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Thermal simulation software outputs: a conceptual data model of information presentation for
building design decision-making
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Building simulation outputs are inherently complex and numerous. Extracting meaningful information from them requires
knowledge which mainly resides only in the hands of experts. Initiatives to address this problem tend either to provide
very constrained output data interfaces or leave it to the user to customize data organisation and query. This work proposes a
conceptual data model from which meaningful dynamic thermal simulation information for building design decision-making
may be constructed and presented to the user. It describes how the model was generated and can become operational, with
examples of its applications to practical problems. The paper therefore contains useful information for software developers
to help in specifying and designing simulation outputs which better respond to building designers’ needs.

Keywords: simulation outputs for decision-making; simulation outputs for building design; simulation and building design

1. Introduction

The aim of this paper is to describe a conceptual data
model from which dynamic thermal simulation information
for building design decision-making may be generated.
Providing such information to the building designer is a
challenge that has been addressed in the past by the design
of new software and interface/outputs, mainly from an
engineering or project management perspective. In this
paper we follow an approach based on considering pri-
marily the needs of the user. This focus on the user is
inspired by the practice of Interaction Design (Cooper,
Reimann, and Cronin 2007; Rogers, Sharp, and Preece
2011) and represents a new approach toward the problem
of enabling a wider range of design professionals to make
use of simulation software in the design of low energy
buildings.

The paper is a follow on to a previously published
paper in this journal (Bleil de Souza and Tucker 2014)
which proposed and described a framework within which
thermal simulation post-processed information meaning-
ful to building design decision-making may be generated.
The framework explored what information is relevant to
designers and how it can be generated. It did not address in
detail how to manage and use data representation and data
display systems meaningful to design decision-making.
The current paper describes in detail a conceptual data
model to address these issues. This conceptual model is a
high-level description of the entity classes and the associ-
ations between pairs of these classes, which together order

the data to effectively communicate simulation results to
building designers. Conceptual data models are used in
Computer Science to organise information prior to the
development of database/database management systems.
The framework and conceptual data model are devel-
oped by considering building designers as the ultimate
simulation tool users either directly or indirectly when sup-
ported by consultants, and are therefore developed to fit the
building designer’s ‘modus operandi’.

1.1. A summary of the framework

Extensive discussions about appropriate descriptions of
the building designer’s ‘modus operandi’ can be found in
the building design literature.! One of the most famous
descriptions is provided by Schon (1984, 1988, [1983]
1991). According to Schon, designers solve problems by
‘reflecting in action’ through ‘a conversation with the
materials of the situation’. This means designers grad-
ually discover the problem while attempting to propose
solutions to it. A key aspect of this process is that it neces-
sarily involves experiments. These experiments can be of
the following three types: (i) exploratory experiments, in
which action is undertaken only to see what follows; (ii)
move-testing experiments, used to assess moves depend-
ing on the changes produced and whether the designer likes
the changes produced; and (iii) hypothesis-testing experi-
ments, used to discriminate among competing alternatives
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generally not used to reach a final solution but to constantly
reframe the problem through a new hypothesis to be
tested.

These experiments are not controlled (not allowing
phenomena to be isolated or variables to be separated).
More importantly, these experiments are generally used to
transform the situation from ‘what it is’ to something the
designer likes better (Schon [1983] 1991). This means the

Functional Adjacency

design process is a constant work in progress which only
stops when designers decide this is the case (Figure 1).
Simulation outputs need to be ‘in tune’ with these
experiments. They need to provide answers to the differ-
ent ‘what if” situations generated within these experiments.
The framework extracted from these ‘what if” situations
questions about performance. It also proposed a structure
to set up specific questions about performance, so that

Figure 1. A snapshot of a ‘reflection in action’ through ‘a conversation with the material of the situation’ (Akin 2001). Image from

Elsevier.
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Figure 2. An illustration of the framework produced in Bleil de Souza and Tucker (2014).

these questions can be embedded in sequences of moves
directed by reflection in action (Figure 2).

Since only five aims? and five analysis processes® were
identified and confirmed in a survey and interviews with
building designers, around 20 standard questions were
developed (see Bleil de Souza and Tucker 2014 for a
full list of questions). Examples of questions are: ‘How
sensitive is this building to [design action]?” How does
this building perform with [design action]? Designers are
expected to be able to select which standard question(s)
and (sets) of design action(s) best fit the design experiment
they are undertaking. Examples of design actions include:
different types of shading devices, different glazing ratios,
a specific type of external wall panel system, etc.

3

1.2.  The conceptual data model

The framework paper outlined the need for a conceptual
data model to be developed. This current paper explores in
detail how the conceptual data model for presenting simu-
lation information for design decision-making (dashed box
in Figure 1) was generated and how it can become opera-
tional. It specifically focuses on the type and relationship

among data as well as representation systems building
designers need to make decisions. This conceptual data
model does not focus on data management or on proposing
a database structure. It is a starting point for constructing
a database/database management system in which enti-
ties, their attributes and relationships are described without
using a formal language and independently of any choice
of database technology.

The conceptual data model, like the framework,
emerged form a process of Participatory Action Research
(PAR) and Thematic Analysis of design work produced by
140 novice designers. All types of analysis, metrics, inter-
action with data and data displays were extracted from the
140 design journals. Principles of Information Visualiza-
tion and dynamic thermal modelling were used to filter and
quality assure these entity classes. Associations between
pairs of entity classes were explored based on pairwise
comparison used to identify appropriate and inappropriate
combinations of relevant data for design decision-making.

Pairwise comparisons are used to ensure that all pos-
sibilities of how the output is constructed have been con-
sidered, as opposed to simply assuming that the user will
be satisfied for example with a list of figures or one type



Downloaded by [Cardiff University Libraries] at 02:56 08 May 2015

4 C. Bleil de Souza and S. Tucker

of chart. Therefore, the conceptual data model is intended
to enable software developers to strike a balance between
providing too much and not enough information for design
decision-making. Examples are provided to illustrate and
discuss the potential and capabilities of the model. The full
design and implementation of a database/database manage-
ment system is outside the scope of this study as is the
interface to enable building designers to manage it.

The participatory methods used to produce the concep-
tual data model also provide its validation, as the model
emerges from the identified needs of the user. A further
stage of validation will only become relevant when (and if)
the conceptual model is developed and implemented into a
working system.

2. Background
2.1. Representation systems

Previous initiatives which explored output data to inform
design decision-making mainly focused on expanding the
scope of representation systems to describe and compare
building performance. Simple examples of these can be
found in most ‘user friendly’ simulation software to date
(NREL 2013; AutoDesk Ecotect 2014; IES 2014, etc.). In
these tools, some performance metrics can be displayed on
top of 2D and 3D views designers are used to manipulate
(plans, section, elevation, perspectives, etc.). These initia-
tives also include the development of integrated thermal
performance metrics (e.g. comfort, hours of overheating,
etc.) and more elaborate types of 3D representation sys-
tems (examples of virtual reality images, movies, etc. can
be seen in Evins et al. 2012; Struck et al. 2012, etc.).

Ways to display comparisons with benchmarks,
notional buildings, regulatory targets and other design
options were extensively explored in the simulation litera-
ture (Papamichael et al. 1999; Papamichael 1999a, 1999b;
Soebarto and Williamson 2001; Prazeres 2006; Prazeres
and Clarke 2003, 2005 to cite a few). Examples pro-
vided by these authors range from Multi-Criteria Evalua-
tion strategies to complex output interfaces with highlights
to facilitate data interpretation. They generally focus on
comparing different models and/or different performance
metrics for a single model. The way comparisons are struc-
tured is appropriate to describe behaviour against targets
but not very useful to describe behaviour of different design
alternatives. When assessing different design alternatives,
designers need to be reminded in a clear and straightfor-
ward way which design parameters were changed and by
how much, in order for these changes to be associated with
changes in building behaviour.

This issue seems to be addressed by some initiatives
which explore the integration of parametric tests to exist-
ing simulation tools. As in parametric tests the focus lie
on understanding the consequences that changing design
parameters have into simulation results, comparisons are

sometimes displayed mainly linked with these changes
(Chlela et al. 2009; Ochoa and Capeluto 2009; Pratt and
Bosworth 2011; Petersen and Svendsen 2012, to cite a
few). However, when this is the case, information seems
to be quite restricted in terms of how users can navigate
through output data. Researchers provide generally one
or two representation systems they believe are the most
appropriate ones to display this kind of information. They
tend not to query their suitability in terms of the way users
interact with data and derive meaning from it.

When simple generative forms are used to produce
design advice, output information tends to be more ‘user
friendly’. Scripts to produce them output geometrical
boundaries that respond to certain performance criteria
(Marsh and Haghparast 2004; Ochoa and Capeluto 2009,
to cite a few). These boundaries further combined with
legislation requirements and site constraints, provide clear
visual guidance to explore building form in the early design
stages (Figure 3(a)). However, the same can rarely be said
when more elaborate optimization routines are applied to
produce design advice. In these cases, even though users
are generally provided with a Pareto front graph to query
on best design alternatives (Figure 3(b)), queries tend not
to be displayed in a user friendly format (See Nguyen,
Reiter, and Rigo 2014 for a review of optimisation and
building performance analysis). This means the user needs
to post-process information that comes from optimization
routines into something (s)he can understand to then query
the content of this information.

In general, users want to avoid having to understand
and deal with the complexities involved in generating
information they use in their everyday activities: They want
this information to be readily available. Building designers
are no different. They do not want to deal with simulation
output post-processing to be able to use this information
for design decision-making.

These examples of outputs illustrate that while
researchers and developers continue to propose and inte-
grate new representation systems, comparative displays,
parametric tests and different types of analysis algo-
rithms to existing tools , there is a lack of a comprehen-
sive overview or system that collects all these proposals
and explores more general ways of ordering informa-
tion. Therefore, a framework to post-process and shape
simulation information for building designers to use was
proposed by the authors. This current paper builds on this
framework and explores the construction of a conceptual
data model to be transformed into a database/data manage-
ment system of meaningful simulation outputs to design
decision-making. Once developed, this database/data man-
agement system, potentially accessible through a user
friendly interface, would guide designers to query simu-
lation output data while undertaking design experiments.
The database of outputs is not seen as exhaustive but
could accept new additions, especially in data metrics and
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Figure 3. (a) Visual guidance to explore building form produced from simple generative forms (Marsh 2005) vs. (b) Pareto graphs

resultant from optimization studies (Brownlee and Wright 2012).

displays, following new research developments in these
areas. This approach to structuring simulation software
output information using a database/data management sys-
tem can in theory be extended to any user, who could
include building engineers and consultants needing differ-
ent types of analysis and results on which to base design
decisions.

2.2. Databases

Current databases, when used to organise simulation out-
put information, do not have a format to recall information
that meets building designers’ needs (Mahdavi, Bachinger,
and Suter 2005; Stravoravdis and Marsh 2005; to cite a
few). More specifically, they do not provide readily avail-
able information to be recalled on the following main aims
designers have when using BPS (Building Performance
Simulation) for design decision-making: (i) understand-
ing a specific performance result; (ii) exploring a specific
design strategy; (iii) meeting a target; (iv) assessing a
specific product and (v) optimising.*

However, they are widely used by building designers
particularly as nowadays Building Information Modelling
(BIM) systems® are part of everyday design activities.
They are also widely used by the building simulation com-
munity to organise simulation input information (materials,
constructions and schedules)® and to benchmark building
simulation results by comparing them with case studies.’
They are starting to be used to facilitate parametric analy-
sis (Turrin, von Buelow, and Stouffs 2011), meaning they
are not only appropriate to structure simulation results but
also that their use is common among designers and the sim-
ulation community. They are powerful tools for data man-
agement and enable choices to be pre-defined/customised,
potentially facilitating knowledge sharing among practices
and knowledge transfer to beginners and/or newcomers.

The purpose of the data model described in this paper
is therefore to structure and represent simulation output
data through a database/data management system. How-
ever, exploring simulation output data relevant to design
decision-making is seen independently of proposing a sim-
ulation output data interface. It is essential that this explo-
ration happens prior to the development of an interface as
any interface should focus on different user experiences in
interacting with data and machines rather than on the data
itself.

3. Analysis and methods

This work starts by using a PAR approach. In this approach
designers are invited to propose what they think are appro-
priate building thermal physics information for building
design decision-making. The advantages of using this
type of approach is that beneficiaries themselves propose
a solution to their own problems eliminating the needs
for further tests. Examples of meaningful information for
design decision-making, from a designer’s viewpoint, are
extracted from a sample of 140 design journals. These
journals narrate all steps used to solve a design problem
which included thermal comfort, energy efficiency and the
testing of passive design strategies (a summary of one of
these journals is presented in Annex 1). The data set is
limited to the design of an office building envelope in
which heat balance calculations were undertaken using
simplified methods. Hand calculations were used, instead
of any kind of software, to prevent any bias by existing
user interfaces to interfere with proposals. Those sorts of
calculations were also seen as an efficient mechanism to
facilitate knowledge transfer of building thermal physics
concepts to designers.

A Thematic Analysis is applied on this empirical data
sample. Thematic Analysis, a common research method
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from the Social Sciences, consists of investigating recur-
rent themes in a data set so that a phenomenon can be
described (Bryman 2008). A Thematic Analysis should not
be confused with a statistical analysis. It comprises iden-
tifying and recording recurrent themes from all the data
in a data set so the conceptual data model can present all
relevant possibilities regardless of how frequently they are
used.

This successive data querying and filtering also
involves reviewing the information generated from sim-
plified methods. If this information is to be produced by
dynamic thermal simulation tools, it should comply with
the dynamic, systemic, nonlinear and stochastic nature of
building thermal physics phenomena. This compliance is
achieved by using dynamic thermal modelling principles to
revise and adapt metrics and analysis methods used in the
data sample. Metrics or quantities used to measure building
behaviour are changed (e.g. air temperatures are replaced
by environmental/operative temperatures, metrics related
to simplified heat balance breakdowns are eliminated, etc.).
Appropriate analysis methods to post-process BPS data
into a format which match design aims are proposed in
replacement of the simplified ones found in the data sam-
ple® (e.g. simplified heat balance breakdown results are
replaced by elimination parametric tests to explain main
causes of building behaviour, etc.).

Information Visualization principles (Schneiderman
1996; Card, Mackinlay, and Shneiderman 1999; Spence
2007; Mazza 2009; Ward, Grinstein, and Keim 2010) are

Methods, principles and approaches

used to codify displays and organise subcategories of inter-
actions with data. Displays are described by a pseudo-code
to facilitate data manipulation. Interaction with data is
explored according to proposed by Schneiderman (1996)
who states that users should be provided with the ability to:

e Obtain an overview of the data to get a broad
understanding of a phenomena,;

e Zoom into areas of specific interest and filter out
unwanted data;

e Ask for a specific type of detailed information;

e Retrace previous steps (retrace history);

e Compare and relate information.

Overviews and zooms, become instances of the con-
ceptual data model class of ‘types of interaction with data’
whereas the remaining three types of interaction with data
are embedded in the conceptual data model structure.

The different methods, principles and approaches of
this research together with the data they used or generated
are summarised in Figure 4. Details involved in defining
each class of the conceptual data model and the list of data
which belongs to them are explained in Section 4.

Pairwise comparisons are used to explore appropriate
combinations of relevant data for design decision-making.
Pairwise comparisons are a common analysis method
used in the Social Science, Psychology and Artificial
Intelligence to undertake comparative judgement between
pairs of data (David 1988). In computer science, they

Data used / Generated

Processing Information within the

Thematic Analysis

‘Modus operandi’ of designers

Database of initial themes
(data generated)

v

Successive data querying & filtering

4 main classes of the model
(data generated)

Developing the

| Dynamic Thermal Modelling principles <

Types of Analysis ,

Classes of the Conceptual
Data Model

*{ Types of Metrics l

Types of

Interaction with Data

I Information Visualization principles <

\1 Types of Displays ,

Figure 4. Summary of how the conceptual data model classes emerged.
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are also used to undertake internal validation of software
development. In this conceptual data model, they illustrate
if a combination is preferred or not.

The four classes of the conceptual data model enable
six pairwise comparisons to be explored (Figure 5). Com-
parisons were numbered according to the sequence of
operation indicated in Figure 5. Preferred combinations
discussed in detail in Section 5 come mainly from the
data set, polished by information from the literature on

BPS software. However, preferred combinations reported
in Section 5 should not be seen as exhaustive and could
be further developed/refined and even made specific to
each different design practice. They could be open to
being customized by each different practice depending on
the building typologies they generally deal with, types of
contracts undertaken, specific ways they organise design
teams, etc.’ Section 5 is therefore intended to illustrate how
pairwise comparisons are used to relate the four classes of

Standard part
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Design Aims | +
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Analysis Processes +

Design Actions
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& Typesof
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[ L
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o

Figure 5.

Relationships between the conceptual data model and the framework developed in Bleil de Souza and Tucker (2014).
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the conceptual data model for ‘generic’ types of low energy
design problems.

Figure 5 illustrates the relationship between the concep-
tual data model and a design question from the framework
proposed in Bleil de Souza and Tucker (2014). The anal-
ysis process in a question narrows down the search in
preferred combinations in comparison 1. Types of display
not appropriate to respond to the type of analysis in the
question are automatically eliminated from a future list of
choices. Aims and actions can be used to infer a selection
of ‘metrics’ and ‘types of interaction with data’ poten-
tially available to answer the question. The dashed arrows
(Figure 5) indicate a separate study would be necessary
to determine if this selection could be at least partially
automated. In case this selection should be manual, it
would be necessary to determine the best user interface
and database/database management system to present this
information for designers to select.

Once metrics and types of interaction with data are cho-
sen, a search in preferred combinations in comparison 2
can be undertaken. Comparisons 1 and 2 would provide
all the necessary constraints to automate searches in the
remaining comparisons. The aim of the search is to output
a narrow list of types of display to represent the answer
to the question. Choices of displays should preferably be
provided rather than a single display option.

4. Defining classes of the conceptual data model

The classes of the conceptual data model are discussed in
this section. They were initially listed in Bleil De Souza
and Tucker (2013) but are described here in terms of the
data model. A definition for each class is provided followed
by an explanation about how it is defined based on infor-
mation from the data set, principles of dynamic thermal
modelling and Information Visualization. Recommended

lists of instances for each class are provided based on the
empirical data set in combination with information from
the literature and BPS software output interfaces. These
lists of instances are not supposed to be exhaustive.

4.1. ‘Types of analysis’ class

Definition: “Types of analyses’ are a class which describes
and defines how building designers would use dynamic
thermal simulation tools to inform or assess design deci-
sions. They are important procedures or algorithms to
extract design advice or undertake performance queries in
BPS output data. Controlling different types of analysis is
seen as the most important aspect of integrating BPS tools
throughout the building design process.!? Table 1 provides
a list of the five types of analysis instances which belong to
this class together with the purpose in using each of these
analysis instances to inform design decision-making.

Data evidence: Information from the data set reports
mainly descriptive and comparative types of analysis
instances. Many comparisons focus on understanding the
contribution of each of the heat balance component in the
overall building behaviour. They are used to understand
causes of building performance and provide some infor-
mation on where to act to improve it. Comparisons with
targets and standards and comparisons among different
design alternatives are also common. Elimination paramet-
ric is used to illustrate the influence of internal gains in
overall heating and cooling demands. Sensitivity tests are
sometimes undertaken to experiment with window areas
and window material properties. Optimization routines are
sometimes used to explore shading device form.

Each analysis instance reported in the data set was
critically assessed using dynamic thermal modelling prin-
ciples to ensure the dynamic, systemic, nonlinear and
stochastic nature of building thermal physics phenomena

Table 1. Types of analysis to be included in the conceptual data model (from Bleil de Souza and Tucker

2014).

Type of analysis

Purpose of analysis

Descriptive

To describe performance behaviour of one single model

To remind the user of a base case or starting point
To create a benchmark for comparison

Comparative

To compare ‘n’ different parameters in a model

To compare a single parameter across different models
To compare ‘n’ different parameters across ‘n’ different models

Elimination parametric®  To explain causes of a specific building behaviour or performance results

Sensitivity analysis

To inform on the sensitivity of the model to changing a single parameter

To inform on the sensitivity of the model to changing ‘n’ parameters

Optimization

To inform on the best performance for the optimum combination of a group of
pre-defined parameters

4Even though elimination parametric can be considered a sub-case or special type of sensitivity analysis, the
authors decide to treat it separately in this conceptual data model because it can be examined as a special case

of analysis prone to automation.
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would be preserved. Analysis instances to explain building
behaviour based on simplified methods, (e.g. comparing
heat balance breakdowns) were replaced by elimination
parametric tests as suggested by SERI (1985).!' Main
causes of building behaviour could be provided with five
tests eliminating the following variables one at a time:
internal gains, ventilation losses and gains, solar gains, fab-
ric conduction losses or gains and fabric storage. Specific
causes of building behaviour could be provided with more
detailed tests: (i) eliminating usage-related variables one
at a time (people, artificial lighting, equipment and ven-
tilation loses or gains) or (ii) eliminating building-related
variables one at a time (window conduction, wall conduc-
tion, roof conduction, floor conduction, window mass, wall
mass, roof mass, floor mass, solar, infiltration).

4.2. “Types of metrics’ class

Definition: “Types of metrics’ are a class which describes
and defines the different quantities associated with build-
ing behaviour relevant to design decision-making. These
quantities need to be capable of being represented as time
series, summarised and aggregated as appropriate enabling
designers to see when exactly heating, cooling and artificial
lighting are needed through structured searches for over-
heating and under heating patterns at typical and peak days
(as recommended by SERI 1985).!2 Table 2 provides a list
of the metric instances which belong to this class.

Data evidence: The data set included mainly metrics
used to describe overall building performance (e.g. heating
and cooling demands, temperatures, etc.). A second com-
mon set of metrics is used to understand causes behind
this performance in attempt to gain insights on where to
act in the building to improve its behaviour (e.g. heat bal-
ance breakdowns). More specific metric instances are used
to assess specific design intents (e.g. shading and light-
ing metrics are also used to assess if a desired type of
atmosphere is achieved in some of the internal spaces).
Metrics instances in the data set can be grouped into:
comfort-related metrics (air temperatures, daylight fac-
tors and illuminance levels), solar-related metrics (incident
solar radiation on windows and data related to shading) and
energy-related metrics (heating and cooling demands, heat-
ing/cooling degree hours, electric energy consumption and
heat balance breakdowns).

Some of these metric instances are adjusted to be more
precise in delivering the information requested (e.g. air
temperatures are replaced by environmental/operative tem-
peratures to provide a better indication of comfort; heating,
cooling and lighting energy consumption are replaced by
heating, cooling and lighting energy consumed per fuel
type to account for other sources of energy supply). Metric
instances related to heat balance breakdowns are elimi-
nated (see discussion in Section 4.1). New metric instances
related to comfort and passive building behaviour are intro-
duced (e.g. PMV and working hours operating without

Table 2. Metrics relevant to display meaningful information to design decision-making (from Bleil de Souza

and Tucker 2014).

Metric

Comfort-related metrics

Environmental/operative temperature (min, max, mean — annual, monthly and

hourly — typical and design days)

PMYV, PPD or any other comfort metric (typical and design days)

Daylight illuminance (min, max, mean, peak — annual, monthly, typical, design
days) — values for grid in space or 1 average value per room

Time exceeding glare index set point (annual, monthly, typical and design day)

Cost-related metrics CO; emissions

Capital cost heating, cooling, lighting (i.e. cost of HVAC and lighting machines,

ducts and controls)

Operational cost heating, cooling and lighting (i.e. annual energy use and/or
peak energy use if tariffs differ)
Minimum rate of return on investment

Investment time

Amount of money to spend on improvements

Energy-related metrics

Heating, cooling and lighting thermal energy delivered to space (annual,

monthly, peak, typical and design days)

Energy use for heating, cooling, lighting at the meter (annual, seasonal, monthly,
peak, typical and design days)

Working hours operating in a passive mode or working hours within, above and
below the comfort zone (annual, seasonal, monthly)

Working hours not requiring artificial lighting (annual, seasonal, typical and

design days)

Shading/solar-related metrics ~ Transmitted solar radiation (annual, seasonal, typical day and design days)
Shading on floor plan in % (annual, typical and design days profile)
Shaded surfaces (internal and external) (typical and design days profile)
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Figure 6. Examples from types of interaction with data found in the data set.



Downloaded by [Cardiff University Libraries] at 02:56 08 May 2015

Journal of Building Performance Simulation

HEAT BALANCE

Coldest day -2.4°C Heat Balances 55W/m?
Hottest day 26.4°C Heat Balances 23W/m?
Heating/Cooling Degree Hours Relative internal galns per square meter (Wh/m’).
- Summar Winter
oy
=
o I .I l. 726 Marketing
I I MafkengBe - £42 Accounting
- Accounting 588 -
o
-
s 305 Partner's office
- - .~ - - - - -~ = - - - :
WorkingHours [ artnersOffice 245 : 252 Open Plan
Examples of different types of data Senior Partner’s Office 199 - B SenivRafnsSOifice
display Open Plan123 148 Large mestingroom

Large meeting room 143

ABSTRACT DISPLAYS (Top): = ‘
- Text, describing heating and cooling For an Average Winter " e

peak loads for the whole typical floor Day... e

- Bar chart with monthly heating and L)
cooling demands

- Arrow diagram with different internal
gains for each of the office spaces

LOCATION BASED DISPLASY

(Side):

- Floor plans with outside temperatures
passively offset in winter and summer

- Floor plan with internal gains

distribution
B af il'
1
Eop— ..’“l~=-L'
I- - - —n - Le=—
2 2 oo
e Qo

Eh‘ l . I

| ,'i 1 -

e JL i i..—’ !:—;i‘:
N

Figure 7. Examples of different types of data display proposed by building designers.

{

AverageT =39.0+C




Downloaded by [Cardiff University Libraries] at 02:56 08 May 2015

12 C. Bleil de Souza and S. Tucker

HVAC respectively). A series of metric instances related
to cost are suggested (following SERI 1985; Waltz 2000;
Franconi 2011, to cite a few).

4.3. ‘Types of interaction with data’ class

Definition: ‘Types of interaction with data’ are a class
which describes and defines possibilities involved in
and afforded by manipulating thermal simulation post-
processed output information. The instances defined for
this class are the following: Overviews, zoom into different
time frames, zoom into different location/orientation'? and
zoom into parameters potentially related to design actions.

Data evidence: Information from the data set was
organised into the different types of interaction with data
instances reported in Section 3. Overviews and different
types of zoom were used to gather insights about how
designers query information relevant to design decision-
making. Overviews provide data summaries (Figure 6(a)).
Zooms into different time frames are generally used to
increase understanding about a specific type of behaviour
(Figure 6(b)). Zoom into different building locations,
fagade orientations and construction assemblages are
instrumental to design decisions. They are generally dis-
played using performance metric instances represented on
top of plans, elevations and sections (Figure 6(c)).

Types of interaction with data should be explicitly
organised to facilitate data query, minimise visual noise
and reducing the ‘cognitive load by removing unnecessary
information from displays’ (Lidwell, Holden, and Butler
[2003] 2010). Further empirical studies would be neces-
sary to conclude if precise definitions of overviews and
zooms can be generalised or if they need to be addressed
on a case-by-case basis (e.g. would looking at energy
use in a specific time frame, for instance the summer
period, be considered an overview or zoom into time? The

answer to this might potentially depend on the type of
project, personal preferences, etc.). Proposing ‘progressive
disclosure’'* would also involve investigations to indicate
whether these can be generalised or need to be addressed
in a case-by-case basis.

4.4. ‘Types of data display’ class

Definitions: ‘Types of data displays’ are a class which
describes or defines the different ways of representing use-
ful information for design decision-making. An indicative
notation system in the form of a pseudo-code is developed.
This provides a synthetic and clear description of each
display instance facilitating their manipulation in the con-
ceptual data model structure as well as their interpretation
by computer programmers.

Data evidence: The empirical data set is rich in infor-
mation display instances especially to connect perfor-
mance information with design parameters (Figure 7).
Representation systems can be of two types: (i) Location
based, in which performance metrics are displayed on top
of commonly used building design displays (e.g. plans,
sections, elevations, etc.); (ii) Abstract, in which perfor-
mance is displayed in a non-spatial way through graphs,
tables, text, etc. In the first case, the aim is to inform where
a specific parameter or performance result would occur or
which specific building design element is mainly respon-
sible for causing specific resultant behaviour. The second
case seems to be more useful when highlight strategies are
adopted to help interpret information (e.g. ranks, ranges
and differences between two or more options or between
an option and a target).

Display instances from the data set were identified,
classified and had indicative pseudo-code assigned to spec-
ify their content. In this pseudo-code a display instance is
defined by a name followed by its attributes. The names for

Table 3. Different data displays and their respective pseudo-code with highlights (examples of how targets can
be highlighted are provided in brackets on the highlight column).

Types of display Attributes

Highlights (examples)

Table (m(1 ... x),
n(l...y))

Dense table (m(1 ... x),
sm(l ...z),n(l...»))

m = dimensions in data (1 ... x) (columns)
n = number of records (1 ... y) (rows)

m = dimensions in data (1 ... x) (columns)
sm = sub-dimensions in data (1 ... z) (sub-column)

Coloured cell

Coloured cell

n = number of records (1 ... y) (rows)

Bar chart (Dg (1 ... n),
My) My = metric (Y-axis)
Arrow diagram (Dg, My)
My = metric (Y-axis)

Grouped bar chart (Dg

(1...m),Sg(1l...n),
My) My = metric (Y-axis)

Dg = nominal data group (X -axis)

Dg (1 ... n) = nominal data group (1 ... n) (X-axis)  Rank

(Dotted line from Y-axis)

Coloured circle

Dg = nominal data group (1 ... m) (X -axis) Rank
Sg = sub group (1 ... n) (X-axis)

(Dotted line from Y-axis)

(Continued).
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Table 3. Continued
Stacked bar chart Dg = data group (1 ... m) (X -axis) Rank
I(\I/?g((ll n;; My(1 ... n) = metric (1 ... n) (Y-axis) (Dotted line from Y-axis)
y(l...n
Pie chart (S(1 ... n), M) S(1 ... n) = Sectors (1 ... n)
M = metric
2D line graph (Mx, My) Mx = metric (X -axis) (Dotted line from Y-axis)
My = metric (Y-axis) (Shaded area)
2D Superimposed line Dg (1 ... n) = data group (1 ... n) (line) Bold colour line
graph (Dg(1 ... n), Mx, Mx = metric (X -axis) (Dotted line from Y-axis)
My) My = metric (Y-axis) (Shaded area)
Histogram (Ix, Fy, M) Ix = interval (X -axis) (Dotted line from Y-axis)
Fy = frequency (Y-axis)
M = metric
Superimposed histogram Dg (1 ... n) = datagroup (1 ... n) Differences shaded
(Dg(1 ... n), Ix, Fy, M) Ix = interval (X -axis) (Dotted line from Y-axis)
Fy = frequency (Y-axis)
M = metric
Tornado chart (Mx, Mx = metric (X -axis) Rank
Vy(l ... n) Vy (1 ... n) = variables (1 ... n) (Y-axis) (Dotted line from Y-axis)
Multiple Tornado chart [C C = category Rank
(Mx, Vy(1 ... n))] Mx = metric (X -axis) (Dotted line from Y-axis)
Vy (1 ... n) = variables (1 ... n) (Y-axis)
Multimetric Tornado Mx 1 ...n) = metric (1 ... n) (X-axis)
chart (Mx(1 ... n), Vy (1 ... n) = variables (1 ... n) (Y-axis)
Vy(l ... n))
2-D Contour plot (S, M, S = surface Overlaid polygon
10) M = metric (Shaded below target performance)
[ = interval (integer or normalised)
2-D Pareto front graph Mx = metric %X -axis) Coloured dots in the Pareto front
(Mx, My) My = metric (Y-axis) (Dotted line from Y-axis andX -axis)
2-D surface view (S, M, S = surface Colour + polygon
Cs or txt) M = metric (Shaded below target)
Cs = Colour scheme
Txt = text
Carpet plot (Mx, My, Mc, Mx = metric (X -axis) (Shaded below target performance)
Cs) My = metric (Y-axis)
Mc = metric (colour)
Cs = Colour scheme
Box plot (Dg, M, D) Dg = data group
M = metric
D = distribution (e.g. limits of the box)
Multiple box plot Dg(1...n) = datagroup(l ... n) Rank
(Dg(1 ... n),M, D) M = metric (Dotted line from Y-axis)
D = distribution (e.g. limits of the box) (Shaded area)
each display instance come from the literature of Informa- 5. Exploring pairwise comparisons of the conceptual
tion Visualization (specifically Wright 2007; Mazza 2009; data model

Ward, Grinstein, and Keim 2010). The respective attributes
are listed in Table 3 together with examples of how impor-
tant information can be highlighted. The list of highlights
is far from exhaustive and does not include interactive
highlights (such as brushing, etc.). Table 3 only informs
how things can be highlighted — NOT what information
can be highlighted. The way information can be high-
lighted depends on the display instance used to represent it,
whereas the type of information to be highlighted depends
on the aims behind an analysis.

This section examines the preferred combinations of each
of the six pairwise comparisons of the conceptual data
model. Preferred combinations are not exhaustive and
should in theory be customizable. Preferred combinations
in each comparison are described following the sequence
of operations outlined in Figure 5. Principles underlying
each combination are outlined together with comments for
combinations that should not be allowed. While many of
the combinations presented in Tables 4—7 are allowed in
theory, they would be limited in practice by the simulation
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software being used, and therefore also provide a means
by which any particular software can be assessed as to its
functionality in terms of provision of outputs.

5.1. Comparison 1: types of analysis and types of data
displays

Preferences for combining these two classes are illustrated

in Table 4 with the following principles underlying them:

e Descriptive analyses can be represented using the
vast majority of display instances and provide more
possibilities for different metrics to be compared
without cluttering.

e Elimination parametric tests, sensitivity tests and
comparative analysis can be represented using
similar display instances as they all involve com-
paring different models. Comparisons can be empha-
sized through data grouping (e.g. grouped bar
charts), data superimposition (e.g. superimposed his-
tograms or line graphs) and/or by increasing data
density (e.g. dense tables).

Table 4. Comparison 1: types of analysis and types of data display.

e Data from sensitivity tests can be summarised

through special display instances called Tornado
charts. These are modified bar charts with ranked
data categories listed vertically generally used to
illustrate the relative importance of each variable of
a sensitivity test.

Optimization data are generally summarised through
Pareto front graphs which could be a useful inter-
face to further query optimization results. The term
‘After zoom’ in Table 4 refers to potential types of
displays to be presented after querying the Pareto
Front graphs. Zooming into a specific point of the
Pareto graph could lead to display instances suitable
to represent descriptions. Zooming into a specific
region of the Pareto graph could lead to display
instances suitable to represent comparisons. His-
tograms, used to illustrate how often values for
each specific design parameter being optimised were
used in optimisation tests, could assist in identi-
fying the most important contributors to building
performance.

All analysis instances, with the exception of
descriptive ones, when displayed as 2D contour

Types of analysis

Types of display Descriptive Comparative Elimination parametric ~ Sensitivity tests Optimization

Tables v v v v After zoom

Dense tables v v v v After zoom

Bar chart v v v v After zoom

Grouped bar chart v v v v After zoom

Stacked bar chart v v v v After zoom

Arrow diagram v v v After zoom

Pie chart v After zoom

2D line graph v v v After zoom

2D superimposed line graph v v v v After zoom

Histogram v v

Superimposed histogram v v v v After zoom

Tornado chart v

Multiple tornado chart v

Multi-metric tornado chart v

2D contour plot v Small multiples v Small multiples  After zoom/small
multiples

2D Pareto front graph v

2D surface view v Small multiples v Small multiples  After zoom/small
multiples

Carpet plot v After zoom

Box plot v After zoom

Multiple box plot v v v After zoom
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Table 5. Comparison 2: types of metric and types of interaction with data.

Types of interaction with data

Zooms
Parameters potentially
Type of metric Overview Time Location/orientation related to design actions
Comfort metrics Environmental/operative v v v
temperature
PMYV, PPD or any other v v v
comfort metric
Daylight illuminance Metric tends to be shown v

Cost metrics

Energy metrics

Shading/solar metrics

Time exceeding glare
index set point

CO; emissions

Capital cost heating,
cooling, lighting

Operational cost heating,
cooling and lighting

Minimum rate of return on
investment

Investment time

Amount of money to
spend in improvements

Heating, cooling and
lighting thermal energy
delivered to space

Energy use for heating,
cooling, lighting at the
meter

Working hours operating
on a passive mode or
working hours within,
above and below the
comfort zone

Working hours not
requiring artificial
lighting

Transmitted solar
radiation

Shading on floor plan in %

Shaded surfaces (internal
and external)

for a specific time frame
and location

Metric tends to be shown v
for a specific time frame
and location

v

v v

Ve v

v

v

v v v
v v v
v v v
v v v
Metric tends to be shown v

for a specific time frame
and location

Metric tends to be shown v
for a specific time frame
and location

Metric tends to be shown v
for a specific time frame
and location

plots or as 2D surface views, could be repre-
sented as small multiples (i.e. showing multiple
2D displays, one for each different model being

compared).

5.2. Comparison 2: types of metrics and types of
interaction with data

Preferences for combining these two classes are illustrated
in Table 5 with the following principles underlying them:
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Table 6. Comparison 5: types of interaction with data and types of data display.

Types of interaction

Zooms

Parameters potentially

Types of display Overview  Time  Location/orientation related to design actions

Tables v
Dense tables
Bar chart

AN

N

Grouped bar chart
Stacked bar chart
Arrow diagram
Pie chart

SSNENIENIEN

2D line graph?

2D superimposed line graph
Histogram

Superimposed histogram
Tornado chart v
Multiple tornado chart
Multi-metric tornado chart v
2D contour plot
2D Pareto front graph v

2D surface view

\
N N N N N N N N N N N N SRNEN

Carpet plot
Box plot v
Multiple box plot

\

NN N Y VRN NN
\

NN N N N N YR NN

v

V' or small multiples

NN NN

AN

Small multiples

v

4Line graphs in this case do not necessarily mean time series.

e Comfort and energy-related metric instances are rel- 5.4, Comparison 4: types of analysis and types of
evant to be displayed in all types of interaction interaction with data
with data. At an overview level, they are useful to Preferences for combining these two classes of the concep-
quantify and benchmark overall building behaviour. tual data model result in all combinations being possible
At a zoom level, they improve understanding on due to the principles listed below.

when, where and potentially why performance is
happening.

e The time and space dependency of shading/solar-
related metrics make them more appropriate to be
displayed preferably when zooming into data.

e Cost -related metrics are suitable to be displayed
at an overview level but could also be displayed
at zoom level in fine tuning, resolving conflict-
ing design objectives or whatever other analogous
circumstance.

5.3.  Comparison 3: types of analysis and types of
metrics

Preferences for combining these two classes of the con-
ceptual data model are not reported in a table because any
metric instance can be used in any analysis instance.

e All analysis instances should enable interaction with

data at an overview level to convey data summaries.
Specifically in the case of elimination parametric
tests, main causes of building behaviour could be
provided at an overview level reporting the follow-
ing variables: internal gains, ventilation losses and
gains, solar gains, fabric conduction losses or gains
and fabric storage.

All analysis instances should also enable interaction
with data at all zoom levels to improve understand-
ing on when and where performance is happening
as well as on what is causing it. Specifically in
the case of elimination parametric tests, causes of
building behaviour could be provided by zooming
into parameters potentially related to design actions
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Table 7. Comparison 6: types of metric and types of data display.

Types of metric

Comfort metrics Energy metrics Shading/solar metrics
Thermal
Environmental/ PMV, PPD Time energy Working hours  Working hours not Transmitted Shading on
operative orother  Daylight exceeding delivered to Energy use operatingina requiring artificial solar  floor planin Shaded
Types of display temperature indices illuminance glare index  space  atthe meter passive mode lighting radiation % surfaces
Tables v v v v v v v v v v
Dense tables v v v v v v v
Bar chart v v v v v v v
Grouped bar chart v v v v v v
Stacked bar chart v v v
Arrow diagram v v v v v
Pie chart v v v
2D line graph v v v v
2D superimposed line graph v v v v
Histogram v v v v v v v
Superimposed histogram v v v v v v v
Tornado chart v v v v v
Multiple tornado chart v v v v v
Multi-metric tornado chart v v v v v v v
2D contour plot v v v
2D Pareto front graph v v v v v
2D surface view v v v v v v v v v v v
Carpet plot v v v v v
Box plot v v v v v v v
Multiple box plot v v v v v v v
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reporting: (i) usage-related variables (people, arti-
ficial lighting, equipment and ventilation loses or
gains) or (ii) building-related variable losses or gains
(window conduction, wall conduction, roof conduc-
tion, floor conduction, window mass, wall mass,
roof mass, floor mass, solar, infiltration). This same
type of zoom should also be enabled in optimiza-
tions if designers wish to use optimization results
to explore which design parameters are the most
important contributors to building performance.

5.5.  Comparison 5: types of interactions with data and
types of data displays

Preferences for combining these two classes are exam-
ined considering principles of Information Visualization.
In these principles, excellence in data display follows
from communicating complex ideas with clarity, preci-
sion and efficiency (Tufte 1983). Representation systems
should avoid data distortion, encourage comparisons, pro-
vide coherence to large data sets and display the data such
that the substance of it, what it represents, is brought into
focus rather than means and methods behind representa-
tions. Comparisons should be controlled to a small number
of displays for many variables (5 being a good number) and
multiple small views of states in a single variable (small
multiples) (Lidwell, Holden, and Butler [2003] 2010).

Following these criteria, only display instances consid-
ered most appropriate for the different types of interaction
with data are marked as preferred. This means fields not
filled with an ‘v’ might be prone to data cluttering compro-
mising the speed and effectiveness of results interpretation.
Fields filled with ‘small multiples’ indicate multiple dis-
plays of the assigned type. Preferences for combining
these two classes are illustrated in Table 6 and discussed
below:

e Overviews should convey data summaries and broad
indications of performance with clarity. The pre-
ferred display instances for these should deal with
caution with data density and data superimposition
(fields related to superimposed and dense types of
displays were not filled with a *v"”).

e Zooms into different time frames (seasonal, monthly,
typical days, etc.) are preferred to be displayed using
instances which emphasize when performance needs
to be improved. Performance profiles are suitable to
be illustrated using line graphs. Performance data
aggregated over a specific time frame are suitable to
be illustrated through bar charts or tables.

e Zooms into different types of location/orientation
could be provided directly through spatial repre-
sentation systems (2D surface views, contour plots,
etc.). They could also be provided through abstract

display instances, having at least one nominal vari-
able to represent location/orientation (bar charts,
arrow diagrams, etc.).

e Zooming into design parameters potentially related
to different design actions are generally presented
by display instances which emphasize comparing
performance data summaries for different models.
Although this means display instances in this case
might be very similar to the ones requested for
overviews, more in depth information can be pro-
vided through data superimposition and data density
increase (e.g. dense tables and superimposed his-
tograms). Information could be complemented by
2D contour plots or surface views displayed as small
multiples providing a performance summary of the
impact of design variables potentially related to
design actions in space.

Further studies would be necessary to explore poten-
tial useful combinations of different zoom instances.
Are these more efficiently managed when directly com-
bined (e.g. when zooming in time and location/orientation
happen simultaneously) or are they are better man-
aged if undertaken in sequence (e.g. zooming in time
first and from there proceed to zooming into loca-
tion/orientation)? Further explorations of combining differ-
ent zooms could be used to refine preferred combinations
and provide a user defined structure to request details on
demand.

5.6. Comparison 6: types of metrics and types of data
displays

Cost-related metric instances were excluded from this
combination. These instances require the application of
financial value techniques and classical investment anal-
ysis methods to be processed and have an appropriate
display instance attributed to them, which are beyond the
scope of this study. The following principles of what is
preferable in this pairwise comparison are outlined based
on information from Table 7:

e ‘Thermal energy delivered to the space’ and ‘energy
use at the meter’ can be represented using the major-
ity of display instances listed. 2D contour plots
should only be available for displaying these metrics
if energy results enable simulations to be undertaken
at a sub-zone level.

e ‘Time exceeding glare index’, ‘working hours oper-
ating in a passive mode’ and ‘working hours
not requiring artificial lighting’ are similar metric
instances. They are counts of the number of times
a phenomenon occurs as expected and can be rep-
resented using most display instances depending on
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the level of data interaction required. As these met-
rics are not time dependant, they are not appropriate
to be represented by line graphs or carpet plots.

e Temperatures and comfort indices mainly involve
quantifying phenomena at a time instant. They can
be represented either connected to this time instant
when appropriate (e.g. 2D graphs for temperatures)
or summarised using statistics (e.g. tables, his-
tograms, box plots, etc.). Results can be plotted
in 2D surface views to highlight where potential
problems could be expected.

e ‘Transmitted solar radiation’, ‘shading on floor plan
in %’ and ‘daylight illuminance’ are location-based
metric instances and should preferably be displayed
through 2D contour plots and 2D surface views. The
latter two metrics can also be summarised using
histograms or tables and displayed in relation to
time instants in carpet plots. ‘Transmitted solar radi-
ation’ can also be summarised in tables and dis-
played in relation to time instants using 2D line
graphs. ‘Shaded surfaces’ are generally represented
in 2D surface views to better convey the geometric
representation of a shading pattern.

e Zooms should also be enabled at a metric instance
level so that users could query for example the heat-
ing and cooling portions of thermal energy delivered
to the spaces, discriminate uncomfortable hours due
to overheating and under-heating in comfort indices,
etc. Zooms of this type were not explored in detail in
Table 7 to avoid information overload.

Question ‘a’

6. Discussion
6.1. Operation of the model

Operation of the model involves linking the design ques-
tions asked to the data produced as output (Figure 2). As
there are a limited number of questions it would be pos-
sible to supply these on one or more on-screen menu’s
to be manually selected. Figure 2 in theory also provides
a template to interpret design questions which could be
hand-coded on a natural language type of interface. A
question/answering system would need to be developed
to recognize a design input question as an instance of the
template:

< Design Aim > < Analysis Process > < Design Action >

Once the system has found a matching template, it
could recall a specific script to run simulations and the
necessary ancillary tools (e.g. optimization routines) and/or
procedures (e.g. automatic elimination parametric tests) to
generate the data to answer the question automatically.
The 20 questions developed are already a list of poten-
tial variations for the template question. They could be all
hand-coded individually, simplifying the question answer-
ing system to focus only on identifying the different types
of design actions for the different types of questions listed.
The design of this kind input interface and the details
related to the question/answering system are a problem
of software implementation and beyond the scope of this
study.

Types of analysis:

- Identified from design question (automatic)

Types of metric:

- Selected fromanarrow list (manual)
- Customised as defauk (automatic)

-8 - Informed by designer — whole list of choices (manual)
E - Inferred from question+ selected from narrow list of choices (semi-automatic)
@ - Customised as default (automatic)
&
Bat Types of interaction with data:
© 7
= 1) Overview 2)Zooms
E‘ - Informed by desgner—whole list of choices(manua)
E - Inferred from a question (automatic)
Q .
Types of display Types of displa

-Selectedfroma narrow list (manual)
- Customised as defauk (automatic)

h 4
Output 1

h 4
Output 2

Figure 8.  Further filtering system applied to the conceptual data model.
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Generating answers to these questions would involve
structuring modelling and simulations assumptions as well
as writing scripts to identify patterns in results (e.g. iden-
tify discomfort, hours of overheating, flag zones in which
it would happen and help the user to improve performance
by displaying the causes of the problem, etc.) Many of
these types of patterns could be automatically identified
and reported to the users in a simplified way, through inte-
grated performance metrics, simple text format (e.g. stating
what is causing a problem), indicated in plan (e.g. where a
problem is happening) etc. A full exploration about this
part of the work is however addressed in Tucker and Bleil
de Souza (2013) and further developed in detail in Tucker
and Bleil de Souza (2014).

Presenting answers to these questions would involve
developing a database/database management system to
enable manual, semi-automatic and totally automatic
searches in preferred combinations of the 6 aforementioned
pairwise comparisons (Figure 8). The search would start by
automatically identifying the ‘type of analysis’ in a ques-
tion to eliminate all but one specific column from Table
4 (Comparison 1). Metrics and different types on interac-
tion with data would eliminate most but a few fields in
Table 5 (Comparison 2). The selection of metrics could be
done in three different ways as, already outlined in Section
3 and suggested in Figure 8. Types of interaction with
data should be provided preferably at an overview level
first (as suggested by Information Visualization literature
and in interview with designers'®). The selection of dif-
ferent types of zooms could either be done manually or
automatically and the interface should allow both ways to
happen.

Based on information from comparisons 1 and 2, pre-
ferred combinations of the remaining 4 pairwise compar-
isons could then be automatically identified. Results to
be reported to designers would only include combinations
which are marked as ‘preferred’ in all pairwise compar-
isons. Designers would be provided with a list of relevant
displays to represent a selection of few metrics in specific
types of interaction with data to choose how to best answer
their design question. Additional information about man-
ual, semi-automatic and automatic types of data selection
illustrated in Figure 8 provide an extra filtering system to
reduce the amount of choices to be presented to designers.
The model should also enable combinations of different
types of data selection to be customised (e.g. a practice
could wish to always output an overview of the minimum
rate of return on investment as the first metric to inform
or assess design decisions). Customization could be set up
by users and/or automated via the use of a Machine Learn-
ing system. Supervised learning could be used in this case
to store and analyse user specific preferences, presenting a
reduced number of visualization options every time a new
query is made. The context of a question would need to be
represented as a feature vector (e.g. encoding what kind of
simulation the user has performed) together with a record
what aspects of the output the user has previously wanted
to see. These would enable the system to learn with the
users what would be the most appropriate metrics and visu-
alization options to each different type of query, potentially
reaching a point in which choices are no longer presented if
not specifically requested. The design and implementation
of this supervised learning system and the development
of this database/database management system are again a

Question ‘How does my building perform?’ (E1from Table 5 Bleil de Sowza and Tucker 2024)
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[_except ‘Energy use atthe meter’ from Comparison 2 /Table 5

\ 4 | Query user on type of zoom OR

Retrieve type of zoom from custom based listOR
Retrieve type of zoom from previous cases
Search in comparisons 3,4,5 &6
Results for Zoom Location / Orientation’ only
\\ —

A 5§ | Always report overviews unless requested otherwise
Search in comparisons 3,4,5 &6
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Retrieve displaysfrom previous cases

Figure 9. Example 1 (explained): applications of the conceptual data model applications in practice.
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problem of software implementation and beyond the scope
of this study.

6.2. Examples

Figure 9 shows an example of the conceptual data model
application in practice. It shows a question detached
from a specific context with ‘answers’ coming from pre-
ferred combination discussed in Section 5. It provides
a graphical explanation of the application of the model
in practice together with a detailed list of procedures to
be follow step-by-step, which start from how a question
can be decomposed and finish with how the number of
visualization options can be reduced. As it is not possible to
infer which kind of metric or zoom users could potentially
like to see in an ‘answer’ for this question, these would
need to be manually informed by designers, retrieved from
a custom-based list or from previous cases. Lists of display

choices would then be provided to enable the requested
BPS output to be presented. The designers would then
select the type of display (s)he is more comfortable dealing
with. If a custom-based system is in place, this part could
automated and a single display or an extremely reduced list
of displays could be presented. As it was already noted in
Section 3, ultimate display choices are a matter of personal
preference.

Figure 10 illustrates an application of the conceptual
data model when a question is attached to a very spe-
cific context: exploring the design of shading devices for
a school building in the UK. As school buildings in the
UK need to comply with BB101 overheating targets, sim-
ply comparing different design alternatives does not pro-
vide enough information for designers to make decisions.
These comparisons are more meaningful if bounded by
the targets. As BB101 specify allowable hours of over-
heating,'® this metric could be automatically identified

Question ‘How do these buildings performin relationto each other’ AND
‘How does each building perform in relation to BB101?’

(E2 AND E1 (T) from Table5 Bleil de Souza and Tucker 2014)

Types of analysis automatically identified from guestion)

- Comparative (comparing two modek AND comparing to atarget)

Types of metric (mixture of manuall informed by the designer and sutomatically identified from guestion):
- Energy useat the meter (heating and cooling only) AND Hours above spedfic environmental / operative temperatures from B8101
Types of interaction with data:
1) Overview 2) Zooms (manually informed by the designer)
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Figure 10. Example 2: applications of the conceptual data model applications in practice.
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from the question whereas a second metric to assist in
decision-making could be provided by the designer or cus-
tomized as default for school building assessment. Lists
of displays choices would then be restricted to offer an
‘answer’ to these two questions simultaneously, as pro-
vided in Example 2 (Figure 10). In this case the user has
selected a zoom to individual classroom overheating using
a metric of ‘hour > 28°C’. This example illustrates a case
in which interpreting questions and setting up preferred
combinations could be customized based on a specific
building typology. As suggested in Section 3, customiza-
tion could also be enabled in different practices depending
on the types of contracts they undertake, specific ways they
organise design teams, etc. such that questions that are
often asked can be saved along with the preferred outputs
and choices.

Having simulation output data information meaningful
to design decision-making in a hierarchical data structure
and within lists, facilitates choices and the retracing of
previous steps in querying results. It also facilitates set-
ting up interfaces in which users can customise their own
preferences either through the use of supervised machine
learning techniques and/or by manually saving them to
be retrieved in different projects. The hierarchical struc-
ture also facilitates the request for ‘details on demand’ to
be further explored through simultaneous and/or sequential
zooms, as discussed in Section 5.5.

Another feature of this model is that lists, especially
list of metrics and list of displays, are not supposed
to be exhaustive but to be constantly enriched by soft-
ware developers based on further research and interac-
tions with designers. New additions could vary from less
conventional types of displays (kinematic, haptic, etc.) up
to comprehensive metrics which could couple performance
with other types building design metrics (e.g. proportion
systems, ergonomics, rules of construction assemblage,
etc.). Before release to the users, every new addition
should be assessed in terms of preferred combinations as
illustrated in this work.

7. Conclusions and future work

This paper proposed a conceptual data model to present
meaningful dynamic thermal simulation information for
design decision-making. It explained how the model was
generated and how it could become operational, followed
by examples of its applications to practical problems.
Rather than following a conventional statistical analy-
sis on user preferences which would not cope with the
idiosyncrasies of the design problems, different types of
clients, different types of design practices, etc.; the authors
proposed a totally custom-based approach.

In this approach, the first priority was to identify and
make available a full and exhaustive range of meaningful
simulation outputs for building designers, rather than hav-
ing the software manufacturer decide for them on a reduced

set of representations. Having this full range potentially
available opens up the possibility of different design-
ers/users being able to choose how they wish to analyse
performance and view/interact with results.

This full range of possibilities was initially explored
through a Thematic Analysis on building designers’ work.
Dynamic thermal modelling and Information Visualization
principles were then applied to further organise simulation
output information. A filtering system was added to reduce
what could be a long list of output data. This filtering sys-
tem started by analysing pairwise combinations of simula-
tion output data to exclude those which are irrelevant or not
allowed. A second layer of filtering is applied when design-
ers ask a question from which aims, analysis processes
and potentially design actions and metrics are extracted to
narrow down the visualization choices once again.

A third layer of filtering is then to be applied by the user
through one or more of the following options:

(1) Enabling the manual selection of specific elements
of the conceptual data model (e.g. the selection
of a single metric) so that the list of visualization
options can be narrower.

(2) Enabling the designer, or his/her consultant, to
select and save preferred outputs such that these
are always made available when specific preferred
combinations are selected (e.g. a practice could
wish to always output an overview of the minimum
rate of return on investment as the first metric to
inform or assess any design decision).

(3) Enabling machine learning techniques to be imple-
mented so that the database/database management
system could learn from each user what are his/her
preferred outputs. Supervised Learning could be
used in this case to store and analyse user specific
preferences, presenting a reduced number of visu-
alization options every time a new query is made.
The context of a question would need to be repre-
sented as a feature vector (e.g. encoding what kind
of simulation the user has performed) together with
a record what aspects of the output the user has
previously wanted to see. These would enable the
system to learn with the users what would be the
most appropriate metrics and visualization options
to each different type of query, potentially reaching
a point in which choices are no longer presented if
not specifically requested.

The number of choices can be therefore limited by each
different user considering their specific needs, rather than
by finding a stereotypical user and assuming what he/she
wants. Possibilities of data display will always be reduced,
depending on the question asked and if a customised and/or
learning systems is in place. In case a learning system is
in place, it is expected that options will reduce according
to an increase in the number of queries. This is because,
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the larger the number of examples the system has stored,
the more it can learn with them and reduce the number of
display options presented to the user.

The model was validated and tested throughout its
construction by using a set of different methodological
approaches to extract concrete and relevant data for design
decision-making from designers themselves. Validation in
this case happens in a different way and can be summarised
by the three following stages/steps:

e PAR: Contrarily to other methods, in which the
researcher proposes a solution to a problem and
test this solution with his/her potential beneficiaries,
in PAR the beneficiaries themselves propose con-
crete solutions to their own problems. This being the
case, testing what is proposed by beneficiaries with
beneficiaries themselves becomes redundant, espe-
cially when the sample comprises more than a 100
participants.

e Elimination and filtering: Quality assurance in terms
of the physics contained in the solutions produced
by designers was guaranteed by checking proposals
in terms of them fitting or violating dynamic ther-
mal modelling principles. Solutions which violated
these principles were eliminated and/or adapted to
fit them.

e Pairwise comparisons: These comparisons were
used to ‘fine tune’ quality assurance procedures by
examining every combination of types of analysis,
types of metrics, types of interaction with data and
types of data display in pairs. They were also used to
manage information association and are a common
procedure used to do internal validation of software
development.

The need to organise and better present relevant ther-
mal simulation outputs for design decision-making is con-
stantly highlighted in the literature but is expressed in
practical terms in many software initiatives in a disartic-
ulated and disjointed format. The conceptual data model is
a meaningful resource for software developers to structure
output interfaces because it deals with information only,
independent of a specific database or database management
system format. This gives developers freedom to choose
how they wish to design a database/database management
system which best fit their different software structures.

As it is totally custom-based, the conceptual data model
proposed can be expanded and further developed to include
different simulation software users as this could be easily
managed in a database/database management system envi-
ronment. A range of users could thus gain access to the
power and accuracy of complex simulation tools, which
thereby could facilitate the design of low energy and low
carbon buildings.

This conceptual data model is not supposed to be
directly accessed by building designers, that is, it is not

supposed to be a user friendly simulation output inter-
face for building designers. It should be understood as a
comprehensive structure for software developers to pro-
duce appropriate simulation output interfaces for design
decision-making. Future work should involve: (i) explor-
ing appropriate database/database management systems for
implementation of the model; (ii) refine preferred com-
binations, metric and display instances in the model to
include issues related to communicating information to
clients, investors and passing information to the construc-
tion site; (iii) explore different types of user experiences in
interacting with this type of data.
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Notes

1. Schon (1988, [1983] 1991) are classics with more examples
presented in Lawson ([1980] 1997), Rowe (1987) to cite a
few.

2. Five aims from Bleil de Souza and Tucker ([1980] 2014) are:
(1) understanding a specific performance result, (ii) exploring
a specific design strategy, (iii) meeting a target, (iv) assessing
a specific product and (v) optimizing.

. Analysis processes are described in detail in Table 1.

4. These limited number of aims and their relevance to design
decision making were extensively explored in (Bleil de
Souza and Tucker 2014). Even though most of these aims
require multiple simulations or needs third party tools to be
achieved, parts of them are now possible to be extracted
directly from BPS software. Open Studio (NREL 2013)
and Design Builder (Tindale 2013) provide some examples
of easy configuration or semi-automatic parametric tests,
indicating software developers are gradually understanding
simulation packages alone are not enough to cover user
needs.

5. Databases are a powerful feature in BIM software such as
AutoDesk Revit (2014), Graphisoft (2014), Bentley (2014),
etc.

6. Databases with simulation input data can be found in Tindale
(2013), ESRU, ESP-r (2013), NREL (2013), IES (2014), to
cite a few.

7. Databases to benchmark simulation results can be found in
Knight, Marsh, and Bleil de Souza (2006) and Knight et al.
(2007).

8. Details involving this replacement are discussed in Section
4.1.

9. Custom-based information, rather common in BIM systems,
could possibly enable context based and potentially more
efficient BPS results retrieval.

10. See Bleil de Souza and Tucker (2014) ‘further insights and

criticism’ for interviews with designers on this topic.

w
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11. Breakdowns from BPS are difficult to interpret especially
when designers want to know where to act on the fabric
and/or relate fabric and solar radiation to improve building
behaviour. Identifying the main contributors in the air heat
balance breakdown could be initially informative. However,
tracing information further in the inside and outside sur-
face heat balance breakdowns is not an easy task — if at all
possible.

12. The six ‘key’ days suggested by SERI (1985) would enable
designers to get a broader understanding of when energy is
needed without being overloaded by large amounts of time
series graphs with potentially minimal and/or meaningless
extra information to ‘be digested’.

13. Location and orientation are words designers understand.
They were therefore used to replace the simulation jargon of
‘zone’ and ‘aspect’.

14. ‘A strategy for managing information complexity in which
only necessary or required information is displayed at any
given time’ (Lidwell, Holden, and Butler [2003] 2010).

15. See Bleil de Souza and Tucker (2014) for details on inter-
views with designers.

16. BB101 specifies maximum environmental/operative temper-
atures allowed for schools in the UK: maximum of 120
h above 26°C, no hours above 32°C and 0 h where mean
‘ti’- mean ‘to’ is greater than 5°C. Even though this metric
is not directly listed in Table 2 (Section 4.2), this table is
not supposed to be exhaustive. A series of metrics related
to specific performance targets could be further included
there to cover most of the current legislation and building
regulations.
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Weather Analysis

Neutrality Temperature and
Comfort Zone

Climate Classification

The cimate in Zurich is classified as temperate, with
slight characteristic of a Goid cimate.

Thers s a seasonal varialion between underhealing
and averheating, however the annual healing re
quirement is higher thon the cooiing requirement.

C. Bleil de Souza and S. Tucker

Appendix. A sample of a summary of one of the design journals from the data sample

Targets for Passive and Active Scenario

Passive Scenario
Targe!

Nature of Climate Problem

Ysmpeluiuve urouno \SC 1020 C inwinter, 20 C 10.25 C in summer

Hurniity ~

Minimum ouls\de OemDEVq!ure that the passive heating will be able fo offset neutraiity femperature - ot least
€., Iry fo push as nuch as pessible fowerds 5§ €

Al most of the time, there will be heat loss from the

building 1o the surroundings. 5o there the inhabitants

Active Scenario
need 1o be kept wam.
When the lemperature reaches the extreme in Targets:

summer, shading devices are needed fo prevent

overhealins

G
Winfer is more humid {humiciier neaded) and
summer s dryer [evaporalive cooling s helplul)

Internal Gains

Annual Internal Heat Gain & Nomalised Value

Temperature, 21C, constant throughout the year
Humidity - 60%

Ak movomant - 02510 0.5/t baiwaen plecsant and awarenessof o movemen

Thermal Load - a3 low as possible. Iry fo ochieve 15kWh/m2 per annum [PassivHaus Standard)

Strategies for Passive Scenario
Rasty Thik Bt

AnnuaiHeit Gain | Normatised Annuat | Specutative dnrual homd
)
Celtiar e
Partners oom | 1975508 TL95m14] 5
Partner's oom 1 730,603 T st Combiii
122083 s1.08103508] 5
Manager's oom 1 183488 Rl 0|
Manager's rom 134,753 sl = sty
Manabagortce S 163 1ans) 5
‘Acrourtart OFixe 15%6.654 126 3045285] |
Projecttroun L %501 =
ProjectGroun2 11436739 5
FrojeciGroun | 5
ProjeciGroup & 1003431 5
I
Meeting Room I
15 pecple meeting o Tousema7s| D asiece) |
pecple meetingroom 38 anoszzni] e
Rexeption
Front Onsk Main Recegtion. FIETET) T x|
gt P o] 132528 709415268 |
3 (Managert Secetan] e 127.5751505] |
r——— b g Iebenat G
Kichenatta + Sl ounge w0 Se106E57] E — teed h’i\my o radnce Gojar fear Gaim. .
134529 20067797 e
Balcony sy 35)13’ 0| Strategies for Active Scenario
T Equipment RMR bt vl o vt
Photocogy and Printing Room 3410) 198448101 | A
Tota drea 15187009 Sas61ss] |
77328 25588

Aims of the Scenarios
Passive Scenario

- 1o achieve comicriabie level as out-
lined earlier

- to minimise the temperature variafion
between different fime thraughou! the
day

1o prevent loss of infemal heat gained
1o fhe sumoundings as much as pos
sible:

o prevent overheating on Ihe south
togade

Shading Design

Annual Internal Heat Gain & Normalised Value

Al - 16 alow winter sun bul fo
block cut the summer sun

Resuits - Big drop in summer G valse:

South Madule A South Module B

Active Scenario

-1o ackieve the fargets as outined
earber

to control the infemal temparature
arificially

1o have a building envelope that
aliows the minimum use of thermal
load as much as possible fo meet the
comiort requirement of the indoer en-
vironment

-ta keep the healing and cacling load

below the range in standards and
regulations

5
l“w-,-y.,.«.u:»ﬁ-ﬁ
Modules and Positions of Windows and Wall Panels

_r"“r“rr*_v---r *
| BE I

1

1.
North Module A North Module B

mcioent INcioEnT wopea wooewt |
MONTH | wijmy WO | wn/mil o | whjma m.
Jan ™ 0 an_ 300
veb 7o Tz For w7 v
Ma [ 147 ar a7 Each window ls
Agr Aor 1335 aar o7} based on the
oy ey ) War 0 constructional grid
Jon un 381 Jun T 125mx 1.25m
) ot 1050 g} 11 and hreoted as
o]
Bug ™ 1084 Aug ) atull height panel 3
S Sp 50 Sep 7o
ot [ i o P
s = A o = Module A (smal) Module 8 (iorge)
Dec Bec siE Dec_ i 1250%3200mm ¢ 2500 % 3200 mm
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Facade Modules

Distribution of Panels af different Orientations

Passive Scenario

Compaositions of the Panels

B
Sungate® 500 Low-E Glass 3 ’J@MP"-
GG
E  width fme | | Oventatio|
Corceete biock Tght T 109 o | I
| 0] [ I Product ) mmm
‘Wasterbosrd I | 0 | oo E gl mmmm
E Ve | om [ om [ os [ ws [ as
Caleuloting Fotof Resistance (2K/W) snac s | 0w | om | ow | em |
i Surtace () 2 h Gms | o e | ems | om |
100 Conerete Bioek =0.1/0.19 - sz
150mm Polyurethane board «0.15/0.023. " &
100 Concrete Block «0.U019 P s
- SSmm Plasarbomd =D030.18 - s r —
Outsite Sartace (Rso) p ans e
Tousi -a) s Erenr Gt i
: Colcutaring U-value (W/max) . 0.136493027 L .
Fl.IE
b 4
S8
Minimum Tout for Coldest Month Maximum Tout for Hottest Month
[wtean te Tout :23- (0i+0s-Qc) | Month _ |Mean
1 lqc+aqv) Jan 1
ol Feb of
2y e o] =
ner's room
74 Receptionist's Office 19.3551809| Apr Y
Managers ro6m 1 a0 Moy 102 Visragers oom1 Tozsarw| Mer 102
Managers room 2 Saszssrosy Jun o i ——— Tsssra0as] Jun 153
Warkating Offica sy jul 183 19i04333] 2l
103421937 Aug 173 18.503374] Aug 123
| sep 132 Sep 133
et Pian Offic
Project Group 1 0219287331} Lk 19.2081054) Oet L
esassia DeC 1.4 2 1990253308 pog 1.6]
i 3 20.29979359)
1.543781978)
| Project Groupa 20 07868835
1349561755
18.37528063] peop 2162539686
|  peop 2174109751
reception |
Recepl peception
ption 1 [Partners'Secretary] 19.05036026)
Reception 2 (Managers” Secretary) ption ' Secretary) 1953319855
ot (M ' Secretary) 1821167738
Common Area
Kichanatte s Staff Lounge Comman Area
Technical Library Kichenette + Staff Lounge
Balcony Technical Library
Balcony
T Equipment
Phoy ng Room 2734243658 T Equipment
Photocopy and Printing Reom gt
331413897
1986461452
I this scenario, we do nol fake info aceount the ffech of fhy 1 T i i
also helps fo fransfer heot info buiding by conduction. the delay of this ranster also heh to
reguiae the internal lemperautre at day and ight, and thus may help fo reduce the prob- i i i
abilily of averheating in the day, especially in summer.
Passive heating of Ihe buiding can be i y having @ ies atfached fo e i i
Exiding, acling al o green house that colec! heat for the buiding, Trombe wal mcy be i i

uvoiu] s wel but il block oul daylighl, which 5 neccessary Tor on office bulding, Hence i
is not that appropriate for this fask.

To further improve the facode so os to obtain a higher Tout for summer. evaporative cooling
may be able fo help achieving fhis. This con be done by having a roof peat or a courtyard
pond in the atrium, of by spraying over the roof.

Increasing air movement in the bu cross venflation and stack ventilation can alsa
help fo improve the passive cwhg al the building. However, air movement to a cerfain can
be very annoying and thus causes discomfort to the occupants.
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Active Scenario
Compositions of the Panels

C. Bleil de Souza and S. Tucker

Sungate® 500 Low-E Glass
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Load Annual Heating Requirement

Annual Cooling Requirement
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Conclusion

In this scenario, the annual heating requrement is
within Ihe “good practice” range but cooling re-

tement & for ok the refererice veke i Ihe
£CON 19 cuic

for the passis

whole,

atic I a e
Toul s low as 5.4 C for passive nea:lngund 19.8.C for passive cooiing. Hoiwever .the

proposal for

C made fo ition of
the window Some adit

done lo fhe infemal gain and ventilation heat frans-
fer fo abtain @ more accurate value.

earlier, the main to such
an m-emaly high vaiue for cooling requirement is
Qi. To improve fhe resulfs, the planning of the layout
of the office buiding needs 1o be reorganised and
reassess the eslimation of the schedule of fhe work-
ing hour.

as the bulding s

not the passi
and thus hos a hvgher <aaling demand than heating demand annually.

To achieve an opimum camfort level for the: oﬂh:e bul\dng. 1the integration of both s

needed to push the

1 the bulldi

comfort. The passive proposal

| needs some kind of HW\C systam during extreme

weather 10 off set any heal gain of heal loss. As for fhe aclive proposal. there is a need
to have passive solar heating to help 1o reduce the thermal load needed to achieve

comfart level.

Alo, the atri fect need fo b
obloin o mote accurate results for both design.

ol using computer simulation fo
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