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ABSTRACT 

The ability to  model crack closure behaviour and aggregate interlock in finite element concrete models is extremely 

important. Both of these phenomena arise from the same contact mechanisms and the advantages of modelling them 

in a unified manner are highlighted. An example illustrating the numerical difficulties that arise when abrupt crack 

closure is modelled is presented and the benefits of smoothing this behaviour are discussed. We present a new crack-

plane model that uses an effective contact surface derived directly from experimental data and which is described by 

a signed-distance function in relative-displacement space. The introduction of a crack-closure transition function into 

the formulation improves its accuracy and enhances its robustness. The characteristic behaviour of the new 

smoothed crack-plane model is illustrated for a series of relative-displacement paths. We describe a method for 

incorporating the model into continuum elements using a crack band approach and address a previously overlooked 

issue associated with scaling the inelastic shear response of a crack-band. A consistent algorithmic tangent and 

associated stress recovery procedure are derived.  Finally, a series of examples are presented demonstrating that the 

new model is able to represent a range of cracked concrete behaviour with good accuracy and robustness.  

  

 

 

 

 

 

 

 

 

 

  



 1 

 

1. INTRODUCTION 

Nearly all reinforced concrete structures contain cracks and most of these structures are subject to a degree of 

variable loading which causes cracks to open and close. In the most extreme situations, such as during earthquakes, 

structures are subject to multiple loading/unloading cycles, which result in cracks opening and closing many times [1-

3]. Even under monotonic loading, a certain percentage of cracks open and then close again as other cracks become 

dominant [4]. The opposing surfaces of these cracks contain multiple asperities which can come into contact under 

combinations of shear and opening displacements even when a crack has a significant opening. When this type of 

rough crack shear contact occurs in concrete it is commonly described as ‘aggregate interlock’ [5-6] and this is an 

important load carrying mechanism that accounts for 35–50% of the ultimate load carrying capacity of some 

reinforced concrete structural elements [5]. The opening–closing and contact behaviour of rough cracks are thus key 

characteristics of concrete that should be considered in finite element concrete models. However, the introduction of 

crack contact into a concrete constitutive model can give rise to numerical difficulties over and above the much 

discussed stability and mesh dependency problems associated with simulating cracking, or strain softening, behaviour 

[7-13]. The numerical difficulties associated with modelling crack opening–closing behaviour have been acknowledged 

(sometimes implicitly) by various authors [2,8,14,15] but have not received the same level of attention as the 

aforementioned stability and mesh dependency problems.  A particular exception to this was the work of Feenstra et 

al.
 
[14] who explored the accuracy and stability of a range of rough crack models applied to interface elements. The 

authors reported that equilibrium convergence was achieved in each analysis but, in some instances, very small load 

increments were required to achieve this convergence and it was not always possible to use the tangent stiffness 

matrix. Such difficulties were experienced on relatively small scale problems with a single interface; these difficulties 

are compounded in situations where multiple interfaces undergo multiple changes in contact state.    

 

The experience of the present authors when using the model described in reference [16] is that numerical breakdown 

of an incremental-iterative finite element solution occurs more regularly when the crack-closure component is active 

than when it is inactive which concurs with the anecdotal experience of other researchers. These difficulties are 

considered an impediment to the use of rough contact models in the analysis of real structures. This paper discusses 

these issues and proposes a new model that not only addresses these numerical problems but is also more accurate 

and tractable than that the model described in reference [16]. 

  

Before considering previous work on modelling aspects of crack closure and aggregate interlock, it is necessary to 

outline some important experimental work.  Several experimental studies investigated shear transfer mechanisms 

across formed macro-cracks in reinforced concrete specimens [17-19]. In later studies, mixed mode (shear-normal) 

fracture behaviour was investigated [20-22].  These latter studies involved tests in which cracks were opened under 

normal loading and then subjected to various combinations of normal and shear loading, as well as tests in which 

cracks were both formed and evolved under mixed mode loading.  Recently, Jacobsen et al. [23] described some new 

mixed mode tests on cracked concrete samples. The deeply notched specimens employed in these studies were 
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designed to give ‘the mixed mode material point behaviour of a crack in concrete’ so as to isolate this behaviour from 

structural effects and to avoid secondary cracking. 

 

 A knowledge of the morphology of crack surfaces in concrete is also important in understanding the associated rough 

crack contact behaviour and a number of studies have included direct measurements of crack-surface topology [24-

26].  

 

Experimental studies on the direct crack opening-closing behaviour of concrete have been undertaken by Reinhardt 

[27]. In this work, the author explored the response of cracks at varying initial openings for a range of closing stresses.  

 

Crack closure and aggregate interlock were often considered separately in finite element smeared crack models [28-

30], with a popular method for approximating the effects of aggregate interlock being to use a ‘shear retention factor’ 

on the shear component of a cracked modulus matrix [28-32]. The retention of some shear strength in such models is 

generally considered to improve their stability [31]. Direct crack closure was simulated in some of these models by 

recovering the stiffness component normal to the crack surface when the normal stress became compressive 

[28,30,4]. Particular flaws with shear retention methods include their inability to simulate both the build-up of 

compressive stresses and the delayed contact that occurs when open cracks undergo shear, both of which are evident 

in the tests of Walraven and Reinhardt [19].   

 

Stiffness recovery due to crack closure (sometimes referred to as the ‘unilateral effect’) has been considered in a 

number of continuum damage and plastic-damage constitutive models [33]. A particular procedure involving the 

recovery of stiffness in models that decompose the stress and strain tensors into positive and negative parts [34] was 

shown (under certain circumstances) to lead to thermodynamically inconsistent results [35], but these issues appear 

to have been resolved in a recent formulation by Wu and Xu [36].  

 

An alternative approach for such models is to use volumetric/deviatoric decompositions of stress/strain tensors and 

to recover only the volumetric component of stiffness when the mean stress becomes compressive [2,37,38]. This 

approach has been extended by Richard et al. [15] and Richard and Raganeau [39], who have coupled volumetric 

stiffness recovery to frictional behaviour on the damaged deviatoric component of the constitutive relationships.  

Richard et al. [15] identify the volumetric/deviatoric separation of the ‘unilateral effect’ as ‘the key point for an easy 

identification and a robust numerical implementation’.  These continuum damage approaches deal mainly with the 

effects of micro-crack closure but become inaccurate when rough macro-crack contact behaviour is considered, for 

which a more direct representation of the macro-crack is required.  

 

A number of constitutive relationships have been developed for rough macro-cracks which relate crack-plane 

tractions to the relative-displacements between opposing crack faces [6,19,24,40-46]. Of these models, those that are 

based directly upon the degree of contact between the measured asperities on opposing rough crack surfaces include 
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the contact density formulations of Li et al. [24] and Ali and White [43]; the interacting sphere model of Walraven and 

Reinhardt  [19]; and the rough crack contact model based on cone-shaped asperities of Mihai and Jefferson [46].  

 

A number of cohesive zone plasticity-based models, with and without crack-closure behaviour, have also been 

developed to represent the behaviour of cracks [26,47-50]. These have, for example, been applied to meso-scale 

simulations of concrete specimens as well as to interface elements in macroscopic simulations. 

 

The model developed in this paper is classed as a cohesive zone model, an approach pioneered by Hillerborg et al. 

[51].  This type of model was initially used to govern the constitutive behaviour of finite element interface elements 

but the approach was later extended in the form of the ‘crack band model’ and applied to continuum elements [7]. A 

recent study of various aspects of the crack band approach has been made by Jirasek and Bauer [51].  The new model 

is applied to a crack plane and aims to represent the development of the fracture process zone as well as the 

behaviour of a fully formed crack. The model can be applied to embedded crack planes in continuum elements using 

the smeared crack-band approach [7,52], interface elements [47,50,53], elements with strong discontinuities  [54-55] 

as well as to discontinuities introduced via mesh-based strong discontinuities, or X-FEM [56-58].  Interestingly, Mosler 

and Meschke [59] showed that in many situations fracture energy based smeared crack models give essentially the 

same response as elements with strong discontinuities.  A rough crack model has been incorporated into an element 

with strong discontinuity by Theiner and Hofstetter [53] and applied to some real engineering problems, including the 

pull-out of a steel anchor. Sellier et al. [60] showed the benefits of smoothing crack opening/closing behaviour in their 

orthotropic damage model and this idea of smoothing the contact behaviour is particularly relevant to the work 

described in the current paper.  

 

The present authors consider that models that use a split between damaged and undamaged behaviour of a 

representative crack-plane area, and that include mechanisms for the recovery of a proportion of the damaged 

stiffness, provide a natural means of simulating the evolution of cracks and crack closure [15,16,39,45,61,62]. We also 

believe that rough contact models which simulate both direct crack closure and shear contact (or aggregate interlock) 

behaviour in a unified manner best represent the reality of the contact behaviour that occurs between the rough 

surfaces of cracks in concrete [16,19,24,43,46].   

 

The aim of the paper is to present a new robust model for simulating concrete cracking that includes crack formation, 

the evolution of cracks, and rough crack contact behaviour in a unified manner. The particular innovations / new 

aspects of this work are (i) the identification of a smooth effective contact function, derived directly from 

experimental data, with the properties of signed distance function; (ii) the introduction of an experimentally 

calibrated function to provide a transition from a fully closed to a fully open contact state in a completely smooth 

fashion for crack closure under mode 1 and mixed mode loading conditions; (iii) the presentation of a procedure that 

addresses mesh dependence in smeared crack models when a shear contact or shear retention procedure is 

employed; (iv) the derivation of a consistent algorithmic tangent matrix and associated stress recovery procedure for 
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the model with transition; and (v) a series of finite element analyses that consider experimental tests, in particular, 

the recent tests of Jacobsen et al. [23].   

 

The layout of the remainder of the paper is as follows: 

Section 2  discusses the reasons for convergence difficulties inherent in simulating crack-closure.  

Section 3  presents a new rough crack contact model for discrete cracks. 

Section 4  presents results for a few selected stress vs  relative-displacement paths to illustrate the characteristic 

behaviour of the model. 

Section 5   shows how the model can be incorporated into continuum finite elements via the crack-band approach, 

which is extended to incorporate a new form of shear contact scaling. This section also gives the 

derivations of a consistent algorithmic tangent matrix and stress recovery procedure for the crack-

plane model with contact transition.  

Section 6  provides a number of examples and a numerical convergence study, which examines the performance 

of the model with different degrees of closure transition. 

Section 7  gives conclusions from the work. 

 

 

2.  THE CHALLENGES OF SIMULATING CRACK OPENING/CLOSING BEHAVIOUR 

For the purposes of the present discussion, an idealised cracking problem is considered which is based on the mesh 

and the material properties given in Figure 1, in which E is Young’s modulus, ft is the tensile strength and Gf is the 

fracture energy parameter. In this hypothetical problem, a crack is opened in a notched concrete specimen to a crack 

opening displacement of 0.1mm. At this point a compressive stress of 0.5MPa is applied to the specimen to close the 

crack. It is assumed that the theoretical unloading response follows a secant path to the origin and then regains the 

uncracked stiffness in the compressive region.  The authors have observed that this type of crack opening/closing 

behaviour occurs in multiple locations in full scale finite element analyses of reinforced concrete structures when 

certain cracks become dominant and other adjacent cracks close.  

 

If a simplified 1D response is considered then, using secant unloading at point A in Figure 2, the relative-displacement 

at the end of the first iteration after the compressive load is applied would be -0.855mm. If this is translated into a 

strain over the localised region (i.e. over the height of the central row of elements), the strain value would -0.171. 

When the crack fully closes, the behaviour reverts to linear elastic, so the uniaxial stress associated with this strain 

would be  -5130 MPa, if no compressive limit is applied.   

 

The authors have observed that when such behaviour occurs, there is a tendency for solutions to oscillate between 

open and closed states. Furthermore, these relatively large strains and stresses result in spurious cracking and 

crushing, with the result that convergence is difficult to obtain. There are techniques to deal with this type of problem 

[13] but such abrupt changes in response will always be a challenge for nonlinear finite element solution schemes. 
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One of our aims is to address this problem by developing a new model in which all contact behaviour is smoothed 

over a contact transition region such that the changes in stresses and strain during contact are far less abrupt than in 

the example described.  

 

This type of behaviour is akin to the chatter that occurs in contact mechanics, and in such situations smoothing 

contact penalty functions are sometimes employed [64]. 

 

 

Figure 1. Finite element mesh, dimensions and boundary conditions 

 

 

 

Figure 2. Illustrative crack closure example 
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3. ROUGH CRACK MODEL WITH SMOOTH TRANSITION BETWEEN OPEN AND CLOSED CONTACT STATES 

 

3.1 Basic crack-plane model 

The model is described first for a ‘crack-plane’, which is defined as the mid surface of a narrow band of material that 

contains a macro-crack or a number of micro-cracks. It is assumed that the crack band is sufficiently narrow, relative 

to the principal structural dimensions, to be applicable to a zero thickness finite interface element or embedded 

discontinuity. When calibrating the model against test data, h is taken to be equal to the width of a fracture process 

zone, which is typically 3 times the size of the coarse aggregate particles [7].  The local coordinate system of the crack 

plane is defined by the ortho-normal vectors r1 to r3 , as illustrated in Figure 3. The model relates the crack-plane 

traction vector ( τ� ) to the relative displacement vector ( u� ), for which the elastic constitutive relationship is as 

follows: 

e e=τ k u�� �              (1) 

in which the elastic constitutive matrix is defined as 

0 0

0 0

0 0

e

E / h

G / h

G / h

 
 =  
  

k� , where E and G are Young’s modulus 

and the shear modulus of uncracked material respectively. Superscript e denotes elastic and the overbar ~ denotes a 

crack-plane quantity. The three components of the vectors τ� and u�  coincide with the directions r1 to r3, such 1τ� and

1u� are the components normal to the crack-plane and 2 3 2 3 and , ,u uτ τ� � � � are the in-plane components. We note that 

under linear elastic conditions e =u u� � .   

 

 

Figure 3. Crack plane and local coordinate systems. 
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             undamaged                 damaged    

( ) u d      1 ( )          ( )ω Ζ ω Ζ= − +τ τ τ� � �           (2) 

 

where ω ∈[0,1] is the damage parameter, which is a function of the effective relative-displacement parameter Ζ. 

 

The undamaged traction component uτ�  is given by:  

e
u =τ k u�� �              (3) 

 

 

The evolution of Ζ is governed by the following damage function, which is taken from reference [16]:   

 

( ) ( )
2 2

2 2 2 2 2 21
1 2 32

1
1 4

2
eq

 u
( u ) u u u

2

µ
Ζ γ µ γ

γ γ

   = + + − + + 
   

�
� � � �        (4a) 

d eq(u, ) (u, )ϕ Ζ Ζ Ζ Ζ= −� �              (4b) 

 

with the standard loading/unloading conditions 0 0 0 0 0d d d d;    ;    ;             Ζ φ Ζ φ Ζφ φ≥ ≤ ⋅ = = ∀ =�� � �  

 

Also, t dtΖ Ζ= ∫ � ; in which the superior dot denotes the time derivative and t represents time. 

The constants γ and µ are the shear relative-displacement intercept and the asymptotic shear friction factor 

respectively of the damage surface in relative-displacement space.  These are computed from the relative shear stress 

intercept (rσ=c/ft) and the asymptotic friction factor (µσ);  i.e. γ=(E/G)⋅ rσ   and µ =(E/G)⋅µσ;  noting that c is the shear 

stress intercept.   The damage surface, in terms of the local shear strains used in Section 5, together with further 

explanation of its derivation are given in Appendix D.  

 

If applied to an interface, damage is initiated when eqΖ  first exceeds tΖ  , noting that  Ζt  =h⋅ft/E.  

 

In a continuum model (Section 5), cracks are initiated using a principal stress criterion and the crack plane first forms 

in the major principal stress plane. 

 

The damage evolution function is based on a standard exponential tensile softening function given by: 

( )
1

1

t

m

c
t e

Ζ Ζ
ΖΖ

ω Ζ
Ζ

 −
−  

 = −                  (5) 

in which  Ζm is the relative-displacement at the effective end of the uniaxial tensile softening curve (~0.2mm for 

normal concrete) and c1 =5. These parameters are determined from a direct fracture softening curve. c1 is fixed at 5, 
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since this has been found to provide an acceptable match to a range of concrete data, and Ζm may be determined 

directly from a softening curve or calculated from the specific fracture energy (Gf) using Ζm ≈ Gf⋅c1/ft. 

  

 

3.2 Rough contact component of the crack-plane model 

 

Experimental evidence for an effective contact surface 

An examination of tests in which cracks are fully opened, held at a constant opening, and then loaded in shear show a 

distinct region in which the shear response stiffens rapidly [6,19,44], as illustrated in Figure 4. This response is 

attributed to the asperities of opposing surfaces regaining contact in shear and plotting the ‘effective contact points’ 

(circled in Figure 4) in relative-displacement space gives an ‘effective contact surface’.  

 

In the tests of Hazzenzadeh [21] and Jacobsen et al. [23] (Figures 5a and 5b), this shear stiffening behaviour is not as 

distinct as in the tests referred to above. This may be explained by the fact that the range of initial crack openings in 

these tests were significantly less than in the aforementioned work [6,19]. The cracks in these more recent tests were 

also (in general) not fully formed when shear was first applied and thus crack evolution would have been ongoing 

during the mixed mode loading phase. This means that the observed response resulted from a combination of rough 

contact behaviour and micro/macro crack evolution and in such tests it is much more difficult to isolate shear contact 

behaviour.  Notwithstanding this observation, these data suggest that there is limited loss of shear contact at small 

crack openings. A further relevant mechanism relates to small particles, displaced during normal cracking, that act as 

wedges bridging between opposing crack faces.  

      

 

Figure 4. Shear contact transition zones from Paulay and Loeber’s tests [6] 
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5a. Data from Hassanzadeh [21]  
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Figure 6. Effective contact surface and associated experimental data
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Effective contact function 

For reasons that will be explained later in this section, it is advantageous to use a mathematical expression for the 

effective contact function ( ( )ϕ u� ) that has the properties (in relative-displacement space) of a signed distance 

function i.e. 

 

1
ϕ∂

=
∂u�

                    (6) 

( ) c

ϕ
φ

∂
= −

∂
u u u

u
� � �
�

                    (7) 

 

in which cu� is the nearest point to u� as illustrated in Figure 7. 

 

The function chosen for ϕ is selected to fit that shown in Figure 7 and comprises two parts, (i) formed by a spherical 

arc and (ii) that is a partial cone which is tangential to the arc. The interface between these two parts is governed by 

the function ϕc, which is defined as follows: 

 

( )2 2
1 2 3

2

1

1
c c g

g

( , ) u u ( ) m u u

m
ϕϕ Ζ Ζ = − + + 

 +
u� � � �              (8)   

 

The contact function is then evaluated as follows:  

( ) ( )

( ) ( )

2 2
1 2 3

2

2 2 2
0 1 2 3

1
                         0

1

                      0

g i c

g

c c c

m u u ( ) u u ( , )

m

u ( ) u u u ( ) u u ( , )

ϕ

ϕ ϕ ϕ

ϕ Ζ ϕ Ζ

ϕ Ζ Ζ ϕ Ζ

 = ⋅ − − + ∀ > 
 +

 = − − − + + ∀ ≤ 
 

u

u

� � � �

� � � �

    (9)  

 

in which mg defines the slope of the conical part of the contact function (See Figures 6 and 7). 

 

In three dimensions, the effective contact surface takes the form of a round-nosed cone centred on the normal 

relative-displacement axis.   

 

This two-part effective contact function is governed by the two other functions (illustrated in Figure 7) given in 

equations 10a,b: 
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( )

0 0

2

0

1

c g lm

g g
i p g lm

g

u ( ) n u u ( ) u

m m
u ( ) n u u ( )

m

ϕ ϕ

ϕ

Ζ Ζ

ζ Ζ

= + +

− +
= +

                           (10a,b) 

 

in which the constant ng governs the radius of the reference surface for contact transition (see Figure 7) and the fixed 

value of ng=0.025 was determined using the data for the contact surface given in Figure 6 and the contact transition 

data presented in Figure 8 below.  

 

The function ulm(Z)  is related to the transition function and will be given after the derivation of the crack-plane 

constitutive relationship and the new contact transition theory have been given.    

 

 

Figure 7. The effective contact function 
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( )
ϕ

ϕ
∂
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∂

u u
u

�
�

                (11) 

 

It then follows that the tractions on the crack surface (i.e. on the damaged portion of the surface) are given by: 

( )e
d

ϕ
ϕ

∂
=

∂
τ k u

u
� �

�
            (12) 
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Contact reduction function 

The amount of contact between opposing rough crack surfaces reduces as the crack opening increases. This is evident 

from Figures 4 and 5 which show that the wider a crack is open, the shallower the shear response curve. Mihai et al. 

[46], in their multi-asperity model, suggested that -for a set of asperities of height hasp- the contact potential function 

( 1H( u )� ) should take the form ( )2

1 1
1

asp
H(u ) u h= −� � .  However, an exponential function, which provides a close fit 

to this equation over the range of interest, is preferred here for numerical reasons. Also, since concrete contains 

coarse aggregate, fine aggregate and hardened cement paste (hcp), all with different size ranges, three sets of 

asperity heights are considered.  Furthermore, if the observation that no significant contact is lost until 1u�  reaches uϕ0 

is taken into account, the contact reduction function takes the form: 

( )1 0 0

3

1 1 0

1

1 1 0

                                                             

 = 1                                                                                   

i( u u )/ c u

i

i

H( u ) p e u u

H( u ) u u

ϕ

ϕ

ϕ

− −

=

= ∀ ≥

∀ <

∑
�

� �

� �

             (13a,b) 

 

in which the parameters p1, p2 and  p3 nominally represent the proportions of shear transfer associated with the hcp, 

fine and coarse aggregate phases respectively; these being subject to the condition 
3

1

1
i

i

p
=

=∑ .  c1, c2 and c3 are 

associated material parameters. Default values for these parameters (written as vectors for convenience) are  

p = [0.6, 0.3, 0.1]
T
 and  c=[0.01, 0.05, 2.0]

T
.  These parameters vary significantly with aggregate type, size and grading; 

and ideally they should be calibrated against data from shear tests on cracked concrete specimens with different 

openings. A further refinement to the model, not undertaken here, is to use multiple contact surfaces each with a 

different mg value. The method used to select the rough contact material parameters for the examples presented in 

Section 6 may be found in Section 5.4. 

  

Including this contact reduction function in equation (12) gives the following revised function for the cracked surface 

traction vector: 

( ) ( )e
d H

ϕ
ϕ

∂
= ⋅

∂
τ u k u

u
� � �

�
            (14) 

 

Smoothing the contact response 

The discussion in Section 2 of this paper highlighted the problems associated with modelling abrupt contact and the 

potential benefits of smoothing this contact behaviour. Experimental evidence from crack opening–closing tests [27]  

shows that cracks open and close gradually over a 1u� region rather than instantaneously. Hence, the advantages of 

including smoothed (gradual) opening/closing behaviour in a crack plane model are twofold i.e. (i) it provides a more 

accurate response and (ii) it improves numerical robustness. 
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Crack opening–closing tests [27] also exhibit a hysteresis response but no attempt is made to simulate this aspect of 

behaviour here.  The basic principles of the model would allow it to be extended for such hysteresis behaviour but 

these effects are considered second-order when modelling most reinforced concrete structures.    

 

In order to provide a smooth transition between open and closed states, a transition function was derived by 

considering the change in the tangent stiffness from an open state (ku) to a closed state (ku+kc) in an idealised 1D 

problem (See Appendix B for full derivation). This is achieved using a tanh function: 

 

1

2

z
T u c

utanh
u

k ( u ) k k

  −    = +  
  
 

           (15) 

in which u is a scalar displacement, kT(u) is the tangent 1D stiffness, and ku and kc represent the undamaged and 

contact components of stiffness respectively. 

 

As shown in Appendix B, this leads to following transition function λ(u), which, when applied to the crack plane, 

becomes a function of the value of the effective contact function (ϕ):  

( )
1

1
2

z

lm lm

cosh
u

( )= ln  
u cosh c

ϕ
ϕ

λ ϕ
ϕ

   
    −  

−      

         (16) 

 

Experimental data [27] also suggest that the size of the transition region increases as cracking progresses.  Selected 

data from the same test have been plotted in Figure 8, which shows the initial response to the first peak and three 

selected reloading responses. The approximate effective transition zones (uETZ) for the reloading curves have been 

extracted from this graph and plotted against the associated opening displacements (the maximum opening value 

associated with the unloading-reloading cycle) in Figure 9. The resulting graph was then used to calibrate the 

transition function. These data suggest that the following linear equation for the uETZ  is adequate:  

0ETZ ETZ
ETZ

u u
c

Ζ= +             (17) 

 

in which 
0ETZu =0.018 and cETZ =6  . 

 

However, in equation (16), it is uz that governs the size of the transition zone and this does not equal uETZ. Numerical 

calibration gave the result that uz=2/3uETZ , thus uz(Ζ) becomes: 

0zz
zn

u ( ) u
c

Ζ
Ζ = +             (18) 

noting that czn = 3cETZ/2  (i.e. czn=9), uz0 =
0ETZu and uz(Ζ ) is limited to uz0+Zm/czn 
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ulm(Ζ)  governs the effective start of the transition region from the ‘open contact state’ and is related to uz : 

 

lm z lmu ( ) u ( ) / cΖ Ζ=             (19) 

 

in which clm=7. (See Appendix B.)   

 

 

 

Figure 8. Selected reloading curves from Reinhardt’s tests [27]. 

 

 

Figure 9. Effective contact transition zone  

 

 

Including the transition into the expression for the damage component tractions gives: 

( ) ( )( ) ( )
∂

= ⋅ ⋅ −
∂

τ u k u
u

� � �
�

e
d lmH u

ϕ
λ ϕ ϕ           (20) 
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Final smoothed crack-plane constitutive relationship 

Using equations (20) and (3) in equation (2) gives the final form of the crack-plane constitutive relationship: 

( ) ( ) ( )1 e e
lm  ( )      ( ) H( ) ( ) u

ϕ
ω Ζ ω Ζ λ ϕ ϕ

∂
= − ⋅ + ⋅ ⋅ ⋅ −

∂
τ k u u k u

u

� �� � � �
�

      (21) 

 

4. CRACK-PLANE MODEL RESPONSE 

The behaviour of the crack-plane model is now illustrated for a set of idealised relative-displacement paths using the 

material data given in Table 1, with all other parameters taken as their default values. The computed response for 

these paths are shown in Figures 10 and 11, in which τn and τs represent the normal and shear crack-plane tractions 

respectively. 

 

Path 1 comprises a series of loading–unloading cycles in direct tension (Figure 10). 

Paths 2 and 3 (Figure 11) are cases in which a crack is opened in uniaxial tension (to un=0.06mm for path 2 and 

0.122mm for path 3), then loaded in shear whilst un remains constant. 

 

Table 1. Material properties for crack-plane examples 

h 

(mm) 

E 

kN/mm
2

 

ν ft 

N/mm
2
 

Zm 

(mm) 

56 40 0.2 3 0.2 

 

 

  

Figure 10. Uniaxial opening and closing response. 
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Figure 11. Cracks opened in uniaxial tension and subsequently loaded in shear. 

 

The smooth contact transition is evident in the direct tension unloading response in Path 1 and in the shear responses 

of Paths 2 and 3.    
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5. EMBEDDED CRACK-PLANES IN A 3D CONSTITUTIVE MODEL.  

 

5.1 Embedded smeared cracks 

When the crack-plane model is applied to continuum elements, cracks are effectively smeared over elements and are 

represented by directional damage. h is no longer employed directly to define the local strains; instead, the crack-

band approach of Bazant and Oh [3] is used. This involves scaling the governing fracture softening stress–strain curve, 

using the fracture energy parameter (Gf), such that the energy consumed in fully opening a mode 1 crack is the same 

irrespective of the element size. A key assumption in this method is that (numerically) strains localise into a band of 

elements, one element wide, early enough in the fracture process for the fracture energy consumed outside this band 

to be negligible. If this assumption is valid, the inelastic fracture strain vector (i.e. the reduced form of the strain 

tensor) can be related to the inelastic relative displacement vector ( u
�

) as follows:  

 
ch

=
u

ε

�
�

�
             (22) 

in which ch� is the element characteristic length,  
e= −u u u

�
� and [ ]T11 12 13ε ε ε=ε

� � �� . 

The characteristic length is equal to the length of the longest straight line that could be drawn within a finite element 

normal to the crack-plane. This gives a length in between that computed by ‘Oliver’s 1
st

 and 2
nd

 methods’, which are 

described in References [52] and [65]. 

The element local strain vector ( ε� ) is then defined as the sum of the inelastic and elastic strain components: 

e= +ε ε ε
�

�              (23) 

 

The smeared crack counterpart to equation (21) is : 

( ) ( ) ( )1 e e
c lm  ( )      ( ) H ( ) ( )

ϕ
ω ζ ω ζ λ ϕ ϕ ε

∂
= − ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅

∂
σ D ε ε D ε

ε
� �� � � �

�
      (24) 

in which  the effective strain parameter (ζ) replaces Ζ,  lm lm chuε = � , Hc is the continuum form of the contact 

reduction function (see equation 25),  the tractions are replaced by the local stresses (  [ ]T11 12 13σ σ σ=σ� � � �  ) and 

the local elastic constitutive matrix 

0 0

0 0

0 0

E

G

G

 
 =  
  

D� . 

The continuum form of the contact reduction function, denoted Hc in equation (24), is different from the function H 

used in equation (21). This is due to the fact that the inelastic slip across a crack-band in a mesh of continuum 

elements should be independent of element size in the same way that the inelastic crack opening should not depend 

on the mesh grading; the latter being addressed by the use of the crack-band approach. This is an issue that has 

previously been overlooked by the first author as well as by others who have used models in which the shear stiffness 
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of cracked elements is reduced with increasing crack opening. The function used for Hc, derived in Appendix C, is as 

follows: 

 

( )1

ch
c

ch

H
H

H H h

⋅
=

⋅ + − ⋅

�

�
           (25) 

 

Equation (25) introduces element ‘shear-scaling’ because the cracked shear stiffness depends on, or is scaled with, 

the element size. It is noted that the factor Hc has no effect on the predicted response when mode 1 cracking is 

simulated. 

 

The local stress–strain relationship, given in equation (24), can be written as: 

( )e
s c= +σ D M ε ε�� � �                (26) 

 

where  ( ) ( )1   and   s c lmH
ϕ

ω ω λ ϕ ε
∂

= − ⋅ = ⋅ ⋅ ⋅ − ⋅
∂

M I ε
ε

�
�

  ; dependencies have been dropped for clarity.   

 

 

The local fracture strain vector, in terms of the element local strain and stress vectors, is now given by:  

 

e= −ε ε C σ
� �� �                 (27) 

in which 
e e 1  −=C D� �   

 

Using equation (26) in (27) to eliminate ε�  results in the following equation for the local fracture strain vector: 

 

1
s s c

−= −ε C σ M ε
� � � �                (28) 

in which ( )1 e
s s

−= −C M I C� �   

 

In order to derive an overall stress–strain relationship, the following transformation that relates the local stresses on 

a particular crack plane j to the Cartesian stress tensor (σσσσ)  is required: 

 

j
j ( )  =σ Ν r σ�              (29) 

 

where the transformation matrix N is defined in Appendix A. 

 

The total stress and strain (εεεε) tensors are represented in their reduced vector forms, i.e.   
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  [ ] [ ]T T
11 22 33 12 13 23 11 22 33 12 13 23 and  2 2 2σ σ σ σ σ σ ε ε ε ε ε ε= =σ ε  

 

in which the indices now relate to Cartesian directions.  

The overall stress–strain relationship for a case with multiple cracks is then derived by subtracting the sum of the 

transformed fracture strain contributions (from all active crack planes) from the total strain tensor as follows: 

1

p

j

n
T

e j
j

    
=

 
= − ∑ 

 
σ D ε N ε

�

         

   (30) 

 

in which De is the elastic tensor (in matrix form), jε
�

 denotes the fracture strains for crack j, and np is the number of 

crack planes at the current point (i.e. at a finite element integration point).  

 

 

Using equations (28) and (29) in (30) and rearranging gives: 

( )1

1

p

j j j

n
T

e j s j s c
j

    
−

=

 
= − −∑ 

 
σ D ε N C N σ M ε� �

              

        (31) 

  

Taking the terms which pre-multiply σσσσ to the left hand side of equation (31) gives: 

1

1 1

p p

j j j

n n
T T

e j s j e j s c
j j

   
−

= =

   
+ = +∑ ∑   

   
I D N C N σ D ε N M ε� �

              

      (32) 

 

Equation (32) may then be rearranged to give the following overall stress–strain relationship: 

1

1 1

p p

j j j

-1
n n

T T
e j s j e j s c

j j

    
−

= =

   
= + +∑ ∑   
   

σ I D N C N D ε N M ε� �

               

     (33) 

 

 

5.2 Consistent tangent matrix 

To derive the consistent tangent matrix for the model, the following incremental form of the crack-plane relationship 

(26) is used: 

 

e e 's c
s sδ δ δ

∂ ∂ 
= + + = ∂ ∂ 

M ε
σ D M ε ε D M ε

ε ε

�
� �� � � ��

� �
                         (34) 

 

in which � denotes a third-order-matrix vector contraction.  

 

The incremental fracture strains are then given by equation (35): 
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( )e 1 ' 1 e '
sδ δ δ δ δ− −= − = − =ε ε D σ M I C σ C σ

� � ��� � � �                      (35) 

 

The incremental form of the constitutive relationship (30) is: 

( )
1

pn
T T

e j j j j
j

δ δ δ δ
=

 
= − +∑ 

 
σ D ε N ε N ε

� �
         (36) 

In the present approach 
jδN is always set to 0. This is justified because, in the iteration process, crack directions are 

fixed within the step in which they are formed after a fixed number of iterations, provided that a certain convergence 

tolerance (typically 100 times the overall convergence tolerance) has been reached.   

 

Using (35) in (36) and rearranging gives the following consistent incremental stress–strain relationship; 

1

1

pn
T '

e j j j e
j

δ δ
−

=

  
= + ∑   

  
σ I D N C N D ε�           (37) 

 

 

5.3 Stress recovery procedure 

A principal stress cracking criterion is used for crack initiation and the formation of cracks is systematically checked 

one at a time during the overall stress recovery procedure.    

 

The introduction of the smooth contact formulation into the model simplifies the stress computation algorithm 

because, unlike that described in reference [16], there is no need to check the contact conditions. This is because the 

contact transition function (λ(ϕ)) is continuous and tends to zero in the no-contact region, as ϕ increases, but tends to 

unity in the closed region as ϕ becomes more negative.  

 

To compute the stresses from equation (30), the fracture strains are required and these in turn depend upon the 

crack-plane strains iε�  according to the following relationship which may be deduced from equations (26) and (27): 

  

( )i ii s i c= − −ε I M ε ε
�

� �             (38) 

 

The crack-plane strains are computed such that the crack-plane stress–strain relationship and the overall stress–strain 

relationship are both satisfied. This is accomplished by solving the following nonlinear coupled set of equations for all 

the cracks that exist at a particular integration point (i=1 to np): 

 

i i− =N σ σ 0�               (39) 

 

Equation (39) is expanded using equations (26), (28) and (30) to give: 
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( ) ( )
1

p

j j i i

n
T e

i e j s j c s i c
j

 
=

 
− − − − + =∑ 

 
N D ε N I M ε ε D M ε ε 0�� � � �         (40) 

 

This set of nonlinear equations is solved using a Newton–Raphson procedure to obtain the crack-plane strains ( iε� ). 

This involves expressing the error in equation (40) by the following local stress error vector (ψψψψi ): 

( ) ( )
1

p

j j i i

n
T e

i i e j s j c s i c
j

 
=

 
= − − − − +∑ 

 
ψ N D ε N I M ε ε D M ε ε�� � � �       (41) 

Writing (41) as a first order Taylor’s expansion, equating this to zero and rearranging the resulting equation, gives the 

iterative update in the stacked local strain vector as follows: 

( )1
Eδ −=Ε B Ψ Ε� �              (42) 

 

in which 

1

2

:

 
 =  
  

ε

Ε ε

�

� � and 

1

2

:

 
 =  
  

ψ

Ψ ψ  

The sub-matrix components of the matrix of derivatives are given by: 

  ( )i j i

T
Ei , j e j s t i , j

′= − + ∂B N D N I M D�           (43) 

in which i, j∂ is the Kronecker  delta, 
i i

e '
t s=D D M� � and i & j are crack numbers.   

 

The steps followed to solve these equation are outlined in Algorithm Box 1. 
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Box 1. Algorithm for updating crack plane variables and computing the Cartesian stress vector.    

prev prev
j j j j;  ζ ζ= =ε ε� �   

for iter=1 to Maxit 

  for i=1 to np    

    ( ) ( )
ii lm i i i c i c i s i( );  ( );  ( );   ;  H ( ) ; ( );  ω ζ ε ζ ϕ λ ϕ ζε ε ε ε M� � �  

  endfor i 

  for i=1 to np   ; ( )iψ Ε�   ; end for i 

    If ( ) tolΨ<Ψ Ε� Exit iter loop 

    Else  

      if iter=Maxit, Exit and reduce increment step size 

      Else continue with update 

       for i=1 to np ; for j=1 to np ;  compute
i , jEB  ; endfor i ; endfor  j      

        ( )1
Eδ −=Ε B Ψ Ε� �  

        for i=1 to np 

          i i iδ= +ε ε ε� � �             

          if ζeq( iε� ) > ζ ; ζ:=ζeq( iε� )  

         Compute iε
�

 

        endfor i 

       Compute σσσσ 

    end if 

endfor iter 

Set crack-plane parameters to previous values or initial 

values for a new crack.  

Enter iteration loop  

Loop over crack-planes 

Compute crack-plane functions and matrices from 

equations (5), (19), (9), (16), (13&25), and (26) 
Note

 
1
. 

Compute the local stress error vector from equation (41) 

Check for convergence and exit loop if converged. 
Note 2

 

 

Exit procedure and reduce global step size if iteration limit 

reached. 
Notes 3

  

Evaluate differential sub-matrices 

Solve equations for stacked vector of crack-plane strains 

 

Update crack-plane strains 

Update effective crack plane strain parameter 

Compute the fracture strains from equation (38) 

 

Compute Cartesian stresses from equation (30) 

 

 

Notes: 

1. When the original equations referenced are expressed in terms of relative-displacements, it is assumed that the equivalent 

local strain components are substituted here for the comparable relative-displacement components. (See Section 5.1). 

2. maxit= 15 and tolψ= ft × 10
-6

    

3. This iteration limit was not exceeded in any of the examples presented in this paper. 
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5.4 Material parameters 

 

The embedded smoothed crack-plane model requires a number of standard parameters as well as a few 

non-standard material parameters. Table 2 provides a summary of these parameters along with suggested 

values and some comments on how these parameters may be determined.  

 

Table 2. Material parameter details 

Symbol Description Typical value for 

concrete  

Comments  

E Young’s modulus.  35000 N/mm
2
 Standard material constant 

ν Poisson’s ratio 0.2 Standard material constant 

fc Uniaxial compressive strength  40 N/mm
2
 Standard material constant 

ft Uniaxial tensile strength  3 N/mm
2
 Standard material constant 

Gf Fracture energy per unit area 0.1 N/mm Standard material constant 

mg Constant in interlock state 

function  

0.425 This defines the slope of the contact surface cone, as 

shown in Figure 6. This may be determined by using tests 

in which shear loading is applied to specimens with fully 

formed cracks at different opening displacements. (See 

Section 3.2) 

h Physical fracture process zone 

width  

60mm This is taken to be 3x coarse aggregate size. 

rσσσσ Shear intercept to tensile 

strength ratio for local damage 

surface 

1.25 Constants rσσσσ and µσσσσ  govern the shape of the damage 

function, as shown in Appendix D. To determine the 

values directly, experimental data from shear tests on 

mortar – rock interfaces  are required, appropriate to the 

type of concrete being analysed. This is rarely done and 

the values quoted here have been previously obtained for 

the model described in reference [16] by inversely 

identifying parameters that accurately represent crack 

growth under mixed mode conditions.  

µσσσσ Limiting friction ratio on which 

damage surface is based 

0.8 

[c1,c2,c3] Shear contact reduction 

parameters 

[0.01, 0.05, 2.0] c1,c2,c3 are multipliers (on ε0, or u0) that control how 

shear contact potential reduces with increasing crack  

opening for hcp, fine aggregate and coarse aggregate 

phases respectively.   (See equation 13). 

[p1,p2,p3] Shear contact proportion 

parameters   

[0.6, 0.3, 0.1] p1, p2 & p3 nominally represent the proportions of shear 

transfer associated with the hcp, fine and coarse 

aggregate phases respectively. (See equation 13) 

The values of ci and pi can calibrated using tests in which 

cracks are opened under normal loading and then loaded 

in shear. 

Ideally data from separate tests on samples made of just 

hcp, mortar and concrete are required for a full 

calibration of the c and p constants. However, as yet, no 

such comprehensive set of data exists. Thus, the values 

have been calibrated using inverse parameter 

identification methods from existing shear-normal crack 

tests (See Section 3.2). An attempt to determine such 

parameters directly for a detailed micro-mechanical 

interface model is described in reference [46]. 
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6. EXAMPLES  
 

6.1 Introduction 

All of the examples to be presented in this section have employed the continuum version of the model implemented 

in the finite element program LUSAS [66] via LUSAS’s material model interface.  

 

The first example presents an idealised cracking problem to demonstrate that the new continuum form of the contact 

reduction function (See equation 25 and Appendix C) gives mesh independent crack shear sliding behaviour.  

 

A range of unreinforced concrete fracture tests are then considered in Examples 2 to 4. Example 2 shows an analysis 

of one of Reinhardt’s cyclic notched fracture specimens; Example 3 considers the recent tests undertaken by Jacobsen 

et al. [23] and the fourth example presents a 3D analysis of one of Walravren and Reinhardt’s [19] specimens in which 

shear loading was applied to a specimen with a preformed crack. 

 

The material parameters used for all examples are given in Table 3. A Newton-based incremental iterative scheme 

was used to solve the nonlinear finite element equations with a tolerance of 0.01% for both the L2 iterative 

displacement and out of balance force norms. All 2D meshes comprised bilinear quadrilateral elements and the 3D 

mesh used trilinear hexahedral elements. The number of increments used in each example is evident from the 

response curve graphs, with markers showing the result at each increment solved. 

 

 

Table 3. Concrete material properties             

Example E 

 

GPa 

ν fc
*

 

 

MPa 

ft 

 

MPa 

Gf 

 

N/mm 

mg h 

 

mm 

rσ µσ c1 

c2 

c3 

p1 

p2 

p3 

1 40 0.2 40 3.0 0.12 0.3 60 1.25 0.8 0.01 

0.05 

2.0 

0.6 

0.3 

0.1 

2 35 0.2 50 3.2 0.12 0.3 60 1.25 0.8 0.01 

0.05 

2.0 

0.6 

0.3 

0.1 

3 41 0.2 35 3.0 0.08 0.18 20 1.25 0.8 0.01 

0.06 

0.3 

0.2 

0.4 

0.4 

4 25 0.2 23 2.5 0.10 0.28 60 1.25 0.8 0.01 

0.05 

2.0 

0.6 

0.3 

0.1 

*Compressive strength is given for reference only, since no crushing was simulated in any of the examples.  
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6.2 Examples 

Example 1. Idealised sandwich panel.   

The first example is an idealised problem designed to illustrate the effects of using element shear scaling in the 

contact reduction function. This idealised specimen comprises a band of cracking material sandwiched between two 

bands of linear elastic material.  The upper and lower boundaries are assumed to be fixed to rigid platens via which 

the specimen is loaded, as shown in Figure 12. The analysis sequence involves applying a normal displacement to the 

upper platen (to form cracks in the central band of material) and then, without changing the normal displacement, 

applying a shear displacement. The three meshes used for the analysis are shown in Figure 13, in which he=100, 50 

and 25mm respectively. Analyses are performed ‘with shear scaling’ (i.e. using Hc from equation (25)) and without 

shear scaling (i.e. using H from equation (13)). 

 

The computed normal response, shown in Figure 14, does not change with the introduction of shear scaling, since no 

contact occurs in this phase of loading. Figures 15a & 15b show that mesh-dependent shear behaviour is present 

when contact shear-scaling is not included; however, it is eliminated when shear-scaling is included.     

 

 

Figure 12. Idealised arrangement considered in Example 1  
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Fig 13 Finite element meshes 
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Figure 14. Normal response (same with and without ‘shear scaling’) 

 

                          

Figure 15a. Shear response without ‘shear contact scaling’                  Figure 15b. Shear response with ‘shear contact scaling’ 

 

Example 2. Reinhardt’s cyclic tension test. 

In this example a comparison is made with data from Reinhardt ’s [27] LCLS (Large Compressive Lower Stress) test 

series on notched fracture specimens subjected to cyclic loading. The specimen and the mesh used for the analysis 

are shown in Figure 16.  
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Figure 16. Experimental arrangement and finite element mesh for Example 2. 

 

Figure 17 shows a comparison between the ‘average stress’ which, as in the original paper [27], is taken as the total 

reaction in the y direction divided by the area between the notches (50x50mm). A deformed mesh plot showing 

contours of the maximum crack opening displacement is given in Figure 18.  As mentioned in Section 2, the present 

model does not simulate the hysteresis behaviour seen in such experiments but aims to match the reloading response 

and to use this for both unloading and reloading.  Given this restriction, the model is considered to provide a good 

match to the experimental data. A final note on these results is that any apparent hysteresis in the numerical results 

is simply due to the fact that different relative-displacement values are used in the unloading and reloading parts of 

each cycle. 
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Figure 17. Cyclic tension experimental and numerical responses 

 

Figure 18. Deformed mesh plot at the final step showing crack opening displacements 

 

Example 3. Mixed mode tests of Jacobsen et al.  

Example 3 is based on a series of tests undertaken by Jacobsen et al. [23] on notched plain concrete specimens. As 

illustrated in Figure 19, these were first subjected to a normal opening displacement un0 and subsequently subjected 

to mixed mode loading with the ratio between normal and shear incremental displacements being tan(α). The series 

of tests with α=40
o
 is considered here. The relative shear and normal displacements across the crack were measured 

by both a series of clip gauges and by a DIC (Digital Image Correlation) system [23]. The finite element mesh used for 

the analyses is illustrated in Figure 20.    
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Figure 19. Experimental arrangement 

 

 

Figure 20. Finite element mesh 

 

 

The experimental and numerical results in terms of average shear and normal stresses across the central crack area 

(40x75mm on plan) versus their associated relative displacements are shown in Figure 21. These plots show that the 

model captures the shear contact behaviour exhibited in these tests with good accuracy, especially when the natural 

variability of experimental data for this type of test is considered.  In all cases the strains localised to the central band 

of elements, as illustrated in the deformed mesh plot shown in Figure 22, which shows the crack opening 

150 

80 

55 
Thickness 75mm 

Loaded to prescribed crack normal opening  un0  

Then loaded in mixed mode with ∆un/∆us =tan(α)  

Cases un0=0.025mm               α=40 � 60
o
 

                   0.040mm 

                   0.10 mm 

  



 30 

displacement at approximately un=0.4mm for the analysis case with un0=0.025mm. The numerical crack plots are 

consistent with the experiments, in which a dominant cracks formed between the notches. 

 

 

Figure 21. Shear and normal responses  

 

 

Figure 22. Deformed mesh showing the maximum crack opening for the un0=0.025mm analysis case.  

 

Example 4. Shear tests on a cracked concrete specimen by Walraven and Reinhardt  

The final example presents a simulation of one of the cracked concrete specimens tested by Walraven and Reinhardt 

[19]. The specimens used in these tests had a shear plane of 300x120 mm
2
 and were tested in a stiff testing frame 

with external restraint bars, which controlled the normal crack opening. Initial cracks were formed by using a splitting 

technique.  The test code a/b/c gives ‘a’ the concrete mix number, ‘b’ the nominal opening and ‘c’ the normal stress. 

The testing arrangement and the (somewhat idealised) 3D mesh used for the analysis are shown in Figures 23a and b 

respectively.  
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Figure 23a Testing arrangement.    Figure 23b Finite element mesh 

 

 

The experimental and numerical responses are shown in Figure 24. A deformed mesh plot showing contours of the 

major principal strain at the final load step is given in Figure 25. The numerical predictions lie largely between the 

results from two experimental tests with the same nominal opening displacement. A region where shear softening 

occurs before the coarse aggregate contact behaviour becomes dominant may be seen in the numerical results for 

both the shear and normal responses. Overall, the numerical results are considered to match the experimental data 

well.  
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Figure 24 Experimental and numerical results. 

 

 

Figure 25. Deformed mesh plot showing major principal strain contours at the final load step. 

 

6.3 Numerical convergence history with different degrees of closure transition. 

One of the main aims of the work presented here was to develop a rough crack contact model with improved 

robustness relative to models in which crack closure is modelled abruptly. To explore this further, example 4 is used 

for a convergence study in which the effect of varying the abruptness of shear crack contact on the solution 

convergence history is evaluated. This abruptness is governed by the parameter czn (see equation 18), which is 

normally fixed at a value of 9; however, it is varied here for the purpose of the present study from 5 (soft closure) to 

50 (abrupt closure). 
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The  effect of varying this parameter on the opening-closing uniaxial response is illustrated in Figure 26. This shows 

the results of a plane-stress analysis using a single 50x50 mm element in which a relative displacement in the y-

direction is prescribed. The material properties used, other than the czn values, are identical to those used in Example 

4.     

 

 

Figure 26. Direct opening - closing response curves for different closing parameters (czn). 

 

The specimen in example 4 was reanalysed using the above czn values. The steps requiring the greatest number of 

iterations to converge are those associated with the build up of shear contact. This occurs between increments  10 

and 15.  The convergence history for this range of increments is presented in Table 4 for all 3 analysis cases. 

 

It may be seen, by comparing results from the 3 cases for increments 11 and 12, that far fewer iterations are required 

for convergence when there is a smooth contact transition (i.e. when czn=5 or 9) than when abrupt crack contact is 

considered. 

 

A further point relates to the tangent matrix, for which the derivation was given in Section 5.2. This gives the 

consistent tangent matrix for all elements in which permanent cracks have formed. Such a tangent matrix should lead 

to quadratic equilibrium convergence, once the out of balance error becomes sufficiently small (e.g.  10
-2

) and all 

cracks have stabilised. The results in Table 4 suggest that this is indeed the case, since the results from the smooth 

contact analyses do tend towards quadratic convergence in the latter iterations of each step. 
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Table 4. Convergence history for selected increments 

czn=50 (abrupt closure) 

   

czn=9  (standard closure) 

   

czn=5  (soft closure) 

 

Increment Iter ψψψψf (%) Increment Iter ψψψψf (%) Increment Iter ψψψψf (%) 

10 1 4.70E+01 10 1 9.46E+00 10 1 9.46E+00 

10 2 2.35E+01 10 2 1.59E-01 10 2 1.58E-01 

10 3 1.04E+01 10 3 4.79E-03 10 3 4.78E-03 

10 4 4.47E+00 

10 5 2.92E-03 

11 1 1.13E+02 11 1 9.66E+01 11 1 9.58E+01 

11 2 9.47E+01 11 2 8.61E+00 11 2 8.61E+00 

11 3 1.37E+02 11 3 5.07E-01 11 3 5.09E-01 

11 4 1.94E+02 11 4 3.03E-02 11 4 3.04E-02 

11 5 1.85E+02 11 5 1.42E-04 11 5 1.58E-04 

11 6 1.31E+02 

11 7 2.89E+01 

11 8 1.60E+01 

11 9 3.14E-01 

11 10 8.35E-04 

12 1 1.13E+02 12 1 2.72E+01 12 1 2.45E+01 

12 2 4.11E+01 12 2 6.74E-01 12 2 9.49E-01 

12 3 4.23E+01 12 3 3.30E-02 12 3 4.24E-02 

12 4 4.88E+01 12 4 1.64E-03 12 4 1.94E-03 

12 5 1.38E+02 

12 6 1.24E+02 

12 7 1.28E+02 

12 8 1.09E+02 

12 9 1.22E+02 

12 10 7.30E+01 

12 11 1.43E+02 

12 12 3.27E+00 

12 13 1.43E+02 

12 14 2.38E+00 

12 15 1.26E-02 

12 16 3.03E-05 

13 1 2.10E+01 13 1 6.79E+01 13 1 4.16E+01 

13 2 3.22E+00 13 2 2.42E+00 13 2 6.46E-01 

13 3 8.25E-01 13 3 9.84E-02 13 3 2.02E-02 

13 4 4.89E-01 13 4 4.23E-03 13 4 7.27E-04 

13 5 1.63E-03 

14 1 8.17E+00 14 1 1.40E+01 14 1 1.92E+01 

14 2 1.26E+00 14 2 3.17E-01 14 2 3.47E-01 

14 3 2.68E-01 14 3 1.03E-02 14 3 1.57E-02 

14 4 7.55E-02 14 4 4.16E-04 14 4 7.01E-04 

14 5 1.07E-05 

15 1 3.57E+00 15 1 3.24E+00 15 1 2.69E+00 

15 2 3.31E-01 15 2 1.03E-01 15 2 8.71E-02 

15 3 8.94E-02 15 3 3.82E-03 15 3 2.99E-03 

15 4 2.46E-02 

15 5 4.19E-06 

 

ψf is the L2 norm of out of balance forces.  
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7. CONCLUSIONS 

A model framework that uses a split between damaged and undamaged components of a representative crack-plane 

and simulates both direct crack closure and shear contact (aggregate interlock) with the same mechanics provides a 

natural basis for representing the complexities of concrete crack behaviour. A new damage-contact crack-plane 

model, based on this framework, is presented that is applicable to discrete cracks as well as to embedded (smeared) 

crack-bands in continuum finite elements. 

 

Simulating abrupt crack closure in finite element concrete models can give rise to numerical difficulties but these can 

be alleviated by the introduction of a transition between open and closed crack states.  Furthermore, experimental 

data show that real crack closure in concrete is a gradual, rather than abrupt, process. Thus, including a smooth 

transition between open and closed crack states in a numerical model not only enhances numerical robustness but 

also improves accuracy. 

 

An effective contact surface can be derived from experimental tests on cracked concrete specimens in which cracks 

are formed under normal loading and subsequently loaded in shear. The effective contact surface, in relative-

displacement space, has the shape of round-nosed cone, centred on the normal relative-displacement axis and is 

conveniently expressed as an equation with the properties of a signed-distance function. The effective contact 

function provides a good basis for a rough crack contact model with the crack-plane tractions being computed from 

the function value and the elastic stiffnesses of a representative band of material.   

 

Experimental data show that both the shear stiffness and maximum shear stress developed across a crack-band 

loaded in shear reduce with increasing crack opening. This behaviour is therefore included in the numerical crack 

model presented. 

 

When a crack-plane model is adapted for continuum elements it is necessary not only to scale the normal stress–

strain damage evolution function, as in the crack-band model, but also to scale the contact reduction function. This 

important issue has been overlooked in previous work by the authors and by others.  

 

A new form for the consistent tangent matrix and associated stress recovery procedure (from that of Reference [16]) 

is required due to the introduction of the smoothed contact transition functions into the crack-plane model. 

 

The new model is able to represent a range of characteristic concrete cracking behaviour exhibited in experimental 

tests including; 

• Mode 1 and mixed mode crack formation and evolution; 

• Unloading and reloading behaviour under normal loading, including a gradual transition between open and closed 

crack states; 

• An increasing crack closure transition zone with increasing crack opening displacement; 

• Shear contact behaviour, or aggregate interlock, when open cracks are loaded in shear.  
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APPENDICES 

A. TRANFORMATION MATRIX 

The transformation matrix which gives the relationship between the crack-plane stresses and Cartesian stresses in 

reduced vector form is given by: 

 

1 2 3 1 2 2 3 1 3

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

1 1 2 2 3 3 2 1 1 2 3 2 2 3 1 3 3 1

2 2 2

1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

r r r 2r r 2r r 2r r

r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r

 
 

= + + + 
 + + +  

N                    (A1) 

 

which is derived from the tensor transformation
k lij i j klr rσ σ=�  

 
 

B. DERIVATION OF CONTACT TRANSITION FUNCTION

 

The aim is to derive a function which gives a smooth transition across a crack closure point. The equations are 

developed in terms of the one-dimensional damage-contact model illustrated in Figure B1.  The model without a 

smooth transition is represented by equation (B1) in which the stress (σ), relative displacement (u), stiffness (k) and 

damage parameter (ω  [0,1]∈ ) are all scalars. 

 

( ) [ ]1 u cku H(u) ku k H(u)k uσ ω ω= − + = +           (B1)   

 

where the Heaviside function H(u) =1 ∀u≤0  &  =0 ∀ u>0           . 

 

Figure B1. Standard and smoothed damage-contact response 

  

A function which gives a smooth transition in the gradient kT  ( where kT= d

du

σ )  of (B1) is as follows: 

1

2

z
T u c

utanh
u

k ( u ) k k

  −    = +  
  
 

             (B2) 

σ 

u 

1 

(1-ω)k 

1 

k 

Smoothed response 
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in which the parameter uz governs the size of the transition zone in u. 

 

An expression for a smoothed stress response may now be derived from the integral of this expression:  

( )
2

c lm
T u lm z

z z

k uu
( u ) k ( u )du k u u u u ln cosh ln cosh

u u
σ

        
 = = + − − ⋅ −    ∫                 

     (B3) 

 

in which ulm is a constant, the value of which is determined below.  The choice of integration constant is made to 

allow control over the region to which the transition is applied. 

 

As u�∞  σ(u)�kuu and therefore  ( ) lm
lm z

z z

uu
u u u ln cosh ln cosh

u u

         
− − ⋅ −           

          

�0    (B4) 

It is noted that 

 2z z
u z

u
lim u u ln cosh u ln( )

u→∞

   
− ⋅ =           .        (B5) 

Therefore, ulm may be determined from the following equation, which is only satisfied at ulm=∞ 

2lm lm

z z

u u
ln cosh ln( )

u u

  
− =   

  

  .         (B6)  

 

However, the error is 
2 lm

z

u

u
O( e )

−
  for ulm/uz>2, hence the value ulm/uz=mlm=7 gives acceptable accuracy. 

Thus, the transition function with limits to avoid a zero divide and yet which limits the error to 14(e )O
−

 
 is:  

( )
1

1
2

1 1
1

2 2

z
lm

zlm lm

z

lm z lm

z

ucosh
uu u(u)= ln                                       m

uu u cosh m

u

uu u
        = ln    

u u u cosh( m )u

u

λ

   
    − ∀ ≤  

−      

   
   

    − +     −           

lm
z

u         m
u

∀ >

      (B7)   

noting that ln(a)-ln(b)=ln(a/b)   and    
1

0
2a

cosh a
lim a ln

cosh m cosh( m )→∞

   
− + →       

          .
 

 

Using the above transition function in equation (B1) gives the following continuous function with a smooth response: 

( ) ( )1 lmku (u) k u uσ ω ωλ= − + −           (B8)   
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C. SHEAR CONTACT FUNCTION SCALING WITH ELEMENT SIZE. 

Assuming that the shear stiffness across a physical fracture process zone of width h is factored by the contact 

reduction function ( )1H u� , then the shear stress across this zone of material with shear modulus G, in terms of the 

shear displacement ( 2u� ), is: 

( )12 1 2
G

H u u
h

σ =� � �             (C1) 

Noting that the inelastic component of 2u�  is denoted 2u
�

,  (C1) may be written: 

( )12 2 2
G

u u
h

σ = −
�

� �             (C2) 

 

Equating (C1) to (C2), dropping all dependencies for clarity, and rearranging gives:  

( )
2

2
1

u
u

H
=

−

�

�              (C3) 

 

Using (C3) in (C1) and rearranging gives the following equation for the inelastic crack sliding displacement: 

 

( ) 12
2

1 H h
u

H G

σ−
=

��
            (C4) 

In a linear element of characteristic length ch�   with constant shear strain 12ε�   and inelastic strain 2
12

ch

uε =
�

�

�
,  

the associated shear stress is given by: 

12 12
ch

u
Gσ ε
 

= − 
 

�

��
�

            (C5) 

 

Substituting for 2u
�

 from (C4) into (C5) gives: 

( ) 12
12 12

1

ch

H h
G

HG

σ
σ ε

 −
= −  

 

�
��

�
           (C6) 

 

Rearranging gives: 

 

12 12cH Gσ ε= ��              (C7) 

 

in which the continuum form of the contact reduction function is given by: 

 
( )1

ch
c

ch

H
H

H H h
=

+ −

�

�
            (C8) 
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D. DAMAGE FUNCTION 

The crack-plane damage function d ( , )φ ζε�   is asymptotic to an equivalent strain friction surface and is orthogonal to 

the normal strain axis at its intercept with that axis, as illustrated in Figure D1.   

      ( ) ( )
2

2
2 2 2 2 2 211

d 11 12 132

 1
( , )    1 r 4r

2 r 2r

ε
ζ ε ζ

ζ ζ

µε
ϕ ζ µ ε ε ε ζ

    = + + − + + −
  

   

ε
�

� � ��      (D1) 

Or 

      eq( )ζ ζ= −ε�               (D2) 

 

The constants rζ and µε are the relative shear strain intercept and the asymptotic shear friction factor respectively. 

However, these are not the primary material constants used in model; rather, the more familiar and available stress 

counterparts of these parameters are used (See section 5.4). These are the relative shear stress intercept rσ  and the 

asymptotic friction factor µ, the former of which is defined as follows:  

rσ  = c/ft             (D3) 

where c is basic crack interface shear strength. 

 

The strain based damage parameters are then computed from the following equations: 

E

G

E
r r

G

ε

ζ σ

µ µ= ⋅

= ⋅

                      (D4a,b) 

                                  

 

                  
  Figure D1. Damage function in local strain space 
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