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Abstract 

We investigate the impact of advance notice of product returns on the performance of a decentralised closed loop 

supply chain. The market demands and the product returns are stochastic and are correlated with each other. The 

returned products are converted into “as-good-as-new” products and used, together with new products, to satisfy 

the market demand. The remanufacturing process takes time and is subject to a random yield. We investigate the 

benefit of the manufacturer obtaining advance notice of product returns from the remanufacturer. We 

demonstrate that lead times, random yields and the parameters describing the returns play a significant role in the 

benefit of the advance notice scheme. Our mathematical results offer insights into the benefits of lead time 

reduction and the adoption of information sharing schemes.  

 

Keywords:  Supply chain management, closed loop supply chain, information sharing, random yield, lead time. 

Word count: In total 6766, Abstract 130, Main Body 5227. 

 

1. Introduction 

Due to growing concerns with environmental issues, collection and recycling systems for 

post-consumer products have been developed in many countries. Return rates for 

polyethylene terephthalate (PET) bottles, for example, are increasing year by year in many 

countries.  The 2012 rates in Europe, Japan and the USA are 52% (Petcore 2013), 90.4% 

(CPBR 2014) and 30.8% (Napcore 2013), respectively. At the same time, many companies 

have been developing new remanufacturing processes. Suntory, one of the largest food and 

beverage companies in Japan, has developed bottle-to-bottle mechanical recycling technology 

that enables the company to produce PET bottles solely from reused resin (Suntory 2013).  
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This world-wide environmental movement is mainly driven by the sustainability ethic (Welle 

2011), but the impact of the recycling system on the dynamics of the supply chain is not well 

understood.  

 

Akçalı and Çetinkaya (2011) argue closed loop supply chains (CLSCs) are generally 

acknowledged to be more complex than traditional supply chains due to a number of factors: 

Both the demands and the product returns must be forecasted and incorporated into 

replenishment decisions. The demand and return may be correlated to each other. Two 

different lead times are present, the manufacturing lead time and the remanufacturing lead 

time. In many practical situations, the returned products will also be variable in quality, 

resulting in a remanufacturing process with a random yield.  

 

It is often advocated that to improve supply chain performance, information should be shared 

between players. The value of such information sharing in traditional supply chains is well 

recognized (see Gavirneni, Kapuscinski and Tayur 1999; Lee, So and Tang 2000). However, 

there is little research that addresses information sharing in CLSCs. 

 

This research investigates the impact of the remanufacturer providing advance notice of the 

product returns on the performance of the manufacturer in a decentralised CLSC. We focus on 

the stochastic and dynamic performance of the supply chain. The lead times, the degree of 

correlation between the demand and the product returns, and the random yield of the 

remanufacturing process are all incorporated into a mathematical model to investigate the 

benefit of advance notice via a variance analysis. With a constant lead time, the returns are 

converted into “as-good-as-new” products that are used alongside newly manufactured items 

to satisfy market demand. To cope with the uncertainty in demand and returns the 

manufacturer must forecast them both. However, the returns are already known to the external 

remanufacturer and this information could be shared in an advance notice scheme. We 

demonstrate that both the remanufacturing and the manufacturing lead times, the 

remanufacturing yield, the parameters of the return process, and the advanced notice scheme 

can have a significant impact on the manufacturer's performance.   

 

As we progressed through our study we became aware that certain knowledge from our 

understanding of traditional supply chains does not hold true for CLSC.  For example, the 

rule-of-thumb that “reducing lead time improves the dynamic performance of a traditional 
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supply chain” does not always hold true in our CLSC.  We were also surprised to learn that 

higher returns can sometimes reduce supply chain performance.  

 

This paper is organized as follows. Section 2 provides a literature review. Section 3 defines 

our CLSC model. Section 4 deduces managerial properties from an analysis of the production 

quantities and inventory levels. Section 5 presents insights from a numerical exploration. 

Section 6 concludes. Some proofs are provided in the appendices, and summarises some 

numerical experiments for verification. 

 

2. Literature review 

Using some approximations when necessary, Ketzenberg, van der Laan and Teunter (2006) 

presented two analytical models for quantifying the value of information in the CLSC: a one-

period model and a multi-period model. Information on the market demand, the returns and 

the remanufacturing yield was shared and its impact investigated. Assuming a capacitated 

CLSC, Ketzenberg (2009) investigated the value of sharing demand, returns, yield and 

capacity utilization information. Costs were quantified using a simulation study. It was shown 

that information regarding capacity utilization leads to the largest average benefit, though no 

type of information is dominant.  

 

De Brito and van der Laan (2009) investigated the impact of imperfect information on the 

forecast of lead time demand in a remanufacturing setting. Inventory cost was used to 

quantify the consequences of imperfect information. Based on an analysis of four different 

forecasting methods, they concluded that the most informed forecasting method does not 

always result in the least cost. Flapper, Gayon and Vercraene (2012) considered imperfect 

advance return information and inventory cost using a Markov decision formulation. A 

random return lead time was assumed in a model with finite capacity but no correlation 

existed between demand and returns. They concluded that advance return information can 

reduce inventory cost by up to 5%, and this was affected by the expected return lead time.  

 

The importance of considering delays in a system is well recognized (Forrester 1961). Flapper, 

Ferrer and Ketzenberg (2004) and Gayon and Vercraene (2012) suggested that it might be 

reasonable to assume that lead times affect the value of information sharing. Assuming that 

both lead times were stochastic, van der Laan, Salomon and Dekker (1999) numerically 

investigated the impact of lead times. Poisson distributions were used to represent demand 
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and return processes. It was found that a longer remanufacturing lead time resulted in a cost 

reduction, though longer manufacturing lead times always resulted in a cost increase. 

Inderfurth and van der Laan (2001) also supported this finding. Despite this theoretical 

support, Guide (2000) found that 60% of remanufacturing executives were under pressure to 

reduce remanufacturing lead times. 

 

It is widely recognised, that demand and product returns are correlated with each other 

(Akçalı and Çetinkaya 2011). This correlation assumption is intuitively understandable, as 

part of the demand eventually becomes the input into the remanufacturing process (Akçalı and 

Çetinkaya 2011). Van der Laan et al. (1999) and Ketzenberg, van der Laan and Teunter (2006) 

modelled correlation between demand and the product returns with product returns that were a 

random function of the demand. Mitra (2012) assumed that product returns were a fraction of 

the demand plus a random term.  

 

Practically it is common to have a random yield in the remanufacturing process as the quality 

of the return products is understandably varied (Guide 2000). Ferrer and Ketzenberg (2004), 

Ketzenberg, van der Laan and Teunter (2006) and Ketzenberg (2009) used a Bernoulli 

process to represent a remanufacturing process with random yields. Yano and Lee (1995) 

suggested that one advantage of using the Bernoulli process was its simplicity, but this 

approach forbids the specification of yield variability. Akçalı and Çetinkaya (2011) suggested 

that only a few studies incorporate a random yield assumption. This rarity is probably due to 

the analytical complexity introduced by this feature. 

 

  

Figure 1.  Schematic of material flow 
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Our research considers the impact of the value of advance notice on the dynamic and 

stochastic performance of a decentralised CLSC. The demand and the returns are stochastic 

and cross-correlated. In our model, the lead times of the manufacturer and the remanufacturer 

and the random yields in the remanufacturing process are considered. We characterize the 

variances of the serviceable products, the net stock levels and the production orders without 

specifying their probability distribution functions (PDFs). To the best of our knowledge, there 

are no previous studies that simultaneously consider the value of information, the impact of 

lead times and the random yield in a CLSC setting with correlated demands and returns in 

such a way. Interested readers can find a comprehensive review of recent CLSC literature in 

Akçalı and Çetinkaya (2011) and Govindan, Soleimani and Kannan (2015). 

 

3. Model 

 

Figure 1 shows a schematic of our decentralised CLSC model. It is a periodic review system 

where both the manufacturer and the remanufacturer employ the same review period. The 

manufacturer uses an order-up-to policy (Hosoda and Disney 2006) to determine its 

production quantity. Both the manufacturing and the remanufacturing processes have 

unlimited capacity. We assume that there is no difference between remanufactured and new 

products in terms of quality. This assumption may not be as restrictive as it first seems. For 

example, Suntory (2013) makes bottles made from both recycled PET resin and petroleum-

based resources for the same soft drink product and the customer is not aware of any 

difference. A push policy is assumed to operate at the remanufacturer. Once returns are 

available, the remanufacturing process starts immediately and the remanufactured products 

are subsequently shipped to the manufacturer without delay. The push policy is appropriate in 

our decentralised setting and fits well with the ethics of sustainability and common industrial 

practice.  

 

The random yield is modelled using a stochastically proportional yield model (Hening and 

Gerchak 1990). This model is appropriate when the system is subject to material variations 

(Yano and Lee 1995), and it has previously been used in a remanufacturing study by Tao, 

Zhou and Tang (2012). The yield is identified at the beginning of the remanufacturing process 

in what is generally called a “triage” process.  

 

3.1 Market demand and returns 
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It is assumed that both the market demands (𝐷𝑡) and the product returns (𝑅𝑡) are white noise 

processes. This white noise assumption is widely used in much of the CLSC literature (e.g. 

Ketzenberg, van der Laan and Teunter 2006; Ketzenberg 2009). The mean of 𝐷𝑡 and 𝑅𝑡 are 𝜇𝐷 and 𝜇𝑅, respectively. The correlation between 𝐷𝑡−𝜏 and 𝑅𝑡 is captured by the correlation 

coefficient 𝜃, |𝜃| ≤ 1, where 𝜏 is a time delay over which the correlation acts and is a non-

negative integer. 𝜀𝑡  is an identically and independently distributed (i.i.d.) random variable 

with a mean of zero and a standard deviation of 𝜎𝜀 .  𝜁𝑡  is another zero mean i.i.d. random 

variable with a standard deviation of 𝜎𝜁 = 𝑘𝜎𝜀 where 𝑘 is a non-negative scale factor. 𝜀𝑡 and  𝜁𝑡 are independent. The demands and the product returns are given by 

 𝐷𝑡 = 𝜇𝐷 + 𝜀𝑡, 𝑅𝑡 = 𝜇𝑅 + 𝜃𝑘 𝜀𝑡−𝜏 + √1 − 𝜃2𝜁𝑡, (1) 

 

where the correlation between 𝐷𝑡−𝜏 and 𝑅𝑡 becomes 𝜃, see Appendix A. It should be noted 

that we do not model the correlation between the “satisfied demand” and the returns. Also, 

there is no correlation between 𝐷𝑡−𝜏−𝑥 and 𝑅𝑡 when 𝑥 is a nonzero integer. This assumption 

might not be the most general representation but, to the best of our knowledge, this is the first 

research which explicitly incorporates correlation between demands and returns in the 

literature. The correlation coefficient, |𝜃| ≤ 1. If demand and the return are independent each 

other we set 𝜃 = 0. If larger (smaller) demands eventually results in larger (smaller) returns 

then there is likely to be positive correlation between demand and returns, 0 < 𝜃 ≤ 1. If a 

collect-and-return process shares a limited logistics capacity with the delivery of new product 

to customers there could be negative correlation between demand and returns, −1 ≤ 𝜃 < 0; 

as when the requirements for delivering new (returned) products is high there is less logistics 

capacity available to collect returns (new products). 

 

Appendix A shows that the standard deviations of 𝐷𝑡 = 𝜎𝜀  and 𝑅𝑡 = 𝑘𝜎𝜀 , respectively. If k is 

greater than unity, the standard deviation of 𝑅𝑡 becomes larger than the standard deviation of 𝐷𝑡. It is assumed that 𝜇𝐷 ≫ 𝜇𝑅, as in van der Laan et al. (1999), since practically the product 

returns are a portion of the demand.  This assumption might not hold at the very end of a 

product life cycle or when a new version/edition of the product is introduced.  However, in 

our Suntory example, as the returned bottles are mechanically destroyed and reformed into a 

new bottle, this factor is not an issue.  
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Figure 2. Sequence of events at manufacturer 

 

3.2 Sequence of events 

At the beginning of time period 𝑡, the remanufacturer observes the total number of units 𝑅𝑡 
that have been returned from the market place. All of the returns are then pushed into the 

remanufacturing process. The remanufacturing process is not capacitated but it is subject to a 

random yield. If the remanufacturer receives 𝑅𝑡 at 𝑡, the quantity of serviceable goods the 

remanufacturer actually processes is Ξ(𝑅𝑡) = 𝜉𝑡𝑅𝑡 ≤ 𝑅𝑡  due to the random yield. It is 

assumed that the value of Ξ(𝑅𝑡) is recognised by the remanufacturer at time 𝑡, and the yield 

distribution does not depend on time 𝑡 or the quantity of 𝑅𝑡. When 𝑅𝑡 is realised, 𝜉𝑡 is also 

identified, as in Ketzenberg (2009). The expected yield 𝜉̅ (= 𝐸[𝜉𝑡]), mean returns 𝜇𝑅 , and the 

remanufacturing lead time 𝑇𝑟, are known by the manufacturer. Remanufactured products are 

then pushed into the manufacturer's inventory at the beginning of period 𝑡 + 𝑇𝑟 + 1 in order 

to partially satisfy the market demand  𝐷𝑡+𝑇𝑟+1.  
 

The manufacturer’s lead-time is 𝑇𝑝. At the beginning of period 𝑡, the manufacturer receives a 

quantity of brand-new goods from its production line equal to 𝑃𝑡−(𝑇𝑝+1), the order placed in 

period 𝑡 − (𝑇𝑝 + 1) in addition to the remanufactured products from the remanufacturer. The 

market demand 𝐷𝑡  is then observed and satisfied from the on-hand inventory. If the 

manufacturer does not have sufficient on-hand inventory to fill the demand, the unmet 

demand is backlogged. At the end of period 𝑡, the manufacturer places a production order 𝑃𝑡 
to meet the future demand, taking into account the expected future product return rate. Figure 

2 illustrates the sequence of events. Note that the manufacturer makes his production decision 

after he has received product from the remanufacturer. The manufacturer’s net stock level at 

the end of period 𝑡, follows 
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𝑁𝑆𝑡 = 𝑁𝑆𝑡−1 + Ξ(𝑅𝑡−(𝑇𝑟+1)) + 𝑃𝑡−(𝑇𝑝+1) − 𝐷𝑡. (2) 

 

3.3 The ordering policy 

Let 𝐼𝑃𝑡+ denote the manufacturer’s inventory position the moment after the production order 𝑃𝑡  is determined. 𝐼𝑃𝑡+  is the net stock level at time 𝑡 plus the sum of open manufacturing 

orders, 𝐼𝑃𝑡+ = 𝑁𝑆𝑡 + ∑ 𝑃𝑡−1𝑇𝑝𝑖=0 . The value of 𝐼𝑃𝑡+  is known to the manufacturer, since all 

information is local. Hosoda and Disney (2012) showed that in a traditional supply chain 

setting, regardless of the ordering policy used, 𝑁𝑆𝑡+𝑇𝑝+1 = 𝐼𝑃𝑡+ − ∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1  always exists. 

However in our CLSC it is necessary to incorporate the incoming pipeline inventory (WIP) 

that the remanufacturer will send to the manufacturer during the interval (𝑡, 𝑡 + 𝑇𝑝 + 1]. 𝑃𝐼𝑅𝑡 
is the pipeline inventory, the products currently being remanufactured that have successfully 

cleared triage. Let 𝐹𝑃𝐼𝑅𝑡 represent the future pipeline inventory at time 𝑡. Consequently, we 

have the following relationship: 𝑁𝑆𝑡+𝑇𝑝+1 = 𝐼𝑃𝑡+ − ∑ 𝐷𝑡+𝑖 + 𝑃𝐼𝑅𝑡 + 𝐹𝑃𝐼𝑅𝑡𝑇𝑝+1𝑖=1 , (3) 

where 𝐼𝑃𝑡+ = 𝑁𝑆𝑡 + 𝑃𝑡−𝑇𝑝 +⋯+ 𝑃𝑡 , 
𝑃𝐼𝑅𝑡 = {  

  ∑ Ξ(𝑅𝑡−𝑖), 𝑇𝑟 ≥ 𝑇𝑝𝑇𝑟𝑖=𝑇𝑟−𝑇𝑝∑ Ξ(𝑅𝑡−𝑖),𝑇𝑟𝑖=0   𝑇𝑟 < 𝑇𝑝  

and 

𝐹𝑃𝐼𝑅𝑡 = { 0, 𝑇𝑟 ≥ 𝑇𝑝∑ Ξ(𝑅𝑡+𝑖), 𝑇𝑟 < 𝑇𝑝𝑇𝑝−𝑇𝑟𝑖=1 . 
 

Note that the manufacturer does not know 𝑃𝐼𝑅𝑡 when there is no advance notice scheme. In 

the absence of advance notice, the manufacturer must use the expected value of 𝑃𝐼𝑅𝑡, 𝑃𝐼�̂�𝑡, to 

determine 𝑃𝑡 . Hence, the advance notice of product returns will influence manufacturing 

performance. When 𝑇𝑟 < 𝑇𝑝, 𝐹𝑃𝐼𝑅𝑡  contains information which will only be known in the 

future; the actual value of 𝐹𝑃𝐼𝑅𝑡 is unknown at time period 𝑡. Therefore, the manufacturer 

must forecast the value of 𝐹𝑃𝐼𝑅𝑡. This implies that the magnitude of the relationship between 𝑇𝑟 and 𝑇𝑝 will also influence the ordering policy.  
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With knowledge of (2), the following relationship between 𝐼𝑃𝑡+ and 𝐼𝑃𝑡−1+  can be obtained 

 𝐼𝑃𝑡+ = 𝐼𝑃𝑡−1+ − 𝐷𝑡 + Ξ(𝑅𝑡−(𝑇𝑟+1)) + 𝑃𝑡. 
 𝑃𝑡 can then be written as 

 𝑃𝑡 = 𝐷𝑡 − Ξ(𝑅𝑡−(𝑇𝑟+1)) + 𝐼𝑃𝑡+ − 𝐼𝑃𝑡−1+ . (4) 

 

From (3), we may obtain another form of 𝐼𝑃𝑡+, 

 

𝐼𝑃𝑡+ = ∑ 𝐷𝑡+𝑖 − 𝑃𝐼𝑅𝑡 − 𝐹𝑃𝐼𝑅𝑡𝑇𝑝+1
𝑖=1 +𝑁𝑆𝑡+𝑇𝑝+1. (5) 

 

As the manufacturer cannot observe 𝐼𝑃𝑡+  the expected value of 𝐼𝑃𝑡+ must be used instead, 

 𝐸[𝐼𝑃𝑡+] = �̂� − 𝑃𝐼𝑅�̂� − 𝐹𝑃𝐼𝑅𝑡̂ +𝑇𝑁𝑆, (6) 

 

where 

 �̂� = 𝐸 [∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1 ] = (𝑇𝑝 + 1)𝜇𝐷, 𝑃𝐼𝑅�̂� = 𝐸[𝑃𝐼𝑅𝑡], 𝐹𝑃𝐼𝑅𝑡̂ =𝐸[𝐹𝑃𝐼𝑅𝑡], 𝑇𝑁𝑆 = E[𝑁𝑆𝑡+𝑇𝑝+1], 
 

and the target net stock (𝑇𝑁𝑆) level is a time invariant constant predetermined to minimise 

inventory holding and backlog cost. If the distribution of the inventory is known, the 𝑇𝑁𝑆 

may be identified using standard newsvendor techniques and the inventory costs become 

linear functions of the standard deviation of the inventory levels, Brown (1963). However, the 

distribution of the inventory level is difficult to determine due to the non-linear impact of the 

random yield.  This means numerical approaches are required to allocate costs. For this reason 

we have elected to judge performance based solely on the variance of inventory and capacity 

levels. 

 

From (4) and (6) we may obtain the OUT replenishment policy for our CLSC, 
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 𝑃𝑡 = 𝐷𝑡 − Ξ(𝑅𝑡−(𝑇𝑟+1)) + (𝐸[𝐼𝑃𝑡+] − 𝐸[𝐼𝑃𝑡−1+ ]). 
 

Note that the values of 𝐸[𝐼𝑃𝑡+] and 𝐸[𝐼𝑃𝑡−1+ ] depend upon the availability of the advance 

notice scheme. We have the following two cases in our setting: 1) advance notice is not 

available (case 𝑁) and 2) advance notice is available (case 𝐴). Further note that 𝑃𝑡  can be 

negative, indicating that the sum of the on-hand inventory and the pipeline inventory is higher 

than the target order-up-to level. In such a case, the excess inventory will stay there until 

being used as part of a future replenishment. This assumption is called the costless return 

assumption (see Dong and Lee 2003; Hosoda and Disney 2009). However, this costless return 

assumption is not as restrictive as it appears, especially when 𝜇𝐷 ≫ 𝜇𝑅. 

 

 

3.4 Case N: No advance notice 

In this case information about the returns (𝑅𝑡) and the yield (𝜉𝑡) is not shared.  This implies 

the manufacturer does not know the value of Ξ(𝑅𝑡). The expected value 𝐸[Ξ(𝑅𝑡)] = 𝜉̅𝜇𝑅 

must be used instead. The estimated values of 𝐹𝑃𝐼�̂�𝑡  and 𝑃𝐼�̂�𝑡  for the manufacturer then 

becomes 

 𝐹𝑃𝐼𝑅𝑡̂ = 𝐸[𝐹𝑃𝐼𝑅𝑡] = { 0,  𝑇𝑟 ≥ 𝑇𝑝 (𝑇𝑝 − 𝑇𝑟)𝜉̅𝜇𝑅 , 𝑇𝑟 < 𝑇𝑝, 
 

and 

 

(7) 

 

 

 

𝑃𝐼𝑅�̂� = 𝐸[𝑃𝐼𝑅𝑡] = {(𝑇𝑝 + 1)𝜉̅𝜇𝑅 ,  𝑇𝑟 ≥ 𝑇𝑝 (𝑇𝑟 + 1)𝜉̅𝜇𝑅 , 𝑇𝑟 < 𝑇𝑝.  (8) 

 

From (6), (7) and (8), we can see that 𝐸[𝐼𝑃𝑡+] = 𝐸[𝐼𝑃𝑡−1+ ] and 𝑃𝑡 reduces to 

 𝑃𝑡𝑁 = 𝐷𝑡 − Ξ(𝑅𝑡−(𝑇𝑟+1)) (9) 

 

Note that the manufacturer knows only the value of Ξ(𝑅𝑡−(𝑇𝑟+1)); the values of 𝑅𝑡−(𝑇𝑟+1) and 𝜉𝑡 are unknown. 
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3.5 Case A: Advance notice.  

In this case information about the returns 𝑅𝑡  and the random yield 𝜉𝑡  is shared with the 

manufacturer. It is also assumed that the manufacturer is proficient at analysing time series 

and is able to obtain the values of {𝜀𝑡, 𝜀𝑡−1, … }, 𝜃, 𝑘 and 𝜏 as well as 𝜇𝐷, 𝜇𝑅 and 𝜉̅ from the 

historical time series of 𝐷𝑡 and 𝑅𝑡. In this setting, 𝐹𝑃𝐼�̂�𝑡 and 𝑃𝐼�̂�𝑡 become 

 

𝐹𝑃𝐼𝑅𝑡  ̂ =
{   
   0,  𝑇𝑟 ≥ 𝑇𝑝(𝑇𝑝 − 𝑇𝑟)𝜉̅𝜇𝑅 ,  𝑇𝑝 > 𝑇𝑟 ∧ 𝜏 = 0(𝑇𝑝 − 𝑇𝑟)𝜉̅𝜇𝑅 + 𝜉̅𝜃𝑘∑ 𝜀𝑡+1−𝑖𝜏𝑖=1 ,  𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 ≥ 1(𝑇𝑝 − 𝑇𝑟)𝜉̅𝜇𝑅 + 𝜉̅𝜃𝑘∑ 𝜀𝑡−𝜏+𝑖, 𝜏 > 𝑇𝑝 − 𝑇𝑟 > 0,𝑇𝑝−𝑇𝑟𝑖=1

 

 

and 

𝑃𝐼𝑅�̂� = ∑ Ξ(𝑅𝑡−𝑖).𝑇𝑟
𝑖=(𝑇𝑟−𝑇𝑝)+  

 

The formula for 𝑃𝑡𝐴 then depends on the values of 𝑇𝑝, 𝑇𝑟 and 𝜏: 
 

𝑃𝑡𝐴 = {  
  𝐷𝑡 − Ξ(𝑅𝑡−(𝑇𝑟−𝑇𝑝)) , 𝑇𝑟 ≥ 𝑇𝑝𝐷𝑡 − Ξ(𝑅𝑡),  𝑇𝑝 > 𝑇𝑟 ∧ 𝜏 = 0𝐷𝑡 − Ξ(𝑅𝑡) + 𝜉̅𝜃𝑘(𝜀𝑡−𝜏 − 𝜀𝑡),  𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 ≥ 1𝐷𝑡 − Ξ(𝑅𝑡) + 𝜉̅𝜃𝑘 (𝜀𝑡−𝜏 − 𝜀𝑡−(𝜏−𝑇𝑝+𝑇𝑟)) , 𝜏 >  𝑇𝑝 − 𝑇𝑟 > 0.

 (10) 

 

Having defined the replenishment policies, the next section derives expressions for the 

variance of the production and net stock levels. 

 

4. Variance analysis 

The variance expressions shown in this section are obtained without specific assumptions of 

the distribution of 𝐷𝑡, 𝑅𝑡 or 𝜉𝑡. We use 𝑉[𝑥] to denote the variance of 𝑥. 

 

4.1 Case N: The closed loop supply chain with no advance notice  

When no advance notice is given, 𝑃𝑡 is given by (9), and its variance is 
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 𝑉[𝑃𝑁] = σε2 + 𝑉[Ξ(𝑅)], (11) 

 

where Appendix B shows 𝑉[𝛯(𝑅)] = 𝜉̅2𝑘2𝜎𝜀2 + 𝑉[𝜉](𝜇𝑅2 + 𝑘2𝜎𝜀2). In the right hand side of 

(3), the manufacturer knows only the locally available information, 𝐼𝑃𝑡+. Hence, 𝑉[𝑁𝑆𝑁] can 

be written as 

 

𝑉[𝑁𝑆𝑁] = E [(𝑃𝐼𝑅𝑡 + 𝐹𝑃𝐼𝑅𝑡 −∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1 − 𝐸 (𝑃𝐼𝑅𝑡 + 𝐹𝑃𝐼𝑅𝑡 −∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1 ))2]  

           ={(𝑇𝑝 + 1)(𝜎𝜀2 + 𝑉[Ξ(𝑅)]) − 2𝜉̅𝜃𝑘(𝑇𝑝 − 𝑇𝑟 − 𝜏)𝜎𝜀2,  𝑇𝑝 − 𝑇𝑟 ≥ 𝜏(𝑇𝑝 + 1)(𝜎𝜀2 + 𝑉[Ξ(𝑅)]), otherwise.  
(12) 

 

4.2 Case A: The CLSC with advance notice  

The ordering policy in this case is described by four formulae, see (10). Fortunately, the 

variance of 𝑃𝑡𝐴 reduces to the following two expressions. 

 𝑉[𝑃𝐴] = {𝑉[𝑃𝑁] − 2𝜉̅𝜃𝑘𝜎𝜀2, 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏𝑉[𝑃𝑁], otherwise.  (13) 

 

By following a similar method for the case 𝑁, we may obtain an expression for 𝑉[𝑁𝑆𝐴]; 
 

𝑉[𝑁𝑆𝐴] = E [(𝑃𝐼𝑅𝑡 + 𝐹𝑃𝐼𝑅𝑡 −∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1 − 𝐸 (𝑃𝐼𝑅𝑡 + 𝐹𝑃𝐼𝑅𝑡 −∑ 𝐷𝑡+𝑖𝑇𝑝+1𝑖=1 ))2]  

={ (𝑇𝑝 + 1)𝜎𝜀2, 𝑇𝑟 ≥ 𝑇𝑝(𝑇𝑝 + 1)𝜎𝜀2 + (𝑇𝑝 − 𝑇𝑟)𝑉[Ξ(𝑅)] − 𝜏𝜉̅2𝜃2𝑘2𝜎𝜀2 − 2𝜉̅𝜃𝑘(𝑇𝑝 − 𝑇𝑟 − 𝜏)𝜎𝜀2, 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 (𝑇𝑝 + 1)𝜎𝜀2 + (𝑇𝑝 − 𝑇𝑟)(𝑉[Ξ(𝑅)] − 𝜉̅2𝜃2𝑘2𝜎𝜀2 ), 𝜏 > 𝑇𝑝 − 𝑇𝑟 > 0.  

 

 

The following insights can be obtained from the variance expressions. 

 

Property 1. When the return and the yield information is shared, the variance of the net stock 

levels reduces (i.e. 𝑉[𝑁𝑆𝐴] < 𝑉[𝑁𝑆𝑁]). 
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This is intuitively understandable, as the advance information reduces the uncertainty in the 

system and the net stock levels can be more tightly controlled. This property means the 

advance notice scheme allows the manufacturer to reduce his inventory-related costs. 

 

Property 2. A CLSC with i.i.d. demands and returns generates bullwhip (i.e. 𝑉[𝑃𝑁] >𝜎𝜀2, 𝑉[𝑃𝐴] > 𝜎𝜀2). 

 

This property shows that the bullwhip behaviour of the CLSC is different to a traditional 

supply chain where the variance of the production orders is equal to the variance of the 

demand for the OUT policy under i.i.d. demand and minimum mean squared error forecasting 

(Lee, So and Tang 2000). This result suggests a CLSC is more likely to experience bullwhip 

than a traditional supply chain. 

 

Property 3. Sharing return and the yield information reduces the variance of the production 

order (i.e. 𝑉[𝑃𝐴] < 𝑉[𝑃𝑁]), if and only if  𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 and 𝜃 is positive. 

 

This suggests that advance notice of the product returns enables the manufacturer to reduce 

the bullwhip effect. However, this desirable outcome occurs only in a limited set of 

circumstances. For example, if 𝐷𝑡  and 𝑅𝑡  are mutually independent (that is, 𝜃 = 0), then 𝑉[𝑃𝐴] = 𝑉[𝑃𝑁]. This may lead us to the conclusion that the advance notice scheme does not 

influence the bullwhip effect. When 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 and 𝜃 < 0, the variance of the production 

order increases when information is shared. Therefore, if the reduction of the bullwhip effect 

is a major concern, we should be careful when using an advance notice scheme. Managers 

should pay attention to the values of {𝜃, 𝑇𝑝, 𝑇𝑟 , 𝜏}. 
 

If there is flexibility in the choice of values for 𝑇𝑝 and 𝑇𝑟, Properties 4–5 are useful. 

 

Property 4. When information about the returns and the yield is shared, the variance of the 

net stock levels (𝑉[𝑁𝑆𝐴]) decreases in 𝑇𝑟 if and only if 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 ∧ 𝜃 < 𝑉[Ξ(𝑅)]/(2𝜉̅𝑘𝜎𝜀2). 
 

When 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏 , differentiating 𝑉[𝑁𝑆𝐴]  with respect to 𝑇𝑟  yields 𝜕𝑉[𝑁𝑆𝐴]/𝜕𝑇𝑟 =2𝜉̅𝜃𝑘𝜎𝜀2 − 𝑉[Ξ(𝑅)]. Therefore 𝜕𝑉[𝑁𝑆𝐴]/𝜕𝑇𝑟 becomes negative if 𝜃 < 𝑉[Ξ(𝑅)]/(2𝜉̅𝑘𝜎𝜀2). 



 14 

Property 5. When information about the returns and the yield is shared and 𝜏 > 𝑇𝑝 − 𝑇𝑟 > 0, 

the variance of the net stock levels ( 𝑉[𝑁𝑆𝐴]) decreases in 𝑇𝑟. Increasing the value of 𝑇𝑟 (until 𝑇𝑟 = 𝑇𝑝) reduces the value of 𝑉[𝑁𝑆𝐴]. 
 

Property 5 is proved by noticing that (𝑇𝑝 − 𝑇𝑟)(𝑉[Ξ(𝑅)] − 𝜉̅2𝜃2𝑘2𝜎𝜀2) ≥ 0, when 𝜏 > 𝑇𝑝 −𝑇𝑟 > 0. 

 

Properties 4 and 5 produce a practically useful insight; under certain conditions, a longer 

remanufacturing lead time ( 𝑇𝑟) can decrease the net stock variance of the manufacturer. For 

example, if demands and returns are independent of each other (i.e. 𝜃 = 0, which is always 

less than 𝑉[Ξ(𝑅)]/(2𝜉̅𝑘𝜎𝜀2)), 𝑇𝑝 > 𝑇𝑟 and 𝜏 = 0, longer remanufacturing lead times decrease 

the inventory variance. In a traditional supply chain, it is known that longer lead times 

increase net stock variance (Lee, So and Tang 2000; Chen et al. 2000; Hosoda and Disney 

2006). Our results indicate that such an insight obtained from a supply chain without returns 

is not valid in our CLSC. Using a numerical analysis, van der Laan, Salomon and Dekker 

(1999) also found this phenomenon could be observed when 𝑇𝑝 > 𝑇𝑟. Inderfurth and van der 

Laan (2001) reported similar findings to Properties 4 and 5, although the settings and 

assumptions used in their model were different from ours. We have provided validation of 

Inderfurth and van der Laan’s (2001) lead time paradox by mathematically establishing and 

characterising its existence, albeit in a very different CLSC. 

 

Interestingly, the lead time paradox can be observed even when the advance notice is not 

available to the manufacturer. Equation (12) suggests that when 𝑇𝑝 − 𝑇𝑟 ≥ 𝜏, the variance of 

the net stock levels ( 𝑉[𝑁𝑆𝑁]) decreases in 𝑇𝑟 if 𝜃 is negative. 

 

Property 6. When 𝑇𝑟 > 𝑇𝑝, 𝑉[𝑁𝑆𝐴] is independent of 𝑇𝑟. 

 

Property 6 suggests that when an advanced noticed scheme is available a shorter 

remanufacturing lead time (𝑇𝑟)  does not decrease the net stock variance when 𝑇𝑟 > 𝑇𝑝 . 

Therefore managers should think carefully about investing in capability to reduce 𝑇𝑟 as this 

may not reduce inventory costs. Indeed, as 𝑉[𝑁𝑆𝐴] = (1 + 𝑇𝑝)𝜎𝜀2, they should focus efforts 

on reducing 𝑇𝑝. Property 6 occurs because the advance notice scheme allows one to remove 

all the uncertainty associated with the returns and the remanufacturing process.  
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Finally, our variance expressions reveal that irrespective of the availability of advance notice, 

the following two fundamental trade-off issues exist in CLSCs. 

 

Property 7. Except in 𝑉[𝑁𝑆𝐴] when 𝑇𝑟 ≥ 𝑇𝑝, the production and the net stock variances are 

increasing in 𝜇𝑅. 

 

It is obvious from the variance expressions that when 𝜇𝑅  increases, 𝑉[Ξ(𝑅)] will increase, 

which could result in lower supply chain performance. Companies should be careful about 

increasing the average return rate, 𝜇𝑅. A similar phenomenon was identified by van der Laan 

et al. (1999) who concluded that it may be unwise to remanufacture all returned products. 

These findings suggest that whilst larger values of 𝜇𝑅  are preferable for the environment, 

lower values of 𝜇𝑅  enhance the dynamic performance of the supply chain. 𝑉[𝑁𝑆𝐴]  is 

independent of 𝜇𝑅 only when 𝑇𝑟 ≥ 𝑇𝑝. 

 

Property 8. The production and the net stock variances are increasing in the mean of the 

random yield 𝜉̅ and / or its variance 𝑉[𝜉]. A single exception is 𝑉[𝑁𝑆𝐴] when 𝑇𝑟 ≥ 𝑇𝑝. 

 𝑉[Ξ(𝑅)] increases in 𝜉̅ and 𝑉[𝜉]. If the mean yield 𝜉̅ increases but 𝑉[𝜉] remains constant, the 

production and the net stock variances increase. This suggests that a more effective 

remanufacturing process may lead to lower supply chain performance. 

 

Properties 4, 5 and 6, lead to the following managerial insights. To reduce 𝑉[𝑁𝑆𝐴], managers 

should ensure that 𝑇𝑟 ≥ 𝑇𝑝. In addition, as a longer lead time may generate additional costs 

(for example WIP costs), reducing 𝑇𝑟 to meet the condition  𝑇𝑟 ≥ 𝑇𝑝 is preferable.  This will 

naturally result in 𝑇𝑟 = 𝑇𝑝 , a setting that resolves the worrying trade-off revealed by 

Properties 7 and 8 since when 𝑇𝑝 = 𝑇𝑟, 𝑉[𝑁𝑆𝐴] is independent of 𝜇𝑅, 𝜉̅ and 𝑉[𝜉].  
 

5. Numerical example for uniformly distributed yields 

In this section we will conduct a numerical investigation to verify our mathematical insights. 

We assume that the demand is normally distributed and that the remanufacturing yield 𝜉𝑡 is 

uniformly distributed between 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. The PDF of a uniformly distributed random 

variable is given by 
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𝑓(𝜉) = { 1𝑏 − 𝑎 , 𝑎 ≤ 𝜉 ≤ 𝑏 0, 𝜉 < 𝑎 ∨ 𝜉 > 𝑏 

 

giving an average yield of 𝜉̅ = (𝑎 + 𝑏)/2  with a variance of 𝑉[𝜉] = (𝑏 − 𝑎)2/12 . The 

impact of this uniform distribution assumption on the PDF of the production orders is shown 

in Appendix C. Through extensive simulation we have observed that the difference between 

the actual PDF and the normal PDF with a matched mean and variance becomes 

indistinguishable when the variance of the random yield is small.  In this situation an 

investigation of costs based on newsvendor techniques that exploits only the first and second 

moments will be quite accurate. 

 

Assume now that the following expression is a good indicator of the value of advance notice 

on the inventory cost, 

 △̂= √𝑉[𝑁𝑆𝑁] − √𝑉[𝑁𝑆𝐴]√𝑉[𝑁𝑆𝑁] × 100, 
 

and, unless otherwise stated, the following values are present: 𝜇𝐷 = 100, 𝜇𝑅 = 50, 𝜎𝜀 = 1, 𝑘 = 1, 𝑇𝑝 = 5, 𝑇𝑟 = 1, 𝜏 = 2, 𝜃 = 0.7, 𝑎 = 0 and 𝑏 = 1. 

 

Using Mathematica we have created Figure 3 which illustrates the value of 𝑉[Ξ(𝑅)]/(2𝜉̅𝑘𝜎𝜀2), 
when 0 < 𝑘 ≤ 4, 0 ≤ 𝑎 ≤ 1 and 𝑏 = 1. Since |𝜃| ≤ 1, we observe that one of the required 

conditions for the property 4, 𝜃 < 𝑉[Ξ(𝑅)]/(2𝜉̅𝑘𝜎𝜀2), is met in almost all cases. Only when 

the value of 𝑎 is quite high (say 𝑎 > 0.9) and the value of 𝑘 is relatively small (𝑘 < 2) does 

such a condition not hold. 

 

Figure 4 illustrates the impact of 𝑇𝑟 and 𝜇𝑅 on Δ̂. The graph on the left-hand side shows that 

when 𝑇𝑟 ≥ 𝑇𝑝 (= 5, in this case),  Δ̂ is maximized and independent of 𝑇𝑟. The graph on the 

right-hand side of Figure 4 illustrates the impact of 𝜇𝑅 on Δ̂. The value of 𝜇𝑅 varies from 10 to 

90. Figure 4 shows that Δ̂  is increasing in 𝜇𝑅  and is affected by 𝑇𝑟 , but Δ̂  becomes less 

sensitive to 𝜇𝑅 as 𝜇𝑅 increases. Overall, Figure 4 suggests that increasing the remanufacturing 

lead time 𝑇𝑟 ,  or the mean returns 𝜇𝑅 ,  results in higher benefits from the advance notice 

scheme. Also, the advance notice is most valuable when 𝑇𝑟 ≥ 𝑇𝑝  and 𝜇𝑅  is large. Note 
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however that a longer 𝑇𝑟  or larger 𝜇𝑅  may increase other costs, such as WIP or 

remanufacturing costs which are not captured by our objective function.  

 

Figure 3. Value of   
𝑽[𝜩(𝑹)]𝟐�̅�𝒌𝝈𝜺𝟐   when 𝟎 < 𝒌 ≤ 𝟒, 𝟎 ≤ 𝒂 ≤ 𝟏 and 𝒃 = 𝟏 

 

 

Figure 4. Impact of 𝑻𝒓 and 𝝁𝑹 when 𝑻𝒑 = 𝟓 

 

Consider now the impact of 𝜉̅ as we increase the value of 𝑎 from zero to unity and hold 𝑏 = 1.0 . Note that in this setting, 𝜉̅  is increasing in  𝑎   (since 𝜉̅ = (𝑎 + 𝑏)/2 ) but 𝑉[𝜉] 
becomes smaller (since 𝑉[𝜉] = (𝑏 − 𝑎)2/12), see Figure 5. It is shown that the impact of 𝑎 or 𝜉̅  is largely dependent on the value of the scale factor 𝑘  and the correlation factor 𝜃 , 

particularly when 𝑎  or 𝜉̅  is large. High values of 𝑎  imply higher values of 𝜉̅  and smaller 

values of 𝑉[𝜉] which together result in high values of Δ̂ when the demand and the returns are 

highly correlated (e.g. 𝜃 ≥ 0.8). We can also see that the values of 𝑎 (or 𝜉̅), 𝑘 and 𝜃 have 

almost no impact on Δ̂ when 𝑎 or 𝜉̅ is small (e.g. 𝑎 < 0.4 or 𝜉̅ < 0.7). Figure 5 also indicates 

that there is a benefit to the advance notice scheme even when the value of 𝑎 is small (that is 
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when  𝜉̅ is small and 𝑉[𝜉] is high). This implies that a high yield is not required to benefit 

from the advance notice scheme. Indeed higher values of 𝑎 could reduce the value of the 

advance notice, particularly when 𝜃 is small.  

 

Figure 6 illustrates the situation when 𝑇𝑝 = 𝑇𝑟 = 5. Note that under the condition 𝑇𝑟 ≥ 𝑇𝑝, Δ̂ 

is independent of 𝜃. The value of Δ̂ in Figure 6 is almost always better than in Figure 5. Only 

when 𝑎 = 1 , 𝜃 = 1  and 𝑘 = 1  will these two values become equal. This indicates that 

irrespective of the value of 𝜃, increasing 𝑇𝑟 up to five (so that it equals 𝑇𝑝 in this example) 

yields better performance. Figure 6 shows that Δ̂ is decreasing in both 𝑎 and 𝜉̅. Both Figures 5 

and 6 indicate that improving the mean and the variance of the yield may reduce the value of 

the advance notice scheme. It should be noted that when 𝑇𝑝 = 𝑇𝑟, 𝑉[𝑁𝑆𝐴] is independent of 𝑎, 𝜉̅, and 𝜃 since 𝑉[𝑁𝑆𝐴] = (𝑇𝑝 + 1)𝜎𝜀2. Thus, the decreasing trend of  Δ̂ in 𝑎 and 𝜉̅ in Figure 6 

is simply because 𝑉[𝑁𝑆𝑁] is decreasing in 𝑎 and 𝜉̅. 
 

Figure 5. Impact of 𝑎, 𝜉̅ and 𝜃 on Δ̂ when 𝑘 = 1 (left) and 𝑘 = √2 (right) 
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Figure 6. Impact of 𝑎 and  𝜉̅ on Δ̂ when 𝑇𝑝 = 𝑇𝑟 = 5, 𝑘 = 1 and 𝑘 = √2  

 

Figure 7 illustrates the impact of 𝜏 (the abscissa) and 𝑇𝑝 − 𝑇𝑟 (the ordinate) on Δ̂ (the numbers 

in the figure). We can see that the advance notice scheme provides the largest benefit when 𝑇𝑟 ≥ 𝑇𝑝, irrespective of 𝜏.  This suggests that the manufacturer will obtain a benefit from 

reducing his lead time 𝑇𝑝 to 𝑇𝑟, but not from reducing it further. 

 

6. Conclusions 

 

Using a mathematical model and a numerical study, we have investigated the benefit of an 

advance notice scheme and its dependence on lead times, random yield and correlation 

between demand and returns. We have shown that sharing return and yield information may 

be beneficial to the manufacturer. In certain scenarios, however, the production variance 

could increase, although the net stock variance decreases as the result of the advance notice 

scheme. We found that longer remanufacturing lead times 𝑇𝑟 may reduce inventory variance. 

This is a rediscovery and mathematical validation of the lead time paradox first identified by 

van der Laan, Salomon, and Dekker (1999) and then investigated by Inderfurth and van der 

Laan (2001). Our model considers a somewhat different setting to these previous studies, 

suggesting that the lead time paradox may be quite common in CLSCs. We have also shown 

that increasing the returns and the yields could have a negative impact on the system. This 

might be an interesting topic for future research. 

 

Our findings yield the following general guidelines for managers. Advance notice of returns 

allow tighter control of inventories, especially when two lead times are equal and both are 

minimised. CLSCs with advance notice and two identical and minimised lead times not only 

reduce inventory variance but also can avoid the lead time paradox and the fundamental trade-

off between the volume of return and dynamic supply chain performance. 

 

Finally, research limitations should be mentioned. The findings shown in the research may not 

be applicable to other settings. For example, we considered a decentralised, push system. In a 

centralised system, an inventory of remanufacturable products at remanufacturer could be 

held to allow the remanufacturer to exploit a pull policy in order to achieve a more efficient 
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supply chain. This is a different scenario that requires a different model and may result in 

different findings. 

 

Figure 7. Impact of 𝑇𝑟 and 𝜏 on Δ̂ when 𝑇𝑝 = 5, 1 ≤ 𝑇𝑟 ≤ 9 and 0 ≤ 𝜏 ≤ 4 
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Appendix A: Variance of the returns and the correlation between the demand and 

returns  

The variance of 𝑅𝑡 and the correlation coefficient between 𝐷𝑡−𝜏 and 𝑅𝑡 are identified herein. 

The variance of a random variable 𝑋 is the expected value of its squared deviations from the 

mean; 𝐸[(𝑋 − 𝜇)2] where 𝜇 = 𝐸[𝑋]. As σζ = 𝑘𝜎𝜀, the variance of 𝑅𝑡 is 

 𝑉[𝑅] = E[(𝑅t − 𝜇𝑅)2] = 𝐸 [(𝜃𝑘𝜀𝑡−𝜏 + √1 − 𝜃2𝜁𝑡)2]  = 𝜃2𝑘2𝜎𝜀2 + (1 − 𝜃2)𝑘2𝜎𝜀2 = 𝑘2𝜎𝜀2. 
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Using the covariance of 𝐷𝑡−𝜏 and 𝑅𝑡, the correlation coefficient, 𝑐𝑜𝑣(𝐷𝑡−𝜏, 𝑅𝑡), is given by 𝑐𝑜𝑣(𝐷𝑡−𝜏, 𝑅𝑡)𝜎𝜁𝜎𝜀 = 𝐸[𝜀𝑡−𝜏(𝜃𝑘𝜀𝑡−𝜏 + √1 − 𝜃2𝜁𝑡)]𝜎𝜁𝜎𝜀 = 𝜃𝑘𝜎𝜀2 𝑘𝜎𝜀2 = 𝜃. 
 

Appendix B: Variance of the remanufacturing yield  

To obtain the variance of the remanufacturing yield, Ξ(𝑅), we note that the variance of a 

random variable X is equal to 𝑉[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2. This leads us to 

 𝑉[Ξ(𝑅)] = 𝐸[Ξ(𝑅𝑡)2] − 𝐸[Ξ(𝑅𝑡)]2 = 𝐸[𝜇𝑅2𝜉𝑡2 + 𝜃2𝑘2𝜉𝑡2𝜀𝑡−𝜏2 + (1 − 𝜃2)𝜉𝑡2𝜁𝑡2] − 𝜉̅2𝜇𝑅2 . 
 

Since 𝐸[𝑋2] = 𝑉[𝑋] + 𝐸[𝑋]2 , 𝐸[𝜉𝑡2]  can be written as 𝑉[𝜉] + 𝜉̅2 , which yields the final 

expression of 𝑉[Ξ(𝑅)]: 
 𝑉[Ξ(𝑅)] = 𝜉̅2𝑘2𝜎𝜀2 + (𝜇𝑅2 + 𝑘2𝜎𝜀2)𝑉[𝜉]. 
 

This result suggests that 𝑉[Ξ(𝑅)] is increasing in 𝜉̅, 𝑘2, 𝜎𝜀2, 𝜇𝑅 and 𝑉[𝜉]. Note that the levels 𝜉̅ and 𝜇𝑅  influence the variance in this non-linear system. This does not happen in linear 

systems. 

 

Appendix C: Verification of the normal distribution assumption 

Consider the following numerical scenario. Let the mean demand 𝜇𝐷 =  20 with a variance 𝜎𝜀2 = 2 , and mean returns 𝜇𝑅 = 10  with a variance of 𝑘2𝜎𝜀2 = 4 , implying the scale 

parameter 𝑘 = √2. Assume that both the returns and the demand are normally distributed. 

The demand and the returns are correlated with a correlation coefficient of 𝜃 = 0.5 and a 

correlation lag parameter of 𝜏 = 3. Consider the case where the minimum of the uniformly 

distributed random yield 𝑎 = 0.1 , the maximum 𝑏 = 0.9  and the lead times 𝑇𝑝 = 2  and 𝑇𝑟 = 4.  

 

The results from simulating the system for 100,000 periods in Excel are summarised with a 

frequency plot of the production orders, see Figures 8 and 9. We have also plotted a normal 

distribution with the same mean and variance as the relevant system state. Although the first 

two moments are identical, the PDF is not completely captured. This is because the 
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multiplication of the returns by the remanufacturing yield creates a non-linear system that is 

very difficult to characterise fully. 

 

The most extreme error in the frequency plot can be seen in the yield (Figure 8) for the case 

when a = {0.1, 0.7} and b = 0.9. This is the source of the non-linearity in the model. When the 

variance of the yield reduces (when a = 0.7 and b = 0.9 are used for the boundaries of the 

uniformly distributed yield), the normal approximation becomes more accurate.  

 

   

Figure 8. The actual density of the yield verses a normally distributed approximation based 

on the first two moments 

 

The PDF of the orders becomes more normal than the yield PDF, and we can again see that 

the smaller yield variances induce a better fit to the normal distribution, as shown in Figure 9.  
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Figure 9. The actual density of the orders verses a normally distributed approximation based 

on the first two moments 

 

The inventory PDFs are shown in Figure 10. The dominant factor determining normality now 

seems to be whether there is advance notice or not. Advance notice also has a significant 

impact on reducing the inventory variance. We can also see that when the yield has a reduced 

variance, then the first and second moments better describe the density of the inventory levels. 

 

 

     

     

Figure 10.  The actual density of the inventory levels verses a normally distributed 

approximation based on the first two moments 


