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ABSTRACT 

Hydrocarbon migration is one of the key processes that takes place in the development of a 

successful petroleum system. Understanding when fluids migrated, how they migrated and which 

routes they took either into primary reservoirs or via transient seals into shallow reservoirs is 

paramount for successful extraction. Fluids in the sub-surface can be imaged in seismic 

reflection data as anomalously high reflection amplitudes owing to their contrasting acoustic 

properties (density and p-wave velocity) with sedimentary rocks. This thesis uses 3-Dimensional 

seismic reflection data from the Møre Basin, offshore mid-Norway and the Lower Congo Basin, 

West African margin to investigate the migration of fluids from primary reservoir intervals 

through overlying successions of fine-grained sediments. These shallow intervals are typically 

considered as regional seal layers and understanding how seals were breached and fluids migrate 

through them is vital to risking exploration targets. 

The Møre Basin case study investigates a gas-associated amplitude anomaly at the crest of a 

domal structure cored with alternating fine-grained biosiliceous and calcareous ooze sediments. 

The anomaly has a rather unique convex-upward basal contact which is explained by the 

superposition of lateral velocity variations through the gas-filled dome. The centre of the dome 

has more gas than the flanks resulting in a lower velocity which pushes the basal contact to 

deeper positions with respect to the flanks. The domal trap was charged from gas migrating from 

depth via capillary entry pressure and possibly via sub-vertical pathways created by compaction-

derived polygonal faults which pervasively deform the host stratigraphy.  

The Lower Congo case study investigates a range of high-amplitude seismic amplitude 

anomalies in a thick sequence of hemipelagites (the waste zone) above a deep-seated turbidite 

reservoir. Anomalies take many forms and include; Linear anomalies, Sub-circular anomalies, 

Patchy anomalies at which finger-shaped anomalies emanate from their lateral edges, and 

Discrete filamental anomalies. The Sub-circular and Patchy anomalies were interpreted as being 

related to the presence of hydrocarbons. Detailed analysis of a sub-set of the hydrocarbon-

bearing amplitude anomalies suggest leakage occurred through two means; 1) vertical leakage 

through feeders and 2) via deep-seated extensional faults formed during gravity-driven gliding of 
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an underlying salt detachment. Vertical leakage is expressed in the form of Vertical Anomaly 

Clusters which comprise vertically stacked assemblages of high-amplitude anomalies.  

A common aspect of the two case studies are that high-amplitude anomalies within fine-grained 

sedimentary successions are linked to vertical or sub-vertical migration pathways provided either 

by faults or pipe-like structures formed during overpressure. These results have implications for 

our understanding of how seals are breached when reservoirs are overpressured. 
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CHAPTER ONE 

1.1 Rationale 

High Amplitude Anomalies (HAAs) are any abrupt increase of seismic amplitude that 

contrasts with the background amplitude. HAAs can represent the presence of hydrocarbons, 

processing artifacts, geometric/velocity focusing and/or changes in lithology (Hovland and 

Judd, 1988; Cartwright et al., 2007; Huuse et al., 2010). Amplitude anomalies that indicate the 

presence of hydrocarbons are referred to as Direct Hydrocarbon Indicators (DHIs) and 

commonly take the form of flat spots, bright spots, dim spots, velocity push downs and zones 

of seismic blanking. They reveal sharp variations in acoustic impedance of subsurface strata, 

such as when gas-saturated sand underlies shale. High amplitude anomalies such as bright-

spots, dim-spots and polarity reversals/shifts can represent different degrees of fluid flux 

reflecting fluid migration pathways in the subsurface (Berndt, 2005; Cartwright et al., 2007; 

Gay et al., 2007). Fluid-flow anomalies are generated during past and present subsurface fluid 

migration (e.g. Cartwright et al., 2007; Løseth et al., 2009). The occurrence of high amplitude 

anomalies (HAAs) is controlled by the geological setting and the nature of the host lithology 

(Andresen, 2012)  

 

Evidence of fluid flow can also exist in the form of pockmarks, pipes, gas chimneys, gas 

hydrates, sediments injections, carbonate mounds, seeps, mud volcanoes, volcanic sills, and 

related diagenetic phenomena (Cartwright et al., 2007; Løseth et al., 2009; Weibull et al., 

2010; Andresen & Huuse, 2011; Andresen et al., 2011; Andresen, 2012; Ho et al., 2012). 

These acoustic expressions on seismic data are related to the mode of fluid escape/expulsion. 

Their seismic expression is closely related to their provenance, source of fluid, flow type, 
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structural setting and nature of the host sediment (Van Rensbergen & Morley, 2003; 

Cartwright et al., 2007; Huuse et al., 2010).  

 

The question of how the fluid evolves from the immediate subsurface over time i.e. migration 

phenomena has only rarely been addressed and requires further work in order to improve our 

understanding of fluid leakage and migration in sedimentary basins. Hence, the study of high 

amplitude anomalies and other focussed fluid flow is imperative in basin analysis, especially 

for understanding petroleum systems, trapping and leaking mechanisms (Andresen, 2012). 

Ever since the first observation and recognition of focused fluid flow features by Newsom 

(1903) and King and MacLean (1970), the interest of exploration and production companies 

has amplified in the past decades due to growing quality of 3D seismic data and the 

realization of the impact of fluid flow features on hydrocarbon plumbing systems (Cartwright 

et al., 2007; Huuse et al., 2010). The relationship of hydrocarbon leakage flux to different 

leakage indicators and sedimentary structures has become an increasingly popular research 

theme in the last few decades (cf. Hovland, 1981b; Heggland, 1997; Roberts, 2001; Gay et al., 

2003; Cartwright et al., 2007). Apart from the impact on hydrocarbon plumbing systems, the 

occurrence of fluid flow features may also have implications for the extraction of 

groundwater, geothermal energy, storage of CO2 and nuclear waste, and global organic carbon 

cycle of the Earth (Andresen, 2012). 

The migration of hydrocarbons through fine-grained sediments is still not well understood and 

many questions remain unanswered because of the high number of uncertainties to reproduce 

and understand the phenomena in deep basins and reservoirs. The main aims of this research 

are to provide a detailed description of the fluid systems and propose some fluid flow 

mechanisms that can justify the position of the gas in the analysed basins and improve the 
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knowledge about how fluid flows in fine-grained sediments in the deep marine basins and 

delineate new fluid flow feature that are observable on seismic scale. 

1.2 Overview 

A succinct review of literature is provided as to what DHI’s are, their detection and 

recognition on seismic data, their mode of formation and examples from different sedimentary 

basins and geologic settings. The aim of this section is to review what is known on (DHI’s) 

and how they are expressed in seismic data. The key objectives of the review are as follows;  

1. To undertake a detailed study of different types of DHIs and highlight the analytical 

capabilities of high amplitude anomalies in the context of this research. 

2. To describe the geological setting and host lithology in which DHIs are developed.  

3. To describe geophysical expression of DHIs.  

4. To provide an overview of fluid flow processes in the context of reservoir seal failure 

and secondary migration phenomenology.  

5. To outline the pitfalls in DHI interpretation. 

6. To discuss how DHIs can be validated. 

 

1.2.1 Direct hydrocarbon indicators 

Direct hydrocarbon indicators are seismic amplitude anomalies, seismic events or 

characteristics of seismic data by which presence and/or absence of hydrocarbon 

accumulation can be interpreted (Brown, 2004). These indicators include amplitude anomalies 

(bright or dim spot), phase change, flat spot, frequency attenuation, velocity anomalies (pull 

up or push down), variations of amplitude vs. offset and S-wave or P/S waves ratio (Brown et 
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al., 1984; Enachescu, 1990; Brown, 2004). About Eighty percent (80%) of petroleum found in 

deep water (500–2000 meters) have some sort of DHI associated with them (Brown, 2004; 

Weimer & Slatt, 2004; Arntsen et al., 2007; Frey-Martnez et al., 2007; Andresen et al., 2011; 

Foschi et al., 2014). 

DHIs on seismic data are directly related to the presence of hydrocarbons and changes in both 

compressibility (bulk modulus) and density resulting from the substitution of pore fluid by 

hydrocarbons. Direct hydrocarbon detection is direct in the real sense; it relies on the 

identification of acoustic contrasts associated with the presence of hydrocarbons. Careful 

interpretation and analysis is required in order to validate DHIs. Because the acoustic 

response of DHI’s, due to presence of hydrocarbons, are dependent on temperature, pressure 

and lithology of the reservoir, reliable interpretation of DHIs is problematic in the deeper 

sections of basins.  Usually, bright spots can be authentically identified at shallow depths and 

are helpful in delineation of gas fields. Even though shallow gas fields may not be 

commercial, these observations may help to mitigate drilling hazards and are an important 

element of site survey workflows. 

Brown (2004), stressed that for DHI validation, true amplitude must be preserved and the 

wavelet shape should be as close as possible to zero-phase. Two empirical rules are important 

to keep in mind before interpretation of seismic amplitudes on seismic data; (1) DHIs have a 

direct relationship with depth, so the effect of the DHI decreases drastically with increasing 

depth, and (2) DHIs relate primarily to gas in clastic sediments. Therefore; amplitudes 

associated with presence of gas, contrasts in elastic properties between individual layers from 

the back ground lithology, that directly depends on the porosity, pore-fluid type and saturation 

as well as pore pressure (Avseth et al., 2005). 
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1.2.1.1 Flat spots 

A flat spot is a reflection relating to a hydrocarbon contact, usually between gas and water 

(Fig. 1.1) but occasionally between gas and oil (GOC) or oil and water (OWC). Flat spots are 

the most direct indicators for the presence of hydrocarbons and are used universally by 

geophysicists in hydrocarbon exploration to support the case for drilling prospects. Examples 

of true flat spots (calibrated, uncalibrated but supported by AVO analysis) and pitfalls of 

interpretation (false flat spots due to diagenesis) are shown in the Fig.1.1, Fig. 1.2 and Fig. 

1.3). 

A flat spot results from the increase in acoustic impedance when a gas- or oil-filled porous 

rock (with lower acoustic impedance) overlies a liquid-filled porous rock (with higher 

acoustic impedance). Flat spots may stand out on a seismic image because it is flat and will 

contrast with surrounding dipping reflections. The gas-liquid contact is always a positive 

reflection and is an excellent reflection for assessing the phase of any seismic data (Brown, 

2005).  

In the case of dynamic flow, the hydrocarbon fluid contact can be inclined and/or irregular. 

Flat spots are generated by the acoustic impedance contrast over fluid contacts. They are not 

only restricted to siliciclastic deposits, but also other lithologies like limestone. It is perfectly 

possible to have a flat spot in a homogeneous carbonate reservoir as the difference between 

gas and water can generate sufficient acoustic contrast (Fig. 1.4). In such cases, the 

background velocity and density values are relatively high compared to presence of 

hydrocarbon. 

Flat spots are not necessarily always flat; a gas-liquid contact need not necessarily be either 

flat or horizontal in time. For example, tilted hydrocarbon contacts can be related to 
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compartmentalisation by minor faults or may be related to changes in permeability, of the host 

sediments. Hydrodynamic conditions can result in tilted contacts (groundwater flow due to 

differences in pressure) (Dennis et al., 2000; Dennis et al., 2005), dynamic filling (where the 

fluid phase migrating has not reached equilibrium based on buoyancy and regional pressure) 

can also result in irregular fluid contacts (Brown, 2005; Chadwick et al., 2005). In addition, 

many flat spots may be reflected as a sloping contact in time sections but on applying the 

correct depth conversion will become flat. The critical parameters determining the reflection 

on the gas/oil-water contact are the velocities and densities of the different lithological units. 

 

 

Figure 1.1: Flat spot seen on 900 phase seismic data from the Gulf of Mexico. The 900 phase display can be 

inferred from the approximately equal energy (amplitude) seen in the red and blue loops. Flat spot is developed 

at the anticline crest, GWC= gas water contact. Scale is not available (Brown, 2001).  
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For example, if there is gas instead of water in a rock, the velocity will be considerably 

reduced. The velocity of a sound wave in gas is typically much lower than it is in liquid, 

depending on the composition; temperature and pressure (Knight et al., 1998). The boundary 

between gas-bearing and water-bearing rocks may produce a strong reflection because there is 

a large difference in impedance between the two layers. For this reason the boundary between 

gas/water and oil/water is often revealed as a strong reflection because it is close to horizontal 

and does not lie concordant to reflections from strata (Yilmaz & Doherty, 1987; Brown, 2004; 

Løseth et al., 2009; Foschi et al., 2014). 

The gas/water contact (GWC) is positioned at the zero crossing between these two loops). the 

top reservoir reflection softens down flank into the water leg. The subtle staircase-like 

geometry of the GWC reflection as it approaches the top reservoir contact on both flanks is 

probably due to tuning and interference, but could be due to internal layering within the 

reservoir package. 

Brown (2004) strongly recommends that interpreters assess the phase of their seismic data 

using reflections from the seabed and from any GWCs. During interpretation of flat spot, (Fig. 

1.2) then there is mandatory to judge phase of seismic data. 
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Flat spots often are not developed as single feature. In some cases, particularly for anticlinal 

structures, flat spots may be interpreted at different levels of the anticline. For example, a 

series of structurally-confined flat spots are associated with anticlines from a deep water basin 

offshore Cyprus (Fig.1.3). Four flat spots can be identified at different stratigraphic positions 

and with different degrees of confidence. The non-horizontal attitude of these flat spots can be 

caused by a tilted seabed towards the east direction. Amplitude anomalies observed at the top 

of anticline are interpreted as leakage from the main reservoir. HAAs above the structure had 

are associated with a flat spot that helps to validate the presence of hydrocarbon in the 

structure.  

Furthermore, flat spots are not always developed as a single feature on hydrocarbon-water 

contact. A series of GWCs due to presence of minor gas accumulations (under filled traps) 

observed from the Eastern Mediterranean (Fig.1.4). Deep water sand-dominated fans on the 

top of a structure (hence some of the gaps between the amplified reflections). It is interpreted 

as a several gas accumulations, sealed by deep water claystones. There is a HAA above the 

flat spot that indicates minor leakage in overlying sediments. The traps are defined by a major 

erosional surface. The GWC for different traps are at different levels. Although the GWC 

appears tilted here, this is due to the tilt of the seabed (not seen here). The tilted seabed 

produces a tilt in a geologically horizontal surface due to the display in the time domain. 

Depth conversion is therefore essential for the best interpretation of hydrocarbon-water 

contacts. 

Flat spots can be easy to recognise on seismic data in areas where background stratigraphy is 

tilted (Avseth et al., 2005). Flat spots stands out from strata but it is difficult to detect a flat 

spot when the stratigraphy is more or less horizontal (Fig.1.3 and Fig.1.4). Quantitative 
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methods like AVO analysis can help to discriminate between fluid-related flat spots and flat-

lying stratigraphy.  

 

 

Figure 1.2:A series of flat spots developed at different levels of the crest of anticlinal structures from a deep 

water basin from offshore Cyprus (http://www.mcit.gov.cy). 

 

http://www.mcit.gov.cy/
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Figure 1.3: NW-SE seismic profile showing a 6 km long flat spot confined by an anticline. Leakage above the 

flat spot is revealed as cluster of high amplitude anomalies. Blanking of seismic reflection below the cluster of 

high amplitude anomalies is due to presence of gas in the strata (confidential data). FS: Flat spot, LZ: leakage 

zone. WZ: wipe out zone and A/CT: Opal A to CT boundary. 
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Figure 1.4: Series of GWC related to minor gas accumulations (under filled traps) from the Eastern 

Mediterranean. There are some minor leakages at point X (Modified after Frey-Martnez et al., 2007). 

 

The flat spot surface does not always have to be a flat. In many cases it is titled due to factors 

such as hydrodynamics, water flow, and tilted structures. There are many examples of flat 

spot anomalies from different basins in the Barents Sea (Fig.1.5). Two anomalies have been 

drilled resulting in one success and one false positive due to amorphous silica transformation. 

The third anomaly is a potential prospect to drill in the future (Selnes et al., 2013).  

Another example (Fig.1.6) shows that the recognition of flat spots can be an aid to 

interpretation of mounded structures and delineation of high N/G intervals in those mounds 

(Frey-Martnez et al., 2007). The two mounded structures are delimited here by a relatively 

concordant, continuous, and flat-lying lower boundary and by a convex-upward and 

discontinuous upper boundary (Fig.1.6). The two boundaries correspond to the base and top 

of the Yafo Sand Member, respectively. The internal parts of the mounded structures show 

1 2 
3 
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chaotic seismic reflections in the cores (enclosed by dashed black lines) and more continuous 

seismic reflections in the flanks and crests (marked X). Note the presence of flat spots 

crosscutting the flanks and pull-up features underlying the cores of the structures (Fig.1.6). 

There is a prominent amplitude enhancement of the upper boundary over the crest of both 

mounds due to gas filling the reservoirs. A high-amplitude anomaly at the top of the mounded 

structure indicates that the reservoir has leaked into overlying sequence. There is a subtle push 

down effect where the gas-water contact (GWC) dip inwards towards the core of the mounds 

from both flanks (Fig.1.7). This arises simply because of the slower velocity in the gas 

relative to the water leg of the reservoir. 
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Figure 1.5: A selection of flat spots observed on seismic with different display parameters and potential trap types from the Barents Sea. A) two flat spots are interpreted with distinct 

features, B) Flat spots developed very close to others bounded by faults on left hand side and C) A flat spot developed at a stratigraphical trap due to pinch-out feature   (Selnes et al., 

2013) 

A B C 
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Figure 1.6: Seismic cube from SE Mediterranean displayed here three-dimensional visualization of two 

representative mounded structures from a Pliocene deep water sand play. Vertical and horizontal scale is 1000m 

(Frey-Martnez et al., 2007). 
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Figure 1.7: Example of interpreted gas-water contact (GWC) as a flat spot from the SE Mediterranean. Seismic 

profile across the mounds shown in the previous section (modified from Frey Martinez et al. 2007). 
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1.2.1.2  Pitfalls in flat spot interpretation 

Seismic flat spots occur at the reflective boundary between two different types of fluids in a 

reservoir, gas-oil, gas-water, or oil-water contact (Fig.1.4 and Fig.1.7). They can be easy to 

detect in areas where the background stratigraphy is tilted, forming cross-cutting seismic 

events. They are recognisable when the reservoirs are more than twice the seismic tuning 

thickness and acoustically, relatively soft. This phenomenon is frequently used as a (DHI) in 

exploring for hydrocarbons. However, one should be aware of several pitfalls when using flat-

spots as hydrocarbon indicators. Flat spots can be related to diagenetic events that are depth-

/temperature-dependent, such as cross-cutting boundaries of amorphous silica in the form of 

Opal A and Opal CT and also gas hydrates shown as BSR (Bottom Simulating Reflectors) on 

seismic data. 

The examples in figure 1.8 and figure 1.9 show seismic data where flat spots have been 

interpreted erroneously as due to hydrocarbons and used as a basis for drilling decisions or 

other exploration planning. In one example, it was recognised that a possible flat 

spot/amplitude anomaly might in fact be due to diagenesis and a huge reprocessing effort was 

instigated to try to differentiate the cause and effect. 

The Qulleq well is a classic example (Fig.1.8), where in spite of considerable geophysical 

analysis; the drilling showed that the flat spot was a false DHI. The well encountered only 

mudstones in this interval and no gas or oil. Although the nature of the cross-cutting reflection 

(CCR) is not fully understood, X-ray diffraction analysis suggests that it probably is related to 

a phase-change transition from Opal-CT to quartz transformation. 

Great care has to be taken not to confuse diagenetic effects with true hydrocarbon effects 

when the diagenetically altered sequence thins to the point where tuning effects kick in. In 
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this case, a large effort went into reprocessing and quantitative geophysical analysis to 

discriminate between possible hydrocarbon effects and silica diagenesis (Fig. 1.10). The 

conclusion was that this amplitude modification was due to tuning and diagenesis in a 

sequence that was progressively thinning onto a structure (Dart et al. 2010). There are other 

examples of pseudo flat spots that were previously interpreted as hydrocarbon related flat 

spots (Fig. 1.11 and Fig. 1.12) 
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Figure 1.8: The example is from a petroleum exploration borehole drilled in West Greenland. The main target of 

the Qulleq-1 well was the prominent cross-cutting reflection (CCR) which can be seen on the seismic data 

around 2550 ms TWTT. Extensive analysis of all data available before drilling (including AVO analysis of the 

seismic data) suggested that this reflection represented a gas–water contact (from 

http://www.geus.dk/ghexis/ghexis-19.htm).
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Figure 1.9: A seismic profile shows a flat spot from the Northwest Shelf of Australia. Pre-drilling studies were 

confirmed as a prospect but the well was dry and the post-mortem report of the well interpreted as a paleo-

contact expressing diagenetic effects. (Brown, 2004) 

 

 
 
Figure 1.10:  A seismic example that was mis-interpreted as a flat spot that developed due to possible 

hydrocarbon accumulation (Dart et al. 2010)  
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Figure 1.11: There are two seismic profiles (A and B) from same pseudo flat spot (FS) (location and dimensions 

are not described due to data confidentiality). The features were interpreted as a flat spots but they have the same 

polarity with seabed. 

FS 

FS 
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Figure 1.12: Flat spot (FS) is observed on this seismic section. It has the same polarity (hard reflection) as the 

seabed, but it occurs at almost exactly twice the seabed two way travel time value. Apparently a pushdown effect 

is also observed below observed flat spot.  

 

1.2.1.3  Summary of flat spot pitfalls 

1. The main pitfalls in false flat spot into oil and gas exploration are due to diagenetic 

boundaries (particularly Opal A-CT-quartz systems). 

2. Residual hydrocarbons can also give flat spots. 

3. Multiples can occasionally confuse flat spots interpretation. 

4. There is not always true that flat spots are developed due to presence of hydrocarbon.
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1.2.2 Bright and dim spots 

1.2.2.1 Bright spots 

A bright spot is interpreted as a local high amplitude anomaly on the seismic reflection data 

(Fig. 1.13 and Fig. 1.14) that can indicate the presence of hydrocarbons and is therefore 

known as a DHI. Bright spots were not commonly identified in older vintages of seismic data 

(pre-1970s). This problem was mainly due to the extensive and industry-wide use of 

automatic gain control which obscured the amplitude effects of hydrocarbon accumulations 

(Brown, 2001; Hilterman, 2001; Ren et al., 2006). 

A bright spot DHI primarily results from the increase in acoustic impedance contrast when a 

hydrocarbon (with a lower acoustic impedance) replaces the brine-saturated zone (with a 

higher acoustic impedance) that underlies a shale (with a higher acoustic impedance still), 

increasing the reflection coefficient (Fig. 1.15). The effect decreases with depth because 

compaction for sands and shales occurs at different rates and the acoustic impedance 

relationship stated above will not hold after a certain depth/age. Beneath this notional depth, 

there will be a crossover of shale and sand acoustic impedances and a dim spot is more useful 

to hydrocarbon exploration.  

Bright spots are observed at the base of gas hydrate stability zone (BGHS). The upper 

terminations of high amplitude troughs (red amplitudes) indicate the (BGHS). Some horizons 

show polarity reversal at the BGHS, below which the pore spaces contain free gas, and above 

it, frozen hydrates, such as the Blue and Orange horizons (Fig. 1.16). 

The relationship between hydrocarbons and direct hydrocarbon indicators such as bright spots 

is not straightforward and not all bright spots are caused by the presence of hydrocarbons and 

therefore they should not be treated as conclusive evidence of hydrocarbon accumulations.  
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Figure 1.13: The seismic profile shows a bright spot associated with flat spot from South Great Basin, New 

Zealand. The high amplitude anomaly is developed in the Kawau sand unit of Cretaceous age. The bright spots 

occur on the crest and flanks of the anticline. These anomalies could be due to tuning, since sequences thin onto 

the flank and crest of the structure (Geo Expro 2011) 

 

 

Figure 1.14: Part of seismic profile inline 190 showing the high amplitude anomaly as a bright spot associated 

with a chimney. The bright spot is developed at the top of the salt dome (Schroot & Schuttenhelm, 2003) 
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Figure 1.15: Potential DHIs including flat spots, amplitude anomalies and gas chimneys. Seismic profile shows 

bright spots, flat spots and gas chimneys within an anticline closure (Lie & Trayfoot, 2009) 

 

 
 
Figure 1.16: Seismic profile is an example from Gulf of Mexico Walker Ridge and Green Canyon showing high 

amplitudes (bright spots).  (Shelander et al., 2010). 
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Figure 1.17: Seismic profile showing a example of direct hydrocarbon indicators associated with large, gentle folds; in places a bottom-simulating reflector inferred to represent gas 

hydrates from Pegasus Basin New Zealand. High amplitude anomalies are clustered below BSR (as a seal). The stepped anomalies suggested possibility of small faults at the crest of 

anticline. There is a velocity push done effect under the directly below the cluster of anomalies due to the presence of free gas (Geo Expro, 2011) 
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Figure 1.18: Bright spots having polarity reversal are observed at very dense grid of 2D seismic lines below 300-

800 ms TWTT below seafloor in water depth of 3800 m in the sedimentary column of the southern Canary Basin 

(Müller et al., 2001). 
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Figure 1.19: Free gas can be detected on the seismic data by the change in seismic velocity that results from gas 

in the pore spaces of the sediments. This leads to a stronger amplitude reflection than would result from a purely 

water filled pore volume, and is visible on seismic data as an amplitude anomaly. This study focuses on a 

description of seismic amplitude anomalies from a 3D seismic data set located in the Norwegian Sea. (For more 

detail see chapter 3). 
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Figure 1.20: 3-D seismic section from deep-water Green Canyon displaying the different features of interest in 

the geohazards evaluation. At the upper right, a seabed slope-failure scar can be seen (Heggland, 2004). 
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1.2.2.2 Dim Spots 

A dim spot is a locally developed, low seismic amplitude anomaly (Brown, 2004; Brown, 

2012) that can indicate the presence of hydrocarbons and is therefore known as a direct 

hydrocarbon indicator. It primarily results from the decrease in acoustic impedance contrast 

when hydrocarbons (with a low acoustic impedance) replace the brine-saturated zone (with a 

high acoustic impedance) that underlies a shale or other caprock unit (lowest acoustic 

impedance of the three), decreasing the reflection coefficient. 

For a dim spot to occur the shale, it has to have a lower acoustic impedance than both the 

water sand and the oil/gas sand, which is the opposite situation required for a bright spot to 

occur. This is possible because compaction causes the acoustic impedances of sands and 

shales to increase with age and depth but it does not happen uniformly – younger shales have 

higher acoustic impedance than younger sands but this reverses at depth, with older shales 

having lower acoustic impedance than older sands. 

Similar to bright spots, not all dim spots are caused by the presence of hydrocarbons and 

therefore they should not be treated as conclusive evidence of hydrocarbon accumulations. 

There are many geophysical techniques to differentiate true and false DHI. A generalized 

curves showing how the acoustic impedances of gas sands, water sands and shales increase 

with depth (Fig. 1.21). There are three different stages with respect to depth for development 

of bright spots occurs above depth A, where dim spots occur below depth B, (Left) Examples 

of seismic reflectivity for each of the three sand/shale impedance regimes, (Brown, 2004). 
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Figure 1.21: A generalized curves showing how the acoustic impedances of gas sands, water 

sands and shales increase with depth (Brown, 2004)
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1.2.3 Gas chimneys 

A gas chimney is poorly defined in the literature as a sub-vertical to vertical zone in which 

there is loss of internal reflection continuity (Aminzadeh et al., 2002a; Heggland, 2004; 

Cartwright et al., 2007; Løseth et al., 2009). These zones are often seen to overlie a 

hydrocarbon accumulation (Fig. 1.22). Outside the gas chimney, the reflection continuity is 

high (Fig. 1.26). The scale of the gas chimney is important for detection and they should be 

much wider than the lateral resolution limit if the imaging is to be trusted as being truly 

representative of gas distribution. Some authors (Heggland, 2005; Løseth et al., 2009; 

Nourollah et al., 2010) implicitly link the presence of the gas chimney to fault and fracture 

networks. 

Seismically defined gas chimneys can be used as evidence of migration paths, seal integrity 

and hydrocarbon leakage (Aminzadeh et al., 2002a; Aminzadeh et al., 2002b; Aminzadeh et 

al., 2002c; Alvarado et al., 2003; Alvarado et al., 2005). Gas chimneys are often hosted in 

low permeable caprocks (Fig. 1.24) (Løseth et al., 2009). The shapes of gas chimneys are 

highly variable but are generally columnar or ellipsoidal (Fig. 1.25Figure 1.25). Bad seismic 

velocity determination, poor stacking and loss of reflection continuity may be the result of 

low background gas saturations (Dvorkin & Nur, 1998; Knight et al., 1998). 
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Figure 1.22: A seismic time section from the Gullfaks South Field shows that zones with chaotic reflections in 

the Hordaland Group are located above V-brights at top Balder level, which again are located above gas 

chimneys that are rooted in the underlying Jurassic rotated fault block (Løseth et al., 2009) 
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Figure 1.23: A seismic time section from northern part of the Norwegian Block 30/9 that illustrates the chaotic 

reflection pattern with V-shaped amplitudes and mounds at the top of the Hordaland Group. Note the rim zone 

with significantly rotated beds on the left-hand side of the figure. A vertical noise zone, which is interpreted as a 

gas chimney, is located below the chaotic zone. A correlation map demonstrates that the gas chimney, which is a 

low correlation area expressed with dark colour, has a circular shape while the fault is linear in map view 

(Arntsen et al., 2007). 
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Figure 1.24: A seismic profile illustrating a gas chimney emerging at the crest of an anticline. Gas chimney is 

about 1 kilometre long and has prominent effect on the sea bed (O'Brien, 2004). 
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Figure 1.25: Seismic line with seed interpretation showing locations inside a chimney (x) and outside the 

chimney (0). The dashed line is marking the boundary of the gas chimney. A white arrow is indicating high 

amplitude anomalies (HAA) developed at the top of gas chimney (Meldahl et al., 2001). 
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Figure 1.26: Fluid flow mechanism is shown in this seismic profile from offshore Angola. Seabed pockmarks 

above a salt structure. Below the pockmarks is a shallow bottom-simulating reflector (BSR) (100m sub-seabed) 

and 1 kilometre wide zone of acoustic distortion interpreted as a gas chimney (Andresen et al., 2011). 

 

In the example shown in figure 1.26 bright spots occur in clusters that are observed above a 

possible gas chimney located in the underlying Cretaceous succession. Wells penetrating gas 

chimneys have increased mud gas readings and an increase in heavier hydrocarbons (only 

hydrocarbons up to C5 are recorded by mud gas readings) relative to wells drilled outside the 

gas chimneys. Gas chimneys here, are interpreted as the seismic expressions of zones that 

have had, or still have focused vertically flow of gas, oil and formation water through fine-

grained rock. 

In reality, the region denoted as a gas chimney is not fully saturated with gas. The scattering 

and attenuation of localised gas accumulation can account for the loss of coherent reflection 

energy in many cases.  
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This is a really good example (Fig. 1.27) of a misinterpretation of gas chimney. The label ‘gas 

chimney’ is more realistically a shadow zone of low signal to noise due to attenuation of 

above enhanced reflections.  

A comparison between a well drilled (Fig. 1.29) just outside the chimney, Well 1/9-1, and a 

well drilled within the chimney, Well 1/9-3R, shows that; 1) the bulk density of the 

overburden rocks is the same, 2) the sonic velocity of the well within the chimney is 

significantly less that in the sediments outside the chimney, and 3) the mud gas readings in the 

sediments within the chimney testify to several intervals with high gas saturations whereas the 

gas saturations in the overburden rocks of the well drilled outside the chimney are low 

throughout the section. 
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Figure 1.27: A large gas chimney feature has been interpreted with in sub muddy successions above a basement 

high and obscures the main gas reservoir (late Oligocene sandstone). Enhanced reflections developing at the 

crest of or around the gas chimney indicate there is important lateral and vertical fluid migration. A large deep-

seated normal fault (blue arrows) accompanying a small gas chimney develops in the northeast of the large gas 

chimney. ‘Flag’ reflections are present along this fault, indicating that it serves as fluid flow pathway (Sun et al., 

2012). 
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Figure 1.28: Chimneys commonly exploit pre-existing fractures and faults and imply an upward stream of gas, 

while clouds commonly form above charged reservoirs with imperfect seals, or form closer to the kitchen where 

migration pathways are limited. Possible gas chimneys are indicated. Seismic panel showing a disrupted zone 

above a footwall fault block leading to a mounded feature at the near-top Palaeocene reflection. The mounded 

feature is interpreted as a hydrocarbon-related diagenetic zone (HRDZ) (Chris Uruski and Warburton) 
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Figure 1.29: a) Sonic velocity, b) density, and c) mud gas readings inside black and red outside the Tommeliten 

Alpha gas chimney (Arntsen et al., 2007) 
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1.2.4 Velocity push down 

Hydrocarbon accumulations can result in significant velocity anomalies because of difference 

in the P-wave velocity between gas/oil and oil/water filled reservoirs with background 

sediments (Brown, 2004; O'Brien, 2004; Prskalo, 2004; Avseth et al., 2005; Calvès et al., 

2008; Andresen et al., 2011; Brown, 2012). The magnitude of the velocity anomaly is related 

to the thickness of the hydrocarbon-filled reservoir (Fig. 1.30 and Fig. 1.34). It is common to 

observe the most pronounced velocity anomalies beneath gas-filled reservoir. In some cases 

this can lead to an apparent curvature of gas/water contact as seen on the section (Fig. 1.32). 
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Figure 1.30: Time-lapse seismic images of the CO2 plume (a) N–S inline through the 1994 dataset prior to 

injection and through the 1999 and 2001 datasets. Enhanced amplitude display with red/yellow denoting a 

negative reflection coefficient. (b) Maps of integrated absolute reflection amplitudes calculated in a TWT 

window from 0.84 to 1.08s. Blue, low reflectivity; red, high reflectivity. Black disc denotes injection point. C 

denotes the main chimney. (Chadwick et al., 2005) 
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Figure 1.31: Two seismic lines with characteristic bright spot and pull-down phenomena are presented. Very 

pronounced faulting on strong reflection bellow the areas with these effects shows that the bright spot, as well as 

the push down effects, were formed during gas leaking through faults. In the marked areas gas accumulations 

were found above the deeper located faults (Prskalo, 2004) 



Chapter 1  Introduction 

 

84 

 

 

Figure 1.32: The bright spot features with characteristic push-down phenomena creating false syncline structure 

are clearly visible on the seismic section on example. The well was a success and proved that the presence of gas 

and confirm that the “bright spot” in north Adriatic Sea area (Prskalo, 2004) 

 

Velocity pushdown effect is a strong evidence of presence of gas. Typically a gas-filled 

reservoir has P-wave velocity considerably lower compared to the oil-filled case although the 

magnitude of the difference depends on a depth and saturation of hydrocarbons (See  Fig. 1.33 

and Fig. 1.34 for a good example of a velocity analysis). 
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Figure 1.33: A VAMP pseudo structure illustrating velocity pull-up above the gas hydrate BSR and velocity 

push-down including bow-tie style distortion in a focused gas chimney below the BSR. Migrated stack section of 

velocity and amplitude structure depicting the prominent velocity pull-downs observed in the Bering Sea Basin. 

Horizon A marks the velocity pull-up, while horizons B and C show the time-delay effect of an underlying 

velocity push-down, presumed to be caused by free flow of interstitial gas. Horizon D marks the silica–diagenic 

boundary of the BSR (Satyavani et al., 2005) 
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Figure 1.34: Analysis of the travel time anomalies within a VAMP includes (A) identification of key horizons 

(arrows along right margin), (B) derivation of velocity structure based upon interval time variation between 

picked horizons and interpretation of the anomalies in terms of equivalent volume of hydrate and gas within the 

section. Background velocity in the upper section is taken as constant at 1600 m/s. In this example, free gas 

content is <2% everywhere and maximum hydrate concentration implied is ~20% of pore space. If the profile is 

a slice through the midpoint of a structure of cylindrical geometry, the hydrate zone alone contains ~0.87 Tcf of 

natural gas (Barth et al., 2004). 
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The final result is a reflection with a very strong amplitude and negative polarity ending with 

diffractions, as presented on the left hand side of the Fig. 1.32 well known as bright spot 

anomaly. Obviously such features on seismic profiles and isochron maps were caused by 

bright spot phenomena and not by poor data acquisition and processing, and definitely not by 

some locally developed small scale tectonic movements. 

1.2.5 Vertical anomaly clusters (a new type of DHI) 

Here we introduce a new type of direct hydrocarbon indicator, “Vertical Anomaly Clusters 

(VACs)”. VACs are formed due to hydrocarbon leakage from main reservoir to overlying 

sediments through different migration routes. Hydrocarbon leakage patterns in VACs are 

irregular to regular and systematically stacked in a way that directly points to vertical 

migration or leakage. They can originate from the main leakage point and spread laterally by 

flow of hydrocarbons and are mostly related to gas (Fig. 1. 35 and Fig. 1.37) 

A series of amplitude anomalies are observed within the biosiliceous Miocene sediments 

beneath a regional claystone seal of Pliocene age (Fig. 1.19). These anomalies have an 

extraordinary geometry: they cluster beneath the crest of a large domal anticline and have a 

basal boundary that is strongly cuspate with a concave upwards shape (see the Norwegian 

case study chapter 4 for further details). 

This cluster of anomalies (Fig. 1.19) is attributed to free gas from several observations: (1) the 

location at the crest of a structure, (2) the geometry of the host sediments, (3) the presence of 

pronounced velocity push down, and (4) the presence of anomalies in the seal immediately 

above the cluster. 
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Figure 1.35: A) RMS amplitude map showing distribution of high amplitude anomalies along the mud filled 

channel levee system lying in waste zone of case study A, above the main Miocene turbidites reservoir B) East 

west seismic profile indicating main context of HAAs and green arrows showing possible leakage paths C) 

Zoomed part of vertical anomaly clusters (VACs) connecting HAA to main reservoir. 
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There are different types of VACs observed as an amplitude anomaly (Fig. 1.36) in the East 

Falkland basin. VACs form by strongly focused vertical hydrocarbon migration in a 

heterogeneous stacked sequence of poor-quality reservoirs interbedded with layers with lower 

permeability, and where the necessary bottom-to-top cross-stratal flow (Fig. 1.37) exploits a 

well-developed fault and fracture network. Similar vertical associations of gas-related 

amplitude anomalies could be expected in many other basins so VACs may be useful direct 

hydrocarbon indicators with specific genetic significance for hydrocarbon migration 

mechanisms.
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Figure 1.36: Two-dimensional seismic section showing detailed imaging of a vertical anomaly cluster (VAC). The amplitude anomalies (AAs) comprising the VAC are truncated 

generating sharp seismic cutoffs. The truncation position is interpreted as being demarcated by a fault plane. The VAC is associated with a strong push-down clearly recognizable on 

K. Other sharp AA cutoffs are present at the other margin of the VAC. Internally, a series of deformed convex-up distortions stack vertically, and can be interpreted as a pipe (Foschi 

et al., 2014) 
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Figure 1.37: (A) Two-dimensional seismic section showing a vertical anomaly cluster (VAC). The line presents 

the longest amplitude anomaly (AA) discovered in the study area with an approximate length of 25 km (15.5 mi) 

and many shorter AAs. All AAs are soft reflections (red-yellow). These shorter AAs are separated by gaps 

occurring along the hosting horizons and time gaps observed as vertical non-amplified horizons. (Foschi et al., 

2014)  
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1.3 Fluid migration pathways  

Fluid flow features observed in seismic data are represented in a variety of forms including 

pockmarks, pipes, gas chimneys, gas hydrates, sediment injections, carbonate mounds, seeps, 

mud volcanos and related diagenetic phenomena (Huuse et al., 2010, (Cartwright et al., 2007; 

Løseth et al., 2009; Weibull et al., 2010; Andresen & Huuse, 2011; Andresen et al., 2011). 

Their specific seismic expressions provide some indication of the migration history of fluids 

in marine sedimentary basins. All these type of fluid flow features represent subsurface fluid 

movement during past and present (oil, gas, brine, groundwater, mud and magmatic fluids) 

from source to the overlying sediment and which sometimes reached the seabed (Yilmaz & 

Doherty, 1987; Robinson, 1988; Brown, 2004; Gluyas & Swarbrick, 2009; Mavko et al., 

2009). 

The types of structures generated due to focused fluid flow depends on a variety of parameters 

such as source of fluid, the flow type, the structural setting (Fig. 1.38) and nature of the host 

sediments (Van Rensbergen et al., 2003; Cartwright et al., 2007; Huuse et al., 2010). Since 

the first observation and recognition of focused fluid flow features by Newsom, 1903; King 

and MacLean, 1970, interest in them has increased over the past few decades due to; (a) a 

growing quality of 3D seismic data, and (b) the realization of the impact of fluid flow features 

on hydrocarbon plumbing systems particularly concerning reservoir connectivity, migration 

and risk assessment (Cartwright et al., 2007; Hurst & Cartwright, 2007; Huuse et al., 2010).  

Rocks with low porosity and permeability are normally considered as hydrocarbon seals 

(Løseth et al., 2009). These so-called seal rocks behave differently and sometimes can host 

hydrocarbons (Jarvie et al., 2007). Low permeable rocks are reported as seals in many case 

studies but rarely described as a reservoir rocks (Cartwright et al., 2007; Imbert, 2009).  
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Faults are the main conduits for fluids in many basins worldwide, especially in the deeper 

subsurface where sediments are more consolidated and lithified.  

 

 
 Figure 1.38: Direct hydrocarbon indication by bright spots located along leaking fault. Amplitude anomalies 

cluster is indicated by white ellipse. (Ligtenberg, 2005) 
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Figure 1.39:  A hypothetical leakage model of and associated amplitude anomalies that can be characterised as 

due to hydrocarbon substitution, There are possible flow pathways from the shape, context, cross-sectional form, 

and context of the anomalies, and their spatial relationships. Groups of anomalies can be linked together in a 

series of linked anomalies- a stack or cluster. But where anomalies are widely dispersed, there may well be too 

many potential flow routes to allow a well constrained flow path to be inferred. Vertical stacks or clusters 

(VACs) are the strongest evidence we have of vertical flow paths. The model is presented in the Caprocks 

internal meetings) 
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1.4 Aims and objectives of the thesis 

The research presented in this thesis is mainly based on the evaluation of high-amplitude 

anomalies in seismic data (for more detail chapter 3, 4, and 5). The main questions tackled in this 

thesis are related to the gaps in the research presented in the previous section. As outlined in the 

overview sections, the vast majority of research on amplitude anomalies associated with fluids is 

in porous and permeable sedimentary systems. In this thesis I will focus on amplitude anomalies 

developed in fine-grained systems. In particular, the general questions of interest are as follows; 

 What is the 3-D geometry of amplitude anomalies within seismic units dominated by 

fine-grained sediments (Fig. 1.39) 

 How do fluids flow through and into fine-grained sedimentary units which are 

conventionally regarded as impermeable seals. In other words, why do HAA’s form 

where they do and how do they evolve into their current geometry? 

 What are the role of faults and overpressure in fluid migration? 

This thesis is broken down into two sections based on two case studies; a case study from the 

Møre Basin offshore mid-Norway and a case study from the Lower Congo Basin, offshore 

western Africa.  

 

1.4.1 Chapter 3: Møre Basin case study 

In chapter 3, 3-D seismic data is used to examine a unique gas-associated amplitude anomaly 

which has a concave-upwards basal contact. There are very few examples of anomalies with this 

geometry so the first objective of the chapter is to present a detailed description and analysis of 
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the anomaly and its relationship with the stratigraphic and structural setting of the basin. 

Subsequent objectives of the chapter are; 

1. To establish the composition of the fluids creating the anomalous amplitude zone. 

2. To establish the source of the fluids.  

3. To explain the extraordinary concave-upwards geometry of the basal contact of the 

anomaly. 

4. To establish how and why the fluid accumulation is trapped and how fluids filled the trap 

5. To establish how fluids migrated into the trap 

1.4.2 Chapters 4 and 5: Lower Congo Basin case study 

In Chapters 4 and 5, high density 3D seismic data is used to examine a host of different 

amplitude anomalies within a hemipelagic sedimentary succession in the Lower Congo Basin 

(LCB). This case study area contains abundant evidence of fluid flow and has an active 

petroleum system. Determining which amplitude anomalies are associated with accumulations of 

hydrocarbon is a critical task in exploring this part of the basin. There has been a recent in-depth 

study of the fluid venting structures from the shallow levels in similar stratigraphic areas in the 

LCB (Andresen & Huuse, 2011; Ho et al., 2012) but there are few studies from the deeper 

stratigraphic levels (Andresen & Huuse, 2011; Andresen et al., 2011). 

In Chapter 4, a detailed description of the amplitude anomalies are presented using a new 

classification system based on geometry. Using this classification system and traditional 

analytical methods I will determine which of these amplitude anomalies are hydrocarbon- 

bearing and non-hydrocarbon-bearing. The main objectives of Chapter 5 are;  
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1. To establish the relationship of hydrocarbon-bearing amplitude anomalies in fine-grained 

hemipelagic sediments with underlying turbidite reservoirs.  

2. To establish the migration routes between deep-turbidite reservoirs and present-day 

locations of amplitude anomalies.   

3. To go some-way in establishing the mechanism by which fluids migrated into the fine-

grained units for example by Vertical Anomaly Clusters (VACs), faults, or other means 

(Chapter 5).  

Collectively, Chapters 3-5 target mechanisms of fluid flow into fine-grained sedimentary 

series. 

1.5 Layout 

This thesis is divided into seven chapters. Chapter 1 consists of overview of the research topic 

covered in this research. This is followed by a overview of the data and methods employed in the 

research. As such Chapter 2 presents the details of the 3D seismic data, how it was acquired, how 

the seismic data was interpreted and the workflows used for identification of high-amplitude 

anomalies and associated fluid flow features. Chapter 3, 4 and 5 present the main results of the 

thesis. Each of these core chapters focus on various topics associated with identification of high-

amplitude anomalies and their fluid flow paths. 

Chapter 3 investigates a unique gas-associated amplitude anomaly in the Møre Basin, offshore 

mid-Norway. Chapters 4 and 5 investigate a range of high amplitude anomalies in seismic data 

from Lower Congo Basin. Chapter 6 presents a summary of the major findings and discusses the 

origin of finger-type amplitude anomalies in the Lower Congo Basin. The chapter then outlines 
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the major implications of the research and areas for further research. The main conclusions 

drawn from the research project are presented in chapter 7. 
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CHAPTER 2 

Data and methods  
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CHAPTER TWO 

2.1 Introduction 

The research presented in this thesis is largely based on the observations, interpretations and 

analysis of high amplitude anomalies that were imaged in 3D seismic data. The aims of this 

chapter are to 1) give an overview of seismic data with an emphasis on its limitations, 2) 

description about the specifications and parameters of each of the seismic surveys and how they 

impact data quality, 3) give an overview of the methods that were used to interpret and analyse 

different high amplitude anomalies and their possible fluid flow pathways, and 4) outline what 

limitations the data poses to the project and how these problems are tackled. 

 

2.2 3D Seismic data 

The research presented in Chapter three is based on a pre-stack time-migrated seismic survey of 

the Havsule Dome from the Norwegian Sea. The research presented in Chapter four and five is 

based on a near offset high density three dimensional time-migrated seismic survey from the 

Lower Congo Basin (LCB) that contained salt and turbidite channel levee systems and their 

related  structural and stratigraphic features (Fig. 4.6). 

Seismic reflection surveying is a well-established technique for imaging subsurface geology. It 

works on the basis of recording the time taken for a seismic energy pulse to travel from source, 

reflect from a sub-surface interface, and return to a surface detector (Sheriff and Geldart, 1995; 

Kearey et al., 2002) that defines a contrast in acoustic impedance and be detected at a receiver. 
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This is referred to as the two way travel time. Typically with marine 3D seismic, data is acquired 

using a near surface seismic energy source (air guns) used to generate a seismic source (p-waves) 

of a given frequency whilst reflected p-waves are detected by a series of hydrophones towed 

behind a vessel and a series of hydrophones which detect the reflected energy of compressive (P) 

waves from subsurface physical boundaries (Fig 2.1). The strength of the reflected energy is the 

result of the acoustic impedance between two different lithologies. Acoustic impedance (Z) is the 

function of the rock density (p) and the p-wave velocity (v).  (Equation 2.1) 

𝑍 = 𝑉 ∗ 𝜌                                                                          (2.1) 

Once the data has been acquired the data undergoes a standard set of processing algorithms 

whereby the two way travel times are stacked and reflections are repositioned as close to their 

true geometry as possible (Robinson, 1988). A full description of the standard seismic 

acquisition and processing sequence can be found in Yilmaz and Doherty (1987). The basic 

processing sequence is often sufficient in settings where strata are sub-horizontal and where ray 

paths occur at low angles of incident with respect to the strata (Fig. 2.1) however around vertical 

structures such as salt diapirs and faults additional data processing is required. The cartoon in 

figure 2.1 illustrates the complexity of the ray paths. 

The time from the seismic source to an acoustic impedance boundary and back to the geophone 

detectors is termed the two way travel time (TWT), it is often given as the vertical scale in a 

seismic section and may also be converted to a vertical distance with knowledge of wave 

velocity (Brown, 2004). Equation 2.2 expresses the relation of time (t) that is proportional to the 

ratio of distance (d) and velocity (v). 
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𝑡 =
2𝑑

𝑉
                                                                          (2.2) 

Generally, seismic wave velocity increases with depth as the wave advances through more 

compacted sediment and rock (Kearey et al., 2002; Brown, 2004). However, other properties of 

the subsurface can control the velocity of the seismic wave, these include; lithological 

composition, porosity, density, material texture, elastic modulus and fluid content (Mavko et al., 

2009). Two other key properties of a seismic data volume are the wavelength and frequency of 

the wavelet. Wavelength is the distance from wave peak to peak, while frequency is a measure of 

how many peaks pass through a point per second. Both are related to wave velocity where 

wavelength (λ) is the quotient of the velocity (ν) of the wave and the frequency (f) (equation 2.3), 

and if assuming a constant velocity, wavelength is inversely proportional to frequency i.e. higher 

frequencies form shorter wavelengths. 

𝜆 =
𝑉

𝑓
                                                                          (2.3) 
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Figure 2.1: Cartoon showing a typical set up for marine acquisition of seismic data. The black lines show typical ray 

paths for p-waves from an energy source, their reflection at interfaces of contrasting acoustic impedance v x p, of 

different interfaces and detection at a set of hydrophones (Orange rectangles). ( http://www.open.edu)  
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2.2.1. Colour convention 

Seismic sections presented in chapters 3-6 are displayed using a black-white-red or black-white-

yellow-red colour schemes. Following the SEG colour convention, positive reflection events are 

red and negative reflection events are black with white depicting zero-crossings (Fig 2.2A). 

According to common convention shown in figure 2.2A, seismic data in this thesis is displayed 

in zero phase SEG (Society of Exploration Geophysicists) normal polarity during processing 

indicating that acoustic impedance contrasts coincide with the peak of the seismic wavelet and 

that the wavelets are symmetrical with the peak corresponding to the zone of maximum energy 

(Yilmaz and Doherty, 1987; Evans and Dragoset, 1997; Brown, 2004) (Fig. 2.2A).  

The convention of SEG normal polarity is that an interface defining a positive downward 

acoustic impedance contrast coincides with peak in the seismic wavelet whilst an interface 

defining a negative downwards impedance contrast coincides with a trough in the seismic 

wavelet. The high amplitude events typically occur due to velocity and density contrast at the 

interface between the sedimentary overburden. The positive amplitude event occurs at with 

increasing density and velocity contrast (seabed at figure 2.2B). Conversely the interface 

defining a downward transition from sedimentary overburden to any soft anomaly like gas 

accumulation represents a negative impedance contrast and is thus defined by a seismic wavelet 

with negative amplitude (Gas anomaly in figure 2.2B) (Evans and Dragoset, 1997). Despite 

evaporites having low density with respect to the sedimentary overburden the internal p-wave 

velocity is significantly higher thus increasing the magnitude of acoustic impedance relative to 

the sedimentary overburden. Wave amplitude (height of the peak or trough) corresponds to the 
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magnitude of impedance contrast, higher the impedance contrast leads to high amplitude (Brown, 

2004)  
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Figure 2.2: A) SEG colour convention for the display of seismic data. Positive impedance contrasts are shown in 

black. Negative impedance contrasts are shown in red. Zero crossings are shown in white. B) Polarity of reflection 

events at the interface between water and sediments (seabed), top of gas accumulation (soft reflection), at base of 

gas anomaly (hard reflection) and paired reflection at the thin bed (tuning effect). 
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2.2.2. Seismic resolution 

Seismic resolution is defined as the ability of seismic data to distinguish between separate 

features both vertically and horizontally. Resolution relates to the minimum distance that two 

points can be located to each other and be distinguished on seismic sections (Yilmaz and 

Doherty, 1987). So one of the main problems in seismic interpretation is to be able to determine 

how and where to distinguish geological elements that are resolved and unresolved. In other 

words to enhance seismic resolution in both directions vertical and horizontal (Brown, 2004) 

 

2.2.2.1. Vertical resolution 

Vertical resolution or the limit of separability is the limit at which the top and base of bed is no 

longer detected as a single wavelet (Brown, 2004). Vertical resolution is a function of the 

dominant wavelength (λ) which is the quotient of p-wave velocity (v) and frequency (f). 

Generally the internal P-wave velocity of strata increases with depth as the rocks have become 

progressively more hard and compacted during burial. The frequency range may vary according 

to specific surveys but low frequency waves generally permeate to greater depths whilst high 

frequency waves are attenuated at shallow depths due to adsorption (Brown, 2004). Thus, 

deciding what range of P-wave frequencies should be emitted from the geophone is essential 

when there is a specific interval of interest in the survey i.e. Cretaceous and Palaeocene plays 

between 1.5 - 3.5 km depth in the UK Central Graben (Kearey et al., 2002; Brown, 2004). 

Vertical resolution is typically taken to be ¼ λ. When beds thickness is below ¼ λ the amplitude 
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of the wavelet becomes progressively attenuated until the limit of visibility is reached and the 

reflection signal is obscured by background noise (Fig. 2.4).    

2.2.2.2. Horizontal resolution 

The distance at which two points can be distinguished in the horizontal plane (horizontal 

resolution) is a function of the hydrophone spacing and the width of the Fresnel zone (Fig. 2.3A). 

For un-migrated seismic data, the horizontal resolution is equal to the first Fresnel zone (Yilmaz 

and Doherty, 1987; Sheriff and Geldart, 1995; Kearey et al., 2002) (Fig. 2.3B). The Fresnel zone 

is defined as ‘the portion of the reflector from which the reflected energy can reach the receiver 

within the first half cycle of the reflection’. ‘Amplitudes reaching the detector from this zone 

constructively interfere to produce a reflection’ (Sheriff, 1980). Horizontal resolution is 

improved during pre-stack migration as diffractions below the first Fresnel zone are resolved. 

The horizontal resolution of pre-stack migrated data is regarded as ¼ λ.   

The horizontal resolution is also restricted by the lateral sampling of the data which is governed 

by the spacing between individual hydrophones toed behind the acquisition vessel. The reflection 

points on a surface have a horizontal resolution of equal to half the geophone/hydrophone 

spacing. The horizontal resolution of the data is equal to the larger of the two values. The 

detector spacing does not usually affect the lateral resolution for migrated data (Davies et al., 

2004; Sheriff et al., 2010). Detector spacing may however influence the lateral resolution where 

the seismic data has sufficiently high frequency (> 50 Hz) and where the interpreter is concerned 

with the very shallow subsurface (< 1 s). The horizontal resolution of the seismic data can be 

assumed roughly constant where the strata are (sub) horizontal but around the diapir where strata 
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are often steeply inclined the lateral resolution may decrease due to a spreading of the Fresnel 

zone (Yilmaz and Doherty, 1987).  
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Figure 2.3: Horizontal resolution. A) Fresnel zone A-A’ for an energy pulse created at the sea surface (S) and 

striking a horizontal geological interface at depth Z0.  B) Reduction in the width of the Fresnel zone following 

migration of seismic data. The post migration Fresnel zone is one quarter of the dominant wavelength. 
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Figure 2.4: A) Wedge acoustic impedance (AI) model of sandstone encased in thick shale. Assuming constant AI in 

sandstone and shale, R is negative at the top and positive at the bottom, with the same magnitude; λ denotes seismic 

wavelength. B) Zero-phase Ricker seismic model. Despite the symmetric shape of the Ricker wavelet, composite 

waveforms are symmetric only in seismically thick beds (>λ). Antisymmetric seismic responses dominate when a 

bed thins. If the bed is thinner than λ/4, deviation between reflection interfaces and seismic trough–peak 

measurements (indicated by dashed lines) occurs. Neither polarity nor amplitudes in asymmetric waveforms match 

wedge geometry (lithology).(modified from (Zeng and Backus, 2005) 
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2.3 Seismic data 

3D seismic survey was carried out to improve imaging through gas clouds, characterize high 

amplitude anomalies in terms of fluid flow contents and provide clues as to the origin of these 

anomalous bodies from the back ground (Robinson, 1988). 

 

2.3.1 The Mid Norwegian Sea 

3D multi-channel, poststack, time-migrated reflection seismic data used for chapter 3 

(Fig.2.5). The seismic data display used here are zero phase, SEG normal polarity, (black 

peak indicating an increase in acoustic impedance ‘‘American polarity’’). The 3D seismic 

survey covers an area of 1300 km
2
 and is 120 fold with a 4 ms TWT sample rate. The 3D grid 

is subdivided into inline and crossline directions, spaced at 25 m and 25 m respectively. The 

frequency range in the shallow subsurface is 7.5–90 Hz with a dominant frequency in the 42–

50 Hz range. Assuming a dominant frequency and a velocity of 1600–1900 m/s, the seismic 

resolution, defined as a quarter of the dominant wavelength, would be 10–15 m. This implies 

that anomalously high (tuned) amplitude due to constructive interference would occur for 

thicknesses of 2–9 m, the average thickness depending on the exact frequency and velocity 

for a given sedimentary layer in the main geological boundary “Brygge Formation". Two 

nearby wells (6403/10-U1 and 6404/11-1, Fig. 2.5) provide velocity data for the stratigraphic 

interval and velocity values ranges between 1700 m/s and 2100 m/s. An average interval 

velocity of 2000 m/s was considered suitable for depth and thickness estimations (1 ms is 

equivalent to 1 m). The horizontal resolution ranges between 25 and 50 m, and the vertical 

stratigraphic resolution between 7 m and 14 m. 
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Figure 2.5: Location map of 3D seismic survey in the mid Norwegian Sea. The survey is situated at the south 

edge of Storegga Slide (modified from (Riis et al., 2005).  
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2.3.2 The Lower Congo Basin seismic data 

The 3D seismic reflection data used for this study were acquired on the outer continental 

shelf of the Angola margin (Location is not shown due to data confidentiality), in a water 

depth of 800 to 1300 meters, with a near-seabed velocity of 1700m/s. The survey provided by 

“Caprocks project” for analyses of high-amplitude anomalies that developed in the waste 

zone above main Oligocene-Miocene turbidite reservoirs. The study survey consists of an 

area of 1310 km². It has a dominant frequency of about 55 – 60Hz with a main vertical 

resolution of about 7 ms. Survey extends from the seafloor to sedimentary section with depth 

of 4.5s two-way travel time (TWT). High density 3D (HD3D) cube has a bin size 6.25 x 6.25 

m yielding a horizontal resolution of 6.25 m. 

The seismic data is zero phase and the downward increase of acoustic impedance is 

represented by positive amplitude value, i.e. SEG normal polarity. Three different cubes near, 

middle and far offset were generated at different processing stages but only the near offset 

data cube were available for the research of this thesis for chapter five and six. Rock physical 

analysis of the seismic data was beyond the scope of this study.  

 

2.3.3 Well data 

A set of six exploration wells (location of these well are confidential so not showed for the 

whole thesis) were drilled on the basis of this data set from the Lower Congo Basin. Two 

exploratory wells were available for the Norwegian case study. Wireline logs and 

unpublished commercial well reports, mainly based on cutting analyses were available for all 

the wells. Due to non-availability of check shot or vertical seismic profile (VSP) data 

therefore well data is not calibrated with seismic data. High-amplitude anomalies are possibly 
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avoided during well planning due to risk hazards (Cartwright et al., 2007; Andresen, 2012). 

Therefore, no well directly calibrated high-amplitude anomalies in the two data sets. In the 

Lower Congo Basin, only three of the well logs (out of six wells) were available for chapter 

five and six. Only one well W41 out of these three penetrated through high-amplitude 

anomaly and has been calibrated it well logs for confirmation of presence of hydrocarbons 

(Chapter 4).  

 

2.4  Seismic interpretation of HAAs 

The interpretation of 3D seismic data represents the core method used in this research project. 

In the past, 2D and 3D seismic interpretation has been used for the analysis of the high-

amplitude anomalies and their associated fluid flow mechanism in the Mid Norwegian and 

Lower Congo Basins. Nonetheless, previous work on this field has been limited to the 

analysis of relatively low-resolution 2D seismic data (e.g. (Gay et al., 2006). Indeed, the 

present research project represents the first comprehensive work on the analysis of high-

amplitude anomalies using a simple 3D and HD3D seismic data. This has allowed an 

excellent coverage of the basinal distribution of HAAs in the region and has enabled their 

associated fluid flow mechanisms to be resolved at the limit of seismic data accuracy. In this 

section, the methodology used for the interpretation of HAAs in different sedimentary levels 

on seismic data, coupled with an assessment of their seismic response and imaging problems, 

are presented. 

 



Chapter 2  Data and methods 

 

116 

 

2.4.1 3D seismic interpretation software 

Seismic interpretation provides the main approach for visualising and analysing of high-

amplitude anomalies and associated structural and/or stratigraphic features. Seismic 

interpretation was undertaken on two state of the art software platforms to the project at the 

3D Lab in Cardiff University. For the interpretation work, the majority of interpretation was 

under take on a Sun System with Schlumberger’s Geoframe software. Some interpretation 

work (3D visualization) was undertaken on Schlumberger’s Petrel software. 

 

2.4.2 Horizon and fault interpretation 

The 3D seismic data was interpreted in the IESX software (Geoframe, Schlumberger) and 

window based schlumberger’s Petrel software. Seismic interpretations included analysis of 

seismic amplitude maps. The RMS seismic amplitudes were used to map the spatial 

distribution of enhanced reflections at inferred stratigraphic intervals of free gas 

accumulations in the form of high amplitudes. 

For visualization and interpretation of the 3D seismic data, the IESX software (Geoframe, 

Schlumberger) seismic interpretation software was used. The Automatic Seismic Area Picker 

(ASAP) is the software’s tool for tracking horizons. It uses the interpretation done within one 

or more inlines or crosslines as a “seed” and tracks across the surface as we “paint brush” it. 

Parameters have to be chosen for the ASAP in accordance with part of the seismic wavelet to 

be tracked along the horizon, that is to follow maximum or minimum amplitude, or upper or 

lower zero crossing. The quality of the interpretation is very important here, as you interpret 

quickly through large areas, so it is imperative to specify correct parameters for the quality 

control of the ASAP, this is done in a set of tabs on the ASAP tool including dip/trace, track 
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technique and quality, correlation, and snap range. Choosing too strict quality control will 

lead to many areas being left uninterpreted, while choosing too loose parameters will lead to 

a lot of “miss-picks”. Seismic interpretations included analysis of seismic amplitude maps. 

Detailed seismic interpretation is an important step to understand the distribution of high 

amplitude anomalies. Interpretation is based on careful identification of continue reflections 

called “seismic horizon” and further more identification of amplitude anomalies. Structural 

analysis was undertaken using a combination of two traditional seismic interpretative 

techniques 1) horizon interpretation to understand the planform geometry of faults 

surrounding salt diapirs and 2) mapping or tracking of fault planes to view how the 3D 

geometry of fault planes forms (Brown, 2004).  

Throughout this PhD thesis seismic sections and maps are displayed in milliseconds (ms) 

two-way travel time (TWTT). Depths and thicknesses are expressed in metres (m) where 

time-depth conversion was applied. 

 

2.4.2.1 Horizon interpretation 

Seismic horizons were tracked by manually following horizon events or reflections which 

correspond to key horizons of interest. Most of the time these seismic horizons are 

continuously traced throughput seismic data sets. Two way travel time maps were extracted 

through these interpreted seismic horizons. The process of horizon interpretation is 

summarised as follows but relates to the standard techniques illustrated in Brown, (2004).  

1. Horizons were tracked on grids spaced between every 5-50 inlines and cross lines 

depending on the complexity and lateral continuity of the reflector. 
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2. Horizons were tracked laterally and where available, well data was used to aid 

regional scale mapping or horizons which are laterally discontinuous. 

3. During tracking, the horizon was snapped to the peak of the horizon event or 

reflection i.e. positive or negative loops. 

4. Horizon maps and surfaces were made by interpolating along horizons events 

between tracked seed points by using an automated process called ASAP. 

5. Steps 1-4 were repeated in a quality control workflow to ensure maps were completed 

with a desirable level of quality.    

 

2.4.3 Surface attribute analysis 

Vertical seismic sections fail to clearly identify some important stratigraphic features because 

they are typically manifested as subtle variations in amplitude strength, phase shift, or 

polarity reversal and are easily overlooked by interpreters. Imaging these features in a 

horizontal view adds additional information of spatial distribution to the typical seismic 

cross-section geometries used to interpret seismic facies and thus infer depositional pattern 

that lend insight into the associated reservoir quality. The sinuous nature of these features can 

only be seen in such a horizontal view and well data from the area, as well as analogs from 

other fields, indicate that such sinuous features are highly likely to be incised valleys or 

channel reservoir sands. 

Complex trace seismic attributes, including measures of seismic amplitude, frequency, and 

phase, have been used successfully in mapping seismic lithology changes for almost three 

decades. Multitrace relationships, including cross correlation techniques, have been used in 



Chapter 2  Data and methods 

 

119 

 

the automatic picking of static corrections and 3-D seismic horizons (Haskell, 1995) over the 

past decade. 

Seismic data can elucidate fluid flow in the sedimentary basin if flow related processes affect 

sediment structure e.g., by creating faults and fractures or sediment physical properties, e.g., 

by changing porosity which influence density and seismic velocity (Zühlsdorff and Spiess, 

2004). The presence of hydrocarbons such as methane may also affect seismic data since a 

free gas phase attenuates seismic signals (Wood et al., 2002). 

Once horizon maps were obtained a variety of seismic attributes were calculated to reveal the 

aspects of the geometry or physical properties of the surface. A number of different attributes 

are useful for fault visualisation. 

 

2.4.3.1 TWT and amplitude  

The first and most basic maps to be generated from seismic data derived from the geometry 

of the reflection and the amplitude of the corresponding wavelet, so called, two-way travel 

time (TWT) maps and acoustic amplitude maps. A TWT map defines the approximate sub-

surface geometry of geological interface (when time can be approximated to depth) and are 

thus useful for imaging faults which have large throws with respect to the regional gradient of 

the faulted surface (Fig 2.6A). Horizon fault intersections are detected on amplitude attributes 

by low acoustic amplitudes with respect to that of the host layer. The later is useful for 

detecting small or densely spaced fault systems such as polygonal faults (Fig. 2.6A and C). 
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2.4.3.2 Dip 

Dip maps are the first derivative of TWT maps. Dip is a particularly useful attribute for 

imaging fault patterns which are composed of faults with small throws (5-100 m) and 

intersecting sub-horizontal or gently dipping surfaces (Fig. 2.6E).  

 

2.4.3.3 Petrel generated TWT maps 

A blended of two way travel time and vertical relief (Dip) can be created in Petrel by 

displaying horizon maps in 2D and increasing the vertical exaggeration (Fig. 2.6). This has 

the potential of understanding how fault geometry relates to the structural relief of a folded or 

dipping surface. 
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Figure 2.6: Seismic interpretation made through different interpretation methods (tools) to delineate high-

amplitude anomalies A) Two way travel time in milliseconds B) RMS amplitude, C) Acoustic amplitude, D) 

Coherence slice, E) Time-Dip map 
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2.4.4 Volume attribute analysis 

The study and interpretation of seismic attributes give some qualitative information of the 

geometry and the physical parameters of the subsurface (Taner, 2001). Volume attributes 

were computed from 3D reflection seismic data sets like coherency, Root Mean Square 

(RMS) amplitude, Instantaneous phase and Instantaneous frequency. These seismic attributes 

are used to map the spatial distribution of enhanced reflections at inferred stratigraphic 

intervals of free gas accumulations in the form of high amplitudes. Seismic attributes are used 

to enhance recognition of the high amplitudes, coherent events and to emphasize 

discontinuities, faults, stratigraphic surfaces and unconformities to understand the effect on 

the amplitude of the reflections of sediment versus fluid charging of the layers (Calvès et al., 

2008). The seismic RMS amplitude between horizons was computed and used to detect the 

occurrence of anomalous amplitudes. Hydrocarbon gas in shallow porous sediments is 

detected by high-amplitude reflections and the absorption of high-frequency components of 

the underlying seismic section (Castagna et al., 2003).  

 

2.4.4.1 Coherency 

The 3D seismic coherency cube extremely effective in delineating seismic faults when 

sufficient lateral change in acoustic impedance (Bahorich and Farmer, 1995). The Coherence 

Cube is essentially a cube of coherence coefficients generated from the input 3D seismic data 

volume that portrays faults and other stratigraphic anomalies clearly, on time or horizon 

slices. 

Seismic coherency is a measure of lateral changes in the seismic response caused by variation 

in structure, stratigraphy, lithology, porosity, and the presence of hydrocarbons. Unlike 
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shaded relief maps that allow 3D visualization of faults and channels from horizon picks, 

seismic coherency operates on the seismic data itself and is therefore unencumbered by 

interpreter or automatic picker biases (Marfurt et al., 1998). In the Norwegian study area, for 

example an anomaly is developed in the Brygge formation and has many polygonal faults 

inside the anomaly. These faults are not clearly visible due to the presence of enhanced 

amplitudes with anomaly. So the seismic coherence cube is computed to analyse lithological 

variation and relationship of polygonal fault to formation of the anomalous zone. 

Coherence attributes are calculated based on quantifying the degree of vertical and lateral 

discontinuity or coherence of reflections in the 3D time volume (Bahorich and Farmer, 1995; 

Marfurt et al., 1998; Chopra and Larsen, 2000; Brown, 2004). A variety of similar attribute 

such as variance are also available within the Petrel seismic interpretation software. Figure 

2.6D shows an example of faults around an anomaly that developed in the Norwegian Sea 

data set. 

 

2.4.4.2 RMS Amplitude 

Seismic reflection amplitude information can help identify unconformities, reefs, channel and 

deltaic sands, lithology, and gas/fluid accumulations. Amplitude anomalies may also be 

attributed to constructive or destructive interference (tuning effect) caused by two or more 

closely spaced reflectors and/or to variations in net sand within a thin-bed unit (DeAngelo 

and Wood, 2001). 

Many other seismic attributes were test and analysed to understand high amplitude anomalies 

in the study interval. The root mean square amplitudes observed good to carry forward 

because it gave the combined effect of positive and negative amplitude that possibly due to 
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presence of hydrocarbon interested interval. RMS amplitudes are calculated as the square 

root of the average of the squares of the amplitudes found within an analysis window. The 

RMS amplitudes are sensitive to sandstone-bearing depositional systems tracts within the 

reservoir-bearing successions and help define the spatial distribution of genetically related 

depositional successions. Such RMS amplitude maps may image stratigraphic leads that have 

been missed by previous exploitation programs (DeAngelo and Wood, 2001). 

 

2.4.4.3 Instantaneous phase and Frequency 

The instantaneous phase attribute is considered a good indicator of continuity of seismic data, 

and so is useful in identifying and interpreting sequence boundaries. Because phase is 

independent of reflection strength, it often makes weak coherent events clearer. Phase 

displays are effective in showing discontinuities, faults, pinchouts, angularities, and events 

with different dip attitudes which interfere with each other (Taner et al., 1979). The 

instantaneous phase attribute has also been used to define a flooding surface (Lee et al., 

2010). Instantaneous phase is a seismic attribute based on the Hilbert transform, and is given 

by the equation (2.4);  

∅(t)=tan^(-1)⁡[(G(t))/Re(G_K (t)))]                                                  2.4 

Where ∅(t) is the instantaneous phase value at time (t), arctan is the inverse tangent, G(t) is 

the value of the seismic trace at time t, Re is the real or recorded part of the seismic trace. 

The instantaneous frequency attribute is considered a good tool for lateral seismic character 

correlation (Lee et al., 2010). In the past, a low instantaneous frequency anomaly has been 

used to predict conventional hydrocarbons (oil & gas) accumulations in the oil industry. 
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Instantaneous frequency is also based on the Hilbert transform and is given by the derivative 

of the instantaneous phase (Fig. 2.7 and 2.8). 



Chapter 2  Data and methods 

 

126 

 

 

Figure 2.7: A seismic profile from instantaneous frequency data set shows low frequencies in white. 

 

Figure 2.8: Example of instantaneous phase seismic profile that showed continuity of reflections inside seismic 

anomaly (rectangle) 
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2.4.5 Advance techniques 

As horizon mapping of densely faulted horizons for example polygonal faults is time 

consuming due to the need for a dense mapping grid, automated techniques are used in some 

cases. These techniques are based on slicing of amplitude and coherence volumes parallel to 

underlying or overlying surfaces, a technique referred to as iso-proportional slicing or stratal 

slicing. Iso-proportional sculpts are generated by creating surfaces which are geometrical 

averages of reference horizon (Fig. 2.9). At a more simple level coherence slices are 

generated sub-parallel to stratigraphy by simply flattening horizons at a key horizon and 

scrolling up and down through the volume. 

Stratal slicing had been used to compute of RMS (Fig. 4.7 in chapter 4). E-W seismic profile 

showing main stratigraphic subdivision to detailed analysis of high-amplitude anomalies, 

their extent and geometry, for example the Waste zone between H130 to H250 interpreted 

horizons in the LCB. The upper boundary is marked by H130 seismic horizon below regional 

seal unit 3 of the Early Miocene to seismic horizon H490 base of seal unit 4 of the Late 

Oligocene age. The time interval between main reflectors are H100-H130=80 to 90ms, H130-

H200= 100 to 120ms, H200-H250= 90 to 150ms, H250-H290= 60 to 150ms and H290-H90= 

200 to 250ms. 
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Figure 2.9: Seismic profile showing the iso-stratal methodology adopts for careful and detailed observation of 

high-high amplitude anomalies and their associated fluid flow mechanisms. 

 

2.4.6 Analysis of fault patterns  

A component of the fault characterisation and diapir interpretation involves a basic 

quantitative analysis based on manual measurements from either maps or seismic cross 

sections. Measurements types include; spacing and density of fault systems, fault length, 

spatial variations in fault orientation, fault height, inclination of overburden against salt 

diapir. Each of the separate methodologies and workflows used to obtain the above 

measurements are presented in the relevant results sections in Chapters 3-6. 
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2.5 Identification of HAAs 

The simple workflow for identification of high-amplitude anomalies associated fluid flow 

features used in this study involved a systematic examination of seismic data (Fig. 2.10) for 

different types of anomalies (for more detail chapter 4 and 5). The identification and analysis 

of anomalies was done through careful analysis of vertical seismic sections, time maps and 

slices, surface and volume based seismic attributes. Iso-proportional slices subdividing 

interval of two interpreted seismic horizon into several sub-intervals for detailed spatial 

geometrical analysis of anomalies through generating long and short window volume 

attributes particularly amplitude and coherency. These volume attributes were helpful for 

detection of fluid flow features. The surface attributes that were extracted of both manually 

interpreted horizons and derivative iso-proportional horizons. 
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Figure 2.10: Workflow for identification of hydrocarbon related high-amplitude anomalies, their associated fluid 

flow feature and geoplumbing system. 
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2.6 Limitations due Seismic quality and availability of well data  

The greatest limitation encountered during seismic interpretation is lack of availability of well 

data to correlate interpretation for age control. Only one well 6404/11 was drilled in the 

Norwegian case study and 6 exploratory well data from the LCB were available for this 

research. Only two well data are useful for this study because; (1) the degree to which 

interpreter depends on sub-surface data (borehole data), (2) the accuracy in the position of 

seismic reflections with respect to the true geological interface, and (3) seismic resolution. 

The first two form the main limitations faced during this research. As explained in section 2.3 

and 2.4 these occur due to the difficulty to obtain an accurate or clear image of strata adjacent 

to diapirs or beneath salt overhangs. 

 

2.6.1 Calibration of HAAs on seismic and ground truth 

The second major limitation that was encountered in this research was that the interpretation 

of positive high amplitude anomalies was entirely based on geophysical aspects and on 

comparison with previous studies. The opportunity of relating seismic amplitude anomalies 

with ground truth, has not been provided. 

 

2.6.2 Age of seismic stratigraphic units 

Confidential well data, mud logs and formation picks were used to calibrate seismic horizons 

with the regional stratigraphy. Ages for each of these units and their bounding surfaces have 

been obtained by standard biostratigraphic dating techniques such as identification of specific 

assemblages of foraminifera (Berggren et al., 1995). Well data and age constraints are sparse 
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and generally lacking in the shallowest section (Pliocene-Quaternary units). Ages of horizons 

within these units were estimated by assuming a uniform sedimentation rate and extrapolating 

ages from known surfaces based on interval thickness. Given that the Pliocene-Quaternary 

section is largely composed of hemipelagic sediments, the sedimentation rate would not be 

expected to change to significantly (cf. (Mulder et al., 2010). Thus, I consider the estimations 

of ages for horizons in this interval as fairly close to their true age.  
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CHAPTER THREE 

3.1 Introduction 

High amplitudes anomalies are prominent features usually observed on seismic data. They form 

in response to a real, physical changes in the subsurface lithology and can also result from 

various kinds of noise internal to the geophysical equipment, or noise from external sources. 

Seismic interpreters attempt to understand the nature of the high amplitude anomalies through 

different geophysical methods. 

The aim of this chapter is to analyse the geophysical expression of free gas in marine sediments. 

Free gas can be detected on seismic data by the change in seismic velocity that results from gas 

in the pore spaces of the sediments. This leads to a stronger amplitude reflection than would 

result from a purely water filled pore volume, and is visible on seismic data as an amplitude 

anomaly (Brown, 2004; Løseth et al., 2009). This study focuses on a description of seismic 

amplitude anomalies from a 3D seismic data set located in the mid Norwegian Sea. A series of 

amplitude anomalies are observed within the biosiliceous sediments of the Miocene age beneath 

a regional claystone seal of Pliocene age. These anomalies show an extraordinary geometry: they 

cluster beneath the crest of a large domal anticline and have a basal boundary that is strongly 

cuspate with a concave upwards shape. 

The main questions addressed in this chapter are; 

1 How these seismic anomalies are developed and what is the source of this high-amplitude 

anomalous zone? Is the high amplitude anomalous zone a lithological barrier or related to 

hydrocarbon accumulation? 

http://wiki.answers.com/Q/What_is_an_anomaly_in_geophysical_exploration
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2 Why does the anomaly have an extraordinary geometry?  

3 What are the kinematics that can be derived from the geometry of the anomaly? 

A model is proposed to understand the development of the extraordinary shape and geometry of 

the anomalous zone in very fine clay rich sediments.  

 

3.2 Seismic and well data 

3.2.1 Data set 

Three dimensional (3D) multi-channel, poststack, time-migrated seismic reflection data is used 

to describe the high amplitude anomaly developed at the crest of the Havsule Dome (Fig. 3.1) 

and proposed a model to understand development and explanation about the shape and geometry 

of anomalous zone in very fine clay rich sediments of the Brygge Formation. Time maps, dip 

maps, coherency maps and amplitude maps (Brown, 2004) are used to provide much information 

on the basal surface, internal geometry and fluid flow in and outside the seismic anomaly. 

The 3D seismic survey covers an area of 1300 km
2
 and is 120 fold with a 4 ms two way travel 

time (TWT) sample rate. The 3D seismic grid is subdivided into inline and crossline directions, 

spaced at 25 m and 25 m respectively. The seismic data is displayed in the zero phase, SEG 

normal polarity, (black peak indicating an increase in acoustic impedance ‘‘American polarity’’ 

(Brown, 2004). The seismic migration velocities vary spatially, based on normal moveout 

velocity analysis. Within the study interval (0-1000ms TWT below seafloor) the interval velocity 

ranges between 1500 and 1750 m/s. The frequency range in the shallow subsurface is 7.5–90 Hz, 

with a dominant frequency in the 42–50 Hz range. An exploratory well 6404/11-1 provided the 
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interval velocity of the interested stratigraphic interval described in the geological setting and 

these velocities are range between 1500 m/s and 1750 m/s. By using the dominant frequency and 

a velocity of 1500–1750 m/s, the seismic resolution, defined as a quarter of the dominant 

wavelength is, 10–15 m. 
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Figure 3.1: Location map of the 3D seismic survey in the mid Norwegian Sea. The survey is situated at the 

south edge of Storegga Slide. Developed gas -field (Ormen Lang gas filed) is located about 10 kilometres in the 

south of study area.  NE-SW oriented domes developed in the basin (Vema, Hasule and Solsikke domes). 

Exploratory well 6404/11-1 was drilled in the study area (modified from Riis et al., 2005). 
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3.2.2 Wells in the study area 

An exploratory well 6404/11-1 was drilled in the study area (Fig. 3.2). The pre-drill objective 

of the well was to test the Havsule Prospect. The prospect was a seismically defined north-

south trending structural dome located in the north of the Møre Basin in the Norwegian Sea 

(Doyle et al., 2003; Lawrence & Cartwright, 2010), thought to have developed during the 

Tertiary Period in response to compression during opening of the North Atlantic Ocean. 

Three primary reservoir targets were identified: Tare Formation, Early Eocene Turbidite 

sandstone with 4-way dip closure; Springar Formation, Maastrichtian turbidite sandstone 

with 4-way dip closure; and The Nise Formation sandstone. An optional secondary target was 

a 4-way dip closure Coniacian Lysing turbidite. 

The targets were directly drilled and passed through five different MTDs, biogenic ooze 

sediments and diagentic boundary (Opal A to CT boundary) in the Tertiary sequence. The 

turbidites sandstones of Tertiary and Upper Cretaceous were considered hydrocarbon bearing 

(Doyle et al., 2003), but at the shallowest primary target (Early Eocene Tare sandstones) was 

absent at the well location. The primary target of the Upper Cretaceous sandstone was absent 

and the Nise Formation sandstones were poorly developed. The well was not extended to 

penetrate the secondary target, the Lysing Formation. 

The gas shows were observed during drilling. The gas was composed of C1 to C3 with 

concentration of 0.3% at the Brygge Formation. The Tare Formation was drilled with heavy 

mud weight to balance gas pressure present at the depth of 2563m. The gas was composed of 

C1 to C3 with concentration reached up to 5.33%. The well was plugged and declared 

abandoned due to non-commercially production and declared dry well (Doyle et al., 2003). 
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Figure 3.2: A) Seismic profile across the Havsule structure. The yellow bar shows the interval which was sampled in the biostratigraphical study. The top of the ooze is an onlap 

surface shown by a green line in the seismic section, while the top of the Intra Naust slide and top of the ooze mounds is shown by blue. The arrows point at velocity effects caused 

by ooze mounds. Pl: Pleistocene, O: Oligocene (modified from Riis et al., 2005). B) Well 6404/11-1 shown as black dot in the two way time map of the top of undisturbed 

Oligocene/Miocene ooze to the right. 
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3.3 Regional geological setting 

 

3.3.1 Regional tectonic setting 

The continental margin of Mid Norway is one of the most unstable margins in the world 

(Bryn et al., 2005). The Møre Basin is the part of this margin. The Cretaceous the Møre 

Basin (Rønnevik & Navrestad, 1977; Gabrielsen, 1984; Hamar & Hjelle, 1984; Blystad et al., 

1995) is an elongated, wedge-shaped feature, the axis of which strikes in a NE-SW direction 

(Fig. 3.3). In its axial parts, Cretaceous and younger strata exceed 5000 m in thickness 

(Grunnaleite & Gabrielsen, 1995). To the southeast and east of the Møre Basin are the Møre-

Trondelag and Klakk Fault Complexes. The northern border of the basin is diffuse, but it is 

separated from the Voring Basin by the Jan Mayen Lineament (Skogseid & Eldholm, 1989; 

Skogseid et al., 2000) which extends from the Jan Mayen Fracture Zone. To the west the 

Møre Basin terminates against the Møre Marginal High, the ocean side margin which 

corresponds to the Faeroe-Shetland Escarpment. The Møre Marginal High, which is 

underlain by pre-Tertiary rotated fault blocks (Bøen et al., 1984), marked the western margin 

of the Møre Basin during the Palaeocene(Smythe et al., 1983; Brekke & Riis, 1987; Blystad 

et al., 1995). To the south the Jurassic-Cretaceous basins, including the Sogn Graben and the 

northernmost Viking Graben, limit the Møre Basin. This border is diffuse and (Hamar & 

Hjelle, 1984) included the Sogn Graben extends from the Møre Basin domain. 

 

The structure of the Møre Basin reflects a multiphase rifting event consisted of large-scale 

volcanism, uplift and inversion doming (Blystad et al., 1995). The multiphase rifting event 

started during Permian and ended with the arrival of the Icelandic Mantle Plume during the 

Late Cretaceous. (Weibull et al., 2010). Internally in the Møre Basin, lavas of Cretaceous 
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(Hamar & Hjelle, 1984) or Paleocene to Eocene ages (Rønnevik et al., 1983) have been 

identified, and the Cretaceous-Tertiary basin fill is reported to be folded and affected by 

reverse faults. The reported elongated domal structures in the Cretaceous-Tertiary sequences 

along the eastern margin of the Voring Basin (Rønnevik et al., 1975), and suggested a strike-

slip mechanism for their deformation. Rønnevik and Navrestad (1977) stated that the mid-

Cretaceous sequence is strongly disturbed and may be partly folded. 

Jørgensen and Navrestad (1981) linked the domal structures with positive inversion, whereas 

Hamar and Hjelle (1984), who dated the deformation as Late Oligocene-Miocene, suggested 

these structures were igneous intrusions, pre-Cenozoic evaporates or deep crustal movements. 

Bukovics and Ziegler (1985) supported the view of (Hamar & Hjelle, 1984) stating that 

“locally the Møre Basin was also influenced by compressional deformations that can be 

related to the transform movements along the Jan Mayen Fracture Zone and the Oligocene 

spreading axes in the Norwegian-Greenland Sea”. The most prominent internal features of 

the Møre Basin are the Vigra High (Hamar & Hjelle, 1984), and the Helland-Hansen Arch. 

The overall compressive stress field that gave rise to the Mid-Norwegian dome structures has 

been explained as a result of the combination of spreading in the adjacent ocean and the 

distant effects of Alpine tectonics (Doré & Lundin, 1996; Vågnes et al., 1998). The 

extensional vector at breakup time (early Eocene, 55Ma) was directed NW-SE, more or less 

parallel to the trend of major transform zones such as the Jan Mayen Fracture Zone. The 

weakly compressive regime, which is assumed to have been established at the onset of 

spreading, still exists at the present day. The Møre Basin was compressed at this time (Løseth 

& Henriksen, 2005) resulting in series of N-S to NW-SE trending anticlines and synclines. 
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Figure 3.3: Simplified structural map of the Norwegian Sea continental margin. The red rectangle is the location 

of 3D seismic survey in the study area (Blystad et al., 1995). 
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Figure 3.4: A generalized stratigraphy of the Møre Basin in the Mid-Norwegian Sea (Dalland et al., 1988).
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Sediment with a high calcareous and siliceous fossil content formed growth packages in the 

synclines (Løseth & Henriksen, 2005). In the Møre Basin, the Brygge and Kai Formations are 

deformed by an extensive tier of polygonal faulting (Cartwright & Dewhurst, 1998; Berndt et 

al., 2003; Hustoft et al., 2010). This polygonal faulting spans an interval from the base of the 

Brygge Formation to a datum in the Kai Formation (Lawrence & Cartwright, 2009). 

 

3.3.2 Stratigraphy  

In the Norwegian Sea, the Palaeocene Rogaland Group (Deegan & Scull, 1977) consists of 

claystone with minor interbeds of sandstone near the Norwegian continental margin (Dalland 

et al., 1988). The Rogaland Group is overlain by the Lower Eocene to Lower Miocene 

Brygge Formation, which is part of the Hordaland Group (Fig. 3.4) (Eocene to Lower 

Miocene) (Deegan & Scull, 1977; Dalland et al., 1988). Large parts of the Oligocene-

Miocene sequence of the western Voring Basin consist of bio- siliceous ooze (Hjelstuen et 

al., 1997). The Brygge Formation consists mainly of claystone with biogenic ooze and 

interbeds of sandstone that were not observed in the study area. The Hordaland Group is 

overlain by the Lower Miocene to recent Nordland Group (Deegan & Scull, 1977), which is 

subdivided into the Lower Miocene to Upper Pliocene Kai Formation (Dalland et al., 1988) 

and the Upper Pliocene the Naust Formation (Dalland et al., 1988).The Pliocene part of the 

Kai Formation is missing in the study area. The Kai Formation consists of alternating 

claystone, siltstone and sandstone with limestone interbeds. The Naust Formation consists of 

alternating claystone, siltstone and sandstone. 

The seismic data used in this study provide excellent imaging of most of the Cenozoic 

succession, but only provides limited imaging of the Palaeocene and the Eocene succession 

because of the volume has been truncated below 3.252s TWT. The horizons mapped for this 
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study have been dated by correlating the seismic data to the stratigraphy of well 6704/12-1 

and correlated with the seismic using the integrated sonic-log data.  

For the purpose of the description and arguments presented here, the whole sedimentary 

succession is divided into three main units (Units I, II and II) based on position of anomalous 

body above and below from exploratory well 6404/11-1, mass transport deposits, seismic 

reflection amplitude and continuity (Fig.3.5). 

The unit III consists of Naust formation from seabed to the top of the Brygge Formation. The 

Naust Formation comprises the Late Pliocene-Pleistocene sediments on the Norwegian shelf, 

forming a thick succession of prograding wedges and flat-lying sheet-like units, mainly of 

glacial origin (Laberg et al., 2005; Rise et al., 2005). The acoustic character of the unit III 

appears mainly to be massive, and I infer that various types of mass movements and down-

slope gravity currents were responsible for recycling of sediments beyond the palaeo-shelf 

edge. Some subunits in Naust Formation probably represent glacial debris flows, 

redistributed beyond the shelf edge during periods of extensive shelf glaciations (Rise et al., 

2005). 

In order to obtain a detailed description of the stratal relationships of the Cenozoic succession 

in the study area, eight key seismic reflections at different stratigraphic levels were picked 

(Fig, 3.6). These horizons represent the top of the Rogaland Group (named Top Rogaland), 

three separate intra-Hordaland Group reflections (named H8. H7 and H6), the top of the 

Hordaland Group (named Top Brygge), an intra-Nordland Group reflection (named Top Kai) 

and finally the seabed (named Seabed or H1) (Fig. 3.6). The principal time structure maps, 

dip maps and amplitude maps of the Top Rogaland, Top Lower Eocene, Intra-Oligocene and 

Top Kai horizons are presented in this research, (Fig. 3.5 and Fig. 3.6). 
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Figure 3.5: A representative seismic profile passing through a high-amplitude anomalous zone that developed at the Havsule Dome structure in the study area (see Fig. 3.7 for 

location). A series of mass transport deposits (MTD1 to MTD5) have been interpreted in Naust Formation of Quaternary age. A diagenitc boundary (the Opal A/CT boundary) 

developed in the Brygge Formation of Tertiary age. HAA: High-amplitude anomalies 
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Figure 3.6: A) Uninterpreted Seismic profile through the high-amplitude anomalous zone (see Fig.3.7 for 

location). B) Interpreted seismic profile showing eight interpreted seismic horizons (H1 to H8) starting from the 

seabed to a deeper seismic reflector H8 the Tare Formation boundary. Two types of faults are interpreted 1) 

Regional faults interpreted as fault A and others polygonal faults. HAA: High-amplitude anomalies 
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3.3.2.1  Naust Formation 

The overall seismic stratigraphy covering the last 5 My (Naust Formation) is divided into five 

main sequences (Naust:- N, A, U, S and T) with boundaries that can be traced throughout the 

Mid-Norwegian margin (Rise et al., 2005). Berg et al. (2005) mentioned the nomenclature of 

these sequences (Naust W, U, S, R and O). The sequences are linked to the main glaciations, 

but each sequence may contain more than one shelf glaciation. Naust units S, R and O have 

been subdivided into a total of 16 subunits in the Ormen Lange area, based on seismic data, 

and supported by  geological and geotechnical analyses of sediment samples, as well as the 

results of borehole geophysics. The deposits of the Naust Formation overlie the thick 

siliceous oozes of the Kai and Brygge Formations. The Naust Formation consists of 

interbedded contourite and mass wasting deposits (Berg et al., 2005; Bryn et al., 2005; 

Solheim et al., 2005), with its lithology consisting of interbedded claystone, siltstone and 

sand, with very coarse clastics in its upper part (Dalland et al., 1988).  

Hemipelagic and contouritic sedimentation prevailed during interglacial periods, though this 

sedimentation style was also important during glacial times (Hjelstuen et al., 2004; Laberg et 

al., 2005). Contourites could act as shallow fluid reservoirs due to their along-slope 

continuity and high porosity (Bryn et al., 2005; Hustoft et al., 2010). Naust U sediments 

consist predominantly of (contourites) sediment drift deposits. Glacigenic debris flows (GDF) 

are derived from destabilization of till sediments at the shelf edge, and were deposited mainly 

at the upper slope (Hjelstuen et al., 2004) and on top of the sediment drifts (Leynaud et al., 

2007; Hustoft et al., 2010). GDFs form relatively thick deposits within Naust S and T (Rise et 

al., 2005). Several large-scale slides affect the Naust sedimentary records, the last one being 

the Storegga slide of Holocene age 8.2 ka, (Haflidason et al., 2005). North to the Storegga 

slide impact area the seafloor is very gentle having a mean slope of approximately 1
0
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(Hovland & Svensen, 2006). Boreholes south of the study area in the Ormen Lange Dome 

show that the Naust Formation consists of illite dominated hemipelagic and glacial sediments 

(Lawrence & Cartwright, 2010). The bulk density of the Naust Formation in well 6407/1-2 

east of our study area is 2.3 g/cm
3
 (Dalland et al., 1988). 

 

3.3.3.2  Kai Formation 

The Kai Formation is not laterally continuous, but where it accumulates in synclinal lows or 

as contourites mounds it can be over 400 m thick. In wells 6407/1-2 and 6407/1-3 (east of the 

study area) the bulk density of the Kai Formation rises from 1.9 g/cm3 at the base to 2.25 

g/cm3 at the top (Dalland et al., 1988). The main depocentre of the Brygge Formation, where 

over 1500 m of thick sediment accumulated, is in the Storegga area immediately west of the 

Ormen Lange field. In most of the Storegga and the North Sea Fan regions, the Kai 

Formation has a thickness of 600–1000 m, but on the Vøring Plateau it is less than 400 m 

thick over extensive areas (Berg et al., 2005). 

 

3.3.3.3  Brygge Formation 

The deposition from Eocene to mid-Miocene times of dominantly clays interbedded with 

biogenic ooze (Bryn et al., 2005), known as the Brygge Formation (Dalland et al., 1988). 

Deposition of the Brygge Formation was followed in the Miocene by deposition of the Kai 

Formation (Dalland et al., 1988). Two subdivisions of the Brygge Formation are recognised 

in the well: Brygge ‘A’ and Brygge ‘C’. Polygonal faults are widely recognised in the 

interval across the Norwegian basins (Fig. 3.5). The Kai Formation was deposited in 

synclinal lows between domes (Løseth & Henriksen, 2005) such as the Solsikke Dome and 
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the Havsule Dome in the study area. The Brygge Formation comprises a thick sequence of 

mudstones with very rare limestone stringers.  During the period from 54 to 2.5 Ma fine-

grained oozes and shales of the Brygge and Kai Formations dominated the sedimentation. 

These sediments were abundant in calcareous and siliceous fossils and rich in smectite 

(Forsberg & Locat, 2005). The mineralogical analyses of Brygge Formation documented low 

velocities in the mudstones due to presence of smectite with different content (Storvoll et al., 

2005).  

A seismic profile showing a series of MTDs overlying the high amplitude zone (Fig. 3.6). 

The Brygge Formation comprises a thick sequence of mudstones with sparse limestone 

stringers. These sequences range in thickness from 2 – 9 m averaging at 4.5m (confidential 

well report). Some of the mudstones are low density ooze sediments.  

 

3.3.3 Petroleum system 

The petroleum system of the Mid Norwegian continental margins is well understood, the 

Jurassic rocks are contributing from two source rocks: principally oil and gas from anoxic 

marine mudstones of the Upper Jurassic Spekk Formation but also gas from coals of the 

Lower Jurassic Åre Formation (Möller et al., 2004). Regional studies show that the reservoir 

is located at the transition zone between the wide shelf of the Halten Terrace/Trøndelag 

Platform area and the narrow shelf of the Møre Basin. This zone is defined by the Jan Mayen 

Fracture Zone and its extension towards the Norwegian mainland (Gjelberg et al., 2005). The 

presence of an active hydrocarbon system in the study area has also been demonstrated by a 

number of gas and oil discoveries in Cretaceous and Palaeocene sandstones of main turbidite 

channel systems. Depositional environment mapping suggests that Upper Jurassic source 

rocks are present throughout the Norwegian Sea region. The depth to the Base Cretaceous 
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unconformity shows that although deeper parts of the Vøring and Møre basins are over 

mature. An exploratory well drilled in the Ormen Lange into dome structures that confirmed 

the presence of hydrocarbon in the sands of Lysing, Nise and Springer Formations of the 

Cretaceous age. 

 

3.4 Seismic observations 

 

3.4.1 Description of the anomalous zone 

A series of high-amplitude anomalies are developed at the crest of the Havsule Dome in the 

Late Miocene-Oligocene succession in the Møre Basin. The anomalies stand out as a strong 

localized amplification of very fine sediments of the Brygge Formation. All the high-

amplitudes are acoustically negative (Fig. 3.5). The amplitude anomalies are characterised by 

an anomalous zone of high-amplitude reflections and termed here as “anomalous zone”. The 

anomalous zone is constrained by the top of the Brygge Formation (Fig. 3.7). There are 

scattered high-amplitude reflections that developed at overlaying the Early Pliocene Naust 

Formation have strong relation with the anomalous zone. The anomalous zone has an 

extraordinary concave upward geometrical shape. In cross section, the base of the anomaly is 

cuspate and concave upwards (Fig. 3.6). In plan-view the anomaly appears is N-S elongated 

10.45 km in length and 3.45 km in width, with surface area approximately 30 square 

kilometres (Fig. 3.7). The maximum thickness of the anomalous zone is 220 ms two way 

travel time at the centre of the anomaly which equates to 165 metres using an interval 

velocity of the anomalous zone 1500m/s that was calculated from seismic velocity 

information from nearby drilled wells in the fields. 
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Figure 3.7:  RMS amplitude map 20 ms below from top of the Brygge Formation with location of two craters 

(Crater A and Crater B). Map confirmed that anomaly (red line) is developed at between two craters at the crest 

of Havsule Dome structure. 
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3.4.2 Relationship of the crater with anomaly 

Two evacuations like structure (craters) observed to the north and south of the anomaly. For 

ease of understanding, the north crater is named “Crater A” and southwards “Crater B” (Fig. 

3.7). Riis et al. (2005) stated that the formation of evacuation structures are created due to 

mass flows that originating from the slope of the Norwegian Sea margin and formation of an 

evacuation structure could possibly give the mass flow more energy and initiate a 

retrogressive slide. The authors did not discuss the formation mechanism of these craters. 

Lawrence and Cartwright (2010) provided a model for formation of these evacuation 

structures and concluded that liquefaction and overpressure build up in the Brygge Formation 

due to presence of methane gas was the main trigging factor for these structures. 

Excavation type structures (Crater A and B) that developed at the Havsule structure, the 

seismic data show clear evidence of high amplitude which were interpreted as gas effects in 

the top of the ooze. Riis et al. (2005) suggest that the presence of high amplitude anomalies 

possibly due to gas accumulation has a strong association with mechanism of formation of 

these craters. The authors pointed out that area of craters developed on the crest of Havsule 

Dom could potentially have been locus of pre-gas migration. Nichols (1995) aslo aided that 

high pore pressure and gas saturation could facilitate the mobilization of ooze through 

liquefication, fluidization and gas expension.  

Crater A covers an area of c. 273 km
2
 having dimensions of 30 X 15 km in length and width 

respectively and the maximum depth is approximately 150 m with a volume of 68 km
3 

(Fig. 

3.7) Crater B covers an area of c. 70 km
2
, having dimension of 10x7 km in length and width 

respectively and the maximum depth is approximately 200m, with a volume of 14 km
3
 (Fig. 

3.7) (Lawrence & Cartwright, 2010). Crater A is adjacent to the anomaly and defines the 

northern boundary of the anomaly (Fig. 3.8) but Crater B does not coincide with the anomaly. 
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The base of the Crater A is at 2734 ms while the base of  Crater B varies between 2700 ms to 

2800 ms. The base of both craters is at 70-100 ms above the Opal A-CT boundary in the 

Brygge Formation. Crater A eroded portion of the Brygge Formation where the seismic 

anomaly is developed (Fig.3.8).  There are no high amplitude anomalies that possibly indicate 

fluid leakage (Cartwright et al., 2007; Løseth et al., 2009; Foschi et al., 2014)
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Figure 3.8: Seismic section showing cluster of high-amplitude anomalies (anomalous zone) (see Fig. 3.7 for location). The seismic profile present high-amplitude reflection (HAA) 

at the top of anomalous zone.  The north side crater A filled with sediments of mass transport deposit 1. No high amplitude anomaly observed along the crater. HAA: High-

amplitude anomaly. 



Chapter 3    The Analysis of Concave upward Seismic Amplitude Anomalies 

156 

 

3.4.3 Relationship of the polygonal faults with the anomaly 

A series of the polygonal faults are observed within the Brygge Formation and they have 

been interpreted as dewatering structures (Cartwright, 1997; Cartwright et al., 2003) possibly 

acting as the source for fluids that contributed to formation of high amplitudes anomaly at the 

crest of the Havsule dome. Once created, the faults are considered to act as potential fluid 

conduits.  

A well-developed system of polygonal faults is observed between the Intra-Oligocene 

reflection and the seabed (Fig. 3.10). The faults exhibit a remarkably steep displacement 

gradient and sole out just above the Intra-Oligocene horizon. An abrupt upward decrease in 

fault density is observed at the Opal A to CT reflection, suggesting that part of the polygonal 

faulting may have occurred in response to the opal A to CT conversion. The Upper Pliocene 

to Pleistocene interval is almost undisturbed although a few faults penetrate to the present-

day seabed (Fig. 3.10). However, indefinite displacement  of layers may occur in the lower 

Naust Formation as an effect of underlying polygonal fault reactivation in the Kai Formation 

caused by abrupt sediment loading, e.g. by glacigenic debris flows. In the high-density 

faulted interval, the distance between individual faults is between 100 and 600 m and the 

throw of the faults is generally between 30 and 50m.  

Regionally, the stratigraphic layer containing the seismic anomaly is deformed by a single 

tier of polygonal faults (Fig. 3.5, Fig. 3.9 and Fig. 3.10). Majority of these polygonal faults 

tip out at the top of the Brygge Formation and the overlying the Naust Formation. The faults 

displayed a polygonal pattern on amplitude and coherence slices. 
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Figure 3.9: Representative seismic profile showing the relationship of polygonal faults with deep seated 

reservoir (see Fig. 3.7 for location). Faults are interpreted inside of high-amplitude anomalous zone. All the 

faults tip-out at the top of Brygge Formation except two faults are ended at base of Naust Formation. 
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Figure 3.10: Representative seismic profile showing well-developed system of polygonal faults observed in the 

Brygge Formation of the Intra-Eocene-Oligocene. The faults exhibit a remarkably steep displacement gradient 

and tip out just at the top of Brygge Formation. See fig.3.7 for location 

 



Chapter 3    The Analysis of Concave upward Seismic Amplitude Anomalies 

159 

 

3.4.4 Extent of high amplitudes 

To assess the extent to which high-amplitude reflections or group of reflections in the studied 

interval might be amplified to form anomalous zone, a careful interpretation was carried out. 

The interpreted anomalous zone extends 10.45 km along a N-S direction from Carter A, and 

expands towards up dip direction (Fig. 3.7). High-amplitudes in the anomalous zone are not 

laterally continuous and are not uniformly distributed within anomalous zone. The highest 

concentration occurs near Crater A in north direction. All the reflections within the 

anomalous zone are amplified but the patches are observed between strong reflections. High 

amplitude reflections are truncated and stop propagating further southwards (Fig. 3.11). 

Anomaly has sharp cut-offs against fault (Fig. 3.11B).  

The development of high-amplitude reflection does not reached up to a spill point towards 

south direction (Fig. 3.11). It extends 3.45 km along E-W direction. A possible polarity 

reversal has been observed (Fig. 3.12) and this may be due to presence of small displacement 

of the strata caused by the presence of polygonal faults that are interpreted in the study 

interval of the Brygge Formation. 
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Figure 3.11: A) The interpreted high-amplitude anomalies in the anomalous zone are truncated and stop propagating further southwards possibly against a fault (see Fig. 3.7 for 

location). B) Zoomed section of seismic profile shows anomaly has sharp cut-off against fault.  
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Figure 3.12: Seismic section through high amplitude anomalous body showing equally spaced polygonal faults inside and outside of the body and also high amplitude in the seal 

unit above indicating leakage of fluid. Polarity reversal observed at the Seismic section through the anomaly displaying polarity reversal at the both sides of the anomaly.  See 

fig.3.7 for location. 
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3.5 Geophysical observations 

 

3.5.1 Acoustic attenuation and fault associated with anomalous zone  

Acoustic attenuation or seismic blank zone is observed beneath high-amplitude anomalous 

zone (Fig. 3.5). The blank zone is about 4 km in diameter and 500 ms thick below the 

anomaly within the Brygge Formation. The background amplitude response is regained 

immediately outside this zone of signal attenuation. Therefor; there is no clear reflection in 

this blank zone. Blanking zone is transparent at the middle and has vague reflections at the 

edges. According to Løseth et al. (2009) and Foschi et al. (2014), the blanking is thought to 

be related to gas charging, and have widely been interpreted as gas chimneys, and other gas 

associated structures (Calvès et al., 2008; Hustoft et al., 2010; Andresen et al., 2011; Sun et 

al., 2013) in different world wide basins (Fig. 1.38, 1.39 in Chapter 1). The strong reflection 

of Opal A-CT is also fade in this zone of attenuation (Fig. 3.5). The signal attenuation below 

the anomalous zone seems to apply irrespective of the continuity of high-amplitude 

anomalies but it is more pronounced in the middle where the anomalous zone is much thicker 

(Fig. 3.13). 

A coherence cube is extracted to analyse the and below high-amplitude anomalous zone. 

Time slices taken at 24 ms intervals from a coherence cube generated from the 3D seismic 

data volume (Fig. 3.14A -J) show the presence of fault within the anomalous zone. The less 

representation of the faults as shown on Fig. 3.14D to Fig. 3.14I might possibly be to the 

accumulation of fluid in the anomalous zone. At the coherence time slice at 2860ms TWT 

polygonal faults are again visible because that slice is generated below the anomaly where the 

anomalous zone effect is not present. Polygonal faults are clearly visible at time  
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Figure 3.13: Acoustic attenuation observed below up to extends of high-amplitude anomalous zone developed in 

the Brygge Formation. See fig.3.7 for location. 
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Figure 3.14: Coherence cube time slices at the different time intervals with 300ms TWT thickness. The cube is generated from above the top of the anomaly (2560ms two way 

travel time and below the base of anomaly 2860ms two way travel time). A black polygone is the trace of anomaly in surface plan-view. 
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slice at top of Brygge Formation (2560 ms two way travel time) and below the anomalous 

zone suggest that pattern of the polygonal faults are same and assumed that polygonal faults 

are present in the anomalous zone. 

 

3.5.2 Vertical distribution of anomalies 

Three dimensional analysis of the anomalous zone has been carried out in this study. As 

earlier stated eight continuous seismic reflections in subsurface were interpreted (Fig. 3.6). 

Integration of these interpreted seismic horizons with the regional framework shows that 

these horizons correspond to recent seabed (H1) Paleocene (H8) sediments of the Møre 

Basin. A series of RMS amplitude extraction (at the interval of 10ms) across the interval in 

which the anomalous zone is developed shows that the geometry of the high-amplitude 

anomalous reflections is different from the surrounding background reflections (Fig. 3.15). 

The RMS amplitude maps show a 10.45 km N-S trending cluster of high-amplitude 

anomalous zone that confined at the crest of Havsule Dome structure (Fig. 3.7). The high-

amplitudes in the anomalous zone are variable in planform, from simple linear to irregular 

lobate bodies. Anomalies are developed in fine sequence of mudstone with very fine 

limestone stringers of less than a meter to few meters (Möller et al., 2004) therefore, it is not 

possible to map these anomalies individually due to tuning effect.  

Seven green ellipses (labelled from 1 to 7) are marked on significant occurrence of high 

amplitude anomalies in order to assess the vertical extent and continuity of amplitude 

anomalies in the anomalous zone (Fig. 3.15). Each ellipse represents a cluster of enhanced 

amplitude anomalies. Ellipses 1 to 6 are consistent on all computed maps only ellipse 7 that 

was observed on figure 3.15C. This observation suggest that continuity of enhance reflection 

are the possible faults that acts as a routs for fluid migration from the deeper reservoir. 
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Figure 3.15: RMS amplitude maps extracted from the top to base of the anomaly. Seven green ellipses (Labelled 

from 1 to 7) are marked representing the location of continuous high amplitudes which may associated with the 

faults. 
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3.5.3 Continuity of seismic reflection 

Transformations of data from one form to another are common in signal analysis, and various 

techniques are used to extract significant information from time series (seismic data). 

Instantaneous phase attribute is used to establish the properties of the host lithology in which 

the anomaly is developed and frequency attributes used to identify seismic signal attenuation 

that may be due to gas accumulation and for identifying thin-bed tuning effect on seismic 

data (Chopra & Marfurt, 2007). In this study, Instantaneous frequency and phase volumes 

have been generated (Fig. 3.16 and Fig. 3.17 respectively) to analyses the continuity of 

seismic reflection inside the anomalous zone. Representative seismic profile through the 

anomalous zone displays continuity of seismic reflection (Fig. 3.16). The white zone on the 

instantaneous frequency profile indicates low frequency in the anomaly. Observation of low 

instantaneous frequency has been suggested to imply the presence of gas (Sheriff, 1975; 

Løseth et al., 2009; Foschi et al., 2014). The continuity of seismic reflection in instantaneous 

phase data (Fig. 3.17) suggests that high amplitude anomalies developed in the same 

lithology of the Brygge Formation.  
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Figure 3.16: Instantaneous Frequency is calculated at NNW-SSE seismic line displaying demonstrates a remarkable decrease in dominant frequencies within and below the high 

amplitude anomalous zone (dashed rectangle indicates the location of the anomalous zone) of high amplitude at the crest of dome in the Brygge Formation. See fig.3.7 for location. 
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Figure 3.17: Same seismic line in Figure 3.16 with Instantaneous Phase attribute indicates continue reflection in and outside the anomalous zone suggesting that same lithology 

within the surroundings. 
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3.5.4 Interval velocity  

Seismic acoustic impedance is the product of density and velocity of the sediments. The 

strength of the reflection of the events depends on the velocity. The base of the anomaly is 

concave upward and the reflection below the anomaly is consistent with the trend of the base 

of anomaly (Fig. 3.18). The reflections below the anomaly are bending 30 to 80 ms 

downward. The push down effect of the reflection is due to the presence of anomaly that has 

low velocity layer. The 220ms thick anomaly column produces the 30-80ms push down effect 

below the anomaly. 

Well 6404/11-1 in the study area is used to calculate the interval velocity of the anomaly. The 

well was drilled through Crater A (Fig. 3.17). The Opal-A in the Brygge Formation is eroded 

due to the slide. The base of the crater is at the 2717ms two way travel time that is equal to 

2197.6 meters and the base of the Brygge Formation is at 3065ms two way travel time which 

is equivalent to 2501 meter in depth, using the interval velocity 1744 m/s of the Brygge 

Formation (Fig. 3.18). Therefore, it is difficult to incorporate well information directly. 

Considering the interval velocity of the Brygge Formation (1744 m/s), measured two way 

travel time at two locations the top (2612ms and 2614ms) and base (3312ms and 3322ms) of 

the Brygge Formation approximately one kilometre away on the left and right sides of the 

anomaly and calculated the thickness of the formation that are 610 meters and 617 meters on 

the both sides respectively. It is assumed that the average thickness of the Brygge Formation 

is equal to the thickness of the formation at the location of anomaly (Fig. 3.20). Measured the 

two way travel time of the anomaly (220ms) and below the anomaly to the base of Brygge 

Formation (514ms) after subtracting the velocity push down effect (70ms). Calculated the 

thickness of the interval between the base of anomaly and base of the Brygge Formation (448 

meters). By subtracting this thickness from the average thickness of the Brygge Formation 
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gives the thickness of the anomaly (165 meters). From the two way time and thickness of the 

anomaly, calculated the interval velocity (1506 m/s) within the anomaly. 

The range of the interval velocities are used to calculate the interval velocity of the anomaly. 

The surrounding wells and published material, the interval velocity of the Brygge Formation 

varies from 1500 m/s to 1900 m/s in the study area (Table 3.1). The calculated interval 

velocity of the anomaly is plotted against the interval velocity of the Brygge Formation from 

the 1600 m/s to 1840 m/s, whereas the interval velocity of the anomaly is ranged from 1390 

m/s to 1590 m/s (Fig. 3.19). 
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Figure 3.18: Interval velocity of the anomaly is calculated by using the information from Havsule well, the interval velocity of the anomaly is 1506m/s and the interval velocity of 

Brygge Formation is 1744m/s. This calculation is based on the assumption that thickness of Brygge Formation is almost constant around the anomaly. See fig.3.7 for location. 
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Table 3.1: Interval velocity of the Brygge Formation in the different well in and near the study area. 

Well Name Location TWT (ms) 

TVD 

(mKRB) 

Interval Vel 

(m/s) 

6403/10-1 Solsikke 2745 2091 1662 

6403/10-U-1 Solsikke 2753 2074 1532 

6404/11-1 Havsule 2717 2501 1744 

6305/5-1 Helland Hansen 2065 1720 1804 

6405/10-1 Helland Hansen 2228 1867 1894 
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Figure 3.19: A graph showing the interval velocity between the Brygge Formation (Well 6404/11-1) and computed velocity inside the anomalous zone. 
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Figure 3.20: Calculated depth of the Brygge Formation in the three dimensional seismic survey acquired at the Havsule Dome. 
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3.5.5 Leakage indicators from anomalous zone  

Fault seals analysis can arise from juxtapositions of reservoir with a sealing lithology or 

development of a fault rock with high entry pressure for hydrocarbon (Watts, 1987; Smith & 

Møller, 2003; Stuevold et al., 2003). Smith and Møller (2003) stated that polygonal faults 

developed in the Ormen Lange field area have considerable influence on the reservoir as 

polygonal faults transacted main reservoirs in the field. Due to the complexity associated with 

understanding the sealing behaviour of polygonal faults, leakage through polygonal faults are 

not fully understood and therefore needs detailed research (Cartwright & Dewhurst, 1998; 

Cartwright et al., 2003; Forsberg & Locat, 2005; Gay et al., 2006; Cartwright et al., 2007). 

The origin of the polygonal faults system in the study area has not been addressed in this 

study. Rather I focus on seismic observations of leakage through polygonal faults in the 

anomalous zone. Five different horizons have been mapped in the Naust Formation. On the 

basis of their internal transparent to chaotic seismic characteristics these mapped reflectors 

are interpreted as mass transport deposits (labelled 1 to 5 in Fig. 3.5 and Fig. 3.6).  

RMS amplitude map generated in a 100 ms interval above the anomalous zone in MTD 1 

(Fig. 3.21) shows majority of amplitude reflections developed above the anomalous zone. 

These high amplitude reflections are not observed in the back ground. The distributions of 

these amplitudes reflections in the MTD are irregular. This observation suggests that MTD 1 

is porous and permeable and that the amplitude reflections could in fact represents possible 

leakage from the anomalous zone (Fig. 3.22). 
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Figure 3.21: RMS amplitude map extracted above the anomaly within a 100ms window to analysis high amplitude pattern in the seal/mass transport deposit that is indicating the 

leakage from the anomaly. 
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Figure 3.22: Seismic profile shows growth of anomalous zone developed at the Top of the Brygge Formation. A clear vanishing of anomalous zone observed against fault F2 and 

development of amplitude along fault F1. D1 is indicating the location of new amplitude anomaly. See fig.3.7 for location. 
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3.6 Discussion 

About 165m thick high amplitude anomalous zone observed along the Opal-A sediment of 

the Brygge Formation that developed at the crest of Havsule Dome. The following 

observations are made from the previous sections; 1) Amplitude anomalous zone has a 

negative reflection and sharp change in amplitude from the back ground, 2) Anomaly is 

developed at crest of Havsule Dome (Fig. 3.7), 3) has significant velocity push down effect 

ranging from few meters to tens of meters that reduce >20% seismic reflection strength 

relative to the background (Fig. 3.5), 4) Seismic blanking or attenuation observed below the 

anomalous zone (Fig. 3.13), 5) Interval velocity of the anomalous zone is less than interval 

velocity of the host sediments that is 1500 m/sec (Fig. 3.18), 6) Presence of low frequencies 

in the anomalous zone relative to background sediments (Fig. 3.16), 7) Continuity of 

sediments reflection in the anomalous zone shows that the anomalous zone was  developed in 

the same type of sediments in the background (Fig. 3.17). All these observations collectively 

support that the high-amplitude anomalous zone is a direct response to the presence of free 

gas within Opal-A sediments of the Brygge Formation 

The mechanism by which fluids move up in the sediments to a surface is not well constrained 

in the sedimentary basins (Gay & Berndt, 2007). During burial the sediment porosity 

decreases because of loading by overlying sediments.  The subsequent fluid expulsion due to 

sediment contraction is referred to as dewatering in fine grain sediments (Cartwright & 

Dewhurst, 1998) that possibly leads to further development of polygonal faults within the 

Brygge Formation. Once the polygonal faults are developed, they are considered to be a 

potential fluid conduit (Hustoft et al., 2007). Vertical migration of fluids through thick (up to 

700 m), low-permeability fine grained sediments cannot occur at high enough rate due to low 

porosity and permeability in fine-grained the Brygge Formation. 
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3.6.1  Migration and potential origin of fluids  

Mapping of the anomalous zone revealed an interesting observation that amplitudes are 

developed on crest of Havsule Dome conform to the structural closure. The gas fill layers 

exhibit monoclinal dip towards the south, with a generally low angle (typically less than a 

degree). The anomalies expand laterally towards up-dip (Fig. 3.7). A possible model is 

proposed for development of anomalous zone.  

The anomalous zone is fed by a conduit or combination of conduits (possibly polygonal and 

regional faults) from the deeper reservoirs and it charged or filled the lower most layer of the 

structure (Fig. 3.24) and started expanding by replacing water in that layer up to the spill 

point or a certain limit where water cannot be replaced due to hydrostatic pressure and then it 

reached a state of equilibrium. The layer was overpressured due to continuous fluid being 

feed from deeper reservoir through conduits. At equilibrium state of pressure, there were no 

further spaces left for fluid to migrate in to this layer so therefore fluid started accumulating 

in the upper layer and so on up to the present upper layer or even more. (Fig. 3.24) 

This model is supported by Carruthers and de Lind van Wijngaarden (2000) “invasion 

percolation theory”. In their model, fluid flow through focused pathways as a function of the 

rock capillary entry pressure at the timescale of secondary petroleum migration. Gas flow is 

generally assumed to be controlled by the balance between buoyancy and capillary forces and 

other minor viscous forces are neglected. Hydrocarbon generation and expulsion from mature 

source rocks would migrate further through the sedimentary system as a function of 

hydrocarbon column height and capillary entry pressure that build up due to presence of gas 

migration and replacement of water until a final balance between both forces is reached (Fig. 

3.23). The overpressure in that layer breach the underlying seal and charge/filled the lower 

layer along the migration paths (Fig. 3.23B and C) to a certain limit and so on at the end of 
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last layer that is indicated with labelled with 1 to 4 (Fig. 3.23D and E). This process took too 

much time and indicates the slow and steady gas leakage from deeper reservoir or small 

quantity of fluid from the deeper reservoir because the exploratory well 6404/11-1 in the 

study area was dry and abandoned suggesting that the deeper reservoir was not good enough 

for commercial purpose and just had small quantity of fluid that migrated from it to upper 

sediments to develop the anomalous zone.  

A hypothetical model to understand the development of anomalous zone in very fine 

sediments is presented in figure 3.25 where vertical permeability is lesser than horizontal 

(Kv<Kh) as flat stratigraphy with clay rich sediments (very thin layers of ooze material and 

silt/clay sediments) (Fig. 3.25a). Compaction and capillary entry pressure gas start moving 

upward due to buoyancy and capillary entry pressure to a certain limit (Fig. 3.25b). Charging 

of gas through CEP and possibly through faults and trapped at the crest of dome (Fig. 3.23 

and Fig. 3.24c). Accumulation and saturation of gas in thin layers generate pushdown effect 

on underlying layers and this effect increases with high saturation of gas. Fluid filled upward 

layers, resulting in column height increase and the reduction in pressure in the lower layer 

due to leakage from that particular layer into upper one (Fig. 3.23). 



Chapter 3    The Analysis of Concave upward Seismic Amplitude Anomalies 

182 

 

 

Figure 3.23: Seismic profile through anomalous zone shows development of anomalies in the fine 

clay/calcareous ooze sediments showing extent of amplitude anomalies towards updip in south direction . D and 

E are the interpretation of B and C images. See fig.3.7 for location. 
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Figure 3.24: The migration model is based on a simplified gas pressure curve composed of a temporary limited 

peak. Three different stages represent the build-up of high pressure and release of pressure. 
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Figure 3.25: A hypothetical model presented here to understand the development of anomalous zone in very fine 

sediments where Kv<Kh. (a) Flat stratigraphy with clay rich sediments (very thin layers of ooze material and 

silt/clay sediments). b) Compaction and capillary entry pressure gas start moving upward due to bouncy and due 

to overburden pressure of sediment load c) Charging of gas through CEP and possibly through faults and 

trapped at the crest of dome. Accumulation and saturation of gas in thin layers and saturation of gas generate 

pushdown effect on underlying layers and effect increased with high saturation of gas. 
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3.6.2 Concave Gas/Water Contact 

High amplitude anomaly is developed in fine sediments of the Brygge Formation. Well 

6305/1-1 drilled 654 meter thick succession of the Brygge Formation in the Ormen Lange 

field, south of the study area (Fig. 3.1) provides information about the stratigraphy. 150 

intervals of mud/silt and calcareous Ooze sediments of less than 1 m to few meters thick with 

average thickness of 4.5 m are reported in the well cuttings. Based on this analogy, 165 meter 

thick anomalous zone has approximately more than 30 intervals of the same lithology like 

varves deposits. The accumulation of gas in these thin layers acts like a lithogenic reservoir 

(Fig. 3.26a to f). On the seismic section, only four continuous reflections are mapped due to 

low seismic resolution. Chopra (2006) suggested that thin bed resolution depends on the 

presence of noise and consequent broadening of the seismic wavelet during its subsurface 

(chapter 2 methods, section 2.4). It is widely believed that gas dissolved in water or a few 

percent of a separate gas phase in water can make the pore fluid mixture very compressible 

(Chopra et al., 2006). Han and Batzle (2002) defined the fluid bulk modulus (K), the inverse 

of compressibility, would drop significantly and, in turn, P-wave velocity and impedance will 

decrease.  

As gas migrates upward, it is exposed to lower pressures and temperatures in an open media. 

In confined reservoir, both density and viscosity of gas decreased as its volume increases. So 

saturation of gas is directly related to gas volume in the porous media that is also effect on 

acoustic velocities of the rock (Foschi et al., 2014), 2014). The geometry of a gas in confined 

reservoir has not any direct relation with in situ pressure that developed due to presence of 

gas, it only increase the push down phenomenon due to reduction of seismic velocities 

(Avseth et al., 2005) 
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The presence of the thin layers filled of gas makes these layers behave as separate reservoirs 

or compartments for gas accumulation. Each layer has its individual pushdown effect due to 

presence of gas. So therefore; cumulative effect of the zone of each reservoir makes the shape 

of the anomaly concave upward instead of the normally flat gas/water contact (Fig. 3.26g) 

that observed in many sedimentary basins.  
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Figure 3.26: Accumulation and saturation of gas in thin layers and saturation of gas generate push down effect on underlying layers and effect 

increased with high saturation of gas. See fig.3.7 for location. 
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3.7 Conclusions 

This study documents for the first time the occurrence of high-amplitude anomalous 

reflections with a concave upwards shape geometry in the subsurface of the Møre Basin of 

Mid- Norwegian. On the basis of seismic attributes analysis of a 3D seismic data set, 

concluded that the anomalies are related to the occurrence of potential gas accumulation 

overlying a multiple subsurface landslides mainly the Storegga slide that act as a seal up to 

sea bed. Simple list of the main conclusions: 

• Zone of anomalies is located at the crest of the Havsule Dome 

• Polarity reversal is a major indication, the presence of gas in the zone of anomalies 

• The velocity push down below the zone of anomalies  

• Interval velocity of the zone of anomalies ~ 1506m/s  

• Leakage above the zone of anomalies  

• High amplitude above the zone of anomalies  

• Polygonal faults inside the zone of anomalies 

• The deep-seated faults could provide the migration path 

• No leakage evidence towards the crater 

• The basin is proven as a gas reservoir basin 

On the basis of these results, I conclude that  

 the HAA is possibly due to accumulation of gas  
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 The anomalous zone is explained as a dynamic accumulation of free gas that leaked 

upward through c1000m of polygonally faulted the Brygge Formation and Tare/Tang 

formation from the deep reservoir. 

 Origin of the concave upward gas/water contact is unknown, could be due to leakage 

or due to low permeability of reservoir diatomites. 

 Leakage from deep reservoir in this basin could have been caused by rapid unloading 

during Pleistocene-Holocene slope failure. 
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CHAPTER FOUR 

4.1 Introduction 

High amplitude anomalies are found in the Late Neogene/Quaternary strata in the Lower 

Congo Basin (LCB) (Gay et al., 2003; Gee and Gawthorpe, 2006a; Anka et al., 2009; Vemba 

et al., 2011; Andresen, 2012; Ho et al., 2012). These HAAs are identified due to their strong 

expression on seismic data. To explore the distribution and relationship of these anomalies 

with possible fluid flow mechanisms. Identified and examined several high amplitude 

anomalies at different stratigraphic intervals in the basin. The aims of this chapter are: (a) 

provide an overview of the tectonic and stratigraphic evolution of the Lower Congo Basin (b) 

summarize the structural elements of the study area (c) take an inventory of high amplitude 

anomalies at different stratigraphic units (d) classify the high amplitude anomalies (e) 

differentiate hydrocarbon related anomalies to non-hydrocarbon anomalies and (f) identify 

mini case studies for further study on fluid flow and possible leakage mechanisms. 

4.2 3D Seismic data set 

The architecture and stratigraphy of the Congo-Angola continental margins are fairly 

umderstood because of intensive hydrocarbon exploration activities in the basin (Gee et al., 

2006; Anka et al., 2009; Vemba et al., 2011). Hydrocarbon exploration in the Lower Congo 

Basin is still at its early stage and many areas remain unexplored. However, large oil and gas 

accumulations have been discovered during recent years and each area represents a prolific 

region for oil and gas production and focused fluid flow (Davies et al., 2004).  

 

The dataset for this study is a high-density seismic cube (HD3D) acquired in 1999. It is 

sampled at 6.25 m horizontally and 2 ms vertically for 4.5 s TTWT giving a total volume of 
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20 km x 24 km x 4.5 s. The dataset is considered one of the best processed 3D cubes 

worldwide.  Six exploration and appraisal wells and three side tracks were available for this 

study. The wells are composed of traditional well logs such as Gamma, Sonic, Density, 

Neutron and Resistivity. Most geological reports were extracted from the ‘Caprocks’ project. 

A large number of seismic horizons were supplied by sponsor. A number of these horizons 

were extended to the entire survey and infill horizons were tracked to enable a detailed 

stratigraphic slicing of the seals and hemipelagite intervals of the study area. 
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Figure. 4.1: Location map of the study area in the West African Margin (WAM). Exact location of the data set is 

not mentioned due to data confidentiality (Modified from Ho et al., 2012). 
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4.3 Geology of the study area 

 

4.3.1 Regional setting 

The study area is located on the Congo deep-sea fan on the continental margin of the Lower 

Congo Basin (LCB) (Fig. 4.1). The LCB is one of the many sub basins along the West 

African Margin which developed in the early Cretaceous (c.130 Ma) during the opening of 

the South Atlantic Ocean when the southern American plate was separated from the African 

plate (Larson and Ladd, 1973; Brice et al., 1982; György Marton et al., 2000; Gee et al., 

2006; Anka et al., 2010)(Mascle and Phillips, 1972; (Jansen et al., 1984) Karner et al., 

1997;Andresen et al., 2010;). The lower Congo Basin is delimited at its northern and southern 

part by pre-rift basement culminations (Broucke et al., 2004; Standlee et al., 1992).  The 

basin evolved in early Cretaceous (Neocomian) with a continental regime and ended in 

Tertiary with marine regime (Nombo-Makaya and Han, 2009). The syn-rift sequence is 

overlain by a succession of evaporites of Aptian age that have correlative on the SE Brazilian 

margins (Anderson et al., 2000; Broucke et al., 2004). Overlying the evaporites is a thick 

succession of Albian carbonates and Cenozoic clastic sediments (Lavier et al., 2001; Séranne 

and Anka, 2005; Liro and Dawson, 2000). The latter strata were deformed by salt-related 

extensional faults and structures which formed during gravity-driven thin-skinned extension 

(Duval et al., 1992). 

 

The LCB has a thick, Aptian syn-rift evaporite succession that has led to severe deformation 

of the overburden and facilitated the development of many minor salt basins (Brice et al., 

1982; Andresen et al., 2011; Marton et al., 2000). The rift phase was followed by a post-rift 

succession, initially dominated by carbonate deposition during Albian and clastic 



Chapter 4                  Distribution of HAA in hemipelagite sediments: A case study from LCB 

195 

 

sedimentation during the Late Cretaceous and Cenozoic (Fig. 4.2) (Seranne et al., 1992). The 

coarser fraction of the Cenozoic post-rift succession is captured by the submarine Congo 

(Zaire) Canyon (Fig. 4.1); hence, Cenozoic succession in the basin is comprised of fine-

grained mudstones (Pufahl et al., 1998; Uenzelmann-Neben, 1998; Anka et al., 2009).  

 

During Early and Late Miocene, turbidites and coarse-filled submarine canyons occur 

occasionally and are the main agent transporting coarser clastic sediments across the upper 

slope on the margin (Anderson et al., 2000). Consequently, Miocene strata were interbedded 

with hemipelagite and Mass-Transport Deposits (MTD) (Anderson et al., 2000; Sikkema and 

Wojcik, 2000; Broucke et al., 2004; Andresen et al., 2011). The upper Miocene to lower 

Quaternary succession in the LCB is deformed by intensive polygonal faulting in most salt 

mini-basins (Gay et al., 2004; Andresen and Huuse, 2011).  

 

The study interval is chosen in an area where fluid flow features are observed. Pockmarks 

connected with polygonal faults and underlying turbiditic channels have been previously 

reported in the basin (e.g. (Gay et al., 2006a; Ho et al., 2012). Gas hydrates, bottom 

simulating reflections, free gas zones, chimneys and pipes are also frequently reported along 

the Angolan margin from the Lower Congo and Kwanza Basins (Cunningham and Lindholm, 

2000; Gay et al., 2006b).  
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Figure 4.2: Simplified composite stratigraphic chart of the Lower Congo Basin. Note: Black rectangle represents 

the main interval of interest in this chapter. TS refer to turbiditic system and HD to hemipelagic deposits (from 

Broucke et al., 2004). 
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Figure 4.3: Regional stratigraphic framework established by the data provider company. It is based on all data from the study area and surroundings acreages. Five regional seal 

units (1 to 5) with interpreted seismic horizon to illustrate channels and sequence boundaries. 
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4.3.2 Local setting of study area 

The understanding of the depositional environment has been done through analyses of three 

dimensional seismic data of the study area. The seismic cube is located in the deep margin of 

the Lower Congo Basin and shows six structural and depositional elements (Fig 4.4), and 

related fluid flow features. Six key elements were observed: (1) Complex turbidite channel 

levees, (2) frontal splays or distributary channel complexes, levees and lobes, (3) Regional 

hemipelagic sequences (seal units) (4) Debris-flow and Mass transport deposits (5) channel 

overbank sediment waves that deposited sand lenses/ sheets and (6) faults. The lithology and 

reservoir architecture of each element depends on the interaction between sedimentary 

process, paleo sea-floor morphology, and sediment grain-size distribution. The relationship of 

these elements with development of high amplitude anomalies and related fluid flow features 

are the main objective of this chapter. 
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Figure 4.4: Schematic depiction of principal depositional elements of a deep continental margin with examples from the study area (Modified from Posamentier and Kolla, 2003) 
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4.3.3 Source Rock 

Hydrocarbons have been found in onshore and offshore of the Lower Congo Basin (LCB). 

The best-understood hydrocarbon occurrences in the province are in the Tertiary reservoirs 

associated with sand distributed by turbidity flows (Brownfield and Charpentier, 2006; 

Andresen et al., 2011). There are two types of sources rock in the LCB; the Cretaceous and 

Tertiary source rocks. 

 

The main source rocks are in the Lower Cretaceous bituminous shales of Bucomazi 

Formation which were deposited during the syn-rift phase. This lacustrine source rocks 

comprise shales and marls, and are c. 1,500 m thick (Cole et al., 2000).  The Bucomazi 

Formation consists of clastic sediments with a high total organic content (TOC) and hydrogen 

index (HI), mostly oil prone type I Kerogen of >5% to maximum of 20% TOC (Brice et al., 

1982; Schoellkopf and Patterson, 2000) On the other hand, the Palaeocene to Eocene 

Landana Formation is considered as a second source rock. The Formation consists of deep-

water shales with a TOC of 3-to-5%, similar to those of the Iabe Formation. The mid-

Oligocene to Miocene Malembo Formation generally has TOC contents of 1-2%; the lower 

and upper parts of the Formation contain from 2-5% of TOC in the form of Type II and Type 

II/III kerogens mostly considered as oil-gas prone (Schoellkopf and Patterson, 2000). 
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Figure 4.5: N-S Seismic profile showing main stratigraphic subdivision of the study area and the main interval of interest i.e. the Waste zone between horizons H130 to H250, 1 

to 4 are the regional seal units (modified from Broucke et al., 2004), TS: Turbiditic sequence; HD: Hemipelagic sequence, and MTD: Mass transport deposit.X1: Oligocene 

Turbidite channel, X2: Miocene turbidite channel. 
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Table 4.1: Seismic stratigraphy of the study area with detailed geological and seismic features. 

Unit Age Horizon Geological Features Seismic observation Lithology 
Average 

Thickness (m) 

4 

d 

Pliocene 

to recent 

Seabed Burrows, pock marks No HAAs 
Shales dark and green in colour, sometimes laminated 

beds, loose sediments 
85 

c H000 Tier-2 polygonal fault system 
High amplitude 

anomalies, PFS 
Very fine, mud rich sediments 100 

b 

U
p

p
er

 M
io

ce
n

e 

M
es

si
n

ia
n
 

H010 
Transparent and continues 

laminated beds 
No HAAs Claystone interbedded with siltstone 146 

a H045 

Tier-1 polygonal fault system, 

pock marks, small scale channels. 

MTD at base. 

HAAs but not in 

MTD-5 
Claystone interbedded with siltstone 218 

T
o

rt
o
n

ia
n
 

3 H090 
Transparent and continues 

laminated beds. MTD at base. 

Few HAAs observed 

in MTD-3 
claystone/fine-grained sand stone beds interbedded 200 

2 

d 

M
id

d
le

 M
io

ce
n

e 

S
er

ra
v

al
li

an
 

H100 
Transparent and continues 

laminated beds. MTD at base. 
No HAAs Claystone, interbedded with siltstone 125 

c H130 Mud waves. MTD at base. 

HAAs along faults 

and stratigraphic 

traps 

Claystone olive grey to greenish colour, slightly silty 

and calcareous 
150 

b H200 Complex turbidite channels 
HAAs in Channel 

levees 

Claystone brown in colour. More silty to very fine 

sand, strings of siltstone. Turbidite channels 
220 

L
an

g
h
ia

n
 

a H250 Complex turbidite channels 
HAAs in sand with 

turbidite system 

Sand, fine to medium, bad to moderated sand in 

turbidite and claystone in the back ground 
165 

1 

Lower 

Miocene 

H290 

 
Transparent and continues 

laminated beds. MTD at base 

Hard reflections and 

HAAs along the 

faults 

Claystone interbedded with siltstone 500 
Late 

Oligocen

e 

H490 
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4.3.4 Seismic stratigraphy of the study area 

A generalized stratigraphic column produced by the operator for the study area is shown in 

(Fig. 4.5). The seismic interval is subdivided into several units (Table 4.1) based on the 

occurrence of two different seismic signatures: (1) moderate amplitude, parallel, continuous 

reflections interpreted as hemipelagic deposits as interpreted by Ho et al (2012) and Broucke 

et al 2004 in the data from same basin (HD3, 2); and (2) high amplitude, low continuity 

packages encased in low-amplitude intervals interpreted as turbidite systems (TS4, 3) (Fig. 

4.3 and 4.5) (Ho et al., 2012; Broucke et al., 2004). In accordance with the 3D seismic data 

cube and stratigraphic column, 10 seismic horizons have been identified that separate 

packages with hemipelagite deposits and turbidite systems. The hemipelagite deposits are 

composed of four transparent and continuously mapable intervals and are interpreted as 

regional seal units by the operator and similarly by Ho et al, 2012 and Broucke et al., 2004 

(Fig. 4.3 and 4.5). These seal units are between the seabed and seismic horizon H000, 

Horizon H090 to H100, Horizon H100 to H130 and Horizon H290 to H490. The detailed 

lithostratigraphy for the Neogene is based on Vignau et al. (2000). The studied interval is 

subdivided as follows (Fig. 4.5) and all the ages are corrected through calibrating with 

following the confidential well data and Gradstein et al (2005). 

4.3.4.1 Unit 1 

This unit is an approximately 500ms TWT-thick interval of hemipelagite and turbidite 

deposits (H490 to H290) of Late Oligocene to Lower Miocene age (28.1-15.97Ma). The 

interval is composed of claystone and well bedded fine-grained sandstone (confidential well 

reports). 
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4.3.4.2 Unit 2 

The Middle Miocene (15 Ma– 11.008 Ma) comprises the unit between H290 to H100, and is 

subdivided into four sub-units, very continuous clay-rich sediments,. There are two 

seismically-prominent mass transport deposits. Lithological description of the interval took 

from confidential well reports. 

The scope of research comprises in the following studied intervals from base of regional seal 

unit 4 (H490) to the overlying strata at the base of regional seal unit 3 (H130) (Fig. 4.3). The 

interval H130 to H250 is termed as “Waste Zone” (Fig. 4.5). A waste zone in this chapter is 

defined as the zone that contains high amplitudes which are possibly related to hydrocarbon 

but not up to commercial discovery. The detailed stratigraphy of these subunits is as follows; 

a. This sub interval is between seismic horizons H130 to H100 of approximately 

150ms TWT thick sediments. The top of this unit is composed of transparent and 

continues seismic reflection and mass transport deposit at its base and interpreted 

as a regional seal 3 (Fig. 4.3). 

b. The stratigraphy of the waste zone (H200 to H130) is composed of greenish to grey 

clay stone have some glauconitic, specks of pyrites, traces of forams and some 

sand lenses of sub-round to sub-angular grain size, loose sand lenses are cemented 

with silica. 

c. The interval between seismic horizons H250 to H200 has four different storeys of 

channel levee complex of turbidite composed of alternativing less than one meter 

to ten of meters thick beds of sands of brown to dark brown in colour.  The channel 

levee complexes are greenish claystone to silty sandy very sine sediments with 

beds of well sorted sand of medium fine grain size with sand lenses. 



Chapter 4                  Distribution of HAA in hemipelagite sediments: A case study from LCB 

205 

 

d. The stratigraphy of this unit (H290 to H250) is composed of turbidite channel levee 

complexes of lower Miocene age. Mainly clay stone to sand stone alternative beds. 

The claystone beds are of greenish colour with siltstone grain size from fine to 

medium. The sand beds are composed of colourless sand, sub-rounded to angular 

with some shaly lens. 

 

4.3.4.3 Unit 3  

This unit (H100-H090) is comprised of transparent and continues seismic reflections with 

continues lamination of different sedimentary layers. Lithology of these layers is 

claystone/fine-grained sand stone beds interbedded. Mass transport (MTD-3) deposit is 

observed at the base of this interval of late Miocene age (11.63 to 7.25 Ma). 

4.3.4.4 Unit 4 

Seismic horizon H090 to seabed has been assigned an age from Lower Miocene to recent 

(7.25Ma– 0Ma); comprises of hemipelagic sequence and turbidite system. This unit is further 

divided into four sub units (Fig. 4.5) on the bases of continuous seismic reflection. Two 

polygonal sub-units have also been observed in the study interval and reported by Ho et al., 

(2012), Gee et al., 2006, Gay et al., 2006. The unit (H000-Seabed [U4d]) overlying the 

polygonal fault tier (H010-H000 [U4c]) contains continuous internal reflections with low-to-

moderate acoustic amplitudes. The interval U4d has been reported to comprise hemipelagite 

(Vignau et al., 2000) until the base of the unit which occurs at the top of a polygonal fault 

tier-1 as defined by Ho et al., (2012), Andresen et al., (2010), Gay et al., (2006) and 

Cartwright and Dewhurst, (1998). The base of polygonal fault tier-1 is observed at the 

seismic horizon H010 (U4b) at approximately 200ms TWT below the seafloor. The unit U4b 
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underlying the polygonal fault tier contains continuous internal reflections with low-to-

moderate acoustic amplitudes. Another polygonal fault tier- interpreted between seismic 

horizons H090 and H045 approximately 500ms TWT below seabed. 

In figure 4.5, the Tertiary fan sediments are characterised by discontinuous and continuous 

high amplitude reflections, complex geometries, with numerous terminations and lateral 

discontinuity in the channel levee complexes which suggests the deposition and erosion of 

turbidite deposits. The high amplitude anomalies within these different storeys of channel 

levee complexes are possibly due to the presence of hydrocarbon (confirmed from 

confidential well reports). 

Abrupt changes in channel geometry are often observed as channels enter slope depressions 

flanking salt intrusions. Channels approaching salt diapirs are observed to rapidly broaden 

and thicken, often forming distinctively-shaped structures in planview. These broad, 

depositional systems are characterised by high seismic amplitudes and relatively high sand 

contents. They form a recently and poorly defined slope reservoirs class described as a 

weakly confined channels. Transitions between the two types of channel style are often 

characterised by weaker seismic amplitudes and steeper channel gradients which indicate 

erosional flow behaviour typical of hydraulic jumps (Gee et al, 2006). 

4.3.5 Seismic acquisition artefacts 

The vertical stripes on the seabed two-way time map in the inline direction are interpreted as 

seismic acquisition footprints (Fig. 4.6) which mimick the acquisition track. Footprints are 

commonly seen as amplitude stripes in time slices produced from a seismic data volume 

(Marfurt et al., 1995, 1998). Vertical stripes are normally removed during the processing of 

seismic data through different filtering techniques e.g. time-slice enhancement using dip 

filtering in FK domain, and median filtering of amplitudes from slices (Vishnoi et al, 2012). 
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There is evidence of fluid flow manifested on the seabed from few meters-to-few kilometres 

wide and comprise pockmarks, seep mounds, acoustic flares (Judd and Hovland, 2007), 

mounded structures (Anka et al., 2012), gas chimneys and seismic pipes (Cartwright et al., 

2007; Løseth et al., 2009). Figure 4.7 illustrates a few pock marks on the seabed whilst Fig. 

4.7A and 4.7B shows a close relationship of these pockmarks with deep-seated reservoirs of 

Miocene turbidite channels and a bottom simulating reflector (BSR) (Ho et al., 2012). 
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Figure 4.6: Seabed time structure map overlain with time derivated dip map with main geological elements such as sediment waves, pockmarks and salt diapirs. Seabed 

pockmarks are mostly rounded have direct or indirect relationship with deepseated reservoirs or hydrocarbon related high amplitude anomalies. The sediment transport direction 

(Slope direction) is NNE-SSW. Almost E-W furrows are sediment waves perpendicular to the slope direction. Blue dotted line shows extent of salt diapir. The red arrows at top 

of the map indicated seismic acquisition footprints, Red dot are pockmarks. 
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Figure 4.7: Seismic profile showing current seabed pockmarks (A, B).For location Fig. 4.6 



Chapter 4                  Distribution of HAA in hemipelagite sediments: A case study from LCB 

210 

 

Sixteen pockmarks were interpreted at the present day seabed (Fig. 4.6). These pockmarks 

are typically isolated but are aligned in a NE oriented trail. All these pock marks are 

originated at different sedimentary levels, interpreted as positive high amplitude anomalies. 

Two seismic profiles passing through isolated pockmarks that originated from channel and 

high amplitude anomaly respectively (Fig. 4.7A and Fig.4.7B). The detailed interpretation 

about formation and development of these pockmarks is beyond the scope of my research but 

the presence of these pockmarks leads to draw a conclusion that the fluid flow is still active 

in the study area and these faults developed due to high pressure in the study interval (Gay et 

al, 2006). 

Shallow marine ocean bottom currents are observed and reported in many basins world 

widely (Stoker et al., 2005.). These current mostly influences both sediment deposition and 

erosion on continental margins and also in deep ocean basins (Gee and Gawthorpe, 2006b). 

The effects of these contour varies from  geostrophic currents, slope dips and particularly  

marked  on  slopes  and  basin  plains  within and  adjacent to  continental  margins,  where  a  

variable  sea-floor bathymetry  may  locally intensify  and focus  current  activity. Sediment 

drifts are anomalous, sediment bodies that commonly form positive features on the seabed 

and typically accumulate in areas swept by bottom currents and where there is a change in 

gradient of the sea bed, such as at the base of continental slopes. These types of ocean bottom 

currents are observed at the current seabed (Fig. 4.6) and paleo seabed (Fig. 4.14) at the deep 

margins from 500 to 1500 meter water depth.  
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4.3.6 Structural setting of the area 

The study area can be divided into structural domains associated with features such as salt 

diapirs, structural anticline, pockmarks, chimney, turbidite channels and mass transport 

deposits (Ho et al., 2012, Anderson et al., 2010; Gay et at., 2004; Charlou et al., 2004). 

Oluboyo et al (2013) described three major structural domains of Lower Congo Basin (1) 

dominated by normal faults, (2) containing predominantly isolated salt diapirs and normal 

faults and (3) dominated by series of linear NEE-SSW trending elongate salt walls. The study 

area straddles the post-salt structural domain boundary separating up-dip extension and mid 

slope translational features (Ho et al., 2012).  

The extension/translation domain boundary is defined by the downslope transition from the 

most distal of a series of NW-SE striking and seaward dipping roller faults and down built 

salt stocks and walls (Broucke et al., 2004; Andresen et al., 2000).  

 

4.3.6.1 Polygonal Faults 

Over large areas of the Lower Congo Basin, mud-dominated upper Miocene to lower 

Quaternary sequences, 700m (+-50m) thick, are affected by closely spaced small extensional 

faults displaying a polygonal pattern in planview (Ho et al., 2012 and Gay et al., 2006 and 

2007). Two tiers of polygonal faults are observed in Unit 4 of study area that consist of small 

scaled normal faults with throws from 5 to 20m and small spacing of 100 to 500m (Gay et al., 

2006). The presence of polygonal fault systems seems to be controlled by the fine grained 

nature of the faulted sediments and their mineralogy; in particular a high smectite content is 

considered to play an important role in the development of such structures (Dewhurst et al., 

1999, Cartwright et al., 2011 and Cartwright 2007).The faults are often arranged in 
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stratigraphycally bound layers characterized by a distinct spacing between faults (Lonergan et 

al., 1998), which could be due to different lithologies within the layers (Dewhurst et al., 

1999). 

 

4.3.6.2 Fault Patterns 

Faults are the main possible conduits for fluid flow in many sedimentary basins worldwide 

especially in the deeper subsurface where more lithified rocks are present (Ligtenberg, 2005). 

To understand the relation of faults and possibly related fluid flow expressions in the term of 

high amplitude anomalies, I reviewed all the faults in the study area, and based on our result, 

I have recognised three distinct types of fault system: 

1. Tectonic faults related to salt tectonics e.g. crestal collapse fault above salt anticlines 

and synclinal fault within withdrawal basins. 

2. Polygonal faults organised into two distinct tiers (beyond the scope of research). 

3. Radial faults arranged around salt diapir in the northern part of the study area (beyond 

the scope of research). 

The tectonic faults are grouped into four sets: (a) Group 1, NNW oriented faults located in 

north eastern portion of the study area (b) Group 2, NE oriented faults oriented normal to 

group 1 faults (c) Group 3, NW oriented faults that are isolated set of faults and (d) Group 4, 

WNW oriented faults merging with radial faults near salt diapirs. The four sets are illustrated 

with reference to a coherence slice (amplitude extraction of the coherence volume) at the 

H290 horizon (Fig. 4.8).  The faults that belong to group 1 and 4 have curving plan form 

trajectory and coincide with radial faults near salt diapir. They are all normal faults with 

throws ranging from a few metres to c. 50m. 
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The relationship between the four tectonic fault sets and the salt-related folds in the study 

area will be discussed in the next Chapter 5. The trends of the fault sets have a strong 

correlation between the main fold axes and flanks.  However, the growth histories of the 

various folds have not been established because of the limited coverage of the survey, and the 

link between the timing of the faults and the development of structural relief of the folds has 

not been undertaken yet. 

The radial faults are regarded as a separate fault set because they have markedly contrasting 

characteristics to the tectonic faults. They are notable for displaying a curving planform 

trajectory, with intersection against the salt body in a near-orthogonal intersection (Fig 4.8). 

They have very low throw to length ratios (0.004-0.005), maximum throws 10-15m and were 

active during the Plio-Pleistocene.  

The H290 coherence time slice illustrates the orthogonal intersection of the radial faults and 

the salt margin. The radial faults define the local σ2 direction and there is clearly a zone of 

interaction some 3km away from the salt margin. The arrows indicate the position of onset of 

curvature on tectonic faults that have been bent by the zone of influence of the salt structure. 
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 Figure 4.8: Dip map of top of regional seal unit 4 (H290) showing different local and regional (Tectonic) faults 

in the study area. Four types of normal faults are interpreted on the basis of their orientation and associated 

feature (salt diapir) indicated by numbers 1-4. (1) NW-SE fault, (2) SW-NE fault, (3) NNW-SSE fault and (4) 

WNW-ESE fault. Lower Miocene channels are affected by type 1 faults. The small arrows indicate curvilinear 

nature of fault types 1 and 4 that merging with radial faults developed due to salt activity. R= Radial faults. 
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Figure 4.9: Throw-depth (T-Z) plots for representative faults from the three groups defined. The position of the 

faults is marked as A, B , C and D in Fig. 4.8. 
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4.4 Well calibration 

High amplitude anomalies are identified and mapped in different layers of Unit 2 and 

particularly in the waste zone [(H130 to H290) Fig. 4.10]. Calibration of these mapped high 

amplitude anomalies with the available well data is performed.  

Due to limited seismic data and relative distribution of seismic high amplitude anomalies 

with their fluid flow features, high amplitude anomalies are generally avoided during well 

planning due to risk hazards (Andresen, 2012; Cartwright, 2007). Six exploration wells 

drilled in the study area; however, only three of the wells were made available for this study. 

Only one well name W41 out of these three well, penetrates through seismic high amplitude 

anomaly. 

 

High amplitude anomaly in seismic interval U2b (seismic horizon H200) related to channel 

levee complex (CLC) is calibrated with exploratory well W-41 as an interval of 2-3m fine 

sand/silts, thin bedded, with gas shows (Fig. 4.10A).  W-71 shows no obvious levee facies, 

but the erratic Gamma ray (GR) may indicate thin beds of silt/fine sand, generally below GR 

resolution. We have not conducted a detailed petrophysical analysis of the channel levee 

complex interval, and this calibration is based on operator well reports. The levees clearly 

extend for >1km from the channel and the seismic facies suggests that there are local 

thickness and facies variations within the levee, as might be expected (Gee et al., 2006). 

 

 A zoomed-in section (Fig. 4.10B) of the calibration at the W41-1 well shows the clay-

dominated interval in which the levee occurs. The levee facies is represented by two GR 
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spikes, and these probably match the soft reflection. However, a shift of 10ms due to 

stretching errors on well depth-to-time conversion will exactly match with seismic data (Fig. 

4.10B). The synthetic trace is too low frequency to give a good match to real seismic traces. 

The uppermost reservoir is seen as striking blocky sand just beneath the seismic horizon 

H200.  



Chapter 4                  Distribution of HAA in hemipelagite sediments: A case study from LCB 

219 

 

 

 

Figure 4.10: (A) High amplitude anomaly calibrated with well W41 showing the clay-dominated interval in 

which the levee occurs. (B) The levee facies is represented by two GR spikes, and these probably match the soft 

reflection, with a shift of 10ms (due to stretching errors on well depth-to-time conversion). The synthetic trace is 

too low frequency to give a good match to real seismic traces. See Fig. 4.14 for location of seismic profile   
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4.5 Classification of high amplitude anomalies 

Detailed mapping indicates a pronounced concentration of high amplitude anomalies in the 

waste zone (Fig. 4.5) and seismic interval between H130 to H250. The high amplitude 

anomalies are widely distributed in six depositional elements in the study area (see section 

4.3.2 Local setting for more detail). HAAs are developed above the main accumulations in 

Oligocene-Miocene turbidite channel complexes. There are many examples of HAAs 

illustrating the different local structural and stratigraphic contexts. Many of them are located 

on crest of an anticline but there are a significant number associated with levees that do not 

conform exactly to structure. Many HAAs are associated with large faults (Fig. 4.8).  

High amplitude anomalies are classified on the basis of their plan form geometry, extent, 

morphology and seismic characteristics. Therefore, HAAs have been grouped into four 

different types: 

1. Linear anomalies 

2. Sub-Circular anomalies 

3. Patchy anomalies 

4. Discrete filamental anomalies 

The nomenclatures of the high amplitude anomalies are representing the type of anomaly, 

stratigraphic unit and number of anomaly in that interval. For example P1b where P 

indicates for patchy anomalies, 1 represent the interval and b is anomaly. 

4.5.1 Linear high amplitude anomalies 

Linear, high amplitude anomalies are defined as isolated, long, and narrow features on 

amplitude maps (Fig. 4.11). They have aspect ratios (max. length: max. width) of > 6, are 

ten(s) to hundreds of meters long and less than 30 m wide. Linear anomalies are associated 
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with faults, along the turbidite channel, lithological barrier. These types of anomalies are 

occurring in the northwest to western part of the study area (Fig. 4.16).  L2d and L2f linear 

anomalies were interpreted beneath seismic horizon H200 (Fig. 4.11) and are acoustically 

soft anomalies.  

4.5.2 Sub-Circular high amplitude anomalies 

Sub-circular high amplitude anomalies can be regular or irregular, near circular or elliptical in 

planform. They can be morphologically flat but most of the time they are associated with 

near-circular depressions. A representative example of sub-circular amplitude anomalies (C2a 

anomaly) is presented in figure 4.12. This amplitude anomaly is located at the top of horizon 

H200. 
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Figure 4.11: NE-SW oriented seismic profile showing example of linear anomalies. These anomalies are soft HAAs. See Fig. 4.16 for location of seismic profile
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.  

Figure 4.12: Example of sub-circular high-amplitude anomalies identified in the waste zone. The seismic profile shows C2a anomaly developed along faults F1 and F2. F1 fault 

cut through the waste zone and merged at the base of polygonal fault system tier-2. See Fig. 4.14 for location of seismic profile 
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4.5.3 Patchy anomalies 

Patchy high-amplitude anomalies are defined here as anomalies which are isolated, 

irregularly shaped, patchy, and with rough geometry on map view. Twenty-two patchy 

anomalies are identified in the waste zone but they are more prominent in the interval 

between U2d and U2c (Table 4.1). The planform geometry of patchy anomalies is not 

symmetric, detailed observations showed finger like features that emerges from the main 

anomaly e.g. P1a and P2a (Fig. 4.14 and Fig. 4.16). In addition the patchy anomalies are 

associated with incised turbidite channel levee complex systems. Furthermore, the Patchy 

anomalies vary from a few tens of meters to hundreds of meter in length and with diameter 

from hundred meters up to two kilometres. Patchy anomalies are often limited to structural 

highs, regional faults and the Oligocene and Miocene turbidite channel levee systems (Fig. 

4.8). 

 

4.5.4 Discrete filamental anomalies 

Discrete filamental anomalies are positive high amplitude anomalies observed at the 

northwest side of regional seal unit 4 (Fig. 4.3). On RMS amplitude maps, they sub-circular 

anomalies linked by curvi-linear lower amplitude anomalies. The pattern is clustered in two 

groups, curvi-linear and patchy. The curvi-linear anomalies are emergent from patchy 

anomalies or originated from patchy anomalies. These anomalies do not follow any fault 

trend (Fig. 4.13). Rather, they cluster on N-S trend, suggesting a close spatial relationship 

between the anomaly forming process and the stratigraphic heterogeneities.  The suggestion 

here is that fluid ascent to the interval may have been through a network of porous bodies.  
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Figure 4.13: N-S seismic line across filamental anomalies shows positive paired seismic reflection. The anomalies are cuspate or conical and scattered. Anomalies are developed 

at the crest of anticline and above Oligocene channel levee systems (X2). The smallest anomalies are the filaments, and the larger anomalies are the sub-circular anomalies. See 

Fig. 4.21 for location of seismic profile 
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4.6 Root Mean Square (RMS) amplitude maps 

Root-Mean-Square seismic attribute maps are computed in order to visualise the stratigraphic 

features associated the anomalies. The RMS maps were computed for interval such as H130-

H200, H200-H250, H250-H290 and H290-H490. High amplitude anomalies are typically 

manifested as subtle variations in amplitude strength, phase shift, or polarity reversal and are 

easily overlooked (for more detail see chapter 3).Interpretation of these RMS amplitude maps 

provided additional information on the spatial distribution and depositional pattern of the 

anomalies. For example, the sinuous geometry of some of the anomalies can only be 

visualised in time/horizontal slices rather than vertical seismic sections  

 

4.6.1 HAAs in H130-H200 

Anomalies in this interval include disseminated and patchy anomalies. The patchy anomalies 

include circular (P1a and P1b), elongate/tabular (P1f and P1g) and concave-shaped anomalies 

(P1c). The average perpendicular distances between the anomalies are c. 6 km, c. 22 km and 

c. 4 km between P1a and P1b, P1f and P1g, and P1d and P1f.  

The patchy anomalies are restricted to the interval to the east of the map (H130–H200) and 

are associated with NNE-SSW oriented channels and individual faults of NW-SE strike (type 

1) and NE-SW strike (Type 2) (Fig. 4.8). On the contrary, disseminated anomalies at the west 

side of the map are sandwiched within the Mass-transport deposits units where they are 

randomly distributed. These anomalies are interpreted as being in coarse units associated with 

remobilised and slumps of channel levee deposits. An obvious N-S clustering of the 

anomalies is observed closest to the MTD boundary.  
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Figure 4.14: RMS amplitude extraction map in the waste zone below regional seal unit 3 below H200-H130 

interval. Low amplitude values are in black and high-amplitude values are from yellow to red. Patchy, linear and 

sub-circular amplitude anomalies are developed in this interval. Location of high-amplitude anomalies is 

marked as P1a, L1a and C1a for patchy, linear and curve anomalies respectively. 
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Figure 4.15: NW-SE oriented seismic profile passing through type 3 and type 2 anomalies P1a and C1b respectively. Both anomalies are laid above the upper-middle Miocene 

turbidite channels system (ca. 12 Ma) and developed below base of regional seal unit 3.There is no HAA observed above this interval. X2 is turbidite channel. For line location 

figure 4.14. 
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4.6.2 HAAs in H200-H250 

Observed HAAs developed in this interval are linear (Type 2) and patchy (Type 3). These 

two types of anomalies are interpreted along the main middle Miocene turbidite channels 

except linear anomalies (type 1). Patchy amplitude anomalies (P2a, P2b, P2c, P2d and P2e) 

are hosted in levees of the mud filled NNE-SSW oriented channel (Fig. 4.17 and Fig. 4.18). 

In terms of orientation relative to the north, the anomalies trend 0
0
 to 45

0
. 

 
Patchy anomalies 

are also observed along the two NE-SW channels and channel lobes. Only C2a is bounded by 

faults F1 and F2 (Fig. 4.12). C1c anomaly is bounded by F1 and it is located at the top of 

C2a. On the contrary, linear anomalies (L2a, L2b, L2c, L2d, L2e and L2f) at the south and 

west side of the map are observed at the southern end of channel levee system (Fig. 4.16). 

The northwest oriented linear anomalies are possibly associated with group 3 faults (Fig. 

4.11).  
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Figure 4.16: RMS amplitude extraction map between H250 and H200 in Unit 2b. The map shows positive 

cluster of linear and patchy high amplitude anomalies. Low amplitude values are in black and high-amplitude 

values are yellow to red. Location of high-amplitude anomalies is named P2, L2 and C2.The red dotted line 

shows extend of main reservoir turbidite channels. 
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Figure 4.17: N-S oriented seismic profile passing through patchy and linear high amplitude anomalies that directly lies above the upper middle Miocene turbidite channels 

system (ca. 12 Ma). For line location figure 4.16. 
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Figure 4.18: E-W oriented seismic profile showing through patchy high amplitude anomalies lies above upper middle Miocene turbidite channels system (ca. 12 Ma). For line 

location figure 4.16. 
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4.6.3 HAAs in H250-H290 

This interval is composed of seven (1 to 7) NE oriented and parallel turbidite channels. 

Linear and patchy anomalies are developed along the levees of channel 4, 6 and 7 (Fig. 4.19). 

The other channels (1, 2, 3 and 5) are not associated with any HAAs. Discrete amplitude 

anomalies are developed between two channel 4 and 6 (Fig. 4.19). The sand bodies in these 

turbidite channels are main producing reservoirs in the LCB (Andresen et al., 2011; Anka et 

al., 2012). Due to the complexity of the turbidite channels, it was not possible to differentiate 

high amplitude anomalies in these channel sands more precisely; however, the RMS 

amplitude map shows the spatial distribution of the channel sand geometry (Fig. 4.19).  
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Figure 4.19: RMS amplitude map extracted between H250 and H290 (Top of regional seal unit 4). The map 

shows positive cluster of linear (L3a) and patchy (P3a) anomalies. Curve shaped HAAs are observed along the 

lower Miocene channel levee system. High amplitude anomalies are associated with only channel 4 to 7 and no 

amplitude along channel 1 to 3. The red-yellow colour indicates HAAs. 
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Figure 4.20: Northwest- southeast seismic profile shows different hemipelagite deposits. There is high amplitude anomalies associated with lower Miocene channel levee 

system, only Patchy HAAs developed into the levees or lobes of turbidite channels.4 and 6. See Fig. 4.19 for location. 
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4.6.4 HAAs in H290-H490 

Anomalies are found in the central and NW portion of the study area. These anomalies are 

discrete group of linear and patchy anomalies in plan form (Fig. 4.20). All the linear 

anomalies are developed in cluster on N-S trend that following direction of major turbidite 

channels (Fig. 4.19). Patchy anomalies are mixed with linear but they are only developed 

above Oligocene turbidite channels (Fig. 4.22). 
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Figure 4.21: RMS amplitude map computed between horizon H290 and H490 (Regional seal unit 4). The map 

shows positive cluster of linear (LH4a) and patchy (P4a) high amplitude anomalies. Curve shaped (C4a) HAAs 

are observed along the channel. The discrete or filamental HAAs are at the north –west part of the study area. 

The red-yellow colour indicates HAAs. 
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Figure 4.22: North South oriented seismic profile shows transparent hemipelagite deposits of regional seal unit 4. There is no high amplitude anomalies refer in the perfect 

seal. The top of Seal unit 4 (H290) is high-amplitude channel systems and a heterogeneous Mass-Transport Deposit (MTD) occurring at bottom of the succession (H490), 

Location of seismic line is shown in Fig. 4.21. 
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Figure 4.23: Northeast and west oriented seismic profile passing through two patchy high amplitude anomalies in the regional seal unit 4. South oriented line shows different 

interpreted horizons. P4a and P4d are the patchy HAAs. Paired reflections are disseminated in this unit. The back ground of these HAAs shows no amplification of seismic 

reflection possibly represents a seal unit. Location of seismic line is shown in Fig. 4.21. 

Oligocene turbidite channels 
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4.7 Seismic observation and characterization of HAAs 

Hydrocarbon indicators observed in the Lower Congo Basin includes flat spots, amplitude 

anomalies, dim spots, velocity push down effects, seismic acoustic blanking and polarity 

reversals (Fig. 4.24) Pockmarks are also observed on current seabed (Fig. 4.6) and paleo 

pockmarks are also reported by many researchers in the area (Ho et al., 2012; Gay et al., 

2006; Andresen et al., 2012). The presence of hydrocarbon in the porous sediments cause 

changes in the acoustic properties and thus leads to developed DHIs that can be easily 

identified on seismic section (Brown 2010, 2004). 

 

4.7.1 Flat spots 

The term “flat spot” is used here for the reflective boundary between different fluids, either 

gas-oil, gas-water or water-oil. Two different flat spots were recognised in the study area. 

The Flat spots are associated with a channel levee and a stratigraphic trap that developed at 

the top of horizon H130 (Fig. 4.24 and Fig. 4.25). 

Flat spot shows a high amplitude anomaly (P2b) accompanied by local compaction in sand 

units of mud-filled mid Miocene channels (Fig. 4.24). This high amplitude anomaly may be 

developed due to a porous sand layer in the levee and charged with hydrocarbons leaked from 

Oligocene-Miocene turbidite channels that are proven main reservoirs in the LCB. A 

lowering of acoustic amplitude immediately below the flat spot resulted in low frequency 

shadow zone. Such low frequency or acoustic blanking are commonly reported under gas 

accumulations and confined to a couple of cycles below the gas accumulations (Loseth 2009; 

Cartwright et al., 2007; Lee and Watkins., 1998; Sheriff and Geldart., 1983)  
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Figure 4.24: Seismic profile passing through patchy anomaly P2b showing flat spot (FS) that developed in 

levees of mud filled late Miocene channel. See Fig. 4.15 for location of seismic profile. 
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Figure 4.25: NE-SW seismic profile showing patchy anomaly (P1a) developed in a stratigraphic trap developed 

above main turbidite Miocene channel. MTD above the anomaly is possibly a good seal as there is no amplitude 

anomalies observed in it. See Fig. 4.14 for location of seismic profile 
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4.7.2 Velocity push downs 

Down-bending of stratal reflections occurs beneath high amplitude anomaly P2b (Fig. 4.24) 

and P1a (Fig. 4.25) but similar down-bending does not occur beneath the other anomalies. 

Down bent reflections are generally lower in amplitude than their lateral continuations. The 

down-bending interval typically persists vertically for >20ms TWT beneath the P2a anomaly 

(e.g. Fig. 4.24) and for anomaly P1a is >50ms TWT (Fig. 4.25). From the geometry and the 

close spatial relationship between the anomalies and the downbent zone, the downbent 

regions is interpreted as being due to a velocity push down effect (Brown, 2011), resulting 

from the cumulative low velocity effect of the vertical stack of seismic traces. An alternative 

explanation that the down bending is real was discounted because the down bending is 

exclusively observed beneath well-developed anomalies. Similar association of pronounced 

acoustically-soft amplitude anomalies and velocity push down has been described from 

regions of shallow gas accumulation or CO2 storage (Arts et al., 2004a; Boait et al., 2011). 

 

4.7.3 Blanking or dimming 

Attenuation of seismic signals, termed here as “blanking” (Brown, 2011; Sun et al., 2009), or 

“acoustic distortion” (Andresen et al., 2012) are commonly observed beneath high amplitude 

anomalies (Fig.2.4A and B, Chapter 2 for detailed). Dimming of signals begins immediately 

beneath extent of amplitude anomalies, and the background amplitude response is regained 

immediately outside of this zone of dimming. According to Sun et al (2012), Andresen 

(2012) and Løseth et al. (2009), dimming can be attributed to gas accumulation in the 

sediments and is widely observed in association with gas chimneys and other gas-charged 

structures (Sun et al., 2012, Heggland et al., 2005). 
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Seismic blanking or dimming observed beneath high-amplitude anomalies (P2b and P1a), 

may result from accumulation of free gas in these anomalies which trap seismic signals (e.g. 

Foschi et al., 2014; Cartwright et al., 2007; Loseth et al., 2009; Berndt, 2005; Heggland, 

1998; Huuse et al., 2010; Judd and Hovland, 2007). Presence of hydrocarbons, particularly 

gas saturation in amplitude anomaly as low as 1–5% often produces seismic amplitude 

reflection of more than 30% saturation (Judd and Hovland, 1992) and causes scattering and 

absorption of the seismic signal, producing dimming beneath their locations. Seismic 

blanking was only observed below patchy anomaly (Fig. 4.25). About more than 20 meters 

thick and 1000 meters wide anomaly P1a generated 200ms TWT seismic blanking effect. In 

contrast, the P2b anomaly which is about 40 meters thick and more than few thousand meters 

wide generated more than 200ms TWT seismic blanking. The dimming phenomenon is only 

in the thickest part of the high amplitude anomaly which is usually associated with free gas 

saturation (Fig. 4.26). Seismic blanking is interpreted as indicators of the presence of free gas 

in any system (Loseth et al., 2009; Brown, 2004).  Blanking is not visible below the other 

anomalies P2a, P1b, P1c and L2a. Although seismic dimming  is not only the indicator of 

free gas in the anomaly, in some cases blanking actually represents homogeneity in lithology, 

reflected as lack of strong acoustic impedance contrasts between layers.  

 

4.7.4 Seismic attributes 

Seismic attributes helped to understand and classify seismic events within seismic traces 

based on their frequency and amplitude content. These attributes are helpful to differentiate 

seismic events that are not possible on normal seismic data. 
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4.7.4.1 Instantaneous frequency 

Instantaneous frequency is useful for identifying abnormal attenuation that may be due to gas 

accumulation and for identifying thin-bed tuning effect on seismic data (Chopra and Marfurt, 

2007). The seismic profile from instantaneous frequency volumes display low frequencies 

which produced by high-amplitude anomalies P1a and P2b (Fig. 4.27). As the gas reservoirs 

attenuate high frequencies more than in the rock without gas saturation (Brown, 2004). The 

low instantaneous frequencies immediately below these anomalies are possibly due to 

presence of gas in the observed anomalies. 
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Figure 4.26: Cross line seismic profile passing through two representative high-amplitude anomalies P1a and P2b that developed immediately above the main Miocene (X2) 

and Oligocene (X1) turbidite channels. See Fig. 4.16 for location of seismic profile 
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Figure 4.27: Seismic instantaneous frequency profile computed on seismic volume. Seismic profile passing through high-amplitude anomalies P1a and P2b. Low frequencies 

displayed in and below these anomalies are associated with velocity drop in the presence of gas. See Fig. 4.16 for location of seismic profile 
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4.8 Discussion 

The discussion begins with a summary of the key observations followed by a discussion of 

uncertainties in the interpretation and the main implications for hydrocarbon exploration in 

this region. Since the wells available for the study did not penetrate the HAAs, interpretation 

rely solely on the acoustic expression, geometry, and the regional context provided by 

published works. 

 

4.8.1 High amplitude anomalies related to Hydrocarbon 

 

4.8.1.1 Structural and stratigraphic control on HAAs 

Four types of high-amplitude anomalies are occur in the waste zone. Pockmarks on the 

seabed formed in response to an active phase of fluid flow. Their distribution is influenced by 

salt diapirs and associated minibasins and fault systems (Fig. 4.6 and 4.7) (Gay et al., 2007; 

Andresen and Huuse, 2011; Anka et al., 2012; Ho et al., 2012). The deep, high-amplitude 

anomalies in the waste zone are also controlled by an anticlinal fold and faults (Ho et al., 

2012). Patchy anomalies P1a, P1b and C1c are controlled by northwest-to-southeast 

elongated anticlines whose crests sit at approximately 1.2 kilometres depth (Fig. 4.28). P1a 

and C1c are controlled by deep-seated Group 1 normal faults (Fig. 4.8). The concentration of 

sub-circular anomalies, e.g anomaly C2a is also associated with an anticlinal structure in the 

deeper stratigraphy (Fig. 4.29). Discrete or filamental anomalies developed in the regional 

seal Unit 4 are only confined to the anticline (Fig. 4.30 and Fig. 4.31). 
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Figure 4.28: RMS amplitude map between H1200 and H130 overlain with TWTT structure contour. P1a, P1b 

and C1c anomalies are confined to an anticlinal structure. Contour interval 20 ms in TWT.  
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Figure 4.29: Two way travel time contours overlay on RMS amplitude map of seismic interval between H250 

and H200. Map show that P2a anomaly is developed at the flank of shallow structure. Contour interval 50 ms in 

TWT. 
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Figure 4.30: Two way time contour map overlay on RMS amplitude map of interval H290 and H250. Contour 

interval 20 ms in TWT. 
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Figure 4.31: Two way time contours H200 overlay on RMS amplitude map of interval H490 and H290. Contour 

interval 50 ms in TWT. 
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4.8.1.2 Orientation of anomalies  

High-amplitude anomalies show different long-axis orientations as illustrated on the RMS 

amplitude maps in Fig. 4.14, 4.16, 4.19 and 4.21. The majority of the anomalies are oriented 

in a northerly direction but most of patchy anomalies are oriented NNE to SSW along the 

trend of the turbidite channels (Fig. 4.16). A similar NNE trend exists for the majority of sub-

circular anomalies. The sub-circular anomalies are possibly developed along sand units of the 

Miocene turbidite channels (patchy anomaly C2a, Fig. 4.16). The linear and discrete 

filamental anomalies do not follow any particular trend (Fig. 4.21). These anomalies are 

possibly, not associated with hydrocarbons as their acoustic behaviour is different from the 

other anomalies. In this study, the anomalies show a predominant NNE to SSW trending 

orientation that is the same orientation of present seabed sediment deposition, which suggest 

a similar dynamic relationship between anomalies and turbidite channels. 

 

4.8.1.3 HAAs related to channel levee complex 

The turbidite reservoirs in the study area are indicators that thermogenic fluids ascended from 

deeper source rocks and migrated from one channel to the next and are progressively 

concentrated in the upper Miocene channels (Andresen and Huuse, 2011; Andresen et al., 

2011; Anka et al., 2012; Ho et al., 2012). In general, most deepwater reservoirs are turbidite 

sands, channels, and sand lobes originally deposited in a slope or basin setting (Mike, 2012). 

The acoustic properties of seismic anomalies observed in the study interval are directly 

associated with underlying Oligocene and Miocene turbidite channels (Berndt et al., 2003; 

Stuevold et al., 2003). Possibly the presence of hydrocarbon in turbidite sands caused a 

change in the acoustic properties, and thus direct hydrocarbon indicators  like flat spot, 
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velocity push down, acoustic blanking are identified. Curvy and patchy anomalies occur at 

different stratigraphic levels in the waste zone (Fig. 4.5) but are only associated with turbidite 

channels possibly because they tend to have a high net-to-gross ratio (Mayall et al., 2006). 

The clustering of high-amplitude patchy anomalies in in the channel levees is due to the 

erosive nature of the channels. Therefore, anomalies are only developed where there is high 

net to gross ratio. 

 

4.8.1.4 HAAs related to mass transport deposits 

Four (MTD1 to MTD4) mass transport deposits were interpreted to understand the 

distribution of high-amplitude anomalies. RMS amplitude maps between different seismic 

horizons H130-H200) and H290-H490 were computed for key intervals to highlight the 

internal character of MTDs. The computed maps showed a cluster of high amplitude 

anomalies (Fig. 4.14) included four patchy anomalies. In the contrast there is no high 

amplitude anomalies developed in MTD1 at the base of regional seal unit 4 (Fig. 4.22). The 

presence of high amplitude anomalies was depicted only in MTD2 inferred as presence of 

siliciclastic emanating from the sand bed/sheets of channel levees. 

 

4.8.1.5 HAAs related to faults 

In many basins of the world Syn-depositional major faults located above turbiditic sand 

bodies may periodically act as main vertical fluid escape pathways (Lonergan et al., 2000, R). 

The study area is affected by different type tectonic and salt related radial faults during the 

Cenozoic era. The polygonal faults are developed in two discrete tiers, separated by a thin 
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interval, with no faulting other than the tectonic sets. The faults are organised into conjugate 

pairs, which is uncommon amongst polygonal fault systems globally. They have throws 

ranging from 1-10m. They commonly cross-cut the master faults, but do not extend across the 

entire tier. They are considered to be a space-filling system of faults, whose propagation 

ensures the most complete fragmentation of the volume into fault blocks. Earlier work 

suggesting that polygonal faults do not degrade seal integrity, but can be reactivated under 

external agents and form fluid ascent routes (Bunz et al., 2003; Stuevold et al., 2003). 

Only patchy anomalies are developed in the study interval between seismic horizons H130-

H200, H200-H250 and H250-290 along those tectonic faults that were passing through the 

main turbidite channel reservoir of Oligocene-Miocene age. The migration of fluids through 

the impermeable Oligocene–present cover leads to high amplitude anomalies development, 

free gas accumulation beneath hydrates, occurrence of HAAs over turbiditic channels and 

pockmark formation at the seabed.  

4.8.2 Positive high-amplitude anomalies 

Paired seismic reflections, termed here as filamental anomalies, are observed in Seal Unit 4. 

Linear and filamental anomalies occur as a tuned, positive-negative reflection amplitude 

doublets. This character suggests: a) accumulations below the minimum seismic resolution 

for Seal Unit 4; b) anomalies are larger than the minimum seismic resolution but are highly 

tuned into positive-negative wavelet doublets particularly when dealing with vertically 

clustered anomalies. Concave-shaped type-2 anomalies and marginal areas of type 3 

anomalies may also reflect a significant seismic tuning effect. The associated velocity push 

down which occurred preferentially in the centre of the imaged anomalies may give 

important leads on their nature and development (Fig. 4.32). 
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Figure 4.32: Discrete set of filamental high amplitude anomalies are only observed northwest part of the study area. The two Patchy anomalies (P4a and P4d) observed in this 

interval are associated with faults and channels. See Fig. 4.21 for location of seismic profile. 
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Figure 4.33: Discrete filamental anomalies have strong relations with underlying and overlying reservoir units, which include channels, associated levee deposits and Mass 

Transport Complexes. See Fig. 4.16 for location of seismic profile 
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Figure 4.34:  Seismic profile showing distribution of high amplitude anomalies through interval between H130 

and H290. (A) North south seismic section has high amplitude anomalies associated with Stratigraphically and 

faults with relation to underlying Miocene turbidite channels. (B) Interpreted section of seismic profile. See Fig. 

4.16 for location of seismic profile 

MTD2 

Seal unit 3 
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Figure 4.35: Seismic profile showing distribution of high-amplitude anomalies through interval H130 and H290. 

(A) East west seismic line shows high-amplitude anomalies associated with faults and MTDs. HAAs have 

strong relation to underlying Miocene turbidite channels. (B) Interpreted section of seismic profile See Fig. 4.16 

for location of seismic profile.  

MTD2 

MTD3 

Seal unit 3 
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4.9 Conclusion 

Careful analysis of 3-D seismic data has revealed the occurrence of different types of high-

amplitude anomalies in the overburden succession (Miocene to Holocene) of the study area. 

The four types of high-amplitude anomalies include linear, sub-circular, patchy and discrete 

filamental anomalies developed in the Miocene sediments. The high-amplitude anomalies 

generally occur in the middle and upper Miocene successions and represent shallow gas 

accumulations and/or diagenetic features associated with fluid flow through the sediments. 

The main conclusions are: 

1. The documented high-amplitude anomalies distributed in the Lower Congo Basin are 

developed in hemipelagite sediments and accumulated in to porous sediments and 

trapped against faults (Fig. 4.33 and Fig. 4.34). 

2. The anomalies are direct hydrocarbon indicators. 

3. High-amplitude anomalies associated with push down effects indicate the presence of 

gas and mostly type 1, 2 and 3are related to gas and typefour are possibly not related 

with any hydrocarbon. 

4. Present day seabed pockmarks reflect the dynamic fluid flow in the system. I attribute 

the development of VACs to dominantly vertical gas migration across a multilayered 

low permeability reservoir interval (Fig. 4.35), where individual layers are filled 

successively from bottom-to-top, and where small normal faults provide conduits for 

cross-stratal migration. 
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CHAPTER FIVE 

5.1 Introduction 

The study area for this chapter is a continuation of the previous chapter. The amplitude 

anomalies observed in the waste zone reveal a systematic, upward leakage of hydrocarbons 

(particularly gas) in a fine-grained sedimentary succession. The hydrocarbons leaked from a 

main Oligocene and Miocene turbidite channel levee system that is a proven reservoir in this 

basin. The main aim of this chapter is to determine the mechanisms by which fluids migrated 

from deep reservoirs and led to the development of HAAs. A second aim is to establish the 

hydrodynamic behaviour of identified hydrocarbon-related anomalies through their shape. 

High amplitude anomalies as pockmark belts, giant pockmarks and gas chimneys in the shallow 

part from the basin are evidence of past and present-day leakage of liquid and gaseous 

hydrocarbon from deep-seated reservoirs (Cunningham and Lindholm, 2000; Pilcher and Argent, 

2007; Kuhlmann et al., 2011) and in particular offshore the Congo margins, where evidence of 

direct leakage from the reservoirs to the seafloor have been found in the Lower Congo Basin 

(LCB) (Gay et al., 2006; Gee et al., 2006; Andresen and Huuse, 2011; Anka et al., 2012; Ho et 

al., 2012). 

The primary objectives of this chapter are to establish the formation processes of high-amplitude 

anomalies that were selected for further analysis at different levels of stratigraphic intervals for 

hydrocarbon leakage mechanism from main Oligocene-Miocene reservoir to waste zone in the 

Lower Congo Basin. These results are used to provide to explain leakage mechanism in the 

basin. 
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5.2 Mini case studies 

Four types of high amplitude anomalies are observed in the study interval and particularly in to 

waste zone. Only patchy and sub-circular anomalies are selected for further fluid flow analysis 

because these anomalies have few ten meters in thickness and hundreds of meters in width where 

these high-amplitude anomalies are developed into channel levees, stratigraphic and faults traps 

(Fig. 5.1, Fig. 5.2 and 5.3). All these anomalies are linked with different styles of plumbing. The 

plumbing system of hydrocarbons has involved HAAs that have vertical and/or laterally direct or 

some evidences of connection with deepseated reservoirs. The connectivity between HAAs and 

the reservoir was established through various bypass systems that developed in low permeable, 

fine-grained sedimentary layers. The study area presents strong evidence that high-amplitude 

anomalies associated with channels levee system and gully have leakage pathways that 

associated with vertical cluster anomalies. 

Analyses of three dimensional seismic data gave a better understanding of distribution of high-

amplitude anomalies in the waste zone. On the basis of their plain view shape and geometry, 

location and lateral extent, the following three examples from hydrocarbon-related amplitude 

anomalies are selected for further analysis to better understand the hydrocarbon plumbing 

mechanism and formation of anomalies. 

The selected mini case studies (CS) are; 

1. CS-1: High amplitude anomalies developed along the channel levee complex in seismic 

interval H200-H250 (Fig. 5.1) 
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2. CS-2: Patchy high amplitude anomaly (P1a) developed as a linear future at seismic 

interval H130-H200 (Fig. 5.2) 

3. CS-3: Patchy high amplitude anomalies developed along the faults in the northeast side 

of the study area between seismic horizons H130 to H200 (Fig. 5.2). 

5.3 Stratigraphy of the study area 

An overview of the regional geology is given in Chapter 4 Section 4.2. 
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Figure 5.1: Root mean square amplitude map extracted between seismic horizon H200 and H250 (A) Shows 

high amplitude anomalies in the channel levee system of middle Miocene and Early-Mid Miocene erosive 

channel levee complex (red dotted boundary) with its flood plane extend (B) zoomed section of Channel levee 

system selected as a mini case study 1. 
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Figure 5.2: Root mean square amplitude map extracted between seismic horizons H130 and H200. The map 

shows high amplitude anomalies associated with mass transport deposit (MTD) on the west, linear anomaly in 

the middle and with fault bounded high amplitude anomalies on east part of the area. Linear anomaly and fault 

bounded high amplitudes are selected for further understanding fluid flow migration mechanism as a case study 

2 and 3 respectively. White rectangles indicate mini case studies, pink curve is turbidite channel and black lines 

are faults. 
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Figure 5.3: Root mean square amplitude map extracted between seismic horizon H130 and iso proportional slice 

H130_3 to shows mini case study 1. Case study is further divided from north to south into four different 

portions A, B, C and D. Amplitude anomalies developed into levees of turbidite channel system. Anomaly in c-

portion terminated against fault. 
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Figure 5.4:  Zoomed RMS amplitude map shows extend of mini case studies 2 and 3. For location Fig. 5.2 
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5.4 Distribution of amplitude anomalies 

High-amplitude anomalies observed at different stratigraphic intervals of middle Miocene 

successions are termed as the “waste zone” (Fig. 4.5). The waste zone was selected to 

understand the development of amplitude anomalies and their associated various types of 

fluid flow features. The overburden of the study area is composed of a 1.5 to 2 km thick 

interval of late Miocene to recent hemipelagite sediments which are above proven reservoirs 

of the Oligocene-Miocene turbidite channel levee system (Fig. 4.3 and 4.5) (Broucke et al., 

2004; Andresen and Huuse, 2011; Andresen et al., 2011; Andresen, 2012; Anka et al., 2012; 

Ho et al., 2012).  

A variety of hydrocarbon-related high-amplitude anomalies (Fig. 4.11 to fig. 4.13) occur in 

the middle Miocene interval including two types of anomalies; (1) Sub-circular and (2) 

Patchy anomalies. Patchy and sub-circular anomalies are developed in the waste zone of 

middle Miocene succession; a thick interval of hemipelagite sediments with turbidite 

channels and mass transport deposits (Fig. 4.5).  

Three different mini case studies have been selected for further analysis of high-amplitude 

anomalies to establish fluid flow mechanism that formed them (Fig. 5.1 and 5.4). 

5.4.1 Patchy anomalies along channel 

A small channel runs north to south and deflects around a salt structure in the northeast. 

Amplitude anomalies are observed only along 12 kilometers section in the levees of the mud-

filled channel (Fig. 5.5). The central channel is acoustically dim and interpreted as a mud-

plugged whereas the levees are bright and are probably hydrocarbon-filled sandbodies. 

Amplitude anomalies along the channel (Fig. 5.5) are developed in a northwest-south 

oriented anticline. The structure map in depth shows that the anomalies in the levees (mud 
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plugged channel) are only bright in the area of structural closure. This led to the conclusion 

that; masking of non-bright sandstones/porous units may have further lead to underestimates 

of the connectivity and hampered a correct seal assessment but may also provide a classic 

example of a DHI. A structural contour map in depth has been computed over the H200 

horizon with 50m interval to confirm location of channel levee complex. High amplitude 

anomalies lie between contour values 1350-1400 (Fig. 5.5). 

The extent of the amplitude anomalies from the axis of channel vary from a few hundreds of 

meters to two kilometers (especially amplitude anomaly P2a in fig. 4.1) (Fig. 5.6). The 

thickest amplitude anomaly (P2b) is measured as being 21ms thick and has a 7ms TWT push 

down effect. In general, at the margins of anomalies, there is a tuned and paired response 

with a subjacent hard event, but where thickest, the levee unit has a separation into the soft 

event, and an underlying flat hard event interpreted as the HWC. The vertical resolution of 

the data is c. 7m, so the separation occurs where the thickness of the reservoir unit in the 

levee (HC filled) is > than c. 8-10m. 

Amplitude anomalies observed along the channel have a strong spatial relationship with the 

underlying Late Oligocene and Early Miocene main turbidite reservoirs (upper and lower 

reservoir) (Fig. 5.7). The sharp, lateral margins imply a rapid cut-off of fluid content 

(indicated by arrows in Fig. 5.8), from hydrocarbon-filled to pore water. If the HC are gas, as 

seems likely, then low saturations consider as a CS-3 could result in the amplitude response. 

The sharp cut-off may not be a dramatic change of saturation but could indicate only a few 

percent of saturation difference (Knight et al., 1998). 

Seismic acoustic features like soft reflections, flat spots, velocity pushdown effect, and 

blanking below anomalies leads us to conclude that patchy anomalies are developed due to 

presence of gas in the porous and permeable layers of sand units in the levee.  
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5.4.2 Patchy anomaly in gully feature 

The selected high amplitude anomaly observed in middle Miocene stratigraphic Unit 2b (Fig. 

4.5) is in porous sediments beneath the regional MTD/Seal Unit 3 (Unit 2d). The anomaly is 

developed in porous and permeable sediments deposited in the gully (Fig. 5.11) that cross cut 

mud-wave features (Fig. 5.2). The linear feature is below the MTD so it is not due to sliding 

blocks of the MTD (Fig. 5.9). No direct leakage evidence is observed above amplitude 

anomaly which implies that the MTD above the anomaly is a regional seal Unit 3 and is 

acting as a prefect seal (Fig. 5.10).  

The polarity of the anomaly is opposite of the seabed and is interpreted as a soft event. 

Seismic acoustic features like flat spots, velocity push down effect and dimming of seismic 

reflections (Fig. 5.12B C, and F) below anomalies are interpreted as being due to the presence 

of gas in the host sediments. Finger-type features (labelled 1 to 9) emerge from the anomaly 

on RMS amplitude map extracted between seismic horizon H130 and iso-startal horizon 

H130_3 about 30ms two way time interval (Fig. 5.12A). The zoomed RMS amplitude maps 

of the anomaly illustrate the imbibition effect and help us to understand its development 

(Chapter 6 for more details). The representative seismic profiles (B to F) display seismic 

blanking, soft anomalies (HAAs) that surround the main anomaly and are directly above the 

main turbidite reservoir channel. 
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Figure 5.5: Structure contour map in depth showed that high-amplitude anomalies in the levees (mud plugged channel levee system) only bright at structural closure. High 

amplitude anomalies lies are confined at crest of anticlinal structure. The channel is virtually invisible at deeper side due to lack of hydrocarbon accumulation. Structural 

contour map in depth computed over H200 horizon with 50m interval to confirm location of channel levee complex. High amplitude anomalies lie between contour values 

1350-1400 meter of  c. I 50 meter thick 

 

Channel-levee complex 
virtually 

invisible due to lack 

of HC charge 
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Figure 5.6: RMS extracted between 20ms thick interval from iso-proportional seismic horizon H200_2 (30ms 

below from H200) and Iso-propportional seismic horizon H200_5 (50ms below from H200) , showed a extent of 

mud filled channel levee system (black dotted line) in the waste zone and related Early Miocene turbite channels 

(yellow dotted line). Black dotted line marked the boundary of bright amplitude that developed in the levees. 

Channel continuation is invisble on north and south side due to hrdrocarbon charging limit (Fig. 5.5)  
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Figure 5.7: Overview of amplitudes along Channel Levee Complex: A) RMS amplitude map computed from 

mapped horizon H130 to 30ms below showing amplitude distribution along the channel. B) E-W seismic profile 

shows possible migration path from overlying the Lower Miocene turbidite channel. C) Zoomed section of 

seismic profile shows amplitude variation through VACs. MTD: Mass transport deposit 



Chapter 5           Hydrocarbon plumbing system: in the Lower Congo Basin 

275 

 

 

Figure 5.8: High-amplitude anomalies associated with CS-1 that developed above the main turbidite reservoir. 

Local compaction observed at the thickest part of anomaly. Possible four pathways are mentioned here and 

labelled 1 to 4. Amplitude anomaly truncated very small fault. 
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Figure 5.9: A minimum amplitude map computed between horizon H130 to iso-stratal horizon H130_3 about 

30ms thick time interval showing orientation of channel and faults.  Linear feature of high amplitude is 

developed at the mapped horizon H130. A channel is mapped from North south cross cut by faults. Time 

structure contour of Horizon H130 showing local highs (25ms contour interval). SW: Sediment waves; LA: 

Linear Anomaly; MTC: Mass Transport Complex; MTD: Mass Transport Deposit. 
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Figure 5.10: N-S seismic profile showing LA developed at north south closure. The MTD is acting like as a seal. HAA: High amplitude anomaly; MTD: Mass transport 

deposits. For location Fig. 5.9 
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Figure 5.11: Time-dip map of seismic horizon H130 showed geological features, faults and north-south oriented 

turbidite channels. The parabola is indicating location of P1a patchy anomaly that is independent mini case 

study 2. 

Location of CS-2 
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Figure 5.12: The selected high amplitude anomaly observed at early Pliocene sediments below a regional 

MTD/Seal unit 3. Linear feature of the linear anomaly is still under research but interpreted as a gully cross 

cutting mud wave features. The linear feature is below the MTD so it is not due to sliding block of MTD. NW-

SE seismic profile showing the flat spot and the anomaly is a soft reflection. A) The zoomed RMS amplitude 

maps of the anomaly illustrating the imbibition effect and help us to understand its development. The 

representative seismic profiles (B to F) are displaying/showing seismic blanking, soft anomalies (HAAs) that are 

observed in the surroundings of main anomaly and directly above the main turbidite reservoir channels. 

 

5.4.3 Fault bounded anomalies 

The near-offset, time-migrated three-dimensional seismic volume was interpreted in great 

detail over the northeast structural domain. The northeast domain has two fault arrays; type-1 

faults which strike NW-SE, and type-2 faults which strike NE-SW (for more detail chapter 4 

section .4.3, Fig. 4.14 and Fig. 5.9). In CS-3, the lateral terminations of gas-related patchy 

and sub-circular anomalies are bound by normal faults. NNE to SSW oriented turbidite 

channels are displaced by normal faults. High amplitudes are bound by faults and locally 

conform to structure (Fig. 4.28). Hydrocarbons are only trapped by those faults passing 

through the deep turbidite channels (Fig. 5.13, Fig. 5.15 and 5.17). 
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Figure 5.13: Example of distribution of high amplitude anomalies in the waste zone (H290 to H130). Amplitude anomalies observed above Miocene Turbidite main reservoir.  

All these anomalies developed in stratigraphic interval between H220 and H130 and trapped against normal faults have few meters throw.
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Figure 5.14: seismic line showing examples of high-amplitude anomalies developed against normal faults between stratigraphic interval between H250 and H130 in the waste 

zone. 
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Figure 5.15: seismic line showing examples of high-amplitude anomalies developed against normal faults 

between stratigraphic interval between H250 and H130 in the waste zone.
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Figure 5.16: Seismic profile show amplitude anomalytrapped against a normal fault tjhat pass through deeper main turbidite reservoir. 
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Figure 5.17: E-W seismic section passing through LA and fault bounded HAAs showing possible feeding points from the deeper reservoirs possibly through faults and stratal 

paths for migration of hydrocarbon. For location Fig. 5.9 

W E 
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Figure 5.18: N-S seismic profile showing accumulation of high amplitude anomalies confirming the local structural high and associated with faults. 

N S 
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5.5 Discussion 

5.5.1 Fluid flow features in Waste Zone 

The waste zone succession comprises a 1.0 km thick interval of Late Oligocene to Middle 

Miocene hemipelagic sediments (Fig. 4.5 and Table 4.1). The overlying sediments are about 

the same thickness of 1.0 Km from the Late Miocene to recent. The overlying sediments 

comprises two tiers of polygonal faults with focused fluid flow features including; present 

day sea floor pockmarks, Pliocene-Pleistocene stacked pockmarks, and Miocene pockmarks 

(Giresse, 2005; Gee et al., 2006; Gay et al., 2007; Andresen and Huuse, 2011; Andresen et 

al., 2011; Vemba et al., 2011; Anka et al., 2012). These fluid flow features commonly affect 

the stratal reflections in the both sedimentary successions. High density three dimensional 

seismic data reveal numerous types of fluid flow features related to amplitude anomalies in 

the waste zone. Mostly patchy and sub-circular anomalies are observed in the thicker part of 

waste zone. The interval is mainly composed of fine-grained sediments embedded within 

Oligocene and Miocene turbidite channel levee complexes (Séranne and Nzé Abeigne, 1999; 

Anderson et al., 2000; Cole et al., 2000) that are proven hydrocarbon reservoirs in the Lower 

Congo Basin (Gay et al., 2006; Andresen, 2012; Anka et al., 2012; Ho et al., 2012). The 

waste zone is bounded by continuous, seismically transparent intervals of few meter 

thickness which are interpreted here as regional seal unit because no high-amplitudes are 

observed in the interval. 

Andresen (2012) observed fluid flow features in the Lower Congo Basin and described a 

variety of fluid flow features like high amplitude pies, paleo and present day pockmarks, 

high-reflectivity zones, and seismic chimneys. Many other authors have presented work on 

fluid flow in Lower Congo Basin (Gay et al., 2007; Anka et al., 2012). Ho et al. (2012) 

presented conceptual model for the evolution of fluid venting structures in term of pipes and 
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pockmarks that developed due to slow and then fast fluid flow expulsion and which were 

sealed afterward with fine-grained sediments. All of the present day pockmarks at the seabed 

(Fig. 4.6); (Ho, et al 2012; Andresen, 2012; Gay, 2007) reflect current fluid flow activity in 

the study area.  

Direct hydrocarbon indicators such as bright spots, flat spots, velocity push downs, polarity 

reversals, and seismic blanking are sporadically observed within the waste zone that 

developed within the turbidite mud-filled channel (Fig. 5.1 and 5.3), gullies (Fig. 5.2) and 

fault bounded traps (Fig. 5.4). DHI’s in the Miocene succession indicate the presence of 

hydrocarbons (probably gas) in the system (for more details chapter 4, section 4.5.2). 

The high resolution seismic profiles through high-amplitude anomalies reveal thick 

accumulation of acoustically semi-transparent to transparent reflection composed of different 

levels of mass transport deposits (MTDs) and single to multi-storey turbidite channel levee 

systems (Fig. 5.18). High-amplitude anomalies observed in the main channels and their 

extended levees that reach ten to a few hundred meters in width, for further understand 

hydrocarbon migration. 

 

5.5.1.1 Vertical anomaly cluster: A new DHI? 

The most dominant amplitude feature in the middle Miocene stratigraphic interval is a 

systematic, vertically-stacked group of stratigraphically-concordant amplitude anomalies 

termed here as Vertical Anomaly Clusters (VACs). Foschi et al. (2014) defined VACs as 

assemblage of high-amplitude anomalies or bright spots in the fine-grained sediments where 

the assemblage is demonstrably linked by the hydrocarbon migration process. VACs 

interpreted were based on regional 2D survey of the East Falkland Basin. VACs occur in the 
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stratigraphic intervals Unit2 b between seismic horizon H250 and H200 (Fig. 5.7) and Unit2 

c between seismic horizon H200 and H130. The observed VACs developed between levees 

of Mid Miocene turbidite channels (Upper channel) to amplitude anomalies in CS-1 (stage-1) 

and then in later from CS-1 to amplitude anomaly developed in gully CS-2. 

VACs in the waste zone are 100 meters thick and 100-500 meters wide bright reflection that 

stands out from the host reflections (Fig. 5.7B). Most of the anomalies have an extremely 

sharp cut-off in amplitude at their margins across few meters c.a 100 meters. Amplitude 

reflections are concordant with the background strata and have no sign of disturbance (Fig. 

5.7C and Fig. 5.21) that would suggest that amplitude have same lithology for the anomalies 

(Løseth et al., 2009; Foschi et al., 2014). The length of individual amplitude anomaly 

increased in upper layers that suggest anomalies are charged from deep layer to shallow 

layers (Fig. 5.21C). 

5.5.1.2 Fault bound anomalies 

Faults are present in basically every sub-basin throughout the Lower Congo Basin (Anka et 

al., 2012) and cause basin architecture and sedimentation to be mostly controlled by footwall 

uplift and hanging wall subsidence (Fig. 5.11). The faults feature a wide variety of lateral 

extents, depth, throw, and other properties. They have an important function for pressure 

development and fluid flow and may have considerable impact on migration. They can act as 

migration pathways (open faults) or as seals (closed faults), where they can trap petroleum 

and hold column heights depending on their sealing or leaking properties.  

There is a suite of HAAs associated with faults in the northeast side of salt structure. 

Amplitude anomalies are observed against these normal faults (Fig. 5.13, 5.14 and 5.15). 

Clustering of amplitude anomalies on faults, with amplitude anomalies cross cutting the 
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structure without respecting the relative fault throw (Fig. 5.16 and 5.17). One noticeable 

observation has been made that faults cross cut the main reservoir units and have an 

association with the high amplitude anomalies and rest on the faults which have no amplitude 

anomalies associated with them (Fig. 5.13 to 5.15, Fig. 5.23 and 5.27).  

 

5.5.2 Present day fluid flow features 

Apart from observed gas-associated amplitude anomalies in the waste zone that are observed 

along channels, gullies and fault traps. The overlying sediments in waste zone are a Late 

Miocene-recent thick succession (about 1 to 1.5 kilometers) of hemipelagic sediments. Other 

fluid flow features are developed and also documents in the Late Miocene to recent sediments 

that developed along channels, polygonal and normal faults and stratigraphic traps (Giresse, 

2005; Gay et al., 2007; Andresen and Huuse, 2011; Andresen, 2012; Anka et al., 2012; Ho et 

al., 2012; Oluboyo et al., 2014).  

The pockmarks are typically circular and ranging in size from few hundred meters to one 

kilometer in diameter; depths of 100 to 150 ms TWT, and were formed above the two 

channel complexes (Fig. 5.19). Ho et al. (2012) summarised that pockmarks and pipes 

containing positive high amplitude anomalies always developed due to fluid flow in the 

shallow sediments and Andresen et al. (2011) concluded that the high-amplitude pipes 

generally occur in the shallow successions in offshore Angola represent shallow gas 

accumulations and/or diagenetic features associated with fluid flow through the sediments. 

The observed trail of pockmarks above channel complexes (Fig. 5.20) in the study area 

reflects the recent fluid flow activity in the Lower Congo Basin. 
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Figure 5.19: A) Base Pliocene acoustic map (base of PFS tier 1) showing major pockmarks above upper 

Miocene channel complex and a few isolated pocks. B) Fluid escape structure in up dip position within 

pockmark trail (indicated with arrows) feeding gas through the channel to seabed Note the stacked amplitude 

anomalies. 
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Figure 5.20: Pockmarks and pipe observed in the recent sediments above the upstream side of channel. B) Other 

example of fluid escape blowout pipe has several stages of cut and fill of the crater implying an episodic 

genesis. 
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5.6 Interpretation of hydrocarbon migration 

Different types of fluid flow features and amplitude anomalies detected in the waste zone and 

shallow sediments were outlined in the preceding section. In this section, I assess possible 

migration pathways for hydrocarbons. Only two fluid flow features vertical anomaly 

clustering and through faults are observed in the waste zone. The origin of hydrocarbon in the 

study area is based from two types of sources rock in this region. The main source rock is 

bituminous shale of the Lower Cretaceous Bucomazi formation deposited during the rift 

phase (Burwood, 1999; Cole et al., 2000). The rocks consist of clastics with intervals of high 

total organic content (TOC) and hydrogen index (HI), mostly oil prone type I kerogen of 

>5% TOC assemblage. The second source rock includes clastic and marls of the Albian-

Cenomanian Moita Sceca formation with 2-3% of TOC mostly oil-gas prone (Burwood, 

1999; Brownfield and Charpentier, 2006; Anka et al., 2012). 

The hydrocarbons in the study area are predominantly oil in the Middle Miocene turbidite 

channels complex system that are acting as a reservoirs in the west African margins (Broucke 

et al., 2004; Gay et al., 2006; Gee and Gawthorpe, 2006; Gee et al., 2007; Savoye et al., 

2009). In the shallow section (Late Miocene to recent) gas leakage observed in the Lower 

Congo basin without know the origin (Gay et al., 2007; Andresen and Huuse, 2011; 

Andresen, 2012; Anka et al., 2012; Ho et al., 2012). The previous section observed many 

amplitude anomalies in order to further conclude on the role of VACs and faults as 

preferential paths for the vertical migration of hydrocarbons. As previously mentioned, 

diagnostic parameters indicating modern fluid flow are investigated in detail and include: i) 

changes in the geometry of acoustic anomalies, ii) vertical and horizontal variations in the 

distributions of acoustic anomalies, iii) changes in the relationship amongst anomalies, 

reservoir rocks and adjacent faults. 
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5.6.1 Leakage through VACs 

VACs features are observed in two stratigraphic intervals within the waste zone; first in the 

Middle Miocene turbidite channels (Upper channel) and mud-filled channel levee system at 

seismic interval Unit2 b between seismic horizons H250 and H200, and in the mud-filled 

channel levee system at seismic interval Unit2 c between seismic horizons H200 and H130 

following by a regional seal unit 3 (Fig. 5.27). 

This strike profile shows the amplitude response across the ‘fingers’ along the eastern levee 

margin (Fig. 5.3A). The background seismic facies is identical to the illuminated seismic 

character, implying that the amplitude response is due to presence of a substituting fluid (gas) 

and not due to lateral variations in levee sedimentary facies and/or thickness. The presence of 

vertical anomaly clustering at two different levels, few representative seismic profiles across 

VACs are shown in figure 5.24 and figure 5.27.  

To understand development of VACs in the fine grain, low permeable sediment, and 

amplitudes are mapped at each continues reflection to assess development of anomalies. 

RMS amplitude maps were generated between each mapped reflection to evaluate gas 

migration. Six horizons were mapped and labelled 1 to 6 (Fig. 5.21B). Amplitude maps 

extracted between horizon1 and 10ms TWT below it shows two bright reflections and the 

boundary of these amplitudes are marked with a dotted line up to extend of bright reflection. 

Careful observation and interpretation of amplitude maps between interpreted horizons, 

bright reflection is consistent at one point that is interpreted as a feeding point for gas 

migration (indicated by green circle at Fig. 5.21C). This type of feeding point rarely seen 

before, and is imaged superbly here in this ultra-high resolution seismic cube. The sharpness 

of the lateral cut-off of amplitude means that it is truly image the amplitude 

migration/expension, not seismic artefacts due to tuning effects. 
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Lobate invasion geometry of these amplitudes is also observed in the upper layer between 

seismic horizon H200 and H130 (Fig. 5.27A) and again on these profiles, the low amplitude 

regions are of similar frequency to the illuminated portions, suggesting fluid substitution. 

Sub-vertical to vertical stacking of HAAs (VACs) occur at all scales. Sub-vertical stacks can 

be taken to infer predominantly vertical flow paths involving ascent across quite thick 

intervening clay-dominated sections (Fig. 5.28 and 5.29). Figure 5.26 describes the leakage 

pathways and indicates that the CLC is not charged from the flanks. The detailed seismic 

interpretation was carried out to investigate how fluids migrated from the Middle Miocene 

channels to CLCs in the waste zone. Seismic cross sections passing the VACs feature are 

shown in figure 5.26 and figure 5.27. The central axis occurs directly above the fold seen just 

below horizon 1. The feeding point is crudely circular and visible at level 2, and this shape is 

then superimposed on shallower amplitude images to show the northward (up dip) invasion 

geometry, of presumably thin sands within the predominantly clay-rich, post reservoir 

interval. Critically, the identification of this VAC shows that H200 CLC is not charged from 

the flanks, at least here. It is charged by feeding points from the H250 main reservoir directly 

below (Fig. 5.21). This would be an obvious focal point for pressure and possible hydraulic 

fracturing.  It is charged by feeding points from main reservoirs of Lower Miocene to 

Oligocene reservoirs seated below. There are other possible pathways for migrating 

hydrocarbon in the form of faults and stratal routings in despite of VACs for this CLCs 

anomaly because of the small data cube which is not enough to interpret the whole plumbing 

features. 
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Figure 5.21: Seismic profiles and amplitude maps of circular to sub-circular HAAs. (A) N-S Cross-section 

through a circular to semi-circular Vertical Anomalies clusters (VACs) connected the Middle Miocene Channels 

to CLCs (Location fig. 4.26A). B) Zoomed section of cross section through VACs showing internal features of 

HAAs.  C) RMS amplitude maps computed at mapped horizons 1 to 6 showing the geometry, orientation and 

spatial density of VACs. 
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5.5.2 Leakage through faults 

Faults are often invoked as a mechanism to facilitate vertical or sub-vertical migration of 

fluids through sedimentary basins. In the context of the study area, normal faults are formed 

due to one of the following reasons; 1) extensional collapse of salt structures and minibasins 

due to thin-skinned gravity extension on the slope, 2) out-arc extension of salt-cored 

anticlinal structures, or 3) late-stage, inversion of folded structures due to landward 

propagation of downdip gravity-driven shortening. The shallow stratigraphy is further 

deformed by laterally extensive, layer-bound arrays of closely spaced normal faults called 

polygonal faults although these faults formed during volumetric contraction of discrete shale 

layers. Recent studies by Ho et al. (2012) and Andresen et al. (2011) showed that faults 

played an important role in the migration of fluids in the Tertiary succession in similar areas 

in the LCB. In this deeper section of the stratigraphy, there are many examples of amplitude 

anomalies either terminating abruptly against extensional faults (Fig. 5.13 and 5.14) or 

anomalies occurring above the upper tip of faults. It is tempting to link these amplitude 

anomalies to migration pathways parallel to the faults; however it is possible that some 

anomalies may have been present first and offset later (Fig. 5.15 and 5.16).  

From the analyses presented in this chapter there is great inconsistency in which faults are 

associated with anomalies and which faults are not. For example, in figure 5.23, there are 3 

faults which intersect the deep-seated turbidite source layer for the shallow amplitude 

anomalies. Only on one fault is there amplitude anomalies which are close to the fault or 

offset by the fault and it is possible that late-stage faulting offset pre-existing amplitude 

anomalies. I do not rule out the role of faults on fluid flow but given the limitations imposed 

by seismic data and a lack of sub-surface data such as wells and cores it was not possible to 
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do the required analysis to conclusively determine whether faults are permeable pathways for 

deep fluid flow from turbidite source layers (Fig. 5.14 and 5.16).  
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Figure 5.22: SE-NW seismic section passing through LA below MTD in waste zone. The La developed above the Middle Miocene turbidite channel reservoirs. The profile 

showing possible feeding points from the deeper reservoirs through vertical and stratal migration of hydrocarbon. HAA: High amplitude anomaly; MTD: Mass transport 

deposits.  
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Figure 5.23: NW-SE seismic culmination of high amplitude anomaly trapped along the fault passing through 

Miocene turbidite reservoir. The fault cross cutting through reservoir have a culmination of amplitude anomaly 

and rest of the fault not show evidence of fluid flow. 
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5.7 Leakage mechanism 

The leakage in the Middle Miocene sequence (waste zone) represented through high 

amplitude anomalies in VACs (Fig. 5.21A) and cluster of anomalies against tectonic faults 

(Fig. 5.23). These two possible pathways displays character of extensive and consistent fluid 

flow migration through hemipelagic sediments. Distribution of amplitude anomalies observed 

in widespread laterally in levees of turbidite channels and stratigraphically along the up dip 

strata (Fig. 5.28) throughout waste zone, but amplitude anomalies developed very closely in 

sediments over main turbidite reservoirs (Fig. 5.24, 5.25 and 5.26). These examples show the 

close vertical juxtaposition of the H130 and the underlying H200 channel levee complex. The 

connection path is above the up dip limit of the H200 levee.  

The concentration of amplitude anomalies above the main Oligocene-Miocene turbidite 

reservoirs (Fig. 5.22) in the areas suggest that migration was probably dominated from levees 

of reservoir channels. The subtle correlation of amplitude anomalies with underlying 

reservoirs might suggest that anomalies were charged from deeper reservoirs as reported in 

the basin (Andresen et al., 2011; Anka et al., 2012; Ho et al., 2012).  

Three different stages of fluid flow migration levels are observed in the study area. a) Stage 

1: Main turbidite reservoirs to CS-1 through vertical anomaly clusters (Fig. 5.24, 5.25 and 

5.26) b) stage-2: CS-1 to CS-2 through vertical anomaly clusters (Fig. 5.27 and 5.28) and c) 

stage-3 Main reservoirs to upper sediments through faults and possibly through stratal 

pathways (Fig. 5.26). 
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Figure 5.24: seismic profile showing different possible fluid flow pathways from Oligocene turbidite channels 

(Below H490 horizon) to upper reservoirs.  Fluid migration is observed along VACs between CS-1 and 

underlying Miocene turbidite reservoir in stage 1. 
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Figure 5.25: Amplitude anomalies in CS-1 developed in mud plugged channel levee in the waste zone below seismic horizon H200. Anomalies are connected with Miocene 

turbidite reservoir through vertical anomaly cluster that indicate fluid migration as stage 1. The extent of anomalies in CS-1 is following extent of lower reservoir.  
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Figure 5.26: Another example shows amplitude anomalies in CS-1 developed in mud plugged channel levee in the waste zone below seismic horizon H200. Anomalies are 

connected with Miocene turbidite reservoir through vertical anomaly cluster that indicate fluid migration as stage 1 and further level stage 3 is observed, The extent of 

anomalies in CS-1 is following extent of lower reservoir. 
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Figure 5.27: A) NW-SE seismic section passing through CS-2 showing possible feeding points from the deeper 

reservoirs through vertical and stratal paths for migration of hydrocarbon. B)  Zoomed section shows the 

truncation (T), flat spot, velocity push down and blanking zone below the anomaly. HAA= High amplitude 

anomaly; MTD= Mass transport deposit; T= Truncation; FS= Flat spot; PD= Push down; and VACs= Vertical 

anomaly clusters.   
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Figure 5.28: Another example of fluid flow migration from CS-1 to CS-2 through VACs in stage 2. The green 

arrows are indicating possible migration routes in the waste zone. C: upper turbidite channel. 
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Figure 5.29:The depicted SW-NE seismic line shows the same bypass from Oligocene reservoirs through Seal Unit 4 and waste zone to base of Seal Unit 3. 
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Figure 5.30: seismic profile displaying stratigraphic genetic units. Amplitude anomalies have a bypass system 

from Oligocene turbidite reservoir (Lower reservoirs) to Miocene turbidite channels (Upper reservoir). Upper 

reservoirs are directly connected with overlaying channels through VACs in CS-1 and CS-1 to upper 

straigraphic layer at H130 horizon. Stacked channels are connecting with top of waste zone and possibly provide 

a pathway for hydrocarbon migration through collapsed pockmarks. 
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5.8 Conclusion 

Hydrocarbon migration from lower and upper reservoir units to different possible routes 

through thick hemipelagic sediment interval. Amplitude anomalies developed in the Middle 

Miocene succession have connect with upper and lower level anomalies (Fig. 5.29). 

Therefore anomalies have established bypass system from Oligocene turbidite reservoir 

(Lower reservoirs) to Miocene turbidite channels (Upper reservoir) through VACs. Upper 

reservoirs are directly connected with overlaying channels through VACs in CS-1 and CS-1 

to upper stratigraphic layer at H130 horizon. Stacked channels are connecting with top of 

waste zone and possibly provide a pathway for hydrocarbon migration through collapsed 

pockmarks (Fig. 5.30) 

The following are the conclusions; 

 There are multiple possible routes for the leakage from main turbidite reservoirs to the 

waste zone. Seismic examples shows that CLC’s are not charged from the flanks but 

instead are charged by feeding points from main reservoirs seated below them. There 

are other possible pathways to migrate hydrocarbon through faults and stratal 

routings.  

 3D distribution of HAAs, their geometries and context leads us a model where 

hydrocarbon exploit thin sands, faults, VACs, for cross-stratal migration at different 

genetic units 

 But it is difficult to identify a precise rout for the leakage due to multiple options 

combining stratal and structural migration paths. 



Chapter 6  Summary and Discussion 

 

310 

 

 

CHAPTER 6 

Summary and discussion 

 

 
  



Chapter 6  Summary and Discussion 

 

311 

 

CHAPTER SIX 

6.1 Discussion 

The preceding chapters presented a detailed seismic interpretation and geophysical analysis of 

high-amplitude seismic anomalies which were attributed to the presence of fluid (free gas).  A 

case study of an anomalous zone within biosiliceous of the Eocene to Oligocene units in the 

Møre Basin was presented in Chapter 3. In Chapters 4-5, four different types of high amplitude 

anomalies from the Miocene succession of the Lower Congo Basin were shown. 

This chapter begins with a summary of the key scientific results from preceding result chapters 

(Chapter 3 to 5). Following the summary is a discussion of particular elements of the results 

chapters which remain unanswered including; 1) controls on the distribution of high-amplitude 

anomalies and their acoustic features that are directly observed on seismic data, 2) how these 

controls result in the geometric characteristics of the anomalies, and 3) what the major controls 

are on the hydrocarbon plumbing system i.e. whether migration pathways are depositional or 

structural conduits. To conclude the chapter, the major limitations of the research project are 

outlined.  

6.2 Summary of results 

6.2.1 Chapter 3 

The main aim of chapter 3 was to establish the nature and genesis of a suite of high-amplitude 

anomalies that are grouped as the anomalous zone are developed at the crest of Havsule Dome in 
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the Møre Basin, offshore mid-Norway. The chapter focused on the development of the 

anomalous zone and striking concave-upward basal contact (Fig. 3.5 and 3.6). 

The high-amplitudes in the anomalous zone are interpreted to represent porous layers hosting 

fluid (free gas) beneath a sealing sedimentary layer (Base of the Naust Formation). The 

anomalous zone discussed here was located at the crest of Havsule Dome. The presence of free 

gas in the anomalous zone is responsible for the poor imaging of the polygonal faults below. 

Coherence time slices help to visualise the presence of faults inside and outside of the anomalous 

zone. Instantaneous phase attribute display enhanced the continuity of sedimentary layers inside 

the anomalous zone. The presence of polygonal faults and continuity of sedimentary layers 

implies that it was the same lithology of anomalous zone from background lithology. 

The main findings of the Chapter 3 are; 1) The amplitude anomalous zone has a negative 

reflection and sharp change in amplitude at the boundary with the background reflections, 2) The 

anomaly is developed at the crest of Havsule Dome (Fig. 3.7), 3) The anomaly creates a 

significant velocity push-down effect of a few-to-tens of milliseconds and reduces the seismic 

reflection strength relative to the background by > 20% (Fig.3.5), 4) Seismic blanking or 

attenuation is observed below the anomalous zone (Fig. 3.13), 5) The interval velocity of the 

anomalous zone is less than interval velocity of the host sediments which is 1500 m/sec (Fig. 

3.18), 6) Seismic data in the anomalous zone has a low frequency relative to the background data 

(Fig. 3.16), 7) Continuity of sedimentary layering through the anomalous zone suggests that the 

anomaly is developed in the same type of sediments as the background (Fig. 3.17). All these 

observations collectively support the interpretation that the high-amplitude anomalous zone is a 
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direct response to the presence of free gas within Opal-A-rich sediments of the Brygge 

Formation. 

6.2.2 Chapter 4 

Chapter 4 focused on the distribution of high-amplitude anomalies developed in the Late 

Neogene-to-Quaternary strata of the Lower Congo Basin (LCB). High-amplitude (HAA) 

anomalies were classified on the basis of their planform geometry, their lateral extent, 

morphology, and seismic character. HAA’s were grouped into four types: 1) linear anomalies, 2) 

sub-circular anomalies, 3) patchy anomalies and 4) discrete filamental anomalies. Only sub-

circular and patchy anomalies were found to conform to structures, were associated with channel 

levee system and are fault-bounded. A combination of seismic interpretation, attribute analyses 

and well ties were used to assess the likelihood of amplitude anomalies defining zones of 

hydrocarbon or non-hydrocarbon-bearing fluids. Three examples of the anomalies were selected 

for further study on focused flow and leakage mechanism for Chapter 5. 

 

6.2.3 Chapter 5 

Chapter 5 focused on the processes which resulted in the formation of 3 particular anomalies 

presented in Chapter 4. These include; semi-circular and patchy anomalies which were analysed 

at different stratigraphic levels within the Miocene-aged Waste Zone. These results were then 

used to establish the leakage mechanism in the LCB.  
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The 3D distribution of high-amplitude anomalies, their geometry and context leads to a plumbing 

model where hydrocarbon exploit thin sands, faults and pipes for cross-stratal migration at 

different genetic units. The main findings of these selected examples were as follows 

1) Anomalies that developed along the mud-filled turbidite channels (example one) in the 

waste zone were charged from the Oligocene-Miocene mains reservoir comprising 

turbidite channels via vertical pipe-like features termed here as “vertical anomaly 

clusters” (VACs) see (Foschi et al., 2014). 

2) Multiple routes for leakage were identified. 

3) Specific routes were found to be hard to prove since there were multiple options 

combining stratal and structural routing. 

4) 3D distribution of high amplitude anomalies, geometries and context leads to a basic 

‘multi-storey car park’ model where HC exploit thin sands, faults and pipes for cross- 

stratal migration at different levels (as example Fig. 1.39). 

There are multiple possible routes for the gas leakage from main reservoirs into the waste zone 

but they are difficult to identify precisely because the extent of seismic data is not allows to 

analyse lateral migration through possible carrier beds/layers. Migration in the LCB is concluded 

through multiple options combining stratal and structural migration paths. 
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6.3 Origin of patchy and finger anomalies 

The various two and three dimensional geometries of seismic amplitude anomalies presented in 

Chapters 3-5 illustrate the various ways in which fluids have infiltrated sedimentary layers. 

Fluids infiltrate sedimentary rocks through permeable and connected pore-spaces created either 

from grain-grain dimensions which in shallowly buried clastic deposits are most likely primarily 

inherited by the depositional environment (Løseth et al., 2009; Plaza-Faverola et al., 2010; 

Micallef et al., 2011; Vadakkepuliyambatta et al., 2013) or by fractures and shear zones formed 

during compaction and deformation of the units (Berndt, 2005; Cartwright et al., 2007; 

Andresen, 2012; Foschi et al., 2014). The directions in which fluids migrate into these pores are 

influenced by the head gradient and pressure gradient imposed on the fluid. Fluid flows from 

areas of high pressure to low pressure which is typically vertical but where heterogeneous 

sedimentary sections are tilted and folded fluids can flow horizontally (Cartwright et al., 2007; 

Foschi et al., 2014) and even downwards (Doyle et al., 2003). It is likely that the various 

different styles and geometries of fluid-related anomalies are the result of a combination of one 

or more of these mechanisms. The purpose of this section is to explore how anomaly shape is 

related to mechanism of formation and properties of the sediment. 

I focus on one particular group of patchy anomalies that had finger-type amplitude anomalies 

located along north-south trending turbidite channel in the Lower Congo Basin (Fig. 6.1and Fig 

6.2). In Chapter 5 they were interpreted as representing gas. The part of the channel where 

anomalies are located is in the crest of an obliquely NNW-SSE striking anticlinal fold (Fig 5.5). 

This fold is cored at depth by a salt and was formed after the deposition of the channel. The most 

obvious explanation for the first-order location of the anomalies is that gas flowed from sources 
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(Oligocene-Miocene turbidite channels) at depth into the crest of the fold and infiltrated the most 

permeable and porous areas. 

The strong association with the channel suggests that gas anomalies shown in figure 6.2, filled 

the most permeable and porous parts of the channel levee system. Conventionally these areas 

would occur along the axis of the channel (Kolla et al., 2001; Broucke et al., 2004) however in 

this case they are quite clearly restricted to the levees and are absent from the channel itself i.e. 

the channel is mud-plugged  

The study area is primarily composed of turbidite deposits where channel levee complexes are 

stacked vertically and laterally (Broucke et al., 2004; Nakajima et al., 2009) and interbedded 

with depositional lobes (Anka et al., 2009). Broucke et al. (2004) stated that turbidite channels 

found within the uppermost Lower Miocene and base Middle Miocene intervals are mainly 

consist of hemipelagic sediments with low amplitude facies with isolated turbiditic deposits. The 

erosive character of turbidite channels are filled by slide deposits, sandy elementary channel 

deposits and confined levees with sand sheets of a few meters thick (Fig. 6.3).  

The first-order geometry and location of the anomalies with respect to the channel are consistent 

with the depositional pattern of channel-levee depositional model (Fig. 6.3), However, the 

fingering edges of the anomalies are more ambiguous. For example, are they also sand-filled 

parts of levee and overbank deposits, thus defining the lateral edge of the reservoir (Clark and 

Pickering, 1996), or are they the lateral edge of a currently under-filled trap with potential 

reservoir outboard which can be filled?  
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Few examples of finger-shaped anomalies exist in the literature. Dennis et al. (2005) showed 

examples of finger-shaped amplitude anomalies in channel deposits in the Arbroath and 

Montrose fields in the North Sea Basin. It was shown that these anomalies represented sands 

charged with oil. Dennis et al. (2005) suggested that oil preferentially migrated to the (direction) 

in a discrete zone forming the finger anomalies observed on seismic data. They interpreted this 

preferential flow due to the hydro-dynamic pressuring of the basin.  

Evidence of finger-shaped fluid accumulations have also been observed in 4D time lapse seismic 

surveys over sites where CO2 has been injected into the subsurface (Chadwick et al., 2005). 

These studies have shown that CO2 does not always invade the reservoir intervals at equal rate 

from the injection well but invades preferentially toward a certain direction creating a finger. 

There are a few explanations for why this may occur. 1) Preferential flow may occur in the 

direction of the head gradient which is commonly upslope or where there is the smallest load. 2) 

There is preferential flow parallel to fracture sets which are parallel or perpendicular to the 

paleo-or-present day strain and stress field. 3) There is preferential flow along discrete 

permeability zones such as sand-rich channels.  

Based on these studies it appears that the finger geometry is not formed by a specific mechanism 

of fluid flow.  In the absence of sub-surface well data it was not possible to ascertain the relative 

porosity and permeability of the levee systems. However, based on previous studies it is possible 

that the fingers could be sand-filled lobes of perpendicular-striking overbank channels.  

Alternatively, there is growing evidence in this part of the Lower Congo Basin of late-stage fluid 

leakage from deeper traps into the overlying succession. There is also evidence of fluid-leakage 

at the seabed. Other fluid-related amplitude anomalies and features such as pockmarks and fluid-
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related depressions (Fig. 6.5), strongly suggest fluid was overpressured and could breach and 

fracture hemipelagic sequences. Given this, it is also possible that the crest of the fold containing 

patchy and fingering anomalies was or is significantly pressured.  

There is no direct seismic evidence for fluids leaking from the crest of the fold (Fig. 6.1, Fig. 6.2 

and Fig. 6.4) which may be expected as the most likely place where failure would occur during 

overpressure. However, given that fluid-related anomalies are so distinctly absent from the 

channel axis, the crest of the fold in this case may actually be well-sealed. The more permeable 

levee systems could provide the most viable route for fluid migration. The finger elements to the 

patchy anomalies may therefore represent more recent phases of outward expansion of fluid 

volume in the reservoir. 

 

Figure 6.1:  Amplitude anomaly developed in the fine grained sediments of mud filled channel. A) Root mean 

square amplitude map showing bright reflection in levees of mud filled channel. B) Representative seismic profile 

showing extent of amplitude anomaly. A hard reflection at the base of anomaly is interpreted as a flat spot (FS). Soft 

anomalies are observed on the left (1000 meters) and upside (100 meters) of high-amplitude anomaly.
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Figure 6.2: The lateral margins are highlighted here in detail from the northern margin. Strikingly, the high 

amplitude anomaly margin has a fingered geometry whose lateral limit does not correspond to the full lateral 

levee extent. The ‘fingering’ is due to fluids and not a facies effect. The question arising, is whether the 

fingering is by gas invasion eastwards during dynamic filling or due to water invasion westwards due to 

drainage. The partial dimming between these finger types geometries labelled with 1 to 3 is interpreted as partial 

gas saturation. 

 

 

Figure 6.3:  Turbidite channel levee complex model showing deposition of sand lobes/sheets in the confined 

levees (modified from Broucke et al., 2004). 
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Figure 6.4: This strike profile shows the amplitude response across the ‘fingers’ along the eastern levee margin. 

The background seismic facies is identical to the illuminated seismic character, implying that the amplitude 

response is due to presence of a substituting fluid (most probably gas) and not due to lateral variations in levee 

sedimentary facies and/or thickness. We think this image is an outstanding example of ‘fingering’ rarely seen 

before, and imaged superbly here on this ultra-high resolution seismic cube. The sharpness of the lateral cutoff 

of amplitude means that we can truly image the ‘fingers’: they are not seismic artefacts due to tuning. 
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Figure 6.5: A) Base Pliocene acoustic map (base of PFS tier 1) showing major pockmarks above upper Miocene 

channel complex and a few isolated pocks. B) Fluid escape structure in up dip position within pockmark trail 

(indicated with arrows) feeding gas through the channel to seabed Note the stacked amplitude anomalies. C) 

other example of fluid escape blowout pipe have several stages of cut and fill of the crater implying an episodic 

genesis. 
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6.4 Geometry of anomalies: Origin of patchy anomalies  

Seismic blanking is a phenomenon that is observed on the seismic data due to sound wave 

energy dispersions as they travel in rocks. The level of attenuation depends on the degree of 

fluid saturation, porosity of the rock, fluid pressure and the mineral content of the rock. 

Theoretical studies indicate (Müller and Gurevich, 2004; Mavko et al., 2009) that increasing 

saturation up to a critical level will cause seismic attenuation that is directly related to the 

effect of gas on seismic wave velocities. The relationship between elastic wave velocities and 

water saturation in gas reservoirs depends on whether the saturation is heterogeneous 

(patchy) or homogeneous (Knight et al., 1998). Two types of mechanisms for partial gas 

saturation are widely accepted; one is pressure dissolving (Han and Batzle, 2002), and the 

other is physical trapping such as patchy saturation due to spatial heterogeneity in the 

permeability of the medium (Dvorkin and Nur, 1998). A commonly accepted theory is that a 

small percentage of gas saturation, often within 10%, will result in a drop of P-wave velocity. 

The drop in P-wave velocity has a magnitude comparable to that under full gas saturation 

(Knight et al., 1998). Consequently, partially gas-saturated reservoirs may be mistakenly 

drilled as a prospect. This study explores the lithological effect on partial gas saturation and 

its relationship with seismic rock properties. The partially saturated sequences observed in 

the Lower Congo basin (Fig. 6.2 and Fig. 6.4) and Møre Basin of Mid Norwegian continental 

margins (Fig. 6.7) reveals that anomalies are not fully saturated and did not reached the spill 

point of the structure (Knight et al., 1998; Toms et al., 2007; Raji, 2013). 

Seismic attenuation beneath high-amplitude anomalies were observed in the Lower Congo 

Basin and Møre Basin of Mid Norwegian continental margins (Fig. 6.6 and Fig. 6.7). The 

anomalous zone in Møre Basin developed in a northward dipping Havsule Dome (Fig. 6.6). 

The anomalous zone is about 4 kilometers wide and eleven kilometers long. The anomalous 
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zone is oriented north-south Havsule dome and RMS amplitude map of anomalous zone 

reveals close conformity between orientation of anomalies and TWT structural map of the top 

Brygge Formation (Fig. 6.7). The anomalous zone is not confined to the structure contours of 

the top the Brygge Formation. 

The anomalous zone thickness contour map of anomalous zone with contour interval of 20 

meters overlay at root mean square amplitude map of the anomalous zone in the fine grained 

Brygge Formation. Trace of anomalous zone (red dotted line) following the trend of thickness 

map contours dipping from north to south (Fig. 6.11) that implies the anomalous zone is 

extending towards up dip direction this implies that the anomalous zone is still a active zone 

and has dynamic fluid mechanism. 
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Figure 6.6:  Time structure map top of the Brygge Formation, Red dotted line marked the boundary of the 

anomalous zone. High-amplitudes started to develop south side of crater A that act as a lateral seal.  
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Figure 6.7: Seismic section (vertical exaggeration is approximately eight times) showing some high-amplitude anomalous zone developed between two carters (Crater A in north 

and carter B in south).  Seismic blanking zone is also observed below up to the extent of this zone. Amplitudes are not laterally continues due to presence of polygonal faults that 

are acting as a barrier or leakage carrier for gas migration depending on juxtaposition with corresponding beds. Partial dimming is also observed on the amplitude anomalous zone. 

For location of line see Fig. 6.6. 
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Figure 6.8: Seismic section showing high-amplitude anomalous zone developed between two carters (Crater A in north). Seismic blanking zone is also observed below up to the 

extent of this zone. Amplitudes anomalies are laterally migrate towards up dip direction (south). Gas water contact is undulated due to presence of polygonal faults. For location of 

line see Fig. 6.6. 
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Figure 6.9: Seismic section showing high-amplitude anomalous zone developed between. Seismic blanking zone is also observed below up to the extent of this zone. Anomalies are 

observed in the Naust Formation. Gas water contact is undulated due to presence of polygonal faults. For location of line see Fig. 6.6. 
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Figure 6.10: structural contour map of top Brygge Formation confirming that anomalous zone is developed at 

the crest of Havsule Dome. Trace of anomalous zone (red dotted line) following the trend of structural contours 

from dipping north to south but has irregular cross cutting geometry with time contours. 
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Figure 6.11: Thickness contour map of anomalous zone with contour interval of 20 meters overlay at rout mean 

square amplitude map of anomalous zone in fine grained Brygge Formation. Trace of anomalous zone (red 

dotted line) following the trend of thickness map contours from north to south up dipping. 
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6.5 Implication of the research 

The findings of this research have important implications for oil and gas exploration. The 

research focused only on amplitude anomalies associated with hydrocarbons and particularly 

with gas. Each individual amplitude anomaly provides an insight into the geoplumbing 

system in two sedimentary basins. Implication of amplitude anomalies have already been 

discussed in detail in Chapter 4, 5 and 6 and are summarised here: 

1) Careful seismic analysis of high-amplitude anomalous zone over a north-south 

oriented anticlinal structure in the Møre Basin explain how the vertical stacking  of 

anomalies developed in calcareous siliciclastic sediments where vertical permeability 

of sediments are low as compared to horizontal permeabilities (Chapter 3). 

2) The distribution of amplitude anomalies in the Møre Basin allow us to infer the 

specific migration mechanisms on small scale, for example, the cluster of amplitude 

anomalies implies a micro scale migration through capillary entry pressure and macro 

scale processes of gas migration through faults. 

3) There is a distinct gas-water contact (GWC) in the Møre Basin which is concave- 

upward which implies flat spots due to hydrocarbons are not always flat, which also 

leads us to conclude that the GWC is a dynamic contact. 

4) Distributions of high-amplitude anomalies in hemipelagite sediments in the waste 

zone of the Lower Congo Basin suggest that fluid migration from Oligocene- 

Miocene turbidite main reservoirs through vertical anomaly clusters (VACs), stratal 

and possibly through faults. All these possibilities of fluid flow migration implies that 

in the active basin like the LCB.  
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5) Geometries and orientations of amplitude anomalies over a structure (for example 

amplitude anomalies developed in the levees of mud filled channel levee complex 

system) have been identified as an indicator of further migration of fluid away from 

channel. 

6) Mass transport deposits (MTDs) are characterised by composition and structural 

heterogeneity which may incite their capability as a hydrocarbon reservoirs (Gamboa 

et al., 2012; Omosanya and Alves, 2014). In chapter 4 and 5 was shown that 

homogeneous and heterogeneous nature of the MTD described the potential of it as a 

hydrocarbon carrier or seal. In LCB, the MTDs observed transparent above the patchy 

anomaly which implies the MTDs in the waste zone were acting as a seal. 

6.6 Limitation of the research 

The work produced for this research was benefited from of the 3D seismic data from the 

Lower Congo Basin and the Møre Basin. The high quality seismic data from LCB allied to a 

very low number of artefacts in shallow section, allowed a very good visualisation and 

interpretation of the seismic amplitude anomalies and associated structures present in the 

studied stratigraphic intervals. The limitations of the research in this thesis are summarised as 

follows; 

The availability of well data would have allowed a much greater calibration of the seismic 

horizons, a more precise dating of horizons, calculation of sedimentations rates which could 

have been correlated with timing and positions of fluid-related amplitude anomalies.  

Porosity and density measurements would provide information on physical properties of the 

host formations to explain the origin of amplitude anomalies. Pore pressure measurements 

within main reservoirs, hemipelagic units and MTDs would have helped to determine the 

fluid flow behaviour and allow a better understanding on the geo-plumbing history in 
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different lithologies. Furthermore, sonic logs across the studied stratigraphic units would also 

have enabled me to constrain the effect of downward increasing velocity on apparent bed 

thickness in time-domain data.  

A high resolution seismic survey would have been helpful for better illustrating the internal 

structures of high-amplitude anomalies and associated plumbing features that were possibily 

below seismic resolution and increase the accuracy of geometrical measurements. It would 

have been especially useful for determining the height of anomalies associated with gas and 

could have been used to better constrain the contact position between gas anomalies and their 

lateral extents.6.6.1 Chapter 3 

1. The plumbing system of the study area was not properly outlined in as much detail 

because the seismic data was truncated at 4 ms TWT, and for that reason it was not 

possible to comment on whether deep-seated features exist that could help to explain 

specific position and development of the anomalous zone. 

2. There was limited well data to calibrate lithology of the interval where anomalous 

zone is developed. 

3. The vertical resolution of 3D seismic data limited the extent at which anomalies could 

be interpreted and classified in cross-section.  

6.6.1 Chapter 4 and 5 

1. Near-angle-stack 3D seismic data suffers from decreasing image quality with depth 

and thus limited the extent at which anomalies could be analysed.  

2. This research would also have also benefited from well data but the provided well 

data files were not correct and not able to load on the work station due to problem in 
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check shot data file. Due to this reason correlation of amplitude anomalies with well 

data was not possible for detailed study.  

3. Seismic acquisition foot prints are observed on the shallow section of the Late 

Miocene-recent sediments 

  

6.7 Future work 

The work done in this thesis provided a number of answers to better understand development 

and distribution of high-amplitude anomalies in offshore basins but many other open 

questions remain. As such, going further in our general understanding about development, 

distribution and associated fluid migration mechanism requires a detailed research with 

calibration results from well data. 

The key point for understanding high-amplitude anomalies is to establish the timing of 

geoplumbing in the study area. The proposed leakage model in Møre Basin case study needs 

to be recalibrated with well data for two reasons; first, layers within the Brygge Formation 

are a few meters thick which is below the vertical seismic resolution to explain geological 

heterogeneities and second, throw of polygonal faults were too far below the seismic 

resolution to properly understand leakage mechanism through faults. Therefore; further 

detailed studies of the proposed leakage model will lead to a better understanding of 

development of anomalous zone which may provide a better insight to the origin on the 

concave upward gas-water contact.  

The leakage mechanism proposed in Lower Congo Basin through vertical anomaly clusters 

presented by Foschi et al. (2014) to dominantly vertical gas migration across the multilayers 

of low permeable hemipelagic sediments; need more detailed work with calibration with well 

data.



Chapter 7               Conclusions 

334 

 

 

CHAPTER 7 

 

Conclusions 

 

 

 

 

  



Chapter 7               Conclusions 

335 

 

CHAPTER SEVEN 

7.1 Conclusions 

The purpose of this chapter is to summarise the main results and conclusions drawn 

throughout this work. The core themes of this research have important implications for the 

wider topic of seal integrity and hydrocarbon migration through fine-grained sedimentary 

series. The main conclusions of this work are as follows; 

 

7.2 Conclusions from Chapter 3: the Møre Basin 

1. A 165-meter-thick high amplitude anomalous zone, 4 kilometers wide and 11 

kilometers long, is developed in a succession of biosiliceous sediments that are 

deformed intensely by compaction-derived polygonal faults.  

2. The anomalous zone developed at the crest of a structure called the Havsule Dome.  

3. Continuity of seismic reflections through the anomaly on instantaneous phase profiles 

indicate the anomalous zone is developed in the same stratigraphy and therefore 

lithologies as is regarded regionally in that interval.   

4. Although poorly imaged, it is also likely that pervasive polygonal faults are also 

developed in the anomalous zone as is observed regionally in the stratigraphic 

interval. 

5. The amplitude anomaly is attributed to the presence of free gas. This interpretation 

was based on several observations:  

a) The location of the anomaly at the crest of the dome structure,  

b) The geometry of the host sediments,  

c) The presence of a pronounced velocity push down,  
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d) Interval velocities calculated inside the anomalous zone are about 1500 m/sec 

which is much less (1700 m/sec to 2300 m/sec) than the interval velocity of the 

regional host lithology in the Brygge Formation.  

e) The presence of anomalies in the seal immediately above the amplitude anomaly 

cluster. 

6. Gas leakage was attributed to capillary entry pressure and through polygonal faults 

that happened due to development of column height in calcareous rich oozes 

sediment. Their thickness varies from less than meter to maximum 8 meters with 

following clay/silt layers.  

7. Crater A in north is acting as a seal unit as dot observed any amplitude anomaly and 

amplitude is expanding towards Anomaly is not charged up to spill point so that is 

why anomaly is propagating towards south direction. 

8. The reason for the curved shape of the basal gas/water contact is due to the fact that 

different layers of high amplitude anomalies within the anomalous zone exist and 

every layer acts like a separate reservoir.  

9. This is the first description of a hydrocarbon fluid contact with this shape with a 

dynamics of hydrocarbon trapping. 

 

7.3 Conclusion from Chapter 4 

There are number of different amplitude anomalies in the waste zone above deep-seated 

turbidite reservoirs.  

1 Amplitude anomalies are classified into different groups on the basis of their plan-

form geometry, their lateral extent and include; 

a. Linear anomalies: Anomalies that are isolated, long and narrow features on 



Chapter 7               Conclusions 

337 

 

amplitude map with aspect ratios (maximum length to maximum width) > 6. 

b. Sub-circular anomalies: Amplitude anomalies that have regular to semi-

irregular, and circular to elliptical plan-view geometries.   

c. Patchy anomalies: groups of amplitude anomalies that are isolated and have 

irregular plan form geometries with rough edges. Some of the patchy 

anomalies have finger-like features that emerge out from the main anomaly. 

d. Discrete, filamental anomalies: positive, high amplitude anomalies. These 

anomalies are observed in seal Unit 4 and occasionally in MTDs. 

2. A combination of seismic interpretation, attribute analyses and well ties were used to 

assess the likelihood of amplitude anomalies defining zones of hydrocarbon or non-

hydrocarbon-bearing fluids.  

a. Only the sub-circular and patchy anomalies were found to be hydrocarbon- 

bearing.  

3. An analysis of acoustic properties and seismic attributes of the high-amplitude 

anomalies indicates that they attributed to the presence of gas. 

 

7.4 Conclusion from Chapter 5 

1. There are multiple possible routes for the leaking fluids sources from the main 

turbidite reservoirs to the waste zone.  

a. CLC’s are not charged from the flanks but instead are charged by feeding 

points from main reservoirs seated below them.  

b. There are other possible pathways to migrate hydrocarbon through faults and 

stratal routings.  
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2. The 3D distribution of HAAs, their geometry and geological context suggest 

hydrocarbon leaked through thin sands, faults, VACs, and strata routings. 

3. I attribute the development of VACs to dominantly vertical gas migration across a 

multi-layered low permeability reservoir interval, where individual layers are filled 

successively from bottom-to-top, and where small normal faults provide conduits for 

cross-stratal migration. 
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