
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/72388/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Barker, Stephen , Chen, James, Gong, Xun , Jonkers, Lukas , Knorr, Gregor and Thornalley, David 2015.
Icebergs not the trigger for North Atlantic cold events. Nature 520 (7547) , pp. 333-336.

10.1038/nature14330 

Publishers page: http://dx.doi.org/10.1038/nature14330 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Icebergs not the trigger for North Atlantic cold events 

 

Stephen Barker
1*

, James Chen
1†

, Xun Gong
1
, Lukas Jonkers

1
, Gregor Knorr

2
 and David 

Thornalley
3
 

1
School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK 

2
Alfred Wegener Institute, 27570 Bremerhaven, Germany 

3
Department of Geography, University College London, London WC1E 6BT, UK 

*Correspondence to: barkers3@cf.ac.uk 

†Current addresses: School of Biological Sciences, University of Bristol, Bristol BS8 1UG, 

UK 

 

 

Abrupt climate change is a ubiquitous feature of the Late Pleistocene
1
. In particular, the 

sequence of Dansgaard-Oeschger (D-O) events (repeated transitions between warm 

interstadial and cold stadial conditions), as recorded by ice cores in Greenland
2
, are 

thought to be linked to changes in the mode of overturning circulation in the Atlantic 

Ocean
3
. Moreover, the observed correspondence between North Atlantic cold events 

and increased iceberg calving and dispersal from circum-North Atlantic ice sheets
4
 has 

spawned a great number of ocean and climate modelling studies employing freshwater 

forcing scenarios to simulate abrupt change across the North Atlantic region and 

beyond
5-7

.  On the other hand, previous studies
4,8

 identified an apparent lag between 

North Atlantic cooling events and the appearance of ice rafted debris (IRD) over the last 

glacial cycle, leading to the hypothesis that iceberg discharge may be a consequence of 

stadial conditions rather than the cause
4,9-11

. Here we further establish this relationship 

and demonstrate a systematic delay between pronounced surface cooling and the arrival 

of ice-rafted debris at a site southwest of Iceland over the last four glacial cycles, 

implying that in general icebergs arrived too late to have triggered cooling. Instead we 

suggest that abrupt transitions to stadial conditions should be considered as a non-

linear response to more gradual cooling across the North Atlantic. While the freshwater 

derived from melting icebergs may provide a positive feedback for enhancing and or 



prolonging stadial conditions
10,11

, it does not act as the trigger for northern stadial 

events.
 

 

We investigated fluctuations in surface ocean temperature and the delivery of ice rafted 

debris (IRD) to a site in the NE Atlantic (Ocean Drilling Program, ODP, site 983; 60.4ºN, 

23.6ºW, 1984m depth; Fig. 1) at high temporal resolution (177 years on average) over the 

past ~440kyr (2,474 discrete samples). To this end we counted the relative proportion of the 

polar planktonic foraminifer, Neogloboquadrina pachyderma, within the total assemblage 

(%NPS; see Methods) and the number of lithogenic/terrigenous grains > 150m per gram dry 

sediment (IRD/g; see Methods). Today the location of ODP site 983 is under the influence of 

the warm surface Irminger Current (part of the modern subpolar gyre) as it turns northwards 

after splitting from the North Atlantic Current (NAC), which itself transports ~7.5Sv (1Sv = 

10
6 

m
3
 s

-1
) of warm (~8.5ºC) water over the Iceland-Scotland Ridge (ISR) and into the Nordic 

Seas
12

 (Fig. 1). This inflow is balanced in part by the outflow of cold fresh surface waters via 

the East Greenland Current but predominantly (~6Sv) by overflows of cold dense bottom 

waters through the Denmark Strait and across the ISR that form as a result of strong 

wintertime cooling and convection within the Nordic Seas
12

. Together, these overflows 

represent the principal constituent precursors to North Atlantic Deep Water (NADW) and 

therefore represent an essential component of the modern Atlantic Meridional Overturning 

Circulation (AMOC)
12

. 

 

The present ingress of warm NAC waters into the Nordic Seas is reflected by the SW/NE 

orientation of the North Atlantic polar front (Fig. 1). During the Last Glacial Maximum 

(LGM; ~23 to 19ka) the polar front was positioned much further south and was more zonally 



orientated
13

 (Fig. 1) suggesting a reduction in heat transport into the Nordic Seas by the 

NAC. Paleoceanographic reconstructions
14

 and a range of model experiments
15

 suggest that 

this difference was reflected by a change in the geometry of the AMOC with the northern 

locus of deep water formation shifted to the south of Iceland. An analogous (though not 

identical) change is thought to have accompanied the abrupt shifts associated with 

stadial/interstadial transitions
16,17

. As can be seen from the modern and LGM distributions of 

N. pachyderma (Fig. 1) ODP site 983 is sensitive to latitudinal movements of the polar front. 

The site is also in the general path of drifting ice originating from Iceland, Greenland and 

Scandinavia
4,18,19

 (Extended Data Figure 1). The IRD we identify in ODP 983 is 

predominantly quartz and volcanic material (Extended Data Fig. 2) with the latter presumably 

sourced from Iceland
4,20

 or Eastern Greenland
20

 and we note that volcanic material sourced 

from these regions is one of the earliest arrivals within the broader episodes of ice rafting 

across much of the North Atlantic
4,20

 (Extended Data Figure 1). This suggests that our site is 

ideally positioned to detect ice rafting events in their earliest stages. 

 

Our results reveal the intimate association between ice rafting and high latitude temperature 

variability over the last four glacial cycles with unprecedented detail (Fig. 2). The resolution 

of our records permits us to investigate the precise phasing between these parameters for a 

large number of transitions. Accordingly we develop an algorithm for objectively assessing 

the temporal offsets between abrupt cooling (warming) events and the arrival (disappearance) 

of IRD (Methods) and we find a distinct difference between episodes of cooling and warming 

(Fig. 3). For the majority of events, cooling (i.e. an abrupt increase in %NPS) occurs before 

the arrival of IRD while there is much closer alignment between warming and the 

disappearance of IRD. This result is insensitive to the choice of thresholds used to detect the 

transitions (Extended Data Fig. 3) and for a reasonable range of threshold values we can state 



that the appearance of IRD lags behind cooling for at least 75% of detected events with at 

least 50% of cooling events occurring more than 200 years before the arrival of icebergs. We 

can therefore state that if the arrival of IRD to ODP site 983 heralds the delivery of rafted ice 

to the broader North Atlantic
4,20

 then icebergs were not the trigger for North Atlantic cold 

events. Occasionally an increase in IRD may occur without a corresponding increase in 

%NPS (Fig. 2). This tends to happen when conditions are already cold and may reflect 

saturation of the %NPS proxy. Cooling events may also occur without a corresponding peak 

in IRD. Typically this happens earlier in a glacial cycle and may reflect the smaller size of 

continental ice sheets at these times. Again this suggests that icebergs are not necessary for 

initiating cold events. 

 

Notably, the asynchrony we observe between temperature and IRD at ODP site 983 does not 

characterise the whole of the North Atlantic. When we apply our algorithm to equivalent 

records from ODP site 980 (~750km to the southeast of our site; 55.5ºN, 14.7ºW, 2180m 

depth; Fig. 1)
21,22

 we find that both cooling and warming transitions are aligned with the 

appearance and disappearance of IRD respectively (Fig. 3). The surface records from ODP 

sites 983 and 980 can be aligned by tuning between their respective benthic 
18

O records 

(Fig. 4) and although this approach lacks precision on a millennial-timescale it is clear that 

cold events at site 983 last longer than those at site 980 and typically start earlier. 

Furthermore, considering the general relations between temperature and IRD depicted in 

Figure 3 the most parsimonious solution is the alignment of warming between the sites. This 

is in line with the current consensus that abrupt warming events may be considered as 

essentially synchronous across the wider North Atlantic region
23

 and is predicted by 

modelling studies using both hosing and non-hosing forcing scenarios
7,16,24

. It also implies 

that the IRD events observed at 983 and 980 were approximately coeval and could therefore 



reflect more widespread ice rafting across the North Atlantic. The observation that cooling 

(implied by an abrupt increase in %NPS) at site 983 may occur hundreds to thousands of 

years earlier than at site 980 is at odds with model simulations using freshwater forcing to 

trigger cold events, which typically predict wholesale regional cooling within a few decades
5-

7
. 

 

Instead we suggest that the diachronous nature of cooling transitions recorded at ODP sites 

983 and 980 can be explained by more gradual regional cooling and corresponding southward 

migration of the polar front (Fig. 4). The relative positions of ODP sites 983 and 980 means 

that transport of warm surface waters into the Nordic Seas could be maintained even if the 

polar front had migrated south of site 983 (yet was still north of site 980). With continued 

cooling the northward surface heat transport would decrease below the threshold necessary to 

sustain vigorous convection in the Nordic Seas (point B in Fig. 4c). At this point we suggest 

that the main locus of deep convection would shift to the south of Iceland as the AMOC 

switched from a warm to cold (stadial) mode
16

. This would coincide with a sharp increase in 

seasonal sea ice cover across the Nordic Seas and consequently much lower winter 

temperatures over Greenland as climate entered a stadial state
25

. The abrupt transition to 

stadial conditions would result in rapid cooling across much of the North Atlantic
6,16

 

including ODP site 980 and south of the NAC (Fig. 4). 

 

Studies suggest that the build-up of sub-surface heat in the high latitude North Atlantic during 

stadials
17

 may cause an increase in iceberg calving
9-11

 (Methods). In combination with lower 

temperatures allowing wider dispersal of icebergs, this could explain the (approximately) 

simultaneous appearance of IRD across the wider North Atlantic at these times and suggests 



that the appearance of IRD at site 983 is indicative of a transition to stadial conditions. This 

assertion is supported by the record of benthic foraminiferal 
13

C from ODP 983 
26

 (Fig. 2 

and Extended Data Figs. 4-7). Although the 
13

C record generally has lower temporal 

resolution than our records it is apparent that minima in benthic 
13

C tend to be shorter in 

duration than the cold events as defined by %NPS and more in line with the delivery of 

IRD
27

. Previous studies have interpreted low benthic 
13

C values at ODP site 983 to reflect 

increased sea ice cover over the Nordic Seas
26

 or the enhanced influence of an underlying 

(southern-sourced) water mass with low 
13

C 
27

. Both of these conditions may be met when 

ocean circulation is in a stadial mode thus the correspondence between IRD and benthic 
13

C 

implies that cooling at ODP site 983 occurs before the transition to stadial conditions. 

 

Our observations have important chronologic implications because they suggest that a 

distinction should be made between stadial events sensu stricto (as recorded by Greenland ice 

cores) and North Atlantic cold events in their wider sense. Specifically we suggest that sites 

to the northwest of the NAC may experience pronounced cooling (i.e. a transition to arctic / 

polar conditions) before the onset of Greenland stadial conditions while those south of the 

NAC cool in phase with the transition to a stadial state. Indeed a previous study from north of 

the NAC noted a systematic lag of 220±100 years between abrupt cooling events at their site 

and the arrival of IRD during Marine Isotope Stage (MIS) 3 
8
. On the other hand we would 

expect sites throughout the North Atlantic region (both north and south of the NAC) to 

experience more gradual cooling prior to the transition to stadial conditions (as observed over 

Greenland
2, 28

) and we note that Bond and Lotti
4
 observed longer term coolings prior to the 

arrival of IRD for several events during MIS 3. Based on these arguments we develop a 



strategy for refining the age model of ODP 983 that can be used in future studies (see 

Methods and Extended Data Figs. 4-8). 

 

Our findings suggest that stadial transitions may occur as a non-linear response to more 

gradual cooling, implying the existence of a threshold, beyond which the transition to a 

stadial state becomes inevitable (Fig. 4). Indeed the presence of such a threshold is apparent 

from the Greenland temperature record itself with the duration of interstadials being a 

function of the rate of interstadial cooling
28

 (Extended Data Fig. 9). Our results therefore 

support suggestions that abrupt climate transitions on millennial-timescales are strongly 

dependent on internal feedbacks within the climate system (Methods). Increased iceberg 

calving and dispersal during stadials may provide a positive feedback on the AMOC, 

enhancing and /or prolonging stadial conditions through the addition of freshwater (with 

Heinrich events being the ultimate expression)
9-11,24

. However these events should be viewed 

as a consequence of stadial conditions and not the driver. 
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Figure Legends: 

 

Figure 1. Regional context of the study site 

(a) Modern sea surface temperature
29

 (PF is Polar Front, AF is Arctic Front) (b) Major ocean 

currents (NAC is North Atlantic Current, IC is Irminger Current, EGC is East Greenland 

Current, NADW is North Atlantic Deep Water) (c, d) Modern and LGM distribution of 

%NPS
13

. Also shown are the locations of ODP sites 983 (1) and 980 (2). 

 

Figure 2. Proxy records from ODP 983 

(a) The LR04 benthic 
18

O stack
30

 (b) Sedimentation rates in ODP 983 according to LR04 (c) 

%NPS (d) IRD / g (e) Benthic foraminiferal 
13

C 
26

 (f) Red symbols are calculated offsets 

between cooling (increasing %NPS) and the arrival of IRD (positive offset signifies that 

cooling occurs first). Yellow symbols are cooling events without corresponding IRD peaks 

and blue symbols are IRD events without registered cooling (see text for explanation). All 

records are plotted on the LR04 age model
30

. 

 

Figure 3. Relative timing of temperature change versus ice rafting 

Calculated offsets between temperature change (change in %NPS) and IRD at ODP sites 983 

(440-0ka) and 980 (440-360ka and 140-70ka)
21,22

. All analyses performed using the LR04 

age model and identical threshold parameters (Methods). Boxes represent the interquartile 

range (IQR) dissected by the median value. Whiskers are 1.5xIQR and extend to the last 



value included in this range. Positive values signify temperature change is earlier. Blue boxes 

represent cooling versus arrival of IRD, red/orange boxes represent warming versus IRD 

decrease. Dark blue/red boxes represent the start of a transition, light blue/orange reflect the 

mid-point. n = number of paired transitions detected. 

 

Figure 4. Gradual cooling precedes the transition to stadial conditions 

(a) Records of %NPS and IRD/g from ODP site 983 and 980 
21

 reveal earlier cooling and 

longer cold intervals at the northern site (Methods). (b) Cartoon showing approximate 

migration path of the Polar Front (PF) (1 and 2 are positions of ODP sites 983 and 980) (c) 

Schematic of the proposed time evolution of PF movement. From A, gradual cooling pushes 

the PF southwards, crossing site 983. On reaching threshold point B an abrupt southward 

migration of the PF occurs with the transition to stadial conditions (C). The return to warm 

conditions is essentially synchronous across the North Atlantic. 

 

 

Methods: 

 

Sample preparation and faunal counts 

Sediment samples were spun overnight and washed with DI water through a 63m sieve 

before being dried at 40ºC. IRD and faunal counts were made on the >150m fraction after 

splitting to yield approximately 300 entities. Only left coiling specimens of N. pachyderma 

were counted and those with morphological resemblance to Neogloboquadrina incompta 

were not counted. The uncertainty due to aberrant coiling in N. pachyderma is therefore <3% 

31
. The percentage of N. pachyderma in the North Atlantic can be used as a sensitive tracer 

for the locations of oceanic fronts in this region (Fig. 1). According to Pflaumann et al. 
32

 the 



Arctic front is documented by the transition from ~90-94% NPS while values of ~98% NPS 

track the polar front. IRD was considered as the total number of lithogenic/terrigenous grains 

counted.  The majority of grains fall into two categories: quartz and volcanics, with volcanics 

comprising ~36% of the total IRD on average (Extended Data Figure 2). 

 

Algorithm for quantifying temporal offsets between temperature change and IRD input 

All datasets were input in the time domain (equivalent results were obtained using the depth 

domain) using the LR04 timescale
30

 (a revised age model was also used for comparison, 

Extended Data Figure 8) and evenly resampled at 0.1kyr (similar to  the physical sampling 

rate during interglacial periods when sedimentation rates are greatest). Records were then 

smoothed using a rectangular filter (running mean) of 0.5kyr (similar to the lowest sampling 

rate during full glacial periods) implemented by filtfilt in Matlab (i.e. run forward and 

reverse) and differentiated with respect to time (via the difference quotient). Abrupt 

transitions in %NPS or IRD/g were then identified by their respective derivatives exceeding a 

threshold.  When looking for cooling events, the algorithm is primed by the completion of a 

warming event according to %NPS (completion of an IRD event serves as an alternative 

primer). It then searches for the next time %NPS and/or IRD/g increases at a rate greater than 

a given threshold (specific to each parameter). The algorithm is reset when warming next 

occurs. Warming offsets (decrease in %NPS and IRD/g) are quantified in an analogous way 

with a threshold value equal to -1x that used for the cooling offsets. The algorithm identifies 

the onset of a transition as the time when the threshold is first exceeded and the mid-point of 

the transition as the mid-point of all consecutive points exceeding the threshold. We calculate 

offsets for both the start and mid-point of transitions since the mid-point is less sensitive to 

the specific threshold values employed. However, we find a similar result using either 

approach (Fig. 3). The algorithm rejects offsets outside of a given range, in this case ±6kyr. 



 

The detection of individual events depends on a trade-off between the length of smoothing 

window applied (which is common to all records) and the derivative threshold values 

employed (which are specific to each record). In order to determine the optimal set of 

threshold values we performed a sensitivity analysis (Extended Data Figure 3). If a threshold 

is too sensitive, or too insensitive it is less likely that a true pair of transitions will be 

identified, leading to an erroneous calculated offset. This effect is apparent from offsets 

calculated for warming events. It can be seen that the interquartile range (IQR) for warming 

offsets is larger when the thresholds are at the lower or upper limits of our sensitivity 

analysis. An equivalent result is obtained when IRD is used as a primer. We suggest that the 

most appropriate threshold pairs should result in smaller values of the IQR for warming 

transitions (implying greater consistency between individual events). From the results shown 

in Extended Data Figure 3 we use this principal to delineate a region of optimal threshold 

values. We employ the lower left set of values within this range in Figure 3 in the main text 

because it results in the highest number of paired transitions. It is also the most conservative 

in terms of the calculated offsets (other pairings result in more positive offsets). 

 

Alignment of records from ODP 983 and ODP 980 (Figure 4) 

The cores were aligned by modifying the LR04 age model
30

 to improve alignment of their 

benthic 
18

O records. In Figure 3, records from site 980 are on LR04 throughout. Those from 

site 983 are on LR04 for the dashed intervals. Between these anchor points the age model for 

983 has been shifted as indicted by the horizontal black arrow. 

 

Stadial transitions as a non-linear response to gradual cooling across the North Atlantic 



Since Bond and Lotti’s 
4
 observation that most Greenland stadials events (not just those 

related to Heinrich events) were associated with increased iceberg calving and dispersal 

across the North Atlantic region, a great number of ocean and climate modelling studies have 

employed freshwater forcing scenarios to simulate abrupt change across the North Atlantic 

region and beyond
5-7,33,34

. Clearly the influence of freshwater on the efficacy of North 

Atlantic Deep Water (NADW) formation has important consequences for the AMOC and 

mechanisms that invoke (quasi-) periodic fluctuations in iceberg calving and freshwater input 

provide an appealing solution to the question of why Greenland stadials (and North Atlantic 

Heinrich events) occur with such regularity
35-37

. However, the observations that cooling (both 

abrupt 
this study and

 
8
 and gradual

4
) across the North Atlantic actually precedes the transition to 

stadial conditions (and therefore the release of icebergs) suggests that an alternative to 

freshwater forcing from icebergs should be considered as the trigger for inducing stadial 

transitions. Accordingly, several previous studies have invoked abrupt transitions in ocean 

circulation without calling on iceberg discharge as a primary forcing agent 
10,38-44

.  

 

Based on our observations we invoke gradual cooling across the North Atlantic region as the 

ultimate trigger for the transition to stadial conditions. Thus we consider stadial transitions as 

an abrupt, non-linear response to more gradual forcing. The precise cause(s) of cooling may 

be manifold and may vary depending on the background state. For example, longer term 

cooling may be the result of changes in insolation, greenhouse gas forcing or ice sheet 

configuration
44

.  On shorter timescales cooling could be induced by a gradual weakening of 

the AMOC either in response to a gradual freshening of the surface North Atlantic
38

 or 

following a transient AMOC overshoot at the onset of interstadial conditions
24,33

. 

Alternatively the build-up of circum-North Atlantic ice shelves could lead eventually to 

runaway cooling and the development of stadial conditions
43

. Once in a stadial state, the 



build-up of subsurface heat may lead to the destruction of ice shelves and ultimately the 

partial collapse of land-based ice sheets (with Heinrich events being the ultimate expression 

of such a mechanism) 
4,9-11,43,45,46

. The freshwater provided as a consequence of such a 

collapse may be expected to enhance and /or prolong stadial conditions
10,24

 and thus should 

be considered as a positive feedback rather than the initial trigger for stadial transitions. 

 

Revised age model development 

The site of ODP site 983 is positioned on the rapidly accumulating Gardar Drift and sediment 

accumulation is sensitive to changes in the dense overflows crossing the ISR
26,27

 which 

themselves are thought to vary in concert with high latitude climate
17,27

. At orbital timescales 

this can be seen through elevated sedimentation rates during interglacials (as implied by the 

LR04 age model
30

; Fig. 2) when the overflows are thought to be more vigorous
26,27

 but this 

also implies that sedimentation rates are elevated during millennial-scale warm events that 

are not accounted for by the LR04 age model. Given the potentially large and frequent 

changes in sedimentation rate at ODP site 983 we require a more detailed tuning strategy for 

refining the age assignment of abrupt events within our records. A typical approach in the 

development of such an age model is to align abrupt changes in our records with those in a 

reference stratigraphy
23

 such as GLT_syn (a synthetic prediction of  Greenland 

temperature)
47,48

. 

In line with previous studies 
23,47

 we assume that abrupt warming events in our record (which 

also align with the disappearance of IRD) are synchronous with warming across the wider 

North Atlantic region and align these with warming transitions in GLT_syn
48

 (Extended Data 

Figs. 4-7). As mentioned, sedimentation at ODP site 983 is sensitive to the overflows 

crossing the ISR
26,27

 with elevated accumulation rates during warm intervals reflecting 

enhanced advection of fine (<63m) material to the site of ODP 983 driven by faster currents 



crossing the Iceland-Faeroe ridge 
26

. The coarse (>63m) fraction of ODP 983 therefore 

reflects both the delivery of IRD (which increases during stadials) and the input of fine 

fraction (which decreases during stadials). We therefore align increases in the coarse fraction 

with cooling transitions in GLT_syn. We tune our records to GLT_syn on the EDC3 age 

model
49

 and note that the implied changes in sedimentation rate are in line with expectations 

(higher during warmer intervals). We also convert the EDC3 ages to an alternative ice core 

age model (AICC2012 
50,51

) and an absolute age model (GICC05/NALPS/China) based on 

previous studies 
48,52-55

 (see Source Data for individual figures). 

Given the potential influence of the sedimentation rate changes implied by our new age 

model on the calculated offsets, we ran the algorithm on the datasets with the new age model 

employed (Extended Data Figure 8). We note that the distribution of offsets is very similar 

for the two age models (LR04 versus our EDC3) although the median cooling offset (mid-

transition) for the revised age model is slightly smaller at 350 years compared with 425 years 

when using LR04. This can be explained as a result of higher implied sedimentation rates 

(fewer years per sampled interval) during interstadial periods which extend beyond cooling 

(according to %NPS) until the arrival of IRD. 
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Extended Data Legends 

 

Extended Data Figure 1: North Atlantic iceberg trajectories 

(a) Map showing locations of core sites relevant to this study with simplified iceberg 

trajectories after Ruddiman 
56

. Sites where volcanics are reported to appear early within 

broader pulses of IRD are marked with a ‘V’. (b) Core details and summary of IRD sources 

for each site
57-64

. In line with our observation of early cooling with respect to ice rafting at 

ODP site 983, early cooling has also been reported at sites SO82-5 
8
, DS97-29 

61
 and LO09-

18 
61

 within the Irminger Sea.  

 

Extended Data Figure 2: IRD composition in ODP 983 

Volcanics comprise ~36% of the total IRD on average. 



 

Extended Data Figure 3: Threshold sensitivity analysis for the calculation of offsets 

between temperature and IRD 

(A, B) Warming offsets are small (typically 0-50yr) for a wide range of thresholds using 

either %NPS or IRD/g as the primer (Methods) but the IQR (C, D) is larger for more or less 

sensitive thresholds. We define an optimal set of threshold values as those producing lower 

values for the IQR (delineated by the black square). (E) Decreasing the threshold sensitivity 

(higher rates of change required to detect a transition) results in fewer paired transitions. 

Small white square is the threshold set that gives the highest number of paired transitions 

within optimal region and is used in Fig. 3 (dNPS/dt = ±14, dIRD/dt = ±170) (F-H) Cooling 

offsets are all positive for the 1
st
, median and 3

rd
 quartiles. 

 

Extended Data Figure 4: Age model development for ODP 983 (0-150 ka) 

(a) Splice (at orange circle in) of NGRIP 
18

O 
2
 and a synthetic Greenland temperature 

record, GLT_syn 
48

 (b) %NPS (c) IRD / g (d) Benthic 
13

C 
26

 (e) %coarse fraction (yellow 

symbols are tuning points) (f) Benthic 
18

O from 983 
26

 (blue curve) with LR04 stack (shifted 

by -0.5‰; orange curve) for comparison (g) Sedimentation rates implied by new age model. 

All records (except LR04 stack) are on the GICC05 age model 
53

 back to 60ka and a modified 

version of the speleothem-tuned age model of 
48

 using the NALPS speleothems
54

 between 60-

108ka for older ages
52

. Grey curve in panels b-e is the millennial-scale component of 

GLT_syn (GLT_syn_hi)
48

. 

 

Extended Data Figure 5: Age model development for ODP 983 (100-250 ka) 

(a) synthetic Greenland temperature record, GLT_syn 
48

 (b) %NPS (c) IRD / g (d) Benthic 


13

C 
26

 (e) %coarse fraction (yellow symbols are tuning points) (f) Benthic 
18

O from 983 
26

 



(blue curve) with LR04 stack (shifted by -0.5‰; orange curve) for comparison (g) 

Sedimentation rates implied by new age model. All records (except the LR04 stack) are on 

the EDC3 age model
49

. Grey curve in panels b-e is the millennial-scale component of 

GLT_syn (GLT_syn_hi)
48

. 

 

Extended Data Figure 6: Age model development for ODP 983 (200-350 ka) 

(a) synthetic Greenland temperature record, GLT_syn 
48

 (b) %NPS (c) IRD / g (d) Benthic 


13

C 
26

 (e) %coarse fraction (yellow symbols are tuning points) (f) Benthic 
18

O from 983 
26

 

(blue curve) with LR04 stack (shifted by -0.5‰; orange curve) for comparison (g) 

Sedimentation rates implied by new age model. All records (except the LR04 stack) are on 

the EDC3 age model
49

. Grey curve in panels b-e is the millennial-scale component of 

GLT_syn (GLT_syn_hi)
48

. 

 

Extended Data Figure 7: Age model development for ODP 983 (300-450 ka) 

(a) synthetic Greenland temperature record, GLT_syn 
48

 (b) %NPS (c) IRD / g (d) Benthic 


13

C 
26

 (e) %coarse fraction (yellow symbols are tuning points) (f) Benthic 
18

O from 983 
26

 

(blue curve) with LR04 stack (shifted by -0.5‰; orange curve) for comparison (g) 

Sedimentation rates implied by new age model. All records (except the LR04 stack) are on 

the EDC3 age model
49

. Grey curve in panels b-e is the millennial-scale component of 

GLT_syn (GLT_syn_hi)
48

. 

 

Extended Data Figure 8: Cooling and warming offsets calculated using the revised age 

model 

Box and whisker plots show calculated offsets between temperature change (change in 

%NPS) and IRD at ODP site 983 using the LR04 age model (upper panel) and our revised 



EDC3 age model (lower panel). Boxes represent the interquartile range (IQR, 25-75%) 

dissected by the median value. Whiskers are 1.5x IQR and extend to the last value included in 

this range. Positive values signify temperature change is earlier. Blue boxes represent cooling 

versus arrival of IRD, red/orange boxes represent warming versus IRD decrease. Dark 

blue/red boxes represent the start of a transition, light blue/orange reflect the mid-point. n = 

number of paired transitions detected. 

 

Extended Data Figure 9: Rate of cooling (according to 
18

O) versus duration of an 

interstadial in the NGRIP ice core 

(a) log scales (error bars represent the uncertainty in the calculated gradients) (b) linear 

scales. Interstadial durations were calculated using a thresholding approach on the first 

derivative of the smoothed 
18

O record
2
 to identify their abrupt onsets and ends. 50 years was 

then subtracted from either end of each identified interval before calculating the gradients 

(using the raw, unsmoothed measurements) to avoid contamination from the sharp 

transitions. Shorter intervals have fewer data points and therefore greater scatter (leading to 

greater uncertainty in the calculated gradient). Two very short intervals (D-O 17 and 18) were 

omitted from the analysis. This analysis is an updated version of that made by Schulz
28

 on the 

GISP2 ice core. 
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