First-order spatial coherence of excitons in planar nanostructures: A k-filtering effect

L. Mouchliadis and A. L. Ivanov

Department of Physics and Astronomy, Cardiff University, Queens Buildings, CF24 3AA Cardiff, United Kingdom (Received 16 January 2008; revised manuscript received 15 May 2008; published 22 July 2008)

We propose and analyze a k_{\parallel} -filtering effect which gives rise to the drastic difference between the actual spatial coherence length of quasi-two-dimensional excitons or microcavity polaritons in planar nanostructures and that inferred from far-field optical measurements. The effect originates from conservation of the in-plane wave-vector k_{\parallel} in the optical decay of the particles in outgoing bulk photons. The k_{\parallel} -filtering effect explains the large coherence lengths recently observed for indirect excitons in coupled quantum wells but is less pronounced for microcavity polaritons at low temperatures, $T \leq 10$ K.

DOI: 10.1103/PhysRevB.78.033306

PACS number(s): 78.67.De, 71.35.-y, 42.50.Ar

Long-range spatial coherence is a fingerprint of welldeveloped Bose-Einstein (BE) statistics. Measurements of the first-order spatial coherence function $g^{(1)}$ and the coherence length ξ have allowed visualization of the BE condensation transition in a trapped Bose gas of Rb atoms.¹ There are several recent reports on the observation of long-range spatial optical coherence in a low-temperature quasi-twodimensional (quasi-2D) system of microcavity (MC) polaritons^{2,3} and indirect excitons.^{4–7} In this case, the resonant optical decay of MC polaritons or quantum well (QW) excitons in bulk photon modes allows mapping of the inplane coherence function $g^{(1)}$ of the particles by measuring the optical coherence function $\tilde{g}^{(1)}$ of the emitted photons. It is commonly assumed that the coherence length of OW excitons (MC polaritons), $\xi_x(\xi_p)$, associated with $g^{(1)}$, is identical to that, ξ_{γ} , of the optical coherence function $\tilde{g}^{(1)}$.

In this Brief Report, we report a k_{\parallel} -filtering effect, which can strongly influence the optical coherence function $\tilde{g}^{(1)}$ measured from a planar nanostructure, and calculate $g^{(1)}$ and $\tilde{g}^{(1)}$ for QW excitons and MC polaritons. For QW excitons, the k_{\parallel} -filtering effect tremendously increases the optical coherence length ξ_{γ} leading to $\xi_{\gamma} \gg \xi_x$, and can naturally explain the micron coherence lengths observed for indirect excitons and attributed to spontaneously developed coherence. The effect is less pronounced for MC polaritons, still with $\xi_{\gamma} \gtrsim \xi_p$.

The k_{\parallel} -filtering effect stems from the energy and in-plane momentum conservation in the resonant conversion "quasi-2D QW exciton (MC polariton) \rightarrow outgoing bulk photon." For a QW structure surrounded by thick coplanar barrier layers, the case illustrated in Fig. 1, only low-energy optically active excitons from the radiative zone $k_{\parallel} \leq k_0$ $=(\sqrt{\varepsilon_b}/c)\omega_0$, with ε_b the dielectric constant of barrier layers and $\hbar \omega_0$ the exciton energy at $k_{\parallel}=0$, are bright, i.e., can emit far-field light.⁸⁻¹¹ In a far-field optical experiment with detection angle 2α [see Fig. 1(b)], the fraction of QW excitons which contribute to the optical signal is drastically further reduced to the wave-vector band Δk_{\parallel} given by $0 \le k_{\parallel} \le k_{\parallel}^{(\alpha)}$ $=(k_0/\sqrt{\varepsilon_b})\sin\alpha \ll k_0$. The α -dependent narrowing of the detected states results in an effective broadening of the firstorder spatial coherence function $\tilde{g}^{(1)}$. In addition, the sharp cutoff of the detected states at $k_{\parallel} = k_{\parallel}^{(\alpha)}$ yields an unusual oscillatory behavior of $\tilde{g}^{(1)}$. The k_{\parallel} -filtering effect has no analogy in optics of bulk excitons or polaritons.

The first-order spatial coherence function $g^{(1)}$ (Refs. 12 and 13) of quantum well excitons, at a fixed time, is given by $g^{(1)}(\mathbf{r}'_{\parallel}, \mathbf{r}''_{\parallel}) = G^{(1)}(\mathbf{r}'_{\parallel}, \mathbf{r}''_{\parallel})/[G^{(1)}(\mathbf{r}''_{\parallel}, \mathbf{r}''_{\parallel})]^{1/2}$, with $G^{(1)}(\mathbf{r}'_{\parallel}, \mathbf{r}''_{\parallel}) = \langle \hat{\Psi}^{\dagger}(\mathbf{r}'_{\parallel}) \hat{\Psi}(\mathbf{r}''_{\parallel}) \rangle$, where $\hat{\Psi}(\mathbf{r}'_{\parallel})$ $= (1/\sqrt{S}) \Sigma_{\mathbf{k}_{\parallel}} e^{i\mathbf{k}_{\parallel}\mathbf{r}'_{\parallel}} B_{\mathbf{k}_{\parallel}}$, \mathbf{r}'_{\parallel} is the in-plane coordinate, *S* is the area, and $B_{\mathbf{k}_{\parallel}}$ is the exciton operator. Thus for isotropically distributed QW excitons one receives

$$g^{(1)} = g^{(1)}(r_{\parallel}) = \frac{1}{2\pi n_{2d}} \int_{0}^{\infty} J_{0}(k_{\parallel}r_{\parallel})n_{k_{\parallel}}k_{\parallel}dk_{\parallel}, \qquad (1)$$

where $r_{\parallel} = |\mathbf{r}_{\parallel}'' - \mathbf{r}_{\parallel}'|$, n_{2d} is the concentration of particles, $n_{\mathbf{k}_{\parallel}} = \langle B_{\mathbf{k}_{\parallel}}^{\dagger} B_{\mathbf{k}_{\parallel}} \rangle$ is the occupation number, and J_0 is the zerothorder Bessel function of the first kind. For a classical gas of QW excitons at thermal equilibrium, Eq. (1), with $n_{\mathbf{k}_{\parallel}}$ given by the Maxwell-Boltzmann (MB) distribution function $n_{k_{\parallel}}^{\text{MB}}$, yields the well-known result,^{3,14}

FIG. 1. (Color online) Schematic of the k_{\parallel} -filtering effect. (a) The exciton and photon dispersions. Only low-energy QW excitons from the radiative zone $k_{\parallel} \leq k_0$ can emit outgoing bulk photons. (b) A far-field optical experiment with detection angle 2α : a small fraction of QW excitons with $|\mathbf{k}_{\parallel}| \leq k_{\parallel}^{(\alpha)} = (k_0 / \sqrt{\varepsilon_b}) \sin \alpha$ contributes to the optical signal.

$$g^{(1)} = g^{(1)}_{\rm cl}(r_{\parallel}) = e^{-\pi r_{\parallel}^2 / \lambda_{\rm dB}^2},$$
 (2)

where the thermal de Broglie wavelength is given by $\lambda_{dB} = [(2\pi\hbar^2)/(M_x k_B T)]^{1/2}$, with *T* the temperature and M_x the exciton in-plane translational mass. For helium temperatures, one estimates from Eq. (2) the coherence length of MB-distributed indirect excitons in GaAs coupled QWs as $\xi_x \sim \lambda_{dB} \sim 0.1 \ \mu\text{m}.$

Compared with Eq. (1), the spatial coherence function $\tilde{g}^{(1)}$ of photons emitted by QW excitons is given by

$$\widetilde{g}^{(1)}(r_{\parallel}) = \frac{\int_{0}^{\infty} G_{f}(k_{\parallel}) J_{0}(k_{\parallel}r_{\parallel}) n_{k_{\parallel}}k_{\parallel}dk_{\parallel}}{\int_{0}^{\infty} G_{f}(k_{\parallel}) n_{k_{\parallel}}k_{\parallel}dk_{\parallel}},$$
(3)

where $G_f = \Theta(k_{\parallel}^{(\alpha)} - k_{\parallel})\Gamma_{x-\gamma}(k_{\parallel})$ is the k_{\parallel} -filtering function, with $\Theta(x)$ the step function and $\Gamma_{x-\gamma}(k_{\parallel})$ the efficiency of the resonant conversion of a QW exciton in an outgoing bulk photon. The function G_f reduces the integration limits on the right-hand side (rhs) of Eq. (3) to the narrow band Δk_{\parallel} = $[0, k_{\parallel}^{(\alpha)}]$ and describes the k_{\parallel} -filtering effect in high-quality planar nanostructures. If both the function $\Gamma_{x-\gamma}(k_{\parallel})$ and the occupation number $n_{k_{\parallel}}$ do not change significantly in the narrow band Δk_{\parallel} , Eq. (3) yields

$$\tilde{g}^{(1)} = \tilde{g}_f^{(1)}(r_{\parallel}) = 2J_1(k_{\parallel}^{(\alpha)}r_{\parallel})/(k_{\parallel}^{(\alpha)}r_{\parallel}), \qquad (4)$$

where J_1 is the first-order Bessel function of the first kind. From Eq. (4) one concludes that the optical coherence length $\xi_{\gamma\gamma}$ evaluated as the half width at half maximum of $\tilde{g}^{(1)} = \tilde{g}_f^{(1)}(r_{\parallel})$, is given by

$$4J_1(k_{\parallel}^{(\alpha)}\xi_{\gamma}) = k_{\parallel}^{(\alpha)}\xi_{\gamma} \to k_{\parallel}^{(\alpha)}\xi_{\gamma} \simeq 2.215.$$
(5)

Equations (4) and (5) illustrate the net k_{\parallel} -filtering effect in the absence of instrumental aberrations: $\xi_{\gamma} \propto 1/k_{\parallel}^{(\alpha)} \propto 1/\sin \alpha$ strongly increases with decreasing aperture angle 2α . Below we analyze in more detail the exciton function $g^{(1)}$ against the optical $\tilde{g}^{(1)}$, assuming no phase transition to a collective (superfluid) state.

First-order spatial coherence of noninteracting quasi-2D bosons (excitons) in equilibrium. In this case, the chemical potential μ_{2d} is given by $\mu_{2d}^{(0)} = k_B T \ln(1 - e^{-T_0/T})$, with $k_B T_0 = (2\pi/g)(\hbar^2/M_x)n_{2d}$ the quantum degeneracy temperature where g is the spin degeneracy factor of bosons (g=4 for indirect excitons). By substituting $n_{k_{\parallel}} = n_{k_{\parallel}}^{\text{BE}}$ into Eq. (1), where $n_{k_{\parallel}}^{\text{BE}}$ is the Bose-Einstein occupation number, one receives

$$g^{(1)} = g^{(1)}_{\text{nint}}(r_{\parallel}) = \frac{T}{T_0} g_1 (1 - e^{T_0/T}, e^{-\pi r_{\parallel}^2/\lambda_{\text{dB}}^2})$$
$$= \frac{T}{T_0} \sum_{n=1}^{\infty} \frac{(1 - e^{-T_0/T})^n}{n} e^{-\pi r_{\parallel}^2/n\lambda_{\text{dB}}^2}.$$
(6)

Here, the generalized Bose function¹⁴ $g_{\nu}(x,y)$ with $\nu=1$ is defined as $g_{\nu}(x,y) = \sum_{k=1}^{\infty} (x^k y^{1/k}) / k^{\nu}$.

For distances $r_{\parallel} \gtrsim r_{\parallel}^{(q)} = \lambda_{dB} [-(2/\pi) \ln(1 - e^{-T_0/T})]^{1/2}$ Eq. (6) reduces to the quantum limit when the sum on the rhs cannot be approximated by the first term,

$$g^{(1)}(r_{\parallel} \gtrsim r_{\parallel}^{(q)}) \simeq 2 \frac{T}{T_0} K_0 \left(\frac{r_{\parallel}}{r_0}\right),\tag{7}$$

where K_0 is the modified Bessel function of the second kind and $r_0 = \lambda_{dB} / [-4\pi \ln(1 - e^{-T_0/T})]^{1/2}$. For $r_{\parallel} \ge r_0 \ge r_{\parallel}^{(q)}$, Eq. (7) reduces further to

$$g^{(1)} = g_q^{(1)}(r_{\parallel} \gtrsim r_0) = \sqrt{2\pi} \frac{T}{T_0} \sqrt{\frac{r_0}{r_{\parallel}}} e^{-r_{\parallel}/r_0}.$$
 (8)

For temperatures $T \ge T_0$, the spatial coherence function is well approximated by Eq. (2), and the quantum corrections given by Eqs. (7) and (8) refer to large $r_{\parallel} \ge r_{\parallel}^{(q)}$ $\simeq \lambda_{\rm dB} \sqrt{(2/\pi) \ln(T/T_0)} \ge \lambda_{\rm dB}$ and, therefore, to very small values of $g^{(1)}$. For $T \le T_0$, when BE statistics is well developed, Eqs. (7) and (8) are valid for distances larger than $r_{\parallel}^{(q)}$ $\simeq \lambda_{\rm dB} \sqrt{(2/\pi)} e^{-T_0/2T} \ll \lambda_{\rm dB}$, so that $g^{(1)}$ is well approximated by $g_q^{(1)}$ for any r_{\parallel} . The quantum statistical effects, which are included in Eq. (7) through $T_0 \propto \hbar^2$, considerably increase the correlation length ξ_x , giving rise to $\xi_x \simeq [\lambda_{\rm dB}/(2\sqrt{\pi})]e^{T_0/2T}$ for $T \le T_0$ (see Fig. 2).

The coherence function $g^{(1)}$ of weakly interacting thermal QW excitons. For circularly polarized excitons in single QWs, the case relevant to MC polaritons, the repulsive interaction between the particles is well approximated by a contact potential $U_{\text{SQW}} = (u_0/2) \, \delta(\mathbf{r}_{\parallel})$, with $u_0 = u_0^{\text{SQW}} > 0$. In this case, the mean-field Hartree-Fock (HF) interaction only shifts the chemical potential, $\mu_{2d} = \tilde{\mu}_{2d}^{(0)} = \mu_{2d}^{(0)} + u_0 n_{2d}$, leaving unchanged Eqs. (6)–(8).

For indirect excitons in coupled QWs, the mid-range dipole-dipole repulsive interaction U_{CQW} of the particles cannot be generally approximated by a contact potential. Following Ref. 15, we use the two-parametric model potential $U_{CQW}(r_{\parallel}) = [(\sqrt{\pi u_0}w)/r_{\parallel}^3](1-e^{-r_{\parallel}^2/w^2})$, with parameters $u_0 = u_0^{QW} \approx 4\pi(e^2/\varepsilon_b)d_z$ (Refs. 16 and 17) and $w \approx a_x^{(2d)}$, where d_z is the distance between coupled quantum wells and $a_x^{(2d)}$ is the radius of an indirect exciton. The model potential reproduces $1/r_{\parallel}^3$ behavior at $r_{\parallel} \approx a_x^{(2d)}$ and $1/r_{\parallel}$ Coulomb repulsive potential at $r_{\parallel} \lesssim a_x^{(2d)}$. The self-consistent HF analysis¹⁸ of the Hamiltonian $H_x = \sum_{\mathbf{p}_{\parallel}} [p_{\parallel}^2/(2M_x)] B_{\mathbf{p}_{\parallel}}^* B_{\mathbf{p}_{\parallel}} + 1/(2S) \sum_{\mathbf{p}_{\parallel}, \mathbf{l}_{\parallel}, \mathbf{q}_{\parallel}} U_{CQW}(\mathbf{q}_{\parallel}) B_{\mathbf{p}_{\parallel}}^{\dagger} B_{\mathbf{l}_{\parallel}+\mathbf{q}_{\parallel}} B_{\mathbf{p}_{\parallel}-\mathbf{q}_{\parallel}}$ yields the n_{2d} and T-dependent change in the in-plane translational mass M_x . In this case, μ_{2d} is

$$\mu_{2d} = \tilde{\mu}_{2d}^{(0)} + \frac{u_0}{2(\lambda_{dB}^*)^2} \Biggl\{ \frac{T_0^*}{T} + \sqrt{\pi} \frac{w}{\lambda_{dB}^*} \Biggl[\frac{\sqrt{\pi}}{2} \frac{w}{\lambda_{dB}^*} \text{Li}_2(F) \\ - \text{Li}_{3/2}(F) \Biggr] \Biggr\},$$
(9)

where, together with Eq. (6), both the de Broglie wavelength λ_{dB}^* and the degeneracy temperature T_0^* are changed according to $M_x \rightarrow M_x^*$, $F=1-e^{-T_0^*/T}$, and $\text{Li}_{\nu}(x)=\sum_{k=1}^{\infty} x^k/k^{\nu}$ is the polylogarithm. The particle mass M_x^* renormalized by the dipole-dipole interaction is given as a single solution of the transcendental equation,

FIG. 2. (Color online) (a) The first-order spatial coherence function $g^{(1)}=g^{(1)}_{\mathrm{inl}}(r_{\parallel})$ of indirect excitons in a GaAs coupled QW structure with $d_z=11.5$ nm and w=15 nm: $n_{2d}=10^{10}$ cm⁻² and T=1 (dotted line), 0.4 (dash-dotted line), 0.2 (dashed line), and 0.1 K (solid line). Inset: the renormalized mass M_x^* against temperature T, calculated with Eq. (10). (b) $g^{(1)}=g^{(1)}_{\mathrm{cl}}(r_{\parallel})$ (solid line), $g^{(1)}=g^{(1)}_{\mathrm{nint}}(r_{\parallel})$ (dashed line), and $g^{(1)}=g^{(1)}_{\mathrm{cl}}(r_{\parallel})$ (dotted line): $n_{2d}=10^{10}$ cm⁻² and T=0.1 K. Inset: the same functions evaluated for $n_{2d}=10^{10}$ cm⁻² and T=1 K.

$$\frac{1}{M_x^*} = \frac{1}{M_x} + \frac{u_0 w}{8\sqrt{\pi}\hbar^2 \lambda_{\rm dB}^*} \left[\sqrt{\pi} \frac{w}{\lambda_{\rm dB}^*} \frac{T_0^*}{T} - \text{Li}_{1/2}(F) \right].$$
(10)

In Fig. 2(a) we plot $g^{(1)} = g_{ind}^{(1)}(r_{\parallel})$ evaluated numerically by using Eqs. (6), (9), and (10) for indirect excitons in a GaAs coupled QW structure. In Fig. 2(b), the coherence function $g_{ind}^{(1)}$ is compared with $g_{cl}^{(1)}$ evaluated with Eq. (2) and $g_{nint}^{(1)}$ calculated with Eq. (6) for noninteracting excitons. The main result is that the dipole-dipole repulsive interaction induces an increase in the translational mass [see the inset of Fig. 2(a)] and, therefore, decreases the coherence length ξ_x compared to that of noninteracting particles [see also Fig. 3(a)]. The effect, however, becomes pronounced only at temperatures well below 1 K. For T=1 K all three correlation functions, $g_{ind}^{(1)}$, $g_{cl}^{(1)}$, and $g_{nin}^{(1)}$, nearly coincide, as is clearly seen in the inset of Fig. 2(b). In other words, for $n_{2d}=10^{10}$ cm⁻² and T=1.5 K, which are relevant to the experiments,⁴⁻⁷ the quantum limit, i.e., $g^{(1)}=g_q^{(1)}$ given by Eq. (8), cannot build up: One estimates $T_0 \approx T_0^* \approx 0.65$ K and $n_{k_{\parallel}=0}^{\text{BE}} \approx 0.54 < 1$, so that BE statistics is rather weakly developed to influence the coherence length ξ_x .

The given description of $g^{(1)}$ refers to temperatures above

FIG. 3. (Color online) (a) The dependence of the correlation length ξ_x against temperature *T*, calculated for noninteracting (dashed line) and dipole-dipole interacting (solid line) indirect excitons. (b) The k_{\parallel} -filtering effect: $\tilde{g}^{(1)} = \tilde{g}^{(1)}(r_{\parallel})$ evaluated for α = 18.9° (solid line), 8.3° (dashed line), 2.1° (dotted line), 1.4° (dashdotted line), and 0.8° (dash-double-dotted line). Inset: the real-space 2D image of $\tilde{g}^{(1)}$. (c) The coherence length ξ_{γ} against the aperture angle 2α .

 T_0 , i.e., when classical or weakly developed BE statistics are realized, and to a quantum gas of indirect excitons at $T \leq T_0$, but still above the phase transition temperature. In all these cases the correlation function for a quasi-2D system of weakly interacting excitons is universally given by Eq. (6).

The optical spatial coherence function $\tilde{g}^{(1)}$ of indirect excitons. In order to explain the experiments,^{4–7} which demonstrate a coherence length ξ_{γ} much larger than $\xi_x \sim 0.1 \ \mu m$, we implement the concept of k_{\parallel} -filtering. In this case, $\tilde{g}^{(1)}$ $=\tilde{g}_{ind}^{(1)}(r_{\parallel})$ is given by Eq. (3) with the efficiency of the "indirect exciton \rightarrow bulk photon" conversion $\Gamma_{\chi_{1}\gamma} = (2k_{0}^{2})^{-1/2} [k_{0}(k_{0}^{2} - k_{\parallel}^{2})^{1/2}]^{-1/2}$. In Fig. 3(b), we plot $\tilde{g}_{\text{ind}}^{(1)\gamma}$ calculated for various aperture angles, $2^{\circ} \leq 2\alpha \leq 40^{\circ}$. The dependence $\tilde{\chi}_{1}^{(1)\gamma} = \tilde{\chi}_{1}^{(1)\gamma}$. dence $\tilde{g}^{(1)} = \tilde{g}^{(1)}_{ind}(r_{\parallel})$ is well approximated by Eq. (4). The above approximation of $\tilde{g}^{(1)}$ by the "device function" $\tilde{g}_{f}^{(1)}$ is valid when $n_{k_{\parallel}} = n_{E=\hbar^2 k_{\parallel}^2/2M_x}^{\text{BE}}$ is nearly constant in the rather narrow energy interval $0 \le E \le E^{(\alpha)}$, i.e., when $E^{(\alpha)} = (\hbar k_{\parallel}^{(\alpha)})^2 / 2M_x \le k_B T e^{-T_0/T}$. For indirect excitons, this inequality with T_0 replaced by T_0^* is definitely held for n_{2d} $\sim 10^{10}$ cm⁻² and $T \sim 1$ K (e.g., for $\alpha = 20^{\circ}$ the cutoff energy $E^{(\alpha)}$ is only 1.2 μ eV). Thus the <u>k</u>_l-filtering effect yields the correlation length $\xi_{\gamma} \simeq 2.215 \sqrt{\varepsilon_b} / (k_0 \sin \alpha)$, with $k_0 \simeq 2.8$ $\times 10^5$ cm⁻¹, according to Eq. (5). As a result, ξ_{γ} is intrinsically scaled by the photon wavelength, i.e., is in the micron length scale [see Fig. 3(c), where ξ_{γ} is plotted against the angle α].

Compared to standard interference patterns in Young's double-slit experiment, with visibility contrast determined by $\tilde{g}^{(1)}$, the oscillatory behavior of the optical coherence function $\tilde{g}^{(1)} = \tilde{g}^{(1)}(r_{\parallel})$ is rather unusual [see Eq. (4) and Fig. 3(b)]. This is a signature of the k_{\parallel} -filtering effect: The k_{\parallel} -filtering function $G_f \propto \Theta(k_{\parallel}^{(\alpha)} - k_{\parallel})$ gives a sharp cutoff at $k_{\parallel} = k_{\parallel}^{(\alpha)}$ in the integrals of Eq. (3) that results in oscillations of $\tilde{g}^{(1)}(r_{\parallel})$. In some aspects, the effect is similar to Friedel oscillations in a Fermi liquid, with $\hbar k_{\parallel}^{(\alpha)}$ akin to the Fermi momentum.

The coherence function $\tilde{g}^{(1)}$ of MC polaritons. In this case, the "MC polariton \rightarrow bulk photon" conversion function in Eq. (3) is $\Gamma_{x-\gamma} = \Psi(k_{\parallel}) / \tau_{\gamma}(k_{\parallel})$, with Ψ ($0 \le \Psi \le 1$) the photon component along a MC polariton branch and τ_{γ} the radiative (escape) lifetime of a MC photon. In Fig. 4, $g^{(1)} = g^{(1)}_{MC}(r_{\parallel})$ calculated with Eq. (6) for circularly polarized MC polaritons is compared with $\tilde{g}^{(1)} = \tilde{g}^{(1)}_{MC}(r_{\parallel})$ evaluated with Eq. (3). According to the experiments,^{2,3} we assume the BE distribution of MC polaritons along the lower polariton branch which is taken in the parabolic approximation with an effective in-plane mass M^{lb}_{MC} . Compared to the case of QW excitons, the difference between $g^{(1)}_{MC}$ and $\tilde{g}^{(1)}_{MC}$ is much smaller, still giving $\xi_{\gamma} > \xi_p$. This is because the cutoff energy $E^{(\alpha)}$ in the k_{\parallel} -filtering effect is much larger than that relevant to QW excitons, due to $M^{lb}_{MC} \ll M_x$. If $k_BT \ll E^{(\alpha)} \sim 1$ meV, $g^{(1)}_{MC}$ and $\tilde{g}^{(1)}_{MC}$ nearly coincide (see Fig. 4).

We qualitatively explain a sharp increase in the coherence length with decreasing temperature, found in the experiments with coupled QWs,^{4–7} by combining the k_{\parallel} -filtering effect with screening of disorder by dipole-dipole interacting indirect excitons.¹⁷ In high-quality GaAs coupled QWs the screening process effectively develops at $T \leq 5$ K, giving

- ¹I. Bloch, T. W. Hänsch, and T. Esslinger, Nature (London) **403**, 166 (2000).
- ²J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature (London) **443**, 409 (2006).
- ³H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, Phys. Rev. Lett. **99**, 126403 (2007).
- ⁴S. Yang, A. T. Hammack, M. M. Fogler, L. V. Butov, and A. C. Gossard, Phys. Rev. Lett. **97**, 187402 (2006).
- ⁵ A. V. Gorbunov and V. B. Timofeev, Pis'ma Zh. Eksp. Teor. Fiz. **84**, 390 (2006) [JETP Lett. **84**, 329 (2006)].
- ⁶L. V. Butov, J. Phys.: Condens. Matter 19, 295202 (2007).
- ⁷V. B. Timofeev, in *Problems of Condensed Matter Physics*, edited by A. L. Ivanov and S. G. Tikhodeev (Oxford University Press, Oxford, 2008), pp. 258–284.
- ⁸E. Hanamura, Phys. Rev. B **38**, 1228 (1988).
- ⁹L. C. Andreani, F. Tassone, and F. Bassani, Solid State Commun. 77, 641 (1991).
- ¹⁰D. S. Citrin, Phys. Rev. B 47, 3832 (1993).
- ¹¹C. Klingshirn, *Semiconductor Optics*, 3rd ed. (Springer, Berlin, 2007), Sec. 23.4.

FIG. 4. (Color online) The MC polariton coherence function $g^{(1)} = g_{\rm MC}^{(1)}(r_{\parallel})$ (dashed lines) against that of emitted photons, $\tilde{g}^{(1)} = \tilde{g}_{\rm MC}^{(1)}(r_{\parallel})$ (solid lines). Inset: the coherence lengths ξ_p and ξ_γ versus temperature *T*. The calculations, which model the experiments (Ref. 3) refer to a GaAs microcavity with positive detuning δ =7 meV and Rabi splitting $\Omega_{\rm MC}$ =4 meV. The density of MC polaritons n_{2d} =10⁸ cm⁻² and the aperture half-angle α =16.7°, so that T_0 =27.6 K and $E^{(\alpha)}$ =0.96 meV.

rise to a well-defined single-particle momentum $\hbar \mathbf{k}_{\parallel}$, as has been observed, e.g., in the experiments.^{20,21} Thus the large correlation length $\xi = \xi_{\gamma} \sim 1 \ \mu m$ can naturally be explained by the k_{\parallel} -filtering effect and cannot be interpreted as a signature of BE condensation in a system of indirect excitons.

We appreciate valuable discussions with L. V. Butov.

- ¹²R. J. Glauber, in *Quantum Optics and Electronics*, edited by C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965).
- ¹³M. O. Scully and M. S. Zubairy, *Quantum Optics* (Cambridge University Press, Cambridge, 1997).
- ¹⁴M. Naraschewski and R. J. Glauber, Phys. Rev. A 59, 4595 (1999).
- ¹⁵D. M. Kachintsev and S. E. Ulloa, Phys. Rev. B **50**, 8715 (1994).
- ¹⁶L. V. Butov, J. Phys.: Condens. Matter **16**, R1577 (2004).
- ¹⁷A. L. Ivanov, Europhys. Lett. **59**, 586 (2002).
- ¹⁸A. L. Fetter and J. D. Walecka, *Quantum Theory of Many-Particle Systems* (McGraw-Hill, New York, 1971).
- ¹⁹A. L. Ivanov, P. B. Littlewood, and H. Haug, Phys. Rev. B **59**, 5032 (1999).
- ²⁰A. Parlangeli, P. C. M. Christianen, J. C. Maan, I. V. Tokatly, C. B. Soerensen, and P. E. Lindelof, Phys. Rev. B **62**, 15323 (2000).
- ²¹L. V. Butov, A. L. Ivanov, A. Imamoglu, P. B. Littlewood, A. A. Shashkin, V. T. Dolgopolov, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. **86**, 5608 (2001).