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Thesis summary 

Interactions between aboveground and root-feeding herbivores can be influenced by 

changes in plant traits, such as tissue chemistry and morphology. Environmental 

heterogeneity and perturbations also affect these plant-mediated interactions. 

Climate change is a multi-faceted phenomenon; increases in atmospheric carbon 

dioxide (CO2) concentrations lead to increased global mean temperature and an 

associated higher frequency of extreme weather events. These factors can 

potentially perturb ecosystem function by altering both plant–herbivore and 

herbivore–herbivore interactions.  

A detailed understanding of whether above–belowground interactions are affected 

by climate change remains lacking. In an attempt to fill knowledge gaps in this 

understudied area of ecology, this thesis investigates, through a series of glasshouse 

experiments, the effects of elevated CO2 and other aspects of climate change, such 

as altered phenology, on the interspecific interaction between the aboveground 

large raspberry aphid (Amphorophora idaei) and the root feeding larvae of the vine 

weevil (Otiorhynchus sulcatus), mediated by the shared raspberry (Rubus idaeus) 

host-plant.  

Under ambient climate conditions, reciprocal feeding facilitation was observed to 

occur between  aphids and vine weevil larvae feeding on raspberry, with the 

presence of one increasing the abundance of the other herbivore, and vice versa. 

This occurred regardless of plant cultivar and order of herbivore arrival on the plant. 

It is likely that this facilitative relationship is driven by over-compensatory plant 

growth in response to herbivory. Although tougher, adult vine weevils show a 

feeding preference for leaves grown in elevated CO2. Herbivory may be more 

influential than CO2 in determining plant–herbivore interaction outcomes. Aphids 

affect plant intraspecific competition to a greater extent than elevated CO2 by 

altering plant biomass of both infested and non-infested plants. In conclusion, this 

particular plant–herbivore system would seem to be relatively robust in the face of 

possible future CO2 concentration scenarios. 
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Chapter I – Introduction 

 

1.1 Introduction 

How organisms interact within an environment influences ecosystem function 

(Wardle et al., 2004a; Tylianakis et al., 2008; Van der Putten et al., 2009; Bardgett 

and Wardle, 2010). The nature of these ecological interactions may be direct 

(Walling, 2000), for example by physical interference (Denno et al., 1995), or 

indirect, usually mediated via a third organism, such as plant-mediated effects 

between two spatially separated herbivores (Gange and Brown, 1989; Scheu et al., 

1999; Bezemer et al., 2002; Bezemer et al., 2003; Van Dam et al., 2003; Wäckers and 

Bezemer, 2003; Bezemer et al., 2004; Van Dam et al., 2005). Increasing community 

complexity may alter the magnitude, and sometimes the direction, of the ecological 

interaction (Van der Putten et al., 2001; Wardle et al., 2004a; Bardgett and Wardle, 

2010; Megías and Müller, 2010; Heil, 2011). These interactions can be fragile and 

environmental stresses have the potential to modify the efficiency and overall 

function at both an individual and ecosystem level (Kimball et al., 1993; Watt et al., 

1995; Whittaker, 2001; Newman et al., 2003; Staley and Johnson, 2008).  

Plants and their herbivores interact in a number of ways; these interactions may be 

beneficial (Poveda et al., 2010) or detrimental (Van Dam, 2009) at either or both 

trophic levels. Herbivory may directly reduce plant fitness and population size, but 

may also shape plant interspecific interactions and promote diversity (Walling, 

2000). Herbivores may interact with other organisms in the same trophic level via 

the plant (Bardgett and Wardle, 2003; Poveda et al., 2005; Staley et al., 2007; Wurst 

and Van der Putten, 2007; Heil, 2011); thus herbivores feeding aboveground are able 

to interact with those feeding belowground, and vice-versa. The importance of 

herbivory in ecosystem function has long been recognised aboveground (Walling, 

2000); but the important role of belowground herbivores is becoming apparent 

(Brown and Gange, 1990; Wardle et al., 2004a; Johnson et al., 2008; Bardgett and 

Wardle, 2010). While a plethora of studies explore interactions between plants and 
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their herbivores (Walling, 2000), far fewer studies consider plant-mediated above–

belowground herbivore interactions. Fewer still have investigated how the drivers of 

anthropogenic-derived climate change (e.g. elevated CO2) may affect such above–

belowground interactions. Above- and belowground interactions play an important 

role in ecosystems and communities, and there is potential for elevated atmospheric 

CO2 levels to disrupt such interactions and, consequently, ecosystem processes 

(Bazzaz, 1990; Harrington et al., 1999; Whittaker, 2001; Walther et al., 2002; Staley 

and Johnson, 2008). 

Environmental stress can originate from both natural (e.g. drought and flooding) and 

anthropogenic (e.g. intensified grazing pressure, pollution and climate change) 

causes. The latest Intergovernmental Panel on Climate Change (IPCC) scenario 

predictions suggest a potential increase of atmospheric CO2 concentrations to 970 

ppm by 2100, with a rise in mean global temperature of up to 5.8°C (IPCC, 2013). 

Some organisms respond idiosyncratically, which results in many interactions being 

species-specific, making feeding guild and niche generalisations difficult (Wurst and 

Van der Putten, 2007). How organisms respond and adapt to the impacts of these 

environmental stresses is of immediate relevance to conservation, biodiversity and 

crop security (Cammell and Knight, 1992; Rogers and Dahlman, 1993; Rogers et al., 

1995; Gregory et al., 2009; Van der Putten et al., 2009).  

 

1.2 Direct plant–herbivore interactions 

The interactions between herbivores and their associated plant hosts have been well 

studied in a wide variety of ecosystems (Walling, 2000). While the exact nature of 

the relationship is often interaction-specific, some general trends emerge. High 

levels of herbivory are detrimental to a plant’s reproductive success (e.g. aphids can 

reduce seed production by up to 60% (Moran and Whitham, 1990)), however, in 

some cases the plant may benefit from moderate herbivory (Van Dam et al., 2005). 
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On being grazed, plants often show compensatory growth, both above- (Walling, 

2000) and belowground (Andersen, 1987), but this growth is dependent on the 

degree of herbivory experienced (McNaughton et al., 1998). This happens with both 

root and foliar herbivores; for example, root herbivory can increase plant nectar 

production (Wäckers and Bezemer, 2003), which, in turn, attracts pollinators 

beneficial to the plant (Poveda et al., 2005). Belowground herbivory can also 

stimulate growth of existing roots (Gange and Brown, 1989), whilst also initiating 

new root growth (Andersen, 1987), mainly in the form of fine, lateral roots. Both 

above- and belowground herbivores can induce changes in plant nutrient allocation 

and root exudation (Bardgett et al., 1998; Poveda et al., 2005; Johnson et al., 2009). 

For instance, aboveground herbivory by the grasshopper Romalea guttata increased 

the amount of carbon allocation to roots, whilst decreasing shoot allocation in 

maize, Zea mays (Holland et al., 1996). Plant nutrient allocation is altered not only by 

the herbivore itself, but also by the site of herbivory (Bezemer et al., 2003; Bezemer 

et al., 2004). Grazing of young shoots, for example, can elicit a greater nutrient 

allocation response over herbivory of more mature leaves (Bezemer et al., 2003). 

This response can be further altered when the plant is subjected to both, rather than 

one of, above- and belowground herbivory (Smith, 1977). Plant characteristics such 

as size, nutrient content and water concentration (Davidson et al., 1970; Staley et al., 

2007) can all further influence the outcome of plant–herbivore interactions.  

As well as showing compensatory growth in response to herbivory, plants may also 

modify their production of defence chemicals (Van der Putten et al., 2001; Van Tol et 

al., 2001; Kessler and Baldwin, 2002; Wäckers and Bezemer, 2003; Rasmann and 

Turlings, 2007; McCall and Fordyce, 2010; Rasmann et al., 2011; Van Dam and Heil, 

2011). These chemicals may act as herbivore repellents (Van Dam, 2009) or 

attractants to recruit predators to the herbivore population (Rasmann and Turlings, 

2007). Plants are also known to induce defence chemicals in areas not yet subjected 

to herbivory (Bezemer et al., 2004). Chemical defence compounds can, for example, 

upon herbivory, be induced systemically in undamaged plant tissue elsewhere (Erb et 
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al., 2009; Hiltpold et al., 2011), or be translocated from the point of attack (Heil and 

Ton, 2008; Kaplan et al., 2008a). Feeding by a folivore, for example, may elicit an 

increase in terpenoid concentrations in roots as well as leaves (Wäckers and 

Bezemer, 2003; Bezemer et al., 2004). The Optimal Defence Theory suggests that, in 

general, a plant will invest the highest concentration of defence chemicals in tissues 

that are of greater energetic cost if removed; for example, young shoots (McCall and 

Fordyce, 2010). This, however, can be altered by herbivory with the plant 

concentrating terpenoid concentration in damaged tissue to prevent further damage 

(Bezemer et al., 2004). The exact nature and concentration of secondary chemicals 

appear to be dependent on both herbivore species identity and feeding location on 

the plant (Van Dam, 2009).  

Plant responses may also be herbivore species dependent. Leaf-chewers, for 

example, generally elicit a greater plant defence chemical production than phloem-

feeding insects such as aphids (Masters, 1995; Wardle et al., 2004b; Wurst and Van 

der Putten, 2007; Kaplan et al., 2009). This is probably a consequence of the greater 

mechanical damage caused by the chewer feeding strategy. Moreover, herbivore 

guilds are affected differentially by defensive chemicals. Sap-sucking insects, such as 

aphids, may circumvent many plant defences as there are fewer defence chemicals 

present in plant phloem than leaf tissue (Johnson, 2011). Consequently, aphids are 

generally affected less than leaf-chewing caterpillars (Walling, 2000), although there 

is some evidence to the contrary (Kaplan et al., 2009). 

Compared to aboveground, relatively little is known about belowground herbivore–

plant interactions (Johnson et al., 2012a). Belowground biota has suffered from the 

“out of sight, out of mind” attitude (Hunter, 2001). In many field studies, recognising 

the presence of a belowground herbivore is difficult unless there is a noticeable 

negative aboveground effect (e.g. wilting). Research over the past 20 years has 

begun to correct the dearth of information available on belowground interactions. 

This has led to a much better appreciation of the importance of the rhizosphere. 



6 

 

 

Chapter I – Introduction 

Root herbivores, particularly nematodes, play the role of both “hero” and “villain” 

(Johnson et al., 2008). They are frequently a major pest (Moorhouse et al., 1992), but 

also have been used successfully as biocontrol agents against weeds (Blossey and 

Hunt-Joshi, 2003). In fact, their application as a biocontrol agent has proved to be 

more effective than their aboveground herbivore equivalent (Blossey and Hunt-Joshi, 

2003). In the field, soil biota abundance can vary markedly between relatively 

proximal plants. The spatial distribution of root-feeding invertebrates is often 

patchy, mainly as a result of the selective oviposition by the adults for host-plant 

suitability (Brown and Gange, 1990; Moorhouse et al., 1992). Given this patchy 

distribution, soil invertebrate larvae show a considerable degree of density 

dependent competition in terms of significantly reduced growth rates and increased 

mortality (Clark et al., 2012a). This competition can be moderated by plant 

palatability with less palatable plants supporting fewer, but heavier, larvae than 

more palatable plants (Clark et al., 2012a). Slower growing female larvae also suffer 

more under high larval densities, producing a skewed sex ratio (Gange and Brown, 

1989).   

Interactions between plants and soil biota can occur at an individual plant, 

population and community level (Masters et al., 2001; Scheu, 2001; Wäckers and 

Bezemer, 2003; Wardle et al., 2004b). There is, for example, evidence that 

aboveground herbivory stimulates nutrient cycling and plant productivity (Van der 

Putten et al., 2001; Bardgett and Wardle, 2003; Bardgett and Wardle, 2010) with 

defoliation eliciting increases in root exudation (Bardgett et al., 1998). This, in turn, 

increases soil biotic activity (Bardgett et al., 1998; Newington et al., 2004; Poveda et 

al., 2005), and ultimately nutrient availability to the plant (McNaughton et al., 1998; 

Wardle et al., 2004b). There is mixed evidence of how aboveground herbivory affects 

root productivity, with positive (Milchunas and Lauenroth, 1993), negative (Guitian 

and Bardgett, 2000) and neutral (McNaughton et al., 1998) effects being reported, 

implying there is no consistent belowground plant response to aboveground 

herbivory.  
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1.3 Indirect herbivore interactions 

It was Brown and Gange (1990) who predicted that above- and belowground 

herbivores would interact indirectly as a consequence of sharing a common food 

source. They suggested that such an interaction would be founded around the fact 

that root-feeding causes water stress, and that stressed plants are more susceptible 

to herbivory (Brown and Gange, 1990). A review by Scheu (2001) highlighted the 

importance of the structure and activity of belowground biota when considering the 

aboveground food web, and identified belowground herbivores as potential drivers 

in aboveground processes with respect to both plant and herbivore communities.  

Two hypotheses were originally postulated to describe the plant-mediated 

interaction between above- and belowground herbivores. The first is the ‘plus-

minus’ response suggested by Masters et al. (1993), where aboveground herbivores 

benefit at the expense of root-feeders. This was later modified by Bezemer et al. 

(2002) as the Stress Response Hypothesis (Figure 1.1). The proposed mechanism is 

that root-herbivore damage impairs the uptake of sufficient water and nutrients. 

This induces a nutrient and water ‘stress’ on the plant which results in the plant 

foliage containing a higher concentration of dissolved carbohydrates and amino 

acids, improving the foliar nutritional quality for aboveground herbivores. The 

increase in abundance and/or feeding rate of foliage-feeding insects causes the plant 

to re-allocate nutrients for compensatory aboveground plant growth at the expense 

of root growth, thus reducing the abundance and quality of the root-feeders food 

source.  
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Figure 1.1: The Stress Response Hypothesis; solid lines represent a direct effect, 

dotted an indirect effect (adapted from original Figure 1 in Masters et al., 1993). 

The second hypothesis is the Defence Induction Hypothesis (Figure 1.2), also 

proposed by Bezemer et al. (2002). Belowground herbivory can stimulate a plant to 

produce defensive compounds that are translocated to other parts of the plant to 

prevent or retard further herbivory or, alternatively, synthesised in situ in the leaves. 

This results in a negative effect of root-feeders on folivores, and a null effect for the 

reciprocal interaction. Various published studies support both the Stress Response 

and Defence Induction Hypotheses (e.g. Gange and Brown, 1989; Soler et al., 2005). 

Although the two hypotheses suggest differing results of above–belowground 

interactions, they may not be mutually exclusive and can occur in the same study 

system (Johnson et al., 2008). It has also been noted that when a plant is attacked by 

both above- and belowground herbivores, the defence induction tends to be greater 

in the aboveground tissue (Bezemer et al., 2004; Kaplan et al., 2008b). 



9 

 

 

Chapter I – Introduction 

 

Figure 1.2: The Defence Induction Hypothesis; solid lines represent a direct effect, 

dotted an indirect effect. 

Even with these two hypotheses, the consequences of plant-mediated interactions 

between the two herbivores cannot be entirely predicted and individual species 

within guilds react differently to various herbivore competitors (Johnson et al., 

2012a). The same interacting herbivore species, for instance, can react differently 

dependent on the shared host-plant species (Scheu et al., 1999; Johnson et al., 2008; 

Johnson et al., 2009).  

The majority of empirical studies to date have focussed on the effect an 

aboveground herbivore has on a belowground herbivore; few have investigated the 
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reverse relationship (Johnson et al., 2012a). Emerging patterns in above–

belowground interaction outcomes may also be a result of this different emphasis of 

various studies. Many studies, for example, have been carried out on root-chewing 

insects, interacting with either leaf-chewing or sap-sucking aboveground insects; 

other guilds have been largely ignored (e.g. stem borers). Above–belowground 

interactions are not just limited to insect herbivores. There are also a number of 

studies investigating the relationship between belowground herbivorous nematodes 

and aboveground insect herbivores, with both negative (Bezemer et al., 2005) and 

positive (Kaplan et al., 2008b) results reported.  

A recent meta-analysis (Johnson et al., 2012a) determined that the sequence of 

herbivore arrival on the plant was the most important factor governing the 

consequence of above–belowground herbivore interactions. In general, 

belowground herbivores had a positive effect on aboveground herbivores, but only 

when arriving simultaneously on the plant. When root feeders arrived either before 

or after the aboveground herbivores, the effect was neutral. More specifically, 

belowground herbivores had no significant effects on aboveground herbivores in a 

number of performance parameters (e.g. relative growth rate, development time, 

mass or size gain, fecundity, abundance and offspring mass). Reciprocally, 

aboveground herbivores had a negative effect on belowground herbivore survival 

and a positive effect on population growth rate, whilst mass, abundance and 

fecundity all remained unaffected.  

Johnson et al.’s meta-analysis also found insect order to be an important factor in 

determining above- and belowground herbivore interaction outcomes. For example, 

if the belowground herbivore was a Diptera, it had a negative effect on aboveground 

herbivores. Coleoptera belowground herbivores, on the other hand, had a positive 

effect on aboveground Homoptera, but no significant effect on Lepidoptera, 

Coleoptera, Diptera and Hymenoptera. Exploring the reciprocal interaction (e.g. 

aboveground herbivore effects on belowground Coleoptera), only aboveground 
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Coleoptera had a negative effect. All other taxonomic groups showed neutral effects. 

The outcomes of aboveground–belowground herbivore interactions also tended to 

be influenced by the “type” of study. Aboveground herbivores had a negative 

influence on belowground herbivores in a laboratory context, but there was no 

relationship in field studies. In contrast, aboveground herbivores remained 

unaffected by belowground herbivores, regardless of study type. The type of plant 

species mediating the interaction also influenced the interaction outcome. 

Aboveground herbivores negatively affected belowground herbivores when 

attacking an annual, but not a perennial, plant species. Plant type had no impact on 

the effect of belowground herbivores on aboveground herbivores.   

In nature, different plant genotypes, and resulting diversification of phenotypes, can 

alter plant–herbivore interactions (Kumschick et al., 2013). Similarly, crop plants 

often exist as multiple cultivars, each possessing individual characteristics that make 

them more suitable for certain environments/conditions than others. In raspberry 

(Rubus idaei), for example, cultivars vary in their susceptibility to aphid infestation. 

This resistance can arise from increased number of trichomes, thicker leaf cuticle or 

the possession of resistance genes (Knight et al., 1959; Keep and Knight, 1967; Hall et 

al., 2009; McMenemy et al., 2009; Martin and Johnson, 2011). Host-plant 

susceptibility appears to play a large role determining the outcome of above- and 

belowground herbivore interactions (Moran and Whitham, 1990). When feeding on 

susceptible plants, for example, aboveground galling by the aphid Hayhurstia 

atriplicis reduced root-feeding aphid Pemphigus betae numbers by 91%. When 

feeding on a resistant plant, however, H. atriplicis populations were reduced and had 

no effect on P. betae populations (Moran and Whitham, 1990). This suggests that 

both above- and belowground plant defence mechanisms are inherently linked, as 

are the herbivores that are affected by these defensive compounds (Kaplan et al., 

2008a). 
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Relationships between above- and belowground biota are not restricted to 

interacting herbivores; adjacent and higher trophic levels may also be affected 

(Scheu, 2001; Van der Putten et al., 2001; Van Tol et al., 2001; Van Dam et al., 2003; 

Wardle et al., 2004b; Bezemer et al., 2005; Soler et al., 2005; Rasmann and Turlings, 

2007; Soler et al., 2009; Megías and Müller, 2010; Heil, 2011). Belowground 

herbivory has been shown, through altered plant quality, not only to affect the 

oviposition behaviour of butterflies (Soler et al., 2010), but also various parasitoids 

attacking the herbivore (Masters et al., 2001; Soler et al., 2005; Rasmann and 

Turlings, 2007). Similarly, detritivores may also affect aboveground herbivore 

performance (Scheu et al., 1999; Bonkowski et al., 2001; Newington et al., 2004; 

Megías and Müller, 2010). For instance, in one study system detritivores decreased 

aphid and foliar herbivore abundance aboveground (Megías and Müller, 2010).  

The importance of combining both above- and belowground elements has already 

been highlighted as a means of improving our understanding of multitrophic ecology 

and evolution (Van der Putten et al., 2001; Johnson et al., 2008; Soler et al., 2009), 

and the extent to which one trophic factor influences the other via the host-plant. As 

implied earlier, above–belowground interactions are affected by a range of 

anthropogenic factors. Of these, global climate change is considered a major player 

(Van der Putten et al., 2004; Staley and Johnson, 2008); the next section considers 

the effect of one of the causal factors of climate change, enhanced atmospheric 

carbon dioxide levels, on above–belowground interactions.  

 

1.4 Effects of elevated CO2 on plants and herbivore interactions 

Since the Industrial Revolution, atmospheric CO2 concentrations ([CO2]) have risen by 

around 30% from 280 ppm to 400 ppm (IPCC, 2013). This has been attributed mainly 

to an increase in anthropogenic activity, notably increased fossil fuel consumption 

and deforestation, and, to a lesser extent, increased agriculture and land-use 
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changes. The recent IPCC predictions suggest that global CO2 concentrations will 

increase further from the current level of 400 ppm to between 540-970 ppm by 

2100, depending on various emission scenarios (IPCC, 2013). These predictions are 

based on the carbon cycle data and climate drivers mentioned previously (e.g. fossil 

fuel usage). Based on these socio-economic “storylines”, a number of different 

climatic scenarios have been modelled. Conservative models (e.g. B2) are based on 

atmospheric CO2 stabilising and continuing at current levels for the next century. 

Other models (e.g. A2) predict atmospheric CO2 concentrations, based on an 

increasing rate of carbon cycling (IPCC, 2013). This section of the introduction 

addresses the empirical evidence for the effects of elevated atmospheric CO2 on 

plants, and how it has been shown to affect the herbivores that feed upon them. It 

then continues to look at the effect this may have on herbivore–herbivore 

interactions, specifically above–belowground herbivore interactions.  

 

1.4.1 Effects of elevated CO2 on plants 

Carbon dioxide is a major driving force in changing biotic activity (Fajer, 1989) and 

there are numerous reviews of the effects of CO2 on plants (Bazzaz, 1990; Kimball et 

al., 1993; Rogers and Dahlman, 1993; Robinson et al., 2012). This section 

concentrates on the empirical evidence describing changes to plant chemistry and 

physiology that may affect herbivores and above–belowground species interactions. 

It is widely accepted that elevated CO2 benefits plants, but there are major 

quantitative differences in effect size (Ainsworth and Long, 2005). Plants grown in 

elevated CO2 environments tend to have a significantly larger biomass, with 

increased C:N ratios and decreased nitrogen concentrations in their tissues. 

Concentrations of tannins and other phenolic compounds are also enhanced (Stiling 

and Cornelissen, 2007). Carbon dioxide enrichment often increases plant productivity 

(Bazzaz, 1990), both below- and aboveground. Elevated CO2 increases root growth 
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and root exudation in a wide range of plant species including trees (Norby, 1994; 

Janssens et al., 1998), legumes (Johnson and McNicol, 2010) and grasses (Stulen and 

den Hertog, 1993). Increased photosynthesis aboveground increases the availability 

of nutrients which, in turn, allows greater exploratory growth of roots. Elevated CO2 

alters host-plant quality by decreasing leaf nitrogen concentration (through dilution, 

as there is more tissue but the same amount of nitrogen), whilst increasing both 

carbohydrate and phenolic concentrations (Robinson et al., 2012). The C:N ratio can 

also increase because less nitrogen is transferred to ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCo), an enzyme that plays a major part in carbon 

fixation (Newman et al., 2011). This occurs because the efficiency of RuBisCo to 

convert CO2 to carbohydrates increases in a higher atmospheric CO2 environment, 

therefore fewer RuBisCo molecules need to be synthesised (Jacob et al., 1995). 

RuBisCo constitutes a large component of plant nitrogen, therefore if there is less 

RuBisco, plant nitrogen will be lower, thus increasing plant C:N (Jacob et al., 1995). 

Plant water content remains unaltered by elevated CO2 (Bezemer and Jones, 1998). 

Elevated CO2 has been found to increase plant uptake of phosphates from the soil 

(Lambers, 1993), a consequence, at least in part, of elevated CO2 increasing the 

number of mycorrhizae and rhizosphere bacteria (Lambers, 1993).  

 

Although atmospheric CO2 enrichment usually stimulates plant growth and yield 

(Rogers and Dahlman, 1993), the growth of both roots and shoots can be 

disproportionate (Rogers et al., 1995). The root to shoot ratio in crop plants has been 

shown to increase in 59.5%, remain unchanged in 3% and decrease in 37.5%, of 

studies under conditions of elevated CO2. Plant growth and yield have typically 

increased more than 30% with a doubling of CO2 concentration (Rogers et al., 1995). 

Several studies have suggested that under conditions of water-stress, the CO2 

growth stimulation is as large, or even larger, than under well-watered conditions 

(Stulen and den Hertog, 1993). The direct CO2 effect will compensate, at least to a 
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degree, for a hotter drier climate under predicted future conditions (Rogers and 

Dahlman, 1993; Rogers et al., 1995). 

 

Elevated CO2 not only affects plant development aboveground, but also growth and 

morphology belowground. Enhanced atmospheric CO2 leads to an increase in root 

production, length and biomass (Stulen and den Hertog, 1993). For example, 

seedlings of Pinus echinata grown in elevated CO2 allocated proportionally more 

photosynthate to fine roots, produced larger fine root mass and had higher 

mycorrhizal density than plants grown in ambient CO2 (Norby et al., 1987). Elevated 

CO2 can stimulate root growth and activity, and provide a positive feedback on plant 

growth (Norby, 1994), along with an increase in short-term root exudation (Norby et 

al., 1987) and increased root respiration rates (Janssens et al., 1998).  

 

1.4.2 Effect of CO2 on herbivore-plant interactions 

While the predicted increase in atmospheric CO2 may not directly affect insect 

herbivores, it is likely to affect them indirectly through alterations in host-plant 

fitness (Bazzaz, 1990). Insect herbivore responses to elevated CO2 have shown both 

increases and decreases in abundance (Watt et al., 1995; Bezemer et al., 1999; 

Hughes and Bazzaz, 2001). Insect responses to elevated CO2 are not general, and 

many plant–insect interactions may be unique and unpredictable. Some differences 

can, however, be explained, with insects responding positively to elevated CO2 

levels, until they become nitrogen–limited (Newman et al., 2003). 

As productivity of C3 plants increases under elevated CO2 conditions (Sudderth et al., 

2005), so does the intensity of feeding of their associated herbivores (Lincoln et al., 

1986). Nitrogen levels are often a limiting factor in ecosystems, restricting both plant 

growth and herbivore abundance (Bazzaz, 1990). Elevated CO2 decreases foliar 

nitrogen concentrations and, as a result, herbivores tend to increase their 

consumption rate (Bazzaz, 1990).  
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Populations of some phloem-feeders may not be affected adversely by increased CO2 

concentrations (Hughes and Bazzaz, 2001; Gao et al., 2008; Sun and Ge, 2011); in 

other cases, they benefit (Awmack et al. 1997; Bezemer and Jones, 1998). Aphids, for 

example, may be able to compensate for changes in host-plant quality caused by 

elevated CO2 by altering feeding behaviour or by synthesising amino acids via 

symbionts (Hughes and Bazzaz, 2001). There is little evidence that aphid herbivory, 

even at high levels, will substantially modify the response of plants to elevated CO2 

(Hughes and Bazzaz, 2001), for instance, by reducing plant biomass gains at elevated 

CO2. Moreover, comparisons between different experimental systems (field versus 

laboratory) show that long-term aphid population responses to elevated CO2 cannot 

be reliably predicted from detailed measurements on individual aphids (Bezemer et 

al., 1999). 

Another way that herbivores might be affected by elevated CO2 is increased 

development time and slower overall growth (Traw et al., 1996). This slower growth 

has, however, been predicted to reduce herbivore fitness because of an increased 

exposure time to potential predators (Bale et al., 2002; Thomson et al., 2010). Insect 

herbivores may also not be able to complete their seasonal development within a 

given time period (Bale et al., 2002). It may be the case that the predicted negative 

effects of elevated CO2 on herbivores are mitigated by an increase in temperature 

that is also associated with climate change (Zvereva and Kozlov, 2006).  

Stiling and Cornelissen (2007), in a meta-analysis, highlighted the general trends of 

the effect of elevated CO2 on plant–herbivore interactions. Increased CO2 

significantly increases both relative plant consumption rates and total consumption 

by certain herbivores, for instance the beetle, Phratora vitellinae (Veteli et al., 2002); 

this is coupled with an extended herbivore development time, mainly due to an 

altered C:N ratio. Elevated CO2 also significantly decreases herbivore abundance, 

relative growth rate, conversion efficiency and pupal weight (Stiling and Cornelissen, 

2007). An increase in the accumulation of phenolic compounds in plants has also 
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been predicted when they are grown in elevated CO2 (Robinson et al., 2012). This 

occurs as a result of limited nutrients, rather than as a direct effect of elevated CO2 

(Lambers, 1993). Elevated CO2 stimulates photosynthesis, and this increase in carbon 

production appears to dilute leaf protein concentrations (Lincoln, 1993). This may 

change the feeding behaviour of some insects under increased CO2, but these 

changes vary considerably across species (Knepp et al., 2005). For example, the same 

herbivore can respond differently to two closely–related plant species under 

elevated CO2; the relative growth rate of gypsy moth larvae (Lymantria dispar) 

feeding on yellow birch (Betula allegheniensis) grown in elevated CO2 was lower than 

for those on grey birch (B. populifolia) (Traw et al., 1996). Like many studies, 

conflicting evidence has been identified and elevated CO2 has also been shown to 

have no significant impact on herbivore fitness (Díaz et al., 1998). 

Phenology, the timing of events in the natural environment, is susceptible to climate 

change. This has mainly been attributed to increased atmospheric temperature (a 

result of increased atmospheric CO2) decreasing the number of degree days required 

to attain certain stages of development (Bale et al., 2002). This has been observed 

for a wide range of species across many taxa (Gordo and Sanz, 2005; Pearce-Higgins 

et al., 2005; Thackeray et al., 2010). Moreover, these changes in phenology have 

been observed to affect species’ interactions, as climate change can have 

disproportionate effects on different trophic levels (Voigt et al., 2003). The effect of 

altered phenology can lead species interactions to become decoupled, affecting the 

organisms involved in a negative way (Hunter, 1990). In extreme cases, this 

decoupling may lead to an increased extinction risk (Singer and Parmesan, 2010). 

Some species interactions are affected by this alteration in synchrony, whereas 

others remain relatively unaffected with different trophic levels having reacted 

proportionally to the environmental regime shift (De Lucia et al., 2012). Organisms 

also have the potential to adapt to this change in phenology; for the winter moth 

(Operophtera brumata) (Van Asch et al., 2007) feeding on oak, although the moth 

phenology was altered by increased temperature, the synchrony between the 
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herbivore and the oak remained intact (Buse and Good, 1996). It is not just increased 

temperature that can cause alterations in phenology. Increased CO2 can bring 

forward flowering phenology with its associated effects on nectar production; this 

could potentially affect pollinators that rely on this resource as a food source 

(Erhardt and Rusterholz, 1997).  

Changes in host-plant quality arising from CO2-enrichment of the atmosphere tend 

to affect insect herbivores differently according to their mode of feeding (Robinson 

et al., 2012). Phloem-feeders and leaf-scrapers are the only two insect guilds to show 

a positive response to elevated CO2, other feeding guilds show either a negative or 

null response (Robinson et al., 2012). Population sizes of these two guilds generally 

increased in elevated CO2 and development time of phloem-feeders was reduced by 

17% (Bezemer and Jones, 1998). In contrast, Stiling and Cornelissen (2007) concluded 

that no significant differences were observed among insect herbivore guilds in their 

response to elevated CO2. 

Compared with what is known of the effects of elevated CO2 on crop physiology and 

yield, little is known of crop–pest interactions under predicted climate change 

scenarios (Gregory et al., 2009). The prevalence of some insect pests is predicted to 

change under conditions of climate change; with milder winters, pest species are 

expected to increase their range by colonising more northerly latitudes and higher 

altitudes (Cammell and Knight, 1992). Elevated CO2 may accelerate the breakdown of 

crop resistance to insect pests by compromising expression of resistance genes. 

Martin and Johnson (2011) found that when investigating the effects of elevated CO2 

on raspberry, plant growth rates significantly increased regardless of cultivar. There 

is also some evidence suggesting that raspberry plants containing the A1 gene, which 

confers some resistance to aphid herbivory, were more susceptible to aphid attack 

when grown in an elevated CO2 environment. In these conditions, aphid population 

size doubled and individuals were 38% larger compared with those at ambient CO2. 

Aphid performance on plants containing the A1 gene grown at elevated CO2 was 



19 

 

 

Chapter I – Introduction 

therefore similar to that of aphids reared entirely on susceptible plants under either 

CO2 treatment, suggesting resistance had been overcome at elevated CO2. Aphids 

feeding on another cultivar possessing the more effective A10 resistance gene, 

however, showed no response to elevated CO2, illustrating that different raspberry 

cultivars may fare differently under a future climate. Other studies have also 

illustrated that CO2 does not alter plant resistance to herbivory (e.g. Lau and Tiffin, 

2009). These latter authors found that plants grown in elevated CO2 are generally 

less tolerant to herbivory and are unable to compensate for herbivory in terms of 

biomass loss compared to ambient plants.  

Limited research has been conducted on the effects of elevated CO2 on root 

herbivores and belowground processes. Soil organisms are, to a large extent, 

buffered by the physical nature of the soil environment and are therefore less 

susceptible to changes in climate than organisms aboveground (Staley and Johnson, 

2008). As CO2 concentrations are already high in the soil (up to 1000 ppm), mainly 

due to natural belowground processes, such as root respiration (Parry, 1992; Rogers 

et al., 1995; Staley and Johnson, 2008; Bardgett and Wardle, 2010), predicted 

changes in atmospheric CO2 may not have such a strong effect on soil biota as on 

aboveground organisms. Elevated CO2 has, however, been shown to increase root 

growth (Norby et al., 1987; Bazzaz, 1990; Rogers et al., 1995; Janssens et al., 1998), 

suggesting that elevated CO2 would increase food resources for root herbivores. 

Specifically, the stimulation of lateral root growth by elevated CO2 (Janssens et al., 

1998), which are typically relatively fine structures may benefit smaller or early instar 

root-feeders. Other abiotic factors may have greater direct effects on soil 

invertebrates than elevated CO2. Many invertebrates are, for instance, highly 

sensitive to desiccation (Zvereva and Kozlov, 2006; Staley et al., 2007), hence 

increased temperatures and other weather extremes arising from climate change 

may be more detrimental than elevated CO2 itself. Increased temperatures have, for 

example been shown to increase mortality, decrease distribution and affect the 

phenology of belowground herbivores (Staley and Johnson, 2008).  
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Of the few studies that have explored the effects of elevated CO2 on root feeders, 

one showed that populations of vine weevil larvae feeding on the roots of 

raspberries in elevated CO2 decreased in number by approximately 33%, and their 

body mass by 23% (Johnson et al., 2010). This was attributed to a decrease in root 

biomass of 16% in elevated CO2 conditions. The study also noted that weevils 

induced an increase of root phenolic concentrations at ambient CO2, but a decrease 

at elevated CO2, which also may explain the negative effect on weevil larvae 

observed. 

Even fewer studies have investigated the consequences of climate change for above–

belowground herbivore interactions; those that do, provide no evidence of a 

directed response. For example, the interaction between the root-feeding 

(Pemphigus populitransversus) and shoot-feeding (Aphis fabae fabae) aphids, on 

Cardamine pratensis was unaffected by CO2 (Salt et al., 1996). Root herbivore 

populations were always smaller in the presence of an aboveground herbivore 

regardless of the CO2 environment. A second study investigated the conspecific 

interaction between aboveground adults and belowground larvae of the clover root 

weevil (Sitona lepidus) (Johnson and McNicol, 2010). Elevated CO2 increased leaf 

consumption (due to compensatory feeding) by adult weevils but resulted in lower 

rates of oviposition. Despite reduced rates of oviposition, larval survival was much 

greater at elevated than at ambient CO2 levels, potentially due to increased 

nodulation (increased food source) of the host-plant (Trifolium repens) under 

elevated CO2 conditions.  

 

1.5 Herbivore–plant study system 

Historically, plant–herbivore interactions have been studied in both field and 

laboratory environments. Each approach has its merits and downfalls. Laboratory 

microcosm experiments are a way of studying organisms in highly controlled 
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environments, and therefore, although artificial, offer a number of advantages over 

field studies. Their easily replicable design makes them ideal for experiments 

investigating above–belowground interactions. Microcosms have been criticised as 

not being truly representative of the field. It is important to note that the objective 

of microcosm experiments is not necessarily to replicate “natural” conditions, but to 

identify interactions and mechanisms in a simplified and controlled manner (Lawton, 

1998). The results from such work can then be tested under natural conditions to 

assess the reliability and relevance of the findings.  

 

1.5.1 Raspberry (Rubus idaeus L.) 

According to the Food and Agriculture Organisation of the United Nations, the 

United Kingdom is currently the sixth largest global producer of raspberries, making 

it an important crop for the UK economy. Over the past 20 years, raspberry 

production has almost doubled, but the area farmed for the crop has decreased by 

66% (FAO, 2014). The fact that raspberry farms have become fewer in number but 

larger in area, may make them more susceptible to pest outbreaks which will 

consequently spread quicker throughout the crop. This emphasises the need for 

greater understanding of the potential impacts of pests on the crop under more 

natural conditions. Raspberry plants (Figure 1.3) also exist as a number of cultivars 

that possess resistance genes making some varieties less susceptible to herbivory 

than others (Hall et al., 2009). These cultivars have fared well at reducing the 

number of pest species, including the large raspberry aphid, which can successfully 

feed on them. The exact mechanism behind the resistance is still unknown, but it is 

thought to be associated with the thickness of leaf epicuticular wax (McMenemy et 

al., 2009).   
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Figure 1.3: Raspberry (Rubus idaeus) plant showing above- and belowground tissue.  

1.5.2 European Large Raspberry Aphid (Amphorophora idaei 

Börner) 

As its name suggests, the large raspberry aphid (Figure 1.4) is an obligate feeder on 

raspberry including both the sexual and asexual stages of its lifecycle, with peak 

populations occurring between June and August (McMenemy et al., 2009). It is the 

most economically important pest in raspberries (McMenemy et al., 2009) and it can 
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reduce plant vigour (Gordon et al., 1997). In general, aphids have a rapid rate of 

natural population increase and are highly sensitive to changes in host-plant quality. 

They are consequently ideally adapted to exploit changes in the environment 

brought about through climate change. Their high reproductive rates, short 

generation time and ability to colonise new plants or regions rapidly suggests that 

under favourable conditions their impact as a pest species could worsen (Dixon, 

1973). Milder winters in temperate regions (a predicted outcome of climate change) 

may increase the survival rate of overwintering aphid adults and, in turn, increase 

the potential number of generations per year (Harrington et al., 2007). This higher 

generation turnover may lead to aphids overcoming pesticide and cultivar resistance 

faster (Cammell and Knight, 1992). Vine weevils have also been shown to 

compromise aphid resistance in some raspberry cultivars, increasing populations of 

Amphorophora idaei by 80% (McMenemy et al., 2009).  

 

Figure 1.4: The European Large Raspberry Aphid (Amphorophora idaei). 
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1.5.3 Vine weevil (Otiorhynchus sulcatus Fabricius) 

Many root feeders play an important role as agricultural pests. The polyphagous 

larvae of the vine weevil (Otiorhynchus sulcatus) (Figure 1.5) are a major pest species 

of a wide variety of plant roots and are widespread throughout temperate Europe. 

Adult vine weevils reproduce via parthenogenesis; meaning their offspring are 

therefore clonal. This makes them an ideal study species as this reduces genetic 

diversity and thus variation between individuals. Adults can also be maintained easily 

in laboratory conditions and individuals produce a large number of eggs over their 

lifetime (Moorhouse et al., 1992; Fisher and Bruck, 2004; Son and Lewis, 2005). 

Younger larvae tend to feed on the finer roots, with older larvae feeding on the 

larger, more membranous, roots closer to the base of the plant. High populations of 

larvae frequently destroy entire plants. This can be particularly damaging in arable 

fields where the close proximity and abundance of crop plants facilitates weevil 

spread (Moorhouse et al., 1992). Oviposition choice by adults is the main 

determinant of larval distribution in the soil, but individuals can move short 

distances to fresh plant roots if required (Barnett and Johnson, 2013). The CO2 

produced by the plant acts as an attractant to the larvae. Vine weevil larvae focus 

their feeding on rootlets and also on the cambium tissue of larger roots near the soil 

surface. The root-feeding larvae are active from autumn to early spring – when they 

emerge as adults to oviposit (Moorhouse et al., 1992). Although raspberry plants can 

withstand higher levels of root herbivory than many other crop species (Clark et al., 

2012b), weevil larvae feeding may still cause stunted plant growth and reduced yield. 

There is also potential to breed weevil-resistant cultivars of raspberry. The larvae do 

not feed on blackberry or black raspberry, and their reproduction cycle has been 

shown to be affected when feeding on Glen Prosen and Malling Leo cultivars of 

raspberry (Hall et al., 2009). It is not known how this plant–herbivore interaction 

may be influenced by elevated CO2.    

Root-feeding insects can have a major impact on ecosystem functioning (Johnson et 

al., 2008). Through their effect on plant performance, belowground herbivory can 
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have marked influence on  the structure, composition and growth of plant 

(Andersen, 1987) and herbivore (Masters et al., 1993; Wardle et al., 2004a; Wardle 

et al., 2004b; Johnson et al., 2012a) communities aboveground. The plant–herbivore 

interaction above- and belowground can be affected by anthropogenic 

environmental change (Wolters et al., 2000; Antoninka et al., 2009; Johnson and 

McNicol, 2010; González-Megías and Menéndez, 2012; Van der Putten, 2012). Using 

simple species systems to understand the complexities of the interaction between 

spatially–separated herbivores and how this is affected by external stressors, 

including effects mediated through the plant, may make it possible to propose 

testable hypotheses to investigate wider consequences for ecosystems.  

 

Figure 1.5: Soil-dwelling larva (left) and leaf chewing adult (right) of the vine weevil 

(Otiorhynchus sulcatus). 
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1.6 Thesis objectives and outline 

The overall aim of this thesis is to investigate how aspects of climate change affects 

the interaction between the aboveground feeding large raspberry aphid 

(Amphorophora idaei) and the root-feeding larvae of the vine weevil (Otiorhynchus 

sulcatus), both of which feed on raspberry (Rubus idaeus). The first empirical chapter 

(Chapter II) investigates the general interaction between the two spatially-separated 

herbivores under ambient CO2 conditions. As well as establishing the relationship 

between the aphids and vine weevil larvae, the study also explores whether the 

interaction changes as the herbivores feed on multiple cultivars of raspberry that 

vary in their resistance to herbivory. Specifically it sets out to test the hypothesis that 

reciprocal facilitation (identified by increased abundance for both herbivores in the 

presence of the other), occurs between an aboveground and belowground 

herbivore, mediated by a host-plant that varies in susceptibility to herbivory. An 

adaptation of this chapter has been published in Biology Letters (McKenzie, S. W., 

Vanbergen A. J., Hails, R. S., Jones, T. H. and Johnson S. N. (2013) Reciprocal feeding 

facilitation between above- and belowground herbivores. Biology Letters 9: 

20130341).  

Climate is known to alter insect phenology and this, in turn, can have marked 

consequences on interacting organisms, particularly when it leads to asynchrony 

between species. Moreover, the order in which herbivores arrive on a plant has a 

major influence on interaction outcomes between competing herbivores. In Chapter 

III the experimental work progresses to investigate the effect of altering the timing 

of herbivore arrival on the plant. Specifically this study tests the hypothesis that 

aphid abundance and population growth rate would be greatest when herbivore 

treatments replicated natural phenology (i.e. weevil larvae chewing on roots before 

the onset of aphid feeding). 
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In Chapter IV, the effect of elevated atmospheric CO2 on the interaction between the 

two herbivore species was investigated. Increasing atmospheric CO2 concentrations 

are predicted to affect both plant productivity and chemistry. This has cascading 

effects on herbivores that consume the plant, and has the potential to alter the 

interaction between heterospecific herbivores feeding on the same host-plant. Given 

what is known about plant–herbivore interactions and elevated CO2, this experiment 

aimed to test whether plants that are resistant to herbivores will become more 

susceptible under elevated CO2. It was also hypothesised that this effect will be 

exacerbated when grazed by both herbivore species simultaneously.    

Elevated CO2 has also been shown to alter leaf palatability to herbivores. Chapter V 

focuses on adult vine weevils and their feeding preferences for leaves grown under 

ambient and elevated CO2 conditions. Leaves were presented to vine weevils and the 

degree of herbivory assessed. It was hypothesised that leaves would have an 

increased C:N ratio and be tougher in elevated CO2 than in ambient levels. Based on 

this it was predicted that vine weevils will consume more leaf tissue from plants 

grown in elevated CO2 than in ambient, to compensate for their inferior nutritional 

quality. When given a choice, it was hypothesised that vine weevils would show a 

feeding preference for leaves grown in ambient conditions, over those grown in 

elevated CO2; this again, was based on their inferior nutritional quality. 

Chapter VI investigates the feeding preferences of root herbivores, in the presence 

and/or absence of aboveground aphids, and the consequential effects of herbivory 

for intraspecific plant competition. This chapter sets out to test the hypothesis that 

plants infested with aphids aboveground will be more susceptible to belowground 

herbivory, due to the feeding facilitation observed previously. Consequently, root 

mass will be reduced to a greater extent compared with plants without aphids. It was 

hypothesised that this insect–plant interaction would cause aphid-free plants to 

dominate aphid-infested plants. Finally it was hypothesised that plant compensatory 

growth under elevated CO2 conditions will mitigate the effects of insect herbivory on 
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plant competition. The importance of herbivores and above–belowground 

interactions as regulators of plant competition are highlighted. 

Chapter VII provides a synthesis of current knowledge specifically on how climate 

change effects above–-belowground insect interactions. It reviews current literature 

on the effects of climate change on above–belowground interactions, and identifies 

research gaps for future experimentation. An adaptation of this chapter has been 

published in Frontiers in Plant Science (McKenzie, S. W., Hentley, W. T., Hails, R. S., 

Jones, T. H., Vanbergen, A. J., and Johnson, S. N. (2013) Global climate change and 

above- belowground insect herbivore interactions. Frontiers in Plant Science 4: 412). 

In the final chapter, Chapter VIII, the results of the empirical studies are discussed 

and placed in a wider ecosystem context. The chapter also attempts to explain the 

importance of investigating the effects of climate change on above–belowground 

interactions. 
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Chapter II 

Reciprocal feeding facilitation between above- and 

belowground herbivores 

 

 

An adaptation of this chapter has been published in Biology Letters  

McKenzie, S. W., Vanbergen A. J., Hails, R. S., Jones, T. H. and Johnson S. N. (2013) 

Reciprocal feeding facilitation between above- and belowground herbivores. Biology 

Letters 9: 20130341. 
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2.1 Abstract 

Interspecific interactions between insect herbivores predominantly involve 

asymmetric competition. In contrast, facilitation, whereby herbivory by one insect 

benefits another via induced plant susceptibility, is uncommon. Positive reciprocal 

interactions between insect herbivores are even rarer. Here, a novel case of 

reciprocal feeding facilitation between aboveground aphids (Amphorophora idaei) 

and root-feeding vine weevil larvae (Otiorhynchus sulcatus), attacking raspberry 

(Rubus idaeus) is revealed. Using two raspberry cultivars with varying resistance to 

these herbivores, it is further demonstrated that feeding facilitation occurred 

regardless of host-plant resistance. This positive reciprocal interaction operates via 

an, as yet, unreported mechanism. Specifically, the aphid induces compensatory 

growth, possibly as a prelude to greater resistance/tolerance, whereas the root 

herbivore causes the plant to abandon this strategy. Both herbivores may ultimately 

benefit from this facilitative interaction.  
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2.2 Introduction 

Plant-mediated interactions between insect herbivores feature prominently in most 

terrestrial ecosystems (Denno et al., 1995). Above- and belowground insect 

herbivores attacking the same plant can affect each other’s performance (Bardgett 

and Wardle, 2003; Johnson et al., 2008) via induced changes in plant architecture 

(Price et al., 2011), allocation of primary metabolites (Johnson et al., 2009) or 

chemical defences (Bezemer and Van Dam, 2005).  Such plant-mediated herbivore 

interactions can also have consequences for higher trophic levels (Soler et al., 2005).  

While competition dominates plant-mediated herbivore interactions (Denno et al., 

1995; Bezemer and Van Dam, 2005), facilitation – whereby herbivory by one species 

benefits another – has been reported in only 11% of interspecifc interactions 

between aboveground herbivores (Denno et al., 1995). Such facilitative interactions, 

however, tend to be asymmetric, benefiting only a single species (Johnson et al., 

2012a). There is even less evidence that reciprocal facilitation between herbivore 

species occurs frequently (Van Dam and Heil, 2011). This lack of evidence for 

reciprocal facilitation may have arisen because many above–belowground studies 

focus on aboveground herbivore performance, while belowground herbivore 

performance remains under-reported (Kaplan et al., 2008b).       

 

In a microcosm experiment, the hypothesis that reciprocal facilitation, identified by 

increased insect abundance, would occur between an aboveground (large raspberry 

aphid Amphorophora idaei) and belowground (vine weevil Otiorhynchus sulcatus) 

herbivore, interacting via a host-plant (raspberry Rubus idaeus L.) that varies in 

susceptibility to herbivory was tested. This experiment mimics the natural 

phenological succession of these herbivore species on the plant in field situations. 

Weevils over-winter on plants in all life-stages (McMenemy et al., 2009), whereas 

aphids over-winter as eggs and do not feed on the plant until the growing season is 
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underway (Clark et al., 2011); consequently weevil herbivory generally precedes 

aphid herbivory.  

 

2.3 Materials and methods  

Two raspberry cultivars varying in susceptibility to both experimental herbivores 

(Glen Ample: highly susceptible; Glen Clova: moderately susceptible) (McMenemy et 

al., 2009; Clark et al., 2011; Clark et al., 2012a) were challenged with A. idaei and O. 

sulcatus.  Each replicate plant (grown from rootstock at James Hutton Institute (JHI), 

Dundee, UK) was established in a rhizotube (40 cm plastic cable trunking containing 

2:1 compost: sand (see Clark et al., 2012a) that allowed access to roots and weevils. 

Insects were obtained from cultures at the JHI (McMenemy et al., 2009; Clark et al., 

2011; Clark et al., 2012a).  

 

The experiment ran in a climate- (day 20°C ± 2°C; night minimum 10°C ± 2°C) and 

photoperiod- (16:8 Light :Dark) controlled glasshouse for 10 weeks. Experimental 

treatments applied to 48 replicates of each raspberry cultivar comprised: a control 

(no insects), a single herbivore (‘weevil’ or ‘aphid’) or weevil and aphid together 

(‘combination’) (N = 12 each).  Eight plants were randomly assigned to spatial blocks, 

each a full replicate of every insect treatment–cultivar combination (Week 0). In 

Week 4, replicates randomly assigned to ‘weevil’ and ‘combination’ treatments were 

inoculated with 20 weevil eggs, with eclosion occurring in Week 6. Three adult 

aphids were added to each ‘aphid’ and ‘combination’ replicate in Week 8. Plant 

height was recorded at Week 0 and again at Week 10. Insects were counted and 

plant biomass oven-dried (80 C for 24 hours) and weighed in Week 10.  

 

Data were analysed using generalised linear mixed models (GLMM) with insect 

(aphid or weevil larvae) counts and plant biomass (above- or belowground dry 

weight), modelled with Poisson and Gaussian error distributions, respectively (PROC 

GLIMMIX, SAS Institute). Parameter estimation used Restricted Maximum Likelihood 
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(REML) for plant biomass and pseudo-likelihood for insect counts. Replicate plant 

nested within spatial block was specified as a random effect and, for aphid counts, 

an observation-level random component was included to account for overdispersion 

(Elston et al., 2001). Cultivar (categorical) was fitted to all models. Models of weevil 

and aphid responses also included the abundance of the co-occurring herbivore 

(‘combination’ treatment only).  Above- and belowground plant biomass were 

always fitted to models of insect abundance. Models of the above- or belowground 

plant biomass response did not, however, include the corresponding biomass 

measure as an explanatory term because they were strongly positively correlated (P 

< 0.0001, r = 0.89).  Plant height at Week 0 was fitted to all models to account for 

initial between-replicate variation in growth. Models underwent forward stepwise 

selection until a minimum adequate model was obtained. Statistical significance of 

main effects are always reported, whereas two-way interactions are reported only 

where P < 0.05. Degrees of freedom were estimated using the Satterthwaite 

approximation.  

 

Partial residual plots were constructed to show the influence of particular 

explanatory variables on response parameters accounting for other significant terms 

retained in the model. Gaussian and Poisson models used raw and standardised 

(residuals/fitted) values, respectively (Cook and Croos-Dabrera, 1998).  

 

2.4 Results 

Aphid and weevil abundance were positively correlated (Figure 2.1a & b; Table 2.1). 

This relationship suggests reciprocal feeding facilitation, although weevil abundance 

exerted a larger positive effect on aphid densities than vice versa (Figure 2.1a & b; 

Table 2.1). Aphid abundance also increased with aboveground plant biomass, 

indicating an effect of the plant resources (Table 2.1). While the positive effect of 

weevil abundance on aphid abundance occurred regardless of aboveground plant 

biomass, it was reduced when aboveground biomass was low (Figure 2.1c; Table 2.1: 
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Aboveground dry weight*weevil abundance). Cultivar did not affect aphid 

abundance, but these herbivores were less abundant on the moderately susceptible 

(Glen Clova) plants (Table 2.1). 

 

Aboveground and belowground biomass did not vary between cultivars (Table 2.1). 

The herbivore species affected aboveground plant biomass differently. Greater 

densities of aphids (Figure 2.2a; Table 2.1) and weevil larvae (Figure 2.2b; Table 2.1) 

increased and decreased aboveground biomass, respectively. Greater weevil 

abundance reduced root biomass, whereas aphids had no effect (Table 2.1). Initial 

plant height did not affect the abundance of aphids (F1,16 = 0.17, P = 0.6857), weevils 

(F1,15 = 0.00, P = 0.9456) or final plant biomass (aboveground F1,20 = 0.07, P = 0.8006; 

belowground F1,45 = 0.04, P = 0.8512).   
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Figure 2.1a) 

b) 
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Figure 2.1: Partial residual plots on the linear predictor scale of the response of (a) 

aphid and (b) weevil abundance to the other herbivore concurrently feeding on a 

moderately (closed symbols) or highly (open symbols) susceptible cultivar in the 

‘combination’ treatment only; (c) effect of weevil abundance on aphid abundance at 

modelled high (solid line) and low (dotted line) aboveground dry weight (predicted 

slopes (m) used when fixing aboveground dry weight at its highest and lowest value, 

respectively, with the modelled intercept (c) from the final model output. This 

equation was then applied to weevil abundance (x), giving a resultant aphid 

abundance value (y)).

b) 

c) 
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Table 2.1: GLMM results summary for herbivore and plant response parameters. Bold type indicates parameters retained in the final model.

 MPE = Multiple Parameter Estimates 

Response Variable Explanatory variables Estimate F (ndf,ddf) P 

Herbivore 
    Aphid abundance Cultivar MPE 1.78(1,16) 0.2021 

Random effect estimate = 0.1766 Weevil  abundance 0.2910 13.79(1,16) 0.0021 

 
Belowground dry weight -0.03500 0.04(1,14) 0.8513 

 
Aboveground dry weight 0.5524 13.79(1,30) 0.0019 

 

Aboveground dry weight * weevil  
abundance -0.1308 7.25(1,15) 0.0163 

     Weevil larvae  abundance Cultivar MPE 10.53(1,20) 0.0041 

Random effect estimate = 0.4054 Aphid  abundance 0.02774 5.68(1,14) 0.0316 

 
Belowground dry weight -0.1991 1.62(1,19) 0.2181 

 
Aboveground dry weight -0.2310 1.59(1,17) 0.2239 

     Plant 
    Aboveground dry weight Cultivar MPE 0.21(1,20) 0.6502 

Random effect estimate = 0.5555 Weevil  abundance -0.1676 4.70(1,21) 0.0417 

Residual variance = 0.5176 Aphid  abundance 0.03154 5.21(1,21) 0.0330 

     

     Belowground dry weight Cultivar MPE 5.01(1,45) 0.5165 

Random effect estimate = 1.6410 Weevil  abundance -0.1934 8.31(1,46) 0.0060 

Residual variance = 0.7008 Aphid  abundance 0.03526 4.18(1,21) 0.0537 
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Figure 2.2: Partial residual plots on the linear predictor scale of the response of 

aboveground plant biomass to (a) aphid and (b) weevil abundance feeding on a 

moderately (closed symbols) or highly (open symbols) susceptible cultivar. 

Figure 2.2a)  

b) 
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2.5 Discussion 

This chapter provides compelling evidence for reciprocal feeding facilitation between 

root and shoot herbivores, a phenomenon that could be under-reported for above–

belowground interactions (Kaplan et al., 2008a; Johnson et al., 2012a). This positive 

relationship between the abundances of the two herbivore species persisted despite 

variation in aboveground plant biomass. Although facilitative, there remained a 

degree of asymmetry in the interaction, with weevils exerting a much greater effect 

on aphid abundance than vice versa. While feeding facilitation has been found 

aboveground (e.g. Soler et al., 2012a), positive non-reciprocal effects of 

aboveground herbivores on belowground herbivores are generally scarce and only 

one other study (Johnson et al., 2009) has demonstrated reciprocal facilitation 

between above- and belowground herbivores. In that case, the abundance of 

wireworms (Agriotes spp.) and the aphid Rhopalosiphum padi feeding on barley 

(Hordeum vulgare) increased by 30% and 25%, respectively (Johnson et al., 2009). 

Over a longer time scale facilitative relationships may give way to competitive 

interactions (Denno et al., 1995), and sustained herbivory in this system may still 

eventually lead to competition between the two herbivores. Even a short term 

positive interaction may, however, impact greatly on the host-plant, because A. idaei 

is the principal vector of raspberry viruses (Clark et al., 2011). Therefore, the positive 

effects of root herbivory could have wider implications for plant pathogen 

transmission beyond the temporal conjunction of the herbivores.     

This study suggests that root-feeding weevils reduced overall plant biomass, whereas 

sap-sucking aphids stimulated compensatory plant growth aboveground, suggesting 

that functional adaptations are key to shaping plant–herbivore interactions. Vine 

weevils have a large and direct impact on plant biomass by chewing and severing 

primary roots, compromising plant compensation by limiting water and nutrient 

uptake (Johnson et al., 2008). Stimulating plant compensatory growth is known to be 

an evolutionary strategy for tolerance or resistance to herbivory (McMenemy et al., 

2009). The data suggests that aphid induction of plant compensation benefits the co-
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occurring, but spatially-separated, vine weevil. This concurs with other studies that 

showed plant growth improved O. sulcatus performance (Johnson et al., 2011; Clark 

et al., 2012b).  

Induced susceptibility to aphid colonisation following root attack by beetles appears 

the most common above–belowground herbivore interaction (Johnson et al., 2012a). 

The potential for positive reciprocal interactions is, however, largely unknown, as 

few studies quantify both above- and belowground herbivore performance 

simultaneously (Johnson et al., 2012a). The sequence of herbivore arrival is often 

important in many above–belowground herbivore interactions (Kaplan et al., 2008a). 

Soler et al. (2013) suggested that inter-guild herbivore interactions are more likely 

than intra-guild interactions to result in positive outcomes, because the former 

triggers different phytohormonal pathways, potentially leading to signal cross-talk. 

For instance, root-feeding induces jasmonic acid which reduces the salycilic acid 

defence response to aphid herbivory (Soler et al., 2013). Other potential mechanisms 

are induction of ethylene or abscisic acid in leaves by root herbivory, which reduces 

plant resistance to aphids (Mantelin et al., 2009; Soler et al., 2013). Above–

belowground interactions have a crucial role in multi-species interactions, and the 

reciprocal feeding facilitation between herbivores described here may be more 

prevalent than previously thought.  
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Sequence of herbivory does not alter facilitation between 

an above- and a belowground herbivore 

 

 



42 

 

Chapter III – Herbivore arrival time above- and belowground 

3.1 Abstract 

Early colonisation of a host-plant is one adaptive strategy enabling insect herbivores 

to avoid direct and indirect interspecific competition, and minimise the impact of 

plant secondary chemistry. Plant-mediated interactions between above- and 

belowground herbivores can be affected by the sequence in which herbivores 

colonise the plant. Climate change can modify insect development time and alter 

insect herbivore phenology. If this effect is disproportionate between above- and 

belowground herbivores, it may ultimately alter the herbivore colonisation sequence 

and interspecific trophic interactions. Using a microcosm approach I investigate how 

altering the colonisation sequence of a belowground herbivore (Vine weevil – 

Otiorhynchus sulcatus) affected the reciprocal facilitative interaction with an 

aboveground herbivore (Large raspberry aphid – Amphorophora idaei) on a shared 

host-plant (raspberry – Rubus idaeus). Two plant genotypes with high and moderate 

susceptibility to insect herbivory were used. Aphid population growth rate was 32% 

greater on the highly susceptible genotype and positively correlated with plant 

growth aboveground. Weevil and aphid abundance was unaffected by genotype, but 

was respectively negatively and positively related to aboveground plant mass. The 

reciprocal facilitative nature of this above–belowground herbivore interaction was 

shown by the positive relationship between weevil abundance and the abundance 

and population growth rates of aphids, with weevils increasing aphid abundance in a 

ratio of 1:2. Varying the sequence of belowground herbivore arrival, however, had 

no effect on the reciprocal facilitation between the two spatially-separated 

herbivores. This indicates a level of stability in plant-mediated interactions where 

reciprocal facilitation occurs between herbivores occupying different feeding guilds. 

Colonisation sequence of host-plants by herbivores may only be important when 

herbivores compete, occupy the same feeding guild or when chemical defensive 

mechanisms underpin the interaction. 
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3.2 Introduction 

Climate change has the potential to alter the phenology of organisms across many 

taxa (Gordo and Sanz, 2005; Van Asch et al., 2007; Thackeray et al., 2010). 

Invertebrate phenology has been shown to be sensitive to climatic variables (Staley 

and Johnson, 2008; De Lucia et al., 2012). For instance, milder winters or increased 

spring temperatures – a predicted outcome of climate change (Meehl et al., 2007) – 

may improve the overwintering success of many invertebrates, leading to earlier 

emergence and at greater densities (Bale et al., 2002). Such climate-induced 

alterations of phenology may affect the temporal sequence in which different 

herbivore species colonise host-plants, potentially altering interspecific interactions 

and ultimately community dynamics (De Lucia et al., 2012).  

Despite being spatially-separated, herbivores feeding on either above- or 

belowground plant tissue interact via plant morphological (e.g. compensatory 

growth) and chemical (e.g. induction) responses (Masters and Brown, 1992; Bezemer 

et al., 2003; Heil, 2011). Belowground herbivory can have negative (e.g. Van Dam et 

al., 2005) and positive (e.g. Johnson et al., 2009) effects on aboveground herbivores. 

Similarly, aboveground herbivores can have negative (e.g. Bezemer et al., 2003) or 

neutral (e.g. Soler et al., 2007) effects on their belowground counterparts. Positive 

reciprocal interactions between belowground and aboveground herbivores, where 

both benefit from the interspecific interaction, although rarer, have also been 

reported (Johnson et al., 2009; Huang et al., 2013).  

A recent meta-analysis identified the sequence of herbivore arrival on a host-plant as 

the most influential factor dictating plant-mediated above–belowground herbivore 

interactions (Johnson et al., 2012a). Early colonisation of a host-plant helps to avoid 

direct competition with other herbivores (Hunter, 1990; Blossey and Hunt-Joshi, 

2003; Singer and Parmesan, 2010) and avoid induced plant defences (Poelman et al., 

2008). For example, an aboveground herbivore significantly reduced weight gain of a 

belowground herbivore on maize, but only when the folivore colonised the host-

plant before the root feeder (Erb et al., 2011). Colonisation sequence has also been 
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reported to affect uni-directional facilitative interactions (where a species directly or 

indirectly benefits another species, yet itself gains nothing from the interaction). For 

instance, the interaction outcome between two aboveground beetle species 

(Acanthocinus aedilis and Rhagium inquisitor) changed when timing of arrival was 

altered (Victorsson, 2012). When arriving simultaneously or arriving first on a plant, 

A. aedilis produced 161% and 84% more offspring, respectively, than when alone on 

the plant. In contrast, simultaneous colonisation caused decreased larval weight in R. 

inquisitor. When R. inquisitor was first, however, the positive impacts on A. aedilis 

were not apparent and neutralism occurred, whereas R. inquisitor larval mass 

increased. This study concluded that arrival sequence was highly important as both 

herbivores fared better when arriving first and the facilitative interaction diminishes 

when time of arrival is altered.  

In this study it was investigated how colonisation sequence affected the facilitative 

interaction between an aboveground aphid herbivore (Amphorophora idaei) and the 

root-feeding larvae of the vine weevil (Otiorhynchus sulcatus) on two genotypes of a 

shared host-plant (Rubus idaeus). These two genotypes varied in their susceptibility 

to insect herbivory: one genotype (Glen Ample) was highly susceptible while the 

other (Glen Clova) showed moderate susceptibility (Clark et al., 2011; McMenemy et 

al., 2009). The use to two cultivars tests the generality of the herbivore response to 

arrival time, as the cultivars affect the herbivores differently. Weevil larvae are 

naturally present in the soil from early summer until pupation in early spring the 

following year (Moorhouse et al., 1992). The feeding rate, development and eventual 

emergence of the weevil larvae are highly temperature-dependent (Son and Lewis, 

2005). Mid-level Intergovernmental Panel on Climate Change (IPCC) scenarios (A1T 

and B2) for global mean temperatures between 2090–2099 predict an increase of 

2.4°C, with a likely range of 1.4–3.8°C (Meehl et al., 2007). This temperature change 

could have major impacts on the life history and phenology of the weevil larvae. 

Aboveground, aphid phenology is generally expected to respond to climate change, 

with an average earlier first occurrence of eight days for aphids over the next 50 
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years (Harrington et al., 2007). As well as an alteration in the phenology of A. idaei, a 

specific temperature increase from 10°C to 15°C results in an increase in 

reproductive period but a reduction in their longevity and pre-reproductive period 

(Mitchell, 2007). 

A microcosm experiment was conducted to test whether herbivore colonisation 

sequence altered a facilitative plant-mediated interaction between above- and 

belowground herbivore species. It was hypothesised that aphid abundance and 

population growth rate would be greatest when herbivore treatments replicated 

natural phenology (e.g. weevil larvae present on the plant before aphids). It was also 

hypothesised that the colonisation sequence would be of greater importance on the 

more resistant plant genotype which may only maintain resistance if natural 

phenological succession occurs. 

 

 3.3 Materials and methods 

Rootstock for two raspberry genotypes (Glen Ample and Glen Clova) was grown at 

the James Hutton Institute (JHI) in Dundee under conditions of 18:6 Light : Dark and 

18°C (±2°C) for 10 weeks. After this initial 10 week growing period, 45 individual 

plants from each of the two genotypes (90 plants in total) were planted into 

rhizotubes (plastic cable trunking of length 40 cm; Chapter II) and the plants’ initial 

height recorded. The rhizotubes were randomly allocated to nine spatial blocks, each 

of which comprised a complete replicate of a genotype–herbivore treatment 

combination (see below).  

Correlating IPCC predictions (Meehl et al., 2007) with the temperature-dependent 

data of weevil egg development (Son and Lewis, 2005) suggests a potential 

advancement of larval eclosion by two weeks (based on average Scottish summer 

mean temperature increasing from 12°C to 15°C). Conversely, a temperature 

decrease of 1°C, from 12°C to 11°C, could prolong egg development for a further two 



46 

 

Chapter III – Herbivore arrival time above- and belowground 

weeks. Thus, five colonisation sequence treatments were implemented with weevil 

larvae eclosion timed to occur: a) two weeks and b) one week before the addition of 

aphids; c) simultaneous to aphid addition; and d) one week and e) two weeks after 

aphid addition. These five herbivore arrival treatments, coupled with the two 

raspberry genotypes, resulted in each spatial block containing 10 individual plants. 

Under experimental glasshouse conditions, vine weevil eggs take two weeks to 

eclose at a mean temperature of 18°C (Son and Lewis, 2005). Twenty eggs were 

consequently added to each replicate rhizotube two weeks prior to the anticipated 

larval hatching date. These eggs were obtained from adult vine weevils harvested 

from raspberry field plots at the JHI. Plants were inoculated with three adult aphids 

from cultures maintained at the JHI. All aphids were added in the same week to 

standardise the time aphid populations spent on the plant and subsequently counted 

weekly. Aphids were reared in controlled environment chambers at 18°C and fed on 

a raspberry cultivar not used in the experiment (Malling Jewel). 

The experiment was harvested five weeks after aphid inoculation (Week 9) at which 

point the final aphid abundance was quantified. The aboveground plant biomass was 

then harvested, freeze-dried for 24 hours and then weighed. Vine weevil larvae were 

extracted from the soil over 24 hours using Tullgren funnels and then counted. 

Data were analysed using generalised linear mixed effects (GLMM) models in SAS 

(version 9.2). The rate of aphid population increase per replicate was determined by 

a linear regression of aphid counts over time (five weeks). The slope (b) estimates 

from these linear equations (i.e. rate of aphid population increase per replicate) was 

fitted, following log10 transformation, as the response in a GLMM with a Gaussian 

distribution and identity link function. Aphid abundance at the final harvest (Week 9) 

was also log10 transformed and modelled with Gaussian distribution. The parameter 

“block” was fitted as a random effect to all models to account for the spatial layout 

of replicate plants in the glasshouse. Weevil colonisation sequence and plant 

genotype (see above) were fitted as categorical explanatory variables along with 
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aboveground plant biomass as a covariate. Plant roots were exposed to different 

durations of root herbivory in each weevil colonisation sequence treatment; because 

of this confounding effect the changes in belowground biomass were not analysed.  

 

3.4 Results 

Aphid population growth rate was positively related to weevil abundance (Figure 

3.1a; Table 3.1) and aboveground plant biomass (Figure 3.1b; Table 3.1), as was final 

aphid population size (Table 3.1). Weevils increased aphid abundance in a ratio of 

1:2. Aphid abundance across treatments at harvest ranged from 0 to 176 individuals, 

with a maximum population growth rate of 9.46 aphids per week. Mean aphid 

population growth rate was 1.87 aphids per week on the more susceptible genotype 

and 1.78 aphids per week on the less susceptible genotype. After adjusting for the 

influence of aboveground biomass and weevil abundance, the aphid population 

growth rate (slope of aphid densities over time = b) on the more susceptible plant 

genotype (least square mean, b = 0.90 ± 0.079) was statistically significantly greater 

than on the less susceptible genotype by 32% (b = 0.68 ± 0.079) (Table 3.1).  
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Table 3.1: GLMM results summary for herbivore response parameters. Bold type indicates parameters retained in the final model. MPE = 

Multiple Parameter Estimates. 

Response variable Explanatory variables Estimate F (ndf,ddf) P 

Aphid abundance at harvest Colonisation sequence  MPE 0.42 (4,76) 0.7929 

Random effect estimate = 0.1332 Genotype susceptibility MPE 3.22 (1,79) 0.0767 

Residual variance = 0.1856 Weevil abundance 0.04235 10.59 (1,86) 0.0016 

 

Aboveground plant dry weight 0.1635 5.94 (1,83) 0.0169 

     Aphid population growth rate Colonisation sequence  MPE 0.32 (4,75) 0.8662 

Random effect estimate = 0.01003 Genotype susceptibility MPE 4.29 (1,80) 0.0416 

Residual variance = 0.2 Weevil abundance 0.03806 8.08 (1,84) 0.0056 

 

Aboveground plant dry weight 0.2359 9.00 (1,83) 0.0036 

     Weevil larval abundance at harvest Colonisation sequence  MPE 8.59 (1,4) 0.2499 

Random effect estimate = 0.3242 Genotype susceptibility MPE 1.81 (1,88) 0.1819 

 

Aphid abundance 0.009788 26.09 (1,88) <0.0001 

 

Aboveground plant dry weight -0.2241 5.24 (1,88) 0.0245 
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Figure 3.1: Partial residual plots on the linear predictor scale for aphid population 

growth rate (slope estimate derived from linear regression of aphid numbers per 

replicate against time) versus a) weevil abundance; and b) aboveground biomass 

(open symbols = highly susceptible genotype; closed symbols = moderately 

susceptible genotype). Data for aphid abundance and population growth rates were 

log10 transformed prior to analysis. 

Figure 3.1a) 

b) 
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Sequence of weevil colonisation did not, however, have a significant effect on either 

final population size (Figure 3.2a; Table 3.1) or population growth rate (Figure 3.2b; 

Table 3.1) of the co-occurring aphid herbivore during the five week experiment.  

 

Weevil abundance ranged from zero, where 100% mortality had occurred, to 14 

individuals at the time of harvest across all colonisation sequence treatments. There 

were no differences in weevil abundance across colonisation sequence treatments 

(Table 3.1). Weevil abundance was, however, positively related to aphid abundance 

(Table 3.1). Weevil abundance was not affected by plant genotype (Table 3.1), but 

was negatively correlated with aboveground plant biomass (Figure 3.3; Table 3.1), 

which potentially reflected the negative impacts of root herbivory on plant growth 

(see below).  
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Figure 3.2: The non-significant effects of the timing of weevil colonisation on a) 

aphid abundance and b) aphid population growth rate (LS mean ± SE from final 

model). Colonisation sequence treatments were weevil larvae eclose: two weeks (-2) 

and one week (-1) before aphid inoculation; simultaneous with aphid inoculation; 

one week (+1) and two weeks (+2) after aphid inoculation. Data for aphid abundance 

and population growth rates were log10 transformed prior to analysis. Identical 

characters indicate non-significance (P > 0.05) 

Figure 3.2a) 

b) 

    a                    a                    a                    a                    a 

a                    a                    a                     a                    a 
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Figure 3.3: Plot for weevil abundance versus aboveground plant biomass (g) (closed 

symbols = highly susceptible genotype; open symbols = moderately susceptible 

genotype). 

 

There was no significant difference in plant height between genotypes at the start of 

the experiment (F1,88 = 0.19, p = 0.664). When the experiment was harvested plant 

genotype had a significant effect on aboveground biomass (F1,87 = 28.33, p = 

<0.0001). The highly susceptible genotype (1.002g ± 0.88) had significantly less 

aboveground biomass than the moderately susceptible genotype (1.667g ± 0.88). 
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3.4 Discussion 

In contrast to competitive herbivore interactions, positive interactions may be less 

sensitive to herbivore-induced changes to the plant environment, especially when 

they are reciprocal. In studies where facilitative interactions have been altered by 

the sequence of herbivore arrival (i.e. Victorsson, 2012) the facilitation was uni-

directional (e.g. only one herbivore benefitted at a time). This contrasts with the 

current study involving a reciprocal feeding facilitation, whereby both herbivores 

benefitted simultaneously, which persisted despite variation in sequence of 

herbivory. This may be explained, to some extent, by the different feeding guilds 

investigated in the studies. Feeding guild, like colonisation sequence, is also known 

to be an important determinant in above–belowground herbivore interaction 

outcomes (Johnson et al., 2012a) For example, jasmonic acid induction by root 

feeders interferes with and reduces the plant response to aphid attack (e.g. salycilic 

acid induction) (Soler et al., 2013). Along with the type of interaction (antagonistic or 

facilitative), the induction of different phytohormonal pathways by different 

herbivore feeding guilds may therefore be another mechanism influencing 

interaction outcomes. Whether induction of different phytohormonal pathways 

underpins the stability of the reciprocal facilitation, regardless of herbivore arrival 

sequence, remains an untested hypothesis.  

Reciprocal feeding facilitation between O. sulcatus and A. idaei (Chapter II) persists 

regardless of which herbivore colonises the host plant first. This differs from other 

studies which illustrate that herbivore colonisation sequence on a plant is an 

important factor governing interspecific herbivore interactions (Erb et al., 2011; 

Johnson et al., 2012a; Victorsson, 2012). In general, early colonising herbivores are at 

a competitive advantage over other herbivores arriving subsequently (Johnson et al., 

2012a). For example, an initial herbivore can induce plant chemical defences making 

it more difficult for subsequent herbivore competitors to become established on the 

plant (Viswanathan et al., 2005). Above–belowground herbivore interactions are 
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predominantly competitive (Johnson et al., 2012a), and therefore variation in 

colonisation sequence may produce plant-mediated effects that alter the interaction. 

For example, when the aboveground herbivore Spodoptera frugiperda arrived first 

on a plant it negatively affected colonisation and weight gain by the belowground 

herbivore Diabrotica virgifera. If, however, S. frugiperda arrived after D. virgifera, no 

negative effects were found (Erb et al., 2011). This alteration in competitive 

outcomes was attributed to leaf-herbivore-induced increases in feeding-deterrent 

and/or toxic secondary metabolites.  

Although some secondary metabolites (e.g. phenolic compounds) are known to have 

defensive properties against herbivores (Harborne, 1994), these are relatively 

ineffective in raspberry plants against either O. sulcatus (Clark et al., 2011) or A. idaei 

(McMenemy et al., 2012). Instead, raspberry tends to be more reliant on physical 

defences such as spines (Mitchell, 2007) and leaf waxes (Shepherd et al., 1999a). 

Herbivore colonisation sequence may, therefore, be less relevant in plant systems 

where physical resistance mechanisms dominate compared with those with 

inducible or constitutive chemical defences (e.g. Brassicas).   

In Chapter II weevils performed better on the highly susceptible cultivar, but there 

was no difference in plant biomass between the two genotypes. In the present study 

it was found that weevils performed equally well on both genotypes. This may have 

occurred because aboveground biomass of the moderately susceptible genotype was 

significantly greater in this study which probably enhanced weevil abundance. This 

seems likely since aboveground biomass is tightly correlated with belowground 

biomass (Chapter II) which in turn is correlated with weevil performance (Johnson et 

al., 2011; Clark et al., 2011). Only the abundance of the weevils were measured, but 

more detailed information about which specific performance parameters were being 

affected might shed light on which plant traits are the most important.  

In conclusion, the reciprocal herbivore facilitation reported here is robust to 

variation in the timing of herbivory. This has implications when considering the effect 
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of climate change altering interactions between above- and belowground 

herbivores. For example, factors such as decreased development rate or increased 

fecundity, caused by increased atmospheric temperature, may be more decisive in 

facilitative above–belowground interactions than changes in herbivore colonisation 

sequence. Variation in the sequence of herbivory may, however, continue to be 

important in dictating competitive interactions or uni-directional facilitation between 

above–belowground herbivores.  
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4.1 Abstract 

While anthropogenic increases in atmospheric CO2 have been predicted to stimulate 

plant productivity, the nutritional value of foliage to herbivores may be reduced, 

partly due to increased leaf carbon to nitrogen (C:N) ratio. To compensate for this 

deterioration in food quality, some herbivorous insects consume more plant tissue. 

Plants grown in elevated CO2 may, however, also exhibit a lower specific leaf area 

(increased leaf toughness), which may restrict the herbivore’s capacity to feed.  

This study investigated the feeding rates (no-choice tests) and preference (choice 

tests) of vine weevils (Otiorhynchus sulcatus) feeding on raspberry (Rubus idaeus) 

grown in current (390 ppm) and elevated (550 ppm) levels of atmospheric CO2 

enrichment.  

Weevil leaf consumption was six times greater under elevated CO2 conditions 

compared to ambient CO2 in no-choice tests. Furthermore, in the choice experiment 

weevils actively preferred and consumed disproportionately more (217%) leaf tissue 

from plants grown under elevated CO2. This increased herbivory occurred despite 

raspberry leaves grown under elevated CO2 being 11% tougher. Although marginally 

non-significant (p=0.056), the C:N ratio was nonetheless 20% higher in leaves grown 

in the elevated CO2 environment.  

The alteration of leaf nutritional quality (increased C:N ratio) stimulated herbivore 

compensatory feeding rates in the no-choice tests. This alteration of plant C:N 

content by atmospheric CO2 enrichment was, however, insufficient to deter the 

herbivore from consuming leaves grown under elevated CO2 in choice tests. This may 

result in chewing herbivores consuming a greater amount of foliage in a future 

higher CO2 atmospheric environment. 
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4.2 Introduction 

Atmospheric carbon dioxide (CO2) concentrations are expected to increase to 550 

ppm over the next 100 years (IPCC, 2013). While elevated CO2 can directly increase 

primary productivity (Ainsworth and Long, 2005; Robinson et al., 2012), herbivores 

may be indirectly affected via changes in the nutritional quality or quantity of the 

plant resource (Dermody et al., 2008; Coviella and Trumble, 1999; Robinson et al., 

2012; Watt et al., 1995). At current atmospheric CO2 concentrations, the main 

enzyme involved in the assimilation of atmospheric CO2 into carbohydrate (RuBisCo), 

is operating at below its optimum (De Lucia et al., 2012). Increased atmospheric CO2 

concentrations will, therefore, lead to an increased rate of photosynthesis, carbon 

fixation and plant biomass accumulation (Ainsworth and Long, 2005). This increased 

plant productivity may alter the nutritional quality of plant tissues for herbivores due 

to dilution of plant nitrogen content, already a limiting nutrient for many insect 

herbivores (Awmack et al., 1997). As the conversion of CO2 to carbohydrates 

increases due to improved RuBisCo activity, less nitrogen will need to be invested in 

the enzyme to maintain high levels of photosynthesis, which usually acts as a 

substantial sink for leaf nitrogen (Jacob et al., 1995). This increased carbon to 

nitrogen ratio requires the overall amount of tissue consumed to be increased 

through herbivore compensatory feeding in order to attain the necessary amount of 

nitrogen required for insect growth and development (Awmack et al., 1997; 

Robinson et al., 2012). A consequence of atmospheric CO2 enrichment may thus be 

reduced insect herbivore growth but greater herbivory rates (Coviella and Trumble, 

1999). Such alteration of plant–herbivore interactions may nullify any enhanced 

primary productivity in future CO2 environments.  

In addition to primary chemistry, the morphology and physical traits of plants may 

also be affected by elevated CO2 (Robinson et al., 2012), which can subsequently 

impact on herbivore performance (Lincoln et al., 1993 and references therein). Leaf 

toughness influences the ability of herbivores to consume, digest and extract 
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nutrients from the plant tissue (Sanson et al., 2001; Peeters et al., 2007). Generally 

elevated atmospheric increases in CO2 will increase leaf toughness (De Lucia et al., 

2012; Zvereva and Kozlov, 2006; Robinson et al., 2012; Stiling and Cornelissen, 2007; 

Dury et al., 1998), by increasing cuticle thickness (Kinney et al., 1997), stimulating 

cuticular-wax production (Percy et al., 2002) or reducing the specific leaf area (area: 

mass; De Lucia et al., 2012). This increase in structural carbon also acts to further 

dilute leaf nitrogen content (De Lucia et al., 2012). Where elevated CO2 enrichment 

has not affected leaf toughness, there is often more marked responses in chemical 

responses, for example, ellagitannin in maple, Acer saccharum (Kinney et al., 1997).  

Relatively few studies have investigated the indirect effects of CO2 on herbivore 

feeding rates mediated by changing leaf toughness. Dury et al. (1998) found that 

increased CO2 reduced leaf toughness, but with no effect on the herbivores. In 

contrast, Johns et al. (2003) showed CO2-induced increases in leaf toughness 

reduced herbivore consumption rates, although when herbivores were presented 

with a choice of leaves grown at ambient or elevated CO2 levels no difference in 

consumption was observed. There remains a need to investigate further how 

elevated CO2 affects leaf toughness and the subsequent interaction with 

phytophagous insects. 

This study investigated how elevated CO2 affected the feeding preference of the 

herbivorous vine weevil Otiorhynchus sulcatus (Fabricius), a generalist pest of the 

raspberry (Rubus idaeus L.) crops. It was hypothesised that plants grown under 

elevated atmospheric CO2 would have greater C:N content and increased leaf 

toughness leading to herbivore compensatory feeding, and that given a choice the 

herbivore would select foliage grown under ambient CO2 conditions. 
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4.3 Materials and methods 

Raspberry rootstock (Glen Clova cultivar) obtained from the James Hutton Institute, 

Dundee, were grown in Levington M3 compost at 18°C (±2°C). Ten trays (30cm x 

20cm) of rootstock were distributed between two chambers in ambient (390 ppm) or 

elevated (550 ppm) CO2 conditions at the GroDome™ climate change research 

facility at the Centre for Ecology & Hydrology (CEH Wallingford). When at least 25 

plants from each CO2 treatment were at least 3cm (around 10 weeks) they were 

separated and planted into 3 litre pots containing a mixture of 2:1 (soil:sand). Plants 

were allowed to grow in these conditions for a further 8 weeks to produce sufficient 

leaves for the experiments.  

Vine weevil eggs obtained from reproducing adults at JHI were inoculated into pots 

containing established raspberry plants and maintained at 18°C in controlled 

environment rooms. Eggs were allowed to hatch and weevil larvae to develop and 

feed on the raspberry roots until their emergence. Newly emerged adult weevils 

were then used in the experiments.  

 

4.3.1 No-choice experiment  

A single leaf was excised (the uppermost unfurled leaf on each plant) from 10 of the 

raspberry plants from each CO2 treatment, respectively (n = 20). These leaves of 

similar size were weighed and leaf area calculated (Licor; LI-3100). Each leaf was 

placed individually into a culture cup (500 ml), with the stem submerged in water, 

together with an adult weevil of known weight. Cups containing leaves and weevil 

adults were then placed in the ambient CO2 chamber. Weevils were allowed to feed 

on the leaves under conditions of 18:6 Light : Dark and 18°C (±2°C). After one week 

the leaves were removed and reweighed and the remaining leaf area measured. 
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Weevil weight gain (mg), leaf weight loss (mg) and leaf area consumption (cm2) were 

calculated. 

 

4.3.2 Choice experiment. 

As before, a single leaf was excised (the uppermost unfurled leaf on each plant) from 

20 of the raspberry plants from each CO2 treatment, respectively. Two size and age 

matched excised leaves from each CO2 treatment were then placed together and 

alongside one another in a culture cup (n = 20), along with an adult vine weevil (from 

cultures described previously). Weevils were allowed to feed on the leaves for one 

week under ambient conditions. As before, after one week the leaves were removed 

from the cups and reweighed and the remaining leaf area measured. Weevil weight 

gain (mg), leaf weight loss (mg) and leaf area consumption (cm2) were calculated. 

Specific leaf weight (SLW, g-1m-2) was calculated for each leaf as an indicator of leaf 

thickness. Leaf toughness was determined using a 1 cm diameter leaf disk cut from 

the experimental leaves at the end of the experiment (3 discs per leaf, avoiding the 

midrib) following the leaf tearing protocol of Graça and Zimmer (2005). This protocol 

allows the amount of force (Newtons/kg-1) required to tear a leaf of known size to be 

calculated; this measurement of force is then used as a representative of leaf 

toughness (tougher leaves requiring a greater force to be torn). Individual leaf tissue 

was freeze-dried for 24 hours and ball-milled in a tissue lyser for five minutes to a 

fine powder. Chemical analysis of carbon and nitrogen concentrations of leaf and 

root tissue was undertaken at the James Hutton Institute, Dundee, using an Exeter 

Analytical Elemental Analyser (EAI, Coventry, UK). Using the carbon and nitrogen 

concentrations produced during the analysis, the C:N of the leaf tissue was then able 

to be calculated (see Johnson et al. (2011) for details).  
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4.3.3 Statistical analysis 

Data were analysed in SAS (version 9.2). The no-choice experiment and leaf 

toughness were analysed using General Linear Models (GLM), total leaf area 

consumed and C:N data were log-transformed to meet model assumptions of normal 

distribution. The choice experiment was analysed using a general linear mixed model 

(GLMM) with “replicate” (n =20 pots) fitted as a repeated measure, to identify the 

fact that each pot contained one leaf from each CO2 treatment. Response variables 

modelled were weevil weight, leaf area consumption, leaf C:N and leaf toughness 

with CO2 treatment fitted as an explanatory variable in all models.  

4.4 Results  

Leaf consumption was greater when plants were grown in an elevated CO2 

environment (Figure 4.1) in both the no-choice (F1,19 = 9.85, P = 0.0057) and choice 

(F1,38 = 10.71, P = 0.0023) experiments, supporting the hypothesis that compensatory 

feeding takes place under elevated CO2 (Robinson et al., 2012, and references 

therein).  

This preference for leaves grown in high CO2 persisted even when the insect had a 

choice, contrasting with an earlier study (Johns et al., 2003), and despite the 

increased toughness of leaf tissue grown in elevated CO2 (Figure 4.2; F1,38 = 10.14, P = 

0.0029). Leaf thickness (SLW), however, remained unaffected (F1,19 = 3.16, P = 0.091) 

as was weevil weight (F1,19 = 0.02, P = 0.897) by CO2 treatment.  

Leaves grown in an elevated CO2 environment had a higher C:N ratio (Figure 4.3), 

although this was not a strong effect being marginally non-significant at the 95% 

significance level (F1,19 = 4.17, P = 0.056). 
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Figure 4.1: Mean (± SE) consumption (mg) of ambient (light bars) and elevated (dark 

bars) CO2 leaves by vine weevils in a choice (n=10 per CO2 treatment) and no-choice 

experiment (n=20 per CO2 treatment). Differing characters indicate a significant 

difference between treatments (P < 0.05). 

           

Figure 4.2: Variations in mean (±SE) leaf toughness (the force required to tear a 1 cm 

disc of leaf tissue; Newtons/kg-1) between raspberry leaves grown under ambient 

(390 ppm) and elevated (550 ppm) CO2 conditions (n=20 per CO2 treatment). 

Differing characters indicate a significant difference between treatments (P < 0.05). 

a 

b 

a 
a 

b 

c 
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Figure 4.3: Non-significant variations in mean (±SE) leaf C:N ratio between raspberry 

leaves grown under ambient (390 ppm) and elevated (550 ppm) CO2 conditions 

(n=12 per CO2 treatment). Identical characters indicate no significant difference 

between treatments (P > 0.05). 

4.5 Discussion 

This study provides evidence that adult weevils consumed more leaf tissue from 

plants grown under elevated CO2 conditions. This supports previous findings that 

herbivorous insects will need to increase plant consumption to compensate for the 

poorer nutritional quality (Robinson et al., 2012). It was hypothesised that, when 

given a choice between leaves grown under ambient and elevated CO2 conditions, 

weevils would exhibit a feeding preference for ambient leaves, again a consequence 

of them having a higher nutritional value. It was found, however, that the opposite 

was true, and weevils showed a preference for elevated CO2 leaves, despite them 

also being tougher.  

In support of previous findings (Stiling and Cornelissen, 2007; Robinson et al., 2012) 

it was found that elevated CO2 increased leaf toughness. This increased leaf 

toughness may be attributed to increases in leaf epicuticular wax which also 

a                                                       a 
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increases under elevated CO2 (Percy et al., 2002). It is known that raspberry plants 

also rely on leaf waxes (Shepherd et al., 1999a) as an anti-herbivore defence, while 

this is thought to be an adaptation to inhibit stylet insertion by phloem-feeders 

(Shepherd et al., 1999a), it may also affect leaf-chewers by increasing leaf toughness. 

In grass species increased leaf toughness has been shown to have costs to the 

herbivore such as increased mandibular wear, which consequently may prevent 

effective feeding and reduces individual fitness (Massey and Hartley, 2009). It 

remains to be tested whether mandibular wear would be an important factor in this 

plant–herbivore interaction. 

The marginally non-significant increase in C:N ratio of leaves grown under elevated 

CO2 conditions may have been sufficient to stimulate the compensatory feeding 

observed in the no-choice test, whilst being insufficient to induce a preference for 

nutritionally better quality leaves from the ambient CO2 treatment in the choice 

tests. Vine weevils in particular, do not discriminate very well between plants of 

different nutritional qualities (Coyle et al., 2011; Clark et al., 2012b). This would not, 

however, explain the strong preference for foliage grown under elevated CO2, as leaf 

consumption was predicted to have been reduced due to the increased toughness of 

leaves and a lower nutritional content (i.e. lower C:N). Compensatory feeding 

normally takes place because of higher C:N, but increased feeding observed in the 

present study could be attributed to a factor overriding reduced plant quality at 

elevated CO2, such as feeding stimulants. Elevated CO2 can alter production of 

chemicals such as fatty acids that act as host acceptance cues (Percy et al., 2002), 

which may also explain increases in herbivory. This has been shown to occur for the 

leaf-chewing forest tent caterpillar (Malacosoma disstria) feeding on quaking aspen 

(Populus tremuloides) leaves (Percy et al., 2002) and may have been sufficient to 

override weevil preferences for the seemingly inferior foliage in this current system. 

Generally, CO2 has been shown to decrease nitrogen based secondary metabolites in 

plants significantly (Robinson et al., 2012). This includes the suppression of plant 

defences in the tissues and VOC production, both of which may deter herbivory (De 
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Lucia et al., 2012). In particular, if some VOCs are suppressed, it may increase a 

plant’s susceptibility to herbivory, potentially overriding any differences in plant C:N. 

In this system there appears a currently unknown benefit to this herbivore in 

consuming a greater amount of leaf tissue in elevated CO2 conditions. These early 

findings provide the basis of hypothesis testing for such differences in feeding 

behaviour of insects under elevated CO2. Future experiments could investigate more 

specifically which chemicals are altered in the leaf tissue, which could explain the 

differences in feeding preferences. It would be beneficial to use whole plants, as 

their response may be different to excised leaves and is more realistic. More 

research needs to be done on isolating the effects of CO2 on primary and secondary 

leaf chemistry and how these changes in chemistry may alter plant–herbivore 

interactions in a future climate. 
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5.1 Abstract 

Anthropogenic increases in atmospheric carbon dioxide (CO2) may indirectly affect 

insect herbivores, both above- and belowground, by altering plant chemistry, such as 

potential increased C:N ratio. This change in tissue C:N may also affect interactions 

between spatially separated herbivores. This chapter presents a microcosm 

experiment that investigated the effect of elevated CO2 on the plant-mediated 

interaction between the large raspberry aphid feeding aboveground, and the larvae 

of the vine weevil feeding on the raspberry roots. Elevated atmospheric CO2, as a 

main effect, had minimal effect on the plant responses measured, and also minimal 

effect on above- and belowground insect abundance. Belowground herbivory played 

a much larger role than elevated CO2 in influencing root C:N (increase 7%) and 

biomass (decrease 30%). Elevated CO2 did, however, mitigate the effect of 

belowground herbivores on roots via increased root growth. This may suggest that 

the negative effects of root herbivory on root growth observed at ambient CO2 

concentrations may be less in a future climate. 
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5.2 Introduction 

Atmospheric carbon dioxide (CO2) concentrations are expected to increase over the 

next 100 years from current levels of 390 ppm up to 550 ppm (Meehl et al., 2007). 

This is widely attributed to anthropogenic processes, particularly the burning of fossil 

fuels (IPCC, 2013). Elevated atmospheric CO2 is known to have significant direct 

effects on plant productivity (Ainsworth and Long, 2005), which can affect the 

performance of herbivores (Coviella and Trumble, 1999; Robinson et al., 2012). 

Herbivores, for example, may be indirectly affected via changes in the quality (e.g. 

altered carbon and nitrogen content) of their plant food resource (Watt et al., 1995).  

Interspecific interactions between organisms above- and belowground have a key 

role in ecosystem processes like herbivory and decomposition (Van der Putten et al., 

2001; Van der Putten et al., 2009; Wardle et al., 2004a; Wardle et al., 2005). Climate 

change may alter or disrupt these interactions and processes (Schröter et al., 2004; 

Stevnbak et al., 2012). Elevated CO2, for example, has the potential to affect 

interactions between above- and belowground herbivores by altering the nutritional 

quality of the shared host-plant (De Lucia et al., 2012; Robinson et al., 2012). Both 

root and shoot biomass has been shown to increase under elevated CO2 (Robinson et 

al., 2012), but root herbivory at elevated CO2 can reduce plant biomass to similar 

levels observed at ambient concentrations (Johnson and Riegler, 2013). The ratio of 

carbon to nitrogen (C:N) in leaves also often increases under elevated CO2 (Robinson 

et al., 2012), but this has been shown to be modified by root herbivory (Johnson and 

Riegler, 2013).  

There have been relatively few studies investigating the effects of climate change on 

above- and belowground herbivore interactions, with differing outcomes. One study 

investigated the effects of elevated CO2 on the interaction between a root- 

(Pemphigus populitransversus) and a shoot- (Aphis fabae fabae) feeding aphid 

species, attacking lady’s smock (Cardamine pratensis) (Salt et al., 1996). This study 
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concluded that the interaction between the above- and belowground feeding aphid 

species was unaffected by CO2 and that the root herbivore populations were always 

smaller in the presence of an aboveground herbivore. Another study investigated the 

interaction between aboveground adults and belowground larvae of the clover root 

weevil (Sitona lepidus) (Johnson and McNicol, 2010). It suggested that elevated CO2 

significantly increased leaf consumption and decreased oviposition by adult clover 

root weevils putting the weevils at a disadvantage. This was reported to be a 

response to reduced leaf quality (high C:N). Despite reduced oviposition, larval 

survival was higher at elevated than at ambient CO2. It was suggested that this could 

be due to increased nodulation of the host-plant (Trifolium repens) under elevated 

CO2 conditions (Johnson and McNicol, 2010), which provided the larvae with a larger 

food resource. Furthermore, a later study of the interaction between the larvae of 

the weevil Sitona discoideus and the pea aphid, Acyrthosiphon pisum, feeding on 

lucerne (Medicago sativa) found that root nodulation can be increased under 

elevated CO2 conditions (Ryalls et al., 2013). These authors also found that weevil 

larvae herbivory caused over-compensatory root growth, increasing net root 

biomass by 31%. Under elevated CO2 conditions larval development increased 

resulting in increased weevil emergence, whilst aphid colonisation aboveground was 

unaffected. Although non-significant, there was a 10% reduction in plant 

colonisation by aphids when weevil larvae were feeding belowground, suggesting a 

competitive interaction between the two spatially-separated herbivores.  

Root herbivory has been hypothesised to modify the expected plant responses to 

elevated CO2 (Johnson and Riegler, 2013): increased root herbivory can reduce plant 

photosynthetic ability with potential effects on herbivores feeding aboveground. 

Climate change therefore has the potential to disrupt above- and belowground 

trophic interactions among insect herbivore species and plants, with implications for 

higher trophic levels and ecosystem processes.  

In this study the influence of elevated atmospheric CO2 on two cultivars of a small, 

but high-value, crop plant (raspberry – Rubus idaeus), along with the plant-mediated 
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interaction between an aboveground (large raspberry aphid – Amphorophora idaei) 

and belowground (vine weevil larvae – Otiorhynchus sulcatus) herbivore are 

investigated. In chapter II a facilitative relationship was found to exist between these 

two herbivores feeding on two cultivars of raspberry which differed in their 

susceptibility to herbivory. Both herbivores benefitted when feeding simultaneously 

on the plant. The following hypotheses were tested:  

1) The root and leaf biomass and the carbon to nitrogen (C:N) ratio of the 

plants will be increased in response to elevated atmospheric CO2;  

2) The presence of weevil root herbivory will increase the plant tissue C:N ratio 

by restricting root uptake of nitrogen;  

3) The greater amount of foliar biomass available under elevated CO2 

conditions will lead to greater aphid abundance;  

4) The enhanced plant growth due to elevated CO2 will be nullified by the 

presence of weevils due to increased root damage; and 

5) The facilitative relationship between the above- and belowground herbivore 

will persist despite the challenge to the trophic system presented by elevated 

CO2.  

 

5.3 Materials and methods 

5.3.1 Experimental design 

A microcosm experiment was carried out (November 2011 – November 2012) 

involving four herbivore treatments (herbivore-free control, aphid only, weevil only 

and a combination of both herbivores) that were assigned to each cultivar (12 

replicates of each). Each microcosm was a 50cm length of cable trunking as 

described in Chapter II. The two cultivars used in this study were Glen Ample and 
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Glen Clova. These cultivars were used because feeding facilitation between our study 

herbivores persisted, despite each cultivar having differing degrees of susceptibility 

(Chapter II). There were also two different CO2 treatments: ambient (390 ppm ±50 

ppm) and elevated (550 ppm ±50 ppm). These CO2 regimes were based on IPCC 

atmospheric CO2 predictions by 2100 (Meehl et al., 2007). Each CO2 treatment 

contained 12 replicates of each cultivar–herbivore treatment combination. To 

minimise pseudo-replication of CO2 treatments the experiment was repeated three 

times. Individual plant replicates were randomly distributed within spatial blocks 

with each block comprising one complete cultivar–herbivore treatment combination. 

Experiments were carried out in four controlled environment chambers 

(approximately 4×10 m2) of the GroDome™ climate change research facility at the 

Centre for Ecology and Hydrology (CEH), Wallingford, U.K. A CO2 sensor (GMW22; 

Vaisala, Finland) was in every chamber and connected to a controller unit (AL2-

24MR-D micro-controller; Mitsubishi, Japan). If CO2 levels fell below treatment level 

(390 and 550 ppm, respectively), CO2 gas (BOC, U.K.) was injected for 1s, followed by 

a 30-s delay, repeating until the required concentration was reached. Plant were 

grown from rootstock obtained from JHI in a 2:1 compost (Levington M3) : sand 

mixture (The plants were grown in glasshouse chambers for 10-weeks under 

conditions of 16:8 hour (Light:Dark) with additional lighting provided by halide bulbs 

(400 W) when active radiation dropped below 400 μmol s-1m-2, and a controlled 

daytime temperature of 18°C (±2°C) and minimum night temperature of 10°C (±2°C). 

Weevil eggs collected from cultures maintained at 18°C were added to the soil of 

appropriate replicates in Week 4, hatching in Week 6 (as reported by Son and Lewis, 

2005).  Three adult large raspberry aphids were added to the upper-most unfurled 

leaf of the appropriate plants in Week 8. The colonisation sequence of weevils and 

aphids replicates natural phenology (McMenemy et al., 2009; Moorhouse et al., 

1992). 

 



73 

 

Chapter V - CO2 and above-belowground interactions 

5.3.2 Plant and insect sampling 

After 10 weeks, the height and number of leaves on each plant were recorded and 

the aphid population sizes counted, and then removed. The aboveground plant 

material was then removed and snap-frozen in liquid nitrogen. Roots were carefully 

separated from the soil, washed and snap-frozen. The soil was then placed in 

Tullgren funnels for 24 hours to extract vine weevil larvae. The larvae collected were 

counted and stored in ethanol. After being snap-frozen the roots and shoots were 

freeze dried for a further 24 hours, after which the tissue was ball-milled to a fine 

powder for subsequent C:N analysis. Chemical analysis of carbon and nitrogen 

concentrations of leaf and root tissue was undertaken at Centre for Ecology and 

Hydrology, Lancaster, using an Exeter Analytical Elemental Analyser (EAI, Coventry, 

UK). The carbon and nitrogen content in organic and inorganic compounds can be 

determined by combustion of the weighed sample (typically 2–5 mg) that occurs in 

pure oxygen under static conditions. Various reagents ensure complete oxidation 

and removal of undesirable by-products and the gases are eventually passed through 

thermal conductivity cells where the output is converted to percentage carbon and 

nitrogen. Using these values for the carbon and nitrogen content of the leaves, it is 

then possible to calculate the C:N.  

 

5.3.3 Data analysis 

Statistical analysis of the experiment was carried out in SAS (version 9.3) using 

generalised linear mixed effects models (GLIMMIX). Response variables were plant 

biometrics (above- and belowground C:N and biomass), and aphid and weevil 

abundance (counts). Categorical explanatory variables included: ‘herbivore 

treatment’ (herbivore-free control, aphid only, weevil only, both herbivores), 

‘Cultivar’ (Glen Ample or Glen Clova) and ‘CO2 treatment’ (ambient and elevated). 

Above- and belowground plant dry weight and leaf and root C:N were fitted as 

continuous explanatory variables to insect models only.  
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All plant biometrics were modelled with Gaussian distribution and an identity link 

function. For plant biomass models the data were log transformed to meet the 

assumption that residuals were normally distributed with homogeneity of variance. 

All other response variables remained untransformed. Aphid and weevil counts were 

modelled with a Poisson distribution and a log link function.  

Random effects in the GLIMMIX models were: ‘chamber’ nested within ‘run’ to 

account for different chambers used during the three experimental runs and ‘block’ 

which accounted for the randomised block design within each chamber. To account 

for the overdispersion of count data, ‘replicate’ was included as an additional 

random effect in insect models.   

Models underwent forward stepwise selection until a minimum adequate model was 

obtained. Statistical significance of main effects are always reported, whereas two-

way interactions are reported only where P < 0.05. Degrees of freedom were 

estimated using the Satterthwaite approximation. Partial residual plots were 

constructed to show the influence of particular explanatory variables on response 

parameters accounting for other significant terms retained in the model. 

 

5.4 Results 

5.4.1 Plant biomass 

As a main effect elevated CO2 did not affect shoot or root biomass (Table 5.1). As 

hypothesised, root herbivory reduced root biomass with both treatments that 

contained weevil larvae yielding significantly less root biomass than those without 

weevils (Figure 5.1a, Table 5.1). There was also a significant interaction between 

herbivore and CO2 treatments affecting root biomass (Table 5.1). Under ambient 

conditions, weevils significantly reduced root biomass, but this effect dissipated 

under elevated CO2, suggesting a mitigation of herbivory impacts on roots (Figure 

5.1a).  
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Figure 5.1: The interaction between CO2 treatment (ambient = dark bars; elevated = 

light bars) and the four herbivore treatments and their effect on: a) belowground dry 

weight; and b) ratio of carbon to nitrogen (C:N) in leaf  tissues (Least square means 

±SE derived from GLMM). Differing characters indicate a significant difference 

between treatments (P < 0.05). 
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Table 5.1: GLMM results summary for plant response parameters. Bold type indicates parameters retained in the final model. “*” indicates interaction 

terms. MPE = multiple parameter estimates.   

Plant response variable 
 

Explanatory variables 
 

Estimate 
 

F (ndf, ddf) 

 
P 
 

    Aboveground plant dry weight Herbivore treatment -0.02742 0.91 (3,172) 0.4378 

 
Cultivar -0.1309 4.69 (1,174) 0.0316 

 

CO2 treatment -0.3363 1.15 (1,4) 0.3433 

 

Leaf C:N 0.03025 19.87 (1,183) <0.0001 

         Belowground plant dry weight Herbivore treatment 0.3147 10.22 (3,171) <0.0001 

 

Cultivar 0.1994 4.03 (1,170) 0.0462 

 
CO2 treatment -0.8564 2.53 (1,4) 0.1884 

 
Root C:N 0.07249 23.67 (1,180) <0.0001 

 
Herbivore treatment*CO2 treatment 0.5042 5.14 (3,171) 0.002 

         Leaf C:N Herbivore treatment -2.1943 2.13 (3,175) 0.0976 

 

Aboveground plant dry weight 2.663 20.04 (1,140) <0.0001 

 

Cultivar 0.7914 1.61 (1,175) 0.2056 

 

CO2 treatment -4.3942 4.03 (1,4) 0.1101 

         Root C:N Herbivore treatment -4.6978 15.79 (3,174) <0.0001 

 
Belowground plant dry weight -0.04296 18.69 (1,172) <0.0001 

 

Cultivar 0.4126 0.93 (1,170) 0.3371 

 

CO2 treatment -0.5785 0.2 (1,4) 0.6815 

 

Belowground plant dry weight *Herbivore 
treatment 2.2412 7.68 (3,173) <0.0001 
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Table 5.2: GLMM results summary for insect response parameters. Bold type indicates parameters retained in the final model. “*” indicates interaction 

terms. MPE = multiple parameter estimates.   

Response variable 
 

Explanatory variables 
 

Estimate 
 

F (ndf, ddf) 

 
P 
 

Herbivore responses     

    Aphid abundance Weevil abundance 0.3706 0.83 (1,31) 0.3706 

        Random effect estimate = 0.695 Aboveground plant dry weight 0.1529 6.72 (1,72)  0.0115 

         Belowground plant dry weight 0.1446 0.77 (1,68) 0.3842 

 

Cultivar 0.1844 0.48 (1,69) 0.4894 

 

CO2 treatment -1.5295 2.79 (1,8) 0.1322 

 

Leaf C:N 0.02029 0.49 (1,72) 0.4843 

 

Root C:N 0.0529 1.76 (1,72) 0.1883 

 

Aboveground plant dry weight *CO2 
treatment 1.383 4.51 (1,72) 0.0372 

          

    Weevil abundance Aphid abundance 0.007077 3.73 (1,27) 0.0639 

        Random effect estimate = 0.2071 Aboveground plant dry weight -0.01534 0.01 (1, 63) 0.9205 

         Belowground plant dry weight -0.1096 1.8 (1,71) 0.1838 

 

Cultivar 0.1071 0.63 (1,68) 0.4311 

 

CO2 treatment -0.309 0.55 (1,4) 0.4996 

 

Leaf C:N 0.02575 2.73 (1,75) 0.1029 

 

Root C:N -0.00635 0.06 (1,83) 0.8132 
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Aboveground dry weight was positively correlated with leaf C:N (Table 5.1), 

suggesting larger plants had a greater C:N ratio, potentially due to a greater amount 

of structural carbon present in those plants, or dilution effect of nitrogen with 

increasing biomass. Similarly, there was a positive relationship between root C:N 

ratio and root biomass (Table 5.1). Aboveground dry weight was also greatest in the 

less susceptible cultivar – Glen Clova (Table 5.1). The reverse was true for 

belowground dry weight, which showed the more susceptible cultivar (Glen Ample) 

to have significantly greater root biomass than the less susceptible cultivar (Table 

5.1). 

 

5.4.2 Plant C:N  

As a main effect elevated CO2 conditions had no effect on leaf C:N (Table 5.1; Figure 

5.2). However, similar to the effect detected on root biomass, the C:N ratio of leaf 

tissue was affected by the interaction between herbivore and CO2 treatments. Under 

elevated CO2 conditions, leaf C:N was increased by the presence of weevils (Table 

5.1; Figure 5.1b), whereas this effect disappeared under ambient CO2 conditions 

(Figure 5.1b). There was no evidence that herbivore treatment affected the C:N ratio 

of leaf tissues (Table 5.1; Figure 5.3).  
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Figure 5.2: The non-significant effect of CO2 treatment on the ratio of carbon to 

nitrogen (C:N) in leaf (dark bars) and root (light bars) (Least square means ±SE 

derived from GLMM). Identical characters indicate no significant difference between 

treatments (P > 0.05). 

 

Figure 5.3: The effect of herbivore treatment on the ratio of carbon to nitrogen (C:N) 

in leaf (dark bars) and root (light bars) tissues (Least square means ±SE derived from 

GLMM). Differing characters indicate a significant difference between treatments (P 

< 0.05). 

      a             a                                     a             a 
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Root C:N was significantly higher in roots where weevil larvae were present in the 

soil (Table 5.1; Figure 5.3), suggesting that the plants may be unable to take up 

sufficient nitrogen due to root damage as suggested in Hypothesis 2. As a main effect 

belowground dry weight significantly decreased root C:N (Table 5.1).  When 

accounting for the main effects of root biomass and herbivore treatment there was a 

significant interaction between the two variables that affected root C:N (Table 5.1). 

Increased root biomass was associated with an increased C:N ratio of root tissues 

(Figure 5.4a & b), but this was significantly reduced where weevil larvae were 

present (Figure 5.4c & d).  

 

Figure 5.4: Partial residual plots on the linear predictor scale for the effect on root 

C:N of the interaction between the four herbivore treatments: a) herbivore-free 

control; b) aphid only; c) weevil only;  and d) weevil and aphid and plant root dry 

weight (g). 
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5.4.3 Insect responses 

Aphid abundance was positively related to aboveground plant dry weight (Table 5.2), 

but the interaction between aboveground dry weight and CO2 treatment showed the 

relationship to be stronger under ambient conditions (Table 5.2; Figure 5.5). There 

were no differences in insect numbers between cultivars or CO2 treatments (Table 

5.2). There was no evidence to suggest that feeding facilitation occurred between 

the herbivores with aphid abundance having no effect on weevil larvae abundance 

(Table 5.2) and weevil larvae abundance having no effect on aphid abundance (Table 

5.2). 

 

Figure 5.5:  Partial residual plots on the linear predictor scale for effect on aphid 

abundance of the interaction between the two CO2 treatments (ambient = dark dots; 

elevated = light dots) and aboveground plant dry weight (g). 

 

 

 

(g) 
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5.5 Discussion 

Contrary to Hypothesis 1, root and leaf biomass and the C:N ratio of the plants 

remained unaltered by elevated atmospheric CO2 as a main effect. Having controlled 

for main effects, however, leaf C:N was higher in the elevated CO2 weevil treatment, 

but there were no significant effects observed in the elevated CO2 conditions. This 

could be attributed to the varying effect of elevated CO2 on annual and perennial 

plants. Woody perennials, such as raspberry, tend to react less to elevated CO2 than 

annual plants due to their capacity to store carbon and nitrogen, mainly in the plant 

stem. This investment in storage may restrict immediate plant growth but be 

advantageous in the long-term with increased growth and survival (Gerbauer et al., 

1996). 

It was then hypothesised (Hypothesis 2) that the presence of weevil larvae would 

increase the C:N ratio in the plant, given that root herbivory can restrict nitrogen 

uptake from the soil. It was found that the presence of weevil larvae in the soil 

increased root, but not shoot, C:N. This could be explained by the plant investing a 

greater volume of carbon to the roots for growth and therefore increasing the 

concentration of carbon in those tissues. That roots are being severed as a result of 

herbivory will also decrease the plants’ ability to take up nitrogen from the soil, 

therefore increasing the C:N ratio further. As a main affect, root C:N decreased with 

increasing belowground root biomass, showing that the larger the plant the more 

nitrogen it can take up. Presumably, greater root mass increased the nitrogen 

concentration of the roots, consequently reducing the C:N ratio. The interaction 

between herbivore treatment and belowground dry weight on root C:N suggested 

that increased belowground dry weight increased root C:N, but was significantly 

reduced by root herbivory. This interaction term accounts for the variability 

observed in the effects of herbivore treatment and belowground dry weight, and 

therefore illustrates that this positive relationship between root C:N and 

belowground dry weight is contingent on the type of herbivory experienced.  
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Hypothesis 3 predicted that aphid abundance would increase under elevated CO2 

conditions due to the greater amount of biomass available. In actuality, with no 

effect of elevated CO2 on plant biomass, aphid abundance did not change. Aphid 

abundance increased with increasing aboveground dry weight, more so under 

ambient conditions. This finding is supported by the fact that plants grown under 

ambient conditions are of higher nutritional quality (Robinson et al., 2012). To date, 

aphid responses to elevated CO2 have been idiosyncratic, with positive, negative and 

null responses observed (Bezemer et al., 1999; Newman et al., 2003; Sun and Ge, 

2011). Although the meta-analysis by Robinson et al. (2012) showed that elevated 

CO2 increased phloem feeder abundance significantly by 22%, this estimate includes 

non-aphid taxa and there are plenty of examples of aphids not responding to CO2 

(Sun and Ge, 2011). It has previously been shown that in the majority of cases (12 

out of 19 studies) where aphid population response has been investigated there 

were no changes (Newman et al., 2003). This may be attributed to whether the plant 

showed a significant response to CO2 or not. In this present study, we found that 

elevated CO2 did not affect the plant (except when interacting with other variables), 

and therefore the effects did not cascade to the next trophic level of the aphids. 

Newman et al. (2003) also produce a model that goes some way to predict why this 

may be the case and why aphid responses to CO2 in general are idiosyncratic. Their 

model shows that aphids may be nitrogen–limited; therefore any increase in leaf C 

(caused by increased atmospheric CO2 synthesis) does not benefit them. Aphid 

nitrogen limitation is dependent on the soil quality (e.g. nitrogen content) and the 

aphid species–specific nitrogen requirements. Nitrogen limitation may have occurred 

in the current study and therefore could explain the lack of effect of CO2 on this 

aphid species.   

Hypothesis 4 predicted that enhanced plant growth caused by elevated CO2 would 

be nullified by the presence of weevils due to increased root damage. As stated 

previously, as a main affect CO2 did not alter plant growth. It was found that in 

ambient conditions weevil abundance negatively affected root biomass. However, 
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after accounting for the main effects of CO2 and herbivory, the interaction between 

these two variables provided a further relationship: increased CO2 mitigated the 

negative effects of root herbivory on plant roots. The potential mechanism behind 

this may be that increased atmospheric CO2 provides more carbon that the plant can 

synthesise for root re-growth, therefore lessening the net root loss. The net effect of 

root herbivory and elevated CO2 was similar to that found by Johnson and Riegler 

(2013), in that elevated CO2 and root herbivory together returned root biomass of 

eucalypts to levels similar to ambient, with no herbivory. In this earlier study, 

elevated CO2 increased root biomass, which was subsequently reduced by herbivory. 

In the current study, the negative effect of root-herbivory seen under ambient CO2 

conditions was mitigated due to increased root production at elevated CO2; 

however, the net effect remained the same. 

The final hypothesis (Hypothesis 5) was that the facilitative relationship previously 

observed between the herbivores will persist despite being challenged by elevated 

CO2. In this current study, however, a null interaction between the two herbivores 

was found. It is currently unknown why this would be the case. Different growing 

conditions and the fact that the experiment was carried out over three temporal 

runs could, however, go some way to explain the differences between the studies. 

The studies were also carried out in different locations, despite being climate 

controlled. 

Herbivore treatment played a significant role in influencing plant biomass and C:N. 

This suggests that herbivory could potentially play a larger role in a future climate 

than the effect of elevated CO2 alone on the plant. This is emphasised by the 

significant interactions between herbivore and CO2 treatment in determining the 

outcome of leaf C:N and belowground biomass.  Moreover, it emphasises the 

importance of belowground chewing herbivores as mediators in plant–soil 

interactions by amending plant C:N and how this plant–herbivore interaction may be 

altered by climate change. This study reveals the importance of biological 

interactions over atmospheric CO2 enrichment. The study also emphasises the 
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importance of considering interactions between herbivory and environmental 

change. In particular, belowground herbivory appears important when investigating 

the effects of climate change not only on the plant responses to elevated CO2 but 

also potentially on other spatially separated herbivores. 
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6.1 Abstract 

Above- and belowground herbivory can indirectly influence intraspecific plant 

competition, and ultimately individual dominance. The hetero- or conspecific context 

of a plant individual may, through associational resistance or susceptibility, govern 

the regulatory effects of herbivores on plant populations. Anthropogenic enrichment 

of atmospheric CO2 concentrations is expected to lead to greater primary 

productivity, which may also affect the impact of herbivory. In this chapter, the 

effects of above- and belowground herbivory, and an elevated CO2 (550 ppm) 

climate on intraspecific plant competition were investigated. It was experimentally 

tested whether a belowground herbivore (vine weevil larvae) preferentially fed on a 

host-plant (raspberry) already attacked by an aboveground herbivore (large 

raspberry aphid). The impact this had on the productivity of plant conspecifics free of 

either above- or belowground herbivory, and moreover the role of elevated CO2 in 

affecting the plant–herbivore interaction was also tested. The belowground 

herbivore showed no preference between aphid-infested and non-infested plants, by 

distributing themselves freely between the roots of both plants. Aphid-infested 

plants exhibited over-compensatory growth and were 64% larger than neighbouring 

aphid-free plants. Atmospheric CO2 level did not affect either the plant mediated 

above- and belowground interaction or intraspecific plant competition This 

experiment shows the potential for above- and belowground herbivory to affect 

primary productivity, and potentially alter intraspecific plant competition, to a 

greater extent than elevated atmospheric CO2 concentrations.  
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6.2 Introduction 

Above-and belowground biota are intrinsically linked (Van der Putten et al., 2009) 

and aboveground herbivory can have a profound impact on belowground processes 

and vice versa (Bardgett et al., 1998; Bardgett and Wardle, 2003). Ultimately, the 

interactions between herbivores and the plant may affect intra- and interspecific 

competition both in the rhizosphere and aboveground (Van der Putten et al., 2001; 

Blossey and Hunt-Joshi, 2003). Moreover, root herbivory has been identified as being 

potentially more important than plant competition in determining plant community 

composition (Nötzold et al., 1997). Herbivores in the rhizosphere influence intra- and 

interspecific plant competition by damaging plant root biomass which retards 

nutrient uptake and primary production (Olff and Ritchie, 1998; Bonser and Reader, 

1995; Steinger and Müller-Schärer, 1992). Variation in host-plant quality may lead to 

preferential grazing by root herbivores and this could result in some plants being at a 

competitive disadvantage (Olff and Ritchie, 1998; Rees and Brown, 1992). 

Plants can compete directly for space, light and nutrients (Casper and Jackson, 1997; 

Pacala and Crawley, 1992; Weigelt and Jolliffe, 2003; Trinder et al., 2013), but they 

can also affect the levels of herbivory a competing plant experiences. Plant 

community composition can affect plant competition indirectly through the 

processes of associational resistance or susceptibility (Barbosa et al., 2009). The 

concentration of the host-plant resource in conspecific aggregations means that an 

individual plant may experience greater herbivore recruitment and damage than 

when it is surrounded by heterospecific plants (Kos et al., 2014). Associated 

susceptibility can also occur as a consequence of neighbouring heterospecific plants 

increasing the attractiveness of a particular plant species to insect herbivores 

(Barbosa et al., 2009; Baraza et al., 2006). For instance, cottonwood (Populus 

angustifolia × P. fremontii) plants growing under box elder (Acer negundo), received 

a greater amount of herbivory from cankerworm (Alsophila pometaria) than when 
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growing around conspecifics or in the open (White and Whitham, 2000). 

Alternatively, growing among or near to conspecific plants can confer associated 

resistance on an individual plant. Consequently, the plant experiences reduced 

herbivory via the reduced ability of herbivores to locate the plant host, either 

chemically or visually (e.g. Hambäck et al., 2000; Barbosa et al., 2009). These 

processes governing patterns of herbivory may therefore contribute to the outcome 

of intra- and interspecific plant competition, with implications for plant performance 

and ultimately community structure (Ohgushi, 2005). 

These neighbourhood effects can also be mediated belowground. Plants are able to 

detect hetero- and conspecifics via physical and chemical root interactions, and this 

can play a major role in plant competition belowground, which can have systemic 

effects on aboveground plant tissue, such as plant height or leaf area production 

(Chen et al., 2012). Insect herbivory aboveground can cause systemic induction of 

plant defence volatiles in heterospecific neighbouring plants, via shared mycorrhizal 

networks in the soil, enabling the plant to initiate defences prior to herbivore attack 

(Babikova et al., 2013). This may be modified by belowground herbivory, as severed 

roots and altered mycelia contact between neighbouring plants will reduce the 

plants’ ability to produces volatiles (Babikova et al., 2013). This effect may be 

exacerbated if the herbivore shows a preference for one plant species or individual 

over another. 

Most work to date looking at the role of herbivores in plant competition has related 

to the aboveground process (e.g. Pacala and Crawley 1992; Crawley, 1989; Schädler 

et al., 2007; Haag et al., 2004; Hambäck et al., 2013; White and Whitham, 2000), 

with only a few studies investigating the effects of belowground herbivores (e.g. Kos 

et al., 2014), due to the difficulty of studying the effect of belowground processes on 

wider ecosystem function (Brussaard, 1998). Investigating the effect of belowground 

herbivory on plants poses practical problems because it is difficult to assess real-time 

movement and herbivore damage within intact soil (Johnson et al., 2008). The 
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relative importance of certain factors aboveground, such as plant defence or the 

conspecificity or heterospecificity of adjacent plants may also be relevant to 

belowground herbivore–plant interactions, but remain to be fully tested.  

Previous studies on the effects of herbivory on plant competition have examined 

systems where the herbivore species were competing for the shared plant resource 

(e.g. Barbosa et al., 2009). The outcome of such indirect plant competition would, 

however, be expected to differ where positive interactions occurred between insect 

herbivores. Feeding facilitation between above- and belowground herbivore species 

has been reported recently (Huang et al., 2013), where attacks on the plant by each 

herbivore elicit changes to the host, resulting in a mutual increase in the abundance 

of both herbivores. Reciprocal feeding facilitation between the aboveground large 

raspberry aphid (Amphorophora idaei) and the belowground larvae of the vine 

weevil (Otiorhynchus sulcatus) feeding on raspberry (Rubus idaeus) has been 

reported in Chapter II. This positive relationship is potentially mediated through 

over-compensatory plant growth in response to herbivory. This would suggest it 

would benefit the vine weevil to choose to feed on plant individuals that are 

attacked by large raspberry aphids aboveground, with potential additional positive 

(over-compensatory growth) or negative (reduced biomass) effects for the plant. 

Furthermore, how the combination of above- and belowground herbivory affects 

consequential competition between plants in this system is yet to be tested 

empirically.  

Global environmental changes such as increasing atmospheric CO2 levels (IPCC, 

2013), are expected to lead to enhanced primary productivity (Kimball et al., 1993) 

and also affect trophic interactions (Antoninka et al., 2009; Chakraborty et al., 2012; 

Harrington et al., 1999; Sanders et al., 2004; Schröter et al., 2004; Stacey and 

Fellowes, 2002; Tylianakis et al., 2008; Van der Putten et al., 2004; Voigt et al., 2003). 

Therefore, there is the potential that the impact of herbivores on plants may be 

mitigated by atmospheric CO2 enrichment increasing plant growth (Johnson et al., 
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2011). Such changes in primary production are likely to affect direct and herbivore-

mediated plant competition, potentially altering the role of higher trophic levels in 

shaping plant community structure (Antoninka et al., 2009; Tylianakis et al., 2008; 

Van der Putten et al., 2004). This, however, is yet to be tested empirically.  

This experiment investigated whether the presence of an aboveground herbivore 

(Large raspberry aphid) on raspberry makes the plant more susceptible to 

colonisation by a belowground herbivore (vine weevil larvae). It explores the effect 

this may have on the relative above- and belowground biomass and photosynthetic 

ability of the two conspecific plants. The study also sets out to investigate how 

elevated CO2 affected the outcome of these plant–herbivore and plant–plant 

interactions, particularly if it affects the distribution of weevil larvae between aphid-

infested and non-infested plants. Consequently, the following hypotheses were 

postulated:  

1) Feeding facilitation between the herbivore species predicts that weevil larvae 

will preferentially select host-plants where an aboveground herbivore is present;  

2) Aphids have been shown to stimulate over-compensatory growth in this study 

system, consequently aphid infested plants will attain greater biomass than aphid-

free plants, and hence a competitive advantage; and 

3) An elevated carbon dioxide environment will produce over-compensatory 

plant growth and increased rates of plant photosynthesis where herbivores are 

present, thereby reducing the overall impact of herbivory.  
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6.3 Materials and methods 

6.3.1 Experimental design 

A 9-week microcosm experiment was carried out at the Grodome climate change 

facility at the Centre for Ecology and Hydrology, Wallingford, from September 2013 

to November 2013. Microcosms were randomly assigned to two CO2 treatments: 

ambient (390 ppm) and elevated (550 ppm), and four herbivore treatments: 

herbivore-free control (A-W-); aphid only (A+W-); weevil only (A-W+); and both 

herbivores (A+W+) (Figure 6.1). The four herbivore treatments exist at the pot level, 

but within the pot there was also aphid treatment at the plant level. Where aphids 

were present in the pot (A+W- and A+W+), out of the two plants in the pot only one 

was inoculated with aphids (“focal”), the other plant was termed the “neighbouring” 

plant (Figure 6.1). The remaining herbivore treatments (A-W- and A-W+) are termed 

“absent” plants, as there were no aphids present in the pot, or on individual plants 

(Figure 6.1). The CO2 treatments were divided across four chambers: two ambient 

and two elevated. There were 12 replicate pots of each herbivore–CO2 treatment, 

giving a total number of 96 replicate pots and 192 experimental plants in 24 

experimental blocks. The experimental chambers were maintained at 18°C (±2°C) 

and a 16:8 light:dark photoperiod. 
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Figure 6.1: Experimental design showing the four herbivore treatments at pot level 

(herbivore-free control; aphid only; weevil only and; weevils and aphids), and the 

aphid treatments at plant level (absent, neighbouring and focal). 

6.3.2 Experimental set-up 

Two randomly selected raspberry plants (Glen Clova cultivar) were planted 10 cm 

apart in a 3 litre pot. This distance was sufficiently close to allow plant interaction 

within the pot during the experimental timeframe. Plants were grown from 

rootstock sourced from the James Hutton Institute (JHI) for 10 weeks until each plant 

was at least 5cm in height. Experimental pots were filled with a 2:1 mixture of 

compost (M3 Levington) : sand, which allowed roots to be subsequently teased apart 
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and the weevil larvae to be removed with relative ease. Plant height and 

photosynthetic ability were measured to ensure there were no differences between 

plants from the experimental treatments at the outset. Plant photosynthetic ability 

was determined using a chlorophyll fluorometer which measured the fluorescence 

yield of the leaf tissue (PAM-2100, Walz, Germany).  

Two weeks after planting the raspberry plants into the experimental pots, 20 vine 

weevil eggs were placed equidistant between the two plants of the appropriate 

treatments (A-W+ and A+W+). Vine weevil eggs were sourced from parthenogenic 

adults that had been cultured in a controlled temperature room at 18°C at the 

Centre for Ecology and Hydrology (CEH), Wallingford. Weevil larvae eclosion was 

timed to occur three weeks later (Week 5), based on temperature dependent 

development time in Son and Lewis (2005). Also, during Week 5, three adult large 

raspberry aphids were randomly added to one of the two plants (henceforth termed 

the “focal” plant) of the appropriate treatments (A+W- and A+W+); the other plant in 

the pot (the “neighbouring” plant) remained aphid-free (Figure 6.1). This ensured 

that aphids were already present on the plant as the weevils eclosed and 

commenced feeding on roots. Porous, plastic “Cryovac” bags were placed over all 

plants to prevent aphid migration between plant individuals and pots, but allow 

passage of atmospheric gases and moisture.  

After a further four weeks (Week 9) the experiment was harvested. Based on 

previous experimental observations this was deemed sufficient time for vine weevil 

larvae to have exerted measurable herbivore damage on the roots, whilst avoiding 

the possibility of an aphid population crash. At harvest, plant photosynthetic ability 

was re-measured, and aphids were counted and removed from the plants. Plants and 

soil were carefully removed from the pot by hand and the identity of which plants 

the larvae were feeding on determined. The roots and larvae were then separated by 

hand, and larvae counted. Additionally, weevil larvae feeding damage was 

characterised by root mass; the lower the root mass, the greater the herbivore 
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damage, as shown in previous chapters. All above- and belowground plant tissue was 

separated, freeze-dried and the dry mass weighed. 

6.3.3 Statistical analysis 

Data were analysed with general linear mixed effects models (proc mixed) carried 

out in SAS (version 9.3). Aphid and weevil abundance (counts) were modelled with a 

Poisson distribution and log link function. Chlorophyll fluorescence (Ft) and 

aboveground and belowground plant dry weight (g) were each modelled with a 

Gaussian distribution and identity link function, plant biomass data were log 

transformed prior to analysis to ensure that the model assumptions of normally 

distributed residuals with homogeneity of variance were met.  

Available categorical explanatory variables included: above- (focal, neighbouring and 

absent) and below- (present and absent) ground herbivore treatments and CO2 

treatment (ambient or elevated). Above- and belowground dry-weight were also 

used as continuous explanatory variables in the insect and chlorophyll fluorescence 

(Ft) models. The identity of CO2 chamber and experimental block were fitted as 

random effects in all models to account for spatial variability across the experiment. 

Additionally, replicate pot was fitted as a random effect in models of weevil and 

aphid abundance models to account for over-dispersion in the count data. Degrees 

of freedom were estimated with the Satterthwaite approximation method.  

6.4 Results 

Contrary to Hypothesis 1, there was no evidence of a facilitative relationship 

between the two herbivore species, as indicated by the lack of any difference in 

weevil distribution between plants according to aphid presence and the lack of an 

effect of weevil treatment on aphid abundance (Table 6.1). Aphid abundance at 

harvest ranged between 24 and 457 individuals, whilst weevil abundance varied 

from 0 to 11 per host-plant.  
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Figure 6.2: The effect of aphid treatments (absent, neighbouring and focal) on 

aboveground plant dry weight (g). Data are least square means ± SE from GLMM. 

Differing characters indicate a significant difference between treatments (P < 0.05). 

 

In support of Hypothesis 2, focal plants had significantly greater biomass than the 

neighbouring aphid-free plant (Figure 6.2; Table 6.2), implying over-compensatory 

plant growth in response to herbivory. There were no statistically significant 

differences in aboveground dry weight between plants where aphids were absent 

from the pot (Figure 6.1 treatment A) compared with plants assigned to the focal or 

neighbouring aphid treatments (Figure 6.2; Table 6.2).  

ab 
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Above- and belowground biomass were positively associated with aphid (Figure 6.3; 

Table 6.2) and weevil larvae (Figure 6.4; Table 6.2) abundance, respectively. Plants 

on which weevils were present had significantly greater root-mass than plants where 

weevil larvae were absent (Table 6.2). The response of plant biomass above and 

belowground suggests that herbivory had stimulated over-compensatory plant 

growth. There was evidence suggestive of a positive feedback loop between the 

herbivores and their associated above- and belowground plant tissue. 

 

 

Figure 6.3: Plot showing the positive effect of aboveground dry plant weight (g) on 

aphid abundance. 
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Figure 6.4: Plot showing the positive effect of belowground dry plant weight (g) on 

weevil larvae abundance. 

 

Chlorophyll fluorescence, and therefore plant photosynthetic ability, was not 

significantly related to above- or belowground plant biomass or weevil or aphid 

abundance, although the latter relationship was a marginally non-significant negative 

effect (Table 6.2). Contrary to Hypothesis 3, elevated atmospheric CO2 had no effect 

on above- or belowground plant biomass and aphid or weevil abundance (Table 6.2). 

 

6.5 Discussion 

This study found that “focal” plants had significantly greater biomass than the 

“neighbouring” plant, suggestive of plant over-compensatory growth in the presence 

of aphids. This may have increased shading which may have contributed to the 
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tendency for the neighbouring conspecific plant to have lower aboveground biomass 

than either the aphid infested or control plants. The present study showed that a 

plant’s proximity to another conspecific plant infested with an aboveground 

herbivore indirectly reduced its biomass.  This study involved a perennial plant that 

has previously been shown to exhibit over-compensatory growth in response to 

herbivory (Chapter II). It is this additional growth following herbivory that may 

explain the aphid-inoculated plant dominance in the pot. Weevil larvae showed no 

preference between host-plants, regardless of the presence of aphids aboveground. 

Chapter II illustrated feeding facilitation where plants were grown in smaller 

rhizotubes. This current study, however, used larger 3-litre pots, producing larger 

plants with a greater amount of feeding material. This finding suggests that feeding 

facilitation may only occur when food resources are limiting. As no plant preference 

was shown by weevils, no differences in overall belowground plant biomass were 

observed. It has previously been shown that above- and belowground effects are 

disproportionate and neighbour effects on plant–herbivore interactions are 

predominantly aboveground (Kos et al., 2014). This has been reinforced in this study 

where aphid treatments had a greater significant effect on plant biomass of 

neighbouring plants than belowground herbivory. A previous meta-analysis showed 

that intra- and interspecific root and shoot competition is less important for crop 

species compared to wild-type plants, and herbs opposed to grasses (Kiær et al., 

2013). These conclusions contrast with the current study that used a perennial crop 

plant, showing the important role of herbivory in influencing plant root and shoot 

competition. 

Aboveground herbivory in maize has been shown to induce a systemic chemical 

response belowground that increased levels of p-coumaroyltyramine in root 

exudates, subsequently metabolised by belowground herbivores (Spodoptera 

littoralis) leading to increased larval growth (Marti et al., 2013). In this maize system, 

it is possible that belowground herbivores use p-coumaroyltyramine in root exudates 

to locate plant roots that are also being attacked by an aboveground herbivore, with 
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a concomitant improvement in the soil herbivores performance. In the current study, 

despite previous evidence for a positive herbivore interaction, there were no 

differences in weevil distribution between plants experiencing different levels of 

aphid herbivory. One potential explanation is that a lack of chemical induction 

following aphid colonisation meant that aphid infested plants may not be detectable 

by the vine weevil larvae in the soil via chemical cues.  

Although the aggregation of soil dwelling larvae, in general, is mostly dictated by the 

oviposition preference of the adults (Johnson et al., 2006), this may not drive their 

acceptance or rejection of the host-plant. The lack of weevil spatial aggregation 

depending on aboveground herbivore distribution may also be explained by the 

physical structure of the soil matrix limiting larval movement between plants 

(Barnett and Johnson, 2013). The neighbour effect may be less of an important issue 

belowground given the smaller reliance on chemical signals to herbivores and 

associated natural enemies. The substrate may, therefore, play a more important 

role in determining the movement of root-herbivores over a chemical cue to plants 

with aboveground herbivores (Barnett and Johnson, 2013).  

The lack of an effect of CO2 enrichment on primary productivity and on the above–

belowground interaction is consistent with the findings from the previous chapters, 

suggesting that this particular plant–insect trophic interaction is not likely to be 

affected by future changes in atmospheric CO2 concentration. Many patterns have 

been previously observed by multiple studies with regard to the effects of elevated 

CO2 on plant–herbivore interactions, such as increased biomass, C:N ratio and tannin 

concentration seen in plants, and reduced abundance, increased plant consumption 

rates and development time in herbivores (Robinson et al., 2012; Stiling and 

Cornelissen, 2007; Zavala et al., 2013). The lack of a CO2 enrichment effect could, 

however, also be due to the low degrees of freedom resulting from the limited 

number of environmental chambers that could be employed in this study, hence the 

lack of an detectable effect may be due to low statistical power. The lack of elevated 
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CO2 effect on the plant may also be a result of experimental length – a longer-term 

experiment may have detected a plant and/or herbivore response to increased 

atmospheric CO2 change. Aphids may have been unresponsive to increased elevated 

CO2 due to nitrogen being limited, which is often cited as the major factor governing 

aphid population growth (Newman et al., 2003), and herbivores in general (Mattson, 

1980).  

This experiment illustrated the key role of herbivory, both above- and belowground, 

in regulating plant biomass and the potential to shape intraspecific competition. This 

may ultimately affect the individual dominance within the plant population. In this 

trophic system, herbivory may play a greater role than CO2 in determining primary 

productivity and potentially even plant dominance. Larger scale field experiments 

would help to understand the extent to which above- and belowground herbivory 

influences plant competition and community structure. 
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7.1 Abstract 

Predicted changes to the Earth’s climate are likely to affect above–belowground 

interactions. Our understanding is limited, however, by past focus on two-species 

aboveground interactions mostly ignoring belowground influences. Despite their 

importance to ecosystem processes, there remains a dearth of empirical evidence 

showing how climate change will affect above–belowground interactions. The 

responses of above- and belowground organisms to climate change are likely to differ 

given the fundamentally different niches they inhabit. Yet there are few studies that 

address the biological and ecological reactions of belowground herbivores to 

environmental conditions in current and future climates. Even fewer studies 

investigate the consequences of climate change for above–belowground interactions 

between herbivores and other organisms; those that do provide no evidence of a 

directed response. This chapter highlights the importance of considering the 

belowground fauna when making predictions on the effects of climate change on 

plant-mediated interspecific interactions.  
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7.2 Introduction 

Trophic interactions are likely to be crucial in shaping net effects of global climate 

change on ecosystems (e.g. Harrington et al., 1999; Tylianakis et al., 2008). Modified 

interactions between trophic groups (e.g. spatial or phenological decoupling of 

herbivore and predator populations) could have far reaching consequences across a 

range of natural and managed ecosystems with implications for food security 

(Gregory et al., 2009). In particular, the plant-mediated interactions between above- 

and belowground herbivores (Blossey and Hunt-Joshi, 2003; Johnson et al., 2012a) 

may be important in the structuring of herbivore and multi-trophic communities 

(Bardgett and Wardle, 2010; Johnson et al., 2013; Megías and Müller, 2010; Soler et 

al., 2012a). Surprisingly, investigating the potential impacts of climate change on 

above–belowground interactions, has received little attention (Schroter et al., 2004). 

Given that root and shoot herbivores affect plants in dramatically different ways, but 

also interact with each other (Meyer et al., 2009), the conclusions drawn from 

studies of climate change impacts limited to only aboveground herbivores may be 

misleading.  

This chapter uses empirical examples to illustrate how belowground herbivores 

influence aboveground plant–insect interactions. It draws on studies concerning 

above–belowground interactions as well as studies showing how climate change can 

alter soil herbivore communities. Finally, it considers the few examples that exist 

where above–belowground interactions have been studied under climate change 

scenarios to show how such plant-mediated interactions are, or may be, modified. 

Thus, this chapter will highlight the potential for previous predictions of climate 

change impacts on plant–insect relationships to have been incomplete or inaccurate, 

because of lack of consideration of belowground interactions. 
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7.3 Above–belowground interactions in the current climate 

Studies of plant-mediated interactions between spatially-separated herbivores have 

revealed contrasting ecological patterns (Van Dam and Heil, 2011) that have evolved 

and built upon two major hypotheses: the Stress Response Hypothesis (Masters et 

al., 1993; Bezemer et al., 2004) and the Defence Induction Hypothesis (Bezemer et 

al., 2002). The Stress Response Hypothesis suggests root herbivory impairs the 

plant’s capacity for water and nutrient uptake, which can lead to the accumulation of 

nitrogen compounds in foliage (White, 1984) to increase palatability to aboveground 

herbivores. In contrast, the Defence Induction Hypothesis, suggests that 

belowground herbivores will induce a systemic increase in plant-defence chemicals, 

making it more difficult for herbivore colonisation to occur aboveground (Bezemer 

and Van Dam, 2005; Kaplan et al., 2008b). These plant-mediated mechanisms arise 

through a complex path of communication between root and shoot tissues involving 

primary (e.g. Johnson et al., 2009) and secondary (Bezemer and Van Dam, 2005) 

chemicals. The nature and mode of signalling between roots and leaves is a rapidly 

expanding area of research (Rasmann and Agrawal, 2008). Some hypotheses suggest 

that interactions between phytohormonal pathways regulate interspecific herbivore 

interactions (Soler et al., 2013). Different feeding guilds elicit different 

phytohormonal pathways. For example, jasmonic acid (induced by root-chewers) 

reduces a plant’s salycilic acid defence response against aphids (Soler et al., 2013). 

Given that above- and belowground herbivores can systemically alter the defensive 

phenotype of plants, future models of plant defence allocation would benefit greatly 

from a systemic-plant approach (Rasmann et al., 2009).  

The consequences of interactions between spatially-segregated organisms are more 

far-reaching than simple pair-wise herbivore–herbivore interactions, with effects 

cascading across species networks spanning trophic levels and the above- and 

belowground sub-systems (Scheu, 2001; Wardle et al., 2004a). The effects of root 
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herbivory can, for instance, affect tertiary trophic levels. Root herbivores such as the 

cabbage root fly (Delia radicum) have been observed to affect, via the host-plant, an 

aboveground herbivore (Pieris brassicae), its parasitoid (Cotesia glomerata) and 

hyper-parasitoid (Lysibia nana) (Soler et al., 2005). In this instance, D. radicum 

increased the development time of P. brassicae and C. glomerata, and the body size 

of both parasitoid and hyper-parasitoid were reduced. These effects were attributed 

to an alteration in the blend of phytotoxins (glucosinolates) emitted post-herbivory. 

Conversely, aboveground herbivory can have a negative effect on belowground 

herbivores and associated natural enemies (Jones and Finch, 1987; Soler et al., 

2007). For instance, the presence of butterfly larvae (P. brassicae) reduced the 

abundance of the belowground herbivore (D. radicum) and its parasitoid 

(Trybliographa rapae) by up to 50% and decreased the body size of emerging 

parasitoid and root herbivore adults (Soler et al., 2007). If these broader interactions 

between organisms inhabiting the plant rhizosphere and canopy are typical, they 

could scale-up to play important roles in governing ecosystem function. 

7.4 Climate change and belowground herbivores 

Many studies and comprehensive reviews address the effects of global climate 

change on aboveground insect herbivores (e.g. Bale et al., 2002; Cornelissen, 2011), 

whereas there are substantially fewer studies of the impacts on belowground 

organisms (Staley and Johnson, 2008). Soil fauna are, at least to some extent, 

buffered from the direct impacts of climate change (Bale et al., 2002). Carbon 

dioxide concentrations are already high within the soil due to root respiration and 

microbial processes (Haimi et al., 2005), and therefore soil fauna are less likely to be 

affected by increased atmospheric CO2 directly. Soil fauna may, however, be affected 

indirectly by increased growth of root resources caused by increased atmospheric 

CO2 (Norby, 1994). While higher soil temperature may also increase root growth, 

temperature increase may directly affect soil herbivore development and insect 

phenology (Van Asch et al., 2007). Reduced soil moisture, potentially a consequence 

of increased temperature, can also impact many soil insect life-history traits, such as 
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survival and abundance (Pacchioli and Hower, 2004). Predicted increases in climatic 

extremes under a future climate (e.g. increased flooding and drought events) may 

also drown or desiccate soil biota and herbivores, thus reducing their prevalence in 

the soil (Parmesan et al., 2000).  

Soil-dwelling insect herbivores feed on the roots and therefore have very different 

effects on plant traits than their aboveground counterparts. These effects may alter 

the predicted consequences of global climate change on shoot herbivores (Robinson 

et al., 2012; Zavala et al., 2013). For instance, most plants increase biomass 

accumulation and rates of photosynthesis in response to elevated CO2 (Ainsworth 

and Long, 2005); this depends on plants maximising water and nitrogen use 

efficiency. To facilitate this, many plants increase their root:shoot biomass ratio in 

response to elevated CO2, but this may be compromised by root herbivores, which 

remove root mass, therefore impairing water and nutrient uptake (Johnson and 

Murray, 2008). A recent meta-analysis by Zvereva and Kozlov (2012) showed that 

root herbivores reduced rates of photosynthesis in host-plants; this contrasts with 

many aboveground herbivores that actually stimulate it (Thomson et al., 2003). 

Empirical evidence also suggests that root herbivory can effectively reverse the 

effects of elevated CO2 on eucalypt chemistry (e.g. increased foliar C:N ratio) and 

biomass, potentially altering the outcomes for aboveground herbivores (S. N. 

Johnson, pers. obs.).   

 

7.5 Climate change and above-belowground interactions: 

empirical evidence 

To date, there are only two peer-reviewed published examples describing how an 

elevated CO2 environment affects the interaction between above- and belowground 

herbivores. The first focused on the interaction between the root-feeding 

(Pemphigus populitransversus) and shoot-feeding (Aphis fabae fabae) aphids, on 
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Cardamine pratensis (Salt et al., 1996). The study concluded the interaction between 

these spatially-separated aphids was unaffected by CO2, because root herbivore 

populations were always smaller in the presence of an aboveground herbivore 

regardless of the CO2 environment. The second study investigated the conspecific 

interaction between aboveground adults and belowground larvae of the clover root 

weevil (Sitona lepidus) (Johnson and McNicol, 2010). Elevated CO2 increased leaf 

consumption by adult weevils but resulted in lower rates of oviposition. These 

patterns were interpreted by the authors to be a compensatory feeding response to 

reduced leaf nitrogen and lower reproductive output due to inadequate nutrition. 

Despite reduced rates of oviposition, larval survival was much greater at elevated 

than at ambient CO2 -levels potentially due to increased nodulation (increased food 

source) of the host-plant (Trifolium repens) under elevated CO2 conditions (Johnson 

and McNicol, 2010).  

Enrichment with CO2 is not only expected to increase plant biomass both above- and 

belowground, but also to reduce plant tissue quality through increases in the C:N 

ratio and secondary metabolite concentrations (Bezemer and Jones, 1998). 

Compensatory feeding by phytophagous insects in an elevated CO2 environment may 

thus increase exposure to defensive chemicals present in plant tissue. This is likely, 

however, to be contingent on plant taxonomic identity, as concentrations of 

defensive chemicals may increase (e.g. glucosinolates in Arabidopsis thaliana (Bidart-

Bouzat et al., 2005)), or remain unchanged (e.g. tannins in Quercus myrtifolia (Rossi 

et al., 2004)) in response to CO2 enrichment. 

Temperature changes may alter above–belowground interactions either by affecting 

invertebrate phenology directly (Gordo and Sanz, 2005; Harrington et al., 2007) or 

indirectly through changes in the plant (Bale et al., 2002; Harrington et al., 1999; 

Singer and Parmesan, 2010), although this remains to be tested empirically. A 

predicted increase in global mean temperatures may also result in an increased 
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water stress response in plants (Huberty and Denno, 2004), making them more 

susceptible to herbivory both above- and belowground. 

Summer drought is another factor associated with climate change that has been 

shown to influence above–belowground interactions. Typically, root-chewing 

Agriotes sp. larvae reduced the abundance and performance of leaf-mining 

Stephensia brunnichella larvae and its associated parasitoid (Staley et al., 2007).  This 

effect was, however, negated under drought conditions. Changes to summer rainfall 

may, therefore, reduce the occurrence or alter the outcome of plant-mediated 

interactions between insect herbivores.  

Above–belowground interactions may also be influenced by variation in soil 

moisture. Experimentally elevated rainfall increased the suppression of an outbreak 

of the herbivorous moth larvae Hepialus californicus by an entomopathogenic 

nematode (Heterorhabditis marelatus), thereby indirectly protecting the host-plant – 

bush lupine (Lupinus arboreus) (Preisser and Strong, 2004). Thus climate change, by 

altering patterns of precipitation, has the potential to modify herbivore–natural 

enemy interactions to reduce herbivore pressure.  

Few studies have integrated the multiple abiotic factors associated with climate 

change (i.e. water supply, temperature, CO2 etc.) to investigate their combined 

effects on above–belowground interactions. One such study (Stevnbak et al., 2012) 

manipulated CO2 concentration, air and soil temperature and precipitation to show 

that soil microbial biomass was altered by aboveground herbivory (Chorthippus 

brunneus). The combination of multiple climate change treatments with 

aboveground herbivory increased microbivorous protist abundance in the soil, 

emphasising the importance of considering climate change in above–belowground 

interactions. 
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7.6 The future of above–belowground interactions and climate 

change research 

Johnson et al. (2012a) conducted a meta-analysis on two-species above–

belowground herbivore interactions. Although restricted by not including other 

trophic groups, the meta-analysis did identify several factors that determine the 

outcomes of interactions between spatially-separated herbivores. From these 

outcomes it is possible to develop hypotheses of how specific interactions are likely 

to be affected by climate change. The chronological sequence in which herbivores 

fed on shared plants was a major determinant of interaction outcome. In particular, 

aboveground herbivores negatively affected belowground herbivores when they fed 

first, but not when feeding synchronously or following belowground herbivores. 

Conversely, belowground herbivores typically had positive effects on aboveground 

herbivores only when synchronously feeding, otherwise they had a negative impact. 

Many of the data on aboveground species are from aphids; from these data it is 

known that elevated CO2 and temperature results in earlier and longer seasonal 

occurrences of many pest species, including aphids (Harrington et al., 2007). 

Therefore in the future it might be reasonable to expect that some aphids may 

initiate feeding on the plant prior to belowground herbivores. Under such 

circumstances, aphids may negatively affect the belowground herbivore while 

remaining unaffected themselves, the reverse of the interaction under current 

conditions. Likewise, if drought conditions delayed root herbivore development this 

change could become even more pronounced.    

Feeding guild identity (e.g. chewers, suckers, gallers) can affect the outcome of 

above–belowground interactions. Johnson et al. (2012a) showed that the effects on 

aboveground herbivores depended on belowground herbivore guild. Individual 

feeding guilds and trophic levels respond differently to climate change (Voigt et al., 

2003), but how this translates into changes in above–belowground trophic 

interactions remains unexplored. The increased level of defence compounds in plant 

tissue, predicted to occur under climate change scenarios (Robinson et al., 2012), are 
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likely to have a disproportionate effect between (a) herbivores feeding above- or 

belowground: defence compounds may be concentrated in either leaf or root tissue, 

and (b) different feeding guilds: chewing insects are more susceptible to defensive 

compounds than phloem-feeders. There is, however, a strong bias in the literature, 

with certain herbivore guilds and orders (e.g. Lepidoptera) having been represented 

disproportionately within empirical studies (Robinson et al., 2012). Conclusions 

extrapolated regarding general herbivore-responses to climate change should, 

therefore, be treated with appropriate caution.  

There are few long-term above–belowground interaction studies. Some Arctic long-

term manipulative field studies (e.g. Ruess et al., 1999) that illustrate the effects of 

climate warming on soil fauna provide essential information on legacy effects in 

natural ecosystems. These indicate that above–belowground interactions may be 

separated temporally (Kostenko et al., 2012) as well as spatially. Long-term field 

experiments may also yield different results to laboratory experiments conducted 

over a smaller timescale (Johnson et al., 2012a).   

 

7.7 Conclusions and research agenda 

Our understanding of how individual species respond to climate change has 

increased dramatically over the past 25 years. We have a relatively well-informed 

understanding of how aboveground herbivores may react to different aspects of 

climate change (e.g. Bale et al., 2002) but our knowledge of belowground species 

responses remains lacking. Johnson and Murray (2008) illustrate how this area of 

research is a “hot topic” for multidisciplinary research while others (Soler et al., 

2005; Van Dam and Heil, 2011) underline the importance of a more integrated 

understanding of climate change impacts on ecosystems that incorporates above- 

and belowground trophic linkages. 
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Based on current knowledge of above–belowground interactions it is possible to 

formulate hypotheses that could be tested empirically in future research. For 

example:  

1. Root herbivory is likely to change fundamentally plant responses to an 

elevated CO2 environment, since root function usually underpins the plants 

ability to respond to environmental changes. It could be hypothesised that 

inclusion of root herbivores will reverse the effects of elevated CO2 on certain 

aboveground herbivores, particularly those negatively affected by higher C:N 

ratios (e.g. leaf-miners).  

2. Plant functional identity may shape how above–belowground interactions 

respond to climate change. For instance, plants with C3 and C4 photosynthetic 

pathways will respond differently to climate change, and notably elevated 

CO2 (Barbehenn et al., 2004a). In particular, C3 plants potentially show a 

greater decline in nutritional quality than C4 plants, which are often 

inherently less favourable hosts to insect herbivores (see the C3-C4 hypothesis 

of Scheirs et al., 2001). This might lead to compensatory feeding on C3, but 

not C4, plants in future climates (Barbehann et al., 2004b). It could be 

hypothesised that above–belowground interactions are likely to be more 

affected on C3 than C4 plants.  

3. Belowground herbivory induces a water stress on the plant, similar to 

drought. Experiments investigating drought effects on aboveground plant–

herbivore interactions may, therefore, be analogous to above–belowground 

herbivore interactions generally. It could, therefore, be hypothesised that the 

combination of a drought treatment and a belowground herbivore may have 

additive negative effects on the plant and consequently on aboveground 

herbivores (through increased susceptibility to herbivory).  

 

Increasing trophic complexity in empirical climate change research will strengthen 

the ability to make more accurate predictions of trophic interactions in future 
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environments (Robinson et al., 2012). Making predictions based on simple plant–

herbivore interactions compared to wider communities may be misleading and 

interaction outcomes may be altered with the inclusion of higher trophic levels. As 

seen aboveground, climate change may not directly affect the abundance of a 

herbivore; however, if the abundance or impact of an associated antagonist is 

reduced then climate change may increase herbivore abundance indirectly. 

Disrupted phenological synchrony between predator and prey (Hance et al., 2007) 

may be one mechanism, another may be a reduction in plant production of chemical 

attractants (synomones) that recruit  natural enemies, which then regulate herbivore 

numbers (Yuan et al., 2009). Alternatively, climate change may benefit the prey and 

antagonist equally, with any increase in herbivore abundance merely supporting 

greater numbers of natural enemies and thus leading to no net change in 

populations (e.g. Chen et al., 2005). An integrated approach considering trophic 

interactions as an integral part of an ecosystem comprising above- and belowground 

components will provide a more accurate estimation of climate change impacts. For 

example, a positive effect of root herbivores on folivores at higher temperatures 

may, if climate change positively affected antagonist efficacy (e.g. Bezemer et al., 

1998; Hance et al., 2007), be cancelled-out with the inclusion of an above- or 

belowground antagonist. For the most part this remains to be tested empirically. 

Moreover, with more empirical data it may be possible that – as has been observed 

with other areas of climate change research (Robinson et al., 2012) – apparent 

idiosyncratic outcomes of climate change impacts on plant–herbivore interactions 

give way to reveal generalities. Trends have become apparent in some aspects of 

insect herbivory in elevated CO2 (Zavala et al., 2013); for example, phloem feeders 

increase in abundance under elevated CO2, whereas leaf-miners decrease (Robinson 

et al., 2012). Alternatively, further research may simply reveal a lack of general 

responses of above–belowground interactions to climate change. For instance, 

despite the large body of research on aphid–plant interactions under climate change, 

aphid responses to CO2 enrichment still appear to be highly species-specific (see Sun 
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and Ge, 2011 and references therein). The challenge for ecologists therefore is to 

utilise current knowledge of individual species responses to climate change and 

develop our understanding into general hypotheses for functional guilds, networks 

of species and ecosystem processes.
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The overall aim of this thesis was to investigate how certain aspects of climate 

change (e.g. elevated atmospheric CO2 and altered phenology) affected the 

interaction between the aboveground large raspberry aphid (Amphorophora idaei) 

and the root-feeding larvae of the vine weevil (Otiorhynchus sulcatus), both of which 

feed on raspberry (Rubus idaeus). Under ambient atmospheric CO2 conditions a 

reciprocal facilitative relationship existed between aphids and weevil larvae, where 

both species had a positive effect on the other’s abundance, mediated through 

feeding behaviour (Chapter II). In this thesis, the reciprocal relationship was not 

altered by the chronology of herbivore arrival (Chapter III), which departs from the 

main finding of a recent meta-analysis (Johnson et al., 2012a). For this raspberry-

aphid-weevil system, it would therefore seem that changes in chronology of 

herbivore colonisation of host-plants as a result of future climate changes may not 

affect the facilitation between these spatially-separated herbivores. 

 In general, elevated atmospheric CO2 increases leaf toughness (Robinson et al. 

2012), and this was supported by this thesis study (Chapter IV). This increased leaf 

toughness did not, however, prevent vine weevil adults from increasing leaf 

consumption rates compared with the ambient CO2 situation. Moreover, when given 

a choice adult weevils preferentially fed on foliage from plants grown under elevated 

CO2 conditions. Belowground herbivory generally has a negative effect on root 

biomass (Andersen, 1987); elevated CO2 may mitigate this negative effect by 

increasing plant growth (Chapter V). In this raspberry-aphid-weevil system, however, 

biotic plant–herbivore interactions seem to play a larger role in dictating insect 

abundance and plant biomass than the effects of elevated CO2. The effects of 

herbivory on plant biomass and C:N were far greater than those of increased CO2 

concentrations. Finally, the presence of an aboveground herbivore, at least in this 

raspberry–aphid system, appears to have the potential to affect surrounding 
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conspecific plants through the consequences of herbivore-induced over-

compensatory growth (Chapter VI).  

Reciprocal feeding facilitation was observed in two studies (Chapters II and III); the 

abundance of both herbivores increased in the presence of the other. Examples of 

this phenomenon are rare in nature as most interspecific insect interactions are 

competitive with one species having a negative effect on the abundance of the other 

(Denno et al., 1995). Of the numerous reasons why facilitative relationships may 

occur (Denno et al., 1995; Johnson et al., 2009; Price et al., 2011; Soler et al., 2012b), 

in this study system, the potential driving force is most likely to be the over-

compensatory growth aboveground caused by increased herbivory (Chapter II). 

One study that illustrates a uni-directional facilitative relationship between 

conspecifics, where aboveground herbivory benefits belowground herbivores but 

with no belowground effect on the aboveground herbivore, was between adults and 

larvae of the flea beetle (Bikasha collaris) feeding on Chinese tallow (Triadica 

sebifera) (Huang et al., 2013). This conspecific interaction was attributed to changes 

in plant chemistry. When feeding alone on the plant, belowground herbivores 

caused the plant to produce defensive tannins. The presence of aboveground 

herbivory by adult flea beetles, however, prevented the plant producing root 

tannins, which subsequently caused larval survival to double. Above- and 

belowground herbivory in tandem, however, increased foliar tannins which 

subsequently decreased adult survival. These alterations in plant chemistry show 

that facilitation in this instance was caused by the suppression of root defence 

compounds.  

Evidence for reciprocal above–belowground interspecific interactions between 

herbivores exists, with root-feeding wireworms (Agriotes spp.) increasing foliar-

feeding aphid (Rhopalosiphum padi) numbers by 30% and aphids increasing 

wireworm mass by 25% on barley (Hordeum vulgare) (Johnson et al., 2009). The 

increase in wireworm mass was attributed to the increases in root mineral 
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concentrations (especially root sulphur) induced by aphid feeding. Wireworms also 

reinforced the aphid-induced increases in root sulphur concentrations by 35% after 

short exposure, but reduced aphid-induced increases by 10% after longer exposure, 

suggesting herbivore-induced changes in root mineral concentrations maybe a 

dynamic process and change over time. In another system, although not reciprocal, 

vine weevils increased field populations of Cryptomyzus galeopsidis aphids by 700% 

(Johnson et al., 2013). This positive effect of weevils on aphids was attributed to the 

increase in the proportion of foliar essential amino acids by 4% which was driven by 

belowground herbivory. Examining specific plant nutrients and plant defence 

chemistry could be critical to understanding conditional outcomes of insect–plant 

interactions. Evidence suggests there may be numerous mechanisms (e.g. change in 

phytohormones, amino acids or tannins) that underpin facilitative relationships 

between herbivores, but these mechanisms may change over time, as longer 

exposure to herbivory alters plant chemistry further (Karban and Myers, 1989). 

Reciprocal interspecific interactions have also been observed between aboveground 

herbivore species. Soler et al. (2012b), for example, found that the reciprocal 

interaction between the aphid Brevicoryne brassicae and Pieris brassicae caterpillars 

feeding on Brassica oleracea may be due to the disruption of phytohormones. 

Jasmonic acid (a phytohormone involved in the chemical defence against chewing 

herbivores) was reduced 10-fold by aphid feeding, which benefited the caterpillars 

by increasing their rate of development and individual size. Levels of plant 

glucosinolates and the carbon:nitrogen ratio remained unaffected by either aphid or 

caterpillar presence, suggesting these factors did not underpin this facilitative 

relationship.  

Facilitative relationships may give way to competitive interactions over time (Denno 

et al., 1995; Price et al., 2011); the length of time over which an experiment is 

carried out may, therefore, be a significant determinant of whether facilitative 

relationships are observed. The experiments showing facilitative relationships 
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referred to above took place over 27 (Huang et al., 2013), 10 and 20 (Johnson et al., 

2009), and 6 (Soler et al., 2012b) days. In the present study, with aphid and vine 

weevil larva interacting (Chapters II and III), the experiment ran for 14 days. All are 

relatively short-term (less than a month), therefore, facilitation may have been 

observed because of the relatively short nature of the study (Price et al., 2011).  

That feeding facilitation occurred between vine weevils and aphids in some studies 

(Chapters II and III) and not in others (Chapters V and VI) raises interesting questions.  

Why did facilitation not occur in these instances? It is likely that prevailing conditions 

played an important role in determining the outcome. As soil volume was equal in 

two of the studies giving a different result (Chapters II and V) it is unlikely that this 

was the causal reason. The lengths of the experiments and growing conditions were 

also the same (mean day temperature 18°C ±2°C and a 16:8 light:dark regime), 

despite being carried out in glasshouses in different locations. Variation in the 

presence or absence of facilitation between aphid and weevil cannot be explained by 

differential and systematic differences in insect abundance or aboveground plant 

biomass because a similar range of population sizes and biomasses were found 

within experiments. A possible explanation is suggested by belowground differences 

among experiments. Facilitation was observed in the first study (Chapter II) when 

shoot:root ratio was 0.8:1. This ratio was largely driven by high mean belowground 

biomass (2.15 g), compared to a shoot:root ratio of 1:1 and a mean root biomass of 

0.8 g in the study reported in Chapter V. Unfortunately root biomass was not 

measured in the second study (Chapter III), the weevil larvae having been feeding for 

variable periods on the roots but in the third experiment (Chapter IV) where 

facilitation was again not observed plants had a relatively low root biomass (0.8 g), 

with a shoot to root ratio of 2.4:1. This implies that feeding facilitation may be 

contingent on root biomass, only occuring when root biomass is high and the ratio of 

shoot to root biomass is less than 1:1.   
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Another reason why feeding facilitation may have occurred in only chapters II and III 

may be down to the compost used during the experiments.  Chapters II and III used a 

specific blend of peat-perlite mixture containing 17N : 10P : 15K obtained from 

Wiliam Sinclair Horticulture Ltd. All following experiments used Levington M3 

compost with a nutrient balance of 233N : 104P : 339K. It may be these differences 

in the soil nutrients (nitrogen, phosphorous and potassium) that affect the 

associated nutrients in the plant tissue, which in turn may affect the herbivores. The 

Levington M3 compost has a much higher ratio of potassium compared to the other 

two nutrients in the compost. If there are low potassium levels in the soil in chapters 

II and III, it may cause the plant to be potassium deficient. Previous studies have 

shown that soybean aphids (Aphis glycines) feeding on soybean (Glycine max) 

performed better on K-deficient plants with regard to net reproductive rate (Myers 

et al., 2005) and abundance (Walter & Di Fonzo, 2007), than on non-deficient 

soybean. It may therefore, be potassium levels of the soil and plant that drive the 

facilitative relationship between the above- and belowground herbivores. This 

suggests that nutrient content of both the plant and soil may play an important role 

in determining inter-specific herbivore interactions. 

More generally, feeding above-and belowground facilitation may only occur 

between certain herbivore guilds, insect body size classes, or insect developmental 

stages. Mechanical damage by chewers is far more acute and can cause much more 

severe plant damage than sap feeding insects (Andersen, 1987). Moreover, the 

damage caused by two chewing species of interacting insects may be too severe for 

the plants to tolerate; therefore it is likely that facilitation may be more likely to 

occur in interactions involving phloem feeding insects that cause less mechanical 

damage to the plant. Possibly, facilitative relationships between above- and 

belowground herbivores may only occur in early root-herbivore instars (Chapter II). 

Smaller larvae graze on the finer roots, which may only cause limited damage to a 

plant, but as the larvae develop they will feed on increasingly larger roots and will 

consequently be more detrimental to the plant (Moorhouse et al., 1992). 



121 

 

 

Chapter VIII – Discussion. 

Furthermore, interspecific plant–herbivore interactions are known to be dynamic 

processes and may change over time (Ohgushi, 2005).  

In addition, moderate herbivory can cause over-compensatory plant growth 

(Chapters II, III and VI). It was suggested in Chapter II positive feedback between 

aphid and weevil via induced over-compensatory plant growth was the driver of the 

feeding facilitation. Therefore facilitative interactions may also be contingent on 

plants showing over-compensatory growth.  

It is also a possibility that the occurrence of herbivore facilitation is governed by 

plant defence strategy. Plants that rely on chemical defence may host more 

competitive interactions between herbivores – especially if plants rely on induced 

defence where the time of arrival of a herbivore species on the plant would be of 

greater importance (Viswanathan et al., 2005; Erb et al., 2011). Plants that defend 

themselves physically may lend themselves to facilitative herbivore interactions as 

shown in Chapters II and III. Soler et al. (2012b), however, suggest that signal 

crosstalk (e.g. between jasmonic and salicylic acid pathways) could occur in 

chemically defended plants resulting in a disruption of chemical defence, ultimately 

benefiting both herbivores of various feeding guilds.  

Although this is the first study to investigate in detail the combined interaction 

between vine weevil larvae and aphids on raspberry, other studies investigating each 

herbivore provide supporting evidence. For example, other studies have shown that 

the large raspberry aphid promotes raspberry growth by 18–37% (Johnson et al., 

2012b). In addition, vine weevils have been shown to promote large raspberry aphid 

populations by 80% (McMenemy et al., 2009), although the effects on vine weevil 

populations were not recorded.  

The sequence in which insect herbivores colonise host-plants is considered to be the 

most important determinant of the outcome of above–belowground species 

interactions (Johnson et al., 2012a). Belowground herbivory has a positive effect on 
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aboveground herbivores, but only when they arrival simultaneously on the plant. 

When belowground herbivores arrive either before or after aboveground herbivores, 

the net effect is neutral. Conversely, aboveground herbivores only affect 

belowground herbivores negatively when they colonise the plant first (Johnson et al., 

2012a). When they arrive before or at the same time as belowground herbivores 

there is no interaction outcome. The facilitative relationship observed in the studies 

reported in this thesis persisted, however, regardless of the sequence of herbivore 

arrival on the host-plant (Chapter III).  

The lack of herbivore arrival time effect on interaction outcomes (Chapter III) may be 

a result of the persistence of the reciprocal facilitative relationship previously 

observed (Chapter II). Studies that have shown that herbivore arrival time was an 

important factor in determining interspecific herbivore interaction outcomes often 

involved competitive interactions (Viswanathan et al., 2005; Erb et al., 2011). In that 

situation herbivores arriving first have a competitive advantage over those arriving 

subsequently, due to induction of plant defence compounds (Erb et al., 2011). 

Arriving first avoids any induced plant defences and also direct competition with 

other herbivores for space on the plant (Viswanathan et al., 2005; Erb et al., 2011; 

Victorsson, 2012). In this system, raspberry plants are less reliant on chemical 

defence, so this avoidance of induced chemical defence is not likely to be a major 

factor governing the performance of herbivores.  

It would be beneficial to assess what factors govern the impact of herbivore arrival 

time on the plant. Chapter III suggested that time of herbivore arrival may only be an 

issue where herbivores are competing for the plant food resource. Further research 

on a wide range of herbivore–herbivore interactions, specifically above–

belowground interactions, would help shed light on whether the nature of herbivore 

interaction (competitive versus facilitative) governs the importance of herbivore 

arrival on the plant.   
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Attempts to identify and generalise the responses of insect herbivores to elevated 

atmospheric CO2 have met with varying degrees of success (Bezemer et al., 1999; 

Newman et al., 2003; Zvereva and Kozlov, 2006; Stiling and Cornelissen, 2007; 

Cornelissen, 2011; Newman et al., 2011; Sun and Ge, 2011; Robinson et al., 2012; 

Zavala et al., 2013). Increased CO2 has an indirect effect on the herbivores mediated 

through changes in host-plant, e.g. increased leaf C:N. Insect responses to elevated 

CO2 are highly idiosyncratic (Newman et al., 2011); no consistent effects are 

reported for either folivores or Coleoptera (Robinson et al., 2012), whilst Homoptera 

and phloem feeders generally increase in abundance (Robinson et al., 2012). In this 

present study, the large raspberry aphid did not respond to elevated CO2 in terms of 

population abundance. This was not a typical response because host-plant specialists 

such as this aphid species are reported generally to show a negative response to 

changes in plants induced by increased atmospheric CO2 levels (Robinson et al., 

2012).    

The effects of elevated CO2 recorded in this present study, on both raspberry and its 

associated herbivores, appear at variance with the generalisations that have been 

drawn from other studies. For example, both above- and belowground plant biomass 

tends to increase under conditions of elevated CO2 (Robinson et al., 2012); this was 

not found in the present study. Generally, plant tissues also have an increased 

carbon to nitrogen ratio when grown in elevated CO2 (Bazzaz, 1990; Kimball et al., 

1993; Ainsworth and Long, 2005). This has frequently been used to explain levels of 

increased plant consumption by herbivores (Lincoln et al., 1986). There can be a 

tendency for an increase in C:N in response to increased CO2 in raspberry plants in 

some studies (Martin and Johnson, 2011) but this is never a strong response, and 

indeed the response is absent in this thesis (Chapters IV & V). This, as previously 

discussed in another context above, could be due to the short duration of the 

experiment being insufficient to detect such differences in a woody perennial plant 

species. Increasing experimental duration, might allow such chemical constituent 

changes to be recorded. Elevated CO2 led to an increase in leaf tissue toughness 
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(caused by increased epicuticular wax (Percy et al., 2002)), a generalisation recorded 

in various other studies (Robinson et al., 2012). The unchanged C:N ratio may also be 

caused by root herbivory causing nitrogen to be reallocated away from the damaged 

roots and concentrated more in the leaf tissue (Newingham et al., 2007). 

Results from this thesis add to the body of literature that illustrates plants can 

benefit from herbivory through over-compensatory growth (Matches, 1992; Alward 

and Joern, 1993). This growth effect may be dependent on the level of herbivory 

received, as slight or moderate herbivory, both above- and belowground, can 

encourage plant growth (McNaughton, 1983), whereas prolonged or acute herbivory 

can be detrimental to the plant. There are examples in the literature that illustrate 

over-compensatory growth upon herbivory both above- (Trumble et al., 1993) and 

below- (McNaughton, 1983) ground. For instance, another weevil species, the 

lucerne weevil (Sitona discoideus), has also been shown to induce over-

compensatory growth in lucerne (Medicago sativa), increasing root biomass by 31% 

(Ryalls et al., 2013).  

Much work has been undertaken showing how aboveground herbivores can alter 

plant competition and community structure (Crawley, 1989; Pacala and Crawley, 

1992; Haag et al., 2004; Schädler et al., 2007). There are few empirical studies that 

assess how the interaction between above- and belowground herbivores may affect 

plant competition (e.g. Kos et al., 2014), so the work done in chapter VI adds to the 

small body of data on this subject. The ability of herbivores to alter community 

composition, by reducing plant biomass allowing other plants to thrive in the 

environment has been well documented above- (Bonser and Reader, 1995; Olff and 

Ritchie, 1998) and below- (Brown and Gange, 1990; Van der Putten et al., 2001; 

Blossey and Hunt-Joshi, 2003; Wardle et al., 2004a; Bardgett and Wardle, 2010) 

ground. The majority of studies show that plants subjected to herbivory are at a 

competitive disadvantage compared to surrounding, herbivore-free plants. In this 

present study of the interaction between raspberry–aphid–weevil, aphids played a 
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greater role in determining the outcome of plant competition than both 

belowground herbivory and elevated CO2 (Chapter VI). It was hypothesised that 

plants subjected to herbivory would be at a disadvantage compared to neighbouring 

plants due to increased biomass removal. Upon herbivory, however, the plant 

showed plant over-compensatory growth – an effect consistently observed 

throughout the majority of the experiments in this thesis. This caused the herbivore 

inoculated plant to be significantly larger than the neighbouring plant. This illustrates 

above–belowground herbivory may have consequences for altering plant 

competition in the wider ecosystem, but this remains to be tested empirically.  

8.1 Experimental critique 

As previously discussed (Chapter I), a microcosm approach provides the researcher 

with many advantages (Lawton, 1998); highly replicable, they primarily allow 

detailed observation of population changes whilst controlling for numerous 

environmental factors.  They have proved an ideal conduit for investigating above- 

and belowground interactions in this study system. Using rhizotubes (Chapters II, III 

and IV) made roots accessible and allowed weevil extraction. The restrictive 

environment of the tubes did not, however, allow plant roots to grow typically 

retarding growth and the uptake of soil nutrients and additional water, and this may 

have altered the herbivore–plant interaction. Larger pots that allow sufficient room 

for plant growth may be a better approach to studying above–belowground 

herbivore interactions (Körner, 1995).   

The majority of the studies presented in this thesis were relatively short-term (9–12 

weeks). It is suspected that observed plant–herbivore interactions will exhibit 

temporal dynamics and that the over-compensatory growth seen may give way to 

severe plant damage if herbivory was prolonged. The facilitative relationship could 

therefore become competitive over time with potentially greater plant damage 

arising (e.g. Price et al., 2011).  Longer-term studies also allow sufficient time to 
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study a greater number of plant (e.g. fruit productivity) and aphid biometrics (e.g. 

developmental rate and fecundity). Restriction to insect abundance and growth rates 

may have limited the studies’ abilities to identify potential climate change effects. 

There may also be long-term consequences of feeding on elevated CO2 plants by 

insect herbivores, not detected in these experiments. While there may, for example, 

be no short-term effect of tougher leaves on adult vine weevils (Chapter IV), a longer 

term effect may be increased mandibular wear. For example, there are examples in 

the literature that show the silica present in grasses that acts as a physical defence 

against herbivores can cause long-term damage to insect mandibles (Massey et al., 

2006; Massey and Hartley, 2009). Short-term exposure of Spodoptera exempta to 

silica-rich diets caused increased mandible wear. This damage increased with the 

duration of exposure with late instar affected greater than early instar larvae, 

reducing feeding efficiency and growth rates further (Massey and Hartley, 2009).  

8.2 Future directions and study 

The studies reported in this thesis mainly address patterns in insect abundance and 

some aspects of plant primary productivity. A more mechanistic approach to isolate 

the specific pathways and plant compounds that govern these interactions is the 

obvious next step.  Insect interactions can be governed by the defensive pathways 

and/or changes in plant chemistry that are affected as a consequence of feeding. 

Raspberry plants are more reliant on physical than chemical defence (Hall et al., 

2009). Although secondary compounds are not the primary mode of defence for 

raspberry plants investigating the effects of plant phenolics, present in raspberry, 

and how they may affect the above–belowground interaction is an obvious avenue 

of study. Increased phenols in raspberry tissues have been shown to affect vine 

weevil larvae mass (Clark et al., 2011; Johnson et al., 2011) and the number of 

weevils per plant (Johnson et al., 2011) positively. Elevated CO2, however, reduced 

the positive effect of raspberry phenol concentration on weevil abundance (Johnson 

et al., 2011).   
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Aphid resistance in raspberry is believed to be underpinned by epicuticular wax 

thickness preventing effective aphid stylet insertion (Shepherd et al., 1999a; 

Shepherd et al., 1999b). Leaf chemistry may underpin the effects of elevated CO2 on 

leaf toughness (Chapter IV); leaf wax chemistry and toughness, in particular, play an 

important role in aboveground herbivory (Raupp, 1985; Shepherd and Griffiths, 

2006). Investigating and potentially identifying the chemical mechanisms involved 

may give better predictions of the effects of elevated CO2 on a wide range of plant–

herbivore interactions.  

Soluble nitrogen and amino acids may play a role in determining the outcome of 

above–belowground interactions (Gange and Brown, 1989; Johnson et al., 2009). 

Aphids are often nitrogen limited and it may be these compounds that prevent aphid 

populations increasing under conditions of elevated CO2 (Watt et al., 1995). 

Determining changes to plant amino acid compositions and concentrations which 

could potentially be altered by root herbivory would extend insights into this 

observation. 

Natural ecosystems are far more complex than simple plant–herbivore interactions 

and involve multi-species interacting within multiple trophic levels (Figure 8.1). 

These trophic interactions include pollinators (Poveda et al., 2003), detritivores 

(Newington et al., 2004; Megías and Müller, 2010) and soil microbes (Wardle et al. 

2004b; Pieterse and Dicke, 2007), all of which have received relatively little attention 

within a climate change above–belowground context. By progressively increasing 

microcosm studies’ complexity it is possible to create a more accurate 

representation of how organisms might be interacting in the natural world.  

Increasing trophic complexity may modify some of the interactions observed in 

simple plant–herbivore, herbivore–herbivore interactions. For example, where 

weevils have been shown to increase field populations of aphids this was followed by 

an increase in the abundance of aphid natural enemies (Johnson et al., 2013). 

Additionally, where facilitation has been found between aboveground herbivores, 
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their natural enemies also increased (Soler et al., 2012b). Again, in this latter 

situation, natural enemies act to moderate the herbivore interspecific interaction 

and trends, and the simple plant–herbivore relationships observed under 

experimental conditions may not be occurring in the wider ecosystem. 

 

Figure 8.1: Conceptual model illustrating trophic interactions between above- and 

belowground organisms based on current knowledge (solid line represents direct 

interaction; dotted line represents indirect interaction; “+” represents overall 

positive effects; “-” represents overall negative effects; “?” represents unexplored 

interaction). 
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The large raspberry aphid is known to be a vector for at least four raspberry disease 

viruses, including the black raspberry necrosis virus and the raspberry leaf mottle 

virus (McMenemy et al., 2009; McMenemy et al., 2012). Infected raspberry plants 

are initially more attractive to aphids than uninfected plants; however, aphid 

development took three days longer on these infected plants (McMenemy et al., 

2012). These two viruses both caused a two-fold increase in soluble amino acids, 

mainly glutamate, which may underpin the negative effect on aphid development. 

Root-herbivory is known to reduce the amount of root mass and therefore also 

restrict the amount of nitrogen the plant can take up from the soil (Brussaard, 1998). 

The composition and concentrations of plant nitrogen-based amino acids may 

therefore be affected by belowground herbivory, with cascading effects to aphids 

and the plant viruses. Exploring this avenue would incorporate another level of 

complexity, that of plant disease transmission, into the system being studied.   

Different components of climate change (e.g. CO2, temperature, precipitation) do 

not act on organisms in isolation, but rather in combination as they are intimately 

linked in actual ecosystems (Mikkelsen et al., 2008; Stevnbak et al., 2012; Scherber et 

al., 2013). Therefore, differences that are revealed when investigating a single 

climatic factor may not be the same when a combination of abiotic factors are 

studied (Valkama et al., 2007). These different abiotic treatment combinations can 

affect the plant both physically and chemically (Veteli et al., 2002), and herbivores 

that feed on them (Zvereva and Kozlov, 2006). For example, a study investigated the 

combined effects of temperature and CO2 on the leaf-miner, Dialectica scalariella, 

feeding on Paterson's Curse, (Echium plantagineum) (Johns and Hughes, 2002). This 

study showed larval development time was reduced at the high temperature, but 

increased at elevated CO2. This resulted in the larval development time being 

reduced by around 14 days in the elevated CO2/high temperature treatment, 

compared to the ambient CO2/low temperature treatment. These effects also occur 

belowground. For example, a study showed increased temperature had a negative 

effect on lucerne weevil emergence for soil-living larvae (Sitona discoideus) on 
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lucerne (Medicago sativa). However, elevated CO2 increased emergence from 0 to 

5% (Ryalls et al., 2013).  

Longer term studies may illuminate the effects that above–belowground herbivory 

may have on wider ecosystem functions, such as nutrient cycling. The severing of 

roots by belowground herbivores provides a greater amount of necro-mass that can 

be broken down by decomposers including insects, fungi and bacteria. These 

organisms are important in ecosystem functioning (Bardgett and Wardle, 2010), 

therefore any changes in their abundance and activity could have cascading effects 

across the plant–soil food web though altered trophic and mutualistic interactions. 

Whilst the benefits of carrying out work in controlled environment conditions have 

been discussed, the next stage would be to conduct associated experiments under 

more natural conditions in the field. Free-Air CO2 Enrichment (FACE) facilities provide 

an opportune, yet expensive, way to investigate the effects of elevated CO2 on 

plant–herbivore and herbivore–herbivore interactions (Ainsworth and Long, 2005) 

although this approach also poses a set of challenges (e.g. replication issues), albeit 

different to glasshouse experiments. While there is undoubtedly a trade-off between 

the control of abiotic and biotic conditions in field and glasshouse experiments, field 

experiments do allow the involvement of more variation in background factors (e.g. 

temperature). Glasshouse and chamber experiments operate at set conditions, 

whereas field experiments are perhaps a better representation of what interactions 

may be occurring in ecosystems. Field experiments would be particularly optimal 

conditions to test hypotheses surrounding the effects on above–belowground 

herbivory on plant community structure.  

8.3 Concluding remarks 

This thesis provides novel evidence of reciprocal feeding facilitation between above- 

and belowground herbivores – an interaction seemingly robust to changes in the 

chronology of herbivore species colonisation of the host-plant. This interaction, 
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however, is more likely to occur when root biomass is high, and the ratio of shoot to 

root biomass is less than 1:1. This study finds that the negative effects of root 

herbivory on plant biomass may be mitigated by increased CO2 and adult weevils 

show a feeding preference for leaves grown in elevated CO2 despite an increase in 

leaf toughness. This study also shows that herbivory causes over-compensatory plant 

growth. The findings of this thesis raise some important questions on understanding 

patterns and relationships between herbivorous insects feeding above- and 

belowground, as well as effects they have on the host-plant and vice-versa. The 

mechanisms behind the interactions have not yet been investigated. Some important 

pathways and mechanisms have been identified as important factors influencing 

above–belowground interactions. For example, crosstalk in plant phytohormones 

underpins a facilitative relationship between two herbivores (Soler et al., 2012b); 

whilst abscisic acid regulates the interaction between western corn 

rootworm (Diabrotica virgifera virgifera) and Spodoptera littoralis aboveground (Erb 

et al., 2009). These mechanisms can occur systematically throughout the plant 

showing that leaf and root tissue are tightly linked. 

Little empirical work has been conducted on the wider ecosystem effects of above- 

and belowground herbivory, although much has been hypothesised. Many current 

challenges still remain in studying belowground herbivory as it is, by its nature, 

difficult to observe. Greater still are the challenges facing ecologists in quantifying 

the effects of belowground herbivory on the wider ecosystem. The importance of 

above- and belowground interactions in determining host-plant performance and 

also that of the wider plant community may be greater than currently acknowledged. 

It would add greatly to current understanding of above–belowground interactions to 

investigate what effects both specialist and generalist herbivores have on such 

factors as plant competition as they may play a larger role than currently 

acknowledged in influencing plant communities.  
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