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First-order spatial coherence of excitons in planar nanostructures: A k-filtering effect
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We propose and analyze a k-filtering effect which gives rise to the drastic difference between the actual
spatial coherence length of quasi-two-dimensional excitons or microcavity polaritons in planar nanostructures
and that inferred from far-field optical measurements. The effect originates from conservation of the in-plane
wave-vector k; in the optical decay of the particles in outgoing bulk photons. The k-filtering effect explains the
large coherence lengths recently observed for indirect excitons in coupled quantum wells but is less pro-
nounced for microcavity polaritons at low temperatures, 7< 10 K.
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Long-range spatial coherence is a fingerprint of well-
developed Bose-Einstein (BE) statistics. Measurements of
the first-order spatial coherence function g'!) and the coher-
ence length & have allowed visualization of the BE conden-
sation transition in a trapped Bose gas of Rb atoms.! There
are several recent reports on the observation of long-range
spatial optical coherence in a low-temperature quasi-two-
dimensional (quasi-2D) system of microcavity (MC)
polaritons>3 and indirect excitons.*”7 In this case, the reso-
nant optical decay of MC polaritons or quantum well (QW)
excitons in bulk photon modes allows mapping of the in-
plane coherence function g'!) of the particles by measuring
the optical coherence function g'" of the emitted photons. It
is commonly assumed that the coherence length of QW ex-
citons (MC polaritons), £.(&,), associated with g, is iden-
tical to that, §y, of the optical coherence function g“

In this Brief Report, we report a k-filtering effect, which
can strongly influence the optical coherence function g("
measured from a planar nanostructure, and calculate g'") and
g for QW excitons and MC polaritons. For QW excitons,
the k-filtering effect tremendously increases the optical co-
herence length £,, leading to £,>§,, and can naturally ex-
plain the micron coherence lengths observed for indirect ex-
citons and attributed to spontaneously developed coherence.
The effect is less pronounced for MC polaritons, still with
6,26,

The kj-filtering effect stems from the energy and in-plane
momentum conservation in the resonant conversion
“quasi-2D QW exciton (MC polariton) — outgoing bulk
photon.” For a QW structure surrounded by thick coplanar
barrier layers, the case illustrated in Fig. 1, only low-energy
optically active excitons from the radiative zone k =k
=(\Vep/c)w,, with g, the dielectric constant of barrier layers
and 7w, the exciton energy at k=0, are bright, i.e., can emit
far-field light3-!! In a far-field optical experiment with de-
tection angle 2« [see Fig. 1(b)], the fraction of QW excitons
which contribute to the optical signal is drastically further
reduced to the wave-vector band Ak given by O<k”<k(“)
=(ko/ e,)sin @<k,. The a-dependent narrowing of the de-
tected states results in an effective broadening of the first-
order spatial coherence function g“) In addition, the sharp
cutoff of the detected states at kH—k” yields an unusual os-
cillatory behavior of g'V). The k-filtering effect has no anal-
ogy in optics of bulk excitons or polaritons.
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The first-order spatial coherence function g'" (Refs. 12
and 13) of quantum well excitons, at a fixed time, is
given by gV (r/,r)=GV(x/,x})/[GV (x| ,r) )GV (x|, r])]"2,
with ~ G(')(r‘)’,rﬁ’):(‘l’*(ru’)\l’(rﬁ’)), W(r|)
=(1/ \5S)Ek“eikl‘r\\3k“, r| is the in-plane coordinate, S is the
area, and Bku is the exciton operator. Thus for isotropically
distributed QW excitons one receives

where

1 oo
g(l)=g(l)(ﬁ\)=2 fJo(kﬂ’n)nklkﬂk, (1
TMaqJ o

where ri=|rj=r[|, nyy is the concentration of particles, Mg

=(B] uBku> is the occupation number, and J is the zeroth-
order Bessel function of the first kind. For a classical gas of
QW excitons at thermal equilibrium, Eq. (1), with ny, given
by the Maxwell-Boltzmann (MB) distribution functlon nkMHB,

yields the well-known result,!4
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FIG. 1. (Color online) Schematic of the k-filtering effect. (a)
The exciton and photon dispersions. Only low-energy QW excitons
from the radiative zone k; =k, can emit outgoing bulk photons. (b)
A far-field optical experiment with detection angle 2« a small frac-
tion of QW excitons with |K| Skﬁ“)=(k0/ Ve,)sin @ contributes to
the optical signal.
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g(l) - g((:})(r”) — e—ﬂ'rﬁ/)\(zﬂa, (2)
where the thermal de Broglie wavelength is given by Agg
=[(27h?)/ (M kgT)]"?, with T the temperature and M, the
exciton in-plane translational mass. For helium temperatures,
one estimates from Eq. (2) the coherence length of MB-
distributed indirect excitons in GaAs coupled QWs as &,
~Ngg~0.1 pm.

Compared with Eq. (1), the spatial coherence function g("
of photons emitted by QW excitons is given by

©

G k) o(kyry)ny kil
0

g~“>(n|) = 5 (3)

f G lky)ny kdk
0

where G;=0(k{”—k)T',_,(k) is the k-filtering function,
with ©(x) the step function and I',_,(k;) the efficiency of the
resonant conversion of a QW exciton in an outgoing bulk
photon. The function G reduces the integration limits on the
right-hand side (rhs) of Eq. (3) to the narrow band Ak
=[o0, k(“)] and describes the k-filtering effect in high-quality
planar nanostructures. If both the function I',_,(k)) and the
occupation number n, do not change significantly in the nar-
row band Ak, Eq. (3) yields

gh=g" () = 2, (k) (k). )

where J; is the first-order Bessel function of the first kind.
From Eq. (4) one concludes that the optical coherence length
§7, evaluated as the half width at half maximum of g gl
—gf)(rH) is given by

4(H7E) =k(VE, — K7E, = 2.215. )

Equations (4) and (5) illustrate the net k-filtering effect in
the absence of instrumental aberrations: &, <1/ k““)
o 1/sin a strongly increases with decreasing aperture angle
2a. Below we analyze in more detail the exciton function
g'" against the optical g, assuming no phase transition to a
collective (superfluid) state.

First-order spatial coherence of noninteracting quasi-2D
bosons (excitons) in equilibrium. In this case, the chemical
potential Faa is given by u\)=ksT In(1-e TO”) with kgT,
=27/ g)(h*/M )n,, the quantum degeneracy temperature
where g is the spin degeneracy factor of bosons (g=4 for
indirect ex01tons) By substituting n; = ngE into Eq. (1),

where nku is the Bose-Einstein occupation number, one re-
ceives

1 — ,M

T 2,2
= gnint(1) = Fgr(l — TT ¢=mi/\aB)
0

8

=Ty T) n

= —2 —(1 —¢ e""u/“dB (6)

Here, the generalized Bose function'* g,(x,y) with v=1 is

defined as g,(x,y)=2;_, (x*y'¥)/k".
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For distances rH>rﬁq =\gp[=(2/ m)In(1=e"T0T)]2 Eq. (6)
reduces to the quantum limit when the sum on the rhs cannot
be approximated by the first term,

’

gV =r?) =2 m{') (7
Ty "\ro

where K is the modified Bessel function of the second kind

and rg=\gg/[~4m In(1—eT0)]V2, For r;=ry=rl?, Eq. (7)

reduces further to

T |r
8(1)‘8(1)(”u2r0)=V2 N e, (®)
o v r

For temperatures 7> T, the spatial coherence function is
well approximated by Eq. (2), and the quantum corrections
given b (7) and (8) refer to Ilarge rH>r(‘1)
= )\dB\e’(Z/ ) In(T/ T,) > \gp and, therefore, to very small val-
ues of gV, For T<T,, when BE statistics is well developed,
Egs. (7) and (8) are valid for distances larger than rﬁ 9
—)\d?\(Z/w)e‘TO’ZT< Agg» so that g is well approximated
by g, Y for any r;. The quantum statistical effects, which are
included in Eq. (7) through T, %42, considerably increase the
correlation length &, giving rise to & =[Nyg/(2'm)]e7?T for
T=<T, (see Fig. 2).

The coherence function gV of weakly interacting thermal
QW excitons. For circularly polarized excitons in single
QWs, the case relevant to MC polaritons, the repulsive inter-
action between the particles is well approximated by a con-
tact potential Ugqw=(1y/2)8(r)), with ug=ug?V>0. In this
case, the mean-field Hartree-Fock (HF) interaction only
shifts the chemical potential, M2d=ﬂ(2(3}=//,(2(()}+u0n2d, leaving
unchanged Egs. (6)—(8).

For indirect excitons in coupled QWSs, the mid-range
dipole-dipole repulsive interaction Ucqy of the particles can-
not be generally approximated by a contact potential. Fol-
lowing Ref. 15, we use the two parametric model potential

chw(”u) [(y wuow)/r (1-e ~riw? ), with parameters U
—uO ~47T(€2/sb)d (Refs 16 and 17) and w= a2d where
d, is the distance between coupled quantum wells and ay (2d)
is the radius of an indirect exciton. The model potential re-
produces 1/ rII behavior at 7 >a(2 ) and 1/ r; Coulomb repul—
sive potential at rH<a(2d The self—con51stent HF analysis!®

of the Hamrltonran H.= EPH /(2M )]B B pH+1/(25)§)pH 1a,
UCQW(qH) P 'u By 1qBp g, ylelds the n,;~ and T-dependent

change in the in-plane translational mass M,. In this case,

Mg 1s
~(0) + ugy 5 + \//_ [ \/’7_T w
20N | T Nigl 2 de

Mg = ,U«(zd
- Lis/z(F)] }7 9

where, together with Eq. (6), both the de Broglie wavelength
\jp and the degeneracy temperature T, are changed accord-
ing to M,—M*, F=1-¢7T07, and Li,(x)=S7 x*/k” is the
polylogarithm. The particle mass M, renormalized by the
dipole-dipole interaction is given as a single solution of the
transcendental equation,
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FIG. 2. (Color online) (a) The first-order spatial coherence func-
tion gM= gi(rl“)j(r”) of indirect excitons in a GaAs coupled QW struc-
ture with d,=11.5 nm and w=15 nm: n,,=10'" cm™2 and T=1
(dotted line), 0.4 (dash-dotted line), 0.2 (dashed line), and 0.1 K
(solid line). Inset: the renormalized mass M’ against temperature 7,
calculated with Eq. (10). (b) “)—g(l (r) (solid line), g(”
=g\l (r) (dashed line), and g(l)—gmd(r“) (dotted line):
=10'" ¢m™2 and 7=0.1 K. Inset: the same functions evaluated for
1ny,=10"" cm™2 and T=1 K.

11
M M,

Ugw v

+ 8\ N { A N T L11/2(F):| (10)

In Fig. 2(a) we plot gV =g)(7) evaluated numerically by
using Egs. (6), (9), and (10) for indirect excitons in a GaAs
coupled QW structure. In Fig 2(b), the coherence function
¢\ is compared with gl evaluated with Eq. (2) and gmnt
calculated with Eq. (6) for noninteracting excitons. The main
result is that the dipole-dipole repulsive interaction induces
an increase in the translational mass [see the inset of Fig.
2(a)] and, therefore, decreases the coherence length &, com-
pared to that of noninteracting particles [see also Fig. 3(a)].
The effect, however, becomes pronounced only at tempera-
tures well below 1 K For T=1 K all three correlation func-
tions, gmd, gCl , and gmm, nearly coincide, as is clearly seen in
the inset of Fig. 2(b). In other words, for 7,,=10'" ¢cm™ and
T=1.5 K, which are relevant to the experiments,*”’ the
quantum limit, i.e., g(l)—g(') given by Eq. (8) cannot build
up: One estimates Ty=T,~0.65 K and nk 0~0 54<1, so
that BE statistics is rather weakly developed to influence the
coherence length &,.

The given description of g'!) refers to temperatures above
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FIG. 3. (Color online) (a) The dependence of the correlation
length &, against temperature 7, calculated for noninteracting
(dashed line) and dipole-dipole interacting (solid line) indirect ex-
citons. (b) The kj-filtering effect: §(')—"(')(r‘) evaluated for «
=18.9° (solid line), 8.3° (dashed line), 2.1° (dotted line), 1.4° (dash-
dotted line), and 0.8° (dash-double-dotted line). Inset: the real-space

2D image of gV, (c) The coherence length £, against the aperture
angle 2a.

Ty, i.e., when classical or weakly developed BE statistics are
realized, and to a quantum gas of indirect excitons at T
=T, but still above the phase transition temperature. In all
these cases the correlation function for a quasi-2D system of
weakly interacting excitons is universally given by Eq. (6).
The optical spatial coherence function V) of indirect ex-
citons. In order to explain the experiments,*”” which demon-
strate a coherence length £, much larger than §,~0.1 wm,
we 1mplement the concept of k-filtering. In this case, g'"
= gmd(ru) is given by Eq. (3) with the efﬁ01ency of the “indi-
rect exciton — bulk photon” conversion T’ —(2k2
ki) 1 Tko(kg—kD) 21371019 Tn Fig. 3(b), we plot gfzd calcu-
lated for varlous aperture angles, 2° <2a=<40°. The depen-
dence gﬂ)—g (r|) is well approximated by Eq. (4) The
above approximation of ") by the “device function” g
valid when Ny =n 2 W42, is nearly constant in the rather

narrow energy mterval 0=E=<E, ie, when E“

= (hik{*)?/2M < kyTe "7, For indirect excitons, this in-
equality with T, replaced by 7, is definitely held for n,,
~10" cm2and T~1 K (e.g., for a=20° the cutoff energy
E@ is only 1.2 peV). Thus the e kj-filtering effect yields the
correlation length &, =2. 215Ve,/ (ko sin @), with ky=2.8
X 10° cm™, according to Eq. (5). As a result, &, is intrinsi-
cally scaled by the photon wavelength, i.e., is in the micron

length scale [see Fig. 3(c), where &, is plotted against the
angle «a].
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Compared to standard interference patterns in Young’s
double-slit experiment, with visibility contrast determined by
g, the oscillatory behavior of the optical coherence func-
tion g'=g"(r)) is rather unusual [see Eq. (4) and Fig. 3(b)].
This is a signature of the kj-filtering effect: The k-filtering
function G, O (k{*' k) gives a sharp cutoff at kH=k|({“) in the
integrals of Eq. (3) that results in oscillations of g"(r). In
some aspects, the effect is similar to Friedel oscillations in a
Fermi liquid, with ﬁkl(l“) akin to the Fermi momentum.

The coherence function " of MC polaritons. In this case,
the “MC polariton — bulk photon” conversion function in
Eq. 3) is ',_,=W(k))/ 7,(k), with ¥ (0=W=1) the photon
component along a MC polariton branch and 7, the radiative
(escape) lifetime of a MC photon. In Fig. 4, g<1)=g$[)c(ru)
calculated with Eq. (6) for circularly polarized MC polari-
tons is compared with g(V= g‘ﬁg(ru) evaluated with Eq. (3).
According to the experiments,”> we assume the BE distribu-
tion of MC polaritons along the lower polariton branch
which is taken in the parabolic approximation with an effec-
tive in-plane mass Mll\l/)[C' Compared to the case of QW exci-
tons, the difference between g&}l)c and g*h})c is much smaller,
still giving §,> §,. This is because the cutoff energy E@ in
the k-filtering effect is much larger than that relevant to QW
excitons, due to Mye<M,. If kyT<E@~1 meV, g%vl[)c and
gﬁ?c nearly coincide (see Fig. 4).

We qualitatively explain a sharp increase in the coherence
length with decreasing temperature, found in the experiments
with coupled QWs,*” by combining the kfiltering effect
with screening of disorder by dipole-dipole interacting indi-
rect excitons.!” In high-quality GaAs coupled QWs the
screening process effectively develops at 7<5 K, giving
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FIG. 4. (Color online) The MC polariton coherence function
g(l)zg;,ll)c(r”) (dashed lines) against that of emitted photons, g(V
= gf\?c(ru) (solid lines). Inset: the coherence lengths &, and &, versus
temperature 7. The calculations, which model the experiments (Ref.
3) refer to a GaAs microcavity with positive detuning 6=7 meV
and Rabi splitting Qyc=4 meV. The density of MC polaritons
ny,=10% cm™ and the aperture half-angle a=16.7°, so that T,
=27.6 K and E(¥=0.96 meV.

rise to a well-defined single-particle momentum %k, as has
been observed, e.g., in the experiments.’%?! Thus the large
correlation length §=§,~1 um can naturally be explained
by the k-filtering effect and cannot be interpreted as a sig-
nature of BE condensation in a system of indirect excitons.

We appreciate valuable discussions with L. V. Butov.
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