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Where post-Newtonian and numerical-relativity waveforms meet
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We analyze numerical-relativity (NR) waveforms that cover nine orbits (18 gravitational-wave cycles)

before merger of an equal-mass system with low eccentricity, with numerical uncertainties of 0.25 radians

in the phase and 2% in the amplitude; such accuracy allows a direct comparison with post-Newtonian

(PN) waveforms. We focus on waveforms predicted by one of the PN approximants that has been

proposed for use in gravitational-wave data analysis, restricted 3.5PN TaylorT1, and compare these with a

section of the numerical waveform from the second to the eighth orbit, which is about one and a half orbits

before merger. This corresponds to a gravitational-wave frequency range of M! � 0:0455 to 0.1

Depending on the method of matching PN and NR waveforms, the accumulated phase disagreement

over this frequency range can be within numerical uncertainty. Similar results are found in comparisons

with an alternative PN approximant, 3PN TaylorT3. The amplitude disagreement, on the other hand, is

around 6%, but roughly constant for all 13 cycles that are compared, suggesting that for the purpose of

producing ‘‘hybrid waveforms,’’ only 4.5 orbits need be simulated to match PN and NR waves with the

same accuracy as is possible with nine orbits. If, however, we model the amplitude up to 2.5PN order,

numerical and post-Newtonian amplitude disagreement is close to the numerical error of 2%.

DOI: 10.1103/PhysRevD.77.044020 PACS numbers: 04.25.D�, 04.30.Db, 95.30.Sf, 98.80.Jk

I. INTRODUCTION

The current generation of interferometric gravitational-

wave (GW) detectors [1–3] have reached design sensitiv-

ity, and have recently completed taking data in the S5

science run. Signals from coalescing black-hole binaries

will be among the strongest that one hopes to find in the

detector data, and data analysts are searching for them by

performing matched filtering against template banks of

theoretical waveforms. At present data analysts use, or

are preparing to use, waveforms calculated by post-

Newtonian (PN) methods, principally, the standard

Taylor-expanded, effective-one-body (EOB), and BCV

[4] waveforms implemented in the LSC Algorithms

Library (LAL) [5], although current GW searches do not

go beyond second PN order (2PN). The PN waveforms are

expected to be reasonably accurate during the slow inspiral

of the binaries, but it is not clear how well they can model

the merger phase. Ultimately the PN waveforms will be

connected to waveforms from fully general-relativistic

numerical simulations, which will also model the last

orbits, merger, and ringdown.

In the last two years breakthroughs in numerical relativ-

ity [6–8] have completed the work of providing the tech-

niques to generate the necessary numerical (NR)

waveforms. The nonspinning equal-mass case has been

studied in great detail [6–17] and extremely accurate

waveforms over many ( > 15) cycles are now available

[18]. A first comparison of PN and NR equal-mass wave-

forms was made in [15,19], unequal-mass waveforms were

studied in [20–22], and spinning binaries in [23], and the

work of producing hybrid NR-PN waveforms has begun

[21,22,24,25]. Good agreement has been observed between

NR and PN waveforms [15,19,21]; phase disagreements of

less than 1 rad up to �1:5 orbits before merger were seen in

[15]. However, until now NR waveforms have not been

accurate enough to allow a conclusive comparison with the

PN wave amplitude; for example, it was pointed out in [21]

that although the disagreement in the amplitude of NR and

PN waves was about 10%, this was also the size of the

uncertainty in the NR wave amplitude, and it was not

possible to conclude what order of PN treatment of the

wave amplitude gives the best agreement with fully

general-relativistic results.

In this work we systematically compare numerical

equal-mass waveforms that include up to 18 cycles before

merger with the 3.5PN ‘‘TaylorT1’’ and 3PN ‘‘TaylorT3’’

waveforms implemented in LAL. One could compare with

many different varieties of PN waveform, but the T1 and

T3 approximants are common choices that are among

those proposed for gravitational-wave searches in detector

data, and restricting ourselves to only two approximants

keeps our analysis and the presentation of our results

relatively simple. The region of comparison includes 13

cycles. Considering the amplitude A�t� and phase ��t� of

our numerical waveforms separately, we find that the ac-

cumulated error in ��t� is at most 0.25 radians over the

frequency range of comparison. These uncertainties are

dominated by the finite extraction radii of our waveforms,

not finite-difference errors. The error in the amplitude A�t�
is less than 2% for most of the simulation. We estimate the

eccentricity as e < 0:0016. We therefore consider these

waveforms to be adequately accurate for a detailed com-

parison with PN results, in particular, to determine the

disagreement between NR and PN wave amplitudes.
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Numerical simulations are computationally expensive,

and mapping the parameter space of binary mergers (in-

cluding black holes of varying mass ratio and spins) will

require huge computer resources. As such, we would prefer

to simulate only a small number of orbits before matching

with PN results. We find that a simulation of only 4.5 orbits

has the same amplitude agreement with the last four cycles

of the restricted 3.5PN waveform as the long 18-cycle

simulation, and therefore suggest that relatively short nu-

merical simulations are feasible for matching to PN inspi-

ral waves. For an even greater amplitude agreement with

PN theory, our results suggest that, using 2.5PN amplitude

corrections, at least 5.5 orbits (11 cycles) before merger are

necessary.

We also compare the black holes’ motion with that

calculated by integrating the PN equations of motion

[26,27] and find that the PN and NR orbital tracks and

frequencies are in excellent agreement until the last three

orbits of the binary.

Before describing our analysis in detail, we give a brief

summary of our numerical methods in Sec. II and the

procedure for generating PN waveforms in Sec. III. In

Sec. IV we discuss the simulations we performed and

establish the sixth-order convergence of our results, con-

struct Richardson-extrapolated waveforms with error esti-

mates, and extrapolate the finite-extraction-radius

waveforms to those measured as Rex ! 1. We also discuss

the phase errors in our waveforms and give a consistency

check between waves from simulations starting at different

initial separations. In Sec. V we directly compare the PN

and numerical waveforms.

II. NUMERICAL METHODS AND WAVEFORMS

We performed numerical simulations with the BAM

code [13,28], replacing fourth-order accurate derivative

operators by sixth-order accurate spatial derivative opera-

tors in the bulk as described in [18]. The code starts with

black-hole binary puncture initial data [29,30] generated

using a pseudospectral code [31], and evolves them with

the �-variant of the moving-puncture [32,33] version of the

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [34,35]

formulation of the 3� 1 Einstein evolution equations

[36]. The gravitational waves emitted by the binary are

calculated from the Newman-Penrose scalar �4, and the

details of our implementation of this procedure are given in

[13].

The simulations we performed for this analysis are

summarized in Tables I and II. For the configurations

with initial separations D � 10M, 11M, 12M (denoted

by ‘‘D10,’’ ‘‘D11,’’ and ‘‘D12’’ throughout the paper),

simulations were performed at three resolutions, and final

results obtained by Richardson extrapolation, as described

in Sec. IV. For the D � 8M, 9M (‘‘D8,’’ ‘‘D9’’) configu-

rations, which are used only for comparison at the end of

Sec. V, only one simulation at medium resolution was

performed.

The physical parameters are given in Table II. The initial

momenta for low-eccentricity quasicircular inspiral are

estimated by the PN method described in [27]. We esti-

mated the eccentricity from the frequency !p of the punc-

ture motion, as we did previously for D � 11M
simulations in [27], and as also used in [15,19]. Given

the puncture motion frequency !p�t� and the frequency

of a comparable zero-eccentricity simulation !c�t� (esti-

mated by fitting a fourth-order polynomial in t through the

numerical !p�t�, as suggested in [15]), the eccentricity is

estimated by finding extrema in the function �!p�t� �

!c�t��=�2!c�t��. The uncertainty in the eccentricity esti-

mate is about 2� 10�4 [27]. A simulation with initial D �
12M but using ‘‘quasicircular orbit’’ parameters (as dis-

cussed further in Sec. V C) has an eccentricity of e �
0:008, i.e., 5 times larger than the eccentricity of the D12

simulation.

TABLE II. Physical parameters for the moving-puncture simu-

lations: the coordinate separation, D, the mass parameters in the

puncture data construction, mi, and the magnitude of the mo-

menta px and py. The punctures are placed on the y-axis, and all

quantities are scaled with respect to the total initial black-hole

mass, M � 1. The momenta are based on those described in

[27], and produce quasicircular inspiral with minimal eccentric-

ity. The estimated eccentricity e is also given, as described in the

text. The time tA is the time (in M) when the wave amplitude

reaches a maximum at extraction radius Rex � 90M.

D mi px py ��10�3� e tA

D8 8.0 0.482 40 0.112 35 2.0883 0.0025 458

D9 9.0 0.484 36 0.103 37 1.4019 0.0022 673

D10 10.0 0.485 93 0.096 107 0.980 376 0.0022 981

D11 11.0 0.487 21 0.090 099 0.709 412 0.0020 1390

D12 12.0 0.488 28 0.085 035 0.537 285 0.0016 1940

TABLE I. Summary of grid setup for numerical simulations.

Grid hmin hmax rmax

D8 simulation

���2	5� 56:5� 112:6
 M=37:3 96=7M 775M

D9 simulation

���2	5� 56:5� 112:6
 M=37:3 96=7M 775M

D10 and D11 simulations

���2	5� 48:5� 96:6
 M=32:0 16M 776M
���2	5� 56:5� 112:6
 M=37:3 96=7M 775M

���2	5� 64:5� 128:6
 M=42:7 12M 774M

D12 simulations

���2	5� 64:5� 128:6
 M=42:7 12M 774M
���2	5� 72:5� 144:6
 M=48:0 32=3M 773M
���2	5� 80:5� 160:6
 M=53:3 48=5M 773M
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For comparison between PN and numerical results, we

must make clear what we mean by the individual black-

hole masses M1 and M2, and the total mass M. The mass of

each black hole, Mi, is specified in terms of the Arnowitt-

Deser-Misner (ADM) mass at each puncture. This corre-

sponds to the mass at the other asymptotically flat end, and

has been found to equal numerically the apparent-horizon

mass [37], which for nonspinning black holes is related to

the area of the horizon Ai by

 Mi �

���������

Ai

16�

s

: (1)

We assume that this mass is the same as the mass used in

post-Newtonian formulas. Rather than try to quantify the

accuracy of this assumption, we make the following argu-

ment, which we consider to be a more practical approach.

Our assumption is rigorously true only in the limit where

the black holes are infinitely far apart and stationary. As

such we consider any error in this assumption as part of the

error due to starting the simulation at a finite separation.

Since there is no invariant measure of quasilocal mass in

general relativity, this error is present in some form in all

numerical simulations. In practice one could rescale the

total mass to optimize the phase and amplitude agreement

with post-Newtonian calculations, but in the present work

we retain the assumption that the horizon mass and PN

masses can be equated at the beginning of the simulation.

This provides an overall scale M � M1 �M2 for both

numerical and post-Newtonian waveforms, and is crucial

for comparison and matching.

Let us discuss some other possible sources of error

related to the masses and spins of the black holes in our

numerical simulations.

The initial data contain ‘‘junk’’ radiation that quickly

leaves the system. Some of this radiation may fall into the

black holes and alter their masses. To estimate this effect,

we refer to the initial-data studies of Cook and York

[38,39], who estimated the maximum radiation content of

single boosted Bowen-York black-hole initial-data sets

(recall that a single boosted Schwarzschild black-hole

spacetime will not contain any gravitational radiation).

An estimate based on their data suggests that the spacetime

of a Bowen-York black hole with Pi=Mi � 0:17 (which is

the case for the D12 simulations) has a maximum

gravitational-wave energy content of 0.01% of the mass.

In our simulations, the radiated energy from the junk

radiation is at least 0.005% of the initial mass. Therefore

we estimate that at most 0.005% of the mass fell back into

the black hole. An error in our estimate of the total mass of

0.005% would lead to a phase error in a 2000M simulation

of 0:1M. We calculate (see Sec. IV) a numerical uncer-

tainty in the merger time of 0:4M, making any effect due to

junk radiation falling into the black holes lower than our

numerical uncertainty, and therefore not detectable at our

level of accuracy.

A further possible issue with the mass is that it may drift

due to numerical error over the course of the simulation.

However, since we see clean sixth-order convergence in the

time when the gravitational wave amplitude reaches a

maximum, we expect that any mass drift either also con-

verges away at sixth order, or is well below the error due to

other numerical effects.

Finally, one may worry that the black holes pick up spin

during their evolution. This effect has already been studied

by Campanelli, et. al. [40]. We do not attempt to measure

this effect in our simulations, for the following reason: we

are comparing numerical and PN waveforms of binaries

that initially consist of nonspinning black holes. In the PN

approach we use, the black holes remain nonspinning. Any

spin that they acquire in full general relativity will there-

fore contribute to the disagreement between PN and NR

waveforms. It is that difference in the waveforms that we

are interested in measuring. More detailed investigation of

the physical properties of nonspinning binaries is beyond

the scope of this study.

III. POST-NEWTONIAN WAVEFORMS

Binary inspiral waveforms can be constructed by a

variety of means. We choose to compare our numerical

waveforms with PN waveforms that are proposed for future

searches for gravitational-wave signals from black-hole

binary coalescence, namely, the Taylor-expanded or

EOB-resummed waveforms implemented in the LSC

Applications Library (LAL) [5,41,42]. In particular, we

compare with the 3.5PN Taylor T1 waves, with a version

of the code1 that includes modifications to the flux coef-

ficients given in the erratum to [41,42]. In the Taylor T1

approach ordinary differential equations are solved nu-

merically to give the phase of the wave, and the amplitude

is estimated by the quadrupole contribution, which is pro-

portional to x � �M!=2�2=3, where ! is the gravitational-

wave frequency, and !=2 is assumed to be the orbital

frequency of the binary. This treatment of the amplitude

yields ‘‘restricted’’ PN waveforms. In Sec. V we also

compare with a 2.5PN treatment of the amplitude [43],

which includes terms up to x7=2.
To check the consistency of our comparison, we also

compare with the ‘‘Taylor T3’’ PN approximant [44,45],

which consists of an analytic expression for the

gravitational-wave phase as a function of the variable � �
��t� tc�=�5M�, where tc is the ‘‘coalescence time’’ of the

binary, M is the total mass, and � � M1M2=M
2 is the

symmetric mass ratio. The T3 approximant for the phase

also contains a free phase constant, �0. The coalescence

time tc and phase constant �0 can be chosen to line up the

phase and frequency of a T3 PN waveform with a NR

1We used a version of LAL consistent with a cvs version
dating from July 11, 2007; earlier versions contain errors in the
TaylorT1 implementation.
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waveform at a given time. We use the TaylorT3 approx-

imant up to 3PN order, because the 3.5PN term contains an

unphysical turning point long before the merger, which

was already noted in the PN comparisons made in [15,19].

The LAL code that we use, LALInspiralTest, pro-

duces h� and/or h� as a function of time. From this

function we can compute the real part of �4;�l�2;m�2� by

differentiating twice with respect to time. We choose �4;22

as the quantity to compare between NR and PN waveforms

for two reasons: (1) we can compute the PN h�;� with

arbitrarily small discretization error, and thus expect that

its derivatives will be more accurate than computing h�;�

by integration of the NR �4;22; (2) integration of �4;22

requires estimating two constants of integration, which

further complicates the procedure. In short, it should be

equivalent to compare waveforms using h�;� and �4;22,

and we choose �4;22 because it is more straightforward.

To generate a PN waveform we must choose the masses

of the two bodies, and a range of frequencies that we want

the waveform to cover. The masses are specified in units of

solar mass. To produce the quantity r�4;22 that we wish to

compare with numerical data, the time is rescaled to be in

units of M by multiplying by the factor c=M, where we

chose M � 2M� � 2953:25 m (although the choice of

masses is arbitrary) and the speed of light is c � 2:9979�
108 m=s. The PN wave strain is then differentiated twice

with respect to time, and the amplitude is scaled by the

factor
��������������

16�=5
p

to give the coefficient of the l � 2, m � 2

mode.

IV. NUMERICAL SIMULATIONS: ACCURACYAND

CONSISTENCY

In this section we describe our procedure for producing

the most accurate waveform possible from our numerical

data. This consists of taking waveforms calculated at five

extraction radii from simulations performed at three reso-

lutions, and (1) Richardson extrapolating these waveforms

with respect to numerical resolution to produce accurate

waveforms at each of the five extraction radii, and then

(2) extrapolating with respect to extraction radius to esti-

mate the signal that would be calculated as Rex ! 1.

In [18] we described the use of sixth-order accurate

spatial finite differencing in the bulk in BAM, introduced

to increase the overall accuracy and, in particular, reduce

the phase error in long evolutions. We found that

Re�r�4�22, as directly computed by the code, was sixth-

order convergent only up to about 100M before merger.

However, if we separate the waveform into its amplitude

and frequency as

 r�4 � A���t��ei��t�; (2)

and examine separately ��t� and A���, then the phase

shows reasonably clean sixth-order convergence through-

out the evolution (with a small ‘‘blip’’ around the merger

time), and the amplitude computed as a function of the

phase angle shows good convergence with far lower errors

than when we consider simply A�t�. This is because A�t�
includes errors from the phase as well as the amplitude

measurement; considering A��� allows us to isolate the

phase errors from the amplitude errors. With this phase/

amplitude split we are able to perform Richardson extrapo-

lation and reconstruct a more accurate waveform and

calculate an error estimate. More details about the conver-

gence properties of these simulations can be found in [18].

In order to be as clear as possible about this procedure,

we will outline in detail the steps we followed to produce

the D12 waveform that will form the basis of our compari-

son with PN waveforms.

We perform three simulations with the grid configura-

tion (following the notation in [13]) ���2	5� N:5�

2N:6
, where N � 64, 72, 80 for the D12 runs. The grid

resolutions on the finest inner box are M=42:67, M=48, and

M=53:33, and the resolutions on the coarsest outer levels

are 12M, 10:67M, and 9:6M, placing the outer boundary at

about 775M. The wave extraction is performed at resolu-

tions 1:5M, 1:33M, and 1:2M. The grid setup is summa-

rized in Table I, which also provides the grid details for the

D8, D9, D10, and D11 simulations.

In each simulation, waves are extracted at radii Rex �
40, 50, 60, 80, and 90M. Figure 1 shows that the phase

displays good sixth-order convergence over the course of

the entire evolution. In order to disentangle the error in the

phase from that in the amplitude, we now consider the

amplitude as a function of phase, rather than time, A���,
and show in Fig. 2 that this function is also sixth-order

convergent. For comparison Fig. 3 shows a convergence

plot of the amplitude as a function of time, A�t�, with no

adjustments made for the phase. We see that A�t� is sixth-

order convergent, but the differences are almost a factor of

10 larger than they are for A���; this demonstrates the

utility of considering A��� instead of A�t�.
The figures show the amplitude and phase from the

waves extracted at Rex � 90M, but similar properties are

seen at all five extraction radii. Note that in these figures,

and in all other relevant figures in this paper, the horizontal

axis displays the time from the numerical code. For ex-

ample, in Fig. 1 the wave phase shown at t � 1000M is the

phase of the wave measured at the extraction sphere at

Rex � 90M at code time t � 1000M. In subsequent plots,

when some time shifting has been applied, we indicate how

this relates to the code time as displayed in any figures.

Given the clean sixth-order convergence of A��� and

��t�, we apply Richardson extrapolation to A��� and ��t�
at each extraction radius. Since we have results at three

resolutions, we are also able to compute an error estimate

for the Richardson-extrapolated results. If a function in the

continuum limit is f, and a numerical calculation of it, ~f, is

sixth-order accurate, then we can write
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~f � f� a1h
6 � a2h

7 �O�h8�; (3)

where h is the grid spacing. With results at two resolutions,

Richardson extrapolation involves calculating the coeffi-

cient a1 and removing the sixth-order error to give a result

that is seventh-order accurate. With results at three reso-

lutions, we may also calculate a2, and taking the difference

between estimates of the true solution f using only a1
or both a1 and a2, we can estimate the error in the

Richardson-extrapolated result. These errors are shown in

Fig. 4 for the portion of the simulation that will be com-

pared with PN waveforms. We see that for t > 500M the

uncertainty in ��t� is less than 0.01 radians, and the un-

certainty in A��� is less than 0.5%. At earlier times the

uncertainties grow by up to a factor of 10, due to noise in

the data.
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FIG. 2 (color online). Convergence of the amplitude A���. Differences between simulations with N � 64, 72, 80 (see Table I) are

scaled assuming sixth-order convergence. The x-axis shows �=�4��, which gives a rough estimate of the number of orbits the system

has completed (at least before merger). The phase � is chosen to be in the interval 	��;�
 at t � 0. The convergence of the amplitude

is shown in terms of relative (percentage) errors, to allow easier comparison with later results. A vertical line indicates the point at

which we end our PN comparison in Sec. V. The plot on the right zooms into the region that will be used for PN comparison.
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FIG. 3 (color online). Same as Fig. 2, but using A�t� instead of

A���. We see that the differences are far larger than for A���; the

maximum difference is now around 60%, while it was only 8%

when we considered A���.
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FIG. 1 (color online). Convergence of the phase ��t�. Differences between simulations with N � 64, 72, 80 (see Table I) are scaled

assuming sixth-order convergence. The convergence of the phase is shown as both a standard and a logarithmic plot, to demonstrate

that good sixth-order convergence is seen throughout the simulation, except after merger, when there is a slight drop in convergence. In

the logarithmic plot the solid and dashed lines are so close as to be almost indistinguishable.
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We now have amplitude and phase functions A��� and

��t� for each of the five extraction radii, and wish to

extrapolate to Rex ! 1.

We first deal with A���. Since we are looking at the

amplitude as a function of phase, rather than time, the

amplitudes measured at each extraction radius are already

in phase; there is no need to ‘‘line them up,’’ as would be

necessary if we looked at A�t�. We find that the value of the

five amplitude functions is approximated well by a qua-

dratic function in extraction radius, i.e.,

 A��;Rex� � A1��� �
k���

R2
ex

�O

�

1

R3
ex

�

: (4)

In other words, the wave amplitude error falls off as the

square of the extraction radius. A simple curve fit (per-

formed at each phase �) allows us to construct A1���.
Including the next fall-off term, 1=R3

ex, allows us to also

estimate the uncertainty in the extrapolation, analogous to

the method of error estimate in the Richardson extrapola-

tion of the discretization error. Note that although one

would expect the error to fall off as 1=Rex, our results

suggest that the quadratic falloff dominates; this has also

been observed in simulations of a particle orbiting a Kerr

black hole [46]. The quadratic falloff in the amplitude error

is demonstrated in Fig. 5. The resulting relative error

estimate as a function of � is shown in Fig. 6, and as a

result of this plot we estimate the uncertainty in A��� due

to extrapolation to Rex ! 1 as about 2%. This dominates

the uncertainty from Richardson extrapolation ( < 0:5%),

so we also estimate the overall uncertainty in A��� as about

2%.

We now turn to the phase, ��t�. To a first approximation

we expect that the difference in the phase measured at two

extraction spheres will be a constant. However, the proper
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PN waveforms, the uncertainty in ��t� is below 0.01 radians at most times, and the uncertainty in the amplitude is less than 0.5%. At
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FIG. 5 (color online). The wave amplitude A as a function of

extraction radius Rex, at � � 8�, which corresponds to t �
715M for the wave extracted at Rex � 90M. The solid line

shows a curve fit of the form (4). The dashed line shows a curve

fit with an extra 1=R3
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distance between each extraction sphere may drift due to

gauge effects. We have already seen in evolutions of the

Schwarzschild spacetime that the coordinate location of

the horizon drifts depending on the value of the � parame-

ter in the ~�-driver shift evolution equation (see Fig. 4 in

[13]), and effects related to � have also been observed and

studied in [47,48]; and it is quite possible that there are

other gauge effects that we are not aware of.

We have attempted to extrapolate the phase to Rex ! 1
by lining up the phase at a given time, and then observing,

at other times, the deviations in the phase at different

extraction radii. These deviations decrease as Rex in-

creases, and the falloff can be reasonably well modeled

by a polynomial in 1=Rex, and far better by a polynomial in

1=Rex and 1=R2
ex. However, we do not find the limit as

Rex ! 1 to be very robust—the results vary depending on

the choice of the time when the phases are lined up.

(Obvious choices for this time are when the gravitational-

wave amplitude reaches a maximum, near merger, or the

time at which the GW frequency M! equals one of the

matching values that will be used in our PN comparison

below.) As such, we do not extrapolate the phase. We

instead use the phase at the largest extraction radius, Rex �
90M (which we expect to be the most accurate) and use the

phase extrapolation procedure to estimate the uncertainty

in the phase, which we give as 0.25 radians.

An alternative indication of the accumulated phase error

of the numerical simulations is given by the time when the

amplitude of the gravitational-wave signal reaches a maxi-

mum. This time is also seen to be sixth-order convergent,

and a similar Richardson-extrapolation error estimate as

performed above gives an uncertainty of 0:4M in the

‘‘length’’ of the simulation.

We are now able to construct a final waveform,

 Re �r�4;22�t�� � A1��90�t�� cos��90�t� � ��; (5)

 Im �r�4;22�t�� � A1��90�t�� sin��90�t� � ��; (6)

where � is an arbitrary phase shift, which we will apply

later when comparing with PN waveforms. The uncertainty

in the wave amplitude is about 2%, and the accumulated

phase error over the time range we will consider is about

0.25 radians. The time-shifting process described earlier

means that the extrapolated waveform is measured at an

effective extraction sphere with Rex � 90M, i.e., our ex-

trapolated waveform gives the wave amplitude that would

be measured at infinity, but at a time roughly 90M after the
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FIG. 7. Final waveforms from the D10, D11, and D12 runs, produced by the method discussed in the text and shifted in time so that

their amplitude maxima occur at the same time. The three lines are not individually labeled; the main point is that their differences are

almost indistinguishable, except in the last cycle before merger; see text. The phase disagreement with the D12 simulation is shown in
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wave was emitted from the binary system. Since we do not

make direct comparisons between quantities calculated

from the gravitational waves and quantities calculated

from the puncture motion, it is not necessary to know

this ‘‘wave travel time’’ precisely. Although not used

here, one could estimate this time using the method sug-

gested in [49].

The same procedure is applied to the simulations D10

and D11. With a suitable time shift applied so that the wave

amplitude maximum occurs at the same time, the extrapo-

lated waveforms from the three simulations are shown in

Fig. 7. The waveforms lie almost perfectly on top of each

other, except in the last cycle before merger. It is at this

time that we see a ‘‘glitch’’ in the clean convergence of the

phase ��t�. However, for comparison with 3.5PN wave-

forms we will only be interested in the waveform before

t � 1770M. In order to quantify the level of agreement

between the D10, D11, and D12 waveforms, we also show

in the lower panel of Fig. 7 the accumulated phase error

between t � 1200M and t � 1800M (where t is the code

time of the D12 simulation). We see that the phase errors

average to below 0.03 radians, consistent with the numeri-

cal error estimate in Fig. 4.

V. COMPARISON

Given the PN and NR waveforms discussed in Secs. III

and IV, we are now in a position to compare them. Most of

our comparisons are matched with respect to the

gravitational-wave frequency, which we define as ! �
d��t�=dt, and we always deal with the dimensionless

quantity M!. We compare NR waveforms with a 3.5PN

TaylorT1 waveform that was terminated at a gravitational-

wave frequency M! � 0:120, but we will only use it up to

a cutoff frequency of M!0 � 0:1; since the growth in

phase error in the 3.5PN waveform becomes dramatic at

late times (see, for example, Fig. 17 in [21]), the smaller

the choice of cutoff frequency the better. Figure 8 shows

the numerical D12 r�4;22 overlaid with the 3.5PN

TaylorT1 version computed from output from the LAL

code. The figure starts at t � 340M, after the binary has

completed one orbit; this allows time for noise due to the

junk radiation in the initial data to leave the system. The

agreement between the PN and numerical waveforms ap-

pears to be excellent. A similar plot (for h�) is shown in

Fig. 1 of [15].

The NR and PN waveforms shown in Fig. 8 were ‘‘lined

up’’ by first identifying the time at which both waveforms

had a given frequency M!0. An appropriate phase shift �
was then applied to the numerical waveform to line up the

PN and NR phases. The choice of M!0 can have a dra-

matic effect on the quality of the phase agreement between

the PN and NR waveforms. Figure 8 was produced by

matching at the beginning of the comparison region, at

M! � 0:0455, which gives a far better phase match, as we

will discuss below.

We will now discuss this subtle feature of the matching

process in more detail, before we make any conclusions

about the agreement between NR and 3.5PN TaylorT1

waveforms.

A. Phase and frequency

The wave frequency M! calculated from the NR waves

is typically very noisy at early times, but becomes much

smoother near merger, when the value is higher. To allow a

matching at any time in the window of comparison, we fit a

polynomial in time through the numerical frequency to

produce a smoother function. The curve fit is based on

the form of the frequency evolution in the TaylorT3 ap-

proach, i.e., a polynomial in (t� tc), where tc is a crude

estimate of the merger time (its specific value does not

strongly affect the accuracy of the fit; we used tc �
1927M), and the powers of (t� tc) that are included are

f�3=8;�5=8;�3=4;�7=8;�1;�9=8g. The use of a curve

fit introduces yet another source of error in our numerical

phase, particularly at early times, which is difficult to

assess. However, the analyses below were repeated with

different fitting functions (by keeping or removing the last

term in the fit, or varying tc), and all changes in the phase

results were below the stated numerical phase uncertainty

of 0.25 radians. Nonetheless, we tend to consider any

matching done at late times to be more reliable than that

done at early times.

On the other hand, we expect the PN phase to be most

accurate at early times—in principle, we should be able to

obtain arbitrary accuracy in the post-Newtonian expres-

sions by going to sufficiently early times. For that reason

we first choose to line up the frequencies at t � 347:4M in

code time (recalling that this is the time when the wave

reaches the extraction sphere at Rex � 90M), when M! �
0:0455. We are then free to make a constant phase shift � to

align the phase of the waves; again aligned at t � 347:4M
with � � 1:367�. The agreement between the NR and

3.5PN wave frequencies as a function of time is shown in

Fig. 9. As can be seen in the right-hand panel of Fig. 9,

the PN and NR frequencies remain close up to around
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FIG. 8 (color online). Numerical (solid line) and TaylorT1

3.5PN (dashed line) waveforms r�4;22 for equal-mass inspiral.
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t � 1000M, and then drift apart and finally diverge. Also

shown (with a dashed curve) is the result of matching at the

end of the comparison region (at t � 1772M, with M!0 �
0:1, � � 1:067�).

The corresponding results for the phase disagreement

are shown in Fig. 10. Also shown is the phase disagreement

between the NR waveform and a waveform produced using

the TaylorT3 approximant. In order to line up the phase and

frequency of the T3 waveform, we choose an appropriate

coalescence time tc and phase constant �0.

Figure 10 demonstrates that the different choices of

matching frequency can give entirely different impressions

of the relative merits of the T1 and T3 approximants: when

the waves are matched at t � 1772M, the accumulated

phase disagreement between the T3 approximant and nu-

merical results is about 0.1 radians. When the matching is

done at t � 347:4M, the accumulated T3/NR phase dis-

agreement is almost 1 rad. In both cases the T1/NR dis-

agreement is comparable, although this is purely an

accident of the matching frequencies that were chosen. It

should be clear from the right-hand panel of Fig. 10 that if

we cut off the comparison at t � 1000M, the T1/NR

accumulated phase disagreement will be very small.

Similarly, for matching purposes, one could optimize the

matching time to give the smallest phase disagreement—

for the T1 waveforms, we can, for example, match at

M! � 0:075 and achieve a phase agreement within nu-

merical uncertainty.

We repeat that for the purposes of comparing PN and NR

phases, the match at M! � 0:1, when the numerical data is

relatively free of noise, is the most trustworthy. The

matches at earlier times are less accurate and mainly serve

to illustrate the general trend in the disagreement between

PN and NR phases: the frequency disagreement changes

sign (as shown in Fig. 9), and, depending on the approx-

imant used and the chosen matching time and frequency,

the phase disagreement may behave as in the T3/NR curve

in the left panel of Fig. 10 or the T1/NR curve in the right
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panel, and exhibit a local maximum, which allows us to

optimize the phase disagreement.

We may produce yet another picture of how T1 and T3

behave by plotting the phase disagreement versus the wave

frequency M!, as done in [15]. This is shown in

Fig. 11, which now suggests that T3 behaves far better

than T1.

What are we to conclude, then, about the phase agree-

ment between NR and T1 or T3 PN waveforms? Because

of a turning point in the evolution of the frequency dis-

agreement, we are left with a great deal of freedom about

how to match the frequency and phase. We find, in the

frequency range that we consider, that the minimum accu-

mulated phase disagreement that we can achieve is about

0.2 (or 0.15) radians using either the T1 (or T3) approx-

imants (see Fig. 10). By contrast, the maximum disagree-

ment between the NR and PN phases over the comparison

region is about 1 rad, although since this results from a

matching at early times, and the phase disagreement is

diverging at the end of the comparison region, this value

has a large uncertainty.

When matching NR and PN results to produce

hybrid waveforms (as performed in, for example,

[24,25]), we naturally choose to match in such a way that

the phase disagreement is minimized. We could easily have

found that the PN phase evolution disagreed so badly with

the NR phase evolution that it was not possible to achieve

an accumulated phase disagreement of less than, for ex-

ample, 1 rad. However, the minimum accumulated phase

disagreement that we can achieve is about 0.2 radians,

which is also within the phase uncertainty of the numerical

waveforms.

We therefore conclude that we can match the phase

within the numerical uncertainty over the frequency range

we have considered (M! � 0:0455 up to M! � 0:1), and

that the accumulated PN and NR phase disagreement has

an upper bound of roughly 1 rad. We expect that matching

at even earlier times (using longer simulations) would

make the matching clearer, although this will also require

more accurate simulations and larger radiation extraction

radii to resolve the lower-frequency, lower-amplitude

waves.

B. Amplitude

We now turn to the amplitude.

Figure 12 shows the amplitude of r�4;22 from NR and

restricted PN waves, plotted as a function of GW frequency

M!, so that the choice of PN approximant does not affect

the result. The amplitude of the restricted 3.5PN wave is

larger than that for the NR wave. Figure 13 shows the

percentage disagreement between the restricted PN and

NR wave amplitudes over the same frequency range. The
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TaylorT3 approximants, but now shown as a function of GW
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disagreement is of the order of 6%. Since the uncertainty in

the NR wave amplitude is below 2%, at least for M!>
0:05, we cannot ascribe this disagreement entirely to nu-

merical error. If we assume that the NR wave more closely

models the correct physics of the binary system, then the

restricted PN (quadrupole) amplitude overestimates the

amplitude by between 4% and 8% in this frequency range.

So far we have compared our NR waveforms with

restricted 3.5PN waveforms, meaning that the amplitude

in the gravitational-wave strain is proportional to x �

�M!=2�2=3. (The factor of 2 signifies that x deals with

the frequency of the black holes’ motion, not the frequency

of the waves; the two frequencies are assumed to be related

by a factor of 2.) If we move beyond restricted waveforms,

and model the amplitude up to 2.5PN order (i.e., with terms

up to x7=2) [15,43], we find greater disagreement at higher

frequencies, but at low frequencies the 2.5PN amplitude

shows better agreement with the NR amplitude. The 2.5PN

amplitude disagreement at M! � 0:0455 is between 1%

and 5%; the PN and NR amplitude disagreement is now

close to the numerical uncertainty. This is also shown in

Fig. 13.

As we have said, the amplitude disagreement between

the NR and restricted PN amplitudes is roughly constant

over the frequency range M! � 0:05 to M! � 0:1. This

suggests that if we are content with these levels of error

when matching numerical and PN waveforms, the large

number of cycles in the D12 simulation is not necessary. A

combined PN-NR waveform could be produced by apply-

ing a scale factor, as is done using different approaches in

[21,24,25], and clearly only a few cycles shared by the NR

and 3.5PN waveforms are needed to determine the scale

factor. We may now ask: can we get away with a numerical

simulation that starts at, for example, D � 9M, and yields

a waveform that (neglecting the first orbit) shares four

cycles with the 3.5PN wave?

Figure 14 shows the relative disagreement in amplitude

between the D12 simulation and the D9, D10, and D11

simulations. There are small oscillations around the D12

values, but these are smaller than the average amplitude

disagreement between the NR and restricted 3.5PN wave

amplitudes, and we expect that it will be possible to

calculate a suitable scale factor for matching the NR and

3.5PN waves. We conclude then that simulations starting as

close as D � 9M and simulating about 4.5 orbits should be

enough to match to restricted 3.5PN waveforms for many

applications. To make this clearer: any GW data-analysis

application that requires an amplitude accuracy of at most

5% up to the last four cycles, and an amplitude accuracy of

better than 2% from that point through merger and ring-

down, will require only short (4.5 orbit) numerical simu-

lations to match to PN waveforms.

This result is attractive from a computational point of

view. The D9 simulation ran in 750 CPU hours (two and a

half days of wall clock time on 12 processors), while the

highest resolution D12 simulation required 10 500 CPU

hours (18 days on 24 processors). When producing many

waveforms for use in gravitational-wave data analysis, we

would much rather only have to perform the two-and-a-

half-day simulations.

Of course, in the case of equal-mass binary inspiral, we

have already presented waveforms that cover far more than

four cycles before merger. The important question is

whether similarly short simulations will be adequate be-

yond the equal-mass nonspinning case, and that will be the

subject of future work.

C. Comparison with eccentric waveforms

The numerical simulations discussed in the previous

sections modeled equal-mass inspiral with negligible ec-

centricity, starting from the initial parameters introduced in

[27]. The eccentricity of the D12 simulation is estimated as
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e < 0:0016. In contrast, one could use standard ‘‘quasicir-

cular orbit’’ parameters (i.e., parameters calculated with

the assumption that _r � 0), which lead to inspiral with a

small but noticeable eccentricity. We now consider a set of

simulations with the same parameters as the D12 runs, but

using initial parameters calculated using the 2PN-accurate

expression used in [50] (and based on the results in [51]);

we denote this simulation ‘‘QC12.’’ We apply the same

extrapolation procedure as described in Sec. IV to produce

the final waveform that we analyze.

Figure 15 shows the same comparison with the TaylorT1

3.5PN wave phase as in the upper panel of Fig. 10, but now

displaying results from both the D12 and QC12 simula-

tions. The accumulated phase disagreement for the QC12

simulation is larger. The disagreement with the 3.5PN

phase also shows oscillations that are presumably due to

eccentricity. A similar effect can be seen in Fig. 16, which

shows the percentage disagreement in wave amplitude.

The amplitudes are now shown as functions of time; if

we use M! as before, the eccentricity effects are not

visible. The low-eccentricity D12 waveform has been

matched with the PN waveform at M! � 0:0455, and

the QC12 waveform is matched with the D12 waveform

so that their amplitude maxima occur at the same time. The

amplitude disagreement between the D12 simulation and

the restricted PN amplitude is slightly different than that

shown in Fig. 13; this is due to parametrizing the amplitude

with time instead of frequency—the PN/NR frequency

disagreement means that there is not a 1-1 relationship

between the two plots. However, the results are consistent

within the 2% uncertainty in the numerical waveform

amplitude.

The disagreement in amplitude between the restricted

PN and QC12 results oscillates between 2% and 10% at

early times. From the QC12 simulation alone, we may

guess that the error in the restricted PN wave amplitude

is the average of this curve, i.e., around 6%, but may also

guess that the disagreement might go away if the eccen-

tricity were removed. The D12 simulation, which displays

far less eccentricity, confirms the first guess: there is strong

numerical evidence that the restricted 3.5PN wave ampli-

tude really does disagree with fully general-relativistic

results by about 6%.

D. Comparison of the black-hole coordinate motion

To initialize our numerical simulations, we have set the

initial momenta of the black holes to values we have

obtained from a post-Newtonian inspiral calculation as

described in [27]. The inspiral calculation starts at an initial

separation of D � 40M with momenta given by the 3PN-

accurate quasicircular-orbit formula given in [13]. When
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stricted PN and NR wave amplitudes, for both D12 and QC12

simulations. The disagreement between the QC12 and 3.5PN

wave amplitudes is clearly dominated by eccentricity. The low-
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the restricted PN wave amplitude.
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the inspiral reaches the separation D � 12M, the momenta

are read off from the solution and given the values shown in

Table II.

In this section we compare a full GR simulation that uses

those parameters with continuing the PN inspiral from

D � 12M.

The coordinate separation of the black-hole punctures

was chosen as the coordinate separation of the post-

Newtonian inspiral, which we have computed in ADM-

transverse-traceless (ADMTT) coordinates. This is moti-

vated by the fact that the PN solution in the ADMTT gauge

for a two-body system agrees with our Bowen-York punc-

ture initial data up to 2PN order (see, for example, the

explicit solutions in Appendix A of [52]). It is therefore

interesting to know when the use of the ADMTT gauge

breaks down in our evolutions. An indirect check is

straightforward: we compare the PN and full NR puncture

separation, as seen in Figs. 17 and 18. Using the D12

simulation, we find that both the separation and orbital

phase agree very well from D � 11M up to D � 8M, or

from t � 300M (the time to complete the first orbit) to t �
1500M. Put another way, the PN and full NR coordinate

separation agrees until about 3 orbits before merger.

VI. DISCUSSION

We have simulated nine orbits, merger, and ringdown of

an equal-mass binary, and extracted waveforms of suffi-

cient accuracy to make a detailed comparison with PN

waveforms. The uncertainties in the numerical waveforms

are dominated by the close extraction radii, and not finite-

difference errors. The PN waveforms that we focused on

were those generated by the TaylorT1 3.5PN procedure

implemented in the LAL, which is a candidate for use in

gravitational-wave searches in detector data; we also com-

pared with the TaylorT3 approximant. We find that the

phase of the TaylorT1 3.5PN waveform can be matched

to agree with the numerical phase to within numerical

uncertainties, and the upper bound of the accumulated

phase disagreement is on the order of 1 rad. The restricted

PN amplitude overestimates the numerical value �6� 2�%.

We have found that the ratio of the restricted PN and NR

wave amplitudes is roughly constant over the course of the

evolution, and therefore an equally good matching between

PN and NR waves should be possible with far less numeri-

cal cycles. In particular, we performed a simulation that

completes only 4.5 orbits before merger, and expect that

this could be used to produce hybrid waveforms by a

procedure like that discussed in [24,25] or [21] just as

well as a simulation that models many more cycles. We

therefore conclude that, with the level of numerical accu-

racy that we can achieve, only about 4.5 orbits need be

simulated for a PN/NR matching of the same accuracy.

Whether these relatively modest requirements for numeri-

cal waveforms carry over to the cases of unequal-mass and

spinning binaries will be the subject of future work.

For gravitational-wave detection we expect that such

hybrid waveforms will be acceptable. However, for pa-

rameter estimation the issue of the discrepancy between

the amplitude of PN and NR waveforms may have to be

addressed. Modeling the amplitude at 2.5PN order gives

agreement comparable to numerical error between PN and

NR waves up to about 11 cycles before merger; at present

we suggest that the best matching can be done with > 11

cycles (5.5 orbits) of numerical simulation. The cases

where the current level of phase and amplitude accuracy

are expected to be adequate for various data-analysis ap-

plications will also be explored in future work.

Comparing with evolutions of the PN equations of mo-

tion in the ADMTT gauge, we find that the orbital motion

seen in the numerical evolutions agrees extremely well up

to a coordinate separation of about D � 8M. This surpris-

ing agreement not only suggests that the PN dynamics

accurately models the full physical dynamics up to about

three orbits before merger, but that the numerical gauge

remains close to the ADMTT gauge up to that time. In

addition, the gauge dynamics and emission of junk radia-

tion at the beginning of the simulation do not noticeably

change either the dynamics or the gauge; after about one

orbit the NR dynamics matches up again with the ADMTT

PN dynamics.
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Note.—While this article was undergoing peer review,

the Caltech/Cornell group completed a detailed PN/NR

comparison that covers 30 gravitational-wave cycles (15

orbits) before merger with high numerical accuracy in their

numerical waveforms [53]. Where comparable, their re-

sults confirm those in this paper; a comparison between our

results and theirs is provided in their paper.
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[13] B. Brügmann, J. A. González, M. Hannam, S. Husa,

U. Sperhake, and W. Tichy, arXiv:gr-qc/0610128.

[14] J. G. Baker, S. T. McWilliams, J. R. van Meter, J.

Centrella, D.-I. Choi, B. J. Kelly, and M. Koppitz, Phys.

Rev. D 75, 124024 (2007).

[15] J. G. Baker, J. R. van Meter, S. T. McWilliams, J.

Centrella, and B. J. Kelly, Phys. Rev. Lett. 99, 181101

(2007).

[16] H. P. Pfeiffer, D. Brown, L. E. Kidder, L. Lindblom,

G. Lovelance, and M. A. Scheel, Classical Quantum

Gravity 24, S59 (2007).

[17] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder,

O. Rinne, and S. A. Teukolsky, Phys. Rev. D 74, 104006

(2006).
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