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SUMMARY

The regulation of innervation by target-derived fac-
tors like nerve growth factor (NGF) is the cornerstone
of neurotrophic theory. Whereas autocrine signaling
in neurons affecting survival and axon growth has
been described, it is difficult to reconcile autocrine
signalingwith the idea that targets control their inner-
vation. Here, we report that an autocrine signaling
loop in developing mouse sympathetic neurons
involving CD40L (TNFSF5) and CD40 (TNFRSF5)
selectively enhances NGF-promoted axon growth
and branching, but not survival, via CD40L reverse
signaling. Because NGF negatively regulates CD40L
and CD40 expression, this signaling loop operates
only in neurons exposed to low levels of NGF. Conse-
quently, the sympathetic innervation density of tis-
sues expressing low NGF is significantly reduced in
CD40-deficient mice, whereas the innervation den-
sity of tissues expressing high levels of NGF is unaf-
fected. Our findings reveal how differential regulation
of autocrine signaling in neurons has region-specific
effects on axon growth and tissue innervation.

INTRODUCTION

Neurotrophic theory provides an explanation for how the target

tissues of neuronal populations in the developing peripheral ner-

vous system control their innervation. The basic idea is that tis-

sues synthesize just the right amount of a neurotrophic factor

to support the survival of the required number of innervating neu-

rons and promote the growth and branching of their axons within

the tissue. Neurotrophic theory is endorsed by a large body of

work on nerve growth factor (NGF), the first neurotrophic factor

to be identified, and has been corroborated by studies of other

members of the NGF family of neurotrophins and by other neuro-

trophic factors (Levi-Montalcini, 1987; Davies, 2003; Dekkers

et al., 2013). In addition to target-derived signals, autocrine

signaling in neurons involving neurotrophins and other secreted
Cell
signaling molecules has been shown to affect neuronal survival,

axon growth, and other aspects of neuronal development and

function (Wright et al., 1992; Acheson et al., 1995; O’Keeffe

et al., 2008; Cheng et al., 2011; Ryu et al., 2013). However,

neuronal autocrine signaling is difficult to reconcile with neuro-

trophic theory because it is not clear how autonomous signaling

loops in neurons could contribute to the establishment of distinc-

tive patterns of tissue innervation.

From a PCR screen to identify novel regulators of neuronal

survival and axon growth, we detected expression of tran-

scripts encoding CD40L (TNFSF5), a member of the tumor ne-

crosis factor superfamily (TNFSF), and CD40 (TNFRSF5), a

member of the TNF receptor superfamily (TNFRSF), in the ex-

perimentally tractable sympathetic neurons of the mouse supe-

rior cervical ganglion (SCG) at the stage when the axons of

these neurons are ramifying extensively in their target tissues.

CD40L and CD40 are prominently expressed in the immune

system, where they play a central role in the generation of im-

mune responses and the pathogenesis of autoimmune disease

(Calderhead et al., 2000; Peters et al., 2009). Whereas there is

some evidence for the appearance of a neurodegenerative

phenotype in aged CD40 knockout mice (Tan et al., 2002),

CD40 and CD40L are not known to play any role in neural de-

velopment. We demonstrate that CD40 autocrine signaling

enhances NGF-promoted axonal growth and branching, is

regulated by the level of NGF in targets, and exerts regional ef-

fects on innervation density in vivo. These findings resolve the

long-standing conundrum of neuronal autocrine signaling by

uncovering a mechanism of differential regulation of autocrine

signaling within neuronal populations, resulting in specific

regional effects on tissue innervation.

RESULTS

CD40 and CD40L Are Co-expressed in Perinatal
SCG Neurons
Quantitative PCR revealed the expression of Cd40 and Cd40l

transcripts in the SCG of late fetal and early postnatal mice dur-

ing the stage when sympathetic axons are ramifying extensively

in their targets (Figure 1A). Compared with adult spleen, where

CD40 and CD40L are expressed at very high levels, the levels
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Figure 1. SCG Neurons Express CD40 and CD40L

(A) Levels of Cd40 and Cd40l mRNA relative to reference mRNAs in SCG of

different ages. The data are normalized to a value of 1.0 at the peak of

expression at P5. Mean ± SEM of data from three separate sets of ganglia at

each age is shown.

(B) Representative western blot of lysates of SCG of different ages.

(C) Images of representative P3 SCG neurons cultured for 24 hr in medium

containing 1 ng/ml NGF labeledwith either anti-CD40 or anti-CD40L. The scale

bar represents 50 mm.
of Cd40 mRNA and Cd40l mRNA were 8.8-fold and 950-fold

lower, respectively, in the SCG at P5.Western blotting confirmed

the presence of CD40 and CD40L protein in the developing SCG

(Figure 1B). In dissociated SCG cultures, the great majority of

neurons, positively identified by bIII-tubulin labeling, were

labeled by anti-CD40 (91.5 ± 2.4; mean ± SEM) and by anti-

CD40L (87.4 ± 2.0; Figure 1C). The small number of non-neuronal

cells in these cultures exhibited a very low level of CD40 and

CD40L immunostaining. No neurons were labeled when primary

antibodies were omitted, and anti-CD40 did not label neurons

cultured from Cd40�/� mice. These observations suggest that

the great majority of sympathetic neurons co-express CD40

and CD40L when sympathetic axons are innervating their

targets.

Autocrine CD40 Reverse Signaling Enhances
NGF-Promoted Axon Growth
The co-expression of CD40L and CD40 raised the possibility of

autocrine signaling. To test this possibility and to ascertain

how autocrine signaling might influence SCG neuron develop-

ment, we studied the effects of blocking the interaction of

CD40L and CD40 using function-blocking antibodies and quan-

tified neuronal survival and neurite growth. Whereas NGF-pro-

moted neuronal survival was unaffected by these antibodies

(Figure S1A), neurite arbor size and complexity were markedly

reduced. In the presence of NGF, each function-blocking anti-

body caused highly significant reductions in total length (Fig-

ure 2A) and branch point number (Figure 2B) compared with

isotype control antibodies. Representative images of neurons

grown under these conditions are shown in Figure S1B. Because

these data were obtained from non-contiguous neurons cultured
1444 Cell Reports 10, 1443–1449, March 10, 2015 ª2015 The Author
at exceptionally low density, these findings suggest that CD40

autocrine signaling enhances NGF-promoted neurite growth

but does not affect NGF-promoted survival.

Interaction of CD40 and membrane-integrated CD40L

can initiate bi-directional signaling: CD40-mediated forward

signaling and CD40L-mediated reverse signaling (Sun and

Fink, 2007). To determine whether CD40/CD40L interaction en-

hances NGF-promoted axon growth by either forward or reverse

signaling, we ascertained whether either soluble CD40L or solu-

ble CD40-Fc chimera (in which the extracellular domain of CD40

is linked to the Fc part of human IgG1) interferes with NGF-pro-

moted axon growth. Whereas soluble CD40L reduced NGF-pro-

moted axon growth to the same extent as the function-blocking

anti-CD40 and anti-CD40L antibodies, CD40-Fc had no signifi-

cant effect on NGF-promoted axon growth (Figure 2C). The

most parsimonious explanation for these results is that the

added soluble CD40L competes with endogenous membrane-

integrated CD40L for binding to endogenous CD40 and thereby

blocks endogenous CD40L-mediated reverse signaling. Further

support for reverse signaling came from the phenotype rescue

experiments on SCG neurons obtained from Cd40�/� mice.

The extent of NGF-promoted axon growth from these neurons

was similar to that of SCG neurons of wild-type littermates

treated with function-blocking anti-CD40 and anti-CD40L anti-

bodies (Figure 2D). CD40-Fc fully restored the extent of NGF-

promoted axon growth from CD40-deficient neurons to that of

wild-type neurons, suggesting that soluble, rather than mem-

brane-integrated CD40, is sufficient to rescue the impaired

axon growth phenotype of these neurons. The observation

that neither soluble CD40L nor function-blocking antibodies

reduced the extent of NGF-promoted axon growth from CD40-

deficient neurons (Figure 2D) additionally shows that these re-

agents do not exert non-specific suppressive effects on axon

growth.

CD40 Signaling Enhances NGF-Promoted Axon Growth
during a Perinatal Window
To ascertain whether CD40 autocrine signaling reduces

NGF-promoted neurite growth during a particular period of

sympathetic neuron development, we examined the effect of

function-blocking anti-CD40L and anti-CD40 in cultures estab-

lished over a range of ages. Sholl analysis showed that these

antibodies decreased NGF-promoted neurite growth most

markedly in P0 and P3 SCG cultures (Figure 2E). Quantification

of neurite length and branching revealed consistent decreases

at E17 and P5, but these decreases did not reach significance

(p > 0.05; t tests; n = 3 experiments at each age). Highly signif-

icant decreases in neurite length and branching were observed

in P0 and P3 cultures (p < 0.0001 for length and branching at

P0; p < 0.05 for length and p < 0.0001 for branching at P3;

unpaired two-tailed t test; n = 3 experiments at each age).

No consistent effect of the antibodies on neurite length and

branching were observed in P10 cultures. These findings sug-

gest that CD40L autocrine signaling enhances NGF-promoted

neurite growth from SCG neurons maximally during the period

of development when SCG axons are ramifying extensively in

their target tissues under the influence of target-derived NGF

(Davies, 2009).
s
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Figure 2. CD40 Signaling Enhances NGF-Promoted Neurite Growth

(A and B) Neurite arbor length (A) and branch point number (B) of P3 SCG neurons cultured for 24 hr with 1 ng/ml NGF plus function-blocking anti-CD40, function-

blocking anti-CD40L, or isotype control antibodies (2 mg/ml).

(C) Neurite arbor length of P3 SCG neurons cultured for 24 hr in media supplemented with 1 ng/ml NGF alone (control) or 1 ng/ml NGF plus isotype control

antibodies (Iso control), Fc fragment (Fc control), function-blocking anti-CD40 and anti-CD40L (FB antibodies), 1 mg/ml CD40L, or 1 mg/ml CD40-Fc.

(D) Neurite arbor length of SCG neurons obtained from P3 Cd40�/� littermates cultured under the same conditions as in (C). ****p < 0.0001; ***p < 0.001, ANOVA

with Bonferroni correction, statistical comparison with controls.

(E) Sholl plots of neurite arbors of E17–P10 SCG neurons cultured for 24 hr with 1 ng/ml NGF plus either function blocking or isotype control antibodies.

(F) Sholl plots of the neurite arbors of P3 SCG neurons of Cd40+/+ and Cd40�/� littermates grown for 24 hr with a concentration range of NGF and 25 mMBoc-D-

FMK to prevent apoptosis at low NGF concentrations. Mean ± SEM data of >150 neurons per condition combined from three to five experiments of each type.
CD40 Signaling Enhances Axon Growth Promoted
by Low Concentrations of NGF
To provide a more stringent test of the effect of CD40 signaling

on NGF-promoted neurite growth, we compared the size and

complexity of the neurite arbors of SCG neurons obtained

from neonatal CD40-deficient mice and wild-type littermates.

Detailed dose-response analysis revealed that absence of

CD40 reduced NGF-promoted neurite growth over a restricted

range of low NGF concentrations. In cultures containing 0.01,

0.1, and 1 ng/ml NGF, the neurite arbors of CD40-deficient

neurons were markedly smaller and less complex than those
Cell
of wild-type mice, whereas at lower and higher concentrations

of NGF, there were no significant differences in neurite arbor

size and complexity (Figure 2F). All cultures received the

broad-spectrum caspase inhibitor Boc-D-FMK to prevent

apoptosis at low levels of NGF. The great majority of neurons

survived in these experiments, and there were no significant

differences in survival between the experimental groups (not

shown). These findings suggest that CD40 signaling does not

affect neurite growth on its own but enhances NGF-promoted

neurite growth and branching over a narrow range of low

NGF concentrations.
Reports 10, 1443–1449, March 10, 2015 ª2015 The Authors 1445
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Figure 3. Negative Regulation of CD40 Expression by NGF

(A) Representative western blots of P3 SCG neuron lysates probed for CD40

and CD40L after 48 hr culture with different levels of NGF. All cultures received

25 mM Boc-D-FMK.

(B) Densitometry for CD40 from multiple western blots.

(C) Densitometry for CD40L from multiple western blots.

(D–F) Level of Cd40 mRNA in P3 SCG cultures grown with a range of NGF

concentrations for 48 hr (D) or for 24 and 48 hr with 10 ng/ml NGF (E) or without

NGF (F). Data normalized to 1.0 at plating (n = 3 experiments).

Mean ± SEM data combined from three to five experiments of each type.
NGF Negatively Regulates Expression of CD40L
and CD40
The lack of effect of Cd40 deletion on neurite growth at high NGF

concentrations could be due to negative regulation of the expres-

sion of CD40L and/or CD40 by NGF. To test this possibility, SCG

neurons were cultured with a range of NGF concentrations and

western blotting was used to assess the relative levels of CD40L

and CD40 after 48 hr. This analysis revealed a clear decrease in

the levels of both proteins with increasing levels of NGF (Figures

3A–3C). Because the levels of Cd40 mRNA are much higher

than those ofCd40lmRNAand canbe easily and accurately quan-

tified by qPCR in low-density SCG cultures, we carried further

detailed analysis of the influence of NGF on Cd40mRNA expres-

sion. There was a very clear inverse relationship between the

levels of NGF and Cd40 mRNA, with a very marked decrease in

Cd40 mRNA at NGF concentrations between 0.01 and 1 ng/ml

(Figure 3D). To ascertain whether these marked differences in

Cd40mRNA observed at 48 hr were due to increases and/or de-
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creases in Cd40 mRNA with time in culture, we measured the

levels of Cd40 mRNA in freshly dissociated SCG neurons and in

SCG neurons cultured for 24 and 48 hr with and without

10 ng/ml NGF. In cultures containing NGF, there was an �60%

decrease in the level of Cd40mRNA relative to the level in freshly

dissociated SCG neurons after 24 hr in culture and a further

decrease by 48 hr (Figure 3E). In contrast, there was a marked

�8-fold increase in the level of Cd40 mRNA during the first 24 hr

in cultures lacking NGF and a further increase by 48 hr (Figure 3F).

These data indicate that Cd40mRNA expression increases in the

absence of NGF and is decreased by relatively high levels of NGF.

Sympathetic Innervation of Tissue Expressing Low,
but Not High, Levels of NGF Is Reduced in Mice
Lacking CD40
To assess the physiological relevance of our in vitro findings, we

studied the sympathetic innervation of several tissues that ex-

pressmarkedly different levels of NGF.Western analysis showed

that the densely innervated submandibular salivary gland and

nasal turbinate tissue express much higher levels of mature

NGF than the sparsely innervated thymus and periorbital cuta-

neous tissue (Figure 4A). These differences in NGF level accord

with earlier studies that reported relatively high levels of NGF and

Ngf mRNA in the submandibular salivary gland compared with

the thymus (Shelton and Reichardt, 1984; Heumann et al., 1984).

We assessed sympathetic innervation density by quantifying

immunostaining for tyrosine hydroxylase, a rate-limiting enzyme

for noradrenaline synthesis specifically expressed in sympathetic

fibers. Innervation density in the densely innervated submandibu-

lar salivary gland and nasal turbinate tissue was assessed by

quantifying tyrosine hydroxylase staining in histological sections

(Kisiswa et al., 2013). Because there are so few sympathetic fibers

in the thymus and periorbital cutaneous tissue, we assessed

innervation density by quantifying tyrosine-hydroxylase-positive

fibers in cleared whole-mount tissue preparations (Kisiswa et al.,

2013). Quantification of sympathetic innervation density in the

submandibular salivary gland, nasal turbinate tissue, and thymus

was carried out at P3 when sympathetic innervation is well estab-

lished. However, in order to visualize cutaneous sympathetic

fibers in cleared whole-mount preparations adequately, it was

necessary to examine this tissue in late fetal mice at E16.5 (Gle-

bova and Ginty, 2004). Quantification of sympathetic innervation

density in the high-NGF-expressing submandibular salivary gland

and nasal turbinate tissue revealed no significant differences be-

tweenCd40+/+ andCd40�/�mice (Figures 4B and 4C). Represen-

tative tyrosine-hydroxylase-stained sections of these tissues

are shown in Figures S2A and S2B. In contrast, there were highly

significant reductions in the sympathetic innervation density of the

thymus and periorbital cutaneous tissue of Cd40�/� mice

compared with Cd40+/+ mice (Figures 4D–4G). These findings

suggest that CD40 signaling selectively enhances the sympa-

thetic innervation of low-NGF-expressing, but not high-NGF-ex-

pressing, tissue.

DISCUSSION

We have uncovered an autocrine-signaling loop in developing

sympathetic neurons involving CD40 and CD40L that enhances
s



A

S
ym

pa
th

et
ic

 in
ne

rv
at

io
n

(%
 W

ild
 ty

pe
)

S
ym

pa
th

et
ic

 in
ne

rv
at

io
n

(%
 W

ild
 ty

pe
)

+/+ -/-

200

150

100

50

0

G

ED

F

P
er

io
rb

ita
l t

is
su

e
T

hy
m

us

Cd40+/+ Cd40-/-

Cd40+/+ Cd40-/-

+/+ -/-

150

100

50

0

C

 Cd40-/-

+/+ -/-S
ym

pa
th

et
ic

 in
ne

rv
at

io
n

(%
 W

ild
 ty

pe
)

150

100

50

0

200

250

S
ym

pa
th

et
ic

 in
ne

rv
at

io
n

(%
 W

ild
 ty

pe
)

B
SMG Nasal tissue

150

100

50

0

200

250

+/+ -/-

**

**

Figure 4. Reduced Sympathetic Innervation

of Low-NGF-Expressing, but Not High-NGF-

Expressing, Tissue in CD40-Deficient Mice

(A) Representative western blot of P3 subman-

dibular salivary gland (SMG), P3 nasal tissue, P3

thymus, and E16.5 periorbital cutaneous tissue

probed for NGF, showing the band corresponding

to mature NGF.

(B and C) Scatterplots of sympathetic innervation

density in P3 SMG (B) and P3 nasal turbinate tissue

(C).

(D and E) Representative images of P3 thymus

whole mounts of Cd40+/+ and Cd40�/� mice

stained for TH-positive sympathetic fibers (D) and

scatterplots of innervation density (E).

(F and G) Representative images of whole mounts

of E16.5 periorbital cutaneous tissue of Cd40+/+

and Cd40�/� mice stained for TH-positive sym-

pathetic fibers (F) and scatterplots of innervation

density (G). Mean ± SEM. **p < 0.01; t test.

The scale bars represent 100 mm.
NGF-promoted neurite growth but has no effect on NGF-pro-

moted survival. This autocrine-signaling loop has no effect on

neurite growth on its own and only enhances neurite growth

from neurons cultured with NGF over a low concentration range.

The reduction of NGF-promoted axon growth by soluble CD40L,

but not by CD40-Fc, together with the rescue of the reduced

axon growth phenotype of CD40-deficient neurons by CD40-

Fc suggests that enhancement of NGF-promoted axon growth

by the CD40/CD40L autocrine-signaling loop occurs by

CD40L-mediated reverse signaling. In addition to CD40L, se-

veral other members of the TNFSF, including TNF, FasL, LIGHT,

GITRL, and APRIL, have been shown to either enhance or

repress axon growth from a variety of developing neurons (Des-

barats et al., 2003; Gutierrez et al., 2008, 2013; Gavaldà et al.,

2009; McKelvey et al., 2012; Kisiswa et al., 2013; Osório et al.,

2014; Wheeler et al., 2014). Of these, only TNF has been shown
Cell Reports 10, 1443–1449
to affect axon growth by reverse signaling

(Kisiswa et al., 2013;Wheeler et al., 2014).

Our findings not only extend the impor-

tance of the TNFSF in regulating axon

growth in neural development but show

that reverse signaling is not restricted to

TNF in the nervous system.

The negative regulation of CD40 and

CD40L expression by NGF explains why

the effects of CD40/CD40L autocrine

signaling on axon growth are curtailed at

higher NGF concentrations. The physio-

logical relevance of our in vitro observa-

tions was confirmed by quantification of

sympathetic innervation density of tis-

sues that express different levels of

NGF. In CD40-deficient mice, the sympa-

thetic innervation density of the low-NGF-

expressing thymus and periorbital cuta-

neous tissue was significantly reduced

compared with wild-type littermates,
whereas the sympathetic innervation density of the high-NGF-

expressing submandibular salivary gland and nasal turbinate tis-

sue was unaffected. The growth and branching of sympathetic

fibers in at least two of these tissues, the periorbital cutaneous

tissue and the submandibular salivary gland, has been shown

to be critically dependent on NGF in vivo (Glebova and Ginty,

2004). Our findings therefore suggest that CD40 signaling selec-

tively modulates NGF-dependent innervation in vivo and reveal a

fundamentally novel mechanism for adjusting the innervation

density of specific tissues based on the differential regulation

of an autocrine-signaling loop in the innervating population of

neurons in accordance with the level of NGF in the tissue they

innervate. Because somemembers of the TNFSF, such asGITRL

and APRIL, appear to act by an autocrine mechanism, our cur-

rent findings raise the possibility that analogous paradigmsmight

operate in regulating tissue innervation by these cytokines.
, March 10, 2015 ª2015 The Authors 1447



Why has such amechanism evolved? Because NGF promotes

both survival and axon growth in the developing peripheral ner-

vous system, it might not be possible to attain the physiologically

appropriate innervation density of particular tissues by a limited

number of neurons if there was an invariant relationship between

the survival-promoting and axon-growth-promoting effects of

NGF. For example, whereas a low level of NGF in certain tissues

may be sufficient to support the required number of innervating

neurons, this may be inadequate to promote enough axon

growth and branching for optimal sympathetic function. The

CD40 autocrine-signaling loop breaks an otherwise invariant

relationship between survival and axon growth, facilitating phys-

iologically appropriate innervation density by a limited number of

neurons in low-NGF-expressing tissue. In future work, it will be

informative to ascertain how CD40L-mediated reverse signaling

influences downstream NGF signaling to modulate axon growth

selectively and how extensively this and analogous paradigms of

autocrine signaling operate in the nervous system.

EXPERIMENTAL PROCEDURES

Primary Neuron Culture

SCGs were dissected from mice that were bred and housed in accordance

with guidelines approved by the Cardiff University Ethical Review Board and

the Home Office Animals (Scientific Procedures) Act, 1986. SCG neurons

were cultured at very low density on poly-ornithine- and laminin-coated

4-well tissue culture dishes in defined medium. Neurite arbors were labeled

by the fluorescent vital dye calcein-AM after 24 hr, and the images were

analyzed to obtain neurite length, branch point number, and Sholl profiles

(Gutierrez and Davies, 2007).

Quantitative PCR

The levels of Cd40l and Cd40 mRNAs were quantified by real-time PCR rela-

tive to a geometric mean of mRNAs for house-keeping enzymes. See Supple-

mental Information for primer details and reaction conditions.

Immunohistochemistry and Immunocytochemistry

Tissue and cultures were fixed in 4% paraformaldehyde in 0.12 M phosphate

buffer. Frozen sections were cut at 14 mm, and permeabilized cultures were

incubated for 18 hr at 4�C with primary antibody (anti-tyrosine hydroxylase,

anti-CD40, or anti-CD40L). After washing, the tissue and cultures were incu-

bated for 1 hr with donkey anti-rabbit Alexa 488 antibody, washed, and imaged

by confocal microscopy.

Immunoblotting

Tissue and neuron cultures were lysed in RIPA lysis buffer containing protease

and phosphatase inhibitors. After removal of insoluble material by centrifuga-

tion, protein concentration was determined by Bradford assay and equal

quantities of protein were separated on 10% SDS-PAGE gels and were trans-

ferred to PVDF membranes. After blocking, the membranes were incubated

with primary antibodies overnight at 4�C. After washing, the membranes

were incubated with HRP-conjugated secondary antibodies and the blots

were developed by chemiluminescence.

Whole-Mount Preparations

Paraformaldehyde fixed tissue was processed to label tyrosine-hydroxylase-

positive sympathetic fibers by DAB-HRP staining followed by clearing in

benzyl alcohol:benzyl benzoate as described previously (Kisiswa et al.,

2013) with modifications (Supplemental Information).

Quantification of Sympathetic Innervation Density

Tissue fromCd40+/+ andCd40�/� littermates was processed at the same time,

and quantification was done blind. Sympathetic fiber density in the subman-

dibular gland and nasal turbinate tissue was carried out on TH-labeled images
1448 Cell Reports 10, 1443–1449, March 10, 2015 ª2015 The Author
of every fifth section through the tissue using NIH-ImageJ to estimate TH-pos-

itive fibers per unit area. Sympathetic fiber density in the thymus and periorbital

cutaneous tissue was analyzed in TH-labeled whole-mount preparations. TH-

positive fibers per unit image area were estimated from manually traced fibers

in Adobe Photoshop images of the tissue.
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