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Atherosclerosis, the underlying cause ofmyocardial infarction and thrombotic cerebrovascular events, is respon-
sible for themajority of deaths inwesternized societies. Mortality from this disease is also increasing at amarked
rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of
obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid
accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range
of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as
interleukins-1 and -33, transforming growth factor-β and interferon-γ, orchestrates the inflammatory response
in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling path-
ways that control the inflammatory response. This reviewwill discuss themolecular basis of atherosclerosiswith
particular emphasis on the roles of the immune cells and cytokines alongwith the dysfunctional lipid homeosta-
sis and cell signaling associated with this disease.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Coronary heart disease (CHD) is responsible for one in three deaths
inwesternized countries. An estimated 23.6million people are expected
to die globally from cardiovascular related pathologies by 2030 and the
disease and its complications, which include stroke and myocardial
infarction (MI), have been estimated to have total costs (both direct
and indirect) of approximately $315.4 billion in 2010 [1]. Atherosclero-
sis, a chronic inflammatory disorder of the large and medium sized
arteries, constitutes the major underlying cause of CHD [2]. Many risk
factors for atherosclerosis have been identified and these are generally
classified as modifiable and non-modifiable. The latter include age,
gender, and genetic predisposition to hypercholesterolemia, hyperten-
sion, diabetes and systemic inflammation [2]. Modifiable risk factors
include cigarette-smoking, diet rich in saturated fats, and a sedentary
lifestyle [2]. It is now well accepted that atherosclerosis is initiated by
a local immune response to lipid deposition within the arterial sub-
endothelial compartment [2].
2. Lipid metabolism in atherosclerosis

Lipoprotein particles function as vehicles for the transport of insolu-
ble lipids in the blood and are composed of a core region storing TAGs
and cholesteryl esters (CEs), with a surrounding polar region consisting
of phospholipids and apolipoproteins. Different forms of lipoproteins
are involved in lipid trafficking and considerable exchange of various
apolipoproteins occurs between them. For example, chylomicrons
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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primarily facilitate the transport of dietary triacylglycerols (TAGs) from
the intestine to peripheral tissues. The non-esterified fatty acids and 2-
monoacyl glycerol produced by the digestion of TAGs within chylomi-
crons by lipoprotein lipase (LPL) are then taken up by the adipose tissue
or skeletal muscle for utilization/storage [2]. The liver can acquire the
resulting chylomicron remnants via specific receptors and metabolize
them [3]. In contrast to chylomicrons, very low-density lipoproteins
(VLDL) are involved in the transport of TAGs synthesized by the liver
[2]. Intermediate-density lipoproteins (IDL) are formed following the
digestion of TAGs in VLDL by LPL and hepatic lipase (HL) [2]. Further
processing and hydrolysis of TAGs in IDL by HL results in the production
of low-density lipoprotein (LDL) particles [2]. LDL functions to carry
cholesterol from the liver to peripheral tissues. High plasma LDL levels
is a major risk factor for atherosclerosis as identified from numerous
epidemiological studies and clinical trials with statins: inhibitors of 3-
hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA reduc-
tase), a rate limiting step in the biosynthesis of cholesterol [2].

The LDL particles enter cells of peripheral tissues predominantly
via receptor-mediated endocytosis involving its cognate receptor,
LDLR (Fig. 1). The crucial involvement of LDL within atherosclerosis
was discovered through studies on subjects with familial hypercholes-
terolemia; a condition that arises from mutations in the LDLR gene [4].
Heterozygous sufferers are relatively common (1 in 500) whereas
homozygotes are less frequent (1 in a million) and exhibit six to ten
times the levels of LDL within their plasma compared to non-sufferers,
and are prone to MIs at an early age [4]. The clearance of plasma LDL
by LDLR is critical for limiting atherosclerosis and it is therefore not sur-
prising that considerable research and therapeutic approaches have
been devoted on this receptor. For example, proprotein convertase
subtilisin/kexin type-9 (PCSK9) is an emerging target for cholesterol-
lowering therapies because this enzyme binds to LDLR and targets it
for lysosomal degradation in cells [5]. Inducible degrader of LDLR
(IDOL), an E3 ubiquitin lipase that mediates ubiquitination and subse-
quent degradation of LDLR, represents another promising target [6].
The pioneering work by Brown and Goldstein that demonstrated nega-
tive feedback regulation of transcription of LDLR and HMG-CoA reduc-
tase by the sterol regulatory element binding protein pathway [7]
suggested that additional mechanisms mediate uncontrolled cellular
Fig. 1. Overview of cholesterol metabolism. Dietary lipids are absorbed in the intestine and tran
remnants deliver dietary lipids to the liver. Liver-derived VLDLs containing ApoB and ApoE (E3
IDLs and on to LDLs. ApoB facilitates LDL binding to its cognate receptor (LDLR), which are then
feedback regulation. Scavenger receptors such as SR-A and CD36 predominantly facilitate the e
ease. Lysosomal acid lipases hydrolyze CEs to free cholesterol and free fatty acids (FFAs). The fr
ABC transporters, such as ABCA-1 and SR-B1, or re-esterified to CEs for storage by the action of
stored as lipid droplets [regulated by adipocyte differentiation-related protein (ADRP)]
palmitoyltransferase 1(CPT-1)] and hydrolysis of CEs [modulated by neutral cholesterol ester h
tracellular trafficking of cholesterol.
uptake of LDL in atherosclerosis. Indeed, as discussed below in detail,
LDL is subject to modification, particularly oxidation, and suchmodified
LDL is taken up in an uncontrolledmanner by scavenger receptors (SRs),
such as A (SR-A) and cluster of differentiation 36 (CD36), by certain
plaque-resident macrophages and smooth muscle cells (SMCs) [2]
(Fig. 1).

Excess intracellular cholesterol is toxic and there are essentially
two main routes for its removal; either through enzymatic-driven con-
version to amore soluble transportable form or through reverse choles-
terol transport (RCT) [2,8]. Cholesterol is enzymatically modified
through a number of processes such as hydroxylation and esterification
within the endoplasmic reticulum (ER) to produce oxysterols and sterol
esters respectively [2,8–10]. Esterification of cholesterol reduces the
solubility of the molecule and promotes storage within cytoplasmic
lipid droplets [2,8–10]. RCT is the primary pathway for the removal of
excess cholesterol and involves lipid transporters such as ATP-binding
cassette transporter (ABC)-A1 and –G1 that mediate the transfer of
cholesterol from peripheral cells to selected extracellular acceptors
such as high-density lipoproteins (HDL) and associated apolipoproteins
[2,8–10] (Fig. 1). The cholesterol is then delivered to the liver for con-
version to bile salts in preparation for excretion [2,8–10]. Homeostatic
mechanisms exist in cells to prevent lipid overload and many act by
stimulating cholesterol efflux and modulating the inflammatory re-
sponse. For example, the production of oxysterols and desmosterol acti-
vates liver X receptors (LXRs) leading to induced expression of ABC-A1
and -G1 [11,12], and thereby RCT. In addition, macrophage cholesterol
loading induces autophagy, a process by which double-membrane vac-
uoles sequester intracellular contents and targets them for degradation
via fusion with secondary lysosomes, leading to RCT [13]. Furthermore,
peroxisome proliferator-activated receptors (PPARs) play an important
role in the control of cholesterol homeostasis [14,15].

The involvement of HDL particles within atherosclerosis has re-
ceived a great level of attention [16,17]. Sufferers of Tangier disease
contain mutations within the gene for ABC-A1 and are associated with
drastically low levels of HDL, localized accumulation of CEs within dif-
ferent tissues of the body and development of premature atherosclero-
sis [18]. The relationship between reduced HDL levels and incidences of
CHD have long been established as one of the major risk factors for the
sported by chylomicrons to peripheral tissues. Following lipolysis by lipases, chylomicron
) mediate the transport of endogenously synthesized lipids. VLDLs are then hydrolyzed to
internalized and degraded in the lysosomes. The uptake of LDL by LDLR is under negative
xcessive, uncontrolled uptake of modified LDL particles into macrophages during the dis-
ee cholesterol is either trafficked out of the cells for reverse cholesterol transport through
acyl-coenzyme A acyltransferase 1 (ACAT-1) within the endoplasmic reticulum, and then
. The accumulation of CEs depends on the FFA availability [regulated by carnitine
ydrolase (NCEH)]. Niemann-Pick type C disease proteins (NPC)-1 and -2 regulate the in-
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disease [16–18], and the plasma concentration of HDL is often nega-
tively affected bymany other atherosclerotic risk factors such as gender,
obesity and exercise [2,10,16–18]. In addition, studies in both ani-
mal model systems and humans have shown that raised plasma HDL
levels are generally associated with protection against atherosclerosis
[16–19]. The anti-atherosclerotic effects are thought to mostly arise
from the involvement of HDLs within RCT [19]. However, the particle
has additional protective properties such as inhibition of lipoprotein ox-
idation, attenuation of the inflammatory response, endothelial cell (EC)
protection and suppression of monocyte adhesion [19]. It is therefore
not surprising that augmenting HDL levels/function represents a prom-
ising therapeutic avenue against atherosclerosis. Many approaches on
HDL biology are being pursued such as increasing plasma HDL levels
(e.g. HDL mimetics, nicotinic acid, activators of nuclear receptors such
as fibrates), preventing exchange of CEs from HDL (for RCT) with
other pro-atherogenic lipoproteins (e.g. inhibitors of cholesterol ester
transport protein) and mimetics or transcriptional activators of its
major apolipoprotein ApoA-I [16,17]. However, HDL particles are het-
erogeneous in size and composition, and the complex relationship
between their concentration, particle number and diverse subpopula-
tion with anti-atherogenic effects such as RCT has been highlighted by
the recent failure of some clinical trials with orally-active, HDL raising
agents [16,17]. Future therapeutic approaches should therefore focus
more on specific aspects of HDL biology and structure-function relation-
ships rather than simple plasma concentration of the lipoprotein.
Indeed recent studies have shown that HDL cholesterol efflux capacity
rather than absolute concentration is inversely associated with cardio-
vascular events [16,17].
3. The development and progression of atherosclerosis

Advances inmurinemodels capable of developing advanced athero-
sclerotic lesions, particularly apolipoprotein E (ApoE)−/− and LDLR−/−

knockout mice, have markedly facilitated our understanding of the
molecular basis of this disease [20,21]. ApoE is produced prominently
within the liver and by macrophages and is a component of lipoprotein
particles where it functions as a ligand for lipoprotein receptors [22].
ApoE−/−mice aremarkedly hypercholesterolemic and develop sponta-
neous atherosclerotic lesions that can be speeded up by feeding of a
high-fat diet [20–22]. LDLR−/− mice are mildly hypercholesterolemic
due to defective clearance of plasma LDL and, following feeding on a
high-fat diet, develop atherosclerotic lesions accompanied with in-
creased levels of cholesterol within the plasma and raised amounts of
pro-atherogenic lipoproteins [20,21]. Bone marrow transplantation ap-
proaches in these mice allow determination of whether a given pheno-
type is governed by hematopoietic or non-hematopoietic cells [20,21].

The use of mouse model systems has some key limitations. For
instance, the disruption of the genes for ApoE or LDLR may affect
other crucial cellular processes; for example, ApoE also functions as an
anti-oxidant and modulator of immune responses [22]. In addition, re-
cent comparisons of the expression profiles of 15 tissues have revealed
considerable diversity in RNA expression between humans and mice
[23]. Furthermore, mice have a distinct lipoprotein profile from humans
and the majority of plasma cholesterol is carried on HDL particles
whereas, in humans, 75% of cholesterol is carried on LDL particles [20,
21]. Moreover, immunological responses differ as the immune system
has partly evolved due to selective pressure from microbial exposure;
as such mice are more resilient to inflammatory damage than humans
[20,24]. Despite these potential caveats, the use of thesemice has great-
ly progressed our understanding of the disease, and there are many
advantages associated with the use of murine models such as environ-
mental conditions and dietary intake can be carefully controlled, the
generation time is short therefore facilitating cross-breeding with
mice that have deficiency in specific genes, and the evaluation of disease
progression can be undertaken within a reasonable time frame [20,21].
3.1. Initiation of atherosclerosis

Fig. 2 summarizes the key steps in the different stages involved in
the pathogenesis of atherosclerosis that develops during the life span
of an individual. A number of potential initiators of atherosclerosis
have been identified including intimal lipid accumulation, changes in
hemodynamic forces and a response to injury of the endothelium [2].
Atherosclerotic lesions tends to develop within areas of curvature,
such as branching points, which are prone to disturbed laminar flow
within the large and medium sized arteries [2,25]. Whilst the arterial
endothelium is typically impermeable to large biomolecules such as
LDL, physiological and pathophysiological changes can activate them
leading to an increase in the permeability of the EC layer [25,26]. As a re-
sult the expression of adhesion molecules on the cell surface increases
in addition to the production of extracellular matrix (ECM) proteins
and the secretion of chemokines and growth factors (GFs) including
macrophage colony-stimulating factor (M-CSF) [2,25,26].

LDL particles containing ApoB diffuse between EC junctions and
accumulate within the subendothelial space [2]. The LDL particles
associate with ECM components through interactions with ApoB and
LPL and proteoglycans, becoming trapped and susceptible to a range
of enzymatic and non-enzymatic chemical modifications, particular-
ly oxidation, mediated through the activities of myeloperoxidases,
lipoxygenases (LOX), reactive oxygen species (ROS), peroxynitrite and
nitric oxide [2]. Additionally, non-oxidized LDL is likely taken up by
macrophages where it may be subjected to oxidation and subsequent
aggregation within lysosomes [27].

Modified LDL particles are immunogenic as the peroxidation of
phospholipids, CEs and TAGs creates reactive species capable of stimu-
lating inflammatory processes that promote the activation of ECs,
platelets and macrophages [28–30]. The presence of oxidized LDL
(OxLDLs) in the intima also aggravates surrounding cells and induces
SMC mitogenesis [2]. The oxidation of LDL occurs in stages with
minimally modified LDL (mmLDL), which is not recognized by SRs,
being a major initiator of the immune response [2,28,30]. For example,
mmLDL stimulates the production of ROS and pro-inflammatory medi-
ators via a mechanism that requires toll-like receptor (TLR) 4 [31]. In
addition, mmLDL and its active components such as CE hydroperoxides,
induce TLR4-dependentfluid phase uptake, and hence lipoprotein accu-
mulation, in macrophages [32].

The recruitment of immune cells, includingmonocytes, neutrophils,
T cells, B cells, dendritic cells and mast cells, to lesion sites is controlled
by chemokines released in particular by activated ECs and SMCs, and
their corresponding G protein-coupled receptors present on leukocytes
[33–36]. The roles of numerous chemokines and their receptors in
atherosclerosis along with the recruitment of diverse sets of immune
cells to the lesion have been investigated. A detailed coverage of these
findings as well as those aimed at targeting chemokine interactions in
atherosclerosis is beyond the scope of this article, and the reader is
directed to several excellent recent reviews on this topic [33–36]. The
leukocyte adhesion cascade is comprised of three main stages; rolling,
activation and arrest [33–36]. In the case of LY6Chigh mouse monocytes
(the precursors to most of the macrophages present in atherosclerotic
lesions), their tethering and rolling on the EC surface is dependent on
the immobilization of chemokines, such as CXC-chemokine ligand
(CXCL)-1 and CC-chemokine ligand (CCL)-5, on EC glycosaminoglycans
and their receptors (R) expressed on the surface of monocytes [35]. In
addition, the rolling of the monocytes along the endothelium is coordi-
nated by weak interactions between P-selectin glycoprotein ligand-1
found on the monocyte surface to P-selectin and E-selectin expressed
by the endothelium [35]. Themonocytes are immobilized through asso-
ciations between integrins on the monocyte surface and adhesion pro-
teins expressed on ECs [very late antigen 4 with vascular cell adhesion
molecule 1 and lymphocyte function-associated antigen 1with intercel-
lular adhesionmolecule 1 (ICAM-1)] [35]. The transmigration of mono-
cytes across the endothelium is governed by chemokine:chemokine



Fig. 2. Overview of different stages of atherosclerosis. See text for more details. Abbreviations: ECs, endothelial cells; ECM, extracellular matrix; LDL, low-density lipoprotein; OxLDL, ox-
idized low-density lipoprotein; SMC, smooth muscle cells; SR, scavenger receptor.
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receptor interactions with CCL2-CCR2, CX3CL1:CX3CR1 and CCL5-CCR5
being particularly important [35]. Following transdiapedesis into the
intima, monocytes differentiate into macrophages under the influence
of M-CSF or granulocyte-macrophage colony stimulating factor (GM-
CSF) [33–36].

Macrophages utilize a variety of pattern-recognition receptors
(PRRs), including SRs, TLRs and nucleotide-binding oligomerization
domain (NOD)-like receptors, to elicit rapid responses against foreign
particles (or endogenous danger signals) to mount an inflammatory re-
sponse [35,37]. The role of TLR4 in the promotion of foam cell formation
and the inflammatory response [31,32] was described above and stud-
ies in mouse model systems have shown that the absence of TLR2 or
TLR4 along with the adapter proteins used by TLRs [IL-1 receptor asso-
ciated kinase 4, tumor necrosis factor (TNF) receptor-associated factor
6, Toll/interleukin (IL)-1 receptor (TIR)-domain-containing adaptor
protein inducing interferon (IFN)-β (TRIF) and myeloid differentia-
tion primary response protein 88] results in an athero-protective phe-
notype [37–43]. The atherosclerotic plaques also contain cholesterol
crystals and their uptake by macrophages via macropinocytosis leads
to activation of the NOD-, leucine-rich repeat- and pyrin domain con-
taining 3 (NLRP3) inflammasome and production of IL-1β [44]. The
pro-atherogenic role of IL-1β is well established (see Section 6) though
the link between NLRP3 inflammasome and atherosclerosis is not clear-
cut [44,45]. SRs,which includes SR-A1, SR-B1, CD36,macrophage recep-
tor with collagenous structure (MARCO), lectin-like oxidized LDL recep-
tor 1 (LOX1), scavenger receptor for phosphatidylserine and oxidized
LDL (SR-PSOX) and scavenger receptor expressed by endothelial cells-
1 (SREC1), form part of the innate immune system tasked with the rec-
ognition of awide range of ligands associatedwith pathogenic classes of
molecular patterns, and support the elimination of foreign agents [46,
47]. Several SRs contain multiple LDL-specific binding sites that facili-
tate the uptake of modified forms of this lipoprotein and subsequent
foam cell formation [46,47]. SR-A1 and CD36 have the highest affinity
for acetylated LDL (AcLDL) and OxLDL respectively, and are responsible
for up to 90% uptake of modified LDL in vitro [46,47]. However, the role
of SR-A1 and CD36 in atherosclerosis in vivo is less clear with often-
conflicting outcomes from studies involving their genetic disruption in
mouse model systems [46–51]. Functional redundancy or compensato-
ry mechanisms are potential contributors and indeed Makinen et al.,
[49] have shown that targeted down-regulation of either CD36 or SR-
A1 hinders atherosclerotic development and silencing of one receptor
results in the up-regulation of the other. Furthermore, macrophages
can accumulate LDL, VLDL and modified LDL through several receptor-
independent processes such as phagocytosis and macropinocytosis [2,
10,52]. The CEs in the lipoprotein particles are hydrolyzed to fatty
acids and free cholesterol in the endolysosomal compartment [2]. The
latter then moves to the ER where they can be re-esterified by acyl-
coenzyme A acyltransferase 1 (ACAT-1) to form CEs “droplets” charac-
teristic of foam cells [2].

SMCswithin the plaque are also capable of foam cell transformation
mediatedmainly through the uptake of modified LDLs by SRs expressed
at their cell surface [2,46,47]. Small, asymptomatic lesions are com-
prised of macrophage- and SMC-foam cells along with T cells, and are
referred to as fatty streaks due to the high concentration of foam cells
[2,30,35]. The fatty streak may regress or progress into a clinically rele-
vant plaque [2,30,35].

3.2. Disease progression

The formation of an intermediate lesion arises due to enhanced mi-
gration and proliferation of vascular SMCs (VSMCs) from the tunica
media into the inflamed area in response to GFs released from plaque-
resident cells [2,10]. The SMCs proliferate and release ECMproteins con-
tributing towards the production of a fibrotic cap [2,10]. Stable plaques
are associated with the presence of a fibrous cap, containing a matrix
enriched with type I and III collagen, and the absence of a necrotic
core [2,10,53].

The cholesterol homeostatic mechanisms become dysfunction dur-
ing excessive cellular uptake of this sterol leading to the accumulation
of free cholesterol, which unlike CEs, is toxic to the cells. Excessive levels
of free cholesterol in the ER leads to defective esterification by ACAT-1,
and in the plasma membrane results in an inflammatory response via
the activation of nuclear factor-kappa B (NF-κB) [2,35,54,55]. Such dys-
functional lipid metabolism triggers an unfolded protein response
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within the ER and, together with other insults, initiates apoptotic path-
ways [56,57]. During the earlier stages of the disease, effective engulf-
ment of apoptosing cells by neighbouring phagocytes (efferocytosis)
helps to resolve pro-inflammatory processes and maintain stability
within the plaque [56–59]. However, dysfunctional efferocytosis is a
key feature of advanced lesions and as the disease progresses, the rate
of apoptosis within the necrotic core likely overwhelms the phagocytic
capabilities of residing phagocytes [56–59]. Efficient clearance of
apoptotic cells by surrounding macrophages requires intact lipid me-
tabolism to deal with the ingested lipids, and hence defective lipid ho-
meostasis is likely to contribute to dysfunctional efferocytosis [56–59].
In addition, in vitro experiments have demonstrated that modified LDL
serves as a substrate for phagocytes and so may competitively hinder
the efferocytosis of dying cells [56–59]. Ineffective efferocytosis also
stimulates secondary necrosis of lesion-resident cells and, in the case
of macrophages, leads to the release of oxidized lipids and pro-
inflammatory propagators [56–59]. As the disease continues, the plaque
becomes increasingly unstable and vulnerable as a result of reduced
efferocytosis, chronic inflammation and the ineffective egress of im-
mune cells [56–59]. When residing within the plaque, the migration of
macrophages is limited and therefore compromises potential resolution
of inflammation thereby favouring pathogenic processes [35,56,60].
Lesion-resident macrophages contribute towards the inflammatory
state through the secretion of protease enzymes and pro-
inflammatory cytokines [35,56,60].

3.3. Advanced plaque formation and rupture

Towards the later stages of the disease, the atherosclerotic lesion is
characterized by an abundance of disorganized cells, lipids,matrix com-
ponents and minerals [2]. Clinical symptoms may occur during this
phase of the disease as the intimal region is thickened and the area of
the arterial lumen may be reduced in size [2,56,60]. Unstable plaques
are associated with a high proportion of macrophages to SMCs and a
lipid-richnecrotic core [2,56,60]. The dying foam cells release their cyto-
plasmic contents causing a build-up of extracellular lipids and GFs that
exacerbates inflammation and triggers secondary necrosis [2,56,60].
Excessive levels of cholesterol also promote the formation of solid crys-
tals that are toxic to cells and initiate a pro-inflammatory response [44].

Macrophages induce the expression of matrix metalloproteinases
(MMPs) that promote the degradation of collagen. The MMP family
encompasses a range of proteolytic enzymes, including collagenases,
gelatinases, matrilysins and membrane-type MMPs [61–63]. In the
healthy state, MMPs are carefully regulated through the production of
precursor zymogens, the activities of endogenous tissue inhibitors of
metalloproteinases (TIMPs) and associations with the ECM [61–63].
However, an imbalance in the ratio of MMPs to TIMPs is thought to sup-
port excessive ECMbreakdown [61–63].MMPs are overexpressedwith-
in unstable lesions and localize to vulnerable regions within the plaque
that are prone to rupture and inhabited by macrophage foam cells
[61–63]. The degradation of the connective tissue is detrimental to
Table 1
Role of components of key signaling pathways in atherosclerosis.

Signaling
pathway/protein

Role in atherosclerosis

ERK-1/2 Regulates the proliferation and differentiation of VSMC, foam cell form
ERK5 Activated by statins. Promotes efferocytosis and regulates both EC fun
p38 Regulates foam cell formation and cellular apoptosis in macrophages
JNK Regulates macrophage foam cell formation, EC apoptosis and express
NF-κB Regulates expression of pro-inflammatory cytokines, chemokines and

recruitment of immune cells and foam cell formation.
PI3Kγ Modulates foam cell formation, macrophage proliferation and recruit
Akt1 Modulates pro-inflammatory gene expression, apoptosis, and VSMC p
Akt2 Modulates migration and proliferation of VSMC, expression of protea
Akt3 Regulates foam cell formation.
plaque stability and the resulting products are deposited within the ar-
terial intima where they promote vasculitis [61–63].

Locally produced cytokines, such as IFN-γ secreted by T cells, reduce
the proliferation of SMCs and also inhibit the synthesis of integral ECM
components like collagen types I and III [64]. The fibrous cap undergoes
thinning prior to rupture, which undermines the stability of the struc-
ture [2,10,63]. At this stage of the disease, the plaque contains depleted
levels of fibrousmaterial andmay show signs of calcification, ulceration
and hemorrhaging from small vessels, which grow in from the adventia
and are leaky [2,10,63].

A number of factors contribute towards the disruption of the cap in-
cluding the presence of inflammatory cells, building toxicity, the activi-
ties of proteolytic enzymes released from macrophages, coronary
spasms and physical vulnerabilities and stresses arising from the altered
composition of the lesion [2,10,63]. The exposure of tissue factor from
theplaquewith the arterial lumenpromotes coagulation and the forma-
tion of a thrombus [2,10,63]. The thrombus may instantly obstruct the
lumen or may detach in the form of an embolus and block blood flow
at a downstream site [63]. The usual cause of a MI is the rupture of an
advanced atherosclerotic lesion, which exposes collagen and tissue fac-
tor leading to platelet aggregation and coagulation [63].

4. Key cellular signaling events in atherosclerosis

The dysregulation of key signaling pathways during atherosclerosis
leads to altered gene expression that facilitates the disease processes.
Several signaling pathways have been implicatedwithin the atheroscle-
rotic state and some of the key ones are associated with the inflam-
matory response such as mitogen-activated protein kinases (MAPKs),
nuclear factor kappa B (NF-κB) and phosphoinositide 3-kinase (PI3K)
[65–68]. Table 1 summarizes the roles of some key components of
these pathways in atherosclerosis.

4.1. MAPKs: extracellular signal-regulated kinase (ERK), p38 and
c-Jun N-terminal kinase (JNK)

The ERK family includes ERK-1, -2 and -5. The exact roles of ERK-1
and -2 in atherosclerosis are still not properly understood but studies
have shown that pathways involving these enzymes regulate the prolif-
eration and differentiation of SMCs in the lesion [65]. OxLDL promotes
the proliferation of cultured aortic SMCs in a signaling mechanism
involving ERK1/2 [65]. A study by Zhou et al., [69] demonstrated that in-
hibition of ERK1/2 activity leads to increased efflux of cholesterol to
ApoA-I and HDL acceptors in macrophage-derived foam cells because
of induced expression of ABC-A1. Furthermore, we have shown that
ERK1/2 are integral to the IFN-γ-mediated activation of signal transduc-
er and activator of transcription (STAT)-1; a key regulator of many
genes implicated in atherosclerosis such as ICAM-1 and monocyte
chemotactic protein-1 (MCP-1), and the uptake of modified LDL by
macrophages [70]. In addition to the pro-atherogenic actions described,
ERK1/2 are also likely involved in protective effects. A disintegrin and
Ref.

ation and IFN-γ signaling. [65,69,70]
ction and inflammation. [73–75]
. Modulates chemokine and adhesion molecule expression in EC. [65,76–79]
ion of MMPs and ECM proteins in VSMC. [65,80–83]
adhesion proteins. Modulates vascular inflammation, the [67,84–88,97,98]

ment of immune cells. [101–103]
roliferation and migration. [105,106]
se and ECM proteins, and macrophage polarization. [107,108]

[109]
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metalloproteinase with thrombospondin motifs (ADAMTS) are struc-
turally related to MMPs and potentially involved in remodelling of
the ECM within the plaque [71]. The anti-atherogenic cytokine IL-33
(see Section 6) down-regulates the expression of ADAMTS-1 and -4 in
human macrophages through a signaling mechanism dependent on
ERK1/2 [72].

In contrast to ERK1/2, ERK5 is a less characterized isoformbut has re-
ceived interest because of its robust activation by statins [73]. Recent
studies in mouse model systems have demonstrated that ERK5 activa-
tion in macrophages promotes efferocytosis and inhibits the develop-
ment of atherosclerosis [73]. In addition, ERK5 regulates EC function
by increasing the expression of endothelial nitric oxide synthase
(eNOS) and by inhibiting inflammation in these cells [74]. Reduction
of ERK5 action by p90 ribosomal S6 kinase (RSK) is associated with
endothelial dysfunction and atherosclerosis [74]. Furthermore, ERK5
inhibits endothelial migration via Krüppel-like factor-2-dependent
down regulation of p21-activated kinase 1 [75].

Another MAPK, p38, has also been implicated in the control of mac-
rophage foam cell formation through the inhibition of macroautophagy
[76]. In response to the accumulation of free cholesterol within the ER,
p38 co-ordinates signaling events that induce cellular apoptosis [77].
However, p38 can have both pro- and anti-apoptotic actions depending
on the stimulus/cellular conditions [78]. For example, macrophage
deficiency of p38α in ApoE−/− mice results in increased levels of
apoptosing macrophages and enhanced necrosis within the plaque
[78]. Lesions from these mice are also characterized by a reduced con-
tent of collagen and a thin fibrous cap [78]. The MAPK is thought to in-
hibit ER-stress-induced apoptosis because apoptosis arising in response
to ER stressors is enhanced following knockdown of p38α in primary
mouse macrophages [78]. It therefore seems likely that during athero-
sclerosis this MAPK is involved in protective signaling pathways against
ER-stress responses and apoptosis in advanced plaques [78]. Interest-
ingly a study by Kardakaris et al., [79] indicated that ablation of p38α
in macrophages and ECs did not affect atherosclerotic plaque formation
in ApoE−/−mice following feeding on a high cholesterol diet. Neverthe-
less p38α deficiency inhibited OxLDL-induced chemokine and adhesion
molecule expression in in vitro cultures of ECs [79].

c-Jun N terminal kinases (JNKs) also belong to the MAPK superfam-
ily. These proteins regulate thematuration and activity of T cells and the
synthesis of pro-inflammatory cytokines such IL-2, IL-6 and TNF-α [65,
66].Within ApoE−/−mice, JNK is activated in response to a high choles-
terol diet [65,66,80]. Interestingly, JNK2−/−mice crossedwith ApoE−/−

mice contained smaller plaques, whereas ablation of JNK1 had little ef-
fect on the size of the lesions in these experiments [80]. The differences
in results implicate the differential roles of JNK isoforms within the ath-
erosclerotic disease state [80]. The lack of JNK2within thesemice is also
associated with a halved number of macrophage foam cells despite en-
hanced uptake of fluorescently labelled AcLDL in peritoneal macro-
phages from ApoE−/−/JNK2−/− mice [80]. Additionally, although the
levels of SR-A were raised, the efflux of cholesterol to ApoA-I acceptors
was enhanced and the amount of phosphorylated, activated SR-A was
reduced indicating that the knockdown of JNK2 in macrophages com-
promises cholesterol homeostasis [80]. In contrast to such specific ac-
tion of JNK2, recent studies have shown that genetic deletion of JNK1
reduces EC apoptosis in the hypercholesterolemic LDLR−/− model sys-
tem [81]. The JNK signaling pathway has also been implicated in later
stages of the disease. In cultured primary rat aortic SMCs, JNK is activat-
ed in response to oxidative stresses and induces the expression of ma-
trix degrading MMPs whilst down-regulating the expression of genes
involved in ECM biosynthesis such as lysyl hydroxylase [82]. The results
indicate that the signaling component exerts destabilizing effects on the
architecture of the aortic tissue that could compromise the integrity of
the atherosclerotic plaque [82]. More recently, the use of the JNK inhib-
itor SP600125 in the ApoE−/− model showed that this kinase pathway
might play a critical role in low shear stress-induced atherosclerosis
by a mechanism involving platelet endothelial cell adhesion molecule-
1-mediated modulation of NF-κB activity and expression of adhesion
proteins [83].

4.2. NF-κB

NF-κB consists of homo- or hetero-dimers of Rel-domain containing
proteins NF-κB1 (p50 and its precursor p105), NF-κB2 (p52 and its pre-
cursor p100), RelA (p65), RelB and c-Rel [67]. The NF-κB dimer resides
in the cytoplasm in the absence of any activating signals because its nu-
clear localization signal ismasked by associationwith inhibitors belong-
ing to the inhibitor of kappa B (IκB) family consisting of IκBα, IκBβ, IκBγ,
IκBε or Bcl-3 [67]. Inflammatory stimulus activates signaling cascades
leading to phosphorylation of IκB by a complex consisting of IκB kinase
(IKK) 1 (IKK1 or IKKα), IKK2 (or IKKβ) and NF-κB-essential modulator
(NEMO or IKKγ) [67]. Recent studies show that IKKα and IKKβ possess
catalytic activity whereas IKKγ plays a more regulatory role [67]. In ad-
dition, IKK-related kinases such as IKKε and TANK-binding kinase 1
(TBK1) are involved in NF-κB signaling [67]. The phosphorylation of
IκB leads to its ubiquitination and subsequent proteasomal degradation,
thereby leaving NF-κB free to translocate to the nucleus [67].

The NF-κB signaling pathway regulates the expression of a number
of genes implicated in atherosclerosis, including TNF-α, IL-6, MCP-1
and ICAM-1 [67]. Furthermore, the pathway is activated by several
factors associatedwith the disease such asmmOxLDL and hemodynam-
ic forces [67]. High levels of activated NF-κB subunits are found within
the nuclei of intima-resident SMCs, macrophages and ECs within
human atheromas [67]. Indeed, inhibition of the NF-κB pathway
in mouse model systems using cell-permeable peptide inhibitors of
nuclear import or other effectors (e.g. acetyl-11-keto-beta-boswellic
acid) reduces atherosclerotic development and the expression of pro-
inflammatory markers, including chemokines and adhesion molecules
[84,85]. In addition, A20 (also called TNF-α-induced protein 3) reduces
atherosclerosis in the ApoE−/− model by decreasing NF-κB activity and
thereby the pro-inflammatory state in the lesion [86]. Furthermore, sys-
temic delivery of miR-181b inhibits NF-κB activation, vascular inflam-
mation and atherosclerosis in ApoE−/− mice [87]. More recently,
macrophage mitochondrial oxidative stress has been found to promote
atherosclerosis and NF-κB-mediated inflammation in macrophages
[88].

A pro-atherogenic role for NF-κB has been identified for some but
not all studies aimed at manipulating the action of individual subunits
or their upstream activators inmousemodel systems, and this probably
reflects the complex function of the different proteins. For example,
endothelial-cell specific inhibition of NF-κB, arising from the deletion
of NEMO/IKKγ or expression of dominant-negative IκBα in these cells,
reduces the size of atherosclerotic plaques in ApoE−/− mice and is ac-
companied with impaired macrophage recruitment and reduced ex-
pression of cytokines and chemokines [89]. In contrast, myeloid-
specific deficiency of IκBα was found to promote atherosclerosis in
the LDLR−/− model system via induced recruitment of leukocytes to
the plaque [90]. Studies involving bone marrow-specific knock-in of a
non-activatable IKKα kinase mutant in the ApoE−/− model found that
this affected hematopoiesis but not atherosclerosis [91], whereas defi-
ciency of IKKε reduced atherosclerosis in the ApoE−/− model [92]. The
role of myeloid-specific deficiency of IKKβ, however, is unclear with
an earlier study in the LDLR−/− model system demonstrating increased
atherosclerosis in part via reduction in the levels of the anti-
inflammatory cytokine IL-10 [93] whereas a more recent study in the
same mouse model showed reduced lesion development due to de-
creased adhesion, migration and lipid uptake by macrophages [94]. De-
ficiency of IKKβ in SMCs reduced atherosclerosis and vascular
inflammation in the LDLR−/−model [95]. Consistentwith such findings,
hepatocyte-specific IKKβ expression in the ApoE*3-Leiden model pro-
moted atherosclerosis in part by increasing the sensitivity to pro-
inflammatory effectors and via transient increase in plasma cholesterol
levels [96].
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Experiments utilizing the transfer of bone marrow from p50-
deficient mice to LDLR−/− mice have shown that a decrease in plaque
size obtained by the ablation of NF-κB is associated with a reduction
in both the number of lesional macrophage foam cells and expression
of SR-A [97]. The resulting lesion had an inflammatory phenotype
characterized by increased numbers of macrophages and T cells [97].
In contrast to these findings, overexpression of the NF-κB subunit p65
in macrophages inhibited atherosclerotic development in ApoE−/−

mice associated with a reduction in foam cell numbers and SR-A
expression [98].

In conclusion, the precise roles of individual components of the NF-
κB signaling pathways in atherosclerosis are unclear with both pro- and
anti-atherogenic actions being identified. This probably reflects the
complex roles that this family plays in the control of the inflammatory
response. For example, in addition to the well-established action of
activating pro-inflammatory gene expression at the onset of inflamma-
tion, NF-κB also plays a key role in the resolution phase of inflammation
[99,100].

4.3. PI3K

The PI3K signaling cascade is responsible for the regulation of many
cellular functions, including glycogen and lipidmetabolism, cell growth,
calcium signaling, inflammation and apoptosis [68]. Due to the diverse
role of these proteins, the pathway has been implicated inmany athero-
sclerotic processes [68]. Ablation of the PI3K catalytic subunit, p110γ,
decreases atherosclerotic development in genetically prone mice [101,
102]. The resulting lesions are characterized by a reduced number of
proliferating plaque-resident macrophages [101,102]. Furthermore,
atherosclerotic lesions within humans and mice display raised levels
of the PI3K isoform; PI3K-γ, and transplantation of bone marrow from
PI3K-γ−/−mice into irradiated LDLR−/−micedemonstrates that the ex-
pression of PI3K-γ by hematopoietic cells is integral for atherosclerotic
development [103]. PI3K-γ is also a key regulator of reparative neovas-
cularization and infarction size following a MI event within mice [104].
As such inhibition of PI3K-γ impairs the angiogenic properties of ECs
and compromises cardiac function [104].

Akt/protein kinase B (called Akt hereafter) is a major downstream
target of PI3K action. There are three Akt isoforms (1-3) and recent
studies have started to unravel their roles in atherosclerosis
[105–109]. Deficiency of Akt1 in the ApoE−/− model system increased
atherosclerosis due to enhanced expression of pro-inflammatory
genes and increased apoptosis of both ECs and macrophages [105]. In
addition, deficiency of Akt1 reduced VSMC proliferation and migration,
and produced features of plaque vulnerability and cardiac dysfunction
[106]. A recent study, however, showed thatmyeloid-specific deficiency
of Ak1 in the LDLR−/− model had little effect on atherosclerotic devel-
opment [107]. Deficiency of Akt2 in thismodel system impaired glucose
tolerance and resulted in complex atherosclerotic lesions associated
with reduced collagen content, larger necrotic cores, reduced migra-
tion and proliferation of VSMCs, and disturbed balance of MMP and
TIMP expression [108]. In contrast, myeloid-specific deficiency of Ak2
in the LDLR−/− model reduced atherosclerosis associated with de-
creased numbers of pro-inflammatory monocytes expressing Ly-6Chi

and CCR2, and more polarization of macrophages to an M2 phenotype
(see Section 5.1) [107]. Finally, deficiency of Akt3 in macrophages pro-
motes foam cell formation and atherosclerosis in the LDLR−/− model
[109].

5. The role of immune cells in atherogenesis

Atherosclerosis is now recognized as a chronic inflammatory disor-
der that involves both the innate and adaptive immune responses [2,
28,30,35,60]. Immunohistochemical staining had earlier shown that re-
gions of the intimaprone to atherosclerotic development aremarked by
an accumulation ofmacrophages, dendritic cells and activated T cells [2,
28,30,35,60]. As the disease progresses a range of additional immune
cells are recruited and reside within the plaque including B-
lymphocytes, mast cells and natural killer (NK) cells [2,28,30,35,60].
The role of immune cells during the disease is vast and varied. The fol-
lowing sections will provide a brief overview of some of the key im-
mune cells involved in atherogenesis.
5.1. Macrophage heterogeneity within the plaque

During the early stages of atherosclerosis, monocytes are the prima-
ry group of leukocytes recruited to the lesion [35,56,110]. There are two
categories of monocytes referred to as CD14hiCD16− and CD14+CD16+

in humans and respectively termed Ly6Chi (inflammatory) and Ly6Clo

(patrolling) within mice [35,56,110]. Hypercholesterolemic ApoE−/−

mice fed on a high-fat diet exhibit raised levels of Ly6Chi monocytes
that adhere to the activated endothelium and enter the atherosclerotic
lesion [111]. Interestingly, within these mice the conversion of Ly6Chi

to the Ly6Clo phenotype is impaired and the migration of Ly6Clo mono-
cytes into the plaque is also reduced [35,56,110,111]. Following recruit-
ment to the lesion, themonocytes differentiate into eithermacrophages
or myeloid dendritic cells under the influence of M-CSF, GM-CSF and
other differentiating agents [112]. It should be noted that emerging ev-
idence also suggests that the accumulation of macrophages in athero-
sclerotic lesions primarily depends on local macrophage proliferation
instead of recruitment of circulating monocytes [113].

Macrophages were the first immune cells identified within the
plaque [35,56,110,112]. Different subsets of macrophages arise due
to the exposure of circulating monocytes to specific priming agents
with the most common phenotype classified as either M1 or M2 [114,
115]. Ly6Chi monocytes in mice are thought to function as the pre-
cursors for M1 macrophages whereas Ly6Clo monocytes give rise to
M2 macrophages [35,114,115]. Monocyte differentiation into macro-
phages is accompanied by an increase in the expression of PRRs, such
as SRs, that facilitate the uptake of endotoxins, microbial products,
apoptotic bodies and LDL particles [114,115]. Microbial products includ-
ing lipopolysaccharide (LPS), and cytokines like IFN-γ stimulate
classically activated M1 macrophages [114,115]. Within the disease
state, M1 macrophages are pro-atherosclerotic and release ROS and
pro-inflammatory cytokines such as TNF-α (see Section 6 for roles of
cytokines in atherosclerosis) [35,56,114,115]. Conversely, alternatively
activated M2 macrophages aid the resolution of inflammatory re-
sponses through the synthesis of ECM components and anti-
inflammatory cytokines like IL-10 [35,56,114,115]. M2 macrophages
are induced by T helper (Th) 2 cytokines like IL-4 and are abundant in
regressing plaques [35,56,114,115]. In contrast, advanced lesions dis-
play an imbalanced ratio of M1 to M2 macrophages supporting defec-
tive resolution and augmentation of the chronic inflammatory state
[35,56,114,115].

The M1 and M2macrophage categories are not absolute as the pop-
ulation of infiltratingmonocytes seen during the disease state contain a
combination of M1 and M2 markers and, although macrophages are
mainly categorized under these two broad labels, additional sub classi-
fications and macrophage phenotypes exist [114,115]. For example M2
macrophages are further subdivided based on the polarizing agent
along with gene expression and chemokine profile [114,115]. Other
macrophage subtypes have also been identified, including Mox, Mhem
and M4 [116]. For example, stimulation of monocytes with platelet fac-
tor CXCL4 gives rise toM4macrophageswhich express amixture ofM1-
and M2-associated genes, display limited phagocytic capabilities and
express a transcriptome distinct from M1 and M2 macrophages [117].
AlthoughM4markers are foundwithin human atherosclerotic coronary
arteries, the exact contribution of this subtype is not clear asM4macro-
phages express both pro- and anti-atherogenic genes [117]. However,
the deletion of the gene encoding CXCL4 decreases the size of athero-
sclerotic lesions in mouse model systems [118].
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5.2. Dendritic cells

The exposure of circulating monocytes to inflammatory stimuli
like GM-CSF promotes dendritic cell formation [119]. Ablation of GM-
CSF in LDLR−/− mice causes a substantial reduction in the number
of plaque-residing dendritic cells in addition to a significant decrease
in lesion size [120]. Although macrophages and dendritic cells share
common origins, the cells can be distinguished by differences in func-
tionality [119]. Macrophages are mainly involved in responding to inju-
ry whereas dendritic cells favour the presentation of antigens on major
histocompatibility complex (MHC)molecules to direct a T cell response
[35,110,119]. Similar to monocytes, subsets of dendritic cells exist with
conventional and plasmacytoid being the most common [121,122]. The
accumulation of dendritic cells, although not as abundant as macro-
phages and T cells, into areas prone to atherosclerosis correlates with
disease progression and inflammation [121,122]. In addition, some
studies in mouse model systems have demonstrated a key role for
plasmacytoid dendritic cells in the promotion of atherosclerosis [123,
124] though anti-atherogenic actions have also been identified [125].

A range of receptors, including SRs, are expressed at the surface of
dendritic cells, and these facilitate the uptake of antigens and also par-
ticipate in foam cell formation [126]. The antigen peptides are then
translocated onto MHCmolecules in preparation for T cell presentation
[28,60,123,124]. Danger-associated molecular patterns released during
atherosclerosis are recognized through such receptors and promote a
shift to adaptive immune responses [28,60,121,122]. The importance
of dendritic cells in the regulation of an adaptive immune response is
highlighted by the success of vaccination strategies involving these
cells against atherosclerosis in mouse model systems [127,128]. Den-
dritic cells are key primers of T cell responses and modulators of
immune tolerance [28,60,121,122]. The maturation state of dendritic
cells dictates their function; immature dendritic cells within peripheral
tissues drive tolerance through the deletion of autoreactive T cells, sup-
pression of naïve T cell activation and induction of athero-protective
regulatory T cells (Tregs) [28,60,121,122]. Yet, in response to inflamma-
tory and other atherogenic stimuli, dendritic cells undergo phenotypic
and functional changes, and mature and migrate to T cell-rich areas to
activate naïve T- and B- cells [28,60,121,122]. The change is also accom-
panied by enhanced expression of costimulatory molecules, chemokine
receptors, adhesion molecules and the release of cytokines that influ-
ence the formation of different T cell subtypes [28,60,121,122]. For ex-
ample, the production of IL-12 promotes Th1 differentiation whereas
IL-6 stimulates a Th17 response [28,60,121,122]. Indeed, a recent
study has shown that MHC class II-restricted antigen presentation by
plasmacytoid dendritic cells drives pro-atherogenic T cell immunity
[124].

5.3. T cells

The number of T cells present within the plaque is far fewer than
that of macrophages but have an important modulating role during pa-
thology [60,122]. Antigen presenting cells such as macrophages and
dendritic cells interact with T cells to activate the adaptive immune sys-
tem [60,122]. These cells also influence the activities of T cells through
the secretion of cytokines like IL-12 that modulates the infiltration of T
cells into the plaque [60,122]. As such the function of T cells is closely
tied to that of dendritic cells and macrophages [60,122].

A range of T-cell subsets exist that are characterized by cell surface
markers, cytokines produced, and key transcription factors and co-
factors that drive their differentiation and function [60,122]. Th1 cells
are the most abundant subtype in human atherosclerotic plaques [60,
122]. These cells release pro-inflammatory cytokines such as the classi-
cal Th1 cytokine IFN-γ [60,64,122]. A pro-atherogenic role for this cyto-
kine has been demonstrated by numerous studies [64]. IFN-γmediates
its cellular effects via STAT1, and a pro-atherogenic role for this tran-
scription factor has also been identified from studies using mouse
model systems [129,130]. Similar studies with other markers or ap-
proaches aimed at manipulating their function have revealed that Th1
cells promote atherosclerosis [60,122]. The Th2 response is conversely
believed to be associated with attenuated atherosclerotic formation,
however its exact contribution in the disease state is not as clear-cut
[60,122]. Th2 cell cytokines, including IL-4, and the transcription factor
PPAR-γ bias macrophage differentiation towards the M2 phenotype
[35,56,114–116]. However, the abundances of Th2 cytokines such as
IL-4, IL-5 and IL-13 are markedly under-represented in comparison to
Th1 cytokines within the plaque [60,114–116,122]. In addition, studies
that have analyzed the effect of IL-4 deficiency inmousemodel systems
have not always revealed a protective role for this cytokine [122]. Th17
cells represent a more recently identified T-cell subset associated with
the production of the cytokine IL-17A [122]. Although the Th17-IL17A
axis has many pro-inflammatory actions [122], studies investigating
the role of IL-17A inmousemodel systems have revealed conflicting re-
sults with both pro- and anti-atherogenic effects identified by different
researchers [122,131]. The precise reasons for such contradictory results
is currently unclear but it is possible that the action of IL-17A might be
context-dependent and be influenced by the nature of the cell type pro-
ducing it and the other cytokines (e.g. IFN-γ) present in the local envi-
ronment [131]. As mentioned above, Tregs are a specialized subset
that suppress pathogenic responses by the immune system towards for-
eign and self-antigens [122]. Many studies suggest a protective role for
Tregs in atherosclerosis, including the principal cytokines produced by
these cells [transforming growth factor (TGF)-β and IL-10], and that
such protection is hampered during the disease [122,132]. Immuno-
modulatory strategies that increase the levels/action of Tregs or stimu-
late immune tolerance to atherosclerosis antigens are currently being
evaluated [122,133].

5.4. Other immune cells

In contrast to monocytes/macrophages, T-cells and dendritic cells,
limited research has been carried out on the roles of other immune
cells in atherogenesis. NKT cells are pro-atherogenic [122,134]. On the
other hand, the role of NK cells is not clear-cut [122] though a recent
study demonstrated augmentation of atherosclerosis by a cytotoxic-
dependentmanner [135]. The presence of neutrophils in atherosclerotic
plaques has been identified and a causal link to atherogenesis has been
suggested, at least in mice, however the role in humans remains poorly
understood [136]. Recent studies are beginning to reveal the roles of dif-
ferent B-cell subsets in atherosclerosis with IgM-producing B1a cells
preventing the disease and B2 cells and innate response activator B
cells promoting it [60,122,137–139]. Mast cells amass at sites prone to
rupture and are persistently activated during the disease aiding plaque
development within mice [140,141]. The actions of these cells destabi-
lize the plaque by inducing intraplaque hemorrhaging, macrophage ap-
optosis and vascular damage [140,141].

6. Cytokine involvement in the atherosclerotic state

Cytokines are important mediators of the innate and adaptive im-
mune system and play a key role at every stage of atherosclerosis,
from early events involving dysfunction of the endothelium and lipid
metabolism, and later phase actions such as enhancing MMP secretion
[142–144]. Within the disease state, the production of many cytokines
is auto-inducible through autocrine and paracrine signaling, which
helps to augment and sustain inflammation [142–144]. Extracellular
GFs and cytokines are highly expressed during atherosclerosis and me-
diate the proliferation and survival of cells involved in plaque formation
[60,142–144]. Furthermore, the synergistic actions of cytokines and GFs
can function to amplify their responses. For example, the effects of IL-1α
and TNF-α on MMP activation is enhanced through costimulation with
platelet-derived growth factor and fibroblast growth factor-2 in rabbit
VSMCs and human SMCs [145].



1506 M.L. Buckley, D.P. Ramji / Biochimica et Biophysica Acta 1852 (2015) 1498–1510
Cytokines exert a dual role during atherosclerosis and a complex
interplay between pro- and anti-inflammatory cytokines arises which
influences the development and stability of the plaque. Table 2 gives a
summary of the outcome of studies aimed at delineating the roles of
key cytokines in atherosclerosis using mouse model systems. The prev-
alence of pro-inflammatory cytokines within the plaque drives Th1-
related processes and augments disease progression [2]. A variety of
pro-inflammatory cytokines such as IFN-γ, TNF-α and IL-1β support
Th1 responses and promote foam cell formation [2]. Conversely, anti-
inflammatory cytokines predominately promote Th2-type responses
that function to resolve inflammation and limit foam cell formation
[2]. For instance, our previous studies have shown that TGF-β inhibits
SR expression and reduces macrophage foam cell formation [132,172].

The role of various cytokines in atherosclerosis has been the subject
of several excellent reviews [142–144]. Amongst these cytokines, IL-33
has been more recently identified and will be discussed here in detail.
IL-33 belongs to the IL-1 family of cytokines and is not expressed by
the majority of human hematopoietic cells; with the exception of acti-
vated dendritic cells and macrophages where it is present at low levels
[173–175]. IL-33 interactswith the ST2 receptor that is expressed on the
surface of immune cells, including mast cells, dendritic cells, Th2 cells
and macrophages [173–175]. Alternative splicing of the ST2 gene gives
rise to at least eight isoforms of the receptor, including ST2L (functional
full-length transmembrane form), ST2V (variant), ST2LV and sST2
(secreted, soluble decoy receptor) [173,174].

Family members such as IL-1 and IL-18 contain prodomains that are
proteolytically cleaved to produce themature formof the cytokine [173,
174]. Interestingly, IL-33 is also secreted and contains a prodomain, and
in vitro studies showed that the cytokine is susceptible to cleavage by
caspase-1 yielding a mature product [176]. Initial theories proposed
that IL-33may be processed in a fashion similar to other IL-1βmembers
and that caspase activitymay be a prerequisite for activation [173–176].
However, recent studies have demonstrated that full length IL-33 is
biologically active and processing by caspases results in inactivation
rather than activation of the cytokine [177,178]. IL-33 can also act in
an intracrine manner by interacting with the heterochromatin and reg-
ulating gene expression [179,180].

Several studies have described a protective role for IL-33within ath-
erosclerosis and cardiovascular diseases. In experiments undertaken by
Miller et al. [170], injections of recombinant IL-33 into ApoE−/− mice
decreased the generation of atherosclerotic lesions. Additionally, the cy-
tokine reduced the number of lesional macrophages and promoted a
Th1 to Th2 phenotypic switch within the plaque, accompanied with
Table 2
The role of key cytokines in atherosclerosis.

Cytokine Outcome of studies using mouse model systems

IFN-γ Pro-atherogenic. Deficiency of the cytokine or its receptor decreased atheroscl
accumulation. Injection of the cytokine augmented disease development. Post
mutant decoy receptor attenuated lesion formation and produced a stable pla

TNF-α Pro-atherogenic. Deficiency of the cytokine or its receptor (p55) reduced athe
cytokines and adhesion molecules along with decreased uptake of modified LD

IL-1β Pro-atherogenic. Deficiency of the cytokine or its receptor reduced atheroscler
stress. Administration of recombinant IL-1 receptor antagonist or its overexpr
metabolism and foam cell formation.

IL-18 Pro-atherogenic. Deficiency of the cytokine decreased atherosclerosis, reduced
Administration of the cytokine increased atherosclerosis via an IFN-γ depende
IL-18 binding protein reduced lesion development and produced a stable plaq

IL-10 Anti-atherogenic. Deficiency of the cytokine increased atherosclerosis associat
tissue factor activity, and markers of systemic coagulation. Local or systemic o
reduced inflammation, oxidative stress, cholesterol levels and Th1 response.

TGF-β Anti-atherogenic. Disruption of signaling accelerates atherosclerotic developm
collagen content. Disruption of TGF-β signaling in T cells also accelerates athe
macrophages and reduced collagen content. TGF-β-mediated plaque stabilizat
Overexpression of TGF-β attenuates atherosclerosis, oxidative stress and inflam

IL-33 Anti-atherogenic. Administration of the cytokine reduced atherosclerosis asso
of anti-OxLDL antibodies and a Th1 to Th2 shift. Inhibition of cytokine action u
cytokine inhibited macrophage foam cell formation in vitro and in vivo.
enhanced production of the Th2 cytokines IL-4 and IL-13 and secretion
of antibodies against OxLDL [170]. Treatment with the decoy receptor
reversed the protective effects of IL-33 and also increased the size of
the lesion [170].

We have recently demonstrated that IL-33 acts through the ST2 re-
ceptor to decrease foam cell formation in vivo [171]. Also, treatment of
human macrophages with IL-33 reduced the uptake of AcLDL and
OxLDL [171]. The cytokine decreased the expression of genes implicated
in lipid uptake and storage, such as SR-A1 and CD36, and cholesterol
esterification like ACAT-1 [171]. In contrast, the expression of the
cholesterol efflux transporters; ABC-A1 and ABC-G1 was up regulated
by the cytokine [171]. We have also shown that IL-33 inhibits the
uptake of Lucifer yellow, a fluorescent dye used as an indicator of
macropinocytosis [52]. As macropinocytosis is attributed as a contribu-
tor to plaque formation through constitutive and passive uptake of LDL
particles, the study demonstrates a novel mechanism by which IL-33
may reduce macrophage foam cell formation in vitro [2].

The cytokine also has a wide range of effects on different cell types
that reside within the atherosclerotic plaque. A study by Wasserman
et al., [181] showed that IL-33 increases the number of Tregs in wild
type control mice. During normal physiological conditions Tregs pro-
mote a switch from Th1 to Th2 response but during atherosclerosis
the number of Tregs within the plaque is reduced [122]. Interestingly,
within ApoE−/− mice, IL-33 treatment had no effect on the number of
Tregs [181]. However within these animals, the levels of the decoy re-
ceptor sST2 were elevated whilst the amount of ST2 was reduced
[181]. The authors suggest that attenuation of signaling through the
IL-33/ST2 axis contributes to the repressed number of regulatory T
cells observed during the atherosclerotic state and therefore promotes
the Th1 state [181].

IL-33 protects against cardiomyocyte apoptosis in in vitro and in vivo
systems [182]. These effects were shown to be ST2-dependent as
ischemic mice displayed reduced infarction volume and improved
ventricular function when treated with IL-33 but the same effects
were not observed in ST2−/− mice [182]. The cytokine also defends
cells against mechanical stresses [183]. In response to mechanical
stretch cardiomyocytes undergo hypertrophy characterized by the en-
largement of cells in the absence of cell division. Sustained hypertrophy
can lead to compromised contractile functionality and arrhythmia and
therefore often serves as a precursor to heart disease. However, IL-33
is released by cardiomyocytes in response to biomechanical stress and
inhibits the actions of hypertrophic effectors such as angiotensin II and
phenylephrine [183]. The cytokine functions as a protector against
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mechanical overload by reducing cardiac fibrosis and cardiomyocyte
hypertrophy in vivo [183]. These responses were shown to be depen-
dent on ST2 as administration of sST2 reversed the effects of IL-33 [183].

Epidemiological studies have also revealed a relationship between
the cytokine and cardiac disorders [184,185]. For example, levels of IL-
33 are decreased in the serum of patients who suffer from acute coro-
nary syndrome and stable angina pectoris [184]. Another study found
that serum levels of IL-33 were elevated in patients with chronic heart
failure (HF) and were positively associated with several markers of ox-
idative stress such as erythrocyte superoxide dismutase activity [185].
Interestingly, levels of sST2 were also high and contributed to a de-
pressed ratio of IL-33/sST2, and hence reduced IL-33 bioactivity. The re-
sults suggest that IL-33 may be released in response to HF and exert
anti-oxidative effects but such cardio-protective effects of the cytokine
are negated by an increased presence of the decoy receptor [185].
Indeed, the levels of sST2 have been proposed to function as an accurate
prognostic tool for predicting cardiovascular risk [186–188]. For
instance, circulating sST2 is transiently boosted following a MI event
within human patients and in mice with experimental MI [186]. Fur-
thermore, the levels of sST2 correlate with other inflammatorymarkers,
total mortality and cardiovascularmortality in low risk populations and
in patients with acute MI [187,188]. There is a relationship between
levels of serum sST2 and the extent and volume of infractions within
MI patients [188]. Additionally, sST2 has been proposed to function as
a reliable biomarker of HF in patients with acute dyspnea indicating
that circulating sST2 could function as a robust marker for different
manifestations of cardiovascular disease [189].

7. Concluding remarks

Atherosclerosis is now considered as an inflammatory disorder of
the vasculature initiated by various risk factors, particularly high plasma
LDL levels. Our understanding of the molecular basis of the disease has
advanced considerably from studies usingmousemodel systems. How-
ever, doubts remain whether the various findings will translate into
humans given the key differences in lipoprotein metabolism and in-
flammation. Educational drives at reducing risk factors via dietary and
other changes, such as cessation of smoking and moderate exercise,
has clearly had a positive impact in reducingmortality from atheroscle-
rosis and its complications inmany countries. However, this is expected
to reverse in the future because of a global increase in diabetes and obe-
sity. It is therefore essential that different aspects of the disease are fully
understood, particularly in humans, reliable biomarkers are identified,
and new therapeutic avenues are investigated and evaluated. The im-
pact of statins in reducingmortality from atherosclerosis and its compli-
cations is well known [190,191]. However, the significance of residual
risk in patients on statin therapy is a major limitation. Many lipid-
modifying therapies are being analyzed ranging from inhibition of cho-
lesterol absorption, modulating lipoprotein metabolism and clearance,
to stimulating RCT [191]. Manipulating inflammation either at the cellu-
lar level or through the use of molecules that are involved in regulating
the processes, such as cytokines and various activators/co-stimulators/
modulators, represents another avenue particularly for high risk factors
[60,190]. Indeed, some of these, such as anti-inflammatory drugs (e.g.
methotrexate) and anti-cytokine therapies (anti-IL-1β antibodies),
have now progressed to the clinical trial stage [190]. It should also be
noted thatmany lipid lowering therapies such as statins also have pleio-
tropic effects, including acting in an anti-inflammatory manner [2]. In
addition, agonists of PPARs and LXRs not only modulate lipid and glu-
cose homeostasis but also attenuate the inflammatory response [11,
14,15]. The regulators of atherosclerosis are not just restricted to pro-
teins as various non-coding RNA, particularly microRNAs, are emerging
as keymodulators of inflammation and lipid homeostasis in this disease
and represent promising future targets [192]. The next few yearswill be
exciting in advancing our understanding of the molecular mechanisms
and translation to the clinic.
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