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Abstract

This thesis discusses queueing systems in which decisions are made when customers arrive, either by
individual customers themselves or by a central controller. Decisions are made concerning whether
or not customers should be admitted to the system (admission control) and, if they are to be
admitted, where they should go to receive service (routing control). An important objective is to
compare the effects of “selfish” decision-making, in which customers make decisions aimed solely
at optimising their own outcomes, with those of “socially optimal” control policies, which optimise
the economic performance of the system as a whole. The problems considered are intended to be

quite general in nature, and the resulting findings are therefore broad in scope.

Initially, M /M /1 queueing systems are considered, and the results presented establish novel con-
nections between two distinct areas of the literature. Subsequently, a more complicated problem is
considered, involving routing control in a system which consists of heterogeneous, multiple-server
facilities arranged in parallel. It is shown that the multiple-facility system can be formulated math-
ematically as a Markov Decision Process (MDP), and this enables a fundamental relationship to
be proved between individually optimal and socially optimal policies which is of great theoretical
and practical importance. Structural properties of socially optimal policies are analysed rigorously,
and it is found that ‘simple’ characterisations of socially optimal policies are usually unattainable
in systems with heterogeneous facilities. Finally, the feasibility of finding ‘near-optimal’ policies for

large-scale systems by using heuristics and simulation-based methods is considered.
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1 Introduction

This thesis will discuss queueing systems in which the behaviour of individual customers is subject
to some form of control. More specifically, these systems require decisions to be made at regular
intervals which correspond to the inter-arrival times of customers who enter the system. Naturally,
given a choice between various possible decisions at a particular point in time, one would wish to
choose the option which would yield the best expected result with respect to a particular criterion.
As such, the vast majority of this thesis is concerned with a particular type of optimisation problem,

which will be discussed and analysed in rigorous detail in the chapters that follow.

Queueing systems can be formulated mathematically as stochastic processes which evolve according
to random probability distributions. The analytical study of these processes has been a popular
subject of mathematical research for many decades, and the resulting body of knowledge is usually

referred to as queueing theory; some notable texts include [111 [67, 100} 125] 132 [178§].

Classical queueing theory often involves the characterisation of the limiting or equilibrium behaviour
of a particular system, assuming that such behaviour exists. For example, one might wish to de-
termine the expected length of a queue at an arbitrary point in time, or an individual customer’s
expected waiting time in the system. Throughout this thesis, the queueing systems considered will
be associated with certain costs and rewards accrued when particular events take place (for exam-
ple, the fulfilments of customers’ service requirements), and an important measure of a system’s
performance will be the average net reward (after subtraction of costs) earned per unit time. Given
a full description of the dynamics of a particular system, and a complete specification of the be-
haviour of individual customers, it will usually be possible to use well-established techniques from
classical queueing theory to compute performance measures such as average queue lengths, average
waiting times and average net rewards. However, in order to seek a decision-making strategy which
optimises the system’s performance with respect to a particular performance measure, it will be
necessary to go slightly beyond the realms of traditional queueing theory and instead rely upon

behavioural queueing theory and the rather broader field of stochastic optimisation.

Prior to the groundbreaking work of Naor in the 1960s (see [2], 131]), applied queueing theory was

somewhat limited in scope. This state of affairs is reflected in a “letter to the editor” [115] published
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by Leeman in 1964, which provides a qualitative discussion of the limitations of the field. Leeman
suggests that operational researchers seldom consider the possibility of introducing or changing
prices in order to optimise queueing systems, despite the existence of an accepted economic principle
which states that the optimal allocation of scarce resources requires that a cost be charged to users
of these resources. Leeman discusses how, for example, ‘check-out’ fees charged by supermarkets
or ‘boarding fees’ charged by taxi firms might be utilised in order to reduce queue lengths, and
concludes his argument by remarking that the role of price-setting in controlling queueing systems

ought to be an important consideration for administrators in a capitalist economy.

Another letter by Saaty [I51] responds directly to Leeman’s arguments by acknowledging the po-
tential of a pricing scheme to alter behaviour in queueing systems. However, he also raises concerns
over whether these methods might have a detrimental effect on those “under-privileged” members
of society who, he suggests, should not be burdened by having to arrange their purchasing of essen-
tial items such as food in such a way as to avoid having to pay exorbitant charges. Saaty suggests
that applying congestion-related charges to “luxury-type” queues should be a feasible option, but

that queues associated with basic human needs should be treated with due caution.

Naor [I31] refers to the qualitative discussions of Leeman and Saaty in his paper on the regulation
of queue sizes by levying tolls. Naor’s paper considers an observable single-server queue which
evolves according to Markovian distributions; specifically, customer arrivals occur according to a
time-homogeneous Poisson process, and service times are exponentially distributed (in Kendall’s
notation, this is an M /M /1 queue; see [98]). Customers arriving in the system observe the length
of the queue and then decide either to join it and await service, or ‘balk’ by leaving the system
immediately. Naor distinguishes between two different scenarios: one in which arriving customers
make decisions which optimise their own economic outcomes, and another in which customers adopt
a strategy which maximises the collective welfare of all customers entering the system. The former

scenario is referred to as “individually optimal”, while the latter is “socially optimal”.

In Naor’s system, the assumption of observability implies that the length of the queue is always
known when decisions are made, and this enables individually optimal and socially optimal customer
strategies to be characterised in a relatively simple way; this will be discussed further in Chapter

of this thesis. In fact, Naor’s results establish the general principle that exercise of narrow self-
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interest by all customers does not optimise public good (a recurring theme in much of the related
literature; see for example, [103], 203, 204]). This implies that some form of intervention is required
on the part of a central administrator in order to maximise the overall welfare of society. Indeed,
Naor’s results justify the arguments of Leeman by showing that self-interested customers can be

induced to behave in a socially optimal manner via the levying of an admission toll.

The task of finding a socially optimal strategy for customers to follow is not especially difficult in
the case of an observable M /M /1 queue, and Naor’s findings will be discussed further in Chapter
However, the situation becomes more complicated when one considers systems with multiple queues.
Chapter [3| will introduce a formulation for a multiple-facility queueing system, in which the number
of queues N > 2 is arbitrary, and every customer who arrives may join (or be directed to) any
one of the N queues; in addition, the option of balking will also be available. The task of finding
a socially optimal strategy for an observable multiple-facility system is far from trivial; in fact,
this represents an optimisation problem which can be tackled effectively within the mathematical
framework of a Markov Decision Process (MDP). MDPs will be discussed in much greater detail in
Chapter |3l In the meantime, this introduction will provide some background notes on the historical

development of MDPs and the related area of stochastic dynamic programming.

According to Puterman [141], the study of “sequential decision processes” can be traced back to the
work of Bellman [I0] and Howard [88] in the late 1950s. Bellman himself, in his ground-breaking
work Dynamic Programming [10], refers to MDPs as “multi-stage decision processes” and coins
the term “dynamic programming” to describe their analytical treatment. He goes on to observe
that multi-stage decision processes arise in a “multitude of diverse fields”, including “economic,
industrial, scientific and even political spheres”. He also comments that such problems are “too
vast in portent and extent to be treated in the haphazard fashion that was permissible in a more

leisurely bygone era”, and advocates the development of a more rigorous approach.

Bellman demonstrates remarkable foresight by suggesting, in [I0], several of the most intensely-
studied problems in operational research today as possible application areas for his work. These
areas include optimal inventory control, scheduling of patients in clinics, servicing of aircraft, in-
vestment policies and sequential testing procedures. He describes the optimal solution of such

problems as a “vast untamed jungle”, but recognises the difficulties involved and explicitly refers
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to the “curse of dimensionality” as just one example of the challenges to be faced.

Howard [88] comments that Bellman’s exposition of dynamic programming in [10] has given “hope”
to “those engaged in the analysis of complex systems”, but notes that this hope has been “quickly
diminished by the realisation that more problems could be formulated by this technique than could
be solved”. Consequently, Howard states that his objective is to provide an “analytic structure for
a decision-making system that is at the same time both general enough to be descriptive and yet
computationally feasible”. In [88], he defines many of the most familiar concepts associated with

MDPs today, including discounted costs, value iteration and policy improvement.

Further contributions from the early 1960s include those of de Ghellinck [34], who discusses the
formulation of an MDP as a linear program, d’Epenoux [36], who presents a synthesis of linear
and dynamic programming techniques applied to a problem of production and inventory control,
and Manne [124], who also focuses on the relationship between the “traditionally distinct” areas
of dynamic and linear programming in the context of an inventory control model. Other notable
contributions during the 1960s were made by White [195], Odoni [I37], MacQueen [122], Strauch
[172] and Smallwood [163]. Following the pioneering works of Bellman and Howard, several other

authors published books on MDPs in the 1970s; see, for example, [37, 110}, 130, [144].

Puterman’s book, Markov Decision Processes [141] has been described as “the current high-water
mark” of MDP literature by Powell [140], and is notable for its strong theoretical approach. Other
notable books on MDPs which post-date Puterman’s include those of Bertsekas [13], Filar and Vrieze
[50], Hernandez-Lerma and Lasserre [82], Hu and Yue [90] and Guo and Hernandez-Lerma [71]. The
latter is notable for its exclusive focus on continuous-time MDPs (CTMDPs). Another text which
has particular relevance to Chapter [7]of this thesis is Approzimate Dynamic Programming by Powell
[140]. Powell focuses on methods for overcoming the so-called “curse of dimensionality” in MDPs

by making large-scale optimisation problems more computationally tractable.

Typical ‘real-life’ applications of MDPs are discussed in literature surveys including [94) 170, [197].
Beginning in the late 1960s and early 1970s, numerous MDP-related papers were published in areas
including inventory and production (see [99, 164, 176l 179, 196]), maintenance and repair (see [33,
42, 184, [165]) and finance and investment (see [38], 128 136}, [150]). This thesis will consider problems

involving the control of queueing systems, and a comprehensive survey of the related literature has
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been provided by Stidham and Weber [I70]. Examples of queueing systems frequently arise in
areas including telecommunications, traffic systems, computer systems, manufacturing processes
and others. The field of routing problems, in which traffic must be routed through a network which
is adversely affected by congestion, may be seen as a related area (see [94]). Most of the problems
considered in this thesis will be related to admission control and routing control. Some notable

papers with relevance to this area include [46], 93], 108, 118, 129] 149, 169, 192] 201].

The preceding discussion has provided only a brief overview of the literature relevant to this thesis.
Further important references of specific interest to the topics discussed in this thesis will be provided

in the individual chapters and sections to which they have the greatest relevance.

Chapter [2| of this thesis will consider an M/M/1 queueing system. Chapter |3 will introduce a
formulation for a multiple-facility queueing system, which will form the basis of most of the work
in Chapters Some variations of the multiple-facility system will be considered at various stages

of this thesis, but the assumptions listed below will remain consistent throughout.

e All of the queueing systems considered are subject to a cost and reward structure whereby re-
wards are earned when customers are served, but ‘holding costs’ are incurred while customers

are kept waiting in the system. Full details will be given in Chapters [2] and

e When a customer arrives in the system, a routing decision is made which is permanent and
irrevocable; so for example, a customer cannot join a queue and then leave the system without

receiving service. In this respect, customers are assumed to be infinitely patient.

e The option of balking (i.e. departing from the system immediately, without joining a queue)

is available when a customer arrives. Balking does not earn any reward or cost.

The queueing systems considered throughout this thesis are intended to (potentially) be applicable
in a wide range of real-world contexts; for example, the multiple-facility queueing system introduced
in Chapter [3| may be regarded as a suitable model for a supermarket check-out area, or a telephone
call centre. It should be noted that the rewards and holding costs in a queueing system need not
necessarily represent monetary values; for example, the reward earned after a customer is served
at a particular queue might simply quantify the quality or desirability of the service received, and

similarly a ‘holding cost’ might simply quantify the amount of inconvenience or discomfort suffered
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by a customer while they experience delays. Furthermore, the ‘customers’ in a queueing system
might not necessarily represent people; for example, they might be items processed on a production
line. Indeed, the assumption of ‘infinite patience’ would tend to suggest that this type of context
would be more appropriate, since inanimate objects cannot become impatient! Due to the general
nature of the queueing systems considered in this thesis, very few references to specific real-world
applications will be made. However, this introduction will briefly discuss one particular application

which in fact provided much of the original motivation for the work in this thesis.

Individually optimal and socially optimal customer strategies were briefly discussed earlier in the
context of Naor’s paper [I31]. Comparisons between these two types of customer behaviour are
particularly relevant to recent developments in the English healthcare system. Since 2006, patients
requiring specialist healthcare treatment in England have been entitled to a choice between different
providers under the National Health Service (NHS) constitution. A report published by the King’s
Fund [40] has examined the various factors which may be important to patients when choosing
between different healthcare providers, and the implications for the NHS as a whole. The report
predicts that patients will increasingly request a choice as they become more aware of their right
to choose, and that an increasing number of different factors will influence their choices. Knight
and Harper [I0I] have used game theoretical analyses to investigate the implications of allowing a

similar freedom of choice to patients requiring knee replacement surgery in Wales.

If one makes the plausible assumption that patients seeking hospital treatment will be inclined to
choose the most convenient option for themselves (as opposed to taking into account the possible
interests of other patients), then it is clear that allowing patients to choose their own healthcare
provider creates a queueing system in which the behaviour of customers (in this case, patients)
is individually optimal. On the other hand, if patients are denied a free choice and are instead
directed by a central authority, then it is conceivable that decisions might be chosen in such a way
as to optimise some measure of the system’s performance; this would correspond to the socially
optimal case. Thus, it is clear that comparisons between individually and socially optimal customer
behaviour may be relevant in healthcare systems and other public service settings, in which it is

important to consider the effects of allowing individuals to make their own choices.

Realistically, the option of balking can be accommodated in most queueing systems which operate
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without any constraints on the proportion of customers which must receive service; for example,
a customer in a supermarket might decide to skip the queue and go home without any shopping,
or the manager of a production line might decide to withhold some items in order to avoid over-
burdening the system. In addition, the assumption that balking does not incur any cost or reward
can be made without loss of generality in the context of the optimisation problems considered
in this thesis. In many real-world contexts, one might wish to associate balking with a certain
penalty or rejection cost; for example, a shopper who enters a supermarket and then leaves without
purchasing any items has clearly wasted some of their own time, whether or not they are able to
conveniently acquire the required items from elsewhere. However, in this thesis it will be possible
to assume that balking is always costless by relying upon the principle that the rewards earned
when customers receive service can, if necessary, be adjusted by a fixed amount which corresponds

to any cost associated with balking. This will be clarified in the subsequent chapters.

In the context of patient choice in the NHS, ‘balking’ might represent the decision of a patient to
seek private treatment, or to rely upon other remedies outside the provision of the NHS. Whether
or not these options might be associated with a penalty cost is unimportant from a mathematical
perspective, due to the explanation given in the previous paragraph. However, it is also important
to note that the cost of balking should always remain the same, regardless of how often it is chosen;
in this respect, it may be regarded as a ‘fail-safe option’ which allows customers to avoid incurring
expensive waiting costs as a result of high levels of congestion in the system. In a healthcare context,
therefore, the association between balking and seeking outside treatment must rely on an implicit
assumption that the ‘attractiveness’ of outside treatment to an individual patient is not affected
in any significant way by the tendency of other patients to choose the same option. Of course,
there are always modelling issues to consider in real-world applications, and (as stated previously)
these issues are somewhat peripheral to the content of this thesis, since it considers well-defined

optimisation problems which are fairly general in terms of their physical applicability.
Brief descriptions of the remaining chapters in this thesis are provided below.
e Chapter 2| will address a problem involving admission control in an M/M/1 queue. Two

variants of the problem will be considered: one in which the queue is observable, and one

in which it is unobservable. In the latter case, decisions must be made independently of the
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length of the queue. The observable and unobservable cases will be compared with respect to
individually optimal customer behaviour, and also with respect to socially optimal behaviour.
Various novel results will be proved involving comparisons between the observable and un-
observable systems. However, Chapters of this thesis will tend to focus on observable
queueing systems, and therefore the results in Chapter [2| should be regarded as being largely

self-contained, without a strong bearing on the results in later chapters.

e Chapter [3| will introduce a mathematical formulation for the multiple-facility queueing system
which forms the basis for most of the research in this thesis. It will be shown that the queueing
system can be formulated as a discrete-time Markov Decision Process (MDP). This enables
the techniques of dynamic programming to be applied, provided that one assumes a finite
state space. Some well-known computational algorithms from the literature will be presented.
The final part of this chapter will discuss analytical techniques for finite-state MDPs including

proofs based on dynamic programming and stochastic coupling arguments.

e Chapter [4] will prove an important relationship between individually optimal and socially
optimal policies in a multiple-facility queueing system. This property may be regarded as
a generalisation of a similar property which is already known (due to the results of Naor in
[131]) to hold in the case of an M/M/1 queue. The effect of the system demand rate (i.e.
the rate per unit time at which customers arrive in the system) on socially optimal policies
will also be investigated. The final section in this chapter will consider an extension involving

heterogeneous customer classes, which will later be revisited in Chapter

e Chapter [5| will investigate the structural properties of socially optimal policies. It will be
shown that, unfortunately, certain ‘common-sense’ properties of optimal policies may be diffi-
cult (or even impossible) to prove using arguments based on dynamic programming. Certain
results will be proved for special cases of the N-facility system introduced in Chapter |3, which
will prove to be useful in later chapters. The final section in this chapter will present com-
putational algorithms (based on results from earlier sections) which appear to be capable of

improving upon the efficiency of standard dynamic programming algorithms.

e Chapter [6] will consider heuristic methods for finding near-optimal policies in systems where

dynamic programming algorithms are rendered ineffective due to the size of the finite state
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Chapter 1: Chapter 2:
Introduction [—>{ Control of M/M/1 queues

=

Chapter 3: Chapter 7:
Chapter 4: MDP formulation [ | Reinforcement learning
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and demand ¢
Chapter 5: Chapter 6:
Ly Monotonicity [y Heuristic
and structure policies

Figure 1.1: A structural map of this thesis, showing how the first seven chapters are related.

space that must be explored. These methods will be based on techniques which have been
discussed in the literature. Various interesting properties of these heuristic policies will be
proved analytically, and their ability to consistently find near-optimal policies will be tested

via numerical experiments involving randomly-generated problem instances.

e Chapter [7] will discuss an alternative method for finding near-optimal policies, referred to
as reinforcement learning (RL). Essentially, this approach involves simulating the random
evolution of a system and gradually ‘learning’ a near-optimal policy through exploration and
experience. Numerical experiments, similar to those in Chapter [6, will be conducted in order
to test the performances of certain RL algorithms. Later sections in this chapter will examine
how RL algorithms might be adapted in order to cope with extremely vast state spaces,

non-exponential distributions and systems with heterogeneous customer classes.

e Finally, Chapter [§| will present conclusions and suggest possible further work.

Throughout the chapters of this thesis, numerous theoretical results (theorems, lemmas etc.) will
be presented. Many of these will be original results for which proofs will be given, either in the
main text itself or in one of the appendices. In some cases, however, it will be necessary to state
a result which has already been published in the literature. In order to enable a distinction to be
made, an asterisk (*) will precede the statement of any theorem, lemma or corollary which is not

an original result of this thesis. In these cases, appropriate references will be provided.



2 Control of M/M/1 queues

2.1 Introduction

The study of classical queueing theory usually begins with M /M /1 queues. The basic dynamics
of M/M/1 queues are described in many texts; see, for example, [67, [132]. Essentially, customers
arrive at random intervals and await service at a single facility which serves one customer a time.
The random process by which customers arrive is a Poisson process (see, e.g. [146] 167, [171]) with an
intensity rate A > 0, and service times are exponentially distributed with mean x~1 > 0. Customers
are served in order of arrival, and leave the system permanently after their service is complete. If
one assumes that all customers join the queue and that A < u, then it is possible to formulate the
system as a continuous-time Markov chain (see Appendix and obtain its stationary or steady-
state distribution, which in turn can be used to derive remarkably simple formulae for steady-state
performance measures such as the expected length of the queue or the expected waiting time of a

customer in the system; these formulae can be found in the texts mentioned above.

Of course, the assumption that all customers join the queue implies that no control is exercised over
the system. Control, in this context, refers to the act of making a decision which influences future
events. Only one form of control will be considered in this chapter: admission control. Suppose
that when a customer arrives at the M/M/1 queue, there are two options available: they may join
the queue and await service, in which case it is assumed that they remain in the system until their
service is complete, or alternatively they may exit from the system immediately without receiving
service. The act of joining the queue will be referred to from this point onwards as joining, and
the act of leaving the system will be referred to as balking. Hence, the only points in time at which
control may be exercised are the random points in time at which new customers arrive, since the

decision for each individual customer (either ‘join’ or ‘balk’) is assumed irrevocable.

The question of whether decisions are made by individual customers themselves or whether there is
a central controller who makes decisions on their behalf has no physical bearing on the mathematical
results in this chapter. However, it is natural to suppose that if individual customers are responsible
for their own outcomes, they will be inclined to make decisions which serve their own interests.

On the other hand, if decisions are controlled centrally, then these decisions may be taken with a

10
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broader objective in mind, such as the optimisation of a particular performance measure for the
system as a whole. These contrasting objectives allude to the game-theoretic concept of selfish
versus non-selfish decision-making, which is an important theme throughout this thesis. The sub-
optimality of greedy or ‘selfish’ customer behaviour in the context of overall social welfare has been
studied in many of the classical queueing system models, including M/M/1, GI/M/1, GI/M/c
and others; see, for example, [44], 103, 120} 12T, 131], 168, 203], 204]. More recently, this theme has
been explored in applications including queues with setup and closedown times [174], queues with
server breakdowns and delayed repairs [189], vacation queues with partial information [68], queues

with compartmented waiting space [43] and patient flow in healthcare systems [101], [102].

Problems involving admission control in queueing systems have been studied extensively in the
literature; a comprehensive survey of this work is provided by Hassin and Haviv [76]. However,
in the preface of their work, Hassin and Haviv comment that the field of behavioural queueing
theory is “lacking continuity” and “leaves many issues uncovered”. This is hardly surprising, since
almost every possible queueing system formulation that one might conceive has the potential to
be modified or generalised in some respect, and as such it is rare to find two independent pieces
of work which address exactly the same problem. One important consideration to be made when
formulating an admission control problem is the amount of information that should be available
to customers (or, in the case of central control, the central decision-maker). In this chapter, the
term ‘observable’ is used to refer to a system in which the decision-maker is always aware of the
number of customers present (referred to as the state of the system), and can use this information
to inform their decision-making. On the other hand, in an ‘unobservable’ system, decisions must
be taken independently of the system state, based only on knowledge of the system parameters and

the distribution of waiting times; further details will be presented in the next section.

Comparisons between observable and unobservable M /M /1 queues are related to a broad category
of problems in which the amount of information disclosed to customers (and, possibly, its complete-
ness or reliability) is at the discretion of the service provider. There has been considerable recent
interest in this area. For example, Allon et al. [3] consider an M /M /1 system in which a firm can
influence its customers’ behaviour by using “delay announcements”. It is found that some level of
“intentional vagueness” on the part of the firm may be beneficial in certain circumstances. Guo and

Zipkin [69] (see also [70, [71]) also study a single-server Markovian system and find that providing
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“more accurate delay information” may improve system performance, but this is dependent upon
other factors. Hassin [75] considers a number of sub-models of M /M /1 queues and, in each case,
examines the question of whether or not the service provider is motivated to reveal information.
The fact that all of these publications adopt the classic M/M/1 model for their analyses might
arguably be seen as an indication that the theme of restricting customer information in queueing

systems is a young and emerging one, with strong potential for future development.

Naor [I31] is usually recognised as the first author to compare “self-optimisation” with “overall
optimisation” (or social optimisation) in the case of an observable M /M /1 queue with linear waiting
costs and a fixed value of service. Edelson and Hildebrand [44] consider a model similar to Naor’s,
but without the assumption of observability. While the respective properties of observable and
unobservable M/M/1 queueing systems have been analysed extensively by Naor, Edelson and
Hildebrand and many others (see [76] for further references), comparisons between the two types
of system are not abundant in the literature. Indeed, one might observe that both system types
constitute their own sub-discipline of the field. This is logical to some extent, as the mathematical
techniques that one employs will depend on whether or not the state of the system can be observed
exactly. For example, modern analysis of unobservable queueing systems often takes place in a
game theoretical setting involving flow control (see, for example, [I35] for a discussion of routing
games), while a more natural framework for the modelling of an observable queueing system is a

continuous-time Markov Decision Process, as discussed in Chapter [3] of this thesis.

While the comparison of observable and unobservable queueing systems might involve the bridging
of two very different methodological areas, it is a worthy endeavour due to the potential insights
that can be gained into problems involving the optimal control of information. The results in
this chapter offer some insight into the effects of suppressing information on queue lengths from
newly-arrived customers (or, if decisions are controlled centrally, the central decision-maker). For
example, suppose there is a third party who earns a fixed amount of revenue for every customer
who joins the queue, as opposed to balking. It is not trivial to determine whether average customer
throughput rates will be greater in the observable case, or whether the interests of the third party
would be better served by making the system unobservable. Indeed, this will depend on whether or
not customers make decisions selfishly, among other factors. The first task in this chapter will be

to provide a mathematical formulation for the queueing system under consideration. It will then be
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appropriate to summarise known results from the literature concerning selfishly and socially optimal
customer behaviour, before proceeding to compare the observable and unobservable models with

respect to optimal queue-joining rates and other relevant performance measures.

2.2 Model formulation

The queueing system to be considered throughout this chapter is an M/M/1 queue with linear
holding costs and a fixed value of service, similar to Naor’s model in [I31]; however, there is no
prior assumption that the system is observable, since an objective in later sections will be to
compare the observable and unobservable cases. Customers arrive according to a Poisson process

with parameter A > 0. The definition below can be found in Ross [146], p. 304.
Definition 2.2.1. (Poisson process)

The counting process {N(t),t > 0} is said to be a Poisson process with parameter X > 0 if:

2. The process has independent increments;

3. The number of events occurring in any interval of length t has a Poisson distribution with

mean At. That is, for all valuest > 0 and u > 0:

(A)"

n!

P(N(t+u)— N(u) =n) =e ™ (n=0,1,...).
It should be noted that throughout this thesis, Poisson processes are assumed to be time-homogeneous

unless stated otherwise; that is, the parameter A\ does not vary with time.

Customers’ service times are independently and identically distributed according to an exponential
distribution with parameter u > 0. There is a holding cost S > 0 per customer per unit time
for keeping customers waiting in the system, and a fixed reward o > 0 is earned after a service
completion. It is assumed that « > (/p in order to avoid the case where a customer would be
unwilling to wait even for their service, which would lead to trivialities. The queue discipline is
First-Come-First-Served (FCFS) and each newly-arrived customer either joins the queue, in which

case they remain in the system until their service is complete, or balks from the system and does
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not return. A diagrammatic representation of the system is provided in Figure

... Balkers

o]
¢ : Queue joining rate: n  Service rate: y

Arrival rate: A : --------------------------------

—>» Reward for service: a

'._ o
. .
--------

L—— Waiting cost: g —
Figure 2.1: A diagrammatic representation of the queueing system.

The relative traffic intensity for the system is denoted p = A/u. As mentioned in the introduction,
a typical assumption which ensures stability in an M /M /1 queue is that A < p and hence p < 1;
however, this assumption is not made in this chapter. This is because the attainment of steady-
state conditions merely requires the effective queue-joining rate (as opposed to the system arrival
rate) to be smaller than the service rate p. It will be shown in the next section that the effective
queue-joining rate always satisfies this condition under both types of customer behaviour to be

considered in this chapter, regardless of whether or not the system is observable.

Let 7l°) and 77*[0] denote, respectively, the steady-state selfishly and socially optimal queue-joining

*[U] denote the corresponding

rates (per unit time) when the system is observable, and let V) and 7
measures when the system is unobservable. Of course, it is necessary to define ‘selfish optimality’
and ‘social optimality’ more concretely in order to determine what these optimal joining rates
should be; this will be done in Section Similar notation is adopted for other system perfor-

mance measures such as expected waiting times, etc.; this is summarised in Table

Note on terminology: The emphasis in the remainder of this chapter will be on comparisons between
observable and unobservable systems. As such, when “two types of system” are mentioned, these
two types are understood to be observable and unobservable. When “two types of optimal joining
rate” are mentioned, these two types are selfishly optimal rates and socially optimal rates, both
of which will be defined in the next section. When “the equality of selfishly (or socially) optimal
joining rates” is discussed, this refers to an observable and an unobservable system sharing the

same selfishly (or socially) optimal effective queue-joining rate per unit time.
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Observable system | Unobservable system
Output measures
Selfish opt. | Social opt. | Selfish opt. | Social opt.
Optimal joining rate per unit time Alo] 77*[0} V] n*[U}
Prob. of n customers in system ]5,[10] P 0] f’gﬂ Pr W
Mean Busy Period (MBP) MBP MBP MBP MBP
Expected no. of customers in system Lo L*[0] Ll L]
Mean waiting time in system Wil WOl Wl W]

Table 2.1: Summary of notation for system output measures (assuming steady-state conditions in all cases).

2.3 Summary of known results

In an observable M /M /1 queue, each customer arriving in the system is able to calculate their
expected cost of waiting as a function of the number of customers already present (that is, the
number of customers either waiting in the queue or being served) upon their arrival. As mentioned
previously, the number of customers present is referred to as the state of the system. It is assumed
in this thesis that customers are risk-neutral, and hence customers acting selfishly will choose to
join the queue if their expected cost of waiting is smaller than the reward for service . In order to
avoid ambiguity, it will also be assumed throughout this chapter (as in [I31]) that self-interested

customers choose to join the queue if their expected cost of waiting is equal to a.

The expected total cost incurred by a customer for joining under state n € Ny is given by (n+1)3/ .
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It follows that there exists an integer ns such that newly-arrived self-interested customers choose
to join the queue if and only if there are fewer than ng customers present when they arrive. Naor
[131] derives the following expression for ng in terms of the system parameters:

g = VZ‘J , (2.3.1)

where |-] denotes the ‘floor’ function, i.e. the integer part. Equivalently, it may be said that
selfish customers follow a threshold strategy with threshold ns. In the case of social optimisation,
one aims to find a strategy for customers to follow which maximises some quantifiable measure of
the ‘overall social welfare’. In this chapter, the overall social welfare is measured by the expected
long-run average reward per unit time earned by the system. Suppose customers follow a common
threshold strategy with threshold n € N; that is, joining is chosen if and only if there are fewer than
n customers in the system when the decision is made. Using standard results for finite-capacity
M/M/1 queues (see [67], p. 74), the expected long-run average reward g, is then:
n n+1
Ao <11—_p5+1) —B ( i <T;t1p)np+1+ ) , itp# L

I—p
In = (2.3.2)

o ()-8 (3). itp=1,

where (in each of the two cases) the expression in the first set of parentheses is the steady-state

probability that fewer than n customers are present in the system, and the expression in the second
set of parentheses is the expected number of customers in the system given that a threshold n is

in effect. Naor showed that g,, is maximised by n = n, = |v, |, where v, satisfies:

Vo(l—p) —p(l—p") _ap .
=0 ifp£1,
(1—-p)? 5 ¥ (2.33)
o o 1 .
Zollo 1 7) (v2—|— ):ozﬁ,u’ if p=1.

Importantly, Naor also showed that n, < ng, which is in keeping with the general principle that
selfish users create busier systems; this principle will be seen again in later chapters of this thesis.
The selfishly and socially optimal thresholds, ns and n,, can be used in conjunction with results
from finite-buffer queueing theory (see [67], p. 77) to derive expressions for the effective queue-

joining rates ﬁ[O} and n*[O] which appear in Table These expressions are:
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1—ps .
A (1_/)%“> , fp#1,
7ol = (2.3.4)
n
A 2 fp=
(ns + 1) ’ np

1__pno+1>a if p#1,

10 _ E (2.3.5)

fto > if p=1.

Naturally, it must be the case that 7l°! < p, since otherwise the system would be unstable and
queues would become infinitely long, which would imply that customers were deviating from the
threshold strategy. In fact, from 1) it follows that if A > p (equivalently, p > 1), then 7ol — u

as ng — 00. From Naor’s results it then follows that 77*[0} < ﬁ[o] < u.

Next, suppose the system is unobservable. In this case, no information is available about the
state of the system when decisions are made. It is therefore reasonable to assume that a common
randomised strategy determines the actions of all customers to arrive; see, for example, [8] [9] 44].
Specifically, the common strategy followed by all customers may be represented by a value p € [0, 1]
such that a customer joins the queue with probability p, and balks with probability (1 — p). Due
to elementary properties of Poisson processes (see [146], p. 310), it then follows that the process

by which customers join the queue is a Poisson process with parameter = pA.

The arguments used to derive the optimal queue-joining rates V! and n*[U] are game theoretical
in nature; a complete explanation is provided by Bell and Stidham [9]. Firstly, the selfishly optimal
queue-joining rate 7V! is derived from the (Nash) equilibrium strategy. Let w(n) be the expected
net reward earned by an individual customer for joining the queue when the common queue-joining
rate of all customers (determined by the strategy p) is 7. In the trivial case where w(A) > 0 (so
that even the largest possible queue-joining rate, n = A, results in customers incurring an expected
waiting cost which does not exceed the reward «), the equilibrium strategy is p = 1, since no

customer has an incentive not to join the queue. Hence, in this case, 7Vl = \.

Next, consider a non-trivial case where w(\) < 0. If n > p (which requires p > 0), the expected

waiting time of a customer is infinite, and a customer acting in their own interests will join the



Chapter 2 Control of M/M/1 queues 18

queue with probability p = 0. It follows that an equilibrium solution requires < u. In fact, it
is evident that in order for the common strategy of customers to be in equilibrium, w(n) = 0 is
required; otherwise, the best response of an individual customer to the strategy p € (0, 1) followed

by others would be to choose either p =1 (if w(n) > 0) or p = 0 (if w(n) < 0).

Assuming 1 < p, standard results for infinite-capacity M /M /1 queues (see [67], p. 61) imply that

an expression for the individual expected net reward w(n) is given by:
wn) =a— ——. (2.3.6)
Hence, by solving the equation w (ﬁ[U]) = 0, one finds:

¥l = min <u - g A) - (2.3.7)

*[U1 is defined as the joining rate which

As in the observable case, the socially optimal joining rate n
maximises the expected long-run average reward per unit time for the system. Let g(n) denote the
expected average reward given a queue-joining rate 7. It is only necessary to consider n < u, since
n > p would cause expected waiting costs to tend to infinity, which clearly would not be socially
optimal. Assuming n < pu, the average reward g(n) is given by:
s =na =5 (7). (235
="

[v]

By differentiating, one finds that g(n) is maximised by setting n = n*"!, where:

n*[U} = min (u (1 - \/Z> , )\) . (2.3.9)

Note that both (2.3.7) and (2.3.9) are valid joining rates only if & > 5/, which follows by one

of the initial assumptions in this chapter. Finally, it is easy to verify that n*[U] < 7l by direct

comparison, which again shows that selfish behaviour causes a busier system.

Example 2.3.1. (Optimal joining rates in an unobservable M/M/1 queue)

Consider an unobservable M /M /1 system with demand rate A = 1.9, service rate p = 2, holding
cost 8 = 5 per unit time and reward for service o = 25. Figure shows the results of a simulation

experiment, in which 100,000 customer arrivals have been simulated for each of 180 different,
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uniformly-spaced values of the Poisson queue-joining rate 1 between 1 and 1.9. For each value of 7,
the average net reward w(n) earned by a customer (resulting from a full simulation run) is plotted.
These simulated results may be compared to the expected theoretical values given by the formula
in , which have also been plotted. The simulated results closely match the expected values,
and show that the unique value of n which equates the average net reward of a customer to zero is

indeed given by 70 = — 3 /o = 1.8; this is the selfishly optimal joining rate.

25 T T T T T T T T
20 _
15| e Simulated
Theoretical
10
5 -
Average net
reward per
customer
_5 -
_10 -
_15 -
_20 -
_o5 | | | | | | | i
1 11 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Queue-joining rate per unit time (1) (R = 1.8)
Figure 2.2: Simulated values of w(n) for 180 different queue-joining rates 1.

On the other hand, consider the problem of social optimisation. Figure [2.3] shows the results of
another simulation experiment (using the same values for the system parameters) in which 100, 000
customer arrivals have been simulated for 250 different, uniformly-spaced values of the queue-joining
rate ) between 0.5 and 1.75. For each value of 7, the long-run average net reward per unit time g(n)
has been plotted. Again, these simulation results may be compared to the theoretical values given
by , which have also been plotted. The results confirm that the function g(n) is maximised
by n*[U] = U (1 — B/(a,u)) ~ 1.368, which is the socially optimal joining rate.

This example has assumed an unobservable system. One may be interested to determine whether
the effective queue-joining rates 719 and n*[o] in an observable system would take the same values
(1.8 and 1.368 respectively), given the same configuration for the system parameters. The next
section will address the question of whether or not it is possible for the two types of system to

share the same selfishly and socially optimal queue-joining rates. X
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Queue-joining rate per unit time (1) (™ =1.368)

Figure 2.3: Simulated values of g(n) for 250 different queue-joining rates 7.

2.4 Equality of queue-joining rates

Summarising the results from Section the selfishly optimal queue-joining rates ﬁ[O] and ﬁ[U] for

the observable and unobservable system respectively are given by:

1—p"s .
A <1pns+1> , ifp# 1,
7ol = (2.4.1)

Ns .
A fp=1
(M) o=,

7V = min (u — B/a, A). (2.4.2)

On the other hand, the socially optimal joining rates are given by:
1—phe )
A ( L ifp £,
*[O] _ 1 _ pno+1
nO .
A , fp=1,
<no =+ 1) ne

7Yl = min <,u <1 - \/m) , )\) . (2.4.4)

In this section, the focus is on investigating the conditions which prescribe the equality of optimal

(2.4.3)

queue-joining rates for the two types of system. The next result establishes the useful fact that,

given A > 0, the equalities 7l°! = 7U] and 7]*[0] = n*[U] both require 0 < p < 1.



Chapter 2 Control of M/M/1 queues 21

Lemma 2.4.1.

0] — U,

1. The equality of selfishly optimal joining rates, 77[ requires 0 < p < 1.

*[U]

2. The equality of socially optimal joining rates, 77*[0] =n*"1) requires 0 < p < 1.

Proof. The proof begins with the selfishly optimal case. First, consider p = 1. Here, the equality of
selfishly optimal joining rates implies Ans/(ns+1) = p—3/a. Since p = A/pu = 1, this is equivalent
to ns + 1 = au/B. However, ng = |ap/F] by definition, so this is not possible. Indeed, ng + 1 is

[v]

strictly greater than au/8, which implies that 79 > 7l when p = 1.

Now suppose p > 1. Since the input parameters «, 8 and p are assumed finite, ng is also finite and
hence f][o] < A, which in turn implies that the equality ﬁ[o] = ﬁ[U] cannot hold in the case where
7Vl = X. Tt therefore suffices to consider solutions to the equation A(1—p™)/(1—p"t1) = p—B/a.

Upon dividing by wu, this equation may be cast into a simpler form:

ap  1—ptsth S
=0

Given that p > 1, (2.4.5)) implies ap/B > ns + 1. However, the definition of ng in (2.3.1)) implies
ns < au/B < ng+1, so there is no solution to (2.4.5) when p > 1. From these arguments it follows

that 719 > 7V when p > 1, which completes the proof of the first statement.

Remark. For the case p = 1, the argument given above relies on the assumption that selfish
customers join the queue if their expected net reward is exactly equal to zero. If it were assumed
that customers opted to balk under this scenario, then the selfishly optimal threshold (in the
observable case) would be given by ns = [au/5] — 1, where [-] denotes the ceiling function. In this
case the equality ns + 1 = au/f would be satisfied for all integer values of au /3, and it would be

necessary to change “0 < p < 1”7 in the statement of the lemma to “0 < p < 17.

Next, consider the socially optimal joining rates. First, suppose p = 1. In this case, the equality

n*[O} — U*[U] implies An,/(n, +1) = p (1 — \/5/(04“)), which simplifies to:

U (4 1) (2.46)

B
However, by setting p = 1 in (2.3.3)), it follows that au/B8 must also satisfy:

ap Uo(ve +1)

5 I (2.4.7)
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Since n, = |v,| by definition, it follows that v, < n,+1 and hence v,(v,+1)/2 < (n,+1)(n,+2)/2.
Since (n, + 1)(no +2)/2 < (n, + 1)? for all n, € N, it then follows that (2.4.6)) fails to hold when

*[U]

p = 1. In fact, these arguments imply that 77*[0] > when p = 1.

Next, suppose p > 1. In this case, the equality 77*[0} = n*m implies A(1 — p"°)/(1 — pretl) =
1 (1 - \/B/(a,u,)), which may be cast into the more simple form:
1— no+1 2
<p> = (2.4.8)
I—p B
Suppose, for a contradiction, that (2.4.8)) holds with p > 1. Due to (2.3.3)), this implies:

(1= p"*1)? = vo(1 = p) = p(1 = p™). (2.4.9)
Hence, since v, < n, + 1 and the right-hand side of (2.4.9)) is strictly increasing in v,:
(1= 1) < (g + 1)(1 = p) — p(1 — po*1). (2.4.10)

Noting that (1 — p) < 0, (2.4.10) may be put into the following form:
No ] 2 Mo )

(1—p) (Zp’) >n0+1—p2pz.

i=0 i=0

It is therefore sufficient (in order to obtain a contradiction) to show:

n 2 n
(1-p) (Zﬁ) §n+1—pzpi, (2.4.11)
1=0

i=0
where n € N is arbitrary and p > 1. One may proceed to show that (2.4.11]) holds for all integers
n > 1 using induction. When n =1, (2.4.11)) simplifies to:

P> —2p+1>0. (2.4.12)

Let f(p) = p> —2p+ 1. Then f(1) =0 and f’(p) = 3p* — 2, which is positive for p > 1, so ([2.4.11))
holds when n = 1. As an inductive hypothesis, assume that for arbitrary k£ € N:

k

k 2
(1—p) <Zpi> Sk—i—l—pri. (2.4.13)
1=0 ]

=0

Let fn(p) = (1—p) (i, pi)2 —(n+1)+p>,p' for n > 1. In order to show that (2.4.11)) holds
when n = k + 1, then (using (2.4.13))) it suffices to show fry1(p) < fr(p). That is:

k
(1-p) <p2(k+1) +2pk+1 sz> -1 +pk+2 <.
i=0
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Given that (1 — p)p*>*+1) < 0 for p > 1, it is then sufficient to show:

k
201 (1= p)> pf =14 pF2 <0, (2.4.14)
=0

It will be convenient to write (2.4.14)) in the following equivalent form:

k
(2;;’“*1 - 1) Y p - p >0, (2.4.15)
1=0

Induction can be used for a second time to show that, given p > 1, the inequality (2.4.15)) holds for
all integers k > 1. Indeed, when k = 1, (2.4.15]) reduces to:

20° +p* —p—120,

which obviously holds when p > 1. Let gi(p) := (2pF*! — 1) Sk Pt — pFt for k > 1, and assume
(as an inductive hypothesis) that gx(p) > 0. It is then sufficient to show that gxi1(p) > gx(p).

Indeed, one may show that gx11(p) > gk(p) is equivalent to the following:

k
1=0

which clearly holds for p > 1. This completes the inductive proof that (2.4.11f) holds for all n € N

and p > 1. By the previous arguments, this is sufficient to imply that the equality 77*[0] = n*[U]

*[U]

cannot hold when p > 1; in fact, it is the case that 7]*[0] > when p > 1. This completes the

proof of the second statement (the socially optimal case) in the lemma. [J

The proof of Lemma [2.4.1] provides a necessary and sufficient condition for the equality of selfishly
optimal joining rates (7°! = #lVl), and a similar condition for the equality of socially optimal
joining rates (n*19 = 9*[U1). These conditions are now stated as a theorem.

Theorem 2.4.2.

1. The equality 710 = 7V holds if and only if:

1 — pns+1 %
1—p B
2. The equality n*[o] = n*[U] holds if and only if:
1— pno+1 QL

1—p B
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Proof. By Lemma m the equalities 71°! = 7l and 77*[0} = n*[U} both require p < 1, and the
results follow immediately by referring to (2.4.1)-(2.4.4). O

The quantity apu/B could, in many types of applications, be controlled as part of the system design;
for example, a firm will have some measure of control over the quality of the product that it produces
(represented by the value of ). Suppose p is fixed at some value in the range (0,1). The value of
ap/B which prescribes the equality ﬁ[o] = ﬁ[U] need not be unique. This is due to the fact that

7101 behaves as a step function of ap/ B, as shown by the next example.

Example 2.4.3. (Intersections between selfishly optimal joining rates)

Consider a system with A = 0.9, =1 (hence p = 0.9) and suppose at least one of the parameters

« and B can be chosen arbitrarily. Figure shows the selfishly optimal joining rates 7l°) =
M1 = p™) /(1 = p**1) and Y = p — B/a, plotted for 1 < ap/B < 5.
0.8 T T T T T T T
Observable case
0.7 || s Unobservable case 7]
Selfishly °6[ T
optimal .| i
queue-
-joining 0.4 .
rate
03 -1
0.2 -1
0.1 -
0 1 1 1 1 1 1 1
1 1.5 2 25 3 3.5 4 4.5 5

au/B
Figure 2.4: Intersections between the selfishly optimal joining rates 7©! and 7lV].

Figure shows that there are four intersection points between 7l° and 7. The values of ap/p
that result in these intersections are (approximately) 1.90, 2.71, 3.44 and 4.10 (it is as expected
that these values represent four distinct values of the integer ng = [au/3]). The selfishly optimal
rates at these points are, respectively, 0.47, 0.63, 0.71 and 0.76. It can be checked that multiple

intersection points are also possible in the case of the socially optimal rates. X

The next result concerns the number of distinct values of the quantity o /5 for which it is possible
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to have 79 = 7lUl. These are referred to informally as intersection points.

Theorem 2.4.4. Let J(p) be the number of distinct values of o/ for which 7€) = V. Then

J(p) is monotonically increasing for p € (0,1), and J(p) — oo as p — 1.

(The number of intersection points between the selfishly optimal joining rates is monotonically

increasing with the traffic intensity p, and tends to infinity as p — 1.)

Proof. By Theorem a necessary and sufficient condition for 70! = U] is:
1—p»tl ap
RErE
where ng = |au/B]. It therefore makes sense to consider solutions to the following inequalities,
where n > 1 is an integer and (in view of Lemma pe(0,1):
1— pntl

<
n < -,

<n+1. (2.4.16)

Let fu(p) = (1—p"1)/(1—p) forn €N, p € (0,1). It can be shown that f,,(p) is strictly increasing
and convex in p and lim,_; f,(p) = n + 1. Hence, for any n € N, there exists a value p, € [0,1)

such that the inequalities in (2.4.16)) are satisfied if and only if p € [pp, 1).

It may be observed that p,, which is the value of p for which f,(p) = n, actually increases with n.
In the case n = 1, one finds p; = 0 since simplifies to 1 < 14 p < 2, which is satisfied for all
p €0,1). For n =2, (2.4.16) implies p> —2p+1 < 0 < 3(1 — p), which is satisfied for p € [¢71, 1),
where ¢ is the well-known golden ratio; hence, ps = ¢~ ~ 0.618. Similarly it can be checked that
p3 ~ 0.811, ps ~ 0.888, etc. Each value of n for which holds implies the existence of a
distinct value of au/f for which the selfishly optimal joining rates are equal for the two types of
system. Therefore, in order to show that J(p) is monotonically increasing for p € (0,1), it suffices
to show that the sequence (p,)nen (Where p, is the unique solution to the equation f,(p) = n) is
strictly increasing. This will imply that any value of p € (0,1) satisfying for a particular

integer n € N also satisfies the same inequalities for all smaller values of n.

Given that f,(p,) = n, (2.4.16)) implies that p,, is the unique solution to:

Pt —np4+n—1=0.
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Let go(p) == p" ™t —np+n—1forn €N, p <€ (0,1). It may be shown that:

gn(p) = (1 = p) (n 1 ZpZ). (2.4.17)
i=1

Here, let hn(p) :=n—1—> 1" p' forn €N, p € (0,1). Since (1 — p) # 0 and in view of the fact

that g, (pn) = 0, p, must satisfy h,(p,) = 0. One has the recurrence relation:
hni1(p) = ha(p) +1 — p™th (2.4.18)

If p = p, then h,(p) = 0 but then, since 1 — p"*1 > 0, one finds that h,1(p) > 0 and so the
equality hpn+1(pn) = 0 does not hold. Since h,(p) is a decreasing function of p, one must have
Pn+1 > ppn in order for the equality hpi1(pnt1) = 0 to hold and therefore (p,)nen is a strictly
increasing sequence, which completes the proof. The fact that J(p) — oo as p — 1 follows from the
fact that f,(p) = (1 — p"*1)/(1 — p) attains a value of n + 1 at p = 1, implying that p can always

be chosen to be large enough to satisfy f,,(p) > n for arbitrarily large n € N. [

Notably, Theorem differs from most of the results in this chapter in that it is exclusive to the
case of selfishly optimal queue-joining rates. Investigating whether or not a similar result holds for

the socially optimal joining rates is a potential avenue for further work.

Theorem implies that if the value of p € (0, 1) is sufficiently large, it is possible to find multiple
values of ap/f for which 7O = 7lUl. On the other hand, if one considers fized values of ap/pB, it
is clear that there is a unique value of p € (0,1) which satisfies (1 — p"*1)/(1 — p) = au/B. This

is because f,(p) = (1 — p"*1)/(1 — p) is a strictly increasing function of p > 0.

By Theorem the condition required for the equality of socially optimal joining rates is (1 —
Pt /(1 — p) = Jau/B. However, recalling (2.3.3), n, (unlike n,) has a dependence on p.

Increasing the value of p may result in a decrease in the integer value n,. Therefore it cannot be

said that, for a fixed value of au/3, there is a unique value of p € (0,1) which yields 77*[0] = n*[U}.

#[0) = Ul s satisfied

Indeed, consider an example with au/f = 2.5. In this case, the equation 7

with p =~ 0.581, in which case n, = 1, but also p ~ 0.412, in which case n, = 2.

Theorem established a condition on the system input parameters which ensures ﬁ[o] = ﬁ[U},

0] _ 0]

and a separate condition which ensures 7 The remainder of this section addresses

=n

the question of whether or not it is possible for an observable system and an unobservable system
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which share the same input parameters A, u, a and 8 to simultaneously share the same selfishly
and socially optimal joining rates. In posing this question, it is important to emphasise that the
parameter values A, u, a and 8 are assumed common to both systems; indeed, it is not difficult to
construct an example of an observable system which has a selfishly optimal joining rate 77 > 0 and
a socially optimal joining rate n* > 0 (with n* <7 < \) and a separate example of an unobservable
system which has the same two values, 77 and n*, for its respective optimal joining rates if the

parameters A, u,  and S are not required to be identical for the two systems.

Theorem 2.4.5. [t is not possible for an observable and an unobservable system with the common
parameter values \, i, o and B to share the same selfishly and socially optimal joining rates; that

is, the equalities 7€) = 7Vl and n*[o] = n*[U] cannot hold simultaneously.

Proof. In view of Lemma [2.4.1] it is only necessary to consider p € (0,1). By Theorem in
order to have 79 = 7Vl and n*[o] =n* Ul both of the following must hold:

ns+1

1—p _op
1—p B’
1_pn0+1_ Qal
1—p 8

*[0]

Hence, the simultaneous equalities 7€ = 7] and n = n*[U] would require:

<1pno+1>2 _ 17pns+1
1—p 1—p

Therefore, in order to prove the theorem, it is sufficient to show that for all p € (0,1):
(1= p™ )2 > (1 p)(1 - p ). (2.4.19)

Consider the relationship between ng and n,. On one hand, ns = |au/B] (hence ns < au/B) and

from (2.3.3)) one obtains au/B < ((no + 1)(1 — p) — p(1 — p™*1)) /(1 — p)%. Hence:

0 < (ot (1= p) = p(1—p™*)
’ (1—p)? '

Here, let fn(p) == ((n+1)(1—p) — p(1—p"*1)) /(1 — p)? for n € N and note that f,(p) is

(2.4.20)

an increasing function of p; indeed, it may be shown that f,(p) = Y& (n + 1 —i)p’. Also,

lim,—1 fn(p) = (n + 1)(n 4+ 2)/2. Therefore (2.4.20)) implies:

o+ 1)(no +2
p, < o Dl +2)
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Moreover, since ns and n, are integers, one may also write:

et 1< (no—|-1)2(no—|-2).

So, in order to show that the inequality (2.4.19) holds, it is sufficient to establish the more general

fact that for all integers n > 2 and p € (0,1):
(1= "2 > (1= p)(1 — prl+D/2) (2.4.21)

It will be convenient to write (2.4.21)) in the equivalent form:

n—1 2 n(nt1)/2-1
(Z pi> > > 4 (2.4.22)
i=0 i=0
This will enable a proof by induction. Indeed, for n = 2, (2.4.22)) reduces to:

(1+p)*>1+p+ 0"

which holds for all p > 0. Let g,(p) := (Z?:_Ol P2 — E?:(g+1)/2_1 p' for n € N and assume, as
an inductive hypothesis, that gx(p) > 0 for some k& € N. It will then be sufficient to show that

gk+1(p) = gk(p). Indeed, one can show that this is equivalent to:
k—1 ' k )
L 2sz _ k=172 sz > 0.
i=0 i=0

Further manipulations yield the equivalent condition:

k—1
(2= pPmD2) N " gl (1= pHETD/2) k>, (2.4.23)
=0

It is clear that (2.4.23)) holds for 0 < p < 1, which completes the inductive proof that (2.4.22)) holds

for all n € N. In view of the previous arguments, this completes the proof. [J

As an additional note, the fact that (1 — p™™1)2 > (1 — p)(1 — p™*1) implies that the value of
ap/ B required for the equality of socially optimal joining rates is greater than the corresponding

value required for the equality of selfishly optimal joining rates.

Corollary 2.4.6.

1. If 7OV = Gl then n*1O) > oIVl
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2. If p*lO = U1 then 701 < GV

Proof. From the proof of Theorem [2.4.5] it may be inferred that the inequality

(1= pmthy/(1 - ,0))2 > (1— p™st1)/(1 — p) holds for all p € (0,1) and all choices of au/B > 1. If
7Ol = U1 then (1 — p™t1) /(1 — p) = au/B, hence (1 =preth)/(1 - p))2 > ap/B, which implies
O > U1 On the other hand, if n*[©) = 7*IU] then (1= pmth)/(1 —p))2 = au/f, hence
(1 —p™*t1)/(1 = p) < au/B, which implies 79 < 7V as required. O

The result of Corollary is illustrated by Figure [2.5] The figure shows that, under both types
of optimal customer behaviour, it is possible to make some general observations about the rela-
tionship between the joining rates for the two types of system if 0 < p < 1. (Recall that, from
the proof of Lemma m p > 1 implies 7l°! > 7l and n*[o] > n*[U}.) In a low-reward system,
where apu/B ~ 1, the optimal joining rates will tend to be higher if the system is observable. On
the other hand, in a high-reward system where au/f is large, the optimal joining rates will tend
to be higher if the queue is unobservable. Thus, for a system designer who wishes to maximise the
rate at which customers join the queue for service, it appears that the incentive to reveal the queue

length is greater when the value of service (relative to the cost of waiting) is low.

Selfish optimisation

Equality is
possible
=[O ~[U =[O ~[U
,7[]>,7[] I‘l’l ,7[]<,7[] )
| |
P - /S

o)
|

Social optimisation

Equality is
possible
%[O w[U *[O *[U
I ,7[]>,7[] | \L | ,7[]<,7[]
C{yl I I 01/1)
—=1 ——— 0
B B

Figure 2.5: Illustration of the result of Corollary [2.4.6
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2.5 Performance measures

The purpose of this section is to compare performance measures for the observable and unobservable
systems under selfishly and socially optimal conditions; that is, one assumes either that 7l°! = 7]
or that 17*[0} = n*[U] (noting that, due to Theorem one cannot have both) and considers the
implications for steady-state probabilities, mean waiting times etc. Recall that the notation for

these performance measures was summarised in Table The next result concerns the stationary

distributions for the respective system types under both types of optimisation.

Theorem 2.5.1.
1. If ﬁ[o] = ﬁ[U] then ]5,%]] < PTL?] for all 0 < m < ng, with equality if and only if m = 0.

2. If 77*[0] = n*[U] then P,’;Z[U] < P;',‘Z[O] for all 0 < m < n,, with equality if and only if m = 0.

Proof. Consider the case m = 0. Standard results from finite-buffer queueing theory ([67], p.
77) imply, for a buffer size n, Py = (1 — p)/(1 — p"*!). In the case of observable queues with
balking, one effectively has (in the selfishly optimal case) a buffer size of ns and hence ]50[01 =
(1 —p)/(1 — p™*1). In the unobservable case, one has a Poisson arrival rate of 7l =  — 8/a
to a system with no finite buffer. Using standard results for infinite capacity queues, it follows
that ]50[U} =1— (7Y!/u) = B/(ap). Then, recalling Theorem it may be observed that the

necessary and sufficient condition for 7€) = 7Vl states exactly that ]%O] = JSAU].

Next, consider m > 1. Using standard results again, PT[,? I = pmls(go] for 1 < m < ng. Here, of
course, p = A/u where X is the arrival rate for the system, which is the same as the queue-joining
rate provided that there are fewer than ng customers present. In the case of the unobservable
system, the corresponding relation is P,ETU] = (plVl/ ,u)m]%U] for 1 < m < n,. Given that 7Vl < X

(which is implied by 70! = 71}, it follows that ]5,%] I < ]5,[,? ! for m > 1.

The proof for the socially optimal case is similar, except that in this case one has Fj 0] = (1-—
p)/(1 — pet1) and PS[U] =1— (Y1) = \/B/(ap). Therefore, recalling Theorem the

U1 = Py O is equivalent to the necessary and sufficient condition for the equality of

equality B
socially optimal joining rates, 77*[0] = n*[U]. The fact that P:,;[U} < P,;‘I[O] for 1 <m < n, is shown

using arguments analogous to those used for the selfishly optimal case. [J
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Remark. The fact that 79 = 7V implies P(EO} = ZBO[U} (with an analogous result for social opti-
misation) actually follows immediately from a basic property of queueing systems in steady state.
Under steady-state conditions, the queue-joining rate must be equal to the rate at which customers
exit the system, which is given (for a general system) by (1 — Py). Hence, 79 = 7Vl implies

w(l — P(go]) =p(l— ﬁ(gU}) and the result follows since p is a fixed parameter.

The next result of this section concerns the average lengths of idle periods and busy periods for the

two types of system under selfishly and socially optimal conditions.

Theorem 2.5.2. Let MBP (MBP ) and MBP*©! (MBP*1) be the mean busy periods for
the observable (unobservable) system under selfish and social optimisation respectively. Also let

—~——[0] ———[U] [0] [U] . . .
MIP ~ (MIP ) and MIP*®! (MIP*")) be the corresponding mean idle periods.

-10] _ ~[U] —~——[0] ———1U] ——[0]  ——U] _
1. If g%l =q%l then MBP < MBP ~and MIP < MIP . Specifically:

P a1 e

—_ U P— S+1'
wer” Y 1

2. If p*lO = U1 then MBP*O) <« MBP*IYl and MI1P*OV < MIP*YL. Specifically:

MBP*Ol  prprlOl 1 pro

MBPUL — MIPUT 1= pretT

(Under the equality of selfishly or socially optimal joining rates, the mean busy period and mean

idle period are both shorter in the observable case than in the unobservable case.)

Proof. The proof is given for the selfishly optimal case (the socially optimal case is analogous).
Consider the mean idle periods. If the system is observable and it is empty, then (assuming o > /)
the next customer to arrive in the system will join the queue. The mean idle period is thus 1/\.
In the unobservable case, customers join the queue at the Poisson rate f)[U} regardless of the state

of the system. Given that 79 = 7Vl the mean idle period is 1/7°) = (1 — p™H+1) /(A1 — p™)).

The result MIP[ ]/MIP[ ] = (1 —p"™)/(1 — p"*1) then follows.

For the mean busy periods, it can be established using standard results for M/M/1 queues that

MBP[ ! =(1—-p")/(u(l —p)) and MBP[ ! = (1 —p™tH/(u(1 — p)), which gives the required

———[U]

0]
result. However, in order to show that MBP /MBP = (1—p")/(1— p™Th), it is sufficient
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to observe that, by Theorem the equalities 7l = AUl and JS[EO] = P(gU] are equivalent.

]

In order for the equality P(EO = P(EU] to hold, the mean busy periods for the observable and

unobservable systems must be in the same ratio as the mean idle periods. That is, one must have

—~—1[0] ———1U] ———[U]

MBP /MBP —MIP /MIP = (1—p")/(1 — p"+!) as required. OJ

Finally, consider the mean number of customers present in the system. The next result shows that,
in the observable case, the congestion in the system is lower on average under selfish (or social)
optimisation than in the unobservable case. This is a consequence of the fact that in the observable
case, customers may join the queue only in the most favourable circumstances. The fact that mean

waiting times are shorter in the observable case is implied by this result.

Theorem 2.5.3. Let LIO (LIV) and L*1OV (L*IV]) be the steady-state expected numbers of customers
in the observable (unobservable) system under selfish and social optimisation respectively. Also, let

WOl Wt and w*O (WU be the corresponding mean waiting times. Then:
2. If 19 = U0 then 1000 < L210) qpg w0 < w10,

Proof. The proof is given for the selfishly optimal case (the socially optimal case is analogous).
Assume p € (0, 1), which is implied by the condition 7€ = 7], Then:

jol_ P (ns£1)pmt
1—p 1—pnstl 7

FlU) _ Ut S ¢ O r)
-l oy — flol 1—p

One can show that the inequality L9 < LIV is equivalent to:
Pt — (ng + 1)p +ns > 0.

Let fu(p) := p"™' — (n+1)p+n for n € N. Then f/(p) = (p* — 1)(n + 1) < 0. Thus, f,(p) is
strictly decreasing for p € (0,1), and since f,(1) = 0, the result LI < LIV follows. Little’s formula
(see [67], p. 10) gives L9 = FlOIWIO! and, similarly, LIV) = 3lUTWIWV] Hence, by the previous

arguments, ﬁ[o} = ﬁ[U} implies Lol < i[U], which in turn implies whol <« wlivl, O

Figure [2.6] illustrates the result of Theorem [2.5.3] for the selfishly optimal case. In the figure, the

relationship ap /B = 1+ p has been assumed in order to ensure that the equality 791 = 7lU1 holds.
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It can be seen that for the parameter values used, 79 = 7Vl implies LIOT < LIUI The other results
of this section can be illustrated using similar diagrams.

1

09

Mean no. of customers under selfish optimisation (observable case)
Mean no. of customers under selfish optimisation (unobservable case)

0.8

0.7 -

0.6 -

0.5

04

0.3

0.2}

0.1}

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Traffic intensity (p)

Figure 2.6: Relationships of LI and LIVl with p assuming the equality 7! = 7Vl

2.6 Conclusions

As discussed in Section the strategic behaviour of customers (or the authority making decisions
on their behalf) under varying levels of information has received considerable recent attention in
the literature due to the insights that may be gained into whether or not a service provider should
restrict the amount of information available to its users. This chapter has considered an M/M/1

queueing system under two levels of information. The main results are as follows:

e The equality of selfishly optimal queue-joining rates is achievable only if p € (0,1), and the

same also applies to the equality of socially optimal joining rates.

e A necessary and sufficient condition can be derived for the equality of selfishly optimal queue-
joining rates in terms of the system parameters A, y, o and 3, and a similar condition can

also be found for the equality of socially optimal joining rates.

e The number of intersection points between the selfishly optimal joining rates is monotonically

increasing with p in the interval (0,1) and tends to infinity as p — 1.
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e [t is not possible to find a set of system parameters for which the selfishly optimal joining

rates are equal and the socially optimal joining rates are also equal.

e Small values of au/f will tend to imply that selfishly and socially optimal joining rates are
greater in the observable case. On the other hand, large values of au/f imply that (on

average) customers will join more frequently in the unobservable case.

e Various performance measures, including mean busy periods, expected queue lengths and av-
erage waiting times are smaller in the observable case than in the unobservable case, assuming

the equality of either selfishly or socially optimal joining rates.

The extent to which the system input parameters are controllable via the system design will vary
according to particular applications. It has been shown that the decision of a service provider to
reveal or suppress information on queue length may or may not affect customer queue-joining rates,
depending on the values of the system parameters and the type of customer behaviour assumed.
The general principle is that the incentive to reveal the queue length is greater if the value of service
(relative to the cost of waiting) is low. However, in general it is not possible to specify a unique

‘cut-off” value of ap/B which defines the optimal strategy of a decision-maker.

One might conjecture that, in many practical situations, if a revenue-maximising server (with the
singular aim of maximising customer throughput rates) finds itself in the particular scenario where
the average customer throughput rate per unit time is independent of the decision to reveal or
suppress information on queue length, then the most sensible decision will be to reveal the queue
length in order to generate greater goodwill from customers. The results in Section have shown
that in the observable case, customers can expect to enjoy shorter waiting times, and greater net
benefits for receiving service as a result. One might explore this further by modelling a situation in
which the quality of service enjoyed by customers is worth some quantifiable benefit to the server.
This would obviously broaden the range of circumstances in which revealing the queue length would
be the optimal decision for the revenue-maximising server. The analysis of optimal server policies

in models with this type of extra complexity is a possible avenue for future work.



3 MDP formulation

3.1 The basic queueing system

This chapter introduces a mathematical model for the multiple-facility queueing system to be
analysed throughout the rest of this thesis. Various modifications to the model will be made in
later chapters, but at this early stage it is desirable to adopt a formulation which enables the
classical techniques of dynamic programming to be employed without any major difficulty. The
queueing system consists of a finite number N of heterogeneous service facilities, each of which has
a dedicated queue and is subject to a cost and reward scheme similar to that of Naor’s single-server

model in [I3I]. The fundamental assumptions of the model are as follows:

e Customers arrive according to a Poisson process with demand rate \ > 0.

e Each facility ¢ € {1,2,..., N} possesses ¢; identical service channels, and service times at any

channel of facility i are exponentially distributed with mean ;" '>o.

e Newly-arrived customers may proceed to any one of the IV service facilities or, alternatively,
exit the system immediately without incurring any cost or reward (referred to as balking).
Thus, there are N + 1 possible destinations for any individual customer. Customers who
proceed to facility i € {1,2, ..., N} will either wait in the queue for facility i or go directly to
an empty service channel and begin their service immediately, depending on whether or not

they find all of the ¢; service channels occupied upon their arrival.
e The queue discipline at each facility is First-Come-First-Served (FCFS).

e The system incurs a linear holding cost B; > 0 per unit time for each customer waiting at

facility ¢ € {1,2,..., N} (whether in the queue or in service).

e The system earns a fized reward a; > 0 for each customer who completes service at facility

i€ {1,2,..., N}. The units of o; and f; are assumed to be comparable.

e The system is fully observable, in the sense that the number of customers present at each

facility is always known and can be used to inform decision-making.

35
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e The decision made upon a customer’s arrival is irrevocable; the system does not allow reneging,

jockeying between queues or postponement of decision-making.

e The decision made upon a customer’s arrival is made without any knowledge of the exact

times at which arrivals or service completions will occur in the future.
e For each i € {1,2,..., N}, o, B; and p; satisfy the relationship a; > B;/ ;.

Essentially, the model may be regarded as an N-fold generalisation of the M /M /1 system considered
in Chapter [2| in which customers may be served at any one of N different facilities arranged in
parallel (with the option of balking also available) and each facility i is capable of serving up
to ¢; customers at the same time. As alluded to in Chapter [2, the assumption that a; > 3;/ui
for all facilities 7 € {1,2,..., N} is made in order to avoid degeneracy in the system. If one had
a — Bi/ui < 0 for some facility 4, then it would never be worthwhile in an economic sense for a
customer to receive service there, since the expected cost incurred during their service time would
exceed the reward obtained for service. In fact, all of the results in this thesis remain valid under
the weaker assumption that «; > 3;/u; for each facility 7, with only some extra discussion required
in some cases in order to deal with trivialities that occur if a; — 8;/u; = 0. In order to avoid these

trivialities, it will be simpler to assume the strict inequality «; > (;/u; throughout.

Another point to be made is that, in the queueing theoretic literature, it is common practice to
make an assumption concerning the rate of demand A in order to ensure system stability. Typical
assumptions might be that A < ) . c¢;u;, or (more restrictively) A < ¢;p; for all i € {1,2,...,N}.
However, no such assumption is made in this thesis. This is due to the fact that the option of
balking is always available, and therefore it is always possible to find a means of controlling the
system such that the system is stable, in the sense that the total number of customers present is not
at risk of escalating in an unbounded fashion. It is therefore not necessary to consider any scenario
in which customers ‘flood’ the system at a rate which exceeds its maximum service completion rate,

since this type of behaviour does not achieve any economic objective of interest.

A diagrammatic representation of the system is given in Figure It is clear that the dynamics
of the system are influenced not only by the input parameters (arrival rate, service rates etc.) but
also by the decisions made at the ‘routing point’ labelled in the diagram. As in Chapter 2], there is

no explicit assumption as to whether these decisions are made by customers themselves, or whether
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Figure 3.1: A diagrammatic representation of the queueing system

there is a central decision-maker who controls the destination of each individual; that is, a customer
may be viewed as an intelligent entity with the ability to exercise control over his/her own outcome
or on the other hand he/she may be compliant with directions received from a greater authority
The implications of allowing customers to act of their own free will are of great interest when the

plausible assumption is made that individuals will tend to make short-sighted decisions aimed at

optimising their own individual outcomes; this topic will be expounded upon later

3.2 Continuous-time MDPs

The queueing system described in Section may be controlled by means of a decision-making
scheme which determines the routing decision to be made upon each customer’s arrival. Such
a scheme is referred to as a policy for controlling the system. In general, a policy may be as
elaborate as desired; the decision to be made upon a customer’s arrival may depend on several
factors, including the amount of time elapsed since the initialisation of the process, the congestion

levels at the various facilities at the time of decision-making, the history of decisions made in the

past and their consequences. One might even make a decision according to a random probability
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distribution. Various types of policies will be discussed in greater detail in Section but at this
stage it suffices to adopt the general notion of a policy as some form of decision-making scheme
which efficiently determines the actions of customers arriving in the system. The next example

illustrates how the consequences of adopting a particular policy may be analysed.

Example 3.2.1. (Joining the shortest queue)

Suppose there is a demand rate A = 1 and only two service facilities (N = 2), each with only one

server available (c; = ¢o = 1). Parameters for the two facilities are as follows:

p1 = 0.8, B =2, aj = 6,
p2 = 0.4, B2 =1, ay = 4.

(3.2.1)

For the purposes of this example it will be assumed that an extra constraint is imposed, whereby
the number of customers present at the first facility may not exceed two at any time, and there
may be at most one customer present at the second facility (equivalently, the second facility will

not allow anyone to queue, while its neighbour will permit a queue size of one).

Let it be assumed that the system begins with no customers present. Then the state of the system

at any given time may be denoted by a vector x € S, where S is given by:
S = {(21,22) : ¥1,22 € Ng, 71 <2, 35 < 1}.

Let it be assumed that the system is controlled by means of the following simple policy, which

depends only on the state of the system upon arrival of a customer:

e If the system is in state (2, 1), customers are forced to balk.

e [f the system is in any other state in .S, customers go to the facility with the fewest customers

already present. In the case of a tie, they always go to facility 1.

The policy described above may be represented as a function 6 : S — Ax which associates a unique
action a € Ax with each state x € S, where Ay is the set of actions available at state x. It is clear
that the policy # induces a continuous-time Markov chain (CTMC) over the 6 states in S, with
state-dependent sojourn times determined by the arrival and service rates. It is natural to adopt a

lexicographical ordering of the states, with the component x; taking precedence over x5. Using the
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approach described in Appendix[A.2] the infinitesimal generator matriz @, consisting of transition

rates q(x,y) (for states x,y € ), may be constructed as follows:

q((0,0),(0,0)) ¢((0,0),(0,1)) q((0,0),(2,1))
q((0,1),(0,0)) ¢((0,1),(0,1)) q((0,1),(2,1))
0 — q((1,0),(0,0)) ¢((1,0),(0,1)) q((1,0),(2,1))
q((1,1),(0,0)) ¢((1,1),(0,1)) q((1,1),(2,1))
q((2,0),(0,0)) ¢((2,0),(0,1)) q((2,0),(2,1))
q((2,1),(0,0)) ¢((2,1),(0,1)) q((2,1),(2,1))
—A 0 A 0 0 0
p2 = (A p2) 0 A 0 0
| om 0 —(A 4+ m1) A 0 0
1o 1 ) —(A 4 p1 + p2) 0 A
0 0 g} 0 —(A+ ) A

0 0 0 111 12 —(p1 + p2)

This is a finite-state CTMC consisting of a single communicating class. Theorem[A.2.1]in Appendix
implies that the chain has a stationary distribution {7(x)}xecs satisfying:

Y 1(y)aly,x)=0 (x€8), (3.2.2)
yeSs

where m(x) is the limiting (stationary) probability for state x € S. Note that the stationary
probabilities 7(x) and transition rates ¢(x,y) actually have a dependence on the policy €, but since
there is only one policy of interest in this example it is reasonable to suppress this #-dependence

in order to simplify the notation. The equations in (3.2.2)) may be written:

)‘W((Ov 0)) - /1/17T(<17 0)) + UQW((Ov 1))7
)\—I—,LLQ)TF((O, ) = le((Ll))a
)‘"’_:U’l)ﬂ'((lv ) = )\7['(( 70)) +N17T((270)) +M27T((171))’

( 1))

( 0)) 0

A+ g1+ p2)m((1,1)) = A(w((0,1)) +7((1,0))) + pam((2, 1)),
( 0

(

(3.2.3)

(
A+ ﬂl)ﬂ((z )) = :UJ27T((2> 1))7
w1+ p2)m((2,1)) = A(m((1,1)) +7((2,0))).
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Upon imposing the normalising condition ) ¢ m(x) = 1, the equations in may be solved
to obtain the stationary distribution for the CTMC. In most of the examples considered in this
thesis, it will not be practical (or useful) to give expressions for the steady-state probabilities m(x)
in terms of the parameters A, p1, ps etc. Indeed, even in this simple example involving only 6
states, the expressions for 7((0,0)), 7((0,1)) etc. in terms of A, 1 and po are not ‘neat’ enough to
be worth reproducing here. It is feasible, however, to simply calculate the approximate numerical

values (to 4 decimal places) using the values for A, p1 and pe given in (3.2.1)):

7((0,0)) ~ 0.1945, m((0,1)) ~ 0.1267, =((1,0)) ~ 0.1797,
7((1,1)) ~ 0.2218, 7((2,0)) ~ 0.0504, 7((2,1)) ~ 0.2268.

(3.2.4)

For each state x € 5, provides an approximation for the expected long-run proportion of
time 7(x) spent in state x when the policy 6 is followed. So far, the holding costs 3; and rewards
for service «; have not featured in this analysis. In order to assess whether or not the policy 6 is
a sensible one, it would be useful to have a measure of its economic performance; such a measure
could then be compared with those of other (possibly more desirable) policies. For this purpose,

the concept of expected long-run average reward per unit time is required.

Consider an arbitrary state x € S. For every unit of time spent in x, the holding costs incurred
are given by Sz + faze. However, if z; > 1 (for i = 1,2), then service completions occur at a rate
u; at facility 4, and each completion earns a reward ;. It therefore makes sense to define the net

reward function (referred to more simply as the reward function) for x € S as:

2
r(x) == Z (min(x;, D)o — Bixs) - (3.2.5)

i=1
Thus, r(x) is a measure of the expected net reward for each unit of time spent in state x. The
expected long-run average net reward (more simply, average reward) gg is then:
go = m(x)r(x) ~ 1.6913. (3.2.6)
x€eS
The value of gy quantifies the performance of the policy 6. There are other performance measures
that may be used as alternatives to the expected long-run average reward, including those based

on discounting of future costs and rewards; these will be discussed later. X
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Example|3.2.1]introduced the concepts of system states, decisions, transition rates and net rewards.
Of course, the steady-state probabilities in and average reward calculated in (3.2.6) were
consequences of the particular policy € being followed. In Chapter policies for observable M /M /1
queues were represented by thresholds; for example, it was shown that a socially optimal policy
could be defined by a threshold n, € N, such that customers join the facility if and only if they
observe fewer than n, customers in the system when they arrive. In the case of multiple facilities,
one may still adopt the notion of a socially optimal policy as a policy which maximises expected
average reward (as in the M/M/1 case); however, the search for such a policy becomes more

complicated, as the problem involves both routing control and admission control.

The problem of finding a socially optimal policy which maximises average reward (or optimises some
alternative performance measure of interest) over all policies may be tackled within the framework

of a continuous-time Markov Decision Process (CTMDP). This is defined below.
Definition 3.2.2. (Continuous-time Markov Decision Process)

A continuous-time Markov Decision Process (CTMDP) is a collection of objects:

U= {’57 Ax, T(X, a)? O'(X, a, Y)7 f(X, a’)v f’Y(X7 a),"y},

where S is the state space of the process (assumed either finite or countably infinite), Ax is the
set of actions available at state x € S (also assumed either finite or countably finite), T7(x,a) is
the sojourn time parameter which determines the distribution of the time spent in state x € S
given that action a € Ax is chosen, o(x,a,y) is the probability that the process transfers from state
x €S toy €S at its next transition given that action a € Ax is chosen, {(x,a) and {y(x,a) are
(respectively) the undiscounted and discounted net rewards earned for choosing action a € Ax at

state x € S, and v € (0,00) is a continuous discount rate applied to future rewards.

Some generalisations of Definition are certainly possible. The use of vectors x, y etc. to
represent system states is specific to the needs of this thesis, but in the general field of CTMDPs,
system states may be scalar quantities, matrices or various other objects; moreover, continuous
state and action spaces may be considered (see [14], [41] R1]). In Chapter [4| and onwards, system
states will usually be denoted by vectors x = (x1, x2, ...,xx) except in the case where only a single

facility is being considered (N = 1), in which case it will be appropriate to use a scalar z € Ny
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to denote the state. In addition, some authors include a subscript ¢ on the reward function and
transition rates to indicate possible time-dependence. In this thesis it will be assumed that rewards

and transition rates are stationary; that is, they remain the same at all times.

The continuous discount rate v € (0, 00) is relevant only in problems where the economic perfor-
mance measure of interest is the expected total discounted reward. Further details of this criterion
will be given later in this section. If one is interested only in the expected long-run average reward

for the system (as in Example |3.2.1)), then the discount rate v may be ignored.

The remainder of this section examines how the N-facility queueing system presented in Section
fits within the framework of a CTMDP. First, however, some general comments about the
evolution of a CTMDP are in order. In fact, a CTMDP is a special case of a Semi-Markov
Decision Process (SMDP) (see [141], [197]), in which the time spent in a particular state follows an
arbitrary probability distribution, and the system controller is required to make a decision every
time the system state changes. Essentially, an SMDP evolves by remaining in a particular state
for a randomly distributed amount of time and then ‘jumping’ to a different state, also determined
randomly. Typical applications of SMDPs include the control of GI/M/c and M/G/c queueing
systems (examples may be found in [I57] and [I59]). If the inter-transition times are ezponentially

distributed and actions are chosen at every transition, then the SMDP is a CTMDP.

Let ¥ be a CTMDP in some arbitrary state x € S at time tg > 0, and suppose an action a € Ax
is chosen by the decision-maker. Then the time until the next state transition is exponentially
distributed with parameter 7(x,a), which depends on the action chosen as well as the state. Let
t1 > to denote the time of the next transition. Then, for each y € S, o(x,a,y) denotes the
probability that the system jumps to state y at time ¢1, given that action a is chosen at ty3. The

transition times tg, t; etc. are the decision epochs at which control may be exercised.

Returning to the queueing system described in Section [3.1], it is clear that the designated decision
epochs for the system should be the times at which customers arrive, since these are the only
times at which decisions are made. Furthermore, assuming that a newly-arrived customer always
has the option to join any of the N facilities (or balk), it would seem logical to use {0,1,2,..., N}
as the set of actions available at every state, where 0 denotes balking and ¢ > 1 denotes joining

facility ¢ (i = 1,2, ..., N). However, some thought must be applied to the formulation of the state
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space S. It would seem natural to simply define the state space as the (countably infinite) set of
N-vectors (z1, o, ...,xN), where z; € Ny is the number of customers present at facility ¢, but in a

continuous-time setting this approach has some limitations, as described below.

The general formulation of a CTMDP requires that the action chosen at a particular decision epoch
(equivalently, transition time) top > 0 determines the expected sojourn time in the present state, and
also the probability distribution for the state reached at the next transition. Suppose the system
state at time ¢y is represented by a vector (z1, z2, ..., zn) as described above, an action is chosen at
to, and the next transition occurs at some future point in time ¢; > tg. A problem arises in that,
according to the sequence of events in a CTMDP, the state transition at ¢; takes place before the
decision at t; is made. Thus, there is no option but to use the action chosen at ¢y to determine
the fate of a customer who arrives at t;. Essentially, by adopting this formulation, one requires
the system controller to make anticipative decisions in advance of customer arrivals; he/she must
decide what action will be taken if the next random event to take place is an arrival (as opposed

to a service completion), irrespective of when this arrival might actually occur.

In fact, while this might initially appear to be a serious drawback, in purely mathematical terms
it only presents a problem if the system controller wishes to implement a time-dependent policy.
If a policy is employed which is not time-dependent and selects actions based only on the state of
the system upon each customer’s arrival, then the controller is always aware of the action he/she
will choose if an arrival occurs before any other transition; in other words, the time until the next
transition is irrelevant for decision-making purposes. Thus, the policy 6 considered in Example
being a simple state-dependent policy, can be modelled within this framework. On the other
hand, if the system controller wishes to implement a time-dependent policy, the question of whether
or not to send a customer to a particular facility ¢ may depend on whether or not that customer
arrives before some ‘cut-off’ point ¢’ > ty; for example, a customer may be sent to facility ¢ if
their arrival occurs before t', but refused admission otherwise. Hence, the state space formulation

described earlier must be refined in order to accommodate time-dependent policies.

It is sensible to follow an approach similar to that of Puterman [I41] (p. 568), who considers an
admission control problem for an M /M /1 queue. The principle is to consider decision epochs some-

what more generally as the points in time at which random events (arrivals and service completions)
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take place, and amend the system state description so that it includes information about the latest
random event to have occurred. Specifically, let the system state at some arbitrary decision epoch
be given by ((z1,x2,...,2N),w), where (as before) (x1, 2, ...,xx) is a vector of head counts at the
various facilities, and w is the random event that occurs at the epoch in question. The symbol
A will be used to denote the event that an arrival has occurred, and M; (for i = 1,2,...,N) will

denote a service completion at facility ¢. The state space S is then given by:
S= {((ml,xg, ...,xN),w) D X1, X9, ..., N € Ny, w € {A, My, My, ...,MN}}. (3.2.7)

It is important to specify that if w = M; for some ¢ € {1,2,..., N}, then this indicates that the
number of customers present at facility ¢ has just decreased from x; + 1 to z; as a result of a
service completion, and not that the number of customers at ¢ is ‘about’ to decrease from z; to
x; — 1. For example, suppose one has a system with only two facilities (N = 2), and both facilities
have one customer present at some arbitrary point in time. If the next random event to occur is
a service completion at facility 1, then the system state at the next decision epoch is ((0, 1), Ml),
and not ((1, 1),M1). Indeed, if the latter convention was adopted then some of the states in S
(as defined in (3.2.7)) would become redundant, as it would not be possible for the random event
w = M; to accompany any vector (xi,zo,...,xy) with z; = 0. On the other hand, consider the
same two-facility scenario and suppose the next event to occur is an arrival. Then the state at the
next decision epoch is ((1, 1),A), indicating that the head count at one of the facilities may be

about to increase by one, depending on the action chosen by the decision-maker.

Let (x,w) denote a generic state in S, where x = (x1,%2,...,zn). The action sets Ay for the
N-facility queueing system under consideration may be described as follows:

{0,1,...,N}, ifw=A,
Apew) = (3.2.8)

{0}, otherwise.
At any state (x,w) € S associated with an arrival (i.e. w = A), one assumes that all of the actions
0,1,...,N are available to the decision-maker. On the other hand, if w = M; for some facility
i € {1,2,..., N} (indicating a service completion), then in physical terms there is no decision to
make and as such one may use the degenerate set A .) = {0} to represent the set of actions

available, where 0 indicates that no customer is admitted to the system (since there is no customer
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to admit). Thus, the action sets Ay ) in (3.3.7)) have no x-dependence. However, in later sections
it will sometimes be appropriate to consider a finite state space, in which case the action sets for
states (x,w) which lie on the ‘boundary’ of the finite space will need to be restricted in order to

ensure that the process remains ‘contained’ within the finite state space of interest.

Next, consider the sojourn time parameters 7((x,w),a) for the system. If action a € Ay, is
chosen at state (x,w) € S, then the time until the next decision epoch should be exponentially

distributed with mean (7((x,w),a))~" > 0. This implies the following definition:

N
A+ Zmin(xj,cj),uj + i, ifw=A a=iforsomeie{l1,2,...N} and z; < ¢,
j=1
r(xwya) = 7o
A+ Zmin(xj,cj),uj, otherwise.
j=1

(3.2.9)
Thus, the sojourn time parameter 7((x,w),a) is given by adding the total rate at which service
completions take place in the system immediately following a visit to state (x,w) (which depends
on the choice of action a) to the system demand rate A. After a sojourn in state (x,w) € S, the
system ‘jumps’ to a new state (x’,w’) € S with transition probability o((x,w),a, (x',w’)). These
transition probabilities can be expressed most intelligibly by letting (x,w) be an arbitrary state in
S and writing the probabilities o((x,w), a, (x',w’)) for all states (x/,w’) € S which are accessible
from (x,w) in a single transition. Before doing so, it will be convenient to define x* as the N-
vector which is identical to x = (1,2, ..., zx) except that the it" component is increased by one;
similarly, for N-vectors x with z; > 1 for some arbitrary i € {1,2,..., N}, let x'~ denote the vector

which is identical to x except that the i*” component is reduced by one. That is:

Xt i=x+e,

X =X —e€y;,

where e; is the i*" vector in the standard orthonormal basis of RY. The components of the vector

x'T (respectively, x*~) will be written :L'Z;'_ xl;r, ey T

& (resp. xi_,xé_,...,mi]\?), so that a:;-+ (resp.

:L'éi) denotes the j** component of the vector x' (resp. x'~) for j € {1,2,..., N}. Let (x,w) be an

arbitrary state in S. The cases w = A and w # A will be considered separately. If w = A, then the
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probabilities o((x,A), a, (x/,w’)) may be summarised for 4, j € {1,2,..., N} as follows:

a((x,A), i, (x"7, A)) = A/7((x, A),9),

a((x,1),0,(x,A)) = A/7((x,A),0),

o((x,A), 1, ()7, Mj)) = min(}", ¢;)p; /7((x, A), 4),

a((x,A),0, (x'~, M;)) = min(z;, ;) /7((x, A), 0), (3.2.10)

and o((x,A), a, (x',w’)) = 0 for any destination state (x',w’) € S and action a € A(x, not already
accounted for in (3.2.10). On the other hand, for states (x,w) with w = M; for some i € {1,2,..., N},

the only action available is a = 0. Hence, for j € {1,2,...,N}:

U((X7 Mi)’ 0, (Xa A)) = A/T((Xv Mi)a 0)’

o((x, M;), 0, (x7, M;)) = min(x;, ¢;) i /7((x, M;), 0), (3.2.11)

and o((x, M;),0, (x/,w’)) = 0 for any destination state (x/,w’) € S not accounted for in (3.2.11).
The subtlety of the CTMDP formulation given thus far is that the action chosen at a particular de-
cision epoch determines (in conjunction with the underlying probabilistic structure) what happens
only up to the point when the next decision is due to be made, i.e. when the next customer arrival
occurs. In a sense, the naive formulation that was briefly discussed earlier (in which the system
state was simply an N-vector (x1,x2,...,xx)) went a step too far, by using the action chosen at

time £y > 0 to dictate the routing decision made at the next decision epoch t; > .

Referring to Definition it is also necessary to define suitable reward functions £((x,w), a) and
& ((x,w),a) in order to complete the CTMDP formulation. In Example[3.2.1] the expected long-run
average reward per unit time under policy 6 was defined as gg = > g 7(x)7(x). This definition for
gy was made possible by the fact that the policy 6 under consideration chose actions based only on
the current system state (thereby enabling states to be represented simply by vectors x, as opposed
to pairs (x,w)). Consequently, it was possible to represent the evolution of the system under 6
using a time-homogeneous CTMC and derive the stationary distribution {7 (x)}xes. However, a
somewhat more general definition for gy is required in order to accommodate policies which do
not enable such an approach. Consider a new definition for the expected long-run average reward

go((x,w)) under an arbitrary policy 6, given some initial state (x,w) € S:
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Ny
go((x,w)) = ligg(i){jlf%Eg Zﬁ((xn,wn),an) (x0,wp) = (x,w)] ) (3.2.12)
n=0

where V; denotes the number of decision epochs (equivalently, the number of transitions or ‘jumps’)
occurring in time [0,1], (x,,wy) is the state of the system at the n'* decision epoch, a, is the
corresponding action chosen, and £((x,w),a) is the (undiscounted) reward earned for a sojourn in
state (x,w) € S given that action a € A(x,w) 18 chosen. Let T, denote the time of the n* decision
epoch, so that N; = max{n : T,, < t}. It makes sense to follow Puterman [I41] (p. 567) in defining
&((x,w), a) as the ezpected reward accumulated during a sojourn in state (x,w) after choosing action
a, but in doing so one must be mindful of the non-uniformity of the expected inter-transition times
E[T,+1 — T),] caused by the dependence of the sojourn parameters 7((x,w),a) on (x,w) and a.
In fact, as will become clear throughout this chapter, there are a number of equally valid ways of
defining the expected single-sojourn reward £((x,w), a). Two alternative formulations will be given

here, but it is not difficult to conceive other variants which are equally suitable.

It is logical to begin with the reward formulation which most literally follows the description
of the system given in Section [3.1, Given that a reward a; > 0 is earned each time a service
completion occurs at facility ¢ € {1,2,..., N}, it is reasonable to propose that the reward function
¢((x,w), a) should incorporate a term «; if and only if w = M;. On the other hand, holding costs
are accumulated continuously over time; specifically, the rate per unit time at which holding costs
are accrued immediately following a visit to state (x,w) € S is given by Zé\le Bjxj, with the
possibility of an extra cost f; if a new customer is admitted to facility ¢ at the relevant decision
epoch. Using the additional property that the length of a sojourn in state (x,w) after choosing
action a is exponentially distributed with mean 1/7((x,w),a), the expected single-sojourn reward

£((x,w),a) may be defined for states (x,w) € S and actions a € Ay as follows:

( N
N 3o
i—M, if w= M, for some i € {1,2,...,N},
7((x,w), a)
> B + Bi
E((x,w),a) = § == , ifw=Aanda=7ifor someic{1,2,..,N}, (3.2.13)
7((x,w), a)
N
N B
—M, otherwise.
7((x,w), a)

On the other hand, an alternative approach might involve the system earning rewards corresponding



Chapter 3 MDP formulation 48

to the expected (net) payoffs of individual customers themselves, calculated at their times of arrival.
Let w;(x) be the expected net reward earned by an individual customer for joining facility i €
{1,2,...,N} when there are already x € Ny customers present there. Since it is assumed that
customers do not renege or jockey between queues, it is simple to calculate w;(x) for each z € Ny
as a function of the system parameters. Indeed, if x < ¢; then one simply has:

_b

. (z < ). (3.2.14)

wi(z) = oy

If a customer joins facility ¢ when there are already = > ¢; customers present (so that they have to
wait before beginning service), then the number of service completions that must occur at facility
1 before their service begins is  — ¢; + 1. Formally, their expected waiting time in the queue has a

gamma distribution with parameters z — ¢; + 1 and ¢;u; (see [103], p. 518). Hence:

5i($—ci+1)_@

wilw) = = —— "
(x4 1
_g - 2@t (z > ci). (3.2.15)
Ci g

Therefore, using (3.2.14)) and (3.2.15)), one may derive the following single-sojourn reward function
as an alternative to the function £((x,w),a) given in (3.2.13):

( .
; — @, ifw=A,a=1iforsomeiec{l,2..,N}and z; < ¢,
Hi
3 = (i + 1 2.
¢ w),a) ai—m, ifw=A,a=1iforsomeie€{l,2,.. N} and z; > ¢, (3.2.16)
Cifki
0, otherwise.

It is clear that both of the reward formulations £((x,w),a) and £((x,w),a) are logical. Indeed,
the formulation in is based on the real-time holding costs and rewards accrued during the
system’s evolution, while the alternative formulation in is based on an unbiased estimate of
each individual customer’s contribution to the aggregate net reward, made at the time of their entry
to the system. For ease of reference, the function £(-) in will be called the real-time reward
function, while the function f (1) in will be referred to as the anticipatory reward function.
Intuitively, one would expect both functions to yield an accurate measurement for the expected
average reward under a particular policy # when used within , and a formal equivalence

between the two formulations in a discrete-time setting will be proved in Section [3.5
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Figure (3.2 shows the results of a simulation experiment involving the parameters in Example[3.2.1
designed for the purpose of comparing the two reward formulations in and . For
the two-facility system under consideration, a CTMDP was formulated exactly as described in
this section thus far (i.e. with the same state space and action sets, etc.) and allowed to evolve
randomly according to the sojourn time and transition probability distributions given in (3.2.9)
and respectively. The figure shows the evolution of the average reward per unit time over
a short time period of 5000 time units. Two simulation runs were performed, with the reward
formulations and used alternately and ((0,0), A) chosen as the initial state. Under
both formulations, the average reward quickly converges towards the value 1.6913 calculated in
Example When the original reward formulation is used, the aggregate net reward
tends to take negative values for very small values of ¢ (the amount of time elapsed), since the
rewards for service a; and as are not earned until service completions occur; on the other hand,
when the formulation is used, the aggregate net reward takes comparatively large positive
values when ¢ is small, since the system is immediately credited for customers’ expected net rewards

(which are always non-negative under the policy §) upon their entry to the system.
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Figure 3.2: Comparison of the average rewards under &(-) and f (+) for the system in Example|3.2.1

Before concluding this section, it will also be useful to discuss the discounting of future rewards.
Recall (from Definition [3.2.2]) that the parameter v € (0,00) represents a continuous discount

rate. The expected total discounted reward v., ((x,w)) under a particular policy 6 and initial state
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(x,w) € S may be used as an alternative to the expected long-run average reward in (3.2.12)) for
measuring the performance of the system under 6. It is defined as follows:

e}

vy0((6,w)) = Ep | ) e & ((xn, wn), an)

n=0

(x0,wp) = (x,w)] , (3.2.17)

where T, is the time of the n'* ‘jump’ of the process to state (x,,w,) € S, and a, € Al wn)
is the corresponding action chosen. The new function &, (-) is used for the single-sojourn rewards
because, in the case of continuous discounting, it is not entirely accurate to use the same reward
function as in the average reward case; indeed, the expected single-sojourn reward &, ((x,w),a) for
a sojourn in state (x,w) (following selection of action a) must take into account the continuous
depreciation of the rewards earned while the sojourn is in progress. The standard approach used in
the literature for defining single-sojourn rewards in CTMDPs with discounting (see, for example,
[160]) is to allow ‘lump sum’ rewards to be earned at the beginning and end of a sojourn (which
can be set equal to zero if appropriate), and also to allow an additional portion of the reward to be
earned at a continuous rate during the sojourn itself. In order to be consistent with this approach,

the function &, ((xp,wn),an) in (3.2.17)) should take the following general form:

57((men)a an) = R1((Xn,wn), an)

o0 t
+R2((xn,wn),an)/ T((xn,wn),an)e_T((x""”")’a")t/ e "dudt
0 0

Ry (30, n ), an) / (%, ), g )6~ (Consn)an )t gy
0

where Ry ((Xp,wn), an) and R3((Xn,wn), a,) are the lump sum portions of the reward received at the
start and end of the sojourn respectively, and Ro((Xy,wn), a,) is the reward rate while the sojourn
is in progress. In the case of the N-facility queueing system under consideration, the rewards for
service «; are earned instantaneously upon completions of service, and therefore these rewards can
be paid immediately as lump sums at states (x,w) € S with w = M;. On the other hand, holding
costs must be handled in a different way, as these are subject to continuous discounting. For
example, suppose the system is in some state (x,,wy,) € S at its n' decision epoch, and suppose
also that w, = M; for some i € {1,2,..., N}. Then, noting that the time until the next transition is

exponentially distributed with parameter 7((xy,wn), a,), the expected contribution of the reward
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earned during the next sojourn to the cumulative value v, ¢((x,w)) is given by:

00 N

e [ ) an)e T s (a3 ) [ e |
0 -
Jj=1

t
0
_ S Bi(xn);
_ Tn L J
o (“Z 7+ (%, wn)s n) |

where (x;,); denotes the 4t component of x,,. In general, if one wishes to compute the expected
total discounted reward using a ‘real-time’ reward formulation similar to (3.2.13]), then in order to
ensure compatibility with the definition of v, g((x,w)) in (3.2.17) (in which the factor e’ already

appears), £ ((X,w), a) should be defined for (x,w) € S and a € A(x,) as follows:

Ly B
o — = , if w = M; for some i € {1,2,..., N},
7+ 7((%,w),a)
N
A iz + B
Eow)a) = 4 2=t I B da =i for some i € {12, N}, (3:2.18)
7+ 7((x,w),a)
N
N B
— Zj_l Pt , otherwise.
7+ 7((x,w), a)

On the other hand, if one wishes to compute v, g((x,w)) using an ‘anticipatory’ reward formulation
similar to that given in , then the effect of the discount rate v on the single-sojourn rewards
is even more significant. In this case, it is necessary to find an expression for the expected net reward
earned by an individual customer, taking into account the continuous discounting. If a customer
joins some facility i € {1,2,..., N} when there are fewer than ¢; customers already present (so that

they begin service immediately), then their expected discounted reward is given by:

o] t
/ pie Hit (aie” — BZ-/ e”“du) dt
0 0

_ i — B

VA
On the other hand, if a customer joins facility ¢ when the number of customers present x; is greater
than or equal to ¢;, then their expected holding costs incurred while waiting in the queue must also
be taken into account. In this case, their expected waiting time in the queue (before entering service)

is gamma-distributed with parameters x; — ¢; + 1 and ¢;u; (please note that ‘gamma-distributed’
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here refers to the gamma distribution from probability theory, and should not be confused with the
discount rate 7). Since their service time must also be accounted for, it follows that the customer’s
expected discounted net reward may be computed via the following integral:
00 (. \Ti—Cit+1 00 t+u
(cipi) Ti—Ci g—Ciftit e M e V(EFu) _ B; e~ Y3ds | dudt
0 (zi — ci)! o ' “Jo

1
(v + i)

C‘,U/' :Ei—Ci-f—l
= <7 _I_l CEM) (vapes — Bipts) — Bily + i)

Summarising these arguments, if one wishes to apply an ‘anticipatory’ reward formulation similar

to ([3.2.16]) to a problem with continuous discounting at a rate v € (0, 00), then the reward function
£, ((x,w), a) (taking the place of &, ((x,w),a) in (3.2.17)) should be given by:

W, ifw=A,a=1ifor
T some i € {1,2,..., N}
and z; < ¢,
s 1 e \" M . .
& ((x,w),a) = o |\ em (voupi = Bipi) — Bi(y + i) |, fw=A, a=i for
1 1M
some i € {1,2,..., N}
and x; > ¢,
\ 0, otherwise.

(3.2.19)

Figure [3.3| shows the results of another simulation experiment, again using the parameters from
Example designed to compare the discounted reward formulations and .
First, the ‘real-time’ formulation was adopted and 50,000 simulation runs were carried
out in order to estimate the total discounted reward for the system operating under the policy
0 described in the example, with the discount rate v set to a value of 0.1 and the initial state
(x0,w0) = ((0,0),A) used. On each simulation run, sojourn times and transitions were generated
randomly according to and — and the process was allowed to continue until
the value of e™7* (where ¢ denotes the total amount of time elapsed) eventually became negligibly
small. The procedure was then repeated (i.e. another 50,000 simulation runs were performed)
under the alternative formulation , with the same discount rate v = 0.1 and initial state
((0,0),A) used. For both reward formulations, the figure shows the evolution of the average total

discounted reward (over all trials) as the number of trials increases from 0 to 50,000.
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Average total discounted reward
i

Formulation
L E(xw)a) [T y
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Figure 3.3: Comparison of average total discounted rewards under reward formulations &,(-) and é,y() for

the system in Example with a discount rate v = 0.1 and initial state (xq,wp) = ((0,0), A).

Figure shows that under both formulations, the average total discounted reward appears to
converge towards a value of approximately 17.4. It should always be the case that the expected
value v, 9((0,A)) as defined in takes the same value under both of the formulations &, ()
and f}(-), so that there is an equivalence between the two reward formulations similar to the
equivalence between the formulations and (for average reward problems) discussed
previously. However, it is important to note that this equivalence applies only when the initial state
is (0,A); that is, for any given system, it will generally not be the case that the expected total
discounted reward v, ((x,w)) takes the same value under both reward formulations if the initial
state (x,w) € S is arbitrary. To understand why this is, suppose the system is initialised in some
state (xq, wg) with xg # 0, so that there is already at least one customer present in the system. If the
real-time formulation &, (-) is used, then the single-sojourn rewards earned in the early stages of the
process include the holding costs for the customer(s) present initially, and also the rewards earned
when their services are finally completed. On the other hand, if the anticipatory formulation is
used, then these single-sojourn rewards include only the expected holding costs and rewards for new
customers who enter the system. Similarly, if the initial state is (0, M;) for some i € {1,2,..., N},
then the initial reward under the real-time formulation &,((0, M;)) includes a ‘payment’ for the

service which has just been completed, whereas the anticipatory reward f,y((O, M;)) does not. It is
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only when the initial state is (0, A) that the two formulations are equivalent.

The specification of the reward functions £((x,w),a) and &,((x,w), a) (with £((x,w),a) and
é,y((x, w),a) as alternatives) completes the formulation of the queueing system described in Section
[3.1] as a CTMDP. The next section will introduce an important and useful technique, known as

uniformisation, whereby a CTMDP can be analysed in a discrete-time setting.

3.3 Uniformisation

Section [3.2]explained how to formulate the queueing system presented in Section[3.1]as a continuous-
time MDP. In fact, there exists an equivalence between continuous-time MDPs and discrete-time
MDPs which is similar in principle to the equivalence between discrete-time and continuous-time
Markov chains discussed in Appendix This can be exploited using an extremely useful tech-
nique, known as uniformisation, which will be relied upon extensively throughout this thesis. The
result itself is usually credited to Lippman [I19], who applied the technique in the context of a
queueing control problem involving an M /M /c queueing system. Using what he refers to as a “new
device”, which involves using uniformisation to enlarge the set of decision epochs, Lippman suc-
cessfully characterises optimal policies for a number of classical queueing control problems. Serfozo

[160] also provides a somewhat more concise explanation of the same technique.

Continuous-time MDPs have already been defined in Section Before proceeding with the

equivalence result, it is necessary to provide a definition for discrete-time MDPs.
Definition 3.3.1. (Discrete-time Markov Decision Process)

A discrete-time Markov Decision Process (MDP) is a collection of objects:

@ = {8, Ax, plx,a,y),7(x,0),74(x. ), 6 |

where S is the state space of the process (assumed either finite or countably infinite), Ax is the
set of actions available at state x € S (also assumed either finite or countably finite), p(x,a,y)
is the one-step transition probability for transferring from x € S toy € S given that a € Ax is
chosen, r(x,a) and ry(x,a) are (respectively) the undiscounted and discounted net rewards earned

by choosing action a € Ax at state x € S, and ¢ € (0,1) is a discount factor.
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Thus, the definition of a discrete-time MDP is similar to that of a continuous-time MDP; the
essential difference is that transitions (or equivalently, decision epochs) occur at uniformly-spaced
intervals, so that sojourn times are fixed as opposed to being randomly distributed. In this thesis,
problems will usually be formulated as discrete-time MDPs rather than CTMDPs, and therefore
“MDP” will be used to refer to a discrete-time MDP unless otherwise stated. Note that Definition
relates to a general scenario in which the state of the system can be represented adequately by
a vector x € S; however, in the previous section it was deemed necessary to represent the state of
the N-facility queueing system under consideration using a pair (x,w), where w represents a random
event. Since the early part of this section summarises some general results from the literature, it
will be convenient to retain the ‘simplified” notation (with vectors x, y etc. to represent states) in
order to express the relevant theoretical concepts in a more concise manner. Later in this section,

the queueing system from earlier in this chapter will be considered again specifically.

The definition of the expected long-run average reward for a discrete-time MDP, given some policy

f and initial state x € .S, differs only slightly from the CTMDP case. Specifically:

go(x) := liminf m~' Ey

m— 00

m—1
Z (X, an) X0 = X] , (3.3.1)

n=0

where x,, is the system state at the n'* time epoch, and a,, is the corresponding action chosen.
Note that due to the limit infimum in (3.3.1]), the worst-case scenario is considered when the limit
fails to exist. On the other hand, suppose rewards are discounted by a factor ¢ € (0,1) on each

discrete time step. Then the expected total discounted reward under 6 is given by:

UQ@(X) = E@

D 0" (%, an) X0 = x] : (3.3.2)
n=0

Thus, a reward earned n steps into the future is discounted by a factor ¢™ (relative to an imme-
diate reward). As observed by Sennott [I56], vy ¢(x) may be infinite if the rewards 74(x,, an) are
unbounded. It is also worthwhile to note that the discount factor ¢ in a discrete-time MDP has a
somewhat contrary meaning to the discount rate v used in a CTMDP, in the sense that small values
of ¢ (e.g. ¢ ~ 0) represent very severe discounting rates, whereas if ¢ ~ 1 then the total discounted
reward over a finite number of time steps n is almost equal to the total undiscounted reward over
the same number of time steps. Contrastingly, it is clear from that in a continuous-time

process, small values of the discount rate v (e.g. v & 0) represent very mild discounting rates,
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whereas the effect of discounting becomes increasingly severe as v tends to infinity.

Before proceeding further, it is necessary to introduce a definition for a particular kind of policy
which applies to both discrete-time and continuous-time MDPs. So far in this chapter, the term
‘policy’ has been used in a somewhat vague manner to refer to the general strategy of a decision-
maker for controlling the system. In Section various types of policies will be defined and

classified in a more formal way. However, the next definition is required immediately.
Definition 3.3.2. (Stationary policy)

Let @ be either a discrete-time or a continuous-time MDP, with state space S and action sets Ax
forx € S. Suppose the system is controlled by means of a policy 6 which associates a unique action
0(x) € Ax with any given state x € S; that is, at any decision epoch where the process is in state

x, the unique action 6(x) is chosen. Then 6 is referred to as a stationary policy.

Thus, a stationary policy may be regarded as a direct mapping 6 : S — Ax. The next result, found
in [160], explains the equivalence between MDPs and CTMDPs with respect to expected long-run

average rewards and total discounted rewards under a fixed stationary policy.

* Theorem 3.3.3. Let U be a continuous-time Markov Decision Process (CTMDP) with state
space S and action sets Ax for x € S. For each state-action pair (x,a) € S x Ax one associates
the sojourn time parameter T(x,a) and transition probabilities o(x,a,y) (fory € S). The single-
sojourn reward function is denoted by & (x,a) if rewards are continuously discounted with rate
v € (0,00), and &(x,a) if there is no discounting. Assume that there exists C > 0 such that
(1—o(x,a,x))7(x,a) < C < oo forallx € S and a € Ay. Let ¥ be a CTMDP with the same state

and action sets as W, with transition probabilities and reward functions given by:

(I -o(x,a,%))7(x,0)

1 ) ify =X,

p(x,a,y) = ¢ (3.3.3)
a(x,a,gT(x,a)’ ify +x,

r(x,a) = MCT(XQ) (3.3.4)

(3.3.5)
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and suppose U has sojourn time parameter C' for all (x,a) € S X Ax. Let ® denote a discrete-time

MDP with the same state and action spaces as ¥V and 0, single-step reward function r(x,a) or

rv(x,a) (depending on whether or not discounting is used), transition probabilities p(x,a,y) and
discount factor ¢ := C/(y + C), so that ® is identical in construction to U except with respect to

its discounting structure. If W, U and ® are all controlled by the same stationary policy 0, then ¥
and U yield the same expected long-run average reward under 6 and this is equal to C’gg(x), where
|

gp(x) is the expected long-run average reward for the process ®. Furthermore, all three processes

yield the same expected total discounted reward v~ g(x) for any initial state x € S.

For the proof of the theorem, please refer to Serfozo [160].

A valuable observation made by Serfozo is that, while the continuous-time processes U and U have
a larger class of non-stationary policies than the discrete-time process @, all three processes have
the same class of stationary policies. Thus, if a stationary policy can be found for any one of ¥, ¥
and ® which maximises the expected average reward over all stationary policies, then it must also

do so for the other two processes. In this sense, the three processes are equivalent.

Typically, the principle of uniformisation is used to treat a continuous-time problem within a
discrete-time setting, and indeed this will be the approach taken throughout most of this thesis.
However, it is useful to bear in mind that when uniformisation is applied, there are actually three
processes involved: the original CTMDP W, the discrete-time MDP ® and an intermediate process
U which, as specified by Theorem is a continuous-time process with uniformly-distributed
sojourn times. Of course, the fact that sojourn times for ¥ are uniformly distributed does not imply
that all sojourn times for the process are identical; it simply means that each sojourn time follows
the same random distribution (specifically, an exponential distribution with parameter C'). The
technique of uniformisation may be illustrated using a diagram similar to that given in Puterman
[141] (p. 567); see Figure below. In some of the results later in this chapter, the equivalence

between W and W (referred to as the “uniformised CTMDP”) will prove to be useful.

In the case of the N-facility queueing system described in Section the results of Theorem [3.3.3
(with some minor modifications) can be applied in order to convert the continuous-time MDP W
formulated in Section [3.2]to a discrete-time MDP ® which yields the same expected long-run average

reward gp((x,w)) and expected total discounted reward v, ¢((x,w)) under a given stationary policy
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A

Y Y ®

CONTINUOUS-TIME CONTINUOUS-TIME DISCRETE-TIME
PROCESS PROCESS PROCESS

State space S H <= D State space S H— (| State space S

Action sets Ax Action sets Ay Action sets Ax

Trans. probs o(x,a,y) Trans. probs p(x,a,y) Trans. probs p(x,a,y)
Rewards ¢(x,a) or ¢,(x,a) Rewards r(x,a) or r,(x,a) Rewards r(x,a) or ry(x,a)
Sojourn params 71(x,a) Sojourn params C Sojourn params C
Discount rate y Discount rate y Discount factor ¢ = C/(y+C)

| UNIFORMISATION |
| DISCRETISATION |

Figure 3.4: The process of uniformisation involving the three processes ¥, U and &.
0 and initial state (x,w) € S. An explicit formulation for ® is given below.
Discrete-time MDP formulation

The state space (denoted S) for ® is the same as for the CTMDP in Section That is:
S = {((xl,xg, ...,xN),w) P X1, %9, ..., N € Ny, w € {A, My, My, ...,MN}}. (3.3.6)
The action sets (denoted A ) for states (x,w) € S are also the same as in Section

{0,1,.,N}, ifw=A,
Axw) = (3.3.7)

{0}, otherwise.

In order to define the transition probabilities for the MDP, which will be denoted (in this partic-
ular formulation) by P((x,w),a, (x',u)) for (x,w), (x/,w’) € S, it is necessary to find a constant
C such that 7((x,w),a) < C for all (x,w) € S and a € A(x,,), where 7((x,w),a) is the sojourn
time parameter defined in . Clearly, it is sufficient to choose any positive value C satisfying
cC > X+ Zf\; 1 Cipi- Then, by applying the result of Theorem to the ‘jump’ probabili-
ties o((x,w), a, (x,w’)) defined in (3.2.10)-(3.2.11)), the probabilities P((x,w), a, (x’,w’)) for states

(x,w) € § with w = A may be summarised for 7,5 € {1,2,..., N} as follows:

P((x,A), i, (X7, A)) = \A,

P((x,A),d, (xF)7, My)) = min(z]", ¢j) A,
N

P((x,A),i, (x,A)) =1—NA — Zmin(:c?’, k) iR,
k=1
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P((x,A),0,(x7~, M;)) = min(z;, ;) ;A
N

P((x,A),0,(x,A) =1— Z min(zy, o) pipd, (3.3.8)
k=1

and P((x,A),0, (x',w')) = 0 for any state (x’,w’) € S not already accounted for in (3.3.8)). Here,

A :=1/C is the discrete-time step size, which is assumed to satisfy:

N —1
0<A< <,\ + Zcim) . (3.3.9)

i=1
Note that specifies a non-zero value for the self-transition probability P((x,A), 1, (x,A)),
whereas the corresponding ‘jump’ probability o((x,A),i,(x,A)) in the CTMDP formulation of
Section was equal to zero. Similarly, although the value of o((x,A),0, (x,A)) was non-zero in
the CTMDP formulation (due to the fact that self-transitions may occur in the continuous-time
process when balking is chosen at states with w = A), its value was smaller than that of the
self-transition probability P((x,A),0, (x,A)) in (3.3.8). This illustrates the general principle that
uniformisation causes extra ‘self-transitions’ by reducing the time in between successive decision
epochs (see [I41], p. 562). For states (x,w) € S with w = M, for some facility ¢, the probabilities

P((x,w),a, (x',w’)) may be summarised for facilities j € {1,2,..., N} as follows:

P((x, M;),0,(x,A)) = A\A,

P((x, M;),0, (¥, Mj)) = min(z;, ¢;) A,
N

P(x, M;),0,(x,M;)) = 1 — AA =) " min(a, cx) A, (3.3.10)
k=1

and P((x,1;),0,(x',w')) = 0 for any state (x',w’) € S not accounted for in (3.3.10). Once
again, there is a non-zero ‘self-transition’ probability P((x, M;),0, (x, M;)) which does not appear
in . The remaining task, in order to complete the discrete-time MDP formulation, is to
define the undiscounted and discounted reward functions for the process. These will be denoted
here by R((x,w),a) and Ry((x,w),a) respectively. As discussed in the previous section, there
are at least two different approaches that may be taken as far as the single-transition rewards
are concerned; one approach is to define these rewards based on the ‘real-time’ holding costs and
service completions incurred by the system in a single transition, while an alternative method is to

adopt an ‘anticipatory’ formulation and reward the system based on the ezpected net rewards of
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individual customers as they enter the system. In this particular case, suppose that a ‘real-time’
reward formulation is used. By applying the result of Theorem [3.3.3] with the continuous-time
reward function {((x,w), a) as defined in and 7((x,w),a) as defined in (3.2.9), one obtains
the following discretised function R((x,w),a) (for use in undiscounted problems):

(

N N
a; [ A+ Zmin(xj,cj)uj — Zﬁjxj, if w = M, for some i € {1,2,...,N},

j=1 j=1

N .

R((x,w),a) =< — Zﬁjw}ﬂ if w = A and a = i for some
g=1 ie{l,2,...,N},
N
— Z Bjxj, otherwise.
\ J=1

(3.3.11)
Note that the discrete-time step size A = 1/C (henceforth referred to as the uniformisation param-
eter) has been omitted from ([3.3.11)). If the definition of the uniformised reward given in Theorem
was adhered to exactly, then the parameter A would be included as a multiplicative factor.
However, in that case, the expected long-run average reward gg(x) for the discretised process ®
operating under some stationary policy 6 would (as stated by the theorem) be equal to A times
the average reward of the continuous-time processes ¥ and U under the same policy. Essentially,
by omitting the factor A in , one may ensure that the expected long-run average reward
obtained by using within gives the correct value for the average reward per unit
time, as opposed to the average reward per discrete time step. Next, by applying the result of
Theorem to the continuous-time function &, ((x,w),a) defined in (3.2.18)), one obtains the
following reward function R4(-) for use in discounted problems (recall that the discount factor ¢ is

obtained from + via the transformation ¢ = 1/(1 4+ ~vA), hence v = (1 — ¢)/(¢pA)):

( N

ai(1— (1= AA)) + oA Z (e min(zj, ¢j)p; — Bjz;), if w = M; for some
j=1 ie{l,2,..,N},

N
Rys((x,w),a) = —¢A26jx;.+, ifw=A and a =1 for
j=1 some i € {1,2,...,N},

N
—¢A Z Biz;, otherwise.
j=1

(3.3.12)
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Naturally, it is also possible to apply the result of Theorem to the anticipatory reward functions
in ((3.2.16)) and (3.2.19)) in order to obtain alternative reward functions for the discretised process,

but the resulting expressions are not particularly elegant and in later sections it will be sufficient

to restrict attention to the ‘real-time’ formulations given in (3.3.11]) and (3.3.12]).

Before concluding this section, it is appropriate to make a further comment regarding the uniformi-
sation parameter A. In applications involving the uniformisation of CTMDPs; it is quite common
for the assumption to be made that the supremum of the sojourn time parameters 7(-) over all
state-action pairs is bounded above by one, so that A = 1 is a valid choice for the uniformisation
parameter (see, for example, [35]). This assumption can usually be made without loss of generality,
since the units of time can always be re-scaled; for example, in the queueing system under consid-
eration, one might reasonably assume that the arrival rate A and service rates u; are scaled in such

a way that A+ ZZ]\L 1 Gipt; = 1. By making this assumption, one would then be able to suppress the
appearance of the parameter A in the transition probabilities (3.3.8])-(3.3.10)).

While the assumption that A + Zf\i 1 G = 1 is quite reasonable if A\ and p1, po, ..., y are treated
as fixed parameters, it becomes somewhat impractical when these parameters are allowed to vary.
Some of the results in later chapters of this thesis will involve treating the demand rate \ as a
variable, in order to investigate the effect of increasing or decreasing A on the performance of the
system. When the value of A changes, there is an implicit effect on the range of positive values which
A may take; as such, it becomes somewhat awkward to suppress A completely from the relevant
analyses (although there are ways in which this can be done). Clearly, it would not be desirable to
create unnecessary confusion by suppressing the parameter A in some results and including it in
others. It will therefore be deemed appropriate in this thesis to simply include the uniformisation
parameter A throughout; that is, there is no assumption made that \ + sz\i LGty =1, and A will

be included in all transition probabilities associated with uniformised MDPs.

In some of the results to follow later, it will be necessary to specify a particular value for the uni-
formisation parameter A; for example, A = (A + Zfil cipi)~ ! will be an obvious choice. However,

unless otherwise stated, it may be assumed somewhat more generally that:

N —1
A€ 0, ()\—I-ZCZ'/M)
i=1
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The fact that there always exists a range of possible values for A when uniformisation is applied is
a very important principle, which can be exploited in a similar way to the principle of introducing
extra ‘self-transitions’ in a discrete-time Markov chain without affecting the underlying stationary
distribution of the chain (see, for example, the convergence proof for relative value iteration found

in Bertsekas [13] (p. 191), which will be discussed briefly in Section [3.7).

Further results involving stationary policies will be discussed in the next section.

3.4 Optimality of stationary policies

An important theme in later chapters of this thesis will be the identification and characterisation
of policies # which maximise the expected long-run average reward for the system gg((x,w)), de-
fined in . In keeping with the terminology introduced in Chapter [2| policies which achieve
this objective will be referred to as socially optimal. Policies which maximise the expected total
discounted reward v, ¢((x,w)) in (3.2.17), given some continuous discounting rate v € (0, c0), will
not be expressly of interest in this thesis. However, it transpires that various important theoretical
results involving average reward problems (i.e. those in which the objective is to maximise the
average reward gp((x,w))) may be proved by treating an average reward problem as a limiting case

of a discounted reward problem, as the continuous discount rate v tends to zero.
The next definition clarifies exactly what is meant by an optimal policy.
Definition 3.4.1. (Average reward optimal and ~y-discount optimal policies)
An average reward optimal policy is any admissible policy 0* for which:
g+ ((x,w)) = St;pge((x,W)) v (x,w) €S,

where the supremum is taken over all admissible policies for the system. Similarly, a ~-discount

optimal policy is any admissible policy 07 for which:

Uy ((x,w)) = s%p vy,6((x,w)) V(x,w) €S.

In Definition the term “admissible policy” in fact refers to any strategy for controlling the

system which does not fundamentally violate the assumptions of Section (by, for example,
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postponing the decision made when a customer arrives, or using knowledge of the arrival times
of future customers to inform decision-making). In particular, an admissible policy might make
decisions based on the history of actions chosen in the past, or the amount of time elapsed since
the initialisation of the process. A formal classification for admissible policies will be provided in
Section but in this section the only important distinction is between stationary policies (which

select actions based only on the current system state) and non-stationary policies.

As discussed in Section [3.2] the augmented state space formulation given in (with (x,w) used
to denote a generic system state) was deemed necessary in order to enable the implementation of
time-dependent policies. However, if it were possible to restrict attention to stationary policies only,
then it would be sufficient to represent the system state using only an N-vector x = (z1,x2,...,ZN),
since this would contain all information required by the decision-maker; in particular, the exact
time of a customer’s arrival would be irrelevant for decision-making purposes. In general, the
analysis of CTMDPs and MDPs becomes much simpler if one considers stationary policies only.
As observed by Sennott [I59], “the advantages for implementation of a stationary policy are clear,
since it necessitates the storage of less information than required to implement a general policy”.

However, some justification is required in order to simplify the problem in this way.

Recall that ¥ denotes the CTMDP formulated in Section The purpose of this section is to
prove that there exists an average reward optimal policy for ¥ which is also a stationary policy. In
order to do this, it will be sufficient to prove certain properties of the optimal value function v(-)

associated with a 7-discounted problem. This function is defined for (x,w) € S by:

vy((x,w)) = ve: ((x,w)) = sgp vy,0((x,w)).

Given any continuous discount-rate v € (0, 00), results from the literature imply that there exists
a y-discount optimal stationary policy for the process W. The next result, which is adapted from

Sennott [157] and relies upon results in [12] and [I55], establishes this fact.

* Theorem 3.4.2. Let the discount rate v € (0,00) be fized. The optimal value function v, ((x,w)) =

supy v+.0((x,w)) satisfies the following y-discount optimality equations:

n(Gow) = max 5”“"’“)"1”“(("""”“2,Z;EZ((X’“)’“’(X"“'”””“XI’“/” . (34.0)
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where, for states (x,w) € S and actions a € A(x,), L((x,w),a) is given by:

cora) = [ o are—Gr(xera g —  T((6w);a)
Ly (%), )—/0 ((x,w), a)e" O+ - TG (3.4.2)

Moreover, let 03 be any stationary policy such that for all (x,w) € S, the action 8((x,w)) chosen

by 07 attains the mazimum in . Then 07 is y-discount optimal.

Proof. The proof relies upon some assumptions, and therefore it is necessary to verify that these

hold in the case of the CTMDP ¥ formulated in Section It is assumed that:

1. The single-sojourn rewards are bounded above (but not necessarily bounded below); that is,

there exists R € R such that &, ((x,w),a) < R for all ((x,w),a) €S X A(x)-
2. There exist € > 0 and ¢y > 0 such that e~ 7((*«):®) > ¢ for all ((x,w),a) € S x Ax,w)-

3. For all states (x,w) € S, it is the case that v ((x,w)) > —o0.

Indeed, let o := max(ay,ag,...,ay) denote the maximum value of service across all facilities.
Then it can be verified from that &, ((x,w),a) < o for all ((x,w),a) € S x A(x,,) and
v € (0,00), so the first assumption holds. In order to verify the second assumption, one may choose
to = (A + Zfil cipti) ™t > 0. Then, since the sojourn time parameters 7((x,w),a) are uniformly
bounded above by A + Zfil cifti, it follows that e 7((x@):a)to > ¢=1 > () for all state-action pairs
((x,w),a). This condition ensures that the process is ‘regular’, in the sense that it makes only
finitely many transitions in any finite amount of time (see [I57], p. 250). Finally, let 6y denote the
degenerate policy which chooses to balk at any state (x,w) with w = A, and consider an arbitrary
initial state (x,w) € S. Obviously, since no customers are admitted under the degenerate policy

0y, the rate at which holding costs are incurred is steepest at the beginning of the process. Hence,

since the rewards «; are non-negative, it follows from (3.2.17)) and (3.2.18]) that:

N 00 ZN /B s
_ i=1P5%j
vran((x0)) 2 =3 By [ e = - =B,
1 0 v
J
Thus, since v, ((x,w)) > vy4,((x,w)) for all (x,w) € S by definition of v, this confirms that
vy((%,w)) may always be bounded below by some finite negative value, which verifies the third
assumption. The optimality equations (3.4.1) and existence of a ~y-discount optimal stationary
policy are then established using the arguments in [I55] (see also [12], p. 251). O
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Recall that, by Theorem [3.3.3] one may apply uniformisation and deduce that the expected total

discounted reward v 4((x,w)) under some stationary policy 6 is equivalent to:

o0

vpo((%,w)) = By | Y ¢"Ro((Xn, wn), an)

n=0

(x0,wo) = (%, w)] : (3.4.3)

where the state evolution of the discrete-time process in is determined by the transition
probabilities P((x,w),a, (x'w’)) in - m the discounted reward function Ry((x,w),a)
is as defined in and the discount factor ¢ is given by ¢ = (1 + yA)™!, with A €
(0, A+ 2N ¢;p:)~ Y. For clarity, it will be assumed throughout the rest of this section that vgo(-)
represents the expected total discounted reward function for the discrete-time MDP & obtained by
applying uniformisation to the CTMDP ¥, where the policy 6 is arbitrary. An explicit formulation
for ® was given in the previous section. Also, vy (-) will be used to denote the corresponding optimal

value function, so that vy((x,w)) = supgve e((x,w)) for all states (x,w) € S.

The fact that (by Theorem a stationary ~-discount optimal policy exists for ¥, together
with the equivalence of the expected total discounted reward functions v, ¢(-) and vg(-) in the
case of stationary policies 6 (established by Theorem , justifies the approach of evaluating
vy((x,w)) for any given discount rate v € (0,00) and state (x,w) € S by restricting attention
to stationary policies in the uniformised process ®. Some essential results from the literature

concerning discounted rewards in discrete-time MDPs are summarised below.

* Theorem 3.4.3. The optimal value function vs((x,w)) = supy v 9((x,w)) for the discrete-time
MDP & satisfies the following ¢-discount optimality equations:

vol(x,w) = max §Ry((x,w),a +¢Z7> (x,w), a, (x',w) ve((x, &) ¢ , (3.4.4)
o (< w)ES

where Ry(-) and P(-) are as given in and (3.5.8)-(3.3.10) respectively. Furthermore, let

07 be any stationary policy such that for all (x,w) € S, the action 0;‘)((X,w)) chosen by 07 attains
the maximum in . Then the stationary policy 9(’; 18 ¢-discount optimal.

Proof. This result actually follows immediately from previous results. Let ¥ be the CTMDP
referred to in the statement of Theorem [3.3.3] with uniform sojourn time parameter C' for all

((x,w),a) € S x A(x) (Where C' > A+ Ef\il ¢ipv;) and transition probabilities and rewards defined

as in (3.3.12) and (3.3.8))-(3.3.10)) respectively. Theorem implies that, for any stationary policy
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0, the expected total discounted reward function for W is equivalent to both vy 0(-) and vy p(-), sO
it will be convenient to denote this also by vg (). The result of Theorem in fact applies to
any CTMDP which satisfies the assumptions stated at the beginning of the proof (refer to [I57],
p. 251). Since it can easily be verified that the process U satisfies these assumptions, the theorem

implies that the optimal value function vy(-) satisfies the optimality equations:

vp((x,w)) = max < Ry((x,w),a)+ <7+CC> Z P(x,w), a, (x,w)) ve((x, &) ¥ |
(x'w)es

CLEA(X’M)

where the factor C/(y+ C') is obtained by analogy to (3.4.2]) and the uniformity of the sojourn time
parameters in the process 0. By Theorem the discount factor ¢ used for the discrete-time
MDP @ is also given by ¢ = C/(y+ C) = (1 +~vA)~7, so the result follows. [J

The next result is sometimes referred to as the “method of successive approximations”, and may

be used to prove properties of vg4(-) using an inductive procedure.

* Theorem 3.4.4. Define the function Ug)) : S — R by véo)((x,w)) =0 for all (x,w) € S. Let the
(n+1)

functions Vg, : S — R be defined for integers n > 0 as follows:
o (ew) = max {Ry((x,w),a)+ 6 > Pxw).a,(x,o)of (&) p.  (3.45)

a€A(x ) (' w)ES

Then, for each ((x,w)) € S, v(n)((x,w)) converges uniformly to vg((x,w)) as n — oo.

Proof. A proof is given by Ross [145] (p. 60). However, the proof depends on some technical details
which should be discussed. These details can be found in Appendix page

As discussed previously, the main objective in this section is to prove the existence of a stationary
average reward optimal policy for the CTMDP W. However, this can be done by establishing certain
properties of the optimal value function v,(-) (or equivalently, the function v,(-) associated with
the uniformised process @) in a discounted reward problem. The approach taken in the remainder
of this section will be to verify that v,(-) satisfies the conditions proposed by Sennott [I57] (p. 250)
which imply the existence of a stationary average reward optimal policy. First, it will be useful to

establish a property of the discounted reward function R4(-) defined in (3.3.12).
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Lemma 3.4.5. Let a* = max(a1,az,...,an). Then for all states (x,w) € S, actions a € A(x,),

facilities i € {1,2,..., N} and discount factors ¢ € (0,1):
Ro((x,w),0) = Ro((x,0), @) < (a"s — i) A. (3.4.6)
Proof. Note that the random event w is the same for the states (x,w) and (x**,w). Hence, due to

the formulation of the action spaces in (3.3.7)), any action a € A(x,, also belongs to A+ ). If
w = A then, for arbitrary a € A and i € {1,2,..., N}, one simply has:

Ro((x,A),a) = Rg((x,A),a) = —pAB;, (3.4.7)

which is negative for all ¢ € (0,1). On the other hand, a*u; — B; is strictly positive due to the
assumption in Section that o — B;/p; > 0 for all i € {1,2,..., N}, so (3.4.6) holds. If w = M;
for some j € {1,2,..., N}, then for a € A,y = {0} and i € {1,2,...,N}:

. OA (aps — Bi), if z <y,
Ro((x'T, M;), a) — Ry((x, Mj), a) = ! (3.4.8)

_¢A/BZ7 if T4 > Ci,
and the upper bound in (3.4.6]) then follows since ¢ € (0,1) and a;; < o*. O

The next result establishes some properties of the optimal value function v,(-) which appear at

first sight to be somewhat remarkable, but can be reasoned using intuition.

Lemma 3.4.6. Let 0 be a stationary vy-discount optimal policy. Consider a state (x,w) € S with
w = A, and let a* € {0,1,..., N} denote the action chosen by 03 at (x,A). Furthermore, let the

notational convention be assumed whereby x°T = x. Then, fori € {1,2,.... N}:
vv((x““r, M;)) —vy((x,A)) = a. (3.4.9)
In addition, for any two distinct facilities i,j € {1,2,..., N} and any vector x € N(])V:
vy ((x, M;)) — vy ((x, Mj)) = i — . (3.4.10)

Proof. The results can be proved directly using the continuous-time optimality equations (3.4.1]).

However, for the purposes of later results, it will be useful to begin by considering the discrete-time



Chapter 3 MDP formulation 68

MDP @ obtained from ¥ via uniformisation, and prove using the method of successive approxima-

tions (Theorem [3.4.4)) that the following properties hold at all stages n € N:

oy (x5, M) — o (%, ) < s,

vy (%, M;)) = 07 (%, M;)) < max(a; — o, 0), (3.4.11)

where ¢ = 1/(1+~A) is the discount factor for ®, and a), € {0,1,..., N} is an action attaining the
maximum on the right-hand side of (3.4.5|) for the state (x, A) with n replaced by n — 1; that is, a;,
is an optimal action at state (x,A) in a finite-stage problem with n stages. These properties may

be proved by induction on n; details can be found in Appendix (p- [409). O

The next result establishes a uniform upper bound for the first-order differences v, ((x'",w)) —

vy((x,w)), applicable for all (x,w) € S, i € {1,2,..., N} and v € (0, 00).

Lemma 3.4.7. For all (x,w) € S, i€ {1,2,...,N} and vy € (0,00):

oy (6, @) = v (%)) < @ — i (3.4.12)

(n)

Proof. Again, this result may be proved on induction using the finite-stage functions v & associated

with the uniformised process ®. For details, see Appendix (p. 412). O

The next two results verify that the optimal value function v, satisfies certain conditions which are
known from the literature (in particular, [I57]) to imply the existence of an average reward optimal
stationary policy. First it will be shown, using an argument similar to that of Proposition 3 in

[157], that the differences v, ((x,w)) — v4((0,A)) are uniformly bounded above.

Lemma 3.4.8. Let 0 = (0,0, ...,0) denote the zero vector. There exists o € (0,00) and a constant

K € R such that, for all states (x,w) € S and discount rates vy € (0,79):

0 (x,0)) = v ((0,4)) < K.
Proof. This proof will proceed in stages. An outline of the proof is given below.

1. First, the CTMDP ¥ formulated in Section[3.2] will be transformed into an equivalent CTMDP
Ut which has the same class of y-discount optimal policies. The transformation will be made

by re-defining the single-sojourn reward function for the process.
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2. By considering the transformed process ¥!, it will be shown that there exists a finite subset
U of the infinite state space S such that the expected total discounted reward v, ((x,w)) for

any state (x,w) outside U is bounded above by max(y ,,)err v((X,w))-

3. Finally, an explicit upper bound will be found for maxx .)err v+((X, w)) — vy((0, A)).

Let v € (0,00) be fixed. As in the previous two lemmas, let a* = max (a1, ag, ..., an). Next, define

a function ¢,((x,w), a) for (x,w) € S and a € Ay, as follows:

y+C )
v+ 7((x,w),a)

G (%,w),0) == a” ( (3.4.13)

where 7((x,w), a) is defined as in and, as in Theorem C' is any constant satisfying
c > X+ Z;VZI cjpj. Consider a transformation of the CTMDP ¥ formulated in Section
whereby an amount (,((x,w),a) is subtracted from the reward &, ((x,w), a) earned every time the
process visits state (x,w) € S at some decision epoch and the action a € .A(XM) is chosen. Note
that ¢y ((x,w),a) is effectively a ‘lump sum’ deduction, rather than a penalty charged continuously
while the next sojourn is in progress. Let U1 denote the CTMDP formulated as in Section (with
a real-time reward formulation used, similar to ) but taking into account the new reward
structure. Referring to , the expected total discounted reward under an arbitrary policy 6,

given some initial state (x,w) € S, may be written for the CTMDP W' as follows:

ol 5((x,w)) = By | > e (&((%n wn): an) — G (X, wn), an))
n=0

(XO,WO) = (x,w)]

0 N é"n,«‘ﬁl
=Ep | > e [ T ((xn,wn), an) = Y Bi(x0n ), /0 e dt | |(x0,w0) = (x,w) | ,
_n:O 7j=1

(3.4.14)

where T, is the time of the n'" decision epoch, (x,,w,) € S is the corresponding state, a, is
the action chosen under the policy 6, 6,41 = Thi1 — Ty, is the length of the (n + 1) sojourn of

the process, (x%1); denotes the 4" component of the vector x% 7+ and the non-positive function

J,t((x,w), a) is defined for state-action pairs ((x,w),a) € S x A(x,) as follows:

a; — ((x,w),a), if w= M; for some i € {1,2,..., N},
JH((x,w), a) = !

—Cv((X, w),a), otherwise.
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By Theorem vfﬁe( (x,w)) may be obtained equivalently by considering a CTMDP with
uniformly-distributed sojourn times (these being exponentially distributed with parameter C'), but
in order for this to be a valid procedure the single-sojourn rewards must be multiplied by a factor
(v 4+ 7((x,w),a))/(y + C). By applying this procedure, one obtains the following single-sojourn
reward function RL((X, w), a) for use in the uniformised version of ¥T:

v+ 7% w),a)
v+C

Rl (o) = ) 6 (). - 6 (x.0).0)
=Ry((x,w),a) — o,

where R ((x,w), a) is the reward function obtained by applying uniformisation to the single-sojourn

rewards &, ((x,w),a) for the original process ¥. Hence, due to the equivalence of the uniformised

CTMDP proved by Theorem |3.3.3 an alternative expression for v;ry,g((x, w)) is:

Ui,@((xv w)) = Ey

> (Ry (s, ). ) — ")
n=0

(X07w0) = (x,w)]

o
S

n=0

= vy((x,w)) —a"Ey

(%0, wo0) = (x, w)] : (3.4.15)

where the expectation is now taken with respect to the random (uniformly distributed) transition
times and jump probabilities P((x,w), a, (x',w’)) for the uniformised process operating under 6.
Since, in the uniformised process, the time of the n'" decision epoch (for n > 1) is gamma-

distributed with parameters n and C, (3.4.15)) can be simplified further:

‘ YO o
oh ((6,) = vr0((x,0)) — o (1+n21/0 G el dt>
(e (Y
:v’Y’a((X’W))_a <1+n1 <7+C> )
= (1 C
= vrol(w)) < 5 > (3.4.16)

It follows from (3.4.16) that, for any two states (x,w), (x/,&) € S:

vl o((5,w)) = 0! 5((,")) = vy0((x,w)) — vy p((x,0)). (3.4.17)

In particular, since this principle applies to a y-discount optimal policy:

ol ((x,w) = ol (¥, ) = vy ((x,w)) = vy (¥, ")), (3.4.18)
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where v:g((x,w)) = supy Ui o((x,w)) for (x,w) € S. Essentially, the purpose of making the trans-

formation from ¥ to ¥ is that in the transformed process U, all of the single-sojourn rewards
(given by & ((x,w),a) — ¢y((x,w),a)) are non-positive, which can easily be seen from the fact
that &,((x,w),a) is uniformly bounded above by o* and {,((x,w),a) > a* for all (x,w) € S and
a € Axw)- This non-positivity of the rewards will be required later. The results given in [157]
(which relate to a cost minimisation problem) assume that all costs are non-negative, and as the
author observes, this assumption can be made without loss of generality since it is always possible
to make a transformation which eradicates negative costs without affecting the optimality crite-
rion of interest. Analogously, (3.4.16 implies that any policy 6 which is «-discount optimal in the

original process U must remain likewise optimal in the transformed process ¥f.

In order to proceed, some general theoretical results for CTMDPs are needed. Let g};((x, w)) denote
the expected long-run average (undiscounted) reward for the transformed process Ut under policy

6. For clarification, when average rewards are considered the single-sojourn rewards for ¥' are

given by £((x,w),a) — (((x,w),a), where £((x,w), a) is as defined in (3.2.13)) and:

. __aC
(0 w)0) = lim G ((x,w),0) = o5

By applying uniformisation, one can show that gg((x,w)) is related to gp((x,w)) (the expected

long-run average reward for the original process V) as follows:
gy ((x,w) = go((x,w)) — a*C, (3.4.19)

and thus any policy which is average reward optimal for ¥ will also be similarly optimal for Uf,
Naturally, both gg((x, w)) and v,TY »((x,w)) are non-positive since all rewards for U are non-positive.
The following result is found in [I57] (p. 251) and the proof relies upon certain results from analysis

which can be found in [I99]. It is the case that for any policy 6 and (x,w) € S :
lim inf vl ,((x,w)) > gh((x,w)). (3.4.20)
,\/\LO Y

Furthermore, let § be any stationary policy which induces an irreducible, ergodic Markov chain
on some finite set of states Sy C S with steady-state probability distribution {ms((x,w))} wes,-

Then it can be shown that for all states (x,w) € S, the following holds:

gh((x,0)) = g}, (3.4.21)
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where gg is a constant. Verification of this fact may be carried out by first noting that under the

policy 6, the following two (somewhat trivial) conditions are satisfied:

ST ol w)) (E((x,w), 6) — C((x,0),6)) > —o0, (3.4.22)

(x,w)ESy
3 TolGew) o (3.4.23)
7((x,w),0)
(x,w)ESy

where the notation ((x,w),#) denotes a state-action pair in which the action chosen is prescribed
by the policy 6. Indeed, is implied by the finiteness of Sy, while follows from the
fact that 7((x,w),a) < C for all ((x,w),a) € S X Ax). Using these properties, it can then be
shown using the arguments given in [83] (p. 326) that the continuous-time Markov chain induced

by 6 on Sy is ergodic, which in turn implies (3.4.21)) (see [I57], p. 254). From ({3.4.16|) it follows

that ’yvlﬂ((x,w)) = Yuy9((x,w)) — a*(y + C). Since a*(y + C) = o*C as v | 0, it can then

be shown easily using (3.4.19) and (3.4.20]) that, given any initial state (x,w) € S, policy 6 and

positive number €, there exists a value v; € (0, 00) such that for all v € (0,v1):
ol o((x,w)) > gf — ¢, (3.4.24)

The next part of the proof proceeds similarly to that of Proposition 3 in [I57]. Let 6 be a fixed
stationary policy which induces an ergodic, irreducible Markov chain defined on a finite set Sy C S,

so that (3.4.21)) applies for all (x,w) € S. Let the set Uy be defined as follows:

N
Up:=( (x,w) eS: — Zﬂjxj > g; —€,, (3.4.25)
7j=1

where € > 0 is arbitrary. That is, Uy is the set of states in S for which the associated holding
costs are bounded above by the non-negative quantity e — gg. Clearly, for any fixed € > 0, Uy is a
finite set. Hence, due to (3.4.24)), there exists vy € (0,00) such that ’yv;(,((x,w)) > gg — ¢ for all
(x,w) € Up and v € (0,7y). The remainder of the proof will consider an arbitrary, fixed discount

rate v € (0,70). Since Up is finite, there exists a state (x,w)* € Uy such that:
vfy((x,w)*) > vjy((x,w)) V (x,w) € Up. (3.4.26)

(Note that the optimal value function UI, is used in (|3.4.26)), as opposed to v,tﬁ.) Suppose the

transformed process W' is initialised in some initial state (x,w) ¢ Uy and follows a ~y-discount
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optimal policy 67. The claim of this proof is that, given (x,w) ¢ U, the quantity vi((x, w)) cannot

possibly exceed vjy((x, w)*), and hence the state (x,w)* referred to in (3.4.26|) must be a maximiser

of vi() over all states in S. Let the random variable Z be defined as follows:
Z :=min{n € N: (xp,wn) € Up| (x0,wp) = (x,w)} .

Hence, Z is the first decision epoch at which the system state is an element of Uy. Then, in view

of (3.4.14)), the (optimal) expected total discounted reward vl((x,w)) satisfies:

[e’s) N Snai
vl ((x,w)) = B | Y e | TH((%nywn), an) = Y B (Xfﬁ*)j/o e Mt | |(x0,w0) = (x,w)
n=0 7j=1

r/Z-1 Sns1
< By ( e (g5 —©) / e'ﬂdt+e”2vi<<x,w>*>>
0

(X07w0) = (X7w>]

- -
= Ep: <(g; - e)/o et + e_VTZvL((x,w)*)>

(Xo, wg) = (X, w)]

5| (-0 (57 ¢ ()

(x0,wo) = (x, w)] : (3.4.27)

where the inequality is due to the non-positivity of Ji((xn, Wn), an ), the definition of Uy in ((3.4.25))
and (3.4.26)). By the previous arguments, the following holds for all (x,w) € Up:
Yl ((x,w)*) = ol ((x,w)) > 30! 5(x,w) > gf — €. (3.4.28)

Hence, (3.4.27)) implies:

ol ((x,w)) < Ep; [(vvl((xw)*) (“T) + e—szv;«x,w)*))

(XO’WO) = (Xaw)]
= ol ((x,w)*). (3.4.29)

Note that in and , the assumption is made that Z is finite (and hence T’z is also
finite); however, by considering the limiting behaviour as Ty — oo, it is clear that the result also
holds when Z is infinite. Thus, due to (3.4.18), one may conclude that vy ((x,w)) < vy((x,w)*)
for all (x,w) ¢ Up. The proof of the lemma will therefore be complete if it can be shown that
there exists some constant K such that v,((x,w)*) — v4((0,A)) < K (recall that v € (0,70) is

arbitrary). This may be done by taking an approach similar to that in [I57], and arguing that
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vj,((O, A))— UJ;((X, w)*) is bounded below by the expected total (non-positive) undiscounted reward
accumulated during a sojourn from state (0,A) to (x,w)* in the process ¥ operating under the
discount-optimal policy 9:; however, in order to use this approach one must establish that this
quantity is finite. In fact, it will be simpler to take a somewhat more direct approach here and

make use of Lemmam For all j € {1,2,..., N}, let u; € Ny be defined as follows:
uj = max{n € Np : 2; = n for some x € Ug}.

Clearly, each integer u; is finite due to the finiteness of Uy. By using (3.4.18)) and also making use

of a telescoping sum, one can establish the following upper bound:

N z;-1 i—1 i—1
— Z (v7 <<0+Zw2ek+ (7 + ey, w)) — Uy <<O+Zx,§ek + je;, w>>> ,
i=1 j=0 k=1 k=1

< iu <a* - B) , (3.4.30)

where x} denotes the i’ component of the vector x associated with the state (x,w)* € Uy, and (as
previously) e; denotes the vector with i*" component equal to one and all other components equal
to zero. It should also be clarified that the event w associated with the state (0,w) in the first line of
(3.4.30)) corresponds to the event w associated with (x,w)*. The first inequality in results
from applying the result of Lemma a total of Zf\i 1 @7 times, while the second inequality is
due to the fact that 2] < w; for each facility ¢ € {1,2,..., N}. If the random event w is equal to A

then the claim of the lemma is proved, since one may then write for any (x,w) € S:

o (0,) = 0, (10.8)) < (05 0)°) = 07 (0.4 < S (7= 1), (3.431)

i=1
On the other hand, if the random event w associated with (x,w)* is equal to M; for some i €

{1,2,..., N}, then one may still apply (3.4.30) and write for any (x,w) € S:

vy ((%,w)) = 7((0,A)) < vy ((x, M;)") — v,((0, A))
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=v ((x M;)") — vy ((0, My)) + vy((0, My)) — vy((0, A))
< Zu <a* - > + v,((0, M;)) — v,((0, A)). (3.4.32)

In this case, it remains to establish a y-independent upper bound for the extra term v, ((0, M;)) —
v((0,A)). This is not a difficult task, since the only possible transition from state (0, ;) is to
(0, A) and hence the discount optimality equations in ([3.4.1]) imply:

vy((0, M;)) = o

L ((0.4)

< o 4 0,((0,A)). (3.4.33)

Note that assumes that v,((0,A)) is non-negative, which follows from the fact that in the
original (non-transformed) process ¥, v,((0, A)) is bounded below by the expected total discounted
reward v, g,((0, A)) for the policy 6y which always chooses to balk, and clearly this quantity is equal
to zero. From (3.4.33) it follows that v, ((0, M;)) — v,((0,A)) < a* for all i € {1,2,..., N}. Hence,

in view of (3.4.31)) and (3.4.32)), one can write for any state (x,w) € S:

v, ((x,w)) — v,((0,A)) < a —i—ZuZ <a - ) . (3.4.34)

The quantity on the right-hand side of may be regarded as a constant whose value depends
only on the system parameters and the choice of the policy 6 which determines the finite set Up.
Any policy which induces an ergodic, irreducible CTMC on some finite subset of S will yield, via
(3.4.34)), a valid upper bound for v ((x,w)) —v((0,A)) which applies for all (x,w) € S. The choice
of 0 (and € > 0) effectively determines the tightness of the upper bound obtained. For example, if a
‘poor’ policy 6 is chosen under which the expected long-run average reward gg for the transformed
process U is very small, then the set Uy defined in will be relatively large, and hence the
upper bound in will also be large; on the other hand, if the policy 6 is close to (or attains)
average reward optimality, then the upper bound will be smaller. Since the same choice of 6 and ¢

will work for any discount rate v € (0,79), this completes the proof of the lemma. [J

Before stating the main result of this section, one further property of v, must also be proved;
specifically, it must be shown that, given any (x,w) € S, a state-dependent lower bound can be

found for v, ((x,w)) — v4((0,A)) which holds for any discount rate v € (0, 00).
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Lemma 3.4.9. For every state (x,w) € S, there exists a non-negative value f((x,w)) < oo such

that for all discount rates v € (0,00), the following holds:
vy ((x,w)) = v5((0,A)) = —f((x,w)). (3.4.35)

Proof. Let v € (0,00) be fixed. Consider the same transformation as described in the proof of
Lemma whereby an amount (,((x,w),a) = a*(y + C)/(y + 7((x,w), a)) is deducted from
the reward &, ((x,w),a) earned at each decision epoch. Given that a* = max(aq,as,...,an) and
cC >+ Zfil c;ilbi, this ensures that each single-sojourn reward is non-positive and hence the
expected total discounted reward Ui,é‘((x’ w)) for the transformed process ¥ is non-positive under
any policy 6 and initial state (x,w) € S. It will be convenient to begin by proving the result
for states (0, M;), where i € {1,2,..., N} is arbitrary. Using the non-positivity of U%((O,A)), the
discount optimality equations for the transformed process U1 imply:

T((O7Mi)70) T

3+ 7((0,a1),0) 1)

oo [2EC A
—ai—a (7+A>+7+A”’Y((O’A))

U;((Oa Mz)) = 5’7((0a Mz)a 0) - C’Y((Oa Ml)? 0) +

> oy — a:C +01((0,A))
= 5((0, Mi)a 0) - C((Ov Mi)v 0) + U,er(((), A))v (3'4'36)

where £((x,w), a) is the undiscounted reward function defined in (3.2.13) and (as in Lemma |3.4.8])
(((x,w),a) = a*C/7((x,w), a) for (x,w) € S. Hence, (3.4.36)) implies:

vL((0, M;)) = 01((0,A)) > £((0, M), 0) = ¢((0, M;), 0) = —f((0, M;)),

so a negative lower bound for Uiy((O, M;)) — UJLY((O,A)) has been found, which is independent of ~
as required. Due to the property , the same lower bound also applies for v, ((0,M;)) —
v4((0,A)). The rest of this proof will use induction over the state space S. Consider an arbitrary
state (x,w) € S, and suppose (as an inductive assumption) that a non-negative value f((y,w’))
satisfying has been found for all states (y,w’) € S such that the componentwise inequality
y < x holds (i.e. y; < z; for all i € {1,2,..., N}, with strict inequality in at least one component).

The claim has been shown to be true when x = 0°* for any i € {1,2,..., N}, due to the fact that

0 is the only vector strictly smaller than 0t in the partial order. It will then be sufficient to show
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that there exists a y-independent lower bound for v, ((x,w)) — v,((0,A)). First, suppose one has

w = A. The optimality equations ({3.4.1]) imply that for any action a € {0,1,..., N}:

U;((X’ A)) > g'Y((Xa A)7 a) - C’Y((Xa A)v a) + L’Y((Xa A)v a) Z U((X7 A)v a, (X,a w/)) ’UL((X/v w/))'
e (3.4.37)

Hence, by considering the action a = 0 (i.e. balking) in (3.4.37):
’UJ;((X, A)) > €’Y(<X7 A)7 0) - C’Y((Xa A)? O)

Xol((x,4)) -, 3250 min(ey, ¢ (67, M)
v+ 7((x,A),0) v+ 7((x,A),0)

> 5((X7A)7 0) - C((Xa A)7 O)

ol((x,4)) | o0 min(aj, )l (77, M;))
7((x, A),0) 7((x, A),0) ’

(3.4.38)

where the second inequality is due to the non-positivity of vi() and the fact that &,((x,A),0) —

G((x,A),0) > &((x,A),0) — ¢((x,A),0) which may be easily verified using (3.2.18)) and (3.4.13).
Hence, using the fact that 7((x,A),0) = X + Eévzl min(x;, ¢;)p;:

St min(z, ¢)pvl (5, 4) > ¢((x,A),0) — ¢((x, A), 0)

(e .0 310 min(a. eyl (6~ M) "
- 7((x, 1), 0) ' (3.4.39)
Then, by subtracting Zjvzl min(z;, cj),uij((O, A))/7((x,A),0) from both sides of 1' and ap-
plying the inductive assumption to the differences vl( (xI7, M;)) — vi((O, A)):
o0 min(z, ¢ (vi((x,AD - vl((OA))) > £((x,A),0) — ¢((x,A),0)
,A),0 : .
m((x,4),0) g min(ay, ¢y f (7 ,Mj))‘ (3.4.40)

7((x,A),0)
B . . . N . .
y multiplying both sides of (3.4.40) by 7((x,A),0)/(>_;2; min(z;, ¢;)u;), one obtains:

7((x,A),0) (£((x,A),0) = (((x,A),0)) = L, min(iﬂjaCj)Mjf((Xj_,Mj))‘

N .
Zj:l mln(xj, cj)uj

’UTY((X, A)) —’UTY((O, A)) =
(3.4.41)

This implies that one can define f((x,A)) as follows:

7((x,A),0) (C((x,4),0) = £((x,A),0)) + 77, min(ay, ¢ s f (%7, M)

N -
Zj:l min(z;, ¢j) 1y

f(x,A)) = . (3.4.42)
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with the result that vy((x A)) — v,y((O A)) is bounded below by —f((x,A)). Note that f((x,A))
is non-negative since (((x,A),0) > £((x,A),0) and each value f((x?~, M;)) is non-negative by the
inductive assumption. Again, due to (8.4.17)), —f((x,A)) will also suffice as a lower bound for the

difference v, ((x,A)) — v,((0, A)) associated with the non-transformed process V.

It remains to consider the case where w = M; for some i € {1,2,...,N}. However, in this case
the only possible action is a = 0, and therefore one may apply exactly the same arguments as
in the case w = A; that is, the inequalities — remain valid with (x,A) replaced by
(x, M;). In conclusion, for any state (x,w) € S it is possible to find a state-dependent lower bound
—f((x,w)) satisfying which is independent of the discount rate -, provided that the same
can be said for any state (y,w’) € S with y < x in a partial ordering sense. Moreover, suitable
values f((x,w)) can be obtained explicitly using (which remains valid with A replaced by
w), by setting f((0,A)) =0 and f((0, M;)) = ¢((0, M;),0) — £((0, M;),0) for each i € {1,2,..., N}

and then using recursive substitution. This completes the proof of the lemma. [

The final result of this section states that an average reward optimal policy for the continuous-time

process ¥ may be found by restricting attention to stationary policies.

* Theorem 3.4.10. There exists a stationary policy for ¥ which is average reward optimal. More-
over, there exists a constant g* satisfying g* = lim, o yvy((x,w)) for all (x,w) € S and a function
h:S — R with —f((x,w)) < h((x,w)) < K for all (x,w) € S (where K and f((x,w)) are as stated
in Lemmas|3.4.8 and |3.4.9 respectively) such that for all (x,w) € S:

h((x,w)) = max {f((x,w),a) + Z ’(X/’w/))h((x/’w/))}

€A (x ) ((x,w), a) W) a)  (x'.whes
(3.4.43)

Proof. The proof relies upon showing that W satisfies a set of conditions which have been shown
by Sennott [I57] to be sufficient for the existence of a stationary average reward optimal policy
in a general Semi-Markov Decision Process (SMDP). Sennott’s paper concerns the minimisation
of expected long-run average costs, assuming that costs are bounded below (but not necessarily
above). After translation to the equivalent problem of maximising long-run average rewards (with

rewards bounded above), Sennott’s conditions may be stated as follows:

1. The single-sojourn rewards are bounded above (but not necessarily bounded below); that is,
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there exists R € R such that &, ((x,w),a) < R for all ((x,w),a) €S X A(x)-
2. There exist € > 0 and ¢y > 0 such that e~ 7((«):®) > ¢ for all ((x,w),a) € S x Ax,w)-
3. For all states (x,w) € S, it is the case that v, ((x,w)) > —o0.
4. There exists H € R such that 1/7((x,w),a) < H for all ((x,w),a) € S x A -

5. There exists 79 € (0,00) and a constant K € R such that, for all states (x,w) € S and
discount rates v € (0,70), vy ((x,w)) —v,((0,A)) < K.

6. For every state (x,w) € S, there exists a non-negative value f((x,w)) < oo such that for all

discount rates v € (0,00), v((x,w)) —vy((0,A)) > —f((x,w)).

7. Forevery (x,w) € S, and a € A, it is the case that 3 ,)es 0((%,w), a, (x',w')) f((x', "))

< 00, where f((x/,w’)) is as stated in the previous condition.

Conditions (1), (2) and (3) have already been verified in the proof of Theorem The fact
that condition (4) holds is immediate by choosing H = 1/A. Conditions (5) and (6) are implied
by the results of Lemmas and respectively. Finally, condition (7) follows by noting that
the number of states (x/,w’) that can be reached in a single transition from an arbitrary state
(x,w) € S is finite and each value f((x',w’)) is finite, regardless of the action a € A, chosen.

Details of the rest of the proof may be found in [I57] (see also [141], p. 559). O

The existence of a stationary average reward optimal policy for the continuous-time MDP W justifies
the approach of uniformising the process as described by Theorem and then searching for an
average reward optimal policy for the discrete-time MDP &, since any policy which maximises
the expected long-run average reward among stationary policies in ® must also do so in ¥, and
therefore (by Theorem such a policy must be average reward optimal among all admissible
policies in ¥. In addition, restricting attention to stationary policies will enable a simplification of

the state space to be made. Further details will be given in the next section.
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3.5 Alternative MDP formulations

In this section and onwards, attention will be focused on the discrete-time MDP which is obtained
by uniformising (and discretising) the continuous-time MDP ¥ formulated in Section In later
chapters, it will simplify matters considerably to use an MDP formulation in which the system
state at any discrete time epoch is simply an N-vector x = (z1,z2,...,zN), as opposed to a pair
(x,w) as in previous sections. As discussed in Section this simplification of the state space is
justified if one wishes to consider only stationary policies; indeed, the previous formulation was used
only in order to accommodate time-dependent (non-stationary) policies. The results in Section
have established that it is possible to find both an average reward optimal policy and a 7-discount
optimal policy for ¥ (given any discount rate v € (0,00)) by considering only stationary policies.
This is an important fact, since if it were not known to be true then (in view of the fact that
Theorem applies specifically to stationary policies) one would not be able to rule out the
possibility of a non-stationary policy being strictly superior to any stationary policy in the process
W, but being either sub-optimal or inadmissible in the discretised process ®, and therefore the

application of uniformisation would not have rigorous theoretical justification.

In order to avoid unnecessarily lengthy discussions, the approach taken in this section will be
to simply introduce a new MDP formulation and then prove that it is equivalent (with respect
to expected long-run average rewards earned by stationary policies) to the previous discrete-time
MDP formulation ® given in —, as opposed to explaining the rationale of the new
formulation in detail. However, some explanatory comments will be given following the equivalence
proof. The previous MDP formulation inherited the same state space description as ¥, but the

new formulation will involve a simplified state space. Details are given below.

Simplified discrete-time MDP formulation

e The state space S and action sets Ax (for x € S) are given by:

S = {(.%‘1,.%’2, ...,.%'N) 1 T1,%2,..., TN € No}, (3.5.1)

Ay =A={0,1,2,..,N} Vxes. (3.5.2)
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e The one-step transition probabilities p(x,a,y) for x,y € S and a € A are given by:

AA, if a = 7 for some
ic€{l,2,..,N}and y = x'*,

min(z;, ¢;) i, if y =x'~

p(x,a,y) = for some i € {1,2,..., N},

N
1—1I(a #0)AA — Zmin(mi,ci)uiA, ify =x,
i=1

0, otherwise,
(3.5.3)

where A € (O, A+ Zfil Ci,ui)_l} represents the discrete time step size and [ is the indicator
function; that is, I(a # 0) takes a value of 1 if a # 0 and 0 otherwise.

e The reward function r(x) is independent of the action a, and is given for x € S by:

'MZ

(almln(ml,cl) wi — Bix l) (3.5.4)

r(x) =

i=1

: :\)\Al(a —2)
/\Al(a = N)
AAI(a =1) @O — MAI(a #0)

—min(z;, ¢;) A
min(xy, 1)1 A
mm(:z:N,cN UNA

111 .’132,
Figure 3.5: Transition probabilities (marked next to arrows) from an arbitrary state x € S in T.

The formulation in (3.5.1)-(3.5.4) will be denoted by Y, whereas ® denotes the formulation given
in (3.3.6)-(3.3.12)). The next lemma establishes an equivalence between the two.
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Lemma 3.5.1. Suppose the process ® operates under a stationary policy 8 which induces an ergodic,
irreducible Markov chain on some set of states Sg C S, with S as defined in . Assume also
that the stationary distribution {me((X,w))}xw)es erists under 6, where To((x,w)) is the steady-
state probability of the process ® being in state (x,w) € S and 3 ) mo((x,w)) = 1. For each

N-vector x = (1, %2, ...,xN), let the ‘aggregate set” Hx be defined as follows:
Hy = Fx UGy,
where the disjoint sets Fx and Gx are given by:

Fr={(y,w)€S:y= x'™ for somei € {1,2,...,N}, w=A and §((y,w)) = i},
Gy = {(y,w) €S :y=xand w= M, for some i€ {1,2, ...,N}}, (3.5.5)

where 0((y,w)) is the action chosen by 0 at state (y,w) € S. Let (Hp, Hy,...) denote the sequence
of aggregate states visited by the process ® under the stationary policy described above. Then the

sequence (Hy, H1,...) is a Markov chain. That is, for x € S and n > 0:
P(Hy,41=Hx | Hy,Hy—1...,H1,Hy) = P(Hp41 = Hx | Hy,) .

Furthermore, suppose the ‘simplified’ process Y operates under a stationary policy whereby the
action chosen at state x € S is equal to the action chosen by 0 at state (x,A) € S in the process
O, and let {mp(x)}xes denote the resulting stationary distribution for Y. Then:

mo(x) = > mol(y,w)) =: mo(Hx) VxeSs. (3.5.6)
(y,w)EHx

That is, the processes ® and T have analogous steady-state distributions.

Proof. The proof can be accomplished using partitioning arguments. The details are somewhat

laborious, and therefore they have been placed in Appendix (page [416)).

Using the result of Lemma [3.5.1] it is possible to establish an equivalence between the processes ®

and T with respect to expected long-run average rewards under a stationary policy.

Lemma 3.5.2. Suppose the processes ® and Y operate in the same manner as described in Lemma
that is, ® follows a stationary policy 0 which induces an ergodic, irreducible Markov chain
with stationary distribution {me((x,w))}xw)es, and T follows a policy whereby the action chosen
at any state x € S is equal to the action chosen by the policy 0 at state (x,A) € S in the process

®. Then the processes ® and Y earn the same expected long-run average reward.
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Proof. Tt will be convenient to consider the rewards for service «; and holding costs (; separately.
The fact that the two processes incur the same expected long-run average holding costs per unit
time can be shown very easily, since implies that if the state (x,,wy) of process ® at
some epoch of time n > 0 is any state belonging to the aggregate set Hy (for some x € S), then
the ‘negative portion’ of the reward R((xy,wn), 0((Xn,wr))) earned by ® is given by — Z;VZI Bjz;.
Hence, the expected long-run average holding costs incurred by ® are given by:

N
> _mo(Hx) Y Bjwj. (3.5.7)
j=1

xeS

On the other hand, (3.5.4)) implies that the long-run average holding costs for YT are:

N
> mo(x) Z Bjxj. (3.5.8)

xeS
The fact that and are equal then follows by the equivalence of the stationary distri-
butions for the two processes, established by Lemma The problem of verifying that the two
processes earn the same long-run average rewards for service completions is slightly more difficult.
Consider an arbitrary facility ¢ € {1,2,..., N} and vector x € S, and then consider the rate per unit
time at which service completions occur at facility ¢ and cause the process ® to enter some state

(Xp,wn) belonging to the aggregate set Hx. This steady-state rate is given by:

7o(Hy) lim P(wn — M,

n—oo

(X, wn) € Hx> = mo((x, M) (3.5.9)

Consider the possible ways in which one might have (x,,w,) = (x,M;) at some time step n > 1.
By definition of Hy, it is clear that this can only occur if the state of the process ® belongs to
either Hyi+ or Hx at time step n — 1. If (x,-1,wn—1) € Hyit+, then by — there
is a probability min(z’", ¢;)u;A that one will have (x,,wn) = (X, M;); on the other hand, if
(Xp—1,wn—1) € Hx then it can be verified using - that a transition to (x,M;) is
only possible if (x,—1,wn—1) = (X, M;), in which case the relevant probability is the ‘self-transition’

probability P((x, M;),0, (x,M;)) =1— AA — Z;Vﬂ min(z;, ¢;)p;A. Hence:

P<(xn,wn) = (X,MZ‘)> = min(xéﬂci)p,,;AP((xn_l,wn_l) c Hxi+)

N
+1—AA-— Zmin(xj, Cj)/ijA P((Xn—lawn—l) = (X, M,))
j=1

(3.5.10)
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By then taking limits as n — oo, re-arranging and cancelling out A:
e
A+ ijl min(x;, ¢j) 1)

Let R ((x,w),a) be the ‘positive portion’ of the single-step reward R((x,w),a) defined in ([3.3.11]).

7o (Hyi+ ) min(a]

mo((x, Mi)) =

That is, for state-action pairs ((x,w),a) € S X A(x):
N
a; | A+ Zmin(a:j,cj)uj , ifw= M, for some i € {1,2,..., N},
R+((X7w>va) = J=1

0, otherwise.

Thus, by the previous results, the expected long-run average rate at which the process ® earns

positive rewards as a result of service completions at facility ¢ is given by:

Z 779((X7 Mi))R+((X7 Mi)v 0)

xeS
. i\, N
_ Z Hiv) min(x)", ¢;) i o [ At Zmin(xj,cj)uj
xes AT Z] p min(zj, ¢j)p; j=1
= Zﬂ’g i+ oy min(zh ) . (3.5.11)
xeS

On the other hand, (3.5.4]) implies that the expected long-run average rewards for the process T

attributable to service completions at facility ¢ are given by:
Z o (X)), min(x;, ¢; ) ;- (3.5.12)
x€S
Note that the infinite summations >, ¢ mo(Hyi+ ) min(2i", ¢;) and Y, o mo(Hyx) min(z;, ¢;) dif-
fer only in that the first summation excludes terms of the form my(Hy) min(z;,c;) where the it
component of x is zero, but these terms are equal to zero. Hence, due to :

E 7o (Hyit+ )oy; min(z Z L Ci i = E 7o (Hx )y, min(z;, ¢; ) i = E mo(x) vy min(x;, ¢;) ;.
xXES xXES xXES

Therefore (3.5.11) and (3.5.12) are equal. Since these arguments can be repeated for any facility

i€ {1,2,..., N}, it follows that the two processes ® and Y earn the same expected long-run average
rewards as a result of service completions. Since their equivalence with respect to expected long-run

average holding costs has already been established, this completes the proof. [J
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Obviously, in the discretised processes ® and T, arrivals and service completions can only occur at
discrete epochs of time n = 0, 1,2, etc. An interesting feature of the ‘simplified” MDP formulation
T described in — is that rewards are applied ‘retrospectively’, in the sense that at any
time step n, the reward r(x,) is based on the service completion rates and holding costs incurred
by the system over the previous time interval [n — 1, n] as opposed to the nezt interval [n,n+1]. It
is this characteristic which enables the single-step reward r(x,) to be determined independently of
the action a,, chosen at time n. For example, consider a scenario in which a new customer arrives
at time n > 0 when the system is in state x € S, and joins some facility i € {1,2,...,N}. The
rate at which holding costs are incurred at facility ¢ immediately prior to time n is §;x;, whereas
the corresponding rate immediately after time n is 3;(x; + 1). The reward r(x) earned at time n
incorporates the former quantity, rather than the latter. Similarly, the reward r(x) also includes
a term o; min(z;, ¢;)u; (representing the rate of service completions at facility ¢), which takes no

account of the new customer who arrives and joins facility i at the n* time step.

The retrospective nature of the reward function r(x) offers some advantages, not least of which is
the fact that its lack of explicit dependence on actions chosen creates the appearance of greater
simplicity (obviously, the actions chosen do affect the rewards indirectly, since they determine the
transition probabilities for the process). However, some trivialities can occur when one considers
finite time horizon problems, since the action chosen by the decision-maker with only one stage of
the process remaining will have no bearing on the total reward earned (assuming that there are no
terminal rewards earned when the horizon is reached); as such, the concept of an ‘optimal one-stage
policy’ becomes somewhat meaningless. This is not a major issue, and is relevant to the results in
the thesis only to the extent that it will sometimes be appropriate to ignore the case n = 1 when

proving properties of optimal policies over a finite number of stages n € N.

In the remainder of this section it will be shown that the reward function r(x) defined in ([3.5.4))
may be replaced with a different function 7(x,a) (to be defined shortly), without affecting the
expected long-run average reward earned by the process T under a fixed stationary policy. The
interchangeability of the two functions r(x) and 7(x, a) will be extremely useful for proving various
results later in this thesis. Suppose a new customer joins facility ¢ € {1,2,..., N} under the state

x € S. Recalling (3.2.14])-(3.2.15)), the customer’s individual expected net reward w;(x;), taking into
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account their expected waiting costs and the value of service «;, is given by:

o — &, if ; < Ci,
wilz;) = i (3.5.13)
() = 5.
o — M’ if 2; > ¢;.

Cifi
The transition probabilities for T imply that for any i € {1,2,..., N}, the process makes a
transition from state x to x’* with probability AA if action a = i is chosen. There is an implicit
assumption here that an action is chosen by the decision-maker at every discrete time step. However,
this action only affects the state-evolution of the process if a customer arrives at the time step in
question (which occurs with probability AA); if no arrival occurs at a particular time step, then
the action chosen at that step has no effect on the state transitions of the system. This echoes the
discussion in Section in which it was observed that when a simplified state space formulation
such as is used, the decision-maker is effectively required to make an anticipative decision
at each decision epoch, without any knowledge of when the next arrival will occur. In this section,
a discrete-time formulation is being considered rather than a continuous-time formulation, which
effectively provides the decision-maker with extra opportunities to make decisions (since the effect
of uniformisation is to increase the frequency of decision epochs by introducing self-transitions).
As such, the decision-maker is not required to ‘look as far ahead’ as in the continuous-time case,

but nevertheless the principle of making anticipative decisions remains the same.

To use an analogy, one may imagine the choice of an action in the discretised process T as being
similar to the setting of points on a railway track. The switching of points on a track has no effect
on railway traffic until the next train passes through. Similarly, in the process Y, the decision-
maker chooses an action at a particular time step which determines the route of any customer to

arrive at that step, but if no customer arrives then the decision made has no effect.

Although the transition probabilities for T are defined in such a way that actions may not necessarily
have consequences, the new reward function #(-) will be defined in such a way that the reward
7(Xp, an) earned at a particular time step n > 0 always depends on the action chosen, regardless of
whether or not an arrival occurs at time n. This will be achieved by setting the reward 7(x,, a,)
equal to the expected total of individuals’ expected net rewards at time step n. Obviously, the

phrase “expected total of individuals’ expected net rewards” is somewhat unwieldy; fortunately, it
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is required here only for the purpose of motivating the definition of 7(x,a), and will not need to
be used again. Suppose the system is in some state x € S at a particular time step and an action
a € A is chosen. The number of customer arrivals at that step will either be one or zero, with
probabilities AA and 1 — AA respectively. If a customer arrives, then their individual expected net
reward is equal to w;(x;) if @ =i for some 7 € {1,2,..., N} and zero otherwise. Hence, referring to

(13.5.13)), the expected total of individuals’ expected net rewards is simply given by:

.
AA (ai — Bl) , if a =i for some i € {1,2,..., N} and x; < ¢,
203
AA (ai - m“) , ifa=ifor some i€ {1,2,...., N} and x; > ¢, (3.5.14)
Cilli
0, otherwise.

If (3.5.14]) was used as the definition for #(x, a), then the formula for the expected long-run average
reward in would yield the average reward per discrete time step, as opposed to the average
reward per unit time. This minor problem can be resolved by simply dividing by A in (3.5.14]
(recall that a similar adjustment was made to the reward function R((x,w),a) for the process @,

defined in (3.3.11])). Accordingly, the new reward function #(x,a) is given by:

A(ai—ﬁi), if a =1 for some i € {1,2,...,N} and z; < ¢;,
g
P = 3 ) ].
7(x, ) A (ai - MH) , ifa=ifor some i€ {1,2,..., N} and x; > ¢, (3.5.15)
Cilbi
0, otherwise.

It is important to emphasise once again that when the reward formulation is used for T, a
reward 7(x,a) is earned for choosing a € A at state x € S, regardless of whether or not an arrival
occurs. Although this may result in the system earning ‘fictitious’ rewards based on the expected
individual rewards of customers who do not arrive, the mathematical validity of this formulation

is ensured by the fact that it is based on an expectation, as explained previously.

In fact, it is possible to define the rewards in the discretised process so that they are associated with
transitions between states. One may define 7(x,a,y) as the (anticipatory) reward for transferring

from state x € S to y € S, given that action a € A is chosen. In this case, in order to obtain an
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equivalence with (3.5.15)), it is appropriate to define 7(x, a,y) as follows:

w;(x;), ifa=1iforsomeie€ {1,2,..,N} and y = x'*,
P(x,a,y) =
0, otherwise,

where w;(x;) is as defined in (3.5.13). The equivalence with (3.5.15)) may be easily verified; indeed,

the expected reward for choosing facility ¢ at state x is then given by:

Z p(X7 a, y) f(X, a, y) = )‘sz(xl)7
yES

which corresponds with the (fixed) reward for choosing facility i at state x in . One might
suggest that the 7(x,a,y) formulation is somewhat more natural, since it enables rewards to be
earned only at the times at which customers arrive; however, the 7(x,a) formulation is clearly
simpler from a notational point of view. In later chapters it will occasionally prove useful to
switch between the real-time and anticipatory reward functions r(x) and #(x, a), but it will not be

necessary to use any transition-based reward functions of the form #(x,a,y).

The reward formulations r(x) and 7(x,a) in (3.5.4) and (3.5.15) respectively are both logical for

the process T, and their relationship bears analogy to the relationship between the continuous-

time reward formulations £((x,w),a) and &((x,w),a) in (3.2.13) and (3.2.16). Specifically, (3.5.4)

is based on the real-time holding costs and rewards incurred during the system’s evolution, while
(3.5.15)) is based on an unbiased estimate of each arriving customer’s contribution to the aggregate
net reward. Using the same terminology as in Section the formulation will be referred
to as the real-time reward formulation, while its counterpart will be referred to as the
anticipatory formulation. The next result establishes an equivalence between the two formulations

which, as mentioned earlier, will be of tremendous use throughout this thesis.

Theorem 3.5.3. Assume the process Y operates under a stationary policy 0. Let go(x,r) and
go(x,7) denote the expected long-run average rewards under the reward formulations r(x) and #(x, a)

respectively, given that the policy 0 is followed and the initial state is x € S. Then:

go(x,7) = go(x,7), (3.5.16)

That is, the average reward under 0 is the same under either reward formulation.
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Proof. Let it be assumed that the policy 6 induces an irreducible, ergodic Markov chain with
stationary distribution {my(x)}xes, where mg(x) is the steady state probability of being in state

x € Sand ) gmp(x) = 1. If this is not the case, then the system is unstable and both quantities
in (3.5.16|) are (negatively) infinite. Hence, ggo(x,r) and gg(x,7) are given by:

go(x,1) = Zﬂg(x)r(x),
go(x,7) =Y me(x) 7 (x,0(x)),

where 6(x) denotes the action chosen by 6 under state x. (Recall that r, unlike 7, is independent
of the action chosen.) For each x € S, the steady-state probability mp(x) is the same under either
reward formulation since the policy @ is fixed. The objective is to show:

D me(x)r(x) = > mo(x) 7 (x,0(x)).

x€eSs xeS
The state space S may be partitioned into disjoint subsets. For each facility i € {1,2,.., N}, let
S; denote the set of states at which the action chosen (under the policy 6) is to join i. Then

S; = 5;— US4, where S;_ and S;; are defined in the following way:
Sio={x€8:0(x)=iandz <c},
Sit = {X €S:0(x)=1and x; > ci}.

Also, let Sp denote the set of states at which the action chosen under 6 is to balk. Now let gg(x, )

and gg(x,7) be divided into ‘positive’ and ‘negative’ constituents as follows:

N
g5 (5,7) = > > mp(x) min(zi, )i,

xeS =1

N
Gp (x,7) == Y “mp(x)Bimi, (3.5.17)

x€eS i=1

N
gp (X, 7) = /\ZZM(X)O@, (3.5.18)

i=1x€eS;

N

gy (%, 7) := =\ > we(x)iz + ) w@(x)M . (3.5.19)

CiLbs
=1 XES,L', XES/H, l/’L’L
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By referring to (3.5.4) and (3.5.15), it can be checked that go(x,r) = g;“(x, r) + gy (x,7) and

go(x,7) = g (x,7) + g, (x,7). It will be sufficient to show that g, (x,7) = g, (x,7) and g, (x,7) =
gy (x,7). Let S;j € S; (for k = 0,1,2,...) be the set of states at which the action chosen under ¢

is to join facility ¢, given that there are k customers present at ¢. That is:
Sik:={x€S:0(x)=1iandz; =k}.

Using the detailed balance equations for ergodic Markov chains under steady state conditions (see
[I71] p. 148) it follows that for every facility ¢ and k > 0, the ‘rate of flow’ exiting the class of
states in S with x; < k must be equal to the rate of flow entering this class, hence:
A me(x)= > me(x)min(z;, ;)i (3.5.20)
XESi,k xeS
Ii:k’-i-l
Summing over all k£ € Ny, the following relationship is obtained:
A Z mo(x) = Z mo(X) min(z;, ¢;) i, (3.5.21)
xXES; xES
for i € {1,2,..., N}. The physical interpretation of (3.5.21)) is that, under steady state conditions,
the rate at which customers join facility ¢ is equal to the rate at which service completions occur

at 7. Multiplying both sides of (3.5.21]) by «; and summing over i € {1,2, ..., N} gives:

N N
)‘Z Z 7T9(X>Oéz’ = Z Zﬂa(x) min(a:,;,cz-)ozilul-7

i=1 x€S; i=1 xeS
which states that g, (x,7) = g, (x,7) as required. It remains to show that g, (x,7) = g, (x,7). In
(3.5.20) (which holds for all k € N and i € {1,2,.., N}), putting k = ¢; yields:

A Z mo(x) = Z o (X)C;fi- (3.5.22)
X€Si ;cciezscﬁl

Suppose both sides of are multiplied by ¢; + 1. Since the sum on the left-hand side is over
x € S; ¢, and the sum on the right-hand side is over states with x; = ¢; + 1, this is equivalent to
multiplying each summand on the left-hand side by z; + 1 and each summand on the right-hand
side by z;. In addition, multiplying both sides by f;/(c;u;) yields:

A Y w0 D S B (3.5.23)

Ci g xeS
xr;=c;+1
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Similar expressions result from putting k = ¢; + 1, ¢; + 2 etc. Recall that UZOZCZ Sik = Sit by
definition. Hence, summing over all k > ¢; in (3.5.23) gives:
i (i + 1)
A _ i T 3.5.24
> w2 - S s w520
XESZ+ XES
zi>ci+1
Note also that multiplying both sides of (3.5.20) by £;/u; and summing over k € {1,2,...,¢; — 1}
(and also recalling that Uzi;ol Sik = Si—) gives:

A mp(x) = = > mp(x) B (3.5.25)

XES;_ x€eS
z;<¢;

Hence, from (3.5.24]) and (3.5.25) the following is obtained:

A Z 779 Bz + Z 770 xz +1 2779 /Bzxz

XES;_ XES; 1 Citki x€eSs
Summing over i € {1,2,..., N} gives g, (x,7) = g, (x,7) as required. It has already been shown

that g, (x,7) = g, (x,7), so this completes the proof that go(x,7) = go(x,r). O

It follows from Theorem that any stationary policy which maximises the expected long-run
average reward for Y when the real-time reward formulation (3.5.4)) is used must also do so when
the anticipatory formulation ([3.5.15]) is adopted instead. Both formulations offer certain practical

advantages, and (as stated earlier) both will be relied upon to prove later results.

As a further point, in Theorem it was proved that g, (x,7) = g (x,7) (with g, (x,r) and
gy (x,7) as defined in (3.5.19)), and similarly g, (x,7) = g, (x,7). These facts, together with the

fact that go(x,7) = go(x,r), make it possible to ‘mix’ the two formulations by noting:

gG(Xa T) = 99(X> 73) = g;'(x, T) + 99_ (X7 72) = ge_ (X> ’I”) + g;_(X, 72)

This relationship enables ‘hybrid’ reward functions to be created using the ‘positive’ and ‘negative’
components of r and 7. For example, by taking the positive component of 7#(x,a) and the negative

component of r(x), a new reward function 7(x,a) may be defined as follows:

N
)\041—25]'%']', if a =i for some i € {1,2,..., N},

Fx,a)=<{ n 77 (3.5.26)
—Zﬁjxj, otherwise.
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The arguments in the proof of Theorem m show that the average reward gg(x,7) under the
new ‘hybrid’ function 7 is equal to both gyp(x,7) and gg(x,7); that is, the three reward functions
r, 7 and 7 can be used interchangeably. It is somewhat interesting to note that the ‘real-time’
reward function r in has no explicit dependence on A, while the ‘hybrid’ reward function
7 in has no explicit dependence on any of the service rates u; or service capacities ¢;. Of
course, there is an implicit dependence on these parameters due to the detailed balance equations

for Markov chains, which imply that the steady-state relationship (3.5.21)) holds.

Much of the work in this chapter so far has been concerned with presenting and comparing dif-
ferent CTMDP and MDP formulations. Comparisons have been made between continuous-time
and discrete-time formulations, the two state space formulations and , and different
reward formulations such as and (or, in the CTMDP case, (3.2.13]) and (3.2.16).

Throughout the vast majority of the remainder of this thesis, attention will be restricted to the
‘simplified’ discrete-time MDP Y, with the two reward formulations r(x) and 7(x, a) being inter-
changed at various points. However, one should not lose sight of the fact that the queueing system
described in Section [3.1is a continuous-time system; essentially, the discrete-time MDP Y is simply

a vehicle through which analysis of the continuous-time system can be performed.

Broadly speaking, the problems of interest in later chapters will involve either the analysis of certain
stationary policies, or the identification and characterisation of average reward optimal policies. It
is considered self-evident that the continuous-time MDP ¥ formulated in Section B.2]is an accurate
mathematical model for the real-world process described in Section As such, identifying an
optimal control policy for this real-world process should be equivalent to finding an optimal policy
for the process V. The fact that this task may be accomplished via analysis of the discrete-time

MDP T may be argued by citing the main results of this chapter so far:

e Any policy 8* which is average reward optimal among all stationary policies for the process
T under the anticipatory reward formulation 7(x,a) must also be likewise optimal under the

real-time formulation 7(x), and vice versa. This is due to Theorem [3.5.3]

e If * maximises the average reward among stationary policies in T then, by Lemma [3.5.2
it must also do so in ®, the MDP formulated in Section (with a more complicated state

space representation). This assumes that actions are mapped so that the action chosen at
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state (x,A) € S in ® matches the action chosen at state x € S in T by 6*.

o If 0% is average reward optimal among stationary policies in ® then it must also be average
reward optimal among stationary policies in the continuous-time process ¥. This is due to

Theorem [3.3.3] noting that ® is obtained directly from ¥ via uniformisation.

e If 6" maximises the average reward among stationary policies in ¥ then, by Theorem [3.4.10

it must also maximise average reward among all admissible policies in V.

Thus, a chain of arguments can be used to show that optimising the average reward over stationary
policies in YT (using either reward formulation) is equivalent to optimising the average reward over
the (much larger) class of all admissible policies in W. If one only wishes to investigate the properties
of a fixed stationary policy (or compare certain stationary policies), then the equivalence between

T and ¥ is much easier to argue; this requires only Lemma [3.5.2| and Theorem [3.3.3

The next section will provide a formal classification for admissible policies in an MDP.

3.6 Decision rules and policies

So far, the term policy has been used in a somewhat informal manner to refer to the decision-
making scheme used by the system controller in a CTMDP or MDP. It is important to provide
a proper definition for this term, and also the related concept of a decision rule. As mentioned
in Section [3.2] it is generally assumed that the rewards and transition rates are stationary, and
have no dependence on the time index (i.e. the amount of time for which the process has been
running); however, there is not necessarily any similar assumption for the decision-making criteria
used by the system controller. In fact, the action chosen when the system is in a particular state
may depend not only on the state itself, but also on the time index and the entire history of states
visited and actions chosen up to that point. Furthermore, an action may be chosen according to a

random probability distribution as opposed to being selected deterministically.

This thesis will adopt the classification of decision rules and policies proposed by Puterman [141]
(p. 533), with one exception: a stationary policy (see Definition |3.3.2)) will always be assumed to

be non-randomised. By contrast, Puterman allows stationary policies to be either randomised or
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deterministic. The classification here will be given in the context of a general discrete-time MDP
(see Definition , but the corresponding classification for a CTMDP would be analogous. As
discussed in the previous section, attention will generally be restricted to discrete-time MDPs from

this point onwards, so the continuous-time classification is somewhat less relevant.

Suppose an MDP is initialised in some state xg € S, and an action ag € Ax is chosen. The history

of the process up to the n decision epoch is defined as a sequence H,, given by:
Hn = (XO,G[},WO,Xl,CLl,Wl,...,Xn>, (361)

where x,, € S (for m = 0,1, ...,n) is the state of the process at the n*" decision epoch, a,, € Ay, , is
the corresponding action chosen, and w, is the random event that occurs. In the case of the MDP
T (see —) the random events w,,, may be represented using similar notation to that in
Section except that since a discrete-time MDP is being considered, the event that occurs at
a particular time step may not necessarily be either an arrival or a service completion; one must
also consider the possibility that no event occurs (i.e. the MDP makes a ‘self-transition’). As such,
the set of possible events should also include an extra symbol to denote a ‘non-event’. It will be

convenient to use 0 for this purpose, so that each random event w,, satisfies:
Wm € {A, My, Mo, ..., My, O}

It should be noted that including the random events w,, in the history of the process H,, does
not complicate the formulation or analysis of the MDP T in any way. In fact, the random events
are included for the sole purpose of ensuring that the history H, includes the arrival times of all
customers since the initialisation of the process. Obviously, it is sometimes possible to deduce a
customer’s arrival time from the state-transitions of the process; for example, if the state of the
system is x € S at time step n and x'" at time step n + 1 (for some i € {1,2,..., N}), then this
implies a customer arrival at the n*" time step. However, if the history records the process being
in state x at both of the time steps n and n + 1, with the action a,, = 0 (i.e. balking) having
been chosen at time n, then it is impossible to deduce from this information whether a customer
has arrived at time n, or whether a ‘non-event’ has occurred (recall that actions a € A are always
chosen at every discrete time step, regardless of whether or not a customer arrives). There is no
reason why the history of the process should not record the arrival times of customers, so for this

reason it is desirable for the events w,, to be ‘logged’ as part of the process history.
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Let d,, be the decision rule which prescribes the procedure for selecting an action at time n.

Puterman’s categorisation scheme for decision rules ([I41], p. 21) is summarised below.
Definition 3.6.1. (Classification of decision rules)

Let d,, be the decision rule applied by the system controller at the n'* decision epoch.

e Ifd, is a function d,, : S — Ax,, i.e. it chooses an action with certainty depending only on

the present state x,,, then d,, is deterministic Markovian (abbreviated as MD).

o Ifd, is a function dy, : H, — Ax,, i-e. it chooses an action with certainty depending on the
history of past states, actions and random events (including the present state X,), then the

decision rule is deterministic and history-dependent (HD).

e If dy, specifies a probability pq,(x,)(a) for choosing each action a € Ay, which depends only

on the present state X, then d, is randomised Markovian (MR).

e If dy specifies a probability py,(x,)(a) for choosing each action a € Ax,, , and this probability
distribution depends on the history of past states, actions and random events (including the

present state X,), then d,, is randomised and history-dependent (HR).

It follows that a deterministic policy is a special case of a randomised policy in which the probability
distribution is degenerate, i.e. pg,(x,)(a@) = 1 (or pg,(3,)(a) = 1) for some a € Ayx,. Clearly, a
deterministic Markovian (MD) decision rule is the easiest to apply, but this may be too restrictive
in some applications. A randomised and history dependent (HR) rule is the most general type of
rule. Note that in general, there is no requirement for the same decision rule to be used at each
decision epoch; that is, a deterministic decision rule may be applied at one point in time, but a
randomised rule may be chosen at another. A policy is a means of specifying the decision rules

employed at different epochs of time during the evolution of the process.

Definition 3.6.2. (Policies) A policy 0 is a sequence of decision rules (dy,dy,...), where dy, is

the decision rule applied by the system controller at the n' decision epoch.

Thus, according to Definition [3.3.2, a stationary policy is one in which the same deterministic

Markovian decision rule is applied at every decision epoch. The results in earlier sections have
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established that an average reward optimal policy for the process ¥ can always be found by re-
stricting attention to stationary policies in T. However, this does not mean that non-stationary
policies (which fit somewhere within the broader classification of policies provided in Definition
3.6.2) will not be relevant to consider in later chapters. In fact, it is sometimes possible to prove
that a particular stationary policy is not average reward optimal by showing that it is inferior to

a carefully-constructed non-stationary policy. Examples will be provided later.

The next section will present some general results from the literature related to average reward

optimal policies for discrete-time MDPs, including computational algorithms.

3.7 Finite state spaces

The purpose of this section is to discuss methods for computing average reward optimal policies

for discrete-time MDPs, but before doing so it is necessary to discuss some of the related theory.

Consider the discrete-time MDP Y formulated in (3.5.1))-(3.5.4). By direct analogy to (3.3.1)), the

expected long-run average reward for T under an arbitrary policy 6, given an initial state xg € S

and assuming that the real-time reward formulation (3.5.4) is used, is defined as:

T 1
go(x) = lltlgg)lft Ey

t—1
> r(xn)|xo = x] : (3.7.1)

n=0

where the expectation is with respect to the random transitions that occur under 6. Due to
Theorem the rewards r(x,) in (3.7.1) may be replaced by the rewards 7(x,,a,) defined in
(3.5.15) without affecting the value of ggp(x). Indeed, it should be noted that all of the results in

this section remain valid under either of the reward formulations r(-) and #(-).

The state space S for Y, defined in , is countably infinite. Unfortunately, it is the case that
certain theoretical results for MDPs rely on the assumption of a finite state space. Furthermore, the
computational algorithms presented later in this section cannot be applied, in their conventional
forms, to a problem in which the state space S is infinite. In practice, one can work around this
problem by truncating the state space, but only if it can safely be assumed that there exists a
finite subset R C S and an optimal policy 6* such that R contains any state that could possibly be

visited under 6*. This approach will be discussed further in the next chapter.
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Let T denote an MDP which is similar to T except that the action sets Ay for x € S are restricted
as follows: for each facility i € {1,2,..., N}, there exists a threshold B; € N such that the action 4
is not available at any state x with x; > B;. Then, assuming that the system is initialised in state

0, the state space for the process may be described by the finite set S given by:

S = {(wl,l'g, ...,1‘]\]) 1T € No, x; < Bi (Z = 1,2, ,N)} (372)

All of the results in this section will assume a finite state space S, with S as defined in (3.7.2).
For the time being, the choice of non-negative integers By, Bs, ..., By is understood to be arbitrary.

Two immediate consequences of the finiteness of S are as follows:

1. Any stationary policy induces a Markov chain with an irreducible, aperiodic class of states.

2. The rewards are bounded; that is, there exists M > 0 such that |r(x)| < M for all x € S.

Indeed, to establish the first of the above properties, let  be a stationary policy and let Ry C S
denote the set of states accessible from state 0 in the Markov chain induced by 6 (please refer
to Appendix for the definition of accessibility). Then Ry is a single communicating class and
hence is irreducible. It is also aperiodic, since the state 0 can be reached from itself via a single

transition. The second property follows directly from 1) and the finiteness of S.

It will be useful to refer to some results from the literature for finite-state MDPs. Let 6 be a
stationary policy which induces a Markov chain with transition probabilities pg(x,y) for x,y € S

and let the expected total reward over n time epochs, Ve(n)(x), be defined as:

V" (x) == Ey

i r(xk)’xo = x] . (3.7.3)

k=0

The next result addresses the existence of the limit in (3.7.1]).

* Lemma 3.7.1. Let 0 be any stationary policy in the MDP Y with finite state space S. Then,

for each state x € S, the limit lim,, s Vb(n) (x)/n exists, and:

go(x) = lim 2V () = 3 moly) r(y), (3.7.4)

n—oo n /
yeSs

where {Wa(y)}yeg is the stationary distribution of the MDP under 6.



Chapter 3 MDP formulation 98

Proof. Please refer to Bertsekas [12] (p. 330) or Puterman [141] (p. 333).

From Lemma it follows that, for any stationary policy 6, the limit in (3.7.1)) is guaranteed to
exist, so it is not necessary to write ‘lim inf’. Furthermore, it is immediate from (3.7.4]) that gg(x)
is independent of x; that is, gy is a constant function, so the average reward is independent of the

initial state. Henceforth, gy will be regarded as a scalar quantity in this section.

The quantity gy is sometimes referred to as the gain of the stationary policy 6. Puterman [141] (p.
334) explains that this term originates from control engineering, in which it refers to “the ratio of
the output of a system to its input”. The next result introduces a functional equation which can

be used to compute the gain, or average reward, of a fixed policy in T.

* Theorem 3.7.2. Consider a fixed stationary policy 6. Suppose there exists a scalar quantity g

and a function h : S — R, where S is the finite state space, such that:
g+h(x)=rx)+> p(x,y)hly) VxeS. (3.7.5)
yeS
Then g = gy, i-e. g is the average reward associated with the policy 0.

Proof. The simplest method of proof, as given in Bertsekas [12] (p. 334), is to consider a problem
where, for each state x € S, the action set Ay is replaced by {#(x)}; that is, Ay consists of only
a single element corresponding to the action prescribed by the stationary policy . Then Theorem

actually follows as a corollary from Theorem (to be stated shortly). O

The result of Theorem [3.7.2) can be used to evaluate the performance of a fixed policy. Indeed,
(3.7.5) is a system of |S| equations in |S| + 1 unknowns, namely the set of h(x) values and the
average reward ¢ itself. One may impose the extra condition h(z) = 0, where z € S is an arbitrary
‘reference state’ (z = 0 is the simplest choice), in order to obtain a unique solution. In principle,
one may use Gaussian elimination or similar techniques to solve ; however, if |§ | is large, it is
somewhat easier computationally to use an algorithmic approach. The Policy Evaluation Algorithm

detailed below has its origins in the early MDP literature; see, for example, [88] [195].

Policy Evaluation Algorithm (PEA)

1. Input 6, the stationary policy to be evaluated.
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2. Set n =0, ho(x) = 0 and wy(x) = 0 for all x € S.
3. For each x € 5, let wy,11(x) = r(x) + Zp(x, a,y)hn(y).
yes

4. Set hpy1(X) = wny1(X) — wpe1(z) for all x € S, where z € S is a fixed ‘reference state’.

5. If n =0, set = 1; otherwise set 0 = max, g [hnt1(x) — hn(x)]. If § < €, where € is a small

positive number, go to step 6; otherwise, increment n by 1 and return to step 3.

6. Output the value h,(x) for each x € S. The average reward gg under policy 6 can be evaluated
by putting x = 0 in (3.7.5)). Then, since r(0) = 0 and h,(0) = 0:

go = AMAh, (0°1),
where a = 0(0), i.e. a is the action chosen by 6 at state 0.

The policy evaluation equations in ([3.7.5)) may be employed in a creative manner to compute various
performance measures for the system. Indeed, consider two reward functions r7(x) and ry (%, a)

(where only the latter has an action-dependence), defined as follows:

N
rp(x) == in,
i=1

1/, if a =i for some i € {1,2,..., N} and z; < ¢;,
rw(x,a) = S (z; +1)/(cipi), if a =i for some i € {1,2,..., N} and z; > ¢;,
0, otherwise.

Then, given that r7,(x) represents the total number of customers present in the system under state
x, replacing r(x) with rz(x) in enables gy to measure the average number of customers
present in the system under policy 6. Similarly, replacing r(x) with ry(x,0(x)) in enables
gp to measure the average time spent by customers in the system (taking into account customers who
balk and thereby spend no time in the system). One might even extend this notion by introducing

a family of |S| reward functions 7y (x) (one function for each y € S), defined by:

1, ifx=y,
ry(x) =
0, otherwise.
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Then replacing r(x) with ry(x) in enables gy to measure the stationary probability my(y)
under policy 6. One might modify the steps in the Policy Evaluation Algorithm so that each state
y € S has its own sets of values vy (x), wy(x) and hy(x) which are updated on each iteration,
then a set of values gy (x) is output at the end of the algorithm which gives the entire stationary

distribution {mg(-)}; however, it is easy to see that this is somewhat cumbersome.

The Policy Evaluation Algorithm considers only a fized stationary policy. The next topic to be
discussed is optimality. Recall that average reward optimal policies have already been defined
in Section (see Definition [3.4.1). The next result introduces the average reward optimality

equations, which form a theoretical basis for various algorithms to be discussed later.

* Theorem 3.7.3. Suppose there exists a scalar quantity g* and a function h: S — R such that:

9"+ h(x) = max r(x) + Zp(x, a,y)h(y) Vxes. (3.7.6)
yEeS

Let 0* be a stationary policy such that, for all states x € S, the action 0*(x) chosen by 0* attains
the mazrimum n . Then the stationary policy 0% is average reward optimal for the process

Y, and gg«(x) = g* for every x € S, i.e. g* is the optimal average reward.
Proof. This result is found in many texts. See, for example, Bertsekas [12] (p. 332).

Clearly, it is desirable to establish sufficient conditions for the existence of a constant ¢g* and
function h satisfying the average reward optimality equations . Several such conditions have
been proposed in the literature, some of which can easily be shown to hold in the case of the
finite-state MDP Y. For example, since the state 0 is accessible from any state in S, there cannot
be two disjoint, closed communicating classes under any stationary policy; it then follows that any
stationary policy induces a Markov chain which is unichain (see Appendix and the existence
of a solution to then follows from Proposition 2.6 in [I3] (p. 198). For more examples of
sufficient existence conditions, see [12] (pp. 335-340), [13] (p. 198) or [141] (p. 358).

It is possible to take a somewhat more constructive approach to establishing the existence of a
solution to (3.7.6). A popular technique for computing average reward optimal policies in finite-
state MDPs is known as relative value iteration; this technique was first proposed in undiscounted

problems by White [195] (see also [12], 47]). The details of the Relative Value Iteration Algorithm
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(abbreviated as RVIA) are given below. A proof that the algorithm converges to a solution to the
optimality equations (3.7.6) when applied to a finite-state MDP will be cited later.

Relative Value Iteration Algorithm (RVIA)

1. Set n =0, ho(x) = 0 and wp(x) = 0 for all x € S.

2. For each x € 9, let wy,41(x) = max r(x) + Zp(x,a,y)hn(y)
yeS

3. Set hyp1(X) = wnp1(X) — wpy1(z) for all x € S, where z € S is a fixed ‘reference state’.

4. If n = 0, set § = 1; otherwise set § = max |hn41(x) — hn(x)|. If 6 < €, where € is a small
xeS

positive number, go to step 5; otherwise, increment n by 1 and return to step 2.

5. Output h,(x) for all x € S and a stationary policy 6* such that, for each x € S, 0* (x)

maximises {r(x) + Zp(x, a, y)hn(y)} over all actions a € Ax. The optimal average reward

yeSs
g* can be evaluated by putting x = 0 in (3.7.6). Then, since r(0) = h,(0) = 0:

g* = MAh,(0°T),
where a = 0*(0), i.e. a is the action chosen by 6* at state 0.

The subtraction of wy,+1(z) on step 3 of the algorithm ensures that the A, (-) and wy,(-) values remain
bounded, rather than diverging to infinity. The choice of the reference state z € S is arbitrary,
but in the case of the MDP T, taking z = 0 will be most convenient. Note that the Policy
Evaluation Algorithm on page is essentially a modified version of the RVIA which considers
only one allowable action (dependent on the fixed policy ) at each state x € S. The next result
guarantees the convergence of the RVIA, and also provides a constructive proof of the existence of

a constant ¢* and function h satisfying the average reward optimality equations (3.7.6)).

* Theorem 3.7.4. Consider the MDP Y with finite state space S. Let ho(x) = 0 for allx € S.

For each state x € S and integer k > 0, let hy11(x) be defined as follows:

i1 (%) = max § 7(x) + 3 p(x,a,y)he(y) ¢ = max 7(0) + 3 p(0,a,y)hi(y) o (3.7.7)
y€es yes
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Then, for each x € S, the following limit exists:

h(x) := lim hg(x).

k—o0

Moreover, let g* be a scalar quantity defined by:

g% 1= max { 7(0) + 3 p(0,a,)h(y)
yes

The constant g* and set of values {h(x)}xeg satisfy the average reward optimality equations:
¥+ h(x) = h vxeS. 3.7.8
9" + h(x) = max { r(x) + ng(x, a,y)h(y) x € (3.7.8)
ye

Furthermore, the solution obtained is the unique solution to with h(0) = 0.

Proof. This result has been proved by Bertsekas [I3] (p. 206) (see also [62, 141, [182]). However,

the proof relies upon an additional assumption which should be discussed here.

Let 8 = (dy,ds, ...) denote an arbitrary policy, where d,, (n = 0,1,2,...) is the decision rule used
at the n'" discrete time epoch, and let P,;, denote the transition matrix associated with the rule
dn. The assumption relied upon by the proof is that there exists an integer m > 0 and a positive

number € > 0 such that, for all admissible policies § and all states x € S:

(Papy Pty r-Pi) g = €

(P Payy—s--Pay) g = € (3.7.9)

where Pyo denotes the element in the row corresponding to state x and the column corresponding
to state 0 of the matrix P. Indeed, given a finite state space S with the property that for each
i € {1,2,...,N} there exists B; € Ny such that z; < B; for all x € S, it is sufficient to take
m = S"N | B; in order to establish . To see this, note that at each state x € S\ {0} there is
a positive probability of a service completion. Moreover, according to the transition probabilities
formulated in , if the system is in state 0 at any time step, then there is a probability
(1-=XA) > ZZ]\L 1 Cipt;A that it remains in state 0 at the next step. Suppose the process is initialised
in an arbitrary state x € S and an unbroken sequence of service completions occurs on consecutive

time steps, causing the process to reach state 0, and no further arrivals occur until a total of m
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time steps have elapsed (since initialisation). By the previous arguments, the probability of this
chain of events occurring is at least (puminA)™, where iy is the minimum of the N service rates.
(Note that the decision rules dy, d1, ..., d,, are irrelevant to this argument, since it considers a chain

of events in which no arrivals occur, therefore the actions chosen have no effect.)

It follows that for all x € S, the conditions (3.7.9) can be satisfied by choosing:

N

m = ZB’“
=1

€ = (Hmind)™

Bertsekas [I3] (p. 213) proves that the conditions (3.7.9) hold in the more general case of a

(3.7.10)

finite-state MDP where every stationary policy is unichain. His arguments involve making a ‘data
transformation” which effectively ensures that p(x,a,x) > 0 for all x € S and a € Ay; i.e. each
state in S has a positive probability of a ‘self-transition’, regardless of the action chosen. The afore-
mentioned data transformation can be made without fundamentally altering the original problem,
since it transpires that the average reward under any stationary policy is unaffected. In the case of
the process T considered in this section, it is actually possible to ensure that p(x,a,x) > 0 for all

x € S and a € Ay by simply choosing the uniformisation parameter A to be any positive number

smaller than <)\ + Zf\il ci,ui> ; in view of (3.5.3]), this achieves exactly the same effect as the

data transformation discussed in [I3]. Moreover, Theorem implies that the average reward

under any stationary policy is unaffected by reducing the value of A in this way.
For details of the remainder of the proof, please refer to [13] (p. 206). O

By Theorems [3.7.3] and [3.7.4] it follows that that the stationary policy obtained in step 5 of the
RVIA is average reward optimal. Note that although the values ¢* and h(x) which satisfy (3.7.6))

(assuming the extra condition h(0) = 0) are unique, a stationary average reward optimal policy
0* need not be unique; indeed, there may be more than one action which attains the maximum
on the right-hand side of (3.7.6) for a particular state x € S. The next example illustrates how

comparisons may be drawn between two different average reward optimal policies.

Example 3.7.5. (Bias optimality)

Consider a single-facility system (N = 1) with only one service channel, a demand rate A = 1, a
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service rate ;1 = 2 and holding cost rate 8 = 5. In keeping with the assumption of a finite state
space, a constraint will be imposed whereby joining the queue is not allowed at any state x € Ny
with > 5. As a result, the state space may be described by the set S = {0,1,...,5}, with two

possible actions (joining or balking) permitted at every state except = = 5.

Given that the system is M /M /1, the results from Section imply that an average reward optimal
policy (referred to as a socially optimal policy in Chapter [2)) is characterised by a threshold n, such
that joining the queue is chosen at a state x € S if and only if x < n,. Furthermore, 1} states

that a socially optimal threshold n, is given by |v,], where v, satisfies:

vo(l—p) —p(l—p™) _ap
(1—p)? g’

where p = A/u = 1/2. Naor’s analysis [I31] shows that although the value of v, satisfying (3.7.11)

(3.7.11)

will be unique (with the other parameters fixed), if v, is a positive integer then the thresholds v,
and v, — 1 will both be socially optimal. As such, it is possible to manipulate the value of « in order
to ensure the existence of non-unique optimal policies. For example, setting o = 645/32 leads to a

solution v, = 5 in (3.7.11)), and hence the thresholds 4 and 5 are both optimal.

Let 6, and 65 denote the stationary policies with thresholds 4 and 5 respectively, and also let it
be assumed that o = 645/32 and the system is formulated as an MDP with reward function r(z)
defined in and transition probabilities given by with A = (A + p)~!. Using relative
value iteration (page , one may obtain the optimal average reward g* = 245/16 and the unique
set of values h(z) (with h(0) = 0) satisfying the average reward optimality equations (3.7.6); these
values are shown in Table The policies 64 and 05 differ only at the state x = 4, and it may
be checked that both of the actions a = 0 (balking) and @ = 1 (joining) maximise the expression
r(@) + 2_,c5p(x, a,y)h(y) at x = 4. Moreover, both policies maximise the same expression at all

other states z € S; that is, they both satisfy the optimality equations as expected.

State = 0 1 2 3 4 5

h(z) | 0.0000 | 45.9375 | 77.8125 | 96.5625 | 104.0625 | 104.0625

Table 3.1: Values of h(z) for states « € {0,1,...,5} with the reward formulation r(x) used.

Naturally, given the relationship between the RVIA and PEA algorithms discussed earlier, applying
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the Policy Evaluation Algorithm (page to either of the two policies 4 and 05 yields the same
set of h(z) values shown in Table Given that both of the policies 64 and 65 yield the same
average reward and the same set of relative values h(x), one might be tempted to conclude that the
two policies are indistinguishable with respect to any performance measure of interest (assuming
undiscounted rewards); in other words, there is no way to rank one policy above the other. However,
the purpose of this example is to show that the more conservative policy 0, is preferable to 05 with

respect to a criterion which might, in practice, be of interest to a decision-maker.

The expected total reward Vg(n) (x) over n stages under an arbitrary policy § and initial state z € Ny

was defined in 1' One may calculate Ve(n) (z) for n > 0 recursively, using:

0, if n =0,

vy (@) = T
r(@)+ Y pol,y)Vy" (y), ifn>1.
yes

The expected average reward over n stages is then given by Ve(n) (z)/n for n > 1. Figure shows
the finite-stage average rewards Ve(n) (z)/n plotted under both of the policies 64 and 65 for n < 50,
assuming that the initial state is = 4 (the only state at which the two policies differ). Although
both of these average rewards converge towards the optimal value g* as n — oo, it transpires that
the average reward under 64 is always strictly greater than the average reward under #5 over any
finite number of stages n > 1. This can be explained intuitively. When joining is chosen by 65
at state z = 4, the process incurs an extra holding cost which would not be incurred under the
alternative policy 64. Thus, 04 earns an advantage over 05 which is not ‘equalised’ by 05 until, at
some point in the future, the process operating under 65 has a service in progress which would not
have taken place if the policy 04 had been followed instead. In other words, 64 consistently earns
advantages over 5 which are not ‘equalised’ by 65 until a later point in time, or (in a sense) 65 is
constantly trying to ‘catch up’ with 64 with respect to expected total reward. Since 65 can never
catch up with 64 over all possible random trajectories, it makes sense that the expected average

reward over a finite number of stages is always strictly greater under 84 than under 5.

Given that 6 is strictly superior to 05 over any finite number of stages, one would imagine that a
decision-maker would prefer to follow the policy 6, if they were interested in optimising the system’s

performance over a finite amount of time (which, realistically, would always be the case in practice!).
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Figure 3.6: Expected average rewards over n stages under the policies 04 and 05 with initial state x = 4,

assuming that the ‘real-time’ reward formulation r(z) = aumin(z,1) — Sz is used.

However, the fact remains that both policies are average reward optimal according to Definition
In order to differentiate between 04 and 05 with respect to performance, the stronger concept
of bias optimality is needed. In general, suppose one has an average reward optimal stationary

policy 6*. The bias of #*, given an initial state z € S (see [78, [I17]), is given by:

n—1
Z (r(zn) —g") |xo = x] :
t=0

Hence, the bias corresponds to the expected (finite) total reward in a new process where the optimal

b@* (.’E) = hm Eg*

n—oo

gain ¢g* is subtracted from each single-stage reward r(z,). An average reward optimal policy 6f is

said to be bias optimal if, for all other average reward optimal policies 6*:
bz (v) > be<(z) Ve S.

Suitable conditions which imply that a particular average reward optimal policy is also bias optimal
have been discussed in the literature; see [78] (p. 146). The easiest way to compute the bias values
by~ () for an average reward optimal policy 6* is to use the fact that the function by~ : S — R must

satisfy, together with some other function kg« : S — R, all of the following equations:

bo- () = r(z) — g* + Y po- (2, y)bo- (y) Yz €5,

yes ) (3.7.12)
kg« (x) = —bg=(x) + Zpg* (x,y)ke«(y) VaxeS.
yes
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In fact, for a given average reward optimal policy 68* there will be infinitely many sets of values
{kg«(7)},cg which satisfy , so it is necessary to impose an extra condition such as kg« (0) = 0
in order to obtain an unique solution. However, the bias values by« (x) which satisfy will
always be unique. Table shows the values by, (z) and by, (x) for the optimal policies 6, and 65
respectively. Note that, since the functions by, (-) and by, (-) both satisfy the first set of equations
in , it must be the case that they differ from the relative value function h(-) only by an
additive constant. Indeed, comparing Tables and confirms that this is true.

State x 0 1 2 3 4 5

bg,(x) | -31.4819 | 14.4556 | 46.3306 | 65.0806 | 72.5806 | 72.5806

bo, () | -32.6339 | 13.3036 | 45.1786 | 63.9286 | 71.4286 | 71.4286

Table 3.2: Values of by, (z) and by, (x) for states z € {0,1,...,5} with reward formulation r(x) used.

Table shows that by, () > by, (z) for all x € {0,1,...,5}. Since it can easily be verified that 6,
and 05 are the only stationary average reward optimal policies in this example, it follows that 6, is
bias optimal, whereas 605 is not. However, the most interesting aspect of this example is that the
same conclusion does not hold when the reward function r(z) is replaced by the alternative function
7(x,a), previously referred to as the anticipatory reward function. Indeed, when the alternative
function 7(x, a) is used, the process earns a positive reward by allowing a customer to join at state
x = 4, whereas a zero reward is earned by balking. Hence, the policy 65 earns an advantage over
0, by allowing an extra customer to join, but this is compensated for by the fact that customers
who join the queue at later points in time suffer increased waiting times (and hence, the process
earns smaller single-stage rewards) as a result of an extra customer being present in the system. In
a sense, therefore, switching to the alternative reward formulation 7(x,a) reverses the roles of 4
and 05 by allowing 65 to earn an advantage over 04 at state x = 4 and then forcing the policy 64 to

‘play catch-up’ to 05 with respect to the expected total reward earned over n stages.

Figure shows the expected finite-stage average rewards over 50 stages under the policies 6, and
05, with the reward function #(x,a) used instead of r(x). In this case, 65 earns a strictly greater
expected total reward than 64 over any finite number of stages n > 1, although the difference tends

to zero as n — co. By Theorem the optimal average reward g* is unaffected by switching from
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Figure 3.7: Expected average rewards over n stages under the policies 04 and 05 with initial state z = 4,

assuming that the ‘real-time’ reward formulation #(x,a) = I(a = 1) (o — B(x + 1)/p) is used.

r(x) to #(z,a), but the relative values satisfying are affected and so it will be appropriate
to denote these by iz(a:) in the case of anticipatory rewards. Similarly, the bias functions under the
policies #4 and 5 will be denoted by by, (-) and by, (-) respectively. Table shows the values of
h(z), (with 2(0) = 0), by, (z) and by, (z) for z € {0,1,...,5}. Tt can be seen that by, (z) < by, (z) for

all € S, confirming that the policy 5 is bias optimal in this case, whereas 6, is not.

State x 0 1 2 3 4 5
h(z) 0.00000 | -7.03125 | -20.62500 | -39.84375 | -52.81250 | -85.78125
bo,(z) | 9.07258 | 2.04133 | -11.55242 | -30.77117 | -53.73992 | -76.70867
395 (z) | 10.29018 | 3.25893 | -10.33482 | -29.55357 | -52.52232 | -75.49107

Table 3.3: Values of h(z), by, (2) and by, (z) for z € {0,1,...,5} with reward formulation #(z,a) used.

The conclusion of this example is that, although any policy which is average reward optimal for the
MDP T under reward formulation r(z) must also be likewise optimal under the formulation 7(z, a)
due to Theorem this equivalence does not necessarily hold when a more sensitive optimality
criterion such as bias optimality is considered. Indeed, one may find two average reward optimal
policies such that only one is bias optimal, with the identity of the bias optimal policy depending

on the reward formulation used. The results of the present example appear to suggest that a
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more conservative policy will be favoured by the bias optimality criterion when the function r(z) is
used, whereas the converse statement should apply when 7(z, a) is used. Indeed, some results have
been published in the literature which lend support to this notion, although the results in question

involve slightly different problem formulations; see [78, [I16] for further details. X

Another well-established method for computing average reward optimal policies in finite-state
MDPs is known as policy improvement (or sometimes policy iteration). This method was in-
troduced by Howard [88], although a similar method called “approximation in policy space” was
also described by Bellman [10]. Essentially, one begins with an arbitrary stationary policy 0, and
then finds corresponding values gy and hy(x) which satisfy the evaluation equations in (3.7.5)).
Each action 6(x) prescribed by 6 is then checked to see whether it maximises the expression
r(x) + Zyeﬁ p(x,a,y)hg(y) over all permissible actions a € Ax. If this test is passed for all
x € S, then by Theorem 0 is average reward optimal; otherwise, the policy is modified and
the procedure is repeated until eventually an optimal policy is obtained. The Policy Improvement

Algorithm, in the form presented by Puterman [141] (p. 378), is given as follows:

Policy Improvement Algorithm (PIA)

1. Set n = 0 and select an arbitrary stationary policy 6.
2. (Policy evaluation.) Find a scalar g, and a function h,, which satisfy the equations:
gn + hn(x) = r(x) + Zpgn (x,¥)ha(y) VxeS, (3.7.13)
yes
together with the extra condition h,(0) = 0. (Note: The Policy Evaluation Algorithm given
on page [98 may be used to perform this step.)

3. (Policy improvement.) For each x € S, choose an action 6,4 1(x) to satisfy:

On+1(x) € argmax } r(x) + Zp(x, a,y)hn(y) 7, (3.7.14)
a€Ax ‘
yeS

setting 0,,41(x) = 0,(x) if possible.

4. If 0,411(x) = 0,(x) for all x € S then stop; the policy 6,11 is average reward optimal.

Otherwise, increment n by 1 and return to step 2.
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The specification that, if possible, 6,1(x) should be chosen to be equal to 6,(x) is made to
avoid cycling between policies which yield the same average reward. The algorithm is designed
to terminate if it finds any policy which is optimal, rather than cycling between multiple optimal

policies. The convergence of the PIA is ensured by the following result.

* Theorem 3.7.6. The Policy Improvement Algorithm, applied to the finite-state MDP T, con-

verges in a finite number of iterations to a solution of the optimality equations:

9"+ h(x)= max r(x) + Zp(x, a,y)h(y) VxeS, (3.7.15)
yeS

and an average reward optimal stationary policy 6.

Proof. Please refer to Bertsekas [13] (p. 214), or Puterman [I41] (p. 383).

Example 3.7.7. (Policy improvement)

This example revisits the two-facility system in Example [3:2.1] in order to demonstrate how the
Policy Improvement Algorithm (PIA) can be used to find an average reward optimal policy. Recall
that the demand rate is A\ = 1, there are two service facilities with one service channel each, and

the service rates, holding costs and fixed rewards for the two facilities are given by:

p1 = 0.8, B =2, ar = 6,
Mo = 0.4, 52 = 1, oy = 4.
The state space S consists of only 6 states, and the stationary policy 6 operates as follows:

0((070)) =1, 9((()’ 1)) =1, 9((170)) =2,
0(1,1) =1,  6((2,0)=2  6((21))=0.

Let the system be uniformised as described in Section with A = (A+p1 +p2) ™t = 5/11. After
initialising the PIA with 6y = 6, using the condition ~((0,0)) = 0 enables the system of equations
(13.7.13) to be solved uniquely. The solution, with figures rounded to 4 d.p., is:

go=1.6913,  ho((0,0)) =0, ho((0,1)) = 1.3268,  ho((1,0)) = 3.7209,
ho((1,1)) = 4.2584,  ho((2,0)) = 2.2641,  ho((2,1)) = 3.0596.
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Consider the state (0,0). In step 3 of the PIA, It is necessary to identify the action a € A(g ) which
maximises r((0,0)) + >_, p((0,0),a,y)ho(y). The reward r((0,0)) is independent of the action
chosen, so (enumerating the transition probabilities) a must satisfy:

a € argAmax {(1 — AA)ho((0,0)) + )\Aho((o, O)a+)} )
ac (0,0)

Since max (ho((0,0)), ho((0,1)), ho((1,0))) = ho((1,0)), it transpires that the action a = 1 chosen
by policy 0y at x = (0,0) attains the maximum in step 3. Similarly, it can be checked that the
actions chosen by 6y at states (0,1), (1,0), (2,0) and (2, 1) pass the optimality test; hence, the new
policy 6y derived in step 3 chooses the same actions as 6y at each of these states. On the other
hand, checking the permissible actions a € Ay 1) = {0,1} at the state (1, 1), one finds:

max {r((l, 1)+ ZP((L 1),a, Y)ho(}’)}

a€A(1,1) -
=7((1,1)) + p1Aho((0,1)) + p2Aho((1,0)) + AAmax (ho((1,1)), ho((2,1))) ,

and since ho((1,1)) > ho((2,1)), the maximum is attained by the action a = 0; that is, the new
policy 6, differs from 6y by choosing to balk at x = (1,1). Replacing the policy 6y with 6; and
re-solving the equations in (3.7.13) (with h1((0,0)) = 0) yields the solution:

g1 =1.8772,  hy1((0,0)) =0, h1((0,1)) = 1.8526,  hy((1,0)) = 4.1298,
hi((1,1)) =5.4035,  h1((2,0)) = 2.4965,  hi((2,1)) = 3.5596.

As expected, the average reward is greater under the new policy 6;. Furthermore, it can be checked
that each action 61(x) maximises r(x) + >, p(x,a,y)h1(y), so by Theorem m the new policy
0, is optimal. To summarise, the original policy 0y differs from the optimal policy 61 only in the
action chosen at the state (1,1), and the PIA finds the optimal policy #; on its first improvement

step. The sub-optimality of the original policy 6y is given by (g1 — go)/91 =~ 10%. K

The PEA, RVIA and PIA algorithms presented in this section are examples of dynamic programming
(DP) algorithms which can be useful for theoretical purposes as well as practical ones, as later results
will demonstrate. Before concluding this chapter, it will be useful to introduce a further technique

which will be relied upon in later chapters; this is known as stochastic coupling.
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3.8 Stochastic coupling

Section introduced the technique of relative value iteration as a means of obtaining a constant
g* and set of values {h(x)}, g satisfying the average reward optimality equations in . By
Theorem the values h(x) can be obtained as limits of the finite-stage values h,(x) defined
in as n — oo. This creates the possibility of using inductive arguments based on the finite-
stage functions h, to establish properties of the limiting function A, which in turn can be used to
deduce properties of average reward optimal policies and potentially gain other interesting insights
into the evolution of a particular process; examples of this technique will be given in later chapters.
However, the purpose of this section is to introduce an alternative method of proof, known as
stochastic coupling, which bears certain analogies to inductive arguments based on value iteration

while at the same time being somewhat more transparent and intuitively appealing.

Stochastic coupling is an important topic in probability theory, although there are relatively few
texts dedicated entirely to the subject. An excellent reference is Thorisson [I81], in which a broad
range of applications are described. In [I81], Thorisson describes a coupling as a “joint construc-
tion of two or more random variables (or processes), usually in order to deduce properties of the
individual variables or gain insight into distributional similarities or relations between them.” Nat-
urally, a formal mathematical definition is possible; however, for the purposes of this thesis, it will
be desirable to define a coupling in a somewhat simplified way in order to fit the requirements
of the queueing systems under consideration without being unnecessarily general. The following
definition introduces the notion of a stochastic coupling as a device for establishing relationships

and similarities between two processes in the manner alluded to by Thorisson.

Definition 3.8.1. (Coupling)

Let @1 and @4 be discrete-time MDPs as defined in , with state spaces S1 and Sy respectively,
and suppose both processes may be uniformised with a common uniformisation parameter A > 0.
The two processes are assumed to follow arbitrary (separate) policies. Let (Xp)nen, and (¥n)neN,
denote the state-time evolutions of ®1 and Py respectively; that is, x, € S1 (respectively, y, € S2)
is the state of ®1 (respectively, ®3) at the nth discrete time step. The initial states of ®1 and o
are, respectively, xg € S1 and yo € So. Consider a new discrete-time Markov chain ®. with state

space S1 X So, also uniformised with the same parameter A, whose state-time evolution is denoted
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by (Xn,Yn)nen,- Furthermore, assume that the initial state of ®., (Xo,¥0), satisfies Xg = xo and
Yo = yo. Then ®. is said to be a coupling of ®1 and ®5 if, for all n € Ny, the probability

distributions of X, and ¥y, are identical to those of x, and y, respectively.

For convenience, the pair (X,,y,) will occasionally be referred to as a coupling rather than the
process @, itself; that is, a coupling may be referred to by its state-time evolution. Also, the terms

“coupled process” and “coupling” will be used interchangeably in this section.

Assuming that ®; and ®5 can both be uniformised as described in Section the subsequent
assumption that the same uniformisation parameter A can be used for both processes is non-
restrictive. Indeed, suppose Ay > 0 and Ay > 0 are valid choices for the uniformisation parameters
of ®; and ®, respectively; then, due to Theorem any value A € (0,A;) may also be used
for the uniformisation of ®;, and an analogous statement applies to ®5. Therefore one can simply

choose A := min(Aj, Ay) as a uniformisation parameter for both processes.

Note that, although the distributions of %X,, and y, must be identical to those of x,, and y,, respec-
tively for all n € Ny, there is no requirement for the joint distribution of %,, and ¥y, to be the same
as that of x,, and y,,. For example, given two processes ®; and ®5, one may be able to construct
a coupling (X, ¥,) satisfying Definition such that the componentwise inequality x, > ¥y, is
guaranteed to hold for all n € Ny, and yet the inequality x,, > y, may not necessarily hold with
®; and P, operating independently. It is the fact that couplings may be created using artificial
rules for their transition probabilities and yet still preserve the required distributional equalities
that makes them such a useful tool. In practice, the equivalence between the distributions of X,
and x,, (similarly for y, and y,) may be accomplished by defining the transition probabilities for

the coupling in such a way that for all x,x’ € Sy, y,y’ € S and stages n € Ny:

P (xn+1 =x'|x, = x) =P (f(n+1 =x|%, = X) , (3.8.1)

Pyn1=Yyn=5) =P Fns1=Y9n=y). (3.8.2)

The probabilities on the left-hand sides of (3.8.1]) and (3.8.2) in fact depend on the policies #; and

0, followed by ®1 and ®o; on the other hand, ®. is merely a Markov chain rather than an MDP,
whose transition probabilities are assumed to be chosen based on the policies followed by ®; and

®5 in order to ensure the required equivalence. An example will be presented shortly in order to
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demonstrate the technique. First, however, it will be useful to introduce the concept of a sample

path as a means of representing the random trajectory of a stochastic process.
Definition 3.8.2. (Sample path)

Let 2 = (Q0,Q1,Q2, ...) be a sequence of i.i.d. random variables, and let the support (i.e. set of all
possible values) of each ; be denoted by W, where it is assumed that W is non-empty and finite. A
sample path is a vector w = (wp,w1,ws, ...) belonging to the set W x W x W x ... which completely

determines the evolution of a given discrete-time stochastic process.

The random variables €; (i = 0,1,2,...) are in fact categorical random variables whose values
govern the random transitions of a given process. At any given time step n, the value w, € W
(henceforth referred to as the event that occurs at time n) is completely independent of the state
of the system, and also of the events that preceded it. One might imagine simply rolling a dice at
each discrete time step to determine the random event that occurs, with the same dice used at all
times, regardless of the system state. If the common distribution of the €); is chosen appropriately,
then each random transition of a discrete-time MDP can be determined as a consequence of the
state, action chosen and random event occurring at the relevant point in time; the same applies
to discrete-time Markov chains, except that obviously actions are not chosen. It is the fact that a
sample path may be used to determine the evolution of a coupling (which, according to Definition

is simply a discrete-time Markov chain) that is of primary interest here.

A number of results in this thesis which involve comparisons between two or more processes will
be established by first constructing a coupling for the relevant processes, and then examining the
possible sample paths that may be followed by the coupled process. In practice, the construction
of the coupling will involve listing the possible events that may occur (i.e. the events in the finite
set W) at any time step n and, for each event, specifying the probability of occurrence and also the
effect on the state of the coupled process if the event occurs. Several of the results in later chapters
will involve comparisons between different policies in order to prove or disprove optimality, but in
this chapter it will be useful to provide an example of how an argument based on coupling and

sample paths can be used to prove an elementary property of M /M /c queues.
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Example 3.8.3. (Coupling of M/M/c queues)

Consider two M /M /c queues operating independently. Both queues have a common arrival rate
A > 0 and serve customers at a rate p > 0 at any service channel. Let ¢; and ¢y be the service
capacities at the first and second queue respectively. It is assumed that ¢; > co > 1; that is, the
first queue has more service channels than the second. Rewards and holding costs are not relevant
in this example. Suppose both queues operate a trivial policy of always allowing customers to join
the queue, i.e. there is no balking; it will be assumed that A\ < cop in order to ensure system
stability. let L; and Lo denote the expected numbers of customers present at the first and second

queues respectively under steady-state conditions. The aim is to show:
Ly < Lo,

using a coupling argument. Of course, this fact may be established using more direct arguments
based on standard formulae for M/M/c queues (see, e.g. [67], p. 69), but the purpose of this
example is simply to demonstrate the coupling technique. Let ®; and ®3 be MDPs formulated
using the transition probabilities defined in , with ¢ = ¢; for the first process and ¢ = ¢y for
the second; naturally, both processes have state space Ny. In order to create a coupling, it will be
assumed that both processes are uniformised with parameter A = (A + cyp) ™. Let (z)nen, and
(Yn)nen, denote the state-time evolutions of ®; and ®s respectively (there is some conflict here
with earlier notation since ; has previously been used to denote the " component of the vector
x, but this does not cause problems in this particular example since the states are not vectors.) It
may be assumed that zo = yo = 0, since an M /M /c queue will eventually converge to its stationary

distribution and hence Ly and Lo are not affected by the choice of initial states.

Let (£, 9,) be a coupling with state space N2, initialised in state (0,0). At any time step n, the

random event w,, that occurs is an element of the following set:
W= {A,M<1>, M®, ...,M(Cl)} ,
where the events A, MM M@ . M) are defined as follows:

e A is the event that a customer arrives, which occurs with probability AA. This event is
seen by both of the marginal processes (Z,) and (¢,). If w, = A, then &,41 = &, + 1 and

Un+1 = Yn + 1; that is, both processes gain an extra customer.



Chapter 3 MDP formulation 116

o M® (for i = 1,2,...,c;) is the event that a service completes at the i’ service channel, which
occurs with probability puA. This event is seen by the marginal process (&) if and only if
i < &, and it is seen by the process (g,) if and only if ¢ < min(g,, c2). If it is seen by either
marginal process, then that process loses a customer. That is:
— Zpt+1 = Tp — 1 if and only if w, = M® for some i < @p;

— Jny1 = Jn — 1 if and only if w, = M® for some i < min(y, c2).

The use of the phrase “seen by” is quite common in the literature to indicate that a particular event
may affect one process without affecting another. For example, if a service completion is “seen by”
one process but not another, this means that only the process which “sees” the service completion
has one fewer customer present at the next time step; the other process is unaffected. If an event
is not “seen” by a particular marginal process, then that process remains in the same state; that
is, &py1 = &y if (2,) is the marginal process in question. As a point of terminology, it should be
understood that even if an event is not “seen” by any process, this does not alter the fact that the
event has occurred; for example, a service completion is said to “occur” even if it is not seen by any
process, in which case there is no change in the state of the coupling. In future coupling proofs, the
descriptions of the various events in W (as given in the two bullet points above) will be somewhat
shortened in order to avoid extraneous detail; for example, if a customer arrival is seen by both of
the marginal processes (&) and (), then this will be stated without the extra information that
Tnt1 = &+ 1 and gp+1 = §n + 1 as a result. The marginal processes (Z,) and (g,) will also be
referred to simply as processes; so, for example, it will be deemed sufficient to state that “the event

A occurs with probability AA and causes an arrival to be seen by both processes”.

The coupled process (2, 4y) evolves according to a sample path (wp,w1,ws,...), where each wj is
one of the random events in the set W = {A, MO M@ M(Cl)}. According to the definitions
of these events given previously, there is a probability AA of an arrival at any time step. Also, it
can easily be checked from the definition of the events M () (noting that each M () has the same
probability of occurrence, puA) that the probability of a service completion being seen by process
(Z,) at time step m is min(Z,,c1)pd, and the corresponding probability for the process (7y) is
min(g,, c2)uA. If no event is seen by a particular process at time step n, then it remains in the
same state at time step n+ 1. It follows that the transition probabilities P(#y,4+1 = &'|%, = &) and

P(Gn+1 = ¢'|Jn = §) correspond exactly with the transition probabilities defined in (3.5.3) which
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govern the transitions of the MDPs ®; and ®9 respectively. Therefore, for all n € Ny, &, has the
same distribution as x, and ¢, has the same distribution as y,. Of course, this is a requirement of
the coupling construction. In order to show that L < Lo, it will therefore be sufficient to restrict

attention to the coupled variables and prove that E[Z,] < E[g,] for all n € Np.

In fact, in this particular example one can prove the stronger property that, given any sample path
w = (wp,w1,ws, ...), one must have &, < ¢, for all n € Ny. This can be shown using a somewhat
trivial inductive argument. It is assumed that the 2o = g9 = 0, so the inequality holds when n = 0.
Assume that 2 < g, for arbitrary k& € Ny. If the event A occurs at stage k, then it is seen by
both processes, so Tx+1 < g1 follows. Next, suppose Z; < g holds with strict inequality. It is
not possible for an event to occur which causes Zx41 to be greater than & while simultaneously
causing Jx+1 to be smaller than g, and since the state of (,) can decrease by at most one in a
single time step, it must be the case that & < ¢ implies x4+1 < Yr+1. The only remaining case to
check is the case where I = ¢, and an event other than A occurs. If g > co, then the only service
completion events that would be seen by (7,) at stage k are the events MO M@ M) but
due to the definition of these events and the fact that T = g, these events are also seen by the
process (Z,) at the same stage. Similarly, if g < co then the only service completion events that
would be seen by (i) are the events M) M®@) M) but these events are also seen by (Z,)
at the same stage. In summary, it is not possible for the process (g,) to see a service completion
which is not seen by (&) unless (9,) has more customers present than (Z,) at the stage in question.

It follows that Zx11 < §x11, which proves by induction that z,, < g, for all n € N.

Given that z, < g, for all n € Ny along any random sample path w, it follows trivially that
E[z,] < E[yy] for all n € Ny. Hence, due to the coupling construction, E[z,] < Ely,] for all
n € Ng, where (z,) and (y,) represent the respective evolutions of the original MDPs ®; and ®,
which are naturally independent of each other. It follows that lim,, . E[x,] < limy, o0 FElyn], or

equivalently Ly < Lo, which completes the proof of the required property. X

Figure illustrates the transition probabilities for the coupled process (I, J,) in the case where
1 = 2 and ¢ = 1. Self-transitions (i.e. transitions from a state to itself) are not shown in the
diagram in order to avoid over-cluttering, and neither are transitions to or from non-recurrent

states. Given that the initial state is (0,0), any state (Z,y) with £ > g can never be visited and
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Figure 3.8: The transitions probabilities for the coupled process (&, 3,) in Example with ¢; = 2 and

cs = 1, not including self-transitions or transitions to or from non-recurrent states.

therefore the Markov chain has an ‘upper triangular’ structure. The reason for states with < g
being accessible is that, in any state (&, y) with & > 2, there is a positive probability that a service
completion will be the seen by the first process but not by the second process; this is the reason
for the ‘upward’ transitions in the diagram at states with £ > 2. Note that customer arrivals are

always seen by both processes, so these events always cause ‘diagonal’ transitions.

It was mentioned earlier that proofs involving the construction of a coupling for two discrete-time
processes are in some sense analogous to inductive proofs based on the functions h,,(-) derived using
relative value iteration. Indeed, although various results later in this thesis will be proved using
coupling formulations, these results are generally not beyond the realms of being achievable using
dynamic programming methods. It is not considered necessary to prove any formal equivalence

between the two methodologies here; in fact, it will be quite evident from the style of some of the
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coupling-based proofs in later chapters that the analogous proofs based on relative value iteration
would follow extremely similar arguments. To some extent, therefore, the question of whether
to prove certain results using coupling constructions or to rely merely on the finite-stage value

functions of dynamic programming is simply a question of presentation.

The proof given in Example relies on the principle that, after the coupling (Z,,¥,) has
been constructed, the marginal processes (Z,) and (g,) evolve according to identical sequences of
random events. Essentially, the sole purpose of the coupling construction is to provide a theoretical
justification for the strategy of ‘forcing’ the two processes to follow the same random trajectory. This
suggests that any proof based on a stochastic coupling argument may be considerably shortened
by not explicitly formulating the coupling itself; while this might sound somewhat bizarre, in fact
it is quite reasonable (and much more convenient from a notational point of view) to write a proof
which directly tackles the processes (z,) and (y,) by assuming that these processes follow the
same sample path, as opposed to performing an analysis on the coupled process (&, 3,). To make
this idea more clear, the proof given in Example [3.8.3] could have avoided an explicit coupling

construction by proceeding (roughly) along the following lines:

e Assume that the processes (z,,) and (y,) follow the same (arbitrary) sample path w.

e Show that =, < y, for all n € Nj, assuming (naturally) that the two processes are both

initialised in state 0 and evolve according to the same sequence of events.

e Conclude that L; < Lo by considering expectations over all possible sample paths.

The idea of a coupling between (z,) and (y,) would be implicit in such an argument, but the
coupling would not need to be constructed explicitly, or even referred to in the proof. The coupling-
based proofs given in later chapters will take advantage of this ‘shortcut strategy’ in order to avoid
tedious details as much as possible, but the general methodology explained in this chapter will be

referred to as and when it becomes appropriate to be more rigorous.

Before concluding this section, it will be useful to address a minor issue that may arise in the
conversion of a stochastic coupling argument to a dynamic programming argument. The issue
concerns the effect of the value of A (the uniformisation parameter) on the values h(x) obtained

from relative value iteration, which (due to Theorem [3.7.4)) are known to satisfy the average reward
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optimality equations in . Recall that, due to Theorem the parameter A may take any
value between zero and a certain positive upper bound (dependent upon the transition rates of
the CTMDP) without affecting the expected long-run average reward under a particular stationary
policy. Theorem establishes the existence of a stationary optimal policy, assuming that the
state space is finite. It therefore seems reasonable to conclude that the optimal long-run average
reward ¢g* should be unaffected by the exact value of A, and indeed this is the case. One might
also assume that the relative values h(x) satisfying the equations should be independent of
the choice of A; however, this assumption would be incorrect. In fact, the h(x) values do depend

on the value of A. The following lemma clarifies the nature of this dependence.

Lemma 3.8.4. Consider the finite-state MDP Y discussed in Sectz’on and assume that T is
uniformised with parameter A € (O, A+, cl-,ui)*l]. Let h: S — R be a function which, together
with the constant g*, satisfies the average reward optimality equations:

g" + h(x) = max ¢ r(x) + Zp(x, a,y)h(y) VxeS. (3.8.3)

a€Ax 7
yES

Furthermore, assume that h(0) = 0 in order to determine the h(x) values uniquely. Let AT € (0,A)
be arbitrary, and consider an MDP Y1 identical to Y except that it is uniformised with parameter

At Let bt be a function which, together with the constant ', satisfies:

F o bt i) = f t 5
9"+ h1(x) = max g r(x) + 3 pl(x,a,y)h1(y) VxeS, (3.84)
yeS

where hi(0) = 0 is assumed, and the transition probabilities p'(x,a,y) are obtained by replacing A

with AT in . Then gt = ¢*, and for each x € S:

hl(x) = (A/ATh(x).

Proof. 1t is clear from the definition of the transition probabilities p(x,a,y) in (3.5.3) that the
effect of reducing the value of A is to increase the probability of a ‘self-transition’. To be specific,

the probabilities pf(x, a,y) satisfy the following for all x,y € S and a € Ay:

(AT/A)p(x,a,y), if y # x,

1_Z(AT/A)p(X7a7Y)7 lfy:X
y#x

pl(x,a,y) =
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However, the expression for pT(X, a,x) can be re-written as follows:

1 - Z(AT/A)p<X7a7Y) =1- (AT/A) (1 _p(X7 G’?X)) = (AT/A)p(X, a,x) +1- (AT/A)
y#X

This enables the optimality equations in (3.8.4) to be put into the form:

g+ htx) = ma § 7(x) + > p(x,a,y)(AT/A)RI(y) p + (1 - AT/A)RT(x) VxS, (3.85)
yeS

Then, after cancellation of Af(x):

gT + (AT/A)hT(x) = errel%)i r(x) + Zp(x, a,y)(AT/A)hT(y) VxeS, (3.8.6)
yeS

Recall that the values h(x) satisfying the equations (3.8.3) are unique, assuming that h(0) = 0.
Hence, by direct comparison between (3.8.3)) and (3.8.6):

hl(x) = (A/ADA(x) VYxeS§,

and g' is a constant satisfying the average reward optimality equations, which must therefore (by

Theorem [3.7.3)) be equal to the optimal long-run average reward, g*. [J

Lemma [3.8.4] states that the effect of reducing the value of the uniformisation parameter from A
to AT € (0,A) is that the relative values h(x) are increased by the multiplicative factor A/Af,
However, from it may be seen that the terms within the maximisation operator are unaffected
by the transformation from h(y) to hf(y), since (AT/A)AT(y) = h(y) for all y € S. It follows that
any action a which attains the maximum in the original optimality equations also does so
in the transformed optimality equations . In conclusion, changing the value of A modifies

the relative values for all x € S, but does not affect the class of optimal policies.

3.9 Conclusions

This chapter began by introducing a mathematical model for a multiple-facility queueing system
with heterogeneous service facilities, which evolves according to Markovian probability distribu-

tions. Most of the assumptions listed in Section [3.I] will be retained throughout this thesis, although
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some will occasionally be relaxed in order to allow a broader range of problems to be addressed;

for example, heterogeneous customers will be considered in Chapters [4] and [7]

It is important not to lose sight of the fact that the queueing system in Section [3.1] operates in
continuous time rather than discrete time, and this is why a continuous-time MDP formulation
was given in Section However, the various results in Sections and [3.5 have shown that
any stationary policy 6 earns the same expected long-run average reward in the continuous-time
process ¥ as an equivalent stationary policy (related to 6 via a bijective relationship, as explained
in Lemma in the discrete-time MDP Y formulated in Section Since Theorem has
established the existence of a stationary policy which maximises the average reward for W, it follows
that in order to find an average reward optimal policy for W it is sufficient to restrict attention to
stationary policies in Y. Accordingly, most of the results given in subsequent chapters will assume

the context of a discrete-time MDP with a simplified state space given by (3.5.1)).

The practical task of finding an average reward optimal stationary policy for T can be accomplished
using the dynamic programming algorithms discussed in Section but this requires a finite
truncation to be made to the state space S which can only be justified if it can be shown that
there exists an optimal policy # which induces a Markov chain restricted to some finite set of states
Sy C S. The results in the next chapter will examine whether or not it is feasible to make such a

truncation, by investigating the characteristics of average reward optimal policies.
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Methods for obtaining average reward optimal policies for the queueing system introduced in Sec-
tion [3.1] will be of interest throughout this thesis. A further objective will be to identify the
characteristics of these optimal policies. It will become evident later that certain structural proper-
ties of optimal policies can be proved only by making additional assumptions about the system; for
example, some of the results in Chapter [5| will require restrictions to be imposed on the number of
facilities N. However, throughout this chapter the model described in Section [3.I] will be considered

in its full generality, without any extra conditions on the system parameters.

Section {.1| will revisit the themes of selfish and social optimisation discussed in Chapter [2, and
explain how these may be generalised to a system consisting of NV facilities. Section [£.2]will establish
a set of optimality equations for MDPs defined on an infinite state space. These equations will then
be used to prove an important ‘containment’ property of socially optimal policies which will be of
great practical use in later chapters. Section will prove a further property of socially optimal
policies which complements the main result of the preceding section. Section [£.4] will prove various
interesting results involving the effect of the demand rate A on optimal policies, and finally Section

[4.5] will consider an extension of the problem involving heterogeneous customers.

4.1 Selfish and social optimisation

This section explores the themes of selfish optimisation and social optimisation in the multiple-
facility queueing system introduced in Chapter Informally speaking, selfish behaviour occurs
when individual customers take actions aimed solely at optimising their own outcomes; social
optimisation, on the other hand, involves the adherence of customers to a common behavioural
scheme which optimises their collective welfare. It is natural to suppose that selfish behaviour
arises when customers act of their own free will, whereas socially optimal behaviour may be induced
by a central authority (essentially, a ‘benign dictatorship’) which controls the fate of each newly-
arrived customer; however, the mathematical results developed in this chapter do not require such
assumptions to be made. It will be shown later that socially optimal policies possess an interesting

‘containment’ property which has useful implications for computational algorithms.

123
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The assumptions of Section [3.1] apply throughout this chapter. By using the technique of uni-
formisation described in Section [3.3] it is valid to model the N-facility queueing system within a
discrete-time framework, using the MDP Y formulated in Section [3.5] At this point, it is worth
noting that the state space S of this discrete-time MDP is countably infinite; as such, the various
results of Section (which assume a finite state space) cannot be applied unless there is a justifi-
cation for truncating the state space. Policies for discrete-time MDPs have been defined in Section
Before proceeding, it is necessary to establish the exact criteria for determining whether a

particular policy is selfishly optimal and/or socially optimal in a given system.

Selfishly optimal policies will be discussed first. Suppose that each customer arriving in the system
is allowed to make his or her own decision, as opposed to being directed by a central decision-maker.
As stated in Section [3.1] it is assumed that the queueing system is fully observable, and therefore
each customer is able to observe the exact state of the system x € S before making a decision
(the case of unobservable queues will be discussed in Chapter @ Under this scenario, a customer
may calculate their expected net reward (taking into account the expected cost of waiting and the
value of service) at each facility based on the number of customers present. Let w(x,a) denote an
individual customer’s expected net reward for choosing action a € {0, 1,..., N} under state x € S

(recall that @ = 0 denotes balking). Then, by analogy to the results in Section

o — 2t if a = ¢ for some 7 € and z; < ¢;
—— fa=if [1,2,., N} and z; < c;
1223
w(x,a) = ai—ﬁl(?l:r), if a =i for some ¢ € {1,2,..., N} and x; > ¢;, (4.1.1)
il
0, otherwise.

If customers act selfishly, they will simply choose the action a which maximises w(x,a). Naturally,
this implies that if the expected net rewards w(x,i) for all facilities ¢ € {1,2,..., N} are negative,
then a selfish customer’s decision will be to balk. In the case of ties, a convention will be used
whereby the facility with the smallest index ¢ is chosen; however, balking will never be preferred
to joining any facility ¢ for which w(x,7) = 0. It is interesting to note that since the FCFS queue
discipline is assumed at each facility, a selfish customer’s behaviour depends only on the existing

state, and is not influenced by the knowledge that other customers act selfishly.



Chapter 4 Containment and demand 125

With this definition of selfish behaviour it is easy to see that the selfishly optimal policy, denoted
by 6, is a stationary policy which, somewhat curiously, is independent of the demand rate A. Given
that selfish customers refuse to choose facility i if w(x,4) < 0, it follows that for i = 1,2,..., N there

exists an upper threshold B; which represents the greatest possible number of customers at ¢ under

steady state conditions. The threshold B; can be derived from (4.1.1) as:

B; = {O‘ZZZ“ZJ , (4.1.2)

where |-| denotes the integer part. Thus, a selfishly optimal policy 6 induces an ergodic Markov

chain defined on a finite set of states S. Formally, S is given by:

S = {({L’l,:l,‘g, wnN) €8x < Bj for all z} (4.1.3)

Henceforth, S will be referred to as the selfishly optimal state space, since it consists of all states

which are positive recurrent under the policy 6. The size of S is given by:

As stated previously, a socially optimal policy is one which maximises the collective welfare of all
customers. As in Chapter [2| expected long-run average reward will be used to measure ‘collective

welfare’. Recall from Chapter |3 that the average reward gg(x) is defined as:

R TI 1
go(x) := htrgérolft Ey

t—1
Zr(xn) Xp = x] , (4.1.4)

n=0

where 0 is an arbitrary policy, x,, € S is the state of the process at time step n € Ny and x € S
is the initial state. In , the real-time reward function defined in is used, but if @ is
a stationary policy then this can be replaced by the anticipatory reward function 7(x,a) defined
in without affecting the value of gg(x) (this equivalence is due to Theorem [3.5.3). In this

chapter, a socially optimal policy is defined as any policy 8* which satisfies:

9o+ (x) = Sl;pga(X) =:g"(x) VxeSs,

and hence attains average reward optimality as defined in Chapter It should be noted that a
socially optimal policy will generally not be unique, whereas the selfishly optimal policy 6 and the

selfishly optimal state space S are both determined uniquely (assuming the conventions discussed
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earlier for dealing with ties, etc.). Changing the ordering of the facilities (and thereby the tie-
breaking rules) affects the policy 6, but does not alter the boundaries of S. Two important ways

in which the selfish policy 8 differs from a socially optimal policy are as follows:

1. The decisions made under 6 are entirely independent of the demand rate A;

2. The threshold B; (representing the steady-state maximum occupancy at facility 4) is inde-

pendent of the parameters for the other facilities j # .

Given an arbitrary stationary policy 6, let Sy denote the set of states in S which are positive
recurrent in the Markov chain induced by #. A major result to be proved in this chapter is that if

0* is a socially optimal policy, then the following relationship holds:
Sp+ C S.

That is, the set of states which are positive recurrent under 6* (equivalently, the set of states
accessible from the state 0 under 6*) is contained within the selfishly optimal state space S. This

principle may be illustrated using a simple example with two facilities.

Example 4.1.1. (Containment in two dimensions)

Consider a system with demand rate A = 10 and only two facilities. The first facility has two
channels available (¢; = 2) and a service rate pu; = 8, holding cost 51 = 10 and fixed reward
a1 = 2. The parameters for the second facility are co = 2, pus = 2, 2 = 10 and ag = 6, so it offers
a higher reward but a slower service rate. The system may be uniformised by taking A = 1/30, so
that (A + 3, cipi) A = 1. The selfishly optimal state space S for this system consists of 12 states.
Table shows the decisions taken at these states under the selfishly optimal policy 6, and also
the corresponding decisions taken under a socially optimal policy 60*. (Verification of the fact that

0* is socially optimal requires results which will be established in Section )

By referring to Table , the differences between the two policies f and 0* may be observed. At
the states (0,1), (1,1) and (2,2), the socially optimal policy 6* deviates from the selfish policy 6.
More striking, however, is the fact that under the socially optimal policy, some of the states in S

are actually unattainable under steady state conditions. Indeed, the recurrent state space Sg« of
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the socially optimal policy consists of only 9 states (coloured grey in Table . Thus, for this

system, Sp« C S and in this chapter it will be proved that this principle holds in general. X

Selfishly optimal policy 0 Socially optimal policy 0*
To=0|29=1] 20=2 To=0|29=1] 20=2

z1 =0 2 2 1 1 =0 2 1 1

1 =1 2 2 1 1 =1 2 1 1

T =2 2 2 1 T =2 2 2 0

1 =3 2 2 0 1 =3 2 2 0

Table 4.1: Selfishly and socially optimal policies for the system considered in Example For each state

x = (21,22) € S , the corresponding decisions under the respective policies are shown.

In order to develop the topic of socially optimal policies for MDPs defined on an infinite state space,

certain extra theoretical results are needed. These are discussed in the next section.

4.2 Containment of socially optimal policies

In Example it was claimed that the policy #* (illustrated in Table was socially optimal,
but no details were given regarding the method for deriving this policy or proving its optimality.
Recall that Section introduced two algorithms for computing average reward optimal policies,
but these required the assumption of a finite state space. In , the average reward optimality

equations for MDPs defined on a finite state space S were given as follows:

9"+ h(x) = max r(x) + Zp(x, a,y)h(y) VxeS. (4.2.1)
yes

The conditions under which these equations can be used to characterise average reward optimal
policies for MDPs defined on infinite state spaces have been explored by various authors. Derman
[37] has shown, under the assumption of bounded rewards, that if a constant ¢* and function h can
be found which satisfy , then any stationary policy determined by this equation is average
reward optimal. Ross [145] considered the optimal discounted value function v4(-) (see Definition

3.4.1) and showed that if the differences |vy(x) — v4(2z)| (where z € S is a fixed reference state)
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are uniformly bounded in x and ¢, then a constant ¢* and function h satisfying (4.2.1) must exist.
Zijm [205] also assumed bounded rewards and provided a number of equivalent conditions, each of
which ensure the existence of a bounded solution to (4.2.1)). Other notable references for average

reward optimisation in denumerable-state MDPs include [25], 26], 27, 28], [153].

The results in this section will make use of the conditions provided by Sennott [156] for the existence
of an average reward optimal stationary policy satisfying the equations in the case of a
countably infinite state space. These conditions rely on properties of the optimal value function
ve(+) in a discounted reward problem and are largely analogous to the conditions discussed in Section
which relate to a continuous-time MDP. The expected total discounted reward for the MDP YT

operating under an arbitrary policy 6, given a discount factor ¢ € (0, 1), is given by:

Z ¢"r(xn)
n=0

v¢79 (X) = Eg

X0 = x] , (4.2.2)

where x € S is the initial state. In (4.2.2)) it is assumed that the real-time reward formulation
(3.5.4)) is used. Similarly, under the alternative reward formulation (3.5.15]), one has:

Vg 0(x) := Ey

Z ¢n72(xm an)
n=0

X0 = x] . (4.2.3)

As discussed in Section (and proved by Theorem , the two reward formulations r and
7 are equivalent with respect to the expected long-run average reward earned under a stationary
policy. However, in general it is not the case that vgg(x) and 04 9(x) are equal for a fixed x € S.
Indeed, given some discount factor ¢ € (0,1) and state x € S, it is perfectly possible to have
Vg0, (X) > V4,9, (x) and D49, (X) < U g, (x) for two different stationary policies 61 and . Typically,
this scenario would require 61 to be a more conservative policy than 6o; that is, the set of states

accessible from 0 under #; would be smaller than the corresponding set under 6,.

Despite the fact that vy () and 044(-) are not equivalent, the existence of an average reward
optimal policy satisfying the equations may be proved under either reward formulation,
although the arguments are slightly different depending on the formulation used. In order to avoid
unnecessarily lengthy arguments, it will therefore be convenient to concentrate on only one of the
two formulations. As such, let it be assumed that the anticipatory formulation is used, so that

the expected total discounted reward is given by (4.2.3). Then, in order to qualify as ¢-discount
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optimal, a policy 6* must satisfy the following condition for all admissible policies 6:
Ug0+(X) > Vg9(x) VxeES.

Furthermore, 94(x) = supg 04 ¢(x) will be used to denote the optimal value function. By analogy

to (3.4.4)), the function 04(-) satisfies the following discount optimality equations:
0p(x) = max r(x,a) + ¢ Zp(x, a,y)0s(y) (x € 9). (4.2.4)
yES
The next result establishes an important monotonicity property of 94(x) (which, incidentally, does

not hold for its counterpart vy(x) under the real-time formulation (3.5.4))).

Lemma 4.2.1. For every state x € S, discount factor ¢ € (0,1) and facility i € {1,2,...,N}:
bo(x%) < b5(x).

Proof. The proof relies upon the method of successive approximations (see Theorem [3.4.4]) and is
based on induction. Details can be found in Appendix page 421

The next lemma establishes a property of 94(-) which will be needed in order to state one of the
main results of this section. Specifically, it must be shown that there exists a state-dependent lower
bound for the difference 04(x) — 94(0) which holds for any discount factor ¢ € (0,1). The proof of

the lemma is similar to that of its continuous-time analogue, Lemma [3.4.9]

Lemma 4.2.2. For every state x € S, there exists a non-negative value f(x) < oo such that for

all discount factors ¢ € (0,1), the following holds:
56(%) — 34(0) = —f(x). (42.5)

Proof. The proof emulates that of Lemma by considering a transformed MDP in which all

rewards are non-positive. Details can be found in Appendix page (423

The results of the previous two lemmas may be used to show that the MDP T satisfies Sennott’s
conditions in [I56] for the extension of the average reward optimality equations (4.2.1)) to an MDP

with an infinite state space. This important result is stated below as a theorem.
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* Theorem 4.2.3. Consider the MDP Y formulated in - . There exists a constant g*
and a function h(x), with g* = limgp1 (1 — ¢)04(x) and —f(x) < h(x) <0 forx € S, such that:

* 4 h(x) = p h . 4.2.
9" + h(x) = max r(x,a)+yze;9p(x,a,y)h(>f) VxeS (4.2.6)

Moreover, let 0* be a stationary policy and suppose 0*(x) attains the mazximum in for every

state x € S. Then 0* is average reward optimal, with an average reward g*.

Proof. This result is proved in [I56], but it requires certain conditions to be met, so it should be

checked that these conditions hold for the MDP Y. The conditions are as follows:

1. Rewards are bounded above, but not below; that is, there exists a constant R < oo such that

for every state x € S and action a € A, 7(x,a) < R.
2. For each state x € S and discount factor ¢ € (0,1), v4(x) > —oo.

3. Define izd,(x) = 04(x) — 0y (z) for some fixed reference state z € S. There exists a constant

K < oo such that, for each state x € .5, ﬁ¢(x) < K for all ¢ € (0,1).

4. For each x € S, there exists a non-negative value f(x) < oo such that ﬁ(b(x) > —f(x) for all
¢ € (0,1). Also, > cop(x,a,y)f(y) < oo forall x € Sand a € A.

Condition (1) is obviously satisfied by T, since 7(x,a) < Aa* for all state-action pairs (x,a) € S x A.
In order to verify the second condition, let 6y denote the degenerate policy which always chooses
to balk. Then, under 6y, all of the single-step rewards 7(x;,,a,) are equal to zero and hence
Ug,0,(x) = 0 for all x € S, which in turn implies that 04(x) > 0 since Ug4(x) > 0gg,(x). Thus,
condition (2) holds. In condition (3), one can simply take K = 0 and z = 0. Indeed, Lemma [4.2.1]
has shown that 9 (x"") < 9(x) for all x € S and i € {1,2, ..., N}, and therefore a trivial inductive
argument shows that 04(x) — 04(0) < 0 for x € S. This is why the theorem states that h(x) <0
for all x € S. Finally, the existence of a non-negative value f(x) satisfying de)(x) > — f(x) for each
x € S and ¢ € (0,1) has been proved by Lemma . Since the action set A is finite and each
value f(x) is finite, it follows that Zyes p(x,a,y)f(y) < oo for each (x,a) € S x A.

Under the conditions stated, the theorem can be proved using the arguments given by Sennott [156]

(p. 632), which are analogous to those required in the proof of Theorem (3.4.10f OJ
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Interestingly, Sennott’s proof of Theorem (see [I56]) involves obtaining an average reward
optimal policy as a limit of ¢-discount optimal policies as the discount factor ¢ tends to 1. The
fact that an average reward optimal policy can be obtained in this manner offers the possibility of

proving further results by exploiting the properties of discount-optimal policies.
The next result establishes the ‘containment principle’ of socially optimal policies.

Theorem 4.2.4. The MDP Y permits a stationary policy 0* satisfying the optimality equations
which induces an ergodic Markov chain defined on a finite set of states Sy« C S.

Informally, it may be said that for some socially optimal policy #*, “the socially optimal state space

is contained within the selfishly optimal state space”.

Proof. Due to the definition of S in 1) it is sufficient to show that for some stationary optimal
policy 6%, the action 8*(x) prescribed under state x € S is never to join facility 7 when z; = B; (for
i=1,2,..,N). Let (¢n)nen be a sequence of discount factors converging to 1, and let (Hzn)neN
be a corresponding sequence of discount-optimal policies; that is, for each n € N, G;n iS -
discount optimal. Referring to the proof of Theorem m (see [I56], p. 632), an average reward
optimal policy #* may be obtained as a limit of some sequence (%nk)kGN which is a subsequence
of (07, )nen. It follows that for each x € S, there exists an integer U(x) such that 0, (x) = 6*(x)
for all £k > U(x), and therefore it suffices to show that for any discount factor ¢ € (0,1), the

discount-optimal policy 92 forbids joining facility i at any state x with z; = B;.

For a contradiction, suppose z; = B; and Gz(x) = ¢ for some state x € S and discount factor

¢ € (0,1). Then the discount optimality equations in (4.2.4]) imply:
7(x,7) + GAADS(xX1T) > dAAT(x), (4.2.7)

i.e. joining 7 is preferable to balking at state x. Given that z; = B;, it follows that 7#(x,i) < 0 and
therefore (4.2.7) implies 04(x*") > 94(x), but this contradicts Lemma m O

Theorem may be regarded as a generalisation of the famous result of Naor [I31] discussed
in Chapter Naor showed, in the context of a single M/M/1 queue, that the selfishly optimal
and socially optimal strategies are threshold strategies with thresholds ns and n, respectively, and

that n, < ns. This is the M /M/1 version of the containment property which Theorem m proves
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for multiple, heterogeneous facilities (each with multiple service channels allowed). The theorem
also implies that a socially optimal policy may be found by searching within the class of stationary
policies ‘contained’ in the finite set S. Thus, it is possible to apply the techniques of dynamic
programming discussed in Section (e.g. value iteration, policy improvement) by restricting the
state space so that it consists only of states in S; any policy that would cause a state outside S
to become positive recurrent may be ignored, since it is not necessary to consider such policies in
order to find an optimal policy. For example, value iteration may be performed by looping over
all states in S on each iteration and simply restricting the set of actions so that joining facility i is
not allowed at any state x € S with z; = B;. This ‘capping’ technique avoids the use of alternative
techniques which have been proposed in the literature for searching for optimal policies on infinite
state spaces, such as the method of ‘approximating sequences’ proposed by Sennott in [I58], or

Ha’s method of approximating the limiting behaviour of the value function in [73].

As discussed in Section [3.7] value iteration is useful for theoretical as well as practical purposes.
The technique of proving structural properties of optimal policies using induction on the finite-
stage value functions obtained using dynamic programming is well-established in the literature; for
example, Hajek [74] used this technique to demonstrate the optimality of a ‘switching-curve’ policy
in a model consisting of two interacting service stations, while Stidham [169] discussed the use of
inductive analysis to establish the optimality of monotone policies in various types of problems
involving control of admissions to a queueing system. Koole [105] (see also [106]) developed a more
general approach for proving monotonicity properties of optimal policies based on analysing the
form of the value function, rather than the specification of the function itself. Structural properties

of optimal policies will be discussed in much greater depth in Chapter [5] of this thesis.

The proof of Theorem makes use of a structural property of the value function 94 proved
earlier (specifically, the monotonicity property proved in Lemma in order to establish the
existence of a socially optimal policy with the required ‘containment’ property. In fact, it is possible
to use an alternative method of proof to establish an even stronger result. The proof of the next
result uses a stochastic coupling argument; please refer to Section [3.8] for details of this approach,

including definitions of the terms ‘stochastic coupling’ and ‘sample path’.

Theorem 4.2.5. Any stationary policy 0* which maximises the expected long-run average reward
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for the process Y induces an ergodic Markov chain on some set of states contained in S.

Proof. Let 6 be a stationary policy which maximises (4.1.4). Evidently, there must exist a stationary
distribution {mp(x)}xes, where mg(x) is the steady-state probability of the process being in state
x € S under 0 and )¢ me(x) = 1; if this were not the case, then the system would be unstable

under # and the expected long-run average reward would be (negatively) infinite.

Suppose, for a contradiction, that there exists a state x ¢ S which is positive recurrent under 6.
Clearly, such a state must be accessible from within S and hence there exists z € S with zZi = BZ-
for some ¢ € {1,2,..., N}, mp(z) > 0 and 6(z) = i; that is, z is on the boundary of the selfish state
space S and is positive recurrent, and the decision taken at z causes the system to pass outside
S. The aim of the proof is to show, using a sample path argument, that  is inferior (in terms of

average reward) to a particular non-stationary policy v, to be defined shortly.

Let T and Y2 be discrete-time MDPs with the same formulation (i.e. the same rewards, transition
probabilities etc.) as Y. It will also be convenient to assume that both T; and Y9 are uniformised

with parameter A = (A4, cipti) 1. The processes T1 and Yy evolve as follows:

e T, is initialised in an arbitrary state xg € S and follows the policy 6 at all times;

e T is also initialised in state x¢ and follows the policy 1) at all times.

Here, 1) is a non-stationary policy which chooses the same actions as 8 at all times, unless Y1 is
in state z, in which case ¥ chooses to balk instead of joining facility . One might think of % as a
‘copying’ policy, which copies the actions chosen by 6 unless T is in state z. Let (xy)nen, be the
sequence of states visited by the first process Y1, and let (y,)nen, be the corresponding sequence
for the second process To. In notation, ¢ operates as follows (for all n € Np):

0(x,), if x, # z,
Y(yn) = o) 7 (4.2.8)

0, if x,, = z.

Assume that the processes (x,) and (y,) evolve according to identical sequences of random events;
that is, the two processes follow the same sample path (wgy,w,ws,...). The justification for this

assumption is provided in Section and depends on the implicit construction of a stochastic



Chapter 4 Containment and demand 134

coupling between the processes (x,,) and (yy,); please refer to the discussion beginning on page

for further explanation. At any time step n, the random event w,, satisfies:
o

N
wn e (AU {M}“} 1

k=1

The random events A and Mi(k) (for i € {1,2,..., N} and k € {1,2,...,¢;}) are defined below. In
order to reduce the amount of unnecessary mathematical detail, the consequences of these events
are described 'physically’ rather than mathematically; for example, when it is said that the process
(xn,) ‘gains a customer at facility 4’, this naturally means that the i*" component of x,, increases

by one, so that X,,1 > X, with strict inequality in only the i*" component.

e The event A occurs with probability AA and causes an arrival to be seen by both of the
marginal processes (x,) and (y,). In this case, (x,) gains a customer at the facility corre-
sponding to the action 6(x,) if this action is non-zero; similarly, (y,) gains a customer at the

facility corresponding to action ¥(y,,) if this action is non-zero.

e Forv=1,2,...., N and k = 1,2,...,¢;, the event Mi(k) occurs with probability p;A. If this
event occurs at the n'" time step, then the process (x,) (respectively, (y,)) sees a service
completion at facility ¢ if and only if there are at least k£ customers present at i under state
x,, (respectively, y,). Recall that any event that goes unseen by a particular process causes

that process to remain in the same state at the next time step.

At any time step n, the number of possibilities for w, is 1 + ZZ]\L 1 Gi. Since it is assumed that

A = (A+, i)~ L, the probabilities of these events sum to 1 as required.

The general strategy of this proof is to show that the long-run average reward earned by T, along
some arbitrary sample path is greater than the average reward earned by T; on the same path.
Clearly, if this is the case for any sample path, then the policy v followed by T9 must be superior

to the policy 6 followed by T in terms of ezpected long-run average reward.

For all n € Ny, x,, dominates y, in the sense that each facility ¢ has at least as many customers

present under x,, as under y,. This can be shown using an inductive argument:

e The (componentwise) inequality xg > yo holds trivially since the two processes Y1 and Yo

are initialised in the same state.
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e Suppose x, >y, for some n € Ny. Let (x,); and (y,); denote the 4§t components of x,, and
yn respectively (for j =1,2,...,N). If w, = A then, for some j € {1,2,..., N}, (yn+1); may
be one greater than (yy);; however, due to the definition of ¢ in (4.2.8]), this can only be the

)

case if (xp41); is also one greater than (x,);. Also, any event M j(k which causes (Xp41); to
be smaller than (x,); must also cause the same discrepancy to occur between (y,1); and
(¥n)j, unless (yn); is strictly smaller than (x,); (and also smaller than k), in which case
(¥n+1); is guaranteed to be less than or equal to (x,41); because (xp41); can differ from

(x,); by at most one. By these arguments, it follows that x, 11 > yn41.

The argument in the second of the bullet points above may be expressed more succinctly (albeit
informally) as follows: any customer who joins facility j at a certain point during the evolution of
T, also does so at the same point during the evolution of Y. Any service completion which is seen
by T; is also seen by Yo, unless the service completion in question takes place at some facility j
which has more customers present under Y; than under Yo, in which case there must still be at
least as many customers present under Y; as there are under T after the service completion takes
place. This establishes the required inequality, x,, > y, for n € Ny. Moreover, note that due to the
definition of v, the only component for which this inequality may be strict is the i component,
which corresponds to the action chosen by 6 at state z; in other words, facility ¢ is the only facility

at which there may be more customers present under Y; than under Y.

Consider the process T initialised in state xg and evolving along an arbitrary sample path w =
(wo, w1, w2, ...). Since the state z is positive recurrent under 6, z is visited infinitely many times by
T, with probability one. Let t; € Ny denote the first discrete time epoch at which T is in state z

and an arrival occurs (obviously, ¢; has a dependence on the path w). That is:
t; :=inf{n € Ny : x,, =z and w,, = A}.

Assuming that the process Y is also initialised in state xy and follows the same path w, it must
also be in state z at time t1, since the ‘copying’ policy ¥ chooses exactly the same actions as 6 in

the interval [0,¢;) and the same pattern of arrivals and service completions occurs.

Let u; denote the next time, after t1, that Y; returns to the regenerative state 0. At time step
t1, the first process Y1 earns a negative reward 7(z,i) by choosing to join facility ¢ when there

are B; customers present, whereas Y9 earns a reward of zero by choosing to balk. Moreover, for
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all n € (t1,u1] it may be seen from the formulation of 7 in that the single-step reward
7(xp, 0(xy)) earned by Y1 cannot possibly exceed the corresponding reward 7(y,, ¥ (y»,)) earned by
To; this is because the presence of extra customers at facility ¢ results in either a smaller reward
being earned (if facility ¢ is chosen) or an equal reward (if a different facility, or balking, is chosen).
Therefore the total reward earned by Y over the interval [t;, u;] must be strictly smaller than that
earned by T5. At time uq, since Y1 has no customers present, neither does T, so the two processes
are in the same state (this is referred to as a ‘joining’ of the two processes; in fact, depending on
the path w being followed, the joining may occur at some point before uq, but it must happen by

time u; at the latest, given that x,, >y, for all n € Ny and hence x,;, =0 > y,, ).

Using similar arguments, it can be said that if ¢ denotes the time of the next visit (after u;) of
T to state z, then Y5 must earn a strictly greater total reward than Y over the interval [ta, ug],
where ug is the time of the next visit (after t2) of T; to state 0. As noted previously, the state z
is visited infinitely often by Y1 with probability one. Hence, by repetition of this argument, it is
easy to see that 0 is strictly inferior to the non-stationary policy ¥ in terms of expected long-run
average reward. Furthermore, Theorem states that an optimal stationary policy exists for T,

so there must exist some other stationary policy #* which is superior to 8. [J

In the proof of Theorem 1) is described as a ‘copying policy’ applied to a parallel process T,
which simply copies the action chosen by 6 on the process Y1, unless Y is in state z. Given the
nature of the dependence of 1 on 0, it is reasonable to question whether v is actually a permissible
policy, in the sense that it fits within the classification of policies for MDPs introduced in Section
After all, what does it actually mean for a policy to ‘copy’ another policy? Does it mean that
the policy 9 cannot be implemented in its own right, since it needs to ‘copy’ the actions of €, and

therefore it requires # to be running side-by-side on some parallel process?

In fact, v is a permissible policy because it is an example of a history-dependent policy. The history
of the process Y, as defined in Section [3.6] includes a record of all states visited, actions chosen
and random events occurring since the process began. At any point in time, given the initial state
xo and the history of random events, it is possible to determine what the latest system state would
have been if the policy 6 had been followed since initialisation; moreover, since 6 is a stationary

policy, the action 6(x,,) is determined by the state x,, only. Therefore, at any discrete time step n,
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the action 9 (y,) chosen by 1 can be determined uniquely according to the history of the process

and the definition of 1) itself; that is, ¥ is an admissible history-dependent policy.

Finally, it is worthwhile to note that the proof of Theorem assumed that the anticipatory
reward formulation was used. However, the lemma was intentionally stated without making
reference to this assumption. Indeed, the equivalence of the reward formulations 7(x,a) and r(x)
with respect to average rewards under fixed stationary policies (see Theorem ensures that it

is sufficient to prove the result under only one of the two reward formulations.

The results in this section have shown that it is necessary for socially optimal policies to be ‘con-
tained’ on the finite set S. The next section will establish that socially optimal policies should also

possess another intuitively sensible property, referred to as a non-idling property.

4.3 Non-idling policies

The results in Section [£.2] have established that there exists a stationary socially optimal policy
satisfying the optimality equations in , and that the set of states which are positive recurrent
under this policy must be a subset of the selfishly optimal state space, S. It follows that a policy
of this form may be found by searching within the finite set S, using the techniques of dynamic
programming described in Section [3.7} In this section, 8* will be used to denote the particular
policy found using the Relative Value Iteration Algorithm (RVIA), which (due to Theorem

is average reward optimal. For each state x € S, the action 6*(x) satisfies:

0*(x) € aragerjlax r(x) + Zp(x,a,y)h(y) , (4.3.1)
* y€S

where the values h(x) may be computed using relative value iteration. Note that assumes
that the real-time reward formulation is used; under this formulation, the single-step reward
r(x) is independent of a. Moreover, the transition probabilities p(x, a,y) depend on a only to the
extent that there is a probability AA of transferring from state x to x%* in a single time step (recall
the notational convention that x’* = x). Therefore, may be simplified to:

0*(x) € argmax h(x*").
aEAx
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Hence, if there exists an action a* such that h(x* T) > h(x*") for all a € {0,1,2, ..., N}\ {a*}, then

a* is the action chosen by 6* at state x. This creates the possibility of using inductive arguments

based on the finite-stage functions h,(-) defined in Theorem to show that certain actions cannot
be chosen by 6* at particular states. In particular, if it can be shown that h,(x® ) — h, (x?27) > €
for some actions aj,as € {0,1,2,..., N} and constant ¢ > 0 at all stages n € Ny, then since

h(x) = lim,, 00 hn (%), it follows that ag cannot be the action chosen by 6* at x.

The result to be proved shortly utilises these arguments in order to establish further properties of
the policy 6* which will be useful in later chapters. First, it is necessary to introduce a definition

for a particular type of stationary policy, referred to as a non-idling policy.
Definition 4.3.1. (Non-idling policies)

Let 0 be a stationary policy, and suppose 8(x) # 0 for all states x € S with x; < ¢; for at least one
facility i € {1,2,..., N}; that is, 0 never chooses to balk when there is at least one facility with one

or more idle service channels. Then 6 is said to be a non-idling policy.

In this section it will be shown that the policy 8* obtained by relative value iteration is a non-idling

policy. First, a property of the relative value function h(x) must be proved.

Lemma 4.3.2. Let x € S be a state with ©; < ¢; for some i € {1,2,...,N}. Then:
h(x'™*) > h(x),
where h is the relative value function satisfying the equations .

Proof. The proof is accomplished using induction on the functions h,(-) defined in (3.7.7). Indeed,

it can be shown that for all states x € S with z; < ¢; for some i € {1,2,....,N}:

B (X)) — B (x) > i — Bi Vn € Ny,
which is sufficient to establish the result. For details, refer to Appendix [A.4] page
Lemma directly implies the next theorem.

Theorem 4.3.3. There exists a socially optimal policy 0% which is a non-idling policy.
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Proof. Consider the stationary policy 6* obtained by relative value iteration on the finite state
space S, using the real-time reward formulation defined in 1} As discussed earlier, the action
6*(x) chosen by policy 8* at any state x € S satisfies:

0*(x) € argmax h(x%"). (4.3.2)
a€Ax

For any state x € S with z; < ¢; for some i € {1,2,..., N}, Lemma states that h(x'") > h(x),
and hence the action of balking fails to attain the maximum in . Moreover, one can assume
that the actions chosen by 0* at states x ¢ S satisfy the requirement that balking is not chosen
at any state with z; < ¢; for some ¢ € {1,2,..., N}, since these decisions do not affect the average
reward earned by 6*. Hence, 8* is a non-idling policy which also attains social optimality due to
Theorem and the results proved in Section which imply that a socially optimal policy can

be found by restricting attention to the process T with finite state space S. O

It is worth noting that the definition of non-idling policies (Definition does not make it
possible to say that any stationary socially optimal policy must be a non-idling policy. Indeed, as
noted in the proof of Theorem m the decisions chosen at states x ¢ S by the policy #* cannot
affect its optimality. Since the set S\ S includes infinitely many states with 2; < ¢ for at least
one i € {1,2,..., N}, one can simply consider a stationary policy # which matches 6* at all states
x € S but chooses to balk at some transient state x ¢ S with x; < ¢; for some i € {1,2,..., N}.
The resulting policy 6 is socially optimal, but obviously is not a non-idling policy. However, it is

possible to prove a slightly weaker property which will prove to be useful later.

Theorem 4.3.4. Let 0* be any stationary socially optimal policy, and let Sg+ be the set of states

which are positive recurrent under 0*. Let the set S° C S be defined as follows:
S°={xeS:xigcm'e{l,z,...,N}}. (4.3.3)
That is, S° is the set of states at which no customers are waiting in queues. Then:

S° C Sp+.

Proof. Let 8* be a stationary socially optimal policy. Suppose the process is in the regenerative
state 0 at some discrete time epoch ng € Ny and then a sequence of B + 1 consecutive customer

arrivals occurs (without any service completions), where B = Zfil B; and B is the selfish threshold
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for facility i defined in (4.1.2). Recall that, by Theorem it must be the case that Sg- C S
and therefore the policy #* must choose to balk at least once during this sequence of B+ 1 arrivals,
otherwise the process would pass outside the set S. Let n; > ng denote the first time epoch after

ng at which balking is chosen. Consider the following two possibilities:
1. At time nq, 6* chooses to balk at some x € S with z; > ¢; for all i € {1,2,...,N}.
2. At time nq, 6* chooses to balk at some x € S with z; < ¢; for some i € {1,2,...,N}.

In the first case, the state x (with z; > ¢; for all ) must be positive recurrent under 6*, since it
is accessible from 0. Furthermore, all states y € S which satisfy the componentwise inequality
yi < z; for all i € {1,2,..., N} are also positive recurrent under 6*, since they are accessible from
x via an appropriate sequence of service completions. This implies that all states belonging to S°

are positive recurrent under #*, so in this case the claim of the theorem is proved.

In the second case, one may again note that the state x is positive recurrent under 6*, since it
is accessible from 0. The proof will proceed that by showing that, in this case, a contradiction
is obtained with the fact that 8* is an optimal policy. This will be accomplished using a sample
path argument, somewhat similar to the proof of Theorem [£.2.5 except that in this case it will be
necessary to make use of the real-time reward formulation (used throughout this section) rather
than the anticipatory formulation. Let 1) denote a non-stationary policy which operates by ‘copying’

the actions of policy 8* at all times, unless either of the following scenarios apply:

1. 6* chooses to balk at the state x (with x; < ¢;), in which case 1 chooses to join facility i if

the process following policy 1 is also in state x, and otherwise chooses to balk.

2. 0* chooses to join facility ¢ at some point in time at which the process following policy ¢ has

more customers at ¢ than the process following 6*, in which case v chooses to balk.

Let (Xxn)nen, and (yn)nen, denote the state evolutions of two processes T; and Yo which follow

policies * and v respectively. Then, in notation, ¥ operates as follows:
i, if x, =y, =X,
Y(yn) =40, if 0*(x,) =i and (x,); < (¥n)i,

0*(xy), otherwise,
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where (x,,); and (y,); denote the i components of x,, and y, respectively. Suppose that both
of the processes T and T4 are initialised in state 0 and evolve according to the same sequence of
random events w = (wp,wr,...) (again, this relies upon the implicit idea of a stochastic coupling
between the two processes, as explained in Section . Let tg > 0 be the first discrete time epoch
at which both processes are in state x and an arrival occurs. Then, ty + 1 will be the first point in
time at which the two processes are not in the same state. Noting that x; < ¢;, it follows from the
reward formulation that the process Yo following 1 will earn a single-stage reward at time
epoch tg + 1 which is strictly greater than that of T, since it has an extra customer being served
at facility ¢. Furthermore, let uy denote the next time epoch (after tp) at which the processes T
are Yo are once again in the same state (referred to as a joining of the two processes); this may
occur as a result of a service completion at facility ¢ being seen by Y9 but not by Y1, or as a result
of 8* choosing to join facility ¢ while the process Yo already has an extra customer present at ¢. In

either case, it can easily be checked using the definition of the policy ¢ that:
(Xn)i < (yn)l <¢ Vne [to + 1, ug — 1]. (4.3.4)

Noting that up > to+ 2 (since the two processes must first ‘un-join’ before joining again), it follows
from and the reward formulation that Yo earns a strictly greater total reward than
T over the interval [tg, ug]. Since x is positive recurrent under 6*, the two processes make infinitely
many visits to state x with probability one. Hence, one may define t,, as the n** time that an arrival
occurs when both processes are in state x, and u,, as the next time (after ¢,,) that the two processes
‘join’ again, with the result that Yo earns a strictly greater total reward than Y; over the interval
[tn, up| for each n € N. It then follows that the policy v is superior to 8* with respect to the average

reward criterion, which contradicts the fact that 6* is a socially optimal policy.

These arguments confirm that if 6* is a stationary socially optimal policy, then there must be a
positive recurrent state x € S with xz; > ¢; for all i € {1,2,..., N}, which in turn implies that all

states in S° are positive recurrent under #*. This completes the proof. []

Theorem [4.3.4] may be regarded as a complement of Theorem [4.2.5] since it effectively establishes
a lower bound for the set Sy« associated with a socially optimal policy 6%, whereas Theorem

established an upper bound. By combining these two results, one can conclude:

S° C Sg« C S,
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for any stationary socially optimal policy 6*. In Section the ‘containment’ property will be
generalised to a problem involving heterogeneous customers. However, the topic of the next section

will be the effect of varying the demand rate A\ on socially optimal policies.

4.4 Relationships with demand

Section introduced the definitions of selfishly optimal and socially optimal policies. It is of
interest to investigate how optimal policies are affected by varying the system demand rate A.
In particular, the sub-optimality of the selfish policy 6 in the context of overall social welfare has
important implications in applications where customers may or may not be given freedom of control
over their own outcomes. If it can be shown that this sub-optimality increases or decreases as A
becomes larger, the insights gained can potentially be useful (see [101] for applications in healthcare
systems). It will also be of interest to examine light-traffic and heavy-traffic limits (A — 0 and

A — oo respectively) and the characterisation of optimal policies in these limits.

It was already noted in Section that the selfish policy 6 is independent of the demand rate
A. As such, the focus in this section will be on socially optimal policies. It should be noted that

throughout this section, ‘optimal’ means ‘socially optimal’ unless stated otherwise.

The next result shows that if socially optimal policies are followed, then increasing the demand

rate cannot be harmful in terms of the expected long-run average reward earned.

Theorem 4.4.1. The optimal expected long-run average reward, g* which satisfies the optimality

equations in is monotonically increasing with the demand rate \.

Proof. Consider two demand rates A1 and Ay, with A\ < Ag. Let 67 denote an average reward
optimal stationary policy under demand rate A;; such a policy is known to exist by Theorem |4.2.3

Let 65 be a randomised policy which, when in state x € .S, operates as follows:

e With probability (A2 — A1)/A2, 65 chooses to balk, regardless of the state x.

e With probability A;/A2, 05 chooses the same action 67(x) that would be chosen by the sta-

tionary policy 0] at the current state x € S.
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Consider the system operating under policy 65 with demand rate A2. This policy operates by
splitting the original Poisson process by which customers arrive, so that there are two separate
Poisson processes with demand rates Ay — A1 and A; respectively. Customers arriving via the first
process (with demand rate Ao — A1) invariably balk, and therefore make no contribution to the
aggregate reward and have no effect on the state of the system. Thus, the only customers who may
join a facility and receive service are those who arrive via the second Poisson process (with demand
rate A1), and these customers are subject to the same state-dependent routing decisions as those
who follow the stationary policy 67. It follows that the policy 63 earns exactly the same expected

long-run average reward under demand rate Ay as 07 earns under demand rate A;.

An optimal policy under demand rate Ao must perform at least as well as the policy 65; that is, the
optimal expected long-run average reward under Ay must be at least as great as the average reward
earned by 67 under the smaller demand rate A, which (by definition of 67) is also the optimal

average reward under Aj. This completes the proof of the theorem. [J

The proof of Theorem essentially argues that when the demand rate is increased from A; to
Ao, it is always possible to ‘match’ the performance of an optimal stationary policy under A; by
simply ‘forcing the extra traffic to balk’. It should also be noted that if a randomised policy is able
to achieve a certain expected long-run average reward, then (by Theorem there must also
exist a stationary policy which yields at least the same value. Hence, the statement of Theorem

is true whether or not one restricts attention to stationary policies.

As discussed earlier in this chapter, it is reasonable to regard a selfish policy 6 as a policy which
is followed when customers make decisions as individuals, whereas a socially optimal policy 6* is
a consequence of exercising central control in such a way as to maximise the collective welfare of
all customers. A natural extension of this idea is to consider a scenario in which some customers,
but not all, are subject to central control. That is, a certain proportion ¢ € [0,1] of customers
are ‘selfish’ and follow decisions which maximise their individual expected net reward as defined in
, whereas the remaining proportion (1 — ¢) act in order to maximise the expected long-run
average reward, taking due account of the actions of selfish customers. The next result captures the
natural idea that the optimal average reward g* is monotonically decreasing with ¢, the proportion

of selfish customers. The proof is somewhat similar to that of Theorem [4.4.1
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Theorem 4.4.2. Consider an MDP which is identical to T except that there are two Poisson
arrival streams: a ‘selfish’ stream with demand rate g\ and a ‘social’ stream with demand rate
(1 —q)A, where q € [0,1] is the proportion of selfish customers. Customers arriving via the selfish

stream when the system is in state x € S choose an action a € arg max, w(x, a), where:

ai—&, if @ =i for some i € {1,2,...,N} and z; < ¢;,
i
w(x,a) = ¢ q; — M, if @ =i for some i € {1,2,...,N} and z; > ¢;,
Cifbi
0, otherwise.

Meanwhile, customers arriving via the social stream follow a ‘sub-policy’ 1 which may or may not
be stationary. Let gy (x) denote the average reward given an initial state x € S when the sub-policy
Y is followed, and let g*(x) = sup,, gy (X) denote the optimal average reward over all permissible

sub-policies. Then, for all x € S, g*(x) is monotonically decreasing with q.

Proof. It will be somewhat easier from a mathematical point of view to consider a system with a
single Poisson arrival stream \ operating under a randomised policy 0, which selects ‘selfish’ actions

with probability ¢ and other (possibly non-selfish) actions with probability 1 — gq.

Consider two different values q1,¢2 € [0, 1], with ¢1 < go2. It is sufficient to show that, given any
policy #2 which earns an average reward gg,(x) when ¢ = g2, there exists a policy #; which earns
the same average reward gy, (x) when ¢ = ¢;. Note that the only restriction on the policy 6; is that
selfish decisions must be chosen with a probability of at least gi, which is smaller than ¢». Hence,
one can simply define #; in such a way that selfish decisions are chosen with probability g and
decisions are taken otherwise (with probability 1 — g2) which are identical to those which would be
chosen by 6 given the same current state and process history, with the result that 6; is exactly

equivalent to #» and earns the same average reward. This completes the proof. [

The statement of Theorem assumes the existence of an optimal ‘sub-policy’ v, for customers
arriving via the social stream. As the proof of the theorem makes clear, an optimal sub-policy
followed by the social customers only is equivalent to an optimal policy followed by all customers
which operates subject to the constraint that selfishly optimal decisions are chosen with probability

q or greater. One might argue, therefore, that the results of this thesis thus far are not sufficient
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to guarantee the existence of 1, since they do not address the existence of constrained, randomised

policies which are optimal within the class of similarly-constrained policies.

In considering how previous results might be adapted to deal with the scenario where a certain
proportion g of customers make selfish decisions, it is useful to observe that, given any current
state x € S, there is a minimum probability g\A of transferring to the state 9+ in o single time
step, where é(x) is the selfishly optimal decision under state x. There still exists a Poisson stream
of arrivals whose destinations are fully controllable, but these customers arrive at a rate (1 — gq)A
rather than A. The finite-stage discount optimality equations from can be modified in the

following way to take into account the behaviour of selfish customers:

65" (x) = max {(1 — @)\w(x,a0) + ¢(1 — QAAG” (xa+)} + dgAAs[Y (x")

N N
+ gbz min(z;, Ci)uiAf)g’) (x7)+ ¢ (1 —AA — Z min(z;, cl-),uiA> @((bn) (x), (4.4.1)

i=1 i=1
where w(x,a) is as defined in the statement of Theorem One may then proceed to verify

that the conditions of Theorem m (which guarantee the existence of an average reward optimal
(n)

stationary policy) hold when the value functions o, ' are defined as in (4.4.1)); however, the proofs

of Lemmas and will require some modifications. Details of these modifications will not

be provided here; instead, it suffices to note that an alternative approach would involve using an
argument very similar to the sample path argument given in the proof of Theorem to show
that a policy which is not ‘contained’ on the selfish state space S cannot be optimal. This provides
a justification for searching for an optimal policy within the finite set S, and it then follows by

Theorem that an optimal stationary policy exists which is contained on S.

The next example illustrates how the proportion of selfish customers g € [0, 1] affects the optimal

expected long-run average reward for various different values of the demand rate .

Example 4.4.3. (Mixtures of selfish and non-selfish customers)

Consider a system with 3 facilities, with the parameters shown below:

C1 = 21 H1 = 2> 61 = 41 a1 = 107
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co =2, p2 =3, B2 =3, az =0,

c3 =1, ps3 =4, B3 =17, asg = 20.
Figure illustrates the relationship between the optimal expected long-run average reward and
the proportion of selfish customers, ¢ € [0, 1], for various different values of the demand rate A > 0.
To clarify, it is assumed (as in Theorem that non-selfish customers follow an optimal ‘sub-
policy’ which takes due account of the actions of selfish customers; they do not simply follow the
same policy that they would follow if all customers acted to maximise the average reward. The
optimal average rewards shown in the figure have been computed using relative value iteration as
described in Section with the recursive equations modified in an appropriate way in

order to take into account transitions caused by the actions of selfish customers.
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Figure 4.1: The relationship between the proportion of selfish customers ¢ € [0, 1] and the optimal expected

long-run average reward for various different values of the demand rate \.

Figure shows that, as expected, the optimal expected long-run average reward is monotonically
decreasing with ¢ for all of the demand rates considered. It is somewhat interesting to note that the
effect of selfish decision-making appears to become more dramatic as the demand rate increases;
indeed, the line in the figure representing A = 2.5 is almost horizontal, indicating that the average
reward is almost unaffected by whether or not customers make selfish decisions, whereas the average
rewards for larger values of A appear to decrease much more steeply with q. The case A = 50 is
an extreme case, in which the value of A is much greater than the system’s maximum service

completion rate, Zfi 1 Cipti. The fact that selfish decision-making appears to be almost socially
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optimal for small values of \ will be explained by the next result in this section.

It may also be noted that Figure is consistent with the result of Theorem which implies
that when all customers are non-selfish (i.e. ¢ = 0), the optimal average reward is monotonically
increasing with the demand rate A\. However, the figure also shows that when a non-zero proportion
of customers make selfish decisions, the optimal average reward (given by non-selfish customers

following an optimal sub-policy) may not be monotonically increasing with . X

The next results in this section address the characterisation of average reward optimal (i.e. socially
optimal) policies in light-traffic and heavy-traffic limits. As discussed in Section a selfishly
optimal policy may be regarded as a simple heuristic rule which maximises immediate rewards, i.e.
the expected net rewards of newly-arriving customers, without taking due account of longer-term
consequences. Specifically, the ‘longer-term consequences’ of a selfish customer’s decision are the
potential increases in the waiting times of customers who arrive after their decision has been made,
and the possible re-routing of future customers (with implications for the aggregate rewards and
holding costs incurred by the system). It is clear that, although a selfish customer’s action may
have undesirable effects on the state of the system for a certain period of time, this period of time
will only be finite; indeed, under any stationary policy (including the selfishly optimal policy) the
state 0 is positive recurrent and so the system must eventually return to the state of being empty,
at which point the process regenerates. Thus, it is natural to suppose that if the demand rate A
is small, then the ‘long-term’ consequences of a selfish customer’s decision will be minimal, for the
intuitively simple reason that only a small number of customers will arrive during the finite period

of time in which their outcomes stand to be affected by an earlier selfish decision.

Building upon these arguments, the next result shows that in fact, the selfishly optimal policy is
asymptotically average reward optimal in a light-traffic limit, i.e. as the demand rate A\ tends to
zero. The concept of ‘asymptotic optimality’ requires some explanation. It can trivially be shown
that for any permissible policy 6, the expected long-run average reward gp(x) (given any initial

state x € S) tends to zero as A — 0. It follows that, for any arbitrary policy 6:

li —g")=0 VxeS
lim (go(x) = g7) x €S,
where g* is the optimal value for the average reward which satisfies the equations (4.2.6)). Therefore,

in order to show that the selfishly optimal policy 8 is light-traffic optimal in a sense that is actually
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meaningful, it is necessary to show that the relative sub-optimality (or percentage sub-optimality)

of f tends to zero as A — 0. The next theorem formalises this result.

Theorem 4.4.4. Given a demand rate A > 0, let g(\) denote the expected long-run average reward
attained by the selfishly optimal policy 6, and let g*(X) denote the optimal value for the average
reward which satisfies the equations . Then:

lim <()(9()> = 0. (4.4.2)

A—0 *
That is, the policy 0 is asymptotically (socially) optimal in a light-traffic limit.

Proof. Throughout this proof, it will be assumed that single-stage rewards for the MDP T are
given by the anticipatory formulation . Recall that o; > B;/p; for all i € {1,2,...,N}; as
discussed in Section this is an assumption made in order to avoid degenerate cases where at
least one facility fails to offer any reasonable incentive for joining (even when it is empty). It follows
that, given any A > 0, ¢g*(\) must be strictly positive. This can be shown by observing that it is
possible to construct a stationary policy which earns a strictly positive average reward. Indeed,
consider the stationary policy 6 with 6(0) =i # 0 and 0(x) = 0 for all x # 0, i.e. joining facility
i is chosen when the system is empty and balking is chosen otherwise. Since a; > 3;/u;, it follows
that #(0,7) > 0. Then, since 0 and 0t are the only positive recurrent states under 6, the average
reward under 6 is given by mp(0)#(0,4) + 7g(0°") #(0°T, 0), where 7y(0) #(0,14) is positive (since the
stationary probability my(0) is non-zero) and my(0°")#(0°*,0) = 0. Since g*()\) must be at least as
great as the average reward under 6, it then follows that g*(A) > 0 for all A > 0.

Next, consider a fixed demand rate A > 0. The selfishly optimal policy 6, as defined in Section
is independent of A and induces an irreducible, ergodic Markov chain defined on the finite set S.
By Theorem , there exists a stationary policy 65 (with a dependence on \) which attains the
optimal average reward g*(\), and this policy induces an irreducible, ergodic Markov chain defined
on some finite set Spy which is contained in S. Hence, §()\) and g*()\) can be expressed in terms of

the stationary distributions under policies 6 and 03 respectively as follows:

xe$ (4.4.3)
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where the dependence of the stationary distributions {mj(x)} and {mp; (x)} on A has been suppressed
for notational convenience. Note that m5(x) = mg; (x) = 0 for all x ¢ S due to Theorem which
is why the summations in (4.4.3) can be taken over S rather than S. Recall that #(x, a) = A\w(x, a)
for any state-action pair (x,a) € S x A, where w(x, a) is the expected net reward for an individual

customer defined in (4.1.1]). Hence, following cancellation of A\, one can write:

= — . (4.4.4)

The advantage of using the formulation in (4.4.4) is that, for all pairs (x,a) € Sx Ay, w(x, a) (unlike
7(x,a)) is independent of A. Next, it will be useful to characterise the stationary distributions
{m5(x)} and {mp; (x)} in the light-traffic limit. Naturally, one ought to have:

1, ifx=0,
lim 75(x) = lim 7py (x) = (4.4.5)

A0 A0 0, otherwise.
Indeed, the limits in can be proved using stochastic bounding arguments. For convenience,
define B := > B;, with B; as defined in , and fmin := min(p, g2, ..., 4n). Suppose the
system is initialised in state 0. Then, under the selfish policy 0, customers balk at a particular
state x € S if and only if Y, x; = B. Hence, given any A > 0, the total number of customers
present in the system is stochastically bounded above by the number of customers present in an

M/M/1/B queue with demand rate \, service rate fumin and finite capacity B.

To show this in greater detail, first note that the M/M/1/B queue can be discretised using the
technique of uniformisation described in Section [3.3] and choosing the discrete step size A to be
any positive value not exceeding (A + fimin) "' In particular, A = (A + Y, cz-ui)_l is a valid choice;
so the M/M/1/B queue and the MDP Y can both be discretised using the same value of A. Let
Yn € Np be the state of the M/M/1/B queue at the n time step, i.e. the number of customers
present. One can construct a coupled process (Xp, Un)nen, With state space S x Ny, initialised in

state (0,0), which evolves according to the following transition probabilities:

e With probability AA, both of the marginal processes (X,) and (¢, ) see a new customer arrival.
In the case of (X,), the new customer takes action 6(%,). In the case of (f,), the new customer

joins the queue if g, < B, and balks otherwise.
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e With probability pminA, the process (X,) sees a service completion at some arbitrary non-
empty facility j (say, for example, j = min{i € {1,2,..., N} : z; > 1}) if and only if x,, # O,

and the process (7,) sees a service completion if and only if g, > 1.

o If x,, # 0, then there is an additional probability (min(x;,c;j)u; — ftmin)A that the process
(X5,) sees a service completion at facility j and the process (yn) sees no event. Here, j is the

non-empty facility referred to in the previous bullet point.

e For all facilities ¢ # j, there is a probability min(z;, ¢;)u; A that the process (X,,) sees a service

completion at facility ¢ and the process (g,) sees no event.
e With probability 1 — AA — Z,fil min(x;, ¢; )i A, both processes see no event.

Let (%x,,); denote the ith component of state X, € S. It can easily be checked from the above that
if Y, (%Xn)i < 9n for some n € Ny, then . (Xp11)i < Jny1 also. Given that (Xo,90) = (0,0) by
assumption, it follows that ) . (%,); < 9, for all n € Ng. Due to the coupling construction, the nth
‘marginal’ state §, has a distribution identical to that of y,, the n** state of the M/M/1/B queue
(see Section for further explanation of the stochastic coupling technique). Utilising standard
formulae for M /M /1 queues with finite buffers (see [67], p. 74):

lim ( lim Py, = o)) = 1.

A—0 \n—o0
Hence, since Y, (Xy)i < gy for all n € Ny:
N
A <7}1_520P (Z;(Xn)i = 0)) =1,
1=
and due to the equivalence between (%,) and the process Y following policy 6:

li 5(0)=1
)\113)71'9( ) )

which obviously implies lim)_,g 75(x) = 0 for all x # 0. The argument to show that limy_g s (0) =
1 is similar, except that it must be remembered that the policy 073 is dependent on A. Nevertheless,
using the ‘containment’ principle (Theorem , one may observe that given any A > 0 (and
assuming that the system is initialised in state 0), the total number of customers in the system will

never exceed B under 0. Hence, this total may be bounded above by the number of customers
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present in an M/M/1/B queue with the same demand rate and a service rate jimin, in exactly the

same way as for 6. Given any A > 0, one may therefore write the following:

N
lim P(y, =0) < lim P (;(xn)i = 0) <1, (4.4.6)
1=

where, in this case, x,, denotes the n'* state of the process Y following a policy ¢ which is socially
optimal under demand rate A, and ¥, is the n'" state of an M/M/1/B queue which has been
uniformised in the same way as described previously. Since lim, oo P(y, = 0) — 1 as A — 0, the
‘squeeze theorem’ from analysis (see [166], p. 909) may be applied to (4.4.6) in order to show that
limy_q 7'['9;(0) = 1. These arguments confirm that the limits in hold.

Consider the ‘non-zero’ states x € S\ {0}. Given any X > 0, the individual expected net rewards
w(x, 0(x)) and w(x,03(x)) are finite for all such states; indeed, both quantities may be bounded
above by max(ai, g, ...,an), and bounded below by zero. Hence:

lim (7@; (x) w(x, e;(x))) = lim <7Té(x)w(x, é(x))) -0 vxed\{o}

Recalling that 7(x,a) = Aw(x, a) for all (x,a) € S x Ay, it then follows from (4.4.3) that:

. )
i, 757 =t (000,000
lim 9*9) = lim <779§(0)w(0,9§\(0))), (4.4.7)

assuming, of course, that these limits exist. The remainder of the proof will confirm this. It has
already been shown that limy_,o7;(0) = 1. Also, by definition of the selfishly optimal policy 6,
w(0, 5(0)) = max; {a; — B;/ui} for all A > 0. Hence:

lim g\ = lim (77@(0)10(0,67(0))) = max {ai - } > 0. (4.4.8)

where the left-hand inequality is due to the fact that g*(\) > g(\) by definition of the optimal
average reward, and the right-hand inequality is due to the fact that Amax;{o; — 5;/pi} is the

maximum value of 7(x,a) over all state-action pairs (x,a) € S x Ay, and hence it can be seen
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from (4.4.3)) that g*(A\) < Amax;{a; — 5;/pi}. Thus, using (4.4.8)) and again applying the ‘squeeze
theorem’ ([166], p. 909), one obtains the same limit for g*(\)/A as for g(A)/A:

lim g*)(\/\) = max {ai — ﬁz} > 0. (4.4.9)

A—0 122

Finally, by combining (4.4.8) and (4.4.9)):

lim
A—0

g"N) =g\ maxi{e; — Bi/pi} — maxi{oy — Bi/pi}
< 70 )‘ -

max;{o; — B;/ i}

which completes the proof of the theorem. []

In fact, the proof of Theorem [£.4.4] shows that any stationary policy which chooses an action a at
state 0 maximising w(0,a) is asymptotically optimal in a light-traffic limit; the selfishly optimal

policy 6 is merely a special case. It will be useful to state this as a corollary.

Corollary 4.4.5. Let 0 be any stationary policy satisfying the following criterion:
Bi
0(0) € argmax o; — —
i€{1,2,...,N} Hi
and let gg(\) be the expected long-run average reward earned by 0 given a demand rate A > 0. Then
0 is asymptotically optimal in a light-traffic limit. That is:

lim <M> ~0.

A—0 g ()

Proof. The proof follows the same arguments as that of Theorem The important principle is

that as A — 0, the decisions made by 6 at states x % 0 become irrelevant.

It should be noted that if 6 is a policy which does not induce a Markov chain on some finite set
of states contained in S, then the stochastic bounding argument given in the proof of Theorem
4.4.4] will need to be modified in order to show that mp(0) — 1 as A — 0. This should not be
problematic; indeed, the stationary probability m(0) associated with any stationary policy 6 may
be shown to be stochastically bounded below by the steady-state probability of an infinite-capacity

M/M/1 queue with demand rate A\ and service rate fiyin = min; p; being empty. O

The next result in this section concerns the characterisation of socially optimal policies in the heavy-
traffic limit, where A — oo. First, it will be convenient to introduce a definition for a particular

type of stationary policy, which will be referred to as a vacancy policy.
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Definition 4.4.6. (Vacancy policy)

Let 0 be a stationary policy which satisfies the following conditions:
o Ifx; <c for atleast one i € {1,2,..., N}, then 0(x) € {i € {1,2,.... N} : x; < ¢;}.
o Ifx; > ¢ forallic{1,2,..,N}, then (x) = 0.

Then 0 is referred to as a vacancy policy.

In words, a vacancy policy always chooses to send a customer to a facility with an idle service
channel if such a facility is available; otherwise, it chooses to balk. Naturally, no queues are formed
under such a policy, since all customers either balk or begin service immediately. The next result

shows that vacancy policies are optimal in a heavy-traffic limit, i.e. as A — oc.

Theorem 4.4.7. Let 0 be a vacancy policy, and let gg(\) denote the expected long-run average

reward attained under 6 given a demand rate A > 0. Then:

lim (g*(A) — go(N)) = 0.

A—00

That is, 0 is socially optimal in the heavy-traffic limit.

Proof. This proof will assume the real-time formulation for the single-stage rewards earned
by Y. Given any demand rate A > 0, Theorem [4.2.4] implies that there exists a stationary policy

% which attains the optimal average reward g*(\) and also induces an irreducible, ergodic Markov
chain on some set of states Sg; contained in S. Hence, for any A > 0:

g =) e (%) r(x).

x€S

By definition of r(x) and the assumption that a;p; — 8; > 0 for all i € {1,2,..., N}, it can be seen
that for all states x € .S the following upper bound holds:
N
r(x) < Z ci (aipi — Bi) - (4.4.10)
i=1
Moreover, equality holds in (4.4.10) if and only if x = ¢, where ¢ € S is the unique state with
x; =¢; forall i € {1,2,..., N}. Let 0 be an arbitrary vacancy policy, and (as in Section let S°

denote the set of states in S with no customers queueing. That is:

Si={xeS:z;<¢Vie{l,2,..,N}}.
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Clearly, S° is identical to the set of states Sy which are positive recurrent in the Markov chain
induced by 6. Hence, the average reward gg(\) can be written as:
go(N) = Y mo(x)7r(x), (4.4.11)
x€eS°
where {mp(x)}xes is the stationary distribution under the vacancy policy 6. The aim of this
proof is to show that gg(\) tends to Y, ¢; (oup; — f;) as A — oo. In view of (4.4.11)), this can be
accomplished by showing that the stationary probabilities mg(x) satisfy:

1, ifx=c,
lim my(x) = (4.4.12)

Ao 0, otherwise.
The limits in can be proved using a stochastic bounding argument, similar to that used to
establish the limits in the proof of Theorem Indeed, consider the process T initialised
in state 0 and operating under the vacancy policy #. A customer arriving under state x € S joins
some facility i € {1,2,..., N} if and only if >, 2; < K, where K = }_, ¢; is the total number of
service channels across all facilities. It follows that, given any A > 0, the total number of customers
in the system under 0 is stochastically bounded below by the number of customers in an M/M/1/K

queue with finite capacity K, demand rate A and service rate ur, where:

N
HT = Z Cilbi-
i=1

Let the M/M/1/K queue and the process T both be uniformised with the same parameter, A =
A+ i)™ = A+ pr)™'. Let y, € Ny denote the state of the M/M/1/K queue at the
nt" discrete time step. It is possible to construct a coupled process (Xn, Un) with state space
S x Ny similar to the coupled process used in the proof of Theorem [£.4.4 In this case, one can
show that >.(%y)i > @ for all n € Ny (where (%X,); is the i component of %,), assuming that

(X0, 90) = (0,0). The transition rules for (X, ,) may be defined as follows:

e With probability AA, both of the marginal processes (Xx,,) and () see a new customer arrival.
In the case of (X,), the new customer takes action 6(x,). In the case of (¢, ), the new customer

joins the queue if g, < K, and balks otherwise.

e With probability min(z;, ¢;) A (for i = 1,2, ..., N), the process (X,) sees a service completion

at facility ¢ and the process (¢, ) also sees a service completion if and only if g, > 1.
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e With probability (ur — ), min(x;, ¢;)pi) A, the process (4,) sees a service completion if and

only if ¢, > 1, and the process (%,,) sees no event.

e With probability 1 — AA — " ¢;u;AA, both processes see no event.

It can be verified that if ) ,(Xy); > ¥y, for some n € Ny then one must have ), (Xp+1)i > Yn+1 also.
Given that (Xo,%0) = (0,0) by assumption, it follows that ) .(Xp); > @y for all n € Ny. Due to the
coupling construction, each ‘marginal’ state g, has a distribution identical to that of y,. Hence,
standard formulae for finite-buffer M /M /1 queues (see, e.g. [67]) imply:

lim ( lim P(gn = K)) ~ 1.

A—00 \Nn—00

Therefore, since g, < > .(X,); < K for all n € Ny:
N
iz, (J:ngop (2@‘”” - K)) =t
=
Of course, by construction of the policy 8 and the fact that Xg = 0, vaz 1(Xp)i = K if and only if
X, = c. Hence, by the equivalence of (X,) and the process Y following 6:

lim mg(c) =1,
A—r00

and limy_,o, mg(x) = 0 for all x # ¢, which establishes (4.4.12)). Then, since the rewards r(x) are
independent of A, taking limits in (4.4.11]) immediately yields:

N
Jim gy(A) =r(c) = > i (aipi — Bi).- (4.4.13)
=1

Recall that, by (4.4.10), the single-step rewards r(x,) (for n = 0,1,2,...) are bounded above by
Ef\i 1 ¢i (agp; — Bi). Hence, given any A > 0, the expected long-run average reward ¢g*(\) must also

be bounded above by the same quantity. This implies, for all A > 0:

N
9o(N) < g*(N) <> e (aipi — ;).
i=1

Hence, again relying on the ‘squeeze theorem’ from analysis ([I66], p. 909):
N

lim g*(A\) = i (s — Bi) - (4.4.14)

A—00 ‘
i=1
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Finally, in view of (4.4.13)) and (4.4.14):

lim (g"(\) — gs(V)) = lim ¢"(A) — lim go() =0,

A—00 A— A—00

which completes the proof that the vacancy policy 6 is optimal in heavy traffic. [J

The proof of Theorem [4.4.7] offers some insight into the behaviour of optimal policies in general.
In particular, the fact that r(c) > r(x) for all x # c is insightful. The state ¢, with all service
channels occupied and no customers queueing, may be perceived as a ‘Utopian’ state; clearly, if
it were possible for the system to remain permanently in state c, then this would be the ideal
scenario in order to maximise the long-run average reward. As A — oo, it becomes possible for the
system to spend (almost) all its time in state c, since any service completion is followed almost
immediately by a new customer arrival, so the system can almost immediately ‘refill’ any service
channel that becomes idle. Of course, customers who arrive when all service channels are occupied
can simply be rejected. This explains the optimality of vacancy policies as A — oo. On the other
hand, when A is small, it may be optimal to admit customers to the system under state c in order
to compensate for the negative drift (due to an increase in the frequency of service completions

relative to arrivals) which moves the system towards sparsely-populated states.

It is also interesting to note that the ‘anticipatory’ reward formulation with reward function 7(x, a)
was used to prove Theorem whereas the ‘real-time’ formulation with reward function r(x)
was used in the proof of Theorem [1.4.7] These formulations were not chosen arbitrarily; in fact,
the anticipatory formulation was used to prove the light-traffic result due to the fact that under
this formulation, 7 (0, 5(0)) > #(0, a) for any action a, where 6(0) is the action chosen by the selfish
policy at state 0. No such convenient property holds under the real-time reward formulation; in
fact, r(0) = 0 regardless of the action chosen. On the other hand, the real-time formulation was
used to prove the heavy-traffic result due to the fact that r(c) > r(x) for all x # ¢, whereas the
rewards under the anticipatory formulation do not attain their largest values at x = ¢. The con-
trasting properties of the two reward formulations and their respective uses highlight the practical

advantages to be gained from proving the equivalence result in Theorem [3.5.3
The following corollary summarises the relationship between g*(\) and A.

Corollary 4.4.8. As the demand rate )\ increases, the optimal expected long-run average reward



Chapter 4 Containment and demand 157

g*(X) converges monotonically to the following limit:

N
Jim g"(A) = ; ci (Qipi — Bi) -
Proof. The limit itself has been shown in the proof of Theorem [£.4.7] The fact that the convergence

is monotonic follows from Theorem [L.4.11 [J

It is interesting to note that ‘real-time’ reward formulations such as may be used to prove the
optimality of vacancy policies in more general types of problems. The reader is invited to refer to
Appendix [A77] for an example involving a Jackson network, which differs from the queueing system
described in Section [3.1] in that customers who complete service at any facility may be re-routed
to another facility (or the same facility) as opposed to departing from the system. The example
describes a particular type of Jackson network problem in which optimal policies are extremely

simple to characterise, despite the complexity of the underlying MDP formulation.

The results proved in this section will be used to examine the light-traffic and heavy-traffic opti-
mality (or sub-optimality) of certain heuristic policies considered in Chapter @ This chapter will

conclude by discussing an extension involving heterogeneous customers.

4.5 Extension: Heterogeneous customers

This section will consider an extension of the queueing system described in Section [3.1] in which
customers belong to heterogeneous groups, or classes. Let M > 2 be the number of classes, so that
each customer belongs to some class in {1,2,..., M}. Each class has its own independent Poisson

arrival stream, set of holding costs and set of fixed rewards. To be precise:

e Customers of class i € {1,2,..., M} arrive via their own independent, time-homogeneous

Poisson process with demand rate A\; > 0.

e Suppose a customer of class i € {1,2,..., M} goes to be served at facility j € {1,2,..., N}.
Then a holding cost 3;; > 0 is incurred per unit time until they exit the system, and a reward

a;; > 0 is earned after they complete service.
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Note that, at this stage, the service rates p; and service capacities c¢; at the various facilities
remain independent of customer class. Incorporating class-dependent service rates within an MDP
framework causes a significant amount of extra complexity due to the effect on the transition
probabilities and the complexity of the state space required; for this reason, an alternative approach

to dealing with class-dependent service rates will be discussed in Chapter [7]

The system may be modelled using an MDP which is uniformised as described in Section SO
that it evolves in discrete time steps of size A, where 0 < A < (37, A + > cjuj)_l. In Section
the anticipatory reward formulation (3.5.15) was used in order to prove certain properties of
the associated discounted-reward value function 04(-) which are sufficient to imply the existence of

an average reward optimal stationary policy satisfying the equations (4.2.6)).

A further advantage of the anticipatory reward formulation is that it enables the results in Sections
to be extended to a scenario involving heterogeneous customers without a re-description of the
state space S being required. Suppose one wanted to use a ‘real-time’ reward formulation, similar to
, for the reward r(-) in the heterogeneous customers problem. Then the system state would
need to include information about the classes of customers in service at each facility, and also
the classes of all customers waiting in queues. On the other hand, using an ‘anticipatory’ reward
formulation, it is possible to allow the state space representation to be the same as before; that is,
one may define S = {x = (21,22, ..., TN) : T1,22, ..., TN € Ng}, where x; is simply the number of
customers present (irrespective of class) at facility j, for j = 1,2,..., N. On the other hand, the set
of actions A available at each state x € S now requires a more complicated representation in order

to allow actions to depend upon customer class. Let the set A be given by:
A= {a = (a1, a9, ...,ap) : aj,ag,...,ap; € {0,1, ...,N}}. (4.5.1)

That is, the action a is a vector which prescribes, for each customer class i € {1,2,..., M}, the
destination a; of any customer of class ¢ who arrives at the present discrete epoch of time. The

reward 7(x,a) for choosing action a € A at state x is then given by:

M
P(x,a) = > 7i(x, ), (4.5.2)

=1

where a; is the i component of a, and 7;(x, a;) is defined for i € {1,2,..., M} by:
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i (aij - 6”) , if a; = j for some j € {1,2,..., N} and z; < ¢j,

. (s 1
7i(X,a:) ==\ <aij - W) , if a; = j for some j € {1,2,..., N} and z; > ¢;, (45.3)
JH

0, otherwise.

In fact, expanding the action set in this manner is not the only possible way of formulating the
extended model (with heterogeneous customers) as an MDP, but it is the natural extension of the
MDP T formulated in Section An alternative approach would be to augment the state space
so that information about the class of the most recent customer to arrive is included in the state
description; this would involve using a state space formulation similar to , with the random
event A replaced by a set of events {A;}}, in order to indicate the class of the latest customer
to arrive. Actions would then need to be chosen only at arrival epochs, and these actions would
simply be integers in the set {0,1,..., N} as opposed to vectors. By keeping the state space S
unchanged, however, it is possible to show that the results of Section can be generalised quite
easily. Under the new MDP formulation, the discount optimality equations (using the anticipatory

reward functions 7; in (4.5.3))) are given for states x € S and ¢ € (0,1) by:

M N
Bp(x) =) max {r (x,a:) + cMiA%(X“"*)} +¢ Y min(z;, ¢;)p; Adg(x))
i=1 "

j=1

M N
+o [ 1= NA =) min(ay, ¢)pA | d(x). (4.5.4)

i=1 j=1
From a practical perspective, it is worthwhile to note that the maximisation in is carried
out in a componentwise fashion. This means that instead of having to find the maximiser among
all vectors a in A (of which the total number is (N +1)M), it is sufficient to find, for each customer
class i € {1,2,..., M}, the ‘marginal’ action a; which maximises 7;(x, a;) + ¢\; Ay (x%T). This can
be exploited in the implementation of dynamic programming algorithms (e.g. value iteration), so

that computation times increase only in proportion to the number of classes M.
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As before, the selfishly optimal policy is defined as the policy under which the action chosen for
each customer arriving in the system is the action which maximises 7;(x, a;) (obviously this action
is dependent upon the class 7). A selfish customer of class i accepts service at facility j if and only
if, prior to joining, the number x; of customers at facility j, satisfies z; < Bij, where:
: OéijCjﬂjJ
B;; = .
Y { Bij

Consequently, under steady-state conditions, the number of customers present at facility j is

(4.5.5)

bounded above by max; Bij. The selfishly optimal state space S is then given by:

S = {([El,{I,‘Q, ...,LL‘N) Ty < maxBij, j = 1,2,...,N} . (456)
1

Example 4.5.1. (Containment in two dimensions with two customer classes)

Consider a system with two facilities, both with two service channels (¢; = ¢2 = 2) and service rates
p1 =5 and po = 1. It will be useful to begin by examining the selfishly and socially optimal policies
in the case where all customers belong to the same class. Suppose customers arrive at a Poisson
rate \; = 12 and earn fixed rewards a1; = 1 and a2 = 3 at facilities 1 and 2 respectively, while
the corresponding holding costs 811 and S12 are both equal to 3. Figure shows that the selfishly
optimal policy for these customers induces a Markov chain with 12 positive recurrent states, while

the socially optimal policy induces a Markov chain with only 6 recurrent states.

Selfish Policy Social Policy

ZEQZO .CCQZ]. 162:2 $2:O 332:1 x2:2
1 =0 1 1 1 1 =0 1 1 1
1 =1 1 1 1 1 =1 1 1 1
T =2 1 1 1 T =2 2 0 0
1 =3 2 2 0 1 =3 2 0 0

Figure 4.2: Selfishly and socially optimal policies in Example with only one customer class. For each

state x = (z1,22) € S, the corresponding decisions under the respective policies are shown.

Now suppose that a second stream of customers also arrives with demand rate Ao = 10, so that

the system receives two independent arrival streams. Customers in the second class have steeper
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holding costs and a much greater value of service at the second facility: fo1 = Pa2 = 5, as; = 1,
g2 = 12. The service rates 1 = 5 and po = 1 remain independent of customer class. The system

may be uniformised with step-size parameter A = (3, A + >, ciui)_l =1/34.

Figure [4.3] shows the selfishly and socially optimal policies for the system with two classes of
customer arriving. It is clear that the incorporation of a second class of customer has no effect on
the selfish decisions made by the first class of customer, so (as shown by the figure) these decisions
remain the same as shown in Figure [.2] previously. The first table in Figure [£.3] shows that selfish
customers of the second class are unwilling to join the first facility when z; > 2; however, under
certain states they will choose to join the second facility when xo = 3 (but never when xs > 3). As

a result, the new selfish space S as defined in (4.5.6)) is expanded from 12 states to 20.

Figure shows that the new selfish state space S may be represented diagrammatically as the

smallest rectangle which encompasses both S; and Sy, where (for i =1,2):

Si = {(.7}1,:[}2,...,1‘]\7) LTy < Bij, ] = 1,2, ,N}

It is somewhat interesting to observe that the selfish state space S includes states in the ‘intersection
of complements’ S¢ N S5, consisting of the states (3,3) and (3,4). These states would not occur
(under steady-state conditions) if the system operated with only a single (selfish) class of customer

of either type, but they do occur with both classes of customer in attendance.

The policy 6* depicted in the second table in Figure has been obtained using relative value
iteration, and illustrates the containment property for systems with heterogeneous customer classes.
It may be seen that the socially optimal state space Sy« consists of only 9 states; under steady-
state conditions, the system remains within this set of 9 states. It is also apparent that, unlike the
selfish decisions, the socially optimal decisions for a particular class of customer are affected by
the decisions made by the other class of customer (as can be seen, in the case of the first customer
class, by direct comparison with Figure . Indeed, under 6*, customers of the first class never

join facility 2, while customers of the second class never join facility 1. X

It can be verified that the results of Lemmas[4.2.1and Theorems and and Theorem
apply to the extended model with heterogeneous customers, with only small modifications
required to the proofs. For example, in Lemma the inequality d,(x/*) < 9(x) may be proved
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Figure 4.3: Selfishly and socially optimal policies for the system in Example with two customer classes.

For each state x = (x1,x2), the corresponding decision vector a = (ay, ag) is shown.

by showing that, for all classes i € {1,2,..., M} and facilities j € {1,2,..., N}:

max { 77", a;) + oA AW ()9 L < max L 7i(x, by) + ore AW (i) L
L 5 : 5

[¢24

for all £ € Ny. In Lemma one may define a* = max; j o;; as the maximum value of service
across all facilities and customer classes, and establish a lower bound for 94(077) — 9,(0) similar
to by writing #(07%,0) and p(0°*,0,y) instead of #(0°F,0) and p(0’*,0,y) respectively
(so that the action at state 07" is the zero vector 0, i.e. all customer classes balk); the rest of the
inductive proof goes through using similar adjustments. Theorem holds because if Sy« was

not contained in S, then the discount optimality equations would imply:
7i(%, 1) + oNildOs(x7T) > A ADy(x),

for some class i € {1,2,..., M} and facility j € {1,2,..., N} with 7;(x,7) < 0, thus contradicting
the result of (the modified) Lemma The sample path argument used to prove Theorem

can be applied to a customer of any class, with only trivial adjustments needed.
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This section has shown that it is a straightforward task to generalise the results of Section to
a problem involving heterogeneous customers. However, this generalisation of the problem is still
somewhat restricted, since it must be assumed that the service rates u; and service capacities c;
at the various facilities remain independent of customers’ classes in order for the complexity of
the resulting MDP formulation to be manageable. One can easily imagine that the assumption
of non-discriminatory service rates would be unsatisfactory in many applications; for example, the
length of stay of a patient in a hospital would typically depend upon many factors, including their
age and medical history. For this reason, the heterogeneous customers model described in this
section will not be considered again until Chapter |7}, at which point it will become possible (using

techniques to be discussed later) to incorporate class-dependent service rates.

4.6 Conclusions

Section explained how the themes of selfish and social optimisation discussed in Chapter
may be generalised to a problem involving N multiple-server facilities. The principle of socially
optimal policies being ‘contained’ in the selfishly optimal state space S, as discussed in Section
can be exploited by truncating the infinite state space and restricting attention to the finite set of
states S when searching for a socially optimal policy. The results of Section are also useful in
order to establish the inequality S° C Sp- C S for any socially optimal policy 8*. Unfortunately,
it is difficult to prove further characteristics of socially optimal policies which hold in complete

generality for the system introduced in Section (3.1} as the next chapter will show.

The results in Section will prove useful later in order to determine whether certain types of
stationary policies achieve light-traffic and/or heavy-traffic optimality. In particular, when heuristic
policies are considered in Chapter [6] it will be possible to determine whether or not these policies

are optimal in light or heavy-traffic limits by referring to the aforementioned results.

Section {4.5| considered a more intricate problem involving heterogeneous customers. While it was
shown that certain results from earlier sections could be applied successfully to this more general
problem under suitable conditions, the assumptions required (in particular, the lack of dependence
of service rates on customer classes) were also observed to be somewhat restrictive. Problems

involving heterogeneous customers will be revisited later, using a different approach.
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The results in Chapter [4] established certain properties of socially optimal policies by drawing
comparisons with selfishly optimal policies; in particular, an important result is Theorem
which states that it is possible to find a stationary socially optimal policy which induces an ergodic,
irreducible Markov chain on a set of states contained in the (finite) selfishly optimal state space S.
The results in Section [£.4] also provide some insight into the effect of varying the demand rate A on
socially optimal policies. The results in this chapter are concerned with the structure of socially
optimal policies given an arbitrary and (usually) fixed set of input parameters. More specifically, it
is of interest to determine whether the decision made at a particular state x € S by some socially

optimal policy 8* can be inferred from the decision chosen at another state in S.

Certain structural properties of the selfishly optimal policy 0 (as defined in Section can be
shown trivially. For example, if 6 chooses to balk at some state x € S , then it must also choose
to balk at state x/*, for any j € {1,2,..., N}. This is referred to as a monotonicity property, in
the sense that if balking is chosen at state x, then balking is also chosen at any state y € S which
satisfies the componentwise inequality x < y (that is, x; < y; for all ¢ € {1,2,...,N}). It is of
considerable interest to establish whether or not socially optimal policies exist which satisfy similar
monotonicity properties. If such policies exist, then it may be possible to construct specialised
algorithms (as alternatives to conventional dynamic programming algorithms) in order to find
them efficiently. Unfortunately, establishing monotonicity properties of an N-facility queueing
system with heterogeneous servers is far from an easy task; indeed, counter-examples can be found

to disprove many reasonable theories (see Appendix|A.8)). For this reason, most of the results given

in this chapter apply only to systems which are significantly reduced in complexity.

For clarity, all of the results in this chapter assume a single Poisson arrival stream of customers,
without the extension to heterogeneous customers discussed in Section that is, the rewards «;
and holding costs 3; at the various facilities are assumed to be the same for all customers. The MDP
T formulated in Section [3.5] will be considered throughout, with the real-time reward formulation
used in some results and the anticipatory formulation used in others. Section
will consider single-facility systems. Section will discuss ‘2DSS’ systems, consisting of two

facilities with a single server each. Section [5.3] will briefly consider N-facility systems where all

164
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facilities are homogeneous (i.e. they share the same set of parameters). Section will introduce
some computational algorithms which are based on results proved in the preceding sections. In
addition, Appendix provides various counter-examples to show that many of the results proved

for smaller systems cannot be generalised easily in systems of greater complexity.

5.1 A single facility

This section considers the special case N = 1 in the queueing system described in Section As
such, it will be convenient to drop the facility index ¢, so that the number of channels, service
rate, fixed reward and holding cost per unit time are given by ¢, u, a and  (all > 0) respectively.
Customers arrive at a rate A > 0 and may either join or balk (denoted by actions 1 and 0 respec-
tively), so that essentially the system consists of a single M /M /c queue with admission control.
Given that the assumption of multiple, heterogeneous facilities is fundamental to much of the work
in this thesis, it is reasonable to question whether a problem involving a single M /M /c queue is
actually worthy of consideration at all. In fact, there are several justifications for examining this

single-facility problem before moving on to larger-scale problems. For example:

e A number of interesting results involving contrasts between selfishly and socially optimal
customer behaviour can be proved in single-facility problems, which are difficult (or, unfor-

tunately, impossible) to generalise for multiple-facility problems.

e Structural properties of optimal policies in single-facility problems offer clues regarding the
nature of policies which may perform extremely well in multiple-facility problems, even if

they do not necessarily achieve optimality; this will be explored later on.

e Deriving the heuristic policies which are the subject of Chapter [6] in this thesis depends, to
some extent, on analysing individual facilities as if they were operating in isolation. The
subsequent analysis of these heuristic policies can be greatly simplified if certain properties

of socially optimal policies in single-facility systems are already known.

Unsurprisingly, the control of single-facility queueing systems has already been treated extensively
in the literature. Naor [I31] considered admission control in an observable M/M/1 queue, and

Knudsen [103] extended some of Naor’s results to observable M /M /c queues. Other significant
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early contributions include those of Yechiali [203| 204], Littlechild [I121] and Lippman and Stidham
[120]. Hassin and Haviv [76] have provided a comprehensive survey of the literature. In view of
these existing works, it must be acknowledged that some of the results in this section are already
‘known’; this will be indicated where appropriate. However, several of the proofs presented will
be original ones based on dynamic programming arguments. It will be useful to demonstrate the
use of inductive arguments based on relative value iteration to prove structural properties in the

one-facility case, since this technique will be relied upon throughout this chapter.

All of the results in this section assume N = 1 (a single facility), so this assumption will be omitted
from the statements of lemmas, theorems etc. in order to avoid unnecessary repetition. Since there
is a single facility, let the system state be denoted by a scalar x € Ng. As mentioned previously,
there are two possible actions at each state: a customer may join (a = 1) or balk (a = 0). Before
proceeding, it will be useful to recall results from previous chapters which will simplify the analysis
of the single-facility system. Firstly, it may be observed that a customer’s individual expected net

reward w(zx,a) for taking action a € {0, 1} under some state x € Ny is given by:

a—é, ifa=1and z <c,
I
1
w(r,a) = q o — M, ifa=1and z > c, (5.1.1)
cp
0, if a=0.

According to the definition of the selfishly optimal policy 6 in Section 0(z) = 1 if and only if
w(z,1) > 0. Using (5.1.1)), it then follows that 6(z) = 1 if and only if:

z < YYBC“J =:T.

So, in the single-facility case, the selfishly optimal state space S is the set of integers {0,1,2,..., T}
Theorem which holds for arbitrary N € N, implies that there exists a stationary socially
optimal policy #* which induces a Markov chain with a positive recurrent state space contained in
{0,1,2,..., T} Moreover, at any state z € Ny, one may assume that * chooses the action a € {0,1}
which attains the maximum in the average reward optimality equations:

g*+ h(z) = agl{%)i} r(z) + Z p(z,a,y)h(y) (x € Np), (5.1.2)
’ y€Ng
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where ¢g* is the optimal expected long-run average reward, h(-) is a relative value function, and r(-)

is the real-time reward function defined in . Specifically:
r(z) = min(z, c)ap — B. (5.1.3)
The anticipatory reward function 7 is defined for state-action pairs (z,a) € Ny x {0,1} as:
7(z,a) = Aw(zx,a). (5.1.4)

Using the technique of uniformisation (see Section |3.3)), the transition probabilities p(z, a,y) are as
defined in (3.5.3)) (after appropriate translation to the N = 1 case), with A € (0, (A +cu)~'] as the
discrete-time step size. Hence, the optimality equations ([5.1.2)) may be written:

9"+ h(z) =r(z) + MAmax(h(x),h(x + 1))
+ min(z, c)uAh(x — 1)

+ (1 = AA — min(z, ¢)pA) h(z) (x € Np), (5.1.5)

where it should be noted that min(x,c)uA = 0 if = 0, so that the non-existence of h(z — 1) in
this case constitutes only a minor abuse of notation rather than an invalidation of the equation.
Throughout this chapter, extensive use will be made of the principle (justified by Theorem
that a socially optimal policy 6* can be found by applying relative value iteration on the finite state

space S. Accordingly, in this section, the following conventions are assumed:

e The values h(x) satisfying the equations (5.1.2)) for states = € {0,1,...,T} are assumed to be
found by relative value iteration on {0, 1, ..., T}, with £ = 0 chosen as a reference state and
the real-time reward formulation ([5.1.3) used. Thus, these values can be found by considering

a problem in which balking (a = 0) is the only action permitted at state 7.

e Similarly, the notation iz() is used to represent the function satisfying the equations which
are obtained by replacing h with h and r(x) with #(z,a) in (5.1.2), and the values h(z) for

states z € {0,1,...,T} are obtained by relative value iteration on {0,1,...,T}.

e 0" denotes the socially optimal policy which chooses the action attaining the maximum in
(5.1.2) for each state x € {0,1, ..., T-— 1}, with joining (a = 1) chosen in the event of a tie. It

may be assumed that balking is chosen by 6* at all states z > T.
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These conventions will help to avoid some ambiguity, since socially optimal policies are generally
non-unique, even when attention is restricted to the stationary class (see, for example, [78]). Fur-
thermore, they enable inductive proofs to be constructed in a straightforward way. Many of the
results in this section are proved using somewhat repetitive arguments, so it will be desirable to
keep these proofs as brief as possible. Accordingly, it will be useful to introduce some shorthand
notation for the first-order difference h(z + 1) — h(z). Given any state x € Ny and an arbitrary

real-valued function f: Ny — R, let the operator D(z, f) be defined as follows:

D(x, f) == f(x +1) = f(x).

Also, in order to shorten some of the proofs that follow later, it will be useful to state a general
principle which will be relied upon frequently. The result is stated in the context of a general

N-facility system, since it will be useful to refer to it in later sections.
Lemma 5.1.1. (Action Selection Principle (ASP))

Let x1,%X2,...,Xp and y1,y2,...,yn be arbitrary states in S, for some n € N. Suppose there exist

actions ay,aso, ..., a, permissible at states x1,Xo, ..., X, respectively, such that:

D FET) =) max f(yfT) >0, (5.1.6)
i=1 i=1 i

where f(-) is an arbitrary real-valued function. Then the following also holds:

n

2 argix Z max yit) >0, (5.1.7)

Similarly, suppose that for some actions by, ba, ..., by, permissible at y1,¥o,...,¥n respectively:

Z max f(x Zf(yf’+) <0. (5.1.8)

aeAx

Then the following also holds:

Z max f Z max f ) <0. (5.1.9)

Proof. The proof is immediate by definition of the maximisation operator; specifically,

maxge 4, f(x%F) > f(xb) for any state x € S and action b € A,. O
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The implication of Lemma is that, in order to show that an inequality of the form
holds, it is sufficient to select some ‘convenient’ actions ai,as, ..., a, for which it can be shown
that holds (with a similar procedure for establishing an inequality of the form (5.1.9)). In
the proofs that follow, it will often be possible to show that the same actions aq, ao, ..., a, which

maximise f(y9"), f(y5T), ..., f(y%") can also be chosen at states X1, X2, ..., X, with the result that

(5.1.6) holds. This will be an important strategy throughout this chapter.

The next result establishes important structural properties of the relative value functions h and
h. Specifically, the properties of uniform upper boundedness and monotonicity for the first-order

differences D(x, h) = h(z 4+ 1) — h(z) and D(z, h) = h(z 4+ 1) — h(z) will be proved.
Lemma 5.1.2. The function h satisfies the properties:

D(z,h) < (a—B/p) /A Vze{01,..,T -1}, (5.1.10)

D(z+1,h) — D(z,h) <0 Vze{0,1,..,T -2} (5.1.11)
On the other hand, the function h satisfies:
D(z,h) <0 Vaze{01,.,T -1}, (5.1.12)

iz +1,1) — #(z,1) + MA(D(z + 1,h) — D(z,h)) <0 Vaz€{0,1,...,T —2}. (5.1.13)

Proof. By Theorem it is sufficient to consider the finite-stage functions h, and h., obtained

during relative value iteration and show that for all integers n > 0:

D(x,hy) < (o — B/p) /A Vze{01,.,T -1}, (5.1.14)
D(x +1,hy,) < D(z, hy) Vaze{01,.,T -2}, (5.1.15)
D(z,hy) <0 Vae{0,1,.,T—1}, (5.1.16)
Pz +1,1) + AAD(z + 1,hy) < #(z,1) + AAD(z,hy,) Yz e{0,1,..,T —2}. (5.1.17)

The proof can be accomplished using induction. For details, see Appendix page O

The results of Lemma can be used to establish the optimality of threshold policies in single-
facility systems. Threshold policies for M /M /1 queues have already been discussed in Chapter

and they have an identical definition in the M/M/c case, as stated below.
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Definition 5.1.3. (Threshold policy)

Let 0 be a stationary policy. If there exists an integer T € Ny such that 8(x) = 0 if and only if
x > T; then 0 is said to be a threshold policy with threshold T'.

The next result introduces the concept of a monotone control policy by showing that it is possible
to find selfishly and socially optimal policies for the system which are threshold policies. This has
also been shown by Knudsen [103] using a different approach. Recall that 6* denotes the stationary
policy for which 6*(z) attains the maximum in for all z € {0,1,...,T}, with joining chosen

over balking in the event of a tie and balking chosen at all states z > T'.

Theorem 5.1.4. The selfishly optimal and socially optimal policies 0 and 0* are both threshold

policies with thresholds T > 1 and T* > 1 respectively. Moreover:
T <T.
Proof. First, consider the selfishly optimal case. As discussed earlier, é(az) =1 if and only if:

<Ll

soT = |accp/ 8] is the selfishly optimal threshold. The fact that T > 1 follows from the assumption
(made in Section that a — §/pu > 0, and hence ap/5 > 1. Next, consider the socially optimal
case. The policy 8* chooses to balk at state = € {0,1,...,T — 1} if and only if:

h(z +1) < h(x).

In order to show that 6* is a threshold policy, it suffices to show that if balking is chosen by 6* at

some state x € {0,1, ..., T — 2}, then it must also be chosen at state = + 1. That is:
0*(x)=0 = 6" (x+1)=0.
Equivalently, since 0*(z) = 0 if and only if h(zx 4+ 1) < h(z):
h(z+1) <h(z) = h(z+2)<h(z+1).

This follows directly from the property D(x + 1,h) < D(x,h) proved in Lemma so 0* is a

socially optimal policy which is also a threshold policy with some threshold T* € N. Finally, the
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fact that 7% < T is a direct consequence of the containment property for socially optimal policies

established (in greater generality) by Theorem and Theorem [4.2.5 O

The next lemma addresses the progression of the first-order differences D(z, hy) and D(z, hy,)
obtained during relative value iteration, and in doing so highlights an interesting contrast between

the real-time and anticipatory reward formulations in ([5.1.3)) and (5.1.4)) respectively.

Lemma 5.1.5. The finite-stage relative value functions h, and B, corresponding to the reward
formulations and respectively satisfy, for all integers n € Ny:
D(z, hyy1) < D(x, hy) Vze{0,1,.,T -1}, (5.1.18)
D(z,hni1) >0 = D(x,hps2) >0 Vaze{0,1,..,T—1}. (5.1.19)

Proof. Again, the results can be proved by induction. See Appendix page

An implication of Lemma is that if the anticipatory reward formulation is used and D(z, ﬁn) <
0 for some z € {0,1, LT = 1} on iteration n > 0 of relative value iteration, then D(z, fzm) <
D(2,hy) < 0 for all m > n and (by taking limits) D(x, h) < 0. Therefore if one considers a finite
horizon problem with n stages, it may be said that balking becomes a ‘more attractive’ option at z
as the finite horizon n increases in length. On the other hand, under the real-time formulation, the
converse result is true. That is, if D(z, h,) > 0 on iteration n > 1 of relative value iteration, then
D(x, hy,) > 0 for all m > n and hence D(x,h) > 0. So, under this formulation, joining becomes

more attractive as n increases. These insights into the nature of optimal finite-horizon policies

under the respective reward formulations will prove to be useful in Section |5.4

Naturally, by definition of the socially optimal policy, the expected long-run average reward attained
under the optimal threshold T* must be greater than or equal to that attained under the selfish
policy with threshold 7. The next result shows that in fact, any of the ‘intermediate’ thresholds T
satisfying T* < T < T yield a better performance than the selfish threshold 7.

Lemma 5.1.6. Let gy denote the expected long-run average reward attained under a threshold

policy with threshold T € Ng. Then:
91+ 2 9r*41 2 o 2 G7_1 2 G (5.1.20)

where T' and T* are, respectively, the thresholds corresponding to the selfishly optimal policy 6 and

the socially optimal policy 0* found by relative value iteration.
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Proof. It T* =T or T* = T — 1 then the result is immediate since gy» > g7 by definition of the
policy 6*. Suppose T* < T —2. The aim of this proof is to show that g7 > gr41 for any threshold T’
satisfying T* < T' < T. Consider the evolution of the Relative Value Iteration Algorithm (RVIA),
assuming that the anticipatory reward formulation is used. Since the RVIA converges to

the policy with threshold 7%, there exists an integer k such that for all n > k:

~

7(z,1) + MAD(z,hy,) >0 Vze{0,1,.., 7" -1}, (5.1.21)

F(2,1) + AAD(2,hy) <0 Vae{T*T*+1,.,T —1}. (5.1.22)

Importantly, this implies that (5.1.21)) holds for all integers n > 0, since if the left-hand side of
(5.1.21]) was negative at some stage n = ng, then Lemma would imply that it would remain

negative at all subsequent stages n > ng. Let U, be defined for n > 1 as follows:
Un i=min{@ € {0,1,... 7 = 1} : 7(z,1) + XAD(z, b 1) < 0} (5.1.23)

In cases where {z € {0,1,...,7 — 1} : #(x,1) + MAD(z, hp_1) < 0} is an empty set, U, = T will
be assumed. Hence, U,, may be referred to as the ‘optimal finite-stage threshold’ at stage n of the
RVIA. Clearly, U; = T since ﬁo(x) =0 for all x € {0, 1, ,T} and #(x,1) < 0 if and only if 2 > T.
The sequence (Uy, Uy, Us, ...) must be monotonically decreasing due to Lemma Furthermore,

limy, oo Uy = T since the RVIA eventually converges to the T*-threshold policy.

Given some threshold T' € Ny satisfying T* < T < T, consider a re-defined problem where balking is
not allowed at any state x < T'; that is, the action set at any state x < T consists only of the single
action a = 1. Suppose the RVIA is applied to this problem, again assuming that the anticipatory
reward formulation is used. It can easily be verified that the inequality in Lemma
still holds when the problem is re-defined in this way. Indeed, this can be done without having to
rely upon Lemma [5.1.2] since Lemma [5.1.2] was used in the proof of Lemma [5.1.5| only in order to
rule out the decision-making case a; = 1 and by = 0 in , but even if this case is allowed
then one can simply choose ag = 0 and b; = 1 in order to show that holds.

Let U,, be defined as in (5.1.23)), and also let np € Ny be defined as follows:
np:=min{n € Ng: U, <T}.

That is, nr is the earliest iteration of the RVIA at which the threshold ‘drops’ to T. It must be the

case that np is finite, i.e. the algorithm will reach a threshold of T" at some point. This is because,
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for n < np, the iterates ﬁn() take exactly the same values in the re-defined problem as they do
in the original problem (with balking allowed at all states). The fact that balking is forbidden at
states x < T makes no difference during the early iterations n < nr, since balking would not be
chosen at any state x < T on these iterations in the original problem. So, given that the RVIA
converges to the threshold T* < T in the original problem, there must be a stage nr during its
evolution at which #(T, 1) +AAD(T, hy,,.) < 0, and therefore the same inequality holds at the same
stage in the re-defined problem. Due to , this implies that for all n > np:

P(2,1) + MAD (2, hy) <0 Va>T.

Hence, the RVIA converges to the threshold policy with threshold T in the re-defined problem,
which implies that the T-threshold policy is superior (or at least equal) to any larger-threshold
policy in terms of expected long-run average reward. In particular, it is superior to the policy
with threshold T+ 1; that is, g7 > gry1 as required. Since this argument can be applied to any

threshold T satisfying T* < T' < T, this completes the proof of the lemma. [J

Incidentally, it is also possible to use an argument very similar to that in the previous proof which

uses the real-time reward formulation ([5.1.3) and the property (5.1.19) proved in Lemma in

order to show that the average rewards g, g1, ..., g~ (where gr again denotes the average reward

earned under the threshold policy with threshold T") satisfy the relationship:
go < g1 < .. < gr-. (5124)

Combining (|5.1.24)) with the result (5.1.20)) proved by Lemma then shows that the average

reward gr is unimodal in T'; that is, a local maximum is also a global maximum. This is a result
also proved by Knudsen [I03] (p. 520), and is illustrated in Figure This unimodality property

will not be needed in subsequent results, but Lemma [5.1.6] will prove to be useful.

The next result concerns the effect of varying the demand rate A on the relative values h(x) and the
first-order differences D(x, h). The result is given for the real-time reward formulation only,
although it would be possible to obtain a similar result under the alternative formulation .
For each = € {0,1,...,T}, let h(z, \) denote the relative value h(z) (as determined by relative value

iteration) given a demand rate A > 0. Also, for each x € {0,1,...,7 — 1}, define:

D(z, A\, ) == h(z 4+ 1,\) — h(z, \),
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Figure 5.1: Expected long-run average rewards under various different threshold policies in a system with

A=6,c=3, u=2,a=29, 8 =05. The selfishly and socially optimal thresholds are T =10 and T* = 5.

D(xz, A\, hy) = hp(z+1,X) — hp(z,\) VneN.
Lemma 5.1.7. Suppose that, for some demand rate Ay > 0 and state x € {0, 1, s T — 1}:
D(x, M\, h) < 0.
Then, for all demand rates A € (\g, 00):

D(z,\, k) < 0. (5.1.25)
Proof. The proof again relies upon induction. See Appendix [A-5] page [£36]

From Lemma [5.1.7] one obtains the following important result.

Theorem 5.1.8. Let T%(\) denote the threshold associated with the socially optimal policy 0%

obtained using relative value iteration, given a demand rate A > 0. Then:

e T*(\) is monotonically decreasing with \;

e lim T*(\) =c.

A—00

Proof. Note that the fact that 03 is a threshold policy is already known from Theorem Given

a demand rate A > 0, the policy 6 chooses actions in the following way:

§ 1, if D(z,\,h) >0,
03 (7) =

0, otherwise.
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The socially optimal threshold 7%*(\) may therefore be defined as:
T*(A\) = min {z € {0,1,...,7 — 1} : D(x,\,h) < 0}, (5.1.26)

with 7*(\) = T in the case where {z € {0,1,...,7 — 1} : D(x, A\, h) < 0} is an empty set. Lemma
states that if D(z, Ao, h) < 0 for some demand rate A9 > 0, then D(x,A\;,h) < 0 for all
demand rates A\; > Ag. Therefore, given A\g < A1, (5.1.26) implies that:

T (A1) < T (o).

The fact that limy_,o, 7*(\) = ¢ can be argued using the fact that, for sufficiently large values of
A, the policy with threshold 7%(\) = ¢ is the only threshold policy which attains average reward
optimality. Note that the fact that the c-threshold policy is optimal in a heavy-traffic limit is
already known from Theorem since it is an example of a vacancy policy (see Definition
4.4.6). However, it is desirable to show that the c-threshold policy is the only socially optimal
threshold policy in heavy traffic, in order to establish that it is not possible for relative value

iteration to converge to any other policy. Let o > 0 be defined as follows:
o :=max (r(c—1), r(c+1)).

Due to the fact that the reward r(x) is strictly increasing with « when x < ¢ and strictly decreasing
when x > ¢, it follows that o > r(x) for any x # ¢. Let 6 be a policy with threshold 7" # ¢. Using
standard results for finite-buffer M/M/c queues (see, for example, [67], p. 75), the steady-state
probability my(x) of the system being in state = € Ny satisfies the following:

lim mp(z) = b=t (5.1.27)

A—00 .
0, otherwise.

Let € be a positive quantity whose value is given by:

S C Ll (5.1.28)
r(c) — o+ acu
Note that € depends only on the parameters «, 8, i and ¢, and not on the demand rate A. Due to

(5.1.27)), there exists a value d(e) > 0 such that, for all A > d(e):

go(\) = me(T)r(T) + Z mo(z)r(z) < (1 —€)o + eacp, (5.1.29)
x#T
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where gg(A) is the long-run average reward under policy 6 given demand rate A, and the inequality
is due to the fact that r(x) < acp for all x € Ny and (since T' # ¢), r(T') < 0. Meanwhile, let 6*
be the threshold policy with threshold c¢. Then, for all demand rates A > §(¢), using the fact that

only states x < ¢ are positive recurrent under 6*, one may write:
go-(N) = mo(c)r(c) + Y _ mo(x)r(z) > (1 —€)7(0), (5.1.30)

where the inequality is due to the fact that r(x) > 0 for all x < ¢. Suppose, for a contradiction,

that gg(\) > g« (A) for some A > §(e). Then, in view of (5.1.29) and ([5.1.30)):

(I1—€)o+eacu > (1—e)r(c).
However, this is equivalent to:

r(c)—o

[ A —
r(c) — o+ acp

which contradicts the definition of € in (5.1.28]). The conclusion is that, for sufficiently large
demand rates, the policy 8" with threshold c¢ attains a strictly greater average reward than any

other threshold policy. This completes the proof of the theorem. [J
The next lemma is required in order to prove the final result of this section.

Lemma 5.1.9. Let g(\) be the expected long-run average reward attained under the selfish policy
6 given a demand rate A > 0, and let g*(\) be the optimal expected long-run average reward under

the same demand rate. Then g(\) and g*(\) are both continuous in .

Proof. In the case of the selfish policy 6, it suffices to show that the expected long-run average
reward under a fixed threshold policy (where the threshold is independent of \) is continuous in A.
In the case of the optimal value g*()\), one may consider the threshold 77 (\) associated with the

policy 03 found by relative value iteration, and show that ¢g*(\) is continuous at the critical values

of A where T%(\) changes. For details, see Appendix page O

The next result brings together all of the previous results in order to prove an interesting result for
M/M/1 queues. In the special case ¢ = 1, it is possible to show that the (absolute) sub-optimality

of the selfishly optimal policy 6 increases monotonically with the demand rate A. The proof relies
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on the construction of a stochastic coupling (see Section ; however, in this particular case it is
possible to obtain the stationary distribution for the coupling explicitly and then prove the result

by examining the derivatives of the stationary probabilities with respect to A.

Theorem 5.1.10. Consider an M/M/1 system (¢ = 1). Given a demand rate A > 0, let L(\) be

the ‘loss per unit time’ due to selfish decision-making, defined as follows:

where g*(N\) and g(\) are (respectively) the optimal expected long-run average reward and the average

reward under the selfish policy 6. Then L(X) is monotonically increasing with X.

Proof. Naturally, all of the previous results in this section apply to the M/M/1 queue since it is
merely a special case of an M /M /c queue. For any demand rate A > 0, Theorem implies that
the optimal expected long-run average reward g*(\) is attained by a policy 5 with a threshold
T*(\) satisfying T*(\) < T, where T = |au/f3] is the selfishly optimal threshold. By Theorem
T*()\) is monotonically decreasing with A and limy_,o, 7%(\) = ¢ = 1, assuming that T*(\)
corresponds to the policy found by relative value iteration. As stated in the proof of Lemma
5.1.9, it follows that there exist m demand rates \; < Xy < ... < A,, and m + 1 thresholds

Ty > T > ...>1Ty _, > Ty =1, such that, for e =0,1,...,m — 1:

T*(/\) =T Ve (>\i7 /\i+1]7 (5.1.31)

)

where \g = 0 and T*(\) = 1 for A > A,,,. Let gr(\) denote the average reward under the policy with
threshold 7' € Ny given a demand rate A > 0. For any fixed A > 0, one has L(\) = grx(A) — g(})
for some i € {0,1,..,m}. Due to the continuity of §g(A) and ¢g*(\) proved by Lemma L(\)
is continuous at the points )\; where the optimal threshold changes. Therefore it remains only to
show that L(\) is monotonically increasing in each of the intervals where the optimal threshold

remains constant. More specifically, it is sufficient to show that L(A) is monotonically increasing

with A in the intervals (A;, Aiy1] (for ¢ € {0,1,..,m — 1}) and also (A, 00).

Given any A > 0, one has L(\) = gr»(A) — g(A) for some i € {0,1,...,m}. Equivalently:

LX) = (gT;(A) - gT;H(A)) + (gT;‘+1()\) - gT;+2(A)) ot (g7, (V) =gz (V). (5.1.32)



Chapter 5 Monotonicity and structure 178

where the bracketed expressions are all non-negative due to Lemma Let ¢ € {0,1,...,m}
be fixed. Due to , it will be sufficient to consider two threshold policies with thresholds
T and T + 1 respectively, where it is assumed that T} < T < T, and show that the difference
gr(X) — gr+1(A) is monotonically increasing with A in the interval (\;, Ai+1]. Given a fixed service
rate p, holding cost 8 and reward for service a, let (z)nen, and (yn)nen, denote the state-time
evolutions of two processes following threshold policies with thresholds 7' and T + 1 respectively.
Furthermore, let (&, 9n)nen, be a coupled process, constructed in such a way that the marginal
processes (Z) and (¢, ) have distributions identical to those of (z,) and (y,) respectively (refer to
Section for some background details on the coupling technique). Specifically, let it be assumed

that the random transitions of the coupling (Zy, §,) obey the following rules:

e At any time step n, there is a probability AA that both of the marginal processes (Z,) and
(Jn) see an arrival. In the case of (&), the new customer joins if and only if Z, < T in the

case of (gy), the customer joins if and only if g, < T + 1.

e With the remaining probability uA =1 — AA, a service completion occurs; this event is ‘seen
by’ (i.e. affects) the marginal process (&) if and only if &,, > 1, and similarly it is seen by

the other marginal process () if and only if g, > 1.

It is easy to see that these transition rules ensure that, given any n € Ny, the distributions of z,,
and g, are identical to those of x,, and ¥, respectively. Furthermore, it is guaranteed that one must
have either ¢, = Z,, or 9, = &, + 1 at all times steps n. Assuming that the coupling is initialised
in state (0,0), the set of attainable states for (&) is {0,1,...,T'}, and it follows that the number
of attainable states for the coupling (Z,,§,) during its evolution is 2(7" + 1). This may be seen
from Figure [5.2] which illustrates the state transitions for the coupling. Let R denote the set of
states in the coupled process with Z,, = g, < T (i.e. the bottom row of states in Figure , and
let G denote the complementary set of states with &, = ¢, — 1 < T. Here, ‘R’ and ‘G’ stand for
‘Regular’ and ‘Ghost’ respectively; one might imagine that the states belonging to the set G are
those which represent the smaller-threshold process (z,) carrying the ‘ghost’ of a customer who

would have been present if the policy with threshold 7'+ 1 had been followed. Suppose the coupled
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Figure 5.2: Transition diagram for the coupled process (&, Gn)-

process (&, Yn) earns state-dependent rewards 7.((Zn, Jn)), defined as follows:

6 - ap, lf(inayn) = (07 1)a
re((Zns9n)) = B, if (&n,9n) € G\ {(0,1)}, (5.1.33)
0, if (£, 9n) € R.

Let w((Zn,Un)) denote the steady-state probability of the coupled process being in state (Zp, Un),
with the dependence of 7((&y, 7)) on A suppressed for notational convenience. It may be seen
that, given any A > 0, the expected long-run average reward gc(A) = 32z 5y T((Zn, In))re((Zn, In))
earned by the coupled process corresponds exactly to gr(\) —gr41(\), the (non-negative) difference
between the average rewards under the policies with thresholds 7" and T+ 1. Indeed, the state (0, 1)
represents the scenario where the process (y,,) has one customer in service, whereas (z,) has no
customers present. By the definition of the rewards in (5.1.3)), (y,) earns a positive reward ay — 3
under this scenario, whereas (z,,) earns a zero reward; in fact, this represents the only scenario in
which the larger-threshold process (yy) is ‘winning’ against (zy,). If (Z,,9,) € G\ {(0,1)}, this
represents a scenario where both of the processes (z,) and (y,) have one customer in service, but
(yn) has one extra customer waiting in the queue and thereby incurs an extra holding cost; hence,
() is at an advantage of 3 over (y,) in terms of the single-step reward at that instance. Finally,

the case (&, Jn) € R represents a scenario where (x,) and (y,) have the same number of customers
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present; hence, r.((Zy,9,)) = 0 since there is no advantage earned by either process.

Let 7(R) = > ;. 5.0er T((Zn,9n)) be the stationary probability of the coupled process being in
one of the ‘regular’ states, and let 7(G) = 1 — w(R) denote the corresponding probability for the
‘ghost’ states. By the previous arguments, the following convenient formula relates the stationary

probabilities of the coupled process to the average rewards gr(\) and gri1(A\):

gr(A) — gr+1(A) = B7(G) — apm((0,1)).
This may equivalently be written as:

91 = g1 () = 7(6) (5 - PE). (5,130

where 7((0,1))/7(G) (naturally) represents the conditional probability of the coupled process being
in state (0, 1), given that it is in the set G. Note that 8 — aun((0,1))/7(G) must be non-negative,
because it is known (from Lemma [5.1.6) that gr(\) > gry1(N\). In order to show that gr(\) —

gr+1(A) is monotonically increasing with A, it therefore suffices to show:

1. (@) is monotonically increasing with A,

2. 7((0,1))/7(G) is monotonically decreasing with A.

One may proceed by deriving the stationary probabilities for the coupled process explicitly. First,
consider the states belonging to the set R = {(0,0),(1,1),...,(T,T)}. Given a demand rate A > 0,
let p = A/u. Obviously, showing that a certain quantity is increasing (decreasing) with A is
equivalent to showing that it is increasing (decreasing) with p. The steady-state balance equations

(see, for example, [167]) may be derived for states (i, J,) € R as follows:
pr((0,0)) = =((1,1)) + =((0, 1))

(14 p)r((1, 1)) = 7((2,2)) + pm((0,0))

(1+p)m((2,2)) = 7((3,3)) + pr((1,1))

Q1+p)n((T-1,T-1))=x(T,T))+ pr((T —2,T — 2))

1+ p)r(T,T)) = pr((T — 1,7 — 1)). (5.1.35)
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Also, using the detailed balance equations for ergodic Markov chains (see, e.g. [167]), the ‘rate of

flow’ into the set G must equal the ‘rate of flow’ out of G. Hence:
pr((T,T)) = 7((0,1)). (5.1.36)

Therefore, by replacing 7((0,1)) with pn((7,7T)) in the first equation in (5.1.35), one obtains
a system of T+ 1 linear equations in the 7"+ 1 unknowns 7((0,0)),7((1,1)),...,7/((7,T)) only.
Using recursive substitution, it can then be shown that the stationary probabilities m((n,n)) (for

n=0,1,...,7) may be expressed in terms of the probability 7((7,T")) as follows:

L+p+p2+..+plm
() = ( - =(T,T)).
Equivalently, for n € {0,1,...,T}:
1— prn+1

—— (T, T)), 1,
w((nn)) =4 P =p) D), 07 (5.1.37)
(T —n+1)n((T,T)), p=1.

Now consider the complementary set G = {(0,1), (1,2),..., (7,7 + 1)}. The steady-state balance

equations for states in G may be derived in a similar fashion:
(1+p)w((0,1)) = 7((1,2))

(1+p)7((1,2)) = 7((2,3)) + p7((0, 1))

(1+p)m((2,3)) = 7((3,4)) + p7((1,2))

QI+p)r(T-1,7)=7((T,T+1))+ pr((T'—2,T - 1))
7(T,T +1)) = pr((T —1,T)) + pr((T, 0)). (5.1.38)
Recalling that pr((T,7T)) = w((0,1)), the last equation in can be re-written as:

(T, T +1)) = pr((T = 1,T)) + 7((0, 1)),

which yields a closed system of 7'+ 1 linear equations in the 7'+ 1 unknowns 7((0,1)), 7((1,2)), ...,
7((T,T +1)). Then, again by recursive substitution, the stationary probabilities 7((n,n + 1)) (for
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n=0,1,...,7) may be written in terms of 7((0,1)) as follows:

1— pn-i-l

L r((0,1), p#1,
m((nn+1)) = (1+p+..+p") w((0,1)) = P
(n+1)7((0,1)), p=1.

Equivalently, for n = 0,1,...,T, due to ([5.1.36):

AL (), o1,
w((n,n+1)) = p (5.1.39)

(n+1)7((T,T)), p=1.

The expressions for the stationary probabilities in (5.1.37) and (5.1.39) are given in terms of the un-

known 7 ((7,T)), so it is obviously desirable to obtain an expression for 7 ((7,T')) in terms of p only.
This can be done using the standard normalisation condition that Y7, (7((n,n)) + 7((n,n + 1))) =

1. After some simplifications, one obtains the following;:

<§T: | T+ )‘1 .
A(T,T) =4 \izp P "A=0)) ' (5.1.40)
1

(T +1)(T +2)’
Then, using (5.1.37) and (5.1.39)), the expressions for m(R) and 7(G) are:

1—p™ (T —p)—p+2) p£1
a(R)y=4{ 1=p"(I+p=pt?) ~ ’ (5.1.41)
1/2, p=1.

p=1

P (TA—p)+1-2p+p""?) 41

Y p Y
Q) = L= pT (14 p—pT+2) (5.1.42)
1/2, p=1

In order to show that m(R) is monotonically decreasing with A (equivalently, 7(G) = 1 — 7(R) is
increasing with \), it will be useful to put (5.1.41)) and (5.1.42)) into an alternative form. First,
note that the expression for 7((7,7)) in (5.1.40) may be re-written as:

T -1 -1
L+p+..+pitt 1 1
(T, 7)) = | - = Q4+p+ ..+ (1+=+..+ =
— p p p
T T
= - = & . (5.143)
Q+p+..+pTHA+p+..+p) T T

S+ D+ AT 1—
n=0 n=0



Chapter 5 Monotonicity and structure 183

Then, after substituting (5.1.43) into (5.1.37)), further manipulations yield:

T T
> (n+1)pm PN (T + 1 —n)pn
m(R) = — R =1+ —=° . (5.1.44)
D (4 1)pn + pTHY (T +1—n)pr D (n+1)p"
n=0 n=0 n=0
T T -1
pPrENY (T +1—n)p" Y (n+1)p"
(@) = = =t = |1+ —" . (5.1.45)
D (n+1)p" 4 pTHY (T +1—n)p prHy (T +1—n)pn
n=0 n=0 n=0

For p > 0, let the function f(p) be defined as:

T
pT+IZ(T +1— n)pn
flp) == nt . (5.1.46)

> (n+1)p"

n=0

Then, referring to ([5.1.44)), it suffices to show (in order to show that 7(R) is monotonically de-

creasing with p) that f(p) is increasing with p. This can be done by splitting up the numerator in
(5.1.46)) and then differentiating term-by-term. Firstly, one may write:

T
_ (T +1— n)pT-i-n—i-l 5147
f0 =3 S (5.1.47)

Then, differentiating term-by-term yields the following;:

T (T+1-—n)pt™™ ((T +1+4n) Z]-T:O(j +1)p — Z]T:oj(j + 1)pj)

of
e 5.1.48
5 = 2 PN (5.1.48)
=0 (S0t + 1)
Therefore in order to show df/dp > 0, it suffices to show that for n € {0,1,...,T}:
T . T .
(T+1+n)> (G+1)p =D jG+1)p >0. (5.1.49)
5=0 5=0
This is equivalent to showing, for n € {0,1,...,T}:
T .
(T +14+n-5)(G+1)p >0, (5.1.50)

Jj=0
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and this is clearly true since (T'+ 1+ n — j) is positive for j € {0,1,...,T}. The remaining task,
in order to show that the difference gr(\) — gr41(A) is increasing with A, is to show that the

conditional probability 7((0,1))/m(G) is monotonically decreasing with A. This can be done very
easily using the previous results. Indeed, using ([5.1.36)) and ([5.1.43)):

T+1
((0,1)) = pr((T,T)) = — i . . (5.1.51)
Z(n +1)p" + pT+1Z(T +1—n)pn
n=0 n=0

Due to ([5.1.45)), this implies the following:

- -1
7r((?c’;:;)) = <Z(T +1- n)p”) . (5.1.52)

T n=0
This immediately implies that 7((0,1))/7(G) is monotonically decreasing with p as required. In
view of (5.1.34), this is sufficient to show that the difference gr(\) — gr41(A) is monotonically
increasing in the interval A € (\;, \j41], for any threshold T satisfying T} < T < T. Hence, due to
(5-1.32), the same must be true for L(A) = g*(\) — g(A). Since this argument can be repeated for
any fixed ¢ € {0,1,...,m}, this completes the proof of the theorem. [

Figure illustrates the result of Theorem [5.1.10| by showing the relationship between L(A) and A
in the case of an M /M /1 system with parameters y =5, o = 20 and 5 = 10.

(o}
o

H D
o o
T I

Loss per unit time L(\)
S
I

Demand rate A 10 15

Figure 5.3: The relationship between L(A) and A in an M/M/1 system with 4 =5, o = 20, 8 = 10.

The ‘loss per unit time’ L(A) referred to in Theorem |5.1.10| is only one means of quantifying the
sub-optimality of the selfish policy f. An alternative would be to consider the ratio g*(\)/g(\) of
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the average rewards under the socially optimal and selfishly optimal policies. In problems involving
routing games, where the objective is to minimise long-run average costs, there exists a well-studied
measure known as the Price of Anarchy (PoA) which quantifies the inefficiency of a system due
to selfish decision-making; see, for example, Roughgarden [I147]. The PoA is sometimes studied
in problems involving routing of customers in queueing systems (see [54] [79, [101]) although the
context is usually slightly different, as static routing policies (in which decisions are made in a
randomised fashion, without any dependence on the state of the system) are usually considered. In
the context of the queueing systems considered in this thesis, let PoA()) be defined by:

g (N
g’

PoA(N) =

where ¢*(\) and g(A) are as defined in Theorem Thus, PoA(A) > 1 for all A > 0 due
to the definition of ¢g*(\), and large values of PoA(\) indicate a dramatic difference between the
performances of the selfish and socially optimal policies. In the present context, the term “Price of
Anarchy” may be regarded as something of a misnomer, since PoA () in fact quantifies the relative
extra benefit (or reward) of following a socially optimal policy as opposed to a selfish policy; the
term makes more sense in the context of cost minimisation problems, in which it is defined as the
ratio of the selfish cost to the optimal cost and thereby represents the extra relative cost of following
a selfish policy. Obviously, this is only a minor point and the PoA has essentially the same meaning

regardless of whether one considers cost minimisation or reward maximisation.

Theorem states that the loss per unit time L(\) is monotonically increasing with A. Numer-
ical experiments involving M /M /1 queues appear to indicate that PoA()) is also monotonically
increasing with A, but this appears to be much more difficult to prove than the corresponding
result for L(\) and therefore no proof will be given here. Figure shows the relationship between
PoA()) and X in a system with g =5, @ = 20 and 3 = 10 (as used in Figure [5.3).

An interesting way of converting the reward maximisation problem considered in this section (which
is solved by a socially optimal policy) into a cost minimisation problem is to re-interpret the
parameter « so that it becomes a cost for balking, as opposed to a reward for service. This can
be done by altering the problem formulation so that the system incurs a penalty a > 0 for every

customer who balks, and customers do not earn rewards for service but are still charged holding
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Figure 5.4: The relationship between PoA(\) and A in an M/M/1 system with =5, o = 20, § = 10.

costs in the same way as before. Effectively, this simply means that the value « is deducted from
each customer’s individual expected net reward (whether or not they balk), and it follows that
selfishly and socially optimal policies are unaffected by the change. The problem then becomes
a reward maximisation problem involving non-positive rewards, which can equivalently be treated
as a cost minimisation problem in which all costs are non-negative. The interpretation of a as a
cost for balking rather than a reward for service not only ensures comparability with routing game
problems (in which costs are generally assumed non-negative), but also makes sense in healthcare

applications and other public service settings; refer to [I0I] for further discussion.

It is easy to see that, given any set of system parameters, altering the problem formulation as
described above will not change the value of |g*(A) — g(\)|. As such, the loss per unit time L(\)
is unaffected (except that it becomes a cost increase per unit time, rather than a loss in reward).
However, PoA()\) is affected, due to the contribution made to the aggregate cost made by customers
who balk. Indeed, large values of A will generally result in values of PoA(\) close to 1, since (under
either of the policies  and 0*) the majority of customers will tend to balk, and therefore balking
costs will dominate over customers’ holding costs. As a result, PoA()) is no longer monotonically
increasing with X\ in the new problem formulation; instead, it appears to attain a peak value at
some finite value of A, and then decrease towards 1 as A becomes large. Figure [5.5] illustrates the
shape of the PoA(\) curve when the new problem formulation (with balking costs) is used. It may

be observed that the shape is similar to those of the PoA curves found in [101].
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Figure 5.5: The relationship between PoA(A) and A in an M/M/1 system with =5, « = 20, 8 = 10, after

re-formulation of the problem so that « is a cost for balking as opposed to a reward for service.

The next section will consider the possible extension of the structural properties proved in this

section to a problem involving two facilities with only one service channel each.

5.2 Two facilities, one server each

In Section [5.1} various properties of socially optimal policies for systems consisting of a single,
multiple-server queue were established by appealing to structural properties of the relative value
functions h(z) and h(z). In general, inductive proofs based on value iteration are quite thematic in
the literature; unfortunately, however, such proofs may not necessarily be achievable in systems of
greater complexity. Indeed, it appears to be the case that optimal policies for larger-scale systems
may exhibit quite counter-intuitive characteristics; this is shown by the examples in Appendix [A7§]
This section, like the previous one, considers a special case of the general N-facility, multiple-server
queueing system introduced in Section In this case, it is assumed that there are two facilities

(N = 2), both of which have only a single service channel available (¢; = ¢y = 1).

Before proceeding, it will be useful to define certain properties of real-valued functions defined on
a lattice, i.e. a partially-ordered set which contains both the least upper bound and the greatest
lower bound of any two constituent elements. As discussed in earlier sections, the N-dimensional
state space S defined in is a partially ordered set according to the ordering relation where,

for any two states x,y € S, x <y if and only if z; < y; for all components i € {1,2,..., N}. The
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following terms are commonly used in lattice theory (see, for example, [I83] p. 13):
e The least upper bound of two elements x,y € S is called their join and denoted x V' y.

e The greatest lower bound of two elements x,y € S is called their meet and denoted x A'y.

For example, given the partial ordering of states described above, one may write (2,5)V(3,4) = (3,5)
or (in a higher-dimensional state space) (4,1,7,5,3) A (6,8,3,9,2) = (4,1,3,5,2). Using this

vocabulary, one may define the property of submodularity as follows:

Definition 5.2.1. (Submodularity)

Let S be a lattice and let f : S — R be an arbitrary real-valued function. Then f is said to be

submodular on S if, for all pairs of elements x,y € S:

fxVy)+ fxny) < f(x)+ f(y) (5.2.1)

If (= f) is submodular on S, then f is said to be supermodular on S.

The following lemma implies that an inductive method can be used to check a function for sub-

modularity in the case where the state space S is two-dimensional.

Lemma 5.2.2. A function f : S — R is submodular on the two-dimensional state space S =

{(z1,x2) : 21,22 € No} if and only if, for all elements x € S and i,j € {1,2} with i # j:
FIETY ) + f(x) < () + f(I). (5.2.2)

Proof. If f is submodular on S, then follows immediately from Deﬁnition since (x*)J*
and x are (respectively) the join and the meet of the states x'* and x/T. It must also be shown
that implies . Note that if x <y (or x > y) with respect to the partial ordering, then
holds trivially, since the terms on the left-hand side are identical to those on the right-hand
side. Hence, in order to eliminate trivial cases, one may assume that x and y are incomparable;
that is, z; > y; and z; < y; for some permutation (i,7) € {1,2}* with i # j. For convenience,
let z=xAy € S. If x and y are incomparable, then (without loss of generality) one may write
x = (21 + m, 22) and y = (21, 22 + n) for some strictly positive integers m and n. Hence, it suffices

to show that the following inequality holds for arbitrary z € S and m,n € N:

fzi+m,zo+n)+ f(z1,22) < f(z1 +m, 22) + f(21,22 +n). (5.2.3)
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Due to (5.2.2)), this inequality holds when m = n = 1. As an inductive assumption, let (ki, ko) € N?
be an arbitrary pair of positive integers and assume that (5.2.3)) holds for any state z € S and

positive integers m, n satisfying m < k; and n < ko. This implies:
(21 + k1,22 + ko) + f(21, 22) < f(21 + k1, 22) + f(21, 22 + ka2),
flz1+ k1 + 1,20+ k) + f(21 + k1, 22) < fz1 + k1 + 1, 22) + f(21 + k1, 22 + ko).
Combining these two inequalities, one obtains:
flz1+ ki 4+ 1,20+ ko) + f(z1,22) < f(z1+ k1 + 1, 22) + f(21, 22 + k2),

which states that (5.2.3]) holds when m = k; + 1 and n = k. Analogously, one can show that it
also holds when m = k; and n = ko + 1. This completes the inductive proof that (5.2.3]) holds for

all z € S and m,n € N, which confirms that (5.2.2)) implies (5.2.1]). O

Example 5.2.3. (Submodularity on N?)
Let f: N2 — R be defined by f(x1,22) = 122 for pairs (z1,22) € N2. In order to show that f is
supermodular on N2 it suffices to show that for arbitrary (z1,22) € N? and m,n € N:
flz1+myzo+n)+ f(x1,22) > f(x1+m,x2) + f(z1,22 + n). (5.2.4)
Indeed, given that f(z1,z2) = x1x9, the inequality is equivalent to:
2x1x2 + nx1 + Mmx2 + mn > 2x1T2 + nr1 + Moo,

which holds trivially for all m,n € N. Since f is supermodular on N?, it follows that the function

g : N? — R defined by g(x1,z2) := —x122 is submodular on N, X

Two further properties of real-valued functions defined on the N-dimensional integer lattice S =

{(z1, 29, ....,xN) : T1, T2, ..., xxy € Ny} are defined below.

Definition 5.2.4. (Concavity)

Let f : S — R be an arbitrary real-valued function, with S as defined in . Then f is said to
be concave on S if, for allx € S and j € {1,2,..., N}:

FIGTTYT) = f(F) < F(7F) = f(x). (5.2.5)

If (= f) is concave on S, then f is said to be convex on S.
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Definition 5.2.5. (Diagonal submissiveness)

Let f: S — R be an arbitrary real-valued function, with S as defined in . Then f is said to
be diagonally submissive on S if, for allx € S and i,j € {1,2,...., N} with i # j:

FIGTTYT) = F(xTYF) < F(IT) = F(x). (5.2.6)
If (= f) is diagonally submissive on S, then f is said to be diagonally dominant on S.

Examples are given below of functions which possess the properties defined above.

Example 5.2.6. (Concavity on N?)

Let f: N? — R be defined by f(x1,22) = (21 + x2)? for pairs (z1,72) € N2, In order to show that

f is convex on N2, it suffices to show that for an arbitrary pair (z1,z2) € N%:
flxr+2,29) — f(z1 4+ 1,22) > f(z1 4+ 1,22) — f(x1,22). (5.2.7)
Indeed, given that f(z1,72) = (21 + 22)?, the inequality is equivalent to:
20 +2y+3>2x+2y+1

which holds trivially for all (z1,z2) € N2. Since f is convex on N2, it then follows that the function

g : N? — R defined by g(x1,22) := — (21 + 22)? is concave on N?. X

Example 5.2.7. (Diagonal submissiveness on N?)

Let f : N2 = R be defined as in Example that is, f(x1,22) = 2129 for (z1,22) € N2, In order

to show that f is diagonally submissive on N? it suffices to show, for (z1,x2) € N2
flz1 4 2,29) — flx1+ 1,20+ 1) < fa1 + 1,29) — f(z1,22 + 1). (5.2.8)
Indeed, given that f(z1,z2) = xix9, the inequality is equivalent to:
To—x1— 1 <129 — 1211

which holds trivially for all (x1,22) € N2. So, f is diagonally submissive on N2, X
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It will be convenient to introduce some operator notation, similar to the notation D(x, f) used in
Section to represent the first-order difference f(x + 1) — f(x). For an arbitrary function f and

state x € 9, let the first-order difference with respect to component j be defined as:

Dj(x, f) = f(x'") - f(x). (5.2.9)

In addition, let the second-order differences Dj;(x, f) and D;;(x, f) be defined as:

Djj(x, f) = Dj(x, Dj(x, f)) = f(xF)7F) = fF(x7F) = f(xF) + f(x), (5.2.10)
Dij(x, f) == Di(x, Dj(x, f)) = F(x'7)F) = f(x'7) = fF(x'T) + f(x). (5.2.11)

From (/5.2.10) and (5.2.11)) one obtains the following characterisations of submodularity, concavity

and diagonal submissiveness as defined in Definitions (5.2.1)), (5.2.4)) and (5.2.5):

e A real-valued function f : S — R is submodular if and only if D;;(x, f) < 0 for all states

x € S and components i,j € {1,2,..., N} with i # j.

e A real-valued function f : S — R is concave if and only if D;;(x, f) < 0 for all states x € S

and components j € {1,2,..., N}.

e A real-valued function f : S — R is diagonally submissive if and only if D;;(x, f) < Dyj(x, f)

for all states x € S and components i,j € {1,2,..., N} with i # j.

Thus, it is immediate that if f is both submodular and diagonally submissive on S, then it must
also be concave on S. It is easy to show that the ‘real-time’ reward formulation (3.5.4)) possesses

all three of these structural properties. This is stated below as a lemma.

Lemma 5.2.8. The reward function r defined in 18 submodular, concave and diagonally

submissive on the N-dimensional state space S = {(x1,22,...,xN) : 1,Z2, ..., 2N € No}.
Proof. Using (13.5.4) one may write, for any x € S and 7,7 € {1,2,..., N} with i # j:

Dij(x, T) = O,

—Q g, if Tj = Cj — 1,
Djj(x,7) = Djj(x,7) — Dyj(x,7) =
0, otherwise.
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So Djj(x,7), Djj(x,7) and Dj;(x,7) — D;;(x,7) are all non-positive as required. O]

Another result which will be required later is that, when the real-time reward function r is used,
the first-order differences D;(x, h) are uniformly bounded above. Here, h denotes the relative value
function which, together with the optimal average reward g¢*, satisfies the optimality equations
. As in the previous section, the assumption will be made that /(0) = 0 in order to determine
the h(x) values uniquely. The result of the next lemma actually applies to a system with an
arbitrary number of facilities, each with multiple servers allowed (i.e. without any restriction on
the parameters N or {c;}YY,) and therefore the proof will be given in the general context of the

MDP YT described in Section so that the result can be used in later sections.
Recall that S denotes the selfishly optimal state space, defined in (4.1.3).

Lemma 5.2.9. Assume that the reward function r(x) defined in is used. Then, for all

xes and j € {1,2,..., N} such that x/T € S, the relative value function h satisfies:

i — Bi
Di(x,h) < 20 5.2.12

i) < L (5:2.12)

Proof. Like many of the earlier proofs in this chapter, the result is proved using induction on the

iterates h,(x) obtained by relative value iteration. See Appendix page m

The definitions provided earlier for submodularity, concavity and diagonal submissiveness may be
applied to value functions (or any other functions of interest) related to queueing systems with
an arbitrary number of facilities N € N. However, throughout the remainder of this section,
attention will be restricted to systems with only two facilities, each with a single server. The
abbreviation 2DSS (meaning ‘2 Dimensions, Single Server’) will henceforth be used to describe
any queueing system with these properties; i.e. a ‘2DSS system’ is a queueing system which

satisfies the assumptions of Section [3.1] and also has N =2 and ¢; = ¢2 = 1.

The next lemma establishes structural properties of the relative value function s in a 2DSS system,

assuming (once again) that the real-time reward formulation is used.

Lemma 5.2.10. Assume that the system is 2DSS and the reward function r(x) defined in
is used. Then the relative value function h is submodular, concave and diagonally submissive on

the two-dimensional selfish state space S = {(z1,22) : ©1, 22 € Ng, 1 < By, a9 < Bg}
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Proof. Again, the proof relies upon induction on the finite-stage iterates h,,(x). The three structural
properties (submodularity, concavity and diagonal submissiveness) actually depend upon each other
to some extent, and therefore the inductive hypothesis must be that all three properties hold at an

arbitrary stage n = k. For details of the proof, refer to Appendix page

Naturally, there is a purpose for showing that the function h possesses the three structural properties
discussed in Lemma [5.2.10] Indeed, the next result exploits these properties to show that, in a
2DSS system, the optimal policy 6* found by relative value iteration on the finite state space S is

monotonic with respect to the actions prescribed at the various states x € S.

Theorem 5.2.11. (Optimality of monotone policies)

Assume that the system is 2DSS and let 6* be the optimal policy found by relative value iteration
on the selfish state space S. Then, for allx € S and j € {1,2} such that x7+ € S:

o If balking is chosen by 0% at x, then it is also chosen at x/*. That is:
0*(x) =0 = 0*(x’") = 0.

o If joining facility j is chosen by 0* at x+, then it is also chosen at x. That is:
0*(x71) = j = 0*(x) = J.

Proof. Assume that the real-time reward function as defined in (3.5.4) is used. Let x € S be an
arbitrary state and let ¢, j € {1,2} be distinct (¢ # j). Then, using the structural properties of the

relative value function h proved by Lemma [5.2.10] one may write:

h(x) > h(xIT) = h(x'T) > h((xT)T), (5.2.13)
h(x) > h(x’T) = h(xIT) > h((xIT)IT), (5.2.14)
R((x7T)7) > h((x'T)YT) = h(xIT) > h(xT), (5.2.15)

assuming, of course, that all of the states referred to in (5.2.13])-(5.2.15)) are elements of S. Fur-

thermore, the actions 6*(x) are related to the values h(x) as follows:
0, if h(x/T) < h(x) and h(x'") < h(x),
0%(x) =<, if h(x¥) > h(x) and h(xIt) > h(x'T), (5.2.16)

1, otherwise.
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If h(x?*) = h(x'"), it is assumed that the stationary policy 6* uses an arbitrary tie-breaking rule
to choose between facilities j and ¢ at state x (not a randomised rule, since this would make the

policy non-stationary); accordingly, (5.2.16|) assumes without loss of generality that j is preferred

over i in such cases. Using (5.2.13))-(5.2.15) and ([5.2.16)), the results follow:

6%(x) = 0 = h(x) > max (h(x'"), h(x'"))
xI7) > max (h((x)7), h((x)YH) = 07 () = 0,
0" (x*) = j = h((x/+)7*) > max (h(x’"), h((x"")T))

0" (x'T) =i = h((x"")"") > h(x'") and h((x"")"") > h((x"T)7T)

h(
h(
(X *) > max (h(x), h(xi"')) = 0" (x) = j,
h(
= h(x'") > h(x) and h(x'T) > h(x’T) = 0% (x) = i.

So 0* possesses the monotonicity properties stated by the theorem. [J

So far, all of the results in this section have assumed that the real-time reward formulation (3.5.4))
is used. It is worth noting that if the alternative (anticipatory) reward formulation (3.5.15)) is

adopted instead, it is possible to prove structural properties of the relative value function which

are similar (but not identical) to those in (IA.5.42|)—(]A.5.44|). Indeed, let h denote the relative value

function under the formulation (3.5.15). Then, using similar arguments to those in the proof of
Lemma [5.2.10, one can show that for states x € S and i,j € {1,2} with i # j:

h((x)7H) — h(x'™) < h(x'T) — h(x), (5.2.17)
P(IT, §) + AA(R((ITYH) — h(xTT)) < #(x,5) + A (R(xIT) — h(x)), (5.2.18)
P(IT, §) F AA(R((ITYH) — h((xT)IH)) < #(x,§) + AA (A(xIT) — h(x™)), (5.2.19)

where it is again assumed that all of the states referred to in — are elements of S.
Thus, h possesses the submodularity property, but (in general) it does not possess the concavity
or diagonal submissiveness properties. However, — are sufficient to establish the
monotonicity properties of 6* stated by Theorem That is, the optimality of monotone

policies in a 2DS.S system can be established using either of the two reward formulations.

Recall that, by Theorem the set Sy« of states which are positive recurrent under 6* is a
subset of the selfish state space S. Let B; and By be the boundaries of S, defined in (4.1.2)).
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Lemma [5.2.10] implies that there exists a set of values {C*(0),C*(1),...,C*(B;)} such that, for
z1 € {0,1,...,B1}, h(x'T) > h(x*) if and only if 25 > C*(z;). Similarly, there exists a set of
values {B*(0), B*(1),...., B*(B1)} such that, for z1 € {0,1,..., B1}, h(x) > max (h(x'*), h(x>")) if

and only if zy > B*(x1). To be precise, for z; € {0,1, ..., B;} one may define:

C*(21) := min {m € {0,1,.., B2} : Di(x,h) > Ds(x, h)} , (5.2.20)

B*(21) := min {x2 € {0,1,...,Bs} : Di(x,h) < 0 and Da(x, h) < o} . (5.2.21)

At this stage, there is no theoretical guarantee that {zs € {0,1,..., Ba} : Di(x,h) > Da(x,h)}
and {zy € {0,1,..., By} : Di(x,h) < 0 and Dy(x,h) < 0} are non-empty sets, so a convention
will be adopted whereby C*(z1) = +00 when the former set is empty, and B*(z1) = 400 when
the latter set is empty. In words, C*(x71) is the smallest number of customers at facility 2 which
would cause the socially optimal policy 6* to ‘prefer’ joining facility 1 over facility 2 when there
are x; customers at facility 1. Similarly, B*(z1) is the smallest number of customers at facility
2 which would cause the policy 6* to choose to balk when there are x; customers at facility 1.
The set of values {C*(0),C*(1),...,C*(B1)} may be referred to as a switching curve, since each
value C*(x1) is the critical value of o for which the policy 6* ‘switches’ from choosing facility 2 to
facility 1; similarly, the set {B*(0), B*(1),..., B*(B1)} may be referred to as a balking curve. The
use of switching and balking curves to characterise optimal policies is a theme which has received

considerable attention in the MDP literature; see, for example, [56, [73], [74], 105, [106].
The next result establishes monotonicity properties of the switching and balking curves.

Lemma 5.2.12. For z; € {0,1,..., By}, let C*(z1) and B*(x1) be as defined in and
5.2.21)) respectively. Then C*(z1) and B*(x1) have the following properties:

e C*(x1) is monotonically increasing with x1;

e B*(x1) is monotonically decreasing with 1.

Proof. The monotonicity of C*(z1) will be shown first. Consider an arbitrary z; € {0,1, ..., B; —1}.
By definition, C*(x1) is the smallest value of x5 such that h((z1 +1,22)) > h((x1,22 +1)). Hence,
for any non-negative integer k < C*(z1), it is the case that h((z1 + 1,k)) < h((z1,k + 1)). By
the diagonal submissiveness property of h proved in Lemma h((z1 +2,k)) — h((z1 + 1,k +
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1)) < h((z1 + 1,k)) = h((z1,k + 1)) (equivalently, Di1((z1,k),h) < Dia((x1,k),h)) and hence
h((z1 + 2,k)) < h((z1 + 1,k 4+ 1)), which implies that the value of C*(z; + 1) must be strictly

greater than k. Hence, C*(x1) is monotonically increasing with z; as required.

Meanwhile, by definition B*(x;) is the smallest value of z such that h((z1,2z2)) is strictly greater
than both h((z1+1,22)) and h((z1,29+1)). Let z1 € {1,2,..., B1} be arbitrary. Then, for any non-
negative integer k < B*(x1), it is the case that either h((z1,k+1)) > h((z1,k)) or h((z1+1,k)) >
h((z1,k)). If h((x1,k+ 1)) > h((z1,k)), then due to the submodularity property of h proved in
Lemma [5.2.10} h((z1 — 1,k +1)) > h((z1 — 1,k)). On the other hand, if h((z1 4+ 1,k)) > h((z1,k))
then the concavity of h implies h((x1,k)) > h((x1 — 1,k)). So in either case, h((x1 — 1,k)) is
bounded above by max (h((z1 — 1,k +1)), h((z1,k))), implying that B*(z; — 1) is strictly greater

than k. It follows that B*(x1) is monotonically decreasing with x; as required. O

Naturally, the selfishly optimal policy fina2DSS system may also be described using a switching
curve, since for each integer z; € {0,1, ...,Bl} there will be some value z2 € {0,1, ...,Bg} such
that w((z1,22),1) > w((z1,22),2) (with w(x,a) as defined in ([.1.1)), and hence w((z1,k),1) >
w((z1,k),2) for all k > 5. That is, for each z; € {0,1, ..., B}, one may define:

C(z1) := min {xQ € (0,1, Bo)} : w((a1,22), 1) > w((a1, x2), 2)} , (5.2.22)

- oo, ifz < Bl,
B(xy) == (5.2.23)
By, if 1 = By,
with the result that the selfish policy 8 is characterised for (z1,z2) € S as follows:

1, ifag < B(xp) and 29 > C(x1),
O((x1,22)) = 2, if 2y < B(z1) and x5 < C(z1),
0, if ) 2 B(%l)

The next example shows how the switching and balking curves (for both the optimal policy #* and

the selfish policy f) may be represented graphically in a 2DSS system.

Example 5.2.13. (Switching and balking curves)

Consider a system with two single-server facilities (N = 2, ¢; = co = 1) and a demand rate A = 4.
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The parameters for the two facilities are given as follows:

Table shows the selfishly and socially optimal policies for the system, with the latter having been
found using relative value iteration. The selfish state space for the system is S = {(x1,29) € N2 :
x1 < 7 and x9 < 7}; that is, By =7 and By = 7. For each state (x1,x2) € S, the selfishly optimal
decision 0((z1,x2)) € {0,1,2} is shown first, followed by the socially optimal decision 8*((z1,z2))
(in brackets). States at which the two policies differ are highlighted in bold.

To=0|a29=1|20=2|290=3 | 29=4 | 20=5|29=6]| 29=7
=011 | 1) | 1) | 1@ | 1) |11 |11 | 1)
er=11(2) | 1) | 1) | 1) | 1) |10 |10 | 1)
pr=2] 2@ | 1@ | 1) | 1) | 1@ |10 |10 | 1)
s1=3]22 | 2@ 1@ 1@ |11 | 1) |10 ]| 1(0)
sr=4] 22 | 2@ | 2@ |12 |10)]10)]|1(0) ] 1(0)
zi=5020@) | 2@ | 2@ | 2@ |20 |1(0) |10 |10
=622 | 22 | 2@ | 20) |20 |20 |10 |10
er=7] 22 | 2@ | 2@ | 20) |20 |20 | 20| 0(©)

Table 5.1: Selfishly (socially) optimal decisions at states x = (z1,22) with 21 <7, 25 < 7.

Table confirms that both of the policies # and 6* possess the monotonicity properties discussed
earlier; for example, if joining facility 1 is chosen at some state x € S with z; > 1, then this implies

that facility 1 will be chosen at the state x!~. For each 21 € {0,1,...,7}, the values C*(z1), B*(z1)

and C(z1) as defined in - and are plotted in Figure

It may be observed from Figure that the switching curve for the socially optimal policy 6* is
somewhat steeper than the switching curve for the selfish policy 0, which indicates that facility 1

is preferred to facility 2 at a greater number of states under § than under 6*. X

It is possible to use Lemma [5.2.10| to make further inferences about the structure of the socially

optimal policy 8* in a 2DSS system. First, another definition is required.
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- Balk curve (socially optimal policy)

— Switch curve (socially optimal policy)

— Switch curvle (selfishly optirlnal policy)

0 | |
1 2 3 4 5 6 7

x; (no. of customers at facility 1)

Figure 5.6: Switching curves for the policies 6 and 0*, and the balking curve for 6%, in Example [5.2.13]

Definition 5.2.14. (Sink policy)

Let 0 be a stationary policy, and let Sy denote the (possibly empty) set of states in S which are

positive recurrent under 6. Then 6 is said to be a sink policy if and only if:
1. Sy is non-empty and finite;
2. There exists exactly one state z € Sy for which 6(z) = 0.
Moreover, the unique state z € Sy with 6(z) = 0 is referred to as the ‘sink state’.

It is easy to see that the sink state of any sink policy # must be located at the ‘corner’ of the

recurrent region Sy, since otherwise Sy would not be finite; see Table

Sink policies can be constructed for systems with an arbitrary number of facilities; indeed, given
any system with N facilities, the selfish policy 6 defined in Section is a sink policy with sink
state (B’l, B,,..., B ~). It is reasonable to suppose that in many types of system, the socially optimal
policy 8* found by relative value iteration should be a sink policy, but this may not be easy to
prove. The next result addresses the special case of a 2DSS system. The proof is similar to Ha’s
proof of the optimality of ‘base stock policies’ in make-to-stock production systems which follow

similar dynamics to those of the 2DSS queueing system under consideration; see [73].
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Policy 6, Policy 69
To=0|29=1] 29=2 To=0|29=1] 29 =2
x1 =0 1 1 1 x1=0 1 1 1
1 =1 2 1 1 1 =1 2 1 0
r1 =2 2 2 0 x1 =2 2 2 0

Table 5.2: An example of two different policies, 1 and 6o, for a 2DSS system. 6, is a sink policy, with
a sink state (2,2) located at the ‘corner’ of the positive recurrent set Sp,. 02 has the same set of positive

recurrent states, but is not a sink policy because balking is chosen at both of the states (1,2) and (2, 2).

Theorem 5.2.15. Assume that the system is 2DSS and let 0* be the socially optimal policy found

by relative value iteration on the finite state space S. Then 6* is a sink policy.

Before proceeding with the proof, it is useful to observe that the policy 6, shown in Table[5.2] cannot
possibly be an average reward optimal policy found by relative value iteration, assuming that the
usual conventions for tie-breaking are followed (so that balking is never preferred to joining a facility
in the case of a tie). Indeed, suppose (for a contradiction) that 82 is an optimal policy which always
chooses actions attaining the maximum in the optimality equations . Then, given that facility
2 is preferred to balking at state (2,1), it must be the case that h((2,2)) > h((2,1). Also, given that
balking is preferred to facility 1 at state (1,2), it must be the case that h((1,2)) > h((2,2)). These
two inequalities together imply h((1,2)) > h((2,1)). However, given that facility 1 is preferred to
facility 2 at state (1,1), it is also the case that h((2,1)) > h((1,2)), which gives a contradiction. If
the decision at state (1,1) was changed from 1 to 2 in order to ensure consistency with the previous
inequalities, then the states (2,0), (2,1) and (2, 2) would no longer be part of the positive recurrent
region Sy, and the policy 02 would then become a sink policy with sink state (1,2). The proof
of the theorem will essentially rely upon arguments similar to these (and also the monotonicity

properties proved by Theorem [5.2.11) in order to show that §* must be a sink policy.

Proof. First, note that due to Theorem[4.2.4] the set Sp+ of states which are positive recurrent under
6* is contained within the selfish state space S defined in 1’ so Sy« is finite and non-empty.
Let the thresholds T} and T associated with 6* be defined as follows:

T} := min {21 € No: B*(21) < oo and C*(21) > B*(z1)},
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T5 = B*(TY),

where C*(z1) and B*(z1) are as defined in ([5.2.20) and respectively. It must be the case
that T} and T3 are both finite; indeed, one can show that T3 < By and Ty < By, where B; and B
are the boundaries of S defined in . To see this, recall that it was established in the proof of
Theorem that the policy 6* never chooses to join facility j € {1,2} at any state x € S with
xj = Bj. Tt follows that 0*((By, Bz)) = 0, and 0*((Bi,k)) # 1 for all k € {0,1,..., By}, which in
turn implies B*(Bl) < B, and C*(Bl) > B, and hence C*(Bl) > B*(Bl) and T} < By. Then
B*(T?) < oo by definition of T3, implying B*(T}) < B, by definition of B*(x1).

The aim of this proof is to show that 6* is a sink policy with sink state (77, T%). Since T3 is the
smallest value of zo such that * chooses to balk at state (17, x2), it follows that 6*((77,75)) =0
and 0*((17,Ty — 1)) # 0. In addition, C*(T}) > B*(11%) = T5 by definitions of T} and T3, which
implies that at least 75 customers must be present at facility 2 in order for 6* to prefer facility 1
to facility 2 when there are T} customers present at facility 1. Hence, 0*((T},T5 — 1)) # 1. So the
only remaining option at state (17,75 — 1) is facility 2, i.e. 6*((17,T5 — 1)) = 2.

The next stage of the proof is to show that 0*((77—1,7%)) = 1, and this is achieved by contradiction.
First suppose 6*((T7 — 1,75)) = 0. Then B*(1} — 1) < T3 by definition of B*, i.e. the minimum
value of x9 required for 6* to choose to balk at state (T} — 1,z2) is at most 75. In addition,
C*(Ty — 1) < B*(T} — 1) by definition of T}, so C*(T} — 1) < T5. This states that, with 77 — 1
customers at facility 1, the number of customers required at facility 2 in order for 8* to prefer facility
1 over facility 2 is smaller than 7%, which implies *((7} — 1,75 — 1)) # 2 (otherwise C*(T} — 1)
would be at least 7). It has already been established that 0*((7},75 —1)) = 2, so it cannot be the
case that 6*((1T7 — 1,75 — 1)) = 0, because this would contradict the first monotonicity property
of 6* stated by Theorem The only remaining possibility at state (T — 1,75 — 1) (with
O*((Ty — 1,T5)) = 0 assumed) is 0*((Ty — 1,75 — 1)) = 1, but it may be shown that this is not
possible either. Indeed, if 6*((77 — 1,75 — 1)) = 1 then one has:

B(T?, T3 — 1) < h((TF,T3)) (because 6%((T3, T3 — 1)) = 2)
< h((T} — 1,T2*)) (implied by 0*((T} — 1,T2*)) =0)
< h(TY, T - 1)) (implied by 0*((T} — 1, T3 — 1)) = 1),

which states that h((T7,T5 — 1)) < h((T7y,T5 — 1)) and thereby yields a contradiction. Thus, it
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is impossible to have 60*((T} — 1,T5)) = 0, since this does not allow any feasible choices of action
at state (T3 — 1,75 — 1). Next, suppose (again for a contradiction) that 6*((77 — 1,75)) = 2. As
stated previously, C*(T} — 1) < B*(T} — 1) by definition of T}*. Hence, there exists some integer
k > Ty such that 0*((17 — 1,k)) =1 and 60*((T; — 1,k — 1)) = 2. Given that 0*((T},T5)) = 0 and
k > Ty, it must be the case that 6*((17,k — 1)) = 0 due to the first monotonicity property of 6*
stated in Theorem As a result, one may write the following:

h((Ty — 1,k)) < h((T},k)) (because 0*((17 — 1,k)) = 1)
< h((Ty,k — 1)) (because 6*((T5,k — 1)) =0)
< h((T{ — 1,k)) (because 0*((17 — 1,k — 1)) = 2),

which states that h((77 — 1,k)) < h((T7 — 1,k)) and thereby yields another contradiction. In
conclusion, it is impossible to have 0*((T7 — 1,75)) = 2. Since it has already been shown that

0*((Ty — 1,T5)) # 0, the only remaining possibility is 0*((T} — 1,7%)) = 1.

In summary, it has been shown that 0*((17,75)) = 0, 6*((17 —1,T5)) = 1 and 6*((1}, 15 —1)) = 2.
Given that 6*((T7 —1,T5)) = 1, it follows directly from the monotonicity properties of 8* stated by
Theorem [5.2.11] that 6*((z1,T5)) = 1 for all z; < T} — 1. Similarly, given that 6*((T},T5 — 1)) = 2,
the same monotonicity properties imply that 60*((T},xz2)) = 2 for all zo < T — 1. Thus, at this
point the actions chosen by 6* at all states along the upper boundaries of the region {(z1,z2) : 71 <
Ty, 29 < T3} have been fully established, and importantly it has been found that 60*((x1,75)) # 0
for all 217 < T} and similarly 6*((1},2z2)) # 0 for all 9 < T5. Hence, by the monotonicity of 6*,
one cannot have 6*((x1,2z2)) = 0 for any state (x1,x2) satisfying z; < T} and zo < T, since this

would imply 6*((x1,75)) = 0 and 6*((17,x2)) = 0, thus yielding a contradiction.

Given that 0*((z1,75)) # 2 for all z1 < T} and 0*((1},z2)) # 1 for all zo < T3, it is clear that the
set of states which are positive recurrent under 6* is given by Sp« = {(z1,22) : v1 < T, 22 < T5'}.
Moreover, since it has also been shown that (77, T5) is the only state in this set at which 6* chooses

to balk, it follows that 6* is a sink policy with sink state (77,7%). O

Example 5.2.16. (Sink policies in a 2DSS system)

This example revisits the 2DS'S system considered in Example|5.2.13] Table[5.1|shows the decisions

made by the policies 6 and 6* at each state in S. Naturally, the selfish policy 6 is a sink policy
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with sink state (7,7). At first glance, it might appear that the socially optimal policy 6* is not
a sink policy, as there are several states within S at which balking is chosen by 6*. However,
upon closer inspection, it becomes clear that states in S with 23 > 4 or 29 > 4 (or both) are
not positive recurrent under 6*; that is, the set of states which are positive recurrent under 6* is
Sor = {(w1,22) € N} : 21 <4 and x5 < 4}. Since (4,4) is the only state in Sy« at which balking is

chosen by #*. it follows that 6* is indeed a sink policy, with sink state (4,4). X

Of course, the thresholds 77 and T3 in Theorem satisfy 77 < By and Tf < By. This
leads to the intuitively appealing concept of the socially optimal state space Sy« being a ‘rectangle
contained inside another rectangle’, with the latter being the selfishly optimal state space S. It
would be nice to be able to generalise this idea and say that, in a system with N facilities and
multiple servers allowed at each facility, the socially optimal and selfishly optimal state spaces are
both N-dimensional sink policies (or alternatively, N-dimensional cuboids), with the former being
contained inside the latter. However, it transpires that this is not always true (see Appendix .
Of course, it is already known from Theorem that Sp« C S holds when N and {c,}fi | are
arbitrary, but this does not imply that Sy« is cuboid in shape. Nevertheless, experiments have
shown that sink policies can very often be found which achieve social optimality in systems which

are not 2DSS; see Section [5.4] for further discussion, including numerical results.

In the next section, another special case of the queueing system described in Section |3.1| will be

considered; this time, it will be assumed that all facilities share the same parameters.

5.3 Homogeneous facilities

As discussed earlier in this chapter, structural properties of socially optimal policies in queueing
systems with N heterogeneous facilities are not easy to obtain in complete generality; indeed, the
results in Sections and apply to systems severely reduced in dimensionality. In this section,
the number of facilities IV is arbitrary and multiple servers are allowed at each facility, but it is
assumed that service facilities are homogeneous. To be specific, each facility 7 has ¢ > 1 servers
available, a service rate u > 0 at each server, a holding cost 8 > 0 per customer per unit time and
a reward for service a > 0. As one might imagine, it is possible to characterise socially optimal

policies to a much greater extent in the homogeneous facilities case than in general.
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The results in this section will again make use of the principle that, due to Theorem [£.2.4] a socially
(average reward) optimal policy for the system can be found by searching within the finite state
space S = {(ml,xg,...,xN) €eS:z;<B Viec {1,2,...,N}}7 where B = |acp/B]. This makes it

possible to construct proofs based on the application of relative value iteration.

The first result in this section relates to a pair of states x,y € S which are stmdlar, in the sense
that (z1, 9, ...,xx) and (y1, Y2, ..., yn) are two different permutations of the same set of N integers,
or equivalently (yi,y2,...,yn) is simply a re-ordering of (z1,z2,...,zx). One might expect that,
in the homogeneous facilities case, a socially optimal policy should be indifferent between two
states x and y which are similar in this respect, and the next result confirms that this is true
by comparing the values h(x) and h(y). Note that throughout this section, it is assumed that
facilities are homogeneous (with the parameters «, [ etc. stated previously), so this assumption
is omitted from the statements of lemmas, theorems, etc. in order to avoid repetition. Also, as
in the previous section, h(-) will denote the relative value function satisfying the average reward

optimality equations (4.2.1)) when the real-time reward formulation (3.5.4)) is used.

Lemma 5.3.1. Let x,y € S be two states which are ‘similar’, in the sense that (Y1, Y2, -, YN) S @

re-ordering of (x1,22,...,xnN). Then h(x) = h(y).
Proof. The proof can be accomplished by induction. See Appendix page
Another lemma is required in order to prove the main result of this section.
Lemma 5.3.2. For allx € S andi,j € {1,2,...,N} such that x'*,x/+ € S:

z; <wx; = h(x") > h(xIT).
Proof. Again, the proof is based on induction. See Appendix page |447,

Using Lemma [5.3.2]it is possible to establish the average reward optimality of an intuitively simple

type of policy known as a ‘Join the Shortest Queue’ (JSQ) policy.

Theorem 5.3.3. For the N-facility system with homogeneous facilities, there exists a stationary

average reward optimal policy 6% such that, for all x € S:

0*(x) € argminz; U {0}.
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More simply, it may be said that the stationary policy 8* described in Theorem [5.3.3| always prefers
facility ¢ to facility j when x; < x;; that is, at any given state, 8* always chooses either to balk or

to join the shortest queue. This is why it is called a JSQ policy.

Proof. Assume that the reward formulation (3.5.4]) is used. The average reward optimality equations
(4.2.1) imply that a sufficient condition for #* to be optimal is that, for all x € S:

0*(x) € argmax h(x%") (5.3.1)
aEAx

where h(x"*) = h(x) by definition, and it may be assumed that the values h(x) are found by
relative value iteration on the finite state space S. Consider an arbitrary state x € S, and let
i €{1,2,..., N} be a facility satisfying z; < B (so that joining ¢ is a permissible action at x) and
x; < xj for all j # 4. Then, by Lemma h(x't) > h(xIT) for any facility j such that z; < B.
Hence, the only way action ¢ can fail to attain the maximum in is if h(x'T) < h(x); that is,
at least one of the two actions i and 0 must attain the maximum in . It follows that one can
define a stationary policy 8* in such a way that, at any given state x € S:
argmin x;, if 3ie {1,2,..., N} such that z; < B and h(xt) > h(x),
(9*(x) c 1€{1,2,...,N}
{0}, otherwise,

with the result that * is an average reward optimal JSQ policy. [

The optimality of JSQ policies in queueing systems has previously been studied in a variety of
contexts. Winston [201], Weber [192], Hordijk and Koole [87], Menich and Serfozo [129] and Koole
et. al. [I07] have all considered JSQ policies in queueing systems with homogeneous servers or
facilities, although all of these authors have considered objectives which are somewhat different
from the maximisation of the average net reward considered throughout this thesis. For example,
Winston and Weber both discussed queueing systems with identical servers in which the objective

is to maximise the number of service completions occurring in a finite time interval.

Interestingly, it may be shown that Lemmas [5.3.1] and [5.3.2] also hold in systems with no balking

allowed, in which all customers arriving in the system must be routed to one of the N facilities
(it is appropriate to make the assumption that A < cp in such systems in order to ensure system

stability). Theorem then implies that, in systems with no balking allowed, socially optimal
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policies may be characterised very easily, since the decision at any state should simply be to join
the shortest queue (or one of the shortest queues, if there is a tie). When balking is allowed (as is
the case throughout this thesis), the characterisation of an optimal policy is essentially a matter
of deciding which states should be the ‘balk’ states, since the JSQ rule provides the decision at
any state where balking is not preferred. However, numerical experiments have shown that the
distribution of ‘balk states’ over the finite space S may be somewhat contrary to what one would

expect, even when facilities are homogeneous; see Appendix for an example.

The next section will explore methods of searching for socially optimal policies which involve

restricting attention to stationary policies with particular structural properties.

5.4 Computational algorithms

There are certain practical advantages to be gained from proving the existence of socially optimal
policies with particular structural properties. For example, if it is known that an optimal policy
exists which is monotone in some respect, then the search for an optimal policy may be confined
to the set of policies which possess the relevant monotonicity property. Unfortunately, in a system
with an arbitrary number of heterogeneous facilities, it is not realistic to suppose that optimal
policies will necessarily possess structural properties such as monotonicity; indeed, the examples in
Appendix [A.8[show that the policy §* found by relative value iteration may exhibit quite surprising
characteristics. Nevertheless, by devising computational algorithms which restrict attention to
policies with ostensibly ‘logical’ properties, one might very often be able to find policies which

perform extremely well, even if their optimality is not theoretically guaranteed.

Two algorithms will be presented in this section; broadly speaking, their objectives will be to
obtain optimal or near-optimal policies in a more efficient way than the conventional dynamic
programming algorithms (e.g. RVIA, PIA) discussed in Section in other words, they will
expend less computational effort than conventional DP algorithms, but they will also rely upon
assumptions which may not hold in complete generality. Both algorithms are applicable to systems
with any number of heterogeneous facilities IV, with multiple servers permitted at all facilities.
Experimental results (to be given later) indicate that these algorithms are capable of performing

extremely well in systems where the selfish state space S is of a manageable size.
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In Section [5.1] certain results were proved involving the progression of finite-stage optimal policies
in a system with only one multiple-server facility (essentially, an M /M /c queue). Recall that, by
Theorem the optimal policy #* found by relative value iteration in a single-facility system
is a threshold policy with some threshold T* < T (where T = |acu/B] is the selfishly optimal
threshold); that is, 0* chooses to join at state z € {0,1,...,7} if and only if # < T*. Let the

finite-stage optimal thresholds 73 and T be defined for n € Ny as follows:

Ty :=min {z € {0, 1, T =1} (2, 1) + AMAhy (2 +1) < )\Aﬁn(z)},

Ty :=min {z € {0, 1, T =1} i hp(z4+1) < hn(z)},

where ﬁn() is the finite-stage relative value function given that the anticipatory reward formulation
is used, and hy,(+) is the corresponding function when the real-time formulation is
used. One may define 7 = T in the case where {z € {0,1,....,T — 1} : #(z,1) + Mh,(z + 1) <
AAhy,(z)} is an empty set; similarly, T = T in the case where {z € {0,1,....,T — 1} : hp(z + 1) <
hn(x)} is empty. By Lemma the following may be stated about T; and T

e T is monotonically decreasing with n;

e T is monotonically increasing with n.

Accordingly, it may be said that when the reward formulation is used, the finite-stage
optimal policies become increasingly conservative as the length of the horizon n increases, while
the opposite is true when the formulation is used. This is an intuitively appealing concept,
but unfortunately Example in Appendix shows that it cannot be generalised to systems
with an arbitrary number of facilities. However, experiments show that in systems where N is
relatively small (so that optimal policies can be computed in a reasonable amount of time), there
is a general trend for finite-stage optimal policies to gradually become either more conservative or
less conservative as the length of the horizon increases, depending on which reward formulation is
used; in other words, although counter-examples exist to show that Lemma [5.1.5| cannot be gener-
alised completely, these counter-examples involve isolating particular iterations of the relative value
iteration procedure which go very much against the prevailing trend. Another useful observation is
that finite-stage optimal policies tend to be sink policies (see Definition , regardless of which
reward formulation is used. Example which follows shortly, illustrates this.
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By the results in Section the policy 8* found by relative value iteration on the finite state space

S is average reward optimal. Of course, the set of recurrent states Sy- satisfies:
Sg- C S. (5.4.1)

Indeed, by Theorem |4.2.5, any average reward optimal policy must induce an irreducible, ergodic
Markov chain which remains ‘contained’ within S. Moreover, due to Theorem the selfishly
optimal policy 0 (whose recurrent state space is S ) is asymptotically optimal in a light-traffic limit,
so it does not appear possible to obtain a stronger result than (i.e. a smaller containing set
for Sp«) for a general system with N heterogeneous facilities, unless further information is known
about the system parameters. This is somewhat of a drawback, since one might very conceivably
have a system where Sy+ is much smaller than S; indeed, Theorem implies that if the demand
rate A is large, then Sy« may be of a similar size to the set S° defined in , in which case
relative value iteration applied to the selfish state space S is likely to be inefficient due to the large

number of states outside Sy~ evaluated by the algorithm on each of its iterations.

It would be useful to have a DP algorithm with the ability to intelligently adjust the bounds of
the finite state space during its evolution according to the progression of the finite-stage optimal
policies, in order to avoid repeatedly sweeping through a state space loaded with states which would

become transient (and therefore redundant) under the infinite-horizon policy 6*.

The two algorithms discussed in the remainder of this section operate by progressively altering
the bounds of the finite state space within which an optimal policy is assumed to exist, in the
manner described above. Essentially, both algorithms are variants on the same theme. It will be
convenient to introduce some extra notation at this point. Let 0,, denote the finite-stage optimal
policy obtained on the n'* iteration of relative value iteration when the reward formulation (3.5.15)
is used, and let 6,, denote the corresponding finite-stage policy when the formulation is used.

That is, for all x € S and n € Ny, the actions 0,41 (x) and 6,11 (x) satisfy:

On11(x) € arg max <f(x, a) + )\Aﬁn(XaJr)) ,
aeAx

0p41(x) € arg max h, (x°T). (5.4.2)
a€Ax

Also, let S’n and .S,, denote the sets of states which are positive recurrent under én and 6,, respec-

tively. The next example illustrates the progressions of S, and S, as n increases.
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Example 5.4.1. (Finite-horizon sink policies)

This example illustrates the progression of optimal finite-horizon policies in a system with 2 facili-

ties. Suppose the demand rate is A = 20 and the parameters for the facilities are:

1 = 47 H1 = 6a Bl = 117 ap = 77

co =4, p2 =4, P2 = 6, ag = 4.

Suppose the anticipatory reward formulation is adopted. Experiments show that, for
this particular system, the finite-horizon optimal policies 6,, obtained during the Relative Value
Iteration Algorithm (RVIA) are invariably sink policies, and that these policies tend to become
more conservative as the number of iterations increases. The selfishly optimal state space is S =
{(xl,a:g) € Ng 21 <15 and 29 < 10}, and the algorithm converges to a policy 6* whose positive

recurrent state space is the smaller region Sp- = {(331, x9) € N% cx1 <8 and xo < 8}.

Figure provides a somewhat crude graphical representation of the progression of finite-horizon
optimal policies during the RVIA. Six values of n (the iteration counter) have been chosen arbitrar-
ily, and for each value of n an array of small boxes has been drawn to represent the individual states
in S. The state in the upper-left corner of each grid is (0,0), and the state in the lower-right corner
of each grid is (15,10). Each small box is coloured either green or white depending on whether
the corresponding state is positive recurrent or transient under the policy én obtained after the
stated number of iterations. The figure shows that all states in S are positive recurrent under the
initial policy él, but the regions S, gradually become smaller as n increases, until eventually (for

all n > 41) only states belonging to Sy« are positive recurrent under the policy O,

On the other hand, when the real-time reward formulation is used, the finite-horizon policies
0., progress in a different manner. Figure [5.8| shows that, while it remains true that each policy
0, is a sink policy, these policies become less conservative as the number of iterations n increases.
The first policy depicted in Figure 09, is in fact a vacancy policy (see Definition , but the
policies 0g, 015 etc. are obviously somewhat less stringent. Eventually, as expected, the algorithm

converges to the same policy §* arrived at under the anticipatory formulation. X

The first of the two algorithms to be presented next is applicable when the anticipatory reward

formulation (3.5.15)) is used, and is based on the premise that on each iteration n, it is reasonable
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0 X4 15 0 Xy 15 0 X1 15
0 0 ~ 0
X2 X2 X2
104, 104, 10,
After 1 iteration After 8 iterations After 15 iterations
0 X1 15 0 X1 15 0 X1 15
> > >
0 0 0
Xz X X2
10, 10, 10},
After 18 iterations After 25 iterations After 41 iterations

Figure 5.7: The progression of finite-horizon optimal policies for the system in Example assuming the
reward formulation ([3.5.15)). Green (white) boxes represent positive recurrent (transient) states.

(albeit not completely sound theoretically) to suppose that an optimal policy 6* exists whose
recurrent state space Sy« is contained within the finite set S,,. This is because, as illustrated by
Example the finite-stage optimal policies tend to become more conservative as the horizon
length n increases when the formulation is used; so if a particular state is excluded from
the recurrent state space of én, it is reasonable to suppose that it will also be excluded from the
recurrent state space of the limiting policy 0*. Consequently, one may proceed by applying relative
value iteration with an initial finite state space S and, on each iteration n, permanently ‘deleting’
any state not included in S, from the finite state space, so that the set of states evaluated on

iteration n + 1 consists only of states which are positive recurrent under O,
The procedure can also be made somewhat simpler by assuming that each finite-stage optimal
policy 6, is a sink policy. For each j € {1,2,..., N}, define E](") as follows:

B](n) = max{k: eENp:dx e S'n such that z; = k}
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0 X4 15 0 Xy 15 0 X1 15
0 0 ~ 0
X2 X2 X2
104, 104, 10,
After 2 iterations After 8 iterations After 15 iterations
0 X1 15 0 X1 15 0 X1 15
> > >
0 0 0
X2 X2 X2
1{:\! 1D'\/ 10\/
After 21 iterations After 45 iterations After 66 iterations

Figure 5.8: The progression of finite-horizon optimal policies for the system in Example assuming the

reward formulation 1} Green (white) boxes represent positive recurrent (transient) states.
Also, let the set R, (for n =0,1,2,...) be defined as follows:
Ro={xe8:2; <B" ¥ je{1,2. N} (5.4.3)

If 6, is a sink policy, then clearly R, is identical to the set S’n; that is, R, is equal to the set of
states which are positive recurrent under én. On the other hand, if én is not a sink policy, then
clearly R, contains all states in S, due to the definition of Be](»n), plus (possibly) some extra states
which are not included in S,. To put it another way, R, is the smallest N-dimensional cuboid
which contains S,,. The notion of a sequence of N-dimensional cuboids which become progressively
smaller being used to represent the progression of finite-horizon optimal policies during relative

value iteration provides the inspiration for the ‘Shrinking Box’ algorithm below.

Shrinking Box Algorithm

1. Set n =0, ho(x) = 0 and wo(x) = 0 for all x € S. Also set ng(p) = Bj for all j € {1,2,..., N},
where Bj is the selfish threshold for facility j defined in |D
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2. Let R, = {X €es: xj < Bj(n) v je{l,2, ...,N}}, as in (5.4.3). For each x € R,,, define the

set of actions AS(") available at state x as follows:

A — {0,1,.,N}\{je{1,2,..,N}:a; > gj(n)}.

That is, joining facility j at state x is not permitted if x; > Bj(n).

3. For each x € Ry, let 1, 41(x) = max { #(x,a) + Z p(%,a,5)hn(y)

(n) -
acAx yER,

4. Set hpi1(X) = Wpy1(X) — Wny1(0) for all x € R,,.

5. If n =0, set § = 1; otherwise set § = max ‘ﬁn+1(x) - ﬁn(x)| If § < €, where € is a small
xXER,,
positive number, go to step 7; otherwise, proceed to step 6.

6. Let én+1 be a stationary policy which satisfies, for all x € R,:

Ony1(x) € arg max (f(x, a) + )\Aizn(xc”r)) .
aeAg)

For each j € {1,2,..., N}, let B](-HH) be defined as follows:
BJ(NH) =1+ max{k € Ny : 3x € R, such that én+1(x) =jand z; = k}
Then increment n by 1 and return to step 2.

7. Output Bnﬂ(x) for all x € R, and a stationary policy 6* such that, for each x € R, 0% (x)
maximises {f()g a) + Z p(x, a, y)ﬂn+1(y)} over all actions a € A",
y€Rn
Note that in step 4 of the algorithm, the state 0 is used as a fixed ‘reference state’ for ensuring that
the iterates ﬁn(x) do not become unboundedly large (refer to the discussion in Section . In
the standard version of the Relative Value Iteration Algorithm on page this reference state is
allowed to be an arbitrary state in S, but in the Shrinking Box algorithm it is necessary to choose
a reference state which is not at risk of being permanently deleted from the finite state space at

some stage of the procedure. The state 0 obviously satisfies this requirement.

It is important to emphasise that the Shrinking Box algorithm assumes that the reward formulation

(13.5.15)) is used. As alluded to earlier, there exists an alternative variant of this algorithm which
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utilises the ‘real-time’ reward formulation, . When the real-time formulation is used, the
general trend is for the finite-stage optimal policies to become less conservative as the horizon
length n increases. However, it may be seen from the proof of Lemma that if x is a state
with z; < ¢; for some j € {1,2,..., N}, then the inequality h,(x’") > h,(x) holds for all n € Nj.
As such, all of the finite-horizon optimal policies 6,, satisfying must be non-idling policies;
that is, none of the finite-stage optimal policies 6,, choose to balk at any state with at least one
idle server. Recall that, for n € Ny, .S,, denotes the set of states which are positive recurrent under

0,,. By the non-idling principle, it follows that each set S, satisfies the following:
S°={xeS:z;<¢; Vje{l,2,..,N}} CS,. (5.4.4)

When the real-time reward formulation is used, it is logical to use an algorithm which takes the
opposite approach from that of the Shrinking Box algorithm, by starting with a small subset of
S as the finite state space and gradually enlarging the set of visitable states according to the
progression of the finite-stage optimal policies. Roughly speaking, the aim of the algorithm should
be to ensure that the finite set of states evaluated on some iteration n € Ny includes not only the
set of all states accessible from 0 under the policy ,,, but also a certain number of ‘outlying’ states
which lie slightly beyond the boundaries of S,,, so that there is some ‘leeway’ for the finite-stage
optimal policy to expand the set of states that it wishes to visit when the length of the horizon
increases by one. As the iterations progress and the finite-stage policies ‘expand’ (i.e. become less
conservative), the set of states evaluated should also expand in size, so that there is always scope
for further expansion. This idea will be made clear by the full specification of the new algorithm,

referred to as the ‘Expanding Box algorithm’, and the example that follows later.

Expanding Box Algorithm

1. Set n = 1 and hy(x) = r(x) for all x € S. Also set B](l) = min(c; + 1,B;) for all j €
{1,2,..., N}, where B, is the selfish threshold for facility j defined in (4.1.2)).

2. Let R, = {X €S zj < B](n) Vje {1,2,...,N}}. If n > 2 and R, # R,_1, then for each

newly-added state x € Ry, \ Ry—1 initialise the value h,(x) as follows:

hin (%) = Jin hn(y)-
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For each x € R, define the set of actions A;n) available at state x as follows:

A ={0,1,.,N}\ {j e {1,2,.. . N} : ¢; > B/}

That is, joining facility j at state x is not permitted if x; > Bj(n) .

3. For each x € R, let wy,11(x) = max ¢ r(x) + Z p(xX,a,¥)hn(y)
aGAS(n) yERn

4. Set hpt1(x) = Wpt1(x) — wpy1(0) for all x € R,,.

5. If n =0, set § = 1; otherwise set § = max ‘hnﬂ(x) - hn(x)|. If § < €, where € is a small
XERn

positive number, go to step 7; otherwise, proceed to step 6.

6. Let 0,11 be a stationary policy which satisfies, for all x € R,,:

0p1+1(x) € argmax hy, (x*1).

aeAin)

For each facility j € {1,2,..., N}, let B](-”H) be defined as follows:

L) min(B + 1, By), if 3x € Ry, such that 6,41(x) = j and z; = B — 1,
J

BJ(.n) , otherwise.

Then increment n by 1 and return to step 2.

7. Output hy,y1(x) for all x € R, and a stationary policy 6* such that, for each x € R, 6*(x)

maximises {r(x) + Z p(X,a,¥)hnt1 (y)} over all actions a € AL,
yER,

Steps 1 and 2 of the Expanding Box algorithm define the initial finite state space R; as the set
{x es: zj <cj+1and z; < Bj}. On the first iteration, the two-stage optimal policy 65 is derived
and this policy is forced to be ‘contained’ within the set R; due to the definition of the action sets
A;l) in step 2. For each j € {1,2,..., N}, it may or may not be the case that the policy ; ‘reaches
the boundary’ of R; by choosing to join facility j at some state x € Ry with z; = Bj(-l) — 1 and
thereby causing the state y = x/* (with y; = Bj(l)) to be included in the set of positive recurrent
states Si. If this occurs, then the boundary BJ(-l) is deemed to be too restrictive, and so (in step 6)

this boundary is increased by one, unless BJ(-I) is already equal to the selfish threshold B’j defined in

(4.1.2), in which case no change is made. A similar procedure is followed on subsequent iterations,
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so that on each iteration n there is a possibility of new states being ‘added’ to the finite state space

R, but (in contrast to the Shrinking Box algorithm) no states are ever removed.

The strategy of ‘adding new states’ to the state space at various stages of the algorithm causes a
slight technical dilemma, which is addressed in step 2. Obviously, step 3 requires a value hy(x) to
be associated with each state x € R,,. States which have been ‘retained’ from the previous iteration
will already possess a h, (x) value, but for any newly-added state x € R,,\ R,,—1 it becomes necessary
to define a value hy(x) artificially. The simple solution of setting h,(x) = minyep,,_, hn(y) for all
such states works sufficiently well in practice, since the important principle is not to set these values
too high. If the value h,(x) for some newly-added state x € R, \ R,—1 is set too high, this may
cause unnecessary enlargement of the finite state space R, due to x being incorrectly identified
as a ‘desirable’ state by the policy ,,+1. While unnecessary enlargement of the state space Ry
does not jeopardise the ability of the algorithm to find an optimal policy, it does somewhat defeat
the purpose of the algorithm by slowing down computation times. It is therefore desirable to avoid
this problem by setting the value of h,(x) so that it is bounded above by h,(y) for any y € R,,_1.

The next example demonstrates both of the algorithms introduced in this section.

Example 5.4.2. (Shrinking Box and Expanding Box algorithms)

This brief example demonstrates how the Shrinking Box and Expanding Box algorithms operate in
the case of a small system with only two dual-server facilities. Suppose the demand rate is A = 12

and the parameters for the two facilities are given as follows:

1 = 27 H1 = 67 ﬂl = 117 a1 = 47

02:27 M2:47 /82:67 ag = 5.

The selfish thresholds for this system, as defined in li are B; = 4 and By = 6. Suppose the
Shrinking Box algorithm is applied, which requires the reward formulation (3.5.15)) to be assumed.
The policy 01 obtained on the first iteration of the algorithm is shown in Table

Clearly, the values E%l) and BS) as defined in step 6 of the Shrinking Box algorithm are equal

to By and Bs respectively; this is as expected, since 6; must be identical to the selfishly optimal
policy 6. As a result, Ry is equal to Ro; that is, the state space does not ‘shrink’ after the first

iteration. On the next two iterations, it transpires that Ry and Rj are also equal to Ro. However,
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on the fourth iteration of the algorithm, the policy shown in Table is obtained.

To=0|ax9=1]29=2 | 290=3|29=4 | 29=5| 29=06
1 =0 2 2 2 1 1 1 1
z1 =1 2 2 2 1 1 1 1
Ty =2 2 2 2 2 1 1 1
T = 2 2 2 2 2 1 1
1 =4 2 2 2 2 2 2 0

Table 5.3: The policy f; obtained after 1 iteration of the Shrinking Box algorithm.

To=0|29=1|20=2|20=3 | 29=4 | 220=5|20=6
1 =0 2 2 2 1 1 1 1
r1 =1 2 2 2 1 1 1 1
T =2 2 2 2 2 2 1 1
1 =3 2 2 2 2 2 2 0
1 =4 2 2 2 2 2 2 0

Table 5.4: The policy 0, obtained after 4 iterations of the Shrinking Box algorithm.

The non-highlighted states (4,0), (4,1) etc. are transient states under the policy 6 and are thus
excluded from the set R4. That is, these seven states are permanently deleted (along with their
relative values) and the action sets A,(:l) for states x € Ry with 1 = 3 are amended so that joining
facility 1 at these states is no longer permitted. The algorithm then continues with a ‘shrunken’

state space. The policy é5 obtained on the next iteration is shown in Table

To=0|29=1]|20=2 | 29=3|29=4 | 29=5|29=06
1 =0 2 2 2 1 1 1 1
r1 =1 2 2 2 1 1 1 1
x1 =2 2 2 2 2 2 1 1
1 =3 2 2 2 2 2 2 0

Table 5.5: The policy 05 obtained after 5 iterations of the Shrinking Box algorithm.

Naturally, all iterations from iteration 5 onwards will be faster than the first four iterations, since
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the number of states to be evaluated is smaller. Now suppose that the Expanding Box algorithm is
applied to the same system; of course, this requires the real-time formulation (3.5.4) to be assumed.
Since both facilities have two servers, the size of the initial state space R is (¢1 + 2)(c2 +2) = 16.

The policy 05 obtained on the first iteration of the algorithm is shown in Table

To=0|29=1|20=2 | 20=3
1 =0 2 2 1 1
x1 =1 2 2 1 1
x1 =2 2 2 0 0
r1 =3 2 2 0 0

Table 5.6: The policy 62 obtained after 1 iteration of the Expanding Box algorithm.

The non-highlighted states in Table [5.6| are transient under the policy 62, but these states are not
deleted from the finite state space, since the Expanding Box algorithm always includes an extra
‘layer’ of transient states in order to allow the finite-horizon policies room to ‘expand’ (indeed, no
states are ever deleted at any stage of the algorithm). However, the fact that the highlighted states
are transient implies that the state space does not expand after the first iteration; that is, Rs is
equal to Ry. It transpires that the sets R3, R4, R5 and Rg obtained after the next four iterations
are also equal to R;. On the sixth iteration, the policy shown in Table is found.

To=0|29=1]29=2 | 29 =3
1 =0 2 2 1 1
1 =1 2 2 1 1
x1 =2 2 2 2 0
1 =3 2 2 2 0

Table 5.7: The policy 67 obtained after 6 iterations of the Expanding Box algorithm.

The states (0, 3), (1,3) and (2, 3) become positive recurrent under 67, which causes the finite state
space to expand in the zs-direction. This means that the action sets Ag) for states x € Rg with
x9 = 3 are defined in such a way that joining facility 2 is permitted, and the new states (0,4),
(1,4), (2,4) and (3,4) are included in the set R7. Hence, the set Ry consists of 20 states as opposed
to 16. The policy 03 obtained on the next iteration is shown in Table



Chapter 5 Monotonicity and structure 217

To=0|a9=1|20=2|29=3 | 29 =4
1 =0 2 2 1 1 0
=1 2 2 1 1 0
x1 =2 2 2 2 0 0
1 =3 2 2 2 0 0

Table 5.8: The policy 6g obtained after 7 iterations of the Expanding Box algorithm.

Of course, since the expansion of the state space is permanent, the sets R, for all n > 7 will
consist of at least 20 states. In this particular example, both the Shrinking Box algorithm and the
Expanding Box algorithm successfully converge to the same stationary policy 8* as the conventional

RVIA given in Section that is, both algorithms yield an optimal policy. X

The next example presents the results of numerical experiments, designed to evaluate the perfor-

mances of the Shrinking Box and Expanding Box algorithms in systems with N < 5.

Example 5.4.3. (Numerical results)

The Shrinking Box and Expanding Box algorithms discussed in this section thus far are intended
to attain optimal or near-optimal policies without performing as many computation steps as con-
ventional DP algorithms. As discussed earlier, this is done by making assumptions about the
progression of finite-horizon optimal policies. This example describes the results of a series of
experiments involving 15,096 randomly-generated sets of parameters. For each set of parameters,
three algorithms were executed: the RVIA (as described on page , the Shrinking Box algorithm,
and the Expanding Box algorithm. All three algorithms used the value ¢ = 107 as a stopping

parameter. For each system, the random parameters were generated as follows:

e The number of facilities, IV, was sampled unbiasedly from the set {2,3,4,5}.
e Each service rate u; was sampled from a uniform distribution between 5 and 25.
e Each service capacity ¢; was sampled unbiasedly from the set {2,3,4,5}.

e Each holding cost 5; was sampled from a uniform distribution between 5 and 25.
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e Each fixed reward «; was sampled from a uniform distribution between 2 and 12.

N
e The demand rate A was sampled from a uniform distribution between 0.1 x Zcmi and

i=1
N
1.1 % Z Ci [ -
i=1

In order to allow a large number of experiments to be performed in a reasonable amount of time,
parameter sets were accepted only if they gave a value of ]5' | (where, as usual, S denotes the selfish
state space) between 1000 and 100,000. In addition, all facilities ¢ were required to satisfy the
condition o; — B;/p; > 0 in order to avoid degeneracy. Parameter sets which did not satisfy the
criteria were rejected, and in these cases all parameter values except for the number of facilities NV
were re-sampled until the criteria were satisfied. The Shrinking Box and Expanding Box algorithms
both demonstrated an extremely strong performance in all of the 15,096 experiments performed in

terms of their ability to find an optimal or near-optimal policy. In summary:

e In all of the 15,096 experiments performed, the Expanding Box algorithm converged to a
policy which was identical to the RVIA policy #* in terms of the decisions chosen at positive

recurrent states x € Sg- (and hence earned the same average reward).

e In 13,994 of the 15,096 experiments performed (92.7%), the Shrinking Box algorithm also
converged to a policy which was identical to the RVIA policy 8* in terms of the decisions
chosen at positive recurrent states x € Sy«. In cases where the Shrinking Box policy was
not identical to the RVIA policy, the average sub-optimality of the Shrinking Box policy was

approximately 0.0012%. Its maximum sub-optimality (over all trials) was 0.11%.

The next objective in this example is to examine the computational savings that the Expanding
Box and Shrinking Box algorithms offer in comparison to the RVIA (in other words, their ability
to improve upon the running time required by the RVIA). For this purpose, the number of value
function updates performed by the three algorithms during their respective running times will be
considered. For clarity, a value function update is said to occur when the finite-stage relative value
function h,(x) is updated for some state x € S on some iteration n. The RVIA performs |S]
value function updates on each iteration. The Shrinking Box algorithm begins by performing ]5‘ |

updates per iteration, but the number of updates per iteration decreases as the algorithm progresses.
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Conversely, the Expanding Box algorithm may begin by performing a relatively small number of

updates per iteration, but this number will increase as the algorithm progresses.

Figure shows a percentile plot, illustrating the distribution of the total number of value function
updates performed by each of the three algorithms (RVIA, Expanding Box and Shrinking Box) over
15,096 trials. The plot shows (for each of the three algorithms) the percentage of trials in which
the total number of value function updates performed was K or less, for various different values
of K. For example, the plot indicates that the percentage of trials which required fewer than 10
million value function updates in total was about 47.8% in the case of the RVIA, and 86.9% and

92.8% in the cases of the Expanding Box and Shrinking Box algorithms respectively.
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Figure 5.9: A percentile plot illustrating the distributions of the total number of value function updates

required for the RVIA, Shrinking Box algorithm and Expanding Box algorithm.

Figure [5.10] illustrates the distributions of the percentage savings made by the Expanding Box and
Shrinking Box algorithms over all 15,096 trials. These savings are shown in terms of the number
of value function updates performed; for example, the rightmost two columns in the figure indicate
that the number of trials in which the Expanding Box algorithm improved by more than 90% on
the total number of value function updates made by the RVIA was approximately 4900, whereas

the corresponding figure for the Shrinking Box algorithm was approximately 4700.

The leftmost bar in Figure indicates that in approximately 1% of the trials performed, the
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Figure 5.10: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, over 15,096 trials.

number of value function updates made by the Expanding Box algorithm actually exceeded the
corresponding number performed by the RVIA. Of course, the number of updates performed by
the Expanding Box algorithm on a single iteration cannot exceed \S’ |, so it cannot perform more
updates than the RVIA on a single iteration; however, it may require a larger number of iterations
than the RVIA in total before convergence is reached. The reason for this is that the Expanding
Box algorithm operates in such a way that it adds new states to the finite state space R, each time
the state space is expanded; when these new states are added, the corresponding relative values
h,(x) must be given arbitrary initial values (see step 2). These initial values may be some distance
from the limiting values h(x), in which case convergence may be somewhat slower than one would

attain by updating the values for all states x € S on each iteration (as per the RVIA).

With a little thought, one realises that certain results from earlier chapters offer clues as to the
conditions on the system parameters which will cause the Expanding Box algorithm to converge
more quickly (in terms of the number of value function updates required) than the Shrinking Box
algorithm, and vice versa. In particular, the value of the demand rate A is critical. Theorem
suggests that when A is small, the recurrent state space Sg« of the policy found by the RVIA should

be of roughly the same size as the selfish state space S. The Shrinking Box algorithm begins with
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a state space equal to S , so one would expect this state space to ‘shrink’ only a small number of
times during the evolution of the algorithm when A is small; on the other hand, the Expanding
Box algorithm may have to expand the size of its state space many times in such circumstances.
Hence, the Shrinking Box algorithm appears to have an advantage over the Expanding Box when
the demand rate \ is small. Conversely, if ) is large, then Theorem [1.4.7] suggests that the recurrent
state space Sp+ will have dimensions similar to those of the set S° defined in . One might
suppose that the Expanding Box algorithm, which begins with a state space of similar size to S°,

should have an advantage over the Shrinking Box algorithm in such circumstances.

Figures [5.11], [5.12] and [5.13] show the distributions of the savings made by the Expanding Box
and Shrinking Box algorithms against the RVIA (represented in the same way as in Figure [5.10)),

with attention restricted to particular subsets of the data collected over the 15,096 trials. Let
pi=A\ Zf\i 1 Giiti be a measure of the relative traffic intensity in a particular system. Figure
shows the savings made in systems with ‘low’ traffic intensity, in which p is between 0.1 and 0.5
(approximately 40% of the 15,096 systems tested satisfied this criterion). Figure shows the
savings made in systems with 0.5 < p < 1 (comprising about 50% of the systems tested), and

Figure represents systems with p > 1 (comprising about 10% of systems tested).
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Figure 5.11: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with 0.1 < p < 0.5.
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Figure 5.12: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with 0.5 < p < 1.
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Figure 5.13: The percentage savings (in terms of the total number of value function updates required) made

by the Expanding Box and Shrinking Box algorithms against the RVIA, in systems with p > 1.
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Figure[5.11|suggests that, as one would expect, the Shrinking Box algorithm tends to achieve greater
savings than the Expanding Box algorithm when the demand rate A is small. Figure shows
that when X is greater 1, both algorithms are able to achieve very large computational savings
indeed against the RVIA. Indeed, when p is large, all three algorithms will often converge to a
policy 6* which has a recurrent state space Sg- much smaller than S. The RVIA will continue to
update the value functions for |S| states on each iteration, whereas the other two algorithms will
restrict attention to small subsets of S towards the end of their running times. Figure indicates
that, as expected, the Expanding Box algorithm tends to be more consistent than the Shrinking

Box algorithm in achieving savings greater than 90% against the RVIA when p > 1.

In conclusion, the Expanding Box and Shrinking Box algorithms are both capable of finding optimal
or near-optimal policies at only a fraction of the computational expense required by the conventional
RVIA. The Expanding Box algorithm appears to be somewhat more reliable than the Shrinking Box
algorithm in converging to policies which exactly correspond to the policy 6* found by the RVIA.
However, in many cases the Expanding Box algorithm may be more computationally expensive

than the Shrinking Box algorithm, particularly if the demand rate A is small. X

Example brings this section to an end. However, please note that Appendix[A.§|is also relevant
to the topics discussed in this chapter. Appendix presents various examples in order to show
that average reward optimal policies may possess unexpected and counter-intuitive properties. As

such, structural properties of these optimal policies are difficult to prove in general.

5.5 Conclusions

It is natural to suppose that socially optimal (i.e. average reward optimal) policies should have
a logical structure, regardless of the number of facilities N or the values of the other system
parameters. The selfishly optimal policy 0, as defined in Section can easily be shown to possess
intuitively ‘sensible’ properties; for example, it is monotonic with respect to the decisions made at
the various states, and the selfish state space S is always ‘cuboid’ in shape. The results in Sections
and have shown that if one restricts attention to small values of N (e.g. N =1 or
N = 2), or makes additional restrictive assumptions about the system parameters (such as the

assumption of homogeneous facilities in Section |5.3]), it is sometimes possible to prove structural
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properties of the socially optimal policy 6" obtained using relative value iteration.

There are certain properties of socially optimal policies that appear to hold in most cases, but not
necessarily all; for example, the Shrinking Box and Expanding Box algorithms discussed in Section
rely on the assumption of a monotonic progression of the finite-stage optimal policies obtained
during relative value iteration. When these algorithms are applied to single-facility systems, they
are both guaranteed to converge to an average reward optimal policy due to the result of Lemma
(.1.5] However, Example [A-8.3] has shown that the same guarantee is not possible in systems with
N > 2. Moreover, the counter-examples in Appendix show that several properties which might
(if they were true) simplify the characterisation of the optimal policy #* do not hold in general.

Indeed, counter-examples can frequently be found even in systems where N is small.

In conclusion, if one considers a general N-facility system without any restrictions on the system
parameters, it may not be possible to prove any properties of the RVIA policy 6* beyond those which
were already proved in Chapter [4| (see, for example, Theorems and . This illustrates the
challenging nature of average reward optimisation in general. The next two chapters of this thesis
will investigate methods for finding near-optimal policies in systems where the size of the finite

state space S prevents the efficient computation of an average reward optimal policy.



6 Heuristic policies

A fundamental concept in this thesis thus far has been that of a socially optimal policy, which routes
customers to service facilities in such a way that the expected long-run average reward earned by
the system is maximised. Section introduced methods for computing socially optimal policies
in systems with a finite number of states. Section established that a socially optimal policy
can always be found by searching within the finite set of states S, where S is the selfishly optimal
state space defined in Section [£.I] This result implies that, from a purely theoretical point of view,
it is always possible to find a socially optimal policy for any N-facility queueing system of the
type described in Section by simply applying a suitable dynamic programming algorithm. One
might suggest that, in view of the results in earlier chapters, the mathematical problem of finding

a socially optimal policy for any given set of system parameters has been ‘solved’.

Unfortunately, to make such a suggestion would be to ignore practical considerations. Specifically,
the amount of time required by a dynamic programming algorithm to converge to an optimal policy
may be prohibitive. Even when the number of facilities N is relatively small (for example, less than
10), the selfishly optimal state space S may comprise billions or trillions of states. Even a state-of-
the-art computer may be unable to carry out the task of finding an optimal policy using the RVIA
or PIA (see pages and in a reasonable amount of time; in fact, since these algorithms
require a unique value h(x) to be stored for every state x € S, memory constraints alone may cause
a computer program to break down, before it has been able to complete its first ‘sweep’ of the state
space S. For larger values of N (e.g. N >100), the reality is that the amount of time required to

find an optimal policy using a DP algorithm would reach astronomical proportions.

The “curse of dimensionality” in dynamic programming has been discussed extensively by Powell
[140]. In fact, Powell argues that there are three different curses of dimensionality which hinder
DP algorithms. Arguably the most obvious problem, as alluded to in the previous paragraph, is
that of an extremely large state space. The other two problems considered by Powell are somewhat
more relevant in a more general MDP context; these are related to the action sets Ay available
at the various states x € S, and the number of possible outcomes that may arise from choosing a
particular action a € Ay at a state x € S. In the MDP Y formulated in Section the number of

actions permissible at any state x € S (excluding actions which might cause a transition to a state

225
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y ¢ g) is always bounded above by N + 1, and the number of states that can be ‘reached’ from
any state x € S in a single discrete-time transition is at most N + 2 (see Figure ; of course,
generalisations of the problem are possible (such as the incorporation of heterogeneous customers
discussed in Section, but without considering such extensions, it is clear that the dimensionality

of the state space will be the main obstacle as far as DP algorithms are concerned.

The counter-examples in Appendix show that, in general, socially optimal policies may not
possess intuitively logical properties such as monotonicity, even when attention is restricted to
optimal policies found by DP algorithms such as the RVIA. Consequently, it would seem that
there are no ‘shortcuts’ available which would enable these policies to be found without exhaustive
computation. The ‘Shrinking Box’ and ‘Expanding Box’ algorithms presented in Section [5.4] offer
the possibility of tremendous time savings in comparison to the conventional RVIA, but these
algorithms still suffer (albeit to a lesser extent) from some of the same problems as the RVIA, such
as the requirement for an array of values h(x) to be stored in the system memory; furthermore, there
is no theoretical guarantee that the policies found by these algorithms will be optimal (although

their extremely strong performance in systems with N < 5 has been demonstrated).

Unfortunately, there is no alternative but to acknowledge that, from a practical point of view,
the computation of socially optimal policies in systems where S is very large is infeasible. This
chapter marks a change in emphasis from previous chapters in that the objective is now to find,
and analyse the properties of, approximately optimal policies in systems which are assumed to be
too large (in the sense that S is too large) for DP algorithms to be applied. This will involve
devising heuristic policies, and testing their performance. Roughly speaking, a heuristic policy is
a near-optimal policy which can be determined in a ‘reasonable’ amount of time and implemented

easily in practice. In general, the main objectives of a heuristic policy should be:

1. To generate an expected long-run average reward for the system which (at worst) is only a

small distance away from the average reward earned by an optimal policy;

2. To require a relatively small amount of computational effort in its execution, regardless of

the number of facilities N and the size of the selfish state space S.

An inherent difficulty lies in the fact that the success (or otherwise) of a particular heuristic ap-

proach depends on whether or not the policy obtained is ‘near-optimal’, and this may not be easy
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to determine. Ideally, one would wish to evaluate the expected average reward gy earned by the
heuristic policy 6 in question and compare this with the optimal value g*. However, evaluating gg
exactly requires a set of values h(x) (for x € S) to be found which satisfy the policy evaluation
equations 1' If S is large, then this task may be infeasible for the same reasons that DP al-
gorithms are infeasible. This problem may be circumvented to some extent by using discrete-event
simulation to estimate the value of gy; if the simulation program is well-designed and allowed to
run for a moderate amount of time, then it should be able to produce a robust estimate of the
average reward earned by the fixed policy 6 (this is discussed further in Chapter 7). However, even
in this case, the optimal value g* will generally be unknown. An approach used in this chapter
will be to show that the heuristic policies under consideration perform strongly in moderate-sized

systems for which it is possible to evaluate ¢* exactly using dynamic programming.

It is worthwhile to note that the selfish policy 8 may itself be regarded as a heuristic policy,
since it implements a simple decision rule which always directs customers to take the action which
maximises their expected individual net reward. The selfish policy may therefore be interpreted as
a greedy heuristic, since only the welfare of the latest customer to arrive is taken into account when
making a routing decision, without any consideration of future consequences. Clearly, fis a simple
policy to implement in any system, regardless of the number of facilities N and the size of the
state space S ; in this respect it qualifies as a heuristic policy, although the examples from earlier
chapters indicate that its performance may be poor (especially if the demand rate A is large). It
would obviously be desirable to find more sophisticated heuristic policies which are capable of out-
performing the selfish policy 6 in terms of average reward. Two heuristic policies will be considered

in this chapter, both of which are based on approaches found in the literature.

Section will describe the Whittle index heuristic, which has its origins in the work of Gittins
[55] and Whittle [I98] on deriving ‘dynamic allocation indices’ for multi-armed bandit processes.
Section [6.2] will present an alternative heuristic approach, which involves applying a single step of
policy improvement to a static routing policy; the development in this section will be similar to

that in [6]. Results from numerical experiments will be presented in Section
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6.1 Whittle index heuristic

The first of the two heuristic methods to be considered in this chapter is motivated by the work
of Glazebrook et al. [59], who demonstrated the strong performance of an index-based heuristic in
a problem involving routing to parallel queues (see also Argon et al. [6]). Informally speaking, an
indez-based policy is a policy which associates a certain, easily-computable score or index to the
various possible decision options in any given system state, and then chooses the option with the

highest index. A precise definition of indezability will be given later in this section.

In [59], the authors consider a problem which differs somewhat from the assumptions made in
this thesis; most importantly, customers are impatient and may leave the system before receiving
service (after having initially been ‘routed’ to one of the N service facilities), in which case the
system incurs a non-negative penalty. Balking also incurs a penalty, but holding costs are not
included explicitly. In addition, the authors allow for state-dependent service rates by using p;
to represent the rate at which service completions occur at facility i € {1,2,..., N} when there are
n € Ny customers present there; so, for example, this rate would be given by p;, = min(n, ¢;)u;
under the assumptions made in Section On the other hand, the system in [59] is comparable to
that described in Section [3.1] with respect to its formulation as a continuous-time Markov process,
the complete observability of the system at all times and the fact that the optimisation problem
of interest involves routing customers to parallel service facilities in such a way that the expected

long-run average return (after deduction of balking and reneging costs) is maximised.

Throughout this chapter, the queueing system described in Section [3.1] will be considered. The
objectives in this section are to show empirically that a heuristic policy derived in an analogous
way to that in [59] is able to attain an expected long-run average reward close to the optimal value
in many problem instances, and to analyse the properties of this heuristic policy. In particular,
since the heuristic policy will be index-based, it will be interesting to compare the indices that it
uses for decision-making with those of the selfishly optimal policy 6 defined in Section which
may also be regarded as an index policy. The resulting observations may offer some insight into
why the selfish policy 6 is generally sub-optimal, and how its sub-optimality may be affected by
the values of the system parameters. It will also be useful to verify that the heuristic policy retains

certain structural properties which were discussed in Chapter [5] such as monotonicity.
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In order to derive the heuristic policy, it will be useful to introduce some notation. Let © denote
the class of stationary policies under which the system is stable and has a stationary distribution;
that is, if € © then the distribution {7mg(x)}, ¢ exists, where mg(x) is the steady-state probability
of the system being in state x € S under 6 and ) ¢ 7mo(x) = 1. Clearly © is non-empty, since
it includes the trivial policy which chooses to balk at all states in S. For each policy § € © and
facility @ € {1,2,..., N}, let ;(0) denote the effective queue-joining rate per unit time at facility 4
under 6 (i.e. the long-run average number of customers joining facility ¢ per unit time), and let
L;(0) denote the long-run expected number of customers present at facility ¢ under . Then the
expected long-run average reward gy under policy # may be expressed in the form:

N

go =Y (cimi(6) — BiLi(0)). (6.1.1)

i=1
Naturally, closed-form expressions for 7;(0) and L;(f) are unattainable in general when N > 2, but
will nevertheless prove to be useful since the heuristic policy to be discussed in this section is
derived by using a set of NV independent single-facility admission control problems to approximate
a solution to the original N-facility routing problem. This heuristic policy will be referred to as
the Whittle index policy (or, more simply, the ‘Whittle heuristic’) since it was first proposed, in a
rather more general context, by Whittle [198]. In order to motivate the derivation of the Whittle
heuristic, note first that under any policy 6 € O, the sum of the effective queue-joining rates n;(6)

at the various facilities must be bounded above by the system demand rate. That is:

N
> mi(6) < A (6.1.2)
=1

It will be convenient to assume that the system is uniformised as described in Section so that
it evolves in discrete time steps of size A, where A € (O, ()\ + Zi\i 1 ciui)l]. In the discretised
system, the number of arrivals occurring at any discrete time step is at most one, and hence it is
not possible for two or more facilities to receive a new customer at the same time step. Let U,
denote the number of facilities chosen to receive a new customer at time step n € Ny, irrespective

of whether or not a new customer actually arrives at step n. Then, obviously:
U,<1 VneN. (6.1.3)

Following in the spirit of Whittle [198], suppose that the mechanism for allocating customers to
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service facilities is altered so that (6.1.3) is replaced by a weaker constraint:

EU,) <1, (6.1.4)

where the expectation is with respect to the long-term average; that is, the average number of
facilities chosen to receive a new customer (over all time steps) should be at most 1. Clearly, the
requirement would be met not only by all policies in ©, but also by some policies with the
ability to choose several different destinations for the same customer. Consider a relaxed version
of the original N-facility optimisation problem involving an expanded class of stationary policies
©’ which are at liberty to ‘break’ the natural physical restrictions of the system, in the sense that
any new customer who arrives can be sent to any subset of the set of facilities {1,2,..., N}. That

is, for each state x € S, the action #(x) chosen by a policy 6 € ©' satisfies:
0(x) e P({1,2,....,N}),

where P ({1,2,..., N}) is the power set (i.e. the set of all subsets, including the empty set) of
{1,2,...,N}. Conceptually, one now considers a new optimisation problem in which the option is
available to produce ‘copies’ of each customer who arrives, and send these copies to any number of
facilities (at most one copy per facility). For each state x € S, 6(x) is the set of facilities which,
under the policy § € ©’, receive (a copy of) a new customer if an arrival occurs under state x. If
6(x) = () then no facility receives a new customer; this is akin to balking in the original problem.
Suppose also that the constraint is imposed on the new optimisation problem. Following
[59] and [198], this constraint may be incorporated in a Lagrangian fashion by letting ¢' (W) denote
the optimal expected long-run average reward for the new problem, defined as:

N N
g (W) := sup (Z (cimi(0) — BiLi(0)) + W <)\ — Z m(@))) : (6.1.5)

veo’ \ i

where W € R is a Lagrange multiplier which, as discussed later, may be interpreted economically
as a charge for granting entry to a new customer. Clearly, any policy 6 belonging to the class of
policies © for the original problem may be represented by a policy €' in the new class © for which

the cardinality of #’(x) is either 1 or 0 at all states x € S. Hence, for W > 0:

g* < g'(Ww),
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where g* = supycg 9o is the optimal expected long-run average reward in the original problem. At
this point, it will be useful to re-write (6.1.5)) in the equivalent form:
N
g'(W) = sup (Z (i = wym(o) - @-Li(m)) + AW (6.1.6)

0co’

i=1
Then, as in [59] (p. 979), one obtains a facility-wise decomposition:

N

g (W) = gl (W) + AW, (6.1.7)

i=1

where, for each facility i € {1,2,..., N}:
gl(W) = sup ((Oéi — W) ni(0) — ﬁiLi(e))'
0cO;’

Here, ©, (fori = 1,2,..., N) is a class of stationary policies which choose either to accept a customer
(denoted by 1) or reject (denoted by 0) at any given state. To clarify, recall that in the relaxed
version of the N-facility problem under consideration, each newly-arrived customer can be sent to
any subset of the N facilities. As such, the decision of whether or not to admit a customer at
some facility ¢ € {1,2,..., N} can be made independently of the decisions made in regard to the
other facilities j # i. It follows that an optimal solution to the relaxed N-facility problem can
be found by solving N independent single-facility problems. For each facility i € {1,2,..., N}, the
corresponding single-facility problem involves customers arriving according to a Poisson process
with a demand rate A (the same demand rate as for the N-facility problem), ¢; service channels,
and exponentially-distributed service times with mean ,ui_l. The holding cost is 5; per customer

per unit time, but importantly the reward for service is now a; — W as opposed to a;. Hence, it is

natural to interpret W as an extra charge for admitting a customer; see Figure [6.1}

The single-facility problem described above exactly fits the formulation of Section (with N =1),
except that the reward «; — W may not be positive. However, if a; — W < 0 then there is no way
for the system to earn a positive expected average reward, and hence the stationary policy which
chooses to balk at every state (thus achieving an average reward of zero) trivially attains average
reward optimality. On the other hand, assuming that «; — W > 0, results from previous chapters

imply that for the single-facility optimisation problem under consideration:

e There exists an average reward optimal stationary policy (Theorem |4.2.3));
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Figure 6.1: An M/M/c; queue with an extra admission charge W.
e There exists an average reward optimal threshold policy (Theorem [5.1.4]).

Accordingly, let ¢ denote an optimal threshold policy. This means that 6] is a map from Ny to
{0,1}, where Ny is the state space for the single-facility problem and {0,1} is the set of actions
available at any state. Re-interpreting the summary measures 7;(-) and L;(-) so that they are now
functions of policies 6; belonging to the set ©;" associated with the single-facility problem, it follows
that (a; —W)n;(0F)—5;L;(6) is a valid expression for gj (W), the optimal average reward for facility
i. Now, recall that the facility < € {1,2,..., N} was arbitrary in this discussion and let 67,65, ..., 0%
be optimal threshold policies at the various facilities. Also, let 8* be a stationary policy belonging

to the expanded class ©" which operates in such a way that, for each state x € S:
0*(x) = {i € {1,2,...,N}: 0] (x;) = 1}. (6.1.8)

That is, each time a new customer arrives, they are sent to all of the facilities i € {1,2,..., N}
at which the optimal threshold policy 6} (taking into account only the number of customers x; at
facility 7) would choose to accept a customer. By the previous arguments, the expected long-run
average reward earned by operating policy 6* in the relaxed N-facility system is maximised by
operating the optimal threshold policies 6 at the individual facilities ¢, and therefore it follows

that 6* attains average reward optimality in the relaxed version of the problem.

One may conclude from the above that the task of finding an optimal routing policy in the relaxed
version of the original N-facility problem is not a difficult one, since it can be accomplished by
finding optimal admission control policies for the N facilities individually. More to the point, this

solution method avoids the need to trawl through a vast N-dimensional state space, and thereby
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avoids suffering from the ‘curse of dimensionality’. In order to derive the Whittle heuristic for the
original N-facility problem, it remains to establish the connection between this heuristic and the
optimal solutions for the relaxed version of the problem discussed thus far. The Whittle heuristic
relies upon the notion of indezability of a service facility. It will therefore be appropriate to provide

a definition of indexability, similar to the definition in [198] (see also [57, 58], [59]).
Definition 6.1.1. (Indexability)

For each facility i € {1,2,...,N}, let 87 (W) be the optimal threshold policy found by relative value

iteration in a single-facility problem with demand rate X\, c; service channels, service rate u;, holding

cost i, reward for service oy — W and finite state space {0, 1, ..., T;(W)}, where:

It is assumed that, in cases where the actions a = 0 and a = 1 both attain the mazximum in the
optimality equations for some state x € {0,1,...,T;(W)}, the policy 07 (W) chooses to join
at state x. Also define T;*(W) as the threshold associated with 6 (W'). That is:

T (W) = min {x € {0,1,...,T;(W)} : 67 (W) chooses to balk at state :c} . (6.1.9)
Then facility i is said to be indexable if T;*(W) satisfies the following properties:
1. TX(W) is monotonically decreasing with W. That is, for Wy, Wy € R:

Wi >Wy, = T:(Wl) < TZ*(WQ)
2. For any x € Ny, there exists Wi(z) € R such that T} (W) > x if and only if W < W;(z).

Defining each policy 67 (W) as the optimal policy found by relative value iteration is convenient
in order to avoid any ambiguity that would be caused by the non-uniqueness of optimal policies.
Note that the approach of finding 6(W) by searching within the finite (selfishly optimal) state
space {0,1,...,T;(W)} is justified by the result of Theorem The next result establishes that
the service facilities i € {1,2,..., N} satisfy the conditions in Definition

Theorem 6.1.2. Fach facility i € {1,2,..., N} is indezxable.
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Proof. The proof follows arguments similar to those found in [59]. Consider an arbitrary facility
i€ {1,2,...., N}, and let g;(T, W) denote the expected long-run average reward under a threshold
policy with threshold T' € Ny and admission charge W &€ R. Then:

T
gi(T, W) = M1 = mi(T, T)) (s = W) = B Y ymi(y, T), (6.1.10)
y=0

where 7;(y, T') denotes the steady-state probability of the facility being in state y € Ny, given that
a threshold of T' is applied. From (6.1.10) it follows that, given any fixed T' € Ny, the average

reward ¢;(T, W) is a linear, strictly decreasing function of W, and its gradient is:

dgi
BTG =-\1—-m(T,T)). (6.1.11)

Given some admission charge W € R, let T*(W) be the optimal threshold defined in ;
hence, ¢;(T;(W),W) > ¢;(T,W) for all T € Ny. It can be verified using standard formulae
for finite-capacity M/M/c queues (see [67], p. 74) that the steady-state probability m;(T,T) is
strictly decreasing with T'; hence, the gradient in is also strictly decreasing with T. Given
that ¢;(T;"(W), W) > gi(T;(W) + n, W) for arbitrary n > 1, it must therefore be the case that
gi(TF (W), W) > g;(T(W) +n, W) for any W > W, and therefore the policy with threshold T +n
cannot be the optimal policy found by relative value iteration under an admission charge W, since

it does not maximise the average reward. It follows that T;*(W) < T;(W) for any two admission

charges W, W e R with W < W, which verifies the first of the required conditions.

Using similar arguments, for any state z € N there must exist some value W;(z) € R such that
gi(x, W) > gi(x —n, W) for all n € {1,2,...,2} if and only if W < W;(z). This is due to the fact
that the linear functions g;(z — n, W) have larger gradients than that of g;(x, W). Hence, it must
be the case that T;(W) > «x if and only if W < Wj(z), since this is the only scenario in which a
threshold policy with threshold greater than x maximises the average reward. This completes the

proof that the indexability conditions stated in Definition are both satisfied. [

Given that the service facilities are indexable, it follows that for each facility ¢ € {1,2,..., N} and
integer x € Ny there exists some value W;(x) such that joining is chosen by the optimal threshold
policy 67 (W) if and only if W < Wj(x). The critical value Wj(x) will be referred to in this section

as the Whittle index for facility ¢ and state x. The next definition states this formally.
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Figure 6.2: The linear dependence of the functions g;(x, W) on the admission charge W.

Definition 6.1.3. (Whittle index)

Suppose facility i is indexable. The Whittle index for facility i and state x € Ny is given by:
Wi(z) ;= sup {W € R : 6; (W) chooses to join at state x}, (6.1.12)
where 07 (W) is the optimal policy for facility i described in Definition |6.1.1]

As discussed previously, the relaxed version of the N-facility routing problem is solved by a policy
f* which, upon any new customer’s arrival, sends the customer only to facilities ¢« at which the
number of customers present z; is smaller than the threshold T7(WW) associated with the optimal
policy 0 (W) found by applying relative value iteration to a single-facility problem involving only
facility ¢. Clearly, in view of Definition this is equivalent to sending the new customer to all
facilities i for which W;(z;) > W, but not to any facility j for which Wj(z;) < W. In fact, one
might replace the description of the policy 6* given in with the following:

0*(x) = {i € {1,2,...,N} : W;(z;) > W}.

As observed by Glazebrook et al. [59] and Argon et al. [6], the fact that an optimal solution to the
relaxed problem may be described using the Whittle indices makes it logical to propose a heuristic

policy for the original N-facility problem, which involves sending any new customer who arrives
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under state x € S to a facility ¢ which maximises W;(x;), or choosing to balk if all of the W;(z;)
values are negative. The optimality of such a policy cannot be theoretically guaranteed, but its
intuitive justification lies in the fact that W;(x;), when positive, is a measure of the amount by
which the ‘charge for admission’ W would need to be increased before the optimal policy 8* for the
relaxzed problem would choose not to admit a customer to facility . Thus, W;(x;) may be regarded
somewhat crudely as a measure of the margin by which one would be ‘in favour’ of having an extra
customer present at facility ¢. A similar interpretation, as discussed in [59] and [6], is that W;(x;)
is a ‘fair charge’ for admitting a customer to facility ¢« when there are x; customers already present;
thus, the decision made by 6* concerning whether or not to admit a new customer to facility ¢

depends on whether or not the ‘real’ charge W is in excess of the fair charge W;(xz;).

As stated at the beginning of this section, the general mode of operation of an indez-based policy
involves choosing actions by associating indices (scores) with all of the possible decision options at
any given state, and then choosing the action with the largest score. Moreover, these indices should
be easily computable. If calculation of the indices were to require a time-consuming algorithmic
procedure, then obviously the index-based policy in question would not be as easy to implement
in practice as one might desire. In the case of the N-facility queueing system under consideration,
the objective is to find a policy which, while being only near-optimal, is also much faster to obtain
than the optimal policy that one would find using a dynamic programming algorithm. In order to
construct a heuristic policy based on the Whittle indices W;(z;), it is therefore highly important

to ensure that the indices W;(z;) themselves are relatively simple to calculate.

Fortunately, the fact that the indices W;(x;) can be easily calculated for any facility i € {1,2,..., N}
is ensured by their independence from the indices for the other facilities j # i. In other words, one
may derive the index W;(x;) for any facility ¢ and head count x; by considering a single-facility
problem involving only facility . Moreover, it is possible to obtain a convenient formula for W;(z;).

This can be shown using the arguments below, which make use of Theorem [6.1.2

Consider an arbitrary Wy € R and let T;(Wp) be the corresponding optimal threshold. Recall
from the proof of Theorem that the average rewards g;(T;(Wy), W) and g;(T;(Wp) + 1, W)
are both linear functions of W and their gradients are not equal. Hence, there must exist a unique

intersection point Wi < Wy such that g;(T;"(Wo), W1) = ¢:(T;(Wo) + 1, W7) (refer to Figure
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. Moreover, since the optimal threshold 7; (W) is monotonically decreasing with W (and it
is assumed that higher-threshold policies are preferred when average rewards are tied), it must
be the case that T (W) > T(Wy). Hence, given the unique intersection point W; satisfying
gi(T;(Wo), Wh) = gi(T;(Wp) + 1,W7), one can say that the threshold 77 (W) is greater than
T (W) if and only if W < W;. Hence, W, is equal to the Whittle index W*(1;(Wy)), since joining
is chosen at state T"(WWy) by the optimal threshold policy if and only if W < Wj.

To summarise the preceding arguments, the Whittle index W;(x) for any facility ¢ and head count
x € Ny may be obtained as the unique value of W which results in the thresholds T = = and
T = x + 1 both yielding the same expected long-run average reward g;(7, W) in a single-facility
problem. Equivalently, one might say that an admission charge of W;(x) results in the optimal
policy 6F(W;(x)) being indifferent between admitting and rejecting a customer at facility ¢ when

the head count is x. Recalling (6.1.10]), it follows that W;(x) satisfies the equation:

ML = mi(, 2)) (@i = Wile)) = B; ) ymily, z)
y=0

z+1
=M1l —-mi(z+ 1,2+ 1)) (s — Wi(z)) — B Z@/m(y, r+1).
y=0

Solving this equation directly for W;(x) yields:

x+1 x
Bi Dymily,x+1) = ymi(y, @)
=0 =0
Wi(z) = a; — Y Y

A (mi(x, ) — mi(x + 1,2+ 1)) (6.1.13)

Given that relatively simply formulae are available for the steady-state probabilities 7;(y, x), (6.1.13])
provides the required convenient formula for the Whittle indices W;(z). The Whittle index heuristic
W] (

policy 6! hereafter referred to as the Whittle policy) is defined below.

Definition 6.1.4. (Whittle index policy)

For all x € S, the Whittle index policy 8" chooses an action as follows:

argmax Wi(x;), if3ie{1,2,...,N} such that W;(x;) >0,
6"l (x) e { i€{1.2..N} (6.1.14)

{0}, otherwise,
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where, for all facilities i € {1,2,..., N} and integers x > 0:

z+1 T
Bi Dymily,x+1) =D ymi(y, @)
=0 =0
Wi(x) = a; — Y ?

A(mi(z,x) —mi(z+ 1,z + 1))

In cases where two or more facilities attain the mazimum in (6.1.14]), it will be assumed that a

decision is made according to some fixed ranking order of the N facilities.

As discussed earlier, it is possible (in theory) to evaluate the average reward gyw) earned by the
Whittle policy using the Policy Evaluation Algorithm in Section 3.7l However, this requires the
use of dynamic programming, which may be impractical. A much quicker method for estimating
geiw) involves simulating the system operating under the Whittle policy. In doing so, it is possible
to make use of the ‘containment’ principle proved in Section[4.2} that is, due to Theorem [£.2.4] any
N-facility system may be associated with a socially optimal policy whose recurrent state space is
contained within the selfishly optimal state space S defined in Section As a result, one may
infer that only the Whittle indices at states x € S should be required, and therefore it is efficient
to compute the indices Wj(x;) for all i € {1,2,..., N} and z; € {0,1, ..., B;} (where B; is the selfish
threshold defined in ) in the initial phase of the simulation program and store these indices
inside an array, so that they can be ‘looked up’ during the simulation phase itself as and when
required. Note that the size of the array used for this purpose would be only 3.(B; + 1), which
in general will be much smaller than ‘5‘ ‘ In fact, this pre-computation approach is theoretically
justified, since it can easily be shown that one must have W;(z;) < 0 for any state x € S with
x; = B; (this is confirmed by Theorem later in this section). This implies that an index-based
policy based on the Whittle indices will never choose to join facility ¢ at a state x € .S with z; = B,

and thus the recurrent state space of the Whittle policy must be contained in S.

As a further note, the fact that balking is chosen by ("] at any state x € S with Wi(z;) < 0 for
all i € {1,2,..., N} is not just an arbitrary convention, but in fact is entirely consistent with the
general heuristic approach of choosing the facility with the largest index value at any given state.
To see this, one may observe that balking is essentially equivalent to joining a ‘degenerate’ facility
(which one may regard as ‘facility zero’, given that 0 is used throughout this thesis to represent

the action of balking) at which services are always completed immediately, so that holding costs
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are irrelevant, and the reward for service is zero. If one regards this extra degenerate facility as
being present in the relaxed version of the problem discussed earlier (as a conceptual alternative
to balking), then it is obvious that at any given state x € S, an optimal policy for the relaxed
problem will decide to send a (copy of a) customer to the degenerate facility if and only if W < 0,
since only the admission charge W is relevant to such a decision. Hence, by Definition [6.1.3] one
has Wy(z) = 0 for all x € Ny. In effect, this states that the Whittle index associated with the
action of balking is always zero (regardless of the state), and therefore if one has W;(x;) < 0 for all

i € {1,2,..., N} then balking is indeed the action with the largest Whittle index.

As discussed earlier, formulae for the steady-state probabilities m;(y, x) in are available from
the general theory for M/M/c/k queues; that is, M /M /c queueing systems with a finite system
capacity k € Np. These formulae, while being somewhat messy, should not significantly hinder
a computer program. In the special case of a single-server queue (¢; = 1), the Whittle indices
Wi(z) have a particularly simple form which enables an interesting comparison to be made with

the results for M /M /1 queues from Chapter [2| This is shown by the next example.

Example 6.1.5. (Whittle indices in a single-server queue)

This example concerns only the derivation of the Whittle indices W;(x) for a facility ¢ with ¢; = 1.
While facility ¢ may be thought of as being part of a larger N-facility system, the indices W;(z)
are obtained independently of the characteristics of the other facilities j # ¢ and therefore it will

be convenient to drop the facility identifier ¢. That is, for x € Npy:

r+1 x
B ymlyx+1) = yr(y,x)
y=0 y=0

W(z)=a-— N —rE s ) (6.1.15)

Using standard results (see [67], p. 74) one has, for z,y € N with y < x:

il Gl T
_ 1 _ pw_j’_l ) p )
m(y,z) = (6.1.16)

1(x+1), ifp=1,

where p = A/pu. Substituting (6.1.16)) into (6.1.15]) yields, after some manipulations:
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B ((z+1)(1—p)—p(l—p™h) 21
— )2 ’ ’

W(z) = w1 =r) (6.1.17)
IR CR) -
20 ’ '

Recall that under the Whittle policy 0!, joining the facility in question is preferred to balking if
and only if W (z) > 0. Equivalently, using (6.1.17)), this condition states:

ap _ (z+ 1)1 = p) = p(1 = ")

= , ifp#F
B (1-p)? 1
6.1.18
ap _ (z+1)(z+2) : ( :
i > —5 if p=1.

Recall that under the selfishly optimal policy 6 (in an M /M /1 queue), joining is preferred to balking
at state = € Ny if and only if a — B(z + 1)/ > 0, or equivalently:

M vt (6.1.19)

B

The conditions in (6.1.18]) may be written equivalently as follows:

_ 2 T
%2x+1+xp(1 ) p2(1 p), if p#1,
B =0 (6.1.20)
O‘ﬂ’“‘zm+1+x($;l), if p=1.

It may be shown that, for any fixed z € N, the function f(p) := (zp(1 — p) — p*(1 — p*)) /(1 — p)?

is positive and strictly increasing with p. Indeed, by differentiating, one finds:

oy w1 =p) A+ p"th) = 2p(1 = p”)
f (p) - (1 _ P)3 .

The fact that the derivative in (6.1.21]) is positive for all z € N and p > 0 can be verified using

(6.1.21)

a proof by induction over z, treating the cases p € (0,1) and p > 1 separately. Since f(0) = 0
for any fixed x € N, it then follows that the function is positive for all p > 0 (since it is strictly
increasing). Hence, by comparing and , it may be seen that the condition for joining
to be preferred to balking by the Whittle policy is stronger than the corresponding condition for
the selfish policy 9~; that is, the Whittle policy is more conservative than the selfish policy. This

result is established in proper generality (i.e. not restricted to the case of a single-server queue) by
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Theorem later in this section. Moreover, since f(p) is increasing with p, the Whittle policy
for the single-server queue actually becomes more conservative as the demand rate increases. This

is consistent with results from previous chapters (in particular, Theorem |5.1.8)).

The condition in (6.1.18)) may also be compared with the classical results of Naor [I31] which were
discussed in Chapter [2l Naor showed that the socially optimal threshold in an observable M/M/1

queue, denoted by n,, must satisfy the following pair of inequalities:

no(L—p) —p(L—p") _op _ (no+(1—p)—p(l—p"*t)
(1—p)? =% < (1—p)? et (6.1.22)
Wgcg%(”””;”"”), ifp=1.

Under the socially optimal policy, one would choose to join at state z € Ny if and only if z < n,.
Since n, is the smallest integer for which the right-hand inequality in (6.1.22]) holds, this implies

that one would prefer joining to balking at state x if and only if:

ap _ (@+1)(1—p) = p(1—p™)

g~ (1—p)? oAl
a;z(x—kl)Q(aH—Q), = 1.

This is exactly the same condition as , showing that the Whittle indices for a single-server
queue have an equivalence with Naor’s classical results for social optimisation in an M /M /1 queue;
specifically, the conditions W (x) > 0 and = < n, are equivalent. Of course, this is entirely expected,
since the Whittle indices W;(x) are defined in such a way that W;(z) > 0 if and only if joining is

preferable to balking at state x in a single-server problem involving only facility q.

Finally, it is also interesting to observe how the Whittle indices W (z) given in (6.1.17)) are affected
in light-traffic and heavy-traffic limits. Let W (x, \) denote the Whittle index for state x € Ny given
a demand rate A > 0. Then, from (6.1.17]), one immediately obtains:

lim W(z,\) =a— M
A—0 o

This states that, in a light-traffic limit (as A — 0), the Whittle index W (z, \) tends to the expected
net reward for an individual customer for joining under state x. Of course, this is exactly the

same index as that used by the selfish policy 8, which shows that the Whittle policy "] “tends
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to the selfish policy’ as A — 0. This is what one might expect, given that the selfish policy was
shown by Theorem [£.4.4] to be asymptotically optimal in a light-traffic limit. Next, considering the
heavy-traffic limit (as A — o00), by taking limits in (6.1.17)) again one obtains:
o — é, if x =0,
lim W(z,\) = K
A—00
—00, if x > 1.
Recall that o — 8/p is always strictly positive by assumption, and hence as A\ — oo the Whittle
policy 0! tends to a policy which chooses to join if and only if the system is empty. This limiting
policy is an example of a vacancy policy (see Definition [4.4.6)), and Theorem [4.4.7] showed that

vacancy policies are optimal in a heavy-traffic limit, so again this is as expected.

This example has shown that if one restricts attention to single-server queues, then the Whittle

W]

policy 8! is asymptotically optimal in a light-traffic limit and also optimal in a heavy-traffic limit.

Theorem later in this section will prove that these limiting properties of the Whittle policy

also hold in greater generality, i.e. when multiple servers are allowed. X

More generally, conditions implying the asymptotic optimality of Whittle’s heuristic for restless

bandit problems have been investigated in the literature; see, for example, [85, 193].
The next example is a numerical example which shows the ability of the Whittle policy "] to

closely approximate an optimal policy in a system with two dual-server facilities.

Example 6.1.6. (Whittle indices in a system with two dual-server facilities)

This example uses the same parameters as Example from Chapter [l To recap, there is a

demand rate A = 10 and the parameters for the two facilities are as follows:

C1 = 27 M1 = 8) /81 - 107 a1 = 27
C2 = 27 H2 = 27 62 = 107 Qg = 6.
The selfishly optimal policy 6 and socially optimal policy 6* (found by relative value iteration)

for this system were shown in Table page As discussed in that example, an important
difference between @ and 6* is that 0* chooses to balk at the state (2,2), which ensures that the
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x 0

1

2

3

Wi(z) | 0.750

0.750 | —0.416 | —1.770

Table 6.1: The Whittle indices Wy (x) for z € {0, 1,2, 3}.

recurrent state space Sp- consists of only 9 states which form a proper subset of S. Table|6.1] shows

the Whittle indices W1 (z) for facility 1 (computed using (6.1.13))) for = € {0, 1,2, 3}.

Similarly, Table [6.2] shows the Whittle indices Wa(z) for = € {0, 1, 2}.

X

0

1

2

Wa(z) | 1.000 | 1.000

—12.214

Table 6.2: The Whittle indices Wa(z) for « € {0,1,2}.

These results imply that the Whittle policy 6] (for states x € 5’) is as shown in Table By
comparing 0" with the socially optimal policy 6* in Table one finds that 0" differs from 6*

at the states (0,1) and (1,1). Since the system is small, one may easily use dynamic programming

to evaluate the average reward gyw) earned by 6W1. The resulting value is goiw) ~ 7.256, whereas

the optimal value is ¢* ~ 7.282, implying that 0" is within about 0.35% of optimality. Similarly,

it can be checked that the sub-optimality of the selfish policy 8 is about 3%.

xo=0|290=1] 29 =2
1 =0 2 2 1
1 =1 2 2 1
x1 =2 2 2 0
r1 =3 2 2 0

Table 6.3: The Whittle policy 81" for the system in Example

6.1.6

In this particular example, the optimal policy 8* has a certain subtlety in that it chooses different

decisions at the states (0,0) and (0, 1), despite the fact that both states offer an available server

at both facilities (since the facilities are both dual-server). One may view this policy as somewhat

counter-intuitive. In fact, the Whittle policy " is unable to replicate such a decision-making

property. This is due to the fact that at any state x € S with x; < ¢; for some i € {1,2,..., N}, it
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must be the case that W;(z;) = «; — 5;/1i, since an admission charge W greater than «; — /1
would be required in order for balking to be preferred to joining ¢ at x. Hence, it can never be the
case that the Whittle policy prefers facility 7 over facility j # i at some state x with x; < ¢; and

xj < c¢j, but prefers j over ¢ at some other state y # x with y; < ¢; and y; < ¢;.

As a further note, the Whittle indices in Tables and can easily be verified by using relative
value iteration to compute optimal policies in single-facility problems with the rewards «; adjusted.
For example, Table states that Wj(2) ~ —0.416, which implies that the reward a; would need to
be increased by at least 0.416 in order for the optimal threshold in the corresponding single-facility
problem to exceed 2. Indeed, by computing the optimal single-facility policy for facility 1 with the
reward value o increased from 2 to 2.42, one obtains a threshold policy with threshold 3. On the

other hand, using the slightly smaller value a; = 2.41 yields a threshold of 2. X

By their nature, index-based policies are appealing not only due to their ease of application but
also due to their preservation of intuitive structural properties (which may not be exhibited by a
socially optimal policy). The next result establishes that the Whittle policy 0" possesses several

of the structural properties which have been thematic throughout this thesis.
Theorem 6.1.7. The Whittle policy 0] possesses the following properties:

1. (Containment.) Let Sy, be the set of positive recurrent states under the policy 01, Then

Sw C S, where S is the corresponding set for the selfish policy 6.

2. (First monotonicity property.) Suppose 0V (x) = 0 for some state x € S. Then 0W](x+) =0
for all facilities i € {1,2,...,N}.

3. (Second monotonicity property.) Suppose 0W)(x) = i for some state x € S and facility
i€{1,2,....,N} with z; > 1. Then 0W](x'~) = 1.

4. (Third monotonicity property.) Suppose g (x) = i for some state x € S and facility i €
{1,2,...,N}. Then 0Wl(x7t) =i for all facilities j € {1,2,...,N}\ {i}.

5. (Sink property.) The policy 6" is a sink policy with a sink state z € S satisfying z; =
min{z € Ng : W;(z) < 0} for all facilities i € {1,2, ..., N}.
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6. (Conservativity with demand.) Let Sy (\) be the set of positive recurrent states under the
Whittle policy HE\W] given a demand rate A > 0. Then, for any pair of demand rates Ay, Ao > 0
with Ay > g, it is the case that Sy (A1) C Sy (Ae).

W]

7. (Non-idling property.) The policy 01" does not choose to balk at any state x € S with x; < ¢;

for at least one facility i € {1,2,...,N}.

Proof. The most trivial properties to prove are the monotonicity properties, numbered (2)-(4) in
the theorem, since these are direct consequences of the indexability property proved by Theorem
Indeed, due to Theorem any admission charge W which causes joining to be preferred
to balking at some state  + 1 (with 2 € Ny) in a single-facility problem also causes joining to be
preferred at state z. By Definition the largest such charge would be W;(x + 1) (considering
an arbitrary facility ¢ € {1,2,..., N}). That is, given an admission charge W;(x + 1), one can say
that joining is preferable to balking at state x, from which it follows that W;(x) > W;(x + 1) by
definition of W;(x). This establishes that the indices W;(x) are monotonically decreasing in = € Ny
for all i € {1,2,..., N}, whereupon the properties (2)-(4) follow trivially from (6.1.14) (recall that
one assumes that there is a fixed ordering of the N facilities used to settle ties, so that 4 is always

preferred to j (or vice versa) at any state x € S for which Wj(z;) = Wj(x;)).

For the containment property (1), it is sufficient to observe that due to Theorem the socially
optimal threshold T7* for any facility i € {1,2,..., N} satisfies T* < B;, where B; is the selfish
threshold defined in . This implies that W;(B;) < 0 for any facility i, and hence the policy
6" never chooses to join facility i at any state x € S with #; > B;. In particular, balking is
chosen at any state with a; > B; for all i € {1,2,...,N}. Tt follows that no state outside S can be

accessible from state 0 under 0"]; equivalently, the set Sy must be contained in S.

Next, let z be the unique state in S with z; = min{x € Ny : W;(x) < 0} for all i € {1,2,..., N}, and
let S, = {x €S :a; <z forallie {1,2,...,N}}. By definition of z, any state x € S, \ {z} has
Wi(x;) > 0 for at least one i € {1,2,..., N}. Hence, z is the only state in S, at which the policy
0" chooses to balk. The state z must therefore be accessible from 0 (via an unbroken sequence

W1, from which it follows that any

of arrivals, for example) and hence positive recurrent under 6
state x € S, \ {z} is positive recurrent under 6" since it can be reached from z via an appropriate

sequence of service completions. Moreover, no state outside S, is accessible from 0 under W],
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since this would require joining some facility i at a state x € S, with z; = z; and hence W;(x;) < 0.
It follows that Sy, the set of positive recurrent states under 8", is equal to S,. Since z is the

only state in S, at which 8" chooses to balk, property (5) follows by Definition |5.2.14

Next, property (6) may be established using Theorem from Chapter [5| which states that the
socially optimal threshold found by relative value iteration is monotonically decreasing with the
demand rate A\. Let A;, A2 > 0 be demand rates with \; > \o. By property (5), the Whittle
J

policy Hg\‘;v corresponding to demand rate Ay is a sink policy with a sink state z € S satisfying z; =
min{z € Ng : W;(z,\2) < 0} for all i € {1,2,..., N}, where W;(x, \2) is the obvious generalisation
of Wi(x). In order for the set of recurrent states Sy (A1) not to be contained in Sy (A2), the

]

policy GE\VIV would have to choose to join some facility i € {1,2,..., N} at a state x with x; = z; for

some i € {1,2,..., N}. This would require HE\VIV} to choose facility i at a state with W;(x;, A2) < 0,
implying the relationship Wj(z;, A1) > 0 > Wj(z;, A2). It will therefore be sufficient to show that
Wi(zi, \1) < Wi(xi, A9) for all x € S and ¢ € {1,2,...,N}. Indeed, due to Theorem any
admission charge W that causes joining to be preferred to balking at an arbitrary state x € Ny
in a single-facility problem under demand rate A; also causes joining to be preferred at x under
demand rate \y. The largest such charge would be W;(z, A1) (considering an arbitrary facility
i €{1,2,..., N}). That is, given an admission charge W;(x, A1), one can say that joining is preferable

to balking at state z under demand rate A9, from which it follows that W;(x, Ao) > W;(x, A1) by

definition of Wj;(x, A2). Property (6) then follows from the previous arguments.

In order to establish property (7), consider an arbitrary facility i € {1,2, ..., N} and suppose relative
value iteration is applied to the corresponding single-facility problem, with the state space restricted
to the finite set {0, 1, ,BZ} Here, B; is the selfishly optimal threshold for facility ¢ defined in
, and B; > ¢; due to the assumption that a; — 3; /i > 0. Lemmam (applied to the single-
facility problem) implies that joining is preferred to balking by the optimal policy 67 at all states
x < ¢; hence, it must be the case that Wj(xz) > 0 for all < ¢;. Since the facility i was arbitrary,
it follows that for any state x € S with x; < ¢; for some i € {1,2,..., N} one has W;(z;) > 0 and

hence balking is not chosen by the Whittle policy 0], This completes the proof. [

Naturally, the selfish policy 0 (being an index-based policy) also possesses all of the properties
discussed in Theorem although property (6) is somewhat meaningless in the selfishly optimal
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case, since 0 is actually independent of the demand rate A. In a sense, one might say that V1 ig
simply an alternative index policy which is less naive (in the context of social optimisation) than

0, since it takes into account more than just the welfare of the immediate customer.

It was proved in Section that the selfishly optimal policy 0 is asymptotically socially optimal
in a light-traffic limit. The next result shows that the Whittle policy ! not only emulates the
light-traffic optimality of é, but also attains optimality in a heavy-traffic limit. The notation GLW]

will be used to denote the Whittle index policy given a fixed demand rate A > 0.

Theorem 6.1.8. Let gyw) () be the long-run average reward attained by the Whittle policy HE\W]

given a demand rate A\, and let g*(\) be the corresponding optimal value. Then:
1. W1 45 asymptotically optimal in a light-traffic limit. That is:

lim g*(A) = ggw1(N)

o TS VR

2. 0W1 is optimal in a heavy-traffic limit. That is:

lim (g"(\) = ggrw1 (V) = 0.

A—00

Proof. As before, it will be convenient to denote the Whittle indices by Wj(x, ) (fori € {1,2,..., N},
x € Ng and A > 0) as opposed to W;(x) in order to allow for a dependence on the demand rate
A. Consider the light-traffic limit first. Given any demand rate A > 0, one obtains the following
expression for W;(0,\) (for i € {1,2,..., N}) by setting z = 0 in (6.1.13]):

Wl(O,A) = QG — &

i
Of course this is as expected, since a 0-threshold policy can only be preferable to a 1-threshold policy
at facility ¢ if the admission charge is greater than a customer’s expected net reward for joining
when a server is available. It then follows from (and the assumption that «; — 3;/p; > 0 for
alli € {1,2,..., N}) that, regardless of the demand rate A, the Whittle policy G&W] always chooses a
facility 7 at state 0 which maximises «; — 3;/p;. The result then follows by Corollary which

states that any such policy is asymptotically optimal in a light-traffic limit.

In the heavy-traffic case, one may invoke Theorem [5.1.8] This states that in any single-facility

problem, the socially optimal threshold 7% (\) tends to the number of servers ¢ as A — oo. Thus,
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for each ¢ € {1,2,.., N} there exists some 9; > 0 such that, for all A > J;:
Wi(ci, )\) < 0.

On the other hand, regardless of the value of A, one must have W;(x;, A) > 0 for any state x € S
with x; < ¢; due to the monotonic nature of the convergence proved by Theorem [5.1.8] These

]

observations imply that for sufficiently large values of A, the Whittle policy Q&W chooses to balk at
a state x € S if and only if z; > ¢; for all ¢ € {1,2,...,N}. That is, QE\W] becomes a vacancy policy
(see Definition [1.4.6)) for sufficiently large values of A. The result then follows by Theorem [4.4.7]

which states that any vacancy policy must be optimal in a heavy-traffic limit. [J

Before concluding this section, it will be useful to establish an insightful and interesting property
of the Whittle policy 8] which involves a comparison with the optimal policy 8* found by relative
value iteration. In previous chapters, the term ‘conservative’ has been used to describe a policy
whose set of positive recurrent states is contained within that of another policy; for example,
Theorem showed that the socially optimal policy #* is more conservative than the selfish
policy 6. Of course, the Whittle policy 8" is a heuristic policy which is intended to earn an
expected long-run average reward as close as possible to that of the optimal policy 6*. Thus, one
might expect 01 to be as similar as possible to 6* in terms of the decisions chosen at the various

states x € S, although Example has shown that it need not always be identical.

As shown by the counter-examples in Appendix structural properties of the optimal policy
f* are not easy to prove in complete generality, and hence one would think that results based on
decision-making comparisons between 6* and 81"} would not be easy to obtain. It therefore comes
as something of a surprise that the Whittle policy can be shown to be more conservative than the
optimal policy 6*; that is, the set of positive recurrent states Sy associated with the Whittle policy
is contained within the corresponding set Sp+ under 6*. This is an interesting result, since it is
not immediately obvious that the Whittle policy 6"1 should have such a predisposition towards

conservative decision-making. In order to prove the result, a lemma will be needed.

Lemma 6.1.9. Let 0* be the optimal policy found by relative value iteration. Then, for x € S:
0*(x) =0 = 0W(x)=0.

That is, the Whittle policy 8"V chooses to balk at any state x € S where 8* chooses to balk.
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Proof. The proof can be established using an argument based on dynamic programming. Essen-
tially, one can show that if balking is chosen at some state x € S by the optimal policy *, then
balking would also be chosen by an optimal threshold policy in a single-facility problem involving
any of the facilities i € {1,2,..., N} at the state with z; customers present (where z; is the i
component of the state x in the N-facility problem). Since the Whittle policy 9"] makes decisions
by considering each of the IV facilities operating in isolation, this is sufficient to establish the result.

The full details are somewhat messy, but can be found in Appendix page O

The result of Lemma [6.1.9|enables the aforementioned conservativity property of the Whittle policy

01 to be proved for a general N-facility system. This is stated below as a theorem.

Theorem 6.1.10. (Conservativity of the Whittle policy)

W]

Let Sy denote the set of positive recurrent states under the Whittle policy 0"Y1, and let Sy« denote

the corresponding set under the policy 0* found by relative value iteration on the finite set S. Then:

Sw C Sex.

Proof. By Theorem Sg- is contained in the finite set S associated with the selfishly optimal
policy 8. Hence, there must exist some state in Sg- at which the policy 8* chooses to balk; otherwise,
an unbroken sequence of customer arrivals would cause the process to pass outside S under 6*. Let

z € Sy« be a state at which 6* chooses to balk, and let S, be defined as follows:
S, = {x €Sz <z Vie {1,2,...,N}}.

That is, S, is the set of states x € S which satisfy the componentwise inequality x < z. Since
z € Sp+, it follows that all states in S, are also included in Sy-, since they are accessible from
z via service completions. Hence, S, C Sp=. On the other hand, since balking is chosen by 6*
at z, it follows by Lemma that balking is also chosen at z by the Whittle policy "], By
definition of the Whittle policy, this implies that W;(z;) < 0 for all i € {1,2, ..., N}. Therefore it is
impossible for any state x ¢ S, to be accessible from state 0 under the Whittle policy, since this
would require joining some facility ¢ € {1,2,..., N} to be chosen at a state y € S, with y; = z; and

hence W;(y;) < 0. It follows that Sy C S, C Sp«, which completes the proof. [

As a further note, it was established in Section that the recurrent state space Sp« under any
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stationary socially optimal policy 8* must satisfy the following relationship:
5° C Sp- C 8, (6.1.23)

where S° is the set of states in S with no customers waiting in queues, defined in (4.3.3). It has
been established by Theorem that the Whittle policy 0V is always a non-idling policy, and

hence S° C Sy. Thus, in the case where 6* is the optimal policy found by relative value iteration

on S, the result of Theorem [6.1.10| enables (6.1.23) to be strengthened as follows:
§° C Sw C Sp- C S.

In Section the performance of the Whittle policy will be tested over a wide range of system

parameters. In the next section, an alternative heuristic approach will be discussed.

6.2 Static routing heuristic

The second of the two heuristic policies to be discussed in this chapter is based on an approach
which has received considerable attention in the literature, involving the derivation of a stationary
policy from a state-independent randomised policy. As a starting point, let ¢ denote a policy under
which, regardless of the system state, any customer who arrives is sent to facility ¢ € {1,2,..., N}
with probability o; € [0, 1], where Zf\il 0; < 1. The probability of a customer balking upon arrival
is then given by gg := 1 —Ef\i 1 0i. This type of policy might be referred to as a static routing policy,
a Bernoulli splitting policy or simply as a state-independent routing policy. Moreover, it may be
observed that policies of this form represent a natural N-facility generalisation of the policies for
unobservable M/M/1 queueing systems discussed in Chapter Throughout this section, state-

independent randomised policies such as o will be referred to as static policies.

The heuristic policy to be developed in this section is based on applying a single step of policy
improvement to an optimal static policy (that is, a policy which performs best among all static
policies). “Policy improvement”, in this context, refers to the general strategy of improving upon
a certain ‘reference’ policy (in this case, an optimal static policy) by allowing the decision at any
state x € S to be chosen in such a way as to maximise the aggregate expected net reward over

a long period of time, under the assumption that the reference policy will be followed thereafter.
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Recall that the Policy Improvement Algorithm (PIA), introduced in Section is a dynamic
programming algorithm which is guaranteed to converge to an optimal stationary policy after a
finite number of iterations, but in order to do so it must be allowed to make as many policy
improvement steps as should be required. The heuristic policy of this section is based on applying

a single step of policy improvement, and as such its optimality is not guaranteed.

Heuristic policies of this nature have been examined by various authors. Krishnan [I09] considered
the problem of assigning customers to parallel Markovian queues in such a way as to minimise the
average time spent in the system, and found that a heuristic derived from a “Bernoulli splitting”
rule was able to perform better than an individually optimal policy in many cases. Sassen et al.
[152] also considered the minimisation of average sojourn times, but assumed a general distribution
for service times at any server; their “decomposition approach” follows a similar derivation to that of
Krishnan’s heuristic. Ansell et al. [4] considered the minimisation of long-run average holding costs,
and generalised the problem further by incorporating heterogeneous customer classes; however,
their formulation also assumes single-server facilities with exponentially-distributed service times,
so that individual facilities operate as multi-class M /M /1 queues under a static routing policy.
The development in this section mainly emulates that of Argon et al. [6], who considered long-run
average cost minimisation in a problem involving single-server queues arranged in parallel with no

balking, but also incorporated a more general cost structure than that in [4].

In seeking an optimal static policy, one aims to find a vector of routing probabilities (o1, o2, ...,0N)

which maximises the expected long-run average reward g,, which is given by:

N

9o = Z (Aoia; — BiLi(Aoy)),

i=1
where L;(Ao;) is the expected number of customers present at facility ¢, given that customers
arrive via a Poisson process with rate Ao;. It should be noted that L;(Ao;) is finite if and only
if Ao; < ¢, and so it will be appropriate to define g, = —oo for any policy o with Ao; > ¢
for at least one i € {1,2,..., N}. Naturally, due to elementary properties of Poisson processes (see,
for example, [146] p. 310) each facility ¢ operates as an independent M /M /c; queue with demand
rate Ao; under the static policy . Thus, a static routing policy may be represented as a vector of
demand rates (A1, Az, ..., AN), where \; = Ao; for i € {1,2,..., N}; the rate at which customers balk

is then given by Ao := X — Zf\il Ai. Throughout this section, static policies will be represented by
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vectors (A1, Az, ..., An), with 0 < \; < A for each i € {1,2,..., N} and Zfil A <A

A fundamental assumption throughout this section is the existence and uniqueness of an optimal

static policy (A}, A3, ...\%) which maximises the objective function:

N
g()‘lvAZ?"7 Z )\042 /31 i z)) (621)
i=1

The next result shows that this assumption is theoretically justified.

Theorem 6.2.1. There exists a unique optimal static policy.
Proof. For each facility ¢ € {1,2,..., N}, let g;(\;) be defined as follows:

9i(Ai) == Niai — BiLi( ;). (6.2.2)

It is known from the literature (see [65], [114]) that L;();), the expected number of customers present
at facility 4, is a strictly convex function of the demand rate A;. This implies that g;();) is a strictly

concave function of )\;, since by differentiating twice one obtains:

gi"(Ni) = —BiL"(\i) < 0.

Figure illustrates the general shape of the function g;(\;) as \; increases. Note that the as-
sumption that a; — B;/u; > 0 for each i € {1,2,..., N} ensures that g;(\;) is strictly positive for
sufficiently small values of \;. To see this, suppose facility i is a single-server queue (¢; = 1), in
which case one has L;(\;) = p;/(1 — p;), where p; = A\;/u;. As shown in Section by solving the

equation g;(\;) = 0 with ¢; = 1 and \; assumed strictly positive, one finds:

Ai —,uz—%>0

i
Noting also that g;(0) = 0, the concavity of g;(\;) then implies that g;(\;) > 0 for demand rates
Ai € (0, p; — Bi/ay). Tt is easy to show that the mean number of customers present in an M/M/c
queue is monotonically decreasing with the number of servers c; indeed, this was shown using a
sample path argument in Example Hence, implies that g;(\;) monotonically increases
with the number of servers, and it follows that g;(\;) > 0 for A\; € (0, u; — Bi/«;) irrespective of

the number of servers ¢; € N (since this has been shown to be true when ¢; = 1).
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gi(As)

Yi

Figure 6.3: The general shape of the function g;(\;) as \; increases.

For each i € {1,2,..., N}, there exists a unique maximiser y; > 0 such that g;(y;) > g¢i(\;) for all
Ai € (0,00)\{y;} due to the strict concavity property. If sz\i 1 Yi < X then the result of the theorem
is trivial, since the policy with \; = y; for each i € {1,2,..., N} is the unique optimal static policy.

On the other hand, suppose ZZ]\L 1Yi > A. Let the set B be defined as follows:

N
B = {(}\1,)@,...,)\]\[) S RN P VRS [O,yi] Vie {1,2,...,N}, Z)\Z < /\} .
i=1

It is clear that any static policy with \; > y; for some ¢ € {1,2,..., N} must be sub-optimal, since
one would be able to improve the performance of such a policy without violating any constraints
by setting \; = y;. Hence, any static policy which is optimal among all policies in B must be an
optimal static policy. The set B is a compact subset of RY; that is, it is closed and bounded.
Moreover, since g;(A;) diverges to minus infinity as A\; — ¢;u;, one must have y; < c¢;u; for each
i €41,2,..., N}, and hence the objective function ([6.2.1)) is well-defined and continuous on the set
B. By the Weierstrass extreme value theorem (see [96], p. 689), it follows that g(A1, A2, ..., An)

attains a maximum on the set B; that is, there exists an optimal static policy.

It remains to be shown that any optimal static policy must be unique. Consider the problem
of maximising the objective function subject to the requirements that \; € [0, ;] for each
ie{1,2,..,N} and Zf\;l Ai < A. This problem fits the general framework of a convex optimisation
problem, involving a strictly concave objective function and a set of linear constraints. It is known
from the theory of such problems (see [23], p. 19) that a unique optimal solution exists under the

stated conditions; that is, there must exist a unique static policy (A}, A3, ..., A}) which maximises
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the long-run average reward g(A1, A2, ..., Ax) defined in (6.2.1]). Indeed, it is possible to construct a
rigorous proof of the uniqueness of any optimal static policy (A}, A3, ..., A}y) which exploits concavity

of the functions g;(\;); further details can be found in Appendix page M O

The concavity of the functions g;(\;) = \ja; — B;L;(\;) enables an interesting property of optimal

static policies to be proved, which will prove to be useful later in this section.

Theorem 6.2.2. Consider two different demand rates A\, X > 0, with A < X. Let ( LAS L AN)
and (N}, 5, ...,5\}"\,) be the unique optimal static policies under the system demand rates A and A

respectively. Then, for all facilities i € {1,2,...,N}:
A< AL
Proof. As in the proof of Theorem define g;(\;) for i € {1,2,..., N} as follows:
9i(Ai) = Nia; — BiLi(Ni).

Given that the policy (A}, A3, ...,Ay) is optimal under demand rate A, it is possible to show that

the optimal policy (A, A3, ..., A%) under demand rate X satisfies:

N N
DX =) N (6.2.3)
=1 i=1

Indeed, this may be argued via contradiction. Suppose the optimal policy (5\’{, 5\’5, ey S\*N) under A

does not satisfy (6.2.3). In view of Theorem this implies:
1. The policy (A}, A}, ..., A%), which is optimal under J, is sub-optimal under .
2. There exists an optimal policy (A}, A3, ..., A%) under A such that Zfil < Zfil A

However, given that Zi\il 5\;“ < Zfil A7 < A, one may construct a policy under demand rate A with

A=A fori=1,2,...,N (with \g = X — Ziil Ai being the rate at which customers balk); then,
by the first of the above statements (and the fact that the constructed policy induces the same
long-run average reward under either of the demand rates A and \) this policy yields an average
reward strictly greater than that given by (A}, A3, ..., A}/) under A, which contradicts the optimality
of (A}, A3,..., \%) under A. It follows that the relationship in holds.
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Next, arguing by contradiction, suppose the statement of the theorem is false. This implies that

there exists a non-empty subset I C {1,2,..., N} such that A} < A for all facilities i € I. Let the

subset M € {1,2,..., N} and positive quantity € be defined as follows:

e::Z()\ffj\;k).

€M

Let R:={1,2,...,N}\ M. Due to (6.2.3), R must be non-empty and, in addition:

N>\ VieR, (6.2.4)
Y (A=) e (6.2.5)
1€ER

The condition in ([6.2.5) may be expressed as:

(=) =€+, (6.2.6)

1€ER

for some 0 > 0. Let {¢;};cr be any set of non-negative numbers for which ), p€; = €, and let

{0i}ier be any set of non-negative numbers with ), d; = ¢ and, in addition:

€6+ 06 =\ —\f VieR. (6.2.7)

It is clearly always possible to find two sets {€;}icr and {d;}icr satisfying the aforementioned

conditions, given that (6.2.4) and (6.2.6) hold. Indeed one way to do this is as follows:

1.

2.

Put the facilities ¢ € R in some arbitrary order i1, 42, ...,% g and set j = 1.

Define €i; as follows:

j-1
€i; = min (A;‘j L Zezk> . (6.2.8)

k=1

L If Z{c:l €;, = € go to step 4; otherwise, increment j by 1 and return to step 2. Note that the

condition Zi:l €;,, = € must hold after at most |R| iterations due to 1}

. Set €, =0forallk € {j+1,j+2,...,|R|} and §; = A\ — A\ —¢; for all i € R.

Under the supposition that the theorem is false, a policy (A1, A2, ..., Any) with A\; = A\ for all i € M

and \; = A\ +¢; for all « € R must be sub-optimal under demand rate X. In particular, such a
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policy is inferior to the optimal policy (A}, A, ..., X*N) under demand rate A. Hence, recalling the
fact that A} = \f +J; +¢; for i € R due to , one has the following;:
Do gD+ g +0) <Y g(N) + Y gi(A + 0 +e). (6.2.9)
ieM i€R ieM i€R
Recall that Y., Af = .0 Af—¢, and hence (using the fact that Y, ., €; =€) one has Y.\, Af+
Sicr (A +€) < A, so the policy with A\; = A} for alli € M and \; = (A\f +¢) foralli € Ris a
feasible static policy under demand rate A in the sense that it satisfies the constraint Zfi 1A <A
Hence, using the fact that the policy (A}, A3, ..., Ay) is optimal under A:
Da) +D 60 = Y g\ + Y 9N +e). (6.2.10)
ieM i€R ieM i€R
By comparison between and , one then obtains:
Z (Qi()\ff +€) — gi()\ff)> < Z (gi()‘;‘k +6i + &) — gi(A + 5i))- (6.2.11)
i€ER 1€ER
In order for to hold, it must be the case that for at least one j € R:

9i(Aj + €)= gi(A)) < gi(Aj + 65 + €) — g;(Aj + 55)- (6.2.12)

Given that d; > 0 by definition, (6.2.12]) can only be possible if §; > 0. However, in that case
one finds that the function f;(z) := gj(z + ¢;) — gj(=) has increased over the interval [A}, A} + J;].
Recalling that €; > 0, this gives a contradiction with the fact that g;(-) is a strictly concave function

as shown in the proof of Theorem and thereby completes the proof. [J

The problem of finding an optimal static policy is a relatively straightforward non-linear optimisa-
tion problem which can be solved efficiently within mathematical computing packages. The next
example illustrates the result of Theorem by comparing optimal static policies under various

different values of the overall demand rate A in a system with 4 service facilities.

Example 6.2.3. (Optimal static policies)

Consider a system with 4 facilities, with parameters given as follows:

g =4, pr =1, pr =4, ap =17,
Cy = 3, Mo = 2, ﬁg = 3, a9 = 10,
C3 = 27 H3 = 47 ﬁ3 = 47 a3 = 10)

Cq = 3, M4 = 5, ,84 = 12, Yy = 9.
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For this example, an experiment was conducted in which optimal static policies (A}, A, A5, A}) were
found under 4000 different values of the system demand rate A ranging from 0 to 40. Figure [6.4]

shows the resulting values of A, A3, A5 and A} for the various values of \.

9 . . . . . . .

gl "
- _
6l -
i 7 |
4t / .
| /,

2 AT — G |
14 A _— |
%o 5 10 15 20 25 30 35 40

Demand rate A

Figure 6.4: Values of A}, A5, A5 and A} for various values of A.

Figure shows that, as expected, the values A], A5, A5 and A} increase monotonically with the
overall demand rate A. In addition, there are some interesting trends to note. For small values of
A, facility 1 (which has the largest value of service, but the slowest service rate) is preferred to all
other facilities by the optimal static policy, but as A becomes large, the joining rate at facility 1
eventually becomes the smallest of all the facilities. Conversely, facility 4 (which has the smallest
value of service, but the fastest service rate) attains a joining rate larger than those of the other
facilities for sufficiently large values of A, but it is not used at all by the optimal static policy
when A is small. As A increases, eventually all 4 joining rates reach a ‘plateau’; naturally, this
represents the point at which each ‘marginal’ long-run average reward g;();) has reached its unique
maximum value (refer to Figure . Beyond this point, there is clearly no advantage to be gained
by increasing the joining rate at any facility, and as such the optimal static policy (A}, A5, A5, \})

remains unchanged (except for the rate at which customers balk) as A — oc.

Incidentally, the sub-optimality of the optimal static policy (in comparison to the socially optimal
policy found by dynamic programming) is negligible for very small values of A, but appears to
increase steadily with A and reaches 20% when A ~ 20, and 33% when A ~ 40. Corollary [4.4.8|from
Chapter [4| implies that the optimal long-run average reward g* tends to sz\i 1 Ciloip — Bi) = 214
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as A\ — oo, whereas the average reward earned by the static policy remains at a stable value of

approximately 129.8 as A becomes large, causing sub-optimality of almost 40% . X

Having shown that a unique optimal static policy exists, the next task is to derive a heuristic policy
by applying a single step of policy improvement to the optimal static policy as described in the
introduction to this section. Assume that the system has been uniformised as described in Section
so that it evolves in discrete time steps of size A € (0, A+ Zf\il cipi) L. Let (s, \}) denote
the expected single-step reward earned by facility i € {1,2,..., N} when the number of customers
present at ¢ is x; € Ny and the Poisson queue-joining rate at i is AY € [0, A]. At any discrete time
step, the probability of facility ¢ being selected by the optimal static policy (A}, A3, ..., A\}) is Af/A;
of course, this probability is independent of the system state x € S. If facility ¢ is selected at a
particular time step when the system is in state x, then the reward earned under the ‘anticipatory’
reward formulation (3.5.15|) is #(x, 7), irrespective of whether or not a new customer arrival occurs.

Hence, 7;(z;, A}) is related to the reward 7(x,7) defined in (3.5.15]) as follows:

\* Ai (ai - ﬁl) ) if x; < ¢,
Pi(wi, Af) = SER(x,0) = . (6.2.13)
A . Bi(z; +1) .
MNloy———), ifx;>c.
Cilbi

The average reward under the optimal static policy (A}, A3, ..., A}) is then given by:

N oo
IS, s AR = DD i, A) i, AT),

i=1 =0
where 7;(x, \Y) is the steady-state probability of € Ny customers being present at facility ¢ given
that it operates with a Poisson arrival rate of A}; naturally, an expression for m;(z, A7) is given by
standard results for M /M /c queues (see, for example, [67]). The derivation of a heuristic routing
policy from the optimal static policy (A}, A3, ..., A\}) to be given in this section begins by following
Argon et al. [6]. Let d(x,7) denote the difference in the expected total net reward (over a long
period of time) that would result from choosing facility ¢ € {1,2,..., N} under state x € S at an
arbitrary discrete time step n € Ny and then following the optimal static policy (A}, A3, ..., A})
thereafter, as opposed to simply following the optimal static policy from time n onwards. Given

that facilities operate independently under (A}, A3, ..., \};) and the probability of an arrival at any
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time step is AA, an expression for d(x,4) analogous to that in [0] is as follows:

5(x,i) = i ?(f(x, i) = 7(x,7) + AA (Di(wi, A7) = Dy, 7)) )
=
+ 1-%? (7(x,9) + AADi(i, A7)
j=1
N 2
= 7(x, ) + AMAD; (4, \Y) ZTJ( #(x,7) + AAD; (x],x%)), (6.2.14)

where D;(z;, A7) is the additional long-run aggregate reward gained from having an extra customer
at facility ¢ operating under demand rate A7, given that there are x; already present. Of course, the
option of balking is also available. Since balking does not earn any cost or reward, an expression
for §(x,0) (where 0 represents balking) analogous to is simply given by:

N

)\*
5(x,0) == Tj (7(x,4) + AAD; (5, X)) - (6.2.15)
j=1

Let 018! denote the heuristic policy obtained by applying a single step of policy improvement to
the optimal static policy (A}, A3,...,A}y). As discussed previously, the general principle of policy
improvement dictates that the actions 81P](x) chosen at the various states x € S should optimise
the long-run aggregate reward under the assumption that the ‘reference’ policy to which the im-
provement step is applied (in this case, the optimal static policy) will be followed after the choice

is made. As such, 98] should simply choose an action a € {0,1,..., N} which maximises §(x,a) at

any given state x. Using (6.2.14) and (6.2.15)), this implies that for any x € S:

arg max (f(x,z') + AAD;(z4, )\f)), if 33 € {1,2,..., N} such that
i€{1,2,..,N L
ol (x) e | ! } #(x,4) + MAD; (x4, %) > 0, (6.2.16)

{0}, otherwise.

The similarity with the criterion given in for the Whittle index policy ") is clear; indeed,
both heuristic policies are index-based policies, but an explicit expression for D;(x;, AY) has yet to
be determined. For this purpose, it will be helpful to recall some of the notation used in previous
chapters. Recall from the discussion in Section that the relative value function h(x) represents
the long-term advantage of initialising the system in state x € S, as opposed to beginning in an

arbitrary reference state (e.g. state 0). Since each facility i € {1,2,..., N} operates independently
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under the optimal static policy, it will be convenient to use h;(x, \) to represent the expected long-
term additional net reward earned by facility ¢ only for starting with x € Ny customers present as
opposed to starting with none, given that arrivals occur at the rate A} € [0, A] corresponding to the
optimal static policy. That is, for each facility ¢ € {1,2,..., N} and = € Np:

hi(z, M) := lim (V™ (2, 0) = V™ (0,47)), (6.2.17)

n—oo ¢

where Vi(n) (x,A}) denotes the expected total reward at facility ¢ over n € Ny discrete time steps,
given that the initial state is # and the arrival rate is A}. In fact, the relative value (also referred to
as the bias) hi(z, \I) is analogous to the expression K; — ¢g7; used by the authors in [6], where (in
their notation) K; is the expected total reward earned until a particular facility is empty and T; is
the expected time until the facility is empty, in both cases starting with ¢ > 0 customers present,

and ¢ is the long-run average reward earned by the facility. Then, by definition, the quantity

D;(x;, AY) in (6.2.15) and (6.2.16) is related to the values hi(z, A}) as follows:
Dz(xz,)\:‘) = hz(wl + 1,)\;) — hz(xl,)\:‘) (Z S {1,2, ...,N}, x; € Ny, )\;k S [0, /\])

Since D;(-) and h;(-) relate to a single facility ¢ operating independently, it will be convenient to
focus on an arbitrary facility ¢« € {1,2,..., N} in the arguments that follow. The random state
evolution at facility ¢ under the optimal static policy is equivalent to that of an isolated M /M /c;
queueing system with a Poisson arrival rate A, which always chooses to accept any incoming
customer. Hence, results from earlier in this thesis (in particular, those in Section imply that

the values h;(x, \}) relating to facility ¢ satisfy the policy evaluation equations:

giA]) + ha(, ) = Fi(, A + D pile, g, A haly, AY) (z € No), (6.2.18)
IS

where 7;(z, A7) is the single-facility reward defined in (6.2.13)), g;(A\}) is as defined in (6.2.2), and

the transition probabilities p;(z,y, A}) are given for z,y € Ny as follows:
4

A?A, ify:af—i—l,

min(z, ¢;) A, ify=ao -1,
pi(z,y,A]) = (6.2.19)
1= XA —min(z, ¢;)wd, ify=uz,

0, otherwise.
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Note that the parameter A in is the uniformisation parameter used for the N-facility
system as a whole; that is, A € (O, A+ Z;V: 16Cj Hj)_l]' Since a single-facility scenario is being
considered, it would be feasible to modify the value of A (e.g. by setting A = (Af +¢;p;) 1) in such
a way as to reduce the probability p;(z,z, A}) of a ‘self-transition’; however, this approach is not
necessary as the final expression obtained for the index §(x,7) will be independent of A. Note that
one may define h;(0, A7) = 0 in order to be consistent with and to determine the values
hi(z, AY) in uniquely; effectively, this designates 0 as the ‘reference state’.

One may proceed to use the equations to derive expressions for the relative values h;(z, \})
and differences D;(z, A}) in terms of the system parameters and the average reward g;(\}). Firstly,
however, it should be noted that although the system demand rate A is always assumed positive,
there is a possibility that the demand rate A} at facility 4 may be zero under the optimal static
policy. In this case, one simply has D;(x;, AY) = 0 for all z; € Ny, so that the expression 7(x,17) +
AAD;(x;, AY) in reduces to the single-step reward 7(x,4). The explanation for this is that
D;(x;, \Y) essentially represents the cumulative increase in the expected waiting costs for customers
following the optimal static policy as a result of an extra customer having been admitted to facility
i (indeed, it will be shown later that D;(x;, A}) is always non-positive). If customers never join ¢
under the static policy, then there are no adverse effects caused to these customers as a result of
an extra customer being present at i; thus, D;(z;, AY) = 0. The derivation of general expressions

for hi(z, \}) and D;(x, \]) given here will proceed under the assumption that A} > 0.

By setting x = 0 in (6.2.18)), one obtains the following expression for h;(1, \}) = 0:

9i(A7) = (0, A7)

hi(1, A7) = VA

Furthermore, by definition of D;(z, A7) and the fact that h;(0,\) = 0:

gi(A?) - 727?(07 Af)

Di(0,A7) = hi(1, A7) — hi(0, A7) = hi(1, A7) = YA

(6.2.20)
In general, for integers 1 < x < ¢;, one obtains the following from ([6.2.18)):

Gi(AD) + hi(z, A)) = 7(x, X)) + AFARi(z + 1, A)) + zpiAhi(x — 1, A))

(3

+ (1= XA — zpiA)hi(x, AY).
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This implies, following some simple manipulations:

— 7i(x, AY)

i (O
e+ 100 — haCe, ) = 7 (a7 — e — 1,39)) + AT

\
Thus, for 1 < x < ¢;, one has the following recurrence relationship for D;(z, A}):

i (A7) — P, A}
Di(e, X)) = Dy — 1,2 4 SO TAD,

(6.2.21)

Using recursive substitution with (6.2.21)) one then obtains, for 0 < z < ¢;:

ool (T (g = 7k, )
Di(x,Ai)—ZM(Af) ( A . (6.2.22)

k=0

Equivalently, using the fact that 7;(z, \}) = 7;(0, \}) for all non-negative integers = < ¢;:

Di(z, A7) = ( NA ZE » : (6.2.23)

k=0

On the other hand, for integers x > ¢;, the recurrence relationship is as follows:

- f'l(x7 A:)
A ‘

i 6.2.24
j (6:2.24)

Using (6.2.23)) and (6.2.24) and applying a simple inductive argument, one can then show that for

integers z > ¢;, the following expression is valid for D;(z, A}):

N ci—1 r—c; z—k
. gi(A}) — 7:(0, A) cilley ™ (g

k=0
i xz—k R
G 9i(A7) — 7i(k, A7)
+,;;. < AY ) ( XA - (6.2.25)

Recall from (6.2.16)) that the heuristic policy 88! chooses a facility 7 at state x € S which maximises
7(x,1) + AAD;(z;, A7) (or chooses to balk, if all such quantities are negative). Using (6.2.23)) and
(6.2.25)), one may write an expression for 7(x,7) + AAD;(x;, A}) as follows:

(f(x’i) " %(g"(A?) ~fil0, A;-*)) i % </;>””—k if 2; < ¢,
’ k=0 i
P(x,1) + AMAD; (2, NF) = < A(x A O Ci_lM i zi—k
; » A 7(x,1) + N (gz( *) — 74(0, z)) ;) i (}\:>

(6.2.26)
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As mentioned previously, it is assumed that A7 > 0 in (6.2.26)); if A} = 0, then one trivially has
Di(z;, AY) = 0 for all z; € Ny and hence 7(x, 1) + AAD;(z4, A\}) = 7(x, ).

The expressions for 7(x,7) + AAD;(z;, A}) given in (6.2.26) will serve as the indices used by the
heuristic policy 88 for choosing its preferred facility under any given state. It is important to note
that these expressions depend only on the system parameters and the demand rates A\ associated
with the optimal static policy. The average rewards g;(A}) for the various facilities can be obtained
easily using after the optimal static policy has been found. Thus, although the relative values
hi(z, A7) and differences D;(x, ) were used in the derivation of the indices given in (6.2.26), the
quantities h;(x, AY) and D;(z, \}) do not appear in the indices themselves. This enables the policy
98] to be implemented without any requirement for time-consuming algorithmic methods to be
used in order to find quantities such as h;(x, A}), D;(x, A) or any other expressions of the type
that might be involved in a dynamic programming algorithm; essentially, all that is required is the
determination of the optimal static policy. As discussed previously, it is important that a heuristic
policy should be easy to implement without being encumbered by the dimensionality of the state

space, or any other obstacles which might be associated with a large-scale problem.

Some further manipulations of the indices in are possible, although these are largely cos-
metic in nature and serve only to suppress the appearance of the factor (A/A}). Firstly, recall
that 7(x,7) = Aw(x,i), where w(x,7) is an individual customer’s expected net reward for join-
ing facility ¢ under state x, defined in . Since A appears as a factor in all of the other
terms in ((6.2.26)), it is reasonable to divide by A throughout, so that effectively one considers
the quantity w(x,) + AD;(x;, AY) as opposed to 7(x,) + AAD;(z;, A}). Obviously, dividing by A
simply re-scales the indices and does not affect the actions chosen by the policy 5. Note that
whether one makes this adjustment or not, the indices remain independent of A. Also, consider
the expression (g;(A}) — 7i(z, A7) /Af. By introducing a quantity w;(z) to represent a customer’s
expected net reward for joining facility ¢ when there are x customers present, one has the relation-
ship 7;(z, \Y) = Afw;(z), and hence (g;(A}) — 7i(x, AY)) /AT = gi(A]) /A — wi(x). Then, by letting
M;(\}) denote the average waiting time of customers who join facility i at a Poisson rate A}, one

has L;i(A!) = AfM;(\}) due to Little’s formula (see, [67], p. 10) and hence:

9i(A)/ A = (Nai = BiLi(A)) /i = i = BiMi(A7), (6.2.27)
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where the expression obtained in ([6.2.27)) is obviously equal to the steady-stage average expected
net reward earned by individual customers arriving at a rate A;. Let this ‘individual average reward’

be denoted by w;(A}). That is, for facilities ¢ € {1,2,..., N} and « € Np:

Bi
o Pl

X if x < ¢,
wi(z) = Hi (6.2.28)
o BEED s
Cili
@Z(/\;k) = Zﬂ'i(l', )\f)w,(ac) =4 — /BzMz()\;k) (6.2.29)
=0

Of course, M;(A}) (like L;(A})) can be obtained using the standard M /M /c formulae in texts such as
[67] (p. 126). So, by the preceding arguments, (g;(A\}) — 7i(x, A})) /Af = W;(Af) —w;(x); that is, the
difference between the expected long-run average reward for individual customers under demand
rate A} and the expected reward for a customer who joins under state . The next definition

formalises these arguments by providing refined formulae for the indices used by 6151
Definition 6.2.4. (Bernoulli index heuristic)

Let the heuristic policy 88 obtained by applying a single step of policy improvement to the optimal

static policy (A, A5, ..., Ay) be referred to as the Bernoulli index heuristic policy. Then, for each

[B]

state x € S, the action 0P (x) chosen by the policy 0" satisfies:

argmax Pj(z;,AY), if3ie{1,2,...,N} such that Pj(x;, Af) >0,
018)(x) € { ief1.2...N} (6.2.30)

{0}, otherwise,

where, for i € {1,2,...,N} and x € Ny, the index P;(x, \}) is given by:

T | . x—k
wi(x) + (@Z()\:‘) — wi(0)> Z % (f\i) , if A >0and z < ¢,
k=0 " v

o el )
P wi(x)—i—(wi()\i)—wi(O))kZ_O - (A)

» N

(6.2.31)

T

z—k
+ Z <C;\'Li@) (@Z()\;() — wl(k‘)), if /\;" > 0 and z > ¢,

wi(z), if AF = 0.
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In cases where two or more facilities attain the mazimum in (6.2.30), it will be assumed that a

decision is made according to some fixed ranking order of the N facilities.

The next example demonstrates the performance of the Bernoulli index heuristic policy in a small

system consisting of two facilities with two servers each.

Example 6.2.5. (Bernoulli index heuristic with two dual-server facilities)

This example revisits the same set of parameters used in Examples and To recap, there

is a demand rate A = 10 and the parameters for the two facilities are:

c1 = 27 H1 = 8? 61 - 107 a1 = 27

Cy = 27 M2 = 27 /82 = 107 ag = 6.

In Example the selfishly optimal policy 6 and socially optimal policy 6* (found by relative
value iteration) for the system were derived; refer to Table (page . As discussed in Example
the optimal policy 0* has a slightly unusual characteristic, in that it does not always choose
the same decision at states where both facilities have an idle server; specifically, the actions chosen
by 6* at the states (0,0) and (0,1) differ from each other, as do the actions chosen at (1,0) and
(1,1). The Whittle index policy 01 discussed in the previous section always prefers the same
facility among those which have at least one idle server, regardless of how many idle servers are
available. In this particular system, it chooses facility 2 at all four of the aforementioned states

and as a result fails to attain optimality (its sub-optimality is about 0.35%).

Now consider the approach based on deriving a heuristic policy via an optimal static routing policy
as discussed in this section thus far. Using Python’s OpenOpt package [I38], the optimal rates A}
and A5 (rounded to 3 d.p.) associated with the policy (A}, A3) are obtained as:

Al = 6.230, A5 = 0.981.

Thus, the rate at which customers balk under the static policy (A}, A3) is A — A] — A5 = 2.789. The
long-run average rewards g;(A}) and g2(\5) are then given by (6.2.2) as:

g1(\T) = 3.281, g2(N3) = 0.667,
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from which it follows that the overall average reward under the optimal static policy is g1(A}) +
g2(A5) = 3.948, which is approximately 45% short of the optimal value g* = 7.282. The next stage
is to derive the heuristic policy g5l by applying a policy improvement step. Table shows the
Bernoulli indices P (z, A}) for facility 1 (computed using for x € {0,1,2,3}.

T 0 1 2 3

Py(z, A7) | 0.526 | 0.239 | —0.786 | —1.810

Table 6.4: The Bernoulli indices Py (z, A}) for z € {0,1, 2, 3}.

Similarly, Table [6.5 shows the Bernoulli indices P (z, \) for z € {0, 1, 2}.

T 0 1 2

Py(z,A3) | 0.680 | 0.028 | —3.285

Table 6.5: The Bernoulli indices Pa(x, \5) for = € {0, 1,2}.

Note that the indices P;(0,A}) and P;(1, A}) differ from each other, as do P»(0, A5) and Px(1, \5).
This shows that the Bernoulli index policy does not suffer from the same limitation as the Whittle
policy, which (in general) always has W;(z;) = W;(0) for all ; < ¢;. The decisions chosen by 7]

at the various states x € S are then specified by (/6.2.30]), and are shown in Table

To=0|29=1] 29 =2
1 =0 2 1 1
1 =1 2 1 1
1 =2 2 2 0
1 =3 2 2 0

Table 6.6: The Bernoulli index policy 87! for the system in Example [6.2.5

By comparison with Tables and it may be seen that the Bernoulli policy 08! is equivalent
to the optimal policy 8* at all states x € S, and differs from the Whittle policy "] at states (0,1)
and (1,1). Thus, for this system, 98] succeeds in attaining optimality. Although this example has
shown that 017! has an advantage over ! in that it has the ability to distinguish between two

different ‘idle’ states z; < ¢; and y; < ¢; at a particular facility ¢, this certainly does not imply
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that 08) always performs better than #"!; in fact, 01" has certain appealing properties of its own

(discussed in Section which are not shared by 617!, as later results will show. X

As one might expect, the Bernoulli policy 67! determined by the indices in (6.2.31)) possesses
various structural properties which have been discussed in previous chapters and associated with
the selfishly optimal policy 6, the Whittle policy W and (in some cases only) the optimal policy

0* found by relative value iteration. The next result summarises these properties.
Theorem 6.2.6. The Bernoulli index policy 0P possesses the following properties:

1. (Containment.) Let Sp be the set of positive recurrent states under the policy 0Bl Then
Sp C S, where S is the corresponding set for the selfish policy 6.

2. (First monotonicity property.) Suppose g5l (x) = 0 for some state x € S. Then 6Bl (xiT) =0
for all facilities i € {1,2,..., N}.

3. (Second monotonicity property.) Suppose 0Bl(x) = i for some state x € S and facility
i€ {1,2,...,N} with z; > 1. Then 0IB}(x~) = .

4. (Third monotonicity property.) Suppose 01P1(x) = i for some state x € S and facility i €
{1,2,...,N}. Then 018/(xit) =i for all facilities j € {1,2,..., N} \ {i}.

5. (Sink property.) The policy 0] is a sink policy with a sink state z € S satisfying z =
min{z € Ng : Pj(x,\!) < 0} for all facilities i € {1,2,...,N}.

6. (Conservativity with demand.) Let Sg(\) be the set of positive recurrent states under the
Bernoulli index policy Q&B] given a demand rate X > 0. Then, for any pair of demand rates

M A >0 with A < A, it is the case that Sp(\) C Sp()).

Proof. Recall that the index P;(z, \}) defined in is equivalent to the expression w;(z) +
AD;(z, X}), where w; () is as defined in (6.2.28)), D;(z, A}) = hi(z+1, \}) —hi(z, A}) and hi(z, \}) =
limy, 00 (V;(n) (,Af) — Vi(n) (0, A7 )) by definition. It follows that structural properties of the indices
Pi(xz, ) (for example, monotonicity) can be proved using the finite-stage values Vi(n) (x,Af), and

this can be done using inductive arguments similar to those used in previous chapters. In fact, the

arguments required in this proof are especially simple, for two main reasons:
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1. It is sufficient to consider an arbitrary facility ¢ € {1,2,..., N} operating in isolation, as was

done in the derivation of the indices P;(x, A}) themselves;

2. Under the static policy, each facility ¢ € {1,2,..., N} operates as an M/M/c; queue with a
demand rate A} in which every customer who arrives joins the queue, so it is not necessary

to consider different actions that may be chosen at the various states.

The proof of property (6) requires the result of Theorem which states that each demand rate
A¥ is monotonically increasing with A. For details, see Appendix page O

Theorem [6.2.6| makes no mention of a seventh structural property which was included in the anal-
ogous result (Theorem [6.1.7) for the Whittle policy 8" in the previous section; specifically, the
non-idling property. Somewhat surprisingly, this property fails to hold for the Bernoulli index

policy. Indeed, the next example shows that /8] may be an idling policy.

Example 6.2.7. (The Bernoulli index policy 0/8] may be an idling policy)

It is sufficient to consider a system consisting of only one facility (N = 1), with a demand rate

A = 5 and parameters for the single facility given as follows:
c=25, w=2, 8 =15, a=S8.

A notable characteristic of this system is that the reward for service « is only slightly greater than
the expected cost incurred during a service time, §/u. The optimal static policy A} (representing

the optimal Poisson queue-joining rate) is, to 3 decimal places:
AT = 3.595.

Thus, customers balk at a rate Ay = A — A} = 1.405 under the static policy. Table shows the
indices P;(z, \}) for states = € {0,1,2,3,4,5} obtained using (6.2.31), and the resulting decisions
made by the Bernoulli policy 85!, Of course, 88!(z) = 1 if and only if P (z, A7) > 0.

Although there are 5 service channels available, (7] () chooses to balk at states 3 and 4. Hence,
6181 fails to achieve the non-idling property. Theorem has already established that, given any
number of facilities N, the optimal policy 8* found by relative value iteration is always a non-idling

policy, which suggests that this characteristic of /8] is somewhat undesirable.
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T 0 1 2 3 4 )

Pi(z,A}) | 0.406 | 0.353 | 0.242 | —0.024 | —0.761 | —3.103

6L8)(z) 1 1 1 0 0 0

Table 6.7: The Bernoulli indices P (z, \}) and decisions )(z) for = € {0,1,2,3,4,5}.

[B] fails to exhibit the non-idling property

Some comments are appropriate in order to explain why 6
in this particular system. The selfish threshold B; in this system may be calculated using
as |acp/B] =5, which is equal to the number of service channels c¢. Thus, even the selfish policy 0
(which is the least conservative among all of the state-dependent policies considered in this thesis
thus far) chooses to balk when all of the servers are occupied. An individual customer’s expected
net reward for joining under some state z < 5 is @ — 8/u = 0.5, which is drastically smaller (in
terms of absolute value) than the net reward o — 28/ = —7 that would be obtained by joining
under the state x = 5. In general, it is clear that for each extra service time spent waiting in
the system by a customer, the expected net reward decreases steeply, and therefore it is extremely
important to prevent customers from joining at any state z > 5 if possible. The Bernoulli index
policy 818 chooses actions based on the assumption that the optimal static policy will be followed
at all times thereafter. Since the static policy always applies the same randomised decision rule and
allows customers to join with probability Aj/A = 0.7 regardless of the state, the Bernoulli policy
9l5] is obliged to over-compensate by rejecting customers at states 3 and 4, thereby reducing the

likelihood of any state x > 5 being reached after adoption of the static policy. X

In Section it was shown that the Whittle index policy 0" is asymptotically optimal in a
light-traffic limit and also optimal in a heavy-traffic limit. It is therefore of interest to investigate
whether or not the Bernoulli index policy 85! shares these properties. In doing so, it will also be
possible to establish whether or not the optimal static policy (A}, A5, ..., \}) itself (used to derive
the Bernoulli policy) is optimal as A — 0 and/or as A — oco. Before proceeding, it will be useful to
make the observation that the optimal static policy can never be average reward optimal (over all

admissible policies) for any fixed A > 0. This will be stated here as a theorem.

Theorem 6.2.8. Let the system demand rate A\ > 0 be fixed. Then any static routing policy

(A1, A2y ooy AN) is sub-optimal, in the sense that:

g(A1, A, .., AN) < g%,
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where g(A1, Aa, ..., AN) is the expected long-run average reward earned by the static policy and g* =

Supg gg s the optimal average reward over all admissible policies.

Proof. Under the assumption that o; — ;/p; > 0 for all i € {1,2,..., N}, the optimal average
reward ¢* must be strictly positive, as discussed at the beginning of the proof of Theorem
Hence, the trivial static policy with A; = 0 for all ¢ (and hence g(A1, A2, ..., Axy) = 0) is sub-optimal.
On the other hand, consider a static policy which has A; > 0 for some facility 7. Then, assuming
that \; < ¢;u; (otherwise the average reward g;(\;) at facility ¢ would be negatively infinite, again
implying sub-optimality) all ‘marginal’ states x; € Ny at facility ¢ are positive recurrent under the
static policy; indeed, the stationary probability m;(x;, A;) for any x; € Ny is strictly positive and
given by standard M/M/c; queue formulae (e.g. [67], p. 69). In particular, states z; > B; are
positive recurrent, where B; is the selfishly optimal threshold defined in .

It follows that for any marginal state z; > B;, there will be infinitely many points in time at which
the static policy allows a customer to join facility ¢ when it is in state x;, thereby earning a negative
reward 7;(x;, A;). It is clear, therefore, that the static policy is strictly inferior to a non-static,
history-dependent policy ¢ which chooses the same actions as the static policy (A1, A2, ..., Ay) at
all times, unless the static policy chooses to admit a customer to facility ¢ under some state z; > B;,
in which case 1 chooses to balk. This can be established formally using a sample path argument

completely analogous to the argument given in the proof of Theorem O

The next result shows that, despite its sub-optimality for fixed values of A, the optimal static policy
(A1, A3, ..., Ay) does attain asymptotic optimality in a light-traffic limit. The fact that the Bernoulli
policy 0B8] shares the same property is an immediate consequence of this result. The notation HE\B]
will be used, as opposed to 915,

(similar to the notation QLW] used for the Whittle policy in Theorem .

in order to reflect the dependence of the Bernoulli policy on A

Theorem 6.2.9. The optimal static policy (A}, 3, ..\y) and the Bernoulli index policy HE\B] are

both asymptotically optimal in a light-traffic limit, in the sense that:
(g*(A) —g(Al, 37---)‘7\/)) ~ lim (g*(k) _99[310‘)> _o,
g (M) A0 g (M)
where g*(X) and gyim(\) respectively denote the optimal expected long-run average reward over all

admissible policies and the average reward earned by H&B}, given a demand rate A > 0.

lim
A—0
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Proof. First, let (A1, A2, ..., Any) be any static routing policy under which the system is stable; that
is, \; < ¢;ju; for all 4 € {1,2,..., N}. Then, by analogy with (6.2.27) and (6.2.28)), the expected

long-run average reward g(A1, A2, ...Ax) earned by this policy satisfies:

g(A1, A, .. A Z)\ w;i(A;) Z)\ Zﬂ', (x, \i)w;(z (6.2.32)

Recall that w;(\;) = a; — BiM;(N\;), where M;()\;) is the mean waiting time for customers at facility
i under demand rate \;. It is a simple matter to show, using standard M/M/c queue formulae
([67], p. 69) that M;(X\;) — 1/u; as A\; — 0 (equivalently, a customer’s expected time waiting in
the queue at facility ¢ tends to zero as A\; — 0). It is also trivial to show, for each facility 7, that
Ai — 0 as the overall demand rate A tends to zero. Hence, for i € {1,2,..., N}:

. 2.
lim " (6.2.33)

Let J C {1,2,..., N} denote the set of facilities which maximise o; — 3;/u;. That is:

J = argmax {az — Bl}.

i€{1,2,...,N} 223

Let (A1, Az, ..., /_\N) be a static policy which, given any demand rate A > 0, always chooses to join
some facility 4 € J with probability one; that is, \; = A for some i € J and 5\]- = 0 for all facilities
j # i. Obviously the potential instability of the system under the policy (A1, A2, ..., Ayx) is not

an issue, since the limiting behaviour as A — 0 is being considered, and as such one can restrict

attention to demand rates A < ¢;u;. Then, using (6.2.32)) and (6.2.33]):

— — — N p—
gAML, A2, A Xi 5 Bi
1 — = — 7. .2.34
/\li% A Z:: A wi(As) ze{{n,ﬁ?iN} @ i (6.2.34)

Meanwhile, since w;(z) < w;(0) for each i € {1,2,..., N} and x € Ny, it is clear from (6.2.32]) that

the average reward g(A}, A3, ..., Ay) for the optimal static policy must satisfy:

* * » A* .
9L A5, )< max w;(0) = max {ai—ﬂz}.

A T ie{1,2,...,N} il ie{1,2,..,N} 7%

Hence, given any demand rate A > 0, due to the (static) optimality of (A}, A3, ..., A} ):

g()\l,)\Q,...,)\N) S g()‘17>‘2""7)‘N) S max o — & '
A A i€{1,2,..,N} i
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Then, applying the ‘squeeze theorem’ ([166], p. 909) and recalling (6.2.34)):

lim AL o A) o {ai—ﬂl}. (6.2.35)
A—0 A ie{1,2,...,N} L

In the proof of Theorem it was shown (beginning on page [151)) that the optimal expected

long-run average reward (over all admissible policies) ¢g*(\) satisfies:

im Y ax {%‘Bﬁ' (6.2.36)

A=0 A ie{1,2,...,N} i
So, by combining (6.2.35) and (6.2.36)), one can show:

lim (9*(/\) —9(A1, A5, --~)\7v)> _ maxi{a; — fi/mi} — maxi{oi — i/} _
A—0 g*(\) max;{a; — B/} ?

which establishes the asymptotic optimality of (A}, A3,...,A%) as A — 0. Next, consider the

Bernoulli index policy G&B]. By its construction, GLB] should always earn an expected long-run
average reward which improves upon the average reward earned by the optimal static policy
(Af, A5, ..., Ay), and 50 one would expect 617 to inherit the light-traffic optimality of (A}, A3, ..., A ).
Indeed, H&B] is a stationary policy which (by Theorem induces a Markov chain on some finite
set of states contained within the selfishly optimal state space S. Therefore, by Corollary |4.4.5| in

order to establish light-traffic optimality of GE\B] it is sufficient to show that:

HE\B}(O) € J = argmax {ai - BZ} (6.2.37)

i€{1,2,...,N} Mg
It can be checked using (6.2.31)) that the indices P;(0, A}) for i € {1,2,..., N} satisfy:

) Wi\, if AF >0,
P(0,\) = (6.2.38)

wi(0),  if Ar =0.

Let the quantities ¢* > 0 and ¢' > 0 be defined as follows:

. Bi
¢* := max Q— — ¢,
1€{1,2,..,N} i

max {ai — 61} , if{1,2,..., N} \ J is non-empty,

¢T = iE{O,l,...,N}\J (2 (6239)

0, otherwise.

Evidently, ¢* — ¢ yields the smallest possible deficit in a customer’s expected net reward that

would result from taking an action at state 0 other than joining a facility belonging to J. Let i, j
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be two facilities with ¢ € J and j € {1,2,..., N} \ J, supposing that the latter set is non-empty.

By (6.2.33), one has limy_,o Wi (A}) = wi(0) for all k € {1,2,...,N}. Hence, (6.2.38) implies that

regardless of whether or not the arrival rates A and A} are non-zero, one has:
lim P;(0, AY) = w;(0) = ¢%,
A—=0
; 4 K T
lim P,(0, X)) = w;(0) < 6.

It follows that there exists § > 0 such that for all demand rates A € (0, ):

PN > o0 - TS RO
P X)) < ot 1 2 2¢ :¢;¢.

Noting that (¢* + ¢')/2 is strictly positive, it follows that for any two facilities 7,5 € {1,2,..., N}
with ¢ € J and j ¢ J, one has P;(0,A}) > max(F;(0,1}),0) for sufficiently small values of A. It

. o (B] : .
then follows directly from the criterion in [6.2.30| that 6} (0) € J when A < §; that is, the Bernoulli
policy G&B} chooses to join a facility belonging to the set J under state 0 when A is sufficiently small.

Applying the result of Corollary completes the proof of the theorem. [J

In this section so far it has been shown that the heuristic index policies GLW] and G&B] and the
optimal static policy (A}, A3, ..., A}y) are all asymptotically optimal in a light-traffic limit. However,
the next example shows that the heavy-traffic optimality of the Whittle policy QLW] (proved by
Theorem is not a property which is shared by either (A}, A3, ..., A\}) or H&B}.

Example 6.2.10. (Sub-optimality of (A\],\5,...,\y) and O&B} in a heavy-traffic limit)

It will be sufficient to consider the same system as in Example To recap, there is a demand

rate A = 5 and a single facility with parameters given as follows:
c=25, =2, 8 =15, a=8.

As discussed in the proof of Theorem there must exist a unique value A\} which maximises the
strictly concave function g(A) = Aa — BL(X) (refer to Figure [6.3). In Example it was found
that the optimal queue-joining rate (among static policies) was A} ~ 3.595 under the demand rate

A = 5. Given that customers balk with a non-zero probability under this policy, it must be the
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case (due to the shape of g(\)) that A} remains constant at the same value 3.595 for all A > 5. The

long-run average reward g(A}) under this policy is approximately 1.458.

On the other hand, applying the result of Corollary the optimal long-run average reward

g*(A) over all admissible policies approaches the following limit as A — oo:

lim ¢*(\) = c(ap — B) =5. (6.2.40)

A—00
Therefore the sub-optimality of the optimal static policy approaches approximately 70% as A — oo;
that is, the static policy A] is not optimal in a heavy-traffic limit. In Example it was shown
that the Bernoulli policy HE\B} chooses to balk at states 3 and 4 when the demand rate is A = 5.
Using arguments analogous to those in the proof of Theorem one can show that the expected

long-run average reward gg(A) under any stationary policy 6 satisfies:

lim gg(\) = min(c, Typ)ap — STy, (6.2.41)

A—00
where Ty = min{z € Ny : §(z) = 0}; that is, Ty is the lowest-populated state at which 6 chooses
to balk (equivalently, the highest-populated state which is positive recurrent under 6). Since the
Bernoulli policy H&B] applies a threshold Te[f] = 3 when XA = 5, it follows directly from property
(6) of Theorem (conservativity with demand) that states x > 4 must remain excluded from
the positive recurrent set Sp when A is increased; indeed, the proof of the theorem shows that the
indices P;(z, A}) are monotonically decreasing with A, so one can say that GE\B] () =0for all x >3

when A > 5. Hence, due to (6.2.41)), the average reward g,z (\) must satisfy:
ggis1(A) < 3(ap— ) =3 Ve (5,00), (6.2.42)

which implies, due to , that the sub-optimality of QE\B] is at least 40% as A — oo; that is,
H&B} also fails to attain heavy-traffic optimality. Alternatively, note that the indices P;(x, A\}) in
(6.2.31)) are independent of the system demand rate A\, and depend only on the optimal static joining
rates A7, A3, ..., Ay and the other system parameters. It has been shown that, in this particular
example, \] remains at a constant value of approximately 3.595 for all A > 5, which implies that
the values P;(z, A]) remain unchanged for all z € Ny as A\ — oo; hence, the policy G&B] also remains
unchanged as A\ — oo. This shows that the inequality in becomes ‘tight’ as A — oo, and
]

limy 00 (6% (A) — gz (A)) = 5 — 3 = 2. In conclusion, Q&B improves upon the performance of the

static policy A} by more than 100% as A — oo, but remains 40% short of optimality.
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Intuitively, the fact that A\] remains unchanged for all A > 5 must imply that the same is true of the
Bernoulli policy 0&317 since HE\B} decides whether or not to admit a customer at some state x € Ny
based on the assumption that the optimal static policy will be followed by all customers thereafter.
If the static policy remains unchanged as A — oo, then there is no effect on the decision-making

criterion applied by G&B] and therefore no reason for H&B] to change its decisions. X

Theorem [6.1.10| established that the Whittle policy 6" is more conservative than the policy 6*
found by relative value iteration. Unfortunately, the analogous comparison between 5] and 6*

does not yield any conclusive result, since 5

may or may not be more conservative than 6%,
depending on the system parameters. Indeed, the previous example has shown that 5! may be
more conservative than 6* (which is always a non-idling policy by Theorem , and in order to
show that 6Z] may not be more conservative than *, it is sufficient to consider the 4-facility system
in Example For the parameters used in that example, Figure indicates that the optimal
(static) demand rate A} for facility 4 is equal to zero when the system demand rate A is sufficiently
small. For example, suppose A = 10. Then, using relative value iteration to compute the optimal
policy 6*, one finds that 6* is a sink policy (see Definition with sink state (8,15,11,4).
However, given that \] = 0, it follows from that Py(z,\}) = wa(z) for all x € Ny, and
hence the Bernoulli policy 88! is in favour of admitting a customer to facility 4 (as opposed to
balking) at any state x € S with x4 < B, = 6. Indeed, it can be verified that the policy 85) derived
using the parameters in Example is a sink policy with sink state (7,10,9,6). Therefore the set

of recurrent states Sp under 88! includes states x € S with x4 > 4, and hence Sp is not contained

in the set Sy« associated with 6*; that is, 818! is not more conservative than 6*.

Similarly, it is not possible to compare the heuristic policies /"] and 0!5) with respect to conser-
vativity. Indeed, the Whittle policy 8" is always a non-idling policy (by Theorem but it
is also more conservative than 6* (by Theorem . Hence, 65! is more conservative than 6"
in the system described in Example but it is not more conservative than #") when one
considers the parameters in Example and sets A = 10 (as described above).

In the next section, the performances of the Whittle policy ("1 and the Bernoulli policy 67! will

be compared using numerical tests with randomly-generated system parameters.
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6.3 Numerical results

Sections and introduced the Whittle index heuristic and the static routing heuristic respec-
tively. Both of these heuristic methods are designed for the purpose of obtaining near-optimal (and
easily-implementable) policies in a reasonably short amount of time. Both methods also involve
analysing the IV service facilities individually, in order to derive a set of indices which characterise
a stationary routing policy for the system as a whole. In order to assess whether or not the meth-
ods are consistently successful in finding near-optimal policies, it is desirable to carry out a large

number of numerical experiments involving randomly-generated parameter sets.

The purpose of this section is to report the results of a series of experiments involving more than
60,000 randomly-generated sets of system parameters. In order to evaluate the exact sub-optimality
of a heuristic policy, it is necessary to evaluate the expected long-run average reward earned by
the relevant policy and compare this with the optimal value g* associated with an average reward
optimal policy. Usually, one would wish to carry out these tasks using dynamic programming
algorithms, but this is only practical if the finite state space S is of relatively modest size. Of
course, the heuristic methods discussed in Sections and can easily be applied to systems in
which S is extremely large, but it is generally not feasible to evaluate the optimal value g* in such
systems, and therefore the only comparisons of interest that can be made in ‘large’ systems are
comparisons between different heuristic policies (whose performances must be approzimated, using
simulation) and comparisons with simple decision rules such as the selfishly optimal decision rule,

discussed in Section As such, this section will be divided into two parts:

e In the first part, systems of relatively modest size will be considered. These are systems in
which the size of |§ | facilitates the efficient computation of the optimal average reward g*
using DP algorithms, and also enables similar evaluations of the average rewards earned by

the Whittle policy 81, the Bernoulli policy 85! and the selfish policy 6.

e In the second part, ‘large’ systems will be considered. These are systems in which the value
of ¢g* is assumed to be unattainable, and the average rewards earned by the heuristic policies

W1 6l and the selfish policy 6 must be approximated using simulation.

For the sake of distinction, a ‘modest-sized’ system will be defined in this section as a system in
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which the cardinality of S is between 100 and 100,000. Although it is certainly possible to apply
DP algorithms to systems of greater size than this without an extremely long running time being
required, it is desirable to impose a relatively strict restriction on \5’ | in order to allow a large
number of experiments to be carried out in a reasonable amount of time. The remainder of this

section will proceed to present the results obtained from numerical experiments.
Part 1: 36,136 systems of small-to-moderate size

A series of experiments were conducted, involving 36,136 randomly-generated sets of system pa-

rameters. For each system, the parameters were randomly generated as follows:

e The number of facilities, N, was sampled from the set {2,3,4}.

e Each service rate u; was sampled from a uniform distribution between 5 and 25.
e Each service capacity ¢; was sampled unbiasedly from the set {2,3,4,5}.

e Each holding cost 5; was sampled from a uniform distribution between 5 and 25.

e Each fixed reward «o; was sampled from a uniform distribution which was dependent upon the
number of facilities N. This uniform distribution was between 2 and 18 in the cases N = 2

and N = 3, and between 2 and 12 in the case N = 4.

N
e The demand rate A was sampled from a uniform distribution between 0 and 1.5 x Z Cifhi-
i=1

A constraint was imposed whereby parameter sets were accepted only if they caused the size of the
selfish space S to be between 100 and 100,000 states. In addition, all facilities i were required to
satisfy the condition «; > §;/u; in order to avoid degeneracy. Parameter sets which did not satisfy

these criteria were rejected and, in these cases, all parameters were re-sampled.

Let p:= X/ Zf\i 1 Giiti be a measure of the relative traffic intensity for a particular system. In this

section, the three cases p € (0,0.5), p € (0.5,1) and p > 1 will be considered separately. Figure

B]

illustrates the distributions of the percentage sub-optimality for the three policies 8], 5] and

6 in systems with p € (0,0.5). As stated earlier, these results have been obtained by using DP

[B]

algorithms to evaluate the average rewards earned by 8!, 9B and 6, and comparing these with

the optimal value g* (also obtained using DP). Figures and show the corresponding findings
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for the cases p € (0.5,1) and p > 1 respectively. In each of the three cases, the number of systems
tested was approximately 12,000. It should be noted that the categories on the horizontal axes in
Figures [6.5]6.7] are not mutually exclusive; so, for example, any heuristic policy which is within

0.1% of optimality in a particular system is also counted as being within 0.5%, etc.

Figure [6.5| shows that the Whittle heuristic appears to out-perform the static routing heuristic in
systems with p < 0.5. The selfish policy 6 also performs more strongly in light-demand systems
than in higher-demand systems, which is as expected. Figure [6.6] shows that in ‘medium-demand’
systems (with 0.5 < p < 1), all three heuristics appear to fare worse than in the low-demand case.
The Whittle heuristic again appears to out-perform the static routing heuristic in this category,
although its superiority is less obvious. Figure[6.7]shows that the Whittle heuristic appears to have
a clear superiority over the static routing heuristic in systems with p > 1. This may be related
to the fact that (by Theorem the Whittle heuristic policy is optimal in a heavy-traffic limit,
whereas the Bernoulli policy P! is not. As expected, the selfish policy performs very poorly when
the demand rate is high. Incidentally, the average reward earned by the Whittle heuristic policy

0" was within 5% of optimality in all of the systems tested across all categories.

0<p<05|— Whittle policy —— Bernoulli policy —— Selfish policy

100

Percentage of trials
B (@] (0]
o o o
T T T

N
o
T

Within 0.1% Within 0.5% Within 1% Within 2.5% Within 5%
of optimality of optimality of optimality of optimality of optimality

Figure 6.5: The distributions of the percentage sub-optimality for the Whittle policy 6!, the Bernoulli

[B]

policy 8!8] and the selfish policy 6 in ‘light-demand’ systems with p € (0,0.5).

Table shows, for each of the three policies o1 9Bl and 5, further information about the
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05<p<1 | — Whittle policy —— Bernoulli policy —— Selfish policy

100

B 2] [0}
o o o

Percentage of trials
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Within 0.1% Within 0.5% Within 1% Within 2.5% Within 5%
of optimality of optimality of optimality of optimality of optimality

Figure 6.6: The distributions of the percentage sub-optimality for the Whittle policy ", the Bernoulli
policy 8[8] and the selfish policy 6 in ‘medium-demand’ systems with p € (0.5,1).

1<p <1.5 | — Whittle policy —— Bernoulli policy —— Selfish policy
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©
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Percentage of trials
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of optimality of optimality of optimality of optimality of optimality

Figure 6.7: The distributions of the percentage sub-optimality for the Whittle policy 8", the Bernoulli
policy 18] and the selfish policy 6 in ‘high-demand’ systems with p € (1,1.5).
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distribution of the percentage sub-optimality in each of the three categories p € (0,0.5), p € (0.5,1)
and p € (1,1.5). The combined results for all three categories are also given. For each policy (within
each p category), the table shows the 25t 50th 75t and 100" percentiles of the percentage sub-

optimality (over all trials), and a two-sided 99% confidence interval for the mean.

Table shows pairwise comparisons between the three heuristic policies W), 9Bl and 9~, with
systems again divided into categories according to the value of p and a fourth category included,
showing the combined results for all categories. Each figure in the table shows the percentage of
trials (within the relevant demand rate category) in which the policy referred to in the correspond-
ing row of the table achieved a strictly greater average reward than the policy referred to in the
corresponding column. For example, the Whittle policy 8" out-performed the Bernoulli policy
0B] in 73.25% of the light-demand systems, 49.04% of the medium-demand systems and 69.03%
of the high-demand systems. It is important to note that these figures indicate the percentage
of systems in which there was a strict superiority of one policy over another. In some systems,
two heuristic methods may yield identical policies, in which case neither policy has an advantage;

indeed, this appears especially likely to happen when the demand rate X is small.

Part 2: 24,074 systems of large size

A further series of experiments were performed, involving another 24,074 randomly-generated sets
of system parameters. For each set of parameters, the number of facilities N was between 4 and
12, the number of channels ¢; for each facility ¢ was between 2 and 6, the fixed rewards «; were
sampled from a uniform distribution between 2 and 18 and the service rates p;, holding costs j;
and demand rate A were generated in the same way as in Part 1. The intention was to investigate
‘large’ systems, in which the size of the selfish state space S would preclude the use of dynamic
programming algorithms. As such, parameter sets were accepted only if they gave a value of ]5’ |
greater than 100,000 states. As in the previous part, the constraint «; > B;/u; (for all facilities )
was also enforced. The median of |§ | over all of the 24,074 trials performed was approximately 7.3

million states, and the maximum was approximately 6.08 x 10%? (60.8 sextillion).

With the use of DP algorithms assumed to be infeasible, one cannot evaluate the optimal aver-

age reward ¢* for a given system, nor is it possible to evaluate the performances of the heuristic
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All demand rates

Policy Lower quartile | Median | Upper quartile | Maximum | 99% C.I. for Mean
Whittle 6"/ 0.009 0.429 1.102 4.843 0.663 4 0.010
Bernoulli (7] 0.180 0.788 1.864 20.382 1.313 + 0.022

Selfish 0 4.858 31.033 70.419 98.111 38.032 4 0.447
Light demand (p € (0,0.5))

Policy Lower quartile | Median | Upper quartile | Maximum | 99% C.I. for Mean
Whittle 9"/ 0.000 0.001 0.062 3.144 0.111 + 0.004
Bernoulli (7] 0.002 0.162 0.703 11.768 0.488 4 0.010

Selfish 0 0.005 1.349 11.541 76.983 8.363 & 0.180
Medium demand (p € (0.5,1))

Policy Lower quartile | Median | Upper quartile | Maximum | 99% C.I. for Mean
Whittle AW 0.355 0.849 1.455 4.607 0.977 4 0.010
Bernoulli (7] 0.349 0.869 1.730 15.646 1.288 4 0.019

Selfish 0 12.043 26.668 42.196 86.909 28.320 + 0.258
High demand (p € (1, 1.5))

Policy Lower quartile | Median | Upper quartile | Maximum | 99% C.I. for Mean
Whittle 6] 0.335 0.795 1.335 4.843 0.902 4 0.010
Bernoulli 67! 0.744 1.731 3.002 20.382 2.160 + 0.026

Selfish 0 69.265 80.490 88.407 98.111 77.233 +0.198

Table 6.8: The distribution of the percentage sub-optimality under the three policies 8", 9[B! and é, with

results categorised according to the value of p. All figures are rounded to 3 decimal places.
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All systems

Light demand (p € (0,0.5))

Whittle | Bernoulli | Selfish Whittle | Bernoulli | Selfish

Whittle X 63.81% | 93.77% Whittle X 73.25% | 84.19%

Bernoulli | 31.61% X 91.32% Bernoulli | 14.85% X 76.02%
Selfish 3.07% 6.07% X Selfish 6.37% 16.16% X

Medium demand (p € (0.5,1))

High demand (p € (1,1.5))

Whittle | Bernoulli | Selfish Whittle | Bernoulli | Selfish

Whittle X 49.04% | 97.14% Whittle X 69.03% | 99.99%

Bernoulli | 49.80% X 97.97% Bernoulli | 30.34% X 99.99%
Selfish 2.86% 2.03% X Selfish 0.00% 0.00% X

Table 6.9: Pairwise comparisons between #"] 0[5 and . Each figure shows the percentage of trials in

which the policy referred to in the corresponding row out-performed the policy in the corresponding column.

W1 and 68 and the selfish policy 6 exactly. However, as discussed in previous sections,

policies 0
the indices used for decision-making by these three policies are simple to obtain (regardless of the
size of |S]), since they can be determined by considering individual facilities one-by-one. One can
then use simulation to estimate the average rewards earned by the three policies. Table shows
pairwise comparisons between the estimated performances of 8", 65 and § obtained from these
trials. All of these estimates have been obtained using discrete-time simulation, with 10 million
random transitions simulated for each of the three policies within each trial (including ‘dummy’
simulations caused by uniformisation) and the same random number seed used in all cases in order
to ensure a fair comparison. All of the policies tested used the same discrete-time step size, given
by A=A+ Zf\il cipti) "t As in Table the value of p = \/ Zf\il cip; has been used to divide
the systems tested into three categories: p € (0,0.5), p € (0.5,1) and p € (1, 1.5).

By comparing Tables and one may observe the effect of increasing the size of the finite
state space S on the relative performances of the policies "], 65 and 6. Of course, it is important
to bear in mind that the results in Table [6.10] are subject to simulation error. In all of the four p
categories, the heuristic policies "1 and 618! appear to perform slightly better in comparison to

the selfish policy # than they did in smaller-sized systems. However, the most interesting point to
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All systems

Light demand (p € (0,0.5))

Whittle | Bernoulli | Selfish Whittle | Bernoulli | Selfish

Whittle X 58.76% | 93.75% Whittle X 57.85% | 81.70%

Bernoulli | 37.88% X 92.53% Bernoulli | 32.07% X 77.87%
Selfish 6.18% 7.42% X Selfish 18.10% | 21.99% X

Medium demand (p € (0.5,1))

High demand (p € (1,1.5))

Whittle | Bernoulli | Selfish Whittle | Bernoulli | Selfish

Whittle X 32.76% | 99.64% Whittle X 85.99% | 99.89%

Bernoulli | 67.24% X 99.80% Bernoulli | 14.01% X 99.89%
Selfish 0.36% 0.20% X Selfish 0.11% 0.11% X

Table 6.10: Further comparisons between W1, 98] and 6 in systems where |S’ | is large.

note is that in systems with ‘medium’ demand rates (p € (0.5, 1)), the Whittle policy /"] appears
to be clearly inferior to the Bernoulli policy 8): this was not the case when smaller systems were
considered earlier. On the other hand, in systems with ‘high’ demand rates (p € (1,1.5)), the
Whittle policy ("] appears to have a very strong advantage over the Bernoulli policy 8!, Thus,
taking into account the results in Tables and it appears that there is a general tendency
for 0" to out-perform 08] in systems where p is either ‘small’ or ‘large’, but for 85 to gain an

advantage over /" in systems where p lies within the ‘intermediate’ range (0.5,1).

6.4 Conclusions

The results in Chapter {4| (in particular, Theorem have established that it is theoretically
possible to find an average reward optimal policy for the MDP Y formulated in Section by
truncating the state space S, and applying a dynamic programming algorithm to an MDP with
the finite state space S defined in Section . Unfortunately, the finite set S might itself be very
large in some problem instances, and for this reason it is necessary to look for heuristic approaches

which can be relied upon to yield near-optimal policies in a short amount of time.

The curse of dimensionality has been widely discussed in the MDP literature (see [140] [141]).
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Two heuristic methods have been introduced in this chapter, both of which are able to avoid the
problems caused by a large number of service facilities (i.e. a high-dimensional state space) by
analysing service facilities individually, and deriving a set of indices for each facility. In the case
of the Whittle index policy 01 discussed in Section these indices are based on the properties
of optimal routing policies in a Lagrangian relazation of the original problem, while in the case
of the static routing heuristic discussed in Section the indices are based on the application
of policy improvement to an optimal static routing policy. By relying on the simple principle of
always choosing the facility with the largest index value at any given state, one can use the indices
derived for the individual facilities to derive a heuristic stationary routing policy for the original
N-facility problem. Furthermore, the empirical results in Section have demonstrated that both

of the policies "] and 6[B] are frequently able to achieve a strong performance.

For any given set of system parameters, the indices which characterise the heuristic policies 8"V
and 0!8 can be calculated in a completely deterministic way. Thus, these heuristics do not rely
on any iterative algorithm, nor do they involve any sort of randomisation. One might regard the
deterministic nature of these heuristics as both a strength and a weakness. On one hand, their
simplicity makes them extremely easy to implement; on the other hand, if the heuristics are found
to perform poorly in a particular system, then it is not necessarily easy to see how the policies
that they produce might be adjusted in order to achieve closer proximity to an optimal policy. An
alternative approach to finding a near-optimal policy might involve repeatedly making updates to a
‘test’ policy according to a procedure which is somehow stochastic. The aim of this procedure would
be to make gradual improvements to the test policy (somewhat in the style of a DP algorithm),
with the ultimate goal of achieving convergence to an optimal policy. Reinforcement learning, which

essentially utilises this type of approach, will be discussed extensively in Chapter
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The challenge of finding a socially optimal policy for an MDP which models a large-scale real-
world dynamic system is an extremely formidable one. As discussed in earlier chapters, dynamic
programming algorithms might be able to accomplish the task in theory, but the time required
to execute such procedures escalates quickly as the complexity of the problem increases, to the
point where their effective use becomes unrealistic. The heuristic methods discussed in Chapter [6]
have been shown to perform well in problems of reasonable size, and moreover these methods have
strong theoretical backing. This chapter is devoted to an alternative approach, based on simulation
of the real-world system under consideration. This approach is often referred to in the literature
as reinforcement learning (a term which originated in the artificial intelligence community; see,
for example, [53| 127, 188]), although various other names for it are commonly used, including

simulation-based optimisation [62] and approximate dynamic programming [140].

Section will present an overview of the general approach of reinforcement learning, and explain
how it is applicable to the queueing system problems considered in this thesis. Section will
provide details of certain algorithms that can be found in the literature, and demonstrate their
performances using some specific examples. Section will present some ‘specialised’ algorithms
which exploit the particular properties of the queueing systems under consideration. Section [7.4]
will explore the method of value function approximation, which is essentially a technique for coping
with problems where the state space is extremely vast. Section will present numerical results
demonstrating the performances of the algorithms discussed in the preceding sections. Finally,
Sections[7.6]and [7.7] will consider certain generalisations of the queueing system described in Section

[3.1] involving non-exponential distributions and heterogeneous customers respectively.

7.1 Introduction

Reinforcement learning differs from the optimisation methods considered in earlier chapters (such
as dynamic programming) in that it relies upon simulation of the stochastic process to be optimised.
Simulation itself is so well-established as a method for evaluating the performance of a queueing

system that the idea of using it as a tool for optimising performance is a natural and appealing

285
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one. While simulation, by its nature, cannot offer exact guarantees regarding the consequences
of implementing a particular policy, the advances in computer processing power made in recent
decades have enabled it to become an indispensable technique for mathematical modellers working
in all areas of industry (see, for example, [I113], [I80]). An in-depth discussion of the advantages of

simulation will not be given here, but it is appropriate to note some key points:

1. Firstly (and most obviously), creating a computer simulation of a queueing system saves time,

effort and money in comparison to conducting experiments ‘in real life’.

2. The level of detail in a simulation model can be extremely high. As such, it is often possible
to simulate (with very little effort) a system whose random transitions follow conditional

distributions which would be intractable using a more analytical approach.

3. Although the results of a simulation experiment are subject to random ‘noise’, this effect can
be mitigated by conducting multiple trials and collecting summary statistics. If the model is
designed well and a suitably large number of trials are performed, the resulting estimates of

key performance measures for the system will generally be very reliable.

In the early part of this chapter, the system under consideration will once again be the ‘basic’
N-facility queueing system described in Section [3.1] Extensions to this model will be discussed in
later sections. As discussed in Chapter [4] it is possible to find an average reward optimal policy 6*
for the system which operates in such a way that at any state x € S, the action 6*(x) chosen by
0* attains the maximum on the right-hand side of the optimality equations:
74 ) = 1 § ) + 30V M) (7.1.1)
y

where (as in previous chapters) g*

is the optimal expected long-run average reward over all ad-
missible policies, and the function h : S — R is referred to as the relative value function. Note
that in , r(x, a) represents a generic reward function which is assumed to be suitable for the
purpose of calculating the expected long-run average reward (results from previous chapters have
shown that various different formulations for r(x,a) are possible). Let Q(x,a) be the ‘@Q-factor’
associated with choosing action a € Ax under state x € S, defined as follows:

Q(x,a) :=r(x,a) —g" + Z:p(x7 a,y)h(y). (7.1.2)
yeS
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Accordingly, for all states x € S, one simply has:

h(x) = max Q(x, a). (7.1.3)

a€Ax

Hence, knowledge of the exact -factors for all state-action pairs is all that is required in order to
characterise an average reward optimal policy. By substituting into , one obtains an
alternative set of optimality equations involving the Q-factors Q(x,a):

g +Qx,a) =r(x,a)+ Y p(x,a,y) max Q(y, ). (7.1.4)

yes Y

Essentially, the objective throughout this chapter will be to obtain reliable estimates for the Q-
factors Q(x,a), under the premise that the dynamic programming algorithms relied upon in earlier
chapters are rendered unusable due to the scale and/or complexity of the problem. This task will
be accomplished using reinforcement learning (RL) algorithms. These RL algorithms will be very
much based within the mathematical framework of a Markov Decision Process, and (at least in
the first few sections) will rely upon state space, action space, transition probability and reward
formulations similar to those introduced in Chapter [3| Indeed, these algorithms will have much in
common with DP algorithms themselves; the essential difference will be that they avoid sweeping

exhaustively through all states and actions on each iteration, as DP algorithms do.

Although RL algorithms have become popular tools for optimising Markov Decision Processes,
the point should be made that reinforcement learning in general is a much broader field, with
applications in statistics, economics, game theory and other disciplines (see, for example, [29] [51],
112]). Thus, this chapter concerns only one particular application area of RL, and certainly does

not represent a comprehensive study of the field of reinforcement learning itself.

Before proceeding, some comments about the general philosophy of reinforcement learning are in
order. RL may be summarised somewhat vaguely as the process of an intelligent being (often
referred to as an agent) interacting with its environment, and learning from the consequences of
its actions. At any point in time, the agent finds itself in a particular state, with various possible
actions to choose from; it then selects an action and learns the consequences of the choice it has
made. Depending on whether or not these consequences are favourable, it may become either more
or less inclined to select the same action again in the future when it finds itself in the same state.

As the process continues, the agent gradually acquires more experience and is able to improve
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its own long-term welfare by almost always selecting actions which have resulted in favourable
outcomes in the past; although one usually assumes that, regardless of how much experience has

been gained, the agent will still make ‘experimental’ choices occasionally in order to continue the

N \

learning process, and avoid becoming completely settled on one particular policy.

Environment -
>

action a,, selected

Agent in
e State x,
-

Next iteration:

reward r, received
new state x,.,reached

increment n by 1

Figure 7.1: The ‘agent-environment interface’ in reinforcement learning.

Figure is a diagram which bears similarity to illustrations found in several texts, including
Sutton and Barto [I75], in which it is referred to as the ‘agent-environment interface’. For the sake
of simplicity, let it be assumed for the time being that the process evolves in discrete time (this
assumption will be relaxed in later sections). In keeping with the convention of this thesis by using
vectors to represent states, let x,, denote the state of the system at some discrete time epoch n > 0.
As depicted in Figure [7.1], an action a, is chosen by the agent at time n, and two new pieces of
information are acquired as a result: firstly, a reward r,, is received, and secondly the agent finds
itself in a new state x,,+1. The reward 7, may be either random or deterministic, but in either case
one would assume that its value is influenced by both x,, and a,,. The new state x,41 will generally
be determined at random in a stochastic problem. The agent then uses both the reward r, and the
new state x,41 to judge how ‘favourable’ the consequences of choosing action a, in state x,, have
turned out to be; for example, it might be the case that a particular outcome is deemed highly

favourable by the agent even if the reward obtained is small, since it might entail a transition to
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a state which is regarded as being extremely desirable. Similarly, if a particular action results in
a transition to a state which has been associated only with poor outcomes in the past, then the

agent may look upon this outcome unfavourably, regardless of the reward earned.

In general, RL algorithms assume that the ‘new information’ acquired by an agent after making
a decision is accessible either by observation of an actual real-world process, or via a simulator;
unsurprisingly, it is the latter assumption that is made in this thesis. In order to construct an
adequate simulation model, it is necessary to have some knowledge (or inference) of the probability
distributions which govern the rewards and transition probabilities for the system. However, it
is usually not necessary to formulate exact expressions for the transition probabilities themselves.
By relying upon simulation rather than exact computation, RL algorithms are said to avoid the
“curse of modelling”. Indeed, Gosavi [62] (p. 214) comments that “the avoidance of transition

probabilities (by RL algorithms) is not a miracle, but a fact backed by mathematics”.

To illustrate this principle, consider an M /M /1 queueing system with arrival rate A > 0 and service
rate p > 0. Assuming that the parameters A and p are known, the random evolution of this system
can be completely determined by generating a sequence of exponentially-distributed inter-arrival
times, and another sequence of exponentially-distributed service times; thus, it is not necessary
to evaluate (for example) the probability of transferring from a particular state at time ¢y > 0 to
another state at time ¢; > ¢y in order to simulate the progression of states, queue lengths, waiting
times etc. Whilst the calculation of transition probabilities may not be problematic in the case of
an M /M /1 queue, it may become an extremely difficult task when one considers more complicated
queueing systems, especially in cases where it is not possible to apply uniformisation in order to

discretise the system (cases such as these will be discussed further in later sections).

Even within the specific application area of Markov Decision Processes, RL algorithms in the liter-
ature are numerous and varied. However, as discussed previously, all of the algorithms considered
in this chapter share a common purpose: to estimate the Q-factors Q(x,a) (which characterise an
average reward optimal policy) as accurately as possible. From , it is clear that the value
Q(x,a) for any state-action pair (x,a) € S x A may be regarded informally as a measure of the
‘utility’ of choosing action a under state x. Recall (from Theorem that the relative values

h(x) satisfying the average reward optimality equations ((7.1.1)) are unique, provided that one ‘fixes’
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one of their values (by, for example, setting h(0) = 0). It then follows from that the Q-
factors Q(x, a) are also unique. Hence, the task of obtaining reliable estimates for these Q-factors is
very much akin to the classical statistical problem of estimating the values of unknown population
parameters by random sampling. Furthermore, the performance of an RL algorithm may be judged
not only by whether or not it outputs a policy which is close to optimal, but also by whether or
not the estimates obtained for the @-factors are close to their theoretical values (assuming that one
has the luxury of knowing these values exactly, which will generally only be the case in small-scale
problems used for validation purposes). In the next section, two learning algorithms based on the

general RL methodology discussed in this section will be introduced and compared.

7.2 TD learning and R-learning

The intention in this section is to explain in greater detail how RL algorithms may be applied to
a Markov Decision Process, and to introduce some of the most well-known RL algorithms from
the literature. In terms of their theoretical foundation, all of the RL algorithms considered in this
chapter will be based (at least to some extent) on dynamic programming methods; however, these
algorithms will differ significantly from DP algorithms in their mode of operation. Two important

characteristics of the DP algorithms discussed in earlier chapters are as follows:

1. DP algorithms usually rely upon synchronous updating, which means that they update the

value function on each iteration by looping over the entire state and action space.

2. DP algorithms rely upon knowledge of a deterministic reward r(x, a) and fully-specified prob-

ability distribution {p(x,a,y)}ycs for each state-action pair (x,a) € S x Ax.

In order to illustrate the way in which RL algorithms deviate from the characteristics of DP
algorithms noted above, consider an N-facility queueing system which satisfies the assumptions of
Section [3.1]and suppose the system is modelled by an MDP which has been uniformised as described
in Section so that it evolves in discrete time steps of size A, where A € (0, A+ Zf\i Lci) 7.
RL algorithms operate by simulating random transitions. Suppose the process is in some state
x, € S at time step n > 0, and an action a,, € {0,1,2,..., N} is chosen. In this case, the task of

simulating the next random transition is simply a matter of sampling a random number u from
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a uniform distribution between 0 and 1, and then using the transition probabilities in (3.5.3) to
determine the next state based on the particular range of values in which w is found. To be specific,
let u be a random number between 0 and 1. Then, given that an action a,, € Ay, is chosen at state

X, € S at time n > 0, the state x,,+1 at time n + 1 may be determined as follows:

if u < AA and a,, =i for some i € {1,2,..., N},

X5, A AA 4 3T min((xn)j, ¢)pA < w < AA + 35 min((x,)5, )i A
for some i € {1,2,..., N},

Xnt1 = (7.2.1)

X, otherwise,

where, in keeping with the notation of previous chapters, (x,); denotes the 4t component of the
vector x,. Accordingly (making use of the RL terminology introduced in the previous section),
an agent may be deployed to ‘explore’ the system by choosing actions and moving between states
according to the simulation procedure described above. However, the question remains as to how
actions should be selected. Since the ultimate objective is for the agent to ‘learn’ a policy which will
optimise the performance of the system (i.e. a socially optimal control policy), it must obviously
be allowed to experiment with many different policies. On the other hand, the simple strategy of
selecting actions completely at random would not be the most efficient way for the agent to learn

a socially optimal policy, since this would not make effective use of past experience.

What is really needed is some sort of compromise between exploration and exploitation; that is, the
agent should sometimes choose actions randomly (in order to ensure that it explores a breadth of
different options at each state), but should also sometimes act ‘greedily’ by focusing on the action(s)
that have yielded the most favourable outcomes in the past. The importance of exploitation lies
not only in the fact that it improves the agent’s welfare in the short-term, but also in the fact
that the action(s) which are perceived to be ‘best’ at any particular state are the most important
ones to evaluate accurately, and therefore should be selected more often than actions for which
there is strong evidence of sub-optimality. Of course, these ideas need to be formalised, and an
RL algorithm must specify the exact means by which an agent selects actions. The theme of
exploration vs. exploitation is important not only in reinforcement learning, but also in the design

of meta-heuristics and the field of artificial intelligence in general (see [60}, 139, 148]).
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As the agent explores the consequences of choosing different actions at the various states it visits,
it should gradually improve its estimates of the Q-factors Q(x,a) which characterise an average
reward optimal policy for the system. In practice, this means that an array of values Q(X, a) should
be stored, where (for each state-action pair (x,a) € S x Ax) Q(x, a) is an estimate of Q(x,a). Each
time the agent chooses some action a € Ayx at state x € S, it should then update its estimate

Q(x,a) based on the reward received and the new state reached after the resulting simulated

random transition. The next question that must be addressed is exactly how the estimates Q(x, a)

should be calculated. Recalling (|7.1.2)) and (7.1.3)), the true values Q(x,a) satisfy:

Q(x,a) =r(x,a) —g" + Zp(x, a,y) max Q(y,b). (7.2.2)
yeSs

Of course, the Q-factors in are those associated with an average reward optimal policy. Be-
fore introducing the RL algorithms of particular interest in this section (which aim to approximate
an optimal policy), it will be useful to begin by addressing the problem of how to evaluate the
expected long-run average reward under a fized stationary policy using RL methods. Let 6 be a
stationary policy, and let Qg(x) denote the Q-factor for choosing the action 6(x) € Ax prescribed
by 6 at state x € S, assuming that the policy 6 is followed thereafter. By analogy to the policy
evaluation equations in (3.7.5), the Q-factors Qp(x) must satisfy (for all x € S):

QO(X) - T(X’ Q(X)) —go + Zpﬁ(xv y)Q@()’)? (723)

yes
where gp and py(x,y) denote (respectively) the expected average reward under ¢ and the transition
probabilities associated with the policy 6, and (as before) the reward function r(-) is not specified
exactly at this stage, but is assumed to be fit for the purpose at hand. It is now appropriate to
introduce the concept of temporal-difference learning (TD learning), which is discussed extensively
in (for example) Sutton and Barto [I75]. The TD learning procedure for evaluating a stationary

policy 8 may be described most easily by reference to the algorithm given below.

Temporal difference learning algorithm (TD learning)

1. Input 6, the stationary policy to be evaluated. Initialise values n = 0, g9 = 0 and an array of

values Qg(x) with Qg(x) = 0 for each x € S. Choose an initial state xq € .

2. Use simulation to determine the reward 7, and the new state x,41 reached at the next time
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step. Then, update Qg(xn) according to the following update rule:

QG(Xn) — (1 - 5n)@9(xn) +0p [Tn —gn + QG(Xn+1)} )

where §,, € [0, 1] is a ‘learning parameter’ which either remains constant or tends to zero as

n — 0o. (Some possible definitions for d,, are discussed later.)

3. Calculate g,41, the latest estimate of the average reward gy, as follows:

gn+1 = (1 = Ca)gn + Cn |Tn + QG(Xn+1) - QO(Xn) )
where (;, € [0, 1] is another learning parameter.

4. If n = nmax, Where npay is a large integer, then output the array of values Qg(x) as estimates
for the values Qg(x) satisfying ([7.2.3) and also output g,+1 as an estimate for the average

reward gy, then stop. Otherwise, increment n by 1 and return to step 2.

Note that, as a consequence of the fact that a fized policy 6 is being evaluated, the Q-factors Qg(x)
estimated by the TD learning algorithm are exactly equivalent to the relative values h(x) in (3.7.5]).
An example involving an application to a queueing system will be given shortly. First, however,
some further explanatory comments are in order. Essentially, in step 2 of the algorithm, the current
estimate of the Q-factor at state x,, € S (represented by Qg(xn)) is compared to the ‘new’ quantity
Tn — Gn + Q@ (Xp+1), where the reward 7, and the new state x,,41 are both acquired via simulation.
The link between the expression r,, — g, + Qg(an) and the expression on the right-hand side of
is obvious. As such, one can easily recognise that if the algorithm achieves its ultimate goal
(rarely possible in practice!) of obtaining completely accurate estimates for the Q-factors Qy(x) and
average reward gy, then the estimate Qe (xp,) will be an unbiased estimator of the random quantity
Tn — Gn + Qg(xn+1) generated by the simulator. The difference r, — g, + Qg(an) — Qg(xn) is
referred to as the TD error at stage n of the algorithm, and the estimate Qg(xn) is updated (in
step 2) by multiplying the TD error by the (typically small) quantity d,, and ‘adjusting’ Qo (xp,) by
the resulting amount. Similarly, in step 3, the estimate g,+; for the expected average reward gy is

calculated in a manner entirely consistent with the policy evaluation equations (|7.2.3)).

It should also be noted that, from a practical point of view, the initialisation of an array of values

Q@(X) for all x € S (as described in step 1 of the algorithm) is obviously not possible if the state



Chapter 7 Reinforcement learning 294

space S is infinite. However, this does not mean to say that the TD learning algorithm cannot be
applied to a problem with an infinite state space. Clearly, all that is required in the case of an
infinite state space is for a computer program to be written in such a way that new values Qg(x) are
initialised for states x € S as and when they are first visited during the simulated evolution of the
process under 6. Assuming that the number of states visited during the running of the algorithm
does not escalate in such a way that the system memory is unable to cope with the number of
Q-factor estimates requiring storage, the program should be capable of at least obtaining a reliable
estimate of the average reward gy, even if it is impossible to visit (and estimate the @Q-factors for)
all states in S during the finite running time of the algorithm. RL algorithms which do not need to
store a unique value for each system state (and are thereby able to cope with extremely vast state
spaces) will be discussed in Section The fact that RL algorithms are theoretically able to cope
with infinite state spaces gives them an important advantage over conventional DP algorithms,

which are restricted by the need to sweep through all system states on each iteration.

In practice, the learning parameters §, and (, are sometimes given small constant values; for
example, the values §, = 0.1 and (, = 0.01 (for all n € N) are used in the example given in
Chapter 6.7 of Sutton and Barto [I75]. Alternatively, ¢, and (, may both tend to 0 as n — oc;
however, in this case it is desirable to ensure that ¢, decays to zero more rapidly than ¢, (see
[18]). Generally speaking, it is not realistic to devise a rule for choosing J,, and ¢, which will suit
any application; some ‘tweaking’ will usually be necessary in order to find the configuration which
yields the best performance for the system under consideration. One possible approach is to allow
the parameter d,, to be state-dependent, and define it in such a way that it depends on the total
number of visits made to state x,, up to and including time n. As explained by Gosavi [63], this
strategy has its roots in the Robbins-Monro stochastic approximation scheme, originally introduced
in [143]. Since the use of state-dependent learning parameters will be important in the development

of this chapter, it will be useful to provide an outline of the Robbins-Monro procedure.
Robbins-Monro stochastic approximation scheme

Let X be a bounded random variable, and suppose that a sequence of samples (X7, X2, X3, ...) is
available for estimating the expected value E[X]; that is, each sample X is a realisation of X. Let

(Y1,Y2,Ys,...) denote a sequence of estimates of E[X], obtained as follows:
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1. Initialise the values n = 1 and Yy = 0, and choose a small value € > 0.

2. Calculate Y;,, the n' estimate of E[X], as follows:
Yo = (1 = dn)Yo1 + dnXn, (7.2.4)

where it is assumed that d,, satisfies the following conditions:

n

lim dp, = 00, (7.2.5)
n—oo
m=1
n
- 2
nh_}ngo Z_ldm < 0. (7.2.6)

3. If |Y,, — Y,,_1| < € then stop; otherwise, increment n by 1 and return to step 2.

If d,, satisfies the conditions ([7.2.5))-(7.2.6)), then Y,, is guaranteed to converge to E[X] as n — oo
(see [63, 143]). If d,, = 1/n for all n € N, then it is clear from (7.2.4]) that the Robbins-Monro

estimate Y}, is obtained by direct averaging of the samples X1, Xo, ..., X;;; that is:

Yn: n )

in which case the convergence of Y,, to F[X] is implied directly by the strong law of large numbers
(see, for example, [146], p. 78). However, the fact that alternative definitions for d,, are possible
may be exploited in the choice of learning parameters for RL algorithms. Suppose that, in the
simulation of an MDP operating under a stationary policy 6, v,(x) denotes the total number of
visits made to state x € S up to and including time n > 0. If the learning parameters d,, in step 2
of the TD learning algorithm on page are given by 1/v,(x,) for all n € N, then each estimate
Qg(xn) is obtained via direct averaging of the ‘data pieces’ 7m — gm + Qp (Xm+1) acquired at all time
steps m € [0, n] for which x,, = x,,. Therefore, in view of the fact that the Qg(x) values satisfy the
evaluation equations , it is clear that setting 0, = 1/v,,(x,) for n € N is somewhat logical;
however, there may exist other specifications for §,, which enable a stronger performance (in terms

of the rate of convergence of the estimates Qg(x) to their true theoretical values).

It should also be noted that, unfortunately, the convergence properties of the Robbins-Monro
approximation scheme (i.e. the fact that the estimates Y;, converge to F[X]) do not readily imply

that the estimates Qg(x) obtained by the TD learning algorithm are guaranteed to approach the
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theoretical values Qg(x) as the running time tends to infinity. This is mainly due to the fact that
each ‘data piece’ r, — g, + Qg(an) acquired in step 2 of the algorithm depends on estimates of
g9 and Qg(Xn+1) (given by g, and Qg(x,11) respectively) which, in general, will not be exact. The
task of establishing convergence properties for RL algorithms is far from trivial and presents an

ongoing challenge for researchers; this topic is discussed further in Appendix

An important difference between the task of estimating the Q-factors Qy(x) using the ‘data pieces’
Tn — Gn + Qe(an) acquired during the TD learning algorithm and the more simple problem of
estimating an expected value E[X] using sample realisations of the random variable X (addressed by
the Robbins-Monro scheme) is that, assuming that the TD learning algorithm behaves as expected,
each data piece r,, — g +Q9 (Xp+1) will become a more reliable estimator of Qg (x,) as the algorithm
progresses; whereas, in the Robbins-Monro scenario, each sample realisation X, is an equally good
estimator of F[X]. This observation suggests that the learning parameters ¢,, should be defined in
such a way that the data pieces acquired at later stages of the algorithm are given more ‘weight’
than the data pieces acquired in the earlier stages, since the earlier-acquired data are likely to
depend on less accurate estimates of gy and the Q-factors Qy(x). One way to achieve this (which

again relies upon state-dependent learning parameters) is to define 4,, as follows:

T
Op,

T re] =T (7.2.7)

where T is an integer greater than 1. Note that if 7 = 1 in (7.2.7), then &, = 1/v,(x,) and this
is again equivalent to direct averaging of the data pieces acquired at state x, over the course of
the process, with an equal ‘weight’ attached to each data piece. In experiments, values such as
T = 10 have been found to yield satisfactory results; the examples given later in this chapter will
demonstrate this. Note that, under the additional assumption that the stationary policy 6 induces
an ergodic Markov chain defined on a finite set of states Sy (which has been shown, by the results in
Section to be true for any average reward optimal policy 6* in the queueing system formulated
in Section , it may be shown rigorously that the parameters ¢,, defined in satisfy the
Robbins-Monro conditions Y52 ; 8, = 0o and > oo ; 62 < co. Indeed, since T > 1 and vy, (x,) < n

for all n € N, the property Y 7, d,, = oo may be established by noting that:

T 1
>77

6n:T+yn(xn)—1 n
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whereupon the property Y >, d,, = oo follows using results for comparisons between infinite series
(see [89], p. 50) and the fact that > oo ; n~! = co. On the other hand, let Sp C S denote the finite
set of states which are positive recurrent under 6. Since any state x ¢ Sp is visited only finitely

many times under 6, it is sufficient (in order to show that Y °° | 62 < 00) to show:
o
> I(xn € Sp)d7 < o0,
n=1

where I(-) is the indicator function. Then, again using standard results from analysis:

T 2
ZIXnESQ ZIXnESQ <T+I/n(xn)—1>
T 2
< ZI(xn € Sp) <Vn(Xn)>
rY Y
xESanln

= T?|Sy|7?/6, (7.2.8)

which implies Y7 62 < oo as required. The next example revisits a small-scale problem considered
earlier in this thesis, in order to graphically illustrate the speed at which the estimates Qg(x)

converge to the theoretical values Qy(x) during the TD learning algorithm.

Example 7.2.1. (Convergence of TD learning)

This example uses the same parameters as Example There is a demand rate A = 1 and two

facilities with one service channel each (¢; = ca = 1). The other parameters are:
p1 = 0.8, B =2, a; =0,
wo = 0.4, Bo =1, oy = 4.
Let 6 be a stationary policy which chooses actions as shown in Table [7.I} It may be seen that 6

induces an ergodic Markov chain defined on a set Sp consisting of only 6 states.

The random transitions for the system operating under 6 may be simulated by allowing each
transition to depend on the value of a uniformly-distributed random number between 0 and 1, as

described in ([7.2.1). Let r(x,a,y) be defined for (x,a,y) € S x Ax x S as follows:

X a y Z az min yzvcz) i ﬂzyz) .
=1
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To=0]29=1
z1 =0 1 1
1 =1 2 1
T =2 2 0

Table 7.1: The policy 6 for the system in Example [7.2.1

In this example, the reward 7, acquired after choosing action a, € Ay, at the n'® iteration of TD

learning will be defined in terms of the next state reached x,1 as follows:
o = st ). (7:29)

Thus, the definition of r, is similar to that of the ‘real-time’ reward r(x) used in previous chapters
except that it depends on the service completion rates and holding costs incurred at the next state
Xn+1, as opposed to the current state x,,. Experiments have shown that defining the rewards r, in
this way leads to a slightly improved performance for TD learning; moreover, allowing 7, to depend
on the randomly-generated state x,,11 (as opposed to being completely determined by the state x,,
and action ay) is somewhat more consistent with the general RL framework, which assumes that

the reward r,, is not revealed to the agent until after the action a, has been chosen.

The learning parameters d,, will be given by in this example, with 7" = 10. For the secondary
learning parameters used in step 3 of the algorithm, it will be sufficient to use the state-independent
rule ¢, =1/(n+ 1) for all n > 0 (note that adopting this definition ensures that ¢, decays to zero
faster than d,,). Figure shows, for each state x € Sy, the evolution of the estimate Q(x) as the
number of iterations progresses during one trial of the TD learning algorithm. The ‘true’ values
Qo(x) (calculated by solving the equations ((7.2.3]) exactly) are also shown as ‘dashed’ lines ( - -
-), in order to enable a comparison. It should be noted that the Qg(x) and Qg(x) values shown
in the figure are relative values, with Qy((0,0)) set to a value of zero in order to obtain a unique
solution to the equations 1) The estimated values Qg(x) are scaled in the same way, so that
Qs((0,0)) = 0; this is why the values Qg((0,0)) and Qg((0,0)) are not shown in the figure (since
they are both set equal to zero). The figure shows that each estimated value Qg(x) appears to

converge to its expected value QQp(x) as the number of learning iterations increases. X
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Figure 7.2: Convergence of the estimated values Qg(x) to the true values Qg(x) in Example [7.2.1

The TD learning algorithm on page [292] estimates the ()-factors and the expected long-run average
reward under a fized stationary policy 6. As one might expect, a more formidable challenge for an
RL algorithm is to learn the Q-factors associated with an average reward optimal policy 6* (without
prior knowledge of this policy!) and the corresponding value of the average reward. As discussed
earlier in this section, an RL algorithm will generally need to rely upon a mixture of exploration
and exploitation in order to accomplish this task. In the present context, exploration refers to the
act of choosing an action at random at a particular state, while exploitation refers to the choice of
an action a which maximises Q(x,a) (where x € S is the current state, and Q(X, a) is the latest
available estimate of the value Q(x,a) associated with an optimal policy). One possible way for
an RL algorithm to strike a balance between exploration and exploitation is to use a so-called

epsilon-greedy rule for selecting actions. This mode of decision-making is defined below.
Definition 7.2.2. (Epsilon-greedy rule)

An e-greedy rule is a rule for choosing actions which operates as follows:

o With probability € € (0,1), a random choice is made; that is, each action a € Ax is selected

with probability 1/|Ax| (where x € S is the current state).

o With probability 1 — €, an action a € argmax,e 4 Q(X, a) is chosen. (In the case of ties, a
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random choice can be made among actions which attain the mazimum.)

An RL algorithm may simply apply an e-greedy rule, with some fixed value of € € (0, 1), at every
decision epoch in order to ensure adequate coverage of the action sets at every state that it visits
(or, at least, the states that it visits infinitely often). Typically, the value of € will be small, since
the priority of the algorithm (especially in its later stages) should be to ensure that the Q-factors
associated with actions that are perceived as ‘optimal’ at the various states in S are estimated
as accurately as possible, and therefore these actions should be ‘sampled’ more often than actions
that are likely to be sub-optimal. Provided that exploratory actions are chosen at least some of
the time, the RL algorithm should always have the opportunity to ‘correct itself’ by updating
the set of actions that it believes to be optimal at any particular state; as such, it should be
capable of eventually learning an optimal policy. An alternative to an e-greedy rule is a rule for
selecting actions by which exploratory choices are made almost exclusively in the early stages of
the algorithm, but the probability of selecting exploratory actions decays towards zero (or a small
positive number) as the number of iterations increases. For example, consider a rule which is similar
to an e-greedy rule, except that the probability of ‘exploring’ is given by:

K
P,=— 7.2.10
" n4+ K’ ( )

where n is the number of iterations completed, and K is a large integer (e.g. K = 10%). The
probability of choosing an ‘exploitative’ action is then given by 1— P, = n/(n+ K), which increases
with n. Applying a rule of this form yields the desirable effect of allowing a lot of exploration to
be done in the early stages of the algorithm; however, the choice of the constant K can create a
dilemma. If K is too small, then P, will decay too quickly and the algorithm may therefore be
unable to carry out enough exploration to find an optimal policy; instead, it may become ‘stuck’
evaluating a sub-optimal policy. On the other hand, if K is too large then the algorithm will simply
waste too much time evaluating Q-factors associated with sub-optimal actions; although one might
still expect it to find an optimal policy eventually, the convergence of the estimated values Q(x, a)

to their true values (if any such convergence occurs at all) will be undesirably slow.

Throughout this chapter, a number of different RL algorithms for learning average reward optimal
policies will be considered. Experiments have shown that, although there usually does exist some

value of K such that the rule given in ([7.2.10]) for selecting actions appears to out-perform any
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e-greedy rule with respect to speed of convergence to a near-optimal policy, the optimal choice of
K tends to vary quite drastically according to the particular RL algorithm under consideration and
the scale of the problem (in terms of dimensionality of the state space, etc.) to which the algorithm
is applied. For the sake of simplicity and to ensure the fairest possible comparison between the
various algorithms to be discussed in this chapter, the examples given later will assume that an

e-greedy rule is used for action selection, with the same value of € used in each case.

It is possible to derive an RL algorithm for learning an optimal policy by making only a few minor
adjustments to the TD learning algorithm given on page [292] The first adjustment required is
that, instead of the actions selected by the agent being determined by a fixed stationary policy @,
actions should be selected using a rule which allows for both exploration and exploitation (such
as an e-greedy rule). The second modification involves a change to the update rule used for the
Q-factor estimates, so that the quantities being estimated are the values Q(x,a) associated with
an optimal policy, as opposed to the values QQp(x) associated with a fixed policy 6. The update
rule used for the estimated long-run average reward g, must also be modified, so that the optimal
value ¢g* is approximated, as opposed to the policy-dependent value gyg. The specific changes
required to the update rules for Q(x, a) and g, can easily be inferred via a comparison between the

optimality equations ([7.2.2)) and the policy evaluation equations ([7.2.3)), and details are provided

in the algorithm given below, referred to in the literature as R-learning (see [62] [154]).

R-learning algorithm

1. Initialise the values n = 0, gg = 0 and an array of values Q(x, a) with Q(X, a) = 0 for each

state-action pair (x,a) € S x Ax. Choose an initial state xg € S.

2. Select an action a,, € Ay, according to a rule which allows for both exploration and exploita-

tion (e.g. an e-greedy rule, or the rule described in (7.2.10))).

3. Use simulation to determine the reward r, and the new state x,+1 reached at the next time

step. Then, update Q(xn, ay) according to the following update rule:

~

Q(xp,an) + (1 — 5n)Q(Xn, ap) + On |Th — gn + max Q(xn+1, a)l, (7.2.11)

/
a'e Xn41

where 0, € [0,1] is a learning parameter which may be state-dependent.
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4. If the action chosen in step 2 was an exploitative action, calculate g,11 as follows:

gni1 = (1 = C)gn + Cn |rn+ max Q(xpi1,a") — max Q(xp,0a)| , (7.2.12)
UL/EAanrl a€Ax,

where ¢, € [0, 1] is another learning parameter. Otherwise, set g,+1 = gn.

5. If n = Nmax, wWhere nmax is a large integer, then output a stationary policy 88 which, at
each state x € S, chooses an action 6!l (x) maximising the expression Q(x, a) over all actions
a € Ax. Also output g,+1 as an estimate for the optimal expected average reward g¢*, then

stop. Alternatively, if n < npax, increment n by 1 and return to step 2.

The R-learning algorithm was introduced by Schwartz [I54] as a variation on a much more famous
RL algorithm known as Q-learning, which is due to Watkins [191]. @Q-learning, in its conventional
form, is applicable to problems with discounted rewards, whereas R-learning applies to average
reward problems. Unfortunately, while the convergence properties of (Q-learning have been proved
rigorously, there does not exist any formal proof that R-learning converges towards an average

reward optimal policy. This topic is discussed in greater detail in Appendix

Of course, the main indicator of the performance of the R-learning algorithm is the expected
long-run average reward attained under the policy 8] found after nmay iterations, i.e. when the
procedure is terminated. However, it is also possible to interrupt the R-learning procedure at
certain points during its running time in order to evaluate its latest ‘guess’ for an average reward
optimal policy; in other words, the procedure can be temporarily halted after n; iterations (where
n; < Mmax) in order to examine the stationary policy obtained by choosing an action a at each
state x € S which maximises Q(X, a). The evaluation of this policy can either be carried out
using dynamic programming, or by using simulation; obviously, simulation will be less exact than
dynamic programming, but also considerably faster. The use of simulation after a fixed number of
iterations of R-learning to evaluate the latest guess for an optimal policy is referred to by Gosavi [64]
as Frozen Phase (FP) updating, so-called because the latest available estimates for the Q-factors
are ‘frozen’ during the simulation, as opposed to being updated after each random transition (as

in the main phase of R-learning itself). The steps of an FP update are as follows:
Steps in ‘Frozen Phase’ (FP) updating

a) Initialise the values k = 0, r4t = 0 and ¢4y = 0. Choose an initial state xg € S.
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b) Choose an action aj € Ay, satisfying aj € arg maX,ea,, Q(xk, a), where Q(xk, a) is the latest

available estimate of QQ(xy, a) obtained via R-learning.

c¢) Use simulation to determine the reward 7 and the new state xjp;1 reached at the next time

step. Then update the quantities r4,; and t;,; as follows:

Ttot < Ttot + Tk,

tiot < Lot + 1.

d) If k = kmax, where kpax is a large integer, then output g, := 7t /tior (Where n; is the number
of iterations of R-learning completed before interrupting the procedure), then resume the R-

learning algorithm. Otherwise, increment & by 1 and return to step (b).

FP updates can be performed at regular stages of the R-learning algorithm in order to monitor its
progress towards finding an average reward optimal policy. For example, suppose these updates are
to be performed after every 1000 iterations of R-learning. Then, setting n; = 1035 for j € N, one
obtains a sequence of values (§n,, gn,, -..) which, ideally, should converge towards the optimal long-
run average reward ¢g* (although it is unlikely that this convergence will be monotonic; nor should
one expect it to follow any predictable pattern). It should also be pointed out that in [64], Gosavi
relies upon FP updates as part of an algorithm which he refers to as R-SMART. In R-SMART, the
estimates g,; obtained from FP updates are actually retained and used as estimates of g* in the
main part of the algorithm itself, effectively taking the place of the estimates g, used by R-learning.
It is therefore important to emphasise here that the R-learning algorithm given on page has no
dependence whatsoever on the values g, obtained from FP updates; rather, FP updates (if desired)
may be performed periodically in order to monitor the performance of the R-learning algorithm,

but R-learning then resumes after each update as if no interruption had occurred.

The next example demonstrates the application of the R-learning algorithm to a problem which
(unlike the problem considered in the previous example) is non-trivial in terms of the amount
of computational effort required in order to find an average reward optimal policy via dynamic
programming. At this stage, however, it is desirable to remain within the realms of problems that
can be solved using DP in a reasonable amount of time, in order to enable a comparison between

the policy found by R-learning and an optimal policy found using value iteration.
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Example 7.2.3. (Convergence of R-learning)

Consider a system with demand rate A\ = 25 and 4 service facilities, each with multiple service

channels available. The parameters for the 4 facilities are given below.

Ccl = 4, H1 = 1, Bl = 4, a1 = 14,
co = 3, =4, =5, as =17,
2 H2 6 2 (7.2.13)
c3=3, u3=23, B3 =8, az =4,
Cq4 = 27 M4 = 167 64 = 57 Qy = 2.

This will be a running example considered throughout this chapter. The results from Section [4.2
imply that an average reward optimal policy exists which induces an ergodic Markov chain defined
on a finite set of states contained in S, where S is the selfishly optimal state space defined in
(4.1.3)). In order to improve the performance of the R-learning algorithm, it is therefore reasonable
to restrict the action sets Ay at states x which are on the boundary of S so that the process remains
contained in the set S, although (as discussed earlier) RL algorithms are not necessarily restricted
to a finite state space in general. In this example, the ‘selfish thresholds’ Bi, By, Bs and By are

equal to 14, 16, 12 and 12 respectively. Hence, S consists of a total of 43,095 states.

The purpose of this example is to show the results of running the R-learning algorithm with a
value € = 0.15 used for e-greedy action selection, rewards r,, defined as in ([7.2.9)) and a rule for the

learning parameters J,, which depends upon states and actions as follows:

Op 1= T Vn(me Py (7.2.14)
where v, (x,,, a,) denotes the total number of times that action a, has been chosen at state x,, up
to and including time n > 0. Note that the rule given in is the natural generalisation of the
rule to a problem in which various decision options are available at each state, as opposed
to actions being prescribed by a fixed policy 6. As in Example the value T' = 10 will be used

in (7.2.14)), and the secondary learning parameters ¢, will be given by ¢, = 1/(n + 1).

Figure shows the evolution of the estimated value g, over the course of 40 million iterations of
R-learning, and also the progression of the values g,; obtained by performing Frozen Phase (FP)
updates after every 10,000 iterations. It should be noted that the random transition occurring on a

particular iteration may be a ‘dummy’ transition, since these transitions are simulated in discrete
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time (using the technique of uniformisation). The optimal average reward may be calculated exactly

using value iteration, and the resulting value ¢g* ~ 126.611 is indicated in the figure.
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Figure 7.3: Convergence of g, and g, to the optimal value ¢g* in Example|7.2.3

Figure [7.3] shows that, in this example, g, appears to converge in a smooth fashion towards the
optimal value g* as the number of iterations n increases. On the other hand, the progression of the
FP estimates is somewhat erratic in the early stages of the algorithm, but these values begin to
converge towards g* after approximately 100,000 iterations have been completed. The FP estimates
are, in a sense, the most important indicator of the algorithm’s performance, since each FP estimate
shows (subject to a small margin of error caused by simulation) the performance of the policy that
would be obtained by stopping the procedure at that particular point. The figure suggests that
(except in the initial stages of the algorithm) the g, values actually tend to underestimate the
long-run average reward associated with the ‘best’ policy found by R-learning thus far. After 40
million iterations, the policy 1% returned in step 5 of the R-learning algorithm attains an average

reward of approximately 126.28, within 0.3% of the known optimal value g* ~ 126.61.

Although the R-learning algorithm succeeds in finding a policy A% which almost attains average
reward optimality in this particular example, it is interesting to note that this near-optimal policy
is obtained without exploring a large proportion of the state-action pairs (x,a) € S x Ay. This can

be seen by examining the values v, (x,a) for pairs (x,a) € S x Ay after 40 million iterations. The
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distribution of v, (x,a) values (with n = 40 million) is illustrated in Table

Range No. of pairs (x,a) € S x Ay | Pct. of pairs (x,a) € S x Ay
Vn(x,a) = 0 185,259 94.806
1< vp(x,a) <9 4,183 2.141
10 < vn(x, a) < 99 3.090 1.581
100 < v (x, a) < 999 1,793 0.918
1000 < vy (x, @) < 9999 754 0.386
10,000 < v, (x,a) < 99,999 267 0.137
100,000 < vy (x,a) < 999,999 55 0.028
Vn(x, @) > 1,000,000 7 0.004

Table 7.2: Distribution of values v, (x,a) for (x,a) € S x Ay after 40 million iterations of R-learning.

Remarkably, almost 95% of state-action pairs in S x Ay are not visited at all during these 40 million
iterations! Of course, if a particular state-action pair (x,a) remains unvisited during the evolution
of the algorithm, then the Q-factor estimate Q(x, a) remains at its default value of zero. Thus, this
example shows that R-learning is capable of finding a near-optimal policy by obtaining meaningful
Q-factor estimates at only a small minority of the state-action pairs that it is allowed to explore.
This also indicates the amount of redundancy involved in using a dynamic programming algorithm
(which repeatedly sweeps through all state-action pairs) in problems consisting of tens of thousands

of system states, in which it may not be necessary to find an ezact optimal policy.

In this example, an e-greedy rule was used for action selection, with ¢ = 0.15. Figure shows
the results of repeating the experiment with various alternative choices of € (recall that e is the
probability that an ‘exploratory’ action will be chosen on a particular iteration). The figure shows
the progression of the estimates g,; obtained from FP evaluations, for various different values of e.
Since the FP estimates appear to converge quite quickly towards the optimal value ¢* in most cases,
only the behaviour observed during the first 5 million iterations of R-learning has been shown. The
most obvious conclusion to draw from the figure is that € = 0.7 and € = 0.9 are not good choices
in this particular example. In general, if the value of € is set too high, the convergence of the FP

estimates towards ¢g* will tend to be slow, since the algorithm will not have sufficient opportunity
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to approximate the @-factors accurately for state-action pairs which are likely to feature as part
of an optimal policy. On the other hand, when the smallest value of € (¢ = 0.1) is used, the FP

estimates appear to behave quite erratically in the early stages of the algorithm.
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Figure 7.4: The effect of varying the exploration parameter € in Example [7.2.3

Further experiments (details of which are not provided here) appear to suggest that in general, the
major pitfall to be avoided when using an e-greedy rule is a value of € which is too high. Small values
of € may result in quite slow convergence in the initial stages of R-learning, but this is arguably
a price worth paying in order to ensure that the algorithm focuses almost exclusively on ‘optimal’
actions in the later stages of its finite running time. In fact, as noted earlier in this section, it may
be preferable to avoid using an e-greedy rule completely; one can instead use a rule such as ,
under which the probability of exploring decays with time. However, in this case one is faced with

the dilemma of choosing a rate of decay which is suitable for the given problem.

It should also be noted that, although Figure [7.3] might appear to suggest that a very large number
of iterations are required before R-learning begins to approach an optimal policy, an RL algorithm
generally requires much less time than a DP algorithm to perform a fixed number of iterations.
This is because each iteration of an RL algorithm involves evaluating (via simulation) only one
state-action pair, whereas DP algorithms evaluate all such pairs on every iteration. Of course,

the estimation of ¢g* is also required in R-learning, but this is insignificant in comparison to the
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computational requirements of a DP-style update. Thus, the requirement for millions of iterations

to be performed usually does not cause a significant problem for an RL algorithm. X

In general, a fast computer should be capable of performing tens of millions of iterations of the R-
learning algorithm in less than a minute. Table shows the results of another set of experiments,
in which the running times of the R-learning algorithm were compared with those of the RVIA (see
page over a number of different test systems. Ten tests were performed, and in each test, the
RVTIA and R-learning algorithms were applied to a system which featured the same set of parame-
ters as in Example but with the values of the rewards «a; scaled either upwards or downwards
in order to increase or decrease the size of the finite state space S. In each test, the RVIA used a
stopping parameter ¢ = 107%, and the R-learning algorithm used the same parameter settings as
specified in Example (for €, 0y, etc.) and was allowed to run for 50 million iterations. The
tests were performed on a computer with an Intel Core i7 processor (~ 2.8 Ghz) and 4GB of RAM.
It is important to clarify that Frozen Phase (FP) evaluations were not performed in any of the tests,
so the running times shown in the table for the R-learning algorithm are simply the times taken
to perform 50 million iterations, without interrupting the procedure at any stage. After each test,
the average reward earned by the R-learning policy 8%t was evaluated using dynamic programming

and the resulting sub-optimality (relative to the known optimal value g*) is shown.

No. of states in S | RVIA running time | R-learning running time | Sub-optimality of 9l
4032 6.79 secs 56.88 secs 0.04%
12,600 22.02 secs 56.20 secs 0.08%
24,624 44.65 secs 55.72 secs 0.10%
33,800 1 min, 7 secs 56.14 secs 0.08%
45,800 1 min, 31 secs 96.13 secs 1.16%
104,346 3 mins, 53 secs 56.79 secs 0.34%
257,439 11 mins, 7 secs 56.50 secs 3.84%
508,950 31 mins, 58 secs 56.66 secs 0.83%
750,288 48 mins, 35 secs 56.55 secs 0.50%
1,014,816 71 mins, 55 secs 56.71 secs 0.28%

Table 7.3: Comparisons between the running times of the RVIA and R-learning algorithms.
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The results in Table indicate that, as expected, the running time of the RVIA increases steeply
as the number of states that it needs to ‘loop through’ on each iteration increases. However, the
running time of the R-learning algorithm (with 50 million iterations) remains almost constant at
roughly 56 seconds. It should be noted, however, that all of the 10 systems tested in this experiment
featured the same number of facilities (N = 4). If the number of facilities N was increased, then the
R-learning algorithm would require a longer running time, since it would need to inspect a greater
number of actions at any given state in order to identify the action with the largest Q-factor. In
4-facility systems, it appears that the ‘critical value’ of |S| which causes the RVIA to be slower than
50 million iterations of R-learning is roughly 30,000. The table also indicates that the R-learning
algorithm is consistently successful in attaining policies which earn average rewards very close to

the optimal value ¢g* (although there is one apparent outlier in the seventh row).

Ideally, one would like to have a theoretical guarantee that by running an RL algorithm such as
R-learning for an indefinite amount of time (as opposed to stopping it after a finite number of
iterations), an average reward optimal policy would eventually be obtained. Unfortunately, there
does not exist any formal proof that the R-learning algorithm presented on page [301| converges
to an average reward optimal policy, although its strong performance has been demonstrated in
numerical experiments (see the discussions in [123] 154} [162]). The TD learning algorithm presented
on page [292] which evaluates a fixed stationary policy 8, may be recognised as a special case of the
R-learning algorithm with only one action allowed at each state (in the same way that the Policy
Evaluation Algorithm given on page is derivable from the Relative Value Iteration Algorithm
on page , and as such a proof of its convergence to the theoretical value gy is not attainable
either. However, there does exist an RL algorithm with proven convergence properties, known as
relative Q-learning, which can be applied to average reward problems. For a brief literature survey

regarding the convergence properties of RL algorithms, please refer to Appendix

7.3 Tailored RL algorithms

The RL algorithms discussed in this chapter so far have been general-purpose algorithms. Algo-
rithms such as TD learning, R-learning etc. can be applied to virtually any real-world problem

which can theoretically be cast as an MDP, with the intended result that a set of Q-factors are
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obtained which closely approximate a set of values satisfying the Bellman optimality equations (or,
in the case of TD learning, evaluation equations). The next objective is to explore ways of modi-
fying these algorithms by incorporating knowledge of the characteristics of the queueing problems
considered in this thesis, in order to improve overall efficiency. In other words, the aim is now to

tailor the RL algorithms discussed previously to the specific problem(s) at hand.

According to the general paradigm of reinforcement learning (as illustrated by Figure , an action
ay, is chosen by the agent at each discrete epoch of time n € Ny. A random transition then occurs,
which results in a reward r, being earned and a new state x,4; being reached. In the queueing
system problems considered in this thesis, the random transition is determined by a ‘random event’,
such as a new arrival, a service completion or (possibly) neither of these. Let w,, denote the random
event that occurs at time step n (following the choice of action a,). Using notation similar to that

in previous chapters, the event w,, is an element of the finite set W given by:
W :={0,A, My, My, ...., My},

where 0 denotes a ‘non-event’ (i.e. no arrivals or service completions), A denotes a customer arrival,
and M; (for i € {1,2,...,N}) denotes a service completion at facility 7. Suppose the simulated
random transitions of the system take place according to the transition rule given in . It is
clear that may be expressed in terms of the random event w,, as follows:

xit if w, = A and a, = i for some i € {1,2,..., N},

n 9

Xnt1 = xi- if w, = M; for some i € {1,2,..., N}, (7.3.1)

n

X, otherwise.

In order for ([7.3.1)) to be consistent with ([7.2.1)), w, should be determined as follows:

A, if u < AA,

M, 3 XA+ 3707 min (%), ) A < w < AA + 305 min((x5);, ¢5) A
for some i € {1,2,..., N},

(7.3.2)

0, otherwise,

where u is a uniformly-distributed random number between 0 and 1. From (7.3.2)), it is clear that

the event w, has no dependence on the action a, chosen at time n. To make sense of this, recall
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that in the discrete-time MDP Y formulated in Section the action a, chosen at a particular
time step n may be interpreted as a hypothetical action which determines the fate of any customer
who arrives at time n; if no arrival occurs, then the action a, has no effect on the system state. The
probability of an arrival occurring at any time step is AA, regardless of the action chosen; similarly,
the probability of a service completion at facility i € {1,2,..., N} at time n is min((xy):, ¢;)ii4,
which again is independent of a,,. Assuming that the reward formulation is used, the reward
ry, is then completely determined by the current state x,,, action a,, and random event w,, and the
same is true of the destination state x,41. The fact that w, is independent of a,, is crucial in the

conception of the first of the ‘tailored” RL algorithms to be discussed in this section.

In the general RL model described in Section [7.1], the agent discovers the ‘new information’ r,, and
Xn+1 after choosing an action a,, at time step n € Ng. Importantly, it is not assumed that the agent
has any means of knowing the reward and the new state that would have resulted from choosing a
different action at time n; that is, the agent learns only the consequences of choosing one particular

action. As such, one might say that the agent does not have the power of hindsight.

However, when one considers an N-facility queueing system which evolves according to simulated
random transitions as described by and earns rewards given by , it becomes clear
that, in fact, a more efficient RL algorithm can be designed which makes use of the fact that the
random event w, occurring at any time step n completely determines (in conjunction with the
state x,,) both the reward r,, and the new state x,41 that would result from choosing any action
a € Ax,. For example, suppose the system is in some state x, € S at time n, and the action
chosen is a, = i for some ¢ € {1,2,..., N}. If the event w, = A occurs, then (with certainty) the
next state is x,41 = xﬁ. However, one can also say that if the action a,, = j had been chosen (for
some j € {1,2,..., N} with j # i), then the same random event (w, = A) would have caused the
new state to be x,41 = x2". In general, although the agent is only permitted to choose one action
at any given state, one can always say (following observation of the random event w,) what the

reward 7, and next state x,11 would have been if any other action had been chosen.

By exploiting this principle, it is possible to design a new RL algorithm which is similar to R-learning
except that, on any given iteration n, the estimated values Q(xn,a) for all actions a € Ay, are

updated, as opposed to only the value Q(xn,an) associated with the action a, actually chosen
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by the agent. In a sense, the new algorithm ‘learns from hypothetical actions’, by observing the
random event w,, at each time step n € Ny and then using ‘hindsight’ to update the values Q(Xn, a)
associated with actions a not chosen by the agent. This new RL algorithm will be referred to here

as ‘HYPOT R-learning’. A complete description of the algorithm is given below.
HYPOT R-learning algorithm

1. Initialise the values n = 0, gy = 0 and an array of values Q(x,a) with Q(x,a) = 0 for each

state-action pair (x,a) € S x Ax. Choose an initial state xg € S.
2. Use simulation to determine the random event w,, that occurs at time step n.
3. Let y : S x Ax x W — S be defined for (x,a,w) € S x Ax x W by:

xit,  ifw=A and a =i for some i € {1,2,..., N},
y(%,a,w) = ¢ x'~, if w= M, for some i € {1,2,...,N},
X, otherwise.

Similarly, let R: S x Ax x W — R be defined for (x,a,w) € S x Ax x W by:

N

R(x,a,w) =Y (a;min(y;, i) s — Biyi)
=1

where y; is the i*" component of yv(X,a,w). Then, for each action a € Ay, available at state

X,, update Q(Xm a) according to the following update rule:

Q(Xna a) < (1— 5n(a))Q(Xna a) + 6n(a) [R(Xna a,Wn) = gn + I,IéaAX Q(Y(Xnv a,wn), a/) )
acly
(7.3.3)
where Ay denotes the set of actions available at state y(x,,a,w,), and d,(a) € [0,1] is a

learning parameter which may be dependent on the state x,, and action a.

4. Select an action a,, € Ay, according to a rule which allows for both exploration and exploita-
tion (e.g. an e-greedy rule). Then, let 7, = R(xy,an,w,) be the ‘actual’ reward earned at

time n, and similarly let x,,+1 = y(Xpn, @n,wy) be the ‘actual’ next state.

5. If the action a,, chosen in step 4 was an exploitative action, calculate g,11 as follows:

In+1 = (1 - Cn)gn + Cn Tn + ,max Q(Xn+17 a,) — Inax Q(Xna a) s

A" €Ax, 11 a€Ax,y,
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where (,, € [0, 1] is another learning parameter. Otherwise, set gn+1 = gn.

6. If n = npax, where nypax is a large integer, then output a stationary policy O] which, at
each state x € S, chooses an action 0!l (x) maximising the expression Q(x, a) over all actions
a € Ax. Also output g,+1 as an estimate for the optimal long-run average reward g¢*, then

stop. Alternatively, if n < npax, increment n by 1 and return to step 2.

On the n* iteration of HYPOT R-learning, the simulated random event w, is used to update
the estimated Q-factors for |Ax, | different state-action pairs, where |Ax, | is the number of actions
available at the current state x,, € S. Intuitively, it is clear this procedure enables the various
decision options a € Ay, at state x, to be compared in a more robust way than the conventional
R-learning algorithm presented in Section [7.2] since the consequences of each action a € Ay, are
evaluated according to exactly the same sequence of random events. In conventional R-learning, a
particular action a € Ay, might erroneously be believed to be ‘superior’ to another action a’ € Ay,
at some stage of the procedure simply because the random events observed after choosing action a
are in some way more favourable than those observed after choosing action o’ (although this type

of error should become increasingly unlikely as the number of iterations increases).

Due to the greater use made of the random information obtained on each iteration, one would
expect the HYPOT R-learning algorithm to perform better than R-learning over a fixed number
of iterations; however, from a computational point of view there is clearly a compromise involved,
since HYPOT R-learning requires more work to be done on each iteration. A comparison between

the two algorithms with respect to the system in Example will be given later.

Clearly, HYPOT R-learning has more in common with a dynamic programming algorithm than
R-learning does, since it loops over all actions a € Ay, on each iteration n, much in the same
way that an algorithm such as the RVIA (page considers all possible actions at a given state
x € S in order to determine the value of its latest iterate h,(x). However, HYPOT R-learning is
still very far from being a DP-style algorithm, since it still follows the fundamental RL principle
of updating the estimated @Q-factors at states ‘as and when they are visited’ during the simulation
of the process; as such, the manner in which it updates the Q-factor estimates is still completely
asynchronous. As discussed previously, the fact that it is possible to use the random event w,, to

update the Q-factors associated with actions a € Ax, not chosen by the agent on iteration n is



Chapter 7 Reinforcement learning 314

due to the particular MDP formulation from which the RL algorithm is derived, and would not be
possible in a more general RL scenario (e.g. a scenario unrelated to queues) in which it might be

impossible to know the consequences of a particular action without choosing it.

At this point it should be noted that there do, in fact, exist DP algorithms which do not use a
synchronous updating style; see, for example, the asynchronous DP algorithms discussed in [175].
These algorithms differ from more conventional DP algorithms by updating the value function at
only a selected number of states (or state-action pairs) per iteration, rather than sweeping through
the entire state-action space on every iteration; for example, they might update only one pair on
each iteration, based on the simulated path of an agent. Nevertheless, as explained in Section
[72] RL algorithms such as TD learning and R-learning rely upon an update rule for the @-factor
estimates which is derived from the theory of stochastic approximation schemes. In this respect,

they differ fundamentally from asynchronous dynamic programming algorithms.

One might reasonably ask why the similarities between HYPOT R-learning and DP algorithms
should not be extended even further. In the formulation used by HYPOT R-learning, the probabil-
ity distribution of the event w, occurring on the n** iteration depends only on the state x,, € S and
can easily be determined using . For each a € Ay, , the reward R(xy, a,w,) and the new state
v(Xn, a,wy, ) are then determined using x,, and w,,, and this information is used to update Q(Xn, a) in
step 3 of the algorithm. It would therefore be entirely feasible to update Q(xn, a) for each a € Ay,
based on the expected value of the new data piece R(xy,a,wn) — gn + maxyca, Q(y(xn, a,wp),a),
rather than an actual observation of this quantity arising from a random realisation of w,. Using

this approach, one would update Q(xn, a) for each a € Ay, in step 3 as follows:

O, a) « (1=6,(a))Q(xn, @) +80(a) 3 Pl = w) [R<xn,a,w> ~ o+ max Qly(xn,4,0),0)
weWw ey

(7.3.4)
Step 2 of the algorithm (in which a realisation of w,, is sampled using simulation) would still be
required in order to determine the value of the ‘actual’ reward 7, and the next state x,4+1. One
would expect the update rule ([7.3.4]) to be somewhat more robust than the rule ([7.3.3), in which
the event w,, is sampled at random. Indeed, numerical tests using the parameters in Example
have shown that the update rule ([7.3.4) appears to yield a slightly faster rate of convergence than

(7.3.3) with respect to the number of iterations performed (as opposed to the computation time
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elapsed). However, despite their apparent advantages, ‘expectation-style’ update rules of the form

(7.3.4) will not be considered any further in this chapter, for the following reasons:

1. The computational requirements associated with this type of update rule are significantly

greater than for those which rely on a single realisation of w,, on each iteration.

2. More importantly, the rule in depends upon the probability distribution of w, being
known. Although this is clearly not a problem in the MDP formulations considered in this
chapter thus far, the emphasis will shift later in this chapter towards formulations in which
the transition probabilities are difficult (or, from a practical point of view, impossible) to state
exactly. Recall that one of the main advantages of an RL algorithm should be its application

to MDPs in which exact expressions for transition probabilities are not available.

The second of the two points above portends the introduction of the next RL algorithm to be
discussed in this section, which is based on a re-formulation of the MDP used to derive the R-
learning and HYPOT R-learning algorithms in which the transition probabilities are much more
difficult to write down exactly. Recall that in the continuous-time MDP W introduced in Chapter [3]
(which was used to obtain a discrete-time MDP via uniformisation), the transitions of the system
were always associated with either a new customer’s arrival (denoted by w = A) or a service
completion occurring (denoted by w = M;, for some i € {1,2,..., N}). Accordingly, the set of
actions available at any decision epoch would either be {0, 1, ..., N} or the singleton {0}, depending

on whether an arrival or a service completion was associated with the relevant epoch.

The very fact that the formulation of ¥ referred to above requires (inconsequential) decisions to
be made whenever a service completion occurs would appear to suggest some kind of inherent
redundancy, even though the formulation itself is entirely sound and is consistent with CTMDP
formulations found in the literature (for example, Puterman’s M /M /1 formulation in [141], p.
568). This raises the question of whether it is possible to amend the formulation in such a way that
decision epochs are always associated with arrivals (and not service completions), so that control

can be exercised at every decision epoch, as opposed to only some decision epochs.

Assuming that the type of re-formulation described above is possible, a DP algorithm would effec-

tively be able to take ‘larger steps’ through the process, since the time in between any two decision
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epochs would always be the time in between two consecutive customer arrivals, regardless of the
number of service completions occurring in the meantime. However, in considering the number of
possible states accessible from an arbitrary state x € S via a single transition, one would need to
take into account all possibilities for the numbers of service completions occurring at the various

facilities prior to the next customer’s arrival, which could be an overwhelming task.

The fact that it is possible to amend the MDP formulation in the manner described above without
losing the ability to evaluate the expected long-run average reward under any given stationary policy
can be shown using rigorous arguments. Consider the evolution of the continuous-time process ¥
operating under some arbitrary stationary policy 6. Figure [7.5] shows a typical sample path that
might be followed by the process over a small interval of time. Decision epochs are represented by
vertical lines, and the states shown underneath these lines (e.g. (x,A), ((x"7)7~, M;) etc.) are the
system states at these decision epochs; the actions chosen (under the policy ) when new customers
arrive are also shown where appropriate. The vectors shown inside rectangles (x*, (x**)/~, etc.)

represent the head counts at the various facilities in between decision epochs.

x™ x ™) x™ X xk x/ )k
(x™) (x'7) -

xA)  ((x")".M) (x™)7A)  (x,M) (X My (x*,A)

Join i Join j Join j

Figure 7.5: A typical state-time evolution of the process V.

For example, the figure shows that the system is in state (x, A) at the beginning of the time period,
at which point a new customer is sent to facility 7. At the next decision epoch, the event M; occurs
(i.e. a service completion at facility j) and accordingly the next state is ((x*7)7~, M;). However,
in the physical process modelled by the MDP, the number of customers present at facility ¢ in

* (i.e. @; + 1, where z; is the ¥

between these two decision epochs would obviously have been xz
component of the vector x associated with the initial state (x,A)), since one imagines that the
new customer who arrives at the first decision epoch joins facility ¢ immediately, and the service
completion at facility j does not occur until the second epoch is reached. Similarly, (x**)/~ is a

vector of head counts at the various facilities in between the second and third decision epochs (after
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a service completion at j has occurred), x'* represents the head counts in between the third and

fourth epochs (after a new customer has joined facility j at the third epoch), etc.

In order to make the development in the next few pages as coherent as possible, it will be helpful
to introduce some terminology. Let the sequence of states at the decision epochs of the process (in
Figure the sequence ((x,A), ((x7)7~, Mj),...)) be referred to as the sequence of transitional
states, and let the sequence of vectors which represent the head counts at the various facilities in
between the decision epochs (in Figure the sequence (x'*, (x*)77,...)) be referred to as the
sequence of physical states of the process. The transitional states are elements of the ‘augmented’
state space S defined in , whereas the physical states are elements of the simplified state
space S defined in . Note that, as in Chapter |3 the transitional state of the system exists
continuously over time (as opposed to being defined only at decision epochs); so, for example, if
the transitional state is (x,A) € S then this means that the event A occurred at the most recent
decision epoch, at which point there were x; customers at facility ¢ (i = 1,2, ..., N). Assuming that
the stationary policy € induces an ergodic, irreducible continuous-time Markov chain defined on
some subset of S, let {ﬂéT)((x,w))}(XM)es denote the stationary distribution for the transitional

states under 6, and let {ﬂ'ép) (x) }xes denote the corresponding distribution for the physical states.

By Lemma [3.5.1 {ﬂ'éT)((X, w)) }xw)es and {ﬂ'ép)(x)}xes are related as follows:

nx) = Y (xw)  (xes),

(x,w)EFxUGx
where the sets Fx and Gx (both subsets of S) are as defined in ; however, this relationship
is somewhat incidental here. Next, let the MRA state of the system be defined as the physical
state observed by the most recent customer to arrive in the system, before joining a facility (or
balking). Here, MRA stands for ‘Most Recent Arrival’ and the MRA states are obviously elements
of S. Figure shows the same random sample path as Figure with the MRA states (inside

rectangles) taking the place of the physical states shown in the previous diagram.

Let {ﬂ(gM) (x)}xes denote the stationary distribution for the MRA states under #. Obviously, the
MRA state of the system changes less frequently than the physical state. However, due to the
well-known PASTA property (Poisson Arrivals See Time Averages) for queueing systems in which
customers arrive via a Poisson process (see, for example, Wolff [202]), one can assert that the MRA

states and the physical states share the same stationary distribution; that is, #™)(x) = 7(P)(x)
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b's (x™) xk >
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Join i Join j Join j

Figure 7.6: The progression of the ‘MRA states’ along a typical sample path of .

for all x € S. Hence, if one is able to formulate a CTMDP in which the state of the system is
always the MRA state, then by finding the stationary distribution under the policy 6, one would

also obtain the stationary distribution for the physical states under the same policy.

Consider the formulation of a CTMDP in which the system state at any given time is equal to
the MRA state (and which otherwise is based on the assumptions listed in Section [3.1)). In such
a process, sojourn times will be uniformly distributed with mean 1/\. However, specifying the
transition probabilities for such a process will not be an easy task. This is due to the fact that many
service completions may take place in between two consecutive arrivals, and as such the number of
states accessible from a given state x € S via a single transition may be very large. Indeed, given
any MRA state x € S and any other state y € S which satisfies the componentwise inequality
y < x, there will be a non-zero probability of transferring from state x to y in a single transition,
regardless of the policy being followed. It is easy to see that even if the transition probabilities for
the process can be formulated exactly, the amount of time required to evaluate a given policy 6 (or
find an optimal policy) using a dynamic programming algorithm will be prohibitively large, due to
the sheer number of stored values that must be ‘looked up’ on each iteration. On the other hand,
an RL algorithm should not be encumbered by such problems, provided that it is designed in such
a way that (in keeping with the general methodology of RL) it can simulate the progression of the

MRA states without requiring knowledge of the underlying transition probabilities.

The next example demonstrates the validity of the preceding arguments in the case of an M/M/1
queue, by showing that the stationary distribution for the MRA states under a simple threshold

policy does indeed match the corresponding distribution for the physical states.
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Example 7.3.1. (M/M/1 balance equations for the MRA process)

Let the demand rate A > 0 be arbitrary, and suppose there is a single facility with a single service
channel and service rate p > 0. The system is controlled by means of a threshold policy 67, whereby
customers join the facility if and only if the number of customers x present when they arrive is
smaller than the threshold T € N. In order to model the evolution of the ‘physical state’ of the

system, one may construct a CTMC with infinitesimal generator matrix given by:

- A 0 0 0 0 0
u —O\+p) A 0 0 0 0
0 —(A+ A 0 0 0
Q=1 " ( . & , _ , ' ' (7.3.5)
0 0 0 0 po—(A+p) A
0 0 0 0 0 W — L
From ([7.3.5)), it is immediate that the stationary probabilities wéf) (x) for states x < T satisfy the

familiar steady-state balance equations for a finite-capacity M /M /1 queue:

Ay (0) = iy (1),
A+ gy (@) = Mgy (@ = 1) g (@ + 1) (<@ <T-1),
Ay (T — 1) = pmE (1), (7.3.6)

Equivalently, for 0 < x < 7T —1:
(P)

P
Ay () = gt (@ + 1), (7.3.7)
Now suppose that one wishes to model the evolution of the MRA state of the system under O7;
that is, the physical state observed by the most recent customer to arrive. If the process is in some
state x at an arbitrary point in time, where 1 < z < T, then (by standard results) the probability

that a service completion will occur before the next customer arrival is given by:

> At ! H
Ae” / pe Hds dt = ———.
/0 0 At p
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For k < z, the probability that exactly k completions occur before the next arrival is:

)\uk .
W, lfk<$,

0 :
—_— fk=u.
Cwe T

Hence, for any two states x,y € {0,1,...,T} (interpreted as MRA states, rather than physical

states) the probability of transferring from state x to y in a single transition is:

A=Y _
T~ lf Yy Z 1,
A+ p)zvtt
(7.3.8)
W :
~— ify=0,
(A + p)?

where z = min(z + 1,T’). Thus, noting that the infinitesimal transition rates for the MRA process
are obtained by multiplying the probabilities in ([7.3.8]) by the uniform sojourn time parameter A\,

one obtains the following generator matrix (which, like Q, is of order 7'+ 1):

)\2
. 0 . , .
doo Nt
)\/LQ . /\2
Crw? M Xt
Q = T-1 2, T—2 2, T-3 9
A+ )= A+ )T (N4 p)T-2 4dr-2,7-2 Py
)‘MT )\2NT_1 )\QMT_Q ﬁ ) )\2
A+ )T A+ A+p)T-1 Ot 1)? qr—1,7-1 Nt
)\MT )\QIUJT—I )\QIuT—Q )\QMZ Azp (j
T
A+ )T A+t A+p)Tt O+ 13 N+ p)? o)

where, as usual, the diagonal elements ¢, (for x = 0,1, ...,T) satisfy:
(iaza: = Z dccy-
y#T

In order to show that the stationary distribution {Tré]f) () }zen, for the MRA process is iden-

tical to the corresponding distribution {WéITD) () }zen, for the physical process, it will be suffi-

cient to show that the balance equations (|7.3.7)) hold with Wéf) (x) replaced by ﬂ'é]T\/[) (x) for each
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x € {0,1,...,T}. Recall that these balance equations are obtained by setting D) Q = 0, where

Or

TI'éI;) = (Wé};)(O),ﬂ'éf)(l), ...,Wéf) (T)). Consider the analogous set of balance equations given by

Tré]:\r/l)Q = 0. By inspecting the rightmost column of Q in (7.3.9), one finds:

A2 (M) (M) )\Q,U >\2N2 >‘2NT_1 )\NT
T-1)= T + + 7.3.10
oo TV =T O G Y s T ot T o )
It can be shown using induction that for all integers n € N:
)\,LL )‘MQ )\Hn—l Mn

+ B + = W 7.3.11
R e T AR S (7340

Hence, after dividing by A/(A + p) in equation (7.3.10]) and using ([7.3.11]), one obtains:

M M

A (T — 1) = pmy(T). (7.3.12)

Proceeding in an inductive fashion, consider an arbitrary state x € {1,2,...,7—1} and assume that

the following relationship has been verified for all y € {z + 1,2 + 2, ..., T}:
M M
)méT )(y —-1) = ,LméT )(y) (7.3.13)

Then, by inspecting the z* column of 0 and applying ([7.3.13)) repeatedly, one can show:

)\2 (M) (M) )\3# )\4'u )\foJrl’u )\fo+2
—1
T L R ) L R T L
2 2,2 2, x z+1
(M) A A A p A ]
+ + 7.3.14
Tor (7) [A ERNPEanE AT T (v ) (7310

Upon dividing by A\/(\ + p) and applying ((7.3.11)) to the right-hand side, ((7.3.14) yields:

2 3 T—zx T—z+1
M) 4 (M) A2 A’ AT A
= 04500 [ e G G
(M) A

Hence, in order to establish that Aw(gf) (x—1)= Mﬁéy) (x) for all x € {0,1, ..., — 1}, it is sufficient

to show that the following property holds for integers n > 1:

AL A Ay A"
+ + ...+ + =\ 7.3.16
Ap o (A +p)? A+ p)n=t - (A4 p)nt ( )

In fact, ((7.3.16) is the same identity as ((7.3.11)) (with A\ and g interchanged). This completes the
proof that the following balance equations hold for 0 <z < 7T — 1:

)\ﬂ'éJTVI) () = ,uﬂ'éi/[) (x+1).
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Therefore, as expected, ﬂé]TV[) (x) = Wé];) (x) for all z € {0,1,...,T}. That is, the stationary dis-
tribution of the number of customers in the system seen by the most recent customer to arrive

corresponds to the distribution of the physical state of the system itself. X

Example addresses M /M /1 queues, but the PASTA property holds in much greater generality
(see [45] 126, 186, [202]). However, in a more general system with N facilities and multiple servers at
each facility, the transition probabilities for the so-called ‘MRA process’ will obviously be somewhat
more complicated than those in . Fortunately, as discussed earlier, an RL algorithm need
not rely upon knowledge of these probabilities. Indeed, in order to simulate the evolution of the
system under a particular decision-making scheme, all that is required is a sequence of inter-arrival
times sampled from an exponential distribution with parameter A\, and another randomly-generated
sequence which represents the service-time requirements of individual customers. Naturally, the

latter sequence will also depend on the actions chosen when new customers arrive.

At this point, it will be useful to make some brief comments regarding the design of a simulation
model. Suppose one wishes to simulate the evolution of a single-facility system (either an M /M /1 or
an M /M /c queueing system) with demand rate A > 0 and service rate g > 0, under the assumption
that every customer who arrives joins the queue (so that there is no admission control). Suppose
the first customer arrives at time ¢; > 0 and let (¢2, t3, ...) denote the sequence of inter-arrival times,
so that the nt" customer arrives at time > j=1tj. Alsolet (s1,s2,...) be the sequence of service-time
requirements for the individual customers. For each n € N, t,, and s,, are exponentially distributed
and can be sampled using the well-known method of inverse transform sampling (see, for example,

[146], p. 668). Using this method, one would determine ¢,, and s,, as follows:
th = - log(un) - log(vn)
= og(u Sp = og(v
n A g mnj)s n g nj)s

where u,, and v, are both sampled from a uniform distribution on [0, 1]. The sequences (1, 2, ...)
and (s1, $2,...) then completely determine the arrival time, the amount of time spent waiting in the
queue, the time at which service begins and the service completion time for any individual customer
who arrives in the system. Moreover, the elements of these sequences are mutually independent
and, as such, there is no reason why they should not be sampled in the initial phase of a simulation
algorithm, enabling the subsequent evaluation of performance measures (such as mean waiting

times, etc.) based on observations of the resulting outcomes for individual customers.
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In an RL algorithm applied to a general N-facility system, the situation is more complicated only
in the sense that the service-time requirement of a particular customer will depend on which facility
(if any) they have been sent to, which in turn will often depend on the consequences of actions
chosen in the past; that is, there is a history-dependence for customers’ service times. However,
there is no reason why the service-time requirement for an individual customer should not be
determined immediately (using inverse transform sampling) following selection of an action by the
agent. Using this approach, one may determine the total amount of time spent in the system by a
customer immediately after their destination is chosen, and then use this information as part of a
Q-factor update. Essentially, by adopting this type of approach, one allows the agent to ‘learn’ from
consequences which (in the physical process being modelled) would not actually occur until some
time after the relevant action is chosen; the idea is to allow the agent to learn from a customer’s
overall time spent in the system following the choice of a particular action, as opposed to the

immediate changes in head counts at the various facilities caused by that action.

The RL algorithm given below is called ‘A-HYPOT R-learning’, where the A stands for ‘acceler-
ated’. This algorithm differs from HYPOT R-learning (page by associating decision epochs
only with customer arrivals, and thereby taking longer ‘steps’ through the process. @-factors are
updated based on the total time spent in the system (and associated waiting costs incurred) by
individual customers. As discussed above, this approach involves calculating the system depar-
ture times of customers immediately after they are sent to service facilities; however, it should
be emphasised that this ‘advance knowledge’ of customers’ exit times is not used as part of the
decision-making process, since this would violate the underlying assumptions of the model. It is
also worthwhile to note that, unlike the previous RL algorithms presented in this chapter, the A-
HYPOT algorithm does not rely on a discretisation of the system, and instead simulates the system
in continuous time. This will enable certain generalisations (of a somewhat heuristic nature) to be

made easily when non-exponential distributions are considered later in this chapter.
A-HYPOT R-learning algorithm
1. Initialise the values n =1, gg = 0, tg = 0 and an array of values Q(x, a) with Q(X, a) =0 for

each state-action pair (x,a) € S x Ax. Assume that the system is initialised in state 0, and

accordingly set x; = O (the state observed by the first customer to arrive). For each facility
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i €{1,2,..., N} and service channel j € {1,2,...,¢;}, initialise the value:
fi,j) = 0.

During the simulation process, f(i,j) will store the time at which the j* channel at facility
i becomes ‘free’ (which occurs when the channel is unoccupied and there are no customers
waiting in the queue at facility 7); initially, all channels are free. Also, use inverse transform

sampling to determine ¢; > 0, the arrival time of the first customer.

2. Use inverse transform sampling to determine d,,, the time between the n'* and (n 4 1)
customer arrivals, then let t,41 = t, + d,,. For each facility i € {1,2,..., N}, determine the
number of service completions that occur between times t, and ¢,,+1 using the known actions
ai, as, ..., a,_1 and exit times z1, 29, ..., z,_1 of previous customers. Denote these values by k;

(i=1,2,...,N). Then determine the state y,, € S using x,, as follows:

N
Yn =Xn — g Ri€;,
=1

where, as previously, e; is an N-vector with ¥ component equal to one and all other com-
ponents equal to zero. One may interpret y, as the state of the system at time ¢,4; in the

event that the n*" customer balks, as opposed to joining some facility.

3. For each action a € Ay, , carry out the following sub-procedure:

(a) If a = ¢ for some ¢ € {1,2,..., N}, then use inverse transform sampling to sample a
random service-time requirement at facility ¢, and denote this by s(i). Then calculate
the (hypothetical) system departure time Z(i) as follows:

Z(i) = je{gif}”q}f(i?j) +s(1).
One may interpret Z(i) as the departure time of the n® customer in the event that they

go to facility i. On the other hand, if a = 0 then set Z(a) = t,,.

(b) Let the reward R(a) be given by:

R(a) = )\(Oéi - @'(Z(i) — tn)), if a =i for some ¢ € {1,2,..., N},
07 1fa = 0
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(c) If a =i for some i € {1,2,...., N} and Z(i) > t,41, update Q(x,,a) as follows:
Q(xp,a) — (1 —0,(a))Q(xn,a) + d,(a) | R(a) — gn1 + max Qlyr,d)|, (7.3.17)
a i+
Yn

where §,(a) € [0,1] is a learning parameter. Note that y’ is the state of the system at
time t,,41 if facility 4 is chosen when the n!” customer arrives, and this customer remains

in the system at time ¢,1. On the other hand, if a = i for some i € {1,2,..., N} and
Z(i) < tpy1, or if a = 0, then apply (7.3.17) with y“F replaced by y,.

4. Select an action a,, € Ay, according to a rule which allows for both exploration and exploita-
tion (e.g. an e-greedy rule). Then, let r,, = R(ay,) and z, = Z(a,), where R(a,) and Z(ay)
are the values obtained for action a,, € Ay, in step 3. Also, define:

yir, if a, =i for some i € {1,2,..., N} and Z(ay) > tyi1,

Xp+1 =
Yn, otherwise.

5. If the action a, chosen in step 4 was an exploitative action, calculate g, as follows:

gn = (1= Ca=1)gn—1+ Cu—1 | + ot Qxnt1,a') — max Q(xn,a)| ,

EAanrl a€Ax,

where (,—1 € [0, 1] is another learning parameter. Otherwise, set g, = gn—_1.

6. If a, =i for some i € {1,2,..., N}, then let k be a service channel satisfying:

ke argmin f(i,7).
j€{1>27"'7ci}

Then update the ‘channel free’ time f(i, k) as follows:

fUi k) < [, k) + s(2),
where s(i) is the same service-time value obtained in step 3(a).

7. If n = Nmax, where npax is a large integer, then output a stationary policy gLEl which, at
each state x € S, chooses an action 8/ (x) maximising the expression Q(X, a) over all actions
a € Ax. Also output g, as an estimate for the optimal long-run average reward g*, then stop.

Alternatively, if n < nmax, increment n by 1 and return to step 2.
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The A-HYPOT R-learning algorithm emulates the previous HYPOT algorithm by, on the n'?
iteration, updating the Q-factor estimates Qn(xn,a) for all actions a € Ax,. However, its two
main advantages over the HYPOT algorithm are its ability to learn from future service completion
times and the fact that it ‘steps through’ an entire inter-arrival period on each iteration, which
allows a greater amount of randomly-generated information to be used per iteration. The next
example provides a comparison between the convergence rates (per iteration) of the three versions

of R-learning considered in this chapter so far, in the case of a 4-facility system.

Example 7.3.2. (Convergence rates of HYPOT and A-HYPOT algorithms)

This example reports the results of an experiment involving the same parameters as Example[7.2.3
Recall that the system under consideration consists of four service facilities, and the selfish state
space S comprises approximately 43,000 states. The purpose of the experiment was to compare
the convergence rates (per iteration) of the R-learning, HYPOT R-learning and A-HYPOT R-
learning algorithms. In the experiment, 25 million iterations were performed using each of the
three algorithms in turn, with the same random number seed used for each algorithm. All three
algorithms used an e-greedy rule for selecting actions, with € = 0.15. The R-learning algorithm
used learning parameters d, given by for the Q-factor updates (with T" = 10), and the
HYPOT and A-HYPOT algorithms both used an analogous definition for d,,(a):

B T
- T +uvp(xn,a) — 17

dn(a): (7.3.18)

with 7" = 10 used for each action a € Ay, on each iteration n. All three algorithms used secondary
parameters given by ¢, = 1/(n + 1) for calculating the estimated average rewards g,. Figure
shows, for each of the three RL algorithms under consideration, the progression of the estimated
values gp, over 25 million iterations and also the values g,, obtained by performing Frozen Phase
(FP) updates after every 10,000 iterations. As expected, the A-HYPOT algorithm appears to yield
the fastest convergence rate per iteration. Not only do the values g, converge quickly towards the
optimal value g* using A-HYPOT R-learning, but the values obtained from FP updates (which, as
discussed previously, are a somewhat more relevant indicator of the algorithm’s performance) also
appear to be considerably more stable than the corresponding values obtained using the other two

algorithms. The HYPOT algorithm, despite being somewhat inferior to A-HYPOT, nevertheless
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exhibits a considerable improvement over the ‘ordinary’ R-learning algorithm.
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Figure 7.7: Comparison between the convergence rates (per iteration) for the R-learning, HYPOT R-learning

and A-HYPOT R-learning algorithms, using the parameters from Example @

Of course, while comparisons with respect to convergence rates per iteration are interesting from a
theoretical point of view, from a more practical perspective one would also be concerned about the
running times required by these algorithms. For example, it is obvious that the HYPOT R-learning
algorithm must perform more computations per iteration than ‘regular’ R-learning; moreover, this
additional burden will increase with the dimensionality of the system, since it is caused by the
HYPOT algorithm having to loop over all available actions a at whichever state the agent happens
to be visiting. Figure [7.§ presents an additional comparison between the three algorithms with the
time scale on the horizontal axis adjusted, so that it now measures (for each algorithm) the total
number of Q-factor updates performed, rather than the number of iterations performed. Essentially,
the only difference between Figures [7.7] and [7.§]is that the graphs for the HYPOT and A-HYPOT
algorithms have been stretched horizontally by a factor of 5 (because they both have to update the
Q-factors for 5 different actions on each iteration); thus, this presents a comparison which is much

more favourable to the original version of R-learning introduced in Section [7.2}

The A-HYPOT R-learning algorithm, like the previous RL algorithms discussed in this chapter,

relies upon the assumption that a unique value Q(x, a) can be stored for each state-action pair
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Figure 7.8: Comparison between the convergence rates (per Q-factor update) for the R-learning, HYPOT
R-learning and A-HYPOT R-learning algorithms, using the parameters from Example [7.2.3

(x,a) € S x Ax while the algorithm is running. This assumption may be somewhat unwieldy in
systems where millions or billions of pairs are likely to be sampled. The next section will address
the topic of walue function approximation, which is useful in problems where the state space is

simply too vast for the storage of unique values Q(x, a) to be a viable approach.

7.4 Value function approximation

The examples given in the previous sections have shown that RL algorithms such as R-learning
are capable of finding near-optimal policies for queueing systems with tens of thousands of possible
states (after truncation of the infinite state space), without requiring more than a few minutes of
running time on a fast computer. However, systems with truly vast state spaces have yet to be
considered. A further aim in this chapter is to investigate the performance of RL algorithms in
systems of higher dimensionality. As illustrated previously, RL algorithms are able to cope with
vast state spaces to a certain extent by ‘zoning in’ on the most frequently-visited states under a

near-optimal policy, but certain problems with their implementation still remain.

All of the RL algorithms considered in this chapter so far have relied upon the assumption that a
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unique value Q(x, a) can be stored (and updated when necessary) for each state-action pair (x, a)
‘visited’ by an agent. Furthermore, if a rule for the learning parameters d,, such as is used,
then another value v(x,a) must be stored to track the number of times that the pair (x,a) has
been updated since the beginning of the process. Obviously, a computer program can be written in
such a way that the values Q(x, a) and v(x, a) are not initialised until the first time the pair (x, a)
is visited, so that only state-action pairs that are actually sampled during the finite running time
of the algorithm impose upon the memory requirements of the system; however, the fact remains
that in a system of high dimensionality, one must allow for the possibility of a very large number
of Q(x, a) and v(x,a) values requiring storage. Unfortunately, a computer’s memory may simply

be unable to cope with the size of the arrays that would be required for this purpose.

Even if one assumes that it is possible to store all of the Q(x,a) and v(x,a) values that would
be needed for an RL algorithm to obtain a reasonable approximation of an optimal policy after
some finite amount of time, a further (arguably more superficial) problem is that the algorithms
described so far have relied upon what is known as a look-up table representation for a stationary
policy (see [I5], p. 4). This means that when the algorithm reaches completion, an action 6 (x) €
argmaxX,e 4, Q(x, a) is determined for each state x € S, where 8% is the policy returned by the
algorithm. Then, in order to implement the policy 0] in a practical situation (or a simulation),
one must continually ‘look up’ the decisions 8!/ (x) associated with the various states x € S during
the evolution of the process. In other words, the policy 8 lacks the ability of the index-based
heuristic policies discussed in Chapter [6] to prescribe a decision to be chosen at a particular state
x € S according to a relatively simple function of the head counts at state x; instead, like the
policy given by a DP algorithm, it must refer to a vast array of decisions which may not follow any
easily recognisable structure. In this section, it will be shown that an RL algorithm need not be

encumbered by having to use a look-up table representation for its output policy.

Various strategies have been proposed in the literature for avoiding the need to store unique values
for each state-action pair during the evolution of an RL algorithm; some of these will be discussed in
this section. As one would expect, the storage of less information brings with it some disadvantages.
To put things simply, one must be prepared to accept the likelihood of a reduction in the quality
of solutions found when less information is stored; in other words, the final policy obtained by the

~

algorithm may be slightly further from optimality when fewer Q(x,a) values are stored explicitly.
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However, this will be a necessary price to pay in systems where the state space is so vast that

algorithms such as R-learning (in their conventional form) are no longer practical.

Essentially, the techniques to be discussed in this chapter are based on the premise that the Q)-factors
Q(x,a) which characterise an optimal policy follow roughly some kind of structure or pattern. The

next example illustrates this idea, using the example of an M/M/1 queue.

Example 7.4.1. (Value function approximation in an M/M/1 queue)

Consider an M /M /1 queue with system parameters given as follows:
A =2, uw=3, B =5, a = 35.

With these parameter values, a threshold policy 67 with threshold T = 8 is average reward optimal.
Let it be assumed that the system is formulated as an MDP, with a formulation given by —
(13.5.4)). From a purely superficial point of view, an advantage of using the reward formulation in
is that the resulting optimal value function h(x) has the property that h(z + 1) > h(z) if
and only if joining is chosen at state x € Ny under the optimal policy 67. Thus, after plotting the
values h(x) on a graph, one can easily identify the threshold 7" as the value of x that maximises
h(z) (or, in the event of a tie, the largest of these = values). Figure shows the values Q(z,0)

and Q(z,1) (computed using dynamic programming) plotted for x € {0, 1, ...,20}.
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Figure 7.9: The values of Q(xz,0) and Q(z,1) for = € {0,1,...,20} in Example [7.4.1

Note that, by definition, h(z) = max (Q(=,0), Q(z, 1)) for each z € Ny, and hence it can be seen
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from Figure|7.9that the optimal value function h(x) also follows a shape similar to those of Q(x,0)
and Q(z,1). Examining the general trends depicted in the figure, it is reasonable to propose that
a polynomial function of z should be suitable for approximating the Q(z,0) and Q(xz, 1) values;
indeed, the curves in the figure look somewhat similar to quadratic curves. Figure [7.10] in which
the curves in Figure are plotted separately, shows the results of fitting polynomial models of

orders 2, 3 and 4 to the Q(z,0) and Q(x,1) values using multivariate linear regression.
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Figure 7.10: Polynomial approximations of orders 2, 3 and 4 for the functions Q(z,0) and Q(x,1).

The order of each polynomial approximating function in Figure [7.10] corresponds to the number
of predictor variables used in the associated regression model. As one would expect, polynomials
of higher degree tend to yield more accurate approximations. The figure shows that the quadratic

(order 2) polynomials are not entirely satisfactory for representing the shape of the @ functions,
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since they tend to misrepresent the position of the apex. However, when the order is increased to
4, the approximations are almost exact; indeed, the light blue dotted lines in the figure are almost
indistinguishable from the Q(x,0) and Q(x, 1) curves. The values of R? (the regression coefficient)
associated with the polynomial models of order 2, 3 and 4 used for Q(x,0) are 0.970, 0.997 and

0.999 respectively, and the corresponding R? values for Q(xz,1) are almost identical.

The implication of this example is that, in the case of a simple M /M /1 queue, the Q-factors which
characterise an optimal policy follow a pattern which can be traced approximately by polynomial
functions of the system state. Assuming that the same principle holds in higher dimensions, this
suggests the possibility of employing well-established mathematical techniques such as interpolation,
curve-fitting, regression and other related methods to estimate (Q-factors even when the amount of
information available is only sparse. However, given that an RL algorithm begins with no available
information about the Q-factors which define an optimal policy, the exact procedure that one might
use to acquire even a small amount of information (without resorting to explicit storage of a large

number of Q-factor estimates in the system memory) remains unclear at this stage. X

As discussed previously, the problem to be addressed in this section concerns the approximation
of average reward optimal policies in systems with an extremely vast state space. However, it will
always be assumed that a finite truncation of the state space can be applied, and this is justified
by the results in Chapter From this stage onwards, it will be assumed that the use of any
algorithm which depends upon a unique value (of any kind) being associated with every state in
the finite state space S (or, similarly, every state-action pair in S x Ax) is prohibited. However, it is
clearly reasonable to suppose that values can be stored for some states (or pairs), since a computer

program will always afford the user some memory space in which to store data arrays.

Accordingly, let it be assumed that there exists a finite subset R C S of states (or, in the case of
state-action pairs, R C S x Ax) for which some quantity of interest can be stored (and updated)
explicitly during the course of an RL algorithm. The set R may not necessarily be ‘static’; indeed,
the constituent elements of R may change over the course of the algorithm (so that different states
or state-action pairs can be shuffled in and out of the set), but it should be assumed that there is

some upper bound on the size of |R| which, in general, will be much smaller than |S|.

Three broadly-defined methods for overcoming the difficulties posed by a vast state space will be
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discussed here, although ultimately this section will focus on only one of these methods. The three

techniques to be discussed are: state aggregation, interpolation, and function fitting.
State aggregation methods

The first method to be discussed here, known as state aggregation, is arguably also the crudest
from a mathematical point of view. Assuming that it is not feasible to estimate Q-factors for all
state-action pairs individually, one might instead allow each Q-factor to represent multiple pairs.
To be more exact, suppose the finite state space S is partitioned into a set {51, 5’2, o S k' } where
K is reasonably small, so that it is possible to store a set of values in an array of size K (N + 1)
(where N + 1 is the maximum size of any action set). The set {S},Sa, ..., Sk} is referred to as the
‘aggregated’ state space. On each iteration of an RL algorithm, the state-action pair visited is given
(for aggregation purposes) by (S;,a) for some i € {1,2,..., K} and a € Ag.. After the simulation
step of the iteration has been performed, a value Q(S‘u a) may be updated (using an update rule

similar to those discussed in earlier sections) and stored in the system memory.

It should be emphasised that, when using aggregation methods, one still allows the RL algorithm
to keep track of the ezact state of the system (an element of S, rather than {S;, Ss, ..., Sx}) at all
times. The random transitions depend upon the ezact states in the same way as normal, so that
the simulation of the process is still entirely accurate; the aggregation of the state space is used

purely as a means of reducing the number of Q-factors that require storage.

The drawbacks of this approach are obvious. In most applications, the state transitions will no
longer possess the Markov property when the aggregate representation is used, since the transition
probabilities from any aggregate state S; will depend upon the individual state x € S; that the
process is in. As a result, RL algorithms lose much of their theoretical foundation when they rely
upon state space aggregation. Indeed, it cannot be assumed that the values Q(S’i,a) which the
algorithm is trying to estimate will satisfy a set of equations of the form , which raises the
question of whether the Q-factor update rules seen in earlier sections (which are directly based on
these optimality equations) remain appropriate to use. Given the inherent ugliness of the method,
it would appear that the use of state space aggregation can only be justified if one can show
empirically that it produces good results. Gosavi [62] (p. 215) describes aggregation as a “robust”

approach, but its effectiveness seems to depend upon the context in which it is used.



Chapter 7 Reinforcement learning 334

The question of exactly how states should be ‘lumped together’ may not be easy to resolve. Ideally,
it is desirable for states with similar characteristics to be grouped together (see [62], p. 260). In the
case of the queueing systems considered in this thesis, one might derive some measure of the ‘overall
congestion level’ for each state x € S and then construct various categories according to these
congestion levels. Alternatively, taking into account the general principle that any policy which
maximises the expected long-run average reward is likely to cause the process to spend a significant
proportion of its time in states which earn ‘high’ rewards, it may be logical to categorise states
according to the expected rewards earned; in this case, however, matters are slightly complicated
by the fact that rewards are also likely to be action-dependent. The MDP formulation used in
Example avoids this difficulty, since the rewards r(z) happen to depend only on the state,
and (to make things even simpler) the state is one-dimensional. In the slightly more general case of
an M /M /c queue, a partition scheme based on the rewards r(z) defined in would be quite
different from a scheme based simply on the congestion level x, since it would involve states ‘close
to ¢ being separated from states ‘distant from ¢’. Moreover, using T' to denote the selfishly optimal

threshold, one has (7T") ~ r(0) = 0 and therefore a partition scheme based on rewards would group

together states at opposite extremities of the selfishly optimal state space {0,1,...,7}.

For further discussion of state aggregation methods, including some examples, refer to Gosavi [62]
(p- 260). Aggregation methods are also discussed (albeit in the context of value iteration, rather

than reinforcement learning) by Bertsekas and Tsitsiklis [I5] (p. 215) (see also [I85]).
Interpolation methods

Interpolation methods are based upon the premise that it is possible to store some Q-factors in the
system memory but not all, as discussed earlier. Let R C S be a set of ezemplar states, at which
the Q-factor estimates Q(x, a) are to be stored and updated explicitly during the finite running
time of the algorithm. The set R may be pre-determined and fixed, so that the same exemplar
states are used throughout the process, or (in the case of a more sophisticated algorithm) it may be
adaptable, so that system states are eligible to be ‘dropped’ from the set of exemplars and replaced
by other states at various stages of the procedure. When one of the exemplar states x € R is visited
by the agent during the course of the RL algorithm, the value Q(X7 a) corresponding to the action

chosen a € Ay is updated using a rule similar to those given in earlier sections; however, a difficulty
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arises in that update rules such as ([7.2.11)) depend on Q-factor estimates being available for states
which may not be included in the set of exemplar states. As such, one must use interpolation to

estimate QQ-factors for non-exemplar states using the values stored for exemplar states.

Of course, the values Q(x, a) stored for exemplar states x € R are themselves only approxima-
tions of the true values Q(x,a), so interpolation effectively adds another layer of imprecision to
proceedings; however, this is merely in keeping with the general theme of this section, which in-
volves compromises being made between accuracy and practicability. In general, the exemplar
states should be reasonably spread-apart in order to ensure sufficient coverage of the state space;
on the other hand, there is little point in storing values explicitly for states located in regions of the
state space which are unlikely ever to be visited under an optimal policy. Thus, there is a certain
balancing act to be performed in deciding which regions of the state space should be ‘covered’ (in
the sense of being ‘near’ an exemplar state) by the set of exemplars R. Tadepalli and Ok [177]
discuss a method in which non-exemplar states x € S\ R are added to the set R if it is found that
their values h(x) cannot be estimated within a given tolerance using the values stored for the other
exemplar states. When a new state x is added to R, a check is performed to see whether any states
which lie within a certain vicinity of x can safely be deleted from R due to their Q-factors being

estimable within the specified tolerance following the addition of the new state to R.

It is important to emphasise the advantage of allowing the set of exemplars R to be modified during
the running of the algorithm, since in general an RL algorithm will begin without any knowledge of
the characteristics of an optimal policy. As such, exemplar states should be re-positioned gradually
as the algorithm learns which regions of the state space are visited frequently under a strong-

performing policy (and thereby require a relatively high concentration of exemplars).

The exact method of interpolation used to estimate Q-factors for non-exemplar states is likely to
depend upon the complexity of the state space S. In the simple case where S is one-dimensional
(as in Example [7.4.1]), one may simply use linear interpolation, so that the value Q(z, 1) for any

state z lying between two exemplar states z and y (with x < y) is approximated by:
~ ~ Z—2 / A ~
Q1) = Q)+ = (A 1) - A )

In the case of a multi-dimensional state space, two different approaches will be mentioned here,

both of which are suggested by Gosavi [62] (p. 265) and are covered in considerable more detail



Chapter 7 Reinforcement learning 336

= N W A O O N
- Q00000

o

- 00000000
a1 1 1 JSISIOI®
~@0@0000000
~0000@®000
-OQ@®OO0V0O0U
-O0QVO0OO®O
~O0O000000

Figure 7.11: A conceptual example of how exemplar states might be distributed in a system with a two-
dimensional state space according to the frequency with which individual states are visited under an optimal
policy. States (z1,z2) are represented as circles and categorised as ‘often visited, ‘seldom visited’ or ‘very
rarely visited’ according to whether they are coloured dark blue, light blue or white respectively. States

marked by red centres are ‘exemplar states’. Frequently-visited states are more likely to be exemplars.

(in the broader context of statistical learning) by Hastie et. al. [77] (see also [39]). The first of
these methods is known as the k-nearest-neighbours approach. Suppose it is necessary to obtain an
estimate for some Q-factor (x,a) € S x Ay, where x is not an exemplar state. One may inspect
the set of exemplars R in order to determine the k elements of R (where k is some pre-determined
integer) which are closest to x with respect to some distance metric. An obvious choice for the

distance metric is the Euclidean distance, given for two arbitrary states x,y € S by:

(7.4.1)

After identifying the k ‘nearest neighbours’ of x within R, the value Q(x,a) can be estimated by
simply averaging the values Q(y,a) for these states, or (at greater computational expense) using
regression to predict Q(x,a) by fitting a model to the Q(y, a) values for the k nearest neighbours.
Unfortunately, even if the simpler averaging method is used, the process of finding the k nearest

neighbours of x in the first place may require a significant amount of computation time. For this
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reason, k-nearest-neighbours is not considered a feasible approach in this section.

An alternative to the k-nearest-neighbours approach is to use a kernel-based method. Essentially,
this involves estimating a value Q(x, a) for some non-exemplar state x € S\ R and action a € Ay
by taking a weighted average of the values Q(y, a) for the exemplar states y € R, where the weights
are determined by the distances of the exemplar states from x. Specifically, one would estimate

the value Q(x,a) for some state-action pair (x,a) € S x Ay with x ¢ R as follows:

> yerW(X,y)Q(y, a)
ZyeR ’UJ(X, Y)

Q(x,a) = , (7.4.2)

where w(x,y) is a weight which depends in some way on the Euclidean distance d(x,y) defined
in . The weight w(x,y) may be defined in such a way that it equals zero if d(x,y) exceeds
a certain value, so that the weights ‘die off” with increasing distance from x. For more details on
how the weights may be defined, see [62] (p. 267). Kernel-based methods avoid the need to locate
the ‘nearest neighbours’ of a particular state in order to estimate a required @-factor; obviously,
however, computing a weighted average of estimated Q-factors for all states y € R will itself be a
time-consuming process if the set of exemplars R is of reasonable size. For this reason, kernel-based

methods must also be considered impractical in systems of high dimensionality.

With a little thought, one begins to realise that interpolation methods suffer from a drawback
which also applies to state aggregation methods, since they rely upon being able to store a limited
number of Q-factors explicitly. In the case of aggregation, each @-factor must be representative of
a (possibly large) collection of states which, ideally, should be relatively homogeneous with respect
to some particular characteristic. In the case of interpolation, the exemplar states should ideally
be positioned in such a way that every state which might be visited by an optimal policy is within
a certain proximity of an exemplar. In either case, the assumption that the desired conditions can
be achieved becomes increasingly unrealistic as the complexity of the state space escalates. What
is really needed is a radically different method which, instead of attempting to learn @Q-factors
individually, will instead attempt to learn some kind of formula or index for approzimating the

Q-factors. This is the idea behind the function fitting methods to be discussed next.
Function fitting methods

Function fitting methods are arguably the most flexible and aesthetically appealing of the approx-
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imation methods discussed in this section. In Example [7.4.1] it was shown (in the case of an
M/M/1 queue) that the values Q(x,0) and Q(z,1) could be approximated quite accurately using
polynomial functions of the state x. Function fitting methods are based on the assumption that
the same principle holds in much greater generality; that is, the Q-factors Q(x,a) which charac-
terise an optimal policy for a system with a multi-dimensional state space may be approximated by
functions of the vector x. A natural generalisation of the technique used in Example [7.4.1] would

involve estimating Q(x,a) for an arbitrary pair (x,a) € S x Ay as follows:

A K N
Q(x,a) = B(a) + Y. 3 O (a) ot (7.4.3)

k=1 i=1
where K is a pre-determined integer which represents the order of the approximation, NN is (as usual)

the dimensionality of the state space, the values B(a) and CZ-(k)(a) are weights to be determined by
an RL algorithm, and wf denotes the i*" component of x raised to the power k. For example, by

setting K = 2 in ([7.4.3)) one obtains a quadratic function of N variables:

N N
Q(x,a) = Ba) + Y OV (a)a; + > 0P (a) 2. (7.4.4)
i=1 i=1
It should be noted that the right-hand side in is missing cross-product terms of the form
x;xj (where ¢ # j); in general, cross-product terms should be included in a quadratic expression
of N variables. However, since the number of cross-product terms increases steeply with N (and
with K), it will be desirable throughout this section to simplify matters by restricting attention
to approximating functions of the form . The total number of weights in is KN + 1,
which increases only linearly with N; this will be an important advantage when the RL algorithms

to be discussed in this section are applied to systems with very large state spaces.

RL algorithms which use function fitting do not need to store any Q-factors explicitly; they simply
aim to learn values of the weights in which will accurately approximate the function Q(x,a)
for a given action a. Note that a unique set of weights is required for each action a that may be
chosen during the course of the process; in general, this can cause a problem in MDPs where the
action sets Ay vary considerably among the states x € S. Obviously, however, this does not cause
any problems in the queueing systems considered in this thesis, since the action sets Ay depend on
the states x € S only to the extent that certain actions are prohibited at states which are on the

boundary of the finite state space S. An RL algorithm will need to store and update values for all
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of the weights associated with all possible actions; as such, the total number of weights requiring
storage will be (N + 1)(KN + 1), where (in keeping with the context of the problems considered
in this thesis) N + 1 is the cardinality of the set (J, g Ax, i.e. the total number of distinct actions
available. It is intended that, provided the order of approximation K is reasonably small and the
number of facilities IV is not excessively large, a function-fitting RL algorithm should be applicable

to a system with billions or trillions of states without any major practical difficulties.

The term architecture is used to describe the general parametric class of functions in which one
attempts to find suitable approximators for the Q-factors Q(x,a) (see, for example, [15], p. 5).
Ideally, an approximation architecture should be ‘rich’ enough to allow the Q(x,a) values to be
approximated with an acceptable level of accuracy; this means that a sufficiently large number of
free parameters (equivalently, weights) should be used. However, as discussed by Bertsekas and
Tsitsiklis [I5] (p. 60), the computational complexity of the algorithm increases with the number of
parameters, so (as with most RL algorithms) there is a trade-off to be made between the ease with
which the algorithm can be applied in practice and its fitness for purpose. In this section, the only

architecture considered will be the class of polynomial functions described by (7.4.3)).

It may be seen as a disadvantage of function fitting RL algorithms that a suitable approximation
architecture must be determined a priori, without (in general) knowledge of the shape or char-
acteristics of the function(s) to be approximated. If possible, it is appropriate to perform some
kind of validation test to ensure that the architecture being used is suitable for the purpose at
hand. In the case of the queueing systems under consideration, an obvious possibility for validat-
ing the architecture in is to use dynamic programming to calculate the Q)-factors exactly
in a moderately-sized system, and then determine values of the weights B(a) and Ci(k)(a) by ap-
plying multivariate linear regression to the resulting data. The quality of the approximation (for
each action a) would then be measured by the regression coefficient R?. Arguably, there are some
limitations to this approach, including the fact that the model fitted by regression will implicitly

assume that all state-action pairs are equally ‘important’; this will be discussed later.

In this section, the particular design of the RL algorithm to be considered will make the validation
method described above slightly more difficult to apply. This is because the algorithm will essen-
tially be an extension of the A-HYPOT R-learning algorithm presented on page [323] which will use
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function fitting methods as opposed to the storage of individual Q-factor estimates.

It was shown in Section that A-HYPOT R-learning is capable of improving upon the perfor-
mances of R-learning and HYPOT R-learning in terms of the number of iterations required to
obtain a near-optimal policy; this is one reason for it being preferred to the other two algorithms
as the basis for a function-fitting algorithm. However, as discussed in Section A-HYPOT R-
learning relies implicitly upon a re-formulated MDP in which the state of the system at any given
time is the vector of head counts at the various facilities observed by the most recent customer to
arrive. This re-formulated MDP has been referred to previously as the MRA process. The optimal
Q-factors for the MRA process will not be the same as those which would be obtained using the
MDP formulation given by — (which is based on the physical state of the system),
despite the fact that both processes will have the same class of optimal stationary policies. Un-
fortunately, it is not practical to use dynamic programming to calculate the Q-factors associated
with an optimal policy in the MRA process, due to the complexity of the associated transition
probabilities (as illustrated, in the M/M/1 case, by Example ; as such, there is no convenient

means available of obtaining the exact Q-factors, even in a moderate-sized system.

One way around this difficulty is to assume (with the backing of the empirical evidence in Example
7.3.2)) that the Q-factor estimates output by the A-HYPOT R-learning algorithm are reasonably
close approximators of the true @-factors, and apply multivariate regression to these estimated

Q-factors. The next example shows the results obtained using this validation method.

Example 7.4.2. (Validation of the quadratic architecture for one system)

This example uses the same parameters as Example [7.2.3] To summarise, there are 4 service
facilities and the selfish state space S consists of approximately 43,000 states. The optimal value
of the expected long-run average reward is ¢* ~ 126.61. As discussed previously, one may use
multivariate linear regression to fit the quadratic model to the estimated Q-factors found

using the A-HYPOT algorithm as a means of validating the quadratic architecture.

However, there are some difficulties associated with this approach. The A-HYPOT algorithm, like
the other RL algorithms considered in this chapter, operates in an asynchronous manner; as such,

assuming that the run-time is finite, it will generally obtain much more accurate estimates of the
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Q-factors for state-action pairs that are visited often than for pairs which are not. Realistically, this
means that in a system with tens of thousands of states, only a very small proportion of the Q(x, a)
values will be estimated with any reasonable accuracy. As a result, applying least-squares linear
regression to a dataset consisting of estimated Q-factors for all state-action pairs (x,a) € S x Ay

will be meaningless, since most of these estimated values will be wildly inaccurate.

For the purposes of this validation test, a reasonable way of overcoming this problem is to apply
the A-HYPOT algorithm synchronously; that is, one may update the values for all state-action
pairs (x,a) € S x Ay once each on every iteration, as opposed to following the simulated path
of an agent. Of course, the reason for this approach being feasible is that the state space is only
moderately-sized, which makes it possible to sweep through all state-action pairs repeatedly in the

manner of a DP algorithm; in a larger system, this approach would not be possible.

In the case of A-HYPOT R-learning, the algorithm given on page [323] must be modified quite
significantly in order to use a synchronous updating style; this is because the algorithm relies
upon the storage of an array of values z1, z2,... which represent the service completion times of
customers, and these values are used to determine future random transitions. This means that the
order in which state-action pairs are updated must follow the simulated evolution of the system,
otherwise the algorithm simply does not make sense. In the case of a synchronous algorithm, it
must be possible to simulate a random transition from a particular state without any dependence
on the transitions simulated previously. A full description of the changes required in order to
use the A-HYPOT algorithm synchronously will not be given here, but essentially it is only a
minor programming task to modify the algorithm so that transitions are simulated according to
the principle that, given that the system is in some physical state x € S at an arbitrary point in
time, the probability of an arrival occurring before the next service completion is:
A
A+ 00, min(wg, c)p

This example presents the result of an experiment in which 10,000 iterations of the synchronous
version of A-HYPOT R-learning were performed (in other words, the values Q(x, a) for all pairs
(x,a) € S x Ay were updated 10,000 times each) in order to estimate the Q-factors with a rea-
sonable level of accuracy. Following the termination of the algorithm, the quadratic model

was fitted to the final Q(x, a) values using linear regression with {x1, xo, z3, 74, 7%, ¥3, 23, 23} as the
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set of predictor variables, and a different set of weights obtained for each action a € {0,1,2,3,4}.

Table shows the weights and the regression coefficient R? obtained for each a.

a=20 a=1 a=2 a=3 a=+4
B(a) | 372.492 | 487.581 | 485.875 | 458.737 | 421.840
C\Y(a) | -188.248 | -201.253 | -191.044 | -189.977 | -188.866
c{(a) | -73.915 | -76.511 | -86.368 | -75.554 | -74.423
c{M(a) | -15.638 | -16.761 | -16.667 | -23.638 | -15.998
cV(a) | -3.821 | -4.102 | -4.061 | -4.160 | -8.072
()| 0880 | 0318 | 1.015 | 0964 | 0.909
cP(a) | -0.113 | -0.015 | -0.001 | -0.053 | -0.097
cP(a) | -0571 | -0.552 | -0.562 | -0.657 | -0.576
cP(a) | 0172 | -0.176 | -0.179 | -0.178 | -0.168
R? | 0.995 | 0.996 | 0.996 | 0.996 | 0.995

Table 7.4: Results of the multivariate linear regression experiment described in Example [7.4.2

Table ﬂ shows that, for each action a € {0,1,2,3,4}, the regression coefficient R? obtained by
fitting the model 1| to the estimated values Q(x,a) is greater than 0.995. Arguably, this
can be regarded as a strong indication that, in the case of the particular 4-facility system under

consideration, the true values Q(x,a) approximately fit the quadratic model. X

Of course, as alluded to previously, the least-squares regression model considered in Example [7.4.2
assumes that all ‘data pairs’ ((x,a), Q(X, a)) are equally important; it has no means of ascertaining
which Q-factors are the most important to approximate accurately. Clearly, this kind of impartiality
is not really desirable. It would be preferable for the model-fitting to be done in a biased manner,
in order to ensure a very close fit for the Q)-factors at often-visited states, without great importance

being attached to the quality of the fit at rarely-visited states. RL algorithms which use function

fitting will naturally tend to prioritise ‘influential’ states in exactly this manner.

The next objective in this section will be to describe exactly how function fitting can be carried out
as part of an RL algorithm. It is worth re-emphasising the fundamental assumption of function-

fitting methods that at no stage of the algorithm can a Q-factor Q(X, a) (nor any other type of
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quantity, such as the number of times (x,a) has been visited) be stored for any individual state-
action pair (x,a) € S x Ax. Hence, it is not possible in general to carry out the procedure described
in Example [7.4.2 in which model-fitting is applied to a set of Q(x, a) values which have already

been acquired by an algorithm which depends upon storing these values explicitly.

Given that the value Q(x,a) for any individual pair (x,a) depends upon the @Q-factors for other
state-action pairs (as shown by the equations ), any update to the value Q(x, a) made as
part of an RL algorithm must be made according to estimates of the Q-factors for the other pairs;
S0, if these estimates are not stored in the memory, they must be acquired using the approximating
function(s) that are constructed as part of the algorithm. However, these approximating functions
themselves will need to be constructed by fitting a model to the latest available estimates for the
Q-factors. In summary, fitting a model to approximate the Q-factors requires estimates for the
Q-factors to be available, but calculating these estimates can only be done by using some kind of
fitted model. This creates a ‘chicken-and-egg’ situation, and therefore both tasks must be carried
out at the same time; that is, estimates for the QQ-factors must be obtained using a model which is
updated each time a new Q-factor estimate becomes available. Roughly speaking, an RL algorithm

which uses function-fitting must perform the following steps on each iteration n:

e Simulate a random transition from the current state x, following the choice of action a,.

Observe the random reward 7, and the new state x,1.

e Use an approximating function to estimate the values Q(x,+1,a) at the new state x,41.

~

Accordingly, calculate the new ‘data piece’, y, := 7, — gn + max, Q(Xp41,a).

e Update the relevant approximating function using the new data piece y, in such a way that

(ideally) Q(xXn, a,) becomes a more accurate approximation of Q(Xy, ar,).

Of course, the problem of constructing an approximating function Q(x,a) for a given action a is
somewhat similar to the classical regression problem of fitting a model to a given set of data, in the
sense that one uses a set of ‘data pairs’ ((xn,ay),yn) to determine suitable values for the model
parameters; however, classical regression methods are applicable in situations where all of the data
values are known before the model is fitted. In the context of RL, data pairs are acquired piece-by-

~

piece, and the values vy, = r,, — g + max, Q(Xp,+1,a) themselves depend upon the latest available
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estimates for the model parameters. As such, one has no choice but to fit the model incrementally

in the manner described above, which makes the procedure somewhat more difficult.

One possible method of constructing the approximating functions involves using incremental linear
regression, which is similar to classical linear regression except that one must continually append
new rows of data to the design matrix (consisting of values of the predictor variables) and the vector
of observed values of the dependent variable. This is also referred to as online linear regression;
see, for example, Strehl et. al. [I73]. However, this approach tends to be very computationally-
intensive, as one must store large arrays of data and perform time-consuming matrix computations

on each iteration; as such, it is not feasible for the problems considered in this section.

The method of function-fitting used in this section will be based on artificial neural networks
(ANNs). The term ‘neural network’ may be understood in a broad sense to refer to any procedure
or algorithm by which one learns to associate a particular response with any given set of inputs or
‘stimuli’. Applications of ANNs are common in various areas of computer science, statistics, and
other fields; see, for example, [17, 72, 80, 133, 190]. Typical applications of ANNs might include the
training of a machine to recognise an image or pattern according to a particular layout of pixels on
a computer screen, or the medical diagnosis of a patient based on their observed symptoms. The
origins of ANNs can be traced back at least as far as the 1960s and early 1970s (see [194) 200]); for
a detailed review of ANNs which includes a comparison with classical statistical methodology, see
[30]. In this section, the ANNs considered will be linear neural networks; these are considerably
simpler in their formulation than non-linear networks, but are entirely suitable for the purpose of

fitting a linear model such as (7.4.3) to a set of data which is acquired incrementally.

A linear neural network, also referred to as a neuron, applies in general to a situation where some
output value y € R is to be predicted using a set of input values x1,z9,...,xn using the model
9 = wy + Zf\; 1 w;x;, where the w; are weights to be determined. As depicted by Figure the
role of the neural network is simply to attach weights w; to the inputs x; in such a way that y is
estimated with the greatest possible accuracy. In this sense, the linear neural network is used for
the same purpose as classical linear regression; however, its essential feature is that it performs the
model-fitting incrementally, using a procedure which is not at all computationally intensive. Note

that in Figure an extra input xg = 1 is included; this represents the bias term (or intercept)
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Input xo= 1

Weights w;
attached

Input x, : : Output y

Figure 7.12: A simple linear neural network with N input nodes and only one output node.

used in the linear model, and the weight attached to this input will simply be wg. As such, the
neural network must attach NV + 1 weights in order to determine the output value y. Clearly, the

polynomial model ((7.4.3) is of the required form to be fitted using a linear ANN.

The structure of a neural network becomes considerably more complicated when one attempts to
model non-linear behaviour. In a non-linear ANN, the input nodes will typically be connected
to an additional set of nodes referred to as hidden nodes, which comprise the hidden layer of the
network. Broadly speaking, the purpose of the hidden layer is to apply a transformation to the
input values in order to allow for a possible non-linear relationship between the input values and
the output; for example, after computing a weighted sum of the input values, a hidden layer might
then convert this sum into a value between 0 and 1 using a sigmoidal function (see [15], p. 62). If
the relationship being modelled is thought to be highly non-linear, then several hidden layers may
be used; the last hidden layer will then be connected to an output node (or, if several different
outputs are required, an output layer). For further discussion of non-linear ANNs, see [62] (p. 75).

As mentioned earlier, attention will be restricted to linear ANNSs in this section.

The particular function-fitting RL algorithm considered in this section will be based on the Widrow-

Hoff (WH) algorithm, which was first developed by Widrow and Hoff [200] and originally named
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‘Adaline’, which is short for ‘adaptive linear’. The algorithm is recommended by Gosavi [62] (p.
69) for calibrating the weights of a linear ANN. In order to illustrate the algorithm’s underlying
simplicity, it will be easiest to present it in the context of a general problem involving the fitting

of an adaptive linear model to a set of data pairs which are acquired incrementally.

Widrow-Hoff (WH) algorithm

1. Assume that the model to be fitted is § = wy + Zf\il w;x;, where the w; are weights to be

determined. Set n = 0 and initialise the values w; =0 for ¢ =0,1,..., N.

2. Acquire a new data piece (X, yn), where x,, is a vector with N components and y,, is a scalar.

Calculate g, the output of the neural network at the n'" stage, as follows:
N
Gn = Wo + Zwi(xn)iv
i=1

where (x,,); denotes the i*” component of the vector x,,.

3. For each i € {0,1,..., N}, update the weight w; as follows:
w; — w; + op (yn - Qn) (Xn)ia (745)
where §,, is a learning parameter which may decay with n, and (x,,)o := 1.

4. If n > npax, where np.x is a large integer, then return the set of weights w; as the final

calibration for the ANN and stop. Otherwise, increment n by 1 and return to step 2.

The update rule is well-founded in theory and in fact is based on the gradient descent
optimisation algorithm, which is commonly used in the field of non-linear optimisation (see, for
example, [7]). Consider a problem in which one has some finite number M of data pairs (X, yn),
and the objective is to determine values of the weights wq, w1, ..., wny which will best approximate
the values 1, y2, ..., ypr via the model 4, = wo + Zf;l w;i(Xy); (forn=1,2,..., M). In the spirit of

classical linear regression, let the sum-of-squares error SSE(w), be defined by:

LM N 2
SSE(w) := 3 Z (yn —wo — wi(xn)Z) , (7.4.6)
i=1

n=1
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where w = (wg, w1, ..., wy) is the vector of weights. Naturally, the optimal set of weights should
minimise SSFE(w). Using gradient descent, one would initialise a vector of weights wy with com-

ponents (wg); = 0 for i =0, 1,..., N and then calculate w; for ¢t > 1 as follows:
w = wy_1 — 4 VSSE(wi_1), (7.4.7)

where V denotes the gradient operator and, as usual, J; is a step-size (learning parameter) rule.
Provided that §; satisfies the conditions (A.9.3)), it can be shown that w; converges to a minimiser
of (7.4.6) as t — oo (see [T7], p. 395). Computing the gradient VSSE, one finds:

M N
VSSE(w) = — Z (yn — woy — wi(xn)i> Xy
i=1

n=1

Hence, (7.4.7) implies that one should derive (w¢); (for i = 0, 1,..., N) on the t'" iteration of gradient

descent using the data pairs (X, y,) (with (x,)o := 1 for all n) as follows:

M N
(Wo)i == (Wi1)i+ 60 <yn — (Wi-1)o — Z(wt_l)i(xn)i> (Xn)i- (7.4.8)

n=1 i=1

This type of procedure is referred to as batch gradient descent, since it involves using all of the data
pairs (x1,¥1), (X2,%2), ., (Xar, yar) on each iteration t of the algorithm. Although the number of
data pairs is assumed finite at this stage of the discussion, if M is large then it is clearly not ideal
to have to inspect the entire set of data on each iteration. Fortunately an alternative approach is
available, referred to as stochastic gradient descent (also incremental gradient descent), which in
fact may be regarded as a simplification of the batch-updating procedure. Essentially, in stochastic
gradient descent, one sweeps through the set of M data pairs repeatedly but updates the vector of
weights using only one data pair at a time (see [I34] for further explanation), which considerably

speeds up the process in a real-time sense. Let (x;, ;) denote the single data pair used on the tth

iteration of stochastic gradient descent. Then the update rule for (wy); is:

N
(Wi)i = (Wi-1); + 6t (?Jt — (Wi-1)o — Z(Wt—l)z’(xt)i> (x¢)i- (7.4.9)

i=1
which is equivalent to the update rule (7.4.5) used by the Widrow-Hoff algorithm. Thus, the
Widrow-Hoff update rule is based on the application of stochastic gradient descent to a problem
involving minimisation of the sum-of-squares error defined in (|7.4.6). Moreover, the convergence

properties of gradient descent imply that if the WH algorithm is applied to a finite set of data
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pairs and allowed to sweep through the data pairs one-by-one an indefinite number of times, then
(assuming the learning parameters §; satisfy the conditions (A.9.3))) it will eventually converge to

the same set of weights that one would obtain using least-squares linear regression.

Of course, the context of the discussion given in the previous two pages is quite different from
the context of attempting to find a socially optimal control policy for a queueing system using an
RL algorithm. In an RL context, one considers an infinite sequence of data pairs ((xy, an),ys) in
which the values y, = 7, — gn + max, Q(xn+1, a) are intended to be estimates of the true values
Q(xn, a,) that one wishes to approximate, but in fact are subject to both estimation errors and
random noise. In such circumstances, it does not appear possible to devise an RL algorithm which
will provably converge to a set of weights (and resulting estimates Q(x, a)) that will minimise the
sum-of-squares error over all state-action pairs in S x Ax. Moreover, even if it were possible to
achieve such convergence, the minimisation of a quantity such as Z(& a) (Q(x, a) — Q(x, a)) ’ is not
necessarily what one wants to achieve in order to obtain a near-optimal policy, since (as discussed
previously) it is actually more desirable to obtain closer approximations for some Q-factors than for
others. For these reasons, as is usually the case with RL in general, it is appropriate to approach

the problem of value function approximation in something of a heuristic spirit, and aim to justify

any particular methodology by demonstrating its strong performance empirically.

Having discussed the relevant background material, it will now be possible to present the RL
algorithm that will be used in this section to estimate the @-factors for an optimal policy using
value function approximation. The algorithm relies upon linear neural networks (one for each
permissible action a) to fit the quadratic model , with the Widrow-Hoff updating rule used
to update the weights of the networks. It is also based very closely on the A-HYPOT R-learning
algorithm discussed in the previous section; in fact, essentially the only difference is that it relies
on approximating functions to estimate (Q-factors, rather than storing values explicitly. Although
some of the steps are simply repetitions of those found in the A-HYPOT algorithm, for the purposes

of clarity it will be appropriate to present the new algorithm in a complete form.

NEURO-HYPOT algorithm

1. Initialise the values n = 1 and 9 = 0. For each action a € |J, g Ax, initialise the weights

B(a) =0, C’Z-(l)(a) =0 and C’Z@)(a) =0 for each ¢ € {1,2,..., N}. Set the initial state x; = 0.
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For each i € {1,2,..., N} and j € {1,2,...,¢;}, initialise the value:
f(i,7) =0,

which represents the time at which the j** channel at facility i becomes ‘free’. Also, use

inverse transform sampling to obtain ¢, the arrival time of the first customer.

2. Use inverse transform sampling to determine d,,, the time between the n‘® and (n 4 1)
customer arrivals, then let ¢, = t, + d,. For each facility ¢ € {1,2,..., N}, determine the
number of service completions that occur between times t, and t,,41 using the known actions
ai, as, ..., a,—1 and exit times z1, 29, ..., 2,1 of previous customers. Denote these values by k;

(i=1,2,...,N). Then determine the state y,, € S using x,, as follows:

N
Yn =Xpn — g Ki€i,
i=1

where, as previously, e; is an N-vector with i component equal to one and all other com-
ponents equal to zero. One may interpret y, as the state of the system at time ¢,41 in the

event that the n'* customer balks, as opposed to joining some facility.

3. For each action a € Ay, , carry out the following sub-procedure:

(a) If a = ¢ for some ¢ € {1,2,..., N}, then use inverse transform sampling to sample a
random service-time requirement at facility ¢, and denote this by s(i). Then calculate

the (hypothetical) system departure time Z(i) as follows:

Z(1) = min 1,7) + s(2).
()= _min  f(i.5)+s0)
One may interpret Z(i) as the departure time of the n'* customer in the event that they

go to facility 7. On the other hand, if a = 0 then set Z(a) = t,.

(b) Let the reward R(a) be given by:

R(a) = )\(ai—ﬁi(Z(i)—tn)), if @ = i for some a € {1,2,..., N},

0, if a = 0.

(c) Define the state y as follows:

yit, if a =1 for some i € {1,2,.., N} and Z(i) > t,11,
y =
Y, otherwise.
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Thus, y is the state of the system at time t,,1 given that action a is chosen. For each

action a’ € Ay, obtain an estimate for Q(y,a’) as follows:

N ) N N 2
Qly. ) = B) + 3 0 + 35 CP) (‘Z) . (1410
i=1 b=l !

where b; = max g x; for each i € {1,2,..., N}, i.e. b; is dependent on the boundaries of

the finite state space. Let the ‘new data piece’, L(a), be defined as follows:
L(a) := R(a) — Bmax + max Q(y,d’), (7.4.11)
a’'€Ay

where Bpax := max, B(a), i.e. the maximum of the bias weights.

(d) For notational convenience, let x = x,,. Then, let Q(x,a) be given by:

O(x,a) := B(a) + Z cM(a) 2t + Z c?(a) <b) . (7.4.12)

7

(@) < @) + 0, (L) - Qx.0)) - (i =1,2,..,N),
() « Cc?P(a) + 6, (L(a) ~Q(x, a)) 2)2 (i=1,2,...,N),  (7.4.13)

where d,, € [0, 1] is a learning parameter which does not depend on (x,,a).

4. Select an action a, € Ay, according to a rule which allows for both exploration and exploita-
tion (e.g. an e-greedy rule). Then, let 7, = R(ay,) and z, = Z(a,), where R(a,) and Z(ay)

are the values obtained for action a, € Ay, in step 3. Also, let x,41 =Y.

5. If a, =i for some ¢ € {1,2,..., N}, then let k be a service channel satisfying:

k€ argmin f(i,7),
je{lvzz"'vci}

Then update the ‘channel free’ time f(i,k) as follows:

fi, k) = f(i k) + (i),

where s(i) is the same service-time value obtained in step 3(a).
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6. If n = npax, where nypax is a large integer, then output a stationary policy 9] which, at
each state x € S, chooses an action 0!l (x) maximising the expression Q(x, a) over all actions
a € Ax. Also output Bpax = max, B(a) as an estimate for the optimal average reward g*,

then stop. Alternatively, if n < nmax, increment n by 1 and return to step 2.

Steps 3(c) and 3(d) represent the function-fitting steps of the NEURO-HYPOT algorithm, in which
Q-factors are estimated using the latest available weights for the neural network and then the
weights themselves are updated according to the resulting Q-factor estimates. The update rules for
the weights in are based on the Widrow-Hoff algorithm, with L(a)—Q(x, a) representing the
difference between the new data value acquired and the output of the neural network (essentially,

the value predicted by the quadratic model). Although the algorithm is similar to A-HYPOT

R-learning in many respects, there are some extra nuances which should be discussed.

Firstly, the algorithm differs from the various R-learning algorithms presented in previous sections
by mot using a sequence of values g, to estimate the optimal average reward ¢g*. Instead, it uses
the value Bpax = max, B(a). Note that, due to , Brax = maxgea, Q(O,a), and therefore
this update rule is consistent with the relative Q-learning algorithm discussed in Appendix (see
Example. By Lemma the optimal average reward g* is equal to max,e 4, Q(0, a), which
is why Bmax is output as an estimate for g* in the final step of the NEURO-HYPOT algorithm.
Obviously, there is no guarantee that the final value of By, will be an accurate estimate for the
average reward that one would actually obtain under the stationary policy 81/ indeed, Buax might
even be greater than ¢*. In order to evaluate the performance of the policy 8% accurately, one

may perform regular ‘Frozen Phase’ (FP) evaluations as discussed in Section

The reason for the ‘relative QQ-learning’-style rule being preferred to the ‘R-learning’-style rule for
defining the data pieces in (in other words, g, being omitted in favour of Bpax) is that,
based on experimental results, it appears that the stability of the algorithm is improved by using
this method. When function-fitting is used, the weights of the neural network may be extremely
volatile in the early stages of the algorithm, in the sense that they may fluctuate wildly and take
undesirably large or small values. If one attempts to use the R-learning approach and rely upon
a sequence of values g, which are updated using a rule similar to , then the calculation of

each value g, must be made according to estimates for two @-factors, which in turn are dependent
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upon the weights of the neural network. When this approach is used, it appears that the behaviour
of the sequence (gn)nen is simply too unpredictable in the initial phase of the algorithm; it may
even diverge (in either a positive or negative direction) and cause the weights of the network to
do the same. When B,y is used instead of g,, the estimates for the average reward are made

according to a single bias term, and thus are less susceptible to divergent behaviour.

Secondly, the neural networks used by the algorithm are calibrated in such a way that they do not
simply use the components x; of the state vector x (and the squared components :c?) as inputs,
but instead use x;/b; and (x;/b;)?, where b; = max__gz; for each i € {1,2,..., N} (see steps 3(c)
and 3(d)). This is a way of normalising the inputs, so that they always take values between 0 and
1. Again, this adjustment is made in order to improve the algorithm’s performance; it appears to
behave in a more stable manner when the inputs are restricted to the range [0, 1] (see [62], p. 77).
Of course, even when the inputs z;/b; and (z;/b;)? are used, the theoretical model being fitted by
the algorithm still has the form ; effectively, one simply re-scales the values of the weights
w;. The boundary values b; are dependent on the bounds of the finite state space S, which can be
chosen in the initial configuration of the algorithm. An obvious possibility is to let b; correspond to
the selfish threshold B; defined in , but in fact this may yield poor results in systems where

average reward optimality is achieved by policies which cause the process to remain ‘distant’ from

the boundaries of S at all times. This will be discussed further in the next example.

A further important point to make is that the learning parameters d,, must not be dependent upon
the number of visits made to any particular state or state-action pair, nor must they be determined
in any other way which would require a unique value to be stored for every individual state or pair.
Naturally, this is in keeping with the constraints assumed throughout this section. The examples
given earlier in this chapter relied upon rules such as for the learning parameters, so this
means that a new rule for §,, must be found for the NEURO-HYPOT algorithm. There are many
ways of defining d,, so that it decays with n whilst also preserving the properties ; however,
in practice, setting d,, to a small constant value (i.e. removing the dependence on n) can also work

well in some scenarios. Again, this will be discussed in the example which follows.
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Example 7.4.3. (Structural properties of the NEURO-HYPOT policy)

The purpose of this example is not only to test the performance of the NEURO-HYPOT algorithm,
but also to examine the structural properties of the policy that it obtains. The latter will be done
by examining the final values of the weights of the neural network in order to determine whether
or not various structural properties discussed in earlier chapters (e.g. containment, monotonicity)
are preserved by the ‘neural’ policy 8. Once again, the parameters from Example will be
considered. The system under consideration has a demand rate A = 25, 4 service facilities with

parameters given in (|7.2.13)) and \5’] ~ 43,000, where S is the selfish state space.

An experiment was performed in which the NEURO-HYPOT algorithm was allowed to run for 40
million iterations. As in previous examples, an e-greedy rule was used for selecting actions, with
e = 0.15. Frozen Phase (FP) updates (i.e. simulation runs using the algorithm’s latest ‘guess’
for an optimal policy) were performed after every 10,000 iterations in order to gauge its progress.
Some initial tests showed that when the ‘caps’ b; used in steps 3(c) and 3(d) of the algorithm were
set equal to the selfish thresholds B; defined in , a relatively large number of iterations were
required before the algorithm began to approach an optimal policy. It appears that in general, the
progress of the algorithm may be slow in systems for which there exists an average reward optimal

policy 6* with an associated set of positive recurrent states Sp- much smaller than S.

As discussed previously, evidence from the literature (see [62], p. 77) suggests that it is desirable
to restrict the neural network (ANN) inputs to the range [0, 1] if it is feasible to do so. Based on
this principle, the A-HYPOT algorithm has been designed in such a way that it uses the bounds
of the finite state space S to scale the ANN inputs so that they are guaranteed to lie in the range
[0,1]. While this approach may not be strictly necessary for ensuring stability, it appears to be
sufficient for the purpose at hand. However, the problem remains of exactly how the bounds of the
finite set S should be determined. If S is too large, then the inputs received by the ANN on most
of its iterations will tend to be much smaller than 1, and this will cause the algorithm to perform
poorly (in terms of convergence speed). This is likely to be the reason for the selfish state space

being unsuitable for employment as the finite state space S in this particular example.

In order to improve the performance of the algorithm, it was decided that the values b; should be

set approximately equal to the boundary values associated with an average reward optimal policy.
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Of course, one begins the procedure without any knowledge of the structure of an optimal policy, so
this poses a problem. The solution adopted in this particular experiment was to draw upon results
from Section and determine the values b; according to the Whittle indices W;(x) defined in
(6.1.13). The Whittle index policy is a heuristic policy which, based on the results in Chapter
[6] appears to closely approximate an optimal policy in many given problem instances. Thus, it
is reasonable to suppose that the positive recurrent state space Sy associated with the Whittle
policy should have similar dimensions to the corresponding region Sy« associated with an optimal
policy. However, it is also known (by Theorem that the Whittle policy is actually more
conservative than the optimal policy that one would find using relative value iteration. Taking this

into account, a reasonable approach is to define the thresholds b; as follows:
b; := min{x € No : W;(z) <0} + K (1=1,2,..,N), (7.4.14)

where K is a non-negative integer. By using this approach, one defines the finite state space S so
that it includes all states x € Sy which would be positive recurrent under the Whittle policy, and
(by adding the extra term K in (7.4.14)) some extra states which would not be recurrent under the
Whittle policy. As explained above, the idea of including these ‘extra states’ is to allow the policy
6l% found by the NEURO-HYPOT algorithm the freedom to be slightly less conservative than the
Whittle policy; there is no guarantee that the algorithm will yield a policy which actually accesses

these ‘extra states’, so the intention is merely to allow some extra flexibility.

Ideally, the value of K should be small, in order to allow the algorithm to converge quickly towards
a strong policy. However, small values of K also restrict the algorithm’s freedom to explore beyond
the realms of the Whittle state space Sy, so (once again) there is a compromise to be made between
the amount of running time required and the likelihood of obtaining a near-optimal policy. In this
particular example, it was decided after some experimentation that K = 2 would be a suitable
value. Using to compute the resulting b; values, one obtains 6, 6, 7 and 7 for by, bs, b3 and
by respectively. The corresponding selfish thresholds are 14, 16, 12 and 12, so in this example the
rule yields a very significant reduction in the size of the finite state space.

Experimental results have also shown that, perhaps surprisingly, choosing a small constant value
for the learning parameters J,, can yield satisfactory results in many problem instances. Perhaps

the simplest explanation for this is that if a rule is chosen which causes 9, to decay with n, then
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the performance of the NEURO-HYPOT algorithm can be quite sensitive to the rate of decay.
When the §,, values become very small, essentially the changes made to the weights in step 3(d)
become negligible, so that no further improvements to the policy are possible. In general, the more
complicated the system (in terms of the number of facilities, size of the state space, etc.), the slower
the rate of decay should be. Thus, to be on the safe side, it appears that choosing a very slow rate
of decay should always be a good option, but if the running time of the algorithm is only finite
then this is almost equivalent to using a constant value. It is worth noting that the RL algorithms
considered in earlier sections were largely able to avoid the problem of making the rate of decay
appropriate for the size of the system by using rules such as , under which the learning
parameters depend on the numbers of visits made to individual state-action pairs, which naturally
causes the rate of decay to be slower in larger systems. When the parameters ¢, are allowed to

depend only on the iteration count n, it is more difficult to find an appropriate rule.

When a constant value for the learning parameters is used, one must abandon any hopes of ‘conver-
gence’ being achieved in any rigorous mathematical sense (obviously, the second condition in
is no longer satisfied); however, as discussed at various stages earlier in this chapter, convergence
of the @Q-factor estimates is not necessarily either realistic or desirable where RL algorithms are
concerned. The advantage of using a constant value for the learning parameters is that it ensures
that the algorithm persists in ‘exploring’ throughout its finite run-time; at no stage does it simply
‘stall out’. Returning to the present example, it was decided after some experimentation that the
value §,, = 0.001 (for all n € N) would be suitable. Table [7.5|shows, for each action a € |J, Ax, the
values of the weights B(a), Ci(l)(a) and C’Z@ (a) obtained after 40 million iterations.

It should be made clear that the weights shown in Table are intended for use in the original
form of the quadratic model , and not the ‘adjusted’ version of the model in which
the inputs x; and :U? are divided by b; and b? respectively. In other words, the final values of
the weights output by the NEURO-HYPOT algorithm have been re-scaled so that they fit the
original model . This enables an easy comparison with the results from the multivariate
regression experiment in Example (shown in Table to be made. Without conducting a
detailed analysis, it is obvious that there are considerable differences between the two sets of results,

with the NEURO-HYPOT algorithm appearing to produce larger values for the weights Ci(z) (a)
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a=20 a=1 a=2 a=3 a=4

B(a) |-18.729 | 127.089 | 99.872 | 54.188 | 22.068
CcY(a) | -81.672 | -86.183 | -86.137 | -81.222 | -81.097
M (a) | -33.499 | -35.760 | -39.738 | -32.437 | -33.497
c{P(a) | 0.971 | 0498 | 0.335 | 0.889 | 1.020
ca) | -0.756 | -0.591 | -0.487 | -0.559 | -1.271
C®(a) | -11.037 | -15.725 | -10.688 | -11.133 | -11.112
CP(a) | -4.141 | -3.938 | -5.699 | -4.445 | -4.143
CP(a) | -1.748 | -1.692 | -1.731 | -3.361 | -1.762
CP(a) | -0.068 | -0.061 | -0.044 | -0.057 | -0.246

Table 7.5: Weights obtained using the NEURO-HYPOT algorithm for the system in Example [7.4.3

associated with the quadratic terms (except in the case i = 4), so that the approximating functions
appear to have a more ‘quadratic shape’ than those obtained using regression. Incidentally, a quick
simulation experiment shows that the stationary policy that would be obtained using the regression
weights in Table yields an average reward of approximately 123.6, whereas the NEURO-HYPOT

policy 071 attains an average reward within 0.1% of the optimal value ¢* ~ 126.6.

Figure provides a diagrammatic comparison between the performances of the A-HYPOT R-
learning algorithm (see page and the NEURO-HYPOT algorithm over the entire 40 million
iterations. For convenience, let A-HYPOT and NEURO-HYPOT be abbreviated to A-H and N-H
respectively. Since the N-H algorithm does not use a sequence of values g,, to track the estimated
average reward, the evolution of the bias term Bp,ax (which, as discussed previously, also provides an
approximation for the average reward) is shown in the figure instead. Unsurprisingly, the behaviour
of Bpax is considerably more erratic than that of the values g, used by the A-H algorithm, and the
FP estimates are also somewhat slower to converge to the optimal value ¢g* in the N-H case than
in the A-H case. It is to be expected that N-H will compare unfavourably with A-H in systems of
relatively modest size, since the A-H algorithm enjoys the luxury of being able to store estimates
for Q-factors individually, whereas the N-H algorithm must rely on approximating functions. The
major advantage of the N-H algorithm, of course, is that it can be used in systems with state spaces

which are much larger than those which A-H would be able to cope with. Also, it should be pointed
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Figure 7.13: Performances of the A-HYPOT and NEURO-HYPOT algorithms in Example [7.4.3

out that in this particular example, the N-H algorithm appears to perform very well in comparison

to the other R-learning algorithms considered earlier in this chapter (see Figure .

As mentioned earlier, a further objective in this example is to analyse the structural properties of
the NEURO-HYPOT policy 0!/ using the weights in Table First, consider the ‘containment’
property discussed in Section It is known that the recurrent state space Sy« for any average
reward optimal policy #* has the property Sg- C S, where S is the selfish state space. During
the evolution of the N-H algorithm, the process was constrained to a finite subset of S defined by
thresholds by = 6, b = 6, b3 = 7 and by = 7. As such, the algorithm was not allowed to explore
any states outside S. Nevertheless, one may still use the weights in Table and the quadratic
model to determine decisions for each state in the infinite state space {(x1,x2,xs,24) :
x1,T2,23,24 € No}, although there is no guarantee that these decisions will be the same as those
which would be obtained by allowing the algorithm to explore a larger finite state space. In the

remainder of this example, S will denote the infinite state space defined in (3.5.1)).

Let 05 now refer to the NEURO-HYPOT policy which chooses an action at any state x € S which
maximises the estimate Q(x, a) given by 1} assuming that all actions are permitted at every
state; that is, Ax = A = {0, 1,2, 3,4} for every state x € S. In general, in order to show that the
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recurrent region Syr is contained within some finite set ST ¢ S with thresholds b; = maxX,cgt Ti,
it is sufficient to show that the estimates Q(x, a) satisfy the following for each i:
max (Q(x, i) — Q(x,o)) <0. (7.4.15)

xeSTt
r;=b;

This states that O will not prefer joining facility i to balking at any state x € ST with 2; = b;.

Somewhat surprisingly, in this particular example the property (7.4.15) fails to hold when the
thresholds b; are set to the selfish thresholds Bi. Indeed, for ¢ = 4 one finds:

~

Q(x,4) — Q(x,0) = 40.797 + 0.575z + 0.002z5 + 0.049z5 — 0.51524

— 0.0752% — 0.00223 — 0.01422 — 0.17823. (7.4.16)

The roots of the quadratic equation 40.797 — 0.515x4 — 0.178xi = 0 are (approximately) —16.655
and 13.762. This implies that one can set x1 = 22 = x3 =01in and choose any non-negative
integer value smaller than 14 for x4, with the result that Q(x, 4)— Q(x, 0) is positive. In particular,
Q((O, 0,0,12),4) — Q((0,0,0, 12),0) > 0, which implies that the policy 0!8 favours joining facility
4 over balking at the state (0,0,0,12). However, the selfish threshold for facility 4 is By =12, so
this provides an indication that 8] may fail to conform to the containment principle for socially
optimal policies discussed in earlier chapters. Indeed, further analysis shows that it is possible to

identify certain states x € S which possess all three of the following properties:

1. x is positive recurrent under 9!%;
2. Q(x,4) > Q(x,a) for all a € {0,1,2,3};

3. x4 > By.

One such example is the state x = (6,7,7,12). This shows that, in this particular example, gE]

fails to possess the containment property; that is, Syr is not contained in S.

The fact that O chooses to join facility 4 at certain states x € S with 2, > By may be regarded
as something of a peculiarity in this example, which appears to be a consequence of the parameter
values chosen for that particular facility. Indeed, it transpires that the property holds
with threshold values by = 6, by = 8 and b3 = 7 and by = 14. Since these values of by, by and bs

are smaller than By, By and Bs respectively, it follows that under the policy 8, the numbers of
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customers present at facilities 1, 2 and 3 remain within the selfish thresholds at all times. Facility 4
has a much faster service rate than the other facilities (see ) and therefore one would think
that it would tend to be the most sparsely-populated of the four facilities during the evolution of
the NEURO-HYPOT algorithm (although obviously this depends on the decisions chosen at the
various states). Hence, it might be the case that the weights C’il)(a) and Cf) (a) given by the
al