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It is thought that corneal surface topography may be stabilized by the angular

orientation of out-of plane lamellae that insert into the anterior limiting mem-

brane. In this study, micro-focus X-ray scattering data were used to obtain

quantitative information about lamellar inclination (with respect to the corneal

surface) and the X-ray scatter intensity throughout the depth of the cornea from

the centre to the temporal limbus. The average collagen inclination remained

predominantly parallel to the tissue surface at all depths. However, in the cen-

tral cornea, the spread of inclination angles was greatest in the anterior-most

stroma (reflecting the increased lamellar interweaving in this region), and

decreased with tissue depth; in the peripheral cornea inclination angles

showed less variation throughout the tissue thickness. Inclination angles in

the deeper stroma were generally higher in the peripheral cornea, suggesting

the presence of more interweaving in the posterior stroma away from the central

cornea. An increase in collagen X-ray scatter was identified in a region extend-

ing from the sclera anteriorly until about 2 mm from the corneal centre. This

could arise from the presence of larger diameter fibrils, probably of scleral

origin, which are known to exist in this region. Incorporation of this quantitative

information into finite-element models will further improve the accuracy with

which they can predict the biomechanical response of the cornea to pathology

and refractive procedures.
1. Introduction
The structure of the cornea and surrounding limbus is such that it is able to main-

tain its shape under the forces applied by intraocular pressure, the cardiac cycle

and the extraocular muscles during eye movement. As the material mechanical

characteristics of the human cornea are highly dependent on its fibrillar collagen

arrangement, many studies have been carried out to determine the precise orien-

tation and distribution of collagen in the corneal stroma. Electron microscopy

has shown that within the posterior stroma, collagenous lamellae (in which fibrils

lie predominantly parallel to each other) appear to traverse the cornea from limbus-

to-limbus, remaining in-plane, parallel to the corneal surface. However, in the

anterior third of the stroma, many lamellae do not remain in-plane, as there is fre-

quent branching and interweaving of lamellae [1,2]. Many (if not all) of the

lamellae in the anterior stroma insert into the anterior limiting lamina (Bowman’s

membrane), intertwine with deeper fibres and reinsert back into Bowman’s mem-

brane to form bow spring-like structures [3]. Using the latest developments in

nonlinear optical high-resolution microscopy, Winkler et al. [4] were able to quan-

tify the angle of the out-of-plane collagen lamellae in the anterior 250 mm of the
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Table 1. Sample information and measurements of central corneal thickness (CCT).

sample right/left sex age (years)
time between death and
enucleation (hours : minutes) CCT on arrival (mm)

stromal thickness during
X-ray data collection (mm)

1L L F 88 07 : 00 920 580

2La L F 72 06 : 05 690 600

2Ra R F 72 06 : 05 810 580

3L L M 70 07 : 00 710 540

4R R M 61 03 : 00 810 600

5L L M 63 10 : 09 720 580

6L L F 72 24 : 05 760 500
aLeft/right pair of eyes from the same donor.
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Figure 1. The main stages of sample preparation involved de-swelling the cornea and fixing the eye under pressure (a), followed by the mounting of a 1 mm wide
sagittal corneal strip in an airtight clamping chamber (b). The photograph in (b) was taken on a blue background in order to visualize the corneal strip within the
chamber.

lead
beam-stop

diffracted
X-rays

incident X-rays

corneal collagen
fibrils

X-ray Pilatus
detector

X-ray
reflection

2q

Figure 2. Generation of the wide-angle corneal X-ray scatter pattern. The
plane of the corneal tissue is regarded as being the x – y direction and
the X-rays are applied in the out-of-plane z-direction.
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cornea. They showed that the range of lamellar angles relative to

the stromal surface was highest in the anterior-most 83 mm of

the corneal stroma and decreased with tissue depth. It has

been suggested that the structural organization of the anterior

cornea, which confers heightened elastic [3,5] and transverse

shear moduli [6,7] and rigidity in extreme hydration [8], likely

also plays a role in the maintenance of corneal curvature. This

theory is further supported by observations of reduced lamellar

interweaving and infrequent Bowman’s membrane insertions

in keratoconus (a pathology which affects the strength, and

ultimately the shape of the cornea) [9].

Although, the arrangement of corneal collagen has been

studied in detail by microscopy, the results have yielded

little information about the large-scale quantitative orien-

tation of collagen fibrils throughout the cornea as a whole.

In recent years, this matter has largely been addressed

through the use of synchrotron X-ray scattering. This tech-

nique allows structural, quantitative data to be rapidly

obtained from full-thickness specimens, in a close-to-natural

state (without the need for lengthy processing, such as associ-

ated with many microscopy techniques). Unlike most

connective tissues, the cornea produces both a small-angle
equatorial X-ray scatter pattern (caused by the uniformity

of fibril diameters and the regular spacing of collagen) and

a wide-angle equatorial pattern, arising from the lateral pack-

ing of the collagen molecules within the fibrils [10,11]. The

intensity of the resulting X-ray scatter can provide quantitat-

ive information about the number of molecules (and hence

relative mass density of collagen) lying in a given direction.

http://rsif.royalsocietypublishing.org/
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Figure 3. Schematic showing the X-ray scan positions for each sample. The geometric centre of the spherical central cornea corresponds to the origin of the
coordinate system shown in table 2.
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In some of the earliest synchrotron studies on human corneas,

small-angle X-ray scattering (SAXS) was used to demonstrate

the significant amount of structural anisotropy in the centre

of the cornea, where collagen was found to lie predominantly

in the nasal–temporal and superior–inferior directions

[12–14]. Later, analysis of wide-angle X-ray scattering

(WAXS) data revealed the presence of a pseudo-annulus of

collagen surrounding the cornea at the limbus [15] and in

2004, the first quantitative two-dimensional projected map

of preferential lamellar orientation across the human cornea

and limbus was published [16]. Subsequently, femtosecond

laser technology was used to delaminate human corneas

into anterior, mid and posterior stromal sections and thereby

enable the predominant orientation of collagen in each region

to be determined, thus highlighting the relative randomness

of collagen orientation in the anterior stroma compared to

the predominantly inferior–superior and nasal–temporal

arrangement of collagen in the posterior stroma [17]. To

date, most X-ray scattering studies have examined corneal

tissue en-face, providing average measurements of collagen

fibril orientation throughout the entire thickness of the

cornea; however, the relatively recent development of

micro-focus X-ray beams has provided new opportunities
for examining sagittal sections of the cornea ‘edge-on’, to

obtain detailed depth profiled information on lamellar struc-

ture. The feasibility of this technique was demonstrated by

Quantock et al. [18] but due to the examined corneas being

well above physiological hydration it was not possible to

ascertain accurate information regarding the extent and

direction of lamellar branching that likely occurs in vivo.

The aim of this study was to obtain micro-focus WAXS

data at fine intervals throughout the entire thickness of sagit-

tal sections taken from physiologically hydrated human

corneas (perfusion-fixed under pressure) and use this infor-

mation to generate an accurate numerical representation of

lamellar branching as a function of tissue depth from the

centre of the cornea to the temporal limbus.
2. Material and methods
2.1. Sample details
Six eyes from five donors supplied by the National Disease

Research Interchange (Philadelphia, PA, USA) were enucleated,

frozen and transported at 2808C to Cardiff University. These

eyes were thawed prior to experimentation. A further eye was

http://rsif.royalsocietypublishing.org/
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Figure 4. An X-ray pattern generated from corneal tissue has a collagen dif-
fraction peak centred at radius R. The intensity of X-ray scatter shows angular
dependence, with more scatter along 908 than along 08 in this example.
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obtained from the Bristol Eye Bank and transported chilled to

Cardiff University (table 1).
2.2. Specimen preparation
Prior to fixation, the central corneal thickness was measured

using a Pachette2 Ultrasonic Pachymeter (DGH Technology,

USA) (table 1). To counteract the effects of post-mortem swelling,

the corneas were thinned prior to fixation, using a modification

of the phosphate-buffered saline (PBS) infusion technique

described previously by Winkler et al. [4]. A pressure head of

PBS was created by holding a reservoir 40 cm above the eye

and inserting a needle at the end of the hose through the sclera

and into the anterior chamber (figure 1a). A pressure of

20 mmHg was maintained for 2 min before a second needle (con-

nected to a disposal reservoir) was inserted into the anterior

chamber. By adjusting the pressure head to 23 cm, the eyeball

was kept under pressure at 17 mmHg for 30 min. The PBS in

the top reservoir was then gradually replaced with 4% para-

formaldehyde (PFA) in PBS and allowed to perfuse for 5 min,

thus enabling the eye to be fixed at close to physiological

pressure (12–22 mmHg). During the fixation process, corneal

surface hydration was maintained by regular application of

PBS (one drop every 5 min). On completion, the eye was sub-

merged in 4% PFA and stored at 48C for 3 days until required

for data collection.

Immediately prior to data collection, the cornea, with a 3 mm

wide scleral rim (marked at the nasal position with a surgical

skin marker pen), was removed from each eye. The corneal

epithelium was carefully removed using a scalpel blade. Corneas

with an average stromal thickness of 569 mm were achieved

(table 1). A 1 mm wide sagittal strip was then cut through the

centre of each cornea (along the nasal–temporal meridian)

using a specially designed strip-cutter (consisting of two

parallel-mounted razor blades), and these strips were used for

X-ray scattering. A second strip was cut from one cornea and

set aside for second harmonic generation (SHG) nonlinear

microscopy (see below). In order to maintain the natural curva-

ture of the cornea during X-ray data collection, each strip was

clamped at its scleral edges and placed inside a custom-made air-

tight chamber, sealed with polyester films (Mylar; DuPont-Teijin

Films, Middlesbrough, UK) (figure 1b). The chamber was

mounted in a motorized goniometer stage which was used,

together with an in-line microscope camera (modified Fetura

system from Qioptiq, Munich, Germany), to ensure that the

X-ray beam was parallel to the top and bottom surfaces of the

http://rsif.royalsocietypublishing.org/
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Figure 5. The total collagen scatter intensity consists of an isotropic component arising from collagen fibrils running through the thickness of the corneal strip, and
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Figure 6. SHG image of an optical section taken about 100 mm below the
cut surface of the corneal physical section. An area (cropped from a larger
image) of approximately 6 � 4 images each 512 � 512 pixels in size is
shown, using simple tiling without orientation correction, edge matching
or any image processing. Bright features correspond to SHG scattering at
400 nm, in the forward (transmitted) direction, of laser light at 800 nm in
approximately 140 fs pulses. SHG contrast in the image derives from a com-
plex distribution of nonlinear susceptibility in non-centro-symmetric fibrillar
collagen structures of varying diameters as well as linear scattering at
both the primary and secondary wavelengths. The cross-sectional area of
the microfocus X-ray beam is shown by a solid white rectangle and the
cross-sectional area of a typical scan is shown by an open white rectangle.
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strip. The alignment was ensured by adjusting the goniometer

stage angle electronically until satisfactory alignment was seen

through the in-line microscope camera. The potential for tissue

dehydration during X-ray exposure was minimized by placing

a piece of moist cotton wool within the chamber alongside the

corneal strip and monitoring the thickness of the strip before

and after X-ray exposure by means of the in-line camera.
2.3. Second harmonic generation microscopy
A 160 mm wide nasal-to-temporal section was cut from one of the

strips from sample 3L using a sledge microtome (HM440E;

Microm, Walldorf, Germany). The section was then immediately

covered by 1 : 1 PBS glycerol solution and sealed between a 1 mm

microscope glass slide and a 0.16 mm coverslip. SHG images

were acquired with an LSM 510 META NLO instrument (Carl

Zeiss, Cambridge, UK) and 20� 0.8NA Plan Apo objective. Illu-

mination was typically about 3 mW in approximately 140 fs

pulses at 800 nm from a Chameleon Ultrafast laser (Coherent

Scotland Ltd, Glasgow, UK). SHG contrast images were collected

in the forward propagating direction at 400+10 nm through a

high-extinction near-infrared blocking filter HQ400/20m-2p

(Chroma Technology Corp., VT. USA). Representative optical

sections through the physical corneal slices, away from the

cut surfaces, were collected using a simple tiling procedure

with an automated stage but without any image processing,

http://rsif.royalsocietypublishing.org/
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edge adjustments or other data manipulation. The pixel spacing

in the SHG images was 0.77 mm.

2.4. X-ray data collection
WAXS experiments were carried out on beam-line IO2 at the UK’s

national synchrotron facility, Diamond Light Source (Didcot, UK).

X-ray scatter patterns were collected on a vacuum-compatible Pila-

tus detector placed 350 mm behind the specimen (figure 2); a lead

beam stop positioned between the specimen and the detector was

used to prevent any undiffracted X-rays from damaging the detec-

tor sensitive area. X-ray reflections occur symmetrically on the

X-ray pattern at a scattering angle of u with respect to the incident

direction. Using a 40 mm wide by 20 mm high micro-focus X-ray

beam with a wavelength of 1.0 Å, X-ray scatter patterns resulting

from a 0.5 s X-ray exposure were collected at 20 mm intervals

throughout the entire thickness of the corneal stroma. As illus-

trated in figure 3 and table 2, multiple vertical scans were

performed at central, peripheral and limbal locations. The result-

ing X-ray scatter patterns were processed using MATLAB

software (Mathsworks, USA) and calibrated against the

0.304 nm reflection of powdered calcite [10]. Collagen scatter

intensity in each pattern was adjusted to account for the micro-

focus X-ray beam dimensions, exposure time and Diamond’s

storage ring current during each experiment.

2.5. X-ray diffraction analysis
At a given point in the tissue, collagen orientation is not isotropic,

so the total scattering distribution has an angular dependence. For

example, in the scatter pattern shown in figure 4, scattering along
the 08 direction is significantly lower than along 908. The relative

collagen orientations in different directions were determined

from each scatter pattern as described in detail previously

[10,19] except that here we increased the resolution by making

720 radial divisions over 3608 rather than 256. The total collagen

scatter intensity distribution was shifted by 908 to account for

the fact that equatorial scatter occurs at right angles to the collagen

axis [10] (figure 5a). The total collagen scatter intensity comprises

isotropic and non-isotropic components. Unlike in our previous

papers [10], which have examined the cornea en-face, the isotropic

scatter in this case arises from collagen fibrils running through the

thickness of the cut strip. This itself will contain two contributions,

one taking the form of a uniform ring, which arises from a sub-

population of collagen fibrils that are aligned with the direction

of the incident X-ray beam and another from lamellae running

through the strip obliquely (i.e. not parallel to the X-ray beam),

which will contribute at different angles to the isotropic scatter.

The non-isotropic scatter arises predominantly from collagen

within the section plane. So long as hydration is constant and

any induced changes in hydration during sample preparation

are uniform in the tissue, the total X-ray scatter intensity (both iso-

tropic and non-isotropic) will be a reasonable representation of the

mass density of the collagen sampled by the beam, so can be used

to approximate the variation of mass density across the samples.

The isotropic scatter was subtracted out in the collagen mol-

ecular spread angle computation (figure 5b) because of the

unknown contribution from the collagen fibrils running parallel

to the X-ray beam. The collagen molecular spread angle Øm was

measured as the width of the non-isotropic collagen scatter peak

at half of its peak height as can be seen in figure 5b,c. However,

because collagen molecules are not parallel to the fibril axis [20]

the angular spread of fibrils and hence, also lamellae (ØL), is

less than the measured angular spread of the molecules from

which they are constituted (Øm) (figure 5d ). The correction

factor (k ¼ 0.385) may be found by calculating the ratio of the

width at half normalized height from the wide-angle corneal dif-

fraction pattern (arising from molecular scatter) and the same

parameter from the small-angle diffraction pattern (arising

from fibril scatter) from the same specimen [10]. The angular

spread of collagen molecules is represented as a polar plot in

figure 5c, and the physical interpretation of the polar plot in

figure 5c is shown in figure 5d after correcting Øm to ØL,

where ØL ¼ k Øm. The average amount by which lamellae devi-

ate from their predominant direction is therefore represented

by +ØL/2 and will be referred to as the lamellar inclination.
3. Results
Representative optical sections, comprising adjacent images

each of 512 � 512 pixels concatenated into a single picture

(figure 6), show the SHG contrast obtained from the

non-centro-symmetric fibrillar collagen structures. Even with-

out any image processing, the differences previously

described between anterior and posterior stroma [3] are evi-

dent, with many out-of-plane lamellae in the anterior stroma

gradually transforming to lamellae parallel to the anterior sur-

face in the posterior stroma. Figure 6 also shows the volume of

tissue examined in a single X-ray scan, together with the size

of the X-ray beam. This gives an idea of the cross-sectional

area of the tissue that was sampled in each X-ray pattern.

The WAXS scatter patterns contain information about the

molecular spacing between collagen molecules within fibrils,

as well as information about fibril inclination angles [10].

We found that the intermolecular Bragg spacing, averaged

as a function of tissue depth, remained within the range

1.64–1.69 nm in all samples at all positions across the

http://rsif.royalsocietypublishing.org/
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cornea. This suggests that the hydration of the fibrils

themselves is not a function of radial position in the cornea.

Figure 7 shows polar plots generated from X-ray data col-

lected in the anterior, mid and posterior stroma at three radial
positions in cornea 3L. The plots show that the average

course of lamellae remains parallel to the tissue surface

across, and throughout the depth of, the tissue. However,

anterior-most plot(s), seen at the top, are ‘fatter’ than those

http://rsif.royalsocietypublishing.org/
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elsewhere, depicting the increased spread of inclinations of

lamellae with respect to the tissue surface, which is shown

in greater detail in figures 8 and 9. To test whether this

spread of inclination angles follows a normal distribution,

representative plots from different depths were analysed

using MATLAB software. Statistical analysis with Lilliefors

and Kolmogorov–Smirnov tests showed that, at all depths,

the lamella inclination angles follow Gaussian distributions.

Figure 8 shows the averaged variation in lamellar incli-

nation as a function of tissue depth at different radial

positions across the central (a–c) and peripheral cornea (d,e),
limbal region ( f) and adjacent sclera (g). It should be noted

that, except at the optical centre of the cornea, these represent

oblique scans through the cornea; in other words, as depicted

in figure 3, not all scans run perpendicular to the corneal sur-

face. In the prepupilliary region of the cornea (figure 8a–c),

lamellar inclinations of up to 168 are observed in the anterior

stroma; the reader should be reminded however, that this

value represents the average of a distribution of angles at

each sampled position and not the maximal inclination of

lamellae at a given position. This angle diminishes with

depth and levels off at 7.5–8.58 mid-way through the tissue.

There is evidence of an increase in lamellar inclination in the

posterior layers of the stroma in the central and peripheral

cornea (up to a 4 mm radius) (figure 8a–e). Near the limbus

(figure 8f ), in the mid-depth of the stroma inclination angles

increase and then decrease again. In the near sclera

(figure 8g), there is a pronounced increase in the inclination

angle within the posterior layers. The graphs in figure 8a–g
are combined in figure 8h to allow a quantitative comparison

of the variation in lamellar inclination as a function of depth

at the different positions across the cornea. Across the corneal

surface, lamellae insert into Bowman’s layer at angles aver-

aging between 10.88 and 168. Away from the optical centre of

the cornea deeper stromal lamellae gradually become more

interwoven (greater lamellar inclination).

In figure 9, the average values of lamellar inclination from

all samples at all positions are plotted after robust smoothing

of the data [21]. This figure highlights that, while the cornea
contains interwoven lamellae only in the anterior layers, the

limbal and scleral lamellae are interwoven at all depths (see

tables A, B and C in the electronic supplementary material).

The variation in the total X-ray scatter intensity as a func-

tion of tissue depth is shown in figure 10. At the optical

centre of the cornea (figure 10a), after an initial increase,

there is a steady reduction in the X-ray scatter intensity as a

function of tissue depth followed by a rapid decrease in the

posterior stroma. A similar trend occurs at positions away

from the centre (figure 10b–d) but in the peripheral cornea,

limbus and sclera (figure 10e–g) the trend changes slightly

towards a gradual increase in X-ray scatter intensity with

depth followed by the same rapid drop in the most posterior

layers. The relative scale of these effects can be seen numeri-

cally in figure 10h (see tables A, B and D in the electronic

supplementary material), and also in figure 11a, where

smoothed data from all the scans are shown. It is evident

from figure 11a that there is a region of intense total X-ray

scatter, originating in the sclera and extending into the per-

ipheral cornea. Figure 11b shows just the isotropic scatter

contribution (figure 5) which arises from lamellae running

through the section thickness; in real terms, these lamellae

can be envisaged as extending out of the page. This shows

a strong feature centred near the limbus about midway

between the anterior and posterior surface. Comparison of

the relative intensities of the unsmoothed data used to pro-

duce figure 11a,b indicates that the contribution of the

isotropic scatter to the total scatter is approximately 50%

across the cornea and limbus.
4. Discussion
In this paper, we have, for the first time, used X-ray scattering

techniques to quantify the lamellae inclination angles and

X-ray scatter intensity through the thickness of the corneal

stroma. Because a whole human donor eye was required for

each sample strip, it was not possible to investigate these dis-

tributions along other meridians. Nevertheless, the results

http://rsif.royalsocietypublishing.org/
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obtained are an important first step to elucidating the full

three-dimensional organization of stromal lamellae.

In previous studies, we have used WAXS to determine the

preferred lamellar orientations throughout the cornea and

sclera [16,17,19] on the assumption that the average direction

of the molecules aligns with the average direction of the

fibrils which they constitute. This has been a reasonable

approximation since we were primarily concerned with

quantifying the relative variation of mean preferred lamellar

orientations across the cornea. However, it is a significant

problem when quantifying the angular spread of lamella

inclination angles as carried out in the current work, and

the molecular angular spread measurements therefore

needed to be corrected by a factor of about 60%. In theory,

SAXS (which arises from the fibrils themselves) would over-

come the need for such a correction. However, this technique

is also subject to significant limitations such as its sensitivity

to small variations in tissue hydration and the influence of

non-collagenous molecules associated with the collagen

fibrils. Since WAXS reflections are relatively insensitive to

changes in tissue hydration our use of WAXS should provide

a better estimate of the variation in collagen mass density

across the tissue.

WAXS is a unique and well-established method for

measuring the lateral spacing between individual fibril-

forming collagen molecules. As collagen intermolecular

spacing is known to be influenced by both the hydration of

the fibrils [22,23] and by the degree of molecular cross-linking

[24], the absence of any major changes in intermolecular spa-

cing with tissue depth or radial distance from the corneal

centre, suggests that the collagen molecular arrangement

within the fibrils is uniform throughout the cornea. This
finding is consistent with previous SAXS data which found

there to be no significant depth-dependent change in the

average diameter of corneal collagen fibrils [18]. The inter-

molecular spacing measurements obtained in this study

were similar to those reported in previous X-ray scattering

studies performed on full-tissue thickness, PFA-fixed

human corneas [25] and ‘fresh’ human corneas [26].

Since the natural curvature of the cornea was also main-

tained throughout the procedure (as a result of it being

perfusion-fixed under pressure prior to data collection), the

reported measurements of lamellar inclination as a function

of tissue position and depth may therefore be seen to reason-

ably represent the in vivo arrangement of lamellae within the

human cornea. This arrangement is illustrated schematically

in figure 12.

Using this technique, we have shown that collagen lies pre-

dominantly parallel to the corneal surface at all tissue depths

but an increase in lamellar inclination occurs in the anterior

stroma and also, to a lesser extent, in the final 20–30 mm of

the posterior stroma. The measured increase in lamellar incli-

nation in the anterior cornea clearly reflects the increased

lamellar interweaving seen in this region [1,2] and the presence

of large quantities of transverse fibres which connect one or

many adjacent layers, and frequently insert into Bowman’s

membrane [4]. The complex arrangement of collagen in the

anterior stroma has been further demonstrated by X-ray scat-

tering studies which revealed an isotropic arrangement of

lamellae within the plane of the cornea as viewed en-face

[17]. The precise arrangement of collagen in the anterior

cornea, which has been shown to confer additional mechanical

strength [3,5–7] and rigidity in extreme hydration [8], is

believed to play an important role in the biomechanics of the

tissue by resisting intraocular pressure and maintaining correct

curvature. In the anterior cornea, the greatest inclination angles

appear to occur within the central cornea and are reduced in

the rest of the cornea and sclera. This supports the idea that

lamellar interlacing is involved in the maintenance of corneal

curvature, since the curvature of the centre is greater than

that of the periphery [27].

It was noted in figure 8 that the inclination angle does not

appear to reduce to zero at any depth or radial position in the

cornea but remains greater than 7.28. This is may be due to the

presence of some residual crimp which exists in eyes fixed

at close to physiological intraocular pressure. In whole eye

ex-vivo experiments, it has been shown that crimp is present

under normal intraocular pressure loading [28]. This may be

of some significance as the mechanical behaviour of the

cornea is closely correlated with its crimping morphology [29].

The quantitative information derived from this study con-

curs with previous knowledge of the cornea obtained from

electron microscopy. In the posterior stroma, lamellae are

seen to run continuously from limbus to limbus and are

stacked parallel to the corneal surface, with branching occur-

ring predominantly within the plane of the cornea [1,2,30]. En

face X-ray scattering studies of human cornea have shown

that within this region collagen lies predominantly in the ver-

tical and horizontal meridians (directed towards the four

major rectus muscles). It is thought that the arrangement of

collagen in the posterior stroma may help to distribute

strain in the cornea by allowing it to withstand the pull of

the extraocular muscles [17].

The observed increase in lamellar inclination observed in

the final 20–30 mm of the posterior stroma may be related to

http://rsif.royalsocietypublishing.org/
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the presence of increased residual crimp angles in these lamel-

lae. In the pre-Descemet’s stromal layer [31], there are also

electron microscope observations of a very thin sheet of thin

randomly arranged, interwoven fibrils embedded in the amor-

phous substance of Descemet’s membrane [1,32]. Unlike the

anterior limiting lamina [33], the pre-Descemet’s layer does

not adhere strongly to the stroma, allowing it to be dissected

surgically as a sheet [34,35] and detached from the rest of

the stroma without rupturing [35,36]. However, it should be

borne in mind that the current results from the most posterior

lamellae are approaching the limit of resolution of our data

(20 mm through the corneal thickness), so they should be

regarded with a degree of caution at this stage.

On the assumption that the variation of total X-ray scatter

is directly related to the variation in the mass density, it

would appear from figure 10 that collagen mass density is

reduced near the anterior and posterior surfaces of the

cornea. At the centre of the cornea (figure 10a), after the

initial increase there is a gradual, then a steeper reduction

in mass density. This is likely due to the fact that the posterior

stroma contains different hydrophilic glycosaminoglycans

and is therefore more hydrated than the anterior stroma

[37] so the collagen fibrils are further apart [38].

Figure 11a shows the presence of a large streak of increased

total collagen mass density apparently originating in the

sclera. We speculate that this arises from the presence of

larger diameter fibrils, probably of scleral origin, which are

known to exist in this region. We have termed these structures

‘anchoring lamellae’ [16]. Some evidence for the existence of

these structures has also been reported using nonlinear

microscopy [3]. Figure 11b shows a distinct structure near

the limbus that arises from lamellae cut in cross-section. This

occurs at the same position as the limbal pseudo-annulus, a

structure composed of collagen and mature elastic fibres [39]

that is supposed to help sustain the change in curvature

between the cornea and the surrounding sclera [40].

The only previous attempt to quantify lamellar inclination

angle was carried out by Winkler et al. [3,4] using nonlinear

SHG imaging. Our current findings are in accordance with

Winkler et al. [4], also showing lamellar inclination to decrease
with increasing stromal depth; however, our study goes further,

making use of recent advances in microfocus X-ray data collec-

tion to obtain quantitative information about lamellar

inclination throughout the entire stromal thickness of seven

human corneas. In the anterior 250 mm of the stroma, Winkler

et al. found that the inclination angles followed a Gaussian dis-

tribution centred at 08 (i.e. parallel to the corneal surface). This is

in accord with our own study which found Gaussian distri-

butions at all depths in the stroma. As with Winkler et al. we

also measured the width at half maximum as a measure of

the spread of inclination angles at a given depth. At the centre

of the cornea, Winkler et al. found inclination angles (half

their presented angular distribution width) of about 78 at the

anterior surface. From figure 8a, it can be seen that we found

angles more than 118 at this position (even if possible edge

effects in our data are ignored). One difference between the

studies is that we only examined angles within the central–

temporal cross-section, whereas they examined angles in all

four quadrants of the cornea. Also, we fixed the eyes at physio-

logical intraocular pressure whereas they used an elevated

pressure. Finally, Winkler et al. found differences in the depth

dependence of the inclination angle that were position depen-

dent. We also found such a gradient throughout the whole

cornea, which was greatest near the centre of the cornea (figure

8a,b), but there was a very different dependence of inclination

angle on tissue depth in the limbus and sclera (figure 8f,g).

As the mechanical behaviour of corneal stroma is quite

complex [41,42], geometric and material characteristics gues-

stimates are generally required in finite-element modelling

analysis because of either the lack of scientific knowledge

or the limited performance of the software and computing

system used. Most recent finite-element models of corneal

biomechanical behaviour regard the tissue as being anisotro-

pic and having strongly directional mechanical properties

[43]. The models are typically based on inputted data from

X-ray scattering studies which show that collagen is orien-

tated in all directions but preferentially aligned along the

superior–inferior and nasal–temporal directions [42,44,45].

The accuracy of these models is however limited by the

lack of numerical information available to modellers
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regarding the structural variations that occur as a function of

tissue depth. An attempt to incorporate depth-dependent

variations in the inclination of lamellae was recently made

by Petsche & Pinsky [46], using measurements taken from

the second harmonic-generated images described above.

The authors concluded that consideration of lamellar incli-

nation was crucial for accurate modelling of different

modes of mechanical deformation [46]. It is anticipated that

inclusion of the quantitative information generated from

this study, characterizing the variations in lamellar incli-

nation and collagen mass distribution as a function of

tissue depth, will lead to further improvements in the
accuracy of computational models aimed at predicting

corneal biomechanical behaviour.
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