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A Study on Imbalance Support Vector Machine

Algorithms for Sufficient Dimension Reduction

Luke Smallman and Andreas Artemiou
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Abstract

Li, Artemiou and Li (2011) presented the novel idea of using Support Vector

Machines to perform sufficient dimension reduction. In this work, we investigate

the potential improvement in recovering the dimension reduction subspace when

one changes the Support Vector Machines algorithm to treat imbalance based

on several proposals in the machine learning literature. We find out that in

most situations, treating the imbalance nature of the slices will help improve the

estimation. Our results are verified through simulation and real data applications.

Key words and phrases. Inverse regression; SMOTE; Sufficient Dimension Reduction;

zPSVM.

1 Introduction

Sufficient Dimension Reduction (SDR) is a set of dimension reduction tools introduced

to reduce the dimension of a regression problem. The use of dimension reduction

tools becomes more important as scientists are able to collect and work with massive

datasets due to the increased storage capabilities of computers. At the same time,

traditional statistical methodology is restricted to small datasets and does not behave

very well when one extrapolates its use to larger datasets.

The main objective of SDR methodology is feature extraction; that is, to find a

few new predictors as linear or nonlinear functions of the original predictors. SDR

methodology achieves this without losing information on the conditional distribution

Y |X where Y is the response variable (assumed to be univariate for simplicity and

without loss of generality) and X the p dimensional predictor vector. In other words

the objective of SDR is to estimate a p× d (d < p) matrix β such that

Y X|βTX. (1)
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This is known as the linear SDR model or the linear conditional independence model.

There is a huge literature on this model; among others is Li (1991), Li (1992), Cook

and Weisberg (1991), Cook (1998), Li, Zha and Chiaromonte (2005) and Li and Wang

(2007). The space spanned by the column vectors of β is known as the Dimension

Reduction Subspace (DRS) and denoted with S(β). There might be more than one

β that satisfy model (1). Our objective is to estimate the minimum DRS or Central

Dimension Reduction Subspace (CDRS) which is denoted by SY |X . The CDRS might

not always exist but if it exists it is unique and it is the intersection of all possible

DRSs and therefore has the minimum dimension among all DRSs. Conditions of

existence of the CDRS can be found in Yin, Li and Cook (2008).

Lately, there seems to be increasing interest in dimension reduction under the

nonlinear SDR model

Y X|φ(X). (2)

where φ : Rp 7→ R
d can be either a linear or a nonlinear function of the predictors.

This model was used in Wu (2008), Fukumizu, Bach and Jordan (2009), Yeh, Huang

and Lee (2009) and Li, Artemiou and Li (2011).

Li, Artemiou and Li (2011) introduced Principal Support Vector Machines (PSVM),

a method which uses Support Vector Machines (SVM) to achieve both linear and non-

linear SDR in a unified framework. The method used the idea of slicing the response

which was introduced in Li (1991), but instead of using inverse moments to create a

candidate matrix, it uses SVM to create an optimal hyperplane between two mutually

exclusive sets of observations. The equation of the optimal hyperplane takes the form

ψTX − t = 0 where ψ ∈ R
p and t ∈ R. As was later explained in Artemiou and Shu

(2014), this mutually exclusive division of the observations creates in some instances

an imbalance between the two sets in terms of their size. Therefore, it makes sense

to use some reweighting algorithms to overcome possible estimation problems due to

the bias the SVM algorithm has in favour of observations in the majority set (the set

which has the largest size).

SVM were introduced by Cortes and Vapnik (1995) and in the simpler case (where

there are only two classes) the objective is to find an optimal separating hyperplane

which separates the points in the two classes; optimal in the sense that it maximizes

the distance between the hyperplane and the points that are closer to it. Since the

introduction of SVM, one aspect that has received continuous attention is the use

of reweighting techniques to overcome the issue of classes with different sample sizes

(commonly referred to as imbalanced classes). In such cases, misclassifying a point

from the smaller class (or minority class) should be more costly than misclassifying a
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point from the larger class (or majority class). The classic SVM algorithm does not

address this issue though, having a bias towards the majority class. He and Garcia

(2009) give an overview of reweighting algorithms in the literature.

In this paper, our focus is to introduce in the SDR framework some of the most

well known reweighting algorithms that were developed for SVM in the classification

framework. It is important to note here that it shouldn’t be expected that these

algorithms will have the same impact in the dimension reduction framework as they

had for classification. The reason behind this difference is the objective of each

framework. In classification, these algorithm were successfully introduced because

they were able to lower the proportion of misclassified points in imbalanced datasets.

On the other hand, in the dimension reduction framework we are not interested

at all in the misclassification proportion, but rather the correct alignment of the

hyperplane with the actual regression surface. Therefore, we will focus on some

algorithms that were promising under the classification framework and see if, and

under which circumstances, they can be helpful in the dimension reduction framework.

Also, due to limitations of applying some of these algorithms for the nonlinear SDR

model, that is model (2), we decided to leave this as a future task and focus on the

linear SDR framework as it is described by (1). In the literature, there are also specific

algorithms which were proposed to handle imbalance in the nonlinear classification

case; we therefore feel that this area is worthy of a different investigation.

Artemiou and Shu (2014) already showed that using two different misclassifica-

tion penalties improve the estimation of the CDRS. They proposed using a larger

misclassification penalty for the minority class which improved the original PSVM

algorithm especially as one increases the number of slices in the algorithm. In the

next section we will describe some of the previous results regarding PSVM and the

two cost modifications. Section 3 discusses the new algorithms. We present some

numerical experiments in section 4 and analysis of a real dataset in section 5 followed

by some discussion in section 5.

2 Review of PSVM

PSVM was introduced by Li, Artemiou and Li (2011) and it uses a slightly modified

version of the classic Support Vector Machines (SVM) algorithm introduced by Cortes

and Vapnik (1995) in a different framework to achieve dimension reduction. The idea

is focused on slicing of the response variable Y which is a very common procedure in

earlier SDR methodology. Instead of using inverse moments (like most of earlier SDR
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methods), PSVM constructs the optimal separating hyperplane between the slices.

Essentially, in the population version, PSVM minimizes the objective function:

ψT
Σψ + λE[1− Ỹ (ψTX − t)]+ (3)

over all possible pairs (ψ, t) ∈ R
p × R where [a]+ = max{0, a} is the positive part of

the quantity a in the brackets, Σ = var(X), λ is the misclassification penalty or cost

and Ỹ is the discretized version of the response variable based on the formula:

Ỹ = I(Y ∈ A1)− I(Y ∈ A2) (4)

where A1 and A2 are two disjoint sets in the range of Y thought of as two classes for

separation by SVM. It was shown by Li, Artemiou and Li (2011) that if (ψ∗, t∗) is

the pair that minimizes the objective function (3), then ψ∗ ∈ SY |X .

Artemiou and Shu (2014) identified the problem that may arise when slicing pro-

duces classes of different sizes; they propose using a two-cost modification of the

PSVM where the minority class gets a larger misclassification penalty. They modi-

fied the objective function to:

ψT
Σψ + E[λ∗(1− Ỹ (ψTX − t))]+ (5)

where λ∗ = λ1I(Y ∈ A1) + λ2I(Y ∈ A2) and λi, i = 1, 2 is the misclassification

penalty used for each class. Although the relationship between the two penalties is

an open question, it was shown by Lee et al (2001) that a good choice is to maintain

the following relationship:

λ1

λ2

=
n2

n1

,

that is, the ratio between the two penalties should be the inverse ratio between the

two class sizes.

3 Proposed new methodology

As we said earlier, the machine learning literature is full of proposals for different

SVM algorithms to be used in classification settings with imbalanced datasets. We

decided to choose some of the most promising ones and investigate their potential in

the dimension reduction framework. In this section, we provide a description of the

algorithms we modified for the purpose of this work.

First, we briefly describe the classic SVM algorithm that Li, Artemiou and Li

(2011) used to propose their PSVM algorithm. For more details one can refer to
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Vapnik and Cortes (1995). Classic SVM minimizes the Lagrangian equation:

L(ψ, t, ξ) = ψTψ +
λ

n

n∑

i=1

ξi +

n∑

i=1

αi(1− Y (ψTX − t)− ξi) +

n∑

i=1

βiξi

Taking the derivative with respect to ψ and setting it equal to zero one finds that

ψ =
n∑

i=1

αiyixi (6)

where αi is the Lagrangian multiplier corresponding to the ith observation as we can

see from the Lagrangian equation above. In Li, Artemiou and Li (2011) the first term

in the Lagrangian is changed to ψT
Σψ which allows linear and nonlinear dimension

reduction in a unified framework.

3.1 z-SVM

z-SVM was proposed by Imam, Ting and Kamruzzaman (2006). Having identified

that the decision boundary in cases where we have imbalanced datasets was shifted

towards the minority class, the authors proposed the use of a multiplier to shift the

optimal hyperplane towards the majority class. That is, equation (6) was modified

as follows:

ψ = z
∑

yi=1

αiyixi +
∑

yi=−1

αiyixi

where without loss of generality it is assumed that the positive class is the minority

class. Of course, this raised the question of how to estimate the value of z. The authors

suggested using the value of z which maximizes the geometric mean of correctly

classified points between the two classes in the training dataset. Geometric mean

is a metric which is widely used as a performance measure in imbalanced datasets.

By using it as a way to estimate z the authors essentially incorporate the imbalance

information in the construction of the hyperplane.

3.2 SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) is considered one of the

most promising algorithms in attacking imbalanced datasets and was proposed by

Chawla et al. (2002). SMOTE does exactly what its name suggests. It creates new

synthetic data in the minority class according to a specified percentage of oversam-

pling. By synthetic data, it is meant that the oversampling process is not done by
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replication of the existing points but rather by creating new points from the existing

ones.

SMOTE first finds the k nearest neighbours for each point in the minority class,

where k is a parameter of the algorithm. Then, it draws new data points along the

lines that connect the actual observation with each one of its k nearest neighbours.

This will create (k ∗ 100)% oversampling of the minority class. This of course can

be adjusted depending on how one is using the algorithm. For example, one can use

k = 5 and be interested only in 300% oversampling of the minority class. Then, for

each initial point in the minority class one creates only 3 synthetic points along the

lines that connect the true point with 3 of the 5 nearest neighbours. To create the

synthetic point along the line of the actual point and the nearest neighbor one needs

to find the difference between the actual point and the nearest neighbour. Multiply

this difference with a random number between 0 and 1 and add the result to the

initial point to get the synthetic point.

First, we implemented a fixed percentage SMOTE algorithm which we call f-

SMOTE PSVM (we add the PSVM at the end of each method to emphasize that

we implement this in the dimension reduction framework incorporating the idea of

Li, Artemiou, Li (2011) and therefore these methods are not the same methods as

the ones originally introduced in the classification framework). In each comparison,

we do a 200% oversampling of the minority class with k = 4 nearest neighbors. This

can be a good way to correct some of the imbalance. However, the way the PSVM

algorithm works in the dimension reduction framework requires multiple applications

of the classification algorithm. In each of those applications of the algorithm, there are

different number of observations in the majority and the minority class. Therefore,

a fixed percentage of oversampling may well be insufficient to compensate for the

imbalance for some slices and may overcompensate for other slices of the same data.

To address this issue, we propose the adaptive percentage SMOTE which we call a-

SMOTE PSVM. In this case, at each comparison the minority class is oversampled

until it is approximately equal to the majority class. We aim, with a-SMOTE PSVM,

to avoid the problem of under- and over- compensating for the imbalance.

Finally, we combine SMOTE with the two cost proposal of Artemiou and Shu

(2014) to create a new algorithm which we call SMOTE with Different Costs SDC-

PSVM.
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3.3 CNN

The Condensed Nearest Neighbourhood (CNN) is based on an idea by Hart (1968)

which does approximately the opposite of SMOTE. Instead of oversampling the mi-

nority class, it undersamples the majority class. The idea is to create a subset of

points (denoted by E) which contains all the points from the minority class and just

one (randomly selected) point from the majority class. It then classifies all the points

in the majority class not in E using the information from the points in E . All the

misclassified points are moved into E . This procedure is repeated until all the points

not in E are correctly classified. The points in E in the last step are the only points

we use to construct the optimal hyperplane between the two classes. As one can see,

the points that are correctly classified in the last step and therefore do not belong in

set E are all from the majority class. These points are not used in constructing the

optimal hyperplane. By removing some of the points from the majority class we are

essentially undersampling it.

3.3.1 OSS and BOSS

One sided sampling (OSS) and Backward one sided sampling (BOSS) are two algo-

rithms which are based on Tomek links (Tomek (1976)) and CNN.

Tomek links can be used either as a data cleaning method or as an undersampling

method of the majority class. If two points a, b belong to different classes, are close

together and there is not another point c which is closer to a than b or closer to b

than a, then a and b form a Tomek link. That means either both points are on the

borderline around the separating hyperplane between the two classes or that at least

one of the two is an outlier. If you remove both points then you are using Tomek

links for data cleaning. If you remove only the point from the majority class then you

are undersampling the majority class.

OSS was proposed by Kubat and Matwin (1997) to first use Tomek links to under-

sample the majority class (by removing majority points on the border, and majority

outliers) and then to apply the CNN algorithm we described before to further un-

dersample the majority class by removing points that are further away from the

boundary. Therefore the majority class is reduced to a small group of points which

are mid-distant to the boundary. BOSS, as it is called, was proposed by Batista,

Prati, Monard (2005) and it applies first the CNN and then the Tomek links. Since

Tomek links is computationally more expensive, this has the advantage of applying

the Tomek links algorithm on the reduced dataset produced by CNN.
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3.4 NCL

Another popular undersampling method is the Neighborhood Cleaning rule proposed

by Laurikkala (2001). The idea to make decisions based on the closest points. For

every point a, we find the three closest points (neighbours) in the sample. If two of

the three neighbours have different labels to point a then:

• if point a is from the majority class it gets removed.

• if point a is from the minority class then its majority class neighbours are

removed.

This idea essentially eliminates points in the majority class that are either close

to the boundary between two classes or points that at least have high probability

of being misclassified in the original SVM algorithm because they will lie on the

wrong side of the optimal separating hyperplane. Essentially, one can say that this

algorithm eliminates the points in the majority class that have high risk of being

wrongly classified by the optimal separating hyperplane.

3.5 ADASYN

Adaptive Synthetic Sampling (ADASYN) was proposed by He et al (2008) and has the

same basic idea as SMOTE— to oversample the minority class. The authors identified

that SMOTE oversamples from all the points of the minority class the same way,

without considering the underlying distribution of these points. ADASYN instead

uses an adaptive way of assigning importance to each point and therefore producing

different synthetic samples from each point based on the underlying distribution of

the minority class. To find the number of synthetic data that needs to be produced

by each point using ADASYN the following procedure is used:

• Let G be the number of samples to be produce, that is the difference between

the two class sizes multiplied by a constant parameter β ∈ [0, 1].

• For each point ai in the minority class, we find the k nearest neighbors.

• Denote by ∆i the number of majority class points in the k nearest neighbours

and define

Γi =
1

z
×

∆i

k
, i = 1, . . . , Nmin

where z is a normalization constant to make
∑

Γi = 1 so that it defines a

distribution function and Nmin is the number of minority points.
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• Then for each point ai, one needs to develop G ∗ Γi synthetic samples.

This algorithm tries to oversample more points from areas where the minority class

points are dense and less points from areas that the points are less dense. Therefore,

if there are minority class outliers then their influence is minimized as fewer points

are being oversampled from them.

There are also two variations of this algorithm:

1. ADA-CNN which applies the CNN algorithm to the data produced by the

ADASYN algorithm

2. ADA-NCL which applies the NCL algorithm to the data produced by the

ADASYN algorithm

3.6 Estimation procedure

The methods in this section are described as they were proposed in the classification

framework. As we explained in the previous section, there are some modifications

that need to be done to apply these methods in the dimension reduction framework.

The algorithm we use is the same as the PSVM algorithm, with the difference that

we apply one of the imbalance algorithms to add or remove data points after slicing

the data and before estimating the optimal hyperplane. The only exception to this

is the zPSVM algorithm which does not oversample or undersample. For zPSVM we

run once the PSVM algorithm and we get a value for z as the geometic mean of the

misclassification. We run now the zPSVM algorithm to get a new value for z and

repeat until the estimated value for z is the one that actually minimizes the number

of misclassifications.

Here we feel the need to emphasize that the oversampling and undersampling of the

original points by these algorithms makes it rather difficult to discuss any theoretical

properties as these samples are added or removed based on sample conditions and

not theoretical conditions. Therefore, we make the assumption that the removal of

points does not affect the theoretical property that ψ estimates the CDRS.
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Figure 1: Model 1 results. Some undersampling methods cannot run for small n large

H combinations since they have empty slices due to undersampling.
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Figure 2: Model 2 results. Some undersampling methods cannot run for small n large

H combinations since they have empty slices due to undersampling.
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4 Simulation results

In this section we investigate the performance of these algorithms for the following 2

models:

Model I: Y = X1 +X2 + σε,

Model II: Y = X1/[0.5 + (X2 + 1)2] + σε,

where X ∼ Np(0, 1) where p = 10, 20, 30, ε ∼ N(0, 1), σ = 0.2, sample size n =

100, 200, 400 and the number of slices H = 5, 10, 20, 50. To measure the performance

of each algorithm we will be using the distance metric proposed by Li, Zha and

Chiaromonte (2005):

dist(S1,S2) = ‖P S1
− P S2

‖. (7)

where Si (i = 1, 2) are two subspaces and P Si
(i = 1, 2) denotes the projection

matrices to the two subspaces. In our simulations, we will take the distance between

the projection matrices of the true and estimated subspaces using the Frobenius norm.

The smaller the distance, the better the algorithm.

Figures 1 and 2 show the results for the 2 models for the different algorithms.

Since for each model we run 3 different sample sizes, n = 100, 200, 400 and 3 different

dimensions p = 10, 20, 30 there are 9 graphs on each figure. In each graph, the y axis

shows the distance between the true and estimated subspaces and the x axis shows the

number of slices. As we can see most algorithms perform similarly, and for different

models the algorithms seem to behave differently.

In Figure 1, we can see that for Model I all the methods except the two SMOTE

algorithms perform similarly. The original PSVM algorithm performs overall the best

but every other algorithm is relatively close. From the reweighting methods, zPSVM

and ADA-NCL-PSVM perform better and overtake PSVM in performance as the

number of predictors increases.

In Figure 2, we can see the results for Model II. In this model, zPSVM and ADA-

NCL-PSVM perform better than every other algorithm including the classic PSVM.

As the number of slices and the sample size increases, the combination of ADASYN

and CNN (ADA-CNN-PSVM) also works very well. The two SMOTE algorithms,

although much closer to the rest in this model, still perform worse on average.

These 2 models show clearly that reweighting can be helpful in most cases when

using SVM algorithms for sufficient dimension reduction especially as the number of
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Figure 3: Applying linear PSVM to Iris data. It is clear that two of the three

categories are not linearly separable

slices increases and therefore there is a much stronger imbalance between the two

classes. It is also important to note that we don’t compare them to the two cost

reweighting method by Artemiou and Shu (2014) because that method was based on

a theoretical framework and therefore it is expected to outperform the methodology

in this paper which are based on sample properties.

5 Data Analysis

In this section we will discuss the effectiveness of the reweight methodology in real

datasets obtained from the UC Irvine machine learning repository (Bache and Lich-

man (2013)). The first dataset is the well known Iris dataset and has categorical

response. We check the classification performance of the algorithms even though SDR

methodology is not necessarily a classification methodology because, as Li, Artemiou

and Li (2011) explain in their discussion, it makes sense to view it as such when we

have a categorical response. The other two datasets have continuous responses and

regression is the main objective. Those are the computer hardware and the concrete

slump test datasets.

5.1 Iris Dataset

The Iris dataset contains 150 flowers, and measures four variables (sepal length and

width, petal length and width) in each one of these flowers. The flowers are divided
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Table 1: Average percentage of separation between the three classes in the Iris Data

PSVM fSMOTE aSMOTE zPSVM CNN OSS BOSS SDC

17.88 21.50 24.92 17.41 7.45 6.75 7.17 17.28

into three species (Setosa, Vergicolour, Virginica) each with 50 flowers in the dataset.

It is known that one category is well separated by the others, while the other 2 are

closer together and some methods fail to distinguish completely between the two as

shown in Figure 3

To compare the methods discussed in this work we run the following experiment

100 times. We randomly create 100 pairs of testing and training samples from the

dataset. Each training sample contains 25 data points from each flower. We use the

other 25 points for each flower as the testing set. We apply each of our methods to the

training dataset to get the first direction of the data. For each method, we measure

the percentage of samples where the testing points are separated for the three classes

along the first direction. The average of the times we ran the experiment are given in

Table 1. As we can see, the adaptive SMOTE has the highest percentage followed by

the fixed SMOTE algorithm and then the SDC (Two cost SMOTE). We also note that

zPSVM has similar performance to PSVM. The other imbalance correction methods

do not perform very well.

5.2 Computer Hardware Dataset

The Computer Hardware dataset was first discussed in Ein-Dor and Feldmesser

(1987). The objective is to create a regression model that estimates relative per-

formance of the Central Processing Unit (CPU) of different computer models using

some of its characteristics, including cache memory size, cycle time, minimum and

maximum input/output channels and minimum and maximum main memory. There

are 209 observations in the dataset.

Ein-Dor and Feldmesser (1987) found that the best model that fits the data gives

large coefficient to the average main memory (as linear combination of the minimum

and maximum) followed by the cache and then the cycle time. We ran the algorithms

for dimension reduction using misclassification cost λ = 1 and the number of slices

H = 10. The CVBIC criterion of Li, Artemiou and Li (2011) for deter-

mining the dimension of CDRS suggests that d = 2. As Table 2 shows, the

methods differ slightly in the directions they recover. PSVM and z-PSVM give a very

large coefficient to cycle time and the only other important coefficient is the one for
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Table 2: Normalized coefficients for directions 1 and 2 on the Computer Hardware

dataset for some of the methods discussed above.

Direction Method Cache Min Ch Max Ch Cycle Time Min memory Max memory

First

PSVM .017 -.006 -.004 -.976 .039 -.213

fixed SMOTE .025 -.008 -.003 -.931 -.360 -.060

adaptive SMOTE .023 -.003 -.005 -.440 -.819 .367

zPSVM .095 -.004 -.005 -.978 -.081 -.170

CNN-PSVM .010 -.005 -.003 -.967 -.225 -.118

NCL-PSVM .018 -.005 -.004 -.962 -.247 -.111

OSS-PSVM .005 -.007 -.003 -.995 -.076 -.057

BOSS-PSVM .006 -.006 -.002 -.963 -.170 -.208

ADASYN-PSVM .010 -.005 -.003 -.964 .206 -.167

SDC-PSVM .040 -.001 -.005 -.735 -.483 .475

Second

PSVM .011 -.020 -.004 -.742 .667 -.072

fixed SMOTE .137 .008 -.003 .811 -.252 -.051

adaptive SMOTE .029 .004 -.001 .724 -.142 -.600

zPSVM .309 .004 .002 .724 -.142 -.600

CNN-PSVM -.106 .028 -.008 -.0.72 -.476 .490

NCL-PSVM .046 -.008 .001 .782 -.239 -.575

OSS-PSVM .063 .000 .000 .411 .605 -.679

BOSS-PSVM .023 .007 -.001 -.267 .958 .099

ADASYN-PSVM .045 -.003 -.001 .925 -.276 -.256

SDC-PSVM .069 .005 -.001 -.047 .994 .077

15



Table 3: Normalised coefficients for the main direction on the Concrete Slump Test

dataset for some of the methods discussed above

Method Cement Slag Fly Ash Water SP Coarse Aggr. Fine Aggr.

PSVM -.089 -.072 -.106 -.675 -.696 -.131 -.135

fixed SMOTE .087 .068 .106 .668 .705 .122 .136

adaptive SMOTE -.036 -.008 -.046 -.956 .280 -.050 -.051

zPSVM .056 -.030 .069 .982 .137 .072 .058

CNN-PSVM -.098 -.088 -.112 -.659 -.703 -.139 -.145

NCL-PSVM .125 .139 .146 .706 .620 .165 .185

OSS-PSVM -.102 -.071 -.122 -.750 -.606 -.130 -.152

BOSS-PSVM .125 .130 .138 .713 .618 .165 .175

ADASYN-PSVM .128 .147 .146 .716 .608 .171 .171

SDC-PSVM .063 .032 .082 .985 .070 .071 .088

maximum main memory. Fixed SMOTE is similar but the second largest coefficient

is assigned to the minimum main memory. CNN, NCL, OSS, BOSS and ADASYN

give a very large coefficient to cycle time and then approximately similar coefficients

to the maximum and minimum main memory variables. Two cost SMOTE give a

slightly smaller coefficient on cycle time and significant coefficients to both maximum

and minimum memory. Finally, adaptive SMOTE give the maximum coefficient to

the minimum main memory and a significant coefficients to cycle time and maximum

memory.

It is worth noting that, although the authors showed that cache memory size is the

second most important variable in the model, none of the methods give a relatively

large coefficient in the first direction (the largest is given by zPSVM which is 0.095

and it is the only method that puts it as the third most important variable in the

first dimension). On the second direction, zPSVM is the only method that give a

large coefficient to cache memory size with value 0.309 which shows that it is the only

method that it captures something other methods are not able to do.

5.3 Concrete slump test

The third dataset we discuss in this work is the concrete slump dataset obtained

from the UC Irvine Data repository which was first studied in Yeh (2007). There

are 7 predictors: cement, slag, fly ash, water, superplasticizer (SP), coarse aggregate,
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and fine aggregate; the response variable is the concrete flow. It is known that the

concrete flow is mainly affected by the water content in the concrete mixture and

there is less effect from the other variables. We run the 10 methods listed in Table 3

using misclassification cost λ = 1 and number of slices H = 10.

As we can see from the results of Table 3, all the methods indicate the effect

water has on the concrete flow on the first direction. Most of the methods split the

effect on the main direction between water and superplasticizer (SP) and only two

cost SMOTE (SDC), zPSVM and adaptive SMOTE suggest water being the most

significant variable in the main direction.

6 Discussion

Sufficient Dimension Reduction (SDR) is a set of dimension reduction tools that

can be used in a regression setting to find a few linear or nonlinear functions of

the predictors that describe the regression surface. Lately, SDR has increased in

popularity and there is a huge selection of algorithms to choose from, each one with

its own advantages and disadvantages. PSVM is one of the new algorithms (see

Li, Artemiou and Li (2011)) with the main advantage being the fact that it uses

SVM which allow it to achieve linear and nonlinear dimension reduction under a

unified framework. The algorithm of PSVM is constructed in such a way that there

is imbalance between the size of the two classes in most comparisons.

In this work, we have run a simulation study of several reweighting algorithms to

reduce the effect that imbalance classes have on dimension reduction. The algorithms

we used are well known in the classification framework and under specific circum-

stances work much better than the classic SVM algorithm in improving the accuracy

of the prediction. As we can see in the simulation results, this is not so much the case

in the dimension reduction framework. We can see that while some algorithms like

zPSVM give improved results most of the times in the dimension reduction frame-

work, some others failed, i.e. SMOTE which is considered an excellent method for

treating imbalance in classification.

There are many possible reasons why this might be the case. First, in the di-

mension reduction framework we are not interested in misclassifications but rather in

hyperplane alignment between the different classifications of the data. Second, these

methods are based on sample observations and not on any established theoretical

properties.

One thing that can be claimed from the analysis is that zPSVM seems to generally
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perform better than all other algorithms we discuss here. It is among the best two

methods in almost every parameter combination in the simulation section and it is

the method that recovers something meaningful in all 3 real datasets we use in this

paper.

This study can be extended in several directions. One possible direction is how

these ideas extend to the nonlinear dimension reduction. Although these algorithms

in the classification framework work similarly for linear and nonlinear kernels, there

is a difference in the dimension reduction framework. In the dimension reduction

framework, we use multiple comparisons and combine them into a single candidate

matrix; this process gets complicated in the nonlinear case. This needs to ensure that

the same number of Support Vectors are used each time which may not be the case.

Therefore we need to see this in more depth in a separate work.

Another interesting aspect might be the development of new reweighting algo-

rithms designed with the dimension reduction problem in mind. As it was mentioned

in the introduction, the problem in dimension reduction is not minimizing the number

of misclassifications but the alignment of the hyperplane with the regression surface.

Therefore, one can construct algorithms that optimise the estimation of ψ by con-

sidering the angles between the hyperplanes. One example is to modify zPSVM and

instead of estimating z using the geometric mean, estimating it using the average

angle between the estimated hyperplanes.
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