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We propose and analyze a k�-filtering effect which gives rise to the drastic difference between the actual
spatial coherence length of quasi-two-dimensional excitons or microcavity polaritons in planar nanostructures
and that inferred from far-field optical measurements. The effect originates from conservation of the in-plane
wave-vector k� in the optical decay of the particles in outgoing bulk photons. The k�-filtering effect explains the
large coherence lengths recently observed for indirect excitons in coupled quantum wells but is less pro-
nounced for microcavity polaritons at low temperatures, T�10 K.
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Long-range spatial coherence is a fingerprint of well-
developed Bose-Einstein �BE� statistics. Measurements of
the first-order spatial coherence function g�1� and the coher-
ence length � have allowed visualization of the BE conden-
sation transition in a trapped Bose gas of Rb atoms.1 There
are several recent reports on the observation of long-range
spatial optical coherence in a low-temperature quasi-two-
dimensional �quasi-2D� system of microcavity �MC�
polaritons2,3 and indirect excitons.4–7 In this case, the reso-
nant optical decay of MC polaritons or quantum well �QW�
excitons in bulk photon modes allows mapping of the in-
plane coherence function g�1� of the particles by measuring
the optical coherence function g̃�1� of the emitted photons. It
is commonly assumed that the coherence length of QW ex-
citons �MC polaritons�, �x��p�, associated with g�1�, is iden-
tical to that, ��, of the optical coherence function g̃�1�.

In this Brief Report, we report a k�-filtering effect, which
can strongly influence the optical coherence function g̃�1�

measured from a planar nanostructure, and calculate g�1� and
g̃�1� for QW excitons and MC polaritons. For QW excitons,
the k�-filtering effect tremendously increases the optical co-
herence length ��, leading to ����x, and can naturally ex-
plain the micron coherence lengths observed for indirect ex-
citons and attributed to spontaneously developed coherence.
The effect is less pronounced for MC polaritons, still with
����p.

The k�-filtering effect stems from the energy and in-plane
momentum conservation in the resonant conversion
“quasi-2D QW exciton �MC polariton� → outgoing bulk
photon.” For a QW structure surrounded by thick coplanar
barrier layers, the case illustrated in Fig. 1, only low-energy
optically active excitons from the radiative zone k� �k0
= ���b /c�	0, with �b the dielectric constant of barrier layers
and 
	0 the exciton energy at k� =0, are bright, i.e., can emit
far-field light.8–11 In a far-field optical experiment with de-
tection angle 2� �see Fig. 1�b��, the fraction of QW excitons
which contribute to the optical signal is drastically further
reduced to the wave-vector band �k� given by 0�k� �k�

���

= �k0 /��b�sin �
k0. The �-dependent narrowing of the de-
tected states results in an effective broadening of the first-
order spatial coherence function g̃�1�. In addition, the sharp
cutoff of the detected states at k� =k�

��� yields an unusual os-
cillatory behavior of g̃�1�. The k�-filtering effect has no anal-
ogy in optics of bulk excitons or polaritons.

The first-order spatial coherence function g�1� �Refs. 12
and 13� of quantum well excitons, at a fixed time, is
given by g�1��r�� ,r���=G�1��r�� ,r��� / �G�1��r�� ,r���G�1��r�� ,r����1/2,

with G�1��r�� ,r���= ��̂†�r����̂�r����, where �̂�r���
= �1 /�S�	k�

eik�r��Bk�
, r�� is the in-plane coordinate, S is the

area, and Bk�
is the exciton operator. Thus for isotropically

distributed QW excitons one receives

g�1� = g�1��r�� =
1

2�n2d



0

�

J0�k�r��nk�
k�dk� , �1�

where r� = �r��−r���, n2d is the concentration of particles, nk�

= �Bk�

† Bk�
� is the occupation number, and J0 is the zeroth-

order Bessel function of the first kind. For a classical gas of
QW excitons at thermal equilibrium, Eq. �1�, with nk�

given
by the Maxwell-Boltzmann �MB� distribution function nk�

MB,
yields the well-known result,3,14

(a) (b)

FIG. 1. �Color online� Schematic of the k�-filtering effect. �a�
The exciton and photon dispersions. Only low-energy QW excitons
from the radiative zone k� �k0 can emit outgoing bulk photons. �b�
A far-field optical experiment with detection angle 2�: a small frac-
tion of QW excitons with �k���k�

���= �k0 /��b�sin � contributes to
the optical signal.
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g�1� = gcl
�1��r�� = e−�r�

2/�dB
2

, �2�

where the thermal de Broglie wavelength is given by �dB
= ��2�
2� / �MxkBT��1/2, with T the temperature and Mx the
exciton in-plane translational mass. For helium temperatures,
one estimates from Eq. �2� the coherence length of MB-
distributed indirect excitons in GaAs coupled QWs as �x
��dB�0.1 �m.

Compared with Eq. �1�, the spatial coherence function g̃�1�

of photons emitted by QW excitons is given by

g̃�1��r�� =



0

�

Gf�k��J0�k�r��nk�
k�dk�



0

�

Gf�k��nk�
k�dk�

, �3�

where Gf =��k�
���−k���x−��k�� is the k�-filtering function,

with ��x� the step function and �x−��k�� the efficiency of the
resonant conversion of a QW exciton in an outgoing bulk
photon. The function Gf reduces the integration limits on the
right-hand side �rhs� of Eq. �3� to the narrow band �k�

= �0,k�
���� and describes the k�-filtering effect in high-quality

planar nanostructures. If both the function �x−��k�� and the
occupation number nk�

do not change significantly in the nar-
row band �k�, Eq. �3� yields

g̃�1� = g̃f
�1��r�� = 2J1�k�

���r��/�k�
���r�� , �4�

where J1 is the first-order Bessel function of the first kind.
From Eq. �4� one concludes that the optical coherence length
��, evaluated as the half width at half maximum of g̃�1�

= g̃f
�1��r��, is given by

4J1�k�
������ = k�

����� → k�
����� 
 2.215. �5�

Equations �4� and �5� illustrate the net k�-filtering effect in
the absence of instrumental aberrations: ���1 /k�

���

�1 /sin � strongly increases with decreasing aperture angle
2�. Below we analyze in more detail the exciton function
g�1� against the optical g̃�1�, assuming no phase transition to a
collective �superfluid� state.

First-order spatial coherence of noninteracting quasi-2D
bosons (excitons) in equilibrium. In this case, the chemical
potential �2d is given by �2d

�0�=kBT ln�1−e−T0/T�, with kBT0
= �2� /g��
2 /Mx�n2d the quantum degeneracy temperature
where g is the spin degeneracy factor of bosons �g=4 for
indirect excitons�. By substituting nk�

=nk�

BE into Eq. �1�,
where nk�

BE is the Bose-Einstein occupation number, one re-
ceives

g�1� = gnint
�1� �r�� =

T

T0
g1�1 − eT0/T,e−�r�

2/�dB
2

�

=
T

T0
	
n=1

�
�1 − e−T0/T�n

n
e−�r�

2/n�dB
2

. �6�

Here, the generalized Bose function14 g��x ,y� with �=1 is
defined as g��x ,y�=	k=1

� �xky1/k� /k�.

For distances r� �r�
�q�=�dB�−�2 /��ln�1−e−T0/T��1/2 Eq. �6�

reduces to the quantum limit when the sum on the rhs cannot
be approximated by the first term,

g�1��r� � r�
�q�� 
 2

T

T0
K0� r�

r0
� , �7�

where K0 is the modified Bessel function of the second kind
and r0=�dB / �−4� ln�1−e−T0/T��1/2. For r� �r0�r�

�q�, Eq. �7�
reduces further to

g�1� = gq
�1��r� � r0� = �2�

T

T0
�r0

r�

e−r�/r0. �8�

For temperatures T�T0, the spatial coherence function is
well approximated by Eq. �2�, and the quantum corrections
given by Eqs. �7� and �8� refer to large r� �r�

�q�


�dB
��2 /��ln�T /T0���dB and, therefore, to very small val-

ues of g�1�. For T�T0, when BE statistics is well developed,
Eqs. �7� and �8� are valid for distances larger than r�

�q�


�dB
��2 /��e−T0/2T
�dB, so that g�1� is well approximated

by gq
�1� for any r�. The quantum statistical effects, which are

included in Eq. �7� through T0�
2, considerably increase the
correlation length �x, giving rise to �x
��dB / �2����eT0/2T for
T�T0 �see Fig. 2�.

The coherence function g�1� of weakly interacting thermal
QW excitons. For circularly polarized excitons in single
QWs, the case relevant to MC polaritons, the repulsive inter-
action between the particles is well approximated by a con-
tact potential USQW= �u0 /2���r��, with u0=u0

SQW�0. In this
case, the mean-field Hartree-Fock �HF� interaction only
shifts the chemical potential, �2d= �̃2d

�0�=�2d
�0�+u0n2d, leaving

unchanged Eqs. �6�–�8�.
For indirect excitons in coupled QWs, the mid-range

dipole-dipole repulsive interaction UCQW of the particles can-
not be generally approximated by a contact potential. Fol-
lowing Ref. 15, we use the two-parametric model potential

UCQW�r��= ����u0w� /r�
3��1−e−r�

2/w2
�, with parameters u0

=u0
CQW
4��e2 /�b�dz �Refs. 16 and 17� and w
ax

�2d�, where
dz is the distance between coupled quantum wells and ax

�2d�

is the radius of an indirect exciton. The model potential re-
produces 1 /r�

3 behavior at r� �ax
�2d� and 1 /r� Coulomb repul-

sive potential at r� �ax
�2d�. The self-consistent HF analysis18

of the Hamiltonian Hx=	p�
�p�

2 / �2Mx��Bp�

† Bp�
+1 / �2S�	p�,l�,q�

UCQW�q��Bp�

† Bl�
†Bl�+q�

Bp�−q�
yields the n2d− and T-dependent

change in the in-plane translational mass Mx. In this case,
�2d is

�2d = �̃2d
�0� +

u0

2��dB
� �2�T0

�

T
+ ��

w

�dB
� ���

2

w

�dB
� Li2�F�

− Li3/2�F��� , �9�

where, together with Eq. �6�, both the de Broglie wavelength
�dB

� and the degeneracy temperature T0
� are changed accord-

ing to Mx→Mx
�, F=1−e−T0

�/T, and Li��x�=	k=1
� xk /k� is the

polylogarithm. The particle mass Mx
� renormalized by the

dipole-dipole interaction is given as a single solution of the
transcendental equation,
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1

Mx
� =

1

Mx
+

u0w

8��
2�dB
� ���

w

�dB
�

T0
�

T
− Li1/2�F�� . �10�

In Fig. 2�a� we plot g�1�=gind
�1��r�� evaluated numerically by

using Eqs. �6�, �9�, and �10� for indirect excitons in a GaAs
coupled QW structure. In Fig. 2�b�, the coherence function
gind

�1� is compared with gcl
�1� evaluated with Eq. �2� and gnint

�1�

calculated with Eq. �6� for noninteracting excitons. The main
result is that the dipole-dipole repulsive interaction induces
an increase in the translational mass �see the inset of Fig.
2�a�� and, therefore, decreases the coherence length �x com-
pared to that of noninteracting particles �see also Fig. 3�a��.
The effect, however, becomes pronounced only at tempera-
tures well below 1 K. For T=1 K all three correlation func-
tions, gind

�1�, gcl
�1�, and gnint

�1� , nearly coincide, as is clearly seen in
the inset of Fig. 2�b�. In other words, for n2d=1010 cm−2 and
T=1.5 K, which are relevant to the experiments,4–7 the
quantum limit, i.e., g�1�=gq

�1� given by Eq. �8�, cannot build
up: One estimates T0
T0

��0.65 K and nk�=0
BE �0.54�1, so

that BE statistics is rather weakly developed to influence the
coherence length �x.

The given description of g�1� refers to temperatures above

T0, i.e., when classical or weakly developed BE statistics are
realized, and to a quantum gas of indirect excitons at T
�T0, but still above the phase transition temperature. In all
these cases the correlation function for a quasi-2D system of
weakly interacting excitons is universally given by Eq. �6�.

The optical spatial coherence function g̃�1� of indirect ex-
citons. In order to explain the experiments,4–7 which demon-
strate a coherence length �� much larger than �x�0.1 �m,
we implement the concept of k�-filtering. In this case, g̃�1�

= g̃ind
�1��r�� is given by Eq. �3� with the efficiency of the “indi-

rect exciton → bulk photon” conversion �x−�= �2k0
2

−k�
2� / �k0�k0

2−k�
2�1/2�.8–10,19 In Fig. 3�b�, we plot g̃ind

�1� calcu-
lated for various aperture angles, 2° �2��40°. The depen-
dence g̃�1�= g̃ind

�1��r�� is well approximated by Eq. �4�. The
above approximation of g̃�1� by the “device function” g̃f

�1� is
valid when nk�

=nE=
2k�
2/2Mx

BE is nearly constant in the rather

narrow energy interval 0�E�E���, i.e., when E���

= �
k�
����2 /2Mx
kBTe−T0/T. For indirect excitons, this in-

equality with T0 replaced by T0
� is definitely held for n2d

�1010 cm−2 and T�1 K �e.g., for �=20° the cutoff energy
E��� is only 1.2 �eV�. Thus the k�-filtering effect yields the
correlation length ��
2.215��b / �k0 sin ��, with k0
2.8
�105 cm−1, according to Eq. �5�. As a result, �� is intrinsi-
cally scaled by the photon wavelength, i.e., is in the micron
length scale �see Fig. 3�c�, where �� is plotted against the
angle ��.

*

FIG. 2. �Color online� �a� The first-order spatial coherence func-
tion g�1�=gind

�1��r�� of indirect excitons in a GaAs coupled QW struc-
ture with dz=11.5 nm and w=15 nm: n2d=1010 cm−2 and T=1
�dotted line�, 0.4 �dash-dotted line�, 0.2 �dashed line�, and 0.1 K
�solid line�. Inset: the renormalized mass Mx

� against temperature T,
calculated with Eq. �10�. �b� g�1�=gcl

�1��r�� �solid line�, g�1�

=gnint
�1� �r�� �dashed line�, and g�1�=gind

�1��r�� �dotted line�: n2d

=1010 cm−2 and T=0.1 K. Inset: the same functions evaluated for
n2d=1010 cm−2 and T=1 K.

FIG. 3. �Color online� �a� The dependence of the correlation
length �x against temperature T, calculated for noninteracting
�dashed line� and dipole-dipole interacting �solid line� indirect ex-
citons. �b� The k�-filtering effect: g̃�1�= g̃�1��r�� evaluated for �
=18.9° �solid line�, 8.3° �dashed line�, 2.1° �dotted line�, 1.4° �dash-
dotted line�, and 0.8° �dash-double-dotted line�. Inset: the real-space
2D image of g̃�1�. �c� The coherence length �� against the aperture
angle 2�.
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Compared to standard interference patterns in Young’s
double-slit experiment, with visibility contrast determined by
g̃�1�, the oscillatory behavior of the optical coherence func-
tion g̃�1�= g̃�1��r�� is rather unusual �see Eq. �4� and Fig. 3�b��.
This is a signature of the k�-filtering effect: The k�-filtering
function Gf ���k�

���−k�� gives a sharp cutoff at k� =k�
��� in the

integrals of Eq. �3� that results in oscillations of g̃�1��r��. In
some aspects, the effect is similar to Friedel oscillations in a
Fermi liquid, with 
k�

��� akin to the Fermi momentum.
The coherence function g̃�1� of MC polaritons. In this case,

the “MC polariton → bulk photon” conversion function in
Eq. �3� is �x−�=��k�� /���k��, with � �0���1� the photon
component along a MC polariton branch and �� the radiative
�escape� lifetime of a MC photon. In Fig. 4, g�1�=gMC

�1� �r��
calculated with Eq. �6� for circularly polarized MC polari-
tons is compared with g̃�1�= g̃MC

�1� �r�� evaluated with Eq. �3�.
According to the experiments,2,3 we assume the BE distribu-
tion of MC polaritons along the lower polariton branch
which is taken in the parabolic approximation with an effec-
tive in-plane mass MMC

lb . Compared to the case of QW exci-
tons, the difference between gMC

�1� and g̃MC
�1� is much smaller,

still giving ����p. This is because the cutoff energy E��� in
the k�-filtering effect is much larger than that relevant to QW
excitons, due to MMC

lb 
Mx. If kBT
E����1 meV, gMC
�1� and

g̃MC
�1� nearly coincide �see Fig. 4�.

We qualitatively explain a sharp increase in the coherence
length with decreasing temperature, found in the experiments
with coupled QWs,4–7 by combining the k�-filtering effect
with screening of disorder by dipole-dipole interacting indi-
rect excitons.17 In high-quality GaAs coupled QWs the
screening process effectively develops at T�5 K, giving

rise to a well-defined single-particle momentum 
k�, as has
been observed, e.g., in the experiments.20,21 Thus the large
correlation length �=���1 �m can naturally be explained
by the k�-filtering effect and cannot be interpreted as a sig-
nature of BE condensation in a system of indirect excitons.

We appreciate valuable discussions with L. V. Butov.
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FIG. 4. �Color online� The MC polariton coherence function
g�1�=gMC

�1� �r�� �dashed lines� against that of emitted photons, g̃�1�

= g̃MC
�1� �r�� �solid lines�. Inset: the coherence lengths �p and �� versus

temperature T. The calculations, which model the experiments �Ref.
3� refer to a GaAs microcavity with positive detuning �=7 meV
and Rabi splitting �MC=4 meV. The density of MC polaritons
n2d=108 cm−2 and the aperture half-angle �=16.7°, so that T0

=27.6 K and E���=0.96 meV.
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