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As written, equations (20)–(23) are incorrect. In several places, they have an exponent outside
the bar over f when they should have it inside. The corrected expressions are:

〈h0|h0(dt)〉2 ≈ 1 − 4π 2dt2〈f h0|f h0〉 = 1 − 4π2(dt)2f 2 . (20)

f n := 4
∫ ∞

0
df

|h̃(f )|2
S(f )

f n . (21)

〈hπ/2|h0(dt)〉 ≈ 2πf dt , (22)

p(dt |s) ∝ exp
[−2ρ2π2σ 2

f dt2
]

where σ 2
f = f 2 − f

2
(23)
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Abstract. There is significant benefit to be gained by pursuing multi-
messenger astronomy with gravitational wave and electromagnetic observations.
In order to undertake electromagnetic follow-ups of gravitational wave signals,
it will be necessary to accurately localize them in the sky. As gravitational
wave detectors are not inherently pointing instruments, localization will occur
primarily through triangulation with a network of detectors. The expected
timing accuracy for observed signals and the consequences for localization are
investigated. In addition, the effect of systematic uncertainties in the waveform
and calibration of the instruments on the localization of sources is discussed.
Illustrative results of timing and localization accuracy as well as systematic
effects for coalescing binary waveforms are provided.
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1. Introduction

There is a growing realization that multi-messenger astronomy will be of critical importance for
gravitational wave astronomy. While the concept has been discussed for many years (e.g. [1]),
only recently has a large push towards joint observations with electromagnetic and neutrino
detectors begun (see e.g. [2]–[5]). Initially, joint observations will provide additional confidence
for early detections made in non-stationary gravitational wave data. Later, multi-messenger
observations will be critical in extracting the maximum scientific payoff from gravitational
wave observations. For example, the cleanest way to demonstrate that the progenitors of short
γ -ray bursts (GRBs) are coalescing neutron stars would be the observation of a gravitational
wave chirp associated with a short GRB [6]. Additionally, joint observations will likely provide
measurements of complementary parameters, thereby breaking degeneracies which would exist
with single messenger observations.

The road to joint observations has already been paved, with several gravitational wave
search results being ‘triggered’ by external observations, such as GRBs [7, 8] and soft gamma
repeaters [9, 10]. More recently, work has begun to ensure that gravitational wave observations
can be followed up by other astronomical observatories. In the era of regular gravitational wave
observations, it is likely that gravitational wave alerts will be followed up by large field of
view optical (such as [11]), γ -ray [12, 13] and radio observatories [14, 15] as well as neutrino
observatories [16, 17].

The vast majority of electromagnetic observatories are, by their very nature, directional.
Thus, in order for gravitational wave observations to be useful to other astronomers, it is
necessary to extract the sky location from the gravitational wave signal. However, gravitational
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wave detectors are sensitive to signals from large fraction of the sky and a single gravitational
wave detector provides essentially no directional information for a short duration source. Thus,
the ability to reconstruct the location of a transient signal is primarily due to triangulation
based on the observed time delays of the signal at several detectors. For more than two sites,
requiring a consistency between the observed amplitudes will also serve to restrict the allowed
sky positions. In particular, for three detectors, using only timing information, one obtains two
sky locations that are mirror images with respect to the plane of the three detectors; generically
the amplitude information can be used to break this degeneracy. The issue of localization of
gravitational wave signals with a detector network has been discussed previously, and several
different algorithms proposed [18]–[27].

In this paper, we consider the ability of gravitational wave detectors to localize transient
signals by considering only the timing information available at each site. For concreteness, we
restrict attention to elliptically polarized gravitational waves, a choice motivated by coalescing
binary waveforms. With this simple model, we obtain a straightforward estimate for the
expected timing accuracy and use this to evaluate the triangulation ability of a network of
detectors. From timing information alone, it is only possible to measure the projection of the
sky location onto the detector baseline. Thus for two detectors, localization to a ring in the sky
is possible, whereas for three detectors a reflection degeneracy in the plane of the detectors
remains.

In a gravitational wave search, there are several sources of uncertainties that will affect
the localization ability of the search. First, when performing a matched filter search, there
will typically be several additional parameters in the waveform model (such as the masses
of a compact binary). These additional parameters will serve to degrade the localization
ability. In addition, there are likely to be differences between the physical waveforms and
the templates used. These arise due to errors in the waveform family due to truncation of
analytic expansions or numerical inaccuracies. While the inaccuracies of the waveform are
independent of the detector, their effect on the timing accuracy will depend upon detector
sensitivity. Finally, there are uncertainties in the calibration of the detectors. These will result in
the reconstructed gravitational wave strain h(t) differing from the actual gravitational wave
signal. These calibration uncertainties will have a similar effect to the use of an incorrect
waveform template. However, the calibration inaccuracies, as well as the associated timing
errors, will be largely independent in the different detectors.

The layout of the paper is as follows. In section 2, we describe the restriction to elliptical
polarization and briefly review the coalescing binary waveform. In section 3 we obtain the
expected timing accuracies, and in section 4 we present the localization ability of the network.
Finally, in section 5, we discuss the systematic uncertainties and their effect on timing.
Throughout, we provide an illustrative example of expected results for binary neutron star
(BNS) and binary black hole (BBH) systems.

2. The waveform model

In this paper, we will focus primarily on waveforms generated during binary coalescence.
However, much of the framework introduced is applicable to a broader class of waveforms.
Therefore, we begin by laying out the minimal set of assumptions that are made on the form of
the gravitational wave, before moving on to describe the waveform for binary neutron star and
black hole coalescences in more detail.
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We restrict attention to elliptically polarized waveforms, following a definition proposed
by Sutton and Poprocki [28]. Specifically, a waveform is said to be elliptically polarized if there
exists a polarization frame such that the two polarizations h+ and h× of the gravitational wave
are related by

h+(t)= η+α(t) cosϕ(t), h×(t)= η×α(t) sinϕ(t), (1)

where α(t) and φ(t) are the amplitude and phase of the waveform and η+,× encode the relative
amplitudes of the two polarizations. We make the additional requirement that the amplitude
is slowly varying (with respect to the phase), i.e. α̇/α � ϕ̇. Then, in Fourier space, the two
polarizations are related by

h̃×( f )= iηh̃+( f ), (2)

where η ∈ [−1, 1] provides the ratio between the two amplitudes, with unity corresponding to
circular polarization and zero to linear polarization.

The gravitational waveform observed at a detector can be expressed as

h(t)= F+(θ, φ, ψ)h+(t; ξ)+ F×(θ, φ, ψ)h×(t; ξ). (3)

Here, F+ and F× are the well-known detector response functions (see e.g. [29]) that depend
upon the sky location (θ , φ) of the system relative to the detector and the polarization ψ .
We use ξ to denote any additional parameters upon which the waveform depends. It follows
straightforwardly from (2) and (3) that the gravitational waveform observed in a given detector
can be expressed as1

h(t)= A0 h0(t; ξ)+ Aπ/2 hπ/2(t; ξ), (4)

where

h̃π/2( f ; ξ)= ih̃0( f ; ξ). (5)

The constants A0 and Aπ/2 depend upon the location of the source relative to the detector and the
parameter η introduced above. Finally, we write the waveform explicitly in terms of amplitude
and phase as

h̃0( f ; ξ)= A( f ; ξ)ei8( f;ξ) and h̃π/2( f ; ξ)= iA( f ; ξ)ei8( f;ξ). (6)

2.1. Waveforms for coalescing binaries

For concreteness, let us now specialize to the waveform emitted during binary coalescence,
where we neglect the spin of the two components. Then, the orbital plane will not precess and
the two polarizations of the waveform can be expressed as [30]

h+(t)=

(
Do

D

)
((1/2)(1+cos2 ι) cos 2φoh0(t; to,Do,m1,m2)−cos ι sin 2φohπ/2(t; to,Do,m1,m2)),

h×(t)=

(
Do

D

)
((1/2)(1+cos2 ι) sin 2φoh0(t; to,Do,m1,m2)+cos ι cos 2φohπ/2(t; to,Do,m1,m2)).

(7)

1 We make use of the two ‘phases’ of the waveform h0 and hπ/2 as these arise naturally in the context of coalescing
binaries, as we shall see in section 2.1.
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Here, D is the distance at which the signal is located, Do is a fiducial distance (e.g. 1 Mpc), to

and φo are a reference time and phase for the signal (often taken as the coalescence time and
phase), ι is the inclination angle of the binary relative to the line of sight and m1 and m2 are the
masses of the binary’s components. The two phases h0, hπ/2 are the waveforms, normalized for a
binary at distance Do, and depend upon the masses of the components as well as the coalescence
time to.

The amplitude and phase of the waveform have been calculated to exquisite accuracy
through the post-Newtonian expansion. Although the post-Newtonian expressions formally
extend to infinite frequency, the waveform is truncated at a pre-specified frequency, typically
the innermost stable circular orbit (ISCO). At higher frequencies, the finite size of the objects
will cause the true waveform to differ significantly from the post-Newtonian expression.
Furthermore, in many applications, the restricted post-Newtonian approximation is used where
only the leading order amplitude term is used, while the phase is evaluated to higher post-
Newtonian order. It is only the restricted post-Newtonian waveform that can be written in
the form (6). The amplitude satisfies A( f )∝ f −7/6 while the detailed phasing evolution will
depend critically upon the masses of the system [31]. This waveform is appropriate for low
mass binaries as the merger occurs at a higher frequency than the sensitive band of the detectors.
We will illustrate the results in the remainder of the paper with numbers appropriate for a BNS
signal with component masses 1.4M� and an ISCO frequency of 1500 Hz.

More recently, breakthroughs in numerical relativity have allowed for the calculation
of entire binary black hole merger waveform [32]. Work remains ongoing to cover the full
mass and spin parameter space. However, for non-spinning binaries with comparable mass
components, the waveform is well understood (see e.g. [33]–[37]). Indeed, a phenomenological
fit to these waveforms has been produced in [38]. Here, the inspiral waveform extends beyond
the ISCO to a merger frequency, after which point the amplitude evolves as A( f )∝ f −2/3,
and finally incorporates a ringdown. For 10–10M� waveforms, the ISCO is at 220 Hz, but
the phenomenological waveform continues up to 800 Hz. We will show that, by including the
merger and ringdown information, the timing and localization accuracies for these waveforms
can be improved dramatically.

3. Timing accuracy

The parameter estimation problem has been discussed in detail in many articles. Here, we
provide a brief overview of the method in order to fix notation (for further details, see e.g. [39]).
We then proceed to use the framework to address the specific problem of timing accuracy. In
later sections, we make use of the same framework to obtain localization estimates and address
systematic uncertainties.

3.1. Parameter estimation and the Fisher matrix

In order to decide whether there is a signal present in the data, we calculate the likelihood ratio
of a signal h parametrized by some set µ of parameters2 being present in the data s, relative to
the null hypothesis:

3(µ)=
p(s|h(µ))

p(s|0)
=

e−〈s−h(µ)|s−h(µ)〉/2

e−〈s|s〉/2
, (8)

2 For example for the coalescing binary signal introduced in section 2.1, µ = (m1,m2, to, D, θ, φ, ψ, ι, φo).
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where the inner product is defined as

〈a|b〉 = 4 Re
∫

∞

0
d f

ã( f )b̃?( f )

S( f )
, (9)

and S( f ) is the noise power spectrum of the detector. The formalism can be used both for
the purposes of detection and parameter estimation, as described in e.g. [40]. For parameter
estimation, we are interested in the posterior probability distribution of the parameters µ,
given the data s. The posterior distribution for the parameters µ can be obtained using Bayes’
theorem as

p(µ|s)=
p(µ) p(s|µ)∫

dµ p(µ) p(s|µ)
=

p(µ)3(µ)∫
dµ p(µ)3(µ)

, (10)

where p(µ) is the prior distribution on the parameters µ and 3(µ) is the likelihood ratio
introduced above. If we are only interested in a subset ξ of the parameters µ and not ν, we
simply marginalize over the ‘nuisance’ parameters ν by integrating over them.

Let us now specialize to the case discussed in section 2 where the waveform is parametrized
by two orthogonal phases h0 and hπ/2 satisfying (5), with arbitrary amplitudes A0 and Aπ/2 as
in (4), and substitute this waveform into expression (8) for the likelihood. The expression is
simplified by noting that the two phases are necessarily orthogonal,

〈h0(ξ)|h0(ξ)〉 = 〈hπ/2(ξ)|hπ/2(ξ)〉 and 〈h0(ξ)|hπ/2(ξ)〉 = 0. (11)

Finally, by either maximizing the likelihood with respect to A0 and Aπ/2 or by marginalizing
over them with a uniform prior3, we obtain

ln3(ξ)=
〈s|h0(ξ)〉

2 + 〈s|hπ/2(ξ)〉2

2〈h0(ξ)|h0(ξ)〉
. (12)

For other parameters, it is not possible to handle the marginalization of the likelihood so
straightforwardly. Therefore, we make use of the Fisher information matrix to obtain expected
parameter estimation accuracies. Briefly, assume that there is a signal in the data of the form

s = A0h0〈ξ)+ Aπ/2hπ/2(ξ)+ n. (13)

Further, assume that the amplitude of the signal is sufficiently large that the noise contribution n
can be neglected. Then, expand the likelihood in the neighbourhood of the true signal parameter
in powers of dξ . Setting 〈h0(ξ)|h0(ξ)〉 = 1 we obtain

ln3(dξ)≈
ρ2

2

[
1 − gab dξ a dξ b

]
, (14)

where ρ2
= (A2

0 + A2
π/2) and

gab = 〈∂ah0|∂bh0〉 − 〈h0|∂ah0〉〈h0|∂bh0〉 − 〈hπ/2|∂ah0〉〈hπ/2|∂bh0〉 (15)

is a positive definite matrix. At quadratic order, the likelihood function is approximated as a
multi-variate Gaussian around the peak dξ = 0. The Fisher matrix gab then provides an estimate
of the accuracy with which the parameters ξ can, in principle, be determined.

3 In many cases, the sources of interest are approximately uniformly distributed in volume. This leads to a prior on
the amplitude of A−4. A uniform prior is chosen here for ease of calculation. For observed signals, the amplitude
will be large enough that the choice of prior will not have a substantial effect on the parameter accuracy estimates
derived later.
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3.2. Timing

It is rather straightforward to utilize the formalism introduced above to investigate the effects of
a timing error. In particular, we restrict attention to the case where the parameter space ξ is the
one-dimensional time parameter. In this case, a shift of the time to corresponds to (frequency-
dependent) phase shift in the waveform and has no effect on the amplitude of the waveform,
specifically

h̃0( f ; to + dt)= e2π i f dt h̃0( f ; to). (16)

We can obtain a posterior distribution for the timing error, making use of the formalism
introduced above. Generally, the time will not be known a priori, certainly not to millisecond
accuracy, so it is natural to take a uniform prior p(dt)= const. Then, the posterior distribution
for the time offset is

p(dt |s)∝ exp

{
ρ2

2

[
〈h0|h0(dt)〉2 + 〈hπ/2|h0(dt)〉2

]}
. (17)

At quadratic order, this gives4

〈h0|h0(dt)〉2
≈ 1 − dt2

[
〈∂t h0|∂t h0〉 − 〈h0|∂t h0〉

2
]
, (18)

〈hπ/2|h0(dt)〉2
≈ dt2

〈hπ/2|∂t h0〉
2. (19)

Then, since taking the derivative of the waveform with respect to to amounts to multiplication
by 2π i f ,

〈h0|h0(dt)〉2
≈ 1 − 4π2dt2

〈 f h0| f h0〉 = 1 − 4π2(dt)2 f̄
2
. (20)

Here, we have introduced f̄
n

to describe the frequency moments of the signal as

f̄
n

:= 4
∫

∞

0
d f

|h̃( f )|2

S( f )
f n. (21)

Similarly (19) is approximated as

〈hπ/2|h0(dt)〉 ≈ 2π f̄ dt, (22)

where f̄ is the mean frequency defined via (21). Thus, at quadratic order, the timing distribution
is

p(dt |s)∝ exp
[
−2ρ2π 2σ 2

f dt2
]
, where σ 2

f = f̄
2
− f̄

2
(23)

is the effective bandwidth of the signal. In this case, the timing estimator is unbiased and has a
width given by

σt =
1

2πρσ f
. (24)

This is a simple result which encapsulates the expected timing accuracy for a given source. It is
inversely proportional to both the signal-to-noise ratio (SNR) ρ and effective bandwidth σ f of
the source.
4 This expression is somewhat different that what is obtained by directly expanding equation (17). However, by
expanding 〈h(dt)|h(dt)〉 = 1 in powers of dt , it is easy to show that the two expressions are equivalent.
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Table 1. Timing accuracy for binary neutron stars in different detectors. The
table gives the mean frequency and effective bandwidth of the signal. Then, the
timing accuracies based on the quadratic approximation (24) and the exact result
are given for SNR 7 and 10.

σt (ms) Timing accuracy (ms)
Detector f̄ (Hz) σ f (Hz) ρ = 7 ρ = 10 ρ = 7 ρ = 10

Initial LIGO 150 100 0.23 0.17 0.27 0.18
Initial Virgo 140 140 0.16 0.11 0.19 0.12
Advanced LIGO 110 120 0.19 0.13 0.21 0.13

Figure 1. Left: the normalized SNR ratio against time for initial LIGO. The
SNR for the two phases of the template are plotted, as a function of time, when
the waveform has zero phase. The solid lines are the exact results, dotted lines
show the SNR approximated using the quadratic approximation discussed in
this section. Right: the timing distribution for a BNS system at a given SNR
in initial LIGO. The dotted lines are the quadratic approximation, whereas the
solid curves are the exact expression. At low SNR, the quadratic approximation
underestimates the timing uncertainty.

3.3. Example: binary coalescence

We can apply the results obtained above to the binary coalescence waveforms of section 2.1. As
well as providing a concrete example, it will allow us to investigate the accuracy of the quadratic
approximation used to derive equation (24) above.

We begin by considering a 1.4–1.4M� BNS. The values of the mean frequency f̄ , effective
bandwidth σ f and timing accuracy σt are given in table 1. Interestingly, all of the detectors have
similar mean frequencies and bandwidths with the broad design noise curve of Virgo leading to
the largest effective bandwidth. Note that although the frequency bandwidth of advanced LIGO
is not significantly greater than initial LIGO, a signal at the same distance would appear with
approximately 12 times the SNR, and therefore the timing accuracy would be 15 times better.
A detailed study of the timing accuracy for various different advanced LIGO configurations has
been investigated in [26].

In figure 1, we investigate the accuracy of the quadratic approximation used in
obtaining (24). The figure shows the SNR as a function of time for initial LIGO, exactly
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Table 2. Timing accuracy based on quadratic approximation for 10–10M� black
hole binary. The results are given for the waveform truncated at the ISCO
frequency and for the full waveform based on the phenomenological waveforms
of [38]. We give the timing accuracy for signals at SNR 10. The final column
shows the timing accuracy for a waveform which accumulates an SNR of 10 to
ISCO, if found using the full waveform template.

Waveform to ISCO Full waveform
σt (ms) σt (ms) σt (ms)

Detector f̄ (Hz) σ f (Hz) ρ = 10 f̄ (Hz) σ f (Hz) ρ = 10 ρI = 10

Initial LIGO 120 40 0.37 150 100 0.16 0.14
Initial Virgo 90 50 0.34 140 140 0.12 0.10
Advanced LIGO 75 50 0.34 120 130 0.11 0.10

calculated and using the approximation introduced above. In both cases, the masses of the
simulated signal and template waveform agree. The quadratic approximation is only good
to about 0.5 ms after which it significantly underestimates the recovered SNR. This leads
to an underestimation of the timing uncertainty, as shown on the right hand plot. The
approximated distributions are more sharply peaked than the exact ones; the timing uncertainty
is underestimated by about 20% at a signal SNR of 7, and 15% at SNR of 10. It is only at SNR
of 25 or more that the quadratic approximation introduces negligible error.

Finally, consider a 10–10M� BBH system. Table 2 gives the effective bandwidth
and timing accuracy for both post-Newtonian waveforms truncated at ISCO and full,
phenomenological waveforms. Interestingly, even though only 15–20% additional SNR is
accumulated after ISCO, the timing accuracy improves by as much as a factor of three due
to the additional high-frequency content of the waveform.

4. Sky localization from triangulation

Given a timing uncertainty in each of a network of detectors, this can be translated to a
localization accuracy for the network. In the previous section, we have derived a simple
expression for the timing accuracy for an elliptical waveform as σt ≈ (2πρσ f )

−1, where ρ is
the observed SNR and σ f is the effective bandwidth of the signal in the detector. However,
much of what follows makes use only of the timing accuracy, without reference to its derivation
and would be applicable to other waveform families.

To obtain the timing results, we have assumed that the amplitudes of the two phases of
the waveform in each detector are independent. While this is valid for a single detector, for
more than two detectors, these amplitudes are not independent since the gravitational wave
has only two polarizations. This can be seen in detail for coalescing binaries using a simple
counting argument. For three detectors we make nine measurements (two amplitudes and a time
in each), but these are dependent on only seven parameters (D, θ, φ, ψ, ι, φo, to). However, it
is reasonable to assume that any correlations between observed detector amplitudes will only
serve to improve the accuracies derived below.

New Journal of Physics 11 (2009) 123006 (http://www.njp.org/)

http://www.njp.org/


10

4.1. Two-site network

A two-site network will give single measurement of timing differential and will therefore
provide only partial localization of the signal. Suppose that the source is located at position
R on the unit sphere, and consider two detectors separated by a distance (expressed in light
seconds) of D. Then, the difference in the time of arrival of the signal between the two sites is

(T1 − T2)= D · R. (25)

If the two detectors have timing accuracies σ1 and σ2, the distribution of the observed times t1

and t2 is

p(t1, t2|s)∝ p(t1, t2) exp

[
−
(t1 − T1)

2

2σ 2
1

−
(t2 − T2)

2

2σ 2
2

]
. (26)

Localization will depend only upon the time delay (t1 − t2), so we re-express (26) in terms of a
fiducial arrival time and the reconstructed location r. Marginalizing over the arrival time, with
a uniform prior, gives

p(r|R)∝ p(r) exp

[
−
(D · (r − R))2

2(σ 2
1 + σ 2

2 )

]
. (27)

As expected, from the timing observation in two detectors, it is only possible to restrict the
location of the source in the direction parallel to the separation D between the detectors. The
localization ability is improved by better timing accuracy in the detectors, and also by an
increased baseline between detectors.

When localizing a source, we would like to provide the smallest region of the sky that
contains the source, with a given confidence. This requires the choice of a prior distribution
for the sky location r. In the absence of directional information,5 it is natural to choose the
prior on r to be uniformly distributed on the unit sphere, giving a uniform prior distribution of
D · r ∈ [ − 1, 1]. Then, for a 90% confidence region, we obtain

Area(90%)

4π
≈

3.3
√
σ 2

1 + σ 2
2

D
. (28)

The area is independent of the location of the signal. For the LIGO detectors D = 10 ms so that
a timing accuracy of 0.25 ms in each detector limits the signal to about 12% of the sky. For
LIGO and Virgo, the light travel time is significantly larger at 27 ms and consequently, with the
same timing accuracy, the signal can be localized to about 4% of the sky.

4.2. Three-site network

The three-detector result can be obtained in a similar manner. As before, we re-express the
observed detector arrival times in terms of the reconstructed sky location r and fiducial arrival
time t0. Marginalizing over the arrival time gives

p(r|R)∝ p(r) exp
[
−

1
2(r − R)TM(r − R)

]
, (29)

5 In some cases, it might be reasonable to change this assumption. For example, in many cases it is reasonable to
restrict the prior on r to be localized to nearby galaxies [41]. Alternatively, the detectors’ directional sensitivities
make is more likely that the signal came from certain sky locations.

New Journal of Physics 11 (2009) 123006 (http://www.njp.org/)

http://www.njp.org/


11

where the matrix M, describing the localization accuracy, is given by

M =
D12DT

12

σ 2
12

+
D23DT

23

σ 2
23

+
D31DT

31

σ 2
31

. (30)

Thus M has a contribution from each pair of detectors which depends upon the detector
separation Di j and the pairwise timing uncertainty

σ 2
i j = σ 2

i + σ 2
j +
σ 2

i σ
2
j

σ 2
k

, (31)

where k 6= i, j . The timing uncertainty from a given pair of detectors is dependent upon the
timing accuracy σk in the third detector. Initially, this may seem surprising, but arises quite
naturally due to the single marginalization over the fiducial arrival time. Finally, we note that
the two-detector result (26) can be reproduced by taking σ3 → ∞.

Since the Di j are coplanar, M will have a zero eigenvalue and hence a degenerate direction
êz normal to this plane. Thus, the three-detector network can only restrict the sky location
projected onto the plane formed by the detectors. In addition, since M is independent of the sky
location—it depends solely on the location and timing accuracies of the individual detectors—
the localization ability within the plane of the detectors is independent of the location in
that plane. We can complete the coordinate system by introducing coordinates êx and êy in
eigendirections of M. In this basis, the sky localization distribution is

p(r|R)∝ p(r) exp

[
−

1

2

(
(x − X)2

σ 2
x

+
(y − Y )2

σ 2
y

)]
, (32)

where (X, Y ) are the coordinates of the source, projected onto the plane of the detector and
(x, y) describe the recovered location.

As before, we will use this distribution to obtain confidence regions on the sky. The regions
will depend upon the prior distribution on r. Although a uniform distribution on the unit sphere
does not lead to a uniform distribution on the x–y plane, in most cases the source localization
is sufficiently accurate to treat p(x, y) as constant over this small region; we will make this
approximation. In projecting the result back to the sky, we obtain two mirror sky locations
(z → −z) and an additional factor of (cos θ)−1, where θ is the angle between the line of sight
and the normal to the plane of the detectors.6 If we assume that the mirror degeneracy can be
broken with amplitude consistency tests, the source can be localized with probability p to an
area

Area(p)≈ 2πσxσy [− ln(1 − p)]/cos θ. (33)

If the reflection degeneracy cannot be broken then the area is doubled, apart from close to the
plane of the detectors in which case the error boxes from the mirror locations will overlap.
The best case scenario occurs when the signal is directly overhead the plane of the detectors.
The median occurs when cos θ = 1/2 and gives a factor of two increase in localization area.

To provide a concrete example of expected localization abilities, we consider the LIGO-
Virgo network of detectors. The light travel time between the LIGO sites is 10 ms, whereas

6 Of course, this breaks down when the source approaches the plane of the detectors, namely θ ∼ π/2. Close to
the plane of the detectors, we can approximate the sky localization by considering the extreme case where the
source is in the plane of the detectors, and specifically at x = 1, y = 0. The uncertainty in the y-direction will be
proportional to σy but in the z-direction, we obtain σz ∝

√
σx .
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between Virgo and the two LIGO sites is around 27 ms for both. As the two LIGO detectors
have similar sensitivities and a very similar orientation, a large fraction of sources will have
similar timing uncertainties in the two-detectors. Therefore, we simplify by taking the timing
accuracy σl of the two LIGO detectors to be identical, but allow the Virgo timing σv to differ.
Then, the eigendirections of the matrix M are roughly aligned with the line connecting the LIGO
sites êx and the line connecting its midpoint to Virgo êy and the localization accuracies in these
directions are given by

σx ≈
σl

7 ms
and σy ≈

√
(2σ 2

v + σ 2
l )/3

22 ms
. (34)

For a 90% confident localization, assuming reflection degeneracy can be broken

Area(90%, best)≈ 20 deg2
( σl

0.25 ms

)
√
(2σ 2

v + σ 2
l )/3

0.25 ms

. (35)

The localization error box is double the size for the median location, cos θ = 1/2, and will
contain two equal size, disconnected pieces if the reflection degeneracy cannot be broken. For
the worst-case scenario, where the source is in the plane of the detectors, we obtain an error box
of over 100 deg2 for a 0.25 ms timing accuracy. For reference, a 1 deg2 localization for best and
median sources requires timing accuracies of 0.06 ms, 0.04 ms in all detectors.

4.3. Example: binary coalescence

Based on the results of recent searches [42], we will take an SNR of 7 in each of the LIGO
and Virgo detectors to be the approximate amplitude where a binary coalescence signal would
stand above the noise background. For BNS signals of this amplitude, table 1 gives a timing
accuracy of 0.27 ms for the LIGO detectors and 0.19 ms for Virgo. This gives at best case
localization of 20 deg2. A signal would require an SNR of around 25 and a well located
source to reduce the 90% localization ellipse to 1 deg2—certainly a possibility for the louder
sources in the advanced detector era. The localization accuracy for 10–10M� BBH waveforms
is comparable to BNS, namely 20 deg2 for optimally located signals at single detector SNR of 7.
Interestingly, the inclusion of the merger and ringdown portions of the signal provide an order
of magnitude improvement in the localization accuracy. This improvement is consistent with
what was observed in a detailed study of parameter estimation for BBH [43].

The sensitive band of advanced detectors is expected to begin at around 10 Hz, and it will
take a BNS system over a 1000 s to evolve from 10 Hz to coalescence. Thus, it is interesting to
consider the possibility of localizing the source prior to detection to allow for early pointing of
electromagnetic telescopes. The SNR of the signal ρ(t) will accumulate during the coalescence.
Similarly, the frequency will evolve. During the inspiral phase, the frequency of the orbit evolves
to leading order as f (t)∝ (to − t)−3/8, where to is taken to as time of coalescence. Thus, making
use of (21) and (23) we can calculate the accumulated bandwidth of the signal as a function
of time, σ f (t). Using (24), we can investigate how the timing accuracy σt evolves during the
coalescence.

Figure 2 shows the evolution of the accumulated SNR, frequency bandwidth and timing
accuracy over the course of the binary inspiral. While a large fraction of SNR has accumulated
10 s before merger, the bandwidth, and consequently the timing accuracy, is largely accrued in
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Figure 2. Growth of SNR ρ and signal bandwidth σ f as a function of time
prior to merger. The timing uncertainty σt ∝ (ρσ f )

−1 decreases as the binary
nears merger. Although a large fraction of the SNR is accumulated well before
merger, the bandwidth increases significantly right before merger. Hence, the
timing uncertainty is only decreased in the last second or so prior to merger.

the last second prior to merger. Unfortunately, this would seem to make advanced localization
of BNS systems unlikely, even with advanced detectors. However, electromagnetic follow-up is
still worthwhile as signals associated with coalescing binaries are expected to be emitted after
coalescence [44], or be delayed by dispersion through the interstellar medium [45] and therefore
arrive after the gravitational wave signal.

5. Systematic uncertainties

In a gravitational wave search, there are numerous systematic errors associated to the waveform
which affect the localization accuracy. In this section, we consider systematic uncertainties
due to waveform and calibration errors. These issues have been considered in the context of
detectability and parameter estimation accuracy in [46]–[48]. Errors in the template waveform
might arise due to the breakdown of analytic approximations, or numerical inaccuracies in
simulating the waveform. We also consider the effect of calibration errors on localization and
show that they can be handled in a very similar manner to waveform errors. However, calibration
errors are independent at the different detectors, whereas the waveform errors are not.

5.1. Waveform errors

Let us generalize the analysis introduced in section 3 by allowing for an error in the waveforms
used for filtering. Following [49], we write

h̃0( f ; to)= A( f )(1 + δa) exp[2π i f to + i8( f )+ iδφ( f )], (36)
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where δa and δφ characterize the amplitude and phase errors in the waveform, respectively;
we continue to assume that h̃π/2( f ; to)= ih̃0( f ; to). Since δa and δφ are unknown functions of
frequency, they cannot be treated with the standard Fisher matrix technology. However we can
expand the likelihood in powers of δa and δφ to second order to obtain

ln3(δa, δφ, δt)≈
ρ2

2
[1 − 〈h0(2π f δt + δφ)|h0(2π f δt + δφ)〉

+〈h0(2π f δt + δφ)|h0〉
2
− 〈h0(δa)|h0(δa)〉 + 〈h0(δa)|h0〉

2). (37)

Interestingly, there are no cross terms between the amplitude and phase errors. Therefore,
although the amplitude errors will affect the likelihood they do not have an effect (at leading
order) on the timing.

Given a phasing error δφ, it is straightforward to differentiate (37) to obtain the timing
offset δ̂t which maximizes the likelihood as

δ̂t =
1

σ 2
f

(
4
∫

∞

0
d f

|h̃( f )|2

S( f )
( f̄ − f )

[
δφ( f )

2π

])
. (38)

In general the phasing error δφ is not known explicitly, instead bounds on the maximum error
δφmax are usually provided. In many cases only a maximum phase error is provided, independent
of frequency, then the timing offset is bounded by

|δ̂t |6
δφmax

2πσ 2
f

(
4
∫

∞

0
d f

|h̃( f )|2

S( f )
| f̄ − f |

)
, (39)

and the bound is only obtained if the phase error is maximal at all frequencies, and changes sign
at the mean frequency f̄ . Finally, we note that the integrand in (39) gives the mean absolute
deviation of the frequency. Since this is always less than or equal to the standard deviation, the
timing offset can be bounded by

|δ̂t |6
1

σ f

[
δφmax

2π

]
. (40)

For most realistic phase errors, the uncertainty obtained from (38) will be significantly smaller
than (40).

The systematic error (δ̂t from equation (40)) and statistical error (σt from equation (24))
are directly comparable. Both are inversely proportional to the frequency bandwidth of the
signal. The statistical uncertainty is also inversely proportional to the amplitude (or SNR) of
the signal, whereas the systematic is independent of amplitude. Thus, for a phasing error of 5◦,
the systematic offset is guaranteed to be smaller than the statistical fluctuations for waveforms
with an SNR less than 12. In reality, the bound in (40) is rather loose and therefore a 5◦ phasing
error is unlikely to dominate the statistical timing uncertainty at an SNR less than 20.

The same waveform family will be used to search the data from all instruments.
Therefore, the waveform error δφ will be the same at all sites. Two detectors will record a
different timing offset only if their power spectra (and consequently the mean frequency and
effective bandwidth) differ. This immediately argues that between LIGO sites with comparable
sensitivities, the timing offset due to a waveform error will be negligible. The timing uncertainty
between LIGO and Virgo will depend upon the details of the waveform. Given a specific
waveform and phase error, one can evaluate (38) to obtain the results.
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5.2. Calibration errors

Errors in the calibration of the detectors will also affect the timing accuracy. We have denoted
the detector output or strain as s(t). This is obtained by calibrating the detector output v(t) using
a response function R( f ). This response function is then used to obtain the calibrated data [50]7

s̃( f )= R( f )ṽ( f ). (41)

In a real detector, the response function is time dependent; however, we assume that the response
function is (approximately) constant over the duration of the signal. In practice, the response
function Rc( f ) which is calculated will not agree identically with the true response of the
instrument. Using the measured response function, the instrumental output is calibrated to obtain
the data stream

s̃c( f )= Rc( f )ṽ( f )=
Rc( f )

R( f )
s̃( f ). (42)

The errors in calibration will affect signals in the data, as well as the noise and consequently the
noise power spectrum, S( f ).

To calculate the effect of the calibration errors, we need to evaluate the likelihood (12)
obtained when using the incorrect response function. This requires the calculation of both the
inner product between signal and template, as well as the template normalization, with the
incorrect response function. We will use the notation 〈·|·〉c to denote the existence of calibration
errors in the power spectrum used in computing the inner product.

We begin by calculating the effect of calibration errors on the inner product between signal
and template:

〈sc|h〉c = 4 Re
∫

d f
(Rc( f )/R( f )) s̃( f )h̃?( f )

|Rc( f )/R( f )|2 S( f )

= 4 Re
∫

d f
s̃( f )(R( f )/Rc( f ) h̃( f ))?

S( f )
= 〈s|hc〉, (43)

where we have introduced an effective waveform error due to calibration as

hc( f )=

(
R( f )

Rc( f )

)
h̃( f ). (44)

Similarly, it is straightforward to show that calibration errors in the calculation of the template
norm can be expressed as

〈h|h〉c = 〈hc|hc〉. (45)

Therefore, the calibration errors can be quantified in exactly the same way as the waveform
errors discussed in the previous section where

(1 + δa( f )) exp[iδφ( f )] =

(
R( f )

Rc( f )

)
. (46)

This is precisely the form in which calibration errors are expressed, for example in [50].
The timing errors for a given phase accuracy are as given in the previous section. However,

as has already been emphasized, the calibration errors are uncorrelated between instruments, so
expressions (38)–(40) are directly applicable.
7 In practice, the process is generally performed in the time domain to directly produce s(t). However, that will
not affect the discussion below as the same systematic uncertainties in calibrating the data still arise.
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Figure 3. Contribution that different frequencies make to the timing offset given
in equation (38). The left-hand plot is for the BNS system, the right-hand plot
is for the full 10–10M� coalescence waveform. For both the LIGO and Virgo
detectors, frequencies far from the mean, but which still contribute to the SNR,
contribute most significantly. The different shapes are directly dependent on the
instrumental noise curves. The final curve shows the contribution to the timing
differential as a function of frequency.

5.3. Example: binary coalescence

Let us return once more to the coalescing binary waveforms and evaluate the effect of waveform
uncertainties on the timing. In figure 3 we plot the integrand of (38) for both the BNS and
10 − 10M� BBH signals. The most significant contribution to timing errors arise at frequencies
above and below the mean frequency f̄ , but where the detector still has good sensitivity. Given
a model of the waveform error δφ( f ), it can be integrated against the curves in figure 3 to obtain
the timing offset.

To calculate a worst-case scenario for a given maximum phase offset δφmax, we take the
absolute value of the curves in figure 3 and integrate. The resultant errors for BNS are

|δtLIGO|6

[
δφmax

5◦

]
0.09 ms, |δtVirgo|6

[
δφmax

5◦

]
0.06 ms. (47)

These are limits on timing errors which would result in each detector from a calibration error
of this magnitude. The errors would only be achieved in the (rather unrealistic) circumstance
where the phase error was +5◦ up to the mean frequency and then −5◦ at all frequencies above
this.

The use of an incorrect waveform family will introduce a correlated timing error at the
different sites. In particular, it will not introduce a systematic timing between the two LIGO
sites, since the detectors have the same noise power spectrum. Figure 3 shows the relative timing
offset between LIGO and Virgo detectors. It can again be integrated to obtain the maximal
timing effect of

|δtLIGO − δtVirgo|6

[
δφmax

5◦

]
0.05 ms. (48)

For the BBH waveform, the 5◦ errors are slightly larger at 0.09 ms for LIGO, 0.07 ms for Virgo
and 0.05 ms between LIGO and Virgo.
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Table 3. Timing and localization accuracy for binary neutron star systems in
the LIGO–Virgo network for a range of single-detector SNRs and calibration
and waveform uncertainties. The intrinsic timing uncertainties are added in
quadrature with the calibration and waveform uncertainties. The localization
area is calculated from timing information, with the additional assumption that
amplitude consistency can break the reflection degeneracy. For an ideally located
source (orthogonal to the plane of the detectors) the localization area is half
the median value. The numbers are given for the initial/enhanced network;
advanced detectors would yield around a 20% improvement in timing and 40%
in localization for the same SNR.

Single det Waveform Calibration Timing (ms) Median 90%
SNR error (◦) error (◦) LIGO Virgo localization (deg2)

7 – – 0.27 0.21 40
7 10 10 0.32 0.26 60
7 20 20 0.45 0.38 120

10 – – 0.18 0.13 17
10 5 5 0.20 0.15 22
10 10 10 0.25 0.20 36
25 – – 0.06 0.05 2
25 5 5 0.16 0.11 6
25 10 10 0.19 0.13 20

It is illustrative to compare these systematic errors to the statistical timing uncertainties
derived in section 3. In the worst-case scenario, a calibration uncertainty in phase of 15◦ would
introduce an error equivalent to the inherent timing uncertainty at (single-detector) SNR of 7.
Since the waveform errors will not affect the timing between LIGO sites, they can be effectively
absorbed into the Virgo timing accuracy, in which case 20◦ waveform uncertainties will produce
comparable uncertainties to inherent timing errors at SNR 7.

Since the waveform, calibration and statistical uncertainties in timing are independent, it is
natural to add them in quadrature. For a signal at SNR 7 and 10◦ waveform and calibration
errors, we obtain σl 6 0.32 ms for LIGO and σv 6 0.25 ms for Virgo. This leads to a 50%
degradation of the localization accuracy, so that for ideally located sources the area of the
90% confidence localization ellipse increases to 30 deg2, and for an average source to 60 deg2.
Table 3 provides the localization accuracies for sample of SNRs and waveform/calibration
uncertainties.

6. Discussion

We have introduced a simple method to compute the timing accuracy in a gravitational wave
detector and, using this, derived an expression for the localization ability for a network
of detectors. For an elliptically polarized waveform, we obtain a timing accuracy of σt ≈

1/(2πρσ f ). Thus, the timing accuracy scales inversely with both the amplitude and ‘effective
bandwidth’ of the signal. For reference, at a SNR of 7, the timing accuracy for low mass
coalescing binary signals is around 0.25 ms. This holds for both BNS and low mass BBH,
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although for the latter it is only by considering the full coalescence waveform that this accuracy
can be achieved.

For a given timing accuracy in a network of detectors, we have calculated the accuracy
with which the source can be localized on the sky. The localization accuracy depends upon the
timing accuracy in each of the detectors, the network geometry and the angle between the plane
of the detectors and the signal location. A detector network with widely separated detectors
affords the best localization ability, and signals that are normal to the plane of a three-detector
network are localized with the greatest accuracy. The 90% localization ellipse for an optimally
oriented source, with timing accuracy 0.25 ms, in the LIGO–Virgo network has an area of
20 deg2. This is doubled for the median location, and doubled again if the reflection degeneracy
in the plane of the detectors cannot be broken by other considerations, such as amplitude
consistency.

The expressions for localization accuracy derived here could easily be extended to a
network of more than three-detectors. Although the precise form of the localization distribution
has not been calculated, it would be similar in form to the three-detector expression (29).
In concurrence with other works (e.g. [51]) this argues that additional detectors would most
improve localization efforts by providing a large baseline between the new detector and existing
LIGO–Virgo network, as well as breaking the reflection symmetry by lying well away from the
plane formed by the LIGO–Virgo network.

We have given detailed expressions for the effect of systematic errors on localization.
The effects of waveform and calibration uncertainties is almost identical in a single detector.
However, the waveform errors will be correlated across the detectors in the network, whereas
calibration errors will not. Due to the similar sensitivity curves of the two LIGO detectors,
waveform uncertainties will have little effect on localization, while they will effect the
LIGO–Virgo network. Calibration errors will be independent at the different sites and therefore
might have a larger effect on localization. We have obtained a bound on the timing error due
to calibration errors as δ̂t 6 (δφmax/2πσ f ). By comparing with the inherent timing uncertainty,
we see that calibration uncertainty will not dominate provided δφmax 6 1/ρ. Note, however,
that only for a very specific, and unlikely, form of the calibration error will the timing offset be
anything like this large.

In this paper, we have not considered the effect of the mismatch between waveform and
template parameters. This will surely degrade the localization accuracy that has been derived.
However, as for waveform error, the similarity of the LIGO detectors’ sensitivities means that
waveform errors might have produced negligible timing effect between them, as has been
observed in [52]. Furthermore, in [53, 54], it has been argued that the effect of parameter
uncertainties can be minimized by choosing an appropriate reference time. In the future, we plan
to investigate the effect that parameter mismatch has on timing accuracies, as well as exploring
in greater detail the effect of waveform and calibration errors for multi-detector parameter
estimation.

There are numerous simplifications and approximations that are made in this paper.
While the basic results derived here are qualitatively correct, the detailed expressions for sky
localization ellipses will surely be modified as these assumptions are relaxed. For example,
if the components of the binary are spinning, then the orbital plane will precess during the
evolution, whence the waveform will not be elliptically polarized. However, since the precession
will be slow relative to the gravitational wave frequency, it is reasonable to expect that the
results will be similar in the case of spinning binaries. Likewise, the inclusion of higher
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waveform harmonics [55, 56] will increase the effective bandwidth of the signals; however, it
will also require a generalization of the techniques described here to correctly incorporate these
signals.

Finally, we note that the localization estimates derived here are based solely on
triangulation between sites. Thus, we have neglected significant correlations that must be
present in the observed signal at more than two-sites. For three sites, there is an amplitude
consistency requirement that arises from the fact that the gravitational waveform has only
two polarizations. Amplitude consistency should, in many cases, serve to break the reflection
degeneracy that arises by considering triangulation alone and, in obtaining our most optimistic
localization results, we have assumed this is the case. It is unlikely that amplitude consistency
will further restrict the location. However, as has been emphasized by Searle [57], for a network
of three or more detectors, there is also a phase consistency between the observed waveform
at the sites. For an elliptically polarized waveform observed in two sites, there is always an
orientation and polarization such that the observed phase difference is consistent with a given
sky location. However, for three sites, this is no longer the case and phase consistency can be
used to further restrict possible locations. Any phasing requirement will naturally give a timing
accuracy inversely proportional to the signal’s mean frequency f̄ . Thus, in the case where
the mean frequency is significantly larger than the bandwidth, one obtains higher frequency
oscillations (from phasing) on top of the slower falloff (from timing alone). This will lead
to improvements in localization, and would be interesting to investigate further. However, for
coalescing binaries, the mean frequency and bandwidth are comparable which suggests this will
not be a significant effect.

Acknowledgments

I would like to thank many people for interesting discussions on this topic, in particular John
Baker, Duncan Brown, Kipp Cannon, Lee Lindblom, Larry Price, Bangalore Sathyaprakash,
Anthony Searle and Chris Van Den Broeck. I thank Patrick Sutton for many detailed discussions
and comments on the paper draft, and also Ray Frey for detailed comments on the paper draft.
This research was made possible thanks to support from the Royal Society.

References

[1] Schutz B F 1986 Nature 323 310–1
[2] Stamatikos M, Gehrels N, Halzen F, Meszaros P and Roming P W A 2009 arXiv:0902.3022 [astro-ph.HE]
[3] Prince T A et al 2009 arXiv:0903.0103 [astro-ph.CO]
[4] Bloom J S et al 2009 arXiv:0902.1527 [astro-ph.CO]
[5] Phinney E S 2009 arXiv:0903.0098 [astro-ph.CO]
[6] Nakar E 2007 Phys. Rep. 442 166–236 (arXiv:astro-ph/0701748)
[7] Abbott B et al (LIGO Scientific) 2008 Phys. Rev. D 77 062004 (arXiv:0709.0766 [gr-qc])
[8] LIGO Scientific Collaboration and Hurley K 2008 Astrophys. J. 681 1419–30 (arXiv:0711.1163v2 [astro-ph])
[9] Abbott B et al (LIGO Scientific) 2008 Phys. Rev. Lett. 101 211102 (arXiv:0808.2050 [astro-ph])

[10] Abbott B et al (LIGO Scientific) 2009 arXiv:0905.0005 [astro-ph.HE]
[11] Pan-starrs http://pan-starrs.ifa.hawaii.edu/public/
[12] Swift http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html
[13] Fermi http://fermi.gsfc.nasa.gov/
[14] Antares http://antares.in2p3.fr/

New Journal of Physics 11 (2009) 123006 (http://www.njp.org/)

http://dx.doi.org/10.1038/323310a0
http://arxiv.org/abs/0902.3022
http://arxiv.org/abs/0903.0103
http://arxiv.org/abs/0902.1527
http://arxiv.org/abs/0903.0098
http://dx.doi.org/10.1016/j.physrep.2007.02.005
http://arxiv.org/abs/astro-ph/0701748
http://dx.doi.org/10.1103/PhysRevD.77.062004
http://arxiv.org/abs/0709.0766
http://dx.doi.org/10.1086/587954
http://arxiv.org/abs/0711.1163v2
http://dx.doi.org/10.1103/PhysRevLett.101.211102
http://arxiv.org/abs/0808.2050
http://arxiv.org/abs/0905.0005
http://pan-starrs.ifa.hawaii.edu/public/
http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html
http://fermi.gsfc.nasa.gov/
http://antares.in2p3.fr/
http://www.njp.org/


20

[15] Fender R et al 2006 Proc. Sci. MQW6 104 (arXiv:astro-ph/0611298)
[16] Icecube http://icecube.wisc.edu/
[17] Lofar http://www.lofar.org/
[18] Dhurandhar S V and Tinto M 1988 Recent Developments in Theoretical and Experimental General Relativity,

Gravitation and Relativistic Field Theories Proceedings (Perth, 1988) pt. B 1811–4
[19] Gürsel Y and Tinto M 1989 Phys. Rev. D 40 3884–938
[20] Searle A C, Sutton P J, Tinto M and Woan G 2008 Class. Quantum Grav. 25 114038 (arXiv:0712.0196

[gr-qc])
[21] Searle A C, Sutton P J and Tinto M 2009 Class. Quantum Grav. 26 155017 (arXiv:0809.2809 [gr-qc])
[22] Cavalier F et al 2006 Phys. Rev. D 74 082004 (arXiv:gr-qc/0609118)
[23] Wen L, Fan X and Chen Y 2008 J. Phys.: Conf. Ser. 122 012038
[24] Beauville F et al 2006 J. Phys.: Conf. Ser. 32 212 (arXiv:gr-qc/0509041)
[25] Birindelli S 2008 Coherent algorithm for reconstructing the location of a coalescing binary using a system of

three gravitational wave interferometers PhD thesis University of Pisa
[26] King A and Cannon K 2008 Whitened merger-waveform autocorrelation functions: implications for inspiral

event localization in advanced LIGO Technical Report LIGO-T080312-00
[27] Markowitz J, Zanolin M, Cadonati L and Katsavounidis E 2008 Phys. Rev. D 78 122003
[28] Sutton P and Poprocki S 2009 private communication
[29] Brady P R and Fairhurst S 2008 Class. Quantum Grav. 25 1050002 (arXiv:0707.2410 [gr-qc])
[30] Allen B, Anderson W G, Brady P R, Brown D A and Creighton J D E 2005 Findchirp: an algorithm for

detection of gravitational waves from inspiraling compact binaries arXiv:gr-qc/0509116
[31] Blanchet L 2002 Living Rev. Rel. 4 3 (arXiv:gr-qc/0202016)
[32] Pretorius F 2005 Phys. Rev. Lett. 95 121101 (arXiv:gr-qc/0507014)
[33] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101 (arXiv:gr-

qc/0511048)
[34] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett. 96 111102 (arXiv:gr-

qc/0511103)
[35] Pretorius F 2009 Binary black hole coalescence Physics of Relativistic Objects in Compact Binaries: from

Birth to Coalescence ed M Colpi, P Casella, V Gorini, U Moschella and A Possenti (Heidelberg: Springer)
(arXiv:0710.1338 [gr-qc])

[36] Husa S 2007 Eur. Phys. J. Sel. Topics 152 183–207 (arXiv:0812.4395 [gr-qc])
[37] Hannam M 2009 Status of black-hole-binary simulations for gravitational-wave detection arXiv:0901.2931

[gr-qc]
[38] Ajith P et al 2007 Class. Quantum Grav. 24 S689–99 (arXiv:0704.3764 [gr-qc])
[39] Maggiore M 2007 Gravitational Waves vol. 1 Theory and Experiments (Oxford: Oxford University Press)
[40] Jaynes E T 2003 Probability Theory: The Logic of Science vol 1 (Cambridge: Cambridge University Press)
[41] Kopparapu R K, Hanna C, Kalogera V, O’Shaughnessy R, Gonzalez G, Brady P R and Fairhurst S 2008

Astrophys. J. 675 1459–67
[42] Abbott B et al (LIGO Scientific) 2009 Search for gravitational waves from low mass binary coalescences in

the first year of LIGO’s S5 data (arXiv:0901.0302)
[43] Ajith P and Bose S 2009 arXiv:0901.4936 [gr-qc]
[44] Nakar E 2007 Phys. Rep. 442 166–236 (arXiv:astro-ph/0701748v1)
[45] Lorimer D R, Bailes M, McLaughlin M A, Narkevic D J and Crawford F 2007 arXiv:0709.4301 [astro-ph]
[46] Lindblom L, Owen B J and Brown D A 2008 Phys. Rev. D 78 124020 (arXiv:0809.3844 [gr-qc])
[47] Lindblom L 2009 arXiv:0907.0457 [gr-qc]
[48] Lindblom L 2009 arXiv:0906.5153
[49] Allen B 1996 LIGO calibration accuracy Technical Report LIGO-T960189-00-Z LIGO Project http://www.

ligo.caltech.edu/docs/T/T960189-00.pdf

New Journal of Physics 11 (2009) 123006 (http://www.njp.org/)

http://arxiv.org/abs/astro-ph/0611298
http://icecube.wisc.edu/
http://www.lofar.org/
http://dx.doi.org/10.1103/PhysRevD.40.3884
http://dx.doi.org/10.1088/0264-9381/25/11/114038
http://arxiv.org/abs/0712.0196
http://dx.doi.org/10.1088/0264-9381/26/15/155017
http://arxiv.org/abs/0809.2809
http://dx.doi.org/10.1103/PhysRevD.74.082004
http://arxiv.org/abs/gr-qc/0609118
http://dx.doi.org/10.1088/1742-6596/122/1/012038
http://dx.doi.org/10.1088/1742-6596/32/1/032
http://arxiv.org/abs/gr-qc/0509041
http://dx.doi.org/10.1103/PhysRevD.78.122003
http://dx.doi.org/10.1088/0264-9381/25/10/105002
http://arxiv.org/abs/0707.2410
http://arxiv.org/abs/gr-qc/0509116
http://arxiv.org/abs/gr-qc/0202016
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://arxiv.org/abs/gr-qc/0507014
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://arxiv.org/abs/gr-qc/0511048
http://arxiv.org/abs/gr-qc/0511048
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://arxiv.org/abs/gr-qc/0511103
http://arxiv.org/abs/gr-qc/0511103
http://arxiv.org/abs/0710.1338
http://dx.doi.org/10.1140/epjst/e2007-00381-6
http://arxiv.org/abs/0812.4395
http://arxiv.org/abs/0901.2931
http://dx.doi.org/10.1088/0264-9381/24/19/S31
http://arxiv.org/abs/0704.3764
http://dx.doi.org/10.1086/527348
http://arxiv.org/abs/0901.0302
http://arxiv.org/abs/0901.4936
http://dx.doi.org/10.1016/j.physrep.2007.02.005
http://arxiv.org/abs/astro-ph/0701748v1
http://arxiv.org/abs/0709.4301
http://dx.doi.org/10.1103/PhysRevD.78.124020
http://arxiv.org/abs/0809.3844
http://arxiv.org/abs/0907.0457
http://arxiv.org/abs/0906.5153
http://www.ligo.caltech.edu/docs/T/T960189-00.pdf
http://www.ligo.caltech.edu/docs/T/T960189-00.pdf
http://www.njp.org/


21

[50] Dietz A, Garofoli J, González G, Landry M, O’Reilly B and Sung M 2006 Calibration of the LIGO detectors
for S4 Techhical Report LIGO-T050262-01-D LIGO Project http://www.ligo.caltech.edu/docs/T/T050262-
01.pdf

[51] Blair D G et al 2008 J. Phys.: Conf. Ser. 122 012001
[52] Aylott B et al 2009 Class. Quantum Grav. 26 165008 (arXiv:0901.4399 [gr-qc])
[53] Beauville F et al (LIGO/Virgo Working Group) 2008 Class. Quantum Grav. 25 045001 (arXiv:gr-

qc/0701027)
[54] Acernese F et al 2007 Class. Quantum Grav. 24 S617–25
[55] Van Den Broeck C 2006 Class. Quantum Grav. 23 L51–8 (arXiv:gr-qc/0604032)
[56] Van Den Broeck C and Sengupta A S 2007 Class. Quantum Grav. 24 155–76 (arXiv:gr-qc/0607092)
[57] Searle A 2009 private communication

New Journal of Physics 11 (2009) 123006 (http://www.njp.org/)

http://www.ligo.caltech.edu/docs/T/T050262-01.pdf
http://www.ligo.caltech.edu/docs/T/T050262-01.pdf
http://dx.doi.org/10.1088/1742-6596/122/1/012001
http://dx.doi.org/10.1088/0264-9381/26/16/165008
http://arxiv.org/abs/0901.4399
http://dx.doi.org/10.1088/0264-9381/25/4/045001
http://arxiv.org/abs/gr-qc/0701027
http://arxiv.org/abs/gr-qc/0701027
http://dx.doi.org/10.1088/0264-9381/24/19/S24
http://dx.doi.org/10.1088/0264-9381/23/13/L01
http://arxiv.org/abs/gr-qc/0604032
http://dx.doi.org/10.1088/0264-9381/24/1/009
http://arxiv.org/abs/gr-qc/0607092
http://www.njp.org/

	1. Introduction
	2. The waveform model
	2.1. Waveforms for coalescing binaries

	3. Timing accuracy
	3.1. Parameter estimation and the Fisher matrix
	3.2. Timing
	3.3. Example: binary coalescence

	4. Sky localization from triangulation
	4.1. Two-site network
	4.2. Three-site network
	4.3. Example: binary coalescence

	5. Systematic uncertainties
	5.1. Waveform errors
	5.2. Calibration errors
	5.3. Example: binary coalescence

	6. Discussion
	Acknowledgments
	References

