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A transition between the strong �coherent� and weak �incoherent� coupling limits of resonant interaction
between quantum well �QW� excitons and bulk photons is analyzed and quantified as a function of the
incoherent damping rate �x caused by exciton-phonon and exciton-exciton scatterings. For confined QW
polaritons, a second, anomalous, �x-induced dispersion branch arises and develops with increasing �x. In this
case, the strong-weak coupling transition is attributed to �x=�x

tr or �̃x
tr, when the intersection of the normal and

damping-induced dispersion branches occurs either in �k� , Im��� ,Re���� coordinate space �in-plane wave
vector k� is real� or in �� , Im�k�� ,Re�k��� coordinate space �frequency � is real�, respectively. For the radiative
states of QW excitons, i.e., for radiative QW polaritons, the transition is described as a qualitative change of
the photoluminescence spectrum at grazing angles along the QW structure. We show that the radiative correc-
tions to the QW exciton states with in-plane wave vector k� approaching the photon cone, i.e., at
k�→k0= ��0

��b� / ��c� ��b is the background dielectric constant�, are universally scaled by the energy param-
eter ��0

2�0�1/3 with �0 the intrinsic radiative width and �0 the exciton energy at k� =0, rather than diverge.
Similarly, the strong-weak coupling transition rates �x

tr and �̃x
tr are also proportional to ��0

2�0�1/3. The numerical
evaluations are given for a GaAs single quantum well with realistic parameters: �0=45.5 �eV and ��0

2�0�1/3

	1.5 meV.
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I. INTRODUCTION

Since the pioneering work by Agranovich and Dubovskii,1

optics of quasi-two-dimensional �quasi-2D� quantum well
�QW� excitons became a well-established discipline. Tradi-
tionally, the states of optically dressed QW excitons are clas-
sified in terms of confined quantum well polaritons �or sim-
ply QW polaritons� and radiative quantum well polaritons �or
simply the radiative states of QW excitons�. The QW polari-
tons are trapped and in plane guided by the exciton reso-
nance, accompanied by an evanescent light field in the
growth direction �the z direction�, and characterized by a
single dispersion branch �=��k��, which lies outside the
photon cone �= ��ck� /��b in the �k� ,�� plane.2–7 Although
the QW polaritons are invisible in standard, far-field, experi-
ments, they can considerably contribute to the total optical
response associated with QW excitons in a “hidden” way
�see, e.g., Refs. 8–10�. The radiative states of QW excitons,
which refer to the radiative zone k� �k0, can optically decay
into bulk photon modes and therefore are characterized by a
finite radiative lifetime.11–14 The radiative states of QW ex-
citons have been observed and studied in many far-field op-
tical, both photoluminescence �PL� and scattering
�reflectivity/transmissivity�, experiments �see, e.g., Refs.
15–23�. In turn, confined QW polaritons can be detected by
using periodic grating24 and attenuated total reflection25 tech-
niques, as well as with near-field scanning optical
microscopy26 and PL imaging spectroscopy.27,28

For GaAs QWs, confined and radiative QW polaritons are
usually described in terms of X, Y, and Z modes.2–4,12,13 The
X-mode states are in-plane longitudinal with polarization
along k�, the Y-mode states are in-plane transverse with po-
larization normal to k�, and the Z-mode states are transverse
with polarization along the z axis. Thus, the Y-mode �X and
Z modes� states couple with the s-polarized �p-polarized�

light field. The Z mode is absent for confined and radiative
QW polaritons associated with the heavy-hole exciton state
in a GaAs quantum well.4,13

The main aim of the present work is to study how the
resonant coupling between quantum well excitons and bulk
photons relaxes with increasing homogeneous width �x, due
to incoherent scattering of QW excitons. In particular, in or-
der to quantify the strong-weak coupling transition, we apply
an approach developed in Refs. 29 and 30 for bulk polari-
tons: The transition is attributed to the intersection of the
polariton dispersion branches that results in the topological
change “crossing” ↔ “anticrossing” in the dispersion
branches, in either �k� , Im��� ,Re���� or �� , Im�k�� ,Re�k���
three-dimensional �3D� spaces �a similar paradigm has been
used for quasi-zero-dimensional polaritons in semiconductor
photonic dots31�. The first quasiparticle case, when the in-
plane wave vector k� is real, refers to a PL experiment, while
the second forced-harmonic case, when the frequency � is
real, can be applied to describe a scattering �reflectivity
and/or transmissivity� experiment. In this paper, we analyze
the �x-induced change of Y-mode QW polaritons, which are
akin to transverse bulk polaritons. Note that neither the or-
thogonality between the X, Y, and Z modes nor the orthogo-
nality between the radiative and confined polariton states of
the same mode is violated in the presence of the incoherent
scattering rate �x, at least within the mean-field picture we
use in our study.

In contrast with bulk exciton polaritons whose two disper-
sion branches exist for any value of �x and are given by two
solutions of the biquadratic dispersion equation,29,30,32,33 the
dispersion equation of Y-mode �s-polarized� QW polaritons
can straightforwardly be reduced to a bicubic equation. As a
result, a second anomalous damping-induced dispersion
branch of confined quantum well polaritons arises and devel-
ops with increasing �x. The existence of the additional
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�x-induced dispersion branch is natural and allows us to at-
tribute the strong-weak coupling transition to the intersection
between the normal and anomalous dispersion branches.
As we clarify in this work, the intersection points refer
to k� =k�

tr=k0− ��3��b� / �2�34�c����0
2�0�1/3
k0 for the

quasiparticle case and to �=�tr=�0+ ��0
2�b� / �2c2Mx�

− �3 / �4�34�����0�b� / �Mxc
2��1/3��0

2�0�1/3
�0 for the
forced-harmonic case, and the transition �threshold� damping
rates are given by �x

tr= ��3�3� / �2�34����0
2�0�1/3 and �̃x

tr

= ��3�3� /2����0�b� / �Mxc
2��1/3��0

2�0�1/3 �Mx is the in-plane
translational mass of a QW exciton�, respectively. The above
analytic expressions are surprisingly simple, taking into ac-
count a rather nontrivial analysis of the twofold degeneracy
of complex roots of the bicubic dispersion equation we have
developed in order to find �x

tr and �̃x
tr �similar expressions for

bulk polaritons can be obtained in a much more straightfor-
ward way, as detailed in Refs. 29 and 30.

For radiative Y-mode polaritons, i.e., for the radiative
states of QW excitons, which are described in terms of their
radiative width �=�T�k�� and �Lamb� shift 	=	T�k��, we
show that the radiative width �T does not diverge at k� =k0
even for the completely coherent interaction between QW
excitons and bulk photons, when �x=0. While the latter con-
clusion contradicts the known result of perturbation
theory,12–14 i.e., that �T diverges as �T
1 / �k0

2−k�
2�1/2 when

k�→k0, it is consistent with numerical simulations reported
in the earlier studies.11,34,35 We prove the regularization of
the radiative corrections at k� =k0 and show that both �T�k�

=k0� and 	T�k� =k0� are universally scaled by ��0
2�0�1/3.

There is no extra dispersion branch, induced by damping,
relevant to the radiative states of QW excitons. However, the
strong-weak coupling transition can still be seen as a
�x-induced qualitative change of the radiative corrections at
k� 
k0 and can be observed in photoluminescence at grazing
angles along the QW structure. The transition occurs syn-
chronously for both radiative and confined QW polaritons.

Thus, the main results of the work are �i� regularization of
the radiative corrections to the QW exciton states at k�→k0,
with the energy parameter ��0

2�0�1/3, �ii� the �x-induced
anomalous dispersion branch of QW polaritons, and �iii� a
quantitative description of the strong-weak coupling transi-
tion for resonant interaction of bulk photons and QW exci-
tons in the presence of incoherent scattering. Our numerical
simulations refer to a realistic high-quality GaAs single
quantum well of the width dz=25 nm.10

In Sec. II, a Hamiltonian relevant to resonantly interacting
QW excitons and bulk photons is outlined, and the dispersion
equation is derived by using diagram technique in order to
include the incoherent scattering rate �x.

In Sec. III, for the case of completely coherent interaction
between QW excitons and bulk photons �the strong coupling
limit, �x=0�, we discuss the regularization of the radiative
corrections to the QW exciton states at k� 
k0 and quantify
characteristic points A �k� =k0� and B �k� =k�

�B��k0�. It is
shown that for point A the radiative width �T reaches its
maximum value �T

�A�
 ��0
2�0�1/3, while for the terminal point

B the Lamb shift 	T of the QW radiative states has a maxi-
mum value 	T
 ��0

2�0�1/3.
In Sec. IV, we analyze the QW polariton states in the

presence of incoherent scattering and, in particular, prove

that the second, anomalous, QW polariton dispersion branch
exists for �x��c

�1�=�0. It is shown that the optical bright-
ness, i.e., the visibility, of the second dispersion branch dras-
tically increases when the in-plane wave vector k� ap-
proaches k0. We also quantify the threshold damping rates,
�x

tr �quasiparticle solutions� and �̃x
tr �forced-harmonic solu-

tions�, when the strong-weak coupling transition occurs, and
demonstrate that both �x

tr and �̃x
tr are scaled by the energy

parameter ��0
2�0�1/3.

In Sec. V, the transition between the strong and weak
coupling limits is analyzed for the radiative states of QW
excitons. We show that the �x-induced radiative states can
persist far beyond the terminal point B, i.e., at k� �k�

�B�, and
that with increasing �x across �x

tr the radiative corrections
drastically change their shape, �T=�T�k�� and 	T=	T�k��, in
the vicinity of k� =k0.

In Sec. VI, we discuss how damping-induced QW polari-
tons of the anomalous dispersion branch and the strong-weak
coupling transition can be detected by using near-field opti-
cal spectroscopy. It is also shown that the �x-induced change
of the PL signal from the QW exciton radiative states at
k� 
k0 �photoluminescence at grazing angles� allows to visu-
alize the strong-weak coupling transition.

A short summary of the results is given in Sec. VII.

II. MODEL

The Hamiltonian of a system “bulk photons—QW exci-
tons,” in the presence of dipole interaction between two spe-
cies, is given by

H = H� + Hx + Hi
I + Hi

II, �1�

with

H� = �
k

�k
�k

†k, Hx = �
k�

�k�

x bk�

† bk�
,

Hi
I = i�

k�

�
kz

��k�

x �1/2Ck�,kz
�k�,kz

+ −k�,−kz

† ��b−k�
− bk�

† � ,

Hi
II = �

k�

�
kz,kz�

Ck�,kz
Ck�,kz�

�k�,kz
+ −k�,−kz

† ��−k�,−kz�
+ k�,kz�

† � ,

�2�

where bk�
and k are the QW exciton and bulk photon

operators, respectively, �k�

x =�0+ ��2k�
2� / �2Mx� and

�k
�= ��ck� /��b are the exciton and photon dispersions, re-

spectively. The coupling constant Ck�,kz
is given by

Ck�,kz
= �RQW / �2�k

�L��1/2, where RQW is the dimensional oscil-
lator strength of exciton-photon interaction per QW unit area
and L is the z-direction quantization length of the light field
�L→��. The Hamiltonian �1� is relevant to the optics of
transverse QW excitons which interact with the in-plane TE-
polarized light field �Y-mode�. The photon-mediated long-
range exchange interaction and nonresonant terms of QW
exciton-bulk photon coupling are included in the description.

The quadratic Hamiltonian �1� is exactly solvable, giving
rise to the quasi-2D polariton and radiative states of QW
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excitons. This case deals only with coherent interaction be-
tween the particles �Hi

I and Hi
II terms in Eqs. �1� and �2�� and

therefore inherently refers to the strong coupling between
QW excitons and bulk photons. Alternatively, the �quasi-�
eigenenergies of QW excitons can be found from Eq. �1� by
using standard diagram technique.7,12,14,34 The latter ap-
proach allows us to include the particle rate �x of incoherent
scattering of QW exciton, i.e., the homogeneous broadening.
The Dyson equation for QW excitons is

Gk�
��� = Gk�

�0���� + Gk�

�0�����k�
���Gk�

��� , �3�

where Gk�

�0�=2�k�

x / ��2− ��k�

x − i�x /2�2� and Gk�
are the propa-

gators of optically noninteracting and optically dressed exci-
tons, respectively, and the photon-mediated self-energy is
given by

�k�
��� =

2�2

�k�

x �
kz

�Ck�,kz
�2�k

�

�2 − ��k
��2 . �4�

Straightforward calculation of the poles of Gk�
���

=2�k�

x / ��2− ��k�

x − i�x /2�2−2�k�

x �k�
����, which is obtained

from Eqs. �3� and �4�, yields the spectrum of optically
dressed QW excitons:

�2 − ��k�

x − i�x/2�2 +
�bRQW�2

c2�2�k�
2 − k2���

= 0, �5�

where k���= ����b� / ��c�. For �x=0, when no decoherence
of exciton-photon interaction occurs, the dispersion equation
�5� can also be derived by solving the Hamiltonian �1�.

Both the confined and radiative states are nonperturba-
tively described by the same equation �5�, the fact not com-
pletely realized in literature. The QW polariton, confined
modes, which are characterized by Im����0 and
Re����0 with �=�k�

2−k2���, refer to the physical sheet of
the twofold Riemann energy plane, while the radiative polar-
iton modes with Im����0 and Re����0 are located on the
unphysical sheet of the energy plane. The latter result is a
signature of the metastable states decaying in outgoing
waves.36 Thus, in order to find the energy spectrum of the
radiative states, one has to use −� with Re����0 for
�k�

2−k2��� in Eq. �5�. This can also be justified by analyzing
Eq. �3� for the radiative states in terms of the advanced,
rather than retarded, Green functions. The initial three-
dimensional Hamiltonian �1� maps on to a non-Hermitian
two-dimensional Hamiltonian which has the quasispectrum
given by Eq. �5� and describes the localized states �confined
polaritons�, which are split-off from the continuum, and the
metastable states �radiative polaritons�.

The dispersion equation �5� for Y-mode QW polaritons
was widely discussed in the past two decades for the case
�x=0.2–4,7,34 In contrast, the radiative states of QW excitons
were mainly considered in terms of perturbation theory.12–14

Equation �5� allows us to treat the radiative states nonpertur-
batively, which is particularly important for the vicinity of
the resonant crossover between the dispersions of bulk pho-
tons and QW excitons, i.e., when k�→k0=k��0�. While the
main aim of the present paper is to study how the confined

and radiative states depend on the incoherent damping rate
�x, in the following section, we detail a nonperturbative
analysis of the radiative states by solving Eq. �5� for �x=0.

III. NONPERTURBATIVE RADIATIVE CORRECTIONS TO
THE EXCITON STATES IN QUANTUM WELLS

The radiative half-width � /2=�T /2=−Im���k��� and ra-
diative �Lamb� shift 	=	T=Re���k���−�0, calculated with
Eq. �5� for the radiative states of QW excitons in the strong
coupling limit ��x=0�, are plotted in Figs. 1 and 2, respec-
tively �see the solid lines�. For comparison, in Fig. 1, the
half-width � /2 calculated with perturbation theory is also
shown by the dashed line. In this case, the radiative width is
given by12–14

� = �T�k�� = �0
k0

�k0
2 − k�

2
, �6�

where �0=�T�k� =0�= ���b / ��c��RQW is the intrinsic optical
decay rate of QW excitons at k� =0. In contrast to the pertur-
bative approach with Eq. �6�, the exact radiative width of
QW excitons calculated with the Hamiltonian �1� does not
diverge at k� =k0 and even persists beyond the photon cone
�see Fig. 1�. This result has already been realized
numerically.11,34,35 Below, we quantify the characteristic
points �see points A and B in Figs. 1 and 2� and clarify the
origin of the regularization of � in a narrow band k� 
k0
where the perturbative approach is not valid anymore.

Point A, where a maximum value of �=�T
max occurs, is

specified by
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FIG. 1. The radiative half-width � /2=�T /2 of Y-polarized QW
excitons against the in-plane wave vector k�, evaluated with the
standard perturbative approach given by Eq. �6� �thin solid line�, the
self-consistent perturbation approach given by Eq. �11� �dashed
line�, and by the exact diagonalization of the Hamiltonian �1�, i.e.,
by Eq. �5� �solid line�. The dashed-dotted vertical line indicates
k0=k��0�= ���b�0� / ��c�. In numerical calculations, we use
RQW=0.025 eV2 Å and �0=1.5 eV, so that �0=45.5 �eV
and the intrinsic radiative lifetime of QW excitons is given by
�R=� /�0=14.5 ps. The critical points A �A��, B �B��, and C are
specified in the text.
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k� = k�
�A� = k0, �T

�A� = �T
max =

�3

2
��0

2�0�1/3,

	T
�A� =

1

4
��0

2�0�1/3. �7�

According to Eq. �7�, �T
max is much larger than �0. Terminal

point B, where the radiative width �T becomes equal to zero
and the Lamb shift reaches its maximum value 	=	T

max, lies
outside the photon cone, k�

�B��k0, and is characterized by

k� = k�
�B� = k01 +

3

2
� �0

2�0
�2/3� = k0 +

3

2�3 4

��b

�c
��0

2�0�1/3,

�T
�B� = 0, 	T

�B� = 	T
max =

1
�3 4

��0
2�0�1/3. �8�

In close proximity of critical point B, the radiative width �T

decreases proportionally to the square root of k�
�B�−k� �see

Fig. 1� and is approximated by

�T�k� → k�
�B�� =

6�6 2
�5

��0
2�0�1/3 1

�k0

�k�
�B� − k� . �9�

For �x=0, the case considered in this section, there are no
roots of Eq. �5� relevant to the radiative modes for k� �k�

�B�.
In order to understand the removal of �k0

2−k�
2�−1/2 diver-

gence which appears in the perturbative approach given by
Eq. �6�, we examine the joint density of states �JDS�,
��k� ,��, for the resonant optical decay of QW excitons in the
bulk photon modes:

��k�,� = �k�

x � 

1

�
�

−�

+�

dkz
�

�2 + ��k�

x − �k
��2 , �10�

where 2�=�x+� is the total scattering rate of QW excitons.
When ��k

��k� ,kz� /�kz�0 at kz given by the energy conserva-
tion law �k�

x �k��=�k
��k� ,kz�, the integrand function on the

right-hand side �r.h.s� of Eq. �10� preserves its Lorentzian
shape even in terms of kz. In this case ��k�� does not depend
on �, and the perturbative approach with Eq. �6� is valid. The
situation is different when k�→k0: The solution of the energy
conservation equation �k�

x �k��=�k
��k� =k0 ,kz� is kz=0, and

��k
��k� =k0 ,kz� /�kz=0, indicating a one-dimensional �1D�

van Hove singularity in the joint density of states. Thus,
��k� ,�=�k�

x � becomes � dependent in the vicinity of k� =k0.
By applying standard perturbation theory with the JDS

determined by Eq. �10�, one receives for the optical decay of
QW excitons:

�T�k�� =
��2k0

2k��̃��0

��k0
2 − k�

2�2 + 4�̃2k0
2k�

2�1/2���k0
2 − k�

2�2 + 4�̃2k0
2k�

2�1/2 − �k0
2 − k�

2��1/2 , �11�

where �̃=� /�0, �=k� /k0= ��ck�� / ���b�0�, and �̃=�1−�2

��̃=��2−1� for k� �k0 �k� �k0�. The regular perturbative
solution �see the dashed line in Fig. 1� refers to
k� �k0− �̃k0 with the dimensionless parameter �̃=� /�0
�10−3. In this case, the JDS is given by �
= ���b�0� / ��c2�2���k0

2−k�
2�−1/2 and Eq. �11� reduces to Eq.

�6�. In contrast, for the narrow wave-vector band �k� −k0�
��̃k0 the 1D van Hove singularity strongly affects the radia-
tive corrections. In particular, for k� =k0, Eqs. �10� and �11�
yield

��k� = k0� =
��b

2��c

1
��̃

and �T�k� = k0� =
�0

2��̃
. �12�

Equation �12� clearly shows that the scattering processes re-
lax the 1D van Hove singularity at k� =k0 and give rise to a
finite value of �T�k� =k0�
1 /�1/2.

For the completely coherent interaction of QW excitons
with bulk photons, when �x=0, Eq. �11� can also be inter-
preted in terms of “self-consistent” perturbation theory. In
this case, �̃=�T / �2�0� and for the band �k� −k0���̃k0, the
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FIG. 2. The polariton dispersion Re���−�0, i.e., the Lamb shift
	=	T of optically dressed Y-polarized QW excitons against the
in-plane wave vector k�. The numerical calculations are done with
the dispersion equation �5�; the upper �lower� solid line refers to the
radiative �confined� polariton states. The dash-dotted line shows the
dispersion of bulk photons, ��ck� /��b�−�0. The dashed two-branch
dispersion curve beyond the terminal, bifurcation point B is relevant
to the radiative states and has no physical meaning for �x=0 �see
Sec. V�. The segment CB refers to the radiative states located out-
side the photon cone.
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radiative width �T=�T�k�� should be found as a solution of
Eq. �11� with the r.h.s. explicitly dependent on �T. This so-
lution is well approximated by using a real root of the cubic
equation, x2�x+��=�0

2 / �16�0
2�, with x=��2+�T

2 / �4�0
2� and

�= �k� −k0� /k0 ������̃�. The radiative width �T=�T�k�� nu-
merically evaluated with the self-consistent perturbation
theory is shown in Fig. 1 by the dashed line. The self-
consistent perturbation theory reproduces qualitatively the
exact solution of Eq. �5� for the radiative states �solid line in
Fig. 1�. In particular, for k� =k0, the self-consistent perturba-
tive equations �12� with �̃=�T / �2�0� yield �T�k� =k0�
= �1 /�32���0

2�0�1/3, a value by only 8% smaller than the exact
one, �T

�A�, given by Eq. �7� �see points A and A� in Fig. 1�.
It is the scattering-induced relaxation of energy conserva-

tion in the resonant conversion “QW exciton ↔ bulk pho-
ton”, �k�

x �
�0�=��c /��b��k�
2+kz

2, that is responsible for the
appearance of the radiative states beyond the photon cone,
i.e., beyond point C in Figs. 1 and 2. Furthermore, even for
�x=0, the coherent optical decay itself relaxes energy con-
servation, putting the quasieigenenergies of the radiative
states in the complex plane �of course, the energy is strictly
conserved in the incoming and outgoing channels of the scat-
tering process “incoming bulk photon → QW exciton →
outgoing bulk photon”�. A straightforward analysis of Eq.
�10� shows the existence of the JDS relevant to the resonant
coupling of QW excitons and bulk photons even beyond the
photon cone, if � is nonzero, and qualitatively justifies the
asymptotic �T
�k�

�B�−k� �see Eq. �9�� which is valid for
k0�k� �k�

�B�.
For the strong coupling limit of QW excitons and bulk

photons ��x=0�, the width �T and Lamb shift 	T of the ra-
diative states at k� 
k0 are uniquely scaled by the control
parameter ��0

2�0�1/3 �see Eqs. �7� and �8��. Furthermore, the
maximum radiative width �T

max=�T
�A� cannot screen com-

pletely the maximum radiative blueshift 	T
max=	T

�B�, because

the shift-half-width ratio 2	T
max /�T

max= �2�32� /�3
1.5, ac-
cording to Eqs. �7� and �8�. The radiative corrections can be
seen experimentally for high-quality GaAs quantum wells
even with a relatively small oscillator strength of QW exci-
tons. For example, for the parameters used in our
evaluations, we estimate ��0

2�0�1/3
1.46 meV, �T
max /2


0.63 meV, and 	T
max
0.92 meV.

IV. STRONG-WEAK COUPLING TRANSITION FOR
QUATUM WELL POLARITONS

In this section, in order to study how the QW polariton
effect relaxes with increasing damping, we analyze the dis-
persion equation �5� with a nonzero excitonic damping �x.
Following the terminology developed by Tait29 for bulk po-
laritons, two cases are distinguished: the quasiparticle solu-
tion �=��k�� �wave vector k� is real� and the forced-
harmonic solution k� =k���� �frequency � is real�.

A. Quasiparticle solutions for quantum well polaritons

For QW polaritons, the true solutions �=��k�� of
Eq. �5� have to satisfy the following conditions:

Re����Re��k�
2−k2�����0 and Im����0. The first crite-

rion ensures that the light field associated with QW polari-
tons has an evanescent envelope in the z direction, E�z�
=E�0�exp�−��z��, while the second one stems from the casu-
ality principle. For small �x, there is only one dispersion
branch which is relevant to QW polaritons, �=�1�k�� �see
the r.h.s. solid line n in Fig. 3�, as detailed, e.g., in Refs. 2, 4,
5, and 11 for �x=0. However, for �x=�c

�1� a new, second
dispersion branch of QW polaritons, �=�2�k��, emerges and
develops with increasing �x��c

�1� �see the left-hand side
lines a in Fig. 3�. The critical rate �c

�1� of incoherent scatter-
ing is given by

�x = �c
�1� = RQW

��b

�c
= �0, �13�

i.e., exactly equal to the intrinsic radiative width of QW ex-
citons with k� =0. The second dispersion branch has two
symmetric terminal points Af� and Af at k� = �k�

f �the point Af�
is not shown in Fig. 3�, where k�

f is given by

k�
f = k�

f��x � �c
�1� = �0�

= �0

��b

�c
�1 −

�bRQW
2

�x
2�2c2

= k0�1 − ��0

�x
�2

. �14�

The terminal points Af� and Af are characterized by
Re��2�k� = �k�

f��=��k�

x −�x
2
�0, Im��2�k� = �k�

f��=0 and
Re���k� = �k�

f��=0. In addition, the middle point Ai of the
segment Af�Af is specified by k� =k�

i =0 and Re��2�k� =0��
=��0

2−�0
2
�0 �see Fig. 3�.

At marginal points Af� and Af �see Fig. 3�, which are char-
acterized by Im��2�=0, the anomalous, damping-induced
dispersion branch �=�2�k�� appears from and leaves for the
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FIG. 3. The quasiparticle dispersion branches of QW polaritons,
Re���=Re���k���, evaluated with Eq. �5�. The solid curve n shows
the normal QW polariton dispersion branch calculated for �x=0.
The solid �dashed� curve a refers to the anomalous, �x-induced QW
polariton dispersion branch calculated for �x=70 �eV
��x=200 �eV�. The critical damping �c

�1�=�0=45.5 �eV.
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unphysical part of 3D space �k� , Im��� ,Re����. The disper-
sion equation �5� can be easily transformed to a cubic equa-
tion, generally with complex coefficients, for �2=�2�k��. For
�x=0, when the coefficients are real, one of the roots of this
equation is characterized by Im��2�=0 and corresponds to
QW polaritons, while second and third roots are complex
conjugated. Among the latter two solutions, one of the roots
satisfies the selection criteria for radiative polaritons, as dis-
cussed in Sec. V, giving rise to the radiative state, while
another one is unphysical. For �x��c

�1�=�0, the unphysical
branch evolves in �k� , Im��� ,Re���� space in such a way that
it has a segment where the criteria for QW polaritons are
met. Similar to the radiative states which can exist beyond
the photon cone, the appearance of the second dispersion
branch of QW polaritons within the photon cone is due to the
relaxation of the energy conservation �–function by the
damping rate �x. Because Re��2�
�0, the anomalous dis-
persion branch can be interpreted in terms of a new,

damping-induced optical decay channel of the exciton states
that opens up and develops with increasing �x��c

�1�. In this
case, a QW exciton with momentum k� �k0, i.e., within the
photon cone, can directly emit an interface photon of the
evanescent light field. The damping-induced dispersion
branches are known in plasma physics37 and in physics of the
surface electromagnetic waves.38,39

With increasing �x��c
�1�, the two dispersion curves,

�1=�1�k�� and �2=�2�k��, move in 3D space
�k� , Im��� ,Re���� toward each other �see Fig. 4�. The inter-
section of the dispersion curves, which occurs for
�x=�x

tr=�c
�2�, is interpreted as a transition between the strong

��x��c
tr� and weak ��x��c

tr� coupling limits of QW exciton-
photon interaction. According to the dispersion equation �5�,
there is only one intersection point, which is given by the
conditions Re��1�k� ,�x

tr��=Re��2�k� ,�x
tr�� and

Im��1�k� ,�x
tr��=Im��2�k� ,�x

tr�� �see Figs. 4�b�, 4�e�, and
4�h��. These conditions define the transition parameters:
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FIG. 4. The damping-induced transition between the strong and weak coupling limits for quasiparticle QW polaritons ��=��k�� is a
solution of the dispersion equation �5� parametrically dependent upon real k��. For RQW=0.025 eV2 Å, the transition damping rate is given
by �x

tr=�c
�2�
2.39 meV, according to Eq. �15�. ��a�, �d�, and �g�� The strong coupling regime, �x=2.20 meV��c

�2�. ��b�, �e�, and �h�� The
transition point, �x=�x

tr=�c
�2�. ��c�, �f�, and �i�� The weak coupling regime, �x=2.44 meV��c

�2�.

C. CREATORE AND A. L. IVANOV PHYSICAL REVIEW B 77, 075324 �2008�

075324-6



�x
tr = �c

�2� =
3�3

2
��0RQW

2 �b

4c2�2 �1/3

=
3�3

2�3 4
��0

2�0�1/3 
 1.64��0
2�0�1/3,

k�
tr = k01 −

1
�3

�c
�2�

�0
� = k0 −

3

2�3 4

��b

�c
��0

2�0�1/3. �15�

The transition point is characterized by the complex polar-
iton frequency ��k�

tr�=�1�k�
tr�=�2�k�

tr� given by

	T
tr = Re���k�

tr�� − �0 = −
1
�3 4

��0
2�0�1/3,

�T
tr = − 2 Im���k�

tr�� =
2

3
�c

�2� =
�3
�3 4

��0
2�0�1/3. �16�

For the parameters used in our numerical evaluations,
�x

tr=�c
�2�
2.39 meV, 	T

tr
−0.92 meV, and �T
tr
1.59 meV.

At the intersection point between two dispersion curves,
when �x=�x

tr, the interconnection between the dispersion
branches changes from “anticrossing” �strong coupling re-
gime� to “crossing” �weak coupling regime�. As a result, to-
pologically new dispersion branches, �̃1�k�� and �̃2�k��, arise
for �x��x

tr �see Fig. 4�. For example, for �x=0, the only QW
polariton dispersion branch �1=�1�k�� can be interpreted in
terms of photon-like �k� �k0=k0� and exciton-like �k� �k0�
parts �anticrossing of the exciton and photon dispersions, see
Fig. 4�a��. In contrast, for �x��x

tr, i.e., after the transition,
the new dispersion branch �̃1�k��, which starts at k� =0 with
�̃1=0 and terminates at k� =k�

f��x�
k0 �for �x��c
�2�=�x

tr, Eq.
�14� yields k�

f →k0� with �̃1
�0, can be visualized as a
purely photonlike branch �crossing of the exciton and photon
dispersions, see Fig. 4�c��. In a similar way, the entire �̃2
branch can be interpreted in terms of the exciton dispersion.

B. Forced-harmonic solutions for quantum well polaritons

For quasi-2D QW polaritons, the forced-harmonic solu-
tions k� =k���� of Eq. �5� should satisfy the following condi-
tions: Re����0 and Im�k���0. In comparison with the qua-
siparticle solutions, an additional dimensionless parameter
�x= ��0�b� / �Mxc

2� is relevant to this class of solutions. The
parameter �x explicitly depends on the translational mass of
QW excitons, so that �x→0 for Mx→�. For the control
parameters relevant to GaAs QWs, one estimates
�x
�1.2–1.3��10−4.

Similar to the quasiparticle solutions, a new dispersion
branch k�

�2�=k�
�2���� emerges with increasing �x��̃c

�1�. In this
case, however, �̃c

�1�=0, and the anomalous dispersion branch
starts to develop from �k�

i =0,�i=0� point. For a given inco-
herent scattering rate �x�0, the terminal point Af, where the
�x-induced branch leaves for the unphysical part of 3D space
�� , Im�k�� ,Re�k��� �see Figs. 5 and 6�, is characterized by the
frequency

� = � f��x� =
�0

�1 − �x + �x��0/�x�2�1/2 . �17�

Equation �17�, which is valid for �x�1, indeed shows that
�̃c

�1�=0: � f →0 for �x→0. For �x��0, when frequency � f

approaches �0 �see Fig. 5�, Eq. �17� reduces to

� = � f��x � �0� = �0�1 +
�x

2
1 − ��0

�x
�2�� . �18�

For the terminal point Af of the anomalous dispersion
branch, which is characterized by k�

f

= �Re�k��� f�� , Im�k��� f���, one has Im�k��� f��=0 and Re���
=0, and Eq. �18� yields

Re�k�
�2��� f�� = k0�1 +

�x

2
1 − ��0

�x
�2�� . �19�

Similar to the case of the quasiparticle solutions, the tran-
sition between the strong and weak coupling regimes of the
QW exciton-photon interaction is attributed to the intersec-
tion of the two dispersion curves, k�

�1���� and k�
�2����, in 3D

space �� , Im�k�� ,Re�k��� �see Fig. 6�. Thus, the topologically

new dispersion branches k̃�
�1���� and k̃�

�2���� arise from the
old ones, k�

�1���� and k�
�2����, with �x increasing above

�̃x
tr= �̃c

�2�. The transition point is given by

�̃x
tr = �̃c

�2� =
3�3

2
��0

2RQW
2 �b

2

c4�2Mx
�1/3

= �3 4�x
1/3�c

�2�, �20�

�tr = �01 +
�0�b

2c2Mx
−

1
�3�3 32

�̃c
�2�

�0
� . �21�

In contrast with the quasiparticle solution, for the forced-
harmonic solution, the transition point is very sensitive to the
in-plane translational mass Mx of QW excitons: �̃x

tr
Mx
−1/3,
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FIG. 5. The forced-harmonic dispersion branches of QW polari-
tons, Re�k��=Re�k�����. The solid line n refers to the normal QW
polariton dispersion branch calculated with Eq. �5� for �x=0. The
solid �dashed� line a is the anomalous, damping-induced dispersion
branch of QW polaritons evaluated for �x=50 �eV ��x=60 �eV�.
The in-plane translational mass of QW excitons is given by
Mx=0.3m0, where m0 is the free electron mass.
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according to Eq. �20�. In particular, when Mx→� and there-
fore the spatial dispersion due to excitons is removed, one
has �̃x

tr=0. In this case, the integrated absorption associated

with the exciton-like branch, k̃�
�2�= k̃�

�2����, is constant inde-

pendent of the damping rate �x: � Im�k̃�
�2�����d�=const


RQW. This sum rule for the absorption coefficient is known
for bulk40 and QW �Ref. 41� excitons. Note that the large
difference between the critical damping rates �x

tr=�c
�2� and

�̃x
tr= �̃c

�2� ��x
tr��̃x

tr, e.g., for our numerical evaluations one has
�x

tr
2.4 meV against �̃x
tr
0.12 meV�, which refer to the

quasiparticle �photoluminescence experiment� and forced-
harmonic �optical reflectivity and/or transmissivity experi-
ment� solutions, respectively, is well known for bulk
polaritons.29

C. Optical brightness of damping-induced quantum well
polaritons

One can naturally question to what extent the �x-induced
QW polariton dispersion branch is observable, i.e., “physi-
cal.” Some aspects of this question are discussed in Sec. VI.
Here, we analyze the photon component �2D

� along the nor-
mal and anomalous QW polariton dispersion branches. The
photon component is a measure of the brightness of polari-
tons.

In the initial Hamiltonian, Eqs. �1� and �2�, quasi-2D ex-
citons couple with bulk photons. However, the confined QW
polariton modes deal with the quasi-2D light field: In this
case, the QW excitons are dressed by the evanescent electro-
magnetic field which in turn is trapped and guided by the
QW exciton states. The area density of the electromagnetic
energy Wphot

2D , associated with the evanescent light field, is
given by

Wphot
2D = �

−�

+�

�WE
3D + WH

3D�dz =
1

4�

�E�0��2

Re���
, �22�

so that the dimensionless amplitude of the quasi-2D light
field is defined as

ek�

2D = � 2

L Re����
1/2

�
kz

� �0

�k�

� �1/2
�k�,kz

+ −k�,−kz

† � . �23�

The amplitude ek�

2D can also be interpreted as a combination
of the creation and annihilation operators of the quasi-2D
photons. In a similar way, the dimensionless amplitude of the
quasi-2D excitonic polarization is given by the operator
xk�

2D= i(bk�
−b−k�

† ).
Equations �1� and �2� yield the following relationship be-

tween ek�

2D and xk�

2D:

��2 − ��k�

x �2�xk�

2D = �0�RQW Re����1/2ek�

2D. �24�

The photon and exciton components of quantum well polari-
tons are given by �2D

� �k��= �ẽk�

2D�2 / ��ẽk�

2D�2+ �x̃k�

2D�2� and
�2D

x �k��=1−�2D
� = �x̃k�

2D�2 / ��ẽk�

2D�2+ �x̃k�

2D�2�, respectively. Here,
ẽk�

2D and x̃k�

2D are the phase-synchronous components of the
electric and polarization fields which contribute to the total
stored energy of the quasi-2D system. Thus, by using Eq.
�24�, one derives

�2D
� �k�� =

�Re��2 − ��k�

x �2��2

�0
2RQW Re��� + �Re��2 − ��k�

x �2��2 . �25�

For �x=0, Eq. �25� reduces to the known expression for the
photon component along the normal QW polariton disper-
sion branch.8,9,11

The photon component �2D
� along the anomalous �a� and

normal �n� QW polariton dispersion branches, calculated
with Eq. �25� for the quasiparticle solution of the dispersion
Eq. �5�, is plotted in Fig. 7 for various damping rates
�x��c

�1�. It is clearly seen that with increasing �x the
damping-induced QW polariton states become bright, i.e.,
optically active, only in close proximity of k� =k0. At the
crossover point k� =k�

tr of the dispersion branches, which oc-
curs for �x=�x

tr=�c
�2� �see Eq. �15��, the brightness of the

anomalous and normal QW polariton states become equal to
each other. A similar behavior of the photon component �2D

�

of the QW polariton states takes place for the forced-
harmonic solution k� =k���� of Eq. �5�.
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FIG. 6. The �x-induced transition between the strong and weak coupling limits for forced-harmonic QW polaritons. For
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�2�=119.8 �eV, according to Eq. �20�. �a� The

strong coupling regime �x��̃c
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�2�, and �c� the weak coupling regime �x��̃c
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V. STRONG-WEAK COUPLING TRANSITION FOR THE
RADIATIVE STATES

The damping-induced transition between the strong and
weak coupling regimes of the QW exciton-photon interaction
can also be traced for the radiative states. The changes of the
radiative width �T=�T�k�� and Lamb shift 	T=	T�k�� with
increasing �x are shown in Figs. 8�a� and 8�b�. Here, the
radiative corrections are defined as �T=−2 Im���−�x and
	T=Re���−�0, where � is the solution of Eq. �5� that sat-
isfies the following conditions: Re����Re��k�

2−k2�����0
and Im����0. The solid lines in Figs. 8�a� and 8�b� �see also
the solid line in Fig. 1 and the upper solid line in Fig. 2� refer
to the completely coherent case, i.e., to the strong coupling
limit with �x=0, when the low-energy exciton state with
k� �k�

�B� is dressed by outgoing bulk photons and interpreted
as a radiative QW polariton. In this case, point B �see Figs. 1,
2, and 8� is the terminal point of the dispersion of the radia-
tive states.

For an arbitrary small �x�0, the dispersion of radiative
polaritons persists beyond the point B, where the dispersion
splits into two subbranches, as a �x-induced tail of the radia-
tive states at k� �k�

�B�. In this case, the upper dispersion sub-
branch beyond the bifurcation point B becomes unphysical,
i.e., completely disappears, while the damping-induced ra-
diative tail is associated with the lower dispersion subbranch
�see Figs. 8�a� and 8�b��. The optical width �T of the
�x-induced radiative states at k� �k�

�B� is approximated as

�T�k� � k�
�B�� = �0� �x

2�0
�� k0

2

k�
2 − k0

2�3/2

. �26�

Approximation with Eq. �26� is valid provided that
��c /��b��k�

2−k0
2��x. Equation �26� clearly shows the

damping-induced nature of the radiative tail: �T�k� �k�
�B�� is

proportional to the incoherent damping rate �x and therefore
vanishes when �x→0. A similar �x-induced tail of the radia-
tive states has also been numerically found for quasi-one-
dimensional plasmon polaritons.42

As shown in Figs. 8�a� and 8�b�, in the vicinity of k� =k0,
the radiative corrections �T and 	T effectively decrease with
increasing �x. At the same time, there is no damping-induced
anomalous branch for the radiative states of QW excitons.
Therefore, in this case, the transition between the strong and
weak coupling regimes of exciton-photon interaction can
only be approximately quantified in terms of the �x-induced
qualitative changes of the shape of the radiative corrections,
�T=�T�k�� and 	T=	T�k��, at k� 
k0 �see, e.g., the solid
against dotted lines in Figs. 8�a� and 8�b��. The drastic, quali-
tative changes occur when the damping rate �x become com-
parable with the maximum radiative corrections,
�T

A
 ��0
2�0�1/3 given by Eq. �7� and 	T

B
 ��0
2�0�1/3 given by

Eq. �8�. In order to attribute the transition to the critical
damping �x

tr=�x
�2�
 ��0

2�0�1/3 defined by Eq. �15� for confined
QW polaritons, we choose the following criterion for the
transition point:
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�x
tr = �c

�2� =
3
�3 4

�T
A 
 1.89�T

A. �27�

In this case, the transition occurs synchronously for both
conjugated states, QW polaritons, and radiative modes. As
discussed in Sec. VI, the transition can be visualized in the
angle-resolved photoluminescence signal from the radiative
states of QW excitons.

VI. DISCUSSION

The anomalous, damping-induced dispersion branch of
QW polaritons can be visualized by using near-field or mi-
crometric imaging spectroscopy techniques,26–28 which allow
to detect the evanescent light field associated with the QW
polariton states. In Figs. 9 and 10, the evanescent field
E=E�z�=E�0�e−Re����z� cos�Im����z�� is plotted for the
quasiparticle solution of the dispersion equation �5�, for

�c
�1���x��c

�2� and �x
�x
tr=�c

�2�, respectively. For
�c

�1���x��c
�2�, the evanescent field associated with QW po-

laritons of the anomalous dispersion branch spatially oscil-
lates with the period 2� / Im��� which is much less than the
characteristic decay length of the envelope field, 1 /Re���
�see the solid line in Fig. 9�. A similar behavior of the eva-
nescent field is well known in physics of surface acoustic
waves.43 In spite of spatial oscillations of the evanescent
field E=E�z�, there is, however, no energy flux in the normal,
z direction: The �x-induced QW polariton states remain split
off from the radiative modes. For the strong-weak coupling
transition point, when �x=�x

tr and k� =k�
tr �see Eq. �15��, the

evanescent fields associated with normal and anomalous QW
polaritons become undistinguishable, as clearly illustrated in
Fig. 10.

The transition between the strong and weak coupling re-
gimes can also be seen in photoluminescence of the QW
radiative states at grazing angles � along the structure
���2°−5° for GaAs QWs�. The spectral function of the PL
signal is

SPL = SPL��,�� =
1

�

�x�k��Im���k���
�Im���k����2 + �� − Re���k����2 ,

�28�

where ��k�� is the relevant complex solution of Eq. �5� and
�x�k��= �Res�Gk�

��� ;��k���� is the exciton component of the
radiative states, both evaluated at k� = �����b� / ��c��cos � for
real frequency �. Here, the exciton Green function, as a so-
lution of Eq. �3�, is given by

Gk�
��� =

2�k�

x

�2 − ��k�

x �2 + ��2�bRQW�/�c2�2��
. �29�

The photoluminescence signal at grazing angles is propor-
tional to the spectral function, IPL
SPL�� ,��, provided that
the radiative states in the vicinity of k� =k0 are equally popu-
lated.

The spectral function SPL=SPL��� is plotted in Fig. 11 for
the grazing angle �=1° and various rates �x of incoherent
scattering. For �x=0, the spectral function has a well-
developed asymmetric shape: SPL���=0 for ���0+	T

�B�,
where the Lamb shift 	T

�B� is given by Eq. �8� �see also Figs.
2 and 8�, SPL��� rises very sharply with decreasing � right
below �0+	T

�B�, and has a Lorentzian-like red-side tail at
���0 �see the solid line in Fig. 11�. With increasing �x the
spectral function SPL��� becomes more broad and symmet-
ric, and finally becomes Lorentzian shaped at �x
�x

tr �see
the dotted line in Fig. 11�. The redshift of the maximum of
SPL��� with increasing �x is consistent with the dependence
of the radiative corrections, �T and 	T, on �x �see Fig. 8�. In
order to complete the description, in the inset of Fig. 11, we
plot the the radiative width at grazing angles, �T=�T���,
calculated for �x=0 by using standard perturbation theory
�dashed line� and evaluated with Eqs. �28� and �29� as the
full width at half maximum �FWHM� of the spectral function
SPL=SPL�� ,�� �solid line�. In the former case the PL signal
from the radiative states diverges with �→0, as
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IPL���
�T���=�0 /sin �, while the latter description yields
removal of the divergence. The described above �x-induced
change of the spectral shape of the photoluminescence signal
from the radiative states can be seen at larger grazing angles,
if, e.g., ZnSe, CdTe, or GaN single QWs with a stronger
oscillator strength of exciton-photon interaction are used.

The main mechanisms of incoherent scattering of QW
excitons at low temperatures are the deformation potential
�DP� interaction of the particles with bulk longitudinal �LA�
phonons and exciton-exciton interaction, so that
�x=�x−LA+�x−x. In order to get an insight of how strong is
the first scattering channel, in Fig. 12, we plot �x−LA against
temperature T for three values of the thickness of a GaAs
single quantum well, dz=25, 15, and 5 nm. The dependence

�x−LA=�x−LA�T ,dz�, which is calculated by using a method
developed in Ref. 44, reflects the relaxation of the momen-
tum conservation in the z direction for the QW exciton-bulk
LA phonon scattering process. For a low-density, classical
gas of QW excitons, when the bath temperature T is much
higher than the degeneracy temperature T0, the efficiency of
QW exciton-QW exciton scattering is evaluated as

�x−x =
�

4
�Mx

�x
�2

kBT0, �30�

where �x is the reduced mass of a QW exciton,
kBT0= �� /2���2 /Mx�n2d, n2d is the density of QW excitons,
and the spin degeneracy factor of the exciton states is g=4.
According to Eq. �30�, �x−x is proportional to the concentra-
tion n2d of QW excitons; however, as a signature of the
quasi-two-dimensionality of the system, the QW
exciton-QW exciton scattering rate is independent of the
scattering length and temperature T �the latter is valid only
for T�T0�. For n2d=109 cm−2 and Mx=0.4m0, the degen-
eracy temperature T0
35 mK, and Eq. �30� yields
�x−x
0.12 meV. Figure 12 and estimates with Eq. �30�
clearly show that the majority of optical experiments16–22,27

with GaAs QWs are undertaken under conditions when the
incoherent scattering rate �x can easily achieve the values of
�x

tr or �̃x
tr.

Another important question is to what extent the pre-
sented model and results are robust against inhomogeneous
broadening which is practically inevitable in QW structures.
To evaluate the influence of the inhomogeneous broadening,
we have examined our model in the paradigm of a “mean-
field” QW disorder, developed in Ref. 41: The results are
valid provided that the radiative corrections, �T and 	T, are
much larger than the inhomogeneous broadening width
�inhom. Because the radiative corrections relevant to the
strong-weak coupling transition refer to the in-plane wave
vector k� 
k0, they are large enough, �T�	T���0

2�0�1/3

�1 meV, to meet the condition �T, 	T��inhom for nowadays
high-quality GaAs single QWs.

VII. CONCLUSIONS

In this paper, we have studied how the s-polarized QW
polariton states, both confined and radiative, evolve in high-
quality �GaAs /AlGaAs� quantum wells with changing inco-
herent homogeneous broadening �x. The transition between
the strong and weak coupling regimes of the resonant QW
exciton-bulk photon interaction is found and quantified. The
following conclusions summarize our results.

�i� In contrast with perturbation theory, there is no diver-
gence of the radiative width �=�T�k�� for k�→k0. Further-
more, the radiative states of Y-mode QW polaritons persist
even beyond k0, the crossover point of the dispersions of
bulk photons and QW excitons. The regularization of the
radiative corrections at k� =k0 scales by the energy parameter
��0

2�0�1/3��0, so that for �0=45.5 �eV used in our numeri-
cal evaluations the maximum values of the radiative correc-
tions at k� 
k0 are given by �T

max /2
0.63 meV and
	T

max
0.92 meV.
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�ii� For confined QW polaritons, a second, anomalous,
�x-induced dispersion branch arises and develops with in-
creasing incoherent damping rate �x. Such damping-induced
dispersion branches are known in plasma physics and in
physics of surface electromagnetic waves. In particular, for
quasiparticle solution �=��k�� �k� is real�, the critical value
of �x for the appearance of the second dispersion branch
�=�2�k�� is �x=�c

�1�=�0. In this case, i.e., for �x��c
�1�, a

finite sector of the dispersion branch �=�2�k�� penetrates
into the physical part �Re����0 and Im����0� of 3D space
�k� , Im��� ,Re���� from its unphysical area.

�iii� The transition between the strong and weak coupling
regimes of the resonant QW exciton-bulk photon interaction
is attributed to the incoherent scattering rate, �x=�x

tr or �̃x
tr,

when intersection of the normal and damping-induced
dispersion branches of confined s-polarized QW polaritons
occurs either in �k� , Im��� ,Re���� coordinate space
�k� is real, the quasiparticle solution� or in �� , Im�k�� ,Re�k���
coordinate space �� is real, the forced-harmonic solution�,
respectively. For the quasiparticle solution �=��k��, the
transition damping rate is �x

tr=�c
�2�
1.64��0

2�0�1/3, and the
transition point is characterized by Eqs. �15� and �16�. For
the forced-harmonic solution k� =k���� �� is real�, one has
�x

tr= �̃c
�2�
1.59���0�B� / �Mxc

2��1/3��0
2�0�1/3, and the transi-

tion point is specified by Eq. �21�. Thus, for a GaAs single
quantum well with the intrinsic radiative lifetime of QW
excitons �R=14.5 ps ��0=45.5 �eV� the transition rates
�widths� are given by �x

tr
2.39 meV and �̃x
tr
120 �eV,

respectively.
�iv� For confined QW polaritons, the evanescent light field

associated with normal-branch and �x-induced-branch polari-
tons as well as the transition between the strong and weak
coupling regimes can be visualized, e.g., by using near-field
optical spectroscopy, for both quasiparticle and forced-
harmonic cases. For the radiative states of QW excitons, i.e.,
for radiative QW polaritons, the transition �the quasiparticle
case� can be seen, e.g., in photoluminescence at grazing
angles �, as a qualitative change of the PL spectrum
IPL= IPL�� ,�� at a given �.
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