̃ comprises approximately 43,000 states. The purpose of the experiment was to compare

the convergence rates (per iteration) of the R-learning, HYPOT R-learning and A-HYPOT R-

learning algorithms. In the experiment, 25 million iterations were performed using each of the

three algorithms in turn, with the same random number seed used for each algorithm. All three

algorithms used an ε-greedy rule for selecting actions, with ε = 0.15. The R-learning algorithm

used learning parameters δn given by (7.2.14) for the Q̂-factor updates (with T = 10), and the

HYPOT and A-HYPOT algorithms both used an analogous definition for δn(a):

δn(a) :=
T

T + νn(xn, a)− 1
, (7.3.18)

with T = 10 used for each action a ∈ Axn on each iteration n. All three algorithms used secondary

parameters given by ζn = 1/(n + 1) for calculating the estimated average rewards gn. Figure 7.7

shows, for each of the three RL algorithms under consideration, the progression of the estimated

values gn over 25 million iterations and also the values ĝnj obtained by performing Frozen Phase

(FP) updates after every 10,000 iterations. As expected, the A-HYPOT algorithm appears to yield

the fastest convergence rate per iteration. Not only do the values gn converge quickly towards the

optimal value g∗ using A-HYPOT R-learning, but the values obtained from FP updates (which, as

discussed previously, are a somewhat more relevant indicator of the algorithm’s performance) also

appear to be considerably more stable than the corresponding values obtained using the other two

algorithms. The HYPOT algorithm, despite being somewhat inferior to A-HYPOT, nevertheless
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exhibits a considerable improvement over the ‘ordinary’ R-learning algorithm.
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Figure 7.7: Comparison between the convergence rates (per iteration) for the R-learning, HYPOT R-learning

and A-HYPOT R-learning algorithms, using the parameters from Example 7.2.3.

Of course, while comparisons with respect to convergence rates per iteration are interesting from a

theoretical point of view, from a more practical perspective one would also be concerned about the

running times required by these algorithms. For example, it is obvious that the HYPOT R-learning

algorithm must perform more computations per iteration than ‘regular’ R-learning; moreover, this

additional burden will increase with the dimensionality of the system, since it is caused by the

HYPOT algorithm having to loop over all available actions a at whichever state the agent happens

to be visiting. Figure 7.8 presents an additional comparison between the three algorithms with the

time scale on the horizontal axis adjusted, so that it now measures (for each algorithm) the total

number of Q-factor updates performed, rather than the number of iterations performed. Essentially,

the only difference between Figures 7.7 and 7.8 is that the graphs for the HYPOT and A-HYPOT

algorithms have been stretched horizontally by a factor of 5 (because they both have to update the

Q-factors for 5 different actions on each iteration); thus, this presents a comparison which is much

more favourable to the original version of R-learning introduced in Section 7.2.

The A-HYPOT R-learning algorithm, like the previous RL algorithms discussed in this chapter,

relies upon the assumption that a unique value Q̂(x, a) can be stored for each state-action pair
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Figure 7.8: Comparison between the convergence rates (per Q-factor update) for the R-learning, HYPOT

R-learning and A-HYPOT R-learning algorithms, using the parameters from Example 7.2.3.

(x, a) ∈ S × Ax while the algorithm is running. This assumption may be somewhat unwieldy in

systems where millions or billions of pairs are likely to be sampled. The next section will address

the topic of value function approximation, which is useful in problems where the state space is

simply too vast for the storage of unique values Q̂(x, a) to be a viable approach.

7.4 Value function approximation

The examples given in the previous sections have shown that RL algorithms such as R-learning

are capable of finding near-optimal policies for queueing systems with tens of thousands of possible

states (after truncation of the infinite state space), without requiring more than a few minutes of

running time on a fast computer. However, systems with truly vast state spaces have yet to be

considered. A further aim in this chapter is to investigate the performance of RL algorithms in

systems of higher dimensionality. As illustrated previously, RL algorithms are able to cope with

vast state spaces to a certain extent by ‘zoning in’ on the most frequently-visited states under a

near-optimal policy, but certain problems with their implementation still remain.

All of the RL algorithms considered in this chapter so far have relied upon the assumption that a
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unique value Q̂(x, a) can be stored (and updated when necessary) for each state-action pair (x, a)

‘visited’ by an agent. Furthermore, if a rule for the learning parameters δn such as (7.2.14) is used,

then another value ν(x, a) must be stored to track the number of times that the pair (x, a) has

been updated since the beginning of the process. Obviously, a computer program can be written in

such a way that the values Q̂(x, a) and ν(x, a) are not initialised until the first time the pair (x, a)

is visited, so that only state-action pairs that are actually sampled during the finite running time

of the algorithm impose upon the memory requirements of the system; however, the fact remains

that in a system of high dimensionality, one must allow for the possibility of a very large number

of Q̂(x, a) and ν(x, a) values requiring storage. Unfortunately, a computer’s memory may simply

be unable to cope with the size of the arrays that would be required for this purpose.

Even if one assumes that it is possible to store all of the Q̂(x, a) and ν(x, a) values that would

be needed for an RL algorithm to obtain a reasonable approximation of an optimal policy after

some finite amount of time, a further (arguably more superficial) problem is that the algorithms

described so far have relied upon what is known as a look-up table representation for a stationary

policy (see [15], p. 4). This means that when the algorithm reaches completion, an action θ[R](x) ∈

arg maxa∈Ax
Q̂(x, a) is determined for each state x ∈ S, where θ[R] is the policy returned by the

algorithm. Then, in order to implement the policy θ[R] in a practical situation (or a simulation),

one must continually ‘look up’ the decisions θ[R](x) associated with the various states x ∈ S during

the evolution of the process. In other words, the policy θ[R] lacks the ability of the index-based

heuristic policies discussed in Chapter 6 to prescribe a decision to be chosen at a particular state

x ∈ S according to a relatively simple function of the head counts at state x; instead, like the

policy given by a DP algorithm, it must refer to a vast array of decisions which may not follow any

easily recognisable structure. In this section, it will be shown that an RL algorithm need not be

encumbered by having to use a look-up table representation for its output policy.

Various strategies have been proposed in the literature for avoiding the need to store unique values

for each state-action pair during the evolution of an RL algorithm; some of these will be discussed in

this section. As one would expect, the storage of less information brings with it some disadvantages.

To put things simply, one must be prepared to accept the likelihood of a reduction in the quality

of solutions found when less information is stored; in other words, the final policy obtained by the

algorithm may be slightly further from optimality when fewer Q̂(x, a) values are stored explicitly.
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However, this will be a necessary price to pay in systems where the state space is so vast that

algorithms such as R-learning (in their conventional form) are no longer practical.

Essentially, the techniques to be discussed in this chapter are based on the premise that theQ-factors

Q(x, a) which characterise an optimal policy follow roughly some kind of structure or pattern. The

next example illustrates this idea, using the example of an M/M/1 queue.

Example 7.4.1. (Value function approximation in an M/M/1 queue)

Consider an M/M/1 queue with system parameters given as follows:

λ = 2, µ = 3, β = 5, α = 35.

With these parameter values, a threshold policy θT with threshold T = 8 is average reward optimal.

Let it be assumed that the system is formulated as an MDP, with a formulation given by (3.5.1)-

(3.5.4). From a purely superficial point of view, an advantage of using the reward formulation in

(3.5.3) is that the resulting optimal value function h(x) has the property that h(x + 1) ≥ h(x) if

and only if joining is chosen at state x ∈ N0 under the optimal policy θT . Thus, after plotting the

values h(x) on a graph, one can easily identify the threshold T as the value of x that maximises

h(x) (or, in the event of a tie, the largest of these x values). Figure 7.9 shows the values Q(x, 0)

and Q(x, 1) (computed using dynamic programming) plotted for x ∈ {0, 1, ..., 20}.

1 3 5 7 9 11 13 15 17 19

0

200

400

600

Q(x,0)

Q(x,1)

x

Figure 7.9: The values of Q(x, 0) and Q(x, 1) for x ∈ {0, 1, ..., 20} in Example 7.4.1.

Note that, by definition, h(x) = max
(
Q(x, 0), Q(x, 1)

)
for each x ∈ N0, and hence it can be seen
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from Figure 7.9 that the optimal value function h(x) also follows a shape similar to those of Q(x, 0)

and Q(x, 1). Examining the general trends depicted in the figure, it is reasonable to propose that

a polynomial function of x should be suitable for approximating the Q(x, 0) and Q(x, 1) values;

indeed, the curves in the figure look somewhat similar to quadratic curves. Figure 7.10, in which

the curves in Figure 7.9 are plotted separately, shows the results of fitting polynomial models of

orders 2, 3 and 4 to the Q(x, 0) and Q(x, 1) values using multivariate linear regression.
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Figure 7.10: Polynomial approximations of orders 2, 3 and 4 for the functions Q(x, 0) and Q(x, 1).

The order of each polynomial approximating function in Figure 7.10 corresponds to the number

of predictor variables used in the associated regression model. As one would expect, polynomials

of higher degree tend to yield more accurate approximations. The figure shows that the quadratic

(order 2) polynomials are not entirely satisfactory for representing the shape of the Q functions,
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since they tend to misrepresent the position of the apex. However, when the order is increased to

4, the approximations are almost exact; indeed, the light blue dotted lines in the figure are almost

indistinguishable from the Q(x, 0) and Q(x, 1) curves. The values of R2 (the regression coefficient)

associated with the polynomial models of order 2, 3 and 4 used for Q(x, 0) are 0.970, 0.997 and

0.999 respectively, and the corresponding R2 values for Q(x, 1) are almost identical.

The implication of this example is that, in the case of a simple M/M/1 queue, the Q-factors which

characterise an optimal policy follow a pattern which can be traced approximately by polynomial

functions of the system state. Assuming that the same principle holds in higher dimensions, this

suggests the possibility of employing well-established mathematical techniques such as interpolation,

curve-fitting, regression and other related methods to estimate Q-factors even when the amount of

information available is only sparse. However, given that an RL algorithm begins with no available

information about the Q-factors which define an optimal policy, the exact procedure that one might

use to acquire even a small amount of information (without resorting to explicit storage of a large

number of Q-factor estimates in the system memory) remains unclear at this stage. �

As discussed previously, the problem to be addressed in this section concerns the approximation

of average reward optimal policies in systems with an extremely vast state space. However, it will

always be assumed that a finite truncation of the state space can be applied, and this is justified

by the results in Chapter 4. From this stage onwards, it will be assumed that the use of any

algorithm which depends upon a unique value (of any kind) being associated with every state in

the finite state space S̃ (or, similarly, every state-action pair in S̃×Ax) is prohibited. However, it is

clearly reasonable to suppose that values can be stored for some states (or pairs), since a computer

program will always afford the user some memory space in which to store data arrays.

Accordingly, let it be assumed that there exists a finite subset R ⊂ S̃ of states (or, in the case of

state-action pairs, R ⊂ S̃ × Ax) for which some quantity of interest can be stored (and updated)

explicitly during the course of an RL algorithm. The set R may not necessarily be ‘static’; indeed,

the constituent elements of R may change over the course of the algorithm (so that different states

or state-action pairs can be shuffled in and out of the set), but it should be assumed that there is

some upper bound on the size of |R| which, in general, will be much smaller than |S̃|.

Three broadly-defined methods for overcoming the difficulties posed by a vast state space will be
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discussed here, although ultimately this section will focus on only one of these methods. The three

techniques to be discussed are: state aggregation, interpolation, and function fitting.

State aggregation methods

The first method to be discussed here, known as state aggregation, is arguably also the crudest

from a mathematical point of view. Assuming that it is not feasible to estimate Q-factors for all

state-action pairs individually, one might instead allow each Q-factor to represent multiple pairs.

To be more exact, suppose the finite state space S̃ is partitioned into a set {S̃1, S̃2, ..., S̃K} where

K is reasonably small, so that it is possible to store a set of values in an array of size K(N + 1)

(where N + 1 is the maximum size of any action set). The set {S̃1, S̃2, ..., S̃K} is referred to as the

‘aggregated’ state space. On each iteration of an RL algorithm, the state-action pair visited is given

(for aggregation purposes) by (S̃i, a) for some i ∈ {1, 2, ...,K} and a ∈ AS̃i . After the simulation

step of the iteration has been performed, a value Q̂(S̃i, a) may be updated (using an update rule

similar to those discussed in earlier sections) and stored in the system memory.

It should be emphasised that, when using aggregation methods, one still allows the RL algorithm

to keep track of the exact state of the system (an element of S̃, rather than {S̃1, S̃2, ..., S̃K}) at all

times. The random transitions depend upon the exact states in the same way as normal, so that

the simulation of the process is still entirely accurate; the aggregation of the state space is used

purely as a means of reducing the number of Q-factors that require storage.

The drawbacks of this approach are obvious. In most applications, the state transitions will no

longer possess the Markov property when the aggregate representation is used, since the transition

probabilities from any aggregate state S̃i will depend upon the individual state x ∈ S̃i that the

process is in. As a result, RL algorithms lose much of their theoretical foundation when they rely

upon state space aggregation. Indeed, it cannot be assumed that the values Q(S̃i, a) which the

algorithm is trying to estimate will satisfy a set of equations of the form (7.1.4), which raises the

question of whether the Q-factor update rules seen in earlier sections (which are directly based on

these optimality equations) remain appropriate to use. Given the inherent ugliness of the method,

it would appear that the use of state space aggregation can only be justified if one can show

empirically that it produces good results. Gosavi [62] (p. 215) describes aggregation as a “robust”

approach, but its effectiveness seems to depend upon the context in which it is used.



Chapter 7 Reinforcement learning 334

The question of exactly how states should be ‘lumped together’ may not be easy to resolve. Ideally,

it is desirable for states with similar characteristics to be grouped together (see [62], p. 260). In the

case of the queueing systems considered in this thesis, one might derive some measure of the ‘overall

congestion level’ for each state x ∈ S̃ and then construct various categories according to these

congestion levels. Alternatively, taking into account the general principle that any policy which

maximises the expected long-run average reward is likely to cause the process to spend a significant

proportion of its time in states which earn ‘high’ rewards, it may be logical to categorise states

according to the expected rewards earned; in this case, however, matters are slightly complicated

by the fact that rewards are also likely to be action-dependent. The MDP formulation used in

Example 7.4.1 avoids this difficulty, since the rewards r(x) happen to depend only on the state,

and (to make things even simpler) the state is one-dimensional. In the slightly more general case of

an M/M/c queue, a partition scheme based on the rewards r(x) defined in (5.1.3) would be quite

different from a scheme based simply on the congestion level x, since it would involve states ‘close

to c’ being separated from states ‘distant from c’. Moreover, using T̃ to denote the selfishly optimal

threshold, one has r(T̃ ) ≈ r(0) = 0 and therefore a partition scheme based on rewards would group

together states at opposite extremities of the selfishly optimal state space {0, 1, ..., T̃}.

For further discussion of state aggregation methods, including some examples, refer to Gosavi [62]

(p. 260). Aggregation methods are also discussed (albeit in the context of value iteration, rather

than reinforcement learning) by Bertsekas and Tsitsiklis [15] (p. 215) (see also [185]).

Interpolation methods

Interpolation methods are based upon the premise that it is possible to store some Q-factors in the

system memory but not all, as discussed earlier. Let R ⊂ S̃ be a set of exemplar states, at which

the Q-factor estimates Q̂(x, a) are to be stored and updated explicitly during the finite running

time of the algorithm. The set R may be pre-determined and fixed, so that the same exemplar

states are used throughout the process, or (in the case of a more sophisticated algorithm) it may be

adaptable, so that system states are eligible to be ‘dropped’ from the set of exemplars and replaced

by other states at various stages of the procedure. When one of the exemplar states x ∈ R is visited

by the agent during the course of the RL algorithm, the value Q̂(x, a) corresponding to the action

chosen a ∈ Ax is updated using a rule similar to those given in earlier sections; however, a difficulty
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arises in that update rules such as (7.2.11) depend on Q-factor estimates being available for states

which may not be included in the set of exemplar states. As such, one must use interpolation to

estimate Q-factors for non-exemplar states using the values stored for exemplar states.

Of course, the values Q̂(x, a) stored for exemplar states x ∈ R are themselves only approxima-

tions of the true values Q(x, a), so interpolation effectively adds another layer of imprecision to

proceedings; however, this is merely in keeping with the general theme of this section, which in-

volves compromises being made between accuracy and practicability. In general, the exemplar

states should be reasonably spread-apart in order to ensure sufficient coverage of the state space;

on the other hand, there is little point in storing values explicitly for states located in regions of the

state space which are unlikely ever to be visited under an optimal policy. Thus, there is a certain

balancing act to be performed in deciding which regions of the state space should be ‘covered’ (in

the sense of being ‘near’ an exemplar state) by the set of exemplars R. Tadepalli and Ok [177]

discuss a method in which non-exemplar states x ∈ S̃ \R are added to the set R if it is found that

their values h(x) cannot be estimated within a given tolerance using the values stored for the other

exemplar states. When a new state x is added to R, a check is performed to see whether any states

which lie within a certain vicinity of x can safely be deleted from R due to their Q-factors being

estimable within the specified tolerance following the addition of the new state to R.

It is important to emphasise the advantage of allowing the set of exemplars R to be modified during

the running of the algorithm, since in general an RL algorithm will begin without any knowledge of

the characteristics of an optimal policy. As such, exemplar states should be re-positioned gradually

as the algorithm learns which regions of the state space are visited frequently under a strong-

performing policy (and thereby require a relatively high concentration of exemplars).

The exact method of interpolation used to estimate Q-factors for non-exemplar states is likely to

depend upon the complexity of the state space S̃. In the simple case where S̃ is one-dimensional

(as in Example 7.4.1), one may simply use linear interpolation, so that the value Q(z, 1) for any

state z lying between two exemplar states x and y (with x < y) is approximated by:

Q̂(z, 1) = Q̂(x, 1) +
z − x
y − x

(
Q̂(y, 1)− Q̂(x, 1)

)
.

In the case of a multi-dimensional state space, two different approaches will be mentioned here,

both of which are suggested by Gosavi [62] (p. 265) and are covered in considerable more detail
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Figure 7.11: A conceptual example of how exemplar states might be distributed in a system with a two-

dimensional state space according to the frequency with which individual states are visited under an optimal

policy. States (x1, x2) are represented as circles and categorised as ‘often visited, ‘seldom visited’ or ‘very

rarely visited’ according to whether they are coloured dark blue, light blue or white respectively. States

marked by red centres are ‘exemplar states’. Frequently-visited states are more likely to be exemplars.

(in the broader context of statistical learning) by Hastie et. al. [77] (see also [39]). The first of

these methods is known as the k-nearest-neighbours approach. Suppose it is necessary to obtain an

estimate for some Q-factor (x, a) ∈ S̃ × Ax, where x is not an exemplar state. One may inspect

the set of exemplars R in order to determine the k elements of R (where k is some pre-determined

integer) which are closest to x with respect to some distance metric. An obvious choice for the

distance metric is the Euclidean distance, given for two arbitrary states x,y ∈ S̃ by:

d(x,y) :=

√√√√ N∑
i=1

(xi − yi)2. (7.4.1)

After identifying the k ‘nearest neighbours’ of x within R, the value Q(x, a) can be estimated by

simply averaging the values Q̂(y, a) for these states, or (at greater computational expense) using

regression to predict Q(x, a) by fitting a model to the Q̂(y, a) values for the k nearest neighbours.

Unfortunately, even if the simpler averaging method is used, the process of finding the k nearest

neighbours of x in the first place may require a significant amount of computation time. For this
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reason, k-nearest-neighbours is not considered a feasible approach in this section.

An alternative to the k-nearest-neighbours approach is to use a kernel-based method. Essentially,

this involves estimating a value Q̂(x, a) for some non-exemplar state x ∈ S̃ \R and action a ∈ Ax

by taking a weighted average of the values Q̂(y, a) for the exemplar states y ∈ R, where the weights

are determined by the distances of the exemplar states from x. Specifically, one would estimate

the value Q(x, a) for some state-action pair (x, a) ∈ S̃ ×Ax with x /∈ R as follows:

Q̂(x, a) =

∑
y∈R w(x,y) Q̂(y, a)∑

y∈R w(x,y)
, (7.4.2)

where w(x,y) is a weight which depends in some way on the Euclidean distance d(x,y) defined

in (7.4.1). The weight w(x,y) may be defined in such a way that it equals zero if d(x,y) exceeds

a certain value, so that the weights ‘die off’ with increasing distance from x. For more details on

how the weights may be defined, see [62] (p. 267). Kernel-based methods avoid the need to locate

the ‘nearest neighbours’ of a particular state in order to estimate a required Q-factor; obviously,

however, computing a weighted average of estimated Q-factors for all states y ∈ R will itself be a

time-consuming process if the set of exemplars R is of reasonable size. For this reason, kernel-based

methods must also be considered impractical in systems of high dimensionality.

With a little thought, one begins to realise that interpolation methods suffer from a drawback

which also applies to state aggregation methods, since they rely upon being able to store a limited

number of Q-factors explicitly. In the case of aggregation, each Q-factor must be representative of

a (possibly large) collection of states which, ideally, should be relatively homogeneous with respect

to some particular characteristic. In the case of interpolation, the exemplar states should ideally

be positioned in such a way that every state which might be visited by an optimal policy is within

a certain proximity of an exemplar. In either case, the assumption that the desired conditions can

be achieved becomes increasingly unrealistic as the complexity of the state space escalates. What

is really needed is a radically different method which, instead of attempting to learn Q-factors

individually, will instead attempt to learn some kind of formula or index for approximating the

Q-factors. This is the idea behind the function fitting methods to be discussed next.

Function fitting methods

Function fitting methods are arguably the most flexible and aesthetically appealing of the approx-
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imation methods discussed in this section. In Example 7.4.1, it was shown (in the case of an

M/M/1 queue) that the values Q(x, 0) and Q(x, 1) could be approximated quite accurately using

polynomial functions of the state x. Function fitting methods are based on the assumption that

the same principle holds in much greater generality; that is, the Q-factors Q(x, a) which charac-

terise an optimal policy for a system with a multi-dimensional state space may be approximated by

functions of the vector x. A natural generalisation of the technique used in Example 7.4.1 would

involve estimating Q(x, a) for an arbitrary pair (x, a) ∈ S̃ ×Ax as follows:

Q̂(x, a) = B(a) +
K∑
k=1

N∑
i=1

C
(k)
i (a)xki , (7.4.3)

whereK is a pre-determined integer which represents the order of the approximation, N is (as usual)

the dimensionality of the state space, the values B(a) and C
(k)
i (a) are weights to be determined by

an RL algorithm, and xki denotes the ith component of x raised to the power k. For example, by

setting K = 2 in (7.4.3) one obtains a quadratic function of N variables:

Q̂(x, a) = B(a) +

N∑
i=1

C
(1)
i (a)xi +

N∑
i=1

C
(2)
i (a)x2

i . (7.4.4)

It should be noted that the right-hand side in (7.4.4) is missing cross-product terms of the form

xixj (where i 6= j); in general, cross-product terms should be included in a quadratic expression

of N variables. However, since the number of cross-product terms increases steeply with N (and

with K), it will be desirable throughout this section to simplify matters by restricting attention

to approximating functions of the form (7.4.3). The total number of weights in (7.4.3) is KN + 1,

which increases only linearly with N ; this will be an important advantage when the RL algorithms

to be discussed in this section are applied to systems with very large state spaces.

RL algorithms which use function fitting do not need to store any Q-factors explicitly ; they simply

aim to learn values of the weights in (7.4.3) which will accurately approximate the function Q(x, a)

for a given action a. Note that a unique set of weights is required for each action a that may be

chosen during the course of the process; in general, this can cause a problem in MDPs where the

action sets Ax vary considerably among the states x ∈ S̃. Obviously, however, this does not cause

any problems in the queueing systems considered in this thesis, since the action sets Ax depend on

the states x ∈ S̃ only to the extent that certain actions are prohibited at states which are on the

boundary of the finite state space S̃. An RL algorithm will need to store and update values for all
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of the weights associated with all possible actions; as such, the total number of weights requiring

storage will be (N + 1)(KN + 1), where (in keeping with the context of the problems considered

in this thesis) N + 1 is the cardinality of the set
⋃

x∈S̃ Ax, i.e. the total number of distinct actions

available. It is intended that, provided the order of approximation K is reasonably small and the

number of facilities N is not excessively large, a function-fitting RL algorithm should be applicable

to a system with billions or trillions of states without any major practical difficulties.

The term architecture is used to describe the general parametric class of functions in which one

attempts to find suitable approximators for the Q-factors Q(x, a) (see, for example, [15], p. 5).

Ideally, an approximation architecture should be ‘rich’ enough to allow the Q(x, a) values to be

approximated with an acceptable level of accuracy; this means that a sufficiently large number of

free parameters (equivalently, weights) should be used. However, as discussed by Bertsekas and

Tsitsiklis [15] (p. 60), the computational complexity of the algorithm increases with the number of

parameters, so (as with most RL algorithms) there is a trade-off to be made between the ease with

which the algorithm can be applied in practice and its fitness for purpose. In this section, the only

architecture considered will be the class of polynomial functions described by (7.4.3).

It may be seen as a disadvantage of function fitting RL algorithms that a suitable approximation

architecture must be determined a priori, without (in general) knowledge of the shape or char-

acteristics of the function(s) to be approximated. If possible, it is appropriate to perform some

kind of validation test to ensure that the architecture being used is suitable for the purpose at

hand. In the case of the queueing systems under consideration, an obvious possibility for validat-

ing the architecture in (7.4.3) is to use dynamic programming to calculate the Q-factors exactly

in a moderately-sized system, and then determine values of the weights B(a) and C
(k)
i (a) by ap-

plying multivariate linear regression to the resulting data. The quality of the approximation (for

each action a) would then be measured by the regression coefficient R2. Arguably, there are some

limitations to this approach, including the fact that the model fitted by regression will implicitly

assume that all state-action pairs are equally ‘important’; this will be discussed later.

In this section, the particular design of the RL algorithm to be considered will make the validation

method described above slightly more difficult to apply. This is because the algorithm will essen-

tially be an extension of the A-HYPOT R-learning algorithm presented on page 323 which will use
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function fitting methods as opposed to the storage of individual Q-factor estimates.

It was shown in Section 7.3 that A-HYPOT R-learning is capable of improving upon the perfor-

mances of R-learning and HYPOT R-learning in terms of the number of iterations required to

obtain a near-optimal policy; this is one reason for it being preferred to the other two algorithms

as the basis for a function-fitting algorithm. However, as discussed in Section 7.3, A-HYPOT R-

learning relies implicitly upon a re-formulated MDP in which the state of the system at any given

time is the vector of head counts at the various facilities observed by the most recent customer to

arrive. This re-formulated MDP has been referred to previously as the MRA process. The optimal

Q-factors for the MRA process will not be the same as those which would be obtained using the

MDP formulation given by (3.5.1)-(3.5.4) (which is based on the physical state of the system),

despite the fact that both processes will have the same class of optimal stationary policies. Un-

fortunately, it is not practical to use dynamic programming to calculate the Q-factors associated

with an optimal policy in the MRA process, due to the complexity of the associated transition

probabilities (as illustrated, in the M/M/1 case, by Example 7.3.1); as such, there is no convenient

means available of obtaining the exact Q-factors, even in a moderate-sized system.

One way around this difficulty is to assume (with the backing of the empirical evidence in Example

7.3.2) that the Q-factor estimates output by the A-HYPOT R-learning algorithm are reasonably

close approximators of the true Q-factors, and apply multivariate regression to these estimated

Q-factors. The next example shows the results obtained using this validation method.

Example 7.4.2. (Validation of the quadratic architecture for one system)

This example uses the same parameters as Example 7.2.3. To summarise, there are 4 service

facilities and the selfish state space S̃ consists of approximately 43,000 states. The optimal value

of the expected long-run average reward is g∗ ≈ 126.61. As discussed previously, one may use

multivariate linear regression to fit the quadratic model (7.4.4) to the estimated Q-factors found

using the A-HYPOT algorithm as a means of validating the quadratic architecture.

However, there are some difficulties associated with this approach. The A-HYPOT algorithm, like

the other RL algorithms considered in this chapter, operates in an asynchronous manner; as such,

assuming that the run-time is finite, it will generally obtain much more accurate estimates of the
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Q-factors for state-action pairs that are visited often than for pairs which are not. Realistically, this

means that in a system with tens of thousands of states, only a very small proportion of the Q(x, a)

values will be estimated with any reasonable accuracy. As a result, applying least-squares linear

regression to a dataset consisting of estimated Q-factors for all state-action pairs (x, a) ∈ S̃ × Ax

will be meaningless, since most of these estimated values will be wildly inaccurate.

For the purposes of this validation test, a reasonable way of overcoming this problem is to apply

the A-HYPOT algorithm synchronously ; that is, one may update the values for all state-action

pairs (x, a) ∈ S̃ × Ax once each on every iteration, as opposed to following the simulated path

of an agent. Of course, the reason for this approach being feasible is that the state space is only

moderately-sized, which makes it possible to sweep through all state-action pairs repeatedly in the

manner of a DP algorithm; in a larger system, this approach would not be possible.

In the case of A-HYPOT R-learning, the algorithm given on page 323 must be modified quite

significantly in order to use a synchronous updating style; this is because the algorithm relies

upon the storage of an array of values z1, z2, ... which represent the service completion times of

customers, and these values are used to determine future random transitions. This means that the

order in which state-action pairs are updated must follow the simulated evolution of the system,

otherwise the algorithm simply does not make sense. In the case of a synchronous algorithm, it

must be possible to simulate a random transition from a particular state without any dependence

on the transitions simulated previously. A full description of the changes required in order to

use the A-HYPOT algorithm synchronously will not be given here, but essentially it is only a

minor programming task to modify the algorithm so that transitions are simulated according to

the principle that, given that the system is in some physical state x ∈ S̃ at an arbitrary point in

time, the probability of an arrival occurring before the next service completion is:

λ

λ+
∑N

i=1 min(xi, ci)µi
.

This example presents the result of an experiment in which 10,000 iterations of the synchronous

version of A-HYPOT R-learning were performed (in other words, the values Q̂(x, a) for all pairs

(x, a) ∈ S̃ × Ax were updated 10,000 times each) in order to estimate the Q-factors with a rea-

sonable level of accuracy. Following the termination of the algorithm, the quadratic model (7.4.4)

was fitted to the final Q̂(x, a) values using linear regression with {x1, x2, x3, x4, x
2
1, x

2
2, x

2
3, x

2
4} as the
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set of predictor variables, and a different set of weights obtained for each action a ∈ {0, 1, 2, 3, 4}.

Table 7.4 shows the weights and the regression coefficient R2 obtained for each a.

a = 0 a = 1 a = 2 a = 3 a = 4

B(a) 372.492 487.581 485.875 458.737 421.840

C
(1)
1 (a) -188.248 -201.253 -191.044 -189.977 -188.866

C
(1)
2 (a) -73.915 -76.511 -86.368 -75.554 -74.423

C
(1)
3 (a) -15.638 -16.761 -16.667 -23.638 -15.998

C
(1)
4 (a) -3.821 -4.102 -4.061 -4.160 -8.072

C
(2)
1 (a) 0.880 0.318 1.015 0.964 0.909

C
(2)
2 (a) -0.113 -0.015 -0.001 -0.053 -0.097

C
(2)
3 (a) -0.571 -0.552 -0.562 -0.657 -0.576

C
(2)
4 (a) -0.172 -0.176 -0.179 -0.178 -0.168

R2 0.995 0.996 0.996 0.996 0.995

Table 7.4: Results of the multivariate linear regression experiment described in Example 7.4.2.

Table 7.4 shows that, for each action a ∈ {0, 1, 2, 3, 4}, the regression coefficient R2 obtained by

fitting the model (7.4.4) to the estimated values Q̂(x, a) is greater than 0.995. Arguably, this

can be regarded as a strong indication that, in the case of the particular 4-facility system under

consideration, the true values Q(x, a) approximately fit the quadratic model. �

Of course, as alluded to previously, the least-squares regression model considered in Example 7.4.2

assumes that all ‘data pairs’ ((x, a), Q̂(x, a)) are equally important; it has no means of ascertaining

which Q-factors are the most important to approximate accurately. Clearly, this kind of impartiality

is not really desirable. It would be preferable for the model-fitting to be done in a biased manner,

in order to ensure a very close fit for the Q-factors at often-visited states, without great importance

being attached to the quality of the fit at rarely-visited states. RL algorithms which use function

fitting will naturally tend to prioritise ‘influential’ states in exactly this manner.

The next objective in this section will be to describe exactly how function fitting can be carried out

as part of an RL algorithm. It is worth re-emphasising the fundamental assumption of function-

fitting methods that at no stage of the algorithm can a Q-factor Q̂(x, a) (nor any other type of



Chapter 7 Reinforcement learning 343

quantity, such as the number of times (x, a) has been visited) be stored for any individual state-

action pair (x, a) ∈ S̃×Ax. Hence, it is not possible in general to carry out the procedure described

in Example 7.4.2, in which model-fitting is applied to a set of Q̂(x, a) values which have already

been acquired by an algorithm which depends upon storing these values explicitly.

Given that the value Q(x, a) for any individual pair (x, a) depends upon the Q-factors for other

state-action pairs (as shown by the equations (7.2.2)), any update to the value Q̂(x, a) made as

part of an RL algorithm must be made according to estimates of the Q-factors for the other pairs;

so, if these estimates are not stored in the memory, they must be acquired using the approximating

function(s) that are constructed as part of the algorithm. However, these approximating functions

themselves will need to be constructed by fitting a model to the latest available estimates for the

Q-factors. In summary, fitting a model to approximate the Q-factors requires estimates for the

Q-factors to be available, but calculating these estimates can only be done by using some kind of

fitted model. This creates a ‘chicken-and-egg’ situation, and therefore both tasks must be carried

out at the same time; that is, estimates for the Q-factors must be obtained using a model which is

updated each time a new Q-factor estimate becomes available. Roughly speaking, an RL algorithm

which uses function-fitting must perform the following steps on each iteration n:

• Simulate a random transition from the current state xn following the choice of action an.

Observe the random reward rn and the new state xn+1.

• Use an approximating function to estimate the values Q(xn+1, a) at the new state xn+1.

Accordingly, calculate the new ‘data piece’, yn := rn − gn + maxa Q̂(xn+1, a).

• Update the relevant approximating function using the new data piece yn in such a way that

(ideally) Q̂(xn, an) becomes a more accurate approximation of Q(xn, an).

Of course, the problem of constructing an approximating function Q̂(x, a) for a given action a is

somewhat similar to the classical regression problem of fitting a model to a given set of data, in the

sense that one uses a set of ‘data pairs’ ((xn, an), yn) to determine suitable values for the model

parameters; however, classical regression methods are applicable in situations where all of the data

values are known before the model is fitted. In the context of RL, data pairs are acquired piece-by-

piece, and the values yn = rn − gn + maxa Q̂(xn+1, a) themselves depend upon the latest available
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estimates for the model parameters. As such, one has no choice but to fit the model incrementally

in the manner described above, which makes the procedure somewhat more difficult.

One possible method of constructing the approximating functions involves using incremental linear

regression, which is similar to classical linear regression except that one must continually append

new rows of data to the design matrix (consisting of values of the predictor variables) and the vector

of observed values of the dependent variable. This is also referred to as online linear regression;

see, for example, Strehl et. al. [173]. However, this approach tends to be very computationally-

intensive, as one must store large arrays of data and perform time-consuming matrix computations

on each iteration; as such, it is not feasible for the problems considered in this section.

The method of function-fitting used in this section will be based on artificial neural networks

(ANNs). The term ‘neural network’ may be understood in a broad sense to refer to any procedure

or algorithm by which one learns to associate a particular response with any given set of inputs or

‘stimuli’. Applications of ANNs are common in various areas of computer science, statistics, and

other fields; see, for example, [17, 72, 80, 133, 190]. Typical applications of ANNs might include the

training of a machine to recognise an image or pattern according to a particular layout of pixels on

a computer screen, or the medical diagnosis of a patient based on their observed symptoms. The

origins of ANNs can be traced back at least as far as the 1960s and early 1970s (see [194, 200]); for

a detailed review of ANNs which includes a comparison with classical statistical methodology, see

[30]. In this section, the ANNs considered will be linear neural networks; these are considerably

simpler in their formulation than non-linear networks, but are entirely suitable for the purpose of

fitting a linear model such as (7.4.3) to a set of data which is acquired incrementally.

A linear neural network, also referred to as a neuron, applies in general to a situation where some

output value y ∈ R is to be predicted using a set of input values x1, x2, ..., xN using the model

ŷ = w0 +
∑N

i=1wixi, where the wi are weights to be determined. As depicted by Figure 7.12, the

role of the neural network is simply to attach weights wi to the inputs xi in such a way that y is

estimated with the greatest possible accuracy. In this sense, the linear neural network is used for

the same purpose as classical linear regression; however, its essential feature is that it performs the

model-fitting incrementally, using a procedure which is not at all computationally intensive. Note

that in Figure 7.12, an extra input x0 = 1 is included; this represents the bias term (or intercept)
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Input x0 = 1

Input x1
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Output y

Weights wi
 attached

Figure 7.12: A simple linear neural network with N input nodes and only one output node.

used in the linear model, and the weight attached to this input will simply be w0. As such, the

neural network must attach N + 1 weights in order to determine the output value y. Clearly, the

polynomial model (7.4.3) is of the required form to be fitted using a linear ANN.

The structure of a neural network becomes considerably more complicated when one attempts to

model non-linear behaviour. In a non-linear ANN, the input nodes will typically be connected

to an additional set of nodes referred to as hidden nodes, which comprise the hidden layer of the

network. Broadly speaking, the purpose of the hidden layer is to apply a transformation to the

input values in order to allow for a possible non-linear relationship between the input values and

the output; for example, after computing a weighted sum of the input values, a hidden layer might

then convert this sum into a value between 0 and 1 using a sigmoidal function (see [15], p. 62). If

the relationship being modelled is thought to be highly non-linear, then several hidden layers may

be used; the last hidden layer will then be connected to an output node (or, if several different

outputs are required, an output layer). For further discussion of non-linear ANNs, see [62] (p. 75).

As mentioned earlier, attention will be restricted to linear ANNs in this section.

The particular function-fitting RL algorithm considered in this section will be based on the Widrow-

Hoff (WH) algorithm, which was first developed by Widrow and Hoff [200] and originally named
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‘Adaline’, which is short for ‘adaptive linear’. The algorithm is recommended by Gosavi [62] (p.

69) for calibrating the weights of a linear ANN. In order to illustrate the algorithm’s underlying

simplicity, it will be easiest to present it in the context of a general problem involving the fitting

of an adaptive linear model to a set of data pairs which are acquired incrementally.

Widrow-Hoff (WH) algorithm

1. Assume that the model to be fitted is ŷ = w0 +
∑N

i=1wixi, where the wi are weights to be

determined. Set n = 0 and initialise the values wi = 0 for i = 0, 1, ..., N .

2. Acquire a new data piece (xn, yn), where xn is a vector with N components and yn is a scalar.

Calculate qn, the output of the neural network at the nth stage, as follows:

qn = w0 +

N∑
i=1

wi(xn)i,

where (xn)i denotes the ith component of the vector xn.

3. For each i ∈ {0, 1, ..., N}, update the weight wi as follows:

wi ← wi + δn (yn − qn) (xn)i, (7.4.5)

where δn is a learning parameter which may decay with n, and (xn)0 := 1.

4. If n > nmax, where nmax is a large integer, then return the set of weights wi as the final

calibration for the ANN and stop. Otherwise, increment n by 1 and return to step 2.

The update rule (7.4.5) is well-founded in theory and in fact is based on the gradient descent

optimisation algorithm, which is commonly used in the field of non-linear optimisation (see, for

example, [7]). Consider a problem in which one has some finite number M of data pairs (xn, yn),

and the objective is to determine values of the weights w0, w1, ..., wN which will best approximate

the values y1, y2, ..., yM via the model ŷn = w0 +
∑N

i=1wi(xn)i (for n = 1, 2, ...,M). In the spirit of

classical linear regression, let the sum-of-squares error SSE(w), be defined by:

SSE(w) :=
1

2

M∑
n=1

(
yn − w0 −

N∑
i=1

wi(xn)i

)2

, (7.4.6)
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where w = (w0, w1, ..., wN ) is the vector of weights. Naturally, the optimal set of weights should

minimise SSE(w). Using gradient descent, one would initialise a vector of weights w0 with com-

ponents (w0)i = 0 for i = 0, 1, ..., N and then calculate wt for t ≥ 1 as follows:

wt := wt−1 − δt∇SSE(wt−1), (7.4.7)

where ∇ denotes the gradient operator and, as usual, δt is a step-size (learning parameter) rule.

Provided that δt satisfies the conditions (A.9.3), it can be shown that wt converges to a minimiser

of (7.4.6) as t→∞ (see [77], p. 395). Computing the gradient ∇SSE, one finds:

∇SSE(w) = −
M∑
n=1

(
yn − w0 −

N∑
i=1

wi(xn)i

)
xn.

Hence, (7.4.7) implies that one should derive (wt)i (for i = 0, 1, ..., N) on the tth iteration of gradient

descent using the data pairs (xn, yn) (with (xn)0 := 1 for all n) as follows:

(wt)i := (wt−1)i + δt

M∑
n=1

(
yn − (wt−1)0 −

N∑
i=1

(wt−1)i(xn)i

)
(xn)i. (7.4.8)

This type of procedure is referred to as batch gradient descent, since it involves using all of the data

pairs (x1, y1), (x2, y2), ..., (xM , yM ) on each iteration t of the algorithm. Although the number of

data pairs is assumed finite at this stage of the discussion, if M is large then it is clearly not ideal

to have to inspect the entire set of data on each iteration. Fortunately an alternative approach is

available, referred to as stochastic gradient descent (also incremental gradient descent), which in

fact may be regarded as a simplification of the batch-updating procedure. Essentially, in stochastic

gradient descent, one sweeps through the set of M data pairs repeatedly but updates the vector of

weights using only one data pair at a time (see [134] for further explanation), which considerably

speeds up the process in a real-time sense. Let (xt, yt) denote the single data pair used on the tth

iteration of stochastic gradient descent. Then the update rule for (wt)i is:

(wt)i := (wt−1)i + δt

(
yt − (wt−1)0 −

N∑
i=1

(wt−1)i(xt)i

)
(xt)i. (7.4.9)

which is equivalent to the update rule (7.4.5) used by the Widrow-Hoff algorithm. Thus, the

Widrow-Hoff update rule is based on the application of stochastic gradient descent to a problem

involving minimisation of the sum-of-squares error defined in (7.4.6). Moreover, the convergence

properties of gradient descent imply that if the WH algorithm is applied to a finite set of data
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pairs and allowed to sweep through the data pairs one-by-one an indefinite number of times, then

(assuming the learning parameters δt satisfy the conditions (A.9.3)) it will eventually converge to

the same set of weights that one would obtain using least-squares linear regression.

Of course, the context of the discussion given in the previous two pages is quite different from

the context of attempting to find a socially optimal control policy for a queueing system using an

RL algorithm. In an RL context, one considers an infinite sequence of data pairs ((xn, an), yn) in

which the values yn = rn − gn + maxa Q̂(xn+1, a) are intended to be estimates of the true values

Q(xn, an) that one wishes to approximate, but in fact are subject to both estimation errors and

random noise. In such circumstances, it does not appear possible to devise an RL algorithm which

will provably converge to a set of weights (and resulting estimates Q̂(x, a)) that will minimise the

sum-of-squares error over all state-action pairs in S̃ × Ax. Moreover, even if it were possible to

achieve such convergence, the minimisation of a quantity such as
∑

(x,a)

(
Q(x, a)− Q̂(x, a)

)2
is not

necessarily what one wants to achieve in order to obtain a near-optimal policy, since (as discussed

previously) it is actually more desirable to obtain closer approximations for some Q-factors than for

others. For these reasons, as is usually the case with RL in general, it is appropriate to approach

the problem of value function approximation in something of a heuristic spirit, and aim to justify

any particular methodology by demonstrating its strong performance empirically.

Having discussed the relevant background material, it will now be possible to present the RL

algorithm that will be used in this section to estimate the Q-factors for an optimal policy using

value function approximation. The algorithm relies upon linear neural networks (one for each

permissible action a) to fit the quadratic model (7.4.4), with the Widrow-Hoff updating rule used

to update the weights of the networks. It is also based very closely on the A-HYPOT R-learning

algorithm discussed in the previous section; in fact, essentially the only difference is that it relies

on approximating functions to estimate Q-factors, rather than storing values explicitly. Although

some of the steps are simply repetitions of those found in the A-HYPOT algorithm, for the purposes

of clarity it will be appropriate to present the new algorithm in a complete form.

NEURO-HYPOT algorithm

1. Initialise the values n = 1 and t0 = 0. For each action a ∈
⋃

x∈S̃ Ax, initialise the weights

B(a) = 0, C
(1)
i (a) = 0 and C

(2)
i (a) = 0 for each i ∈ {1, 2, ..., N}. Set the initial state x1 = 0.
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For each i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., ci}, initialise the value:

f(i, j) = 0,

which represents the time at which the jth channel at facility i becomes ‘free’. Also, use

inverse transform sampling to obtain t1, the arrival time of the first customer.

2. Use inverse transform sampling to determine dn, the time between the nth and (n + 1)th

customer arrivals, then let tn+1 = tn + dn. For each facility i ∈ {1, 2, ..., N}, determine the

number of service completions that occur between times tn and tn+1 using the known actions

a1, a2, ..., an−1 and exit times z1, z2, ..., zn−1 of previous customers. Denote these values by κi

(i = 1, 2, ..., N). Then determine the state yn ∈ S̃ using xn as follows:

yn = xn −
N∑
i=1

κiei,

where, as previously, ei is an N -vector with ith component equal to one and all other com-

ponents equal to zero. One may interpret yn as the state of the system at time tn+1 in the

event that the nth customer balks, as opposed to joining some facility.

3. For each action a ∈ Axn , carry out the following sub-procedure:

(a) If a = i for some i ∈ {1, 2, ..., N}, then use inverse transform sampling to sample a

random service-time requirement at facility i, and denote this by s(i). Then calculate

the (hypothetical) system departure time Z(i) as follows:

Z(i) = min
j∈{1,2,...,ci}

f(i, j) + s(i).

One may interpret Z(i) as the departure time of the nth customer in the event that they

go to facility i. On the other hand, if a = 0 then set Z(a) = tn.

(b) Let the reward R(a) be given by:

R(a) =


λ
(
αi − βi

(
Z(i)− tn

))
, if a = i for some a ∈ {1, 2, ..., N},

0, if a = 0.

(c) Define the state y as follows:

y :=


yi+n , if a = i for some i ∈ {1, 2, ..., N} and Z(i) ≥ tn+1,

yn, otherwise.
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Thus, y is the state of the system at time tn+1 given that action a is chosen. For each

action a′ ∈ Ay, obtain an estimate for Q(y, a′) as follows:

Q̂(y, a′) := B(a′) +
N∑
i=1

C
(1)
i (a′)

yi
bi

+
N∑
i=1

C
(2)
i (a′)

(
yi
bi

)2

, (7.4.10)

where bi = maxx∈S̃ xi for each i ∈ {1, 2, ..., N}, i.e. bi is dependent on the boundaries of

the finite state space. Let the ‘new data piece’, L(a), be defined as follows:

L(a) := R(a)−Bmax + max
a′∈Ay

Q̂(y, a′), (7.4.11)

where Bmax := maxaB(a), i.e. the maximum of the bias weights.

(d) For notational convenience, let x = xn. Then, let Q̂(x, a) be given by:

Q̂(x, a) := B(a) +

N∑
i=1

C
(1)
i (a)

xi
bi

+

N∑
i=1

C
(2)
i (a)

(
xi
bi

)2

. (7.4.12)

Then, update the weights of the neural network as follows:

B(a)← B(a) + δn

(
L(a)− Q̂(x, a)

)
,

C
(1)
i (a)← C

(1)
i (a) + δn

(
L(a)− Q̂(x, a)

) xi
bi

(i = 1, 2, ..., N),

C
(2)
i (a)← C

(2)
i (a) + δn

(
L(a)− Q̂(x, a)

)(xi
bi

)2

(i = 1, 2, ..., N), (7.4.13)

where δn ∈ [0, 1] is a learning parameter which does not depend on (xn, a).

4. Select an action an ∈ Axn according to a rule which allows for both exploration and exploita-

tion (e.g. an ε-greedy rule). Then, let rn = R(an) and zn = Z(an), where R(an) and Z(an)

are the values obtained for action an ∈ Axn in step 3. Also, let xn+1 = y.

5. If an = i for some i ∈ {1, 2, ..., N}, then let k be a service channel satisfying:

k ∈ arg min
j∈{1,2,...,ci}

f(i, j),

Then update the ‘channel free’ time f(i, k) as follows:

f(i, k)← f(i, k) + s(i),

where s(i) is the same service-time value obtained in step 3(a).
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6. If n = nmax, where nmax is a large integer, then output a stationary policy θ[R] which, at

each state x ∈ S̃, chooses an action θ[R](x) maximising the expression Q̂(x, a) over all actions

a ∈ Ax. Also output Bmax = maxaB(a) as an estimate for the optimal average reward g∗,

then stop. Alternatively, if n < nmax, increment n by 1 and return to step 2.

Steps 3(c) and 3(d) represent the function-fitting steps of the NEURO-HYPOT algorithm, in which

Q-factors are estimated using the latest available weights for the neural network and then the

weights themselves are updated according to the resulting Q-factor estimates. The update rules for

the weights in (7.4.13) are based on the Widrow-Hoff algorithm, with L(a)−Q̂(x, a) representing the

difference between the new data value acquired and the output of the neural network (essentially,

the value predicted by the quadratic model). Although the algorithm is similar to A-HYPOT

R-learning in many respects, there are some extra nuances which should be discussed.

Firstly, the algorithm differs from the various R-learning algorithms presented in previous sections

by not using a sequence of values gn to estimate the optimal average reward g∗. Instead, it uses

the value Bmax = maxaB(a). Note that, due to (7.4.4), Bmax = maxa∈A0 Q̂(0, a), and therefore

this update rule is consistent with the relative Q-learning algorithm discussed in Appendix A.9 (see

Example A.9.3). By Lemma A.9.2, the optimal average reward g∗ is equal to maxa∈A0 Q(0, a), which

is why Bmax is output as an estimate for g∗ in the final step of the NEURO-HYPOT algorithm.

Obviously, there is no guarantee that the final value of Bmax will be an accurate estimate for the

average reward that one would actually obtain under the stationary policy θ[R]; indeed, Bmax might

even be greater than g∗. In order to evaluate the performance of the policy θ[R] accurately, one

may perform regular ‘Frozen Phase’ (FP) evaluations as discussed in Section 7.2.

The reason for the ‘relative Q-learning’-style rule being preferred to the ‘R-learning’-style rule for

defining the data pieces in (7.4.11) (in other words, gn being omitted in favour of Bmax) is that,

based on experimental results, it appears that the stability of the algorithm is improved by using

this method. When function-fitting is used, the weights of the neural network may be extremely

volatile in the early stages of the algorithm, in the sense that they may fluctuate wildly and take

undesirably large or small values. If one attempts to use the R-learning approach and rely upon

a sequence of values gn which are updated using a rule similar to (7.2.12), then the calculation of

each value gn must be made according to estimates for two Q-factors, which in turn are dependent
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upon the weights of the neural network. When this approach is used, it appears that the behaviour

of the sequence (gn)n∈N is simply too unpredictable in the initial phase of the algorithm; it may

even diverge (in either a positive or negative direction) and cause the weights of the network to

do the same. When Bmax is used instead of gn, the estimates for the average reward are made

according to a single bias term, and thus are less susceptible to divergent behaviour.

Secondly, the neural networks used by the algorithm are calibrated in such a way that they do not

simply use the components xi of the state vector x (and the squared components x2
i ) as inputs,

but instead use xi/bi and (xi/bi)
2, where bi = maxx∈S̃ xi for each i ∈ {1, 2, ..., N} (see steps 3(c)

and 3(d)). This is a way of normalising the inputs, so that they always take values between 0 and

1. Again, this adjustment is made in order to improve the algorithm’s performance; it appears to

behave in a more stable manner when the inputs are restricted to the range [0, 1] (see [62], p. 77).

Of course, even when the inputs xi/bi and (xi/bi)
2 are used, the theoretical model being fitted by

the algorithm still has the form (7.4.4); effectively, one simply re-scales the values of the weights

wi. The boundary values bi are dependent on the bounds of the finite state space S̃, which can be

chosen in the initial configuration of the algorithm. An obvious possibility is to let bi correspond to

the selfish threshold B̃i defined in (4.1.2), but in fact this may yield poor results in systems where

average reward optimality is achieved by policies which cause the process to remain ‘distant’ from

the boundaries of S̃ at all times. This will be discussed further in the next example.

A further important point to make is that the learning parameters δn must not be dependent upon

the number of visits made to any particular state or state-action pair, nor must they be determined

in any other way which would require a unique value to be stored for every individual state or pair.

Naturally, this is in keeping with the constraints assumed throughout this section. The examples

given earlier in this chapter relied upon rules such as (7.2.14) for the learning parameters, so this

means that a new rule for δn must be found for the NEURO-HYPOT algorithm. There are many

ways of defining δn so that it decays with n whilst also preserving the properties (A.9.3); however,

in practice, setting δn to a small constant value (i.e. removing the dependence on n) can also work

well in some scenarios. Again, this will be discussed in the example which follows.
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Example 7.4.3. (Structural properties of the NEURO-HYPOT policy)

The purpose of this example is not only to test the performance of the NEURO-HYPOT algorithm,

but also to examine the structural properties of the policy that it obtains. The latter will be done

by examining the final values of the weights of the neural network in order to determine whether

or not various structural properties discussed in earlier chapters (e.g. containment, monotonicity)

are preserved by the ‘neural’ policy θ[R]. Once again, the parameters from Example 7.2.3 will be

considered. The system under consideration has a demand rate λ = 25, 4 service facilities with

parameters given in (7.2.13) and |S̃| ≈ 43,000, where S̃ is the selfish state space.

An experiment was performed in which the NEURO-HYPOT algorithm was allowed to run for 40

million iterations. As in previous examples, an ε-greedy rule was used for selecting actions, with

ε = 0.15. Frozen Phase (FP) updates (i.e. simulation runs using the algorithm’s latest ‘guess’

for an optimal policy) were performed after every 10,000 iterations in order to gauge its progress.

Some initial tests showed that when the ‘caps’ bi used in steps 3(c) and 3(d) of the algorithm were

set equal to the selfish thresholds B̃i defined in (4.1.2), a relatively large number of iterations were

required before the algorithm began to approach an optimal policy. It appears that in general, the

progress of the algorithm may be slow in systems for which there exists an average reward optimal

policy θ∗ with an associated set of positive recurrent states Sθ∗ much smaller than S̃.

As discussed previously, evidence from the literature (see [62], p. 77) suggests that it is desirable

to restrict the neural network (ANN) inputs to the range [0, 1] if it is feasible to do so. Based on

this principle, the A-HYPOT algorithm has been designed in such a way that it uses the bounds

of the finite state space S̃ to scale the ANN inputs so that they are guaranteed to lie in the range

[0, 1]. While this approach may not be strictly necessary for ensuring stability, it appears to be

sufficient for the purpose at hand. However, the problem remains of exactly how the bounds of the

finite set S̃ should be determined. If S̃ is too large, then the inputs received by the ANN on most

of its iterations will tend to be much smaller than 1, and this will cause the algorithm to perform

poorly (in terms of convergence speed). This is likely to be the reason for the selfish state space

being unsuitable for employment as the finite state space S̃ in this particular example.

In order to improve the performance of the algorithm, it was decided that the values bi should be

set approximately equal to the boundary values associated with an average reward optimal policy.
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Of course, one begins the procedure without any knowledge of the structure of an optimal policy, so

this poses a problem. The solution adopted in this particular experiment was to draw upon results

from Section 6.1, and determine the values bi according to the Whittle indices Wi(x) defined in

(6.1.13). The Whittle index policy is a heuristic policy which, based on the results in Chapter

6, appears to closely approximate an optimal policy in many given problem instances. Thus, it

is reasonable to suppose that the positive recurrent state space SW associated with the Whittle

policy should have similar dimensions to the corresponding region Sθ∗ associated with an optimal

policy. However, it is also known (by Theorem 6.1.10) that the Whittle policy is actually more

conservative than the optimal policy that one would find using relative value iteration. Taking this

into account, a reasonable approach is to define the thresholds bi as follows:

bi := min {x ∈ N0 : Wi(x) < 0}+K (i = 1, 2, ..., N), (7.4.14)

where K is a non-negative integer. By using this approach, one defines the finite state space S̃ so

that it includes all states x ∈ SW which would be positive recurrent under the Whittle policy, and

(by adding the extra term K in (7.4.14)) some extra states which would not be recurrent under the

Whittle policy. As explained above, the idea of including these ‘extra states’ is to allow the policy

θ[R] found by the NEURO-HYPOT algorithm the freedom to be slightly less conservative than the

Whittle policy; there is no guarantee that the algorithm will yield a policy which actually accesses

these ‘extra states’, so the intention is merely to allow some extra flexibility.

Ideally, the value of K should be small, in order to allow the algorithm to converge quickly towards

a strong policy. However, small values of K also restrict the algorithm’s freedom to explore beyond

the realms of the Whittle state space SW , so (once again) there is a compromise to be made between

the amount of running time required and the likelihood of obtaining a near-optimal policy. In this

particular example, it was decided after some experimentation that K = 2 would be a suitable

value. Using (7.4.14) to compute the resulting bi values, one obtains 6, 6, 7 and 7 for b1, b2, b3 and

b4 respectively. The corresponding selfish thresholds are 14, 16, 12 and 12, so in this example the

rule (7.4.14) yields a very significant reduction in the size of the finite state space.

Experimental results have also shown that, perhaps surprisingly, choosing a small constant value

for the learning parameters δn can yield satisfactory results in many problem instances. Perhaps

the simplest explanation for this is that if a rule is chosen which causes δn to decay with n, then
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the performance of the NEURO-HYPOT algorithm can be quite sensitive to the rate of decay.

When the δn values become very small, essentially the changes made to the weights in step 3(d)

become negligible, so that no further improvements to the policy are possible. In general, the more

complicated the system (in terms of the number of facilities, size of the state space, etc.), the slower

the rate of decay should be. Thus, to be on the safe side, it appears that choosing a very slow rate

of decay should always be a good option, but if the running time of the algorithm is only finite

then this is almost equivalent to using a constant value. It is worth noting that the RL algorithms

considered in earlier sections were largely able to avoid the problem of making the rate of decay

appropriate for the size of the system by using rules such as (7.2.14), under which the learning

parameters depend on the numbers of visits made to individual state-action pairs, which naturally

causes the rate of decay to be slower in larger systems. When the parameters δn are allowed to

depend only on the iteration count n, it is more difficult to find an appropriate rule.

When a constant value for the learning parameters is used, one must abandon any hopes of ‘conver-

gence’ being achieved in any rigorous mathematical sense (obviously, the second condition in (A.9.3)

is no longer satisfied); however, as discussed at various stages earlier in this chapter, convergence

of the Q-factor estimates is not necessarily either realistic or desirable where RL algorithms are

concerned. The advantage of using a constant value for the learning parameters is that it ensures

that the algorithm persists in ‘exploring’ throughout its finite run-time; at no stage does it simply

‘stall out’. Returning to the present example, it was decided after some experimentation that the

value δn = 0.001 (for all n ∈ N) would be suitable. Table 7.5 shows, for each action a ∈
⋃

xAx, the

values of the weights B(a), C
(1)
i (a) and C

(2)
i (a) obtained after 40 million iterations.

It should be made clear that the weights shown in Table 7.5 are intended for use in the original

form of the quadratic model (7.4.4), and not the ‘adjusted’ version of the model (7.4.12) in which

the inputs xi and x2
i are divided by bi and b2i respectively. In other words, the final values of

the weights output by the NEURO-HYPOT algorithm have been re-scaled so that they fit the

original model (7.4.4). This enables an easy comparison with the results from the multivariate

regression experiment in Example 7.4.2 (shown in Table 7.4) to be made. Without conducting a

detailed analysis, it is obvious that there are considerable differences between the two sets of results,

with the NEURO-HYPOT algorithm appearing to produce larger values for the weights C
(2)
i (a)
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a = 0 a = 1 a = 2 a = 3 a = 4

B(a) -18.729 127.089 99.872 54.188 22.068

C
(1)
1 (a) -81.672 -86.183 -86.137 -81.222 -81.097

C
(1)
2 (a) -33.499 -35.760 -39.738 -32.437 -33.497

C
(1)
3 (a) 0.971 0.498 0.335 0.889 1.020

C
(1)
4 (a) -0.756 -0.591 -0.487 -0.559 -1.271

C
(2)
1 (a) -11.037 -15.725 -10.688 -11.133 -11.112

C
(2)
2 (a) -4.141 -3.938 -5.699 -4.445 -4.143

C
(2)
3 (a) -1.748 -1.692 -1.731 -3.361 -1.762

C
(2)
4 (a) -0.068 -0.061 -0.044 -0.057 -0.246

Table 7.5: Weights obtained using the NEURO-HYPOT algorithm for the system in Example 7.4.3.

associated with the quadratic terms (except in the case i = 4), so that the approximating functions

appear to have a more ‘quadratic shape’ than those obtained using regression. Incidentally, a quick

simulation experiment shows that the stationary policy that would be obtained using the regression

weights in Table 7.4 yields an average reward of approximately 123.6, whereas the NEURO-HYPOT

policy θ[R] attains an average reward within 0.1% of the optimal value g∗ ≈ 126.6.

Figure 7.13 provides a diagrammatic comparison between the performances of the A-HYPOT R-

learning algorithm (see page 323) and the NEURO-HYPOT algorithm over the entire 40 million

iterations. For convenience, let A-HYPOT and NEURO-HYPOT be abbreviated to A-H and N-H

respectively. Since the N-H algorithm does not use a sequence of values gn to track the estimated

average reward, the evolution of the bias term Bmax (which, as discussed previously, also provides an

approximation for the average reward) is shown in the figure instead. Unsurprisingly, the behaviour

of Bmax is considerably more erratic than that of the values gn used by the A-H algorithm, and the

FP estimates are also somewhat slower to converge to the optimal value g∗ in the N-H case than

in the A-H case. It is to be expected that N-H will compare unfavourably with A-H in systems of

relatively modest size, since the A-H algorithm enjoys the luxury of being able to store estimates

for Q-factors individually, whereas the N-H algorithm must rely on approximating functions. The

major advantage of the N-H algorithm, of course, is that it can be used in systems with state spaces

which are much larger than those which A-H would be able to cope with. Also, it should be pointed
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Figure 7.13: Performances of the A-HYPOT and NEURO-HYPOT algorithms in Example 7.4.3.

out that in this particular example, the N-H algorithm appears to perform very well in comparison

to the other R-learning algorithms considered earlier in this chapter (see Figure 7.7).

As mentioned earlier, a further objective in this example is to analyse the structural properties of

the NEURO-HYPOT policy θ[R] using the weights in Table 7.5. First, consider the ‘containment’

property discussed in Section 4.2. It is known that the recurrent state space Sθ∗ for any average

reward optimal policy θ∗ has the property Sθ∗ ⊆ S̃, where S̃ is the selfish state space. During

the evolution of the N-H algorithm, the process was constrained to a finite subset of S̃ defined by

thresholds b1 = 6, b2 = 6, b3 = 7 and b4 = 7. As such, the algorithm was not allowed to explore

any states outside S̃. Nevertheless, one may still use the weights in Table 7.5 and the quadratic

model (7.4.4) to determine decisions for each state in the infinite state space {(x1, x2, x3, x4) :

x1, x2, x3, x4 ∈ N0}, although there is no guarantee that these decisions will be the same as those

which would be obtained by allowing the algorithm to explore a larger finite state space. In the

remainder of this example, S will denote the infinite state space defined in (3.5.1).

Let θ[R] now refer to the NEURO-HYPOT policy which chooses an action at any state x ∈ S which

maximises the estimate Q̂(x, a) given by (7.4.4), assuming that all actions are permitted at every

state; that is, Ax = A = {0, 1, 2, 3, 4} for every state x ∈ S. In general, in order to show that the
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recurrent region Sθ[R] is contained within some finite set S† ⊂ S with thresholds bi = maxx∈S† xi,

it is sufficient to show that the estimates Q̂(x, a) satisfy the following for each i:

max
x∈S†
xi=bi

(
Q̂(x, i)− Q̂(x, 0)

)
< 0. (7.4.15)

This states that θ[R] will not prefer joining facility i to balking at any state x ∈ S† with xi = bi.

Somewhat surprisingly, in this particular example the property (7.4.15) fails to hold when the

thresholds bi are set to the selfish thresholds B̃i. Indeed, for i = 4 one finds:

Q̂(x, 4)− Q̂(x, 0) = 40.797 + 0.575x1 + 0.002x2 + 0.049x3 − 0.515x4

− 0.075x2
1 − 0.002x2

2 − 0.014x2
3 − 0.178x2

4. (7.4.16)

The roots of the quadratic equation 40.797 − 0.515x4 − 0.178x2
4 = 0 are (approximately) −16.655

and 13.762. This implies that one can set x1 = x2 = x3 = 0 in (7.4.16) and choose any non-negative

integer value smaller than 14 for x4, with the result that Q̂(x, 4)− Q̂(x, 0) is positive. In particular,

Q̂((0, 0, 0, 12), 4) − Q̂((0, 0, 0, 12), 0) > 0, which implies that the policy θ[R] favours joining facility

4 over balking at the state (0, 0, 0, 12). However, the selfish threshold for facility 4 is B̃4 = 12, so

this provides an indication that θ[R] may fail to conform to the containment principle for socially

optimal policies discussed in earlier chapters. Indeed, further analysis shows that it is possible to

identify certain states x ∈ S which possess all three of the following properties:

1. x is positive recurrent under θ[R];

2. Q̂(x, 4) > Q̂(x, a) for all a ∈ {0, 1, 2, 3};

3. x4 ≥ B̃4.

One such example is the state x = (6, 7, 7, 12). This shows that, in this particular example, θ[R]

fails to possess the containment property; that is, Sθ[R] is not contained in S̃.

The fact that θ[R] chooses to join facility 4 at certain states x ∈ S with x4 ≥ B̃4 may be regarded

as something of a peculiarity in this example, which appears to be a consequence of the parameter

values chosen for that particular facility. Indeed, it transpires that the property (7.4.15) holds

with threshold values b1 = 6, b2 = 8 and b3 = 7 and b4 = 14. Since these values of b1, b2 and b3

are smaller than B̃1, B̃2 and B̃3 respectively, it follows that under the policy θ[R], the numbers of
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customers present at facilities 1, 2 and 3 remain within the selfish thresholds at all times. Facility 4

has a much faster service rate than the other facilities (see (7.2.13)) and therefore one would think

that it would tend to be the most sparsely-populated of the four facilities during the evolution of

the NEURO-HYPOT algorithm (although obviously this depends on the decisions chosen at the

various states). Hence, it might be the case that the weights C
(1)
4 (a) and C

(2)
4 (a) given by the

algorithm (for the various actions a ∈ A) are distorted as a result of insufficient exploration of

the state space; in other words, the algorithm is unable to ‘test’ enough different values of the

component x4, and fails to obtain appropriate values for C
(1)
4 (a) and C

(2)
4 (a).

On the other hand, in this particular example, the NEURO-HYPOT policy θ[R] appears to be quite

successful in preserving certain monotonicity properties which have been associated with optimal

or near-optimal policies in earlier chapters. For example, it can be shown that if θ[R] chooses to join

some facility i ∈ {1, 2, 3, 4} at some state x ∈ S with xi ≥ 1, then the same action (a = i) is also

chosen by θ[R] at the state xi−. The easiest way to show this is to let i be fixed and examine the

partial derivatives of Q̂(x, i)− Q̂(x, a) (for all actions a 6= i) with respect to xi, implicitly treating

the component xi as a continuous variable. Indeed, in the case i = 1, one finds:

∂

∂x1

(
Q̂(x, 1)− Q̂(x, 0)

)
= −4.511− 9.376x1,

∂

∂x1

(
Q̂(x, 1)− Q̂(x, 2)

)
= −0.046− 10.074x1,

∂

∂x1

(
Q̂(x, 1)− Q̂(x, 3)

)
= −4.961− 9.184x1,

∂

∂x1

(
Q̂(x, 1)− Q̂(x, 4)

)
= −5.086− 9.226x1. (7.4.17)

Since all of these partial derivatives are negative, it follows that if Q̂(x, 1) ≥ Q̂(x, a) for all actions

a 6= 1 at some state x ∈ S with x1 ≥ 1, then Q̂(x1−, 1) ≥ Q̂(x1−, a) for all a 6= 1 also, which

establishes the required monotonicity property. One can show that the analogous property also

holds for the other facilities i ∈ {2, 3, 4}. The conclusion of this example is that, in a moderate-

sized system, the NEURO-HYPOT algorithm is capable of obtaining a policy θ[R] which comes

extremely close to attaining average reward optimality. Furthermore, structural properties such as

monotonicity may be preserved by θ[R], but this is not theoretically guaranteed. �

The next section will present empirical evidence to show that the A-HYPOT and NEURO-HYPOT

algorithms are both able to perform consistently well in tests involving randomly-generated param-



Chapter 7 Reinforcement learning 360

eter sets, without requiring an excessively large number of iterations to be performed.

7.5 Numerical results

The A-HYPOT and NEURO-HYPOT algorithms introduced in Sections 7.3 and 7.4 respectively

both aim to find near-optimal policies by simulating the continuous-time evolution of the MRA

process, which is basically a re-formulated MDP in which the state of the system at any given time

is the ‘physical’ state observed by the most recent customer to arrive. The A-HYPOT (henceforth,

A-H) algorithm relies on the assumption that it is computationally feasible to store unique values

Q̂(x, a) and ν(x, a) for all state-action pairs (x, a) ∈ S̃ × Ax during the running of the algorithm,

whereas the NEURO-HYPOT (henceforth, N-H) algorithm instead relies upon value function ap-

proximation. Examples 7.3.2 and 7.4.3 have shown that both algorithms are capable of achieving a

strong performance. However, in order to assess their capabilities more thoroughly, it is desirable

to carry out an extensive series of tests involving randomly-generated parameters.

This section will report the results of numerical experiments, similar to those which were used

in Section 6.3 to evaluate the performances of the Whittle index heuristic and the static routing

heuristic. Three different system ‘size categories’ will be considered, as follows:

• Part 1 of this section will consider systems in which the size of the selfish space S̃ is between

100 and 100,000 states. In these systems, it will be possible to use a DP algorithm to evaluate

the optimal average reward g∗, and also compute the average rewards earned by the policies

given by the A-H and N-H algorithms. It will also be possible to compare the performances

of these policies with those of the heuristic policies considered in Chapter 6.

• Part 2 of this section will consider systems in which |S̃| is between 100,000 and 1 million

states. These are intended to represent ‘moderate-sized’ systems, in which DP algorithms are

unacceptably slow (relative to the time required for an RL algorithm to obtain a near-optimal

policy), but nevertheless |S̃| is not too large to allow the A-H algorithm (with its reliance

upon storing unique values for individual state-action pairs) to be employed.

• Finally, Part 3 of this section will consider systems in which |S̃| is greater (indeed, possibly

much greater) than 1 million. These are intended to represent ‘large’ systems, in which the



Chapter 7 Reinforcement learning 361

use of any algorithm which relies upon using arrays of size |S̃×Ax| to store unique values for

individual state-action pairs is simply too computationally expensive to be feasible. These

systems will therefore permit the use of the N-H algorithm, but not the A-H algorithm. As

in the other parts, it will be possible to compare the performance of the policy given by the

N-H algorithm with those of the heuristic policies discussed in Chapter 6.

The remainder of this section will proceed to present the results obtained from numerical experi-

ments involving more than 80,000 sets of randomly-generated system parameters.

Part 1: 36,136 systems of small-to-moderate size

An experiment was performed in which the A-H and N-H algorithms were applied to 36,136 systems

with randomly-generated parameters. In fact, these parameter sets were the same ones that were

used in the first part of Section 6.3. This made it possible to use the data collected from earlier

experiments to compare the performances of the A-H and N-H algorithms with those of the heuristic

policies tested previously. The method for generating the random parameters was already described

in Section 6.3. For each individual system, 10 million iterations of the A-H and N-H algorithms

were performed; of course, one would expect the performances of these algorithms to improve if

they were allowed to run for a larger number of iterations, but for the purposes of this experiment it

was necessary to impose a strict limit. As in previous examples, an ε-greedy rule was used for action

selection, with ε = 0.15. The learning parameters were given by δn(a) = 10/(10 + νn(xn, a) − 1)

and ζn = 1/(n+ 1) in the A-H case, and δn(a) = 0.001 in the N-H case. The ‘caps’ bi used by the

N-H algorithm were given by the rule (7.4.14) used in Example 7.4.3, with K = 2.

In this section, θ[AH] and θ[NH] will denote the policies given by the A-H and N-H algorithms

respectively after 10 million iterations. Obviously, θ[AH] and θ[NH] cannot be derived in a deter-

ministic fashion using the system parameters; they depend on the random simulation of the system.

In this respect, they differ from the heuristic policies θ[W ] and θ[B] considered in Chapter 6. As

in Section 6.3, let ρ := λ/
∑N

i=1 ciµi be a measure of the relative traffic intensity for a particular

system. Figure 7.14 illustrates the distributions of the percentage sub-optimality for the policies

θ[AH] and θ[NH] in ‘light-demand’ systems with ρ ∈ (0, 0.5). For comparison purposes, the heuristic

policies θ[W ] and θ[B] and the selfish policy θ̃ are also represented in the figure. Figures 7.15 and

7.16 show the corresponding findings for the respective cases ρ ∈ (0.5, 1) and ρ > 1.
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Figure 7.14: The distributions of the percentage sub-optimality for the A-H policy θ[AH], the N-H policy

θ[NH], the Whittle policy θ[W ], the Bernoulli policy θ[B] and the selfish policy θ̃ in systems with ρ ∈ (0, 0.5).
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Figure 7.15: The distributions of the percentage sub-optimality for the A-H policy θ[AH], the N-H policy

θ[NH], the Whittle policy θ[W ], the Bernoulli policy θ[B] and the selfish policy θ̃ in systems with ρ ∈ (0.5, 1).



Chapter 7 Reinforcement learning 363

Within<0.1O
of<optimality

Within<0.5O
of<optimality

Within<1O
of<optimality

Within<2.5O
of<optimality

Within<5O
of<optimality

0

20

40

60

80

100
Whittle<policy Bernoulli<policy Selfish<policy

P
e

rc
e

n
ta

g
e

<o
f<
tr

ia
ls

1<<<ρ < 1.5 A-HYPOT<policy NEURO-HYPOT<policy

Figure 7.16: The distributions of the percentage sub-optimality for the A-H policy θ[AH], the N-H policy

θ[NH], the Whittle policy θ[W ], the Bernoulli policy θ[B] and the selfish policy θ̃ in systems with ρ ∈ (1, 1.5).

Figures 7.14-7.16 show that the A-H policy θ[AH] tends to achieve the strongest performance overall.

It appears to be very consistent in earning average rewards within 1% of the optimal value (despite

the relatively small number of iterations performed), whereas the N-H policy θ[NH] and the heuristic

policies θ[W ] and θ[B] are somewhat less consistent, especially when ρ is large.

Table 7.6 shows, for both of the RL policies θ[AH] and θ[NH], further details of the distribution of

the percentage sub-optimality in each of the three ρ categories. The combined results for all three

categories are also shown. The corresponding results for the heuristic policies θ[W ] and θ[B] and

the selfish policy θ̃ were already given in Section 6.3 (see Table 6.8). For each policy (within each

category), Table 7.6 shows the 25th, 50th, 75th and 100th percentiles of the percentage sub-optimality

(over all trials performed), and a two-sided 99% confidence interval for the mean.

Although the A-H algorithm appears to perform consistently well in all categories, it is worth

noting that in a very small number of cases, the N-H policy θ[NH] appears to perform extremely

poorly; indeed, its maximum sub-optimality over all of the 36,136 trials is approximately 75%. It

is difficult to explain why the N-H algorithm is prone to catastrophic failures in a (very small)

number of cases, but one possible theory is that the algorithm is prone to volatility due to the

fact that the ANN weights which are updated on each iteration affect the Q-factor estimates at all
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All demand rates

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

θ[AH] 0.000 0.007 0.043 3.509 0.069± 0.003

θ[NH] 0.029 0.243 0.637 74.838 0.567± 0.024

Light demand (ρ ∈ (0, 0.5))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

θ[AH] 0.000 0.001 0.004 3.422 0.012± 0.001

θ[NH] 0.001 0.011 0.091 5.516 0.111± 0.004

Medium demand (ρ ∈ (0.5, 1))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

θ[AH] 0.009 0.035 0.120 3.509 0.140± 0.004

θ[NH] 0.174 0.455 0.935 36.207 0.697± 0.016

High demand (ρ ∈ (1, 1.5))

Policy Lower quartile Median Upper quartile Maximum 99% C.I. for Mean

θ[AH] 0.000 0.011 0.048 2.268 0.055± 0.002

θ[NH] 0.186 0.409 0.792 74.838 0.893± 0.037

Table 7.6: The distribution of the percentage sub-optimality under the two RL policies θ[AH] and θ[NH],

with results categorised according to the value of ρ. All figures are rounded to 3 decimal places.
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system states. Occasionally, the weights may be updated in such a way that the algorithm’s latest

guess for an optimal policy changes dramatically and also disastrously. If the algorithm happens to

be terminated at the precise moment that one of these ‘dips’ occurs, then the resulting policy will

be poor. However, these ‘dips’ (if they occur) are likely to be corrected by the algorithm almost

immediately. Therefore, in practice, if one is monitoring the performance of the algorithm (by

performing regular FP evaluations, for example) then one should be able to ensure that the final

policy obtained achieves an acceptable performance; in other words, it should be possible to ignore

any weak policies which are caused by sudden dips in the algorithm’s performance.

Table 7.7 shows pairwise comparisons between the RL policies θ[AH] and θ[NH], the heuristic policies

θ[W ] and θ[B] and the selfish policy θ̃, similar to the comparisons presented in Section 6.3. Results

are shown for each of the three categories ρ ∈ (0, 0.5), ρ ∈ (0.5, 1) and ρ ∈ (1, 1.5), with an ‘all

demand rates’ category also included, and each figure in the table shows the percentage of trials

(within the relevant ρ category) in which the policy in the corresponding row achieved a strictly

greater average reward than the policy in the corresponding column. The results show that, as

expected, the A-H policy (which enjoys the advantage of being able to store Q-factor estimates

explicitly) consistently out-performs the N-H policy over all categories, and it also achieves strong

performances against both of the heuristic policies θ[W ] and θ[B]. There are some minor variations

to note between the various categories; for example, the Whittle policy achieves quite a strong

performance against both of the RL policies in the ‘light demand’ category (and even appears to

out-perform the N-H policy), but fares substantially worse in the other categories.

Part 2: 26,277 systems of moderate size

A further experiment was performed, involving a further 26,277 sets of randomly-generated param-

eters. These parameters were generated in a similar way to those in Part 1, except that in this

case, parameter sets were accepted only if they yielded a value of |S̃| between 100,000 and 1 million

states. As explained earlier, these systems were intended to represent ‘moderate-sized’ systems, in

which one would not be able to compute an optimal policy efficiently using a DP algorithm, but

the use of an RL algorithm involving the storage of Q-factor estimates for individual state-action

pairs would be considered feasible. For each of the 26,277 systems tested, estimates of the average

rewards earned by the RL policies θ[AH] and θ[NH], the heuristic policies θ[W ] and θ[B] and the
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All demand rates Light demand (ρ ∈ (0, 0.5))

θ[AH] θ[NH] θ[W ] θ[B] θ̃ θ[AH] θ[NH] θ[W ] θ[B] θ̃

θ[AH] x 88.32 79.47 90.32 93.94 θ[AH] x 75.31 52.66 79.43 82.74

θ[NH] 8.58 x 55.80 72.37 91.21 θ[NH] 20.41 x 29.23 63.29 75.48

θ[W ] 19.55 42.19 x 63.82 93.77 θ[W ] 44.42 64.76 x 73.25 84.19

θ[B] 8.58 25.30 31.61 x 91.32 θ[B] 17.36 29.91 14.85 x 76.02

θ̃ 4.98 6.57 3.07 6.07 x θ̃ 14.02 17.87 6.37 16.16 x

Medium demand (ρ ∈ (0.5, 1)) High demand (ρ ∈ (1, 1.5))

θ[AH] θ[NH] θ[W ] θ[B] θ̃ θ[AH] θ[NH] θ[W ] θ[B] θ̃

θ[AH] x 94.28 94.46 93.18 99.11 θ[AH] x 95.39 91.38 98.35 99.99

θ[NH] 3.47 x 71.66 71.90 98.19 θ[NH] 1.84 x 66.60 81.90 99.98

θ[W ] 5.54 28.34 x 49.04 97.14 θ[W ] 8.62 33.40 x 69.03 99.99

θ[B] 6.77 27.91 49.80 x 97.97 θ[B] 1.63 18.10 30.34 x 99.99

θ̃ 0.89 1.81 2.86 2.03 x θ̃ 0.01 0.02 0.00 0.01 x

Table 7.7: Pairwise comparisons between θ[AH], θ[NH], θ[W ], θ[B] and θ̃. Each figure shows the percentage of

trials in which the policy in the corresponding row out-performed the policy in the corresponding column.

selfish policy θ̃ were obtained using simulation. The A-H and N-H algorithms were allowed to run

for 10 million iterations each (as in Part 1), and the other parameters used by these algorithms

were defined in the same way as in Part 1. All policies were evaluated by simulating 10 million ran-

dom transitions (including ‘dummy’ transitions caused by uniformisation), with the same random

number seed used in all cases and the same discrete-time step size used for each policy.

Pairwise comparisons between the five policies θ[AH], θ[NH], θ[W ], θ[B] and θ̃ with respect to the

performances achieved in these additional 26,277 tests are shown in Table 7.8. As in Part 1, the A-H

policy θ[AH] appears to achieve the strongest performance overall. In fact, its relative performance

in comparison to the other four policies actually appears to be stronger than in Part 1 (the ‘small

systems’ case). The N-H policy θ[NH] appears to be slightly less consistent than the A-H policy,

but nevertheless compares favourably with the heuristic policies θ[W ] and θ[B].
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All demand rates Light demand (ρ ∈ (0, 0.5))

θ[AH] θ[NH] θ[W ] θ[B] θ̃ θ[AH] θ[NH] θ[W ] θ[B] θ̃

θ[AH] x 96.39 92.42 97.47 97.11 θ[AH] x 84.10 74.88 88.28 86.98

θ[NH] 3.61 x 65.70 72.92 92.78 θ[NH] 12.72 x 43.56 74.57 77.02

θ[W ] 7.22 34.30 x 57.04 93.50 θ[W ] 19.07 53.34 x 71.40 82.38

θ[B] 2.17 27.08 41.88 x 90.61 θ[B] 6.75 22.49 19.79 x 72.57

θ̃ 2.17 7.22 3.97 8.30 x θ̃ 7.31 19.36 8.92 21.58 x

Medium demand (ρ ∈ (0.5, 1)) High demand (ρ ∈ (1, 1.5))

θ[AH] θ[NH] θ[W ] θ[B] θ̃ θ[AH] θ[NH] θ[W ] θ[B] θ̃

θ[AH] x 99.58 99.87 96.89 99.95 θ[AH] x 96.40 95.18 99.54 100.00

θ[NH] 0.42 x 86.32 45.17 99.75 θ[NH] 3.60 x 78.69 89.31 100.00

θ[W ] 0.12 13.68 x 20.53 99.20 θ[W ] 4.82 21.31 x 72.81 100.00

θ[B] 3.11 54.83 79.47 x 99.56 θ[B] 0.46 10.69 27.19 x 100.00

θ̃ 0.00 0.25 0.80 0.44 x θ̃ 0.00 0.00 0.00 0.00 x

Table 7.8: Pairwise comparisons between θ[AH], θ[NH], θ[W ], θ[B] and θ̃ in ‘moderate-sized’ systems.

Part 3: 24,074 systems of large size

Finally, a further experiment was performed involving the application of the N-H algorithm to a

further 24,074 systems with randomly-generated parameters. These parameter sets were, in fact,

identical to the ones used in Part 2 of Section 6.3. In each of the systems tested, the number of

facilities N was between 8 and 12, and the size of the selfish state space S̃ was at least 1 million

states. Indeed, the median of |S̃| over all trials performed was approximately 7.3 × 106, and the

maximum (which occurred in a 12-facility system) was 6.08 × 1022. The A-H algorithm was not

considered in these trials, due to its requirement for explicit values to be stored for individual

state-action pairs. Thus, the purpose of the experiment was to compare the results achieved by the

N-H algorithm with those of the policies θ[W ], θ[B] and θ̃ considered in Section 6.3. As in Part 2,

the average rewards of these policies were estimated using discrete-time simulation.

Table 7.9 shows that, once again, the N-H policy is able to demonstrate a strong performance in
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comparison to the other policies, especially in the ‘medium demand’ and ‘high demand’ categories.

In fact, its relative performance against θ[W ], θ[B] and θ̃ actually appears to be stronger than in

Part 1 (the ‘small systems’ case) and Part 2 (the ‘moderate-sized systems’ case).

All demand rates Light demand (ρ ∈ (0, 0.5))

θ[NH] θ[W ] θ[B] θ̃ θ[NH] θ[W ] θ[B] θ̃

θ[NH] x 72.72 77.25 93.43 θ[NH] x 52.04 68.82 80.59

θ[W ] 25.18 x 58.76 93.75 θ[W ] 41.63 x 57.85 81.70

θ[B] 20.71 37.88 x 92.53 θ[B] 25.04 32.07 x 77.87

θ̃ 6.51 6.18 7.42 x θ̃ 19.24 18.10 21.99 x

Medium demand (ρ ∈ (0.5, 1)) High demand (ρ ∈ (1, 1.5))

θ[NH] θ[W ] θ[B] θ̃ θ[NH] θ[W ] θ[B] θ̃

θ[NH] x 91.54 65.11 99.79 θ[NH] x 74.41 98.01 99.89

θ[W ] 8.46 x 32.76 99.64 θ[W ] 25.59 x 85.99 99.89

θ[B] 34.89 67.24 x 99.80 θ[B] 1.99 14.01 x 99.89

θ̃ 0.21 0.36 0.20 x θ̃ 0.11 0.11 0.11 x

Table 7.9: Pairwise comparisons between θ[NH], θ[W ], θ[B] and θ̃ in ‘large-sized’ systems.

In summary, this section has shown that both of the RL policies θ[AH] and θ[NH] are able to

perform consistently well in comparison to the heuristic policies considered in Chapter 6, even

when the number of RL iterations is restricted to a relatively modest number. As expected, the

A-H algorithm demonstrates greater consistency than the N-H algorithm in systems where it can

feasibly be applied. The N-H algorithm is prone to unpredictable behaviour in some cases, but the

evidence of this section suggests that it can usually be relied upon to surpass the performances of

the heuristic policies θ[W ] and θ[B], provided that it is monitored in a sensible way.

7.6 Extension: Non-exponential distributions

The A-HYPOT and NEURO-HYPOT algorithms discussed in the previous sections both depend

upon a re-formulated MDP, referred to in Section 7.3 as the MRA process, in which the state of
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the system at any given time is the ‘physical’ state x ∈ S observed by the latest customer to

arrive. Essentially, transitions of the MRA process occur only at customers’ arrival times, and the

single-step transition probabilities (which are not explicitly needed by RL algorithms, due to their

reliance on simulation of the system’s random transitions) must take into account all possibilities

for the number of service completions occurring in between two customer arrivals.

In the MRA process, rewards are given by customers’ expected net rewards when they enter the sys-

tem, and therefore the exact points in time at which service completions occur are inconsequential;

it is only important to determine (for each facility) the number of service completions that occur

before the next arrival. As such, from a mathematical point of view, there is no loss of accuracy

involved in assuming that service completions always occur at decision epochs (and not in between

decision epochs), provided that the transition probabilities remain unaffected. One might imagine,

for instance, that customers who have completed service are then held in another (costless) waiting

area and are not physically ejected from the system until the next customer arrives. By adopting

this perspective, it is easier to understand how the MRA process evolves as an MDP.

Throughout this thesis it has been assumed that customers arrive via a Poisson process, which

ensures that the MRA process can be formulated as either a CTMDP or an MDP. However, since

the transitions of the MRA process are associated only with arrivals (and not service completions),

it is possible to obtain a Semi-Markov Decision Process (SMDP) by simply altering the problem

formulation so that inter-arrival times follow an arbitrary probability distribution, as opposed to

an exponential distribution. SMDPs were briefly discussed in Section 3.2; however, it will be

appropriate to provide a proper definition before proceeding further with this section.

Definition 7.6.1. (Semi-Markov Decision Process)

A Semi-Markov Decision Process (SMDP) is a collection of objects:

Ψ =
{
S,Ax, F (x, a), σ(x, a,y), ξ(x, a), ξγ(x, a), γ

}
,

where S is the state space of the process (assumed either finite or countably infinite), Ax is the set

of actions available at state x ∈ S (also assumed either finite or countably finite), Fx(t, a) is the

cumulative distribution function for the amount of time t spent in state x ∈ S given that action

a ∈ Ax is chosen, σ(x, a,y) is the probability that the process transfers from state x ∈ S to y ∈ S
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at its next transition given that action a ∈ Ax is chosen, ξ(x, a) and ξγ(x, a) are (respectively) the

undiscounted and discounted net rewards earned for choosing action a ∈ Ax at state x ∈ S, and

γ ∈ (0,∞) is a continuous discount rate applied to rewards earned in the future.

As discussed previously, a CTMDP is merely a special case of an SMDP. If the sojourn times for

the process are all exponentially distributed, then the SMDP is a CTMDP.

When the queueing system formulation of Section 3.1 is modified so that inter-arrival times follow

an arbitrary distribution, it remains the case that the arrival times of customers form a set of

regeneration points for the process; in other words, the state of the system when a customer arrives

provides, in conjunction with the action chosen, all information which is needed for calculating the

probability distribution of the system state observed by the next customer. Results from the MDP

literature (see [48, 157]) imply the existence of the following set of optimality equations for the

SMDP obtained by allowing inter-arrival times to follow a general distribution:

h(x) = max
a∈Ax

r(x, a)− g∗E[t(x, a)] +
∑
y∈S

p(x, a,y)h(y)

 ∀ x ∈ S, (7.6.1)

where t(x, a) denotes the length of the sojourn in state x given that action a ∈ Ax is chosen, and

the transition probabilities p(x, a,y) are associated with the MRA process. Note that the CTMDP

formulation Ψ given in Section 3.2 would not remain valid under the assumption that inter-arrival

times followed an arbitrary distribution, since in that case the decision epochs associated with

service completions would not necessarily be regenerative; indeed, the sojourn times and transition

probability distributions would depend upon the amount of time elapsed since the last customer

arrival. This illustrates an important advantage of adopting the MRA formulation.

Throughout this section, attention will be restricted to the SMDP associated with the optimality

equations (7.6.1), under the assumption that inter-arrival times follow an arbitrary distribution.

The case of non-exponential service-time distributions will be discussed later. It is very easy to

modify the A-HYPOT and NEURO-HYPOT algorithms presented on pages 323 and 348 respec-

tively so that they can be used in the more general SMDP case. Indeed, both of these algorithms

simply use inverse transform sampling to simulate inter-arrival times, and this technique can easily

be applied to non-exponential distributions. As such, one can use these algorithms in exactly the
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same way as in the case of Poisson arrivals; all that is required is for the pseudo-random numbers

which determine inter-arrival times to be sampled from an alternative distribution.

Unfortunately, it is not easy to assess whether or not the A-HYPOT and NEURO-HYPOT algo-

rithms succeed in finding near-optimal policies in the SMDP case, for the simple reason that it

is too difficult to compute the optimal average reward g∗ in most problem instances. Although

it is theoretically possible to use dynamic programming algorithms such as value iteration to find

optimal policies for SMDPs (after making a truncation of the infinite state space; see, for example,

[48]), the SMDP being considered in this section is used to model the MRA process, in which the

number of possible transitions from a state x ∈ S̃ may be comparable in magnitude to the size

of the finite state space S̃ itself. From a practical perspective, this rules out the use of dynamic

programming algorithms. Another (related) problem is that, without the use of DP algorithms, it

is not feasible to evaluate the performance of any given stationary policy exactly.

The approach in this section will be to compare the policies found by the A-HYPOT and NEURO-

HYPOT algorithms with the policy found by the Whittle index heuristic discussed in Section

6.1. The Whittle heuristic can be adapted to the SMDP problem, although the computations

required in order to compute steady-state probabilities and the Whittle indices themselves become

very complicated when multiple service channels are allowed at the various facilities (this will be

explained further below); for this reason, most of the examples given in this section will assume

that each facility has only a single server available. The average rewards earned by the Whittle,

A-HYPOT and NEURO-HYPOT policies will then be estimated via simulation, with multiple

replicate trials performed in order to ensure that the results obtained are reliable.

Before proceeding with an example, it will be appropriate to discuss how the Whittle indices are

obtained in the SMDP case. As in Section 6.1, one considers a Lagrangian relaxation of the original

N -facility routing problem, in which the objective is to maximise the function:

gθ(W ) :=
N∑
i=1

(αiηi(θ)− βiLi(θ)) +W

(
λ−

N∑
i=1

ηi(θ)

)
, (7.6.2)

where ηi(θ) and Li(θ) are (respectively) the effective queue-joining rate and mean number of cus-

tomers present at facility i ∈ {1, 2, ..., N} under policy θ, and W is a Lagrange multiplier which has

an economic interpretation as a charge for admitting a customer. The maximisation is carried out



Chapter 7 Reinforcement learning 372

over all policies θ which belong to an expanded class of admissible policies Θ′ with the ability to

admit a newly-arrived customer to any subset of the set of facilities {1, 2, ..., N}. As in Section 6.1,

one then obtains a facility-wise decomposition of the Lagrangian problem, in which the objective

is to determine (for each facility i) the policy θi which will maximise the function:

gθi(W ) = (αi −W ) ηi(θi)− βiLi(θi), (7.6.3)

and θi simply chooses between two permissible actions (‘join’ and ‘balk’) each time a new customer

arrives. This single-facility problem is essentially the same as the analogous problem considered in

Section 6.1, except that customers no longer arrive via a Poisson process. In this case, one considers

a GI/M/c queue (where GI stands for ‘General Independent’) as opposed to an M/M/c queue. It

will be assumed that there exists an optimal threshold policy (see Definition 5.1.3) for this GI/M/c

problem; indeed, this has been proved by Yechiali [204]. Furthermore, the fact that the facilities

i ∈ {1, 2, ..., N} are indexable (see Definition 6.1.1) may be established using an argument similar

to that given in the proof of Theorem 6.1.2. Indeed, let gi(T,W ) denote the value of gθi(W ) (as

defined in (7.6.3)) given that θi is a threshold policy with threshold T ∈ N. Then:

gi(T,W ) = λ(1− π̂i(T, T ))(αi −W )− βiLi(θi), (7.6.4)

where π̂i(y, T ) denotes the probability that a customer arrives under state y ∈ N0, given that a

threshold T is applied. At this stage, an important point must be made. When systems with

Poisson arrival rates were considered in earlier sections, it was always the case that the probabil-

ity distribution for the system state observed by a newly-arrived customer was equivalent to the

probability distribution for the system state at an arbitrary point in time; this was due to the

PASTA (Poisson Arrivals See Time Averages) property discussed in Section 7.3. Unfortunately,

however, the PASTA property does not hold when inter-arrival times follow an arbitrary distribu-

tion. Indeed, let {π̂i(x, T )}x∈N0 denote the probability distribution for the single-facility system

state observed at an arrival instant (this will be referred to as the arrival distribution), and let

{πi(x, T )}x∈N0 denote the probability distribution for the system state at an arbitrary point in

time (referred to as the time-average distribution), where in both cases a threshold T is applied.

Then it is generally not the case that π̂i(x, T ) = πi(x, T ) for recurrent states x ≤ T .

Nevertheless, the right-hand side of (7.6.4) is indeed a valid expression for the average reward

gi(T,W ) under threshold T , since (1 − π̂i(T, T )) is the probability that an arriving customer will
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observe the system in some state x < T (and hence join the queue). It follows from (7.6.4) that

gi(T,W ) is linearly decreasing with W , with gradient −λ(1 − π̂i(T, T )). Let g∗i (W ) denote the

optimal average reward for facility i given an admission charge W , and let T ∗i (W ) denote the

corresponding optimal threshold. As observed by Glazebrook et. al. [59], g∗i (W ) is the upper

envelope of a collection of functions that are linear in W , and therefore g∗i (W ) must be convex in

W , which in turn implies that the gradient −λ(1 − π̂i(T ∗i (W ), T ∗i (W ))) must be increasing with

W . However, it can easily be shown that the probability π̂i(T, T ) is decreasing with T (this can

be established using a continuous-time sample path argument; full details will not be given here,

but it is sufficient to consider two finite-capacity GI/M/c queues with thresholds T and T + 1

respectively and show, under the assumption that both queues follow the same sample path, that

a customer arriving at the second queue cannot observe the state T + 1 unless a customer arriving

at the first queue simultaneously observes the state T ). It then follows that the threshold T ∗i (W )

must be decreasing with W , which establishes the required indexability property.

However, the formula (6.1.13) given in Section 6.1 for the Whittle indices Wi(x) is not applicable

in the SMDP case, since it was derived under the implicit assumption of an equivalence between

the arrival distribution and the time-average distribution. Although the equation (7.6.4) is valid,

it would be incorrect to express the expected number of customers present Li(θi) in the form∑T
x=0 xπ̂i(x, T ), since the time-average distribution (rather than the arrival distribution) would be

needed in order to compute this expected value. Therefore it is apparent that the right-hand side

of (7.6.4) depends on both the arrival and time-average distributions. It will be useful to find an

alternative expression for gi(T,W ) which depends on only one of these distributions.

It transpires that the arrival distribution {π̂i(x, T )}x∈N0 is somewhat easier to obtain than the

time-average distribution, and so it will be convenient to consider only the arrival distribution. By

again relying upon the strategy of calculating customers’ expected net rewards when they enter the

system, one can write gi(T,W ) in a form which does not depend upon Li(θi):

gi(T,W ) =


(1− π̂i(T, T ))

(
αi −

βi
µi

)
, if T ≤ ci,

ci−1∑
x=0

π̂i(x, T )

(
αi −

βi
µi

)
+

T−1∑
x=ci

π̂i(x, T )

(
αi −

βi(x+ 1)

ciµi

)
, if T > ci.

As mentioned earlier, the calculation of the arrival probabilities π̂i(x, T ) for a finite-capacity
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GI/M/c queue is an extremely laborious task in general (see [86]), but it is not especially dif-

ficult in the special case c = 1. Therefore the derivation of the Whittle indices will proceed under

the assumption of a single-server queue, i.e. a GI/M/1/T queue. In this case:

gi(T,W ) =

T−1∑
x=0

π̂i(x, T )

(
αi −

βi(x+ 1)

µi

)
. (7.6.5)

As in Section 6.1, one may then obtain an expression for the Whittle index Wi(x) by equating the

expected average rewards under the thresholds x and x+ 1. The resulting formula, valid for states

x ∈ N0 and given in terms of the arrival probabilities π̂i(x, T ), is as follows:

Wi(x) =

∑x
y=0 π̂i(y, x+ 1) (αi − βi(y + 1)/µi)−

∑x−1
y=0 π̂i(y, x) (αi − βi(y + 1)/µi)∑x

y=0 π̂i(y, x+ 1)−
∑x−1

y=0 π̂i(y, x)
. (7.6.6)

In the case of Poisson arrivals, the fact that (7.6.4) and (7.6.5) are both valid expressions for the

average reward gi(T,W ) ensures that the formula for Wi(x) given in (7.6.6) is exactly equivalent to

the formula (6.1.13) given in Section 6.1. Thus, in order to compute the Whittle indices Wi(x), all

that remains is to compute the arrival probabilities π̂i(x, T ) for thresholds T ∈ N. In a GI/M/1/T

queue, this can be done by considering the embedded Markov chain formed by the points in time

at which customers arrive (see, for example, [67], p. 248). This is defined below.

Definition 7.6.2. (Embedded Markov chain)

Let Ψ be an SMDP operating under an arbitrary policy θ, and let (x0,x1, ...) be the sequence of

states visited under θ. Then (x0,x1, ...) is referred to as an embedded Markov chain.

Let f(t) denote the probability density function of the inter-arrival time distribution (assumed

arbitrary at this point) and let bi : N0 → R be defined for integers n ≥ 0 as follows:

bi(n) :=

∫ ∞
0

e−µit(µit)
n

n!
f(t)dt. (7.6.7)

Thus, bi(n) may be interpreted as the probability that n service completions take place in between

two consecutive customer arrivals in the single-facility problem under consideration (with expo-

nential service rate µi and threshold T ), assuming that the facility serves a continuous stream of

customers and is never idle. It is also possible to interpet (7.6.7) as a mixture of Poisson probabil-

ities; see, for example, [52]. It follows that if a customer arrives under some state x ∈ N0, then the
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probability that the next customer to arrive observes state y ∈ N0 is given by:

bi(z − y), if 1 ≤ y ≤ z,

1−
z−1∑
n=0

bi(n), if y = 0,

0, otherwise,

where z = min(x + 1, T ) is the state immediately after the first customer’s arrival. Hence, the

embedded Markov chain has a single-step transition probability matrix of the form:

Pi =



1− bi(0) bi(0) 0 0 ... 0

1−
1∑

n=0

bi(n) bi(1) bi(0) 0 ... 0

1−
2∑

n=0

bi(n) bi(2) bi(1) bi(0) ... 0

...
...

...
...

. . .
...

1−
T−1∑
n=0

bi(n) bi(T − 1) bi(T − 2) bi(T − 3) ... bi(0)

1−
T−1∑
n=0

bi(n) bi(T − 1) bi(T − 2) bi(T − 3) ... bi(0)


where (for clarity) the element in row x, column y of Pi is the probability that two consecutively-

arriving customers observe states x−1 and y−1 respectively, and the matrix Pi is of order T+1. The

arrival probabilities π̂i(x, T ) for x ∈ {0, 1, ..., T} can then be found by solving the system of linear

equations π̂iPi = π̂i, where π̂i is the row vector of probabilities (π̂i(0, T ), π̂i(1, T ), ..., π̂i(T, T )),

subject to the usual normalisation condition
∑T

x=0 π̂i(x, T ) = 1. The Whittle indices are then

obtained using (7.6.6), and (as in Section 6.1) the Whittle heuristic policy is defined as the policy

which sends a customer arriving under state x ∈ S to a facility i ∈ {1, 2, ..., N} which maximises

Wi(xi), unless all of these indices are negative at x, in which case balking is chosen.

Of course, the transition probabilities bi(n) are dependent upon f(t), the density function for the

arrival-time distribution. A computer program which calculates the Whittle indices will therefore

need to perform integration in order to find these probabilities. The next example compares the
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performances of the policies found using the A-HYPOT and NEURO-HYPOT algorithms with that

of the Whittle heuristic policy under various different arrival-time distributions.

Example 7.6.3. (Alternative distributions for inter-arrival times)

Consider a system with 5 single-server facilities, with the following parameters:

c1 = 1, µ1 = 1, β1 = 4, α1 = 60,

c2 = 1, µ2 = 4, β2 = 5, α2 = 20,

c3 = 1, µ3 = 8, β3 = 8, α3 = 12,

c4 = 1, µ4 = 10, β4 = 7, α4 = 9,

c5 = 1, µ5 = 16, β5 = 5, α5 = 4.

With these parameters, the selfish state space S̃ (which can be found independently of the inter-

arrival distribution) consists of approximately 560,000 states. In this example, the A-HYPOT,

NEURO-HYPOT and Whittle heuristic policies will be compared under various different inter-

arrival distributions. Erlang distributions will be considered first, followed by constant and lognor-

mal distributions. In each case, the two RL algorithms will be calibrated as in previous examples.

Specifically, an ε-greedy rule with ε = 0.15 will be used for action selection, the A-HYPOT algo-

rithm will use learning parameters δn(a) given by the rule (7.3.18) (with T = 10) and secondary

parameters ζn = 1/(n+1), and the NEURO-HYPOT algorithm will use a constant rule δn = 0.001.

Also, as in Example 7.4.3, the NEURO-HYPOT algorithm will use thresholds bi given by the rule

(7.4.14), with K = 2 and the Whittle indices Wi(x) given by the new formula (7.6.6).

Case 1: Erlang distributions

Suppose inter-arrival times follow an Erlang distribution with mean 1/λ and shape parameter k ∈ N

(also referred to as the number of phases; see [67], p. 127). The density function is:

f(t) =
(kλ)(kλt)k−1e−kλt

(k − 1)!
, t ≥ 0.

The case k = 1 represents an exponential distribution. An arrival rate λ = 15 will be used in this

example, and values of k ranging from 2 to 5 will be considered. Figures 7.17-7.18 show the results

of four experiments in which 50 million iterations of the A-HYPOT (A-H) and NEURO-HYPOT

(N-H) algorithms were performed for each of the values k ∈ {2, 3, 4, 5}. For each value of k, the
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(estimated) average reward attained by the Whittle heuristic policy is also shown. These average

rewards were estimated by simulation, with 10 replicate trials performed in each case.
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Figure 7.17: Comparisons between the A-HYPOT, NEURO-HYPOT and Whittle heuristic policies with

inter-arrival times following an Erlang distribution with k = 2 (upper figure) and k = 3 (lower figure).

To some extent, the results shown in Figures 7.17-7.18 are comparable to the results of the exper-

iment in Example 7.4.3, in which a Poisson arrival rate was assumed. In each of the four cases,

the A-H algorithm manages to find a policy which out-performs the Whittle heuristic policy within

about 1.3 million iterations (recall that the FP estimates, shown by dotted lines, indicate the per-

formance of the latest policy found by the algorithm). As expected, the N-H algorithm exhibits a

slightly worse performance than the A-H algorithm, and (except in the case k = 2) it also struggles

to perform as well as the Whittle heuristic. One possible reason for this might be that the quadratic
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Figure 7.18: Comparisons between the A-HYPOT, NEURO-HYPOT and Whittle heuristic policies with

inter-arrival times following an Erlang distribution with k = 4 (upper figure) and k = 5 (lower figure).

architecture (7.4.4) relied upon by the N-H algorithm does not fit the Q-factors so well when the

arrival rate is non-Poisson; further analysis would be required in order to confirm this.

It is also interesting to note that the values gn obtained by the A-H algorithm tend to over-estimate

the average reward earned by the latest policy found by the algorithm; this did not occur when

Poisson arrivals were considered previously. The reason for this is not known.

Another interesting point is that the Whittle heuristic policies appear to become more conservative

as the shape parameter k increases. The indices Wi(0) (for facilities i ∈ {1, 2, ..., N}) are actually

independent of k, and are simply given by αi − βi/µi (as in Section 6.1). However, for all integers
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x ≥ 1, the indices Wi(x) appear to be monotonically decreasing with k. Table 7.10 illustrates this

by showing the values Wi(1) for i ∈ {1, 2, ..., 5} and various different choices of k.

k = 2 k = 3 k = 4 k = 5 k = 10

i = 1 −27.12 −36.68 −42.41 −46.24 −54.92

i = 2 11.52 10.87 10.48 10.23 9.64

i = 3 7.70 7.50 7.37 7.29 7.11

i = 4 3.04 3.03 3.02 3.01 2.99

i = 5 6.34 6.24 6.18 6.14 6.05

Table 7.10: Values of Wi(1) for i ∈ {1, 2, ..., 5} and various different values of k.

Of course, increasing the value of k reduces the amount of variation in the inter-arrival times

(indeed, the variance of the Erlang distribution with parameters λ and k is 1/(kλ2)). It appears

that the effect of increasing the value of k is similar to the effect of increasing the demand rate

λ itself. Results in earlier chapters (specifically, Theorems 4.4.1 and 6.1.7) have established that,

in the case of Poisson arrivals, the optimal average reward g∗ increases with λ and the Whittle

heuristic policy becomes increasingly conservative with λ. Figures 7.17-7.18 appear to show that,

in the case of an Erlang arrival distribution, the Whittle and RL policies attain higher average

rewards when k is increased, while the Whittle policy also appears to become more conservative.

Thus, there is some evidence that reducing the amount of variation in the inter-arrival times works

to the advantage of the system, just as increasing the arrival rate λ is also advantageous.

Case 2: Constant inter-arrival times

Suppose customers arrive at fixed intervals of length 1/λ. In this case, the probabilities bi(n)

defined in (7.6.7) are simply given by the Poisson probability mass function:

bi(n) =
e−µi/λ(µi/λ)n

n!
∀ n ∈ N0.

Constant inter-arrival times arise in certain applications of queueing theory; for example, systems in

which customers arrive at fixed appointment times, or production line systems in which items arrive

via conveyor belts. In fact, a constant distribution is the limiting case of an Erlang distribution

as the shape parameter k tends to infinity (see [67], p. 128), so this case is actually related to the

previous one. Figure 7.19 shows the results of another experiment, identical to the 4 experiments
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conducted in Case 1 except with inter-arrival times following a constant distribution.
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Figure 7.19: Comparison between the A-HYPOT, NEURO-HYPOT and Whittle heuristic policies with

inter-arrival times following a constant distribution. All inter-arrival times are equal to 1/λ.

In Case 1, it was observed that the average reward attained by the Whittle heuristic policy appears

to increase with the Erlang parameter k. Given that constant inter-arrival times represent the case

k = ∞, it therefore comes as no surprise that the Whittle policy is able to earn a greater average

reward in this case than in any of the Erlang cases considered. Also, as in the previous cases,

the Whittle heuristic policy appears to out-perform the NEURO-HYPOT policy (over 50 million

iterations), but is not quite able to match the performance of the A-HYPOT policy.

Case 3: Lognormal distribution

Suppose inter-arrival times follow a lognormal distribution. The density function is:

f(t) =
1

t
√

2πσ
exp

(
−(log t− ν)2

2σ2

)
, t ≥ 0,

where ν ∈ R and σ > 0 are the scale and shape parameters respectively. In this example, the scale

parameter ν = log(1/λ) will be used, where (as in the previous cases) λ = 15; this ensures that

the median of the distribution is 1/λ. Also, σ will be given by |ν|/5. With these parameters, the

lognormal distribution has a shape quite similar to that of the Erlang distribution with k = 3 or

k = 4; see Figure 7.20. Figure 7.21 shows the results of another experiment, again similar to the

previous experiments but with a lognormal distribution used for inter-arrival times.
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Figure 7.20: Comparison between the lognormal distribution considered in Case 3 of Example 7.6.3 and two

of the Erlang distributions considered in Case 1 of the same example.

As in the previous cases, the values gn and Bmax used by the A-HYPOT and NEURO-HYPOT

algorithms respectively tend to over-estimate the average rewards actually attained by these algo-

rithms. Once again, the Whittle heuristic policy attains an average reward greater than that of

the N-H policy (after 50 million iterations), but smaller than that of the A-H policy. �

Before concluding this section, it will be appropriate to briefly discuss the case of non-exponential

service times. Suppose (as in previous chapters) that customers arrive in the system via a Poisson

process with parameter λ > 0, but the service times at the various facilities follow arbitrary

distributions. For simplicity, this scenario will be referred to as the M/G case (Markovian arrivals

and general service time distributions), whereas the scenario considered earlier in this section was

the GI/M case (general arrival-time distribution and Markovian service times).

Unfortunately, the M/G scenario is much more difficult to model using an SMDP. In the GI/M

case, it was possible to exploit the fact that customers’ arrival times formed regeneration points, i.e.

points at which past events had no predictive value. However, when service times follow arbitrary

distributions, it is clearly not possible to use service completion times as regeneration points, since

a service completion at one facility will generally take place while services are still in progress

at other facilities. Even if the service completion times did have the regeneration property (for

example, this would be the case in a single-facility system), it is generally necessary for actions to

be chosen at regeneration points in an SMDP; but if the regeneration points in question correspond

to service completions as opposed to customer arrivals then this poses a problem.
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Figure 7.21: Comparison between the A-HYPOT, NEURO-HYPOT and Whittle heuristic policies with

inter-arrival times following a lognormal distribution with median 1/λ.

Nevertheless, the A-HYPOT and NEURO-HYPOT algorithms both use inverse transform sampling

to simulate the service time requirements of individual customers, and it is therefore very simple to

modify the steps of these algorithms so that service times at the various facilities follow arbitrary

distributions. TheM/G system can then be simulated accurately by both algorithms. Therefore the

problem with applying these algorithms in the M/G case is not related to the simulation of random

transitions, but is instead related to the estimation of Q-factors and the resulting characterisation

of an optimal policy. The A-H and N-H algorithms both rely on the fundamental principle that the

Q-factors that are being estimated satisfy a set of SMDP optimality equations of the form (7.6.1).

In the case of the M/G system, these equations lose their basis in theory, since the transition

probabilities p(x, a,y) no longer depend only on the state x ∈ S and action a ∈ Ax associated

with the most recent customer to arrive; they also depend on the progress of services at the various

facilities. Thus, although it is easy to modify the A-H and N-H algorithms so that they simulate

the evolution of the M/G system, it is difficult to conceive what the results will be.

Figure 7.22 shows the results of applying the A-HYPOT and NEURO-HYPOT algorithms to a 4-

facility system with the same parameters as in Example 7.2.3, but with the service time distributions

modified so that each facility serves customers according to an Erlang distribution with mean µ−1
i

(where the values µi are given in (7.2.13)) and k = 5 as the Erlang shape parameter (i.e. the

number of phases) at each facility. As discussed above, one would not necessarily expect these
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algorithms to perform well in the case of non-exponential service times, since the SMDP optimality

equations (7.6.1) are no longer valid. Indeed, the FP updates generated by the A-H algorithm

exhibit quite strange behaviour; it seems that a peak value of approximately 125.5 is attained after

a relatively small number of iterations, but subsequent estimates are markedly lower and are also

quite inconsistent. Meanwhile, the N-H algorithm fails to obtain a policy which comes within close

proximity (in terms of average reward) to the final policy given by the A-H algorithm.
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Figure 7.22: Performances of the A-HYPOT and NEURO-HYPOT algorithms in a system where customers

arrive via a Poisson process, but the service-time distributions are all Erlang distributions with k = 5.

The conclusion of this section is that, although the A-HYPOT and NEURO-HYPOT algorithms

both appear to perform strongly in the case of a GI/M system, this is not the case when an M/G

system is considered. The GI/M system can be modelled as an SMDP by relying on the approach

described in Section 7.3, whereas the M/G cannot be modelled as an SMDP in any obvious way.

In general, it seems fair to surmise that the RL methods discussed throughout this chapter thus

far are reliant on the principle that the system under consideration permits an MDP or an SMDP

formulation; if no such formulation is possible, then these methods may be unsuitable.

It should be pointed out that the field of reinforcement learning is broad, and it is entirely plausible

that a problem such as the M/G problem could be tackled effectively using RL techniques which

are less closely linked with the theory of MDPs and SMDPs; this is a potential avenue for further

work. Before concluding this chapter, one further type of problem will be considered, involving the

application of RL algorithms to a system with heterogeneous customer classes.
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7.7 Extension: Heterogeneous customers

Throughout this chapter, it has been assumed that all customers arriving in the system are subject

to the same holding costs, fixed rewards and service time distributions. This section will reconsider

the heterogeneous customers scenario discussed in Section 4.5, in which customers belong to het-

erogeneous groups or classes. Let it be assumed, as in Section 4.5, that each customer belongs to

some class i ∈ {1, 2, ...,M}, where M ≥ 2 is the number of classes. Customers of class i arrive via

their own independent, time-homogeneous Poisson process with demand rate λi > 0. Any customer

of class i who receives service at facility j ∈ {1, 2, ..., N} incurs a holding cost βij > 0 per unit time

while waiting in the system, and earns a reward αij > 0 after completing service.

In Section 4.5, the service rates µj at the various facilities were assumed to be independent of

customers’ classes. This assumption, whilst being somewhat restrictive, was deemed necessary in

order to enable a reasonably simple representation for the state space S of the associated MDP.

However, in many types of applications one might wish to model a situation in which certain

classes of customer require longer service times (on average) than others. Let it now be assumed,

therefore, that the service time of a class i customer at facility j is exponentially distributed with

parameter µij > 0. It will be shown in this section that the resulting MDP formulation, despite

being significantly more complicated, may be tackled effectively using the RL methodology.

As discussed in Section 4.5, the state space representation S = {x = (x1, x2, ..., xN ) : x1, x2, ..., xN ∈

N0} is satisfactory for the MDP which models the heterogeneous customers scenario if one assumes

that single-step rewards are given by the ‘anticipatory’ reward formulation r̂(x,a) defined in (4.5.2)

and service rates are not dependent upon customer class. Indeed, if the µij values have no depen-

dence on i then one can easily calculate the single-step transition probabilities p(x,a,y) for x,y ∈ S

by allowing a = (a1, a2, ..., aM ) to be a vector which prescribes the destinations for all customer

classes individually, as in (4.5.1). However, in the case of class-dependent service rates, the state

space representation S is no longer sufficient. Furthermore, one cannot simply use a matrix of

values X = (xij) (where xij is the number of customers of class i at facility j) to represent the

system state, since these xij values may not provide sufficient information to deduce the probability

of a service completion occurring at some facility j ∈ {1, 2, ..., N} before the next decision epoch if

the facility in question is occupied by customers from more than one different class.
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When service rates are class-dependent, it appears that one has no choice but to use a state space

representation which includes not only the number of customers of class i (for each i ∈ {1, 2, ...,M})

waiting at each individual facility j ∈ {1, 2, .., N}, but also the positions of these customers in the

queues. As previously, let xj denote the number of customers waiting at facility j (regardless of

class). Then the state of the system may be described by a vector X of the form:

X =
(

(X11,X12, ...,X1,x1),

(X21,X22, ...,X2,x2),

...

(XN1,XN2, ...,XN,xN )
)
, (7.7.1)

where Xik ∈ {1, 2, ...,M} denotes the class of the customer at facility i, position k. At any facility i,

the first ci ‘positions’ will be taken by customers who have already begun service, so the customer

at position ci+1 will be the first customer waiting in the queue. Let X denote the set of vectors X of

the form (7.7.1). After a suitable discretisation of the system, the transition probability p(X,a,Y)

for any two states X,Y ∈ X can be obtained exactly and depends primarily on the classes of the

customers in service under state X and the action vector a. However, it is clear that even if each

head count xj is constrained to a relatively small, finite range of values, the number of possible

system states will generally be enormous. Indeed, suppose there are 4 facilities, 4 customer classes

and the queue lengths are restricted so that no facility can have more than 4 customers present at

any given time. A quick calculation shows that even with such stringent restrictions placed on the

queue lengths, the number of possible system states is in excess of 10 billion.

For practical purposes, the complexity of the state space effectively rules out the use of dynamic

programming algorithms. In addition, it also rules out the use of RL algorithms which depend upon

storing unique values for individual state-action pairs (such as the A-HYPOT algorithm given on

page 323). On the other hand, RL algorithms which use value function approximation methods

(such as the NEURO-HYPOT algorithm presented on page 348) are not particularly encumbered

by extremely vast state spaces; indeed, they are designed for use in such circumstances. As such,

the discussion in this section will focus on the generalisation of the NEURO-HYPOT algorithm to

the scenario with heterogeneous customer classes and class-dependent service rates.



Chapter 7 Reinforcement learning 386

As discussed in Section 7.6, RL algorithms such as NEURO-HYPOT (abbreviated from this point

on to N-H) tend to rely on the premise that the system to which they are applied can theoretically

be formulated as an MDP or an SMDP. Therefore, before discussing how the N-H algorithm can

be applied to the heterogeneous customers problem, it is important to clarify the underlying MDP

formulation. Recall (from Section 7.4) that the N-H algorithm models the so-called MRA process,

which essentially means that the state of the system at any given time is defined as the ‘physical’

state observed by the most recent customer to arrive, regardless of how many service completions

have occurred since then. Given that decision epochs for the MRA process are always associated

with customer arrivals, it will be natural (and advantageous) to make a small adjustment to the state

space formulation in (7.7.1), so that system states are denoted by pairs (X, i) ∈ X× {1, 2, ...,M},

where X is a vector of the form (7.7.1) and i is the class of the latest customer to arrive. This

ensures that the action chosen at any decision epoch can simply be a value a ∈ {0, 1, ..., N}, as

opposed to a vector a = (a1, a2, ..., aM ) which prescribes decisions for all M classes.

The N-H algorithm operates by using the system state at any given decision epoch to derive a set

of inputs to an Artificial Neural Network (ANN). The weights attached by the ANN depend upon

the action chosen, and the ANN then produces an estimate of the Q-factor for the relevant state-

action pair. This estimated value is compared with the latest randomly-sampled value obtained

via simulation, and the weights of the ANN are then updated as appropriate. In the version of

the algorithm given on page 348, the system state is simply an N -vector (x1, x2, ..., xN ) and the

components xj are used directly as the inputs for the ANN (see Figure 7.12). Thus, it might be

said that all of the information contained in the description of the system state is used by the ANN

in order to produce a Q-factor estimate. Indeed, the quadratic approximation architecture given by

(7.4.4) depends explicitly upon all of the components x1, x2, ..., xN . An alternative approach would

involve feeding only some of the state information into the ANN, in order to obtain a (probably

less accurate) Q-factor estimate at a significantly lower computational expense. This alludes to the

technique of feature extraction, described by Bertsekas and Tsitsiklis in [15] (p. 66).

Feature extraction, as described in [15], involves “selecting a set of features of the state and feeding

them into an approximation architecture”. These features should “capture the most important

aspects of the current state”, without necessarily including all such aspects. This approach makes

sense in the present context, in which the state (X, i) is an element of the set X × {1, 2, ...,M}
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and therefore is not compatible with a linear approximation architecture in any obvious way (note

that the components Xik of the vector X represent customer classes, which are categorical rather

than ordinal; as such, it does not make sense to attach ‘weights’ to these components). Formally,

feature extraction involves associating a vector of features Z with any given state (X, i), under the

assumption that the following relationship holds for all actions a ∈ {0, 1, ..., N}:

Q((X, i), a) ≈ Q̂(Z, a). (7.7.2)

In (7.7.2), Q̂ should be interpreted as a relatively simple function of the vector of features Z

and the action a; for example, it may be a linear function of the components of Z. The system

states (X, i) will generally be associated with feature vectors Z via a non-injective map, so that

many different states can share the same feature vector. In this respect, feature extraction is

implicitly related to the technique of state aggregation described in Section 7.4, since the same

Q-factor estimate Q̂(Z, a) will generally be associated with several different states (X, i). However,

the approach is slightly different, since it does not involve explicitly storing values Q̂(Z, a) for all

possible pairs (Z, a) in the system memory; on the contrary, the estimates Q̂(Z, a) are obtained

via an approximation architecture, so that effectively one relies upon both function fitting and

state aggregation. In summary, (7.7.2) postulates that the (theoretical) Q-factor for a particular

state-action pair ((X, i), a) can be approximated reliably using an easily-described function of Z

and a, where Z is a selected set of features of the system state (X, i) ∈ X× {1, 2, ...,M}.

In this section, the term ‘extraction level’ will be used, in an informal sense, to refer to the number

of features (equivalently, the amount of information) extracted from a given system state in order

to produce a Q-factor estimate. Three different levels of feature extraction will be considered;

the first of these levels will be the lowest, and the third will be the highest (involving the richest

approximation architecture). It is natural to suppose that, in order to give an RL algorithm the

best possible chance of attaining a near-optimal policy, the level of feature extraction should always

be as high as one can conceivably allow without over-complicating the underlying approximation

architecture. However, as the next example will show, a high level of feature extraction may not

necessarily yield better results than a low level of extraction over a fixed number of RL iterations.

The three levels of extraction to be considered in this section are described below.

1. The first (lowest) level of feature extraction will involve defining the vector of features Z
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simply as an N -vector x = (x1, x2, ..., xN ), where xj is the number of customers present at

facility j (regardless of class). Essentially, by using this level of extraction, one completely

ignores the fact that customers belong to heterogeneous classes and aims to approximate the

Q-factors Q((X, i), a) using exactly the same approach that was relied upon in Section 7.4

(in which customers were assumed to be homogeneous). The approximation architecture will

be the quadratic architecture used in Section 7.4. That is, for each action a:

Q̂(x, a) = B(a) +
N∑
j=1

C
(1)
j (a)xj +

N∑
j=1

C
(2)
j (a)x2

j . (7.7.3)

For each action a ∈ {0, 1, ..., N}, the number of weights that must be fitted is 2N + 1. Hence,

using this extraction level requires (N + 1)(2N + 1) weights to be fitted.

2. The second level of feature extraction will involve defining the vector of features Z as a pair

(x, i), where x = (x1, x2, ..., xN ) is the same vector of head counts used in the previous case,

and i ∈ {1, 2, ...,M} is the class of the most recent customer to arrive. By using this level

of extraction, one allows the weights of the ANN to depend upon the class of the customer

whose destination is about to be determined, but not the classes of the customers who are

already present at the various facilities. The approximation architecture will include weights

which are dependent upon i (the new customer’s class). That is, for each a:

Q̂((x, i), a) = Bi(a) +

N∑
j=1

C
(1)
ij (a)xj +

N∑
j=1

C
(2)
ij (a)x2

j . (7.7.4)

In this case, the number of weights that must be fitted is M(N + 1)(2N + 1).

3. The third (highest) level of feature extraction will involve defining the vector of features Z as a

pair (X, i), where X is a matrix of order M ×N and (as in the previous case) i ∈ {1, 2, ...,M}

is the class of the most recent customer to arrive. The component xjk in row j, column k of the

matrix X will be the number of customers of class j ∈ {1, 2, ...,M} at facility k ∈ {1, 2, ..., N}

(regardless of their positions in the queue). By using this level of extraction, one allows

the weights attached by the ANN to depend upon the class of the latest customer to arrive

and some additional information regarding the classes of customers present at the individual

facilities. The approximation architecture will incorporate two unique weights C
(1)
ijk(a) and
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C
(2)
ijk(a) for each arrival class i, component xjk of X and action a. That is:

Q̂((X, i), a) = Bi(a) +
M∑
j=1

N∑
k=1

C
(1)
ijk(a)xjk +

M∑
j=1

N∑
k=1

C
(2)
ijk(a)x2

jk. (7.7.5)

In this case, the number of weights that must be fitted is M(N + 1)(2MN + 1).

It is worthwhile to emphasise that none of the extraction levels described above make complete use

of the information (X, i) contained in the description of the system state; indeed, the third (highest)

extraction level takes no account of the ordering of the customers waiting at any individual facility,

whereas the system state (X, i) ∈ X×{1, 2, ...,M} does include this information. The N-H algorithm

given on page 348 can easily be modified so that Q-factors are estimated using any of the three

extraction levels described above. In the case of the first extraction level, there are no modifications

required at all, since customers’ classes are effectively ignored. In the cases of the second and third

levels, the estimates Q̂(y, a′) and Q̂(x, a) in equations (7.4.10) and (7.4.12) respectively should be

calculated according to the relevant extraction level formula (either (7.7.4) or (7.7.5)), and there

are some extra weights to update in step 3(d) which are updated in an analogous way to those in

(7.4.13). Furthermore, the value Bmax (used to provide an estimate of the optimal average reward)

can be given by maxaBi(a), where the choice of class i ∈ {1, 2, ...,M} is arbitrary.

Another important point to be made is that, regardless of the level of feature extraction being

used, the simulation of the system by the RL algorithm itself should always be done in a com-

pletely accurate way. The N-H algorithm on page 348 can easily be modified so that it faithfully

reproduces the dynamics of a system with heterogeneous customers. Indeed, all that is required is

for the inter-arrival times and service times (generated using inverse transform sampling in steps

2 and 3(a) respectively) to be sampled according to the class-dependent parameters λi and µij .

In general, the simulation of a stochastic process which evolves according to known parameters

and probability distributions should always be completely accurate when an RL algorithm is used,

regardless of whether or not techniques such as feature extraction (and other methods discussed

in earlier sections, such as state aggregation) are employed. Feature extraction is used purely as

a means of simplifying the process by which Q-factors are estimated. In summary, the estimation

of Q-factors may be regarded as a somewhat separate process from the simulation of the system

itself, even though both tasks must be performed at the same time when using RL.
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The next example tests the performances of the N-H algorithm under the three different levels of

feature extraction described above, in a 4-facility system with 4 customer classes.

Example 7.7.1. (Feature extraction in a system with heterogeneous customers)

Consider a system with 4 heterogeneous customer classes, with demand rates given by:

λ1 = 4, λ2 = 8, λ3 = 7, λ4 = 6.

Suppose there are also 4 service facilities, with the following server capacities:

c1 = 4, c2 = 3, c3 = 3, c4 = 2.

The service rates, holding costs and fixed rewards for the 4 facilities are class-dependent, and are

shown in Table 7.11. The parameters for Class 1 correspond to those in Example 7.2.3.

Facility 1 Facility 2 Facility 3 Facility 4

µ11 = 1 µ12 = 4 µ13 = 8 µ14 = 16

Class 1 β11 = 4 β12 = 5 β13 = 8 β14 = 5

α11 = 14 α12 = 7 α13 = 4 α14 = 2

µ21 = 2 µ22 = 5 µ23 = 6 µ24 = 15

Class 2 β21 = 5 β22 = 4 β23 = 6 β24 = 3

α21 = 12 α22 = 6 α23 = 3 α24 = 2

µ31 = 3 µ32 = 7 µ33 = 9 µ34 = 18

Class 3 β31 = 6 β32 = 4 β33 = 7 β34 = 4

α31 = 17 α32 = 9 α33 = 5 α34 = 3

µ41 = 2 µ42 = 3 µ43 = 7 µ44 = 13

Class 4 β41 = 5 β42 = 5 β43 = 4 β44 = 7

α41 = 13 α42 = 8 α43 = 4 α44 = 4

Table 7.11: Parameters for the 4 service facilities in Example 7.7.1.

An experiment was performed in which the N-H algorithm was run using each of the three different

levels of feature extraction described on page 387. In each case, 150 million RL iterations were

performed, with an ε-greedy method used for action selection (with ε = 0.15) and the constant
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rule δn = 0.001 used for the learning parameters. The Whittle index heuristic cannot easily be

generalised to a problem involving heterogeneous customer classes, and therefore it was deemed

necessary to find an alternative to the method for defining the facility ‘thresholds’ bj that was used

in Examples 7.4.3 and 7.6.3. The method chosen in this experiment was as follows:

• Under the first and second extraction levels, the thresholds bj were given by:

bj = max
i∈{1,2,...,M}

⌊
αijcjµ

∗
j

βij

⌋
, j ∈ {1, 2, ..., N},

with µ∗j = max(µ1j , µ2j , ..., µMj) defined as the maximum service rate at facility j over all

customer classes. This definition for bj ensures that no customers of any class i ∈ {1, 2, ...,M}

have a ‘selfish’ incentive to join facility j ∈ {1, 2, ..., N} when there are bj customers present,

since they would earn a negative expected net reward by doing so. Thus, this alludes to the

principle of remaining ‘contained’ within the selfishly optimal state space.

• In the case of the third extraction level, the form of the underlying approximation architec-

ture (see (7.7.5)) enables the facility thresholds bij to be class-dependent as well as facility-

dependent. Essentially, bij represents the maximum number of customers of class i that one

should expect to find at facility j. The following definition was used for bij :

bij =

⌊
αijcjµij
βij

⌋
, i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., N}. (7.7.6)

This alludes, once again, to the principle of forcing the process to remain ‘contained’ within

the selfishly optimal state space. A customer of class i who joins facility j when there are

already bij (or more) customers of their own class present will earn a negative individual

expected net reward, regardless of whether or not there are any customers of other classes

also present. Therefore bij is an upper bound for xij (the number of customers of class i

present at facility j) when the process operates under a selfishly optimal policy.

Under each extraction level, the N-H algorithm was allowed to run for 150 million iterations and

Frozen Phase (FP) estimates were performed after every 10,000 iterations in order to simulate the

performance of the latest ‘guess’ for an optimal policy. Figure 7.23 shows the results obtained.

As in the N-H examples from previous sections, the Bmax values provide a rough indication of the

algorithm’s progress towards finding a near-optimal policy, but the FP estimates provide the most



Chapter 7 Reinforcement learning 392

reliable measure of its performance, since these are essentially fixed-policy evaluations performed

by simulation. Let θ
(n)
1 , θ

(n)
2 and θ

(n)
3 denote the policies obtained after n RL iterations under the

first, second and third extraction levels respectively. The figure indicates that θ
(n)
3 out-performs

θ
(n)
2 and θ

(n)
1 when n is sufficiently large. After 150 million iterations, θ

(n)
2 improves upon θ

(n)
1 by

about 11.5%, and θ
(n)
3 achieves a further improvement of about 3% upon θ

(n)
2 .
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Figure 7.23: Performance of the NEURO-HYPOT algorithm with three different levels of feature extraction.

The Bmax values are given by maxaB(a) (for level 1) and maxaB1(a) (for levels 2 and 3).

Essentially, by implementing the policy θ
(n)
3 one allows routing decisions to be made according to

the class of the newly-arrived customer and the classes of the customers already present at the

various facilities. On the other hand, the routing decisions made by θ
(n)
2 take no account of the

classes of customers already present in the system, and the decisions made by θ
(n)
1 take no account

of customer classes at all. It is therefore unsurprising that θ
(n)
3 performs better than either of the

policies θ
(n)
2 and θ

(n)
1 when n is large. However, it is interesting to note that approximately 40

million RL iterations are needed before θ
(n)
3 surpasses the performance of θ

(n)
1 , and more than 50

million iterations are required before θ
(n)
2 is able to demonstrate its superiority to θ

(n)
1 .

The fact that θ
(n)
3 and θ

(n)
2 require so many iterations to be performed before they are able to out-

perform θ
(n)
1 may be explained by the fact that they rely upon more complicated approximation

architectures, and therefore the ANN weights that they use require a greater amount of ‘tuning’.
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Indeed, givenM = 4 andN = 4, the architecture (7.7.5) used by θ
(n)
3 requiresM(N+1)(2MN+1) =

660 weights to be fitted. The architecture (7.7.4) used by θ
(n)
2 requires only M(N + 1)(2N + 1) =

220 weights to be fitted, whereas (7.7.3) (the simplest of the three architectures) requires only

(N + 1)(2N + 1) = 45 weights to be fitted. Under any of the three extraction levels, the values of

the ANN weights relative to each other are of paramount importance, since these values determine

the ranking order which in turn determines the action chosen under a particular state when an

exploitative decision is made. Thus, the higher-level extraction policies θ
(n)
2 and θ

(n)
3 are encumbered

by the fact that they must determine suitable values for a large number of weights; on the other

hand, the low-level extraction policy θ
(n)
1 , with only 45 weights, requires only a relatively small

number of iterations in order to achieve the best performance that it is capable of.

It is also likely that the slow rate of convergence under the third extraction level is caused by the

definition of the thresholds bij in (7.7.6). As discussed in Section 7.4, the N-H algorithm relies

upon the technique of ‘normalising’ the inputs to the ANN, so that all inputs take values between

0 and 1. In the case of the third extraction level, this is done by dividing each component xij of

the matrix X by the corresponding threshold bij . However, the threshold bij defined in (7.7.6) is a

rather crude upper bound for the number of customers of class i that one would expect to find at

facility j under an optimal policy, since it is essentially the minimum number of class i customers

at facility j which would cause an additional class i customer’s individual expected net reward

to be negative if there were no customers of other classes present. In reality, it is likely that the

presence of customers from other classes at facility j would deter a class i customer (acting under

an optimal policy) from joining facility j even if xij was much smaller than bij ; in other words, the

threshold bij is probably not tight enough. If the ANN inputs are too small (i.e. too close to 0),

then the convergence of the weights will tend to be slow. Ideally, one would wish to perform some

kind of heuristic calculation in order to gain a rough estimate of the maximum number of class i

customers that one would expect to observe at facility j under an optimal policy, in the same way

that the Whittle index heuristic was used to define the thresholds bj in Section 7.4; however, it is

difficult to conceive how this could be done in the case of heterogeneous customers.

This example has shown that ‘rich’ approximation architectures such as (7.7.5) can achieve better

results than simpler alternatives such as (7.7.3) and (7.7.4), but the advantage of a rich architecture
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may not be seen until a large number of RL iterations have been performed. �

In Example 7.7.1, the policy θ
(n)
3 obtained after 150 million RL iterations attained an average reward

of approximately 194.3 (subject to simulation error). One might suppose that this value should

be close to the optimal value g∗ which would be found using a dynamic programming algorithm;

unfortunately, however this cannot be investigated further due to the practical difficulties discussed

at the beginning of this section. Ideally, one would wish to compare the performance of the N-

H algorithm (with feature extraction) with those of heuristic policies such as those discussed in

Chapter 6, but neither the Whittle index heuristic (Section 6.1) nor the static routing heuristic

(Section 6.2) can be generalised to the heterogeneous customers problem in any obvious way. In

general, the challenge of devising and validating effective heuristics and RL algorithms for queueing

systems which evolve according to complicated dynamics remains a formidable one.

7.8 Conclusions

Reinforcement learning is a term applied to a broad family of algorithms which aim to ‘learn’ an

optimal pattern of behaviour through exploration and experience. In the context of the queueing

system optimisation problems considered in this thesis, ‘exploration’ is carried out by simulating

the consequences of choosing different actions at the various system states. By observing the

random consequences of choosing particular actions, an RL algorithm is able to obtain empirical

estimates of the Q-factors Q(x, a) which satisfy the average reward optimality equations (7.2.2) for

the underlying MDP, and thereby characterise an average reward optimal policy.

Section 7.2 introduced some general-purpose RL algorithms, including R-learning and relative Q-

learning. These algorithms can be applied to any average reward optimisation problem which

permits a theoretical representation as an MDP. Section 7.3 discussed the use of tailored RL algo-

rithms, which aim to exploit particular properties of the queueing systems considered in this thesis

in order to achieve faster convergence to a near-optimal policy. The HYPOT R-learning algorithm

presented on page 312 exploits an independence between the action chosen at a particular decision

epoch and the random event that occurs after the action is chosen. Essentially, this independence

implies that, at any particular state x ∈ S, the Q-factor estimates Q̂(x, a) for all actions a ∈ Ax

can be updated in an even-handed manner according to the same sequence of random events. The
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A-HYPOT algorithm presented on page 323 introduces a new MDP formulation in which the sys-

tem state at any given time is given by the vector of head counts at the N facilities observed by the

most recent customer to arrive. This MDP, referred to as the MRA process, has a set of transition

probabilities which would realistically be too complicated to incorporate within a DP algorithm,

and therefore it is ideally suited to the general approach of RL. The A-HYPOT algorithm is able

to achieve a strong performance by simulating the MRA process in continuous time.

Section 7.4 discussed the practical problems caused by MDPs with extremely vast state spaces. The

NEURO-HYPOT algorithm presented on page 348 uses the technique of function-fitting as a means

of estimating the Q-factors Q(x, a) without the requirement for values to be stored for individual

state-action pairs (x, a) ∈ S×Ax. The function-fitting is performed by an Artificial Neural Network

(ANN), which operates in conjunction with an underlying approximation architecture. The ANN

attaches action-dependent weights to a set of ‘inputs’ (given by the system state) in order to produce

an estimate of the value Q(x, a) for any given state-action pair (x, a). The numerical results given

in Section 7.5 have shown that the A-HYPOT and NEURO-HYPOT algorithms both perform

consistently well in tests involving tens of thousands of randomly-generated parameter sets. The

A-HYPOT algorithm is particularly strong, although its computational requirements imply that it

may not be applicable in systems where the selfish state space |S̃| is extremely large.

Section 7.6 discussed the application of the A-HYPOT and NEURO-HYPOT algorithms in systems

which evolve according to non-exponential probability distributions. These methods were based on

the theoretical formulation of the system as an SMDP. In the case of a non-exponential inter-arrival

time distribution (and exponential service-time distributions), the system can easily be formulated

as an SMDP by again relying upon the technique of associating decision epochs only with customers’

arrival times (and not service completion times). The A-HYPOT and NEURO-HYPOT algorithms

were both found to perform satisfactorily in comparison to an adapted version of the Whittle index

heuristic from Section 6.1. Section 7.7 discussed the technique of feature extraction, which can

essentially be used as a means of simplifying the approximation architecture by which Q-factors

are estimated as part of a function-fitting RL algorithm. This is an appropriate technique to use in

systems involving heterogeneous customer classes in which service rates are class-dependent, since

the state space representation becomes extremely complicated in such circumstances.



8 Conclusions and further work

The conclusions given at the end of individual chapters have summarised the main findings of this

thesis, and therefore the purpose of this final chapter will be to broadly assess the contributions

made by this work and suggest some possible directions for further research.

As stated in the introductory chapter, an original motivation for this work was to investigate

the contrasts between selfishly optimal and socially optimal policies in multiple-facility queueing

systems, with patient choice in the NHS as a possible real-life application. However, the results of

this thesis have not been restricted to any specific application, and indeed they might be applied

to any scenario in which the problem of interest involves routing incoming traffic in such a way as

to optimise the long-run economic performance, provided that the modelling assumptions made in

Section 3.1 (e.g. linear holding costs, etc.) are justifiable in the relevant context.

All of the queueing systems considered in this thesis (with the possible exception of the system

considered in Section 7.7, in which the combination of class-dependent service rates and multiple

service channels creates some extra complexity) have been systems in which a customer’s expected

waiting time at a particular service facility can be calculated easily as a function of the number

of customers already present. For this reason, it has generally been the case that selfishly optimal

policies are simple index-based policies (see Section 6.1 for further elaboration). On the other hand,

the characterisation of socially optimal policies has proved to be somewhat more difficult. Even

in the case of an observable M/M/1 queue, the socially optimal threshold no must be obtained

via a one-dimensional search for a value vo satisfying the equation (2.3.3), whereas the selfishly

optimal threshold is given immediately by (2.3.1). This theme persists in the more general case

of a multiple-facility, multiple-server system, in which a socially optimal policy must be found by

formulating the system as an MDP and applying dynamic programming methods.

The results in Chapter 3 have shown that there is room for some flexibility in formulating the

discrete-time MDP used to find a socially optimal policy for the N -facility queueing system de-

scribed in Section 3.1. Arguably, Theorem 3.5.3 is the most useful result in this chapter from a

practical perspective, since it enables the ‘real-time’ and ‘anticipatory’ reward formulations (r(x)

and r̂(x, a) respectively) to be interchanged without any loss of accuracy in evaluating the expected

396



Chapter 8 Conclusions and further work 397

long-run average reward under a fixed stationary policy. This equivalence between the two reward

formulations has been put to advantageous use at various stages of this thesis; for example, in

Section 4.4 the proof of the light-traffic (social) optimality of the selfish policy θ̃ (Theorem 4.4.4)

relies upon the anticipatory reward formulation, whereas the proof of the heavy-traffic optimality

of vacancy policies (Theorem 4.4.7) instead utilises the real-time formulation.

Ideally, one would wish to make logical deductions about the structure of a socially optimal policy

from the structure of the corresponding selfishly optimal policy θ̃ (noting that the latter has a

particularly simple formulation). Of course, the main result in this thesis which involves a compar-

ison along these lines is Theorem 4.2.4, which establishes that a socially optimal policy θ∗ exists

which causes the process to remain ‘contained’ within the finite, selfish state space S̃. This result

is interesting in the sense that it may be regarded as an N -fold generalisation of Naor’s classical

result for an M/M/1 queue, but it is also a result of great practical importance, since without it

one would not have a theoretical justification for the strategy of searching within the finite set S̃

when employing dynamic programming algorithms. In addition, due to Theorem 4.4.4, it can be

said that the bound Sθ∗ ⊆ S̃ becomes ‘tight’ as the demand rate λ tends to zero.

Chapters 6 and 7 herald a change in emphasis from earlier chapters of this thesis, since they

consider the problem of finding near-optimal policies for systems with vast state spaces. The

two heuristic approaches discussed in Chapter 6 are based on methods which have already received

considerable attention in the literature. Both of these heuristic approaches involve analysing service

facilities individually in order to derive index-based policies, and this makes it possible to prove

various structural properties of the heuristic policies θ[W ] and θ[B] by relying upon the properties

of optimal single-facility policies proved in Section 5.1. For example, the Whittle policy θ[W ] is

asymptotically optimal in light-traffic and heavy-traffic limits (by Theorem 6.1.8), and it can be

ranked above the optimal policy θ∗ in terms of conservativity (by Theorem 6.1.10).

While it is certainly useful to know that a particular heuristic method is likely to perform well in

systems with very small or very large demand rates, it does not appear realistic to obtain general

performance guarantees for the policies θ[W ] and θ[B] (i.e. bounds on their sub-optimality). The

numerical results presented in Section 6.3 have demonstrated that both heuristics are consistently

able to perform well in randomly-generated problem instances, but no guarantees are available. The
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various reinforcement learning algorithms discussed in Chapter 7 do not possess proven convergence

properties either, but they do at least offer the possibility of continuous improvement; that is, one

would hope that in most cases they would ‘approach’ an optimal policy over the course of their

running time. The use of the term ‘approximate dynamic programming’ to describe the application

of reinforcement learning algorithms is clearly appropriate, since these algorithms involve using

simulation to obtain empirical estimates of the Q-factors which are computed exactly by a dynamic

programming algorithm. Two extremely important advantages of RL algorithms are their ability

to operate without exact knowledge of transition probabilities and rewards (exploited by the A-

HYPOT and NEURO-HYPOT algorithms), and their natural tendency to focus attention on states

which are visited often under an optimal policy. These properties enable RL algorithms to avoid,

almost entirely, the turgid computations associated with dynamic programming.

As discussed in Section 2.1, virtually any queueing system formulation that one might conceive has

the potential to be modified or generalised in some respect. It is therefore quite easy to propose

generalisations of the various models considered in this thesis, and these may be recognised as

possible directions for future research. Some possibilities are suggested below.

• All of the queueing systems considered in this thesis have assumed a cost-and-reward structure

whereby an individual customer’s waiting cost for spending a time t > 0 in the system, given

that they join some facility i, is given by the linear function βit. This assumption may be seen

as somewhat restrictive, and one might relax this condition by requiring only that holding

costs are non-decreasing (one might also impose conditions such as convexity). Indeed, several

of the classical papers from the 1970s on the optimal control of single-facility systems impose

fairly general conditions on waiting costs; see, for example, [103, 120, 168].

• The assumption that customers never change their minds (by, for example, leaving a queue

that they have already joined) clearly makes more sense in some applications than in others.

In order to model the behaviour of impatient customers, one might allow reneging from a queue

and jockeying between queues as permissible types of customer behaviour. A typical method of

modelling impatient behaviour would involve assuming that if there are xi customers waiting

at a particular service facility i, then customers leave the facility at an exponential rate γixi,

where γi > 0 is an ‘impatience parameter’ (see, for example, [59]). Customers who leave a
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queue might be allowed to choose a new facility, or they might simply exit from the system

immediately. There are some challenges involved in modelling this type of process as an MDP.

For example, uniformisation of the system (as described in Section 3.3) requires a uniform

upper bound to be obtained for the sum of the transition rates out of any state, but this type

of upper bound is unattainable if one allows queue lengths to be arbitrarily large, since the

rate at which customers ‘quit’ increases linearly with the queue length.

• The formulation of an N -facility system as an MDP or CTMDP makes sense in the case where

the system is fully observable, so that the system state is always known exactly. A fundamen-

tally different type of problem would involve a system that was only partially observable. In

this case, one would model the system using a Partially Observable MDP (POMDP), rather

than an MDP. The decision-maker would not know the system state exactly, and would make

decisions according to their ‘belief’ of the system state, which would depend upon incomplete

information. POMDPs are described in greater detail in [197] (p. 130).

Arguably, the most prominent theme throughout this thesis has been that of socially optimal poli-

cies; that is, policies which maximise expected long-run average reward. Some chapters have focused

on structural properties of these policies, while others have explored methods for approximating

these policies in systems with vast state spaces (or other sources of complexity). It is difficult

to foresee the extent to which the results of this thesis would apply to the more general types of

problems described above. The main findings of this thesis suggest the following:

• Average reward optimisation in systems with heterogeneous facilities is a difficult problem.

One should not always expect socially optimal policies to have a logical structure.

• Depending on the cost-and-reward structure of the system, it might be possible to establish

bounds for the attainable state space associated with a socially optimal policy.

• Methods based on heuristics and reinforcement learning (i.e. simulation-based optimisation)

are capable of yielding very close approximations to socially optimal policies.

It is left as an objective of future research to investigate whether or not the general principles stated

above are broadly applicable to a wide range of stochastic optimisation problems.



A Appendices

A.1 Discrete-time Markov chains

A Markov chain is a stochastic process which evolves over time. The theory of Markov chains is

richly developed and this appendix will summarise basic results which can be found in many texts.

A suitable reference is Chung [31] (see also [32, 66, 67, 95, 125, 144, 167, 171]).

Let (Xn) (n = 0, 1, 2, ...) be a sequence of random variables defined on a state space S which is

assumed to be either finite or denumerably infinite. The sequence (Xn) is said to be a discrete-

time Markov chain if it satisfies the Markov property (or memoryless property); that is, its future

evolution depends only on its present state, and not on the history of past states.

More formally, the sequence (Xn)n∈N0 is a discrete-time Markov chain (MC) if:

P (Xn = jn|Xn−1 = jn−1, Xn−2 = jn−2, ..., X0 = j0) = P (Xn = jn|Xn−1 = jn−1), (A.1.1)

for n ≥ 1 and jk ∈ S, 0 ≤ k ≤ n. If, in addition, P (Xn+1 = j|Xn = i) does not depend on n, then

the Markov chain is called stationary or time homogeneous. In this case the notation p(i, j) may

be used to denote the conditional probability P (Xn+1 = j|Xn = i), and this is called the transition

probability associated with transferring from state i to state j in a single time step. It is assumed

that
∑

j∈S p(i, j) = 1 for all states i ∈ S, and hence the MC cannot leave S.

Let p(n)(i, j) denote an n-step transition probability. For n = 0 one may define:

p(0)(i, j) = δij =


0, if i 6= j,

1, if i = j.

(A.1.2)

The n-step probabilities p(n)(i, j) can then be obtained recursively as follows:

p(n+1)(i, j) =
∑
k∈S

p(n)(i, k) p(1)(k, j). (A.1.3)

It can be shown using the Markov property (A.1.1) that, for every m ≥ 0, p(n)(i, j) = P (Xm+n =

j|Xm = i); see Chung [31] (p. 8) for further details. It is from this property that one derives the

term ‘n-step transition probability’. The next theorem is proved in [31] (p. 9).

400
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* Theorem A.1.1. (Chapman-Kolmogorov equations)

For m ≥ 0, n ≥ 0 and i, j ∈ S, the (m+ n)-step transition probabilities satisfy:

p(m+n)(i, j) =
∑
k∈S

p(m)(i, k) p(n)(k, j). (A.1.4)

Let P = (p(i, j)) be the matrix whose (i, j)th entry is the transition probability p(i, j). Thus P is

a stochastic matrix, which means that it is a matrix of finite or (denumerably) infinite order with

non-negative elements such that the sum of elements in each row is equal to one.

In addition, let P (n) be defined as the matrix whose (i, j)th entry is the n-step transition probability

p(n)(i, j). It follows that P (n) is also a stochastic matrix (for all n ≥ 1) and it may be referred to

as the n-step transition matrix. From (A.1.3) it follows that, for n ≥ 1:

P (n) = Pn.

That is, the n-step transition probability p(n)(i, j) is given by the (i, j)th element of the transition

matrix Pn. This is a simple yet powerful result which enables the n-step transition probabilities to

be obtained by simply raising the one-step transition matrix P to the power n.

Definitions will now be provided for some of the terminology used in this thesis.

Definition A.1.2. (Accessibility)

The state j ∈ S is said to be accessible from state i ∈ S if p(m)(i, j) > 0 for some m ≥ 0.

Definition A.1.3. (Communicating states)

The states i, j ∈ S are said to communicate if i is accessible from j and j is accessible from i.

Definition A.1.4. (Communicating classes)

A communicating class of states is a subset of S in which all states mutually communicate. By

convention, a set containing a single state is also referred to by this name.

Definition A.1.5. (Closed sets)

A subset C of S is said to be closed if no state outside of C is accessible from any state within C.

If no proper subset of C is closed, then C is a communicating class.
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Definition A.1.6. (Absorbing states)

A state which forms a closed set by itself is called an absorbing state.

Definition A.1.7. (Irreducibility)

If S consists of a single communicating class, then S is said to be irreducible.

Some further notation must be introduced in order to define the important properties of recurrence

and transience. First, let f (n)(i, j) denote the probability that a ‘first visit’ of the MC to state j

starting from state i takes place in exactly n time steps. That is, for n ≥ 1:

f (n)(i, j) := P (Xu 6= j, 0 < u < n;Xn = j|X0 = i). (A.1.5)

In addition, let f∗(i, j) be defined as follows:

f∗(i, j) =
∞∑
n=1

f (n)(i, j). (A.1.6)

Thus, f∗(i, j) is the probability that the MC will visit state j at least once, given that it starts in

state i. Definitions of recurrence and transience are given below.

Definition A.1.8. (Recurrence and transience)

Let f (n)(i, j) (for n ≥ 1) and f∗(i, j) be as defined in (A.1.5) and (A.1.6). Then:

• If f∗(i, i) = 1, the state i ∈ S is recurrent.

• If f∗(i, i) < 1, the state i ∈ S is transient (or nonrecurrent).

Definition A.1.9. (Unichains)

If S consists of a single recurrent class of states and, in addition, a (possibly empty) class of

transient states, then S is said to be unichain.

Further properties related to recurrence and transience may be found in classic texts such as

[49, 104]. Some alternative definitions are possible. For example, given an initial state X0 = i ∈ S,

let Ti > 0 be a random variable denoting the time taken (i.e. number of time steps) to return to

state i. Then i is recurrent if P (Ti < ∞) = 1, and transient if P (Ti < ∞) < 1. The important
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principle is that if i is transient, there is a positive probability that the MC will leave state i and

never return, whereas the corresponding probability for a recurrent state is always zero.

Let Ni denote the total number of visits to state i ∈ S during an evolution of the MC (over an

infinite amount of time), assuming that i is also the initial state. It can be shown using routine

arguments (see [32], p. 123) that Ni has a geometric distribution given by:

P (Ni = m) = (f∗(j, j))m−1 (1− f∗(j, j)) (m = 1, 2, ...). (A.1.7)

As an immediate consequence of (A.1.7), one may write:

P (Ni <∞) =


1, if f∗(j, j) < 1,

0, if f∗(j, j) = 1.

(A.1.8)

Therefore a transient state will be visited only finitely many times during the evolution of an MC,

whereas a recurrent state will be visited infinitely often. Another property to note is that if i is a

recurrent state, then all states accessible from i are also recurrent (see [32], p. 130).

The next definition provides a further classification scheme for recurrent states.

Definition A.1.10. (Positive recurrence and null recurrence)

Let i ∈ S be a recurrent state, and let m(i, i) denote the expected time taken (i.e. the number of

time steps) for a first return to state i ∈ S. Then:

• If m(i, i) =∞, the state i is said to be null recurrent.

• If m(i, i) <∞, the state i is said to be positive recurrent.

It is proved in [32] (p. 132) that if C is a closed set of finitely many states, then no state in C is

null recurrent. Hence, a Markov chain whose state space S is finite cannot include null recurrent

states. The next result is stated as a theorem; a proof may be found in [31] (p. 31).

* Theorem A.1.11. Let R be an irreducible class. Then either all states in R are transient, or

all states in R are null recurrent, or all states in R are positive recurrent. It is said that positive

recurrence, null recurrence and transience are all class properties.
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The next property to be discussed here is periodicity.

Definition A.1.12. (Periodicity)

Let R ⊆ S be a closed irreducible class containing state i ∈ S, and let d be the greatest common

divisor of all m ∈ N for which p(m)(i, i) > 0. The integer d is referred to as the period of state i.

If d ≥ 2 then R is said to be periodic. If d = 1 then R is said to be aperiodic.

Periodicity is also a class property, and therefore all states in R must have the same period (see

[31], p. 13). Note that if p(i, i) > 0, this immediately implies that R is aperiodic.

Definition A.1.13. (Ergodicity)

An aperiodic, positive recurrent class of states is called ergodic.

For two states i, j ∈ S, let v(n)(i, j) be defined as follows:

v(n)(i, j) =:
1

n

n−1∑
m=0

p(m)(i, j). (A.1.9)

Thus, v(n)(i, j) denotes the expected number of visits to state j per unit time in the time interval

[0, n− 1], when starting in state i. It is proved in [31] (p. 33) that π(j) := limn→∞ v
(n)(j, j) exists.

The limiting quantity π(j) will be referred to as the steady-state probability of being in state j, and

this may be regarded as the limiting average number of visits to j per unit time.

This appendix will conclude with two further results from the literature which have important

practical implications. Concise proofs of both results may be found in [32] (p. 152).

* Theorem A.1.14. Let R be an ergodic (i.e. irreducible and aperiodic) class of states. Then all

states are positive recurrent if and only if the system of linear equations:

π(j) =
∑
i∈R

p(i, j)π(i),
∑
j∈R

π(j) = 1, (A.1.10)

has a solution. If there exists a solution to (A.1.10), then it is strictly positive, there are no other

solutions and it is the case that π(j) = limn→∞ p
(n)(i, j) for all states i, j ∈ R.

* Corollary A.1.15. Let P be the transition probability matrix for an aperiodic, positive recurrent

class of states R. Then limn→∞ P
n exists and:

lim
n→∞

Pn = eπ,
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where e is a column vector of ones, and π is the row vector with components π(j).

Theorem A.1.14 implies that {π(j)}j∈S , which is referred to as the stationary distribution of the

MC, can be found by solving a system of linear equations. Note that the steady-state probability

π(j) of the MC being in state j is independent of the initial state X0. A probability distribution π

which satisfies the vector equation π = πP is also called an invariant distribution.

The matrix P ∗ := limn→∞ P
n is known as the limiting matrix. By Corollary A.1.15, the stationary

distribution may be approximated by inspecting the matrix Pn when n is large.

A.2 Continuous-time Markov chains

This appendix mainly follows the development in Puterman [141] and Ross [146]. Let S denote a

countable set of states, and let X = {X(t) : t ≥ 0} be a stochastic process with state space S. The

process X = {X(t) : t ≥ 0} is said to be a continuous-time Markov chain (CTMC) if:

P (X(t+ u) = j|X(u) = i,X(v) = x(v), 0 ≤ v < u) = P (X(t+ u) = j|X(u) = i), (A.2.1)

for any u ≥ 0 and i, j, x(v) ∈ S. In addition, the CTMC is time homogeneous if:

P (X(t+ u) = j|X(u) = i) = P (X(t) = j|X(0) = i), (A.2.2)

for all u ≥ 0. Suppose the process begins in state i ∈ S at time 0 and remains there until time t,

for some t > 0. The probability that the process then remains in state i until time t+ u, for some

u > 0, must necessarily (by the Markovian property) be the same as the unconditional probability

that it remains in state i for a period of at least u. That is, if Ti is used to denote the amount of

time that the process spends in state i before transferring to a different state, then:

P (Ti > t+ u|Ti > t) = P (Ti > u). (A.2.3)

It follows that the random variable Ti is memoryless and must therefore be exponentially distributed

(see [146], p. 284 for further explanation). A CTMC may be regarded as a stochastic process that

moves from state to state in a similar manner to that of a discrete-time Markov chain (see Appendix

A.1), except that the amount of time that it spends in each state before proceeding to the next

state is exponentially distributed with a parameter that may be state-dependent.
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Suppose one has X(t) = i ∈ S at some time t. In this case, the process remains in state i for a

period of time determined by an exponential distribution with parameter τ(i), where 0 < τ(i) <∞,

and then jumps to state j ∈ S with probability σ(i, j). The parameter τ(i) is referred to as the

sojourn time parameter. Let the infinitesimal generator q(i, j) be given by:

q(i, j) =


−(1− σ(i, i))τ(i), if j = i,

σ(i, j)τ(i), if j 6= i.

(A.2.4)

The q(i, j) values are sometimes referred to as infinitesimal transition rates, and the matrix Q of

size |S| × |S| with components q(i, j) is called the generator matrix of the CTMC. The generator

matrix Q determines the probability distribution of the system state by means of the following

differential equations, known as the Kolmogorov equations (see [171], p. 180):

d

dt
p(t)(i, j) =

∑
k∈S

q(i, k) p(t)(k, j), (A.2.5)

where the notation p(t)(i, j) has been used to denote the conditional probability P (X(t) = j|X(0) =

i). It can be proved that p(t)(i, j) has a finite derivative for all pairs (i, j) (see [16], p. 266).

Moreover, if δij denotes the Kronecker delta function (defined in (A.1.2)), then:

q(i, j) = lim
t→0

p(t)(i, j)− p(0)(i, j)

t
= lim

t→0

p(t)(i, j)− δij
t

. (A.2.6)

The properties of transience and recurrence, discussed in Appendix A.1, can also be defined in the

continuous-time case. Let f(i, j) denote the ‘first passage time’ from state i to state j without

visiting j in the meantime, and let F denote its distribution function. That is:

f(i, j) := min
t≥0
{P (X(t) = j|X(0) = i)} , (A.2.7)

F (t)(i, j) := P (f(i, j) < t) (t > 0). (A.2.8)

The state i ∈ S is said to be recurrent if:

lim
t→∞

F (t)(i, i) = 1. (A.2.9)

A recurrent state i is said to be positive recurrent if E [f(i, i)] <∞, and null recurrent if E [f(i, i)] =

∞. If i is not recurrent, then it is transient. Equivalently, i is transient if and only if:∫ ∞
0

p(t)(i, i) dt <∞. (A.2.10)
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One may also adapt the terminology used for discrete-time Markov chains by saying that two

states i, j ∈ S communicate with each other if, for some t > 0, p(t)(i, j) > 0 and p(t)(j, i) > 0. A

CTMC is irreducible if each pair of states communicates. The next theorem, found in [125] (p. 20),

establishes sufficient conditions for the existence of a stationary distribution.

* Theorem A.2.1. (Ergodic theorem)

Let {X(t) : t ≥ 0} be an irreducible continuous-time Markov chain, and suppose all states are

positive recurrent. Then, for all states i, j ∈ S, the following limit exists:

lim
t→∞

p(t)(i, j) =: π(j).

Furthermore, this limit is independent of the initial state i ∈ S. The probability distribution

{π(i)}i∈S is given by the solution of the equations:∑
i∈S

π(i)q(i, j) = 0 (j ∈ S),

subject to the normalising condition
∑

i∈S π(i) = 1.

It follows from the previous arguments that two processes with identical infinitesimal generators and

initial distributions are also identical with respect to their probabilistic structures. This appendix

will conclude by briefly describing an important technique known as uniformisation, which allows

a CTMC to be modelled using an equivalent discrete-time Markov chain.

Resnick [142] provides the following intuitive description of uniformisation: “If a continuous-time

Markov chain can be constructed by placing the transitions of a discrete-time Markov chain at times

of Poisson jumps, then we call the continuous-time process uniformisable”. In fact, any process

in which the set of sojourn time parameters {τ(i)}i∈S is bounded above can be uniformised (see

[142], p. 438), and this implies that any CTMC with a finite state space S can be uniformised.

The remainder of this appendix will provide details of the uniformisation procedure.

Assuming that supi∈S τ(i) <∞, one can choose a constant C <∞ satisfying:

sup
i∈S

(1− σ(i, i))τ(i) ≤ C <∞. (A.2.11)

It is then possible to define a new process {X̂(t) : t ≥ 0} with state-independent sojourn time

parameters τ̂(j) = C and transition probabilities u(i, j) for i, j ∈ S given by:



Appendices 408

u(i, j) =


1− (1− σ(i, i))τ(i)

C
, if j = i,

σ(i, j)τ(i)

C
, if j 6= i.

(A.2.12)

The matrix U with elements u(i, j) may be referred to as the uniformised transition matrix. By

referring to (A.2.4) and using an analogous definition for the infinitesimal generators q̂(i, j) of the

new process, one can verify that the generator matrix Q̂ of X̂ satisfies:

Q̂ = Q. (A.2.13)

That is, the two processes are equal in distribution. The process X̂ is referred to as the uniformi-

sation of X because it has an identical sojourn time distribution in every state.

Puterman [141] (p. 562) notes that the uniformised CTMC may be regarded as an “equivalent

process, in which the system state is observed at random times which are exponentially distributed

with parameter C. Because of the Markov property, it begins anew at each observation point.” He

also points out: “As a result of the definition of C, we observe the system state more frequently

in the uniformisation than in the original system and, as a result, increase the probability that the

system occupies the same state at different observation times. Alternatively, this transformation

may be viewed as inducing extra or ‘fictitious’ transitions from a state to itself.”

After applying uniformisation to a CTMC, it is then possible to apply results from Appendix A.1

to examine its limiting behaviour by analysing the equivalent discrete-time MC.

A.3 Proofs for results in Chapter 3

Proof of Theorem 3.4.4.

This result is proved by Ross [145] (p. 60), but the proof is given in the context of a cost minimi-

sation problem in which all costs are assumed to be non-negative. The uniformised MDP Φ can be

transformed into a process Φ† which is identical to Φ except that single-step (discounted) rewards

are given for state-action pairs ((x, ω), a) ∈ S ×A(x,ω) by the non-negative function:

R†φ((x, ω), a) := α∗ −Rφ((x, ω), a), (A.3.1)
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where α∗ = max(α1, α2, ..., αN ). It can be checked using (3.3.12) that R†φ((x, ω), a) ≥ 0 for all pairs

((x, ω), a) ∈ S × A(x,ω). Let θ be an arbitrary policy. It is clear from (A.3.1) that the expected

total discounted reward v†φ,θ((x, ω)) earned by θ in the transformed process Φ†, given an initial

state (x, ω) ∈ S, is related to the corresponding value vφ,θ((x, ω)) as follows:

v†φ,θ((x, ω)) =
α∗

1− φ
− vφ,θ((x, ω)). (A.3.2)

Thus, any policy θ which maximises vφ,θ((x, ω)) over all admissible policies must also minimise

v†φ,θ((x, ω)); that is, maximising the expected total discounted reward for the original process Φ is

equivalent to minimising the corresponding value for the new process Φ†. Next, let v
†(0)
φ ((x, ω)) = 0

for each (x, ω) ∈ S and define v
†(n+1)
φ ((x, ω)) for integers n ≥ 0 as follows:

v
†(n+1)
φ ((x, ω)) = min

a∈A(x,ω)

R†φ((x, ω), a) + φ
∑

(x′,ω′)∈S

P((x, ω), a, (x′, ω′))v
†(n)
φ ((x′, ω′))

 . (A.3.3)

Inductively, it can be shown that for all n ≥ 0, the finite-stage values v
†(n)
φ ((x, ω)) are related to

the values v
(n)
φ ((x, ω)) defined in the statement of the theorem as follows:

v
†(n)
φ ((x, ω)) = α∗

(
1− φn

1− φ

)
− v(n)

φ ((x, ω)). (A.3.4)

Since the rewardsR†φ((x, ω), a) are non-negative, the proof in [145] (p. 60) can be applied in order to

show that limn→∞ v
†(n)
φ ((x, ω)) = v†φ((x, ω)) for each (x, ω) ∈ S, where v†φ((x, ω)) = infθ v

†
φ,θ((x, ω))

is the optimal (minimal) expected total discounted reward for the transformed process Φ†. Hence,

by taking limits as n→∞ in (A.3.4), one finds that for all states (x, ω) ∈ S:

lim
n→∞

v
(n)
φ ((x, ω)) =

α∗

1− φ
− v†φ((x, ω)) (A.3.5)

However, the right-hand side of (A.3.5) is equal to the optimal expected total discounted reward

vφ((x, ω)) for the original process Φ, due to (A.3.2) and the previously-noted fact that minimising

v†φ,θ((x, ω)) is equivalent to maximising vφ,θ((x, ω)). This completes the proof. �

Proof of Lemma 3.4.6.

First, let the vector x ∈ NN0 and facilities i, j ∈ {1, 2, ..., N} (with i 6= j) be arbitrary. The

easiest way to prove (3.4.9) and (3.4.10) would involve arguing directly via the continuous-time

optimality equations (3.4.1). However, for the purposes of later results, it will be useful to begin
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by considering the discrete-time MDP Φ obtained from Ψ via uniformisation, and prove using the

method of successive approximations (Theorem 3.4.4) that for all stages n ∈ N:

v
(n)
φ ((xa

∗
n+,Mi))− v(n)

φ ((x,Λ)) ≤ αi,

v
(n)
φ ((x,Mi))− v(n)

φ ((x,Mj)) ≤ max(αi − αj , 0), (A.3.6)

where φ = 1/(1 + γ∆) is the discount factor for the process Φ, and a∗n ∈ {0, 1, ..., N} is an action

which attains the maximum on the right-hand side of (3.4.5) for the state (x,Λ) with n replaced

by n − 1; that is, a∗n is an optimal action at (x,Λ) in a finite-stage problem with n stages. Let

q
(n)
φ ((x, ω), a) be defined for (x, ω) ∈ S, a ∈ {0, 1, ..., N} and n ∈ N as follows:

q
(n)
φ ((x, ω), a) := Rφ((x, ω), a) + φ

∑
(x′,ω′)∈S

P((x, ω), a, (x′, ω′))v
(n−1)
φ ((x′, ω′)). (A.3.7)

Hence, (3.4.5) implies that v
(n)
φ ((x, ω)) = maxa q

(n)
φ ((x, ω), a) for all n ∈ N. It will therefore be

sufficient to show that for all actions a ∈ {0, 1, ..., N} and integers n ∈ N:

v
(n)
φ ((xa+,Mi))− q(n)

φ ((x,Λ), a) ≤ αi,

v
(n)
φ ((x,Mi))− v(n)

φ ((x,Mj)) ≤ max(αi − αj , 0). (A.3.8)

In the successive approximations method one assumes that v
(0)
φ ((x, ω)) = 0 for all (x, ω) ∈ S, so in

order to show that the properties (A.3.8) hold when n = 1 it suffices to show:

Rφ((xa+,Mi), 0)−Rφ((x,Λ), a) ≤ αi,

Rφ((x,Mi), 0)−Rφ((x,Mj), 0) ≤ max(αi − αj , 0), (A.3.9)

where a ∈ {0, 1, ..., N} is arbitrary. Indeed, using the definition of Rφ(·) in (3.3.12):

Rφ((xa+,Mi), 0)−Rφ((x,Λ), a) = αi

1− φ

1− λ∆−
N∑
j=1

min(xa+
j , cj)µj∆


≤ αi, (A.3.10)

where the inequality is due to the definition of ∆ in (3.3.9), which implies that the expression

1− λ∆−
∑N

j=1 min(xa+
j , cj)µj∆ is non-negative. Similarly, using (3.3.12):

Rφ((x,Mi), 0)−Rφ((x,Mj), 0) = (αi − αj)

(
1− φ

(
1− λ∆−

N∑
m=1

min(xm, cm)µm∆

))
.

(A.3.11)
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The expression on the right-hand side of (A.3.11) is bounded above by zero if αi < αj , and by

αi − αj otherwise. So, both of the properties (A.3.8) hold when n = 1. Assume, as an inductive

hypothesis, that they also hold when n = k for arbitrary k ∈ N0. It can be verified using (3.3.8)

and (3.3.10) that the transition probabilities from states (xa+,Mi) and (x,Λ) (assuming, in the

latter case, that action a is chosen) are identical, except that a ‘self-transition’ from state (xa+,Mi)

to itself occurs with probability 1−λ∆−
∑N

j=1 min(xa+
j , cj)µj∆, while a self-transition from (x,Λ)

to itself also occurs with the same probability. Hence, following the cancellations of transition

probabilities to other states, one finds that v
(k+1)
φ ((xa+,Mi))− q(k+1)

φ ((x,Λ), a) must satisfy:

v
(k+1)
φ ((xa+,Mi))− q(k+1)

φ ((x,Λ), a) ≤ Rφ((xa+,Mi), 0)−Rφ((x,Λ), a)

+ φ

1− λ∆−
N∑
j=1

min(xa+
j , cj)µj∆

(v(k)
φ ((xa+,Mi))− v(k)

φ ((x,Λ))
)
. (A.3.12)

Then, by noting that v
(k)
φ ((xa+,Mi))− v(k)

φ ((x,Λ)) is bounded above by

v
(k)
φ ((xa+,Mi))− q(k)

φ ((x,Λ), a) and v
(k)
φ ((xa+,Mi))− q(k)

φ ((x,Λ), a) ≤ αi by the inductive assump-

tion, and also recalling the property (A.3.10), one infers from (A.3.12):

v
(k+1)
φ ((xa+,Mi))− v(k+1)

φ ((x,Λ)) ≤ αi

1− φ

1− λ∆−
N∑
j=1

min(xa+
j , cj)µj∆


+ αiφ

1− λ∆−
N∑
j=1

min(xa+
j , cj)µj∆


= αi. (A.3.13)

This proves by induction that the first property in (A.3.8) holds for all n ∈ N, which (as noted

previously) is sufficient to show that the first property in (A.3.6) holds for all n ∈ N. The arguments

used to establish the second property are similar. Indeed, the transition probabilities from states

(x,Mi) and (x,Mj) are identical except when one considers self-transitions, which occur (in both

cases) with probability 1− λ∆−
∑N

m=1 min(xm, cm)µm∆. Hence, one finds:

v
(k+1)
φ ((x,Mi))− v(k+1)

φ ((x,Mj)) ≤ Rφ((x,Mi), 0)−Rφ((x,Mj), 0)

+ φ

(
1− λ∆−

N∑
m=1

min(xm, cm)µm∆

)(
v

(k)
φ ((x,Mi))− v(k)

φ ((x,Mj))
)
. (A.3.14)
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By the inductive assumption, v
(k)
φ ((x,Mi)) − v(k)

φ ((x,Mj)) is bounded above by max(αi − αj , 0).

Hence, by also using (A.3.11), one obtains the following from (A.3.14):

v
(k+1)
φ ((x,Mi))− v(k+1)

φ ((x,Mj)) ≤ max(αi − αj , 0),

which confirms that the second property in (A.3.6) also holds for all n ∈ N. By applying the result

of Theorem 3.4.4 and recalling the equivalence between vφ and vγ , one then obtains:

vγ((xa
∗+,Mi))− vγ((x,Λ)) ≤ αi,

vγ((x,Mi))− vγ((x,Mj)) ≤ max(αi − αj , 0). (A.3.15)

To prove the lemma, it remains to be shown that the equalities (3.4.9) and (3.4.10) hold. As

mentioned earlier, it is easiest to argue using the continuous-time optimality equations (3.4.1). As

before, assume that action a∗ ∈ {0, 1, ..., N} is chosen at state (x,Λ) by the γ-discount optimal

policy θ∗γ . It can be checked using (3.2.9) that the sojourn time parameters τ((xa
∗+,Mi), 0) and

τ((x,Λ), a∗) are equal. Moreover, it can also be verified using (3.2.10)-(3.2.11) that, for any state

(x′, ω′) ∈ S, the transition probabilities σ((xa
∗+,Mi), 0, (x

′, ω′)) and σ((x,Λ), a∗, (x′, ω′)) are equal.

Therefore (3.4.1) implies that vγ((xa
∗+,Mi)) − vγ((x,Λ)) is simply equal to the difference in the

reward terms, ξγ((xa
∗+,Mi), 0)− ξγ((x,Λ), a∗). Hence, using (3.2.18), one finds:

vγ((xa
∗+,Mi))− vγ((x,Λ)) = ξγ((xa

∗+,Mi), 0)− ξγ((x,Λ), a∗) = αi.

Similarly, for any N -vector x ∈ NN0 and facilities i, j ∈ {1, 2, ..., N} with i 6= j, the sojourn time

parameters and transition probabilities for the state-action pairs ((x,Mi), 0) and ((x,Mj), 0) are

equal. Hence, using the same reasoning as above, the result follows:

vγ((x,Mi))− vγ((x,Mj)) = ξγ((x,Mi), 0)− ξγ((x,Mj), 0) = αi − αj . �

Proof of Lemma 3.4.7.

By Theorem 3.3.3, it is sufficient to consider the discrete-time MDP Φ obtained by uniformisation

and prove that (3.4.12) holds with vγ(·) replaced by vφ(·). Let the finite-stage approximation

functions v
(n)
φ be defined for n ∈ N0 as in the statement of Theorem 3.4.4. Then it is sufficient to

show that for all (x, ω) ∈ S, i ∈ {1, 2, ..., N}, φ ∈ (0, 1) and integers n ≥ 0:

v
(n)
φ ((xi+, ω))− v(n)

φ ((x, ω)) ≤ α∗ − βi
µi
. (A.3.16)
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The property (A.3.16) may be proved using induction on the ‘stage counter’ variable n. It holds

trivially when n = 0 due to the convention that v
(0)
φ ((x, ω)) = 0 for all (x, ω) ∈ S, so one may

assume (as an inductive hypothesis) that it also holds at some arbitrary stage n = k ∈ N0. For

arbitrary (x, ω) ∈ S and i ∈ {1, 2, ..., N}, let a0 ∈ A(x,ω) and a1 ∈ A(xi+,ω) be actions attaining the

maximum on the right-hand side of the finite-stage optimality equations (3.4.5) for states (x, ω)

and (xi+, ω) respectively at stage n = k + 1. In other words, a0 and a1 satisfy:

a0 ∈ arg max
a∈A(x,ω)

Rφ((x, ω), a) + φ
∑

(x′,ω′)∈S

P((x, ω), a, (x′, ω′))v
(k)
φ ((x′, ω′))

 , (A.3.17)

a1 ∈ arg max
a∈A(xi+,ω)

Rφ((xi+, ω), a) + φ
∑

(x′,ω′)∈S

P((xi+, ω), a, (x′, ω′))v
(k)
φ ((x′, ω′))

 .

Then, the difference v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) may be bounded above as follows:

v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) = Rφ((xi+, ω), a1)−Rφ((x, ω), a0)

+ φ
∑

(x′,ω′)∈S

(
P((xi+, ω), a1, (x

′, ω′))v
(k)
φ ((x′, ω′))− P((x, ω), a0, (x

′, ω′))v
(k)
φ ((x′, ω′))

)
≤ Rφ((xi+, ω), a1)−Rφ((x, ω), a1)

+ φ
∑

(x′,ω′)∈S

(
P((xi+, ω), a1, (x

′, ω′))v
(k)
φ ((x′, ω′))− P((x, ω), a1, (x

′, ω′))v
(k)
φ ((x′, ω′))

)
,

(A.3.18)

where the inequality is due to the superiority of action a0 to a1 at state (x, ω) in a finite-horizon

problem with k + 1 stages, as implied by (A.3.17). By writing out the transition probabilities
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P((xi+, ω), a1, (x
′, ω′)) and P((x, ω), a1, (x

′, ω′)) in full, one then obtains:

v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) ≤ Rφ((xi+, ω), a1)−Rφ((x, ω), a1)

+ φλ∆
(
v

(k)
φ (((xi+)a1+,Λ))− v(k)

φ ((xa1+,Λ))
)

+ φ
N∑
j=1

min(xa1+
j , cj)µj∆

(
v

(k)
φ ((((xi+)a1+)j−,Mj))− v(k)

φ (((xa1+)j−,Mj))
)

+ φI(xi < ci)µi∆
(
v

(k)
φ ((xa1+,Mi))− v(k)

φ ((x, ω))
)

+ φ

1− λ∆−
N∑
j=1

min(xa1+
j , cj)µj∆− I(xi < ci)µi∆

(v(k)
φ ((xi+, ω))− v(k)

φ ((x, ω))
)
,

(A.3.19)

where I is the indicator function, and the notational convention has been assumed whereby x0+ = x.

Note that this convention ensures that (A.3.19) makes sense when ω = Mj for any j ∈ {1, 2, ..., N},

since in that case the action sets A(x,ω) and A(xi+,ω) are both singletons containing only the ‘dummy’

action 0, so one must have a1 = 0. The indicator term I(xi < ci)µi∆ arises because the state

(xi+, ω) may (or may not) have one extra service in progress in comparison to (x, ω), depending

on whether or not xi < ci. However, the condition for ∆ in (3.3.9) ensures that the expression

in square brackets in the last line of (A.3.19) is always non-negative. It is also worth noting that

the states (((xi+)a1+)j−,Mj) and ((xa1+)j−,Mj) may not exist if xj = 0, but in this case one has

min(xj , cj)µj∆ = 0, so the line in which those terms appear may be ignored.

By the inductive assumption that (A.3.16) holds for all (x, ω) ∈ S when n = k, the differences

v
(k)
φ (((xi+)a1+,Λ))− v(k)

φ ((xa1+,Λ)), v
(k)
φ ((((xi+)a1+)j−,Mj))− v(k)

φ (((xa1+)j−,Mj)) and

v
(k)
φ ((xi+, ω))− v(k)

φ ((x, ω)) are all bounded above by α∗ − βi/µi. Hence, from (A.3.19):

v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) ≤ Rφ((xi+, ω), a1)−Rφ((x, ω), a1)

+ φI(xi < ci)µi∆
(
v

(k)
φ ((xa1+,Mi))− v(k)

φ ((x, ω))
)

+ φ
(
1− I(xi < ci)µi∆

)(
α∗ − βi

µi

)
. (A.3.20)

The objective is then to show that the right-hand side of (A.3.20) is also bounded above by α∗ −

βi/µi. There are two possible cases: either xi < ci or xi ≥ ci. If xi < ci, then the indicator term

I(xi < ci) is equal to one. Here, it is necessary to consider three possible sub-cases: ω = Λ, ω = Mj
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(where j 6= i) and ω = Mi. Firstly, if ω = Λ then (3.3.12) implies the following:

Rφ((xi+, ω), a1)−Rφ((x, ω), a1) = −φ∆βi. (A.3.21)

Additionally, the expression v
(k)
φ ((xa1+,Mi))−v(k)

φ ((x,Λ)) appears on the right-hand side of (A.3.20).

It is necessary to find an upper bound for this quantity. Using the same reasoning as discussed in

the proof of Lemma 3.4.6, it is possible to assume that the action a1 is chosen at state (x,Λ) in a

k-stage problem, since this assumption will effectively under-estimate the value of v
(k)
φ ((x,Λ)) and

thereby yield an upper bound for v
(k)
φ ((xa1+,Mi))−v(k)

φ ((x,Λ)) (more formally, one relies upon the

principle that v
(k)
φ ((xa1+,Mi))− v(k)

φ ((x,Λ)) ≤ v(k)
φ ((xa1+,Mi))− q(k)

φ ((x,Λ), a1), where q
(k)
φ (·) is as

defined in (A.3.7)). Hence, using the first of the two properties in (A.3.6):

v
(k)
φ ((xa1+,Mi))− v(k)

φ ((x,Λ)) ≤ αi ≤ α∗. (A.3.22)

Therefore, by combining (A.3.21) and (A.3.22), one obtains from (A.3.20):

v
(k+1)
φ ((xi+,Λ))− v(k+1)

φ ((x,Λ)) ≤ −φ∆βi + φµi∆α
∗ + φ(1− µi∆)

(
α∗ − βi

µi

)
= φ

(
α∗ − βi

µi

)
,

and the upper bound v
(k+1)
φ ((xi+,Λ))− v(k+1)

φ ((x,Λ)) ≤ α∗ − βi/µi follows since φ ∈ (0, 1). Next,

consider the case where ω = Mj for some j 6= i (still assuming that xi < ci). In this case, the

action a1 must be equal to zero since A(x,Mj) = A(xi+,Mj) = {0}. By (3.3.12), Rφ((xi+,Mj), 0) −

Rφ((x,Mj), 0) = φ∆(αjµi − βi). Also, given a1 = 0, the difference v
(k)
φ ((xa1+,Mi))− v(k)

φ ((x,Mj))

is equal to v
(k)
φ ((x,Mi)) − v(k)

φ ((x,Mj)) (recall the convention that x0+ = x), which is bounded

above by max(αi − αj , 0) by the second property in (A.3.6). Hence, from (A.3.20):

v
(k+1)
φ ((xi+,Mj))− v(k+1)

φ ((x,Mj)) ≤ φ∆(αjµi − βi) + φµi∆ max(αi − αj , 0) + φ(1− µi∆)

(
α∗ − βi

µi

)
≤ φµi∆

(
α∗ − βi

µi

)
+ φ(1− µi∆)

(
α∗ − βi

µi

)
≤ α∗ − βi

µi
.

Finally, suppose ω = Mi. Since a1 = 0, one simply has v
(k)
φ ((xa1+,Mi))− v(k)

φ ((x,Mi)) = 0. Hence,

since Rφ((xi+,Mj), 0)−Rφ((x,Mj), 0) = φ∆(αiµi − βi), (A.3.20) implies:

v
(k+1)
φ ((xi+,Mi))− v(k+1)

φ ((x,Mi)) ≤ φ∆(αiµi − βi) + φ(1− µi∆)

(
α∗ − βi

µi

)
≤ α∗ − βi

µi
.
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This confirms that, in the case xi < ci, v
(k+1)
φ ((xi+, ω)) − v

(k+1)
φ ((x, ω)) is bounded above by

α∗−βi/µi for all possible values of ω. The case xi ≥ ci is much easier to check, since in this case one

has I(xi < ci) = 0. If xi ≥ ci then (3.4.7) and (3.4.8) imply that Rφ((xi+, ω), a1)−Rφ((x, ω), a1) =

−φ∆βi, which enables the inequality in (A.3.20) to be tightened as follows:

v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) ≤ −φ∆βi + φ
(
1− I(xi < ci)µi∆

)(
α∗ − βi

µi

)

= −φ∆βi + φ

(
α∗ − βi

µi

)
≤ α∗ − βi

µi
, (A.3.23)

so the required upper bound holds for v
(k+1)
φ ((xi+, ω))− v(k+1)

φ ((x, ω)) in this case also. This com-

pletes the inductive proof that (A.3.16) holds for all (x, ω) ∈ S, i ∈ {1, 2, ..., N}, φ ∈ (0, 1) and

n ∈ N0. In view of Theorem 3.4.4, the result follows by taking limits as n→∞. �

Proof of Lemma 3.5.1.

Consider a stationary policy θ satisfying the conditions stated by the lemma. As stated by the

lemma, the ‘aggregate set’ Hx is defined for vectors x ∈ S as follows:

Hx := Fx ∪Gx,

where the disjoint sets Fx and Gx are given by:

Fx :=
{

(y, ω) ∈ S : y = xi− for some i ∈ {1, 2, ..., N}, ω = Λ and θ((y, ω)) = i
}
,

Gx :=
{

(y, ω) ∈ S : y = x and ω = Mi for some i ∈ {1, 2, ..., N}
}
. (A.3.24)

where θ((y, ω)) is the action chosen by θ at state (y, ω) ∈ S. The dependence of Fx and Hx on θ

has been suppressed in order to simplify notation. It should also be noted that Fx may be empty

for a given vector x, but Gx (and hence Hx) cannot be empty. Let (xn, ωn) denote the state of the

process Φ at time step n ≥ 0. Using probabilistic arguments which exploit the fact that Fxi+ and

Gxi+ form a partition of Hxi+ , the conditional probability P
(

(xn+1, ωn+1) ∈ Hxi+

∣∣∣(xn, ωn) ∈ Hx

)
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(for an arbitrary facility i ∈ {1, 2, ..., N}) may be decomposed as follows:

P
(

(xn+1, ωn+1) ∈ Hxi+

∣∣∣(xn, ωn) ∈ Hx

)
= P

(
(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Hx

)
= P

(
(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Fx

)
P
(

(xn, ωn) ∈ Fx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Fx

)
P
(

(xn, ωn) ∈ Fx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Gx

)
P
(

(xn, ωn) ∈ Gx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Gx

)
P
(

(xn, ωn) ∈ Gx

∣∣∣(xn, ωn) ∈ Hx

)
. (A.3.25)

Here, the conditional probabilities P
(

(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Fx

)
, P

(
(xn+1, ωn+1) ∈

Fxi+

∣∣∣(xn, ωn) ∈ Gx

)
etc. may be written explicitly using the transition probabilities

P((x, ω), a, (x′, ω′)) defined in (3.3.8)-(3.3.10). The resulting expressions are:

P
(

(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Fx

)
=

∑
j∈{1,2,...,N}
θ((xj−,Λ))=j

P
(

(xn, ωn) = (xj−,Λ)
∣∣∣(xn, ωn) ∈ Fx

) ∑
k∈{1,2,...,N}
θ(((xi+)k−,Λ))=k

P((xj−,Λ), j, ((xi+)k−,Λ)), (A.3.26)

P
(

(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Fx

)
=

∑
j∈{1,2,...,N}
θ((xj−,Λ))=j

P
(

(xn, ωn) = (xj−,Λ)
∣∣∣(xn, ωn) ∈ Fx

) N∑
k=1

P((xj−,Λ), j, (xi+,Mk)), (A.3.27)

P
(

(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Gx

)
=

N∑
j=1

P
(

(xn, ωn) = (x,Mj)
∣∣∣(xn, ωn) ∈ Gx

) ∑
k∈{1,2,...,N}
θ(((xi+)k−,Λ))=k

P((x,Mj), 0, ((x
i+)k−,Λ)), (A.3.28)

P
(

(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Gx

)
=

N∑
j=1

P
(

(xn, ωn) = (x,Mj)
∣∣∣(xn, ωn) ∈ Gx

) N∑
k=1

P((x,Mj), 0, (x
i+,Mk)). (A.3.29)

Naturally, any probabilities involving states which are not elements of S (i.e. states (x, ω) for

which the vector x includes negative components) may be omitted from the relevant summations

in (A.3.26)-(A.3.29). The expressions (A.3.26)-(A.3.29) can be simplified as follows:
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• In (A.3.26), the transition probability P((xj−,Λ), j, ((xi+)k−,Λ)) can only be non-zero if

k = i. In this case, it takes a value of λ∆, but one should also note that it is included in the

second summation if and only if θ((x,Λ)) = i. Since the states (xj−,Λ) with θ((xj−,Λ)) = j

form a partition of the set Fx, it follows from these arguments that:

P
(

(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Fx

)
=


λ∆, if θ((x,Λ)) = i,

0, otherwise.

(A.3.30)

• In (A.3.27), the transition probability P((xj−,Λ), j, (xi+,Mk)) is always zero. Hence:

P
(

(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Fx

)
= 0. (A.3.31)

• In (A.3.28), the transition probability P((x,Mj), 0, ((x
i+)k−,Λ)) can only be non-zero if k = i,

in which case it is equal to λ∆ but is included in the second summation only if θ((x,Λ)) = i.

Hence, by the same reasoning as in the case (A.3.26), one has:

P
(

(xn+1, ωn+1) ∈ Fxi+

∣∣∣(xn, ωn) ∈ Gx

)
=


λ∆, if θ((x,Λ)) = i,

0, otherwise.

(A.3.32)

• Finally, in (A.3.29), the probability P((x,Mj), 0, (x
i+,Mk)) is always zero. Hence:

P
(

(xn+1, ωn+1) ∈ Gxi+

∣∣∣(xn, ωn) ∈ Gx

)
= 0. (A.3.33)

Hence, by substituting the expressions in (A.3.30)-(A.3.33) back into (A.3.25) and again using the

fact that Fx and Gx form a partition of Hx, one obtains (for i ∈ {1, 2, ..., N}):

P
(

(xn+1, ωn+1) ∈ Hxi+

∣∣∣(xn, ωn) ∈ Hx

)
=


λ∆, if θ((x,Λ)) = i,

0, otherwise.

(A.3.34)

Importantly, (A.3.34) remains valid if one conditions on (xn, ωn) being a particular state belonging

to Hx, as opposed to (xn, ωn) simply being an element of Hx. In other words, if the system is in any

state belonging to Hx then the probability of transferring to Hxi+ at the next time step is given

by (A.3.34). This follows from the decomposition arguments in (A.3.26)-(A.3.29) and (A.3.30)-

(A.3.33) which show that if (xn, ωn) is any state belonging to either Fx or Gx then the probability

of transferring to Fxi+ (hence, Hxi+) is λ∆ if θ((x,Λ)) = i, and 0 otherwise.
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Next, consider the conditional probability P
(

(xn+1, ωn+1) ∈ Hxi−

∣∣∣(xn, ωn) ∈ Hx

)
for arbitrary

i ∈ {1, 2, ..., N}, assuming that the ith component of x is at least one. Using arguments similar to

those given previously, this probability can be decomposed as follows:

P
(

(xn+1, ωn+1) ∈ Hxi−

∣∣∣(xn, ωn) ∈ Hx

)
= P

(
(xn+1, ωn+1) ∈ Fxi−

∣∣∣(xn, ωn) ∈ Fx

)
P
(

(xn, ωn) ∈ Fx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Gxi−

∣∣∣(xn, ωn) ∈ Fx

)
P
(

(xn, ωn) ∈ Fx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Fxi−

∣∣∣(xn, ωn) ∈ Gx

)
P
(

(xn, ωn) ∈ Gx

∣∣∣(xn, ωn) ∈ Hx

)
+ P

(
(xn+1, ωn+1) ∈ Gxi−

∣∣∣(xn, ωn) ∈ Gx

)
P
(

(xn, ωn) ∈ Gx

∣∣∣(xn, ωn) ∈ Hx

)
. (A.3.35)

Then, analogously to (A.3.26)-(A.3.29), one finds:

P
(

(xn+1, ωn+1) ∈ Fxi−

∣∣∣(xn, ωn) ∈ Fx

)
=

∑
j∈{1,2,...,N}
θ((xj−,Λ))=j

P
(

(xn, ωn) = (xj−,Λ)
∣∣∣(xn, ωn) ∈ Fx

) ∑
k∈{1,2,...,N}
θ(((xi−)k−,Λ))=k

P((xj−,Λ), j, ((xi−)k−,Λ)),

= 0, (A.3.36)

P
(

(xn+1, ωn+1) ∈ Gxi−

∣∣∣(xn, ωn) ∈ Fx

)
=

∑
j∈{1,2,...,N}
θ((xj−,Λ))=j

P
(

(xn, ωn) = (xj−,Λ)
∣∣∣(xn, ωn) ∈ Fx

) N∑
k=1

P((xj−,Λ), j, (xi−,Mk)),

= min(xi, ci)µi∆, (A.3.37)

P
(

(xn+1, ωn+1) ∈ Fxi−

∣∣∣(xn, ωn) ∈ Gx

)
=

N∑
j=1

P
(

(xn, ωn) = (x,Mj)
∣∣∣(xn, ωn) ∈ Gx

) ∑
k∈{1,2,...,N}
θ(((xi−)k−,Λ))=k

P((x,Mj), 0, ((x
i−)k−,Λ)),

= 0, (A.3.38)

P
(

(xn+1, ωn+1) ∈ Gxi−

∣∣∣(xn, ωn) ∈ Gx

)
=

N∑
j=1

P
(

(xn, ωn) = (x,Mj)
∣∣∣(xn, ωn) ∈ Gx

) N∑
k=1

P((x,Mj), 0, (x
i−,Mk))

= min(xi, ci)µi∆. (A.3.39)
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Note that in (A.3.37) and (A.3.39), the transition probability P((x,Mj), 0, (x
i−,Mk)) is non-zero

if and only if k = i. Again using partitioning arguments, (A.3.36)-(A.3.39) imply:

P
(

(xn+1, ωn+1) ∈ Hxi−

∣∣∣(xn, ωn) ∈ Hx

)
= min(xi, ci)µi∆. (A.3.40)

It can easily be checked using the transition probabilities (3.3.8)-(3.3.10) and the definition of Hx

that P
(

(xn+1, ωn+1) ∈ Hy

∣∣∣(xn, ωn) ∈ Hx

)
= 0 for any vector y which is not of the form xi+ or

xi− (for some i ∈ {1, 2, ..., N}), or equal to x. Hence, (A.3.34) and (A.3.40) imply:

P
(

(xn+1, ωn+1) ∈ Hy

∣∣∣(xn, ωn) ∈ Hx

)
=



λ∆, if y = xi+ and θ((x,Λ)) = i

for some i ∈ {1, 2, ..., N},

min(xi, ci)µi∆, if y = xi−

for some i ∈ {1, 2, ..., N},

1− I(θ((x,Λ)) 6= 0)λ∆−
N∑
i=1

min(xi, ci)µi∆, if y = x,

0, otherwise.

The remarks made earlier concerning the lack of dependence of P
(

(xn+1, ωn+1) ∈ Hxi+

∣∣∣(xn, ωn) ∈

Hx

)
on the particular state (xn, ωn) also apply to P

(
(xn+1, ωn+1) ∈ Hxi−

∣∣∣(xn, ωn) ∈ Hx

)
. That

is, if (xn, ωn) is any state belonging to the set Hx then the probability of transferring to Hxi− at the

next time step is min(xi, ci)µi∆. It follows that in general, P
(

(xn+1, ωn+1) ∈ Hy

∣∣∣(xn, ωn) ∈ Hx

)
remains the same if one conditions on the entire history of the process; that is:

P
(

(xn+1, ωn+1) ∈ Hn+1

∣∣∣(xn, ωn) ∈ Hn, (xn−1, ωn−1) ∈ Hn−1, ..., (x0, ω0) ∈ H0

)
= P

(
(xn+1, ωn+1) ∈ Hn+1

∣∣∣(xn, ωn) ∈ Hn

)
, (A.3.41)

where Hn is the ‘aggregate set’ of the process Φ (operating under θ) at time n ∈ N0. The stochastic

process (H0, H1, H2, ...) is therefore itself a Markov chain with stationary distribution {πθ(Hx)}x∈S ,

where S is as defined in (3.5.1) and the stationary probabilities are given by:

πθ(Hx) =
∑

(x,ω)∈Hx

πθ((x, ω)) ∀ x ∈ S.

Suppose the process Υ operates under a policy which (as described in the statement of the lemma)

chooses the same action at state x ∈ S as that chosen by θ at state (x,Λ) ∈ S in the process Φ.
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Then, by comparing (A.3.41) with (3.5.3), one finds that Υ has exactly the same set of transi-

tion probabilities as the stochastic process (H0, H1, ...) described above. Thus, the two processes

have equivalent balance equations and stationary distributions. In a slight abuse of notation, let

{πθ(x)}x∈S denote the stationary distribution for the process Υ operating in the manner described.

Then, by the previous arguments, one has the equivalence relationship:

πθ(x) = πθ(Hx) =
∑

(x,ω)∈Hx

πθ((x, ω)) ∀ x ∈ S. (A.3.42)

Thus, Φ and Υ have analogous steady-state distributions, which completes the proof. �

A.4 Proofs for results in Chapter 4

Proof of Lemma 4.2.1.

Let the discount factor φ ∈ (0, 1) be fixed, and let v̂
(0)
φ (x) = 0 for all x ∈ S. Then, for states x ∈ S

and integers n ≥ 0, the finite-stage approximations v̂
(n+1)
φ (x) are given by:

v̂
(n+1)
φ = max

a

r̂(x, a) + φ
∑
y∈S

p(x, a,y)v̂
(n)
φ (y)

 . (A.4.1)

Hence, by referring to (3.5.3) and enumerating transition probabilities in (A.4.1):

v̂
(n+1)
φ (x) = max

a

{
r̂(x, a) + φλ∆v̂

(n)
φ (xa+)

}

+ φ

[
N∑
i=1

min(xi, ci)µi∆v̂
(n)
φ (xi−) +

(
1− λ∆−

N∑
i=1

min(xi, ci)µi∆

)
v̂

(n)
φ (x)

]
. (A.4.2)

It is sufficient to show that the monotonicity property holds at each stage n ∈ N. That is, for each

state x ∈ S, discount factor φ ∈ (0, 1), facility i ∈ {1, 2, ..., N} and n ≥ 1:

v̂
(n)
φ (xi+) ≤ v̂(n)

φ (x). (A.4.3)

Given that v̂
(0)
φ (x) = 0 for all x ∈ S, the one-stage return for choosing action a under state x is

simply r̂(x, a), so in order to verify (A.4.3) when n = 1, it suffices to show:

max
a

r̂(xi+, a) ≤ max
b
r̂(x, b),
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for each facility i. Indeed, let a∗ ∈ arg maxa r̂(x
i+, a). It follows from the definition of r̂(x, a) in

(3.5.15) that r̂(xi+, a) ≤ r̂(x, a) for any fixed action a and facility i. Hence:

max
a

r̂(xi+, a) = r̂(xi+, a∗) ≤ r̂(x, a∗) ≤ max
b
r̂(x, b),

so (A.4.3) holds for n = 1. Let it be assumed (as an inductive hypothesis) that (A.4.3) also holds

for n = k, where k ≥ 1 is arbitrary. Then, at stage n = k + 1:

v̂
(k+1)
φ (xi+)− v̂(k+1)

φ (x)

= max
a

{
r̂(xi+, a) + φλ∆v̂

(k)
φ

(
(xi+)a+

)}
−max

b

{
r̂(x, b) + φλ∆v̂

(k)
φ (xb+)

}

+ φ

N∑
j=1

min(xj , cj)µj∆
(
v̂

(k)
φ

(
(xi+)j−

)
− v̂(k)

φ (xj−)
)

+ φ

1− λ∆−
N∑
j=1

min(xj , cj)µj∆

(v̂(k)
φ (xi+)− v̂(k)

φ (x)
)

− φI(xi < ci)µi∆
(
v̂

(k)
φ (xi+)− v̂(k)

φ (x)
)
,

(A.4.4)

where the indicator term in (A.4.4) arises because, under state xi+, there may (or may not) be

one extra service in progress at facility i, depending on whether or not xi < ci. Recall that λ∆ +∑N
i=1 ciµi∆ ≤ 1 by definition of ∆, and hence

(
1− λ∆−

∑N
j=1 min(xj , cj)µj∆− I(xi < ci)µi∆

)
must always be non-negative. Also, the inequalities v̂

(k)
φ (xi+) ≤ v̂

(k)
φ (x) and v̂

(k)
φ

(
(xi+)j−

)
≤

v̂
(k)
φ (xj−) (for facilities j = 1, 2, ..., N) follow by the inductive assumption of monotonicity at stage

k. Hence, in order to verify that (A.4.4) is non-positive, it suffices to show:

max
a

{
r̂(xi+, a) + φλ∆v̂

(k)
φ

(
(xi+)a+

)}
≤ max

b

{
r̂(x, b) + φλ∆v̂

(k)
φ (xb+)

}
. (A.4.5)

Here, let a∗ be a maximizing action on the left-hand side of (A.4.5). That is:

a∗ ∈ arg max
a

{
r̂(xi+, a) + φλ∆v̂

(k)
φ

(
(xi+)a+

)}
.

Then, by the monotonicity of r̂ and the inductive assumption:

r̂(xi+, a∗) ≤ r̂(x, a∗),

v̂
(k)
φ

(
(xa

∗+
)i+

) ≤ v̂(k)
φ (xa

∗+).
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Hence the left-hand side of (A.4.5) is bounded above by r̂(x, a∗) +φλ∆v̂
(k)
φ

(
xa
∗+
)
, which in turn is

bounded above by maxb

{
r̂(x, b) + φλ∆v̂

(k)
φ (xb+)

}
. This shows that v̂

(k+1)
φ (xi+) ≤ v̂(k+1)

φ (x), which

completes the inductive proof that (A.4.3) holds for all n ∈ N. Since limn→∞ v̂
(n)
φ (x) = v̂φ(x) for

all x ∈ S by Theorem 3.4.4, the conclusion follows that v̂φ(xi+) ≤ v̂φ(x). �

Proof of Lemma 4.2.2.

Let α∗ = maxi∈{1,2,...,N} αi, i.e. α∗ is the maximum value of service across all facilities. For each

discount factor φ ∈ (0, 1) and policy θ, define a new function ûφ,θ by:

ûφ,θ(x) := Eθ

[ ∞∑
n=0

φn (r̂(xn, an)− λα∗)
∣∣∣x0 = x

]
(x ∈ S).

By comparison with the definition of v̂φ,θ in (4.2.3), it may be seen that:

ûφ,θ(x) = v̂φ,θ(x)− λα∗

1− φ
.

Furthermore, since the subtraction of the constant α∗ from each single-step reward does not affect

the discounted reward optimality criterion, it also follows that:

ûφ(x) = v̂φ(x)− λα∗

1− φ
, (A.4.6)

where ûφ(x) = supθ ûφ,θ(x). By the definition of r̂ in (3.5.15) it can be checked that r̂(x, a) ≤ λα∗

for all state-action pairs (x, a). Therefore ûφ(x) is a sum of non-positive terms and must be non-

positive itself. Furthermore, ûφ is the expected total discounted reward function for a new MDP

Υ̂ which is identical to the original MDP except that each reward r̂(xn, an) (for n = 0, 1, 2, ...) is

replaced by r̂(xn, an)− λα∗. Thus, ûφ satisfies the discount optimality equations:

ûφ(x) = max
a

r̂(x, a)− λα∗ + φ
∑
y∈S

p(x, a,y)ûφ(y)

 (x ∈ S). (A.4.7)

Consider x = 0i+, for an arbitrary i ∈ {1, 2, ..., N}. For all actions a, by (A.4.7):

ûφ(0i+) ≥ r̂(0i+, a)− λα∗ + φ
∑
y∈S

p(0i+, a,y)ûφ(y).

In particular, if the action a = 0 is to balk then r̂(0i+, a) = 0 and the only possible transitions are

to states 0 or 0i+. Hence, by the previous arguments:

ûφ(0i+) ≥ −λα∗ + φµi∆ûφ(0) + φ(1− µi∆)ûφ(0i+).
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Then, since 0 < φ < 1 and by the non-positivity of ûφ(0) and ûφ(0i+):

ûφ(0i+) ≥ −λα∗ + µi∆ûφ(0) + (1− µi∆)ûφ(0i+). (A.4.8)

So, using (A.4.6) and (A.4.8) a lower bound for v̂φ(0i+)− v̂φ(0) may be derived:

v̂φ(0i+)− v̂φ(0) = ûφ(0i+)− ûφ(0) ≥ −λα
∗

µi∆
, (A.4.9)

and this lower bound is independent of φ as required. It remains to be shown that for each x ∈ S,

a lower bound exists for v̂φ(x) − v̂φ(0). Consider an arbitrary state x ∈ S and let an inductive

hypothesis be formed as follows: for all states y ∈ S which satisfy the componentwise inequality

y < x, there exists a non-negative value f(y) such that for all φ ∈ (0, 1):

v̂φ(y)− v̂φ(0) ≥ −λα∗f(y). (A.4.10)

The values f(0) = 0 and f(0i+) = 1/(µi∆) (for i = 1, 2, ..., N) will clearly suffice for states with at

most one customer present. The next step is to show that the same property holds for an arbitrary

state x 6= 0, under the inductive assumption that for each j ∈ {1, 2, ..., N} with xj ≥ 1, (A.4.10)

holds with y = xj−. Using similar steps to those described earlier, one finds:

ûφ(x) ≥ −λα∗ + φ
N∑
j=1

min(xj , cj)µj∆ûφ(xj−) + φ

1−
N∑
j=1

min(xj , cj)µj∆

 ûφ(x),

and hence:
N∑
j=1

min(xj , cj)µj∆
(
ûφ(x)− ûφ(xj−)

)
≥ −λα∗.

Then, using the inductive assumption that, for each facility j ∈ {1, 2, ..., N}, ûφ(xj−) − ûφ(0) is

bounded below by −λα∗f(xj−), it follows after simple manipulations that:

ûφ(x)− ûφ(0) ≥ −λα∗
(

1 +
∑N

j=1 min(xj , cj)µj∆f(xj−)∑N
j=1 min(xj , cj)µj∆

)
. (A.4.11)

By (A.4.6), ûφ(x)− ûφ(0) = v̂φ(x)− v̂φ(0), so one may define:

f(x) :=
1 +

∑N
j=1 min(xj , cj)µj∆f(xj−)∑N
j=1 min(xj , cj)µj∆

,

with the result that v̂φ(x) − v̂φ(0) is bounded below by an expression which depends only on the

system input parameters λ, α∗ and the service rates µ1, µ2, ..., µN as required. Using an inductive

procedure, a lower bound of this form can be derived for every state x ∈ S. �
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Proof of Lemma 4.3.2.

Let x ∈ S̃ be a state with xi < ci for some i ∈ {1, 2, ..., N}. Then, for all n ≥ 0:

hn+1(xi+)− hn+1(x) = r(xi+)− r(x)

+ λ∆
(
hn((xi+)a1+)− hn(xa0+)

)
+

N∑
j=1

min(xj , cj)µj∆
(
hn((xi+)j−)− hn(xj−)

)

+

1− λ∆−
N∑
j=1

min(xj , cj)µj∆− µi∆

(hn(xi+)− hn(x)
)
, (A.4.12)

where the actions a0 and a1 satisfy:

a0 ∈ arg max
a∈Ax

hn(xa+),

a1 ∈ arg max
a∈Axi+

hn((xi+)a+). (A.4.13)

It is assumed that h0(x) = 0 for all x ∈ S̃. Hence, (A.4.12) implies:

h1(xi+)− h1(x) = r(xi+)− r(x) = αiµi − βi > 0,

where the positivity of αiµi − βi follows by the assumption in Section 3.1. It will be sufficient to

show that for all n ≥ 1, the following holds for states x ∈ S̃ with xi < ci:

hn(xi+)− hn(x) ≥ αiµi − βi. (A.4.14)

Proceeding by induction, let it be assumed that for all x ∈ S̃ and i ∈ {1, 2, ..., N}:

xi < ci ⇒ hk(x
i+)− hk(x) ≥ αiµi − βi, (A.4.15)

where k ≥ 1 is arbitrary. It must then be shown that (A.4.15) also holds with k replaced by k+ 1.

Given that r(xi+)−r(x) = αiµi−βi when xi < ci, it will be sufficient to consider an arbitrary state

x ∈ S̃ with xi < ci for some i ∈ {1, 2, ..., N} and show that the second, third and fourth lines on

the right-hand side of (A.4.12) are non-negative when n = k. The inductive assumption (A.4.15)

implies that hk((x
i+)j−)−hk(xj−) and hk(x

i+)−hk(x) are both bounded below αiµi−βi (noting,

in the former case, that if x is a state with fewer than ci customers present at facility i then the

same applies to any state of the form xj−), so the third and fourth lines of (A.4.12) are positive

when n = k. The fact that hk((x
i+)a1+)− hk(xa0+) ≥ 0 can be shown as follows:
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• If a0 = i, then it is sufficient to note:

hk((x
i+)a1+)− hk(xa0+) ≥ hk(xi+)− hk(xi+) = 0,

where the inequality follows from the definition of action a1 in (A.4.13); specifically, the fact

that hk((x
i+)a1+) ≥ hk((xi+)0+) = hk(x

i+).

• if a0 is any other action, i.e. a0 ∈ {0, 1, 2, ..., N} \ {i}, then:

hk((x
i+)a1+)− hk(xa0+) ≥ hk((xi+)a0+)− hk(xa0+) > 0,

where the first inequality again follows from the definition of a1 in (A.4.13), and the second

inequality is due to the inductive assumption, since (given that a0 6= i) xa0+ is a state with

fewer than ci customers present at facility i.

These arguments show that the expression on the second line of (A.4.12) is non-negative when n = k,

which confirms that hk+1(xi+)− hk+1(x) ≥ αiµi − βi and hence (by induction) hn(xi+)− hn(x) ≥

αiµi − βi > 0 for all integers n ≥ 0. By Theorem 3.7.4, limn→∞ hn(x) = h(x) for all states x ∈ S̃,

so it follows that h(xi+) > h(x). This completes the proof of the lemma. �

A.5 Proofs for results in Chapter 5

Proof of Lemma 5.1.2.

As stated in the introductory remarks, h(·) is assumed to be defined as in the statement of Theorem

3.7.4. That is, h(x) = limn→∞ hn(x) for x ∈ {0, 1, ..., T̃}, where (for integers n ≥ 0):

hn+1(x) := max
a∈Ax

r(x) +
∑
y≤T̃

p(x, a, y)hn(y)

− max
a∈Ax

r(0) +
∑
y≤T̃

p(0, a, y)hn(y)

 ,

and h0(x) = 0 for all x ∈ {0, 1, ..., T̃}. Obviously, the analogous definition for ĥn+1(x) (with r(x)

and hn(y) replaced by r̂(x, a) and ĥn(y) respectively, and ĥ0(x) = 0 for all states x ∈ {0, 1, ..., T̃})

is also valid. Thus, it is sufficient to show that for all integers n ≥ 0:

D(x, hn) ≤ (α− β/µ) /∆ ∀ x ∈ {0, 1, ..., T̃ − 1}, (A.5.1)

D(x+ 1, hn) ≤ D(x, hn) ∀ x ∈ {0, 1, ..., T̃ − 2}, (A.5.2)
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D(x, ĥn) ≤ 0 ∀ x ∈ {0, 1, ..., T̃ − 1}, (A.5.3)

r̂(x+ 1, 1) + λ∆D(x+ 1, ĥn) ≤ r̂(x, 1) + λ∆D(x, ĥn) ∀ x ∈ {0, 1, ..., T̃ − 2}. (A.5.4)

All of these properties hold trivially when n = 0 since h0(x) = ĥ0(x) = 0 for all x, α − β/µ

is assumed to be positive (as stated in Section 3.1) and r̂(x + 1, 1) ≤ r̂(x, 1) by definition of r̂.

Proceeding by induction, assume that (A.5.1)-(A.5.4) hold when n = k, where k ∈ N0 is arbitrary.

First, it will be shown that (A.5.1) holds with n = k + 1. Indeed, for x ∈ {0, 1, ..., T̃ − 1}:

D(x, hk+1) = D(x, r) + λ∆
(
hk(x+ 1 + a1)− hk(x+ a0)

)
+ min(x, c)µ∆D(x− 1, hk)

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)D(x, hk), (A.5.5)

where I denotes the indicator function and the actions a0 and a1 satisfy a0 ∈ arg maxa hk(x + a)

and a1 ∈ arg maxa hk(x+ 1 + a). Next, consider the possibilities for actions a0 and a1. First, note

that it is not possible to have a0 = 0 and a1 = 1, since this would imply:

D(x, hk) < 0, D(x+ 1, hk) ≥ 0,

which contradicts the second inductive assumption that D(x + 1, hk) ≤ D(x, hk). If a0 = a1 = 0,

then hk(x+ 1 + a1)− hk(x+ a0) is equal to D(x, hk), which is bounded above by (α− β/µ)/∆ by

the first inductive assumption. Similarly, if a0 = a1 = 1 then hk(x+ 1 + a1)− hk(x+ a0) is equal

to Dk(x+ 1, hk), which is also bounded above by (α− β/µ)/∆. Finally, if a0 = 1 and a1 = 0, then

hk(x+ 1 + a1)− hk(x+ a0) = 0. So, in all possible cases for a0 and a1:

hk(x+ 1 + a1)− hk(x+ a0) ≤ (α− β/µ) /∆. (A.5.6)

It will be convenient to consider the cases x < c and x ≥ c separately. If x < c, then:

D(x, hk+1) = D(x, r) + λ∆
(
hk(x+ 1 + a1)− hk(x+ a0)

)
+ xµ∆D(x− 1, hk) + (1− λ∆− (x+ 1)µ∆)D(x, hk). (A.5.7)

Due to the first inductive assumption, D(x − 1, hk) (when it exists, i.e. when x ≥ 1) is bounded

above by (α − β/µ)/∆, and the same applies to D(x, hk) and hk(x + 1 + a1) − hk(x + a0), where

the latter is due to (A.5.6). Hence, after simplifications, (A.5.7) implies:

D(x, hk+1) ≤ D(x, r) + (1− µ∆)(α− β/µ)/∆.
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Noting that D(x, r) = αµ− β for x < c, this yields:

D(x, hk+1) ≤ αµ− β + (1− µ∆)(α− β/µ)/∆ = (α− β/µ)/∆,

as required. Next, consider the case x ≥ c. In this case:

D(x, hk+1) = D(x, r)

+ λ∆
(
hk(x+ 1 + a1)− hk(x+ a0)

)
+ cµ∆D(x− 1, hk)

+ (1− λ∆− cµ∆)D(x, hk). (A.5.8)

The terms in the last two lines of (A.5.8) represent a convex combination of terms bounded above

by (α− β/µ)/∆. Therefore, since r(x+ 1)− r(x) = −β < 0 when x ≥ c:

D(x, hk+1) ≤ (α− β/µ)/∆,

as required. This establishes that (A.5.1) holds when n = k+ 1. The next task is to show that the

same is true for (A.5.2). At stage k + 1, one has (after some simplifications):

D(x+ 1, hk+1)−D(x, hk+1) = D(x+ 1, r)−D(x, r)

+ λ∆
(
hk(x+ 2 + a2)− hk(x+ 1 + a1)− hk(x+ 1 + a1) + hk(x+ a0)

)
+ min(x, c)µ∆

(
D(x, hk)−D(x− 1, hk)

)
+ I(x = c− 1)µ∆D(x, hk)

+
(
1− λ∆−min(x, c)µ∆− I(x < c− 1)µ∆− I(x < c)µ∆

)(
D(x+ 1, hk)−D(x, hk)

)
,

(A.5.9)

where a0, a1, a2 ∈ {0, 1} are actions which maximise hk(x+ a0), hk(x+ 1 + a1) and hk(x+ 2 + a2)

respectively. The reward function r(x) increases linearly (with gradient αµ − β > 0) when x < c,

and decreases linearly (with gradient −β < 0) when x ≥ c. Hence, for x ∈ {0, 1, ..., T̃ − 2}:

D(x+ 1, r)−D(x, r) =


−αµ, if x = c− 1,

0, otherwise,

(A.5.10)

so D(x+ 1, r)−D(x, r) is non-positive. Next, it will be shown that:

hk(x+ 2 + a2)− hk(x+ 1 + a1)− hk(x+ 1 + a1) + hk(x+ a0) ≤ 0. (A.5.11)
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This will be done by considering the possible combinations for the actions a0 and a2 and applying

the AS principle (Lemma 5.1.1). First, note that it is not possible to have a0 = 0 and a2 = 1, as this

would imply D(x, hk) < 0 and D(x + 2, hk) ≥ 0, thereby contradicting the inductive assumption

that D(x + 2, hk) ≤ D(x + 1, hk) ≤ D(x, hk). Hence, there are 3 possible cases for the pair

(a0, a2) ∈ {0, 1} × {0, 1}. These cases are considered one-by-one below:

• If a0 = a2 = 0, then (A.5.11) holds with a1 = 0 due to the inductive assumption. By Lemma

5.1.1, it must also hold with a1 defined as the action which maximises hk(x+ 1 + a1).

• If a0 = a2 = 1, one may choose a1 = 1 and apply the same reasoning as above.

• If a0 = 1 and a2 = 0, then it is sufficient to note:

hk(x+ 2)− hk(x+ 2)− hk(x+ 1) + hk(x+ 1) = 0. (A.5.12)

Since a1 is the action which maximises hk(x+1+a1), the left-hand side of (A.5.12) is bounded

below by the left-hand side of (A.5.11), so the latter must be non-positive.

Due to the inductive assumption, the differences D(x, hk)−D(x−1, hk) and D(x+1, hk)−D(x, hk)

are both non-positive. Thus, all terms on the right-hand side of (A.5.9) have been shown to be

non-positive except for I(x = c− 1)µ∆D(x, hk). This term is zero if x 6= c− 1 by definition of the

indicator function, whereas if x = c−1 then it can be bounded above by µ∆(α−β/µ)/∆ = αµ−β

due to the first inductive assumption. However, (A.5.10) states that D(x+ 1, r)−D(x, r) = −αµ

when x = c− 1, so in conclusion the following holds for x ∈ {0, 1, ..., T̃ − 2}:

D(x+ 1, r)−D(x, r) + I(x = c− 1)µ∆D(x, hk) ≤ 0.

This establishes that D(x+1, hk+1)−D(x, hk+1) is non-positive for x ∈ {0, 1, ..., T̃ −2} as required.

At this point, the properties (A.5.1) and (A.5.2) have been shown to hold for n = k + 1 under the

assumption that they hold for n = k. It remains to show that the properties (A.5.3) and (A.5.4)

are propagated in a similar manner. Indeed, for states x ∈ {0, 1, ..., T̃ − 1} one has:

D(x, ĥk+1) = r̂(x+ 1, a1)− r̂(x, a0) + λ∆
(
ĥk(x+ 1 + a1)− ĥk(x+ a0)

)
+ min(x, c)µ∆D(x− 1, ĥk)

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)D(x, ĥk), (A.5.13)



Appendices 430

where a0 and a1 are actions maximising r̂(x, a0)+λ∆ĥk(x+a0) and r̂(x+1, a1)+λ∆ĥk(x+1+a1)

respectively. First, it will be shown that the following holds:

r̂(x+ 1, a1)− r̂(x, a0) + λ∆
(
ĥk(x+ 1 + a1)− ĥk(x+ a0)

)
≤ 0. (A.5.14)

It is not possible to have a0 = 0 and a1 = 1, since this would contradict the inductive assumption

that r̂(x + 1, 1) + λ∆D(x + 1, ĥk) ≤ r̂(x, 1) + λ∆D(x, ĥk). Thus, if a0 = 0 then a1 = 0 also and

the left-hand side of (A.5.14) reduces to λ∆D(x, ĥk), which is non-positive by the third inductive

assumption. On the other hand, if a0 = 1 then there are two possible cases:

• If a0 = a1 = 1, the left-hand side of (A.5.14) reduces to r̂(x+ 1, 1)− r̂(x, 1) +λ∆
(
ĥk(x+ 2)−

ĥk(x+ 1)
)
, which is non-positive due to the third inductive assumption.

• If a0 = 1 and a1 = 0, the left-hand side of (A.5.14) reduces to −r̂(x, 1). Given that a0 = 1, it

must be the case that r̂(x, 1) + λ∆D(x, ĥk) ≥ 0 and hence r̂(x, 1) ≥ 0 since D(x, ĥk) ≤ 0 by

the third inductive assumption. Hence, the inequality (A.5.14) again holds.

So, (A.5.14) holds in all possible cases. Given that D(x−1, ĥk) and D(x, ĥk) are both non-positive

by the third inductive assumption, it follows from (A.5.13) that D(x, ĥk+1) is non-positive as

required. The only remaining property to check is (A.5.4). This property can be written:

D(x+ 1, ĥn)−D(x, ĥn) ≤ r̂(x, 1)− r̂(x+ 1, 1)

λ∆
, (A.5.15)

which is assumed to be true for all x ∈ {0, 1, ..., T̃ − 2} when n = k. For n = k + 1, one has:

D(x+ 1, ĥk+1)−D(x, ĥk+1) = r̂(x+ 2, a2)− r̂(x+ 1, a1)− r̂(x+ 1, a1) + r̂(x, a0)

+ λ∆
(
ĥk(x+ 2 + a2)− ĥk(x+ 1 + a1)− ĥk(x+ 1 + a1) + ĥk(x+ a0)

)
+ min(x, c)µ∆

(
D(x, ĥk)−D(x− 1, ĥk)

)
+ I(x = c− 1)µ∆D(x, ĥk)

+
(
1− λ∆−min(x, c)µ∆− I(x < c)µ∆− I(x < c− 1)µ∆

)(
D(x+ 1, ĥk)−D(x, ĥk)

)
,

(A.5.16)

where a0, a1, a2 ∈ {0, 1} are actions which maximise r̂(x, a0) + λ∆ĥk(x+ a0),

r̂(x + 1, a1) + λ∆ĥk(x + 1 + a1) and r̂(x + 2, a2) + λ∆ĥk(x + 2 + a2) respectively. Referring to

(A.5.15), it must then be shown that, for each x ∈ {0, 1, ..., T̃ − 2}, the right-hand side of (A.5.16)
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is bounded above by (r̂(x, 1) − r̂(x + 1, 1))/(λ∆). It will be convenient to begin by showing that,

for all relevant states x and actions a0, a1, a2 ∈ {0, 1}, the following holds:

r̂(x+ 2, a2)− r̂(x+ 1, a1)− r̂(x+ 1, a1) + r̂(x, a0)

+ λ∆
(
ĥk(x+ 2 + a2)− ĥk(x+ 1 + a1)− ĥk(x+ 1 + a1) + ĥk(x+ a0)

)
≤ r̂(x, 1)− r̂(x+ 1, 1).

(A.5.17)

It can be checked using (3.5.15) that the reward terms satisfy:

r̂(x+ 1, 1)− r̂(x, 1) =


−λβ
cµ
, if x ≥ c− 1,

0, otherwise.

(A.5.18)

r̂(x+ 2, 1)− r̂(x+ 1, 1)− r̂(x+ 1, 1) + r̂(x, 1) =


−λβ
cµ
, if x = c− 2,

0, otherwise.

(A.5.19)

It is not possible to have a0 = 0 and a2 = 1, since this would contradict the inductive assumption

that r̂(x+ 2, 1) + λ∆D(x+ 2, ĥk) ≤ r̂(x+ 1, 1) + λ∆D(x+ 1, ĥk) ≤ r̂(x, 1) + λ∆D(x, ĥk). Hence,

there are 3 possible cases for the pair (a0, a2) ∈ {0, 1} × {0, 1}, considered below:

• If a0 = a2 = 0, then one may use Lemma 5.1.1 and choose a1 = 0. Then the inequality

(A.5.17) holds because the reward terms on the left-hand side are all zero, the expression

ĥk(x + 2)− ĥk(x + 1)− ĥk(x + 1) + ĥk(x) is bounded above by
(
r̂(x, 1)− r̂(x + 1, 1)

)
/(λ∆)

and hence the left-hand side is bounded above by r̂(x, 1)− r̂(x+ 1, 1).

• If a0 = a2 = 1, then one may again use Lemma 5.1.1 and choose a1 = 1. Here, it is easiest to

consider the three sub-cases x < c− 2, x = c− 2 and x ≥ c− 1 separately:

– If x < c − 2, then r̂(x + 2, 1) − r̂(x + 1, 1) − r̂(x + 1, 1) + r̂(x, 1) = 0 and ĥk(x + 3) −

ĥk(x+ 2)− ĥk(x+ 2) + ĥk(x+ 1) is bounded above by
(
r̂(x+ 1, 1)− r̂(x+ 2, 1)

)
/(λ∆)

due to the inductive assumption, but this quantity is equal to zero since x+ 1 < c− 1.

The right-hand side of (A.5.17) is equal to zero, so the inequality holds.

– If x = c−2, then r̂(x+2, 1)− r̂(x+1, 1)− r̂(x+1, 1)+ r̂(x, 1) = −λβ/(cµ) and ĥk(x+3)−

ĥk(x+2)− ĥk(x+2)+ ĥk(x+1) is bounded above by
(
r̂(x+1, 1)− r̂(x+2, 1)

)
/(λ∆) due

to the inductive assumption, which is equal to [λβ/(cµ)] /(λ∆) = β/(cµ∆) since x+ 1 ≥
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c−1. Hence, the left-hand side of (A.5.17) is bounded above by −λβ/(cµ)+λβ/(cµ) = 0.

The right-hand side of (A.5.17) is equal to zero, so the inequality holds.

– If x ≥ c − 1, then r̂(x + 2, 1) − r̂(x + 1, 1) − r̂(x + 1, 1) + r̂(x, 1) = 0 and ĥk(x + 3) −

ĥk(x+ 2)− ĥk(x+ 2) + ĥk(x+ 1) is bounded above by
(
r̂(x+ 1, 1)− r̂(x+ 2, 1)

)
/(λ∆)

due to the inductive assumption, which is equal to [λβ/(cµ)] /(λ∆). So, the left-hand

side of (A.5.17) is bounded above by λβ/(cµ). Since x ≥ c − 1, the right-hand side of

(A.5.17) is equal to the same quantity, λβ/(cµ). So the inequality holds.

• Finally, if a0 = 1 and a1 = 0 then it is sufficient to observe:

r̂(x+ 2, a2)− r̂(x+ 1, a1)− r̂(x+ 1, a1) + r̂(x, a0)

+ λ∆
(
ĥk(x+ 2 + a2)− ĥk(x+ 1 + a1)− ĥk(x+ 1 + a1) + ĥk(x+ a0)

)
≤ r̂(x+ 2, 0)− r̂(x+ 1, 0)− r̂(x+ 1, 1) + r̂(x, 1)

+ λ∆
(
ĥk(x+ 2)− ĥk(x+ 1)− ĥk(x+ 2) + ĥk(x+ 1)

)
= r̂(x, 1)− r̂(x+ 1, 1).

So the inequality (A.5.17) again holds.

In conclusion, (A.5.17) holds for all x ∈ {0, 1, ..., T̃ − 2} and all possible actions a0, a1, a2 ∈ {0, 1}.

Next, using the inductive assumption and also referring to (A.5.19), one can write:

D(x, ĥk)−D(x− 1, ĥk) ≤
r̂(x− 1, 1)− r̂(x, 1)

λ∆
≤ r̂(x, 1)− r̂(x+ 1, 1)

λ∆
,

D(x+ 1, ĥk)−D(x, ĥk) ≤
r̂(x, 1)− r̂(x+ 1, 1)

λ∆
.

Then, noting that D(x, ĥk) ≤ 0 by the third inductive assumption, it can be seen that the sum

of the last three lines in (A.5.16) is bounded above by (1 − λ∆)
(
r̂(x, 1) − r̂(x + 1, 1)

)
/(λ∆). So,

recalling (A.5.17), it follows that D(x+ 1, ĥk+1)−D(x, ĥk+1) satisfies:

D(x+ 1, ĥk+1)−D(x, ĥk+1) ≤ r̂(x, 1)− r̂(x+ 1, 1) + (1− λ∆)
r̂(x, 1)− r̂(x+ 1, 1)

λ∆

=
r̂(x, 1)− r̂(x+ 1, 1)

λ∆
,

which establishes that r̂(x+1, 1)− r̂(x, 1)+λ∆
(
D(x+1, ĥk+1)−D(x, ĥk+1)

)
≤ 0 as required. This

completes the inductive proof that all four of the properties (A.5.1)-(A.5.4) hold for all n ∈ N0.
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Since it is known that h(x) = limn→∞ hn(x) and ĥ(x) = limn→∞ ĥn(x) by Theorem 3.7.4, this

completes the proof of the four properties in the statement of the lemma. �

Proof of Lemma 5.1.5.

The result for ĥn will be shown first. When n = 0, the right-hand side of (5.1.18) is trivially equal

to zero since it is assumed that ĥ0(x) = 0 for all x ∈ {0, 1, ..., T̃}. By definition of the finite-stage

relative value function in (3.7.7), the left-hand side of (5.1.18) reduces to:

max
a

r̂(x+ 1, a)−max
a

r̂(x, a).

Let a∗ ∈ {0, 1} be a maximising action at state x + 1, i.e. a∗ ∈ arg maxa r̂(x + 1, a). Then, using

the definition of the anticipatory reward function r̂ in (5.1.4):

max
a

r̂(x+ 1, a)−max
a

r̂(x, a) = r̂(x+ 1, a∗)−max
a

r̂(x, a)

≤ r̂(x+ 1, a∗)− r̂(x, a∗)

≤ 0,

so (5.1.18) holds when n = 0. Proceeding by induction again, assume that it also holds at an

arbitrary stage k ∈ N0. Then, for x ∈ {0, 1, ..., T̃ − 1}, one finds (after simplifications):

D(x, ĥk+2)−D(x, ĥk+1) = r̂(x+ 1, a1)− r̂(x, a0)− r̂(x+ 1, b1) + r̂(x, b0)

+ λ∆
(
ĥk+1(x+ 1 + a1)− ĥk+1(x+ a0)− ĥk(x+ 1 + b1) + ĥk(x+ b0)

)
+ min(x, c)µ∆

(
D(x− 1, ĥk+1)−D(x− 1, ĥk)

)
+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)

(
D(x, ĥk+1)−D(x, ĥk)

)
,

where a0, a1, b0, b1 ∈ {0, 1} are actions which maximise r̂(x, a0) + λ∆ĥk+1(x + a0), r̂(x + 1, a1) +

λ∆ĥk+1(x+ 1 + a1), r̂(x, b0) + λ∆ĥk(x+ b0) and r̂(x+ 1, b1) + λ∆ĥk(x+ 1 + b1) respectively. By

the inductive assumption, the differences D(x− 1, ĥk+1)−D(x− 1, ĥk) and D(x, ĥk+1)−D(x, ĥk)

are both non-positive. Therefore it will be sufficient to show that:

r̂(x+ 1, a1)− r̂(x, a0)− r̂(x+ 1, b1) + r̂(x, b0)

+ λ∆
(
ĥk+1(x+ 1 + a1)− ĥk+1(x+ a0)− ĥk(x+ 1 + b1) + ĥk(x+ b0)

)
≤ 0. (A.5.20)

It is not possible to have a1 = 1 and b0 = 0. Indeed, if b0 = 0 then r̂(x, 1) + λ∆D(x, ĥk) < 0 by

definition of b0. Then, by the property (5.1.17) proved in Lemma 5.1.2, it must also be the case
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that r̂(x+ 1, 1) + λ∆D(x+ 1, ĥk) < 0. However, if a1 = 1 then r̂(x+ 1, 1) + λ∆D(x+ 1, ĥk+1) ≥ 0,

thereby contradicting the inductive assumption that D(x+ 1, ĥk+1) ≤ D(x+ 1, ĥk). It follows that

there are only 3 possible cases for the pair (a1, b0), considered below.

• If a1 = b0 = 0 then one may apply Lemma 5.1.1 and choose a0 = 0 and b1 = 0 in (A.5.20), in

which case the inequality holds due to the inductive assumption.

• If a1 = b0 = 1 then, similarly, one may choose a0 = 1 and b1 = 1, in which case the inequality

(A.5.20) holds by the same reasoning as above.

• If a1 = 0 and b0 = 1 then, by Lemma 5.1.1 again, it is sufficient to choose a0 = 1 and b1 = 0

in (A.5.20), in which case the left-hand side is identically equal to zero.

Thus, it is established that D(x, ĥk+2) ≤ D(x, ĥk+1), and therefore (5.1.18) holds for all n ∈ N0

as required. Next, the result will be proved for the alternative relative value function h. In this

case, the property to be proved is slightly different (in fact, slightly weaker) than the corresponding

property for ĥ. It will be convenient to show, for x ∈ {0, 1, ..., T̃ − 1} and n ∈ N0:

D(x, hn+1) ≥ 0 ⇒ D(x, hn+2) ≥ D(x, hn+1).

Clearly, this will be sufficient to imply (5.1.19). When n = 0, one has:

D(x, h2) = D(x, r) + λ∆
(
h1(x+ 1 + a1)− h1(x+ a0)

)
+ min(x, c)µ∆D(x− 1, h1)

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆)D(x, h1), (A.5.21)

where a0 and a1 are actions maximising h1(x + a0) and h1(x + 1 + a1) respectively. Assume that

D(x, h1) ≥ 0. Since h0(x) = 0 for all x ∈ {0, 1, ..., T̃}, this simply states that r(x + 1)− r(x) ≥ 0.

Hence, in order to show that D(x, h2) ≥ D(x, h1) ≥ 0, it suffices to show that the terms added to

r(x+ 1)− r(x) on the right-hand side of (A.5.21) are all non-negative.

Given that D(x, h1) ≥ 0 by assumption, it follows by the concavity property (5.1.15) shown in the

proof of Lemma 5.1.2 that D(x− 1, h1) ≥ 0, so it remains only to show:

h1(x+ 1 + a1)− h1(x+ a0) ≥ 0. (A.5.22)
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This can be easily done by again taking advantage of Lemma 5.1.1. If a0 = 0, one may choose

a1 = 0, in which case the left-hand side of (A.5.22) is non-negative by assumption. On the other

hand, if a0 = 1 then one may again choose a1 = 0, in which case the left-hand side of (A.5.22)

is equal to zero. This confirms that D(x, h1) ≥ 0 implies D(x, h2) ≥ D(x, h1) as required. As an

inductive assumption, suppose that for all x ∈ {0, 1, ..., T̃ − 1} and arbitrary k ≥ 1:

D(x, hk) ≥ 0 ⇒ D(x, hk+1) ≥ D(x, hk). (A.5.23)

After simplifications, one has the following expression for D(x, hk+2)−D(x, hk+1):

D(x, hk+2)−D(x, hk+1) = λ∆
(
hk+1(x+ 1 + a1)− hk+1(x+ a0)− hk(x+ 1 + b1) + hk(x+ b0)

)
+ min(x, c)µ∆ (D(x− 1, hk+1)−D(x− 1, hk))

+ (1− λ∆−min(x, c)µ∆− I(x < c)µ∆) (D(x, hk+1)−D(x, hk)) ,

(A.5.24)

where a0, a1, b0 and b1 are actions maximising hk+1(x + a0), hk+1(x + 1 + a1), hk(x + b0) and

hk(x + 1 + b1) respectively. It must then be shown that the expression on the right-hand side of

(A.5.24) is non-negative, under the assumption that D(x, hk+1) ≥ 0. Indeed, if D(x, hk+1) ≥ 0 then

it can be deduced that D(x−1, hk+1) ≥ 0 by the concavity property of hk+1 proved in Lemma 5.1.2.

Hence, the second and third lines on the right-hand side of (A.5.24) must be non-negative; indeed,

note that if D(x, hk) is positive then the inductive assumption implies that D(x, hk+1)−D(x, hk) is

non-negative, whereas ifD(x, hk) ≤ 0 thenD(x, hk+1)−D(x, hk) is automatically non-negative since

D(x, hk+1) ≥ 0. Similar reasoning can be used in order to show that D(x− 1, hk+1)−D(x− 1, hk)

must also be non-negative. In light of these arguments, it only remains to show:

hk+1(x+ 1 + a1)− hk+1(x+ a0)− hk(x+ 1 + b1) + hk(x+ b0) ≥ 0. (A.5.25)

Note that it is not possible to have a0 = 0 and b1 = 1. Indeed, if b1 = 1 then this implies

D(x + 1, hk) ≥ 0 by definition of b1, and hence D(x, hk) ≥ 0 due to the concavity of hk proved

in Lemma 5.1.2. However, in this case the inductive assumption implies D(x, hk+1) ≥ 0, which

implies a0 = 1 by definition of a0 and thereby gives a contradiction. So there are three possible

cases for the pair (a0, b1) ∈ {0, 1} × {0, 1}. These cases are considered below.

• If a0 = b1 = 0, then one may apply Lemma 5.1.1 and choose a1 = b0 = 0 in (A.5.25), in which
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case it is sufficient to show that the following holds:

D(x, hk+1)−D(x, hk) ≥ 0. (A.5.26)

If D(x, hk) ≥ 0, then (A.5.26) holds due to the inductive assumption. On the other hand, if

D(x, hk) < 0 then (A.5.26) holds due to the assumption that D(x, hk+1) ≥ 0.

• If a0 = b1 = 1 then similarly, one may apply 5.1.1 and choose b0 = 1 in (A.5.25), in which

case it is sufficient to show the following:

hk+1(x+ 1 + a1)− hk+1(x+ 1)− hk(x+ 2) + hk(x+ 1) ≥ 0. (A.5.27)

If D(x + 1, hk) < 0, then choosing a1 = 0 in (A.5.27) causes the left-hand side to be non-

negative. On the other hand, if D(x + 1, hk) ≥ 0 then choosing a1 = 1 achieves the same

result, since D(x+ 1, hk+1) ≥ D(x+ 1, hk) due to the inductive assumption.

• If a0 = 1 and b1 = 0 then one may again apply Lemma 5.1.1 and choose a1 = 0 and b0 = 1,

in which the left-hand side of (A.5.26) is identically equal to zero.

These arguments show that (A.5.25) holds in all possible cases for the actions a0 and b1, so the

expression for D(x, hk+2)−D(x, hk+1) in (A.5.24) is non-negative as required. This completes the

inductive proof that (5.1.19) holds for all n ∈ N0 as stated by the lemma. �

Proof of Lemma 5.1.7.

Consider two different demand rates λ0 and λ1, with 0 < λ0 < λ1. For each state x ∈ {0, 1, ..., T̃},

the relative values h(x, λ1) and h(x, λ2) are obtained as limits of the finite-stage function values

hn(x, λ1) and hn(x, λ2) respectively as n → ∞. These finite-stage values are obtained by relative

value iteration and depend on the transition probabilities defined in (3.5.3), and these transition

probabilities depend upon the discrete-time step size parameter ∆. Given an arbitrary demand rate

λ > 0, the parameter ∆ may take any positive value smaller than (λ+cµ)−1; therefore, (λ1 +cµ)−1

is a valid choice under either of the demand rates λ0 and λ1. In this proof, ∆ will be held at a fixed

value ∆ = (λ1 + cµ)−1 as opposed to being assigned different values for the two respective demand

rates; note that, due to Lemma 3.8.4, changing the value of ∆ affects the relative values h(·) only

by a positive multiplicative factor, so any such change cannot cause the first-order difference in
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(5.1.25) to go from positive to negative, or vice versa. It should also be noted that the concavity

property (5.1.15) proved in Lemma 5.1.2 is not affected by altering the value of ∆.

The aim of the proof is to show that, for x ∈ {0, 1, ..., T̃ − 1} and integers n ≥ 0:

D(x, λ0, hn) ≥ D(x, λ1, hn), (A.5.28)

with ∆ = (λ1 +cµ)−1 used in the computation of all of the terms in (A.5.28), including those based

on the demand rate λ0. When n = 0, both sides of (A.5.28) are equal to zero. Assume that the

inequality holds at an arbitrary stage k ∈ N0. Then, after simplifications:

D(x, λ0, hk+1)−D(x, λ1, hk+1)

= λ0∆
(
hk(x+ 1 + a1, λ0)− hk(x+ a0, λ0)− hk(x+ 1 + b1, λ1) + hk(x+ b0, λ1)

)
+ (λ1 − λ0)∆

(
D(x, λ0, hk)− hk(x+ 1 + b1, λ1) + hk(x+ b0, λ1)

)
+ min(x, c)µ∆

(
D(x− 1, λ0, hk)−D(x− 1, λ1, hk)

)
+ (1− λ1∆−min(x, c)µ∆− I(x < c)µ∆)

(
D(x, λ0, hk)−D(x, λ1, hk)

)
, (A.5.29)

where a0, a1, b0 and b1 are actions maximising hk(x+ a0, λ0), hk(x+ 1 + a1, λ0), hk(x+ b0, λ1) and

hk(x+ 1 + b1, λ1) respectively. Due to the inductive assumption, the differences D(x− 1, λ0, hk)−

D(x − 1, λ1, hk) and D(x, λ0, hk) − D(x, λ1, hk) are both non-negative, so only the terms on the

second and third lines in (A.5.29) remain to be checked for non-negativity. By Lemma 5.1.1, it

suffices to consider all possible combinations for the actions a0 and b1 and show that, for each

combination, there exists some choice of a1 and b0 such that the following holds:

λ0∆
(
hk(x+ 1 + a1, λ0)− hk(x+ a0, λ0)− hk(x+ 1 + b1, λ1) + hk(x+ b0, λ1)

)
+ (λ1 − λ0)∆

(
D(x, λ0, hk)− hk(x+ 1 + b1, λ1) + hk(x+ b0, λ1)

)
≥ 0. (A.5.30)

It is not possible to have a0 = 0 and b1 = 1, since this would imply D(x, λ0, hk) < 0 and D(x +

1, λ1, hk) ≥ 0, and the latter of these inequalities would then imply D(x, λ1, hk) ≥ 0 (due to

Lemma 5.1.2), thereby contradicting the inductive assumption that D(x, λ0, hk) ≥ D(x, λ1, hk).

Hence, there are only three possibilities remaining for the pair (a0, b1) ∈ {0, 1}2:

• If a0 = b1 = 0, then one may apply Lemma 5.1.1 and choose a1 = 0 and b0 = 0 in (A.5.30),

in which case the left-hand side is non-negative by inductive assumption.
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• If a0 = b1 = 1, one may choose a1 = 1 and b0 = 1. Then the first line on the left-hand side

of (A.5.30) is non-negative by the inductive assumption, and the second line gives:

(λ1 − λ0)∆ (D(x, λ0, hk)−D(x+ 1, λ1, hk)) . (A.5.31)

Due to the concavity of hk(·) proved in Lemma 5.1.2, (A.5.31) is bounded below by:

(λ1 − λ0)∆ (D(x, λ0, hk)−D(x, λ1, hk)) ,

which is non-negative due to the inductive assumption.

• If a0 = 1 and b1 = 0, one may again apply Lemma 5.1.1 and choose a1 = 0 and b0 = 1. Then

the first line on the left-hand side of (A.5.30) is equal to zero, and the second line simplifies

to (λ1 − λ0)∆D(x, λ0, hk). Given that a0 = 1, it must be the case that D(x, λ0, hk) ≥ 0. So,

again, the left-hand side of (A.5.30) is non-negative as required.

These arguments confirm that the sum of the terms on the right-hand side of (A.5.29) is non-

negative, so D(x, λ0, hk+1) ≥ D(x, λ1, hk+1) as required. This completes the inductive proof that

(A.5.28) holds for all n ∈ N0, and the result follows by taking limits as n→∞. �

Proof of Lemma 5.1.9.

Consider an arbitrary threshold policy θ with threshold T ∈ N, and for each state x ∈ {0, 1, ..., T}

let πθ(x) denote the stationary probability of the process being in state x. Then the expected

long-run average reward under θ, given a demand rate λ > 0, is given by:

gθ(λ) = λα(1− πθ(T ))− β
T∑
i=0

iπθ(i).

Let ρ = λ/(cµ). Then the stationary probabilities are given by (see, e.g. [67]):

πθ(0) =



(
c−1∑
x=0

(cρ)x

x!
+

(cρ)c

c!

1− ρT−c+1

1− ρ

)−1

, if ρ 6= 1,

(
c−1∑
x=0

cx

x!
+
cc

c!
(T − c+ 1)

)−1

, if ρ = 1,

πθ(x) =


(cρ)x

x!
πθ(0), if 1 ≤ x < c,

(cρ)x

cx−cc!
πθ(0), if c ≤ x ≤ T.
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Using elementary results for sums and products of continuous functions, it follows that gθ(λ) is a

continuous function of λ. By Theorem 5.1.4, the selfishly optimal policy θ̃ is a threshold policy with

fixed threshold T̃ = bαcµ/βc, so by the above, g̃(λ) is continuous in λ. Next, consider the socially

optimal case. Given any demand rate λ > 0, there exists a socially optimal policy with threshold

T ∗(λ) ≤ T̃ due to Theorem 5.1.4. Also, due to Theorem 5.1.8, T ∗(λ) is monotonically decreasing

with λ and limλ→∞ T
∗(λ) = c, assuming that T ∗(λ) corresponds to the policy found by relative

value iteration on {0, 1, ..., T̃}. It follows that there exist m demand rates λ1 < λ2 < ... < λm and

m+ 1 thresholds T ∗0 > T ∗1 > ... > T ∗m−1 > T ∗m = c, such that:

T ∗(λ) = T ∗i ∀ λ ∈ (λi, λi+1] (i = 0, 1, ...,m− 1), (A.5.32)

and T ∗(λ) = c for all λ > λm. One may define λ0 := 0 so that (A.5.32) makes sense when i = 0

(obviously, λ0 is not a real demand rate since demand rates should be positive). Note that it is

possible to have m = 0; this represents the case where T̃ = c, in which case there is nothing to

prove because previous results imply T ∗(λ) = c for all demand rates λ > 0. Essentially, the proof

is accomplished by using the fact that a maximum of continuous functions is itself continuous. To

be more specific, it is necessary to show that for each i ∈ {1, 2, ...,m}:

lim
λ→λ+i

g∗(λ) = g∗(λi). (A.5.33)

That is, g∗(λ) has right-sided continuity at λi. Note that the left-sided continuity (for i ≥ 1) is

automatic due to the definition of λi in (A.5.32), which implies that g∗(λ) is equal to the average

reward of a fixed threshold policy for λ ∈ (λi−1, λi]. Using similar arguments, the limit on the

left-hand side of (A.5.33) is known to exist since g∗(λ) is equal to the average reward of the

policy with threshold T ∗i as λ approaches λi from the right. Suppose, for a contradiction, that

limλ→λ+i
g∗(λ) 6= g∗(λi) for some i ∈ {1, 2, ...,m}. Equivalently, for some ε > 0:∣∣∣∣∣ lim

λ→λ+i
g∗(λ)− g∗(λi)

∣∣∣∣∣ = ε. (A.5.34)

Let θL and θU denote the threshold policies with thresholds T ∗i−1 and T ∗i respectively. Note that

g∗(λ) = gθL(λ) for demand rates λ ∈ (λi−1, λi], and g∗(λ) = gθU (λ) for demand rates λ ∈ (λi, λi+1]

(or λ ∈ (λi,∞) if i = m). So, (A.5.34) can be written equivalently as follows:∣∣∣∣∣ lim
λ→λ+i

gθU (λ)− gθL(λi)

∣∣∣∣∣ = ε > 0. (A.5.35)
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Also, limλ→λ+i
gθU (λ) = gθU (λi) by continuity of gθU (λ), so (A.5.35) implies:

∣∣gθU (λi)− gθL(λi)
∣∣ = ε > 0. (A.5.36)

There are two possible cases to consider in (A.5.36); first, consider the case where gθU (λi) > gθL(λi).

By continuity of gθU (λ) and gθL(λ), there exist two values δL, δU > 0 such that:

∣∣gθL(λ)− gθL(λi)
∣∣ < ε

2
∀ λ ∈ (λi − δL, λi + δL), (A.5.37)∣∣gθU (λ)− gθU (λi)

∣∣ < ε

2
∀ λ ∈ (λi − δU , λi + δU ). (A.5.38)

Let δ := min(δL, δU ). Then, for all demand rates λ ∈ (λi − δ, λi):

gθU (λ)− gθL(λ) > gθU (λi)−
ε

2
−
(
gθL(λi) +

ε

2

)
= ε− ε

2
− ε

2
= 0, (A.5.39)

where the inequality is due to (A.5.37) and (A.5.38), and the equality in the second line is due to

(A.5.36) and the assumption that gθU (λi) > gθL(λi). However, (A.5.39) states that gθU (λ) > gθL(λ)

for λ ∈ (λi− δ, λi), which contradicts the fact that the policy θL with threshold T ∗i−1 is optimal for

λ in the interval (λi−1, λi]. Similarly, consider the case where gθU (λi) < gθL(λi). In this case, due

to (A.5.37) and (A.5.38) again, the following holds for λ ∈ (λi, λi + δ):

gθL(λ)− gθU (λ) > gθL(λi)−
ε

2
−
(
gθU (λi) +

ε

2

)
= ε− ε

2
− ε

2
= 0,

which states that gθL(λ) > gθU (λ) for λ ∈ (λi, λi+δ), thereby contradicting the fact that the policy

θU with threshold T ∗i is optimal for λ in the interval (λi, λi+1] (or (λi,∞) if i = m). It follows that

(A.5.33) holds for each i ∈ {1, 2, ...,m}, which completes the proof. �

Proof of Lemma 5.2.9.

The proof is accomplished using induction on the iterates hn(x) obtained by relative value iteration.

It will be shown that for any x ∈ S̃ and j ∈ {1, 2, ..., N} such that xj+ ∈ S̃:

Dj(x, hn) ≤ αjµj − βj
µj∆

∀ n ∈ N0. (A.5.40)
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It is assumed that h0(x) = 0 for all x ∈ S̃, so (A.5.40) holds trivially when n = 0. Assume that it

also holds when n = k, where k ∈ N0 is arbitrary. Then, at stage k + 1:

Dj(x, hk+1) = Dj(x, r) + λ∆
(
hk((x

j+)a1+)− hk(xa0+)
)

+
N∑
i=1

min(xi, ci)µi∆Dj(x
i−, hk)

+

(
1− λ∆−

N∑
i=1

min(xi, ci)µi∆− I(xj < cj)µj∆

)
Dj(x, hk), (A.5.41)

where I is the indicator function and a0 and a1 are optimal actions at states x and xj+ respectively

in a (k+ 1)-stage problem; that is, a0 ∈ arg maxa hk(x
a+) and a1 ∈ arg maxa hk((x

j+)a+). First, it

may be shown that the difference hk((x
j+)a1+)−hk(xa0+) is bounded above by (αjµj−βj)/(µj∆).

Indeed, one may apply the following argument (based on Lemma 5.1.1):

hk((x
j+)a1+)− hk(xa0+) ≤ hk((xj+)a1+)− hk(xa1+) = Dj(x

a1+, hk) ≤
αjµj − βj
µj∆

,

where the last inequality follows from the inductive assumption. Similarly, Dj(x
i−, hk) is bounded

above by (αjµj − βj)/(µj∆) for any i ∈ {1, 2, ..., N}, again due to the inductive assumption. To

complete the proof, it will be convenient to consider the cases xj ≥ cj and xj < cj separately. If

xj ≥ cj , then Dj(x, r) = −βj < 0 and I(xj < cj) = 0. Hence, due to the previous arguments,

the right-hand side of (A.5.41) may be bounded above by a convex combination of terms bounded

above by (αjµj − βj)/(µj∆), which establishes that Dj(x, hk+1) ≤ (αjµj − βj)/(µj∆) as required.

On the other hand, if xj < cj , then Dj(x, r) = αjµj − βj > 0. However, since I(xj < cj) = 1 in

this case, (A.5.41) implies (again making use of the inductive assumption):

Dj(x, hk+1) ≤ αjµj − βj + (1− µj∆)
αjµj − βj
µj∆

=
αjµj − βj
µj∆

.

In conclusion, Dj(x, hk+1) is bounded above by (αjµj − βj)/(µj∆) in all possible cases, which

completes the inductive proof that (A.5.40) holds for all n ∈ N0. Since limn→∞ hn(x) = h(x) for

all states x ∈ S̃ by Theorem 3.7.4, the required upper bound (5.2.12) follows. �

Proof of Lemma 5.2.10.

It is sufficient to show that for states x ∈ S̃, i, j ∈ {1, 2} with i 6= j and n ∈ N0:

Dij(x, hn) ≤ 0, (A.5.42)

Djj(x, hn) ≤ 0, (A.5.43)

Djj(x, hn)−Dij(x, hn) ≤ 0. (A.5.44)
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Since the finite state space S̃ is being considered, it should be noted that (A.5.42) needs to be

proved only in the case of states x ∈ S̃ with xi ≤ B̃i − 1 and xj ≤ B̃j − 1. Similarly, (A.5.43)

applies to states with xj ≤ B̃j − 2 and (A.5.44) applies to states with both xj ≤ B̃j − 2 and

xi ≤ B̃i − 1. All three properties hold trivially when n = 0 since h0(x) = 0 for all x ∈ S̃. Assume

that they also hold when n = k, where k ∈ N0 is arbitrary. The submodularity property (A.5.42)

will be considered first. At stage n = k + 1, one has (after simplifications):

Dij(x, hk+1) = Dij(x, r) + λ∆
(
hk(((x

i+)j+)a1+)− hk((xi+)a0+)− hk((xj+)b1+) + hk(x
b0+)

)
+

2∑
m=1

min(xm, 1)µm∆Dij(x
m−, hk)

+

(
1− λ∆−

2∑
m=1

min(xm, 1)µm∆− I(xi = 0)µi∆− I(xj = 0)µj∆

)
Dij(x, hk),

where a0, a1, b0, b1 are optimal actions at states xi+, (xi+)j+, x and xj+ respectively in a (k+ 1)-

stage problem. It is known that Dij(x, r) = 0, and Dij(x, hk) and Dij(x
m−, hk) (for m ∈ {1, 2})

are non-positive by the inductive assumption. Hence, it suffices to show:

hk(((x
i+)j+)a1+)− hk((xi+)a0+)− hk((xj+)b1+) + hk(x

b0+) ≤ 0. (A.5.45)

One may proceed by considering all possible cases for the actions a1, b0 ∈ {0, 1, 2}. First, note that

if b0 = 0 then it is not possible to have a1 = 1 or a1 = 2. Indeed, if a1 = j for some j ∈ {1, 2}

then this implies Dj((x
i+)j+, hk) ≥ 0 and hence (by the assumed concavity of hk) Dj(x

i+, hk) ≥ 0,

in which case one cannot have b0 = 0 since this implies Dj(x, hk) < 0 and thereby contradicts the

inductive assumption that Dij(x, hk) ≤ 0. The number of cases to consider may be further reduced

by noting that the expression for Dij(x, hk) is symmetric in i and j (that is, Dij(x, hk)=Dji(x, hk)),

so (for example) it is not necessary to treat a1 = b0 = i and a1 = b0 = j as separate cases. After

reductions, four possibilities remain for a1 and b0. These are considered below.

• If a1 = b0 = 0, one may apply the AS principle (Lemma 5.1.1) and choose a0 = b1 = 0, then

(A.5.45) holds since the left-hand side is equal to Dij(x, hk) ≤ 0.

• If a1 = b0 = j for some j ∈ {1, 2}, then similarly one may choose a0 = b1 = j, in which case

(A.5.45) holds since the left-hand side is equal to Dij(x
j+, hk) ≤ 0.

• If a1 = 0 and b0 = j for some j ∈ {1, 2}, then one may choose a0 = j and b1 = 0, in which

case (A.5.45) holds since the left-hand side is equal to zero.
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• If a1 = j and b0 = i for some i, j ∈ {1, 2} with i 6= j, one may choose a0 = j and b1 = i, in

which case (A.5.45) holds since the left-hand side is equal to Djj(x
i+, hk) ≤ 0.

The conclusion is that Dij(x, hk+1) is non-positive in all possible cases, as required. Note that the

inductive assumptions of submodularity and concavity for the function hk are required in order to

verify that hk+1 is submodular. It is a general theme of this proof that the three structural properties

of interest (submodularity, concavity and diagonal submissiveness) depend on each other, which is

why they are not proved using separate lemmas. Next, the diagonal submissiveness property will

be considered. One may derive the following expression for Djj(x, hk+1):

Djj(x, hk+1)−Dij(x, hk+1) = Djj(x, r)−Dij(x, r)

+ λ∆
(
hk(((x

j+)j+)a1+)− hk(((xi+)j+)a0+)− hk((xj+)b1+) + hk((x
i+)b0+)

)
+

2∑
m=1

min(xm, 1)µm∆
(
Djj(x

m−, hk)−Dij(x
m−, hk)

)
+ I(xj = 0)µj∆Dj(x, hk) + I(xi = 0)µi∆Djj(x, hk)

+

(
1− λ∆−

2∑
m=1

min(xm, 1)µm∆− I(xj = 0)µj∆− I(xi = 0)µi∆

)(
Djj(x, hk)−Dij(x, hk)

)
,

(A.5.46)

where a0, a1, b0 and b1 are optimal actions at states (xi+)j+, (xj+)j+, xi+ and xj+ respec-

tively in a (k + 1)-stage problem. Due to Lemma 5.2.8, Djj(x, r) − Dij(x, r) ≤ 0. In addition,

Djj(x, hk) − Dij(x, hk) ≤ 0 and Djj(x
m−, hk) − Dij(x

m−, hk) ≤ 0 (for m ∈ {1, 2}) due to the

inductive assumption. To continue the proof, it will be useful to show:

hk(((x
j+)j+)a1+)− hk(((xi+)j+)a0+)− hk((xj+)b1+) + hk((x

i+)b0+) ≤ 0. (A.5.47)

Again, this may be done by considering the possible cases for the actions a1, b0 ∈ {0, 1, 2}. This

time, there are nine possibilities. These are considered below.

• If a1 = b0 = 0, then one may apply Lemma 5.1.1 and choose a0 = b1 = 0. Then (A.5.47)

holds because the left-hand side is equal to Djj(x, hk)−Dij(x, hk) ≤ 0.

• If a1 = b0 = j, one may again apply Lemma 5.1.1 and choose a0 = b1 = j. Then (A.5.47)

holds because the left-hand side is equal to Djj(x
j+, hk)−Dij(x

j+, hk) ≤ 0.
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• If a1 = b0 = i, then similarly one may choose a0 = b1 = i. Then (A.5.47) holds because the

left-hand side is equal to Djj(x
i+, hk)−Dij(x

i+, hk) ≤ 0.

• If a1 = i and b0 = j, then one may choose a0 = j and b1 = i, in which case (A.5.47) holds

trivially because the left-hand side is equal to zero.

• If a1 = 0 and b0 = j, then one may choose a0 = 0 and b1 = j, in which case (A.5.47) again

holds trivially since the left-hand side is equal to zero.

• If a1 = 0 and b0 = i, one may choose a0 = 0 and b1 = i and aim to show:

hk((x
j+)j+)− hk((xi+)j+)− hk((xi+)j+) + hk((x

i+)i+) ≤ 0. (A.5.48)

Due to the inductive assumption, the left-hand side of (A.5.48) is bounded above by:

hk(x
j+)− hk(xi+)− hk((xi+)j+) + hk((x

i+)i+)

= hk((x
i+)i+)− hk((xi+)j+)− hk(xi+) + hk(x

j+),

which is equal to Dii(x, hk)−Dij(x, hk) and is therefore non-positive due to the same inductive

assumption (with components i and j interchanged).

• If a1 = j and b0 = 0, one may choose a0 = j and b1 = 0. Then, due to the inductive

assumption of diagonal submissiveness again, one may write:

hk(((x
j+)j+)j+)− hk(((xi+)j+)j+)− hk(xj+) + hk(x

i+)

≤ hk((xj+)j+)− hk((xi+)j+)− hk(xj+) + hk(x
i+),

which is equal to Djj(x, hk)−Dij(x, hk) ≤ 0.

• If a1 = i and b0 = 0, one may choose a0 = 0 and b1 = i. Then the left-hand side of (A.5.47)

is equal to Djj(x
i+, hk), which is non-positive due to concavity of hk.

• Finally, if a1 = j and b0 = i, then Dj((x
j+)j+, hk) ≥ Di((x

j+)j+, hk) and Dj(x
i+, hk) ≤

Di(x
i+, hk) by definition of a1 and b0. The former inequality impliesDj(x

j+, hk) ≥ Di(x
j+, hk)

due to the inductive assumption of diagonal submissiveness at stage k, which in turn implies

Dj(x, hk) ≥ Di(x, hk). By the same reasoning, the inequality Dj(x
i+, hk) ≤ Di(x

i+, hk)

implies Dj(x, hk) ≤ Di(x, hk). Hence, Dj(x, hk) ≤ Di(x, hk) and Dj(x, hk) ≥ Di(x, hk) are
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both true, implying Dj(x, hk) = Di(x, hk) ≥ 0; that is, the actions i and j are both optimal

at state x. It has already been shown that (A.5.47) holds when a1 = b0 = j, so it must also

hold when a1 = j and b0 = i given that hk(x
j+) and hk(x

i+) are equal.

These arguments confirm that (A.5.47) holds in all possible cases for the actions a1 and b0. It follows

that the sum of the second, third and fifth lines on the right-hand side of (A.5.46) is non-positive.

Hence, Djj(x, hk+1)−Dij(x, hk+1) may be bounded above as follows:

Djj(x, hk+1)−Dij(x, hk+1) ≤ Djj(x, r)−Dij(x, r)

+ I(xj = 0)µj∆Dj(x, hk) + I(xi = 0)µi∆Djj(x, hk). (A.5.49)

The term I(xi = 0)µi∆Djj(x, hk) is always non-positive due to the inductive assumption. If xj ≥ 1,

then I(xj = 0) = 0 and Djj(x, r)−Dij(x, r) = 0, so the right-hand side of (A.5.49) is non-positive

as required. On the other hand, if xj = 0 then I(xj = 0) = 1 and Djj(x, r) −Dij(x, r) = −αjµj .

In this case, one may apply Lemma 5.2.9 to establish the following:

Djj(x, hk+1)−Dij(x, hk+1) ≤ −αjµj + µj∆

(
αjµj − βj
µj∆

)
= −βj < 0. (A.5.50)

This confirms that Djj(x, hk+1) −Dij(x, hk+1) ≤ 0 for relevant states x ∈ S̃. Since it was shown

earlier that Dij(x, hk+1) ≤ 0, it follows automatically that Djj(x, hk+1) ≤ 0, which completes the

inductive proof that all three of the properties (A.5.42)-(A.5.44) hold for integers n ∈ N0. Since

h(x) = limn→∞ hn(x) for all x ∈ S̃, this completes the proof of the lemma. �

Proof of Lemma 5.3.1.

Consider the evolution of relative value iteration on the finite state space S̃, with the reward

formulation (3.5.4) used. Let x ∈ S̃ and y ∈ S̃ be similar states; that is, (y1, y2, ..., yN ) is simply a

re-ordering of (x1, x2, ..., xN ). Then it is sufficient to show, for all n ∈ N0:

hn(x) = hn(y). (A.5.51)

The equation (A.5.51) holds trivially when n = 0 since h0(x) = h0(y) = 0, so assume that it holds
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at an arbitrary stage n = k ∈ N0. Then, at stage k + 1, one obtains:

hk+1(x)− hk+1(y) = r(x)− r(y) + λ∆
(
hk(x

a1+)− hk(ya2+)
)

+

N∑
i=1

min(xi, c)µ∆hk(x
i−)−

N∑
j=1

min(yj , c)µ∆hk(y
j−)

+

(
1− λ∆−

N∑
i=1

min(xi, c)µ∆

)
(hk(x)− hk(y)) , (A.5.52)

where a1, a2 ∈ {0, 1, ..., N} are optimal actions at states x and y respectively in a (k + 1)-stage

problem. From (3.5.4), it can easily be seen that r(x) = r(y) when x and y are similar. Further-

more, let (p1, p2, ..., pN ) be a permutation of the set of integers {1, 2, ..., N} such that xpi ≤ xpi+1

for each i ∈ {1, 2, ..., N − 1}, and similarly let (q1, q2, ..., qN ) be a permutation of {1, 2, ..., N} such

that yqj ≤ yqj+1 for j ∈ {1, 2, ..., N−1}; for example, given x = (5, 7, 3) and y = (7, 3, 5), one would

choose (p1, p2, p3) = (3, 1, 2) and (q1, q2, q3) = (2, 3, 1). Then, clearly:

N∑
i=1

min(xi, c)µ∆hk(x
i−)−

N∑
j=1

min(yj , c)µ∆hk(y
j−)

=
N∑
i=1

min(xpi , c)µ∆
(
hk(x

pi−)− hk(yqi−)
)
, (A.5.53)

and the series on the right-hand of (A.5.53) is equal to zero by the inductive assumption, since xpi−

and yqi− are similar states for each i ∈ {1, 2, ..., N}. By the inductive assumption, hk(x)−hk(y) = 0,

so in order to show that hk+1(x)− hk+1(y) = 0 it only remains to show:

hk(x
a1+)− hk(ya2+) = 0.

For notational convenience, let m denote the number of components of the vector x which are equal

to the selfish threshold B̃ (recall that if xi = B̃ for any component i ∈ {1, 2, ..., N}, then joining

facility i is not permitted at x; hence, N + 1−m is the number of permissible actions at x). Then,

using the permutations (p1, p2, ..., pN ) and (q1, q2, ..., qN ) again, one may observe:

hk(x
a1+) = max

(
hk(x), hk(x

p1+), hk(x
p2+), ..., hk(x

pN−m+)
)
,

hk(y
a2+) = max

(
hk(y), hk(y

q1+), hk(y
q2+), ..., hk(y

qN−m+)
)
,

from which it is clear that hk(x
a1+) = hk(y

a2+) since hk(x) = hk(y) and hk(x
pi+) = hk(y

qi+)

for each i ∈ {1, 2, ..., N} due to the inductive assumption. It follows that hk+1(x) − hk+1(y) = 0,
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which completes the inductive proof that hn(x) = hn(y) for all n ∈ N0. The result then follows by

applying Theorem 3.7.4 which states that h(x) = limn→∞ hn(x) for each x ∈ S̃. �

Proof of Lemma 5.3.2.

Consider an arbitrary state x ∈ S̃ with xi ≤ xj < B̃ for some i, j ∈ {1, 2, ..., N} with i 6= j. Using

induction again, it will be sufficient to show that for all integers n ≥ 0:

hn(xi+) ≥ hn(xj+), (A.5.54)

where it is again assumed that the real-time reward formulation (3.5.4) is used. If xi = xj then xi+

and xj+ are similar states, and hence (A.5.54) holds with equality for all n ∈ N0 due to Lemma

5.3.1. Therefore it remains only to consider the case where xi is strictly smaller than xj . The case

n = 0 is trivial, so assume that (A.5.54) holds with n = k ∈ N0. Then:

hk+1(xi+)− hk+1(xj+) = r(xi+)− r(xj+) + λ∆
(
hk((x

i+)a1+)− hk((xj+)a2+)
)

+
N∑
m=1

min(xm, c)µ∆
(
hk((x

i+)m−)− hk((xj+)m−)
)

+ I(xi < c)µ∆
(
hk(x)− hk(xj+)

)
+ I(xj < c)µ∆

(
hk(x

i+)− hk(x)
)

+

(
1− λ∆−

N∑
m=1

min(xm, c)µ∆− I(xi < c)µ∆− I(xj < c)µ∆

)(
hk(x

i+)− hk(xj+)
)
,

(A.5.55)

where a1, a2 ∈ {0, 1, ..., N} are optimal actions at states xi+ and xj+ respectively in a (k+ 1)-stage

problem. Given that xi < xj , it can be seen from (3.5.4) that:

r(xi+)− r(xj+) =


αµ, if xi < c and xj ≥ c,

0, otherwise.

(A.5.56)

Hence, r(xi+) ≥ r(xj+). Next, consider the series on the second line of (A.5.55). For m 6= j,

xm− is a state with fewer customers at facility i than at facility j, in which case hk((x
i+)m−) ≥

hk((x
j+)m−) by the inductive assumption. For m = j, the state xm− = xj− has a jth compo-

nent at least equal to its ith component due to the strict inequality xi < xj , so again the term

hk((x
i+)m−) − hk((xj+)m−) is non-negative due to the inductive assumption. Hence, all terms in

the series
∑N

m=1 min(xm, c)µ∆
(
hk((x

i+)m−)− hk((xj+)m−)
)

are non-negative.
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Next, consider the indicator terms in the third line of (A.5.55). If xi ≥ c, then both of these terms

are equal to zero. If xj < c (implying xi < c), then the third line in (A.5.55) yields:

µ∆
(
hk(x

i+)− hk(xj+)
)
,

which is non-negative by the inductive assumption. The remaining possibility is that xi < c and

xj ≥ c. In this case, the third line of (A.5.55) yields a term µ∆
(
hk(x) − hk(xj+)

)
, which may be

negative. However, due to the upper boundedness property of Dj(x, hk) proved by Lemma 5.2.9

(which applies to any general system of N facilities with multiple servers), this term is bounded

below by −(αµ − β). In addition, referring to (A.5.56), one obtains a positive term αµ from

r(xi+) − r(xj+) in this case. The positive term αµ is greater in absolute value than the negative

lower bound −(αµ− β), so one may conclude that in all possible cases with xi < xj :

r(xi+)− r(xj+) +
N∑
m=1

min(xm, c)µ∆
(
hk((x

i+)m−)− hk((xj+)m−)
)

+ I(xi < c)µ∆
(
hk(x)− hk(xj+)

)
+ I(xj < c)µ∆

(
hk(x

i+)− hk(x)
)

+

(
1− λ∆−

N∑
m=1

min(xm, c)µ∆− I(xi < c)µ∆− I(xj < c)µ∆

)(
hk(x

i+)− hk(xj+)
)

≥ 0.

Thus, referring to (A.5.55), it remains only to show:

hk((x
i+)a1+)− hk((xj+)a2+) ≥ 0.

Here, using an argument based on Lemma 5.1.1, one may simply write:

hk((x
i+)a1+)− hk((xj+)a2+) ≥ hk((xi+)a2+)− hk((xj+)a2+), (A.5.57)

and the expression on the right-hand side of (A.5.57) is non-negative due to the inductive assump-

tion, since the strict inequality xi < xj ensures that xa2+ is a state with a jth component at

least equal to its ith component, even in the case where a2 = i. From (A.5.55), it follows that

hk+1(xi+) ≥ hk+1(xj+), which completes the inductive proof that (A.5.54) holds for all n ∈ N0. As

in previous inductive proofs, the result then follows by taking limits as n→∞. �
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A.6 Proofs for results in Chapter 6

Proof of Lemma 6.1.9.

In this proof it is assumed that the real-time reward formulation (3.5.4) is used to compute θ∗

using relative value iteration on the finite state space S̃, although the result can also be established

under the alternative formulation in (3.5.15) or a ‘hybrid’ formulation such as (3.5.26). Given that

balking is chosen at some state x ∈ S̃ by the optimal policy θ∗, one has h(xi+) < h(x) for all

i ∈ {1, 2, ..., N} with xi+ ∈ S̃, where h is the relative value function satisfying (3.7.6). In order

to show that θ[W ] chooses to balk at the same state, it is then necessary to show that Wi(xi) < 0

for all i. By definition of the Whittle indices Wi(xi), this is equivalent to showing that for each

facility i, the optimal threshold T ∗i found by applying relative value iteration to the corresponding

single-facility problem with state space {0, 1, ..., T̃i} (where T̃i = bαiciµi/βic) is less than or equal

to xi; or equivalently, balking would be chosen at state xi ∈ N0 by the policy θ∗i .

For ease of notation, let the facility i ∈ {1, 2, ..., N} be fixed, let R(·) be the real-time reward

function in a single-facility problem with parameters corresponding to those of i, and let H(·) be

the associated relative value function defined on the set {0, 1, ..., T̃i}. That is:

R(x) = min(x, ci)αiµi − βix ∀ x ∈ {0, 1, ..., T̃i}, (A.6.1)

and the values H(x), together with a constant G∗, satisfy the optimality equations:

G∗ +H(x) = max
a∈Ax

R(x) +
∑
y≤T̃i

P (x, a, y)H(y)

 (x ∈ {0, 1, ..., T̃i}). (A.6.2)

Further, suppose that the transition probabilities P (x, a, y) in (A.6.2) are obtained by using a

discrete-time step size ∆ = (λ +
∑

j cjµj)
−1 as opposed to the larger value (λ + ciµi)

−1; that is,

the maximal value of the discrete-time step size used for the N -facility problem is also used as the

step size for the single-facility problem. Recall from the discussion in Section 3.8 (page 119) that

reducing the value of ∆ in this way affects the relative values H(x) only by a positive multiplicative

constant, so this cannot alter the sign of a quantity such as H(x + 1) − H(x). The transition
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probabilities P (x, a, y) for the single-facility problem are then given by:

P (x, a, y) =



λ∆, if y = x+ 1 and a = 1,

min(x, ci)µi∆, if y = x− 1,

1− I(a = 1)λ∆−min(x, ci)µi∆, if y = x,

0, otherwise,

with ∆ = (λ+
∑

j cjµj)
−1. Meanwhile, for the N -facility problem, let r(x), h(x) and p(x, a,y) be

as defined in (3.5.4), (3.7.6) and (3.5.3) respectively, again assuming that ∆ = (λ +
∑

j cjµj)
−1.

By the previous arguments, it is sufficient to show that for all x ∈ S̃ with xi < T̃i:

h(xi+) < h(x) ⇒ H(xi + 1) < H(xi).

In fact, it will be possible to establish a slightly stronger property. Let hn(·) be the finite-stage

relative value function defined in (3.7.7), and let Hn(·) be the analogous function for the single-

facility problem involving facility i. The aim of this proof will be to show that, given any x ∈ S̃

with xi < T̃i, the following property holds for all integers y satisfying xi ≤ y < T̃i:

hn(xi+)− hn(x) ≥ Hn(y + 1)−Hn(y) ∀ n ∈ N0. (A.6.3)

One assumes that h0(x) = 0 for all x ∈ S̃ and H0(x) = 0 for all x ∈ {0, 1, ..., T̃i}, so (A.6.3) holds

trivially when n = 0. As an inductive hypothesis, suppose that it also holds at an arbitrary stage
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k ∈ N0. Then, by definition of ∆, one can write the following at stage k + 1:

hk+1(xi+)− hk+1(x)−Hk+1(y + 1) +Hk+1(y)

= r(xi+)− r(x)−R(y + 1) +R(y) (A.6.4)

+ λ∆
(
hk((x

i+)a1+)− hk(xa0+)−Hk(y + 1 + b1) +Hk(y + b0)
)

(A.6.5)

+
∑
j 6=i

min(xj , cj)µj∆
(
hk((x

i+)j−)− hk(xj−)−Hk(y + 1) +Hk(y)
)

(A.6.6)

+ min(xi, ci)µi∆
(
hk(x)− hk(xi−)−Hk(y) +Hk(y − 1)

)
(A.6.7)

+ I(xi < ci and xi < y)µi∆ (hk(x)− hk(x)−Hk(y) +Hk(y − 1)) (A.6.8)

+ I(xi = y < ci)µi∆ (hk(x)− hk(x)−Hk(y) +Hk(y)) (A.6.9)

+ I(xi < y − 1 and xi < ci − 1)(min(y, ci)− (xi + 1))µi∆

×
(
hk(x

i+)− hk(x)−Hk(y) +Hk(y − 1)
)

(A.6.10)

+ I(xi < y < ci)µi∆
(
hk(x

i+)− hk(x)−Hk(y) +Hk(y)
)

(A.6.11)

+

max(ci − (y + 1), 0)µi∆ +
∑
j 6=i

max(cj − xj , 0)µj∆


×
(
hk(x

i+)− hk(x)−Hk(y + 1) +Hk(y)
)
, (A.6.12)

where a0, a1 ∈ {0, 1, ..., N} are optimal actions at states x and xi+ in a (k+ 1)-stage problem with

N facilities, and similarly b0, b1 ∈ {0, 1} are optimal actions at states y and y + 1 in the single-

facility problem with k+1 stages. In order to make sense of the terms in lines (A.6.5)-(A.6.12) it is

helpful to use the analogy of a sample path argument as discussed in Section 3.8. In doing so, one

imagines four separate processes Υ1, Υ2, Υ3 and Υ4 following the same sequence of random events;

Υ1 and Υ2 are initialised at states xi+ and x respectively in a system with N facilities, while Υ3

and Υ4 are initialised in states y + 1 and y respectively in a single-facility system. Line (A.6.5)

obviously represents all four processes receiving an arrival, while line (A.6.6) represents service

completions at facilities j 6= i seen by Υ1 and Υ2, but not seen by Υ3 or Υ4 (because the facilities

in question do not exist in the single-facility system). Line (A.6.7) represents all four processes

seeing a service completion at facility i (which, in the case of Υ3 and Υ4, is the only facility). Line

(A.6.8) represents a service completion seen by all processes except Υ2, which is possible if xi < ci

and xi < y (in which case Υ2 has the smallest number of services in progress at i). Line (A.6.9)

represents a service completion at i seen by Υ1 and Υ3, but not by Υ2 or Υ4 (which is possible
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only if xi = y < ci, so that Υ1 and Υ3 jointly have the greatest number of services in progress at

i). Line (A.6.10) represents service completions at i seen by Υ3 and Υ4 but not by Υ1 or Υ2, which

requires xi+ 1 to be smaller than both y and ci. Line (A.6.11) represents a service completion seen

by Υ3 only, which requires xi < y < ci (so that Υ3 has the greatest number of services in progress

at i). Line (A.6.12) represents service completions seen by none of the four processes.

The objective is to show that the sum of the terms in lines (A.6.4)-(A.6.12) is non-negative. Using

(3.5.4) and (A.6.1), the reward terms in line (A.6.4) reduce to:

r(xi+)− r(x)−R(y + 1) +R(y) =


αiµi, if xi < ci ≤ y,

0, otherwise.

(A.6.13)

Hence, line (A.6.4) is non-negative. Since x is a state whose ith component is bounded above by

y, the same also applies to the state xj− (where j ∈ {1, 2, ..., N} \ {i}), and hence line (A.6.6) is

non-negative due to the inductive assumption. Using similar reasoning, xi− is a state whose ith

component is bounded above by y − 1 (due to the inequality xi ≤ y) and therefore line (A.6.7) is

non-negative by the inductive assumption. Line (A.6.9) is trivially equal to zero. The indicator

term I(xi < y− 1 and xi < ci− 1) can only be non-zero only if xi < y, in which case the inequality

xi ≤ y−1 holds, implying that line (A.6.10) is also non-negative by the inductive assumption. Line

(A.6.12) is obviously also non-negative, again due to the inductive assumption.

Summarising the arguments given thus far, in order to complete the inductive proof that (A.6.3)

holds at stage n = k + 1 it remains only to show that lines (A.6.5), (A.6.8) and (A.6.11) cannot

cause the sum of the terms in lines (A.6.4)-(A.6.12) to be negative. Consider line (A.6.11) first.

The indicator term I(xi < y < ci) can only be non-zero if the indicator I(xi < ci and xi < y)

in line (A.6.8) is also non-zero, in which case the sum of lines (A.6.11) and (A.6.8) is equal to

µi∆
(
hk(x

i+)− hk(x)−Hk(y) +Hk(y − 1)
)
, which is again non-negative by the inductive assump-

tion due to the fact that (in this particular case) the inequality xi ≤ y − 1 holds.

Next, consider line (A.6.8) and assume xi < ci and xi < y to avoid triviality. If y < ci then, as

explained in the paragraph above, the sum of lines (A.6.8) and (A.6.11) is non-negative. On the

other hand, suppose y ≥ ci. In this case (A.6.13) implies that the reward terms in line (A.6.4) yield
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a positive term αiµi. Hence, summing lines (A.6.8) and (A.6.4) gives:

αiµi + µi∆ (Hk(y − 1)−Hk(y)) . (A.6.14)

However, the upper boundedness property proved in Lemma 5.2.9 (which applies to any system of

N facilities) implies that the difference Hk(y)−Hk(y − 1) satisfies:

Hk(y)−Hk(y − 1) ≤ αiµi − βi
µi∆

,

which immediately implies that the expression in (A.6.14) is bounded below by the positive quantity

βi. These arguments show that the sum of the terms in lines (A.6.4), (A.6.8) and (A.6.11) is always

non-negative. In order to complete the proof, it remains only to show that the ‘arrival terms’ in

line (A.6.5) sum to a non-negative value. Using the same approach as in previous proofs, this may

be done by considering all possibilities for the actions a0 and b1. Firstly, note that one cannot have

a0 = 0 and b1 = 1, since this would imply Hk(y + 2) ≥ Hk(y + 1) ≥ Hk(y) (where the second

inequality is due to the concavity property proved in Lemma 5.1.2) and hk(x
i+) < hk(x), thereby

contradicting the inductive assumption. The remaining possibilities for the actions a0 ∈ {0, 1, ..., N}

and b1 ∈ {0, 1} are considered one-by-one below. Note that the arguments given take advantage of

the AS principle (see Lemma 5.1.1), which essentially enables ‘convenient’ actions to be chosen for

a1 and b0, so that it is not necessary to consider all possibilities for a1 and b0.

• If a0 = b1 = 0, one may use an argument based on Lemma 5.1.1 and choose a1 = b0 = 0, in

which case line (A.6.5) is non-negative by the inductive assumption.

• Similarly, if a0 = i and b1 = 1 then one may choose a1 = i and b0 = 1, in which case line

(A.6.5) is non-negative by the inductive assumption since xi + 1 ≤ y + 1.

• If a0 = i and b1 = 0 then one may apply Lemma 5.1.1 again and choose a1 = 0 and b0 = 1,

in which case line (A.6.5) is trivially equal to zero.

• If a0 = j for some j ∈ {1, 2, ..., N} \ {i} and b1 = 0 then one may choose a1 = j and b0 = 0,

in which case line (A.6.5) is again non-negative by the inductive assumption again since xj+

is a state whose ith component is bounded above by y.

• Finally, if a0 = j for some j ∈ {1, 2, ..., N} \ {i} and b1 = 1 then one may choose a1 = j and

b0 = 1, with the result that line (A.6.5) is non-negative by the inductive assumption since

xj+ is a state whose ith component is bounded above by y + 1.
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Thus, it has been verified that line (A.6.5) is non-negative in all possible cases. In view of the

previous arguments, this establishes that the sum of the terms in lines (A.6.4)-(A.6.12) must be

non-negative, which completes the inductive proof that (A.6.3) holds for all n ∈ N0. By the limiting

properties of hn(·) and Hn(·) as n→∞, this implies that h(xi+)− h(x) ≥ H(y + 1)−H(y) for all

x ∈ S̃ and y ∈ N0 with xi ≤ y < T̃i, where i ∈ {1, 2, ..., N} is arbitrary. By the arguments given

earlier in the proof, this confirms that θ∗(x) = 0⇒ θ[W ](x) = 0 as required. �

Proof of uniqueness of optimal static policies (Theorem 6.2.1)

Let (λ1, λ2, ..., λN ) denote a static routing policy satisfying λi ∈ [0, λ] for each i ∈ {1, 2, ..., N} and∑N
i=1 λi ≤ λ, where λ > 0 is the system demand rate. As discussed in the proof of Theorem 6.2.1,

the long-run average reward gi(λi) at any facility i ∈ {1, 2, ..., N} is a strictly concave function of

the Poisson demand rate λi under the policy (λ1, λ2, ..., λN ). As such, for each facility i there exists

a unique demand rate λi = yi (depicted in Figure 6.3) which maximises gi(λi). If
∑N

i=1 yi ≤ λ,

then the static policy with λi = yi for each i ∈ {1, 2, ..., N} is obviously the unique optimal static

policy. Therefore, in order to avoid triviality, one may assume that
∑N

i=1 yi > λ.

Suppose, for a contradiction, that there exist two different optimal static policies (λ∗1, λ
∗
2, ..., λ

∗
N )

and (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ). Under the assumption that

∑N
i=1 yi > λ, it must be the case that λ∗i < yi for at

least one facility i and similarly λ̄∗j < yj for at least one facility j. Hence, given that (λ∗1, λ
∗
2, ..., λ

∗
N )

and (λ̄∗1, λ̄
∗
2, ..., λ̄

∗
N ) are both optimal static policies, it is possible to show that:

N∑
i=1

λ∗i =
N∑
i=1

λ̄∗i = λ. (A.6.15)

Indeed, given that λ∗i < yi for some facility i ∈ {1, 2, ..., N}, the function gi(λi) must be strictly in-

creasing in the interval [λ∗i , yi] due to concavity. Therefore one cannot have
∑N

j=1 λ
∗
j < λ, otherwise

one would be able to increase the proportion of traffic sent to facility i in such a way as to improve

the overall average reward g(λ∗1, λ
∗
2, ..., λ

∗
N ) =

∑N
j=1 gj(λ

∗
j ), thereby implying sub-optimality (among

static policies) of the policy (λ∗1, λ
∗
2, ..., λ

∗
N ). Applying the same argument to (λ̄∗1, λ̄

∗
2, ..., λ̄

∗
N ) con-

firms that (A.6.15) must hold. Of course, the physical interpretation of (A.6.15) is that customers

never balk under either of the static policies (λ∗1, λ
∗
2, ..., λ

∗
N ) and (λ̄∗1, λ̄

∗
2, ..., λ̄

∗
N ).

Due to (A.6.15) and the assumption that (λ∗1, λ
∗
2, ..., λ

∗
N ) and (λ̄∗1, λ̄

∗
2, ..., λ̄

∗
N ) are not identical, one
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may define two non-empty subsets of the set of facilities {1, 2, ..., N} as follows:

M :=
{
i ∈ {1, 2, ..., N} : λ∗i > λ̄∗i

}
,

R :=
{
j ∈ {1, 2, ..., N} : λ∗j < λ̄∗j

}
.

Also, let εi (for each i ∈M) and δj (for each j ∈ R) be defined as follows:

εi := λ∗i − λ̄∗i > 0 (i ∈M),

δj := λ̄∗j − λ∗j > 0 (j ∈ R). (A.6.16)

Of course, due to (A.6.15) again,
∑

i∈M εi =
∑

j∈R δj . Also, since (λ∗1, λ
∗
2, ..., λ

∗
N ) and (λ̄∗1, λ̄

∗
2, ..., λ̄

∗
N )

achieve the same overall performance and λ∗i = λ̄∗i for all i /∈M ∪R:∑
i∈M∪R

gi(λ
∗
i ) =

∑
i∈M∪R

gi(λ̄
∗
i ).

Hence, noting that λ̄∗i = λ∗i − εi for each i ∈M and λ̄∗j = λ∗j + δj for each j ∈ R:∑
i∈M

gi(λ
∗
i ) +

∑
j∈R

gj(λ
∗
j ) =

∑
i∈M

gi(λ
∗
i − εi) +

∑
j∈R

gj(λ
∗
j + δj). (A.6.17)

It will be useful to write (A.6.17) equivalently as follows:∑
i∈M

(
gi(λ

∗
i )− gi(λ∗i − εi/2) + gi(λ

∗
i − εi/2)− gi(λ∗i − εi)

)
=
∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j ) + gj(λ

∗
j + δj)− gj(λ∗j + δj/2)

)
. (A.6.18)

Due to the strict concavity of the functions gi(·), the following inequalities hold:∑
i∈M

(
gi(λ

∗
i )− gi(λ∗i − εi/2)

)
<
∑
i∈M

(
gi(λ

∗
i − εi/2)− gi(λ∗i − εi)

)
, (A.6.19)

∑
j∈R

(
gj(λ

∗
j + δj)− gj(λ∗j + δj/2)

)
<
∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j )

)
. (A.6.20)

Then using (A.6.18), (A.6.19) and (A.6.20), one may write:∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j )

)
>
∑
j∈R

(
gj(λ

∗
j + δj)− gj(λ∗j + δj/2)

)
=
∑
i∈M

(
gi(λ

∗
i )− gi(λ∗i − εi/2) + gi(λ

∗
i − εi/2)− gi(λ∗i − εi)

)
−
∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j )

)
> 2

∑
i∈M

(
gi(λ

∗
i )− gi(λ∗i − εi/2)

)
−
∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j )

)
. (A.6.21)
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Note that all of the differences gi(λ
∗
i )−gi(λ∗i − εi/2) and gi(λ

∗
i − εi/2)−gi(λ∗i − εi) (for i ∈M) must

be strictly positive, since it must be the case that λ∗i ≤ yi for each i ∈M due to the optimality of

(λ∗1, λ
∗
2, ...λ

∗
N ), and hence the function gi(·) is strictly increasing over the interval [λ∗i − εi, λ∗i ]. For

the same reason, the differences gj(λ
∗
j + δj)− gj(λ∗j + δj/2) and gj(λ

∗
j + δj/2)− gj(λ∗j ) (for j ∈ R)

are strictly positive, since λ̄∗j = λ∗j + δj ≤ yj for j ∈ R. Hence, (A.6.21) implies:∑
i∈M

(
gi(λ

∗
i )− gi(λ∗i − εi/2)

)
<
∑
j∈R

(
gj(λ

∗
j + δj/2)− gj(λ∗j )

)
. (A.6.22)

However, this contradicts the optimality of (λ∗1, λ
∗
2, ..., λ

∗
N ), since it implies:∑

i∈M
gi(λ

∗
i − εi/2) +

∑
j∈R

gj(λ
∗
j + δj/2) >

∑
i∈M

gi(λ
∗
i ) +

∑
j∈R

gj(λ
∗
j ). (A.6.23)

The static policy (λ†1, λ
†
2, ...., λ

†
N ) with λ†i = λ∗i − εi/2 for each i ∈ M , λ†j = λ∗j + δj/2 for each

j ∈ R and λ†k = λ∗k for each k /∈ M ∪ R is a feasible static policy under demand rate λ, since∑
i∈M εi/2 =

∑
j∈R δj/2 by definition of εi and δj in (A.6.16), so the constraint

∑N
i=1 λ

†
i = λ

holds. However, (A.6.23) implies that (λ†1, λ
†
2, ...., λ

†
N ) yields a strictly greater average reward than

(λ∗1, λ
∗
2, ...., λ

∗
N ), which contradicts the assumption that (λ∗1, λ

∗
2, ...., λ

∗
N ) is an optimal static policy.

In conclusion, it is not possible for (λ∗1, λ
∗
2, ...., λ

∗
N ) and (λ̄∗1, λ̄

∗
2, ...., λ̄

∗
N ) to differ from each other;

that is, the optimal static policy (known to exist by Theorem 6.2.1) is unique. �

Proof of Theorem 6.2.6.

Since the inductive arguments required in this proof are almost trivial, it will be desirable to keep

them as brief as possible. Let i ∈ {1, 2, ..., N} be an arbitrary facility and let h
(n)
i (·) be the n-stage

relative value function for facility i, defined for x ∈ N0 and n ∈ N0 as follows:

h
(n+1)
i (x, λ∗i ) = V

(n+1)
i (x, λ∗i )− V

(n+1)
i (0, λ∗i )

= r̂i(x, λ
∗
i ) +

∑
y∈N0

pi(x, y, λ
∗
i )V

(n)
i (y, λ∗i )− r̂i(0, λ∗i )−

∑
y∈N0

pi(0, y, λ
∗
i )V

(n)
i (y, λ∗i )

= r̂i(x, λ
∗
i ) +

∑
y∈N0

pi(x, y, λ
∗
i )h

(n)
i (y, λ∗i )− r̂i(0, λ∗i )−

∑
y∈N0

pi(0, y, λ
∗
i )h

(n)
i (y, λ∗i ),

where V
(n)
i (x, λ∗i ) is the expected total reward earned at facility i over n stages under the optimal

static policy, r̂i(·) and pi(·) are as defined in (6.2.13) and (6.2.19) respectively, and h
(0)
i (x, λ∗i ) = 0
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for all x ∈ N0. Similarly, let D
(n)
i (x, λ∗i ) be defined for x ∈ N0 and n ∈ N0 as:

D
(n)
i (x, λ∗i ) = h

(n)
i (x+ 1, λ∗i )− h

(n)
i (x, λ∗i ).

Thus, the definition of hi(x, λ
∗
i ) in (6.2.17) implies that for all x ∈ N0:

hi(x, λ
∗
i ) = lim

n→∞

(
V

(n)
i (x, λ∗i )− V

(n)
i (0, λ∗i )

)
= lim

n→∞
h

(n)
i (x, λ∗i ), (A.6.24)

and it follows that structural properties involving the values hi(x, λ
∗
i ) can be proved by induction

on the finite-stage values h
(n)
i (x, λ∗i ). First, it will be useful to show that Di(x, λ

∗
i ) is non-positive

for all x ∈ N0. At stage n = 0, one trivially has D
(0)
i (x, λ∗i ) = 0 for all states x. Let it be assumed

that D
(k)
i (x, λ∗i ) ≤ 0 for all x, where k ∈ N0 is arbitrary. Then, at stage k + 1:

D
(k+1)
i (x, λ∗i ) = r̂i(x+ 1, λ∗i )− r̂i(x, λ∗i ) + λ∗i∆D

(k)
i (x+ 1, λ∗i )

+ min(x, ci)µi∆D
(k)
i (x− 1, λ∗i )

+
(
1− λ∗i∆−min(x, ci)µi∆− I(x < ci)µi∆

)
D

(k)
i (x, λ∗i ),

and this expression is non-positive since D
(k)
i (x + 1, λ∗i ), D

(k)
i (x − 1, λ∗i ) and D

(k)
i (x, λ∗i ) are non-

positive by the inductive assumption and r̂i(x + 1, λ∗i ) ≤ r̂i(x, λ
∗
i ) due to (6.2.13). It follows from

(A.6.24) that Di(x, λ
∗
i ) ≤ 0 for all x ∈ N0. In order to prove property (1) in the statement of the

theorem (the containment property), it is sufficient to show that for any state x ∈ S with xi ≥ B̃i

(with B̃i as defined in (4.1.2)), one must have Pi(xi, λ
∗
i ) < 0. Equivalently:

wi(xi) + ∆Di(xiλ
∗
i ) < 0.

Indeed, if xi ≥ B̃i then wi(xi) < 0 by definition of B̃i, and since Di(xi, λ
∗
i ) ≤ 0 the result follows.

The three monotonicity properties, numbered (2)-(4) in the statement of the theorem, can be

established by showing that the indices Pi(x, λ
∗
i ) are monotonically decreasing in x. Equivalently,

using the induction approach again, it is sufficient to show that for x, n ∈ N0:

wi(x+ 1) + ∆D
(n)
i (x+ 1, λ∗i ) ≤ wi(x) + ∆D

(n)
i (x, λ∗i ).

It will be more convenient to write this in the form:

D
(n)
i (x+ 1, λ∗i )−D

(n)
i (x, λ∗i ) ≤

wi(x)− wi(x+ 1)

∆
. (A.6.25)
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Since the right-hand side of (A.6.25) is non-negative, the inequality holds trivially when n = 0.

Assume that it holds at an arbitrary stage n = k ∈ N0. Then, at stage k + 1:

D
(k+1)
i (x+ 1, λ∗i )−D

(k+1)
i (x, λ∗i )

= r̂i(x+ 1, λ∗i )− r̂i(x, λ∗i ) + λ∗i∆
(
D

(k)
i (x+ 2, λ∗i )−D

(k)
i (x+ 1, λ∗i )

)
+ min(x, ci)µi∆

(
D

(k)
i (x, λ∗i )−D

(k)
i (x− 1, λ∗i )

)
+ I(x < ci)µi∆D

(k)
i (x, λ∗i )− I(x < ci − 1)µi∆D

(k)
i (x, λ∗i )

+
(

1− λ∗i∆−min(x, ci)µi∆− I(x < ci)µi∆− I(x < ci − 1)µi∆
)(
D

(k)
i (x+ 1, λ∗i )−D

(k)
i (x, λ∗i )

)
.

(A.6.26)

There are three possible cases to check in (A.6.26): x < ci−1, x = ci−1 and x ≥ ci. In each case, it

can easily be verified that the sum of the terms on the right-hand side of (A.6.26) is bounded above

by
(
wi(x) − wi(x + 1)

)
/∆ by using the inductive assumption that (A.6.25) holds for all x ∈ N0

when n = k, and also the fact that r̂i(x+1, λ∗i )− r̂i(x, λ∗i ) ≤ 0. In the case x = ci−1, one must also

use the fact that D
(k)
i (x, λ∗i ) ≤ 0 as shown in the earlier part of the proof. These arguments are

sufficient to establish that the Bernoulli indices Pi(x, λ
∗
i ) are monotonically decreasing in x, from

which the three monotonicity properties (2)-(4) follow using trivial arguments.

Property (5) (the sink property) is directly implied by the fact that Pi(x, λ
∗
i ) is decreasing with

x. Indeed, one may refer to the proof of the corresponding property for the Whittle policy θ[W ]

(property (5) in Theorem 6.1.7) and use identical arguments, merely replacing Wi(x), θ[W ] and SW

with Pi(x, λ
∗
i ), θ

[B] and SB respectively in order to show that θ[B] is a sink policy.

Finally, in order to prove property (6), it is necessary to invoke the result of Theorem 6.2.2, which

states that the demand rate λ∗i associated with the optimal static policy is monotonically increasing

with the system demand rate λ. Let λ, λ̄ > 0 be two system demand rates with λ < λ̄, and let

λ∗i and λ̄∗i be the corresponding demand rates for facility i under the two respective optimal static

policies. Then, by Theorem 6.2.2, λ∗i ≤ λ̄∗i . One may also apply the same uniformisation ‘trick’

used in previous proofs, and define ∆ = (λ̄ +
∑N

j=1 cjµj)
−1 regardless of whether the system is

operating under demand rate λ or λ̄. Then, since wi(x) is independent of the demand rate and ∆

is held at a constant value, it is sufficient to show that for all x ∈ N0 and n ∈ N0:

D
(n)
i (x, λ̄∗i ) ≤ D

(n)
i (x, λ∗i ). (A.6.27)
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The property again holds trivially when n = 0, so assume that it holds at an arbitrary stage

n = k ∈ N0. Then the definition of ∆ implies that at stage k + 1:

D
(k+1)
i (x, λ̄∗i )−D

(k+1)
i (x, λ∗i ) = r̂i(x+ 1, λ̄∗i )− r̂i(x, λ̄∗i )− r̂i(x+ 1, λ∗i ) + r̂i(x, λ

∗
i )

+ λ∗i∆
(
D

(k)
i (x+ 1, λ̄∗i )−D

(k)
i (x+ 1, λ∗i )

)
+ (λ̄∗i − λ∗i )∆

(
D

(k)
i (x+ 1, λ̄∗i )−D

(k)
i (x, λ∗i )

)
+ min(x, ci)µi∆

(
D

(k)
i (x− 1, λ̄∗i )−D

(k)
i (x− 1, λ∗i )

)
+
(

1− λ̄∗i∆−min(x, ci)µi∆
)(
D

(k)
i (x, λ̄∗i )−D

(k)
i (x, λ∗i )

)
.

(A.6.28)

Then, using properties established earlier in the proof and the inductive assumption that (A.6.27)

holds for x ∈ N0 at stage n = k, one may infer the following from (A.6.28):

D
(k+1)
i (x, λ̄∗i )−D

(k+1)
i (x, λ∗i )

≤ r̂i(x+ 1, λ̄∗i )− r̂i(x, λ̄∗i )− r̂i(x+ 1, λ∗i ) + r̂i(x, λ
∗
i ) + (λ̄∗i − λ∗i )∆

(
D

(k)
i (x+ 1, λ̄∗i )−D

(k)
i (x, λ∗i )

)
≤ r̂i(x+ 1, λ̄∗i )− r̂i(x, λ̄∗i )− r̂i(x+ 1, λ∗i ) + r̂i(x, λ

∗
i )

+ (λ̄∗i − λ∗i )∆
(
D

(k)
i (x, λ̄∗i )−D

(k)
i (x, λ∗i ) +

wi(x)− wi(x+ 1)

∆

)
≤ r̂i(x+ 1, λ̄∗i )− r̂i(x, λ̄∗i )− r̂i(x+ 1, λ∗i ) + r̂i(x, λ

∗
i ) + (λ̄∗i − λ∗i )

(
wi(x)− wi(x+ 1)

)
= (λ̄∗i − λ∗i )

(
wi(x+ 1)− wi(x)

)
+ (λ̄∗i − λ∗i )

(
wi(x)− wi(x+ 1)

)
= 0. (A.6.29)

This completes the inductive proof that (A.6.27) holds for all n ∈ N0, which implies that the

indices Pi(x, λ
∗
i ) are monotonically decreasing with the system demand rate λ. By property (5),

θ[B] is a sink policy with a sink state z ∈ S satisfying zi = min{x ∈ N0 : Pi(x, λ
∗
i ) < 0} for all

i ∈ {1, 2, ..., N}. Hence, in order for SB(λ̄) not to be contained in SB(λ), some index value Pi(x, λ
∗
i )

would have to be non-negative under the system demand rate λ̄ and negative under λ. Since this

has been shown to be impossible, property (6) follows, which completes the proof. �

A.7 Example: Jackson networks

A Jackson network is essentially a network of queues, in which customers may follow complicated

(possibly never-ending) paths through the system as opposed to simply being directed to a particular
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queue and then departing from the system after their service has been completed. Consider a

queueing system with N service facilities. In a typical formulation of a Jackson network without

any routing or admission control (see, for example, [67] p. 165), one assumes that customers arrive

from ‘outside’ the system via a Poisson process with rate λ > 0, which is then split (via a probability

distribution) into N separate Poisson arrival streams; one for each facility i ∈ {1, 2, ..., N}. Upon

completing service at facility i ∈ {1, 2, ..., N}, customers are then routed to facility j ∈ {1, 2, ..., N}

with probability q(i, j), where
∑N

j=1 q(i, j) ≤ 1 and q(i, 0) = 1−
∑N

j=1 q(i, j) is the probability that

a customer will permanently depart from the system after being served at facility i. Service times

at any server of facility i have an exponential distribution with parameter µi > 0.

Jackson networks were originally introduced by Jackson [91], and various other authors have studied

their equilibrium behaviour and steady-state performance measures (see, for example, [61, 92, 97,

187]). The natural way to alter the classical formulation of a Jackson network so that it becomes

a problem involving admission and routing control is to allow state-dependent routing decisions

(effectively replacing the routing probabilities) to be made when customers arrive, and also when

they complete service. The system considered in this example is described below.

1. Customers arrive from outside the system via a Poisson process with rate λ > 0 and either

join some facility i ∈ {1, 2, ..., N} or balk, in which case they leave the system permanently.

These decisions are made deterministically according to the state of the system.

2. Each facility i ∈ {1, 2, ..., N} has its own queue (with a first-come-first-served queue disci-

pline), number of servers ci and exponential service rate µi > 0. Customers who complete

service at facility i then either join facility j ∈ {1, 2, ..., N} (with j = i allowed) or balk.

Again, decisions are made deterministically according to the system state.

A diagrammatic representation of the system is given in Figure A.1. Essentially, the system differs

from the system described in Section 3.1 only by allowing customers to be re-routed to other

facilities (or the same facility) after they have completed service, as opposed to being immediately

lost from the system. It will also be assumed that the cost and reward system described in Section

3.1 is implemented, so that a holding cost βi > 0 per customer per unit time is incurred at facility

i ∈ {1, 2, ..., N} and a fixed reward αi > 0 is earned after each service completion.

At first sight, it appears that the characterisation of socially optimal policies for this Jackson
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ROUTING

ddPOINT

Servicedfacilityd4

Servicedfacilityd1

Servicedfacilityd2

Servicedfacilityd3

Customersdarriving

dfromdoutside

Customersddeparting

dfromdthedsystem

Figure A.1: A Jackson network with 4 service facilities.

network problem will be considerably more difficult than for the system described in Section 3.1;

after all, decisions are required to be made much more frequently (after each service completion).

Moreover, there are extra complications to consider; for example, suppose the state of the system

is simply represented by a vector x = (x1, x2, ..., xN ), i.e. a vector of head counts at the various

facilities. Then the next customer to be ‘routed’ to some destination may be a customer who arrives

from outside, or (if the system is non-empty) a customer who completes service at one of the N

facilities. This raises of the question of whether routing decisions should be made independently

of where customers ‘arrive from’ (i.e. whether they arrive at the routing point from outside the

system, or from within the system), or whether routing decisions must be allowed to depend on

customers’ origins in order to optimise the economic performance of the system.

In fact, the answer to the above question is that routing decisions should be allowed to depend on

where customers have arrived from in order for socially optimal behaviour to be achieved. In an

MDP formulation, this will generally mean that the action chosen at some state x ∈ S will actually

be a vector a = (a0, a1, ...., aN ), where a0 ∈ {0, 1, ..., N} denotes the decision for a customer who
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arrives from ‘outside’, and ai is the decision for a customer who has just completed service at facility

i (for i = 1, 2, ..., N). However, it transpires that the characterisation of a socially optimal policy

for this problem is remarkably simple, and (even more surprisingly) socially optimal policies are

unaffected by the demand rate λ and also unaffected by the values of all other system parameters,

assuming that the usual assumption αiµi − βi > 0 for all i ∈ {1, 2, ..., N} holds!

To see this, suppose the Jackson network is formulated as an MDP with the state space S defined

in (3.5.1) and the real-time formulation (3.5.4) used for the single-stage rewards. Then each single-

stage reward r(x) is bounded above by
∑N

i=1 ci(αiµi−βi), and it follows that the expected long-run

average reward gθ(x) under any policy θ is also bounded above by the same value (given any initial

state x ∈ S). In the proof of Theorem 4.4.7 it was shown that the optimal average reward g∗(λ) for

the process Υ tends to
∑N

i=1 ci(αiµi−βi) as λ→∞, but it can never actually attain this value if λ

is finite (since the steady-state probability of being in state (c1, c2, ..., cN ) cannot be equal to one).

However, with a little thought, one realises that in the case of the Jackson network, it is possible

for the expected long-run average reward to actually attain a value
∑N

i=1 ci(αiµi− βi) by following

a very simple policy. Specifically, consider the policy which operates as follows:

• Suppose a customer enters the system from ‘outside’ under state x ∈ S. If xi < ci for at least

one facility i ∈ {1, 2, ..., N}, then they join a facility at which they don’t have to wait in the

queue. If xi ≥ ci for all i ∈ {1, 2, ..., N}, then they balk immediately.

• Any customer who completes service at some facility i ∈ {1, 2, ..., N} immediately re-joins

the same facility. This rule is always applied, regardless of the system state.

It should be noted (as a minor detail) that the description of the policy given above appears to

suggest that, in fact, all customers (regardless of whether they arrive from outside, or arrive from a

service facility) are adhering to the same rule and balking from the system if and only if all servers

are occupied, since a service completion at facility i ∈ {1, 2, ..., N} will imply that the customer

who has just completed service will observe state xi− before their new decision is made. While this

is true in a physical sense, it is also important to recall (from the discussion in Section 3.5) that

when the simplified state space formulation S is used, decisions are made anticipatively without

knowledge of whether the next event will be an arrival or a service completion. Hence, the comment

made earlier (which stated that routing decisions must depend on where customers have arrived
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from) is valid, in the sense that an action vector a = (a0, a1, ..., aN ) must be used to differentiate

between customers who arrive from outside and those who complete service.

Under the above policy, no customers are ever lost from any service facility, since they immediately

re-join (and re-enter service) after their service has been completed. Regardless of the demand rate

λ > 0, the system eventually ‘fills up’, so that each facility has all of its service channels occupied.

At this point, all subsequent customers who arrive from outside the system balk, and each facility

permanently has all of its service channels in use and no customers waiting in the queue. Hence,

after a finite amount of time, the system is able to remain permanently in state (c1, c2, ..., cN ) and

therefore the expected long-run average reward is equal to the optimal value
∑N

i=1 ci(αiµi − βi).

Figure A.2 illustrates the system operating under the policy described above.

ROUTING

ddPOINT

Servicedfacilityd4

Servicedfacilityd1

Servicedfacilityd2

Servicedfacilityd3

Customersdarriving

dfromdoutside

Customersddeparting

dfromdthedsystem

Figure A.2: The equilibrium behaviour of the Jackson network operating under the socially optimal ‘customer

recycling’ policy described in the text, with 4 facilities and 3 servers at each facility.

This example has shown how a problem which at first appears to be more complicated than other

problems considered in this thesis thus far in fact permits a much simpler optimal solution. The

most interesting aspect of the problem is how the real-time reward formulation (3.5.4) enables
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an optimal policy to be recognised easily. If the formulation (3.5.15) was used instead, it would

perhaps be less obvious that an optimal policy would have such a simple form.

Of course, when one realises that the policy illustrated in Figure A.2 is optimal, it becomes clear

that the problem considered in this example is trivial. There are various ways of altering the

Jackson network control problem so that it is no longer trivial. For example, one might incorporate

a ‘drop-out’ probability qi ∈ [0, 1] for each service facility i ∈ {1, 2, ..., N}, so that any customer who

completes service at facility i is permanently lost to the system with probability qi and available for

re-routing with probability 1−qi. The case qi = 1 (for each i) would then correspond to the system

described in Section 3.1, whereas the case qi = 0 would represent the problem considered in this

example. One might also restrict the set of actions a = (a0, a1, ..., aN ) available in various different

ways in order to limit the routing possibilities. For example, customers might be prevented from

immediately re-joining the same facility (by imposing the constraint ai 6= i for i ∈ {1, 2, ..., N})

or alternatively one might set up a system of queues in series by imposing the constraint ai < i

for each facility i ∈ {1, 2, ..., N} (without any restriction on a0), so that customers are required to

visit the facilities in descending numerical order (e.g. N,N − 1, N − 2, ...) but also have the option

to ‘skip’ any number of queues when they arrive or complete service at any facility. Non-trivial

problems involving Jackson networks are not discussed any further in this thesis. �

A.8 Various counter-examples

As discussed in the introduction to Chapter 5, structural properties of average reward optimal

policies (e.g. monotonicity) may be extremely difficult to prove in systems with an arbitrary num-

ber of heterogeneous service facilities. Indeed, certain properties which ostensibly seem ‘sensible’

may fail to hold. This appendix will present a series of counter-examples in order to show that

various results that were proved in Sections 5.1, 5.2 and 5.3 (all of which were subject to restrictive

assumptions on the complexity of the system) do not hold in greater generality.

Example A.8.1. (Lack of monotonicity in a two-facility system)

Recall the two-facility system considered in Example 4.1.1. The demand rate used in that example
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was λ = 10, and the parameters for the two facilities were given as follows:

c1 = 2, µ1 = 8, β1 = 10, α1 = 2,

c2 = 2, µ2 = 2, β2 = 10, α2 = 6.

Now suppose the demand rate is increased from λ = 10 to λ = 12. Using relative value iteration

to find the optimal policy θ∗, one finds that it has the form shown in Table A.1.

x2 = 0 x2 = 1 x2 = 2

x1 = 0 2 1 1

x1 = 1 1 1 1

x1 = 2 2 2 0

x1 = 3 2 2 0

Table A.1: The optimal policy θ∗ found by the RVIA, with a demand rate λ = 12.

Comparing Table A.1 with Table 4.1, one finds that increasing the demand rate from 10 to 12

causes the decision at state (1, 0) to change from 2 to 1. However, this looks slightly odd, as the

decision at state (0, 0) is to join facility 2. So, comparing the decisions at states (0, 0) and (1, 0),

one finds that increasing the number of customers at facility 1 actually causes facility 1 to become a

‘more attractive’ option to the policy θ∗. Further experimentation shows that changing the decision

at state (0, 0) from 2 to 1 causes the average reward to decrease by about 0.06%, and changing the

decision at state (1, 0) from 1 to 2 causes the average reward to decrease by 0.02%.

In Section 5.2 it was proved that, in a 2DSS system (i.e. a system with two single-server facilities),

the policy θ∗ found by the RVIA has the property that, if joining facility i ∈ {1, 2} is chosen at

some state x ∈ S̃ with xi ≥ 1, then facility i must also be chosen at state xi−. This example has

shown that the same property need not hold if the facilities have multiple servers. �

Example A.8.2. (Conservativity of demand may not hold in a 2DSS system)

Consider a system with two single-server facilities, with the following parameters:

c1 = 1, µ1 = 14, β1 = 5, α1 = 9,

c2 = 1, µ2 = 5, β2 = 3, α2 = 20.
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Consider two different demand rates, λ1 = 9.8 and λ2 = 10. Under the smaller demand rate λ1, the

optimal policy θ∗1 found by the RVIA is a sink policy (see Definition 5.2.14) with sink state (11, 13).

However, under the demand rate λ2, the RVIA policy θ∗2 is a sink policy with sink state (10, 14).

Table A.2 shows the decisions made under the policies θ∗1 and θ∗2 at states (x1, x2) belonging to a

selected subset of S̃; specifically, the set
{

(x1, x2) ∈ N2
0 : 9 ≤ x1 ≤ 11, 12 ≤ x2 ≤ 14

}
.

Policy θ∗1 Policy θ∗2

x2 = 12 x2 = 13 x2 = 14 x2 = 12 x2 = 13 x2 = 14

x1 = 9 1 1 1 x1 = 9 1 1 1

x1 = 10 2 1 0 x1 = 10 2 2 0

x1 = 11 2 0 0 x1 = 11 2 0 0

Table A.2: The optimal policies θ∗1 and θ∗2 under demand rates λ1 = 9.8 and λ2 = 10 respectively.

The highlighted states in Table A.2 are those which are not positive recurrent under the relevant

policies. Let S1 and S2 denote the sets of states which are positive recurrent under policies θ∗1 and

θ∗2 respectively. As stated above, θ∗1 is a sink policy with sink state (11, 13), and therefore S1 does

not include any states with x2 ≥ 14. This implies that S2 is not contained in S1.

Theorem 5.1.8 established that, in a single-facility system with multiple servers, optimal policies

become increasingly conservative as the demand rate λ increases. This means that, given any two

demand rates λ1, λ2 > 0 with λ1 < λ2, one can say that the set of positive recurrent states under

the optimal policy associated with demand rate λ2 is contained within the corresponding set under

λ1. This example has shown that the same property need not hold in a system with more than one

facility, even if the system in question consists of only two single-server facilities. �

Example A.8.3. (Non-monotonic progression of finite-stage optimal policies)

Consider a 2DSS system with the same parameters as in Example A.8.2, and suppose the demand

rate is λ = 10. This example concerns the progression of finite-stage optimal policies during relative

value iteration. When the real-time reward formulation (3.5.1) is used, the (n + 1)-stage optimal
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policy θn+1 chooses, for each state x ∈ S̃, an action θn+1(x) ∈ Ax which satisfies:

θn+1(x) ∈ arg max
a∈Ax

r(x) +
∑
y∈S̃

p(x, a,y)hn(y)

 . (A.8.1)

Here, the relative values hn(x) are computed recursively using (3.7.7) (with h0(x) = 0 for all

states x ∈ S̃). It will also be assumed in this example that the uniformisation parameter ∆ =

(λ+
∑N

i=1 ciµi)
−1 = 1/29 is used to calculate the transition probabilities p(x, a,y) (see (3.5.3)). As

noted in previous sections, the condition (A.8.1) can actually be simplified to:

θn+1(x) ∈ arg max
a∈Ax

hn(xa+).

On the other hand, when the anticipatory formulation (3.5.15) is used, the (n + 1)-stage optimal

policy θ̂n+1 chooses, for each state x ∈ S̃, an action θ̂n+1(x) ∈ Ax satisfying:

θ̂n+1(x) ∈ arg max
a∈Ax

r̂(x, a) +
∑
y∈S̃

p(x, a,y)ĥn(y)

 ,

where the values ĥ(x) are computed recursively by using (3.7.7) and replacing r(x) and r(0) with

r̂(x, a) and r̂(0, a). As discussed in previous sections, it is assumed that in the case of ties between

two or more different actions, the finite-stage optimal policies choose actions according to a fixed

ranking order of the N facilities. When the RVIA is applied to the system in Example A.8.2,

with λ = 10 and the real-time formulation (3.5.1) used, one finds that the general trend is for the

finite-stage optimal policies θn to become less conservative as n increases. For example, the policy

θ20 is a sink policy with sink state (3, 2), but θ60 is a sink policy with sink state (5, 3).

However, after 272 iterations, the monotonic progression of the finite-stage optimal policies is

broken. Indeed, the policy θ271 is a sink policy with sink state (10, 6), but θ272 is a sink policy with

sink state (9, 7). Table A.3 shows the decisions made under the finite-stage policies θ271 and θ272

at states (x1, x2) belonging to the set
{

(x1, x2) ∈ N2
0 : 8 ≤ x1 ≤ 10, 5 ≤ x2 ≤ 7

}
⊆ S̃.

The highlighted states in Table A.3 are those which are not positive recurrent under the relevant

policies. Let S271 and S272 denote the sets of positive recurrent states under policies θ271 and θ272

respectively. Since θ272 is a sink policy with sink state (9, 7), S272 does not include any states with

x1 ≥ 10 and therefore S271 is not contained in S272. Lemma 5.1.5 established that the progression
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Policy θ271 Policy θ272

x2 = 5 x2 = 6 x2 = 7 x2 = 5 x2 = 6 x2 = 7

x1 = 8 2 1 1 x1 = 8 2 1 1

x1 = 9 2 1 0 x1 = 9 2 2 0

x1 = 10 2 0 0 x1 = 10 2 0 0

Table A.3: The finite-stage optimal policies θ271 and θ272 after iterations 271 and 272 of the RVIA.

of finite-horizon of finite-stage optimal policies in a single-facility system is monotonic when the

real-time reward formulation is used, in the sense that the finite-stage optimal thresholds T ∗n are

monotonically increasing with n. Thus, this example has shown that the same property need not

hold in a system with more than one facility, even if the system in question is 2DSS.

Similarly, it can be shown that the progression of finite-stage optimal policies need not be monotonic

under the anticipatory reward formulation (3.5.15). Indeed, applying the RVIA to the same 2DSS

system with the anticipatory formulation used, one finds that the general trend is for the finite-

stage optimal policies θ̂n to become more conservative with n. However, this trend is broken after

the 40th iteration. Indeed, the policy θ̂39 is a sink policy with sink state (24, 32), but the policy

θ̂40 is a sink policy with sink state (23, 33). Thus, the recurrent state space Ŝ40 associated with the

policy θ̂40 is not contained within the corresponding set Ŝ39 associated with θ̂39, which confirms

that the monotonic progression of the thresholds T̂ ∗n in a single-facility system problem does not

imply a similar monotonic progression in a system with more than one facility.

This example has important implications for the Shrinking Box algorithm discussed in Section 5.4

(see page 210). Indeed, the Shrinking Box algorithm relies upon the premise that the finite-stage

optimal policies θ̂n become more conservative with n when the anticipatory formulation is used;

more specifically, it assumes that any state x ∈ S̃ which is excluded from the recurrent state

space Ŝn under some finite-stage optimal policy θ̂n must also be excluded from the sets Ŝm on

all subsequent iterations m > n. Since this property does not hold in general, the Shrinking Box

algorithm may not succeed in converging to an average reward optimal policy. �
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Example A.8.4. (The optimal policy found by the RVIA may not be a sink policy)

Theorem 5.2.15 established that, in a 2DSS system, the optimal policy θ∗ found by relative value

iteration is always a sink policy (see Definition 5.2.14). Evidence gathered from numerical experi-

ments appears to indicate that in systems with N ≤ 5, average reward optimal policies are usually

sink policies; indeed, counter-examples are difficult to find. The system described in this example

was found using a numerical search involving randomly-generated parameters. Consider a system

with demand rate λ = 21.57 and three facilities, with the following parameters:

c1 = 2, µ1 = 15.17, β1 = 12.01, α1 = 5.65,

c2 = 4, µ2 = 10.09, β2 = 22.4, α2 = 9.07,

c3 = 3, µ3 = 6.36, β3 = 7.16, α3 = 5.46.

Of course, the selfishly optimal policy θ̃ is always a sink policy, and in this example the sink state

of θ̃ is (14, 16, 14). However, it transpires that the socially optimal policy θ∗ found by the RVIA

is not a sink policy. In fact, balking is chosen by θ∗ at the states (13, 10, 14) and (12, 11, 14), both

of which are positive recurrent under θ∗. In order to show how this is possible, it will be useful

to examine the decisions made by θ∗ at some particular states within S̃. Given that S̃ may be

represented geometrically as a 3-dimensional cuboid of size 14 × 16 × 14, one may consider some

fixed value x3 = n ∈ {0, 1, ..., 14} and refer to the subset {(x1, x2, n) ∈ N3
0 : x1 ≤ 14, x2 ≤ 16} as the

nth (x1, x2)-slice of S̃. Table A.4 compares the 13th and 14th (x1, x2)-slices of S̃ with respect to the

decisions made by the optimal policy θ∗ for certain pairs (x1, x2) (in other words, the comparison

is between states of the form (x1, x2, 13) and states of the form (x1, x2, 14)).

Essentially, the reason for the unusual structure of θ∗ in this example is that facility 2 is chosen at

state (12, 10, 13), but facility 1 is chosen at state (12, 10, 14). This means that the presence of an

extra customer at the third facility causes θ∗ to alter its preference between the first and second

facilities. The state (12, 10, 13) is positive recurrent under θ∗, and it can be seen from Table A.4

that two consecutive arrivals (without any service completions) will cause the system to transfer

from state (12, 10, 13) to (12, 11, 14), at which balking is chosen. However, if a service completion

then occurs at facility 2, the system finds itself in state (12, 10, 14), from which the other balking

state (13, 10, 14) becomes accessible via an arrival. Thus, the process operating under policy θ∗ is

able to access two different ‘balking states’, and therefore θ∗ is not a sink policy. �
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Decisions at states (x1, x2, 13) Decisions at states (x1, x2, 14)

x2 = 9 x2 = 10 x2 = 11 x2 = 9 x2 = 10 x2 = 11

x1 = 11 2 1 1 x1 = 11 2 1 1

x1 = 12 2 2 3 x1 = 12 2 1 0

x1 = 13 2 3 0 x1 = 13 2 0 0

Table A.4: Decisions made by θ∗ at selected states belonging to the 13th and 14th (x1, x2)-slices of S̃.

Example A.8.5. (The optimal policy found by the RVIA in a system with homogeneous

facilities may not be cube-shaped)

In Section 5.3 it was proved that the optimal policy θ∗ found by the RVIA in a system with

homogeneous facilities is always a ‘Join the Shortest Queue’ (JSQ) policy. This means that, at any

state x ∈ S̃, θ∗ either chooses to join a facility j ∈ {1, 2, ..., N} which has the lowest (or joint-lowest)

number of customers present, or chooses to balk. In cases where two or more facilities are tied for

the smallest number of customers present, one may assume that the facility with the smallest index

j is chosen. Hence, as discussed in Section 5.3, a complete characterisation of the policy θ∗ requires

only the identification of a subset of states SB ⊆ S̃ at which balking is chosen by θ∗.

Let Sθ∗ denote the set of states in S̃ which are positive recurrent under θ∗, and let T ∗j denote the

maximum number of customers that may be present at facility j ∈ {1, 2, ..., N} when the process

operates under θ∗ (assuming that the initial state is contained in Sθ∗). That is:

T ∗j = max {n ∈ N0 : ∃ x ∈ Sθ∗ such that xj = n} .

In a system with homogeneous facilities, it would seem logical to suppose that the values T ∗j for

all facilities j should be equal to some common value T ∈ N, since there is no obvious reason

why the optimal policy θ∗ should not treat all facilities equally. If this is indeed the case, then by

considering a sequence of NT consecutive customer arrivals starting from state 0, one can easily

see that θ∗ (being a JSQ policy) must be a sink policy with sink state (T, T, ..., T ). Informally

speaking, one might describe such a policy as ‘cube-shaped’, since its set of positive recurrent

states is representable geometrically as an N -dimensional cube. However, this example will show

that the RVIA policy θ∗ need not be cube-shaped, even if the system is 2DSS.
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Consider a system with demand rate λ = 15 and two single-server facilities. Suppose also that the

facilities are homogeneous and share a common set of parameters, given by:

c = 1, µ = 4, β = 1, α = 5.

With these parameters, it transpires that the set of positive recurrent states Sθ∗ associated with

the RVIA policy θ∗ is of dimension 3× 2. The policy is shown in Table A.5.

x2 = 0 x2 = 1 x2 = 2

x1 = 0 1 1 1

x1 = 1 2 1 1

x1 = 2 2 2 1

x1 = 3 2 2 0

Table A.5: The optimal policy θ∗ found by the RVIA in Example A.8.5.

Of course, the fact that the policy θ∗ shown in Table A.5 chooses facility 1 rather than facility 2 at

states (0, 0), (1, 1) and (2, 2) is due to the convention assumed for tie-breaking, whereby the facility

with the lowest index is chosen. Indeed, Lemma 5.3.1 implies that the relative values h((x, y)) and

h((y, x)) are equal for any pair (x, y) ∈ N2
0, and therefore the 2×3 policy that would be obtained by

transposing Table A.5 and changing each ‘1’ to ‘2’ (and vice versa) would also be average reward

optimal for this system. Thus, the important characteristic of θ∗ in this example is that it allows

one of the two service facilities to have up to three customers present, but not both.

Further experimentation shows that the sink policies with sink states (2, 2) and (3, 3) (and all

routing decisions made according to the JSQ rule) are both sub-optimal. Indeed, it can also be

verified that there do not exist any average reward optimal ‘cube-shaped’ policies whose positive

recurrent state spaces are contained within the selfish space S̃. In view of Theorem 4.2.5, this

is sufficient to show that the ‘non-cube’ policy θ∗ given in Table A.5 performs better than any

cube-shaped policy, despite its lack of even-handed treatment of the two facilities. �

Before concluding this appendix, it will be appropriate to mention some further properties for which

no proofs or counter-examples have yet been found. These are stated below.

• Let θ∗ denote the optimal policy found by relative value iteration. In Section 5.2 it was proved
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(see Theorem 5.2.11) that if balking is chosen by θ∗ at some state x ∈ S̃ in a 2DSS system,

then balking is also chosen at states of the form xj+ (where j ∈ {1, 2}). Whether or not this

property also holds in a more general N -facility system remains unknown.

• Let g∗(λ) denote the optimal value of the average reward given a demand rate λ > 0, and let

g̃(λ) denote the corresponding average reward given by the selfishly optimal policy θ̃ defined

in Section 4.1. In Section 5.1 it was proved that, in an M/M/1 system, the loss per unit time

g∗(λ) − g̃(λ) is monotonically increasing with λ. Whether or not this property also holds in

the case of multiple servers and/or multiple service facilities is also unknown.

The challenge of establishing whether or not the two properties referred to above can indeed be

shown to hold in greater generality remains the subject of ongoing work.

A.9 Convergence of RL algorithms

This appendix discusses the convergence properties of RL algorithms, assuming that no restriction

is placed on the number of iterations to be performed ; in other words, the behaviour of the Q-factor

estimates as the number of iterations completed tends to infinity is now of interest. Throughout this

appendix, the term “convergence” should be understood to refer to the limiting behaviour of the

Q-factor estimates Q̂(x, a) which are updated during the evolution of an RL algorithm. However,

due to the uniqueness of solutions to the optimality equations (7.2.2) and the evaluation equations

(7.2.3), the successful convergence of the Q-factor estimates to their true theoretical values directly

implies the attainment of a policy which attains the optimal average reward g∗ (in the case of the

optimality equations) or the policy-specific value gθ (in the case of the evaluation equations). Thus,

the convergence of the Q-factor estimates to a set of values satisfying (7.2.2) may equivalently be

described as the convergence of an RL algorithm to an average reward optimal policy.

Before proceeding any further, it should be noted that even if an RL algorithm possesses convergence

properties in theory, it may well be the case that this convergence is much too slow to be attainable

in practice. Indeed, Example 7.2.3 in Section 7.2 has shown that the R-learning algorithm may

perform tens of millions of iterations without visiting more than 5% of state-action pairs in the

finite set S̃ × Ax. In order for accurate estimates Q̂(x, a) to be obtained for all state-action pairs
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(x, a) ∈ S̃ × Ax, it is necessary for each individual pair to be visited many times (as will become

clear from later results). However, it is apparent from Example 7.2.3 that the number of iterations

required for R-learning (or similar algorithms) to cover a state-action space consisting of tens of

thousands of elements in such a comprehensive fashion is likely to be astronomical.

Since an essential premise throughout Chapter 7 is that RL algorithms are much faster to run

than DP algorithms in systems with a large number of states, there is a certain conflict of interest

here; it appears that the convergence of an RL algorithm to a complete and accurate set of Q-factor

estimates may not be achievable unless the algorithm is allowed to run for as long as (or even longer

than) a DP algorithm. Due to issues of practicality, as well as the highly technical nature of the

subject in general, convergence properties of RL algorithms will not be discussed here in rigorous

detail; instead, a brief survey of important results from the literature will be given.

The RL algorithms discussed in Section 7.2 are applicable to average reward optimisation problems,

in which the performance measure of interest under a particular policy is the expected long-run

average reward per unit time. However, a significant proportion of the RL literature addresses

discounted reward problems. As discussed in Chapter 3, a discounted reward problem (in a discrete-

time context) is one in which a reward earned n time steps into the future is discounted by a

factor φn relative to an immediate reward, where φ ∈ (0, 1). Discounted reward problems tend

to be somewhat more mathematically tractable than average reward problems, and it is therefore

unsurprising that theoretical guarantees have been developed for the performance of RL algorithms

in the discounted reward case which do not extend easily to the average reward case.

This appendix will begin by outlining certain results from the literature regarding the conver-

gence properties of RL algorithms in discounted reward problems, and discuss (where possible) the

generalisation of these results to average reward problems. Although this thesis is not expressly

concerned with discounted reward problems, it will be useful to provide an insight into the nature

of the technical challenges involved in proving RL convergence properties in the discounted case, if

only to show why the average reward case presents an even greater level of difficulty.

As stated at the end of Section 7.2, there does not exist any formal proof that the R-learning

algorithm presented on page 301 converges to an average reward optimal policy, although its strong

performance has been demonstrated in experiments (see [123, 154, 162]). The TD learning algorithm
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presented on page 292, which evaluates a fixed stationary policy θ, is essentially a special case of

the R-learning algorithm with only one action allowed at each state, and therefore a proof of its

convergence to the theoretical value gθ is not attainable either. However, the picture is not entirely

bleak as far as average reward RL algorithms are concerned. There does exist an algorithm, known

as relative Q-learning, which has been proven to converge to an average reward optimal policy,

provided that certain conditions are met. This will be discussed later in this appendix.

As mentioned in Section 7.2, R-learning bears a close resemblance to the famous Q-learning algo-

rithm developed by Watkins [191], which applies to discounted reward problems. In Q-learning, the

update rule used for the estimated value Q̂φ(xn, an) (where (xn, an) ∈ S × Ax is the state-action

pair selected on the nth iteration and φ ∈ (0, 1) is the discount factor) is given by:

Q̂φ(xn, an)← (1− δn)Q̂φ(xn, an) + δn

[
rn + φ max

a′∈Axn+1

Q̂φ(xn+1, a
′)

]
, (A.9.1)

where, as usual, δn is a learning parameter. The estimated average reward gn does not feature in

Q-learning at all, and as such step 4 of the R-learning algorithm is omitted entirely from Q-learning.

This simplifies matters to a certain extent, since the question of how g∗ should be estimated in

R-learning and variants such as R-SMART (see [62, 64]) is not easy to resolve.

Like most RL algorithms, Q-learning operates by updating the estimate Q̂φ(x, a) for any given

state-action pair (x, a) ∈ S × Ax as and when the state x is ‘visited’ by an agent following a path

through the system, and the action a is chosen. It may be said, therefore, that Q-learning uses

asynchronous updates to estimate the Q-factors which characterise an optimal policy. The difference

between asynchronous and synchronous updates may be explained most easily by referring to the

dynamic programming algorithms introduced in Chapter 3. DP algorithms such as the Relative

Value Iteration Algorithm (page 101) use a synchronous updating style, which involves sweeping

through all states (or, if the Q-factors Q(x, a) are being evaluated as opposed to the relative values

h(x), all state-action pairs) on every iteration and updating each finite-stage value hn(x) using the

values hn−1(y) obtained on the previous iteration. Consequently, one can say that if the procedure

is terminated at the end of the nth iteration (for some n ∈ N), the relative values for all states

x ∈ S will have been updated exactly n times since initialisation of the algorithm.

On the other hand, it is obvious that in RL algorithms such as Q-learning, the order in which
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the estimates Q̂(x, a) are updated may be haphazard; that is, some state-action pairs may be

‘sampled’ much more frequently than others. In fact, the asynchronous style of updating used in

RL is one of its great advantages, since it enables the Q-factors at states which are visited often to

be updated more frequently (and, therefore, approximated more accurately) than those which are

associated with seldom-visited states, which in turn causes an appropriate emphasis to be placed on

obtaining accurate estimates for the Q-factors which are critical to the performance of the system;

this has been shown by Example 7.2.3. However, as one might expect, convergence proofs are more

difficult to establish for algorithms which use asynchronous updating than for those which update

Q-factors uniformly in the style of a DP algorithm. In this appendix, the main result which implies

convergence of synchronous algorithms which perform simulation-based updates similar to those of

RL algorithms will be given first, followed by discussion of the asynchronous case.

The next result, which may be found in Gosavi [62] (p. 382) and is based on results from [22] and

[111], uses the concept of a stochastic approximation scheme. Informally speaking, this refers to an

algorithmic procedure which uses ‘noisy’ observations to estimate the characteristics of functions

which cannot be computed directly; for example, the ‘data pieces’ rn−gn+Q̂θ(xn+1) acquired during

the TD learning algorithm (see page 292) are subject to the random ‘noise’ caused by simulation.

The Robbins-Monro algorithm on page 294 is an example of a stochastic approximation scheme.

Note that the theorem relies upon the assumption of finite state and action spaces.

* Theorem A.9.1. Assume that the state space S̃ and action spaces Ax (for x ∈ S̃) are finite,

and let χ :=
∑

x∈S̃ |Ax| denote the total number of state-action pairs. For (x, a) ∈ S̃ × Ax and

n ∈ N0, let Q̂n(x, a) be given by the following stochastic approximation scheme:

Q̂n(x, a) =


0, if n = 0,

(1− δn)Q̂n−1(x, a) + δn

(
H(Q̂n−1)(x, a) + σn(x, a)

)
, if n ≥ 1.

(A.9.2)

where Q̂n is a vector of dimension χ whose elements are the estimated Q-factors Q̂n(x, a) (assuming

that these have been arranged in some systematic order), H is a function which maps Rχ to Rχ,

H(Q̂n)(x, a) denotes the component of the vector H(Q̂n) associated with the pair (x, a), σn(x, a)

denotes the random noise generated on the nth iteration when the Q-factor for the pair (x, a) is
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updated, and the parameters δn satisfy the Robbins-Monro conditions:

∞∑
n=1

δn =∞,
∞∑
n=1

(δn)2 <∞. (A.9.3)

Assume the approximation scheme in (A.9.2) is used synchronously; that is, the Q-factor estimates

for all state-action pairs are updated exactly once on every iteration, using the estimates from the

previous iteration. Also assume that the following conditions hold:

1. The iterates Q̂n are bounded. That is, there exists a constant K < ∞ such that for all

state-action pairs (x, a) ∈ S̃ ×Ax and n ∈ N0, the following holds:

Q̂n(x, a) ≤ K. (A.9.4)

2. For each (x, a) ∈ S̃ ×Ax and n ∈ N, the noise term σn(x, a) satisfies:

E
[
σn(x, a)

∣∣∣ Q̂0, Q̂1, ..., Q̂n−1, σ1(x, a), σ2(x, a), ..., σn−1(x, a)
]

= 0,

E
[
(σn(x, a))2

∣∣∣ Q̂0, Q̂1, ..., Q̂n−1, σ1(x, a), σ2(x, a), ..., σn−1(x, a)
]
≤ A1 +A2||Q̂n||2∞,

(A.9.5)

where A1 and A2 are constants, and ||Q̂n||∞ = max(x,a)∈S×Ax
|Q̂n(x, a)|.

3. The function H : Rχ → Rχ is a non-expansive mapping with respect to the max norm, || · ||∞.

That is, for any two vectors Q,Q′ ∈ Rχ, the following holds:

||H(Q)−H(Q′)||∞ ≤ ||Q−Q′||∞. (A.9.6)

Then, with probability one, the sequence (Q̂0, Q̂1, ...) converges to a vector Q such that:

Q = H(Q),

provided that such a vector (referred to as a fixed point of H) exists.

The fact that Theorem A.9.1 assumes a finite number of state-action pairs is not particularly

a limitation in the context of the queueing systems considered in this thesis, since the results in

Chapter 4 have established the existence of discount-optimal and average reward optimal stationary

policies which cause the process to remain contained within the selfishly optimal state space S̃
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defined in (4.1.3), and therefore it is reasonable to assume that convergence of an RL algorithm

(if it occurs) will yield a policy of this type. A proper justification for this assertion will become

apparent when the meaning of the transformation H (in an MDP context) is explained later in this

appendix. As one might expect, convergence properties of RL algorithms are considerably more

difficult to prove when the state space is countably infinite; see, for example, [20].

As discussed in [62] (p. 382), the proof of Theorem A.9.1 relies upon a rather more general result

which is due to Kushner and Clark [111] (p. 39) and concerns the solution of a certain type of

ordinary differential equation (ODE), which can be expressed in the form:

d

dt
Q(t) = H(Q(t))−Q(t), (A.9.7)

or (equivalently) Q̇ = H(Q) − Q. After establishing the stability of the ODE (A.9.7) and its

relationship to the discrete-time approximation schemes used by RL algorithms such as Q-learning,

the proof of the theorem then makes use of a well-known convergence theorem for martingales which

can be found in [24] (p. 89). Although the full details of these technical results are somewhat beyond

the scope of this thesis, a short and informal explanation will be given here of the ‘ODE method’,

which involves showing that a continuous-time formulation of (A.9.2) is possible. The explanation

here will mainly follow the development in Bertsekas and Tsitsiklis [15] (p. 171).

Recall that the learning parameters δn are required to satisfy the Robbins-Monro conditions (A.9.3).

In particular, the second condition in (A.9.3) ensures that δn → 0 as n→∞. Following Bertsekas

and Tsitsiklis [15], let δ be a small, fixed positive number. Evidently, it is possible to choose a

strictly increasing sequence of integers (km)m∈N such that for m ∈ N, one can say:

km+1∑
n=km+1

δn ≈ δ. (A.9.8)

Intuitively, one may observe that as the δn values become small, it becomes possible to arrange

them into a sequence of finite series such that each series closely approximates the constant δ. Next,

it can be shown that under conditions (A.9.4) and (A.9.5), the sequence (
∑n

m=1 δmσm(x, a))n∈N is

a martingale with bounded second moments, which implies that it is convergent with probability

one due to the martingale convergence theorem (see [24], p. 89) and hence:

lim
n→∞

δnσn(x, a) = 0. (A.9.9)
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Let (x, a) ∈ S̃ ×Ax be arbitrary. From (A.9.2) it can be inferred that, for n ≥ 1:

Q̂n(x, a) = Q̂n−1(x, a) +O(δn), (A.9.10)

where O(δn) denotes a quantity which tends to zero as δn → 0. By iterating (A.9.10) and also

using (A.9.8), one can then say that for integers m ≥ 1 and n ∈ {km + 1, km + 2, ..., km+1}:

Q̂n(x, a) = Q̂km(x, a) +O(δ). (A.9.11)

From (A.9.2), it follows that for integers m ≥ 1:

Q̂km+1(x, a) = Q̂km(x, a)+

km+1∑
n=km+1

δn

(
H(Q̂n−1)(x, a)− Q̂n−1(x, a)

)
+

km+1∑
n=km+1

δnσn(x, a). (A.9.12)

By using the non-expansiveness property (A.9.6) and the fact that (A.9.11) holds for all state-action

pairs (x, a) ∈ S̃ ×Ax, one can show that for n ∈ {km + 1, km + 2, ..., km+1}:

H(Q̂n)(x, a)−H(Q̂km)(x, a) ≤ ||Q̂n − Q̂km ||∞ = O(δ). (A.9.13)

Note that (A.9.9) ensures that
∑km+1

n=km+1 δnσn(x, a) tends to zero as m→∞. Hence, using (A.9.11),

(A.9.12) and (A.9.13), one can show that for sufficiently large m ∈ N:

Q̂km+1(x, a) ≈ Q̂km(x, a) +

km+1∑
n=km+1

δn

(
H(Q̂km)(x, a)− Q̂km(x, a) +O(δ)

)
≈ Q̂km(x, a) + δ

(
H(Q̂km)(x, a)− Q̂km(x, a)

)
+O(δ2).

Hence, up to first order in δ, a reasonable approximation of (A.9.2) is:

Q̂km+1(x, a)− Q̂km(x, a) = δ
(
H(Q̂km)(x, a)− Q̂km(x, a)

)
. (A.9.14)

As illustrated by Figure A.3, the Q-factor estimates Q̂km(x, a) and Q̂km+1(x, a) may be regarded

as two estimates for Q(x, a) taken at two different points in time. Moreover, the amount of time

separating these two points is δkm+1 +δkm+2 + ...+δkm+1 ≈ δ. Hence, after dividing by δ in (A.9.14)

and considering the limit as δ → 0, it is clear that the behaviour of the stochastic approximation

algorithm (A.9.2) is similar to that of the deterministic differential equation:

d

dt
Q(t) = H(Q(t))−Q(t). (A.9.15)
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Figure A.3: The distance between n = km and n = km+1 on the ‘time axis’ is δkm+1 + ...+ δkm+1 ≈ δ.

As remarked by Bertsekas and Tsitsiklis [15] (p. 173), the arguments given in the preceding two

pages are somewhat non-rigorous, and one should refer to a source such as Borkar and Meyn [21]

for a fully rigorous approach. After the analogy between (A.9.2) and the ODE (A.9.15) has been

properly established, the proof of Theorem A.9.1 follows using the arguments given by Abounadi

et. al. [1]. However, it is important to note that the theorem applies to stochastic approximation

schemes which operate in a synchronous manner. As discussed previously, all of the RL algorithms

considered in this chapter rely upon asynchronous updates. The generalisation of Theorem A.9.1

to asynchronous approximation schemes will be discussed later in this appendix, but first it will be

useful to illustrate the result of the theorem by considering some specific examples.

Consider a synchronous version of the Q-learning algorithm discussed earlier, which operates by

updating the estimate Q̂n(x, a) for all state-action pairs (x, a) ∈ S̃ ×Ax on the nth iteration (n =

1, 2, ...) using the update rule (A.9.1). For clarity, the algorithm which operates in this manner will

be referred to in this appendix as synchronous Q-learning, whereas the shorter name ‘Q-learning’

will always refer to the asynchronous version of the same algorithm (in other words, Q-learning

should be assumed to be asynchronous unless otherwise stated). In the case of synchronous Q-

learning, the use of the notation xn to denote the state ‘visited’ on the nth iteration (and, similarly,

an to denote the action chosen) becomes somewhat inappropriate, as the Q-factor estimates for

the various state-action pairs are updated even-handedly on each iteration, as opposed to being

based on the simulated path of an agent exploring the system. The update rule for synchronous
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Q-learning can be expressed, for (x, a) ∈ S̃ ×Ax and integers n ≥ 1, in the form:

Q̂n(x, a) = (1− δn)Q̂n−1(x, a) + δn

[
r(x, a,Y) + φ max

a′∈AY

Q̂n−1(Y, a′)

]
, (A.9.16)

where Q̂n(x, a) is the estimate of Q(x, a) obtained on the nth iteration, and Y should be interpreted

as a random variable which is generated (like the ‘next state’ xn+1 in the asynchronous case) using

simulation; specifically, for each y ∈ S̃, Y = y with probability p(x, a,y). As such, the reward

r(x, a,Y) is also random, due to its dependence on Y. The randomly-sampled state Y is used only

to update the Q-factor estimate for the pair (x, a); this contrasts with the asynchronous case, in

which the state xn+1 sampled using simulation becomes the next state to be ‘visited’. It should

also be understood that on the nth iteration, the same learning parameter δn is used to update

each state-action pair. Next, define the transformation J : Rχ → Rχ as follows:

J(Q̂n)(x, a) := r(x, a,Y) + φ max
a′∈AY

Q̂n(Y, a′),

where Q̂n is the vector with components Q̂n(x, a). Also, define H : Rχ → Rχ by:

H(Q̂n)(x, a) := E[J(Q̂n)(x, a)] =
∑
y∈S̃

p(x, a,y)

(
r(x, a,y) + φ max

a′∈Ay

Q̂n(y, a′)

)
, (A.9.17)

where the expectation is with respect to the distribution of Y. The ‘random noise’ σn(x, a) gener-

ated when the pair (x, a) is updated on the nth iteration is then given by:

σn(x, a) = J(Q̂n−1)(x, a)−H(Q̂n−1)(x, a). (A.9.18)

Thus, the synchronous Q-learning update (A.9.16) can be re-written as follows:

Q̂n(x, a) = (1− δn)Q̂n−1(x, a) + δn

[
H(Q̂n−1)(x, a) + σn(x, a)

]
, (A.9.19)

which is of the same form as (A.9.2). Therefore, in order to establish the convergence of synchronous

Q-learning, it only remains to show that the assumptions of Theorem A.9.1 are satisfied, and also

that a fixed point of H (in other words, a vector Q ∈ Rχ satisfying Q = H(Q)) exists. The latter

property can be established immediately using results from previous chapters. Indeed, the discount

optimality equations for MDPs defined on a finite or countable state space S (see [141], p. 146)

imply that there exists a set of values {Q(x, a)} satisfying, for all (x, a) ∈ S ×Ax:

Q(x, a) =
∑
y∈S

p(x, a,y)

(
r(x, a,y) + φ max

a′∈Ay

Q(y, a′)

)
,
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or equivalently Q = H(Q), as required. The first assumption in Theorem A.9.1, which states that

the iterates Q̂n(x, a) are bounded for each n ∈ N0, can be verified using an argument provided by

Gosavi [62] (p. 394). Specifically, for each (x, a) ∈ S̃ ×Ax and n ≥ 0, one can show:

|Qn(x, a)| ≤ max(rmax, 0)
(
1 + φ+ φ2 + ...+ φn

)
,

where rmax = maxx,y∈S̃,a∈Ax
r(x, a,y). Hence, K = max(rmax, 0)/(1−φ) can be taken as the upper

bound in (A.9.4). The first of the two ‘noise term’ properties in (A.9.5) can be established easily by

taking the expectation of both sides in equation (A.9.18) and using the fact that E[J(Q̂n)(x, a)] =

H(Q̂n)(x, a), while the second property follows from the fact that the (conditional) second moment

of σn(x, a) is bounded by a function of the square of ||Q̂n−1||∞, which itself is bounded due to

(A.9.4). Finally, the non-expansiveness property (A.9.6) is proved by Gosavi [62] (p. 396) using a

simple argument. For any two vectors Q,Q′ ∈ Rχ one can write, for (x, a) ∈ S̃ ×Ax:

∣∣H(Q)(x, a)−H(Q′)(x, a)
∣∣ = φ

∣∣∣∣∣∑
y∈S̃

p(x, a,y)

(
max
a′∈Ay

Q(y, a′)− max
a′∈Ay

Q′(y, a′)

) ∣∣∣∣∣
<

∣∣∣∣∣∑
y∈S̃

p(x, a,y)

(
max
a′∈Ay

Q(y, a′)− max
a′∈Ay

Q′(y, a′)

) ∣∣∣∣∣
≤
∑
y∈S̃

p(x, a,y) max
(z,a′)∈S̃×Az

∣∣Q(z, a′)−Q′(z, a′)
∣∣

= ||Q−Q′||∞
∑
y∈S̃

p(x, a,y)

= ||Q−Q′||∞. (A.9.20)

Since (A.9.20) applies to the particular state-action pair (x, a) which maximises |H(Q)(x, a) −

H(Q′)(x, a)|, the result ||H(Q) − H(Q′)||∞ ≤ ||Q − Q′||∞ follows. Thus, the convergence of

synchronous Q-learning is established by Theorem A.9.1. Of course, the synchronous Q-learning

algorithm applies to discounted problems, and it would be desirable to establish similar convergence

properties for an RL algorithm which could be applied to an average reward problem.

A simple, if rather crude, approach to solving an average reward problem using an RL algorithm

with guaranteed convergence properties would be to apply the Q-learning algorithm and choose a

discount factor φ very close to 1. This strategy, referred to as the vanishing discount approach, is

discussed by Arapostathis et. al. [5] (see also [62, 63]). Of course, the policy obtained using this
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approach would be φ-discount optimal rather than average reward optimal, but with φ ≈ 1, one

might suppose that a φ-discount optimal policy would be a close approximation of an average reward

optimal policy. However, this approach is clearly somewhat unsatisfactory from a mathematical

point of view, and therefore it will not be considered any further in this appendix.

As mentioned earlier, there exists an RL algorithm known as relative Q-learning which possesses

known convergence properties and applies to average reward problems. This algorithm operates in

a similar manner to Q-learning, except that the update rule (A.9.1) is replaced by:

Q̂(xn, an)← (1− δn)Q̂(xn, an) + δn

[
rn + max

a′∈Axn+1

Q̂(xn+1, a
′)− max

a′∈A0

Q̂(0, a′)

]
. (A.9.21)

A theoretical justification for the update rule (A.9.21) is given by the next result, which is proved

by Bertsekas and Tsitsiklis [15] using an argument based on stochastic shortest paths.

* Lemma A.9.2. Assume that the state space S̃ and action spaces Ax (for x ∈ S̃) are finite. For

each (x, a) ∈ S̃ ×Ax, let Q0(x, a) = 0 and let Qn(x, a) be defined for n ∈ N by:

Qn(x, a) =
∑
y∈S̃

p(x, a,y)

(
r(x, a,y) + max

a′∈Ay

Qn−1(y, a′)− max
a′∈A0

Qn−1(0, a′)

)
.

Then, for each (x, a) ∈ S̃ ×Ax, the following limit exists:

Q(x, a) := lim
n→∞

Qn(x, a).

Moreover, let g∗ := maxa∈A0 Q(0, a). Then the constant g∗, together with the set of values

{Q(x, a)}, satisfies the Q-factor version of the average reward optimality equations:

g∗ +Q(x, a) = r(x, a) +
∑
y∈S̃

p(x, a,y) max
a′∈Ay

Q(y, a′). (A.9.22)

Hence, maxa∈A0 Q(0, a) is the optimal expected long-run average reward.

Proof. Refer to the derivation given by Bertsekas and Tsitsiklis [15] (pp. 392-400).

Lemma A.9.2 is analogous to Theorem 3.7.4 (which was used to establish the convergence of the

Relative Value Iteration Algorithm); essentially, the only difference is that it is given in terms

of the Q-factors Q(x, a) which characterise an average reward optimal policy, as opposed to the

relative values h(x). Note that the update rule (A.9.21) is given in the context of an asynchronous
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algorithm, in which ((x0, a0), (x1, a1), ...) is the sequence of state-action pairs ‘visited’ by the agent.

In a synchronous version of the algorithm, the update rule (cf. (A.9.16)) becomes:

Q̂n(x, a) = (1− δn)Q̂n−1(x, a) + δn

[
r(x, a,Y) + max

a′∈AY

Q̂n−1(Y, a′)− max
a′∈A0

Q̂n−1(0, a′)

]
. (A.9.23)

The convergence properties of synchronous relative Q-learning can be established using Theorem

A.9.1. In this case, one may define the transformation L : Rχ → Rχ by:

L(Q̂n)(x, a) := r(x, a,Y) + max
a′∈AY

Q̂n(Y, a′)− max
a′∈A0

Q̂n(0, a′),

whereupon it follows that the rule (A.9.23) used by synchronous relative Q-learning is of the

required form (A.9.2), with H(Q̂n)(x, a) = E[L(Q̂n)(x, a)] for each (x, a) ∈ S̃ × Ax and the noise

term σn(x, a) again given by the difference between L(Q̂n)(x, a) and its expected valueH(Q̂n)(x, a).

The existence of a fixed point Q satisfying Q = H(Q) follows by Lemma A.9.2.

The fact that conditions (A.9.5) and (A.9.6) are satisfied by the synchronous relative Q-learning al-

gorithm can be verified using arguments very similar to those given for the (discounted) Q-learning

algorithm in the previous pages. The boundedness property (A.9.4) is rather more difficult to es-

tablish, but it can be done; details can be found in Abounadi et. al. [1] (p. 692). One may then

conclude, by Theorem A.9.1, that the synchronous relative Q-learning algorithm possesses con-

vergence properties similar to those of its discounted-reward counterpart, synchronous Q-learning.

However, the problem remains of showing that the modified versions of these algorithms which rely

upon asynchronous updates also achieve convergence. For this purpose, it will be easiest to discuss

various results from the literature which apply to specific RL algorithms, as opposed to relying

upon a general result for stochastic approximation schemes similar to Theorem A.9.1.

First, convergence properties of the asynchronous version of (discounted) Q-learning will be dis-

cussed. The primary reference on this topic is Tsitsiklis [184]. It will be useful to re-formulate

the update rule (A.9.1) used by Q-learning in order to ensure compatibility with the results of

Tsitsiklis and others in the literature. An asynchronous RL algorithm may be viewed as a variant

of a synchronous algorithm in which only some state-action pairs are simulated on each iteration,

as opposed to all pairs. Specifically, let Xn denote the set of pairs (x, a) ∈ S̃×Ax to be updated on

the nth iteration. In the synchronous case, one would simply have Xn = S̃ × Ax for all n ∈ N; on

the other hand, if updates are to be performed based on the simulated path of an agent exploring



Appendices 484

the system (as described in Section 7.1), then the set Xn is a singleton for each n ∈ N and is

determined by the history of states visited, actions chosen and events witnessed during the process.

One may then express the update rule used by Q-learning in the following form:

Q̂n(x, a) = Q̂n−1(x, a)

+ I((x, a) ∈ Xn)δ(νn(x, a))

[
r(x, a,Y) + φ max

a′∈AY

Q̂n−1(Y, a′)− Q̂n−1(x, a)

]
, (A.9.24)

where νn(x, a) =
∑n

k=1 I((x, a) ∈ Xk) is the total number of updates made to the pair (x, a) up to

and including time n, and the learning parameter δ is now a deterministic function of νn(x, a). In

order to be consistent with the definition of δn in (7.2.14), one would define:

δ(n) :=
T

T + n− 1
∀ n ∈ N, (A.9.25)

where T ∈ N is arbitrary. The results in [184] depend upon a slight strengthening of the Robbins-

Monro conditions (A.9.3). It is necessary to assume that, for all (x, a) ∈ S̃ ×Ax:

∞∑
n=1

I((x, a) ∈ Xn)δ(ν(x, a)) =∞,
∞∑
n=1

(I((x, a) ∈ Xn)δ(ν(x, a)))2 <∞. (A.9.26)

In particular, the first condition in (A.9.26) implies that all state-action pairs are simulated infinitely

often during the course of the process. Note that, in the case of the queueing systems considered

in this thesis, an ε-greedy rule for selecting actions will ensure that this condition is satisfied,

since under this rule there is always a probability ε of choosing an action at random; as a result,

every state is accessible via an appropriate sequence of decisions and customer arrivals. Tsitsiklis

[184] shows that, provided the three assumptions stated in Theorem A.9.1 hold and the conditions

(A.9.26) are also satisfied, the asynchronous version of Q-learning emulates the synchronous version

by converging to a set of values Q(x, a) satisfying the optimality equations (7.1.4).

In the case of relative Q-learning, the update rule becomes:

Q̂n(x, a) = Q̂n−1(x, a)

+ I((x, a) ∈ Xn)δ(νn(x, a))

[
r(x, a,Y) + max

a′∈AY

Q̂n−1(Y, a′)− max
a′∈A0

Q̂n−1(0, a′)− Q̂n−1(x, a)

]
.

(A.9.27)

The convergence of relative Q-learning has been proved by Abounadi et. al. [1] (see also [19, 21]),

subject to some mild additional assumptions on the learning parameter function δ which are satisfied
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for commonly-used functions such as δ(n) = 1/n and δ(n) = log(n)/n. Also, the sets Xn must be

defined in such a way that, for all (x, a) ∈ S̃ ×Ax and some constant C > 0:

lim inf
n→∞

νn(x, a)

n
≥ C a.s. (A.9.28)

As explained in [21], this condition ensures that all state-action pairs are updated ‘comparably

often’. In the queueing systems considered in this thesis, the condition (A.9.28) holds if one adopts

an asynchronous updating style based on the simulated path of an agent (as discussed in Section

7.1) and allows actions to be selected using an ε-greedy rule. This can be seen using a heuristic

argument, without resorting to rigorous detail. Indeed, let ((x0, a0), (x1, a1), ...) denote the sequence

of state-action pairs ‘visited’ by the agent, where the actions an are chosen using an ε-greedy rule.

The sets Xn are given by Xn = {(xn, an)} for n ∈ N. Let P0 be defined as follows:

P0 := lim inf
n→∞

∑
a∈A0

νn(0, a)

n
.

That is, P0 is the limit infimum of the proportion of time spent by the agent in state 0 during

the evolution of the algorithm. Clearly, P0 must be strictly positive; indeed, it is stochastically

bounded below by the stationary probability of no customers being present in an infinite-capacity

M/M/1 queue with a demand rate λ equal to that of the system under consideration and a service

rate given by µmin = mini∈{1,2,...,N} µi, which itself is always greater than zero.

Next, consider an arbitrary state-action pair (y, a) ∈ S̃ × Ay and let Y :=
∑N

i=1 yi be the total

number of customers present under state y. Suppose the system is in state 0 on some iteration

n of the algorithm (obviously, there must be infinitely many such iterations if the algorithm is

not terminated). Then, under the ε-greedy rule, there is a positive probability that ‘exploratory’

actions will be chosen on all of the next Y + 1 iterations, and there is also a positive probability

that the simulated random transitions resulting from choosing these actions will enable the agent

to reach state y after n+Y iterations and then choose action a ∈ Ay on the (n+Y +1)th iteration.

Indeed, assuming that the simulated random transitions are determined according to (7.2.1) and

noting the fact that the largest possible number of decision options at any state is N + 1, then

the probability of the aforementioned sequence of events occurring (given that xn = 0) must be at

least C(y, a) := (ελ∆/(N + 1))Y+1, from which it follows that lim infn→∞ νn(y, a)/n ≥ P0C(y, a).

Since this argument applies to any state-action pair (x, a) ∈ S̃ × Ax, one can then take C :=
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P0 min(x,a)∈S̃×Ax
C(x, a) in order to show that the required condition (A.9.28) holds.

The conclusion of this appendix is that, provided the algorithm is configured in an appropriate

way (e.g. with an ε-greedy rule for selecting actions and some mild conditions on the learning

parameters), the assumptions of Theorem 3.5 in [1] are satisfied and therefore relative Q-learning

will converge to a set of values Q(x, a) satisfying the average reward optimality equations (A.9.27)

in both the synchronous and asynchronous cases. The convergence of Q-learning (for discounted

problems) has also been established. However, as discussed earlier, similar convergence properties

for the R-learning algorithm given on page 301 have not been proved in the literature. It will be

worthwhile to end this appendix with an example comparing the performances of the R-learning

and relative Q-learning algorithms in the case of a queueing system with 3 facilities.

Example A.9.3. (Comparing the R-learning and relative Q-learning algorithms)

Consider a system with a demand rate λ = 12 and 3 facilities, with parameters as follows:

c1 = 2, µ1 = 2, β1 = 4, α1 = 10,

c2 = 2, µ2 = 3, β2 = 3, α2 = 6,

c3 = 1, µ3 = 4, β3 = 7, α3 = 20.

Using relative value iteration, it can be shown that the optimal value for the expected long-run

average reward is approximately 106.05. Figure A.9.3 shows the results of an experiment in which

the behaviour of the R-learning algorithm during its first 700,000 iterations was compared with

that of the relative Q-learning algorithm. For clarity, the relative Q-learning algorithm operates in

the same way as the R-learning algorithm presented on page 301, except that the update rule used

for Q̂(xn, an) in step 3 (reverting to the notation used in Section 7.2) is given by:

Q̂(xn, an)← (1− δn)Q̂(xn, an) + δn

[
rn − max

a′∈A0

Q̂(0, a′) + max
a′∈Axn+1

Q̂(xn+1, a
′)

]
, (A.9.29)

so that maxa′∈A0 Q̂(0, a′) simply replaces gn. The estimates gn are not used by relative Q-learning

at all, and accordingly step 4 of R-learning is omitted. The estimate of the optimal average reward

obtained after the algorithm terminates is then given by maxa′∈A0 Q̂(0, a′).

As in previous examples, an ε-greedy rule was used to select actions and the learning parameters

δn and (in the R-learning case) ζn were given by (7.2.14) and 1/(n+ 1) respectively.
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Figure A.4: Comparison between the performances of the R-learning and relative Q-learning algorithms.

One may inspect the evolution of the sequence (gn), or maxa′∈A0 Q̂(0, a′) (depending on which algo-

rithm is used) during the first 700,000 iterations in order to gain an idea of the relevant algorithm’s

stability during the early stages of its finite running time. Figure A.4 shows the progression of these

values, and also shows (for each algorithm) the estimates of the long-run average reward obtained

by performing Frozen Phase (FP) evaluations after every 10,000 iterations. As in Example 7.2.3, it

is found that the estimates gn used by R-learning converge towards the optimal value in a relatively

smooth fashion. On the other hand, the values maxa′∈A0 Q̂(0, a′) obtained from relative Q-learning

show much more erratic behaviour in the early stages of the algorithm. The FP estimates for the

optimal average reward appear to converge rapidly towards g∗ ≈ 106.05 in both cases.

The fact that the values maxa′∈A0 Q̂(0, a′) used by relative Q-learning show more erratic behaviour

than the sequence (gn) used by R-learning does not appear to be unique to this particular example.

Indeed, additional experiments performed with a wide range of different system parameters have

shown that the general trends depicted in Figure A.4 are quite common. Moreover, when the

number of facilities is increased, it appears that relative Q-learning may require a very large number

of iterations before maxa′∈A0 Q̂(0, a′) begins to approach g∗ (in the sense of being consistently within

some tolerance limit of g∗); contrastingly, the ‘smooth’ convergence of (gn) towards g∗ seen using
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R-learning appears to hold even in systems with higher-dimensional state spaces. �

In summary, although the infinite-time convergence of maxa′∈A0 Q̂(0, a′) to g∗ is theoretically guar-

anteed under relative Q-learning, numerical experiments show that this convergence may be con-

siderably slower than the apparent convergence of gn to g∗ under R-learning.
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