
 
 

i 
 

HIGH RESOLUTION ELECTRIC FIELD PROBES 

WITH APPLICATIONS IN HIGH EFFICIENCY RF 

POWER AMPLIFIER DESIGN 
 

 

 

 

Nelo Dehghan 

 

 

A thesis submitted to Cardiff University 

for the degree of Doctor of Philosophy 

 

 

 

September 2014 

 

 

 

 

 

 

 

 

 

 

 

  



 

ii 
 

 

  



 
 

iii 
 

 

Declaration 

 

This work has not previously been accepted in substance for any degree and is not 

concurrently submitted in candidature for any other higher degree. 

 

 

Signed:……………………………..(Candidate) Date:…………………………. 

 

 

Statement 1 

 

This thesis is being submitted in partial fulfilment of the requirements for the degree of 

……………..(insert as appropriate PhD, MPhil, EngD)  

 

 

Signed:……………………………..(Candidate) Date:…………………………. 

 

 

Statement 2 

 

This thesis is the result of my own independent work/investigation, except where 

otherwise stated.  Other sources are acknowledged by explicit references. 

 

 

Signed:……………………………..(Candidate) Date:…………………………. 

 

 

Statement 3 

 

I hereby give consent for my thesis, if accepted, to be available for photocopying, inter-

library loan and for the title and summary to be made available to outside organisations. 

 

 

Signed:……………………………..(Candidate) Date:…………………………. 

 

 

 

 



 

iv 
 

ACKNOWLEDGMENTS 

I would like to start off by expressing my deepest appreciation and gratitude to my 

supervisors Professor Steve Cripps and Professor Adrian Porch, thank you for all 

your guidance and support.  

The path felt long during the journey, but looking back the time seemed to 

disappear. I am grateful to the memories I have, the people I have met and the 

experience I am left with. 

I’d like to thank my fellow colleagues: Dr David Rowe, thank you for allowing me to 

pester you, constantly. Thank you also to Dr Alex Morgan, I am still waiting on my 

wish list. 

I would also like to thank Dr Jonny Lees, Dr Randeep Saini and Dr Jack Naylon for 

their wisdom, time and help.  

I would like to say a thank you to my friends and family. Your support saw me to 

the end. Mr. P, I hope you liked the input. With a final thank you to Jonathan Cox, 

my shoe. Thank you for finding my commas,,,, 

  



 
 

v 
 

 

 

ABSTRACT 

The evolution of high power transistors has ultimately increased the complexity of 

their design, interaction and incorporation within microwave frequency power 

amplifiers. The requirement for high efficiency and high linearity for a wide band 

frequency by the consumer has put pressure on designers. Due to unexpected and 

unpredictable failures, device characterisation of the transistor in operational 

conditions is a highly valuable advantage. The proposed work will describe a non-

intrusive, ultra-miniaturised, high resolution electric field probe system; with the 

capability of measuring relative voltage and waveforms distribution of complex 

active devices within their operating conditions.  

The design, construction and evolution of the probing system will be described 

displaying a resolution of better than 100μm, with a flat frequency response of up 

to 8GHz. Due to the miniaturised size and the flexibility in positioning, the probe 

has the ability to measure on-chip, at the device plane, across the device periphery. 

Results will show direct observation of device plane voltages in high power RFPAs, 

where the device can exhibit variation in the voltage distribution across the 

periphery. Such variation will be a function of the internal behaviour and not 

evident in the output characteristics of the device. This work will also describe a 

novel method for absolute calibration of the probing system which can be 

implemented with every movement of the measurement plane. Therefore 

presenting a successful and calibrated EFP system capable of device 

characterisation and diagnostics. 
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1. INTRODUCTION 

The work presented within this thesis ultimately achieves two specific goals. One; 

the development and evolution of a high-resolution Electric Field Probe (EFP) for 

use at GHz frequencies and two; the successful application of the EFP for in-situ 

measurements of complex active devices within operational high power 

microwave amplifier systems. Unconventionally, the initial goal of the outlined 

work was to develop an alternative method for the measurement and device 

characterisation of high power transistors within a functioning amplifier system, 

specifically the Doherty Power Amplifier (DPA). The DPA provides an excellent 

solution as an efficiency enhancement technique, however is prone to 

unexplainable failure, both catastrophic and unexpected performance. Existing 

characterisation methods, such as load-pull systems and ElectroMagnetic (EM) 

simulators, at times, are unable to pre-empt such failures. For this reason the 

initial research conducted within the presented work required the design and 

development of an ultra-miniaturised, high-resolution EFP capable of extracting 

on-chip waveform information for the given Device Under Test (DUT). 

 

1.1. Research Overview 

1.1.1. Introduction to EFP techniques and literature Review: Outline of Chapter 2 
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This chapter provides the outline of the theory presented within this work. 

Preliminary explanations will be provided regarding the importance of the work, 

before an in depth discussion regarding the models and concepts utilised for the 

upcoming research. The literature review will firstly seek to understand the 

conceptual idea of the transistor and its function within a DPA system before 

concentration is focused to the EFP and alternative methods of characterisation. By 

fully understanding the needs, requirements and topology of the transistor, the 

requirements of the EFP system can be set. Alternative design methods of the EFP 

will be shown and discussed, though it will be evident that their design and 

resolution capabilities are not sufficient for the requirements of the work 

presented.  

 

1.1.2. Initial work performed on Coaxial EF probes: Outline of chapter 3 

Chapter 3 will outline preliminary work on the EFP, where initial resolution 

capability was much greater than 100μm. A novel feature is introduced with the 

positioning of a small buffer amplifier close to the probe tip, providing a much 

needed increase in output as well as reducing the level of stray pick-up. The non-

satisfactory resolution is result of the materials used for the construction of the 

EFP, as probes were fabricated with the smallest commercially available coaxial 

cables. However, an important design feature was discovered by the work 

presented within this chapter; the resulting spatial resolution was dependent on 

both the diameter of the inner and outer conductor of the probe tip. Though 

theoretical expectation predicts this dependence mainly as a function of inner 

diameter as this is the region which couples to the field produced by the DUT. 

 

1.1.3. The EDM electric field probe: Outline of chapter 4 

The work continued within this chapter shows further evolution of the EFP. The 

attainment of further reduced commercially available coaxial cables proved 

difficult, for this reason the study concentrated on the custom design of a coaxial 

line. Sourcing of copper tubes with an outer diameter of 0.24mm and threading an 

enamelled copper wire with a diameter of 0.07mm resulted in a custom EFP 

fabrication. This subsequent reduction in both the inner and outer diameter of the 

EFP resulted in an improved resolution of greater than 100μm. Within this chapter 
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both the probe tip length and probe tip protrusion is investigated, yielding the 

conclusion that the length of probe line dictates the resonance present in the 

frequency response, while the presence of probe tip protrusion decreases the 

resolution capability of the EFP. The importance of a constant measurement plane 

is shown within this chapter, with the most important conclusion being a decay of 

half the output requires an increase in the measurement plane of up to 100μm. 

This finding is extremely important when considering the results shown within 

chapter 7 and 8. 

1.1.4. MMIC amplified EDM Electric field probe: Outline of chapter 5 

With the spatial resolution to the required level, this chapter focussed on the 

improvement of the frequency response of the EFP. The incorporation of the buffer 

amplifier introduced in chapters 3 and 4 yielded a flat response up to 4GHz before 

resonance as parasitic components dominated. The design and implementation of 

a Monolithic Microwave Integrated Circuit (MMIC) will result in a flattening of the 

frequency response to a much higher frequency, greater than 8GHz. The probe tip 

line length, tip protrusion and alternative design of the EFP is investigated within 

this chapter. Consistent evidence is shown that the length of the probe line dictates 

the resonance present in the response, where shorter the line length results in a 

resonance at a higher frequency. Further evidence is presented that the inclusion 

of a probe tip protrusion will increase the output of the probe but at the expense of 

the spatial resolution.  

Alternative EFP probe designs are presented and include the incorporation of an 

ultra-fine coaxial cable and the construction of a control EFP (with no buffer 

amplifier). The construction of the control EFP displays the importance of the 

buffer amplifier and its incorporation as well as showing the high frequency 

response is solely due to parasitic components as a result of the MMIC design. 

Therefore the high frequency response can be further improved with modification 

to the buffer amplifier and not the design of the EFP tip. 

1.1.5. High power amplifier diagnostic: Outline of chapter 6 

Previous chapters have shown the design, fabrication and calibration 

measurements of the EFP concluding entities such as; resolution, output, response 

and sensitivity to the local geometry. However measurements thus far have been 
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conducted on simple passive structures. This chapter shows initial measurements 

conducted on high power and complex structures. All investigations shown will 

require the removal of the transistors protective ceramic casing, vital for direct 

chip access. Important key features presented include; the ability to detect device 

plane variation and provide diagnostics of broken bondwires.  These anomalies are 

not present or cannot be detect at the output of the device, thus highlighting the 

importance of the EFP as a diagnostic tool. 

1.1.6. Doherty power amplifier diagnostic: Outline of chapter 7 

With successful high power measurements conducted within chapter 6; chapter 7 

will focus on a more complicated system, a DPA. The EFP is lowered over the drain 

manifold of both the main and peaking devices, for the most accurate 

measurement of drain voltage. Substantial variation along the device periphery 

resulted in a difference of up to two times in the measured 𝑉𝑝𝑝 values, where the 

maximum voltage held by the peaking device was at a higher value. Again, these 

anomalies are not seen in the output characteristic of the amplifier and therefore 

can go potentially undetected.  

1.1.7. Asymmetrical Doherty power amplifier diagnostics: Outline of chapter 8 

Chapter 8 will display and discuss the results of an asymmetrical DPA, usually 

regarded as more complex system than a symmetrical DPA due to the use of 

different sub-amplifiers. The EFP will successfully measure the voltage and 

waveform distribution along both devices highlighting unexpected measurements 

such as; the main device exhibiting a clear and visible trend, whereby the 

maximum voltage is measured in the central position of the device with substantial 

roll-off at each edge and the peaking device displays significant variation along the 

device periphery. The variation measured will be shown to have a proportional 

effect on the waveform distribution, thus the fundamental components of the drain 

voltage will display differences in the measured peak values depending on the 

point of comparison along the device. 

1.1.8. “In-Situ” calibration method for EFP: Outline of chapter 9 

Chapter 9 will show a novel in-situ method for absolute calibration of the EFP. 

Unconventionally this chapter is placed at the end of the thesis due to the 

relevance in the timeline of events. This method was designed at the latest stage of 
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this work, although proving a successful method for calibration, and was not 

applied as a measurement standard in prior chapters. The in-situ calibration 

technique of the EFP takes advantage of low frequency behaviour of complex 

structures. By ‘illuminating’ the DUT with a low frequency of 1MHz, the voltage 

distribution along all entities of the DUT will appear to be uniform and equal. 

Therefore the output of the EFP, when placed over the drain manifold, can be 

compared to direct measurement of a high impedance contact oscilloscope probe. 

The subsequent comparison will yield a suitable scaling factor as the output of the 

probe will be significantly smaller than the output of the contact oscilloscope 

probe. This scaling factor can therefore be applied to EFP measurements at the 

correct operational frequency. Thus providing an absolute in-situ calibration of the 

EFP not restricted to a specific position.  

1.1.9. Discussion: Outline of chapter 10 

Chapter 10 will provide a discussion point of the whole work presented. Further 

commenting on the design standard utilised with relevance to the resulting output 

and spatial resolution of the EFP. The full effect of the measurement plane with 

links to final DPA and A-DPA results. Majority of the measurements presented 

within this work have been conducted on the assumption that the output of the 

EFP is a ‘relevant’ measurement. Although absolute calibration will be supplied at 

the final stage of this work, discussion will be presented regarding the importance 

of the information provided by the relevant measurements. 

1.1.10. Conclusions and future works: Outline of chapter 11 

The final chapter within this thesis will state a summary of the results presented in 

the form of conclusions. This chapter will also discuss the potential future works 

with an outlined method of execution.  

1.2. Novel work presented and publications list 

This thesis will present both novel techniques as well as discovered aspects that 

question the current standards of EFP design. A summary of the highlighted 

features that will be discussed in the following chapters are given below: 

 Miniaturised size and positioning flexibility of the proposed EFP.  

 Dismissal of the requirement of inner conductor protrusion for signal gain. 
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 Incorporation of a buffer amplifier placed close to the probe tip for the 

amplification of low pick-up and alleviation of unwanted stray pick-up. 

 Determination of an optimal distance of the measurement plane between 

DUT and EFP.  

 EFPs capability of time domain waveform measurements. 

 The flexibly of the EFP system; with the ability for on-chip, device plane 

measurements of high power transistors in operational amplifiers. 

 The design and utilisation of an absolute in-situ calibration for the EFP. 

 

The publications achieved during the course of the work are as follows. 

 

Conference proceedings: 

 

N. Dehghan*, S. C. Cripps, A. Porch and J. Lees, “An improved electric field probe 

with applications in high efficiency PA design and diagnostics,” in 81st ARFTG, 

Seattle, 2013 (*presenter, oral). See Appendix 1. 

N. Dehghan*, A. Porch, S. C. Cripps and P. H. Aaen, “A Novel High Resolution E-

Field Microscope System with Applications in HPA Diagnostics,” in ARFTG-978-1-

4673-0282-1/11, Tempe, 2011 (*presenter, oral). See Appendix 2. 

 

It should be noted the following submission has been made to the May 2015 

International Microwave Symposium proceedings: 

 

N. Dehghan,  S. C. Cripps , A. Porch, “A Novel In-Situ Calibration Technique for a 

High Resolution E-Field Probe” 2014. 

 

The submission was successful as an oral presentation, confirmed one week after 

VIVA examination of the author.  
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2. INTRODUCTION TO EFP TECHNIQUES AND LITERATURE 

REVIEW  

The increasing growth and complexity of Radio Frequency Power Amplifiers 

(RFPA) to support the need for high data rate, for a wide frequency band, has been 

an ongoing process in recent times. With the sophistication of smartphones and 

the consumer demand for more simultaneous use from a multifunctional device, 

designers are under pressure to meet demands. Maintaining and improving the 

efficiency and linearity of the RFPA in such systems is therefore an ongoing 

necessity. 

While the consumer is demanding faster, lighter and smarter mobile phones, there 

is not much thought in the resultant carbon footprint from such action. This has 

resulted in government ‘think green’ initiatives, which caused many 

telecommunication companies to feel the pressure to improve efficiency, not only 

for financial reasons, but in order to reduce the carbon footprint. The 

improvements in circuit design, semi-conductor technology and cooling techniques 

of RFPAs within base stations have all contributed to this movement. 

The main device under investigation within this thesis is a Field Effect Transistor 

(FET). Although conceptually a simple unipolar device, it displays many 

complexities when used in the design of high power and high efficiency RFPA’s. 

The revival of the Doherty Power Amplifier (DPA), a technique utilised for its 

efficiency enhancement, has produced many unexpected behavioural 
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characteristics such as, memory effects, deviation from theoretical expectations 

and device malfunction. 

Understanding these complexities requires an understanding of the interactions 

between the components of a RFPA. While Computer Aided Design (CAD) packages 

allow the user to manipulate the output for a given input, the user may have no 

conceptual idea of the waveform information or indeed the actual behaviour 

internally within the transistor package.  

Load-pull systems, a favourite among designers, have been developed for the 

characterisation and understanding of transistors at GHz frequencies. Entities such 

as output power, efficiency and gain can be measured [1, 2, 3, 4, 5] under 

engineered operating conditions for a given frequency range; by tuning the load 

impedance presented to the transistor, the desired or maximum output power 

condition can be achieved for the required frequency. By measuring at the device 

plane, current and voltage time domain waveforms can be obtained at both the 

input and the output of the device under test (DUT) [1]. However this method of 

characterisation is not based on the measurements of the DUT under conditions 

within an operational power amplifier. Therefore the resulting behaviour of the 

DUT can deviate from the expected measurements when placed within an 

operational RFPA.  However it is understood that this configuration of 

characterisation allows for the design of the desired matching network for the 

amplifier, based on the ideal load impedance chosen through tuning. The load-pull 

analysis relies on the assumption that the device under test is a three port system, 

where in reality the high power transistor is a large distributed device much more 

complex than the initial assumption. Therefore, such information as the internal 

waveform distribution along the device plane can give a valuable insight to the 

complexity of the device behaviour and help aid its understanding.  

The proposed measurement system described within this thesis will allow for in-

situ, non-intrusive waveform and relative voltage distribution monitoring within a 

packaged high-power transistor device. The non-intrusive technique will arise 

from the development of an Electric Field Probe (EFP), with the capability of 

measuring internal voltages, within a given operating system. The EFP will 

function as a diagnostic tool, not only providing an alternative method for the 

understanding of unexplainable behavioural characteristics present in PA systems, 



 
 

9 
 

but providing vital internal information not available through other measurement 

techniques. 

 

2.1. The role of the radio frequency power amplifier 

The main function of an RFPA is to deliver high power for the communication 

frequency band, frequencies in the range of 500MHz to 3GHz, for a given power 

supply (“DC”) input. The RFPA is normally designed for optimum efficiency within 

a specific bandwidth, depending on the application of the amplifier. The main 

active component in an amplifier is the transistor; there are many different 

transistors available depending on the requirements and application of the 

amplifier. 

This chapter will review the basics of the transistor before understanding its 

action within an amplifier system. In this thesis the measurements are required at 

the device plane; therefore it is vital to have an understanding of the transistor 

topology, once the pre-packaged ceramic casing has been removed. The final 

section within this chapter will explain the EFP system for the measurement of 

internal device plane voltages of operational RFPAs.  

 

This thesis will concentrate on the following two transistors: laterally diffused 

metal oxide semiconductor (LDMOS) and the GaAs pseudomorphic high-electron 

mobility transistor (pHEMT). It should be noted however, the EFP system is not 

confined to these two devices for successful measurement, but applicable to a wide 

range of DUT.  

 

2.1.1. Introduction to the transistor and its characteristics 

The FET is a three-terminal, unipolar, device, i.e. dependant on either electron or 

hole conduction, comprising of a gate (G), drain (D) and source (S) terminals.  

The voltage on the gate controls the current flowing from the drain to the source, 

as a variation in magnitude will result in a subsequent variation in the depletion 

region of the transistor, which in turn can either restrict or increase the current 

flow. 

Figure 2.1 displays the DC characteristics of a generic FET device. 
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Figure 2.1: DCIV characteristic for a generic FET device detailing the linear and 

saturation regions. Showing the drain current as a function of gate and drain 

voltages [6]. 

 

For low values of 𝑉𝐷𝑆, the transistor behaves according to Ohm’s law, this region is 

known as the linear region. As the value of  𝑉𝐷𝑆 is increased, the effective depletion 

region is also increased, resulting in a decrease of the channel width, which in turn 

limits the flow of current from the drain to the source. The device will reach a point 

of saturation, whereby a further increase of the 𝑉𝐷𝑆 value will no longer result in a 

subsequent increase of  𝐼𝐷𝑆, therefore the device is considered to behave like a 

voltage controlled current source. 

The maximum current, 𝐼𝐷𝑆𝑆, is achieved when  𝑉𝐺𝑆 is zero. As 𝑉𝐺𝑆 becomes more 

and more negative, the level at which  𝐼𝐷𝑆 saturates will become lower. Simple 

device characterisation can be achieved by plotting the DC IV curve, drain current 

vs. drain voltage, and the transfer characteristics, drain current vs. gate voltage, as 

shown in figure 2.1. This can be easily achieved through computer simulation or 

within the lab, with a simple sweep of the gate and drain voltages. 

 

The LDMOS is part of the Metal-Oxide-Silicon Field-Effect Transistor (MOSFET) 

family, with direct grounding of the source and a laterally opposite drain and 

source, differentiating it from its counterparts.  
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The channel length of the LDMOS controls the current which flows across it. The 

channel current is dependent on both the induced vertical and lateral field, due to 

the application of gate bias and the lateral field that exists between the drain and 

the source. The alteration of the applied gate voltage will result in a variation of the 

induced field, which can in turn reduce the effective channel width and limit the 

channel current. While the lateral field which exists between the source and drain 

is dependent on the doping levels present [7].  

The channel length of the LDMOS is partly due to the physical length of the gate 

and the depletion region created by the drain and source while under bias. This 

depletion region along with the gate induced depletion region, are connected, 

creating the ‘effective channel length’. Depending on the desired 𝐼𝐷𝑆𝑆 and 𝑉𝑃 for the 

given application, both the physical gate length and dopant levels of drain and 

source can be varied. 

 

Any transistor device within an amplifier circuit has additional excitation 

simultaneously supplied along with the DC bias. The additional excitation is 

provided in the form of RF input drive. Figure 2.2 relates the ac stimulation to the 

DC operating conditions. 

 

Figure 2.2: ac analysis for a generic FET device relating the input ac signal to the 

output voltage swing around the quiescent point [8]. 
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The Q denoted in figure 2.2 refers to the quiescent operating condition of the 

device, which is chosen depending on the class of operation required. As the ac 

signal is applied to the device, the output voltage swing will vary above and below 

the DC operating point. Increasing the applied excitation will result in a 

subsequent increase around the DC bias point. As the applied excitation is 

increased, this swing around the DC bias point will also increase, until a level of 

saturation is reached. 

The pHEMT takes advantage of the differences present in the energy bands of the 

semiconductors: gallium and arsenide. The difference in the energy bands between 

the two elements is known as a heterojunction, which is present at the channel.  

Many layers of intrinsic and semi-conducting GaAs form the HEMT structure, i.e. 

undoped and doped n-type GaAs. By separating these layers, high electron mobility 

can be achieved. The electrons from the doped region can move through the lattice, 

staying close to the heterojunction. These electrons form a one electron thick layer, 

meaning that mobility is high due to lack of lattice atoms for collision. It therefore 

has a high frequency response, due to the so called ‘two-dimensional’ electron gas 

[9]. The channel conductivity is controlled by the application of gate bias, as this 

controls the number of electrons within the channel. 

With advancement of nanotechnology, HEMT devices are readily available, which 

are useable at frequencies above 40GHz [9]. 

 

2.1.2. The Doherty power amplifier 

Although there are many different existing operating types and configurations of 

power amplifiers, within this thesis the focus will be placed on the Doherty power 

amplifier. First introduced in 1936 [10] as an efficiency enhancement technique, 

has experienced a revival, as a contemporary communication standard for most 

base stations.  For amplifiers operating below their maximum saturated output 

power (the “back-off region”), the Doherty Power Amplifier (DPA), with the correct 

phase alignment and power combination, provides an efficiency enhancement over 

a conventional PA design. Despite its popularity, the DPA is prone to numerous 

problems, including reliability, memory effects and ‘Doherty lite’ behaviour. 

Memory effects are very difficult to pre-determine, as they are a form of additional 

non-linear behaviour not accounted for in PA models, and can cause subsequent 
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difficulties in attempts to cancel the distortion DSP (Digital Signal Processing) [1]. 

‘Doherty lite’ behaviour, as the name suggests, is a ‘lite’ version of the classical 

Doherty behaviour. A Doherty Lite PA often results from post design adjustment 

and its behaviour is undesirable, inasmuch as efficiency enhancement is much 

reduced. Such anomalies have baffled designers; the lack of predictability of such 

problems in the design phase emphasises the necessity for device plane waveform 

measurement as demonstrated in this thesis.  

 

The DPA operates in a similar manner to an active load-pull system, consisting of 

two active devices (this thesis will refer to them as; the “main” and the “peaking” 

devices), connected by a quarter-wave transmission line. The main and peaking 

are biased to different classes, Class A or AB while the latter is biased to Class C, 

respectively, due to the delay required in their activation.   

The basic configuration of a DPA and the expected output characteristics are 

shown below in figure 2.3(a) and (b) respectively. 
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(a) 

 

(b) 

Figure 2.3: (a) Schematic of Doherty power amplifier, and (b) the theoretical 

expectation of efficiency versus the input drive, with highlighted low power and 

medium power regions [1]. 

 

At low input power levels, the peaking device is off; this means the main devices 

receives the entirety of the input signal and sees a high impedance due to the 𝜆/4 

transformer. The role of the 𝜆/4 transformer within the DPA is to act as an 

impedance invertor, converting a low to a high impedance, at the output of the 

main device. At this point, the peaking ‘sees’ an infinite impedance due to its ‘off’ 

state. As the power level is increased, the main device reaches a level of voltage 

saturation. At this point, due to the Class C bias of the peaking device, the peaking 

device switches on. This switch-on results in a current contribution from the 

peaking device, which in turn reduces the overall load impedance seen by the 

main. The main device now behaves as a controlled voltage source; whereas the 

peaking device is now considered a controlled current source.  
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As the input drive is further increased, the impedance seen by both devices is now 

equal to that of the characteristic impedance of the quarter-wave transformer, thus 

maintaining maximum efficiency over the power range. 

The load impedance of main device is therefore modified by the addition of 

another coherent current device, the peaking. For this reason, the Doherty is an 

example of an active load-pull system. 

With reference to figure 2.3, circuit analysis can be performed for the derivation of 

the theory below. 

At low levels of input power, the main device will see only the load. As the peaking 

device switches on and contributes current, the voltage across the load becomes 

dependant on the current generated by the main and peaking device, 

𝑉 = 𝑅(𝐼𝑚 + 𝐼𝑝), 
(2.1) 

 
 

𝑅𝑚 = 𝑅 (
𝐼𝑚 + 𝐼𝑝

𝐼𝑚
) 

(2.2) 

and 

𝑅𝑝 = 𝑅 (
𝐼𝑚+𝐼𝑝

𝐼𝑝
). 

(2.3) 

Considering the AC analysis: 

 

𝑍𝑚 = 𝑅 (
𝐼𝑚 + 𝐼𝑝

𝐼𝑚
) = 𝑅 (1 +

𝐼𝑝

𝐼𝑚
) 

(2.4) 

 

Meaning, if the current supplied by the main and peaking devices are in phase, 

then 𝑍𝑚 is transformed to a higher resistive value.  If 𝐼𝑝 is out of phase with 𝐼𝑚, 

then 𝑍𝑚 is transformed to a lower value. This shows that the impedance seen by 

one device is dependent on the current contribution of the other device. As the 

value of 𝐼𝑝 increases, the quarter-wave transformer acts as an impedance invertor 

and reduces the impedance seen by the main device, thus maintaining maximum 

voltage swing and efficiency [1]. 

The utilisation of this efficiency enhancement technique can result in an 

improvement by up to a factor of 2; which would not occur if each device was 

considered individually, as the overall output performance is a combination of 

each amplifier [1]. 
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In theory, the classical Doherty behaviour is shown to be rather abrupt, literature 

on the topic will illustrate the efficiency to be similar to that shown above. With a 

linear efficiency at low input power and a peak efficiency at the 6dB back-off point. 

The efficiency is somewhat maintained at higher input power, with the 

contribution to the, now on, peaking device. Same is shown for the drain voltages, 

shown below in figure 2.4. 

 

(a) 

 

(b) 

Figure 2.4: (a) Device currents, and (b) and device voltages, both showing the 

characteristic response with increasing the input drive [1]. 

 

The drain voltages, at low input drive, will show an idealised linear increase in the 

main device, with sudden saturation around the 6dB back off. This saturation is a 

result of the instantaneous switch-on of the peaking device, thus maintaining the 

saturated voltage value of the main device. 

In practice, this idealised behaviour is not always evident. Actual measurements of 

the efficiency and device voltage will show a somewhat much diluted 

representation of the theoretical expectation.   



 
 

17 
 

Efficiency and gain calculations do not require measurements at the device plane, 

analysis of the input and output power with the consideration of the current from 

each device is sufficient.  

However, the measurement of internal device plane voltages will require an in-situ 

technique. If such measurement is taken outside the packaged device, this cannot 

be considered the truest representation, but rather an engineered output for 

device plane waveforms. Therefore measurements taken at the device-plane, as 

close to the drain terminal as possible, will be the only correct comparison to the 

theory. 

 

2.1.3. Inside the transistor 

In order to understand the full extent of the proposed measurement system, the 

physical design of the transistor must be understood. A transistor package ready 

for integration in a PA circuit consists of a metal drain and gate flanged tabs and a 

ceramic casing, which encloses the complex internal structure. Removal of the 

ceramic lid displays a coherent topology amongst most transistor packages within 

base station amplifiers. Bondwires are required to connect the drain lead to the 

transistor metallisation, the die, and further connection of the gate lead, laterally 

opposite. The die of the transistor consists of an inter-digital array, with multiple 

drain and gate cells. The overall topology of a generic high power 2 GHz transistor 

is shown below in figure 2.5, with a magnified view of the die metallisation.  
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(a) 

 

 

(b) 

 

Figure 2.5: (a) A generic high power 2GHz transistor device with ceramic case 

removed showing the complex internal structure, and (b) a magnified edit of the 

interdigital fingers separating the drain and gate bondwire array. 

 

Obtaining experimental data for most high-power transistors does not require the 

removal of the ceramic casing, with measurements taken only at the input and 

output terminals of the device. This thesis will explain in subsequent chapters the 

importance of the exposed circuitry, so that removal of the casing is vital for in-situ 
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measurements of device plane voltages, which in turn is vital for characterisation 

and confirmation of theory. In particular, the functionality and interaction of the 

main and peaking devices can be measured due to this direct access of the drain 

manifold.  Such access will yield the fundamental voltage distribution of the 

amplifier, in the case of the Doherty, while both transistors are in operational 

conditions. 

 

Considering the system on a fundamental level, the application of an input drive 

will evidently result in a movement of current within the circuitry. Electrons will 

flow through the metallisation of the die and through the bondwires within the 

package. This flow of electrons will induce a corresponding electric field, which as 

a result, can be measured as a relative voltage distribution. The resulting 

measurement system to be described will be a comparable size to the topology of 

the high power transistor shown. 

 

 

Figure 2.6: Pictorial representation of the resulting EFP system, highlighting the 

comparable size of the EFP tip and the DUT. Note: the transistor shown belongs to 

the asymmetrical Doherty power amplifier described within chapter 8. 

 

Figure 2.6 displays the resulting EFP system described within this work. Due to the 

size and flexibility of the EFP system, measurements can be conducted in various 

locations across the high power transistor. Resulting in a critically important 



 CHAPTER 2.   INTRODUCTION TO EFP  TECHNIQUES AND LITE RATURE REVIEW  
 

20 
 

measurement of the on-chip device plane drain voltage, the EFP can be lowered 

directly above the drain manifold. 

 

2.2. Measurement apparatus 

In order to generate and acquire the correct data, the measurement apparatus 

must be fully considered. The proposed in-situ measurement system requires 

three main components; a DUT, a probe and a measuring scope. Further 

components will depend on the type of DUT, therefore the type of measurement 

required, which will then determine the best method for its acquisition. 

If the electric field probe is considered as a capacitive probe, further explanation 

will be provided in section 2.3.2, in which its output is proportional to the local 

normal electric field component generated by the DUT. Depending on the required 

data the output of the EFP will be connected to one of two measuring devices, 

either a Vector Network Analyser (VNA) or a Digital Storage Oscilloscope (DSO). 

Using the VNA, the relative voltage distribution can be extrapolated with simple 

calculations. For extraction time-domain waveform information, the EFP will be 

connected to a DSO. 

 

2.2.1. Scattering parameters 

When measuring voltages and currents within a high frequency structure, some 

difficulty can arise as their values are distributed and can vary within the 

microwave structure [11]. A method for its simplification requires the 

consideration of these entities as waves, by describing their behaviour as incident, 

reflected and transmitted waves, the magnitude and phase of these waves can be 

measured in a given direction. These waves can be represented within a scattering 

matrix, and allow for the measurement of voltage waves for any number of ports. 

An N-port network shown in equation 2.5:  

[
𝑏1

⋮
𝑏𝑛

] = [
𝑆11 … 𝑆1𝑚

⋮ ⋱ ⋮
𝑆𝑛1 … 𝑆𝑛𝑚

] [

𝑎1

⋮
𝑎𝑚

], 
(2.5) 

 

where 𝑎𝑚, is the amplitude of the incident wave on port m and 𝑏𝑛, is the amplitude 

of the reflected wave from port n. 
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The work within this thesis will only require the use of a two-port network, shown 

below in figure 2.7, the resulting scattering (S) parameters within the matrix is 

shown in equation 2.6. 

 

Figure 2.7: An example of a two-port network with identification of the incident and 

reflected wave direction. 

 

 

[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] 

(2.6) 

 

where:  

𝑆11 is the reflection from port 1 

𝑆12 is the transmission from port 2 to port 1  

𝑆21is the transmission from port 1 to port 2 

and 𝑆22 is the reflection from port 2. 

 

By measuring the S-parameters of a given network, the ratio between the incident 

and reflected waves can be measured, therefore the transmission behaviour of a 

network becomes a known entity. Since the characteristic impedance, 𝑍0, of the 

system is known, the S-parameters can be interpreted as normalised voltages, 

currents and power.  

For any system, measurement of the S-parameters is a vital tool for its 

understanding. Information such as voltage standing wave ratio (VSWR), reflection 

coefficient (𝛤) etc. will arise from S-parameter measurements. 

If the characteristic impedance of the network is the ratio of voltage to current: 
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𝑍0 =
𝑉0

+

𝐼0
+  

(2.7) 

 

A network terminated by a load, 𝑍𝐿 , the reflection coefficient can be considered as 

the amplitude of the reflected wave normalised to the amplitude of the incident 

wave. 

𝛤 =
𝑉0

−

𝑉0
+ =

𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0
 

(2.8) 

 

With respect to the S-parameter, from the input and output voltages at the port,  

𝑆11 is the input reflection coefficient 𝛤1 and 𝑆21 is the output reflection 

coefficient 𝛤2. 

If there is a mismatch between the load and the generator, all of the available 

power will not be successfully delivered. This degree of mismatch is termed a 

return loss, RL and defined in dB [12]. 

𝑅𝐿 = −20 log|𝛤| 𝑑𝐵 
(2.9) 

 
 

The mismatch between the load and the line results in the reflected wave, which 

leads to a standing wave. The ratio between the maximum voltage value and the 

minimum voltage value is called the standing wave ratio, SWR, which is the 

mismatch of the line. 

𝑆𝑊𝑅 =
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
=

1 + |𝛤|

1 − |𝛤|
 

(2.10) 

  

Therefore if the line is presented with the condition of a matched load, the 𝛤 = 0 

and hence the 𝑆𝑊𝑅 = 1. 

2.2.2. Vector network analyser 

The vector network analyser (VNA) is a tuned receiver; with the capability of 

measuring the magnitude and phase at the ports of a given system. At high 

frequencies, the wavelength is comparable to or smaller than its physical length, 

for a transmission line. Therefore the resulting transmission of power can be 

considered in terms of travelling waves. A VNA has the ability of measuring the 

incident, transmitted and reflected waves along the transmission line, which is 

required for the measurement of S-parameters. If the output of the probe is 
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connected to the VNA, the resulting measurement is of the normalised power 

which is proportional to the local electric field of the DUT. With sensitivity to the 

local geometry, sequential measurements conducted with movement of the EFP 

position along the x or y-axis, (for a constant separation of the z-axis) will result in 

the relative voltage distribution.  

For initial characterisation of the probe, a wide band frequency VNA, Agilent 

Technologies 300kHz-20GHz PNA-L Network Analyzer, is used. In order to test the 

frequency response of each probe, the tip is placed over a matched length of 50Ω 

microstrip line. No reflection will occur along the microstrip line as there is a 

proper termination. Figure 2.8 shows the setup, where port one of the VNA will be 

attached to the terminated 50 Ω line, while port two is attached to the output of the 

probe. 

 

Figure 2.8: Schematic diagram of the setup used for frequency calibration of the EFP. 

Whereby the probe is placed in a fixed position, 30μm, over the matched microstrip 

line. The frequency is swept while the output of the probe is used to measure the 𝑆11  

and 𝑆21 parameters. 

 

By sweeping the frequency, the response of the probe can be measured for the 

specified range. The frequency response of the probe holds great importance. In 

order to minimise distortion of the measured data, a flat response up to three 

times the fundamental frequency of the DUT is required. The amplifiers used in 

this thesis operate in the region of 2GHz; a flat frequency response up to 6GHz will 

allow for minimal corruption of the waveform data for up to three harmonics. 

Additional frequency and phase calibration must be considered if the response of 

the probe did not achieve the nominally flat range for the required frequency 

bandwidth. 
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The sensitivity of the EFP’s to its local geometry and its separation to the DUT is a 

recurring issue within this thesis, analytical treatment will be provided in sections 

2.3.2 and 2.4.2 and experimentally in sections 3.2.3 and 4.1.5. The finalised system 

will consist of a miniaturised EFP tip, in the region of 250 microns. It will be shown 

that such small dimensions will inevitably cause a decrease in the signal picked up 

by the probe. This is shown in the initial characterisation of the probe over the 

microstrip line. Although final intentions of the EFP are to measure high power 

active devices, for purposes of characterisation, the EFP will need maximum 

output for the measurement of passive devices.   

2.2.3. Digital storage oscilloscope  

The VNA can give vital information about a system, such as s-parameters, return 

loss, frequency response; however, it is not suitable for producing time-domain 

waveform measurements. A novel aspect of the proposed measurement system is 

its miniaturised size and flexibility in its positioning, the probe tip is small enough 

to be lowered down close to, but not touching, the die metallisation of a transistor. 

This allows the user to measure the truest representation of time-domain 

waveforms within a given device, within their normal operating conditions. 

Triggering of the DSO is achieved through two synchronised i.e. phase locked, 

signal generators resulting in a fixed trigger point as the drive power to the DUT is 

varied. 

The data obtained from a DSO shows the voltage waveforms with respect to time, 

ensuring that vital further information can be extrapolated from this data. As the 

measured waveform is an example of a periodic function, Fourier analysis can be 

used to extract the fundamental voltage component, which can be plotted as a 

function of input drive. Once processed, this information will give us the RF 

characteristics of the measured transistor.  

Final measurements described in chapters 6-9 will be conducted within the 

internal structure of transistor, this will involve the lowering of the EFP to 

separation of 30μm above the drain manifold, resulting in the highest accuracy for 

representation of the fundamental drain voltage. The importance of this novel 

factor will be highlighted for the determination of the transistors functionality in 

several different PA configurations.  
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2.2.4. RF measurements and characterisation 

In order to correctly characterise a transistor, the power at both the input and the 

output of the system must be fully considered. All of the PAs investigated within 

this thesis will require the internal structure of the transistor to be exposed for 

successful in-situ measurements. De-lidding the transistor will inevitably cause 

some sort of variance to the proposed measurements, the degree of this variance 

must be considered before any further characterisation and testing can continue. 

For this reason before and after the de-lidding process, the transistor will be 

characterised by the RF input/output measurements taken. This will avoid 

possible anomalies.  

In section 2.1.1, the transistors DC IV characteristics were explained. In order to 

carry out the RF characteristics, the transistor is set to bias working conditions. 

For a high power LDMOS device, usually 𝑉𝑔𝑠 = 28𝑉, the transistor is then injected 

with a continuous wave (cw) of a given frequency, the RF input power is swept 

uniformly, while 𝐼𝐷  and its output power, in dBm, are measured.  

The power gain of the system can be described as the ratio of output power by the 

input power, shown in equation 2.11. 

  

𝐺𝑎𝑖𝑛 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 

(2.11) 

 

If the efficiency of the system is defined as the extent to which DC power is 

converted to RF power, for highest efficiency, an ideal situation would dictate the 

maximum power delivered to the load while consuming minimum DC power:  

 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝐷𝐶
 

(2.12) 

 

Where: 

𝑃𝐷𝐶 = 𝐼𝐷𝐶𝑉𝐷𝐶 . 
(2.13) 

 

Once the transistor has been de-lidded and its internal structure is exposed, the 

same measurement procedure can be repeated for comparative purposes. The 

overall efficiency will be shown to vary to an average error of less than 1% and will 
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therefore be considered negligible. The main issue arising from the de-leading 

process is the ability of conducting clean lift of the ceramic lid. Beneath this lid, as 

shown in figure 2.5, lies an extremely delicate bondwire array, the slightest angle 

in the lift can cause deformation of the bondwires, therefore causing detrimental 

effect on the transistors performance. 

Results shown in chapters 6, 7 and 8, represent seemingly functional PA’s, where 

no indication of anomaly is perceived in the RF characteristic. However, closer 

analysis utilised with the EFP will show extensive variation across the periphery of 

the device. This variation cannot be observed at the output or input terminals, 

therefore the novel aspect of the size and flexibility of the EFP will allow for 

accurate diagnostic analysis. The probe can therefore be used as a tool to ‘see’ 

inside the device and act as a ‘microscope’, thus analytically measuring in the 

behaviour of transistors and PA systems.   

 

2.3. Electric field probe 

The Electric Field Probe (EFP) has been utilised for decades for the measurement 

of electric field on passive and active arrays [13, 14, 15, 16, 17, 18]. While steady 

progress has been made in the evolution of the EFP design for improvements in 

spatial resolution and probe response, to date, EFPs have not been developed that 

are capable of internal device plane measurements of functional active devices. 

This was a key achieved objective in the work reported in this thesis. 

Many variations in the EFP design are in existence; this section will take an 

unbiased analysis of current procedures while fully considering the design 

specifications required for the design and development of the EFP. 

 

A circuit with current and voltage will produce electromagnetic waves; the 

distribution of these waves can be measured, or mapped using an electric field 

probe. This method of measurement is highly desirable for many reasons; the 

probe is contactless, there is no direct attachment to the circuitry of the DUT, thus 

the variation of the output due to the presence of the probe is minimised. EFP 

manufacturing is generally more cost effective than other measurement 

techniques available. The system can be used as a verification or alternative 



 
 

27 
 

method to existing ElectroMagnetic (EM) simulators, while acting as a 

characterisation tool, capable of in-situ analysis of the DUT.  

Due to the size and design of the proposed miniaturised probes, measurements are 

not limited to input and output terminals of the DUT, unlike [19], a particular 

advantage for transistor characterisation.  

2.3.1. Open-ended coaxial probe 

The simplest electric field probe can be constructed from an open-ended semi-

rigid coaxial cable [13, 14, 15, 16, 17, 18, 20]. This simple physical arrangement 

has been used, both formally and informally for many years, by microwave circuit 

engineers as a sensor of the voltage at a chosen point in a microwave circuit or 

system. Published works over several decades have shown a strong preference for 

the use of a short protruding “monopole” antenna, usually as a means of increasing 

the coupled signal. The probe operation has frequently been assumed to be that of 

an antenna which responds to the component of electric field, in the direction 

parallel to the monopole. This may be a reasonable view in some applications (e.g. 

antenna pattern mapping) where the monopole far-field response is being used. 

But in this work, the monopole is essentially removed and only the “ultra-near 

field” response of the probe is relevant.  

 

During the course of the present work however, and as reported in this thesis, a 

different explanation of the probe action has been developed, based on lengthy 

experience and many measurements made under a wide range of physical 

conditions. 

In fact, it is now believed that the probes described in this thesis have a closer 

affinity to the simple high impedance contact voltage probe, as used with 

oscilloscopes. As illustrated in section 2.3.2, the inner conductor of the probe forms 

a capacitor, which “connects” it to the DUT. Physical considerations, along with 

simulations of the probe response, give a value for this coupling capacitance which 

is of the order of 10-3pF. This represents a very high impedance (order of 10’s 

kOhm) at GHz frequencies, and this means in turn that the outer conductor of the 

probe co-axial line can be regarded as a virtual ground, so that the probe is 

measuring a true scaled voltage at the DUT target point. This can be shown by the 

construction and measurement of a waveform with a distinct polarity. By injecting 
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a “class J” waveform along a terminated microstrip line, comparisons can be made 

with the direct measurement of the source to that of the probe output. Further 

discussion is provided in section 6.1.3 and the resultant comparison is shown 

below in figure 2.9. 

 

Figure 2.9: Comparison of a Class J waveform measured directly from the signal 

generator to output of the probe. The probe output results in an inverted and scaled 

down measurement of the original waveform therefore representing a true scaled 

voltage at the DUT target. 

 

The “virtual ground assumption” has been widely used in the design of 

oscilloscope voltage probes [21, 22], and the relative insensitivity of the ground 

connection demonstrated. An analogous GHz-frequency voltage probe using a high 

impedance resistive divider has been reported with no physical ground 

connection, and commercial products are even available although these have much 

lower impedances, and lower spatial resolution, than the probes developed in the 

present work. 

It should be noted at this point that the introduction of a probe-tip amplifier, a key 

innovation in the present work, is vital in mainlining a flat frequency response for 

the probe; this will be described in detail in Chapters 3, 4, and 5.     

 

A coaxial cable is an example of a transmission line, used for the transfer of high 

frequency. The cable is an example of a two-wire line, consisting of a central 

conductor surrounded by a dielectric material, shielded by a cylindrical conductor. 
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Considering the lumped element model of a transmission line for a short defined 

length of Δz.  

 

 

Figure 2.10: Schematic of the lumped element approximation of a transmission line. 

 

Where the R, L, G, C per unit length is defined as the following [12]:  

 R= series resistance due to the finite conductivity of the conductors. 

L=series inductance representing the total self-inductance of the two 

conductors.  

G= shunt conductance due to the dielectric loss of the material between the 

conductors. 

C= shunt capacitance due to the close proximity of the conductors. 

 

The lumped element analysis allows for the calculation of characteristic 

impedance, phase velocity, the phase and attenuation of the propagation constant. 

The characteristic impedance of the transmission line is defined as: 

  

𝑍0 = √
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
 

(2.14) 

            

At high frequencies, 𝑗𝜔𝐿 ≫ 𝑅 and 𝑗𝜔𝐶 ≫ 𝐺, so the characteristic impedance can be 

considered as: 
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𝑍0 = √
𝐿

𝐶
 

(2.15) 

 

A transmission line in the form of a coaxial cable, the capacitance and inductance is 

dependent on the diameter of the inner conductor and the inner diameter of the 

outer conductor, shown in figure 2.11.  

 

 

Figure 2.11: Schematic diagram of a concentric coaxial cable indicating the 

acronyms required for calculation, whereby 2d represents the diameter of the inner 

conductor and D represents the radius of the inner section of the outer conductor. 

 

 

Where 

𝐿 =
𝜇

2𝜋
ln (

𝐷

𝑑
) 

(2.16) 

 

𝐶 =
2𝜋𝜀

ln(𝐷
𝑑⁄ )

 (2.17) 

 

By inserting equations 2.16 and 2.17 into the equation 2.15, the characteristic 

impedance of a coaxial cable can defined as: 

𝑍0 =
138

√𝜀
log (

𝐷

𝑑
) 

(2.18) 

 

The propagation of electromagnetic waves along length of the cable must be 

considered. Potential propagation losses can occur if the central conductor does 

not hold a concentric position throughout the length of the EFP, as well as non-
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uniform impedance. The displacement current across the air-gap has a real current 

density component along the central conductor, J. By means of Ampere’s law, 

produces an orthogonal magnetic field, B.  

∇ × B = 𝜇𝐽 
(2.19) 

This ability to support magnetic and electric field allows for the transverse 

electromagnetic (TEM) mode of propagation along the length of the line. Therefore 

displacement of the central conductor would cause an uneven distribution of TEM 

propagating resulting in the potential attenuation of the measured signal.  

      

2.3.2. Capacitive probe analogy 

Comparing the two surfaces present within the measurement system, the inner 

conductor and the DUT, to that of a parallel plate capacitor, then displacement 

current will flow within the air gap. Essentially, the field measured is proportional 

to the displacement current across this air gap, which in turn is proportional to the 

intensity of the field generated by the DUT. The schematic below, shown in figure 

2.12, shows how the surfaces of the inner conductor of the EFP and DUT can be 

comparable to that of a parallel plate capacitor the perspective is magnified. 

 

 

Figure 2.12: Schematic of an open-ended coaxial cable above DUT showing the 

capacitive analogy in a magnified image. Where the inner conductor and the surface 

of the DUT can be compared to plates of a capacitor and the effective coupling 

between them is dependent on their separation and surface area. 
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Therefore, the electric field between two parallel plates can be expressed as 

equation 2.20. 

𝑉 = 𝐸𝑑 
2.20 

 

According to Gauss’s law, a conductor in the state of equilibrium has no charge 

situated within the plate, but rather, charge is situated on the surface. The charge 

density for each plate is given by equation 2.21. 

 

 

𝜎 =
𝑄

𝐴
 

2.21 

 
Neglecting the fringing effects of the electric field, equation 2.22 shows the 

relationship between the charge density and electric field. Where 𝜀0 is the 

constant, permittivity of free space. 

 

 

𝐸 =
𝜎

𝜀0
 

2.22 

 

Substitution of equation 2.21 into 2.22 yields: 

𝐸 =
𝑄

𝜀0𝐴
 

2.23 

 

Since the dielectric in this particular case is air, the permittivity can be considered 

as 𝜀𝑟 = 1. 

 

Placing equation 2.23 back in to equation 2.20, the voltage across the two surfaces: 

 

𝑉 =
𝑄𝑑

𝜀0𝐴
 

2.24 

 

If the capacitance of a parallel plate capacitor is simply defined in equation 2.25 

 

𝐶 =
𝑄

𝑉
 

2.25 
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Therefore the capacitance across the parallel plate with respect to plate separation 

and area, can be considered as:  

  

𝐶 =
𝜀0𝐴

𝑑
 

2.26 

 

Since the dielectric in this scenario is air, the capacitance and therefore maximum 

coupling is dependent only on plate area and plate separation. 

 

From equation 2.26 it is evident that the overall capacitance is proportional to the 

area of the plates and inversely proportional to the distance between them. 

Therefore, decreasing the probe aperture will have a direct effect on the E-field 

measured, as the effective area of the ‘capacitive plates’ has been decreased, which 

in turn will proportionally reduce the output. 

The resulting measurement taken by the probe is the voltage which is proportional 

to the induced displacement current at the probe tip. Therefore, if the probe is 

connected to a vector network analyser (VNA) the resultant power can be 

measured and bears a direct relationship with the local DUT voltage. 

 

2.4. Electric field at the device plane 

2.4.1. Electric field at the surface of a metal.  

Electric field can be a non-uniform entity, with multiple vector components, 

therefore its divergence can be difficult to measure. 

In a 3-D structure it is capable of producing all orthogonal components of electric 

field, i.e. 𝐸𝑥, 𝐸𝑦, 𝑎𝑛𝑑 𝐸𝑧 . The proposed E-field probe is intended for the 

measurement of electric field normal to the plane of the DUT, 𝐸𝑧.  

When considering field induced at the surface of a metal, it is assumed that only 

the perpendicular component of electric field, 𝐸⊥, is present. This is primarily due 

to the cancelation of tangential components, 𝐸∥, when the orthogonal components 

are considered as separate vectors. Therefore a metal with an infinitely long 

surface will exhibit only perpendicular components of electric field, within close 

proximity to that surface. Conversely, a metal with finite dimensions will exhibit 
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fringing of the electric field at the metal edge even within close proximity to that 

surface. 

 

For measurements regarding the electric field distribution at the device plane of 

high power transistor i.e. at the surface of the die, cannot simply rely on the 

analogy above. The die of a transistor cannot be assumed merely as a metal 

surface; in reality the topology of the die is much more complex. Figure 2.13 below 

shows a magnified view of a transistor die, with visual inspection, the complexity is 

visible. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: A magnified section of the die metallisation present in a generic high 

power transistor device. 

 

Under this magnified view, the interlocking fingers that connect the drain to the 

gate side of the transistor are visible. 

The underlying question, of whether the surface of the die can be considered as a 

uniform section of metallisation depends on the resolution capability of the EFP. A 

closer inspection of figure 2.13, will show the dimensions of the interdigital fingers 

as considerably smaller than that of the bondwires, and much more closely 

situated. The average bondwire, within a transistor package, has a diameter 

thickness in the region of 25μm with a spacing of 100μm. Whereas, the thickness of 

interdigital fingers are in the region of 10μm, with a spacing of only a few microns.  
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This thesis will go on to describe an EFP with a resolution of >100μm, therefore 

the dimensions and spacing of the interdigital fingers are beyond the resolution 

capability of the proposed system. The EFP in principle will ‘see’ a uniform section 

of metal. Confirmation of this theory is shown within section 5.2.4, whereby the 

EFP will not have the capability of measuring bondwire structure, the lack of 

resolution can be interpreted as the measurement of a uniform entity. 

2.4.2. Orthogonal components of electric field.  

The analogy made in section 2.4.1, can only be considered true, for an infinitely 

long metal conductor close to its surface. A surface with predetermined 

dimensions will exhibit fringing at the edges of the structure, as well as a 

divergence of field as the distance from the source is increased. Therefore, 

orthogonal components of electric field must be considered and analysed further.  

As previously described in section 2.2.2, a calibration method for the frequency 

response of the EFP, requires measurements to be made on a terminated 

transmission line (TL). 

 

(a)                                                                             (b)  

Figure 2.14: A schematic diagram of a metal section with finite dimensions and the 

resulting electric field distribution. Indicating the measurement plane of (a) Δh and 

(b) Δh’. Whereby a decrease in the measurement plane, from Δh to Δh’, reduces the 

quantity of orthogonal electric field components present. 

 

From figure 2.14, a typical field distribution for a section of metal with finite 

dimensions is shown above. Figure 2.14(a) shows the typical divergence of electric 

field, where fringing occurs at each end of the metal surface and as distance from 

source is increased. The degree of divergence associated with the measurement is 

dependent on the plane chosen, i.e. the separation between probe tip and DUT. If 
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the probe is placed over the metal section at too great a distance i.e. Δh, the electric 

field can no longer be assumed to be perpendicular to the plane, as divergence has 

occurred. However, if this separation is reduced and the measurement plane is a 

smaller value i.e. Δh’, the electric field can be assumed to be perpendicular to the 

metal surface, as proximity of the probe has been reduced sufficiently for 

divergence to be minimised.  

Consideration of the fringed electric field at the metals edge, the orthogonal 

component will exhibit some angle of 𝐸𝛳 . This angle of electric field can be 

separated and considered as the resultant parallel and perpendicular components:  

 

𝐸𝛳  = 𝐸⊥ + 𝐸∥. 
2.27 

 

Therefore the resultant EFP output will measure the proportional reduction of the 

perpendicular component  𝐸𝑧.  

Experimental procedure can provide confirmation of this vector analysis, as the 

measured distribution at the metals edge will show a gradual reduction in the 

measured field, i.e. as 𝐸∥ ≫ 𝐸⊥ due to the increased degree of fringing. 

 

2.5. Literature review of EFP design considerations and techniques 

As previously stated, the simplest method for the measurement of electric field can 

be merely constructed from an open ended semi-rigid coaxial cable. Consisting of 

an outer copper conductor and an inner metal conductor separated by a dielectric 

medium. Although this method can detect the normal field to the device plane, its 

application is best suited for e-field measurements of larger devices due to its 

physical size.  

𝐶 =
𝜀0𝐴

𝑑
 

2.26 

 

From equation 2.26 it can be noted that the coupling of the EFP to the DUT is 

heavily dependent of the physical dimensions of the probe. The more miniaturised 

the probe becomes, the lower the coupling factor, therefore the pick-up signal will 

be weak and may be indistinguishable from stray pick-up. However, the design of 

the EFP is then directly linked to the device that is being measured. If the intended 
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measurements are to be taken on miniaturised structures requiring a resolution of 

100microns or better, the probe size must be such, that it is a comparable to the 

size of structure that is to be measured. The evolution of the EFP within this thesis 

will show substantial spatial resolution improvement as the dimensions of the 

probes are reduced, this will be shown in the transition between chapters 3 

through to chapters 4. It will be seen that the subsequent improvement is a factor 

of both the inner and outer conductor diameter reduction. However, since the 

reduction of probe dimensions will have a detrimental effect on the coupling and 

therefore pick-up of the probe, the trade-off between resolution and sensitivity 

must be carefully considered. 

Previous literature has shown a dedication for an alleviation of such problems, 

new design and different fabrications methods, along with improvements to the 

measurement techniques, have all resulted in the advancement of E-field probes 

[14, 18, 22, 23, 24, 25, 26]. It should be noted that absolute calibration of the 

probes has posed some difficulty, maybe resulting to the E-field probes 

unpopularity. 

 

The trade-offs present between resolution and sensitivity will ultimately dictate 

the design of the probe, with no specific design able to accomplish both, the DUT 

will set the precedent of the EFP. 

The category of the DUT, whether passive or active, will have an influence on the 

design of the probe, as it will have a direct effect on the generated field. The nature 

of a passive components will require a much more sensitive probe, due to the lack 

of power within the component, the electric field to be measured will be small. If 

this is too small, the signal may be indistinguishable to stray pick-up or the 

background noise level. However, if the function of the probe is to measure 

bondwires within an active transistor, then sensitivity is less significant but rather 

spatial resolution. 

 

The dimensions of the DUT will also have an effect on the design consideration. 

The spatial resolution of the probe must equal, if not exceed, the minimum element 

size of the DUT. If the resolution of the probe is less than that of the minimum 

element size, then an accurate electric field distribution cannot be obtained. This 
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will also lead to the comparable size of the probe to the DUT. The physical 

dimensions of the probe tip will affect the interaction it may have with the 

measured field. The smaller the probe, i.e. the more miniaturised it becomes, the 

less it will distort the field being measured [20, 23].  Perturbance to the DUT can be 

further reduced by increasing the impedance presented by the EFP [22]. 

Confirmation can be achieved by measuring the 𝑆21 parameter of the DUT and 

comparing any perturbation that may have occurred by the presence of the EFP.  

 

2.5.1. Increasing the spatial resolution 

Modern day advancements in technology have resulted in extensive 

miniaturisation of components within a given system. For characterisation of these 

devices, measurement techniques must also undergo the same progression, for 

accurate analysis.  

It has been commonly seen by researchers that decreasing the dimensions of the 

EFP, the spatial resolution can be improved [14, 18, 24, 20]. Referring back to the 

magnified image of a section of a de-lidded transistor, the dimensions of bondwires 

and bondwire separation are highlighted in figure 2.15. 

 

 

Figure 2.15: A magnified image of a section of generic high power transistor, with 

ceramic casing removed, highlighting the dimensions of the componentry.  
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Figure 2.15 shows the delicate array of bondwires, diameter of 25μm, and a 

separation of 100μm. The drain manifold within the transistor is highlighted, for 

measurements requiring the fundamental drain voltage component; the EFP must 

be lowered as close as possible, to this manifold. For such measurements, the size 

of the EFP is of great importance, too large a probe tip, will cause destruction of the 

DUT. Therefore the tip of the probe must be small enough in circumference not to 

make contact with the surrounding bondwire array. Due to the active and high 

power nature of the measurement, such contact would result in destruction of both 

the EFP and the transistor. Figure 2.16 depicts the importance of the outer 

conductor diameter for in-situ drain measurements. 
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(a) 

 

     (b) 

Figure 2.16: (a) Different angle of view for a generic high power transistor device (b) 

showing the point of measurement required for drain manifold measurements and 

the importance of the outer conductor of the EFP. 

 

From the figure 2.16, the significance of the outer diameter of the EFP can be seen, 

as the diameter increases, so too does the distance between the inner conductor to 

the drain side manifold.  The total effective coupling is dependent on the surface of 

the central conductor, for best representation of the drain voltages, the probe must 

be positioned as close as possible to the drain manifold. For an EFP with a reduced 

outer diameter, the position of the central conductor will be situated closer to the 

probing target. Therefore a suitable reduction must occur in the outer diameter of 

the EFP to reduce the displacement of the central conductor, since a<b, for a more 

representative measurement. Such design procedures as the ‘micro-hole’ cap [18], 
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discussed further within section 2.5.2, would be deemed as an unpractical method 

for spatial resolution and sensitivity improvement of the EFP.  

 

The coupling which occurs between the EFP and DUT is predominantly dependent 

on two surfaces; the inner conductor of the probe and the measurement plane 

(DUT). Theoretical analysis of the expected resolution would dictate that the inner 

diameter of the EFP must be equal or be smaller than the desired resolution. The 

figure below illustrates an example whereby the diameter of the inner conductor 

far exceeds the desired resolution; i.e. an EFP with an ID of 100μm required for 

20μm resolution.  

 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 2.17: (a) An example of a structure with 20μm fingers with a separation of 

20μm (b) and an EFP, with dimensions greater than the expected and desired 

resolution in-situ. Note: the EFP is depicted with only the central conductor. 

 

The example mentioned above will result in the effective coupling of multiple 

abject fingers. Each finger within this device will have its own resulting electric 

field distribution; an overlap of the coupling area will result in a summation of all 
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fields present under the inner conductor, at that given point. Therefore a correct 

depiction of the electric field distribution cannot be made, as the geometry of the 

EFP surpasses the dimensions of the DUT and therefore its resolution capability.  

Chapter 3 will go on to show experimentally the direct correlation between the 

inner diameter of the EFP and the maximum possible resolution. Thus confirming 

the requisition if 100μm spatial resolution can only occur if the effective diameter 

of the EFP is comparable in dimensions.  

 

Initial analogy of a simple EFP constructed of a standard open-ended coaxial cable 

is shown to be an illogical mode of measurement for micron-scale devices. 

Although many of the novel techniques described in this thesis for the 

improvement of spatial resolution may be applicable to the coaxial cable, its 

purpose would prove impossible. A typical spacing between the drain and gate 

side bondwires is in the region 1mm, a standard semi-rigid cable, with a diameter 

of 2mm would be impractical and unfeasible for the measurement required.  

Therefore miniaturisation should be such that, it is sufficient for the proposed 

application.  

 

However, with miniaturisation certain difficulties will arise. The most common 

problems encountered are the resultant loss of sensitivity and materials required 

for construction. Complications with fabrication can also be a limitation, even if the 

correct materials are sourced [24]. Literature has shown the difficulties in 

fabrication and further miniaturisation beyond the region of an OD of 230μm and 

an inner diameter of 8μm. With most work requiring hand-made fabrication 

methods, limitations are inevitably reached and difficult to overcome without the 

aid of machining.  

 

Research of EFP resulted in two major discoveries, which then set the path for the 

improvement of spatial resolution. Miniaturised probes, containing a small 

protrusion of the inner conductor, were found to have substantial improvement of 

spatial resolution, if the protrusion length did not exceed the diameter of the outer 

conductor [20, 23, 24]. The second discovery made, required an alteration to the 

measurement technique and named the ‘position/signal difference method’ (PSD) 

[24]. Experimentation conducted found that the miniaturisation of the EFP 



 
 

43 
 

dimensions resulted in a reduction of the probe output, with an inability to fully 

resolve the DUT. To utilise the PSD method, two successive scans of the same area 

of the DUT are made with different vertical heights. By scanning the section of the 

DUT, with the help of an X-Y positioning stage, in a given vertical position, the 

repetition of the initial scan with a displaced probe height of 𝛥ℎ would result in 

two sets of poorly resolved distributions. However, by subtracting the two 

subsequent scans, a third and fully resolved distribution was obtained. 

 

Figure 2.18: PSD method shown pictorially, with the displacement of the protruding 

central conductor of a distance 𝛥ℎ [24]. 

 

Subtraction of the two data plots eliminated the external interfering fields, 

therefore resulting in a depiction of the required field strength within that 

displaced region.  

PSD is successful method for the attainment improved resolution without the need 

for EFP design modification, as it is attained through alteration of the 

measurement technique. However, requirement of two identical scans with 

displaced height, will subsequently double the scanning time for each 

measurement.  

The trade-offs present between miniaturisation and signal strength, requires 

alternative methods for increasing the sensitivity of the system. 

 

2.5.2. Increasing the sensitivity 

All miniaturised probes will inevitably have an issue of sensitivity. As the EFP is 

reduced in size, the effective area is decreased and therefore the coupling between 

the probe tip and DUT also decreases. Returning to the analogy that the EFP is 
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capacitive probe, the overall coupling between the probe and DUT is known to be 

dependent on the probe size and the separation of the measuring plane. With 

reference to the previously mentioned equation 2.26: 

 

𝐶 =
𝜀0𝜀𝑟𝐴

𝑑
 

2.26 

 

Where A, is the plate area, which will depend on the inner diameter of the probe 

and d is the separation of the plates. By reducing the probe dimensions the 

effective capacitance is compromised. Therefore the measurement plane must be 

kept to a minimum in order to maximise the coupling potential. 

 

The electric field at a metal’s surface can be considered at equipotential.  

 

𝐸 = −𝛻ф 
2.28 

 

For a given distance above the DUT, the potential will be equal. As the probe is 

moved transversely across the DUT, the distribution measured will be relative to 

electric field within that plane. Therefore an accurate depiction of the distribution 

requires a constant separation between DUT and probe tip. Previous methods of 

data acquisition have shown the use of a topography probes [24] before EFP 

measurements. The utilisation of the topography probe indicates the planarity 

issues of the device under test, thus allowing a predetermined adjustment for the 

measurement plane i.e. the probe tip to DUT separation is kept constant in 

accordance to the topography of the device plane. If the topography specifies a 

change in the subject’s planarity, the EFP separation is altered to compensate for 

the change in height. This method of EFP mapping does not give the truest 

representation of the measured field but rather an idealised distribution due to the 

alteration in probe tip to DUT separation. 

 

From previous models of EFPs, measurements have been conducted with a 

separation plane of the order of 400-500μm [16] [19], with a reported resolution 

of up to 100μm.  
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Extensive measurements regarding the degradation of resolution and signal 

strength will be shown in chapters 3 and 4. Results will indicate the full 

consequence of increasing the measurement plane to such an extent. The average 

measurement plane conducted within this thesis consists of a separation of 30μm; 

data presented within section 4.1.5 will show that an increase to 100μm, will result 

in an EFP output decay by half the initial magnitude. It will also be shown that this 

increase will result in a proportional degradation of the achievable resolution, 

when compared to the initial 30μm measurement plane. Thus questioning the 

validity of reported work for the measurement of electric field distributions, with a 

measurement plane of greater than 300μm.  

 

The substantial improvements in the spatial resolution, shown in chapter 4, are a 

result of strategic reductions in the dimensions of the EFP. The necessity of this 

reduction will consequently decrease the capacitive coupling to the region of 

0.001pF. For absolute maximisation of the resultant coupling, the measurement 

plane cannot be reduced to zero:  

 The proposed measurement system is a contactless in-situ EFP. Contact of 

any form has a greater potential to distort the measured entity due to the 

presence of the probe. 

 Contact will result in eradication of the air gap between the probe tip and 

DUT, thus the EFP cannot be considered as a capacitive probe. 

 Contact of the EFP and an active device i.e. a transistor within an operating 

PA system, will provide an undesired path to ground and cause destruction 

on both the EFP and the DUT.  

 

Therefore the separation of DUT and EFP can only be reduced so far in order to 

increase and maximise the coupling.  Thus, an alternative method for the 

amplification of already weak coupling signal must be carried out in order to have 

any validity in the results. This thesis will present the novel incorporation of a low-

noise buffer amplifier, placed close to the EFP tip, for the amplification of the probe 

output. However, literature in this area can become rather vague, and at times, has 

failed to mention any form of required amplification. An alternative method of 

amplification of the weakly coupled, miniaturised EFP has yet to be found.  
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Some literature has referenced the requirement of external amplification [15, 16, 

25], however, exact execution is unclear and information has been sparingly 

revealed. 

The most detailed mention for the requirement of external amplification [24, 25] is 

in the form of a low-noise monolithic-microwave integrated-circuit (MMIC) and its 

incorporation within the probe, however no further information was mentioned 

about the design or functionality of this MMIC, or the positioning of the amplifier 

within the EFP. 

A lack of information can be seen across the available literature regarding EFP’s 

that have been recently reported [14, 18, 19]. No indication is made that the 

miniature probes utilised for experimentation require any form of signal 

amplification. Since it is a known fact that sensitivity diminishes with 

miniaturisation, the reasoning behind this equivocality is questioned.  

 

A technique available for increasing the spatial resolution without compromising 

the sensitivity of the EFP is known as a ‘micro-hole’ probe [18]. The probe requires 

the fabrication and utilisation of a custom designed ‘micro-hole’ cap, covering the 

end of a commercially available semi-rigid coaxial cable. This cap reduces the 

apparent size of the inner and outer conductor’s diameter which is shown in figure 

2.19.  

 

Figure 2.19: Schematic diagram with of an enlargement the micro-hole attachment 

to the tip of an EFP [18]. Showing the effective reduction in the dimensions of the 

probe tip with the micro-hole addition. The resulting output of the probe is not 

compromised by this reduction as the majority of the probes dimensions have not 

been reduced.  
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In essence, the geometry of the coaxial cable is large enough that external 

amplification is not required and the design and incorporation of the micro-hole 

allows for the concentration of the coupling area. 

This technique results in the improvement of spatial resolution without the 

compromise in the probe output. However, its application would best suit specific 

examples: the measurement of large structures with small componentry and 

passive structures where sensitivity is a great issue. With no reduction in the 

overall dimensions; the micro-hole probe would be too large for the measurements 

of more intricate and delicate structures, where the target area is much smaller 

than the EFP. For the measurements of drain side voltages on a de-lidded 

transistor, the micro-hole EFP would prove to be too large for successful results.   

2.5.3. Measurement of orthogonal electric field components 

Previous probes have been developed specifically for the measurement of 

orthogonal components of electric field intensity [20, 25], with their topology 

differing to that of the EFP utilised for 𝐸𝑧 measurements. 
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(a) 

 

(b) 

Figure 2.20: Schematic layout of the various design alterations required for the 

measurement of orthogonal electric field components; where (a) is the 45° slanted 

probe tip [25] and (c) is the dipole probe [20]. 

 

The probe tip is re-designed with a 45° adjustment relative to the vertical axis. The 

new arrangement of the EFP requires the measurement at two different 180° 

rotations around the normal axis. The electric field entities, 𝐸0° and 𝐸180°  are 

detected by the EFP before and after the rotation. The vertical and tangential field 

can be calculated. 
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𝐸𝑧 =  
1

2cos (𝛼)
(𝐸0° + 𝐸180°) 

2.28 

 

𝐸𝑡 =
1

2sin (𝛼)
(𝐸0° + 𝐸180°) 

2.29 

 

 

In order to calculate all three orthogonal components of electric field, a further 

three rotations of the probe and additional calculations are required.  

 

𝐸𝑥 =  
1

sin (𝛼)
(2𝐸0° − 𝐸120° − 𝐸240°) 

2.30 

 

𝐸𝑦 =
1

√3sin (𝛼)
(𝐸120° − 𝐸240°) 

2.31 

 
 

𝐸𝑧 =  
1

3cos (𝛼)
(𝐸0° + 𝐸120° + 𝐸240°) 

2.32 

 

This proposed method for the measurement of orthogonal components of electric 

field has a high degree of complexity as well as an increase in the total time 

required for all measurements. With five different probe orientations required at 

each position, a scan over any given area will take five times as long. In many 

active measurements this can have a detrimental effect, increasing the scanning 

time will allow the measured system to heat up, therefore further knowledge of 

temperature coefficients must be taken in to account. 

As previously stated, orthogonal components of electric field diminish, if not 

vanish close to a metal surface. For valid measurements of these components, the 

probe must be raised to a sufficient level for these components to be significant 

and a present entity. This increase in separation, between the probe tip and DUT 

will have negative effect on the probe output, as the electric field will decay from 

the source. Therefore this signal must be greater than the background noise in 

order to be distinguished or to make a valid calculation of 𝐸𝑥 𝑎𝑛𝑑 𝐸𝑦.  
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The measurements discussed in [25] required a measurement plane of 600μm, 

while comparative measurements of the perpendicular components were taken at 

separation of 5-50μm [24]. A difference of this magnitude in the measurement 

plane would raise the question of the validity in the direct comparison as well as 

the significance in measuring orthogonal components at such distances. The 

resulting decay of electric field at this increased measurement plane must produce 

qualitative results such that an increase scanning time by five times can be 

justified. 

The mode of measurement utilised by the dipole EFP, shown in figure 2.20(b), 

would also require alteration in the measurement orientation. The dipole probe 

has the capability of measuring the two tangential components of electric field, 

𝐸𝑥 𝑎𝑛𝑑 𝐸𝑦, due to the presence of two coaxial cables. The aid of a spectrum 

analyser allows for the difference in the output to be calculated, along with an 

additional 90° rotation of the probe (around the z-axis), the correct tangential 

components can be calculated. 

 

Most methods for the measurement of orthogonal components of electric field 

have posed some difficulty. No one method has been found that did not require the 

alteration of the existing measurement apparatus, either by rotation of the EFP or 

the complete redesign of the EFP. These amendments while necessary for 

orthogonal component measurements, increase the total time required for a 

complete scan due to the unavoidable rotation of the EFP. 

Electrooptic field mapping can provide an alternative method for the measurement 

and diagnostics of active and passive devices. With a claimed resolutions varying 

from 8μm to 580μm [24, 27] and the ability to measure orthogonal field 

components. Note: the method of its operation will be described in more detail in 

section 2.6. With the use of a photodiode, an incident beam of photons fired at the 

DUT, is analysed to detect the change in its polarisation state. This polarisation 

state is sensitive to the magnitude and phase of the measured RF electric field. The 

incident beam is focused using a customised electrooptic probe crystal. In order 

for the measurements of orthogonal electric field components, both the 

composition of the electrooptic crystal and its orientation must be changed. For 

measurements requiring the normal component, a bismuth silicate (𝐵𝑆𝑂) crystal is 

used, while the two tangential components have been found to require lithium 
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tantalite  (𝐿𝑖𝑇𝑎𝑂3) crystals. The use of 𝐿𝑖𝑇𝑎𝑂3 crystals requires the rotation about 

the axis of 90° for the calculation of the two tangential-orthogonal components 

[24]. Thus meaning the required scanning time of an electrooptic system is tripled 

for the achievement of the three orthogonal electric field components. 

 

2.5.4. Discussion of the literature review   

Before electromagnetic (EM) simulators were widely available or had the accuracy 

of modern day computer programs, alternative methods for the understanding and 

mapping electric field intensity was under much analysis. Initial investigations of 

the EFP required the comparison of physical and analytical expectations of an 

axially suspended probe over a shielded microstrip between [13]. Preliminary, 

experimentations were not concerned with the resolution of the probe, nor its 

design, but rather a confirmation of theoretical calculations for its given 

application. The evolution of the EPF did not take off until many years later, as 

components within a microwave circuit became smaller so did the diagnostic tool 

for its measurement. Early work concluded that a simple open-ended coaxial cable 

can be used as an inexpensive alternative for electric field mapping, the capacitive 

coupling of the probe to the DUT resulted in a measureable induced electric 

current [28]. However, the signal deterioration as a result of increasing the probe 

tip to DUT separation was not fully considered at this point, as the measurement 

plane within this example was conducted at 1000μm. Further documentation 

stated additional increases to the measurement plane, experimental procedure 

have been reported with measurement planes as large as 2300μm [14] above the 

DUT. The probe used for such experiments consisted of a miniaturised coaxial 

cable, with an outer diameter (OD) of 500μm, an inner diameter of 120μm and an 

inner conductor protrusion of 300μm. Reinvestigation of the probe signal and its 

dependence on the separation, concluded a rapid decrease in signal strength, about 

10dBm for an increase of 300μm [29], which concluded optimal measurement 

separation of 100μm. However, the probe dimensions between initial experiments 

and the reinvestigation were not altered, only the measurement plane, yet all 

recorded data resulted in a depiction in the -50dBm region. In the latter 

investigation, probe signal was clearly found to be a factor of its separation, yet a 
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reduction of more than 50% in the separation did not constitute in a subsequent 

increase in probe signal. 

 

Most literature available on miniature EFP includes the presence of an inner 

conductor protrusion to some extent; however most fail to mention the negative 

constraints found between spatial resolution and sensitivity as a function of the 

protrusion [14, 19]. The trade-off between present entities when mentioned [15, 

20], were not fully investigated.  

When considering these entities separately, it was found that the length of the 

protruding inner conductor of the EFP had a great effect on its resolution 

capabilities. Its length should not exceed the OD of the EPF or that of the desired 

spatial resolution [24], this means a protrusion of 300μm will yield a similar 

resolution. It was found that a reduction of the probing geometry to the 

dimensions mentioned above, required the need for a pre-amplifier, to obtain a 

signal strength greater than the noise level. For a constant field intensity, the 

induced current will also be constant, therefore can be fed to a pre-amplifier. The 

length of the protruding inner conductor has a direct influence on the sensitivity 

and matching of the high impedance source (the DUT) to the coaxial probe and 

pre-amplifier. The length of the protruding inner conductor was adjusted for 

optimal signal matching, if chosen to be a length of λ/4, the probe will operate at 

resonance, however for such particular experiment, would yield a protrusion of up 

to 2mm. However, the probe under investigation had an ID of 8μm, a protrusion of 

such lengths would result in inevitable bending, deformation or be susceptible to 

vibration.  

Designing a probe for a specific DUT, although resulting in optimisation can 

restrict the application to limit DUT measurements. Thus requiring alternative 

probes as the device under investigation alters; if their operation is out of the 

resonance frequency band. However, the variance in spatial resolution resulting 

from the intentional design of an inner conductor protrusion was not under full 

investigation i.e. both protrusion and spatial resolution were not considered 

simultaneously.  

An intentional EFP resonance can be a favourable design method, as is can increase 

both the sensitivity and resulting output of the probe [26, 30]. The resonant 

frequency is very sensitive to its local geometry, any changes to the probing target 
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will result in the measureable shift of the resonance. This shift will occur 

accordingly to the intensity of the field magnitude and phase, which can be 

recorded and analysed for the representation of electric field across the section of 

the DUT.   

For measurements not requiring the shift in resonance, the ideal frequency 

response of an EFP should be flat, and wide a band as the DUT. A resonance in the 

frequency response not carefully considered can result in the modulation of the 

field to be measured. 

 

Results shown in this thesis will display strong evidence that increasing the length 

of protrusion gives an advantageous increase in the signal level of the probe; 

however it has a detrimental effect on the spatial resolution.  

However it is still seen in modern day practice to have an EFP with a protrusion of 

up to 300μm, and an unrealistic measurement separation of 500μm [19] for the 

measurement of high power devices. This particular investigation does not require 

high spatial resolution, but rather the analysis of the probe signal for numerical 

interpretation of load modulation, in-circuit current and voltages. This method 

required the comparison of two sets of data, one is obtained by numerically solving 

the probe reception by an electromagnetic field simulator (ANSYS HFSS) and the 

second required the magnitude and phase of the E-field. The relative power waves 

at the input and output are deduced, since this particular device under 

investigation is a 400W LDMOS DPA, there are four ports that must be taken in 

consideration. Each measurement must be repeated for the linear combination of 

the four simulated field distributions.  

Although the resulting measurements of voltage and current is considered as ‘in-

circuit’, measurements are taken at the drive, load and biasing ports and not inside 

the LDMOS transistor. Between the internal periphery of the LDMOS device and 

the input/output ports, many factors can vary and therefore the result may not be 

considered as the most accurate representation of the device behaviour. For the 

most accurate representation of drain voltages and currents, the expectation 

would be measurements made on-chip, at the LDMOS device plane.  

Other disadvantages of this method include: the requirement of electromagnetic 

modelling for the given DUT. If this is unknown, in-circuit reflection coefficients 
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cannot be easily determined [17]. Deviation from expected modelling can only 

arise with access to EM models, without such information strays from normal 

working conditions will go undetected. This proposed method in reality works as a 

verification tool rather than a complete diagnostic.  

 

2.6. Alternative methods for electric field measurements and device 

characterisation 

2.6.1. Electrooptic field mapping 

Electric field probes are in general, a rather inexpensive method for the analysis of 

E-field distribution, and a favoured technique to others available. The electrooptic 

probe, or electrooptic sampling, seen as the more expensive and complicated 

method of choice, has its own advantages and disadvantages. The costing issues 

with this method is evident, from materials for the construction of the 

sophisticated and intricate probe heads to the start-up purchase price of the laser, 

(required for the incident beam) all add up to a considerable amount. The results 

achieved by this method must outweigh the disadvantages for it to be a viable and 

favourable alternative to EFP. 

The principle of operation relies on the change in optical index of refraction of the 

incident beam, usually Ti: sapphire laser, as it passes through the electrooptic 

probe crystal [31]. This change in optical index is caused by the varying electric 

field, Pockels effect, which is converted to a relevant change in amplitude and can 

be reconstructed to a full waveform by methods of sequential sampling. Pockel’s 

effect is proportional change in the refractive index with applied electric field [32], 

and can only occur in non-centrosymmetric materials. For this reason the probe 

crystal can only be constructed of a certain material, it must be polished correctly 

to achieve total internal reflection [33]. A general schematic for electrooptic 

sampling is shown below in 2.21. 
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Figure 2.21: Block diagram of a common system utilised in electrooptic sampling. 

 

The magnitude and phase of the time-varying electric field produced by the DUT 

will cause a relative change in the refractive index of the incident Ti: sapphire laser 

at the electrooptic crystal. The electrical signal produced by the photodiode is 

proportional to this change. For faster data acquisition, most electrooptic systems 

adopt asynchronous sampling, using two locked lasers at different pulse rates. 

Alleviating the speed at which delays can be realised, this helps provide an 

intentional time delay for the sampling gate.  

 

For many years, electrooptic systems have been used to measure the electric field 

distribution for active and passive devices [27, 31, 34], with most methods of 

evolution resulting in faster data acquisition and better knowledge of crystals used 

for electrooptic probe tip.  

As previously mentioned, the electrooptic system is capable of measuring three 

orthogonal components of electric field. By changing the composition of the probe 

crystal and their orientation, the two tangential-orthogonal components of e-field 

can be determined. For measurements requiring the normal component, a bismuth 

silicate (𝐵𝑆𝑂) crystal is used, while tangential components have been found to 

require lithium tantalite  (𝐿𝑖𝑇𝑎𝑂3) crystals. The use of 𝐿𝑖𝑇𝑎𝑂3 crystals requires the 

rotation about the axis, of 90°, for the calculation of the two orthogonal 

components [27]. As with the 45° slanted EFP [25] (shown in figure 2.19), 



 CHAPTER 2.   INTRODUCTION TO EFP  TECHNIQUES AND LITE RATURE REVIEW  
 

56 
 

measurements of the orthogonal components of electric field with an electrooptic 

system requires an increased scanning time. Again, thermal effects must be 

accounted for as a considerable time will elapse before and after the probe 

orientation is made. The 90° rotation must also be conducted in accordance to the 

same measured point, unless the error in the automated system is small enough 

for displacement inaccuracies to be negligible, one full scan cannot be made then 

repeated at a 90° rotation. Rotation must occur at every measuring point adding 

more complications in data acquisition.  

In some particular systems, the electrooptic circuitry is large and immobile. For 

full 3-dimentional scans, it is required for the DUT to be attached to a motorised 

positioner. Practicality of this method occurs only if the DUT is mobile. However, if 

both the measuring system and the system to be measured are large and immobile, 

neither can be attached to the motorised stage, required for 3-D scanning.  

Spatial resolution can vary from system to system. This is due to the variance in 

the focus of the Ti: sapphire beams spot size, spatial resolution can vary from a few 

micrometres [34] to 500μm [27]. The minimum detectable voltage by the 

electrooptic system is similar to that of the EFP, in the region of 0.5mV or -45dBm 

[33]. 

It seems certain factors will dictate if the electrooptic system is a feasible method 

of choice, with similar spatial resolution and minimum detectable voltage, both 

EFP and electrooptic probe can be used for the measurement of passive and active 

components. Two factors dominating the choice of measurement will be: budget 

and portability of the DUT. Cost of purchasing Ti: sapphire lasers, along with the 

electrooptic crystals, can cause escalation in the budget. The EFP proposed within 

this thesis, has both the capability of moving the DUT on a motorised controller 

stage, or utilising a stationary DUT with an adjustable probe. The EFP systems are 

much more flexible in terms of the range of devices it can measure and its 

versatility will be personified throughout this thesis.  

 

2.6.2. Load-pull measurements for device plane voltages 

Load-pull systems have been developed for many years as a method for 

characterisation of transistors at GHz frequencies. Entities such as output power, 

efficiency and gain can be measured [1, 2, 3, 4, 5], under engineered operating 
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conditions for a given frequency range. This is achieved by tuning the load 

impedance presented to the transistor, so that the desired or maximum output 

power condition can be achieved for the required frequency.  

Load-pull systems have successfully measured current and voltage time-domain 

waveforms within the 50Ω environment. By monitoring the forward and reflected 

waves using a dual directional coupler. The impedances seen at harmonic 

frequencies can be engineered using either a passive external tuner, or by injection 

of suitable signals [4]. However, such measurements rely on the assumption that a 

complex high power transistor behaves in a much simpler manner than is exposed 

in the present work. For characterisation of device plane waveforms, the transistor 

is assumed to behave in a simple 1D manner; where in reality transistors can be 

very large, distributed structures, with the capability to exhibit variance across the 

device in a 2D and 3D manner. It will be demonstrated in chapters 6-8 the true 

level of variation present within a complex high power transistor; therefore such 

simplifications can result in an inferior method of waveform extrapolation.  

Measurements are conducted at both ports of a DUT, the resulting device plane 

waveform information is a calculation derived by the knowledge of forward and 

reflected voltages. However these measurements are conducted within the 50Ω 

environment and as such can be argued not to replicate the DUT under true 

operational conditions.  

The resulting waveform information may thus be inaccurate, as load-pull systems 

do not take variation along the device to be a significant factor. Furthermore, 

characterisation can only be considered true for the DUT in optimal conditions. 

The device is not characterised while in its operational form i.e. within a working 

high power PA. Therefore the resulting behaviour of the DUT can deviate from the 

expected measurements when placed within an operational RFPA.  

As previously mentioned, load-pull systems do provide an understanding of the 

DUT characteristics; therefore, can aid the design of resulting matching network 

required for amplifier systems. The work within this thesis will present actual 

internal waveform information distributed along the device plane. Due to the 

position of the measuring system to be described, the resultant drain waveform 

information can be regarded as the truest representation of on-chip device 

characterisation.  
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3. INITIAL WORK PERFORMED ON COAXIAL EF PROBES 

This chapter describes the first phase of this PhD project, which was to perform a 

detailed study of the practical probe structures using commercial, off-the-self 

(COT) components and materials. 

The starting point for the practical work on this project was a clear goal to 

measure in-situ device plane voltages and the waveform distribution of high power 

transistors, within a working operational power amplifier. The resultant probe 

must fulfil this purpose. The final design of the EFP resulted in many design 

alterations in order to fulfil the initial objective. EFP evolution consisted of 

intentional reductions in the systematic design, for improvement of the spatial 

resolution.  Such reductions will cause an inevitable loss in the output of the probe 

and require alternative rectification. A common solution for the improvement and 

increase of the probes gain has been the introduction of a protruding inner 

conductor in the EFP design [13, 14, 17, 24]. The presence of protrusion does 

alleviate the problem of poor signal however, full considerations of its effect has 

not been investigated with regards to spatial resolution of the EFP. Prior work at 

Cardiff University [30] found evidence to contradict previous literature [23] 

whereby is was stated that for a constant measurement plane, the reduction of 

probe tip protrusion resulted in a subsequent improvement in the spatial 

resolution and probe output (shown in figure 3.3). This thesis describes intensive 

investigations of the effect of the probe tip protrusion and the consequence it has 

on the spatial resolution. Results in section 4.1.3 and throughout chapter 5 will 



 
 

59 
 

show that a reduced protrusion, minimised to a flush cut, can achieve maximum 

spatial resolution, although at the cost to the signal pick-up.  

As a result, an alternative method for signal amplification must be considered for 

the miniaturised EFP. The starting point of the proposed investigation is based on 

the findings, that a buffer amplifier, close to the probe tip, can provide isolation 

and termination of the unwanted stray pick-up from the feeder cable as well as the 

much needed amplification of the small signal pick-up [35]. The amplifier placed in 

an alternative position, i.e. further away from the probe tip, would result in the 

compromise of dynamic range and ultimately exaggerate the stray pickup on the 

outer conductor of the EFP. Thus, this unique configuration allows the 

amplification of the probe output alone, whilst providing a termination for the 

feeder line as well as reduction of stray pickup [35]. 

 

The EFP described within the next chapters will go through three key stages of 

development. The first stage will consist of an EFP design containing the smallest 

coaxial, semi-rigid cable commercially available. This will result in an inevitable 

limitation of the maximum spatial resolution that can be achieved. With only 

financial limitations, this lead to the sourcing of fine copper tubes for the 

construction of smaller custom made coaxial cable probes. Due to the reduction in 

overall dimensions of the EFP, a low noise, surface mountable pHEMT small-

outline transistor (SOT) will be introduced for the amplification of the low signal 

levels. The final redesign of the EFP requires the improvement of the packaged 

SOT, for final improvement of the frequency response.  

 

It should be noted that numerous EFP designs mentioned throughout this thesis 

were in fact fabricated, without prior computer simulation to investigate its 

expected performance characteristics. This is solely due to the difficulty presented 

during the construction stage of the EFP. Simulation of ultra-miniaturised EFP of 

unrealistic proportions can be conducted with ease, while in reality, the outcome 

and the possibility for successful construction doubtful.   Within this chapter and 

those to follow, the escalating difficulty presented in the construction of EFP, as 

dimensions are reduced, will be highlighted. Simulations of the EFP’s characteristic 

will be computed after successful construction and testing. 
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3.1. Initial design stage of electric field probe 

The internal structure of a high power transistor is not a consistent entity.  With 

the sensitivity of the EFP to the probing target, a design will be required for the 

general application and acquisition of data. These requirements will set the initial 

restrictions in the design plan of the EFP. 

 

In section 2.5.1 it is stated that the overall desired spatial resolution should be 

comparable, if not dictate, the dimensions of the EFP. Along with additional 

considerations due to the restricted access of the probing target, preliminary 

design specifications can be set, with a final objective to improve the spatial 

resolution beyond 100μm. 

 

In section 2.3.1 it was suggested that an open-ended, semi-rigid coaxial cable can 

be successfully used for the measurement of electric field intensity, however not 

optimised for the purpose of in-situ device plane measurements of high power 

transistor due to its size. For miniaturisation, initial design considerations must 

include two specific attentions: sourcing of the smallest commercially available 

miniature coaxial cables, limited only by budget, and the redesign for the step by 

step fabrication of a customised sub-miniature coaxial cable. 

 

3.1.1. Design of EFP1 and EFP2 

During the initial construction stage of the EFP, two different miniature coaxial 

cable types were found, both different in Outer Diameter (OD) and Inner Diameter 

(ID). The larger of the two, EFP1, measured with an OD of 0.88mm and an ID of 

0.177mm, while the smaller, EFP2, measured at an outer diameter OD of 0.58mm 

and an inner diameter ID of 0.127mm. 

The EFP, as previously mentioned, can be considered as a capacitive probe. It will 

be stated that the measured output will be a proportional to the corresponding 

varying electric field, produced by the DUT. Due to the level of miniaturisation 

required, the anticipated signal probe output is predicted to be very low, possibly 

close to the electronic noise level. From equation 3.1 the maximum coupling for an 

EFP can be predetermined. 

𝐶 =
𝜀0𝜀𝑟𝐴

𝑑
 

3.1 
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The dielectric within this example is considered negligible as the gap between the 

probe tip and DUT is air, with a 𝜀𝑟 ≈ 1, therefore the coupling can be estimated if 

their separation is kept constant. Assuming the separation is around 30μm, then 

capacitance for each probe will be in the region of: 

 

𝐶𝐸𝐹𝑃1 = 7.33 × 10−15𝐹 

 

𝐶𝐸𝐹𝑃2 = 3.73 × 10−15𝐹. 

 

Where the characteristic impedance of the coaxial probe can be calculated by the 

capacitance and inductance per unit length, 

𝑍0 = √
𝐿

𝐶
 

(3.2) 

 

 

𝐶(𝑑𝑙) =
2𝜋𝜀𝑟

ln
𝐷
𝑑

 (3.3) 

 

where D is the inner diameter of the outer conductor and d is the diameter of the 

inner conductor: 

 

𝐿(𝑑𝑙) =
𝜇

2𝜋
ln

𝐷

𝑑
. 

(3.4) 

 

By substituting equations 3.3 and 3.4 in to 3.2, the following can be said for the 

characteristic impedance,  

𝑍0 =
138

√𝜀𝑟

log
𝐷

𝑑
 

(3.5) 

therefore 

 

𝑍0𝐸𝐹𝑃1
= 96.11𝛺 

 

𝑍0𝐸𝐹𝑃2
= 91.03𝛺. 
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With the sourced coaxial cable of dimensions mentioned above, the reduction in 

signal pick up is unavoidable. Due to the weak coupling the integration of a buffer 

amplifier, close to the probe tip, can compensate for the loss in signal. The drain 

bias of the buffer amplifier is provided by an external biasing network, which for 

most of this work consisted of a commercial “bias tee”. The inner conductor of the 

probe tip is connected as an open circuit to the gate. 

In order for the EFP to be fully integrated to the measurement systems, an initial 

connection must be made to a vector network analyser (VNA), for characterisation 

of the probe and the DUT. The subsequent probe will consist of two coaxial cables, 

of different diameters connected with a custom designed brass ferrule. A standard 

RG 405 U coaxial cable is used for the integration to a SMA (SubMiniature version 

A) connection, while the miniature tip consists of a cable with much smaller 

dimensions. The custom designed small brass ferrule provides a means of 

connection between the two sub-sections of coaxial cable. Thus resulting in a 

gradual reduction of the RG 4058 U cable to the chosen miniaturised dimensions.  
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(a) 

 

Figure 3.1(a): Schematic diagram of the gradual reduction of the EFP for the 

integration to the measurement system, showing how the brass ferrule fits over the 

larger section of co-axial cable and the method of connection to the miniaturised 

probe tip.  Note: the tight fit casing to enclose the brass ferrule is not included in the 

diagram. (b) Picture of constructed EFP for reference.  

 

The design and integration of the brass section provides many benefits for the 

functionality of the EFP. It not only acts as a physical connection between the two 

extremely different outer diameters of coaxial cable, but with slight modifications, 

i.e. smaller drilled hole, could allow for future smaller probe designs. The brass 

ferrule, designed with sufficient space, can also house the buffer amplifier, 

providing a source of ground and a shield to external electrical interference.  
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Due to the intended in-situ measurements, the EFP will be inevitably exposed to 

potentially very strong fields. In order to combat external coupling to the buffer 

amplifier, a tight fit case is designed to fit securely over the brass ferrule, not 

pictured in figure 3.1. The conductive nature of the tight fit brass case allows for an 

effective model of a Faraday’s cage to exist, whereby surplus charge remains on the 

outer layer of the brass section. This provides protection to any harmful static 

electric fields penetrating into the buffer amplifier.  

The buffer amplifier used to increase the low input signal pick up is a low noise 

SOT packaged, small signal, 4-lead PHEMT transistor (Avago ATF34143), with 

physical package measurements of L 1.30mm, W 1.15mm and H 0.80mm.  

The introduction of the SOT amplifier has additional advantages; due to the 

effective capacitance presented at the probe tip, the system can be considered as a 

capacitive divider.  Figure 3.2 below represents the capacitive divider present 

within the EFP design, where the outer conductor of the EFP can be considered as 

the virtual ground connection [22]. 

 

Figure 3.2: Schematic diagram capacitive divider present within the system; where 

𝐶𝑝 is the capacitance present between the surface of the DUT and the inner conductor 

of the probe and  𝐶𝑔𝑠 is the capacitance of the amplifier. The outer conductor of the 

probe can be considered as the virtual ground of the system. 

 

 

The ac analysis of the amplifier’s voltage can be calculated as: 

 

𝑉𝑔𝑠 =
𝑉. 𝑋𝐶𝑔𝑠

𝑋𝐶𝑝
+ 𝑋𝐶𝑔𝑠

 
(3.6) 
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since  𝑋𝐶𝑝
≫ 𝑋𝐶𝑔𝑠

, then; 

 

𝑉𝑔𝑠 =
𝑉. 𝑋𝐶𝑔𝑠

𝑋𝐶𝑝

 
(3.7) 

The reactance of the capacitance present at the probe tip is: 
 

𝑋𝐶𝑝
=

1

𝑗𝜔𝐶𝑝
 

(3.8) 

And the reactance of the of the amplifier is: 
 

𝑋𝐶𝑔𝑠
=

1

𝑗𝜔𝐶𝑔𝑠
 

(3.9) 

 
Substituting equations 3.8 and 3.9 into 3.6 yields: 

 

 

𝑉𝑔𝑠 =
𝐶𝑝

𝐶𝑔𝑠
, 

(3.10) 

 
 
showing that 𝑉𝑔𝑠 is independent of frequency, ω. This is a highly desirable 

situation, and indicates that such a probe design will have a flat frequency 

response all the way down to DC. In addition to making waveform 

measurements much easier due to the flat frequency response, the low 

frequency characteristic has led to a unique in-situ calibration procedure 

which is described in chapter 9. 

 

3.1.2. Passive device under test 

In order to test the spatial resolution capability of EFP1, EFP2 and any future 

probes, the test fixture used for this purpose must be applicable to the final 

measurements made on a high power transistor. In section 2.5.1 the topology of 

the internal structure of a de-lidded transistor was mentioned and the complex 

and delicate array of bondwires was evident. In previous literature the spatial 

resolution of the probe has been shown to be tested in many ways, some include: 

 Using the probe to move transversely across a matched microstrip line. By 

comparing the nulls and peaks achieved to that of an EM simulation, a 

conclusion of the spatial resolution of different probes can be achieved. The 

probes with the most similar result to the simulation or the probe which 
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can achieve the most defined null is deemed the highest resolution [16] 

[23]. The figure 3.3 below shows the effect of altering the separation of the 

measurement plane on the spatial resolution and pick-up of the probe. It 

can be clearly seen that both diminish with a separation increase. 

 

     (a) 

 

      (b) 

Figure 3.3: Cross sectional scans conducted across a section of transmission line (a) 

at different heights of the measuring plane and (b) two scans acquired by probes 

with different OD investigating the effect of probe tip protrusion at a constant 

measuring plane [23]. Showing a loss of resolution, for a constant measurement 

plane, as the probe tip protrusion is decreased.  

   

 Another method for the determination of resolution is the ability to 

distinguish anomalies [23]. With the addition of purpose drilled defects of 

25μm holes to the test fixture, sequential scans of before and after the 

additions, can determine deviation from the expected result. The EFP’s 
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ability to extricate this defect would show the spatial resolution capability 

of the probe. 

Although both the methods mentioned above can show some aspects of the spatial 

resolution, a method directly applicable to the intended measurements would 

better represent the achievable resolution. Figure 3.4 below represents an 

example of the test fixture used for spatial resolution analysis.  

 

 

      (a) 

 

      (b) 

 

Figure 3.4(a) and (b): An example of the plan and side view of a 19 bondwire test 

fixture used for spatial resolution analysis. The excitation to the test fixture is 

provided by a VNA and terminated by a matched 50Ω load, where resolution is 

determined by the transverse movement of the EFP across the DUT at constant 

separation.  

 

Figure 3.4 shows a multiple array of 20μm bondwires, joining two sections of 

microstrip line. This test structure is made to fit on a standard microstrip test 
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fixture (“H Block”), allowing it to be measured with SMA connections. The 

excitation to this structure is provided through port 1, which is connected to a 

vector network analyser and is terminated through port 2, to a matched 50Ω 

termination.  The test fixture shown above is an example of just one of the many 

used. Structures varied in bondwire numbers and termination, i.e. some bondwire 

arrays terminated to ground while others, as shown above in figure 3.4, terminated 

by bonding to an adjacent section of microstrip line. All structures used resulted in 

the full investigation of the spatial resolution capability of the EFP.  

By placing the probe, whose spatial resolution capability is to be tested, over the 

bondwire array and moving it transversely across the structure, the output picked 

up by the probe is proportional to the voltage produced between the bondwires 

and ground. Between each movement, the corresponding voltage is measured and 

recorded with respect to that given point. 

The resulting scan across the test fixture should achieve a corresponding number 

of peaks and troughs to the number of bondwires; where the maximum relative 

voltage measured is proportional to the number of bondwires, while the troughs 

represent the spacing between the bondwires. Although it has been previously 

mentioned that the probe is only sensitive to the normal component of electric 

field, the troughs measured will not yield a relative voltage of zero. This is due to 

the fact, that the field between the bondwires 𝐸𝑧 ≠ 0 at the chosen measurement 

plane.  

The field between the bondwires can be simplified by only considering the field 

distribution of two parallel conducting wires. The figure below shows the electric 

field patters surrounding two conducting wires, note the current is travelling 

though each wire is in the same direction. 
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Figure 3.5: Electric field distribution between two parallel wires with two indicated 

measuring planes, plane A and B; where the blue lines indicate electric field and the 

dotted lines represent their corresponding equipotential surfaces.  To achieve a field 

measurement of zero between adjacent bondwires, the intended measurement plane 

must be conducted at A.  

 

The field patterns axially central between the current carrying conductors, will 

exhibit a null of zero electric field due to the divergence of field, when conducting 

in the same direction. In order to achieve a measurement of zero electric field and 

hence zero relative voltage, the EFP would need to be transversely moved across 

plane A, indicated above. Due to the physical obstacle of the bondwires, the 

movement across plane A would be impossible and cause irreversible damage to 

the structure as well as the probe, for this reason the actual measurement made is 

along plane B. Midway across plane B, it shows clear evidence of an electric field 

present. However, due to the divergence of field, the resultant perpendicular 

component is reduced. This therefore shows the probe will measure a proportional 

and relevant reduction in the electric field distribution.  

 

It should be mentioned that the effective coupling of the probe tip to a bondwire, 

would in fact be much less than the calculated value in section 3.1.1. The 

calculation in the previous section was derived from the assumption that the DUT 

is of a larger area than that of the probe tip, therefore the value calculated is the 

maximum possible coupling. However, with measurements over the bondwire 

structure, the maximum possibility of coupling is reduced due to the size 
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(diameter) of the bondwire. The coupling is further reduced due to the DUT area of 

20μm, which is about an 80% reduction in effective area.  

3.1.3. Automation of the results 

For correct analysis of spatial resolution, the movement of either the DUT or EFP 

must be carefully controlled. Therefore automation of the measurement plane can 

aid the investigation while eliminating spatial errors: 

 Automation of the test fixture or the probe will allow for repeatability of the 

results. Given a specific starting and ending point, with a precise number of 

increments, the measurements taken by different probes will be 

comparable as well as repeatable.  

 Automation of the step size, i.e. the increments between each measurement 

taken by the probe must be carefully controlled. An unrealistic expectation 

of a resolution of 100μm would occur, if the increments between each 

measurement were 200μm. Automation will allow for a much more precise 

movement as well as fine-tune control. 

The initial automation process required the movement of the H-block fixture i.e. to 

keep the probe stationary while the DUT below is moved. The linear stage used 

within this work is the Zaber 100mm T-LSM100A with built in controller and 

optional manual mode (see Appendix 3). The maximum error possible between 

two positions is 30μm with a repeatability of <1μm, where the repeatability is 

considered as the maximum deviation possible to the specified position.  

The motorised linear stage required programming from scratch with C#, through 

the use of Microsoft Visual by a RS 232 to USB conversion. 

For a successful automation procedure, the following outcomes must be 

considered and fulfilled:  

 Result in a simple, user-friendly program not dependent on the level of the 

user’s computer literacy.  

 Allow for measurements to be interchanged between manual or automated 

modes. 

 For automated modes of measurement, the magnitude and phase of each 

position must be stored in order to produce a full scan. 

 The ability to store positions, this will allow the user to return to a specific 

point with only marginal error of the linear stage. 
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 Most important, to define the number of points within a given scan and the 

distance between each increment.  

The latter point will have an introduced time delay between each increment within 

the code, allowing the instrument to have sufficient time to respond to the local 

environment of the new movement i.e. time to correctly measure the new field 

component, as well as the time needed for the acquisition of data. 

Figure 3.6 below, shows screenshots of the resultant program, figure (a) is the 

method for individual data point acquisition, figure (b) represents the automated 

control and definition of starting point while figure (c) is the automated program. 

 

 

3.6 (a) 

 

3.6 (b) 
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3.6(c) 

 

Figure 3.6: Screenshot of the resulting program from the c# code (a) with manual 

modes and automated modes of measurement, (b) with the ability to automatically 

control and define probe position and (c) conduct automated scans with specific 

dimensions and pre-set levels. 

 

The Zaber automated linear stage includes numerous predefined commands. The 

incorporation of these demands and further code allowed for an effective program 

which is used throughout this work.  

The automated program undergoes an open loop of commands for a given scan. 

Firstly, the VNA is initialised, by defining the frequency sweep and marker 

frequency of the measurement, with additional control of the required power level 

and averaging. The number of points required for a complete scan and the 

increments between each movement are predefined by the user. The automated 

program is then started, the magnitude and phase of the probes output is recorded 

for a given position.  This measurement is relevant to the predefined marker 

frequency. With an appropriate time delay, the probe is then moved and a new 

measurement is recorded. The time delay between subsequent measurements can 

be changed. A longer time delay will result in a better response to the local field, 

however this will result in a greater scan time. The resultant scan is a data set of all 

the points acquired within the specific number of points which can be exported for 

later analysis in a .CSV file.  
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Two additional significant features in the code include a real-time plot of EFP 

measurements with respect to magnitude and phase of the output and a ‘cancel’ 

button to prevent a chain of disastrous events. 

3.1.4. Spatial resolution capability of EFP1 and EFP2 

In order to test the spatial resolution of the two probes, EFP1 and EFP2, automated 

scans were made of the structure shown below. 

 

 

(a) 

 

 

(b) 

 

Figure 3.7(a) and (b): Plan and side view of a 7 bondwire test fixture used for spatial 

resolution analysis of EFP1 and EFP2, indicating the direction of data acquisition.  

 

Figure 3.7 shows both the plan and side view of a structure consisting of a section 

of microstrip line, connected by a fan of 20μm diameter bondwires. The 7 

bondwires each have a separation measuring 100μm. The probe was placed over 

the initial measurement point of B1, with a measurement height of 30μm between 
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the highest bondwire. The probe is kept stationary, while the structure, due to its 

attachment to the automated stage, is moved from the trajectory B1 to B2. The 

structure itself is passive, measurements are taken at the frequency sweep of 1GHz 

to 3GHz, with an input power of 0dBm. To avoid reflection, port 2 of the structure 

is terminated by a matched 50Ω load. The measurement taken from the probe is 

the resulting transmission in dB, at a given point, using a VNA. This output is 

converted to a relative voltage measurement by means of: 

 

𝑉 = 10𝑃/20, 
(3.11) 

 

where P is the output measured by the VNA in dB. 

Figure 3.8 shows the results yielded from the respective scans from EFP1 and 

EFP2 for the 7 bondwire structure, where the horizontal scale represents the 

relative distance from position B1 to B2. 

 

Figure 3.8: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane of the device shown in figure 3.7 using EFP1 and EFP2; where 

the horizontal scale represents a relative measurement of distance. 

 

From the spatial resolution analysis of EFP1 and EFP2, it can be easily concluded 

the resolution capability is beyond the required 100μm. Clear resolution of the 
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individual bondwires cannot be fully distinguished. With only a slight 

improvement in resolution due to a reduction of probe dimension, one probe 

cannot be clearly labelled as superior.  

This outcome is rather expected when considering the analogy presented in 

section 2.5.1. If the diameter of the inner conductor exceeds the area of intended 

measurement, the spatial resolution will degrade. (Note that in this thesis 

“increased resolution” is used to indicate “improved resolution”). 

With consideration of the smaller probe, EFP2, its ID measures at 127μm, whereas 

the proposed DUT has a bondwire diameters of 20μm with a separation of 100μm. 

This will result in the situation whereby the probe tip can potentially couple to two 

adjacent bondwires, therefore clear resolution of the bondwires cannot be 

achieved. The illustration shown in figure 3.9 is to help reinforce this analogy.  

 

Figure 3.9: Schematic highlighting possible simultaneous coupling of two adjacent 

bondwires due to the diameter of the inner conductor exceeding the required 

resolution. Note: that the schematic is showing only, the inner conductor and not the 

outer conductor. 

 

For clear distinction of individual bondwires, the diameter of the inner conductor 

must be equal or less than the required resolution (<100μm).  
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Resolution capability of the EFP can be quantified with a resolution factor scale 

(RFS), such a quantity can allow the user for a much clearer interpretation of the 

results. Equation 3.12 provides a simple calculation that can be applied to a given 

resolution scan by considering the maximum peak and minimum trough, relative 

voltage values.  

 

𝑅𝐹𝑆 =
𝑉𝑃𝑒𝑎𝑘𝑚𝑎𝑥−𝑉𝑇𝑟𝑜𝑢𝑔ℎ𝑚𝑖𝑛

𝑉𝑃𝑒𝑎𝑘𝑚𝑎𝑥+𝑉𝑇𝑟𝑜𝑢𝑔ℎ𝑚𝑖𝑛

, 
(3.12) 

 

Application of equation 3.12 to figure 3.8 results in the following RFS: 

𝐸𝐹𝑃1 = 0.15 and 𝐸𝐹𝑃2 = 0.18. 

Thus showing that the resolution capability of EFP2 is slightly better than that of 

EFP1. 

 

3.1.5. Design of EFP3 

From the results presented in the section 3.1.4, it is true to say that by reducing the 

overall dimensions of the probe, the spatial resolution of the probe can be 

improved. With difficulty sourcing coaxial cables with smaller dimensions than 

that of EFP2, a design alteration has to be made to reduce the dimensions further, 

this can be achieved by modifying the existing design. The inner conductor of the 

EFP is extracted and replaced with a wire smaller in dimensions; consisting of an 

enamelled copper wire with a diameter of 0.1mm. However, the diameter of the 

EFP remains the same. In order to reduce the effective OD of the EFP, the inner 

conductor is extended further from the probe tip, to present a protrusion.  The 

protruding inner conductor is coated with an application of a thin layer of silver 

paint. This layer of conductive paint allows for a continuation of the outer 

conductor path, thus connecting the larger OD to a much smaller diameter only 

slightly larger than the ID of the inner conductor. The enamel coating of the wire 

will now act as the effective dielectric medium separating the silver painted OD to 

the ID of the copper wire. 

By replacing the inner conductor to that of a smaller diameter, the reduction to 

100μm should allow for individual measurements of the bondwire structure, 

unlike its predecessor which measured 127μm. 
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Figure 3.10: Schematic diagram of the further reduction of the EFP by addition of 

inner conductor protrusion and silver paint coating, highlighting key components. 

Note: the red circle highlights the novel design alteration from that shown in figure 

3.1. 

 
 
Figure 3.11 highlights the differences between EFP1, EFP2 and EFP3, while table 

3.1 reiterates their measurements. 

 
Table 3.1: Recap of the dimensions of OD and ID of EFP1, EFP2 and EFP3. 

EFP1 EFP2 EFP3 
OD(mm) ID(mm) OD(mm) ID(mm) OD(mm) ID(mm) 
0.88 0.1778 0.58 0.127 0.111 0.101 
 

 
 

(a) 
 



 CHAPTER 3.   INITIAL WORK PERFORME D ON COAXIAL EF  PROBES  
 

78 
 

 

(b) 

Figure 3.11(a) and (b): Pictorial representation of the EFP1, EFP2 and EFP3, with 

visual depiction of varying OD and ID. 

 

The coupling between the newly refurbished EFP3 and the DUT differs from EFP1 

and EFP2. The resulting measurement plane is reduced to 20μm to compensate for 

the anticipated reduction in the effective coupling. The maximum capacitance is 

calculated, from equation 3.1, to be in the order of: 

 

𝐶𝐸𝐹𝑃3 = 3.54 ×  10−15𝐹. 

 

Although the coupling is further reduced, due to the additional reduction in probe 

dimensions, the resultant reduction is only at the expense of the output not the 

resolution. The resulting scan conducted on the same 7 bondwire test fixture 

shows substantial improvement in the spatial resolution of EFP3, this is shown in 

figure 3.12. 
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Figure 3.12: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane, of the 7 bondwire structure using, EFP3. 

 

Clear resolution of individual bondwires can be distinguished, much at the expense 

of output. This represents the reduction in the effective coupling will not dictate 

the subsequent resolution achieved, but the maximum voltage measured. 

The relative voltage distribution of the 7 finger device exhibits a variation in the 

magnitude of the measured peaks. Closer inspection of the device revealed 

significant variation in the curvature of the bondwire, and therefore variation in 

the ground to peak height of each bondwire. This variation in height constituted in 

a proportional change in the magnitude of the measured voltage, thus making the 

EFP3 very sensitive to the geometry of the probing target.   

The spatial resolution capability of EFP3 was further investigated with a more 

extensive structure, shown below in figure 3.13. This new test fixture consisted of 

section of microstrip line section connected to a 19 bondwire array with a 

diameter of 20μm terminated to ground, the spacing between bondwires was 

again 100μm.  
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(a) 

 

(b) 

Figure 3.13(a) and (b): Plan and side view of a 19 bondwire test fixture, terminated 

to ground, used for further spatial resolution analysis. 

 

The transverse scan of the structure shown in figure 3.14 with EFP3 yielded a 

voltage distribution with a clear visible trend; whereby the field exhibited 

maximum magnitude in the middle with substantial roll off towards the edges. 
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Figure 3.14: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using EFP3. Showing clear resolution of individual bondwires 

of the structure shown in figure 3.13. 

 

The movement of the DUT on the linear stage could account for the observed 

anomaly, however this unexpected behaviour is visible in the various repeats of 

the scan. A gradient capable of producing an ‘umbrella’ like trend would be 

extremely difficult to achieve. Therefore the most probable outcome of a tilt 

present in the movement of the stage, would result in a comparative gradient in 

the measurement. So if in fact the separation between probe tip and DUT was 

decreasing along the scan, the decrease would continue past the middle section 

and inevitably hit the remaining bondwires. This is in contradiction to the results 

achieved, whereby the separation decreases then again increases.  

This contradiction continues when comparisons are made to EM simulations of the 

19 bondwire structure. EM simulation agrees with the increase of field at the 

centre of the structure, but would also expect an increase in field at both of the 

outermost edges. 
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Figure 3.15: EM simulation at 2.3GHz, 20μm above bondwires [36]. The resultant 

distribution is predicted to achieve a maximum at the structures edges as well as 

mid-way along the device. Contradicting the experimental achievement of an 

‘umbrella’ distribution. 

 

 

3.2. The EFP and resonant electric field probe 

3.2.1. The design and comparison of the resonant electric field probe to EFP2 

Previous work at Cardiff University on microwave microscopy has shown many 

advantages for the use of resonant transmission lines. By designing an intentional 

resonance, improvements can be made in the spatial resolution and a 15dB 

increase in the frequency response of the EFP [30]. Improvements in spatial 

resolution can be achieved due to the sensitivity of the resonant frequency. Slight 

changes in the local geometry i.e. what is placed in front of the probe tip, can cause 

a consequent and measurable shift. Thus variation in the magnitude and phase of 

electric field, at the device plane, can be analysed and mapped for a proportional 

relative voltage distribution. 

The length of the probe tip will cause an unavoidable resonance in the frequency 

response of the EFP, but by intentionally increasing this line and introducing a 

capacitance in the inner conductor a Resonant Electric Field Probe (REFP) can be 

designed.  
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Although the results obtained within section 3.1.5 have shown that a 100μm 

resolution requires an ID of comparable dimensions, work conducted within this 

section occurred prior to this discovery.  

 

The REFP was constructed with the same probe dimensions as EFP2, for 

comparative reasons. Spatial resolution scans conducted within this section will be 

compared with EFP2. The EFP consisted of a probe line length of 9mm, whereas 

the REFP consisted of a probe line length of 34.9mm  

 

(a) 

 

(b) 

Figure 3.16: Pictorial representation of (a) EFP4 and (b) EFP2 with visual depiction 

of different conductor length. 

 

The REFP was designed to have a resonance at 2.15GHz, with the introduction of a 

series capacitive element, as show in in figure 3.17. The frequency response of the 

REFP yielded a resonant frequency with a fundamental 𝑓0 = 2.15GHz, 1st 

harmonic of 𝑓1 = 4.31GHz and a third harmonic of 𝑓2 = 6.45GHz. The resulting 

probe orientation is shown below in figure 3.17. 
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Figure 3.17: A magnified pictorial representation of REFP, within the brass housing, 

highlighting the introduced capacitance.  

 

3.2.2. Experimental results of EFP2 and REFP 

EFP2 and REFP are conceptually the same probe, differing only in the length of 

cable required for the probe tip. Constituting the same materials and method for 

construction.  Both probes were used to scan the same structure shown in section 

3.1.4, and results are given in figure 3.18, where the horizontal axis represents the 

relative distance across the device. 
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(a) 

 

(b) 

Figure 3.18: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using (a) EFP2 and (b) REFP with highlighted improvements 

in resolution. 

 

Although neither probe is able to make clear resolution of the individual 

bondwires with regards to the 7 finger structure, there is a slight improvement 

from the scan achieved by REFP. This improvement could be a result of the 

increased probe output, however literature would expect a greater improvement 

in the spatial resolution [30].  
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Nonetheless, taking into account only the subsequent scans produced by EFP2 and 

REFP, there is clear difference in the magnitude of the measured relative voltage. 

The resonant probe has a greater response of about 15dB. However, further 

analysis is required to determine if the slight improvement in resolution is a result 

of the increased probe output. 

Continuity of measurements are shown by the consistent detection comparable 

bondwires. Both probes, regardless of initial output, are extremely sensitive to the 

planarity of the bondwires. The display of comparable bondwires in this section is 

consistent to those completed in sections 3.1.4 and 3.1.5. 

 

Further analysis of the two probes on a different structure, yielded further 

discontinuity. Figure 3.19 below shows the resulting scan of a 19 bondwire 

structure, this structure differs to that shown in section 3.1.2, as the bondwire 

array is not terminated to ground, but rather connects to a symmetrical section of 

microstrip line. For continuity, ideally, the same structure shown in section 3.1.2 

would be used for measurement and analysis, unfortunately during experimental 

procedure; this structure was damaged beyond functionality.   
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(a) 

 

(b) 

 

Figure 3.19: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using (a) EFP2 and (b) REFP with highlighted improvements 

in resolution. 

 
 
The measured magnitude of voltage is much higher in the resonant probe when 

compared to the non-resonant, of the order of 15dB. With this particular scan, the 

non-resonant probe is showing signs of improved resolution. The highlighted 
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sections in figure 3.19 (a) indicate the major differences between the two plots. 

The work conducted within this section has concluded that an increase in the 

output of the probe will not constitute a proportional increase to the spatial 

resolution. From the analysis provided in section 3.1.5, the lack of resolution seen 

within figures 3.18 and 3.19 is to be expected. With both probes consisting of an 

inner diameter of 0.127mm, resolution of a 100μm is beyond the expectation.  

Application of equation 3.12 to figure 3.19 results in the following RFS: 

𝐸𝐹𝑃2 = 0.39 and 𝑅𝐸𝐹𝑃 = 0.21. 

Thus showing that the resolution capability of EFP2 is slightly better than that of 

REFP. 

 

 

3.2.3. The effect of increasing the measurement separation 

For full consideration of the separation of the probe tip and DUT the same 

measurements performed in the previous section were repeated with both, EFP2 

and REFP, at different measurement planes.  

The code written for the automation of the linear stage beneath the DUT, allowed 

for various positions to be stored, meaning that the same scan can be repeated as 

the probe height separation is varied manually on the z-axis. 

The measurements shown below are conducted with an initial separation of 30μm, 

and re-scanned with increments of 10μm, with the separation never exceeding 

100μm. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 
Figure 3.20: Resultant spatial resolution scans, with the transverse movement across 

the device with increased increments in the measurement plane using (a) EFP2 and 

(b) REFP; where the key indicates the separation of the measurement plane. 

 

 

From figure 3.20 it is evident that, regardless of the initial signal strength, an 

increase in measurement separation produces a reduction of 40-50% of the probe 

output. The increase in separation also compromises the achievable resolution. 

The probes under scrutiny are unable to fully resolve individual fingers at the 
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separation of 30μm, increasing the measurement plane diminishes any initial 

resolution made. 

3.2.4. The effect of the probe and the resulting measured field 

Analysis of a foreign metal object placed within an electric field would result in 

alteration and distortion of the field distribution. Therefore it can be said that the 

distribution measured by the probe is not the actual distribution, but in fact the 

modulated version of the initial field. Considering this perturbed analysis, the 

distortion of electric field caused by the presence of the probe would be a relative 

and continuous distortion. Thus resulting in a relative measurement at the probe 

output.  

Where in fact, it is the extent of this distortion that will dictate the validity of the 

results. As previously mentioned, by reducing the dimensions of the EFP, the 

disturbance caused to the resultant electric field is also reduced [23]. Therefore 

the measurements conducted, with the EFP dimensions discussed, should cause 

little disturbance on the measured field. 

Measurement analysis of 𝑆11 will show the extent of any disturbance caused to the 

DUT. By increasing the measurement plane, any resulting disturbance will be 

evident in the 𝑆11 measurement.  
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Figure 3.21: Resultant 𝑆11 measurement conducted on a terminated 50Ω 

transmission line with increased separation of the measurement plane using EFP2.  

 
 
Figure 3.21 above, shows the resultant measurement made on a terminated 50Ω 

transmission line, with the initial probe tip separation of around 5μm then 

increased to 100μm. No variation of the measured input reflection coefficient is 

found as a result of an increased measurement plane. Thus concluding the 

interaction between the presence of the probe and the field generated by the DUT 

negligible.  

 

3.3. Conclusion 

Preliminary design methods of the EFP probe has demonstrated a spatial 

resolution of better than 100μm. Comparison of the results obtained within 

sections 3.1.4 and 3.1.5 concludes a reduction of both the diameter of the inner 

conductor and outer conductor of the probe, substantial spatial resolution 

improvements can be achieved.  

The improvements in spatial resolution from EFP2 and EFP3, shows the overall 

achievable resolution is not only dependent on the reduction of the inner diameter, 

but also the outer diameter. By decreasing the outer diameter, substantial 

improvements can be achieved as shown with the evolution between EFP2 to 

EFP3.  

Comparing all of the probes presented within this chapter, neither outperformed 

the resolution capability of EFP3, which showed the resulting improvements in 

resolution is attained at the expense of the output. 
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However, with the introduction of silver paint in the design of EFP3, many 

additional losses were introduced to the system. The application of silver paint 

may not be distributed evenly along the length of the protrusion, meaning the 

newly formed coaxial line cannot be considered as a homogeneous cylindrical 

conductor. Variation in the outer diameter, due to the change in silver paint 

thickness, will have a direct effect on the characteristic impedance of the probe. 

This change in the characteristic impedance can lead to attenuation and signal 

propagation, will ultimately in result transmission losses. The relatively low 

conductivity of silver paint (3 orders of magnitude lower than copper) also 

increases the skin depth (by √1000) thus possibly allowing the field to couple 

through the outer wall. An ideal design of the EFP, would need the requirement of 

silver paint to be eradicated, further design considerations must be made for an 

alternative reduction in the dimensions of the probe.  

When comparing the functionality of EFP2 and the REFP, the signal gain of 15dB of 

the resonant probe would seem to be a much needed advantage. However, 

comparing the practicality of the two probes, the length of probe tip required for 

the resonant frequency at 2.1GHz is too extensive. Due to the long and thin shape 

of the probe tip, it is very susceptible to damage and bending and can easily cause 

anomaly in the measured field. An intentional design for 2.1GHz operation will 

inevitably result in a restricted application of the REFP, whereby DUT 

characterisation can only occur at the specified and harmonic frequencies. The 

REFP resulted in higher signal gain but an inconclusive analysis on subsequent 

spatial resolution capability, therefore further investigation will be provided 

within chapter 4. 

The measured voltage has been found to be extremely sensitive to the 

measurement plane, an increase in separation has resulted in a proportional 

decrease is observed in the output. This reinforces the importance of a constant 

and small separation plane.  

Seen from the measurements of 𝑆11, the presence of the probe and the 

perturbation of the resultant field measurement can be regarded as insignificant. 

Therefore for maximum pick-up and spatial resolution, the probe can be situated 

as close as possible to the device it is measuring without causing additional 

disturbance to the measured field. 
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4. THE EDM ELECTRIC FIELD PROBE 

 

From chapter 3, it was concluded that a spatial resolution of better than 100μm 

was achievable; however the procedure required the use of silver paint, which has 

numerous undesirable side-effects. The methodology behind the construction of 

EFP3 was rather novel, enabling a miniature equivalent coaxial cable to be 

achieved. It was found that substantial improvement can be achieved by the 

subsequent reduction of both the inner and outer conductor of the EFP. However, 

an alternative method for this reduction must be considered without the need for 

silver paint; for future developments and improvements to the spatial resolution 

and response of the probe. 

Throughout this chapter, different designs of the EFP were fabricated and tested. 

Unfortunately some designs, while novel in theory, proved impractical in testing 

and would be disregarded as an alternative EFP design. The biggest disadvantage 

faced in this chapter and those to follow, is the fragile nature of the newly designed 

miniature EFP. It will be seen that a large reduction in probe size, although 

resulting in favourable advancement in the spatial resolution, will also increase the 

delicate nature of the EFP. Many probes were unfortunately destroyed without full 

measurement of their capabilities recorded, with each probe taking many hours 

for its construction and a few seconds for its destruction; unavoidable delay can be 

caused in the measurement stage. 
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4.1. Construction of the EDM EFP and EDM REFP 

4.1.1. EDM electric field probe and resonant electric field probe 

The sourcing of commercially available miniaturised coaxial cable proved to be 

difficult beyond the diameters of EFP2. To achieve an outer diameter of smaller 

dimensions, efforts were concentrated in obtaining small copper tubes with an OD 

less than that of the coaxial cables used in chapter 3. These copper tubes could act 

as the outer shield, while an alternative inner conductor could be threaded 

through for a customised coaxial cable. 

Fine copper tubes, used in Electrical Discharge Machining (EDM), can be used for 

the fabrication of smaller EFPs. Through a supplier in the United States, Saturn 

EDM Industries, copper tubes with an OD of 0.0098” (≈0.25mm) and an ID of 

0.064” (0.1mm) were obtained. To accommodate the reduced diameter of the 

outer conductor, slight modifications was required to the existing brass ferrule. 

The drilled hole was reduced to 250μm to allow a tight fit for the EDM copper tube. 

The figure 4.1 below highlights the physical differences between the EDM EFP and 

EFP2. 

 

Figure 4.1: Pictorial representation of the reduction in dimensions of the EFP with 

the use of EDM copper tubes.  

 

The inner conductor of the EFP was constructed using an enamelled copper wire 

with an OD of 0.071mm. A diameter larger or smaller than this would pose great 

difficulty in the fabrication stage of EFP, highlighted in figure 4.2. A diameter too 

large can result in damage to the enamel coating when threaded through the EDM 

tube, thus shorting the EFP if contact is made by inner and the outer tube. The 

resulting disadvantages from a wire too small can include; a high reduction in the 

resultant output of the EFP, kinking of the copper wire during the threading 
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process, or result in a non-concentric positioning of the inner conductor. With the 

latter, the coaxial’s ability to support TEM mode would be compromised as the 

position of the inner conductor to a non-central point would cause a non-uniform 

distribution of EM waves and cause “glitches” in the frequency response. 

 

 

 

Figure 4.2: Potential unfavourable outcome if the diameter of the inner conductor is 

not fully considered (a) too large a diameter resulting in damage to the enamel of the 

copper wire (b) too small a diameter resulting in i) coiling or deformation or ii) non-

concentric positioning of the copper wire.  

 

The dimensions of the EDM EFP mentioned thus far requires fabrication 

underneath a microscope, as successful threading of copper wire through the EDM 

tube could not be achieved otherwise. For some perspective, the average human 

hair is of the same thickness as the copper wire, threading it through a copper tube 

just big enough to contain it, shows the level of difficulty, skill and the steady hand 

required for its fabrication. 
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Figure 4.3: EDM EFP configuration, complete with brass ferrule, SOT package and 

EDM tube. Note: the ceramic casing of SOT has been filed to shape for the correct fit 

of the tight-fit brass case, not pictured above.  

 

Fabrication of the EDM EFP and the EDM REFP, shown in figure 4.3, required a 

rather strict assembly procedure. A coaxial cable (RG405 U) is prepared with a 

SMA attachment at one end and with an open protruding inner conductor at the 

other. The open end of the cable is soldered to the brass ferrule. This protrusion is 

required for the attachment of the drain tab of the SOT package.  

The EDM tube, of 9mm length, was then placed inside the 0.25mm drilled hole and 

soldered in place. The two final stages, proving to be the most difficult; required 

the soldering of the SOT package in the configuration shown above and threading 

of the central conductor through the EDM copper tube. Difficulty was presented in 

the attachment of the SOT package due to the material of the ferrule, which 

restricted the ease of solder flow. Precise positioning of the SOT package is vital for 

correct attachment of gate, drain and source connections, therefore the package 

required a steady positioning with simultaneous soldering. 

The final stage involved the threading of the copper wire through the EDM tube 

and a final solder of the copper wire to the gate tab of the SOT. Once in place, the 

excess copper wire protruding from the EDM was cut flush.  

Note: the frequency calibration of the constructed probe will be shown and 

discussed later in section 4.1.4. 

As previously stated in chapter 3, it was concluded that the resonant EFP was 

deemed too fragile in comparison to a much shorter EFP tip. However, the 
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resulting increase in output of the probe did not provide conclusive evidence 

regarding its effect on the spatial resolution, and therefore further investigation 

was required. Its construction involved the same method as the non-resonant 

counterpart, and was designed to have a tip length i.e. EDM length of 34.9mm. 

Threading of the central copper wire through short sections of EDM tube posed 

great difficulty, which was only increased constructing the resonant probe.  

The fabrication of the resonant EDM EFP was consistent to the same design 

specifications and procedures shown in section 3.2.1, where the fundamental 

resonance occurred at 2.15GHz.  The frequency response of the REFP will be 

shown and discussed later in section 4.1.4. 

4.1.2. Resolution of the EDM EFP and REFP 

The newly constructed EDM EFP and REFP were used to scan the 19 bondwire 

structure shown in section 3.2.2. The measurement setup remains unchanged, with 

the probe stationary in height and position, while the DUT beneath is moved on an 

automated linear stage. From the results shown below, it can be seen that a 

reduction in the OD of EFP by the incorporation of the EDM copper tube, provides 

substantial improvement in the spatial resolution of both the non-resonant and 

resonant probe.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 

Figure 4.4: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using (a) EDM EFP and (b) EDM REFP of a 19 bondwire 

structure. 

 

The sensitivity of the resonant probe is found to be much greater, of the order of 

times 10 the magnitude compared to the non-resonant probe. The subsequent 

scans conclude that both probes can clearly resolve the 19 individual bondwire 

fingers. 
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Application of equation 3.12 to figure 4.4 results in the following RFS: 

𝐸𝐷𝑀 𝐸𝐹𝑃 = 0.35 and 𝐸𝐷𝑀 𝑅𝐸𝐹𝑃 = 0.32. 

Thus showing that the resolution capability of EDM EFP is slightly better than that 

of EDM REFP. Although lacking in magnitude, the non-resonant EDM probe has a 

clear advantage, with better defined maxima’s and minima’s.  

 

In the previous chapter, it was highlighted experimentally how detrimental the 

separation between probe tip and DUT can be on the spatial resolution. Therefore 

the initial separation of both the EFP and REFP must be equal for a fair and 

comparative analysis. The results presented in section 4.1.5 will show 

experimentally, a quantitative analysis of the separation plane. It will be seen that 

a difference of 15dB in the probe output will require a change of greater than 

20μm in the measurement plane.  To achieve such a difference in the initial probe 

output, would therefore be observable through the microscopic system utilised for 

probe positioning. However, for reassurance and confirmation on the validity of 

the results, separation of the probe tip and DUT was again varied with both the 

resonant and non-resonant probes. These measurements shown in figure 4.5. The 

initial separation is 30μm with an increment of 10μm between each scan.  
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(a) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 4.5: Resultant spatial resolution scans, with the transverse movement across 

the device with increased increments in the measurement plane using (a) EDM EFP 

and (b) EDM REFP. 

 

From the data above it can be seen that the measurement plane must be increased 

beyond 80μm in order to achieve a noticeable degradation in the resultant 

resolution. A magnitude of such extent would be clearly visible and avoidable, 

therefore a difference in separation of the order of a few microns can be 

considered negligible. 
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4.1.3. The effect of inner conductor protrusion on the spatial resolution 

One important factor which can dictate the resultant spatial resolution, is the 

protrusion of the inner copper conductor present at the end of EDM. Although 

contradicting numerous citations found in the literature on EFP, it had been noted 

that the presence of a protrusion can increase the sensitivity of the probe but at 

the cost of the spatial resolution [30].  

It should be noted that the EDM EFP and REFP were constructed under a 0.7X-3X 

Bausch & Lômb microscope, this means that the highest available desktop 

magnification was used when cutting the excess copper wire once threaded 

through the EDM tube. Although this seemingly produced a flush cut of the inner 

conductor, limitations can be present in the fabrication; these can include the 

sharpness of the cutting blade and the maximum magnification provided by a 

desktop microscope. 

Upon closer inspection of both the resonant and non-resonant probe, with a Nikon 

MM-800 Measuring microscope (with Quadra-chek 200) both probes appeared to 

have a slight protrusion. These protrusions measured to be 0.05mm for the REFP 

and 0.03mm for the EFP.  

The measurements conducted within the previous section were re-taken with the 

removal of inner conductor protrusion, to investigate the full correlation and effect 

on the spatial resolution.  

The first attempt for the eradication of protrusion resulted in a signal decrease of 

3dB with no improvement made to the spatial resolution of the REFP. Second 

attempt caused the unfortunate destruction of the probe. By re-cutting and slightly 

retracting the inner, any and all resolution of the bondwires were 

indistinguishable. The SOT placed inside the brass ferrule for amplification was no 

longer drawing the correct current of 130mA but a reduced magnitude of 92mA, 

which led to the conclusion that the newly cut inner conductor was making contact 

with the EDM tube resulting in a short.  

The resonant probe was remade with a shorted inner conductor using replacement 

copper wire.  

 

Comparison scans were subsequently made before and after the removal of the 

protruding inner conductor for both the resonant and non-resonant EDM probes.  
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(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 4.6: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using an EDM REFP with (a) an inner conductor protrusion 

of 0.05mm and (b) without an inner conductor protrusion, of the 19 bondwire 

structure. 

 
 
The figure above shows the same scan of 19 bondwire structure with different 

inner conductor protrusions of the REFP. Figure 4.6(a) is the resultant scan of a 

present inner protrusion of 0.05mm; while the latter, figure 4.6(b), shows the 

result of no visible protrusion. The differences observed are substantial, the 

reduction of the central conductor protrusion diminishes the overall signal gain, by 
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almost four times. However, although considerable signal reduction can be seen, 

the improvement in spatial resolution is substantial.  

Application of equation 3.12 to figure 4.6 results in the following RFS: 

𝑅𝐸𝐹𝑃𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛 = 0.32 and 𝑅𝐸𝐹𝑃𝑛𝑜 𝑝𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛  = 0.59. 

Showing such a reduction in the probe tip protrusion can yield a spatial resolution 

improvement of up to two times. 

 

When the protrusion of the non-resonant probe is removed, the same observation 

is made, however to a lesser extent. The protrusion of the inner conductor present 

in the non-resonant probe was less than the original protrusion present in 

resonant probe, measuring at 0.03mm. 

 

 

Figure 4.7: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using an EDM EFP with and without an inner conductor 

protrusion, of the 19 bondwire structure. 

 

The eradication of the protruding inner resulted in a 50% reduction the overall 

measured voltage, without any compromise or degradation to the spatial 

resolution, but rather an increase in the spatial resolution.  

Application of equation 3.12 to figure 4.7 results in the following RFS: 

𝐸𝐹𝑃𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛 = 0.71 and 𝐸𝐷𝑀𝑛𝑜 𝑝𝑟𝑜𝑡𝑟𝑢𝑠𝑖𝑜𝑛  = 0.21. 
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Clearly it can be concluded that the length of protrusion is proportional to the 

sensitivity which in turn is inversely proportional to the spatial resolution. 

Depending on the overall requirement of the probe, the protruding length must be 

carefully considered as this will severely compromise either its sensitivity or 

spatial resolution.   

 

4.1.4. Frequency calibration  

The ideal response of the EFP would be flat for frequency range that would extend 

to a minimum of the 3 harmonics for the intended measurements. For power 

amplifier systems with a fundamental at 2GHz, a flat response up to 6GHz will be 

the minimum requirement.  

The initial construction of the EFP required probe line length of 9mm, however 

this length was chosen as a starting point. The full consequence of this length had 

not been investigated. To fully understand the consequence of the length of probe 

line, four subsequent EDM EFP were constructed with different conductor lengths 

and calibrated with regards to their frequency response. 

 

In order to obtain the frequency response of a given probe, the probe is placed 

over a section of matched 50Ω microstrip line while the frequency is swept for the 

desired values, 500MHz to 13GHz, and the 𝑆21 was measured.  

Due to the presence of the SOT package, the probe response will not remain 

perfectly flat at higher frequencies, as parasitic components will start to have a 

significant effect on the response.  
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Figure 4.8: Resultant 𝑆21 measurement conducted on a terminated 50Ω transmission 

line for an EDM EFP with different line lengths. 

 

The resonance present in the frequency response of the EFP is mainly a function of 

the probe line length, therefore altering the line length can subsequently shift the 

resonance for optimum results. Figure 4.8 shows four frequency responses for 

different lengths of probe line, showing the subsequent shifts in resonance. By 

reducing the length of the probe tip, the frequency resonance is shifted to a higher 

order, thus achieving a flatter response at the lower end. Although this reduction is 

beneficial, it has a direct impact on the separation between the brass ferrule and 

the DUT. Measurements conducted to determine the disturbance caused by the 

EFP regarded the effect of the miniaturised probe tip and the brass section, which 

in comparison is much larger in dimensions. It is known that the larger the foreign 

metal object, the greater the disturbance caused [23], therefore it would be 

unfeasible to reduce the probe line, such that the brass ferrule is too close in 

proximity to the DUT. Hence, a compromise between the optimum probe line 

length and therefore separation of brass ferrule to DUT must be chosen.  

 

The design of the resonant EFP included a probe tip length of 139.55mm which 

yielded calculated fundamental resonance at 𝑓0 = 2.15GHz, 1st harmonic of 𝑓1 =

4.31GHz and a third harmonic of 𝑓2 = 6.45GHz.  The REFP was placed over the 

same section of matched 50Ω microstrip line and the 𝑆21 is measured for the 

frequency sweep of 500MHz to 8GHz, the response is shown in figure 4.9. 
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Figure 4.9: Resultant 𝑆21 measurement conducted on a terminated 50Ω transmission 

line for an EDM REFP with highlighted harmonic resonances. 

 

The frequencies highlighted show the measured resonance and harmonic 

components, which is in accordance to that of the calculated values. 

 

4.1.5. The effect of the separation between probe tip and DUT 

In chapter 3 it was concluded that the effective voltage measured and the spatial 

resolution decreased as the separation between probe tip and DUT increased. 

Initial resolution scans showed a lack of complete resolution with regards to the 19 

bondwire structure, therefore an increase in separation resulted in the loss of any 

valid data. However, with the construction of the EDM electric field probe, both the 

overall output and spatial resolution improved. The measurement plane under 

investigation within section 4.1.2 was conducted with the presence of a slight 

protrusion of the inner conductor. For a complete investigation of the EDM EFP 

with no protrusion, the measurement plane was again considered for full 

understanding of the resultant output and resolution. 

Two experimental methods were used for this analysis, the effects of increasing 

the measurement plane on a terminated transmission line and transverse scans of 

a bondwire structure. Initial scans will show the effect as a function of measured 

output while the latter shows both the effect on the measured output and the 

resolution.  
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For initial experimentation two non-resonant EFP probes, with different initial 

outputs, were used. The first probe possessed the slight protrusion of 0.03mm 

therefore displayed a slightly higher initial output; while the second probe 

displayed a lower output as this was constructed to a flush cut. The same 

experimental procedure referenced in section 4.1.4 was repeated, whereby both 

probes were placed over a section of terminated transmission line at an initial 

measurement plane of 20μm. The frequency was swept between 1GHz and 3GHz, 

while measurements were taken at a marker frequency of 2GHz. At this marker 

value, the measurement plane was increased to 200μm and recorded for both 

probes, this is shown in figure 4.10.  
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(a) 

 

(b) 

Figure 4.10: The effect of increasing the measurement plane as the probe is placed 

over a section of terminated transmission line for (a) a probe with higher initial 

output (0.03mm protrusion present at probe tip) and (b) a probe with lower initial 

output (flush cut at probe tip). Showing substantial degradation in the measured 

field as the plane is increased from 20μm to 200μm. 

 

From figure 4.10 it can be seen, regardless of the initial output of the probe, as the 

measurement plane is increased, the resulting probe output is substantially 

reduced. Presenting a confirmation of the theory presented within previous 
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chapters, that the capacitive probe is heavily reliant on the air gap separation 

between its tip and the DUT.  

Increasing the measurement plane of the EFP while conducting spatial resolution 

scans, the degradation seen in figure 4.11 can be quantified as a function of 

resolution.  During this investigation both the 19 bondwire structures used for 

previous analysis of spatial resolution and the REFP were damaged beyond repair.  

At this point the REFP was deemed too fragile for consideration for future 

research. Although the design provided improvements in overall signal gain, its 

spatial resolution capability did not substantially outshine its smaller, less fragile 

counterpart.  The difficulty presented for the construction of the 9mm EDM EFP 

was extremely high, the advantages of the REFP did not outweigh its disadvantages 

therefore could not justify the added level of difficulty required for its 

construction.  

A new test structure was used for the effect of probe tip and DUT separation, due 

to the destruction of both the 7 bondwire and both of the 19 bondwire structures. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4.11: Resultant spatial resolution scans, with the transverse movement across 

the device with increased increments in the measurement plane using the EDM EFP 

for an 8 bondwire structure. Where the key represents the measurement plane, 

microns above DUT. 
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Figure 4.11 depicts the transverse scan along an 8 bondwire structure, which 

consists of two sections of separated transmission line joined by the bondwire 

array. The bondwire separation is 100μm with a bondwire diameter of 20μm. The 

initial scan is taken with a separation of 30μm, with subsequent scans increasing 

with 10μm increments. 

The results seen above are in accordance to the measurement shown in figure 

4.10, whereby the increase in measurement plane results in a proportional 

decrease in the measured voltage. Therefore it can be said that the field produced 

by the bondwires decays proportionally as distance is increased from the source.  

One other important observation is the continued spatial resolution capability as 

the separation is increased, although the fingers are less defined, clear resolution 

can still be distinguished, unlike the results shown in figure 4.5.  

The EDM EFP used for the measurement in figure 4.11 had no visible recordable 

inner conductor protrusion, therefore it can be seen that by minimising the 

protrusion present at the EFP tip, the spatial resolution can be maximised. With 

efforts concentrating on spatial resolution improvement, the resulting degradation 

of the probe output can be considered negligible.  

 

4.2. The ultra-fine mini-coaxial EFP 

With consideration of the research presented so far within this thesis, it can be 

concluded that the pursuit of spatial resolution can be attained by reducing the 

dimensions of the EFP, and minimising any inner conductor protrusion present at 

the probe tip. It has been previously mentioned the difficulty presented when 

sourcing materials which are considered ‘specialist’ entities or require a rather 

extensive budget. An ultra-fine coaxial cable was provided as a sample through 

private correspondence and was considered for investigation. The coaxial cable, 

which could be mistaken for a very thin silver wire, measured with an OD 

0.096mm. Note: there was no measurement given for the ID for the conductor. 

With such small and rare coaxial cable, careful consideration was made for its 

incorporation in to the EFP design. 

4.2.1. Construction of the ultra-fine coaxial EFP 

Integration of the ultra-fine (UF) coaxial cable into a viable and working probe was 

devised and executed. The most convenient method of integration required the 
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insertion of the UF coax into the brass ferrule along with the extracting of the inner 

conductor for attachment to the gate of the SOT package. However, due to the thin 

and fragile nature of the UF coax, the lack of rigidity did not allow for the 

construction of a straight probe tip. Therefore the UF cable was inserted into a 

glass capillary, of diameter OD 0.097mm, to provide reinforcement and alleviate a 

bend in the EFP tip. 

The extraction of the inner conductor was achieved by an undesirable method; 

whereby the outer conductor was scrapped away with a sharp blade. This method 

was initiated due to the nature of the application of the outer conductor, which 

was provided in a coil like method. The extraction of the inner conductor in such a 

manner will inevitably cause a certain degree of damage to the UF coax; however, 

this method was necessary for its extraction 

Final construction of the EFP required a flush cut of the UF coax, for maximisation 

of spatial resolution. Cutting of the UF would prove unfeasible with laboratory 

cutting tools as an unavoidable pinching of the outer conductor over the inner 

conductor would occur. Therefore a Thales, 768nm femtosecond laser was used in 

order to achieve flush cut of the probe tip; resulting in a clean cut of the outer, 

dielectric and inner conductors. Figure 4.12, below, depicts the UF EFP with 

magnified pictures of the SOT package and probe tip. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 4.12: (a) Pictorial representation of the UF EFP, with magnified sections of (b) 

SOT package and (c) probe tip. 

 

Note: that the construction of the UF EFP was prior to the destruction of the 19 

bondwire structure, hence the spatial resolution scans include the 19 bondwire 

structure. 
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Initial spatial resolution scan provided an unexpectedly poor and inadequate 

resolution.  

 

Figure 4.13: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using an UF glass capillary EFP of the 19 bondwire structure. 

 

From the figure above, the results obtained from the UF EFP can be deemed 

unsatisfactory, despite the extreme reduction in dimensions of the coaxial cable. 

Although the measured voltage was distinguishable ‘pre noise level’ region, no 

resolution of the bondwires can be made. 

From previous conclusions regarding the reduction of probe dimensions and the 

resulting improvement in spatial resolution, figure 4.13 did not correspond to such 

an improvement, therefore the UF EDM was assumed not to be functioning 

correctly. 

The outer conductor of the UF coax was further investigated as the apparent 

coiling manner of its construction could have a direct effect on the functionality of 

the UF coaxial cable. Depending on an additional layer of metal beneath the outer 

conductor, the coiling outer layer observed will constitute in an inexorable gap in 

the metal sheath. Any gap, however small, will result in the coaxial cable not 

functioning in the correct manner. A coaxial cable, by definition, is a conductor 

which had been enclosed completely by another conductor, thus its ability to 

support TEM waves transversely along the length of the conductor. A gap would 

result in the radiation of electric field, as the field generated by the central 

conductor is not fully terminated by the outer conductor. 
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A closer inspection of the UF coax confirmed the method of fabrication, the cable 

under a high magnification is shown below in figure 4.14. 

 

 

(a) 

 

(b) 

Figure 4.14(a) and (b): Magnified pictorial representation of the UF coaxial cable. 

 

The application of the outer conductor in a coiling manor, with an increased 

magnification appeared to possess a gap in the metallisation. 

For non-destructive analysis of the UF coax, a Wyko, NT3300, Veeco 

Interferometer was used for confirmation of the visual inspection. Utilising 

vertical-scanning interferometry (VSI), the instrument can make measurements 

with nanometer accuracy by the analysis of the displacement of incident waves. 

Accuracy of the reflected information is based on the subjects, in this case the UF 

coax, surface composition. Therefore resultant measurements can depict the 

reflectivity and continuity of a surface, this is shown in figure 4.15 below. 
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(a) 

 

(b) 

Figure 4.15: Confirmation of the air gap present within the outer diameter of the UF 

coaxial cable with (a) a VSI scan of 10.5X magnification and a (b) 3-dimensional 

reconstruction of the VSI scan with a magnification of 25.7X. 

 

From the evidence provided, it can be concluded that there was in fact a gap 

present due to the coiling application of the outer conductor. 

 

The eradication of the air gap was achieved through the application of a thin layer 

of silver paint to the outer of the UF coax. However, this resulted in an OD greater 
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than that of the glass capillary. From the materials available, the silver coated UF 

coax is inserted into the larger copper tube, from chapter 3, with the dimensions 

of: 𝑂𝐷 = 0.58𝑚𝑚 and 𝐼𝐷 = 0.127𝑚𝑚. Extraction of the inner conductor and 

cutting of the UF coax was achieved by the same process as previously mentioned. 

Subsequent repetition scan of the 19 bondwire structure would see much 

improvement in the spatial resolution, with no real effect on the magnitude of the 

measured voltage, which is shown below in figure 4.16. 

 

Figure 4.16: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using an UF silver coated, copper tube EFP of the 19 

bondwire structure. 

 

By adding the conductive paint to counteract the air gap present in the outer 

sheath of the UF coax, vast improvements to the spatial resolution were made. 

However, improvements made did not exceed the resolution capability of the EDM 

EFP. This is mainly due to the use of the larger copper tube which was required 

solely for rigidity of the flexible UF coax. Without a support frame, the silver coated 

UF coax was too fragile and susceptible to changes in its orientation i.e. the 

direction of the probe tip above the measurement phase. These changes would 

result in detection of orthogonal components, and without precise knowledge of 

detected fields, extraction of the normal electric field component would be 

unsuccessful. Although a promising direction for the EFP, the UF coaxial cable did 

not improve the spatial resolution therefore cannot be considered at this stage as a 

design alternative. 
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4.3. Conclusion 

The design and construction of the EDM electric field probe has allowed for great 

improvements in the EFPs capabilities and characteristics. By systematically 

reducing both the inner and the outer diameter, the resolution capability far 

exceeded that of its predecessor in chapter 3. Improvements were seen in the both 

the spatial resolution and the sensitivity of the probes, despite its reduction in 

physical size. This increase in output by a factor of 10 is the result of fully 

understanding the effect of the probe tip protrusion and by eliminating the silver 

painted EFP, a concentric cylindrical miniature coaxial cable could be guaranteed. 

Experimental data has clearly shown that the resolution capability of the probe 

decreases as the protrusion present at the probe tip increased. With focus based 

on the importance of spatial resolution, the eradication of the inner protrusion is 

necessary, regardless if it is at the expense of the resultant output.  

The frequency calibration of the constructed probes presented a resonance 

proportional to the length of the probe line.  As the length of the probe line was 

decreased, the resonance was shifted to a higher and sought after frequency. The 

response shown beyond the resonance was greatly affected by the parasitic 

components of the buffer amplifier and unsuitable for measurement higher than 

4GHz. 

Unfortunately, both the resonant EFP and the UF EFP were deemed unsuitable for 

further consideration in this research. With the fragility of the REFP, even its 

storage overnight would result in an unintentional bend in the probe tip. The 

difficulty faced in construction of the REFP far exceeded that of the 9mm non-

resonant equivalent, with its additional fragility, too much foreseeable time could 

be spent on making and re-making a probe which did not outperform the EDM EFP 

therefore  could not be justified. 

Although the sourcing of the UF coaxial cable seemed promising, the final 

construction of the UF EFP did not improve the spatial resolution, nor the 

sensitivity. This was primarily due to the final probe consisting of an effectively 

larger outer diameter than the EDM equivalent. 
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5. MMIC AMPLIFIED EDM ELECTRIC FIELD PROBE 

This chapter will discuss the design, construction and implementation of an 

improved buffer amplifier which made use of a MMIC (Microwave Monolithic 

Integrated Circuit) technology. The MMIC amplifier will be described in detail and 

will show a major improvement in the frequency response of the EDM probe.  

Discussion will be presented by the construction of four probes with different line 

and protrusion length, all integrated with a newly designed low-noise amplifier. 

For distinction between the probes constructed within this chapter and those in 

previous, the probes will be named probe A, probe B, probe C and probe D 

respectively. 

The final section of this chapter will present an improved MMIC amplifier; 

designed and utilised for the improvement of the frequency response. The 

modification will show a flat frequency response to an improved 8GHz and result 

in the final EFP design used for the remaining work in the thesis. 

5.1. Design and construction of the low-noise MMIC 

The improvement of the resultant frequency response of the EFP required the 

redesign of the buffer amplifier. It has been shown that the resonance present in 

the frequency calibration is largely due to the length of the EFP line; however 

frequencies beyond this range are a result of the dominating parasitic components. 

The SOT, first introduced as a method of amplification of the small signal, its 

presence also resulted in the eradication the stray pickup from the feeder cable. 

Therefore measurements required beyond 4GHz need modification from the pre-

existing method of amplification.  
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5.1.1. Design of the low-noise MMIC 

The EDM EFP presented in chapter 4 provided excellent spatial resolution and 

adequate output for the measurement of passive devices. However, the frequency 

response of the EFP was not sufficient to satisfactorily measure high power devices 

due to the harmonic behaviour present at high frequencies.  For minimisation of 

harmonic modulation, the frequency response of the probe must be improved 

beyond 4GHz. As previously mentioned, the resonance present in the frequency 

response can be shifted to higher frequency by reducing the line length. This 

reduction in line length will result in a closer positioning of the brass ferrule to the 

DUT, which will ultimately cause divergence and disturbance to the field produced 

by the DUT.  

Re-design of the buffer amplifier is the only viable method for further 

improvement of the frequency response, reducing parasitic components and 

flattening of the resonance.  

 

The pHEMT MMIC amplifier, for the replacement of the SOT package, is designed to 

operate over wideband frequency, from DC to 20GHz, and to facilitate an open 

circuit at the gate bias.   

The layout of the new GaAs MMIC pHEMT is shown below in figure 5.1. The 

dimensions are in microns. 
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Figure 5.1: Layout of the pHEMT MMIC chip, with physical dimension highlighted. 

 

The design of the MMIC was implemented using National Instruments, AWR 

Design Environment.  Component parameters were chosen through optimal output 

requirements. By utilising the tuning tool, the required frequency response could 

be obtained.  The circuit diagram is shown below in figure 5.2, where the following 

abbreviations have been made: 

 

C1 represents the capacitance present between the probe tip and DUT, which has 

been estimated using the dimensions of the inner EFP conductor. 

 

TL1 represents the length of the probe line, which can be altered in accordance to 

the optimal resonance required.  

 

L1 is a small inductance required for a shift of resonance to a higher value. 

 

L3 and C3 are shunt inductance and capacitance, respectively. Increasing their 

value   sharpens the resonance peak as well as effecting the low-frequency roll-off. 

 

Figure 5.3 indicates the simulated frequency response of the MMIC EDM EFP, 

predicting a flat response to 7GHz.  
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Figure 5.2: Circuit diagram of the simulation conducted for the design of the MMIC die.  Tuned for an optimal flat frequency response beyond 

7GHz. 
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Figure 5.3: Simulation of the predicted frequency response for the MMIC amplified 

EDM EFP, with expectations of a flat frequency response to 7GHz. Note: the length of 

probe line used for the simulation is 9mm. 

 

The dimensions of the new buffer amplifier are such that the existing brass ferrule 

required minimal modification for its housing. The previously hollow section 

beneath the SOT package was left flat, this resulted in a correct ground termination 

and attachment of the MMIC die was by epoxy. From the diagram seen in figure 5.1, 

the indicated labelling for the bonding pads are such; P1 is the gate, which is the 

open circuit at the probe tip, while P2 is the drain pad, to which bias is externally 

applied by an external biasing network. P1 and P2 both measure 400μm in length 

and width. 

The MMIC chip, part number MM1445A_TSP_A4, was fabricated at RFMD (Newton 

Aycliffe) GaAs foundry. 

5.1.2. Construction of the MMIC EDM EDF 

Previous incorporation of the SOT package required the use of solder for correct 

connection of the SOT tabs. Unfortunately, this would not be suitable method of 

construction for the MMIC EDM EPF. Direct attachment of the drain pad cannot be 

made to the inner of the RG405U coaxial cable; an additional bondwire attachment 

was required for this connection.   
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A strategic and stringent method of construction was required for the successful 

construction of the probe. All the steps to be described are utilised underneath a 

high magnification microscope, with fabrication difficulties evident by the 

dimensions mentioned.  

Initial steps for the construction of the MMIC EFP are similar to the SOT 

predecessor. A RG-4505 U coaxial cable is prepared with one end attached 

correctly to a SMA connection while the other end is left open, with a protruding 

inner conductor. The end with the protruding inner is slotted into and soldered to 

the brass section. To the protruding inner conductor of the coaxial cable, a small 

length of enamelled copper wire, with OD of 71μm, is soldered. The last section of 

solder required for this construction attachment of the copper EDM tube correctly 

within the 250μm drilled hole. 

Subsequent attachment of circuitry requires the use of two-part silver epoxy; 

therefore between all uses of the epoxy, the probe is placed in a 100°C oven to 

speed up the epoxy curing process. 

Firstly, the MMIC is attached and grounded to the flat section on the brass ferrule 

with epoxy and set aside to cure. Once secure and correctly in position, the small 

length of enamelled copper wire (attached to the inner of the protruding coaxial 

cable) is cut to length and placed on drain pad of the MMIC. Due to the size of the 

bonding pad (400μm) the copper wire is then secured in place with an extremely 

small amount of epoxy. The probe is placed to cure inside an oven to ensure no 

movement of the copper wire before it is securely in place.  

Lastly, the inner conductor of the EDM tube is threaded, using a section of 

enamelled wire, 71μm in outer diameter, twice the length required. The copper 

wire is placed on the gate bonding pad and secured with a small amount of epoxy. 

This epoxy is placed within an oven to cure. Once secure, the surplus length of 

copper wire can be cut accordingly to the desired dimension. 

Once completed the brass ferrule is encapsulated with the tight fit brass sleeve, in 

order to see the internal structure of the probe, figure 5.4 shows a picture of the 

probe without this sleeve. 
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Figure 5.4: Pictorial representation of the MMIC EDM EFP, without tight fit case, 

highlighting the method of construction. 

 

As previously mentioned in the introduction to this chapter, four different probes 

were constructed for the investigation of the frequency response, spatial 

resolution and the probe output. For clarity, probes were named; probe A, probe B, 

probe C and probe D. Although the design of the MMIC amplifier has been 

specifically tailored to dampen the resonance present in the frequency response, 

the length of the probe line will ultimately have an effect on this factor. For this 

reason two different lengths of probe tip were investigated, 9mm and 5mm. Thus 

probes A and B consist of line length of 9mm while probes C and D consist of a 

5mm length.  

In previous chapters, it was established that a protrusion of inner conductor can 

have a detrimental and proportional effect on the degradation of spatial resolution. 

Therefore the probes constructed have been intentionally fabricated with different 

and specific protrusion lengths. These are summarised below in table 5.1. Note: 

due to the hand-made construction of the probe, the protrusion length could not be 

fabricated in such a way that they are equal. The protrusion lengths were 

measured with a Nikon MM-800 Measuring Microscope with Qudra-chek 200. 

 

  



 
 

125 
 

Table 5.1: table highlighting the different dimensions and inner conductor 

protrusions present for constructed probes. 

PROBE Line length (mm) Protrusion length (mm) 

A 9 0.024 

B 9 0.088 

C 5 0.073 

D 5 0.131 

 

 

5.2. MMIC EDM EFP characteristics and resolution capability 

The characteristics of the constructed probes were analysed for full determination 

of the impact of line length and inner conductor protrusion. The resulting analysis 

will conclude the corresponding frequency response and resolution capability.  

5.2.1. Design of the flat inter-digital test fixture 

The spatial resolution of each probe, tested within this chapter, has been 

performed on a different test fixture to that shown in the previous chapters. 

Section 3.1.4 showed the achievable resolution as the EFP was laterally scanned 

over a structure with bondwire arrays. However, due to imperfections in the 

fabrication stage of these fixtures, anomalies in the bondwire curvature and height 

existed and were subsequently present in the spatial resolution scans.  

Due to the unintentional destruction of all the bondwire structures and for the 

eradication planarity related anomalies, a newly designed flat test fixture is 

described. The interdigital test fixture with gold film deposited on a 254μm 

alumina substrate, is aimed to emulate the previous bondwire array used in a 2-

dimensional manner, thus eliminating the planarity issues. Three different test 

fixtures were constructed for full investigations of EFP resolution capability, which 

consist set of parallel 25μm thick fingers, with a separation of 25μm, 50μm and 

100μm respectively, shown in figure 5.5. 
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      (a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.5: (a) Pictorial representation the interdigital test fixture designed to 

alleviate planarity issues, with magnification on different finger separation (b) 25μm 

(36 fingers), (c) 50μm (36 fingers) and (d) 100μm (23 fingers). 
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The test fixture shown above was designed to fit the H-block previously used for 

frequency calibration and resolution experimentation, with the same excitation 

through the input and the output connected to matched 50Ω termination. 

Previous spatial resolution scans consisted of the movement of the DUT, while the 

probe remained in a stationary vertical position. For small test fixtures this 

method is satisfactory however, as the test fixture increases in dimensions and 

physical weight, this procedure becomes more impractical. At this point, the 

mechanism that allowed for the manual movement of the probe was altered and 

redesigned to incorporate a linear motorised stage. This resulted in the automatic 

movement of one axis, by moving the probe while keeping the DUT beneath 

stationary.  

 

5.2.2. Frequency calibration of the MMIC EDM EFP 

The frequency response, as previously established, is quite sensitive to the local 

geometry of the probe target area. As such, frequency calibrations are performed 

using the probes, mentioned in section 5.1.2. The experimental procedure 

described within section 4.1.4 was utilised for the calibration of probes A-D. 

Theoretical simulation of the probe predicts a flat response to 6.5GHz, with a 

resonance whose frequency is mainly a function of the length of the probe line. 

Figure 5.6(a) highlights the degree of protrusion required for, alteration of the 

frequency response and discussed later, the effect on the spatial resolution of the 

EFP. Figure 5.6(b) displays the four frequency scans for different lengths of probe 

line and inner conductor protrusions. 
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(a) 

  

 

 

 

 

 

 

 

 

(b) 

 

Figure 5.6: (a) A pictorial representation of the small protrusions present at the 

probe tip and (b) the resulting frequency response of four MMIC probes. Probe A and 

B have a probe line of 9mm and a monopole protrusion of 0.025mm and 0.10mm; 

Probe C and D have a probe line of 5mm and a monopole protrusion of 0.07mm and 

0.13mm, respectively.  

 

It can be clearly seen that an increase in probe line will result in a subsequent shift 

of the resonance to a lower frequency. A decrease of 4mm constituted in a 

resonance shift in the order of 2GHz. It has been previously discussed that a 

decrease in the probe line will ultimately result in the brass ferrule of the probe 

being situated much closer to the DUT. However, it will be shown that a probe line 
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of 5mm is sufficiently long enough for high power transistor measurements, 

required for both metallisation and bondwire measurements. 

From figure 5.6, the response of the EFP is clearly a factor of both the protruding 

inner conductor and the length of the probe line. Consideration of the same probe 

line length, consistent in the 9mm and 5mm design; as the length of the protruding 

inner increases, so too does the probe output.  

Consideration of only probes B and C, a contradiction is shown. Although the 

length of protrusion for probe B is greater than probe C, the output of probe C is 

greater than that of probe B (in the order of 8dB). Therefore the corresponding 

frequency response of the probe is dependent on both the length of inner 

conductor protrusion and the length of the probe line. 

Figure 5.7 below highlights the resultant improvement in the frequency response 

between the SOT (taken from figure 4.8) and the MMIC amplified EDM EFP.  

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Comparison of the frequency response of the SOT and MMIC amplified 

EDM EFP. Showing a resultant improvement in the bandwidth and shift of resonance 

to higher frequencies.  

 

The figure above clearly indicates the improvements in bandwidth of up to 2GHz 

with a subsequent shift of resonance. Beyond the resonant frequency both 

responses show a dominance of parasitic components. 

5.2.3. Spatial resolution of the MMIC EDM EFP 

Spatial resolution scans are conducted due to the successful completion of the 

frequency calibration of all probes within the previous section. From work citied in 

2 4 6 8 10 12 14

x 10
9

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

Frequency(GHz)

d
B

 

 

SOT

MMIC



 CHAPTER 5.   MMIC  AMPLIFIED EDM  ELECTRIC FIELD PROBE  
 

130 
 

previous chapters, there is an expectation for a degradation of spatial resolution 

with an increasing protruding inner. The subsequent spatial resolution scans of the 

flat interdigital test structure, with a finger spacing of 100μm, using probes A and 

B, are shown below in figure 5.8. 

 

 

Figure 5.8: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using probe A and B of the 100μm test structure. 

 

The figure shown above clearly indicates a substantial improvement in the spatial 

resolution as the length of the protruding inner conductor is decreased, as 

previously concluded, this is at the expense of lower output.  

The same scan was repeated in order to test the spatial resolution of probes C and 

D, shown in figure 5.9.  
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Figure 5.9: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using probe C and D of the 100μm test structure. 

 

The transverse scans along the 100μm test fixture shows a less extreme variation 

in spatial resolution when comparing probes C and D. Disregarding the extremity, 

there is still a visible improvement in resolution by reducing the inner conductor 

protrusion. This is coherent to previous conclusions and measurements regarding 

probes A and B. 

Comparing the two figures containing the spatial resolution scans, it can be seen 

that the relative voltage measured is in accordance to the frequency response, 

where by the output measured by probe D is the greatest, followed by C, B, and 

lastly A. 

With further evidence verifying the effect probe tip protrusion and the resulting 

consequence on the achievable spatial resolution, probe construction must adhere 

to the most minimal protrusion possible. However, due to the impracticalities 

arising from hand-made construction, at no single time can two probes be made 

exactly the same. Though great efforts are made for uniformity, human error will 

inevitably have an effect, regardless if the materials used are consistent.   
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5.2.4. Spatial resolution capability beyond 100μm 

The design and construction of the EFP’s mentioned thus far within this chapter 

have all successfully resolved the finger separation of 100μm test fixture, however 

no scans have been conducted to further test the resolution capability. By 

replacing the 100μm test fixture with that of a 50μm fixture, further investigation 

can deduce the full extent of the EFPs resolution. Figure 5.10 below shows the 

transverse scans along the test fixture with finger separation of 50μm. 

 

Figure 5.10: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using probes A, B, C and D of the 50μm test structure. 

 

The corresponding scans along the 50μm test fixture clearly indicate the lack of 

detail with regards to the fingers resolution. The irregularity in the distribution, i.e. 

not completely flat, would suggest that each probe can slightly resolve the test 

fixture. If the dimensions of the test fixture are smaller than the resolution 

capability of the probe, the probe will not ‘see’ the fingers but rather depict a 

section of continuous microstrip line.  

 

It should be noted that many versions of the EFP were constructed during the 

course of this research, due to their unintentional destruction. One such probe 

made, with the same EDM dimensions as in probe C, had the ability to resolve the 

50μm structure, and the resultant scan is shown in figure 5.11.  
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Figure 5.11: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using an EFP of the 50μm test structure. 

 

From the figure above, clear resolution of the individual fingers are successfully 

made. However, no other probe constructed with the same dimensions and 

materials had the capability of this resolution. Resolution beyond the 100μm test 

fixture contradicts the theory presented in section 2.5.1; whereby the inner 

conductor of the electric probe would be expected to simultaneously couple with 

adjacent fingers due to their close proximity. Nevertheless, results presented in 

figure 5.10 clearly state otherwise. Possible explanation can arise from the method 

of construction. The threaded inner conductor was twice the required length, only 

when the opposing end is securely attached to the gate bonding pad of the MMIC, is 

the excess cut away. During the cutting stage, the copper wire can be potentially 

deformed, i.e. the introduction to a slightly sharpened tip. This would effectively 

reduce the coupling and plate area, which would result no further simultaneous 

coupling of adjacent fingers and therefore achieving 50μm resolution. This 

unintentional introduction of a sharpened tip can also explain the lack of 

repeatability with regards to the construction of further EFP’s with increased 

resolution.  

Further investigation of the probe tip and repeat scans of the 50μm structure 

resulted in the discovery of another unintentional fabrication by-product. The scan 
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produced above was repeated on different occasions, i.e. the probe was attached 

and re-attached between successive scans. Each scan conducted yielded different 

results, as some scans resulted in the resolution of the 50μm structure while 

others did not. Anomalous behaviour regarding the same probe questioned the 

validity of the results.  

The probe tip therefore required further investigation. By placing the probe 

underneath a microscope, such that a top view of the probe tip was visible, 

positioning of the inner conductor revealed the cause of the anomalous behaviour. 

During the cutting of the inner conductor, not only was there a slight sharpening of 

the copper wire, but cutting resulted in the non-concentric positioning. At the 

probe tip, the copper wire was situated slightly closer to one side of the EDM tube. 

A marker placed on this side concluded that the orientation of the probes position 

coincided with the increased spatial resolution. If the probe was rotated 90°, 180° 

of 270° from the marker, resolution of the 50μm structure was not successful, 

however, complete 360° rotation to original marker position resulted in the  50μm 

resolution. With the central conductor positioned slightly closer to the EDM tube at 

the probe tip, a unidirectional increase in spatial resolution was achieved.  

 

 

Figure 5.12: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane of the 50μm test structure using an EFP at different 

orientation to the ‘working’ marker. Where the key represents: ‘0 Deg’ is defined as 

the ‘working’ orientation with further rotations from origin ‘90 Deg’, ‘180 Deg’ and 

‘270 Deg’. 
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From the results shown above, the orientation of the probe tip dictates the 

resolution achieved due to the non-central positioning of the inner conductor at 

the probe tip. The ‘working’ orientation was achieved due to the concentration of 

electric field distribution at the tip resulting from the reduced air gap between the 

two conductors. Therefore at this given orientation, the potential coupling 

between probe tip and DUT was increased further, resulting in a unidirectional 

behaviour.  

The simulation shown below, shows an increase in the resulting field produced by 

the probe tip as then inner conductor is misplaced closer to the inner walls of the 

EDM tube. 
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(a) 

 

(b) 

Figure 5.13: EM simulation supporting the ‘unidirectional’ behaviour of the probe; 

where (a) displays a central inner conductor placement and (b) displays a central 

inner conductor misplaced by 0.01mm. Showing a higher resultant field magnitude 

with a displaced inner. 

 

It should be noted that closer inspection of previous probe tips, with regards to the 

EFP’s used for the resultant scans, shown in figure 5.8; proved to have no axial 

displacement of the inner conductors, nor was there evidence of a sharpened tip. 

For this reason, no resolution can be made of the 50μm structure, regardless of the 

orientation of the probe tip.  
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5.3. Design and characteristics of alternative MMIC EDM EFP 

 

From the previous section, the design standard for the MMIC incorporated EDM 

EFP has been successfully constructed and verified through frequency calibrations 

and spatial resolution investigations. During the design and construction stage, 

alternative variations of the MMIC EDM EFP were tried and tested in hope for 

greater improvement. Although a useful tool, the design of alternative EFPs not 

initialised using three dimensional software packages. For achievable expectations 

of the fabrication stage, alterative designs have been executed directly without 

prior simulation. As previously mentioned, a trial and error method of fabrication 

is more practical process of fully testing the abilities of the hand-made 

construction. 

 

5.3.1. Glass dielectric EDM EFP 

Improvements to all designs of the MMIC EDM EFP requires the development from 

the brass ferrule onwards, with either improvements to the buffer amplifier or 

reduction to the probe tip. This section describes the construction of two 

subsequent probes, which from theory, a lower performance would have been 

expected. By fabricating a design with an expectantly lower performance, 

confirmation is given to the theory used for previous design methods.  

From the same supplier of EDM tubes, alternative diameter dimensions of tube 

were sourced. The EDM tube consisted of a smaller outer diameter and a larger 

inner diameter, measuring at an OD 0.23mm and ID 0.013mm. 

From work cited in previous chapters, it has been shown a reduction in both the 

inner and outer diameter of the probe tip will constitute in an improvement in 

spatial resolution. However, the newly sourced EDM tube, although having a 

smaller outer diameter, has a larger inner diameter. Meaning any benefits arising 

from the smaller OD will be counter acted by the disadvantages of the larger ID.   

A method that can be utilised for further improvements is a change in the dielectric 

medium present in the probe tip.  The EFP described within the previous section 

required an enamelled copper wire to be threaded through the EDM tube. The 

enamel coating acted as an insulating barrier between the inner and outer 

conductors. The surplus of space surrounding the inner conductor is in the region 



 CHAPTER 5.   MMIC  AMPLIFIED EDM  ELECTRIC FIELD PROBE  
 

138 
 

of 0.019mm, this separation is considered as the dielectric medium of the EFP i.e. 

air. The alteration of the dielectric medium will effect the resultant spatial 

resolution and output of the EFP and therefore was investigated. 

Alteration of the dielectric medium will have a direct effect on the attenuation, α, of 

the wave propagation of the measured electric field, as seen in equation 5.1. 

 

𝛼 ≈
𝑅

2𝑍0
≈

𝑅𝑠√𝜀𝑟

2𝑍𝑓𝑠 ln( 𝐷 𝑑⁄ )
(

1

𝑑
+

1

𝐷
) 

5.1 

 

where: 

 𝑅𝑠 is the surface resistance. 

D and d are the radius of the outer and inner conductors, respectively.  

 

Therefore, integration of a glass capillary, with 𝜀𝑟 = 4.7, would achieve the change 

in the dielectric medium. The resulting probe will be expected to achieve a poorer 

outcome in signal strength and resolution, due to the increase in wave amplitude 

attenuation. By threading the inner conductor through a glass capillary, then 

threading both through an EDM tube, the dielectric medium can be successfully 

changed.  

 

With two alternative probe constructions, spatial resolution scans were carried out 

in order to quantifiably test degradation of the probes characteristics; where probe 

E is constructed with the alternative EDM tube and probe F is constructed with 

both the alternative EDM and a glass capillary as the dielectric.  

Figure 5.14below shows the resulting resolution as both the alternative EDM tube 

probe and glass capillary probe are moved transversely across the flat alumina 

structure, with 100μm finger separation. 
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Figure 5.14: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using probe E and F of the 100μm test structure. 

 

Although both probes are able to resolve the finger separation, they can be 

considered providing less signal than that of probe C, shown in figure 5.9. Probe E 

and probe C both yield similar resolution; however, the output of probe E is almost 

half than that of probe F.  

With consideration of probe F, both the output and spatial resolution has degraded 

when compared to that of probe E. Both probes have been constructed to be 

identical, with only the addition of a different dielectric medium.  With respect to 

equation 5.1, it is clear that the loss in output is consistent to the increase of 

attenuation by a factor of √𝜀𝑟 = 2.16. 

5.3.2. Construction of the ‘control’ EDM EFP 

Previous work conducted on the EFP has found that the introduction of the buffer 

amplifier, close to the probe tip, can improve low pick-up while amplifying the 

desired signal and alleviating the problem of stray pick-up [35]. The investigation 

of this buffer amplifier is tested with the construction of an alternative EDM EFP. A 

probe without the inclusion of an amplifier is fabricated by means of the same 

method and materials as the MMIC EDM EFP. The inner conductor of the probe tip 

is extended and directly attached to the inner conductor of the standard RG 405 U 

coaxial cable, shown in figure 5.15. 
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Figure 5.15: Pictorial representation of the EDM EFP constructed without MMIC 

amplifier for control experimentation. Picture above is shown without tight fit case. 

 

The new orientation of the EDM EFP is still considered as a capacitive probe, 

where the output of the probe is still dependent on the proximity and local 

geometry of the DUT. However, the removal of the MMIC amplifier eliminates the 

gate to source capacitance, therefore the new orientation can no longer be 

considered as a capacitive divider.  

Frequency calibration of this probe consisted of the same experimental setup and 

procedure referenced in sections 4.1.4 and 5.2.2. The resulting sweep is shown in 

figure 5.16. 

  



 
 

141 
 

 

 

 

 

Figure 5.16: Frequency response of the EDM EFP without buffer amplifier close to the 

probe tip. Showing a flat frequency response free from parasitic components with a 

reduced output when compared to the MMIC EDM EFP.  

 

The EFP was constructed with no visible probe tip protrusion therefore 

comparisons made to the frequency response of the MMIC amplified probe, shown 

in figure 5.6, yields a degradation of up to 40dB in the probe output. This 

degradation will have an effect on the performance of the probe.  

Spatial resolution analysis of the non-amplified probe was performed on the 

100μm interdigital test fixture and compared to the resultant scans of a MMIC 

amplified EFP. 
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Figure 5.17: Resultant spatial resolution scans, with the transverse movement across 

the measurement plane using a MMIC amplified EFP and the ‘control’ EFP, for the 

100μm test structure. 

 

The importance of the buffer amplifier can be concluded from the results 

presented in figure 5.17. The incorporation of the MMIC amplifier improves the 

over performance of the probe in both output and resolution capability. The 

uneven nature of the ‘control’ EFP scan, not present in the MMIC EFP, indicates its 

susceptibility to stray pick-up. 

It can also be stated that the response of the ‘control’ EFP has no dominating 

parasitic components, highlighting two important facts. Firstly the parasitic 

components present in the frequency response of the MMIC EFP are a result of the 

amplifier and not the construction or design of the probe; secondly, these parasitic 

components can be further improved with additional design enhancements of the 

MMIC amplifier.  

 

Experimental data so far has shown an EFP probe capable of in-situ measurements 

on passive devices. Within chapter 5 the MMIC amplifier designed and 

incorporated for the alleviation of small signal pick-up, due to the miniaturised 

dimensions, had vastly improved the probes response. A flat frequency response of 

up to 6.5GHz has been presented, with the measurements conducted in this range 

have proven to be successful and accurate. However, for measurements requiring 
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higher frequency, due to the harmonic behaviour of the DUT the response of the 

probe should be further improved. By altering the existing MMIC design a 

theoretical frequency response beyond 10GHz can be achieved, extending the 

range of devices that can be potentially characterised.  

5.4. MMIC design improvements  

5.4.1. Extending the frequency response of the MMIC amplifier 

 

The construction of the control EFP shown in section 5.3.2 provides conclusive 

evidence that the dominant parasitic components present in the high frequency 

response of the EFP, was a result of the MMIC design and not the construction of 

the EFP. Therefore, further improvements to the MMIC amplifier design can 

systematically improve the response of the EFP.  

Theoretical improvement of the MMIC circuit response was achieved with minor 

design alterations of the existing layout within AWR. The addition of circuit 

componentry, tuned to optimal operation, theoretically improved the response of 

the EFP. The resulting design layout is shown below in figure 5.18 
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Figure 5.18: Circuit diagram of the simulation conducted for the revised design of the MMIC die.  Tuned for an optimally flat frequency response 

beyond 10GHz.  
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Simulation of the circuit diagram, shown in figure 5.18, yields a theoretical 

expectation of a flat frequency response to 10GHz, shown in figure 5.19. Note: the 

shift in resonate is a result of reducing the simulated probe line to 5mm (from 

figure 5.3 the probe line was 9mm) and the addition and alteration of circuit 

componentry.  

 

Figure 5.19: Experimental simulation of the predicted frequency response for the 

MMIC amplified EDM EFP, with expectations of a flat frequency response to 10GHz. 

Note: the length of probe line used for the simulation is 5mm. 

 

5.4.2. Frequency calibration of improved MMIC EFP 

The fabrication of the improved MMIC EFP was consistent to the method 

mentioned earlier within this chapter. Figure 5.20 is presented for the 

visualisation of the dimensions of the MMIC and probe tip. 
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Figure 5.20: A picture of the improved MMIC amplifier in comparison to a human 

finger shown for visualisation of the dimensions presented for EFP construction.  

 

Frequency calibration of the MMIC, consisted to the method utilised in section 

5.2.2, yielded the result shown in figure 5.21. 

 

 

Figure 5.21: Frequency response of the improved EDM EFP. Showing an extended flat 

frequency response to 9GHz. 

 

The frequency calibration of the improved MMIC EDM EFP shows enhancement in 

the frequency response, which has been extended beyond 8GHz, along with a 

dampening of the probe line dependant resonance.   

Due to the improvements in the EFP response, results presented within chapters 

6-8 will utilise the improved MMIC EDM EFP. However, it will be shown that this 
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MMIC design will not be practical for application within chapter 9 due to its low 

frequency response. 

 

5.5. Conclusion 

The introduction of the custom designed MMIC amplifier as a replacement of the 

previous SOT package has shown substantial improvement in the frequency 

response of the probe. The frequency response has been flattened and extended to 

greater than 8GHz, which is a 4GHz improvement to its SOT predecessor. The re-

design of the buffer amplifier does not however improve the spatial resolution 

capability of the probe, as this is a function of the local geometry and dimensions of 

the probe.  

The full effect of spatial resolution dependence by the presence of inner conductor 

protrusion has been shown. Further evidence has been provided by the 

detrimental effect that inner conductor protrusion has on the spatial resolution of 

the probe. The presence of the protrusion increases the effective area of coupling, 

therefore resulting in a higher output however, this increase systematically 

degrades the resolution as there is an increase in the effective inner diameter. This 

therefore reinforces the need for minimal inner conductor protrusion for spatial 

resolution maximisation.  

Advantages have been shown by purposeful construction of an EFP with inferior 

characteristics. Although reductions made in the outer diameter of the EFP will 

constitute in a higher spatial resolution, this will only occur if there is a reduction 

in the inner diameter of the outer conductor, as shown with the construction of 

probe E.  

The introduction of a dielectric with a higher constant has shown a proportional 

decrease in output and resolution, due to the attenuation of the measured signal, 

regardless if initial coupling of probe tip to DUT is kept constant. There is also 

confirmation that an air spaced EFP will have less loss associated with signal 

propagation.  

The lack of resolution beyond the 100μm test fixture is to be expected from 

previous theory; as resolution of the probe is related to the dimensions of the inner 

conductor. Therefore, a decrease in the DUT dimensions and no corresponding 

reduction of the ID of the probe would indicate the reasoning behind the lack of 
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resolution. As the probe is moved transversely across the 50μm structure, 

simultaneous coupling may occur as a result of a summation in measured electric 

field, therefore clear distinction and resolution of the fingers cannot be made.  

Unintentional resolution of the 50μm structure, although promising was deemed a 

result of accidental practice, and very difficult to repeat. Unintentional sharpening 

of the inner conductor resulted in a slight displacement in its positioning. The close 

proximity to one edge of the EDM tube resulted in an increased unidirectional 

spatial resolution. However, due to the unrepeatability of this unintentional result, 

the EFP cannot be considered as a probe with a resolution capability greater than 

50μm. 
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6. HIGH POWER AMPLIFIER DIAGNOSTIC  

With the successful design and construction of an EFP, with the spatial resolution 

capability of greater than 100μm, the transition between passive characterisation 

testing and in-situ active measurements can be made. The EFP can be potentially 

used as a diagnostic tool, with the ability to measure the electric field or waveform 

distribution along a given device. The first transistor under investigation is a 2000 

to 2170 MHz, Freescale field effect transistor, N--Channel Enhancement--Mode 

Lateral MOSFET (see Appendix 4). This transistor was mounted to a test circuit 

also designed by Freescale. This chapter will discuss the measurement techniques 

required for the acquisition of the relevant data, and how these results can be used 

as an alternative method of device characterisation. This will be achieved by in-situ 

drain voltages measurements and its corresponding waveform information, which 

until now, have not been extracted at the device plane. 

 

6.1. The high power amplifier, the transistor and its test circuit 

As previously mentioned, the device under test was a 150W Freescale 

MRF8S21100H enhancement mode MOSFET, with an operational frequency of 

2110 to 2170MHz. The transistor itself was packaged with a ceramic lid, which for 

purposes of in-situ on-chip measurements will be removed. Before the de-lidding 

process, each device was tested, and retested after de-lidding; by comparing the 

input and output characteristics of the device. The resulting variation can be 

compared. The removal of the ceramic lid required the use of a hot plate, in the 
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region of 200°C; by placing the transistor, ceramic side down, for a short period of 

time, the adhesive joining the lid to the metal contact below melts. With a well-

practiced movement, the ceramic can be clicked off cleanly. However it should be 

noted that numerous transistors were in fact damaged during this process, but 

never used in the characterisation testing. Once the ceramic lid has been 

successfully removed, the transistor is placed within the test circuit for re-testing 

the initial power sweeps and in-situ measurements with the EFP. All 

measurements were taken at the device plane, therefore there were no EFP 

measurements before the de-lidding process. 

The figure below shows the test circuit and the de-lidded transistor presented to 

the measurement system. 

 

Figure 6.1: Pictorial representation of the 150W MOSFET, with ceramic lid removed, 

within the test circuit for its characterisation. All components provided by Freescale.  

 

Continuous wave (CW) measurements were made on the test fixture shown above, 

at two frequencies 2.05GHz and 2.15GHz; for the comparison of the performance at 

mid-band and at the band-edge frequencies, respectively.  

Using the VNA as a signal source, the input RF power to the test circuit was swept 

with an applied DC drain bias of 28V. For measurements requiring the electric field 

distribution of the device, the VNA was used as a detector and an external signal 

generator was used to supply the input signal. 
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A clearer picture of the de-lidded transistor is shown below in figure 6.2. 

 

 

Figure 6.2: A magnified image of the 150W MOSFET, with ceramic lid removed, 

before its connection to the test circuit for its characterisation, with highlighted 

abbreviations.  

 

The transistor shown in figure 6.2 is an example, this particular device has not 

been used for characterisation measurements as there was evident damage to the 

bondwire array. The damage shown is an example of incorrect removal of the 

ceramic lid, if removed before the adhesive has un-bonded, more force is required 

for correct removal and therefore can cause destruction of the delicate bondwire 

array beneath. Dis-regarding the broken bondwires, it can be seen that the device 

consists of two main sections of circuitry, for clear indication of the results 

obtained later in this chapter, these will be referred to as sections C1 and C2, 

respectively. Lateral scans described in the upcoming chapter will require the 

movement of the probe in the direction indicated above while the DUT beneath is 

kept in a stationary position. 

 

6.1.1. Device characterisation before and after de-lidding process 

As previously mentioned, the direct impact of the de-lidding process must be 

considered and measured before in-situ probing can be carried out. The gain and 

efficiency of the amplifier is tested and shown below in figure 6.3. 
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Figure 6.3: RF input and output characteristic of the HPA with increased input power 

and an operational frequency of 2.05GHz; before and after the removal of the 

ceramic casing. 

 

The figure above indicates the removal of the ceramic casing can be considered 

negligible with regards to little performance degradation of the amplifier. 

6.1.2. Automated spatial resolution and the electric field distribution 

The successful removal of the ceramic casing, along with the confirmation of no 

performance degradation, subsequent testing can be initialised.  

It should be noted: with limited supply of transistors, and destruction of 3 devices 

through the de-lidding process, the resultant investigations in this section are not 

extensive.  

For the successful extrapolation of waveform information, automated scans for 

spatial resolution were conducted with limited attempts. As previously mentioned, 

the EFP is extremely sensitive to its local geometry, therefore for the maximisation 

of coupling and reduction of unwanted orthogonal field components, the EFP and 

DUT separation was kept to a minimum.  

For spatial resolution scans of the active device, the probe is placed over central 

curvature point of the drain-side bondwire array. At a constant separation of 30μm 

above the bondwire height, the EFP was then moved along the direction indicated 

in figure 6.2, from section C1 to C2. 

Unfortunately, fabrication of mass produced devices results in variation of the 

product. The quality of the device should not vary due to the sophistication of the 
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bonding machines utilised for their construction, however, in reality variances will 

occur from device to device. This is evident in the subsequent lateral scan acquired 

as the probe is automatically moved down the device, shown in figure 6.4. 

 

Figure 6.4: Resultant spatial resolution scan of the voltage distribution along the 

drain-side of the MOSFET from section C1 through to C2.  

 

From the figure above, clear depiction of the two sections of 9 bondwires can be 

seen, however variation across the device is the most notable observation. 

Variation in the peak values indicate one of two fabrication anomalies; variation in 

the height of the bondwires and variation in the curvature of the bondwires. 

However, the distinct roll-off would indicate a variation in the distribution of 

current through the bondwires. This observation indicates an undesirable 

outcome, as matching networks are designed for the even distribution of current 

throughout the device. 

If the roll-off present in the distribution is a result of a gradient in the automation 

of the EFP, as the probe is measuring section C2, the separation required for a 

degradation of half the peak value, would be evident by visual inspection. For this 

reason it is believed that the roll-off present in the voltage distribution is in fact a 

true representation of an in-situ measurement for the active device. 
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6.1.3. Calibration and Data processing of waveform information 

In order to obtain waveform information in the time-domain, measurements are 

obtained by a digital signal oscilloscope. The probe is placed above the required 

position, and the relative waveform information can be extracted. The waveform 

information presented in this and upcoming chapters have undergone data 

processing for two purposes. The first, as a method for the extraction of the 

fundamental component for later analysis and second, a method to smooth the raw 

data obtained from the oscilloscope. For the extraction of fundamental 

components the waveform is over sampled and as a result an effective method for 

smoothing raw data is established.  

Before waveform measurements can undergo Fourier analysis, a form of 

experimental calibration must be performed. By constructing a waveform with a 

distinct polarity, the subsequent waveform can be measured directly from the 

source (i.e. from the signal generator) and compared with the output of the probe. 

The distinct waveform is constructed by two phase locked signal generators, with 

the combination of the fundamental and 2nd harmonic, a class J waveform is 

produced. The combination is measured directly by a digital sampling oscilloscope 

and recorded. The same waveform is then injected through a section of matched 

50Ω microstrip line while the EFP is placed over this section, at a separation of 

30μm. The subsequent output of the probe is recorded and displayed in figure 6.5.  

  



 
 

155 
 

 

Figure 6.5: Comparison of a class J waveform measured directly from the signal 

generator to output of the probe. The probe output results in an inverted and scaled 

down measurement of the original waveform showing a true scaled voltage at the 

DUT target. 

 

The resulting measurement can conclude that the EFP has the ability to 

successfully measure a true scaled representation of the voltage present at the 

DUT, as mentioned in section 2.3.1. The field generated at the probe tip and its 

effective coupling to the field generated by the DUT results in the change of 

waveform polarity, hence the inversion present in figure 6.5. Therefore, resulting 

waveforms will undergo inversion before further analysis can be performed.  

 

Due to the positioning of the EFP over the drain manifold, device plane voltages 

can be measured. The time-domain waveform obtained, is the AC output voltage 

swing around the DC operating conditions. For this reason, Fourier analysis can 

extract the fundamental component, and therefore the DC characteristics can be 

constructed as a function of input drive. 

By identifying one full cycle of the waveform, Fourier analysis can be performed on 

the raw data, for the given position relevant to the waveform. 

 

𝑓(𝑥) =
1

2
𝑎0 + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=0

 
(6.1) 

where  
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𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥 

(6.2) 

 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥 

(6.3) 

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥 

(6.4) 

 

𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 are Fourier coefficients and relevant to each data point within the raw 

data obtained from the waveform. 

For two cycles, extraction of the fundamental, where n=1 and the conduction angle, 

α, is based on the radian angle for each data point, 𝑣𝑡 , the root mean square voltage 

value can be calculated: 

 

𝑣𝑓𝑢𝑛𝑑𝑒𝑚𝑒𝑛𝑡𝑎𝑙 = √(∑ 𝑣𝑡cos 𝛼)
2

+ (∑ 𝑣𝑡 sin 𝛼)
2

 
(6.5) 

 

The smoothed waveform data can be obtained from the summation of all harmonic 

component voltage values, not just the fundamental.  

 

𝑣𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 ∑ ((cos 𝑛𝛼 ∑ 𝑣𝑡 cos 𝑛𝛼

∞

𝑛=1

) + (sin 𝑛𝛼 ∑ 𝑣𝑡 sin 𝑛𝛼

∞

𝑛=1

))

∞

𝑛=1

 
(6.6) 

 

By calculation, the raw waveform information obtained from the output of the EFP, 

can be smoothed and the fundamental voltage component can be extrapolated. 

This method will be imposed on all raw waveform data and fundamental plots. 

6.1.4. Waveform distribution with varying input power 

For a given measurement, the position of the EFP can be lowered such that the 

probe tip is 30μm above the metallisation of the transistor die. Measurements 

requiring the drain-side waveform information were obtained by positioning the 

EFP directly over the drain manifold, due to its miniaturised size and flexibility in 

the positioning was achieved.  
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Figure 6.6: Example of the EFP positioning above the DUT i.e. above the drain 

manifold. 

 

With the EFP in its fixed position, the RF input was increased, to take the device 

into compression. As the drive power levels are increased, the probe can make 

relevant measurements of the waveform information at each given level. 

For the given position, measurements were taken at two frequencies, one at mid-

band frequency, 2.05GHz, and the other slightly past the upper band edge, at 

2.15GHz as the input RF power is increased from -5dBm to +7dBm. 

 

Figure 6.7: Drain-side voltage waveforms, for the device as the power level is 

increased to saturation, at the two different frequencies. 2.05GHz and 2.15GHz. 
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From figure 6.7, it can be seen that the impedance match at the band edge has 

dropped to a low value, so that the voltage never reaches the clipping level. With 

the capability of in-situ measurements in working amplifier, such information is of 

great value to the circuit designer.  

6.1.5. Waveform distribution before and after broken bondwire 

The results shown in the previous section required measurements of stationary 

EFP position. However, the measurement system has capability of lateral and 

transverse scan. For the analysis of the waveform information along the length of 

the device, the probe is no longer kept in a stationary position and moved laterally 

down the device; at constant measurement plane. Two alternative measurements 

can be performed during this automation; the input power can remain constant or 

be increased, dependent on the measurement required.  

During in-situ measurements, a build-up of static charge caused destruction to the 

measuring probe and resulted in a broken bondwire of the transistor; the damage 

was specific and confined to the point of discharge. The resulting accident caused 

no visual damage to the metallisation of the die. The damage caused to the 

bondwire was not extensive, a small section of the metal had melted away. This 

unfortunate occurrence did however have its advantages. Re-measuring the output 

power and efficiency of the broken device resulted in no indication of such 

occurrence, there was no degradation in the output characteristics. Using a new 

EFP, whose performance was equal to the damaged probe, the waveform 

distribution down the device was repeated. 

Figure 6.8 below shows two different lateral scans of the device at a constant input 

power of +7dbm; where figure 6.8(a) was conducted pre-accident and (b) was 

conducted after the knowledge of the broken bondwire. 
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(a) 

 

(b) 

Figure 6.8: Lateral scans down the metallisation of the die driven close to saturation 

from section C1 to C2 (a) for a device with no imperfections (b) the device after a 

broken bondwire. Where the highlighted section indicates the difference in peak 

magnitude caused by the broken bondwire. 

 

Two highly significant observations can be made from the waveform distribution 

presented in figure 6.8. The initial scan, shown in figure 6.8 (a), clear differential 

behaviour between the two separate die is evident as the probe is moved from die 

C1 to C2; and in figure 6.8 (b) there are well-defined discontinuity in the measured 

voltage at one specific point on one die. Close inspection of the device at this point 

revealed the position damaged bondwire. Note: both measurements have been 

conducted at a constant separation plane. 
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The EFP shows the ability to characterise a given device by analysis of the 

waveform behaviour; such anomalies as those shown in figure 6.8 (b), can be of 

great importance. In this particular scenario, no indication of potential damage to 

the device could be detected if measurements were only conducted at the input 

and output of the device. The EFP has therefore been successfully utilised as a 

diagnostic tool, with the ability of conducting in-situ internal measurement capable 

of detecting physical anomalies.  

 

6.1.6. Amplitude calibration 

Measurements made in previous sections have been conducted with the 

philosophy of relative voltage measurements, without absolute calibration. Within 

the literature review of this thesis, it has been noted that probe calibration can be 

difficult, with very little mention made to absolute calibration. Any citations found 

required the calibration of the EFP to a non-relevant method, e.g. using an axially 

suspended conducting wire for calibration when the intended function of the 

probe was to measure MMIC test structures [24]. Effective information regarding 

the characteristics of the probe can be extracted by comparing theoretical to 

experimental results of a ‘known’ structure. However, it has been repeatedly 

mentioned that the probe itself is extremely sensitive to its local geometry. 

Therefore, calibration attempts made in a non-relevant manner, to that if the 

intended measurements, cannot be systematically translated and cannot be 

accepted as an absolute calibration method. For an accurate method of absolute 

calibration, the probe must calibrated in-situ to the particular DUT under 

investigation. 

The method presented follows the philosophy whereby either “known” voltage, 

and/or known features of the waveform such as mean, peak and minimum levels, 

can be used to give direct in-situ calibration with a particular probe position. 

Figure 6.9 shows a set of probed waveforms taken on the high power device at the 

drain manifold; with a constant RF drive level, whilst decreasing the DC supply 

voltage.  



 
 

161 
 

 

Figure 6.9: Probe voltage waveforms, at constant RF, with uniform decrease of supply 

voltage over a 1ns sweep; traces have been lined up at the device knee point. 

 

Given that these traces all represent the device in hard compression, it is a 

reasonable assumption that the successive minima represent conditions where the 

device voltages are close to the knee, or turn-on value, which is a known and 

measureable characteristic of the device, 3.5v (±0.5v) in this case. Along with the 

mean level, which can be set to the DC supply value, a workable in-situ voltage 

calibration can be obtained [37]. 

6.2. Conclusion    

This chapter has successfully shown the full extent of the EFP’s capability, the 

ability to conduct in-situ measurements within a working amplifier, direct and 

valuable information can be achieved. Due to the miniaturised size and flexibly 

within the measurement system, the EFP can be used to directly measure over the 

drain side manifold. Therefore the resulting positioning yields the most accurate 

and relevant method of measurement and characterisation. The EFP has been 

successfully utilised as a diagnostic tool, with the ability to detect anomalies and 

unexpected behaviour, such as uneven distribution along a device. The drain 

voltage has a direct effect on the depletion region of the device, and therefore 

channel width; an uneven distribution can have a detrimental effect on the 

functionality of its performance. 
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Transverse scans conducted at constant drive, of two nominally identical devices 

successfully resulted in the EFP ability to expose the deformity present within a 

topology. This particular measurement displayed the presence of a broken 

bondwire. Without the aid of the EFP, measurements conducted at input and 

output terminals would not detect the deformity; as output power and efficiency of 

the device remained constant.  

All the information presented within this chapter would greatly aid the work of a 

designer, giving vital information which could not be obtained through other 

measurement techniques. 
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7. DOHERTY POWER AMPLIFIER DIAGNOSTIC 

The successful measurement of a high-power amplifier was presented in the 

previous chapter. The EFP was shown to be effectively utilised as a diagnostic tool, 

therefore this chapter will show the resulting measurement of a more complicated 

system. As discussed in section 2.1.2 Doherty power amplifier, consists of two 

active transistors. Employed as a method of efficiency enhancement, potential 

complications in the resultant characteristics have been observed. The anomalies 

present in the Doherty configuration have perplexed designers, with no diagnostic 

tool available for in-situ measurement. Undiagnosed and unpredicted errors in the 

design stage have resulted in the necessity for further understanding in the testing 

stage. With direct access to the device, on-chip measurements can be utilised to 

detect such anomalies and conclude if each device is working correctly or 

coherently to design specifications.  

 

7.1. Symmetrical Doherty power amplifier 

7.1.1. Theoretical DPA behaviour 

The Doherty power amplifier tested in this chapter is symmetrical, i.e. with two 

identical LDMOS devices BLF7G21LS-160P, consisting of a main and peaking 

device. The circuitry of the 50W 2GHz DPA and transistors are all supplied by NXP, 

Netherlands, shown below in figure 7.1. 
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Figure 7.1: Pictorial representation of the symmetrical 50W Doherty PA, showing 

LDMOS devices with ceramic lid removed. All components provided by NXP. 

 

Theory would dictate that at low input power levels, the peaking device is off, so 

the main device receives the entire input signal. As the power level is increased, 

the main device reaches a level of voltage saturation; at this point, due to its 

biasing arrangement the peaking device switches on. This switch-on results in a 

current contribution from the peaking device. Therefore, resulting in the main 

device to behave like a controlled voltage source; while the peaking behaves as a 

controlled current source. As the input power is increased further, the impedance 

seen by both devices are now equal to that of the characteristic impedance of the 

quarter-wave transformer. 
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Figure 7.2: Generic efficiency plot for a Doherty power amplifier with increased input 

power, defining the low power and high power region behaviour [1]. 

 

In theory, the classical Doherty behaviour is shown to be rather abrupt. Literature 

on the topic will illustrate the efficiency to be similar to that shown above, in figure 

7.2. Displaying a linear efficiency at low input power and a peak efficiency at the 

6dB back-off point.  

In practise, this idealised behaviour is not always evident. Actual measurements of 

the efficiency and device voltages show a much tamer representation.   

For accurate representation of the device plane voltages, in-situ drain-side 

measurements must be conducted, along with the data analysis shown in section 

6.1.3. This will allow for the extraction of the fundamental voltage components, 

therefore allowing potential anomalies to be identified.  

7.1.2. RF input output characteristics before and after transistor de-lidding 

As with measurements conducted on the HPA within chapter 6, the output 

characteristics of the DPA should be measured before and after the de-lidding 

process. However, this was not possible as the amplifier was provided with de-

lidded transistors, therefore no direct comparison could be made. The figure 7.3 

displays the RF input and output characteristics for the de-lidded DPA. 
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Figure 7.3: RF input and output characteristic of the DPA with increased input power 

and an operational frequency of 2GHz 

7.1.3. Spatial resolution scans along the bondwire of the transistors 

The figure below shows a magnified picture of the LDMOS device to be tested; both 

devices within the DPA are identical. 

 

Figure 7.4: A magnified image of the LDMOS device, with ceramic lid removed, where 

the main and peaking devices consist of identical transistors; with highlighted 

abbreviations “c1” and “c2”.  

 

The transistor circuitry consists of two sections of separated die metallisation, 

connected through a bondwire array. For clear understanding of the proposed 

measurements, the labelling indicated above (“c1” and “c2”) will be adopted. 

Both the bondwire arrays on the drain and gate side of the LDMOS were separately 

scanned for the relative voltage distribution, note: the bondwire separation of the 

-15 -10 -5 0 5 10 15
5

10

15

20

25

30

35

40

45

50

55

O
u
tp

u
t 

P
o
w

e
r 

(d
B

m
) 

a
n
d
 E

ff
ic

ie
n
c
y
 (

%
)

Input Power (dBm)

 

 

Pout

Efficiency



 
 

167 
 

array differed with each side. The bondwire separation on the drain side measured 

to be 30μm, while the spacing of the gate side bondwires measured to be 100μm. 

Initial resolution scans were conducted on the drain side, resulted in a lack of 

spatial resolution, due to the close proximity of the bondwires, i.e. the resolution 

required exceeded that of the probes capability.  

 

Figure 7.5: Automated spatial resolution scan along the bondwire array situated on 

the drain side of the peaking LDMOS device within the DPA, showing a lack of definite 

resolution due to the close proximity of bondwire (bondwire separation measured to 

be 30μm). 

 

The DPA was measured at a constant RF input, close to compression, to ensure 

both devices were in the ‘on’ state. The scan shown above, in figure 7.5, is the 

result of a transverse movement of the EFP over the section c1 on the peaking 

device; measured at a constant separation plane. The drain side array consisted of 

3 separated sections of bondwires; where section 1 and 3 contained 3 wires, while 

section 2 contained 4 wires. As the EFP is moved down the device, a degradation of 

magnitude and resolution is observed. The lack of resolution is mainly due to the 

close proximity of the bondwires (30μm separation). Repetition of drain side 

bondwires produced the same outcome for each section of each transistor, c1 and 

c2; with slight resolution of initial bondwires leading to a complete decay of 

resolution and measured magnitude along the device.   
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For confirmation of the spatial resolution capability of the EFP, transverse scans 

are conducted along the gate side bondwire array; where the separation between 

each wire is greater and more suited to the resolution capability of the probe. The 

initial separation of the probe tip and DUT is set to the same level as the previous 

scans, 30μm above the highest visible bondwire. This procedure is essential due to 

the natural anomalies in fabrication; this precaution avoids destruction of the 

probe and the DUT. 

 

7.6 (a) 
 

 
7.6 (b) 
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7.6 (c) 

 
7.6 (d) 

Figure 7.6: Automated spatial resolution scan along the bondwire array situated on 

the gate side of the LDMOS device within the DPA, of the main device (a) section c1 

(b) section c2, and of the peaking device (c) section c1 (d) section c2. 

Note: the picture shown along with plot (c) is to highlight the anomaly present within 

the bondwire array. 

 

0.015

0.02

0.025

0.03

0.035

0.04

R
e
la

ti
v
e
 V

o
lt
a
g
e
 (

V
)

Relative Position

0.016

0.018

0.02

0.022

0.024

0.026

0.028

R
e
la

ti
v
e
 V

o
lt
a
g
e
 (

V
)

Relative Position



 CHAPTER 7.   DOHERTY POWER AMPLIFIER DIAGNOSTIC  
 

170 
 

From the scans shown above, two important observations can be made; firstly that 

the distribution of voltage along the device varies as the probe is moved from 

section c1 to c2 and secondly, the considerable variation present between the peak 

magnitude of the main and peaking devices.  

As the probe is transitioned between sections c1 and c2 of the same device, the 

decay in amplitude and resolution is presented not as extreme when compared to 

the drain side scans. The differences observed in peak values of the voltage 

distribution between the main and peaking devices are rather unexpected 

behaviour. 

Again, the probe separation is kept constant throughout all measurements; any 

unintentional variance caused to the measurement plane would be noticeable by 

the microscopic positioning system used for initial positioning. 

 

The degradation of the voltage distribution is evident in both the bondwire scans 

and scans conducted on the metallisation of the die. The EFP is placed at a constant 

measurement separation of 30μm above the central point of the die, i.e. midway 

between the drain and gate bondwire arrays, and moved transversely down one 

section of the device. Note: the results displayed below are obtained from a scan of 

c1 on the main device and c2 of the peaking device; this is due to the degree of 

variance present in their corresponding bondwire investigations. 

The section of metallisation should be nominally flat, with no issues of apparent 

variation in the planarity. However, the scan shown below in figure 7.7 is 

consistent with the decay visible in the bondwire scans. 
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Figure 7.7: Automated spatial resolution scan along the metallisation within section 

c1 of the main and c2 of the peaking device, showing substantial and coherent 

variation in the resulting distribution.  

 

The results shown above displays a coherent degradation in the measured 

magnitude across the device; such substantial variation across the device 

periphery is unexpected and not desired for the correct functionality of the 

transistor.  

7.1.4. Experimental waveform measurements and fundamental voltage component 

The measurements described within this section are intended as a relative 

measurement, the vertical scaling of the voltage is a representation of the true 

output of the EFP. The measurements below are taken at the device plane over the 

drain manifold, for a stationary EFP position as the input power is increased. 

The EFP is lowered 30μm above the drain manifold, where the position chosen on 

the main and peaking devices are comparably the same. The input drive is 

increased in 1dBm increments beyond the saturation of the DPA and shown in 

figure 7.8 and figure 7.9 for the main and peaking devices, respectfully. 
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Figure 7.8: Voltage waveforms from the main device as the input power is stepped in 

1dBm increments for a stationary position of the EFP, comparable to the position 

chosen on the peaking device. 

 
 

 

Figure 7.9: Voltage waveforms from the peaking device as the input power is stepped 

in 1dBm increments for a stationary position of the EFP, comparable to the position 

chosen on the main device. 

 

From the waveforms plots shown above; a visible difference of almost a factor of 

two is present in the peak to peak voltage values, between the main and the 
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peaking devices. The separation plane of the EFP was kept constant for both 

devices, however, differences in magnitude were still observed. 

Extracting the fundamental voltage component from the waveform information 

displays a coherent difference in the peak values. Despite this difference, clear 

Doherty behaviour is observed.  

 

 

Figure 7.10: Fundamental voltage component extracted from the waveforms shown 

in figure 7.8 and 7.9; showing clear Doherty behaviour as the input drive is increased, 

with visible difference in the peak voltage values.  

 

From the figure above, it can be seen that the main device is taken to saturation as 

the peaking device turns on. However, the peak value of the peaking device quickly 

exceeds that of the main, before saturating at a higher than expected magnitude.  

 

Further analysis of both the main and peaking devices concluded that differences 

exhibited in the peak values, were due to the substantial variation in the voltages 

along the device periphery. Waveform analysis conducted at a constant input 

drive, as the EFP was moved along the device plane, showed the full extent of this 

variation. Figures 7.11 and 7.12 show the degree of variation along the main and 

peaking devices respectively; note that the vertical position of the probe does not 
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change. For clarity of the device periphery variation, the measured waveform has 

been reduced to one cycle. 

 

Figure 7.11: The extent of the voltage waveform variation, at a constant input drive 

of +7dBm, as the EFP is moved transversely down the main device. For improved 

visual inspection, the waveform has been reduced to one cycle. 

 

Figure 7.12: The extent of the voltage waveform variation, at a constant input drive 

of +7dBm, as the EFP is moved transversely down the peaking device. For improved 

visual inspection, the waveform has been reduced to one cycle. 
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From both figures 7.11 and 7.12, a clear observation can be made in the significant 

variation of peak voltage values along the devices. The devices used in the DPA are 

nominally the same, only under different biasing conditions. For this reason, 

similar points along the devices were used as a comparative point for the 

measurements displayed within figures 7.10, 7.11 and 7.12. However, the variation 

along each device was specific with no coherent deviation, showing a more 

extreme variation along the main device. With the variation specific to each device, 

the point of comparison chosen dictated the differences observed in the peak 

voltage value.  

7.2. Conclusion  

The initial spatial resolution scans conducted within this chapter have shown two 

major significances; the actual resolution capability of the MMIC EFP exceeded the 

original expectation of 100μm and the extent of the amplitude variation along the 

device periphery was highlighted. With partial resolution of the drain side 

bondwires, loss of resolution could be a result of the extreme roll off present in the 

voltage distribution. Thus, extending the expectant resolution of the EFP close to 

the region of 30μm. 

The variation of the measured voltage extended to the time-domain 

measurements, where waveform distribution along the metallisation of the die 

also showed signs of anomaly. The deviation present along the device periphery 

showed an inconsistent variation in the distribution. The variation in the 

waveform distribution along the individual devices and the discrepancy present in 

the comparison of devices, are ultimately a result of an unintentional design flaw. 

Such anomies can theoretically affect the performance of the DPA. 

The final comparison of fundamental components obtained from main and peaking 

devices depend specifically on the point of comparison. Due to the discontinuous 

variation along the device periphery, the extent of the discrepancy between the 

peak voltage values are dependent on point of comparison.  
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8. ASYMMETRICAL DOHERTY POWER AMPLIFIER DIAGNOSTICS  

The measurements conducted within chapters 6 and 7 have shown successful 

application of the EFP as diagnostic tool, for the characterisation of high power 

amplifier systems. This chapter will describe the analysis of a 200W, asymmetrical, 

Doherty power amplifier, A-DPA.  

The work presented within Chapter 7 investigated the operation of a symmetrical 

DPA, where the active devices within the system were identical devices. The A-DPA 

however, consists of two different LDMOS devices, a 130W transistor for the main 

and a 200W transistor for the peaking (designed and manufactured by NXP, 

Netherlands). 

The classical DPA design displays a peak efficiency at 6dB back-off, which makes it 

most applicable to a signal with 6dB PAPR. A modern day system demands a 

higher peak to average ratio, PAPR, with a peak efficiency in the region of 8dB 

back-off. The A-DPA can be utilised for this reason, by altering the devices within 

the DPA, the peak efficiency can be shifted to the desired back-off point. By 

specifically increasing the size of the peaking amplifier, typically in the region of 

1.5-2 times larger, the peak efficiency can be shifted to a higher back-off levels.  

However, the implementation of an A-DPA increases the challenges faced by the 

designer. The two different sub-amplifiers within the system will alter the design 

consideration, as variances can occur independently due to the asymmetric nature 

of the devices. Variations as a result of the fabrication process can also occur, as 

components are not made on the same production run.  
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These uncertainties have overshadowed the potential efficiency improvements of 

the A-DPA design, and caused designers to favour the symmetrical orientation. 

For this reason, diagnostic characterisation of the A-DPA with the EFP system, can 

give valuable information regarding the functionality of the design. Direct access to 

each device will allow for on-chip measurements which result in the most accurate 

characterisation of the A-DPA.  

8.1. EFP diagnostic evolution of the A-DPA 

8.1.1. Theoretical behaviour of the A-DPA 

Theoretical behaviour of the 200W asymmetrical Doherty, has similarity to that of 

the symmetrical system described within chapter 7. At low input power levels, the 

device plane impedance is transformed from the 50Ω termination by the quarter-

wave transformer. The impedance seen by the main device is a higher magnitude 

than in the symmetrical case, therefore the saturated voltage value at the main 

device is reached at a much lower drive level.  

As the input power is increased, the peaking device starts to conduct, and 

modulates the main device impedance downwards, thus maintaining the saturated 

voltage value of the main device. The figure below summarises the generic 

theoretical characteristics of the main and peaking devices. 
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(a) 

 

(b) 

Figure 8.1: Generic characteristic behaviour of an A-DPA with increased input power, 

for (a) current and (b) voltage. Highlighting earlier current switch on, of the peaking 

device and voltage saturation of the main device [1]. 

 

From figure 8.1 it can be seen that the peaking device is designed to contribute at 

lower input power, therefore resulting in an earlier voltage saturation of the main. 

For this reason, the peak efficiency occurs at a lower back-off level. Depending on 

the ratio difference between the main and peaking transistors, the individual 

maximum current values, seen in figure 8.1 (a), will differ accordingly. It should be 

noted that the expected peak voltage values for the main and peaking devices are 

equal. 

 

8.1.2. RF Pin-Pout characteristics before and after the de-lidding process 

The RF input and output characteristics of the A-DPA are conducted before and 

after the removal of the transistors ceramic casing. For ideal back-off within a 
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lower region, the peaking amplifier has been chosen to be larger than the main 

device. Note the devices used within the A-DPA are BLF7G22LS-130 and 

BLF7G22LS-200, where the latter is the peaking device and is 1.5 times greater 

than the main device. Schematic diagram of the transistors and test circuit are 

shown below in figure 8.2. 

 

Figure 8.2: Picture of the symmetrical 200W Doherty PA, showing LDMOS devices 

with ceramic lid removed. All components provided by NXP. 

 

In order to calculate the expected efficiency of the system, output data is analysed 

as the input excitation is increased. The A-DPA is excited by a CW of 2.14GHz 

provided by a VNA. This excitation is fed using an external driver amplifier, Mini-

Circuits ZHL-30W-252+, UK, for addition gain. The output of the A-DPA is 

terminated via sufficient attenuation and measured by a power meter via a 

directional coupler. 

Figure 8.3 below shows the efficiency and output power of the A-DPA, before and 

after the removal of the ceramic casing. The efficiency is calculated as the 

percentage ratio of output power as a function of the input power. 
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Figure 8.3: RF input and output characteristic of the A-DPA with increased input 

power and an operational frequency of 2.14GHz, for intact ceramic casing and 

removed ceramic casing.  

 

From the figure above, the classical twin peak characteristic of the amplifier 

efficiency can be observed in the expected region of 10dB back-off. However, the 

backed-off efficiency peak is significantly lower than the maximum drive peak, as 

compared experimental to theoretical expectations.  

Comparisons made between the plots displayed within figure 8.3 can conclude the 

de-lidding process can be regarded as having negligible effect on the performance 

of the A-DPA.  

 

8.1.3. Spatial resolution analysis of the A-DPA 

Spatial resolution scans were conducted on the main and peaking devices while 

the A-DPA was in full operational mode; for analysis of the voltage distribution 

along the device periphery. Figure 8.4 below shows a magnified image of the main 

and peaking devices, respectively; highlighting the direction of measurement, “a” 

to “b”. 

 

-30 -25 -20 -15 -10 -5
5

10

15

20

25

30

35

40

45

50

55

Input Power (dBm)

O
u
tp

u
t 

P
o
w

e
r 

(d
B

m
) 

a
n
d
 E

ff
ic

ie
n
c
y
 (

%
)

 

 

Lidded Pout

De-lidded Pout

Lidded Efficiency

De-lidded Efficiency



 
 

181 
 

 

(a) 

 

(b) 

Figure 8.4: A magnified image of the LDMOS device, with ceramic lid removed, before 

its connection to the test circuit, for (a) the 130W main and (b) 200W peaking device. 

Highlighting the direction of the transverse spatial resolution scan. 

 

From the figure above, it can be seen that the bondwire array differs between 

devices, which is to be expected given that the DPA is asymmetric. The spatial 

resolution scans conducted on the drain side bondwires, between the main and 

peaking devices, are expected to have a difference in distribution. This is due to the 

difference in bondwire proximity. The bondwire separation of the main device 

measures at 100μm, while the peaking device measures at 50μm. The spatial 

resolution scans, within this section, were conducted at two power levels on each 
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device. One at mid-level input and one deep within saturation level of the device. 

Note: the difference in RF input between figure 8.5 (a) and (b) and between figure 

8.6 (a) and (b) is +7dBm. The resulting scans shown below were conducted with 

no alteration in the vertical measurement plane. 

 

(a) 

 

(b) 

Figure 8.5: Automated spatial resolution scans along the drain side bondwire array,  

of the main LDMOS device within the A-DPA, as the probe is transversely moved in the 

direction of “a” to “b” for a (a) lower RF input and a (b) RF input deep within 

saturation.  
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(a) 

 

(b) 

 

Figure 8.6: Automated spatial resolution scans along the drain side bondwire array,  

of the peaking LDMOS device within the A-DPA, as the probe is transversely moved in 

the direction of ‘a’ to ‘b’ for a (a) lower RF input and a (b) RF input deep within 

saturation. 

 

Comparing the automated scans within 8.5 (a) and (b), the increased RF input is 

observable in the resultant measurement of the probe output. The significant 

observation from the figures above is the clear and visible trend is present in the 
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voltage distribution of the main device. Both the peaks and the troughs exhibit an 

umbrella shaped distribution, showing maximum voltage in the central position of 

the device. This trend is more substantial at higher input power levels. 

 

The variation in the voltage distribution of the peaking device yields an interesting 

analysis. Considering figures 8.5 (a) and (b), the output measured by the probe is 

consistent to the increase in the input power, however this observed increase is to 

a much higher magnitude. The resulting increase in the input power has a direct 

effect on the spatial resolution of the probe, the subsequent scan shown in figure 

8.6 (b) shows a more distinguished bondwire resolution. The visible trend in both 

scans display a dominant linear increase in the resulting magnitude, this trend has 

a direct effect on the spatial resolution recorded. As the measurement plane is 

moved from ‘a’ to ‘b’, a noticeable improvement is present in the spatial resolution 

of the EFP, which suggests that the EFP has capability of resolution within the 

50μm range. 

The variation observed in the peak voltage values, of both the main and peaking 

device, are clearly due to non-planarity of the bondwires. It has been well 

documented that the EFP is sensitive to both planarity and the local geometry, 

therefore any variation present as a result of fabrication error will be translated to 

variation in the distribution.  

 

The increments chosen between each movement of the EFP was a critical decision, 

where the resulting step-size must be comparable to the desired resolution. If the 

increment was too large, maximum resolution cannot be achieved; while an 

increment too small will result in over sampling and increase the scanning time 

beyond a necessary rate. Although the optimum increment has been chosen for 

both transverse scans shown in figure 8.5 and 8.6, an increase in the step-size can 

fully investigate the differences in the resolution achieved within figure 8.5. The 

highlighted sections of the peaking device annotated in figure 8.6 (a) is repeated 

with a decreased step-size of two times the standard rate.  

The probe is then chosen to re-scan the first two bondwires within each section of 

the peaking device’s bondwire array, which have been annotated as ‘X’, ‘Y’ and ‘Z’.  



 
 

185 
 

 

Figure 8.7: Spatial resolution scans, with and increased data point along of the twin 

bondwires within the peaking device shown in figure 8.5 (a). Any differences observed 

in the horizontal scale are due to the variance in the initial scanning point of the EFP. 

 

From the scans shown above, it can be seen that the resolution of the EFP is not 

improved as the increments between the automated movements are increased. 

The resulting scan shown in figure 8.7 is in accordance, and provides confirmation, 

of the resolution achieved within figure 8.6 (a). Showing a measured magnitude 

where,  𝑍 > 𝑌 > 𝑋 and the measured resolution where,  (𝑍 ≈ 𝑌) > 𝑋. 

 

Additional spatial resolution analysis was conducted on the metallisation of the die 

for both devices within the A-DPA. Distributions measured were expected to 

exhibit a proportional variance present in the bondwire measurements. However, 

due to the nominally planer surface of the die, the planarity issues present in the 

bondwire measurements can be reduced.  

The spatial resolution scans resulting from the metallisation of the die are 

conducted mid-way between the drain and gate bondwire arrays. The probe was 

lowered to this position, at a measurement plane of 30μm and transversely 

scanned from position “a” to “b”. The resulting transverse scans for the main and 

peaking devices are shown in figure 8.8 and 8.9, respectively.  
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Figure 8.8: Automated spatial resolution scan along the metallisation of the die, 

within the main LDMOS device, as the probe is positioned in a central location, with a 

separation of 30μm as it is transversely moved down the device in the direction of a 

to b. The resulting distribution presents a dominant “umbrella” shaped trend with a 

“mysterious” double peaks. 

 

Figure 8.9: Automated spatial resolution scan along the metallisation of the die, 

within the peaking LDMOS device, as the probe is positioned in a central location, 

with a separation of 30μm as it is transversely moved down the device in the 

direction of a to b. The resulting distribution presents a dominant trend with a 

“mysterious” double and mid-die peaks. 
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From both scans presented within figures 8.8 and 8.9, confirmation is given to the 

coherent distribution presented in figures 8.5 and 8.6. The distribution of the main 

device exhibits a clear and more predominant “umbrella” trend, displaying a 

maximum magnitude in the central section of the transistor with substantial roll 

off at the end sections of die. 

The distribution present in figure 8.9, shows a clear increase in the measured 

magnitude as the probe transitions between the scanning range of “a” to “b”. 

It must be noted that both measurements conducted above exhibited an 

unexpected twin peak and mid-die peak. Both exhibit a twin-peak as the EFP is 

moved over adjacent sections of die; with an addition mid-die peak present in the 

peaking device.  

Further visual inspection of both the main and peaking device revealed the cause 

of the mid-die and twin-peaks. 

Figure 8.9 below shows a magnified image of the square pads present between two 

adjacent sections of metallisation die. 

 

 

Figure 8.10: A highly magnified image of the LDMOS device, showing the pads 

present between adjacent sections of die metallisation.  Highlighting the cause of the 

observed twin-peak measured in spatial resolution scans. 

 

Both the main and peaking device contained the pads, shown above, and ultimately 

resulted in the measurement of the twin-peaks.  
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Additional mid-die peaks, within the peaking device, were understood with visual 

inspection. The mid-point within each section of die contained a cluster of 3 closely 

positioned interdigital fingers, shown in different magnifications within figure 

8.11. 

 

(a) 

 

(b) 

 

(c) 

Figure 8.11 (a) (b) (c): A highly magnified image of the peaking LDMOS device, 

showing an unexpected finger orientation in the interdigital array of the die 

metallisation. Highlighting the cause of the observed mid-die peak measured in 

spatial resolution scans. 
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From figure 8.11 (c), it can be seen that this cluster of interdigital fingers is of a 

comparable size to that of a bondwire, therefore the resultant distribution of 

electric field can be accordingly measured by the EFP. It will be shown, within 

section 8.1.4, that waveform distribution along the metallisation will too vary as a 

result of this intentional design orientation.  

8.1.4. Waveform analysis of the A-DPA 

The work conducted within the previous section has shown conclusive evidence to 

the extent of variation present along the device periphery. Such measurements can 

provide vital information with regards to the amplifiers functionality; as it is 

generally assumed that the device behaves in a much simpler manner, therefore 

characterisation has not been as accurate. In reality the high power transistor is a 

complex and distributed device, with the ability to display substantial variation 

along the device periphery. Waveform analysis performed on the A-DPA can 

provide further information to aid the understanding of such a complex device. 

This section will show two forms of data measurement, one required a stationary 

position of the EFP, while the other required an automated movement. For the 

extraction of the fundamental component and observation of classical Doherty 

behaviour; measurements will be conducted as a function of increased RF input, 

for a stationary position of the EFP. To display the full extent of variation along a 

device periphery, the EFP is transitioned between different positions at a constant 

RF input. 

 

Initial waveform analysis was performed for the verification of the mid-die peaks 

present in the spatial resolution scans, conducted within section 8.1.3. Preliminary 

measurements required the same plane of movement across the metallisation of 

the peaking device. The probe was placed in the same position, between the drain 

and gate side bondwire arrays, at a separation plane of 30μm. As shown in figure 

8.4 (b), the peaking device consisted of three sections of die metallisation. The scan 

shown in figure 8.11 was a result of intensive measurements of one section of die, 

at a constant RF input close to saturation. 
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Figure 8.12: Scan depicting the waveform distribution of the middle die of the 

peaking device, at a constant RF input close to saturation, with waveform evidence of 

the mid-die peak.  

 

The figure above displays consistent mid-die peak behaviour within the waveform 

distribution. Therefore showing the design of the interdigital cluster directly 

effecting the resulting waveform distribution of the device. This intentional design 

will therefore have a repercussive effect on the distribution fed to the drain 

bondwire array. 

 

For the extraction of the fundamental drain voltage component, equivalent 

positions along the main and peaking device were chosen for comparison.  

Due to the high degree of variation along the devices, the results displayed solely 

depend on the two points of comparison. For example, the plots shown below, in 

figure 8.13 (a) and (b), are an examples the differences present in the fundamental 

values. Figure 8.13 (a) displays the results of two comparative positions a central 

point on the central die, while 8.13 (b) displays comparative position at the die 

edge on the central die. 

 

0100200300
400500

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Relative PositionTime (points)

R
e
la

ti
v
e
 V

o
lt
a
g
e
 (

V
)



 
 

191 
 

 

(a) 

 

(b) 

Figure 8.13: Fundamental drain voltage component of the main and peaking device 

as a function of increased RF input, where (a) is a central position down the device 

and (b) is at the device edge. 

 

Due to the substantial variation along the device, the point of comparison chosen 

greatly effects the fundamental plot. Discrepancies are presented in the saturated 

values of the main and peaking voltages. It can be seen that in specific sections of 

the die, that although the “on” state of the peaking device results in the main device 
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to be taken into saturation, the peaking voltage does not reach the maximum main 

voltage. This variation is not a favourable outcome as the device is not performing 

to the expected characteristic behaviour.  

 

To show the full extent of the variation present along the main and peaking device, 

different positions along each periphery were chosen and plotted. Figure 8.14 

shows the positions of measurement, while figure 8.15 displays their result and the 

extent of variation present within each subsection. 

 

 

Figure 8.14: A magnified image of the LDMOS device, with ceramic lid removed, 

displaying the positions for further measurement.  
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(a) 

 

 

(b) 

Figure 8.15: Fundamental drain voltage component of the main and peaking device 

as a function of increased RF input; where (a) shows the variation along the main 

device and (b) shows the variation along the peaking device.  

 

From figure 8.15 (a) and (b), the extent of the variation along both devices can be 

clearly seen. Variation in the peak and saturated values of this kind are a result of 
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an unintentional design flaw. Discontinuity in the power distribution can 

potentially have detrimental effects; most notably linearity and reliability. With the 

aid of the EFP as a diagnostic tool, the designer can pre-empt potential errors 

within the matching network, which is clearly the cause of this variation.  It must 

be stipulated that the measurement plane was not altered, and that the variation in 

the amplitude is a true representation of the variation measured at the output of 

the EFP. 

The deviation of magnitude, measured across the device periphery, will result in 

the proportional variance exhibited in the waveform distribution. Specific 

comparison of two separate positions, shown below in figure 8.16 (a) and (b), 

shows the extent of the potential variation present within the main device.  
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 (a) 

 

(b) 

Figure 8.16: Voltage waveforms from the main device as the input power is stepped in 

1dBm increments for (a) midway down the device and (b) the beginning of the 
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device; where substantial differences in the shape and magnitude of the distribution 

can be observed.  

 

The figure shown above depicts the waveform distribution of two specific points 

along the main device of the A-DPA, as the RF input is increased in 1dBm 

increments. A clear difference in the measured peak to peak voltage values are 

observed between the two points.  The waveform measurements shown in figure 

8.16 (b), show a visible growth of a second harmonic component within the main 

device, a characteristic not predicted by classical Doherty analysis, and possibly 

beyond the range of conventional CAD simulators.  

 

8.1.5. Waveform analysis of the A-DPA at band-edge frequencies 

The 2.14GHz A-DPA can be measured at the band-edge for further characterisation 

and the understanding of anomalous behaviour. An amplifier designed at a 

particular frequency will exhibit ideal and optimum performance within this 

bandwidth. However, frequencies beyond the specified bandwidth will result in a 

degradation in performance. Measurements within this section will highlight 

potential disadvantages arising from the out of band excitation. 

Further measurements are therefore taken at the upper and lower band edges, of 

2.12GHz and 2.16GHz, respectively. RF input and output measurements at these 

frequencies show an improved peak efficiency at 2.16GHz, while the lower band 

edge exhibits similar efficiency to the recommended frequency of 2.14GHz.  
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Figure 8.17: RF input and output characteristic of the A-DPA with increased input 

power, for band-edge frequencies 2.12GHz and 2.16GHz.  

 

The measurements shown below display the variation in the fundamental voltage 

component, with respect to increasing input drive, along the device periphery; at 

both band-edge frequencies. For direct comparison of the two frequencies, while in 

one position, the EFP was used to measure at both band-edge frequencies i.e. the 

EFP position was not altered as the excitation frequency was interchanged.  
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(a) 

 

(b) 

Figure 8.18: Fundamental drain voltage component for four different positions along 

the device, as a function increased RF input, at both 2.12GHz (shown in black) and 

2.16GHz (shown in red); where (a) shows the variation along the main device and (b) 

shows the variation along the peaking device.  

 

Although the position of the probe was not changed between different frequency 

measurements, the resulting variation in the fundamental component is evident. 

With a greater variation in the main device, the operational frequency has dictated 

the saturated drain voltage and as well as the functionality of the device.  
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From the evidence presented in the fundamental components, it would suggest 

that the matching network on the main device presents a low impedance at low 

input power; therefore the voltage rises at a much lower rate in the pre-peaking 

regime. As the RF input is increased, the contribution of the peaking device to the 

system, the voltage moves to a higher and saturated level, as a result of correct 

load modulation.   

 

8.2. Conclusion 

Within this chapter, further application of the EFP has successfully shown 

extended analysis of Doherty systems. The ability to obtain real-time waveform 

measurements can give valuable information about internal characteristics of an 

active device within the amplifier, which has been previously un-reported.  

The extent of variation along the periphery of the device has been demonstrated, 

in both spatial resolution and waveform distribution analysis. This variation is 

specific to the individual device, which is to be expected of an asymmetrical 

configuration. The central point of the main device has been shown to have the 

maximum measured voltage value, with substantial and unexpected roll-off at both 

edges. Whereas the peaking device has shown a gradual increase in its amplitude 

distribution, as the measurements were conducted down the device.  

Theoretical and ideal expectations of the A-DPA require an equal and constant 

voltage distribution, both anomalies mentioned above can result in great 

disadvantages to the overall intended design. This can result in a deviation of 

internal behaviour from the idealised characteristics between the input and output 

of the device. Without the EFP technique, these highly significant deviations could 

not be observed and measured. Other methods of device characterisation assume a 

single node device, though it has been clearly shown that the transistor behaves 

inconsistently throughout the device periphery.  

Further measurements at the band-edge has resulted in the knowledge of 

characteristic behaviour at the out of band frequencies; fundamental 

measurements have shown the true impact on the matching network as a result.   

At low input power levels, the peaking device is considered off, with no 

contribution to the net current. Although there is no expected current contribution, 

it is evident from the resulting voltage analysis, that there is some form of 
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contribution present. At the bandedge, this voltage contribution at low levels of 

input power is much higher than at the mid-band frequency, thus the deviation 

from the expected Doherty behaviour.  
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9. “IN-SITU” CALIBRATION METHOD FOR EFP 

This thesis has successfully described the design, fabrication and implementation 

of an EFP. The measurements thus far have been made relatively, with no absolute 

calibration performed in-situ during the measurement process.  Various references 

have been made to the lack of calibration techniques conducted in previous 

documented electric field probe research, while any mentions made have not 

utilised in-situ measurements, but rather a measurement and comparison of a 

‘known’ DUT.  

The work conducted within this thesis has described a novel method for the 

internal measurements of device plane voltages within the packaged high power 

transistor devices. Absolute calibration of this unique measurement technique has 

posed somewhat difficult. This chapter will go on to describe a novel in-situ 

calibration technique for the electric field probe, which has the capability to be 

utilised before every probe measurement. Unfortunately, due to time constraints 

this method of in-situ calibration was not performed on the measurements 

presented within previous chapters. This technique was developed at the late stage 

of this research, therefore it has been included to show the possibility for absolute 

calibration of the EFP system. 

9.1. Basic concepts of proposed technique 

The miniaturised size and the flexibility in its positioning has allowed the EFP to 

perform measurements in various positions along a packaged transistor device. 

The coupling factor has been shown to be an extremely sensitive function of the 
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spacing of the probe to the circuit element. The probe output is therefore a very 

complex function of the spacing and the local geometry of the probing target.  

 

A successful method of absolute calibration requires the development of a ‘known’ 

voltage, which would subsequently result in the comparison of measured EFP 

output. Due to the sensitivity of the probe to the local geometry, in-situ calibration 

should be conducted with every probe movement, i.e. as the probe target is altered 

between the planar surface and the bondwire array of the semiconductor device. 

However, at microwave frequencies, development of a ‘known’ voltage poses some 

difficulty as the measurement point is deeply embedded in a distributed 

microwave circuit.  

A possible solution is to recognise that the coupling of the probe to the circuit is 

essentially capacitive and “quasi-static”. As such, the critical coupling factor can be 

measured at any convenient frequency, which can for example be much lower than 

the operational frequency of the circuit under test. In particular, a sufficiently low 

calibration frequency can be chosen such that the spatial variation of the voltage in 

the region of the probe target, is massively reduced and can be measured 

conveniently.  

The intended low frequency measurements for the in-situ calibration of the EFP 

will require the use of the initial MMIC amplified probe, as seen in the beginning of 

Chapter 5. The improved MMIC amplifier designed later in that chapter provided 

much improvement in the frequency response, extending the flat response to a 

higher frequency.  However, the addition of the input shunt resistor resulted in a 

sharp roll-off at extremely low frequencies <10MHz. For the measurement of the 

high frequency devices, this trade-off was considered negligible. However, for low 

frequency calibration, this probe was not practical and therefore the probe 

designed initially in Chapter 5 will be utilised. 

 

The broadband frequency response of the MMIC EFP is shown below in figure 9.1. 
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Figure 9.1: Frequency response of MMIC probe to be utilised for the 1MHz calibration. 

Showing a flat response at very low frequencies to 8GHz, where the response 

indicated within the dotted box is a result of parasitic components of the amplifier 

and not the design of the probe.  

 

The frequency calibration of the EFP shows the nominally flat response extends to 

low frequencies <1MHz, thus reiterating the suitability for low-frequency 

calibration. At higher frequencies the response of the EFP is no longer flat beyond 

the resonance as parasitic components begin to dominate; this is indicated by the 

dotted box. These parasitic components have been shown, in section 5.3.2, to be a 

function of the MMIC amplifier and not a result of the EDM EFP design, and in 

particular the spacing from the DUT.  

9.1.1. Low frequency analysis 

The frequency calibration of the EFP has shown its suitability to be utilised at very 

low frequencies. The necessity of this result will be shown in this section for the 

novel 1MHz in-situ calibration. The calibration method will require the 

measurement and comparison of a DUT at two alternative frequencies, 2.1GHz and 

1MHz. A microwave circuit excited at very low frequencies will exhibit an even 

distribution of voltage across the whole device. Therefore a voltage measured on 

the feed lines of a transistor will be similar to the voltage measured at the device 

bonding pads. Using a high impedance oscilloscope probe, direct measurement of 

the voltage at a given point can be compared to the output of the EFP. The scope 

used for direct measurement of the DUT was a 350MHz-5GS/s Tektronix, 

TDS5032B Digital Phosphor Oscilloscope (DPO). 
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Thus a 2-step calibration procedure can be described: (1) the frequency response 

can be measured as a relative function using any convenient structure, such as a 

microstrip line. (2) With the probe in position to make a measurement in the target 

structure under test, the target is “illuminated” by a known low frequency signal 

(e.g. 1MHz). This allows absolute calibration of the actual microwave frequency 

measurement, along with a suitable frequency correction obtained in the first step 

(1).  

Initial analysis of the EFP considered a simple capacitive coupling model. In order 

to investigate the validity of this model, the spatial resolution of the EFP must be 

evaluated at low frequencies. The spatial resolution of the EFP can potentially be 

compromised due to the change in the penetration of electric field through the wall 

of the thin co-axial line; the skin depth for copper at 1MHz is approximately 30 

microns which is not much lower than the wall thickness of the EDM tube.  

Experimental analysis can however eliminate this concern, as shown in figure 9.2, 

where the bondwire array of the drain side of the DUT has been scanned at 2.1GHz, 

10MHz, and 1MHz. The DUT used for the 1MHz calibration is a 10W 3.5GHz GaAs 

pHEMT FET, mounted on a simple test fixture with a pre-designed matching 

network (part number: MRFG35010). Biased at  𝑉𝑑𝑠 = 12𝑉 and 𝑉𝑔𝑠 = −0.9𝑉. 
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(a) 

 

(b) 

Figure 9.2 (a) Shows the structure of the 10W GaAs transistor under investigation, 

de-lidded for device plane analysis. (b) Shows the resultant spatial resolution scans of 

the drain side bondwire array, conducted at different frequencies 2.1GHz, 10MHz and 

1MHz, respectively; where the decrease in frequency has no effect on the spatial 

resolution of the EFP. 

 

From the figure above it can be concluded that no degradation of resolution occurs 

with the decrease of excitation frequency. Anomalous differences present in 

measured peak values of the relative voltage, are solely due to the planarity issues 

existing in the bondwires of the GaAs device. As mentioned previously, the probe 

output is a function of its local geometry, thus the highly sensitive EFP subjected to 
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changes in the curvature and bondwire height, will exhibit a proportional variance 

in its output. 

 

9.1.2. RF input and output characteristics of the 10W GaAs device 

The device shown in figure 9.2(a) depicts the GaAs transistor once the ceramic 

casing had been removed. Prior to the removal, the RF Pin/Pout sweeps were 

conducted and compared to the de-lidded sweeps. The resulting comparison is 

found to be negligible and shown in figure 9.3. 

 

 

 

 

Figure 9.3: RF input and output characteristic at 2.1GHz of the 10W GaAs device with 

increased input power before and after the removal of the ceramic casing, showing 

negligible impact on the device performance. 

 

9.1.3. Measurement setup 

In order to meet the objective, stated in section 9.1.1 of a two-step in-situ 

calibration technique, the resultant measurement must be conducted with a 

constant measurement plane as the injected excitation is interchanged between 

2.1GHz and 1MHz. During this time, waveform information from the output of the 

EFP, at a constant position, is captured by a DSO at both frequencies. Direct 

measurement of the voltage at 1MHz can be obtained with a high impedance 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

10

20

30

40

50

60

Input Power (dBm)

O
u
tp

u
t 

P
o
w

e
r 

(d
B

m
) 

a
n
d
 E

ff
ic

ie
n
c
y
 (

%
)

 

 

Lidded Pout

De-lidded Pout

Lidded Efficiency

De-lidded Efficiency



 
 

207 
 

oscilloscope probe, resulting in a calculated scaling factor for the 1MHz waveform. 

This scaling factor can then be applied to successive EFP measurements at 2.1GHz. 

 

For a successful interchange of excitation, two separate sources are used for the 

supply of 2.1GHz and 1MHz, this procedure insures the equivalent positioning of 

the EFP. Figure 9.4 shows a block diagram for the measurement setup, 2.1GHz and 

1MHz.  The measurements obtained at 1MHz required the increase of the gate 

voltage to the pinch-off level, thus insuring no current to be drawn (𝑉𝑔𝑠 is increased 

from -0.9V to -1.5V). 

 

Figure 9.5: Block diagram of the measurement setup required for the 1MHz and 

2.1GHz measurement; where green arrow indicates the direction of flow, while red 

arrows represents the blocking of flow.  

 

9.1.4. Experimental results 

Utilising the experimental setup shown in the previous section, the waveform 

information is captured by the EFP at 2.1GHz and 1MHz. Using a DPO with a probe 

attachment, the direct contact is made on the microstrip line leading to the GaAs 

device at 1MHz. From this captured waveform, a suitable scaling factor can be 

achieved for the EFP measurement at 1MHz. This scaling factor is found to be 615. 

Figure 9.5 shows the resultant waveform measurements obtained from the DPO 

and the scaled up waveform measured from the EFP, both at 1MHz. 
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Figure 9.5: Superimposed waveforms measured at 1MHz from contact measurement 

of DPO and the scaled EFP measurement. 

 

The calculated scaling factor is applied to the waveform measurements obtained 

by the EFP for a power sweep of 0-9dBm at 2.1GHz, the results are shown in figure 

9.6. 
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(a) 

 

(b) 

 

Figure 9.6:  Power sweep of 0-9dBm conducted at the frequency 2.1GHz, where the 

EFP output has been accordingly scaled by the calculated factor of 615; represented 

in (a) 3D and (b) 2D format. Note probe is AC coupled, the actual Vdc value of 12V.  
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9.2. Conclusion 

This chapter has successfully introduced and employed a novel in-situ calibration 

technique for a high resolution EFP. By exploiting the low frequency response of a 

system, whereby at such frequencies, even the most complicated structures behave 

in a much simpler manner. This resulted in an equal voltage distribution across all 

parts of the device.  Due to the resolution capability and flat low frequency 

response of the EFP, it has been demonstrated that its spatial resolution is 

independent of the measuring frequency. With a suitable scaling factor obtained 

from the ‘known’ voltage measurement, absolute calibration can be determined 

and applied.    

It should be noted that this novel method of in-situ calibration was designed and 

implemented at the latest stage of the research presented within this thesis. 

Unfortunately due to time constraints, this calibration method was not applied to 

measurements shown in previous chapters. However, this method can be executed 

as an initial procedure in all future works of the EFP.  
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10. DISCUSSION  

10.1. Design methodology of the EFP 

Initial work presented required the construction and evolution of the EFP. 

Although a method utilised for decades for the measurement of electric field [13, 

14, 16, 17, 18] referenced work can be regarded as incomplete. Spatial resolution 

of the EFP is a common goal throughout the literature, with many understanding 

that miniaturisation of the probe can achieve this result. However, the 

disadvantage of this miniaturisation is the loss in the measured output voltage of 

the probe. Commonly it has been seen that this particular disadvantage is resolved 

by the addition of a monopole protrusion of the inner conductor [14, 16, 19, 24]. 

Full consideration of this design methodology has not been thoroughly 

investigated and the detrimental effect the protrusion has on the spatial resolution 

is not understood. This thesis has intensely examined the effects of a protruding 

inner conductor, showing that an increase has a positive effect on the output 

voltage while providing an extremely negative effect on the spatial resolution. A 

protruding inner conductor greater than 0.05mm, has been shown to significantly 

reduce the spatial resolution when compared to a flush cut EFP. Literature has 

commonly presented inner conductor protrusions varying from 0.3mm [19], 1mm 

[24] to 5mm [16]. 

Increasing the inner conductor protrusion proportionally increases the output 

voltage of the probe, this is due to the increase in coupling between the EFP tip and 

the DUT. This increase in coupling is a result of an overall increase in effective 

probe tip surface area i.e. hypothetically larger probe; which ultimately results in 
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an increase of non-parallel e-field coupling and simultaneous coupling. Hence, the 

increase in probe output and a decrease in the spatial resolution.  

For this reason the novel design of a buffer amplifier, placed close to the probe tip, 

is a more favourable method for signal amplification than probe tip protrusion. 

 

10.2. Continuity of the measurement plane and the resulting output 

Throughout this thesis, comprehensive investigation with regards to the EFP and 

the resulting measurement plane have been conducted.  It has been well 

documented that the output of the probe is extremely sensitive to the local 

geometry of the DUT and the separation between probe tip and DUT. Questions 

concerning alteration in the measurement plane may exist with results presented 

within chapters 7 and 8, where in certain scenarios the device plane voltages 

differed by up to twice the minimum measurement. Differences in the peak values 

existed along the device periphery and between the adjacent main and peaking 

devices.  However, the results shown in section 4.1.5 clearly indicate an increase of 

up to 100μm is required to achieve a difference of measured 𝑉𝑝𝑝 to decay by half. 

Such a substantial difference would be notable by the microscopic system used for 

precise positioning of the EFP. A simple experiment to disregard questions 

concerning the measurement plane requires an in-situ movement of the EFP. In the 

region where the measured peak voltage is at its maximum, the EFP can be backed-

off gradually in order to achieve the half-point decay, the final change in the 

measurement plane is noticeably obvious through the microscopic equipment.  

Therefore it is believed that the results presented within chapters 7 and 8 are true 

representations of the device plane variation and not a result of measurement 

plane variation. 

 

10.3. Response of true voltage 

Waveform measurements presented in this thesis have undergone an intentional 

inversion before the process of Fourier analysis. The necessity of the inversion was 

discovered through a form of waveform calibration. By constructing a waveform 

with a distinct polarity, comparisons could be made with the EFP output and direct 

measurement of the signal generator (required for the excitation).  This excitation, 

with a distinct waveform, was injected through a terminated section of 
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transmission line and subsequently measured. Results presented in section 6.1.3 

showed the EFP has the capability of measuring a true representation of the DUT 

voltage. Further confirmation was presented within chapters 7 and 8 by the 

measurement of Doherty drain voltage characteristic.  Placing the EFP directly 

over the drain manifold, the resulting response is a true representation of the 

drain voltages. During these measurements, the input drive is increased in single 

increments, where if the EFP was purely responding to this increase, the output 

would yield a linear proportional increase. However, with consideration of the 

main device, clear and evident saturation is recorded with the activation of the 

peaking device, therefore reinforcing that the EFP has the capability of directly 

measuring the DUT voltage. 

 

10.4. Calibration  

Chapter 2 discussed previous literature available regarding the EFP, where it has 

been commonly seen that absolute calibration poses great difficulty. Absolute 

calibration of the EFP within this work was presented in the final chapters, 

however due to time constraints the technique was never fully employed before 

the measurements shown in previous chapters. The data presented within chapter 

9 provided the technique and theory behind the process, and successfully showed 

that a suitable scaling factor can be determined and applied to the output of the 

EFP, for actual representation of device plane voltage.  

Without the employment of the calibration technique on passive and active 

measurements, the validity of the EFP output can be questioned. Before the design 

of the 1MHz technique, all prior measurements were performed on the ‘relative’ 

assumption. With this basis, the information presented can provide valuable 

insight to the functionality of the devices measured.  

The calibration technique presented is an extremely novel method, it has been well 

documented that the EFP is very sensitive to the local geometry of the DUT, 

therefore requires a form of calibration applicable for all intended measurements. 

Thus the calibration technique can be applied as and when the probing target is 

altered. Previous methods of published calibration, although valid in its own right, 

can be questioned by the relevance of the intended measurement. Methods have 

included the measurement and comparison of a known entity such as a microstrip 
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line [23, 24] and shielded current carrying conductor [13]. However if the intended 

purpose of the probe is to characterise complex high power structures, then 

questions can arise to the applicability of these techniques. The response of the 

probe changes significantly depending on the DUT target, therefore calibrated 

measurements over a microstrip line cannot be compared to measurements of an 

active bondwire array.  

Supplementary forms of calibration have been provided throughout this thesis, 

mainly as form of EFP characterisation and verification of the measured results. 

Measurements shown in section 6.1.3 can be regarded as a form of absolute 

calibration, as the EFP output is suitably compared to a ‘known’ target. Although 

the results presented show that the EFP has the ability to measure an inverted and 

scaled output, this technique is regarded as a verification method confirming the 

capability of the probe. Measurements conducted for this verification are required 

over a section of microstrip line, therefore the suitable scaling factor calculated, 

would only be applicable for similar circumstances and cannot be considered as a 

form of absolute calibration.   
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11. CONCLUSIONS AND FUTURE WORKS 

11.1. Conclusions 

Internal waveform information of high power transistors, within an operating 

amplifier system, has been a somewhat mysterious entity. EM simulation up to 

now has provided the most accurate interpretation of expected behaviour, but 

with no experimental verification, the simulators have only provided a guideline 

for these expectations [38]. Alternative methods including such as load-pull 

systems have successfully measured device plane waveforms, but usually at low 

power levels and not in actual working amplifiers [2, 3, 5]. However, the work 

presented in this thesis has successfully shown the design and implementation of a 

high-resolution EFP highlighting the true operating complexities of a high power 

transistor.  

 

This thesis has been primarily split into two main sections; the evolution of the 

high-resolution EFP and its implementation as a diagnostic tool capable of 

characterising simple passive structures and highly complex active devices. 

Chapter 2 discussed the theoretical expectation and functionality of the EFP, where 

it was first introduced that the resulting probe will essentially be capacitive. The 

EFP can ‘connect’ to the DUT due to the capacitive coupling between the inner 

conductor of the probe and the surface of the DUT. Due to the miniaturised size of 

the probe tip, the effective coupling that occurs is very low, thus requiring 

amplification. The small capacitance therefore represents a very high impedance, 

allowing the outer conductor of the probe to be considered as a virtual ground.  
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The introduction of buffer amplifier (required to combat low output voltages) 

close to the probe tip provides a series gate to source capacitance to the effective 

coupling present in the air gap between the probe tip and DUT, thus the system can 

be considered as a capacitive divider. This results in a frequency independent 

measure of the voltage across the gate to source of the buffer amplifier, a highly 

desirable feature of the novel EFP design.  

Chapter 3 presented initial EFP analysis, highlighting the key factors effecting the 

resultant resolution and output of the measurement system. The construction of 

EFP3 showed the resulting resolution was a function of both the inner and outer 

diameters of the EFP. A reduction in both these dimensions will ultimately improve 

the resolution presented, however at the expense of the probe output. The loss in 

this output can be compensated for with the introduction of an intentional 

resonance. Signal improvement of up to 15dB have been shown, however this 

increase in the response had no positive implication on the resultant resolution. 

The REFP proved an extremely fragile design, very susceptible to damage due to its 

long and thin nature.  

It has been well documented that increasing the level of miniaturisation of the EFP 

will cause less of a disturbance to the measuring field [23]. The probes presented 

within chapter 2 contained the largest EFP design within this thesis, subsequent 

analysis of the 𝑆11 parameter showed no negative effect by the probes presence. 

Therefore, systematic reduction in the dimensions of the probe shown in chapters 

3 and 4 will ultimately reduce further potential disturbances.  

Significant advancement in the EFP design was presented within chapter 4 by the 

incorporation of thin copper tubes for construction of custom made miniature 

coaxial cables. Drastic reduction in the outer diameter of the EFP by a uniform and 

rigid entity, allowed for improvements in spatial resolution and the resultant 

output of the probe, which vastly improved the results obtained by EFP3.  Clear 

resolution of passive bondwire array structures were presented of the order of 

100μm. Construction of the REFP was again investigated, with identical materials 

used for the fabrication of the EDM EFP, providing a much needed amplification in 

the output of the probe.  Intentional design of a dominating resonance in the 

response of the probe, signal pick-up increased in the order of 15dB.  Although the 

amplification of the output signal is highly desirable feature, two major 

disadvantages would compromise this result.  The increase in the probe line length 
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further underlined the fragility and difficulty for construction, while the 

intentional resonance limited the EFP to a specific measuring frequency range. 

Results present within chapter 4 of the REFP showed no significant improvement 

in the resolution with the improved output, therefore the non-resonating EFP was 

considered a more favourable design.  

Initial alleviation of low output required the incorporation of a low-noise SOT 

transistor package at the probe tip, however frequency calibration concluded only 

a flat response up to 4GHz. For the measurement of high power transistors within 

a PA system, the flat response must be extended to a much higher frequency.  This 

led to the design and construction of an alternative amplifier in the form of a low-

noise MMIC pHEMT transistor. Frequency calibration of the newly constructed 

MMIC EDM EFP showed substantial improvement in the resulting response, where 

the frequency response remained nominally flat up to 8GHz. However, with no 

additional reduction in the EFP dimensions, no further improvements were made 

with regards to the spatial resolution. Resolution of the 50μm structure presented 

within chapter 5, with many attempts made, could unfortunately not be recreated, 

therefore must be disregarded.  

Chapters 3-5 show the design, construction and evolution of the EFP system 

successfully displaying a resolution of better than 100μm. The remaining sections 

of the work presented within this thesis implemented the EFP for the diagnostics 

of high power transistors within an operational PA system.  

Initial work presented, within chapter 6, were conducted on a more simple system, 

containing one high power transistor. The removal of the device’s protective 

ceramic casing allowed for internal in-situ measurements to be conducted. 

Transverse movement of the EFP, for a constant measurement plane, displayed 

anomalous distribution of the measured voltage. Theoretical behaviour would 

expect an even distribution in both waveform and relative voltage distribution, 

therefore the measured result is an unexpected characteristic of the high power 

device. Alternative methods of device characterisation relies on the simplification 

of the high power device; assumption that the complex and distributed device is 

merely a three terminal device. Such over simplification can blind designers to the 

extent of complexity present and result in reliability problems in the finalised 

system.  
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Measurements conducted on two nominally identical devices, placed 

independently within the HPA, contained differential waveform behaviour 

occurring in a specific region along the device. Further inspection of this region 

concluded a damaged and broken bondwire, where the differential behaviour was 

not evident in the output characteristics, therefore its consequence cannot be fully 

known if alternative methods of device diagnostics were used.   

Chapter 7 and 8 presented the analysis of much more complicated structures 

containing two sub-amplifiers within their system. Due to the size, resolution and 

flexibility in positioning, the EFP was capable of measurements directly above the 

drain manifold within the active bondwire array. Such measurements allowed for 

direct, highly accurate and informative representation of the drain voltages within 

the DPA. Extraction of the fundamental component showed clear Doherty 

behaviour, whereby the sudden activation of the peaking device provided the 

sufficient contribution to maintain and saturate the main device’s voltage. 

However, this clear depiction presented differences in the peak voltages, 

consistent in both the DPA and A-DPA measurements. Measurements conducted 

along the main and peaking devices showed that this difference was due to the 

substantial variation along the device periphery. The point of comparison chosen 

would therefore dictate the extent of the difference measured.  

The variation measured at the device plane by the EFP was not visible in the 

output characteristics of the DPA or the A-DPA, if these variations led to potential 

reliability problems they would go undetected. 

 

Measurements conducted within this thesis have consistently shown the 

application of the EFP as a diagnostic tool for the characterisation of complex 

devices. The ability to conduct in-situ on-chip measurements for time-domain 

analysis has given a valuable and alternative insight to the functionality of the 

device. Anomalous behaviour measured within the device package was not present 

in the output characteristics of the amplifier systems, thus highlighting the 

importance of a diagnostic tool capable of making such measurements. 

The final chapter displayed a novel in-situ calibration method for the EFP, capable 

of being utilised before diagnostic measurements. By exploiting the low frequency 

response of a system, a 1MHz excitation can be used for the comparison of the EFP 

output to that of a contacted high impedance oscilloscope probe. A low frequency 
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excitation results in an even voltage distribution across all entities of the device, 

therefore a suitable scaling factor can be calculated and applied to further EFP 

measurements. This calibration method can be applied to every measurement as 

the DUT changes, thus making the calibration relevant and unique to each 

measurement. However, due to time constraints, this calibration method was not 

employed before the RFPA measurements. The delayed method for absolute 

calibration does not however disprove the results presented thus far, as they have 

been conducted on a relative manner. A relative measurement of such sorts 

provides valuable information not capable by other field methods.  

 

11.2. Future works 

The work presented within this thesis can be continued in various directions. 

Firstly, all further measurements would be conducted using the 1MHz calibration 

method, thus ensuring a fully calibrated measurement.   

Improvements to the system can include: 

 Calibration of the measurement plane. For situations where the low 

frequency in-situ calibration (mentioned in chapter 9) cannot be applied, an 

alternative technique for the determination of the measurement plane 

separation must be considered. This can be achieved simply through visual 

verification by improving the optical microscope system utilised. 

Improvements can include: higher magnification and the use of an optical 

microscope capable of measuring specific positioning.   

 The measurements within this thesis have been conducted with only one 

automated axis. The incorporation of an additional automated stage can 

allow for full 3-dimensional scans of the DUT. 

 Initial work has shown substantial improvement in the spatial resolution of 

the EFP can be made with systematic reduction in the probe dimensions. 

Further miniaturisation of the probe, with alternative materials, will 

improve beyond the current range and enable the system to probe 

interstage behaviour in multifunction RFICs. 

 Further miniaturisation will ultimately lead to a loss in the output of the 

probe, therefore further improvements must be considered in the MMIC 

amplifier used. Incorporation of a two-stage amplifier can increase the 
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output and frequency response to a theoretical 19GHz. Such a design was in 

consideration for this thesis but due to time constraints it was never 

implemented. Primary design of the 2-stage MMIC amplifier is shown in 

figure 11.1, where the bias to the 2nd stage is provided through the addition 

of a feedback resistance. 

 For the measurements of the amplifier system with two active devices to be 

investigated, for example a DPA, a system with two EFPs can be developed 

for simultaneous measurements of the main and peaking device. 

 With all improvements thus far considered a permanent test bench can be 

developed for the measurement of hardware provided by external 

customers. 

 Incorporation of EFP system and load-pull systems. A collaboration of the 

two methods can display any errors within the respective measurement 

technique and provide an absolute method of characterisation and 

diagnostic. [20] 

 Final consideration includes the development of a current probe with 

similar dimensions, resolution and technologies. The measurement of 

device plane voltages, although a valuable measurement, only provides 

limited information about the system. Specifically for the measurement of 

high power amplifiers, the construction of a current probe will allow for the 

device plane drain current to be fully investigated. 
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Figure 11.1: Circuit diagram of the simulation conducted for the design of the 2-stage MMIC die.  Tuned for an optimal flat frequency response 

beyond 19GHz.
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13. APPENDIX 1 

 

 

 

 

 

Abstract—A new type of high resolution E-field 

microscope system is described. The system is based on 

a novel design of an active E-field probe (EFP) probe, 

which is both non-intrusive and displays high spatial 

resolution. This paper focuses on the construction and 

spatial resolution of the probe, which shows significant 

evolution from that previously reported [1], and some 

measurements on passive structures which indicate 

that features smaller than 100 microns can be 

individually resolved. The probe construction lends 

itself to further improvements in spatial resolution. 

Measurement results are presented which demonstrate 

the high resolution of the probe, and its potential 

utility in measuring waveforms with high spatial 

resolution at individual points on microwave circuits, 

discrete devices, and integrated circuits.  

 

 

 

INTRODUCTION 

ITH the development of ever increasingly 

sophisticated high frequency systems, it vital to 

have an understanding of each component and their 

interactions.  With the aid of electromagnetic simulation 

software, designers have been able to reduce the number 

of prototype systems produced, as errors and design flaws 

can usually be flagged before fabrication. However this 

does method does not pinpoint all potential errors. The 

development of a non-intrusive E-field microscope system 

has proved to be vital as a method of evaluating the field 

distribution at a device plane, as each component may not 

perform in the expected manner in real life application. 

 

This paper describes the design and fabrication of an E-

field probe (EFP), and its in-situ applications. The design 
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of the EFP, is a development of a probe described in [1], 

and is constructed using an open-ended co-axial 

transmission line which can respond to local normal 

electric fields with a spatial resolution of about 100 

microns. 

From previous papers [1], knowing that the probed 

signal is small and the unwanted presence of stray signal 

pick-up problematic, the design of the EFP includes an 

amplifier close to the probe tip. This feature evidently 

amplifies the small signal but also eliminate the stray 

pickup from the feeder cable. 

 

PROBE CONSTRUCTION 

The basis of the EFP is an open-ended co-axial 

transmission line, which can be shown to have an 

increasingly sharp radiation pattern as the inner conductor 

is retracted inside the outer sleeve [2]. The use of such a 

retracted configuration is an important novel feature of the 

probe design, and differentiates it from previously 

published work in this area [2].  

Conventional EM thinking, backed up by simulations 

[3], suggests that the spatial resolution of such a probe 

will be limited to the diameter of the inner conductor.  On 

this basis, the spatial resolution can be improved 

indefinitely by using thinner co-ax. But a practical 

limitation becomes evident; as the capture area of the 

probe is reduced, the amount of coupling also reduces, 

and the desired signal soon becomes indistinguishable 

from the stray pickup on the co-axial leads. In previous 

literature [4], the EFP is coupled to a resonant 

transmission line in order to counteract this problem and 

to achieve a high spatial resolution with thinner inner 

conductor. 

This problem is exacerbated by the high reflection 

presented by the probe to the 50 Ohm co-axial 

measurement system.  Both of these problems can be 

greatly alleviated by the use of a buffer amplifier located 

close to the probe tip, and this is the second novel feature 

we describe in this paper.  

 

 

 
 
              Fig. 1.  Schematic diagram of E-field 
probe. 

 

Such a configuration requires some innovative 

construction techniques, which have been substantially 

improved since the basic design was initially reported [1]. 

The construction of the present probe is shown in Figure 

1. A small brass ferrule is machined to take a small 

diameter semi-rigid cable (1mm dia. approx.) at one end, 

and a conventional .085 semi-rigid feed cable at the other. 

Inside the ferrule there is just sufficient space to emplace 

an SOT packaged, small signal PHEMT transistor (Avago 

ATF34143). The ferrule has a tight fitting cover (shown 

removed in Figure 2).  Although useful results can be 

obtained by simply flush-cutting the end of the protruding 

1mm cable, much higher resolution can be obtained by 

removing the original inner conductor and replacing it 

with a much thinner piece of enameled copper wire. The 

actual probe then comprises the short protrusion of the 

wire beyond the semi-rigid cable, and this is transformed 

into a very thin co-axial line by coating it with conductive 

silver paint. The wire diameter for the present set of 

reported measurements was 100 microns (.004 inch).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Picture of the ferrule with the cover removed. 

 

MEASUREMENTS. 

Figure 3 shows a 3-D view of a typical test structure 

that is being used to demonstrate the probe’s spatial 

resolution. It consists of a microstrip line which has an 

end termination consisting of a fan of multiple 20 

micron ground bonds. Various structures were 

measured, having different bondwire counts and 

different spacings.  Figure 4 shows the measured spatial 

response as the probe is moved transversely along the 

bond wires shown in Figure 3. We measure a dc voltage 

proportional to the power picked up by the probe, 

which is itself proportional to the square of the local 

electric field generated at the probe’s tip 
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Fig.3.  Plan and side view of a 7 bond test structure. 

 

 

 
 

Fig. 4.  Voltage distribution transversely along the 7 bond structure 

shown in Fig 3 Shown in the order, Probe 1, Probe 2 and Probe 3. Probe 

inner conductor diameters: Probe 1 : 0.007 inch. Probe 2: 0.005 inch. 

Probe 3:0.004 inch (wire probe) 

 
  In previous work [1] we have presented evidence that 

this probe geometry responds only to the electric field, 

and almost entirely to the vertical component of the local 

electric field at the measurement tip; this in turn bears a 

close physical relationship with the voltage on the wires.  

Figure 4 shows the same measurement using three 

different probe inner diameters. It is interesting to note 

that the thinnest available semi-rigid cable has an inner 

conductor diameter of .005”, which is only slightly larger 

than the wire probe, yet the wire probe clearly has 

substantially higher spatial resolution.  

 

Figure 5 shows a measurement taken along a more 

extensive bondwire structure, having 19 bondwires and 

closer spacing. Figure 6 shows the 3-D view of the 19 

bondwire structure. It is clear that the magnitude of the 

field peaks are very sensitive to the planarity of the 

bondwires, but there is a clear overall trend visible, 

whereby the field has a smooth maximum at the center of 

the structure and a substantial roll off towards the edges. 

This is in apparent disagreement with a 3-D EM 

simulation shown in Figure 7, although the full 

consequences of this comparison are still under 

evaluation.  

The magnitude of the field peaks is not just dependent 

on the planarity but to the curvature of each individual 

bondwire. Imperfections in the fabrication stage leaves 

slight variations in the curvature and may ultimately 

contribute in the overall trend which has been observed.  

 

 

 
Fig. 5.  Voltage distribution transversely along a 19 bond 

structure. 
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Fig. 6.  Plan and side view of a 19 bond test structure. 

 
Fig. 7.  EM simulation of 19 bond structure. 

 

 

CONCLUSION 

In conclusion, we have built and demonstrated a novel 

E-Field microscope system which has a spatial resolution 

of better than 100 microns. We believe substantial further 

improvements can be made to the resolution, for example 

enabling voltages within RFICs to be probed directly. We 

are also pursuing applications where the device plane 

voltages and currents in working PAs (as opposed to 

devices in load pull systems) can be measured directly. 

One specific goal in this area is an investigation of device 

voltages, and potential reliability issues resulting 

therefore, in high power Doherty PAs. 
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14. APPENDIX 2 

An Improved Electric Field Probe with Applications in High 

Efficiency PA Design and Diagnostics. 
 

Abstract — An Electric Field Probe is described, which 
has substantially improved bandwidth and spatial resolution 
compared to previously reported work [1].  Calibration tests 

on the reported probe shows a flat amplitude and phase 
response up to 6GHz. A novel calibration technique is 
described, which has enabled direct observation of device 

plane voltages in high power RFPAs. Results show evidence 
of various anomalous effects, including variation of voltage 
across the periphery of high power RF devices. 

Index Terms — High power amplifiers, microwave 
measurements, microwave imaging, microwave transistors. 

 INTRODUCTION 

This paper describes a non-intrusive, non-contacting 

high electric field (“E-field”) probing system which has 

much improved frequency and resolution performance 

over that described in previously published literature [1-

4]. The current design evolution is shown to display better 

than 100 micron spatial resolution, with a clear path to 

further improvement through dimensional reduction. Flat 

frequency performance, in both amplitude and phase, are 

demonstrated up to 6GHz, with potential for extension 

well beyond 19GHz. These improvements have been 

obtained through the novel use of fine geometry 

components and a customized RFIC probe head amplifier. 

The probe has been used to make both spatial and power-

swept scans on high power LDMOS transistors operating 

in high efficiency amplifiers.   

PROBE DESIGN AND CONSTRUCTION 

Fig.1 shows a schematic diagram of the probe. It 

consists of a short length of co-axial line, constructed 

using a short length of fine diameter copper tube, threaded 

internally by an enameled copper wire. The actual pickup 

structure is a very short monopole and it will be shown in 

this paper that the length of the monopole protrusion has 

to be carefully controlled in order to obtain optimum 

spatial resolution.  It is observed that the monopole 

“protrusion” needs to be very short, or even slightly 

retracted into the outer sleeve, but this greatly reduces the 

magnitude of the pickup. There comes a point where the 

probe pickup signal becomes comparable to the “stray” 

pickup that will inevitably occur on the outer conductor. 

 

 

 

 
 

 

 

 

 

Fig. 1.  Schematic diagram of e-field probe. 

It is therefore essential that an amplifier is placed as 

close as possible to the probe pickup point in order to 

amplify the desired signal; the construction in effect 

places the amplifying device in a Faraday cage which 

greatly improves the dynamic range for this reason. In this 

reported work, the probe head amplifier was a common 

source PHEMT. This was originally implemented using 

an SOT-packaged device but this gave a poor frequency 

and phase response above 3GHz. The present RFIC 

implementation has greatly improved the frequency 
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performance. The RFIC design provides a low parasitic 

interface with the probing structure, allows for optimum 

biasing of the active device, and enables an optimum 

device periphery to be selected. Fig.2 shows a photograph 

of the probe head amplifier casing, with the probe 

structure itself emerging on the left hand side, and the 50 

Ohm cable output on the right. This casing would have a 

close-fitting cover in normal use. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Picture of the probe casing with cover removed. 

PROBE CALIBRATION 

A. Frequency Calibration 

It has been established that the relative frequency 

response of this probe is quite insensitive to the local 

geometry of the probe target area, or to the precise 

spacing between the probe and the target. As such, 

frequency sweeps are measured using the probe placed 

above a section of matched 50 Ohm microstrip line. 

Theoretical simulation of the probe predicts a flat 

response, but with a resonance whose frequency is mainly 

a function of the length of the probe line. Fig. 3 shows 

four frequency scans for different lengths of probe line, 

showing the shift in resonance, and different monopole 

protrusion lengths, showing different coupling factors. 

Several previous workers [1, 3] have shown that such a 

probe will respond almost entirely to the E-field parallel 

to the monopole. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.  Frequency Response of four MMIC probes. Probe A and 
B have a probe line of 9mm and a monopole protrusion of 
0.025mm and 0.10mm; Probe C and D have a probe line of 5mm 
and a monopole protrusion of 0.07mm and 0.13mm, 
respectively. 

B. Spatial Resolution 

Fig. 4 shows a test pattern that has been used to 

measure the spatial resolution of the probes. It is a set of 

parallel 25 micron fingers, deposited on a 10mil alumina 

substrate. For the present generation of probe dimensions, 

a finger spacing of 100 microns (4 mil) was used.   

 

 

 

 

 

 

Fig. 4.  Resolution test substrate with 25 micron fingers, 100 
micron spacing. 

Fig. 5 shows the result of scanning this structure with 

two probes, each having a different length of monopole 

protrusion; clearly the probe with the shorter (almost 

flush) protrusion shows substantially better resolution, but 

at the expense of lower output.  

 

 

 

 

 

 

 

 

Fig. 5.  Automated scan along the test substrate using Probe A 
and Probe B.  

The probe was then used to scan a 50W 2GHz Doherty 
power amplifier. The scan was taken over the gate region 
of an LDMOS device, where the enclosing lid has been 
removed, exposing the bondwires. Fig. 6 shows this 
region and the resulting measured voltage. The probe is 
able to depict the position and placing of the bondwires, 
showing the deformity of two that are closer together, 
highlighted in red.   
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Fig. 6.  Automated scan along the gate-side bondwires of an 
operating 50W 2GHz Doherty power amplifier.  

 

C. Amplitude Calibration  

It should be noted that useful and informative 

observations on high power active devices can be taken 

using relative readings from a fixed probe position (e.g. as 

shown in Figs. 7 and 9). Absolute calibration of this kind 

of E-field probe poses some difficulties. The pickup signal 

is highly sensitive to the spacing and local geometry of the 

probing target and the pickup itself is proportional to the 

vertical electric field component, rather than the voltage to 

ground.  In this work we have followed a calibration 

philosophy whereby either “known” voltage, and/or 

known features of the waveform such as mean, peak and 

minimum levels, are used to give direct in situ calibrations 

with a particular probe position setting.  

For example, Fig.7 shows a set of probed waveforms 

taken on a high power LDMOS drain at a constant RF 

drive level but with decreasing supply voltage. Given that 

these traces all represent the device in hard compression, 

it is a reasonable assumption that the successive minima 

represent conditions where the device voltages are close to 

the knee, or turn-on value, which is a known and 

measureable characteristic of the device (3.5v  0.5v) 

volts in this case. Hence, along with the mean level which 

can be set to the DC supply value, a workable in situ 

voltage calibration can be obtained.  This is the calibration 

technique used to define the voltage scale in the HPA 

waveform measurements presented in section IV (Fig.8). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Probe voltage waveforms, at constant RF, with uniform 
decrease of supply voltage over a 1ns sweep; traces have been 
lined up at the device knee point. 

HIGH POWER PA (HPA) MEASUREMENTS 

This section presents some results obtained using the 

described E-field probe to display the device plane 

voltages of a twin-die high power (200W) LDMOS device 

in a fully operational high efficiency PA module. For 

these measurements, the active device was de-lidded, and 

the probe was place very close to the on-chip drain metal 

manifold. Fig.8 shows a series of voltage waveforms in 

the center of one of the die, for drive power levels that 

took the device into compression.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.  Voltage waveforms for the LDMOS device as the power 
level is increased, for two different frequencies (individual 
waveforms have been displaced horizontally for clarity). 

     The two sets of waveforms in Fig.8 represent the same 

test taken at two different frequencies: the larger 

amplitude set (in red) was taken at the designed mid-band 

frequency, 2.05GHz, the lower amplitude set (the black) 

was taken at a frequency slightly past the upper band 

edge, 2.15GHz. Clearly, it can be seen that the impedance 

match at the band edge has dropped to a low value, so that 

the voltage never reaches the clipping level. Such 

information is of great value to the circuit designer. Fig. 9 

shows a spatial scan taken across the two die that 

comprise the complete packaged device; this scan was 

performed at a drive level close to the saturation level and 

shows one cycle of the waveform. Fig. 10 shows the same 

scan for a nominally identical but different device. Two 

highly significant observations can be made from these 

plots: in Fig. 9 there is clearly some differential behavior 

between the two separate die, and in Fig. 10 there is a 

well-defined discontinuity in the voltage at one point on 
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one die. Close inspection of the device at this point 

revealed a damaged bondwire.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9.  Lateral scan across LDMOS device close to saturation, 
(1ns sweep). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Lateral LDMOS device scan, damaged bondwire. 

DOHERTY POWER AMPLIFIER (DPA) MEASUREMENTS 

 

The same probe was then used to measure the voltage 

waveforms of a 50W 2GHz Doherty power amplifier, 

with equal transistor size. Both devices were de-lidded, 

and the probe was placed over, very close to, the drain 

manifold. Fig.11 shows the voltages waveforms of the 

main device as the input drive is increased in 1dBm steps, 

where Fig.12 shows the waveforms from the peaking 

device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 11.  Voltage waveforms from the main device, for 1dBm 
stepped input power, attained from one position of the probe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12.  Voltage waveforms from the peaking device, for 1dBm 
stepped of input power, attained from one position of the probe. 

 

It can be seen that there is almost a factor of two in the 

difference in the peak to peak values of the voltages in the 

main and the peaking device. The position of the probe 

over both devices were in the same positions of the die 

manifold, but showed such differences in the magnitude. 

Further investigation of the main device concluded that 

this difference was due in part to variations in the voltages 

along the device periphery. Fig.13 shows the extent of this 

variation as the probe is moved along the main device; 

note that the vertical position of the probe does not 

change.  
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Fig. 13.  Voltage waveforms from the main device, at a drive 
level close to the saturation, in two different lateral positions. 

 

These plots have been included in order to demonstrate 

the enormous potential of the described probing 

technique, in obtaining more detailed insight into the 

behavior of complex high power microwave amplifiers. 

The full implications of these plots, in terms of DPA 

design methodology, are still under intensive study at the 

time of submission. The growth and phase shift of a 

strong second harmonic component in the main device 

voltage waveform is, for example, a significant feature 

that is not predicted by classical DPA analyses. 

 

CONCLUSIONS 

A high resolution, broad band E-field probing system has 

been described. The construction techniques used will 

allow for substantial further reductions in probe 

dimensions, resulting in finer resolution, for example 

enabling an ability to resolve individual finger voltages in 

high power RF transistors, and inter-stage voltages in 

RFICs. Improvements in the probe head amplifier will 

also enable higher sensitivity and dynamic range.  This 

technique will provide a unique insight into the operation 

of microwave active devices in actual operating circuits. 
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15. APPENDIX 3 

 

Abstract— The potential of E-Field probes as diagnostic 

tools in operational microwave circuits and devices has been 
widely recognised but little used. Progress in this area has 

always been hampered by the lack of an absolute calibration 
technique. As such, these measurements are usually only 
useful for relative measurements over a range of electrical 

conditions where the probe remains stationary. This paper 
describes a probe design which can be calibrated in-situ each 
time the probe is moved. The calibration technique is 

demonstrated by measurements of RF waveforms at the 
device plane of a medium power (10W) GaAs FeT power 
amplifier. 

 

INTRODUCTION 

ith the recent growth in multifunction microwave 

integrated circuits (MMICs), the availability of a 

probe with suitably high spatial resolution would be a 

very useful diagnostic tool for the MMIC designer. For 

example, the ability to measure internal voltages within a 

MMIC would be most valuable in diagnostic activities. 

The use of E-Field Probes (EFP) in other applications, 

such as antenna measurements, has been widely reported 

for many years [1-3].  Such probes usually comprise a 

dipole or monopole sensing element connected to a 50 

Ohm feeder cable. The spatial resolution of such a probe 

is of great importance in the measurement of tiny 

microwave devices. In principle this requirement 

predicates a suitable scaling down in the physical size of 

the probing element, although this will proportionately 

reduce the sensing aperture. This can be partially resolved 

by the use of an amplifier at the probe tip [4-5] but the 

fundamental problem of calibration remains.  

Figure 1 highlights the main aspect of calibrating an 

EFP. The probing structure “hovers” above the target 

measurement point. The coupling factor is clearly a very 

sensitive function of the spacing of the probe to the circuit 

element, which itself may not be planar and can have a 

wide range of geometry. The probe output is therefore a 

very complex function of the spacing and the local 

geometry of the probing target. So in Figure 1, for 

example, a different response can be expected in the two 

cases of an extensive planar surface (such as a microstrip 

line) and a more local structure such as a bondwire or a 

pad on a semiconductor device.  

 

N. Dehghan, S.C. Cripps, A. Porch, School of Engineering, Cardiff University, UK 

A Novel In-Situ Calibration Technique for a High Resolution E-

Field Probe 

W 



 

236 
 

 

 

 
 
Fig. 1.  Depicts an example of the EFP and how it can be positioned 

for an in-situ measurement of a de-lidded power transistor. 

 

 

Nevertheless, if it were possible to develop a “known” 

voltage in the target area, calibration would be 

straightforward, so long as a new calibration is performed 

every time the local geometry changes, usually due to 

movement of the probe. Difficulties can arise at 

microwave frequencies as the measurement point is 

deeply embedded in a distributed microwave circuit.  

 

 

LOW FREQUENCY RESPONSE 

A possible way around this problem is to recognise that 

the coupling of the probe to the circuit is essentially 

capacitive and “quasi-static”. As such, the critical 

coupling factor can be measured at any convenient 

frequency, which can for example be much lower than the 

operational frequency of the circuit under test. In 

particular, a sufficiently low calibration frequency can be 

chosen such that the spatial variation of the voltage in the 

region of the probe target is massively reduced and can be 

measured conveniently. For example, if a microwave 

circuit is excited at 1MHz, the same voltage will be 

measured on the feed lines to a transistor as will appear at 

the device bonding pads. The voltage can thus be 

conveniently measured using a high impedance 

oscilloscope probe at a point some distance from the 

device itself. 

This approach assumes however that the probe itself 

has a suitable low frequency response. Conventional 

EFPs, where typically the probing element is connected to 

a 50 Ohm system, will display an R-C roll-off 

characteristic, so that at very low frequencies the probe 

output will be too low to be useable. The probe used in the 

present work has been described previously [5] and 

consists of a short length of miniature co-axial line, 

fabricated using a 0.25mm diameter EDM tube,  which is 

connected to the input of a high frequency GaAsFET 

transistor. The gate input of the GaAsFET is essentially 

capacitive, so this probe construction gives a flat response 

down to very low frequencies, limited in practice only by 

the drain biasing arrangements, as shown in the measured 

response (Fig.3).    

 

 

THEORY 

 

Fig. 2 shows the frequency response of the probe as it 

measures a section of matched 50 Ohm microstrip line. 

The probe response will not remain perfectly flat at higher 

frequencies, where the parasitic components beyond 

9GHz will start to have a significant effect on the 

response. But these parasitic are not affected by the 

position of the probe, or the local geometry of the probe 

target.  

 

 
Fig. 2.  Frequency calibration of the EFP resulting in a flat response 

from 1MHz to 7.5GHz before the resonance due to the length of probe 

line and parasitic components dominate. 

 

 

The only component that is sensitive to the probe 

position is the coupling capacitor. Thus a 2-step 

calibration procedure is possible: (1) the frequency 

response can be measured as a relative function using any 

convenient structure, such as a microstrip line, (2) with 

the probe in position to make a measurement in the target 

structure under test, the target is “illuminated” by a known 

low frequency signal (e.g. 1MHz), which allows absolute 

calibration of the actual microwave frequency 

measurement, along with a suitable frequency correction 

obtained in the first step (1).  

It may still be questioned as to whether the simple 

capacitive coupling model will remain valid at the low 

calibration frequency. In particular, the spatial resolution 

of the probe will ultimately change due to the penetration 

of electric field through the wall of the thin co-axial line; 

the skin depth for copper at 1MHz is approximately 30 

microns which is not much lower than the wall thickness 

of the EDM tube.   

Transverse scans across the 11 bondwire array on the 

drain side, shown in Figure 3, at frequencies 2.1GHz, 

10MHz, and 1MHz, as in Figure 4, can however eliminate 

this concern. 
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Fig. 3.  10W medium power GaAs transistor, de-lidded for in-situ 

calibration and spatial resolution measurements; highlighting the drain 

and gate. 

 
Fig. 4.  Transverse scans along the 11 drainside bondwire array 

resulting in no degradation of spatial resolution as the excitation 

frequency of the GaAs device is lowered.  

 

 

Anomalous differences present in measured peak values 

of the relative voltage magnitude are solely due to the 

planarity issues existing in the bondwires of the GaAs 

device. As previously mentioned the probe output is a 

function of its local geometry, thus the highly sensitive 

probe, when subject to changes in the curvature and 

bondwire height, will measure a proportional change in 

the field produced by the bondwires and hence the 

variance in the voltage. 

 

MEASUREMENT SETUP 

In order to meet the objective of an in-situ calibration 

technique, the resultant procedure must be such that the 

probes position above the DUT remains constant while the 

injected excitation is interchanged between 2.1GHz and 

1MHz. During this time, waveform information is 

captured by a DSO at both frequencies in the same exact 

position. With direct measurement on the a section of 

metallisation a high impedance oscilloscope probe, the 

suitable scaling factor for the 1MHz waveform can be 

calculated. The measurement setup is such that 2.1GHz 

and 1MHz excitation does not occur simultaneously, but 

can be interchanged with ease. This ultimately results in a 

constant separation and positioning of the EFP at both 

frequencies they are utilised independently.  

For measurements taken at 1MHz, the gate voltage is 

increased to the pinch-off level in order draw no current. 

 

EXPERIMENTAL RESULTS 

 

Following the experimental setup shown in the previous 

section, the waveform information is captured by the EFP 

at 2.1GHz and 1MHz. Using a DPO with a probe 

attachment, the direct contact is made on the microstrip 

line leading to the GaAs device at 1MHz. from this 

captured waveform, a suitable scaling factor can be 

achieved for the EFP measurement at 1MHz. This scaling 

factor is found to be 615. Figure 5 shows the waveform 

measurements obtained from the DPO and the scaled up 

waveform measured from the EFP both at 1MHz. 

 
 
Fig. 5.  .  Superimposed waveforms measured at 1MHz from contact 

measurement of DPO and the scaled EFP measurement. 

 

 

The same scaling factor is applied to the waveform 

measurements obtained from a power sweep, from 0-

9dBm at 2.1GHz, the results are shown in Figure 6. 
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(b) 

 
Fig. 6.  Power sweep of 0-9dBm conducted at the frequency 2.1GHz, 

where the EFP output has been accordingly scaled by the calculated 

factor of 615 scaled using the scaling factor; represented in (a) 3D and 

(b) 2D format. Note probe is AC coupled, the actual Vdc value of 12V. 

 

 

 

CONCLUSION 

 

A novel in-situ calibration technique for a high 

resolution e-field probe [5] has been suitably 

demonstrated. By exploiting the low frequency response 

of a system, where by at such frequencies, even the most 

complicating structures behave much simpler, resulting in 

an equal voltage distribution across all entities of the 

device.  Due to the resolution capability of the e-field 

probe, it has been demonstrated that its spatial resolution 

is independent of the measuring frequency. With suitable 

scaling factor obtained from the ‘known’ voltage 

measurement, absolute frequency calibration can be 

applied and determined.    
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16. APPENDIX 4 

Zaber automated stage. 

 

Figure A: Schematic of the Zaber automated stage.  
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Figure B: Schematic of the incorporated Zaber automated stage and x-y-z positioner 

used for measurements throughout the work presented.  
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17. APPENDIX 5 

 

 

Figure C: Schematic of the HPA test fixture used within chapter 6. 

 

 


