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Summary 
 

 
The ecophysiology of calcified macroalgal species of the genera Corallina (C. 
officinalis and C. caespitosa) and Ellisolandia (E. elongata) (Corallinales, 
Rhodophyta) was examined in intertidal rock pools of the NE Atlantic, to facilitate 
predictions of ocean-acidification and warming impacts on these ecosystem 
engineers. An initial phylogenetic study highlighted significant cryptic diversity 
within the genus Corallina, and demonstrated that C. officinalis is restricted 
predominantly to the North Atlantic, while the recently established C. caespitosa 
shows a cosmopolitan distribution. Three subsequent studies were performed across 
the NE Atlantic (Iceland to northern Spain) to examine (i) the production, respiration, 
calcification and growth of Corallina in relation to irradiance, water temperature, and 
carbonate chemistry; (ii) the photoacclimation and photoregulation strategies of 
Corallina and Ellisolandia; and (iii) the recent-past (1850 – 2010) and present-day 
skeletal mineralogy (Mg/Ca ratios) of Corallina and Ellisolandia and its relationship 
to sea surface temperature. Data demonstrated that species currently experience 
significant seasonal and tidal fluctuations in abiotic conditions that may be important 
when considering future responses to ocean-acidification and climate-change. 
Seasonality in production, calcification and growth were demonstrated, with 
decreasing growth observed with increasing latitude. Photoacclimation to allow 
maximal light utilisation during winter periods, and photoregulation via non-
photochemical quenching were highlighted as important in allowing Corallina and 
Ellisolandia to maintain maximal productivity while controlling for photo-stress. 
Seasonal cycles in skeletal Mg incorporation were demonstrated with strong relation 
to sea surface temperature, though no significant change in skeletal mineralogy was 
evident since pre-industrial times. Taken together, data indicated that Corallina and 
Ellisolandia have the potential to survive under future ocean-acidification and 
warming conditions, though loss of species at high latitudes and shifts in the relative 
abundances of species across the region is likely to be evident, with overall range 
contraction predicted for C. officinalis due to both warming and ocean-acidification 
impacts.   
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degrees of freedom (Fd.f.), and significance of factors (***P < 0.001; **P < 0.01; *P < 
0.05).  
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Table 4.24: Analysis of variance of C. officinalis ex-situ photophysiology in relation 
to the factor latitude. Table reports F-ratios, degrees of freedom (Fd.f.), and 
significance of factors (***P < 0.001; **P < 0.01; *P < 0.05).  
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Table 5.1: Sampling details including site, months of sampling, average sea surface 
temperature (Av. SST) and range (minimum – maximum) for sampling months, shore 
heights sampled per site (relative to Chart Datum), and species present (CO = C. 
officinalis, CC = C. caespitosa, EE = Ellisolandia elongata).  
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Table 5.2: Upper table; mol % Mg/Ca – temperature relationships for Corallina 
officinalis and C. caespitosa from Combe Martin, UK and herbarium C. officinalis 
matched to sea surface temperature (SST), showing the proportion of variance 
explained by the regression (R2), coefficient standard error (mSE, cSE), correlation 
(r), regression significance (P), and sample size (n). Lower table; mol % Mg/Ca – 
month relationship for all herbarium Corallina officinalis samples where month is 
represented by values 1 to 11 (January to November) (see also Figures 5.5 & 5.6), 
showing the proportion of variance explained by the regression (R2), coefficient 
standard error (SE) (all significant at P < 0.0001), correlation (r), regression 
significance (P), and sample size (n).  
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Supplementarty Table S51: Herbarium Corallina officinalis samples of the Natural 
History Museum (BM) analysed for the present study. Where the same NHM 
barcodes are provided for more than one sample, multiple samples were present under 
the same barcode in the herbarium. (-) indicates samples were not barcoded in the 
NHM (BM) system. Numbers in brackets refer to the CEFAS Station ID from which 
sea surface temperatures were acquired for regression analysis.  
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letters denote TukeyHSD homogenous subsets in relation to the factors ‘time period’ 
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Supplementary Figure 3.1: Least squares linear regression of C. officinalis net 
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relation to rock pool water temperature (left column) and carbonate chemistry (as PC1 
day or night, right column), showing the proportion of variance explained by 
significant regressions (R2), the overall model significance (P), 95 % confidence 
intervals (red dashed lines), regression coefficients (with standard error in 
parentheses), and significance of coefficients (* P <0.05, ** P < 0.01, *** P < 0.001).  
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Supplementary Figure 3.2: Least squares linear regression of C. officinalis daytime 
light calcification (NGDAY-LIGHT), daytime dark calcification (NGDAY-DARK) and 
night- time dark calcification (NGNIGHT) in relation to rock pool water temperature 
(left column) and carbonate chemistry (as PC1 day or night, right column), showing 
the proportion of variance explained by significant regressions (R2), the overall model 
significance (P), 95 % confidence intervals (red dashed lines), regression coefficients 
(with standard error in parentheses), and significance of coefficients (* P <0.05, ** P 
< 0.01, *** P < 0.001).   
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Figure 4.a: (a) Schematic of photosynthetic unit (PSU) encompassing the light 
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side) with its associated reaction centre (RC) and electron transfer chain. As photons 
(Ph) are absorbed by pigment molecules (PM) of the antenna in the thylakoid 
membrane (open circles on left), energy released by de-excitation is funneled towards 
the RC (filled circle on right). As the RC chlorophyll (RC Chl) becomes excited, 
electrons are transferred to a primary electron acceptor (charge separation). (b) 
Photoacclimation to low light through (upper) increasing the size of PSU or (lower) 
increasing the number of PSUs per cell. Schematics adapted from Beer et al. (2014).  
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Figure 4.1: Ambient irradiance (a) and water temperature (b) recorded at Combe 
Martin during January (Jan), March (Mar), June (Jun) and September (Sep) 2012 (av 
± se). Lower-case letters denote TukeyHSD homogenous subsets in relation to the 
factor ‘month’.  
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Figure 4.2: Rapid light response curves (RLCs) (a - d) for C. officinalis (black 
squares) and C. caespitosa (white triangles) performed at Combe Martin during 
January, March, June and September 2012 (av. rETR ± se, n = 5) and non-
photochemical quenching (NPQ) (e – h) calculated from fluorescence parameters 
determined during respective RLCs (av. NPQ ± se, n = 5). Dashed lines (a – d) 
represent average ambient irradiance recorded in-situ at the time of RLC 
determination.  
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Figure 4.3: Average C. officinalis (black bars) and C. caespitosa (white bars) Fv/Fm, 
rETRmax, α and Ek determined from RLCs performed in upper shore rock pools at 
Combe Martin during January (Jan), March (Mar), June (Jun) and September (Sep) 
2012 (av. ± se, n = 5). Lower-case letters denote TukeyHSD homogenous subsets in 
relation to the factor ‘month’.  
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Figure 4.4: Average non-photochemical quenching parameters (NPQ) of C. 
officinalis (black bars) and C. caespitosa (white bars) calculated from RLCs 
performed during January (Jan), March (Mar), June (Jun) and September (Sep) 2012. 
Letters denote TukeyHSD homogenous subsets in relation to the factor ‘month’.   
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Figure 4.5: Least squares linear regression of C. officinalis (a, c, e – black dots) and 
C. caespitosa (b, d, f – white dots) photophysiology (Fv/Fm, rETRmax, and α) in 
relation to ambient irradiance, showing the proportion of variance explained by the 
regression (R2), the overall model significance (P), and 95 % confidence intervals (red 
dashed lines). Regression coefficients are displayed in Table 4.7.  
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Figure 4.6: Average irradiance (a - d) and rock pool water temperature (e - h) 
recorded at Iceland (a, e), Combe Martin (b, f), Comillas (c, g) and A Coruna (d, h) 
during summer (black bars), autumn (white bars) or winter (grey bars), at the start (S), 
middle (M) and end (E) of daytime tidal emersion (av. ± SE).  
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Figure 4.7: Corallina officinalis photophysiology in Þorlákshöfn Iceland in summer 
(left column) and autumn (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9).  
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Figure 4.8: Ex-situ RLCs and recovery of Icelandic C. officinalis during summer 
(black lines) and autumn (red lines), showing (a) rETR and (b) NPQ versus PAR over 
the RLC and (c) relative quantum efficiency and (d) NPQ versus time over both the 
RLC and dark recovery period (grey shaded area) (av. ± se, n = 3).  
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Figure 4.9: Corallina officinalis photophysiology in Combe Martin, UK in summer 
(left column) and winter (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and winter tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9).  
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Figure 4.10: Corallina caespitosa photophysiology in Combe Martin, UK in summer 
(left column) and winter (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and winter tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9).  
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Figure 4.11: Ex-situ RLCs and recovery of Combe Martin C. officinalis during 
summer (black lines), autumn (red lines), and winter (blue lines), showing (a) rETR 
and (b) NPQ versus PAR over the RLC, and (c) relative quantum efficiency and (d) 
NPQ versus time over both the RLC and dark recovery period (grey shaded area) (av. 
± se, n = 3).  
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Figure 4.12: Ex-situ RLCs and recovery of Combe Martin C. caespitosa during 
autumn (red lines), and winter (blue lines), showing (a) rETR and (b) NPQ versus 
PAR over the RLC, and (c) relative quantum efficiency and (d) NPQ versus time over 
both the RLC and dark recovery period (grey shaded area). (av. ± se, n = 3).  
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Figure 4.13: Corallina caespitosa photophysiology in Comillas, N Spain in summer 
(left column) and autumn (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3).  
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Figure 4.14: Ellisolandia elongata (rock pool) photophysiology in Comillas, N Spain 
in summer (left column) and autumn (right column) at the start (S), middle (M) and 
end (E) of daytime tidal emersion. Upper line plots show RLCs at the start (back 
squares), middle (grey squares) and end (white squares) of summer and autumn tidal 
emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3).  
................................................................................................................................. p150 
 



Figure 4.15: Ellisolandia elongata (exposed) photophysiology in Comillas, N Spain 
in summer (left column) and autumn (right column) at the start (S), middle (M) and 
end (E) of daytime tidal emersion. Upper line plots show RLCs at the start (back 
squares), middle (grey squares) and end (white squares) of summer and autumn tidal 
emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3).  
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Figure 4.16: Corallina officinalis photophysiology during summer in Comillas (left 
column) and autumn in A Coruna (right column), N. Spain, at the start (S), middle 
(M) and end (E) of daytime tidal emersion. Upper line plots show RLCs at the start 
(back squares), middle (grey squares) and end (white squares) of summer and autumn 
tidal emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3).  
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Figure 4.17: Ex-situ RLCs and recovery of Comillas C. caespitosa (a – d, triangle 
symbols), rock pool E. elongata (e – h, circle symbols) and exposed E. elongata (i – l, 
diamond symbols) during summer (black lines) and autumn (red lines), showing rETR 
(a, e, i) and NPQ (b, f, j) versus PAR over the RLC, and relative quantum efficiency 
(c, g, k) and NPQ (d, h, l) versus time over both the RLC and dark recovery period 
(grey shaded area) (av. ± se, n = 3).  
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Figure 4.18: Ex-situ RLCs and recovery of C. officinalis from Comillas during 
summer (black lines) and A Coruna during autumn (red lines), showing (a) rETR and 
(b) NPQ versus PAR over the RLC, and (c) relative quantum efficiency and (d) NPQ 
versus time over both the RLC and dark recovery period (grey shaded area) (av. ± se, 
n = 3).  
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Figure 4.19: Corallina caespitosa photophysiology in A Coruna, N. Spain, in 
summer (left column) and autumn (right column), at the start (S), middle (M) and end 
(E) of daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek from RLCs during each season and 
tidal period. Lower line plots show NPQ from RLCs during each season, with lower 
bar plots showing NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal emersion 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3).  
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Figure 4.20: Ellisolandia elongata photophysiology in A Coruna, N. Spain, in 
summer (left column) and autumn (right column), at the start (S), middle (M) and end 
(E) of daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek from RLCs during each season and 
tidal period. Lower line plots show NPQ from RLCs during each season, with lower 
bar plots showing NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal emersion 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3).  
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Figure 4.21: Ex-situ RLCs and recovery of A Coruna C. caespitosa (a – d) and E. 
elongata (e – h) during summer (black lines) and autumn (red lines), showing rETR 
(a, e) and NPQ (b, f) versus PAR over the RLC, and relative quantum efficiency (c, g) 
and NPQ (d, h) versus time over both the RLC and dark recovery period (grey shaded 
area) (av. ± se, n = 3).  
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Figure 4.22: Latitudinal comparison of C. officinalis ex-situ photophysiology. 
Summer and autumn data are presented from Þorlákshöfn, Iceland (ICE, white 
boxes), Combe Martin, UK (UK, light grey boxes), and from Comillas (summer) and 
A Coruna (autumn) northern Spain (NSP, dark grey boxes). Lower-case letters denote 
post-hoc TukeyHSD homogenous subsets in relation to the factor latitude. Start and 
End refer to the start and end of dark recovery period, respectively.  
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Figure 5.1: Representative frond of Corallina officinalis collected from Combe 
Martin, UK. Inlay demonstrates apical region of frond branch, with arrow indicating 
apical intergenicula sampled for X-Ray diffraction analysis.  
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Figure 5.2: Seasonal variation in mol % Mg/Ca of (a) Corallina officinalis from 
upper (blank points) and lower (white points) shore, and (b) C. caespitosa from upper 
(black points) and middle (white points) shore Combe Martin, UK (average ± se, n = 
12). Letters denote homogenous subsets as determined from post-hoc TukeyHSD 
analysis; upper-case letters refer to upper shore data and lower-case letters to lower / 
middle shore data, respectively. 
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Figure 5.3: mol % Mg/Ca of (a) Corallina officinalis collected in June from Combe 
Martin (CM, black bars) and Wembury Point (WP, grey bar) (average ± se, n = 24), 
and July from Þorlákshöfn, Iceland (white bar) (average ± se, n = 12), and (b) mol % 
Mg/Ca of C. officinalis collected in September from Combe Martin upper (CM up) 
and lower (CM low) shore (back bars), and October from lower shore A Coruña, 
northern Spain (N. Spain, white bar) (average ± se, n = 12). Letters denote 
homogenous subsets as determined from post hoc TukeyHSD analysis.  
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Figure 5.4: Herbarium Corallina officinalis average monthly mol % Mg/Ca ± se 
(monthly averages are taken for data across all years, see Supplementary Table S5.1). 
Numbers represent sample size per respective month; no samples were available for 
December.  
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Figure 5.5: Mol % Mg/Ca – temperature relationships for (a) Corallina officinalis 
collected from upper (black points) and lower (white points) shore, and (b) C. 
caespitosa collected from upper (black points) and middle (white points) shore, 
Combe Martin, UK, and (c) herbarium C. officinalis. All regressions were significant 
at P < 0.0001 (Table 5.2) and are displayed with 95 % confidence intervals of 
predictions made from least-squares regressed linear relationships. 
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Figure 5.6: (a) Predicted seasonal cycles in mol % Mg/Ca of Corallina officinalis, 
upper and lower shore, and C. caespitosa upper and middle shore, from Combe 
Martin, UK, calculated using average monthly sea surface temperature reported from 
CEFAS Station 27 and linear regression equations (Table 5.2); and (b) herbarium C. 
officinalis mol % Mg/Ca (n = 112) with fitted sine waveform function in relation to 
month (Table 5.2), showing 95 % confidence intervals (red dashed lines).  
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Chapter 1: General Introduction 

There has been a significant, rapid decline in global biodiversity as a consequence of 

both direct human activities and anthropogenic climate change (Vitousek et al. 1997, 

Sala et al. 2000, Bulling et al. 2010). Recent climate change trends, which are only a 

fraction of the magnitude of predicted changes in the coming centuries, have triggered 

significant responses in the Earth’s biota (IPCC 2013). For marine ecosystems, ocean 

acidification and increasing temperatures are two of the most important effects of 

climate change (Hughes 2000, Crowley and Berner 2001, Caldeira and Wickett 2003, 

Feely et al. 2004, Bulling et al. 2010, Pörtner et al. 2014). Ocean acidification 

represents a global threat to all marine regions, from the deep sea to coastal estuaries, 

with potentially wide ranging impacts on marine life (Doney et al. 2009, Kleypas and 

Yates 2009, Kroeker et al 2013). In particular, adverse effects are projected for those 

species that deposit calcium carbonate as shells or skeletal structures (Kroeker et al. 

2010, 2013). In response to ocean warming, significant shifts in species’ geographic 

ranges, extinction of local populations along southern range boundaries, increasing 

invasion by opportunistic species, and progressive decoupling of species interactions, 

are projected (Hughes 2000, Harley et al. 2012, Brodie et al. 2014). As these changes 

continue, we risk serious degradation of marine ecosystems, with far-reaching 

consequences for human health and welfare (Harley et al. 2006). This study focuses 

on the potential impacts of ocean acidification and warming on calcified macroalgal 

species of the genera Corallina and Ellisolandia (Corallinales, Rhodophyta) in the 

northeast Atlantic.  

 

1.1. Ocean acidification  

Ocean acidification (OA) describes a reduction in the pH of the oceans over an 

extended period of time, typically decades or longer, caused primarily by the uptake 

of anthropogenic carbon dioxide (CO2) from the atmosphere (Feely et al. 2009, 

Gattuso and Hansson 2011, IPCC 2013). Atmospheric concentrations of greenhouse 

gases have increased to levels unprecedented in the last 800,000 years, with CO2 

showing a 40 % increase since pre-industrial times, reaching concentrations of 391 

ppm in 2011 (IPCC 2013). Rising atmospheric CO2 results in a net air-to-sea flux of 

excess CO2, which dissolves in surface seawater as it attempts to reach equilibrium 

with the atmosphere (Doney et al. 2009). For the period 1750 to 2011, model 

ensembles of the Intergovernmental Panel on Climate Change (IPCC) provide an 
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estimated total oceanic uptake of 170 ± 25 Pg C (Ciais et al. 2013), representing 

uptake of approximately 30 % of the total human emissions of CO2 to the atmosphere 

(Sabine et al. 2004, Rhein et al. 2013).  

 

!"! !"#$% !↔ !"! !" + !!!! ↔ !!!!!! !↔ !!! + !"!!! !↔ 2!! + !!!!! 
       
(Equation 1) 
 

Given the nature of the seawater carbonate chemistry equilibrium (Equation 1), any 

change in the concentration of one of the individual components will force the others 

to re-adjust as well (Schulz et al. 2009; for a detailed description of the inorganic 

carbon chemistry of seawater see Zeebe and Wolf-Gladrow 2001 or Millero 2006). 

For surface seawater with pH of ~8.1, approximately 90 % of the inorganic carbon 

occurs as bicarbonate ions (HCO3
-), 9 % occurs as carbonate ions (CO3

2-), and only 1 

% occurs as dissolved CO2 (Doney et al. 2009). When atmospheric CO2 dissolves into 

seawater, carbonic acid (H2CO3) is formed which readily dissociates into HCO3
- and 

hydrogen ions (H+) (Equation 1) (Doney et al. 2009, Schulz et al. 2009). 

Approximately 99 % of the H+ produced are neutralized through reaction with CO3
2- 

producing more HCO3
- (Equation 1) (Doney et al. 2009, Schulz et al. 2009, Rhein et 

al. 2013). Thus, the net result of increasing CO2 in seawater is a gradual reduction of 

pH (increase in H+), an increase in HCO3
- concentration and a decrease in CO3

2- 

concentration (Cao et al. 2007, Rhein et al. 2013). To-date, OA has resulted in a 

decrease in global average ocean pH of 0.1 relative to pre-industrial times, 

representing a 26 % increase in H+ (IPCC 2013).  

 

An important outcome of OA driven reductions in seawater CO3
2- concentrations is 

the resultant decrease in the saturation state (Ω) of calcium carbonate (CaCO3) 

(Doney 2010, Egleston et al. 2010, Gattuso and Hansson 2011). Seawater saturation 

with respect to aragonite and calcite, the two major polymorphs of CaCO3 

precipitated by marine organisms, is the product of the concentrations of Ca2+ and 

CO3
2- ions, at the in-situ temperature, salinity and pressure, divided by the 

stoichiometric solubility constant of CaCO3 (Ksp) under those conditions (Equation 2) 

(Feely et al. 2010). Because Ca2+ is closely proportional to salinity, Ω is largely 

determined by variations in CO3
2- concentration (Doney et al. 2009). Calcite and 
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aragonite are characterized by individual solubility constants (aragonite is 

approximately 50 % more soluble than calcite), leading to distinct saturation states; 

Ωarg and Ωcal, respectively (Mucci 1983, Doney 2010, Schulz et al. 2009). Given that 

Ω decreases with decreasing temperature and increasing pressure, many deep, cold 

waters are currently under-saturated (Ω < 1) with respect to CaCO3 minerals, 

promoting dissolution (Doney 2006, Gangsto et al. 2011). Conversely, surface ocean 

waters are currently supersaturated (Ω >1) for aragonite and calcite, precluding 

dissolution from a thermodynamic point of view (Doney 2010, Gangsto et al. 2011). 

Relative to pre-industrial conditions, invasion of anthropogenic CO2 has reduced 

present day surface CO3
2- by more than 10% (Orr et al. 2005), causing a shoaling of 

the saturation horizon (depth at which Ω = 1) for aragonite and calcite by 50 – 200 m 

towards the surface (Doney 2006), and a decrease in surface CaCO3 saturation of 

approximately 20 % (Gattuso and Hansson 2011).  

 

Ω = ! !"
!! ! !"!!!
!!"

 

(Equation 2) 

A high degree of spatial and temporal variability in seawater carbonate chemistry and 

the changes induced by uptake of anthropogenic CO2 are apparent around the mean 

trends described above (Doney et al. 2009, Gypens et al. 2011, Hofmann et al. 2011). 

Given preferential CO2 uptake in colder waters, surface ocean Ω decreases towards 

the poles and during winter periods, particularly at high latitudes, and hence CO3
2- 

concentrations are increased in warmer regions and during summer periods (Feely et 

al. 1988, Merico et al. 2006, Findlay et al. 2008, Egleston et al. 2010, Zeebe and 

Ridgwell 2011). Surface water Ωarg and Ωcal in the Icelandic Sea, for example, are half 

the levels found in subtropical waters (Olafsson et al. 2009). In addition, spatial 

variation in the ratio between total dissolved inorganic carbon concentrations (DIC, = 

CO2 + HCO3
- + CO3

2-) and the total alkalinity of seawater (TA, the charge balance of 

seawater representative of its capacity to neutralize acid) results in regional 

differences in the ‘buffer-capacity’ of seawater with respect to CO2 uptake (Feely et 

al. 2004, Gattuso and Hansson 2011, Gypens et al. 2011). Across latitudes, the highest 

absolute buffer capacity is observed near the tropics and the lowest at the polar-

regions, such that the pH and Ω of high-latitude waters are generally more susceptible 
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to change as a result of atmospheric CO2 uptake (Egleston et al. 2010). For example, 

an increase in DIC of 10 µM resulting from the uptake of anthropogenic CO2 (with no 

change in alkalinity), would increase the partial pressure of CO2 in seawater (pCO2) 

by 4.6 % and H+ by 3.7 % in the North Atlantic or Pacific, with a 2.7 % decrease in 

Ω. In contrast, the same DIC increase in the Southern Ocean would lead to an increase 

in pCO2 of 6.8 % and H+ of 6.1 %, with a 5.4 % decrease in Ω (Egleston et al. 2010). 

Such buffering capacity is represented by the Revelle factor (R), which describes the 

relative change in DIC expected for a given change in dissolved CO2 (Feely et al. 

2010, Gattuso and Hansson 2011). R currently ranges from ca. 9 in low-latitude 

tropical waters, up to 15 in the Southern Ocean off Antarctica, and is approximately 1 

unit higher than in the pre-industrial ocean (Sabine et al. 2004, Egleston et al. 2010).  

 

Variations in carbonate chemistry and buffer capacity are strongly apparent in coastal 

regions, which may hasten local declines in pH and Ω (Feely et al. 2010, Gypens et al. 

2011). Increased coastal acidification can occur due to (i) freshwater input, which 

typically has higher CO2 and lower pH than seawater (Sailsbury et al. 2008), (ii) 

atmospheric deposition of anthropogenic nitrogen and sulphur that may further reduce 

pH by as much as an additional 50 % (Doney et al. 2007), and (iii) both natural and 

anthropogenic enrichment of nutrients that may enhance the production and 

subsequent remineralisation of organic matter leading to hypoxia and low pH waters 

(Feely et al. 2010, Orr 2011). In addition, the upwelling of high DIC/low pH waters 

from the deeper ocean can combine with these processes in coastal regions to produce 

very low pH conditions (Feely et al. 2010). Across several near-shore sites, Hofmann 

et al. (2011) observed significant pH variability due to a combination of mixing, tidal 

excursions, biological activity and variable residence times, noting that each system is 

unique and complex in its carbonate chemistry variability. Similarly, over an 8-year 

period in a north-temperate coastal site, Wootton et al. (2008) observed significant 

diurnal and seasonal pH oscillations, though overall strong decline in pH was 

observed across the study period, in association with increases in atmospheric CO2. 

 

1.2. Increasing ocean temperatures 

In parallel with OA, climate change has resulted in significant warming of the Earth’s 

atmosphere and subsequent increases in ocean temperatures (IPCC 2013). Each of the 

last three decades has been successively warmer at the Earth’s surface than any 
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preceding decade since 1850, with combined land and ocean surface temperature 

warming of 0.85 [0.65 to 1.06]oC over the period 1880 – 2012 (IPCC 2013). 

Approximately 93 % of the excess heat energy added to the Earth’s system has been 

taken up by the oceans (Church et al. 2011, Levitus et al. 2012, Rhein et al. 2013), 

with ca. 60 % of the net energy increase from 1971 to 2010 stored in the upper ocean 

(0 – 700 m), and about 30 % stored below 700 m (IPCC 2013).   

 

Depth-averaged 0 – 700 m ocean temperature trends from 1971 – 2010 are positive 

for most of the globe (Levitus et al. 2009), with more prominent warming in the 

Northern Hemisphere, especially the North Atlantic (Rhein et al. 2013). Strongest 

warming is found closest to the sea surface, with a global average warming from 1971 

– 2010 of 0.11 [0.09 to 0.13]oC per decade in the upper 75 m, decreasing to 0.015oC 

per decade by 700 m (Rhein et al. 2013). Across this period, the globally averaged 

temperature difference between the ocean surface and 200 m increased by about 

0.25oC (Levitus et al. 2009), corresponding to a 4 % increase in density stratification 

across all oceans north of approximately 40oS (Rhein et al. 2013). As with carbonate 

chemistry, ocean temperatures at any given location can vary greatly with the seasons, 

from year-to-year, or even decade-to-decade, due to variations in ocean currents and 

exchange of heat between the ocean and the atmosphere (Rhein et al. 2013).  

 

1.3. The geological context of current change 

Throughout Earth’s history, the ocean has played a critical role in modulating 

atmospheric CO2 through a variety of physical, chemical and biological processes, 

which continue to influence the response of present-day oceans to OA (Riebesell et al. 

2007). The geological record provides a valuable frame of reference for gauging the 

magnitude, consequences and potential irreversibility of human impacts on the 

oceans, but with the important proviso that many aspects of the current situation are 

without natural precedent (Jackson 2010). Past OA and climate change events are 

apparent in the geological record, the most recent of which, the Paleocene-Eocene 

Thermal Maximum (PETM) (~55.8 Myr ago) (Doney 2010), represents the closest 

analogue for future OA identified to-date (Zeebe and Ridgewell 2011). The PETM 

was the strongest of several early Cenozoic intervals of extreme global warmth and 

massive release of carbon lasting only a few tens of thousands of years (Zachos et al. 

2008, Kump et al. 2009). Global temperature increased by more than 5oC even at the 
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poles, and more than 2000 Gt of carbon entered the oceans as CO2 in less than 10 

thousand years (Zachos et al. 2008). Consequences of this were reflected in very large 

decreases of deep-sea carbonates and marine isotope records of benthic foraminifera 

(Dias et al. 2010, Jackson 2010). Massive changes in the rates and amounts of carbon 

introduced into the atmosphere and oceans at the start of the PETM were associated 

with mass extinction, restructuring of ocean food webs and the disappearance of coral 

reefs on a global scale (Jackson 2010).  

 

The PETM exhibits characteristics essential for meaningful comparison with today’s 

anthropogenic perturbation, namely (i) it was a transient event with a rapid onset, (ii) 

it was associated with a large and rapid carbon input, and (iii) it is relatively well 

studied (Zeebe and Ridgewell 2011). However, in contrast to the PETM, the current 

rate of change in global ocean pH and saturation states are unprecedented, occurring 

30 – 100 times faster than changes observed in the recent geological past (Doney 

2010). Therefore, in comparison to the current situation, PETM events may have 

occurred gradually enough and under different enough background conditions of 

ocean chemistry and biology, such that a good paleo-analog for the current situation is 

not available (Kump et al. 2009, Doney 2010). For example, with present-day OA, as 

a result of a 5000 Pg C input over ~ 500 yr, the surface-ocean Ωcal would drop from 

ca. 5.4 to < 2 within a few hundred years. In contrast, the PETM scenario suggests a 

corresponding decline of Ωcal from 5.5 to only ca. 4 within a few thousand years 

(Zeebe and Ridgewell 2011). Current OA further differs from past protracted intervals 

of OA in that it will not be accompanied by a coincident, tectonically forced elevation 

in Ca2+ that mitigates the pCO2 reduction of CO3
2- and thus CaCO3 saturation, or by a 

reduction in seawater Mg:Ca ratios that favours nucleation of low-Mg calcite, the 

least soluble form of CaCO3 precipitated by marine organisms, thus reducing 

vulnerability to dissolution (Ries 2010). Seawater temperatures are significantly 

warmer (+ 7oC), and pH (- 0.1) and CO3
2- concentrations (ca - 210 µmol kg-1) 

significantly lower than at any time over the past 420,000 years, with the rate of 

change over the past century 2- to 3-orders of magnitude faster than anytime over this 

period (Hoegh-Guldberg et al. 2007). Thus overall, the rapidity and magnitude of 

present-day OA and climate change exceeds events known from the Earth’s 

geological past, and may therefore exceed the capacity of most organisms to adapt 

(Hoegh-Guldberg et al. 2007, Ries 2010). 
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1.4. Future projections of ocean acidification and warming  

The magnitude of future OA, particularly that at the ocean surface, is directly 

proportional to the amount of CO2 that will be emitted into the atmosphere in the next 

decades and centuries (Gruber 2011). Given the roughly 1-year time scale associated 

with the equilibration of CO2 across the air-sea interface, the near surface ocean tends 

to track the atmospheric perturbation, permitting good prediction of pH and carbonate 

chemistry change by assuming local equilibrium (Gruber 2011). To inform ocean 

system models, future atmospheric CO2 concentration scenarios are provided by the 

IPCC. The IPCC Special Report on Emissions Scenarios (SRES 2000) developed 

scenarios used by both the IPCC Third Assessment Report (TAR, published in 2001), 

and Fourth Assessment Report (AR4, published in 2007) to make projections of 

future climate change. In total, the SRES developed 40 different scenarios, each 

making different assumptions for future green-house gas (GHG) pollution, land-use 

and other driving forces, arranged into four families (A1, A2, B1 and B2); the more 

ecologically friendly B scenarios associated with less CO2 emissions (Solomon et al. 

2007, Orr 2011). The recent IPCC Fifth Assessment Report (AR5) provided 

projections for the climate system based on new emission scenarios, the 

Representative Concentration Pathways (RCPs). RCPs are defined by their 

approximate total radiative forcing in the year 2100 relative to 1750 and represent a 

range of 21st century climate policies (IPCC 2013). These include a mitigation 

scenario leading to a very low forcing level (RCP2.6), two stabilization scenarios 

(RCPs 4.5 and 6.0) and one scenario with very high GHG emissions (RCP8.5) (IPCC 

2013). Most model simulations for AR5 were performed with prescribed atmospheric 

CO2 concentrations reaching 421 ppm (RCP2.6), 538 ppm (RCP4.5), 670 ppm 

(RCP6.0) and 936 ppm (RCP8.5), respectively, by the year 2100 (IPCC 2013). 

 

With increasing atmospheric CO2 concentrations and subsequent oceanic uptake, OA 

will increase in the future, continuing the trends observed over the past decades (IPCC 

2013). Under the RCP scenarios, corresponding decreases in surface ocean pH by 

2100 are predicted in the range of 0.06 – 0.07 for RCP2.6, up to 0.30 – 0.32 for 

RCP8.5 (Ciais et al. 2013). Under RCP8.5, the aragonite saturation horizon will shoal 

from 200 m up to 40 m in the sub-arctic Pacific, from 1000 m up to the surface in the 

Southern Ocean, and from 2850 m to 150 m in the North Atlantic by 2100 (Ciais et al. 

2013), consistent with results from previous model comparisons (Orr et al. 2005, Orr 
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2011). Under the SRES S2 scenario, the volume of ocean with supersaturated waters 

is projected to decline from 42% in the preindustrial era to 25% by 2100 (Steinacher 

et al. 2009). Even if atmospheric CO2 concentrations do not exceed 450 ppm, most of 

the deep ocean is projected to become under-saturated with respect to both aragonite 

and calcite after several centuries (Caldeira and Wickett 2005).  

 

As with present-day dynamics, regional and temporal differences in the magnitude of 

future OA will be apparent (Ciais et al. 2013). While the largest decrease in surface 

CO3
2- will occur in the warmer low and mid latitudes, which are naturally rich in this 

ion (Feely et al. 2009), the low Ωarg waters of high latitudes and upwelling regions 

will be the first to demonstrate under-saturation (i.e. Ωarg < 1) (Ciais et al. 2013). This 

will be observed before the end of the 21st century in the Southern Ocean and the 

Arctic, occurring sooner and more intensely in the latter due to enhanced freshwater 

input (Steinacher et al. 2009, Orr 2011). 50 % of Arctic surface waters are projected 

to become under-saturated with respect to aragonite when atmospheric CO2 

concentrations of 534 ppm are reached (Steinacher et al. 2009), while calcite under-

saturation is projected for much of the Arctic by 2100 under SRES scenario A2 (Feely 

et al. 2009). Under-saturated surface regions will also extend from the Arctic into the 

North Atlantic and the North Pacific by the end of the century (Gruber 2011). 

Although the progression of under-saturation from high latitudes will continue 

towards the equator, it is unlikely that tropical and the warmest subtropical surface 

waters will ever become under-saturated with respect to calcite (Feely et al. 2004). On 

a seasonal basis, under-saturation at high latitudes is expected to first occur during 

winter periods due to cooling (resulting in higher pCO2) and greater upwelling of 

DIC-enriched deep water (Feely et al. 2004, Orr et al. 2005). In some upwelling 

regions, e.g. the California Current System, strong seasonal upwelling of DIC rich 

waters will render surface waters as vulnerable to future OA as those in e.g. the 

Southern Ocean (Feely et al. 2008, Gruber et al. 2012, Ciais et al. 2013).  

 

Additional to increasing OA, the global ocean will continue to warm during the 21st 

century (Collins et al. 2013). While projected increase of sea surface temperature 

(SST) and heat content over the next two decades is relatively insensitive to the 

emissions trajectory, outcomes diverge as the 21st century progresses, with best 

estimates of ocean warming in the top 100 m ranging from ca. + 0.6oC under RCP2.6 
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to more than + 3.0oC under RCP8.5 by 2100 (Collins et al. 2013). Strongest warming 

is projected for the surface in tropical and Northern Hemisphere subtropical regions, 

while at greater depth, the warming will be most pronounced in the Southern Ocean 

(Collins et al. 2013). Due to the long time scales of heat transfer from the ocean 

surface to depth, ocean warming will continue for centuries (Collins et al. 2013). In 

addition, warming will influence CO2 uptake by the oceans, reducing the solubility of 

CO2 and thus the amount of CO2 the oceans can absorb from the atmosphere (Rhein et 

al. 2013). For example, with doubled preindustrial CO2 concentrations and a 2oC 

ocean temperature increase, seawater would absorb about 10 % less CO2 than with no 

temperature increase. However, under this scenario pH remains almost unchanged as 

HCO3
- is converted to CO3

2- in a warmer ocean, releasing H+ and stabilizing pH 

(Rhein et al. 2013). Thus, warmer future oceans will have less capacity to remove 

CO2 from the atmosphere yet still experience OA (Rhein et al. 2013).  

 

OA and warming are virtually irreversible on the human time scale as the primary 

driver for these stressors, i.e. anthropogenic CO2 emission into the atmosphere, will 

continue to cause global changes that will be with us for many hundreds, if not 

thousands, of years (Gruber 2011). Even if CO2 emissions are completely stopped, 

most aspects of climate change will persist for many centuries, representing a 

substantial multi-century climate change commitment created by past, present and 

future emissions of CO2 (IPCC 2013). Mitigation relies heavily on the identification 

of safe levels of CO2 and other GHGs in the atmosphere; compelling evidence 

demonstrating that atmospheric CO2 concentrations of 450 ppm and temperature 

increase of + 2oC from pre-industrial values will be dangerous for a wide array of 

planetary components (Hoegh-Guldberg and Bruno 2010). At the current annual 

increase in atmospheric CO2 (> 2 ppm year-1), we will exceed 450 ppm in 30 years, 

producing major challenges for humans who will struggle to manage rapidly and 

unpredictably changing ocean conditions (Hoegh-Guldberg and Bruno 2010). Given 

our weakly developed understanding of the impact of these stressors on marine 

biochemistry and ecosystems, dedicated research efforts are required to shed more 

light on these connected issues (Gruber 2011).  
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1.5. Impacts of ocean acidification and climate change on calcifying macroalgae 

Calcified macroalgae, i.e. those that deposit extracellular CaCO3, are represented 

across the phylogenetically diverse brown, green and red macroalgae (Nelson 2009), 

with more than 100 genera known (Borowitzka et al. 1974). Calcification may confer 

various advantages, including skeletal strength, protection from grazers and boring 

animals, and enhanced survivorship through resistance to wave action (Littler 1976, 

Nelson 2009, Couto et al. 2010, Hofmann and Bischof 2014). Conversely, some 

authors argue that calcification is a liability that many algae have evolved to avoid, as 

CaCO3 may create diffusion barriers and limit light penetration (Lobban and Harrison 

1994). Nevertheless, calcified macroalgae play incredibly important roles in marine 

ecosystems from polar to tropical regions (Littler et al. 1985), and are one of the most 

important structural elements in many coastal zones (Couto et al. 2010). For example, 

turfing corallines are particularly ecologically important in shallow temperate marine 

habitats where they act as autogenic ecosystem engineers (Johansen 1981, Jones et al. 

1994), providing habitat for numerous small invertebrates, shelter from the stresses of 

intertidal life via their physical structure and surfaces for the settlement of 

microphytobenthos (Nelson et al. 2009). Additionally, temperate corallines are of 

significant importance in the carbon and carbonate cycles of shallow coastal 

ecosystems, being major contributors to CO2 fluxes through high community CaCO3 

production and dissolution (Martin and Gattuso 2009). However, calcified macroalgae 

are predicted to be particularly vulnerable to OA induced decreases in seawater pH, 

CO3
2- and ΩCaCO3 and, as with all marine species, increases in SSTs (Harley et al 

2012, Koch et al. 2013, Hofmann and Bischof 2014).  

 

The potential influence of OA on calcified macroalgal physiology can be summarized 

into three broad areas; photosynthesis, calcification and dissolution (Koch et al. 

2013). Several studies have predicted a positive response of macroalgal 

photosynthesis to OA driven increases in DIC (Reiskind et al. 1989, Maberly 1990, 

Johnston et al. 1992). For example, the lightly-calcified brown alga Padina pavonica 

flourishes in a naturally elevated-CO2 site in the Mediterranean, demonstrating 

stimulated photosynthesis, increased chlorophyll content and increased relative 

electron transport rates (Johnson et al. 2012). There are, however, notable exceptions 

to such trends for macroalgae grown under elevated CO2 conditions (see Israel and 

Hophy 2002). Photosynthetic responses to increased DIC are likely to be determined 
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by the ability of macroalgae to use HCO3
-, whether or not carbonic anhydrase (CA) is 

present, and whether photosynthesis is saturated at current seawater DIC (Koch et al. 

2013). Approximately 95 % of marine macrophytes possess the ability to utilize 

HCO3
-, although CO2 is the preferred inorganic carbon source if available (Koch et al. 

2013). In some algae, HCO3
- is converted to CO2 using extracellular CA, with 

subsequent active transport or diffusion of CO2 into the cell, while other algae 

actively take up the HCO3
- ion across the cell membrane, and CA acts intracellularly 

(Hurd et al. 2009). The active transport of either CO2 or HCO3
-, or use of CA, 

constitutes a ‘carbon-concentrating mechanism’ (CCM, Giordano et al. 2005), which 

requires energy and nutrients to make and operate (Hurd et al. 2009). Maberly (1990) 

showed HCO3
- use in 83 % of 35 macroalgae species studied, with those restricted to 

CO2 use tending to grow in low irradiance, subtidal environments. Species lacking 

CCMs are more likely to be carbon limited under present-day seawater conditions, 

and thus benefit from additional CO2 due to OA (Harley et al. 2012). Conversely, 

CCM use has been suggested as the reason for a lack of enhanced production in a 

diversity of Mediterranean macroalgal species grown under elevated CO2 (Israel and 

Hophy 2002). HCO3
- use and CCMs may, however, be down-regulated in some 

species under elevated CO2 (Hepburn et al. 2011, Cornwall et al. 2012), providing a 

competitive advantage due to reduction of energy allocation to carbon acquisition 

(Raven et al. 2011). While a general increase in the photosynthetic rate of many 

macroalgae may therefore accompany elevated CO2 and HCO3
- concentrations (Koch 

et al. 2013), the benefits for calcified species may be negated by increases in the 

metabolic costs of calcification and increased dissolution pressure under reduced pH 

conditions (Nelson 2009).  

 

Calcification in the marine environment is achieved following the simplified reaction 

Ca2+ + CO3
2- ! CaCO3. Given that Ca2+ is rather constant with salinity, calcification 

is mainly dependent on the availability of CO3
2- and ΩCaCO3 (Gazeau et al. 2007). In 

most organisms, therefore, calcification is catalyzed in part by elevating the Ω of 

calcifying fluid with respect to CaCO3 (Ries 2010). The majority of marine calcifiers 

can increase fluid pH and CO3
2- concentration at the site of crystal nucleation to 

enable synthesis of shells and/or skeletons when external seawater parameters are 

unfavorable for calcification (Cohen and Holcomb 2009). In the Corallinales, organic 
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substrates are also required to bind Ca2+ ions and provide sites for nucleation 

(Borowitzka et al. 1987). Coralline algae calcification takes place in the cell wall, 

from which CO2 (and potentially HCO3
-) uptake by adjacent cells for photosynthesis 

increases the pH, shifting the carbonate equilibrium in favour of CO3
2- saturation and 

CaCO3 precipitation (Koch et al. 2013) (Figure 1.1). Precipitation produces CO2, 

which can subsequently be taken up by adjacent cells and used in photosynthesis 

(Koch et al. 2013). Thus light-enhanced calcification, a product of light-dependent 

increase in CO3
2- saturation at the site of calcification due to photosynthetic activity, 

is typical for calcifying macroalgae (Littler 1976, Koch et al. 2013).  

 

 
Figure 1.1: Cell wall calcification of coralline algae: calcification (3) is enhanced by 
light-dependent CO2 uptake for photosynthesis (1) and proton exchange. Cellular CO2 
uptake increases cell wall pH and shifts the carbonate equilibrium towards CO3

2- and 
CaCO3 precipitation. Photosynthesis is promoted by the dehydration of HCO3

- to CO2 
catalyzed by carbonic anhydrase (CA). However, CA activity is low at high pH, thus 
efflux of H+ to lower pH at the outer cell boundary layer is likely. CO2 from 
respiration (2) is recycled into calcification. Mg2+ is incorporated into calcite crystals, 
and organics produced by the cell wall influence nucleation, Ca2+ incorporation and 
calcite mineralogy. Figure drawn after Koch et al. (2013). 
 

Under elevated CO2, photosynthesis and calcification likely become uncoupled (Koch 

et al. 2013). Calcification is maintained by having a slow diffusion rate of external 

CO2 to the site of calcification, relative to uptake of CO2 from the site of calcification 

for photosynthesis, thus maintaining ΩCaCO3 (Koch et al. 2013). With OA, the CO2 

and H+ in external seawater will rise, increasing diffusion rates to the site of 

calcification, leading to lower internal pH and ΩCaCO3 (Koch et al. 2013). Due to 

lower external pH, CA activity will also be more effective at conversion of HCO3
- to 

CO2 (Middleboe and Hansen 2007a,b), again elevating CO2 at the cell surface and 

increasing diffusive flux to the cell (Koch et al. 2013). Additionally, external to 
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internal H+ ratios will increase under OA (Jokiel 2011, Ries 2011b), and calcifiers 

will have to efflux H+ across a much stronger diffusion gradient, with a concomitant 

energy cost (Ries 2011b). The ‘proton flux hypothesis’ proposes that fewer H+ are 

exported out of the region of calcification, thereby lowering the pH and limiting 

calcification, as shown for coral species (Jokiel 2011, Koch et al. 2013). For the 

calcified macroalgae Litothamnion glaciale, reductions in cell density, cell wall 

thickness and growth have all been reported under elevated pCO2 conditions ranging 

from 422 to 118 µatm CO2 (Hofmann and Bischof 2014). In contrast, for the intertidal 

alga Ellisolandia elongata, pCO2 was found to have no effect on calcification rates in 

both the light and dark (Egilsdottir et al. 2013). Thus the ability to control ion 

transport across membranes and internal pH regulation are likely to be major factors 

determining calcified macroalgal species-specific responses to OA (Koch et al. 2013).  

 

While the mechanism and location of calcification are likely to impact calcified 

macroalgal species sensitivity to low pH, increased dissolution rates are another real 

threat to calcifying organisms under OA conditions (Ries 2011b, Rodolfo-Metalpha et 

al. 2011, Roleda et al. 2012a), and therefore the type of carbonate mineral deposited 

by species is important (Hofmann and Bischof 2014). Dissolution is controlled by a 

balance between (i) internal generation of CO2 by calcification and respiration 

processes, (ii) CO2 recycling to maintain favorable internal pH conditions, and (iii) 

external pH and ΩCaCO3 (Harley et al. 2012, Koch et al. 2013). Internal generation of 

CO2 is particularly a problem at night, when dark calcification and respiration 

production of CO2 release H+ and lower pH (de Beer and Larkum 2001). Studies have 

shown the importance of respiratory CO2 incorporation into CaCO3 precipitated 

during dark calcification to maintain favorable internal pH conditions (Lee and 

Carpenter 2001). With OA, a higher availability of CO2 may increase the need for 

recycling of respiratory CO2 from the sites of calcification, resulting in CO2 and H+ 

accumulation, lower pH, and subsequently lower calcification / higher dissolution 

rates (Koch et al. 2013). During night-time incubations, L. glaciale showed net 

dissolution under elevated pCO2 conditions as compared to net calcification under 

control treatment conditions (Kamenos et al. 2013). Potential compensation for 

increased dissolution under OA conditions may be achieved by an increase in light-

calcification rates. For example, Kamenos et al. (2013) demonstrated that L. glaciale 

was capable of increasing day-time calcification rates under elevated pCO2 conditions 
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to twice the rate required to maintain calcification in control conditions. Energy 

consumption for compensatory hyper-calcification under OA conditions may, 

however, negatively impact the species over prolonged periods, with potential 

consequences for photosynthetic efficiency (Kamenos et al. 2013).  

 

Dissolution rates may additionally be impacted by the form of mineralization of 

CaCO3 present in thalli under future OA conditions (Cole and Sheath 1990, Morse et 

al. 2007, Ries 2010, Hofmann and Bischof 2014). Within the marine environment, 

different biogenic polymorphs of CaCO3 are deposited, each with different solubility 

in seawater (Cole and Sheath 1990, Ries 2011). Aragonite, the polymorph deposited 

by the tropical green macroalgae Halimeda (Borowitzka and Larkum 1977), for 

example, is more soluble than pure calcite; however, the solubility of calcite increases 

with increasing magnesium ion (Mg2+) content substituting for Ca2+ ions (Andersson 

et al. 2008, Ries 2010, 2011). High-Mg biogenic calcite (i.e. > 8 – 12 mol % MgCO3) 

is more soluble than aragonite in seawater (Andersson et al. 2008), thus species 

depositing this polymorph, e.g. coralline macroalgae, are likely to be more susceptible 

to the initial effects of OA (Gao et al. 1993, Morse et al. 2007, Kuffner et al. 2008, 

Ries et al. 2009, Ries 2010, Lombardi et al. 2011).  

 

Natural variability in carbonate chemistry is also likely important with regard to 

calcified species’ responses to OA (Hofmann et al. 2011, Andersson and Mackenzie 

2012, Hofmann et al. 2014). Autotrophs can significantly modulate external pH with 

significant impacts on net calcification and dissolution processes (Bjork et al 2004, 

Beer et al. 2006, Yates and Halley 2006a,b, Yates et al. 2007, Semesi et al. 2009). For 

example, highly productive seagrasses can raise external pH to ~ 9 through uptake of 

CO2 for photosynthesis (Beer et al. 2006, Semesi et al. 2009), elevating calcification 

rates approximately 2- to 6-fold in calcifying algae growing in their vicinity (Semesi 

et al. 2009). There is an urgent need to understand the balance of calcification and 

dissolution in coastal systems with strong, autotroph-driven, diel variations in 

ΩCaCO3 (Yates and Halley 2006, Yates et al. 2007). As OA proceeds, periodic 

exposure to high pH conditions may ameliorate some of the negative impacts on 

calcifying species (Hurd et al. 2011, Anthony et al. 2011, Manzello et al. 2012), while 

local adaptation of calcifying species to natural pH variability may also confer 

increased resilience to future conditions (Wootton et al. 2008, Hofmann et al. 2011, 
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Kelly et al. 2013, Wolfe et al. 2013, Hofmann et al. 2014). Diel, seasonal and inter-

annual shifts in carbonate chemistry are likely to control the long-term conditions that 

promote either net calcification or dissolution, and the presence of calcified 

macroalgae in coastal ecosystems, with species-specific tolerances (Koch et al. 2013).  

 

Increasing SSTs act both directly and in combination with OA to affect the outcomes 

for calcified macroalgae. Water temperature profoundly influences the survival, 

recruitment, growth and reproduction of macroalgal species (Breeman 1988), and is 

therefore a key factor governing both the small-scale vertical distribution of 

macroalgae on a shore, and large-scale species’ geographical ranges (Breeman 1988, 

Luning 1990, Jueterbock et al. 2013). At the level of the individual, temperature has 

fundamental effects on chemical reaction rates and metabolic pathways (Lobban and 

Harrison 1994). With continued increases in SSTs, some macroalgal species and 

populations may become chronically (gradual warming) or acutely (extreme events) 

stressed as temperatures exceed physiological thresholds (Brodie et al. 2014). If 

physiological processes cannot be maintained, primary productivity will decrease and, 

ultimately, widespread mortality may ensue (Smale and Wernberg 2013, Brodie et al. 

2014). Across latitudes, species will likely respond directly to SST increases with 

range shifts, resulting in extinction of species at their southern edges and colonisation 

at northern boundaries (Jueterbock et al. 2013, Harley et al. 2012). Indeed, population 

shifts in temperate and tropical macroalgal species across various biogeographic 

regions have already been reported (Lima et al. 2007, Tuya et al. 2012, Wernberg et 

al. 2011). However, current-mediated dispersal can define many biogeographical 

boundaries in coastal oceans (Gaylord and Gaines 2000), such that species’ range 

limits may remain stationary even as conditions in extra-limital habitats become 

suitable (Fields et al. 1993, Harley et al. 2006). Additionally, range expansion into 

higher latitudes may not be a suitable escape mechanism for species along coastlines 

with significant geomorphic barriers, such as the end of a continent (Harley et al. 

2012). Continued poleward retreat of many macroalgal species along the east and 

west coasts of Australia, for example, may result in numerous extinctions as species 

‘fall off the map’ (Wernberg et al. 2011). Predicting future distributional shifts 

requires additional attention to species’ range boundaries and to the factors that 

determine them (Harley et al. 2006). The inter-relation of temperature changes with 

OA should also be considered, as these two variables fundamentally influence the 
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biochemistry and physiology of plants (Koch et al. 2013). To-date, temperature has 

been shown to exacerbate the negative impacts of OA on calcifying macroalgae 

(Anthony et al. 2008, Martin and Gattuso 2009, Sinutok et al. 2011, Diaz-Pulido et al. 

2012), however the mechanisms for this synergy are not well understood (Koch et al. 

2013).  

 

Additional to the direct physiological impacts of OA and increasing SSTs on 

calcifying macroalgae, future change in coastal ecosystems will be determined by 

indirect effects mediated by changes in interspecific interactions (Harley et al. 2006). 

As species respond to OA and climate change, shifts in community dynamics are 

guaranteed as the abundance, phenology and impacts of interacting species change 

(Harley et al. 2006). Macroalgae compete for nutrients, light and space, and their 

relative success depends on both resource availability and environmental stress 

(Harley et al. 2012). Elevated CO2 represents both increased resource availability and 

environmental stress depending on functional group, i.e. fleshy versus calcified 

macroalgae (Connell et al. 2013). CO2 stress for calcified macroalgae, i.e. inhibition 

of growth by reduced pH conditions, may therefore result in increasing dominance of 

non-calcifying macroalgal species that will benefit from increased resource 

availability for photosynthesis, thus leading to phase-shifts in algal assemblages 

analogous to those observed in coral reef systems (Wootton et al. 2008, Diaz-Pulido 

et al. 2011, Hepburn et al. 2011, Harley et al. 2012, Connell et al. 2013, Koch et al. 

2013). The outcome of plant – herbivore interactions will also be impacted under 

future ocean conditions, as characteristics of both parties e.g. palatability, 

consumption rates, and abundance, are known to be impacted by OA and temperature 

increases (Harley at al. 2012). 

 

Finally, it is important to consider the potential for species to respond via acclimation 

and adaptive evolution to global change (Sunday et al. 2013). Major questions remain 

regarding whether marine species currently possess functional traits that would allow 

them to tolerate environmental change, or whether they will be able to adapt to 

rapidly changing ocean conditions into the future (Hofmann et al. 2014). Recent 

evidence suggests exposure to high variation in abiotic conditions may lead to 

selection for tolerant genotypes (Hofmann et al. 2014). For example, extreme pH 

variability in the California Current Large Marine Ecosystem, which is characterized 
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by upwelling of high DIC/low pH waters, has been associated with a lesser sensitivity 

of marine invertebrates to low pH conditions (Hofmann et al. 2014). Similarly, some 

tropical species and subpopulations of macroalgae appear to have limited scope for 

acclimation relative to their temperate counterparts due to reduced environmental 

variability in tropical habitats (Padilla-Gamino and Carpenter 2007a,b, Harley et al. 

2012). At present, however, relatively little is known about the degree to which 

evolutionary adaptation may rescue calcified macroalgae in the face of environmental 

change (Harley et al. 2012).  

 

On the whole, the majority of longer-term experimental studies conducted to-date 

show a decrease in calcification and enhanced dissolution in calcifying species under 

elevated CO2. In 82 % of experiments reviewed by Koch et al. (2013), the CO2 

predicted for 2100 (~700 – 1000 ppm) lead to a decline in calcification, growth and/or 

recruitment of macroalgae in the two dominant calcifying divisions, Chlorophyta and 

Rhodophyta. Elevated temperatures (+ 3oC) further enhanced the negative effects on 

net calcification in species from the genera Lithophyllum, Porolithon and Halimeda 

(Koch et al. 2013). Similarly, insights into OA effects on macroalgal communities 

from CO2 vent surveys show a loss of crustose coralline algal epiphytes on seagrass 

leaves and fewer calcareous macroalgal species close to the vent source, while fleshy 

macroalgae and seagrass dominance increase (Hall-Spencer et al. 2008, Martin et al. 

2008, Fabricius et al. 2011, Porzio et al. 2011, Johnson et al. 2012, Koch et al. 2013). 

However, reduced calcification at higher pCO2 did not emerge as a general pattern in 

a meta-analysis of multiple seaweed studies (Kroeker et al. 2010). This may be 

because the process of calcification and likewise OA effects to it, vary among 

macroalgae (Price et al. 2011), and many species may be able to create microclimates 

of chemistry favorable for calcification regardless of ambient conditions (Roleda et al. 

2012b, Harley et al. 2012). Thus there may be both winners and losers under future 

ocean conditions (Koch et al. 2013, Brodie et al. 2014), and further investigation is 

required to development accurate predictions for macroalgal-dominated systems in 

order to allow effective management and conservation strategies (Harley et al. 2012).  

  

1.6. Corallina and Ellisolandia (Corallinales, Rhodophyta) 

The order Corallinales of Rhodophyta is the best known of all calcified macroalgal 

groups, with all species being calcified (Silva and Johansen 1986, Nelson 2009). The 
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Corallinales (or ‘corallines’) include crustose coralline algae (CCA), free-living 

coralline algae (rhodolith / maerl), and geniculate (articulated) turfing algae (Irvine 

and Chamberlain 1994, Brodie et al. 2014). These form a cosmopolitan group of 

marine flora, ubiquitous in intertidal and shallow subtidal habitats, where they act as 

important ecosystem engineers (Kamenos et al. 2004, Nelson 2009, Brodie et al. 

2014). While coralline algae are notoriously slow growing, they compete successfully 

with other marine organisms, especially in upper sub-tidal areas, where both non-

articulated and articulated forms often dominate climax communities (Johansen 

1981). However, amongst calcifying macroalgae, corallines are predicted to be 

particularly vulnerable to the impacts of future OA given their deposition of 

exclusively high-Mg calcite, the most soluble form of CaCO3 in the marine 

environment (Johansen 1981, Gao et al. 1993, Morse et al. 2007, Andersson et al. 

2008, Kuffner et al. 2008, Ries et al. 2009, Ries 2010, Hofmann et al. 2012). 

 

Figure 1.2: Schematic of geniculate coralline macroalgal frond showing calcified 
intergenicula and un-calcified genicula (or joints) that allow flexibility (based on 
Corallina officinalis frond). See Brodie et al. (2013) for a full description. 

 

Corallina is the type genus of the subfamily Corallinoideae and the oldest name in 

coralline literature (Irvine and Johansen 1994). Corallina are articulated species, 

consisting of branching flexible fronds attached to crustose holdfasts (Johansen 1981). 
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The fronds are made up of small clacified segments (intergenicula), which are 

separated from one another by un-calcified nodes (genicula) (Johansen 1981) (Figure!
1.2). Corallina species often form extensive macroalgal turfs that cover large areas of 

the intertidal and provide substratum, habitat and refugia for a number of important 

marine organisms (Coull and Wells 1983, Hicks 1986, Akioka et al. 1999, Kelaher 

2002, 2003, Hofmann et al. 2012). In the north-east (NE) Atlantic, Irvine and 

Chamberlain (1994) originally recognized two species of Corallina, C. officinalis and 

C. elongata; C. elongata has priority over C. meditarranea, a name which is 

widespread in the literature (Irvine and Chamberlain 1994). Subsequent to this, 

molecular insights into cryptic diversity within the genus resulted in (i) the splitting of 

C. officinalis into two genetically distinct species, C. officinalis and C. caespitosa 

(Walker et al. 2009), (ii) a revised definition of C. officinalis and C. elongata (Brodie 

et al. 2013), and (iii) the establishment of a new genus, Ellisolandia, containing a 

single species, E. elongata, previously C. elongata (Hind and Saunders 2013a) 

(Figure!1.3). In the UK, Corallina and Ellisolandia species are epilithic in rock pools, 

with C. officinalis typically found across the entire littoral zone of rocky sheltered 

coastlines, C. caespitosa found from the mid-littoral to the lower limit of the littoral 

zone, and E. elongata found hanging from rock faces in both shady and well-

illuminated lower littoral to upper sub-littoral areas (Brodie et al. 2013). 

 

 
Figure 1.3: Frond morphology of (a) Corallina officinalis (b) C. caespitosa and (c) 
Ellisolandia elongata. Scale bar = 1 mm (a), 7.5 mm (b) and 3.3 mm (c). Red circles 
identify conceptacles on C. officinalis frond (calcified cavities containing spores on 
fertile fronds).  
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Figure 1.3b: Corallina officinalis distribution as reported from herbaria and literature 

records on algaebase.org (Guiry and Guiry 2014). 

 

To-date a cosmopolitan distribution has been indicated for C. officinalis based on 

herbaria and literature records (Figure 1.3b), largely in warm-temperate seas and less 

so in tropical and subtropical areas (Johnson 1970, Garbary and Johansen 1982, 

Womersley and Johansen 1996, Guiry and Guiry 2014). However, given the recent re-

definition of this species and the establishment of C. caespitosa (Walker et al. 2009, 

Brodie et al. 2013), the global distribution of C. officinalis requires re-evaluation; 

although its presence in the NE Atlantic north to Iceland and the Faroe Islands is 

confirmed (Brodie et al. 2013). For the recently established C. caespitosa, initial 

molecular work has indicated that this species may have a cosmopolitan distribution, 

although this requires confirmation (Brodie et al. 2013). In the NE Atlantic, C. 

caespitosa is known to extend north to Yorkshire in the UK (Brodie et al. 2013). 

Based on morphology, E. elongata has been reported from the UK down to Senegal, 

the Mediterranean, the Canary Islands and Argentina (Irvine and Chamberlain 1994). 

However, molecular confirmation of this distribution is currently restricted to the 

south-west coasts of England and Ireland, and its true relation to C. mediterranea, 

reportedly widespread in the Mediterranean, awaits verification (Brodie et al. 2013). 

In general, taxonomic confusion and the misapplication of names across the genera 

continues to inhibit efforts of species delimitation and consequently the understanding 

of species’ distributions (Brodie et al. 2013).  
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Recent efforts have been made to determine the impacts of OA on Corallina and 

Ellisolandia species of the NE Atlantic using future-scenario incubation experiments, 

though studies have reported mixed results (Hofmann et al. 2012a,b, 2013, Egilsdottir 

et al. 2013, Noisette et al. 2013, Yildiz et al. 2013). For example, Egilsdottir et al. 

(2013) and Noisette et al. (2013) hypothesized that E. elongata would show resilience 

to future OA conditions, based on the assumption that organisms from highly variable 

habitats, i.e. intertidal rock pools, are likely tolerable of high pH/pCO2 fluctuations. 

This hypothesis was upheld, with no pCO2 effect on light or dark calcification, 

respiration, or production recorded for E. elongata during incubations of either study 

(Egilsdottir et al. 2013, Noisette et al. 2013). In contrast, Hofmann et al. (2012a,b) 

reported reduced growth and inorganic carbon content of C. officinalis incubated 

under elevated pCO2 conditions, concluding that OA could have serious consequences 

for C. officinalis and the intertidal assemblages it currently dominates. However, 

responses in other physiological traits were variable in relation to pCO2 treatment. A 

parabolic response of C. officinalis maximum photosynthetic rate (Pmax) and 

respiration rate, and an increase in maximum electron transport rate (ETRmax), was 

observed with increasing pCO2 by Hofmann et al. (2012b), while Hofmann et al. 

(2012a) reported a parabolic response of C. officinalis calcification to increases in 

pCO2, with no response of Pmax or respiration. Thus the outcomes of incubation 

experiments can be difficult to interpret.  

 

As a compliment to incubation studies, there is large scope to learn about potential 

responses to future change by examining how species currently respond to temporal 

and spatial fluctuations and gradients in key abiotic stressors in-situ (Helmuth et al. 

2006). The history of environmental variation is a key predictor of future success, as 

an individual that has been exposed to stressful conditions in the past may be better 

able to cope with them in the future (Padilla-Gamino and Carpenter 2007a, Harley et 

al. 2012). In-situ assessment has the benefit of examining species within their natural 

environment, negating issues associated with transferring organisms to laboratory 

conditions, and attempting to replicate field conditions within a laboratory (Kholer 

2002, Calisi and Bently 2009). This is particularly a problem when working with 

coastal species, e.g. Corallina and Ellisolandia, which are often collected from highly 

dynamic coastal habitats and incubated in static pH/temperature conditions 

(Andersson and MacKenzie 2012). Gaining a thorough understanding of species’ 
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ecophysiology in-situ will further provide an important baseline against which to 

monitor future change, and allow contextual interpretation of the results of future-

scenario incubation studies (Helmuth et al. 2006, Brodie et al. 2014, Harley et al. 

2012).  

 

We currently lack a thorough understanding of the present-day ecology of Corallina 

and Ellisolandia species in the NE Atlantic, hindering prediction of their vulnerability 

to future OA and climate change. Knowledge gaps include i) the extent of species’ 

geographic ranges, ii) the variability in carbonate chemistry experienced in-situ, iii) 

photosynthetic, respiratory and calcification responses to key abiotic stressors, and iv) 

temporal and spatial variability in skeletal mineralogy. These knowledge gaps are 

exacerbated by the recent phylogenetic insights into cryptic diversity within the 

genera (Walker et al. 2009, Brodie et al. 2013, Hind and Saunders 2013a), such that 

no information is currently available on the ecology of C. caespitosa, and previous 

studies conducted with C. officinalis must be treated with caution. However, given 

that Corallina and Ellisolandia species inhabit highly fluctuating rock pool 

environments (Truchot and Duhamel-Jouve 1980, Morris and Taylor 1983, Brodie et 

al. 2013), and have putative large-scale latitudinal distributions across the NE Atlantic 

(e.g. Figure 1.3b), we have an informative back-drop of temporal and spatial 

fluctuations and gradients of abiotic stressors against which to assess ecophysiology. 

Additionally, extensive herbaria collections of these species allows for access to 

samples collected across global spatial scales and over the past decades-to-centuries. 

Corallina and Ellisolandia are therefore ideal candidates for study in regards to 

predicting future responses to OA and climate change based on present-day and 

recent-past observations.  
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1.7. Aims 

The overarching aim of this study is to advance knowledge on the ecophysiology of 

Corallina and Ellisolandia species in the NE Atlantic, in order to facilitate and 

contextualize predictions of responses to future OA and climate change and to provide 

a baseline against which to measure future change. Specifically, it aims to: 

 

1. Resolve species identity, diversity and distribution of the genera Corallina and 

Ellisolandia in the NE Atlantic. 

2. Describe the carbonate chemistry environment currently experienced by 

Corallina and Ellisolandia in intertidal rock pools of the NE Atlantic. 

3. Determine temporal and spatial patterns in key physiological processes 

(photosynthesis, respiration, calcification and growth) and identify the main 

abiotic drivers. 

4. Determine temporal and spatial patterns in Corallina and Ellisolandia skeletal 

mineralogy. 

 

To achieve Aim 1, a phylogenetic study of historical and contemporary samples of 

Corallina and Ellisolandia was undertaken using Natural History Museum herbarium 

collections and field-collected samples (Chapter 2). For Aims 2 & 3, in-situ 

observations of physiology were made across the NE Atlantic (Iceland, UK and 

northern Spain), in relation to temporal and spatial fluctuations and gradients in 

abiotic stressors (irradiance, water temperature and carbonate chemistry) (Chapters 3 

& 4). Aim 4 was achieved by determining the skeletal Mg/Ca ratios of recent-past (ca. 

1850 – 2010) and present-day (seasonal and latitudinal cycles) Corallina and 

Ellisolandia samples in relation to sea surface temperature dynamics (Chapter 5). In 

Chapter 6, the outcomes of these studies (Chapters 2 – 5) have been interpreted in 

regards to the potential vulnerability of these calcified algae to future OA and climate 

change conditions.  
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1.8. Site descriptions 

Field sites for work presented in Chapters 3 – 5 of this study were located across the 

NE Atlantic from Iceland to northern Spain (Figure 1.4, Table 1.1).  

 

 
Figure 1.4: Site locations and species distributions across the northeast Atlantic. 
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Table 1.1: Sampling site characteristics including location, tidal range (MHWS = mean high water spring, MLWS = mean low water spring, 
MHWN = mean high water neap, MLWN = mean low water neap, ranges provided in m relative to chart datum (the level of the lowest 
astronomical tide, LAT), average sea surface temperature (SST) range (oC), Corallina and Ellisolandia species present at each site, and the shore 
heights sampled at each site (m, relative to chart datum). 

 Þorlákshöfn Combe Martin Wembury Point Comillas A Coruña 
Location 63o53’36N 21o23’45W 51o12’13N 4o2’19W 50o18’53N 4o4’58W 43o23’18N 4o17’21W 43o22’13N 8o24’54W 
Tidal range  
 

MHWS – MLWS 
3 – 0.2 (2.8) 

MHWN – MLWN 
2.3 – 1 (2.2) 

MHWS – MLWS 
9.2 – 0.68 (8.52) 

MHWN – MLWN 
6.9 – 3.1 (3.8) 

MHWS – MLWS 
5.5 – 0.8 (4.7) 

MHWN – MLWN 
4.4 – 2.2 (2.2) 

MHWS – MLWS 
4.7 – 0.2 (4.5) 

MHWN – MLWN 
3.2 – 1.4 (1.8) 

MHWS – MLWS 
4.2 – 0.3 (3.9) 

MHWN – MLWN 
2.8 – 1.6 (1.2) 

Average SST (oC) 5.6 – 11.7 8.0 – 17.1 9.5 – 16.9 12.7 – 21.0 12.9 – 19.0 
Species present 

C. officinalis C. officinalis 
C. caespitosa 

C. officinalis 
E. elongata 

C. officinalis 
C. caespitosa 
E. elongata 

C. officinalis 
C. caespitosa 
E. elongata 

Shore heights 
sampled  Lower (1.5) 

Upper (5.5) 
Middle (5.0) 
Lower (3.5) 

Upper (4.0) 
Lower (2.3) 

Upper (3.0) 
Lower (1.0) Lower (2.0) 

!
!
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Figure 1.5: Þorlákshöfn, Iceland, showing (a) intertidal rock pools in which C. 
officinalis was sampled and assessed for Chapters 3 – 5 of this thesis, and (b) & (c) C. 
officinalis fronds in rock pools. 

 

At Þorlákshöfn, Iceland, the south-west facing exposed rocky shore is dominated by 

fucoids and green macroalgae (Figure 1.5). Alaria esculenta dominates in a zone at 

the bottom of the intertidal / shallow littoral fringe, indicative of exposed conditions. 

A series of rock pools supports well-developed turfs of C. officinalis, which is the 

only Corallina species found in Iceland. C. officinalis is not found out of rock pool 

environments.  

!
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On the north Devonshire coast, UK, Combe Martin is a north-west facing rocky 

intertidal site, positioned within a relatively sheltered bay (Figure 1.6). A large tidal 

range is experienced (Table 1.1) given its location near the start of the Bristol Channel 

(second largest tidal range in the world). The shallow sub-tidal is dominated by 

Laminaria species, with fucoids, barnacles and limpets abundant in the intertidal. 

While C. officinalis, C. caespitosa and E. elongata are all present at Combe Martin, 

the latter demonstrates too low an abundance (i.e. rarely observed, in sparse patches 

in the lower intertidal) to be utilized for the present study. C. caespitosa inhabits a 

narrow zone (ca. 2 cm deep) at the upper water line of large (ca. 40 m3, 0.5 m deep) 

upper shore rock pools created by a man-made walkway, with C. officinalis 

dominating below. In small, shallow mid-intertidal rock pools (ca. 0.09 m3, 2 – 4 cm 

deep), C. caespitosa is the only Corallina species present, found as a small turf. 

Across the lower intertidal, C. officinalis dominates rock pools and drainage channels, 

while C. caespitosa is absent. At Wembury point, south Devon, UK, the intertidal 

region is very similar to Combe Martin, though with more exposed conditions and the 

presence of boulders. C. officinalis dominates rock pools across the complete 

intertidal, while E. elongata demonstrates a patchy distribution in the lower intertidal, 

often found sheltered underneath fucoid fronds.  

 

In northern Spain, fieldwork was undertaken in both an easterly (Comillas) and 

westerly (A Coruña) site, in order to increase the chances of access to C. officinalis, 

which is found in low abundance at this latitude. At Comillas, an exposed north-

facing rocky shore is covered by a well-developed Ellisolandia and Corallina 

assemblage (Figure 1.7). Across the low-lying intertidal, E. elongata dominates both 

exposed substratum and rock pool habitats, which are also heavily occupied by purple 

sea urchins (Paracentrotus lividus). C. caespitosa occupies very shallow (ca. 2 cm 

deep) water covered areas of the intertidal, and is also found in rock pools. C. 

officinalis is restricted to the very lower intertidal at Comillas, found only in small 

patches accessible on spring tides. In A Coruña, rocky reefs extend out into a north-

west facing exposed bay (Figure 1.7). Intertidal reefs are dominated by red and green 

turfing algae, with E. elongata and C. caespitosa occupying rock pools. C. caespitosa 

is typically found in the upper rim of rock pools, while E. elongata dominates below. 
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C. officinalis is sporadically present in lower shore rock pools, accessible on spring 

tides. Ellisolandia nor Corallina are present on exposed substratum in A Coruña.  

 

 

 
Figure 1.6: Combe Martin, north Devon, UK, showing (a) example of large upper 
shore rock pool created by man-made walkway, (b) thin ca. 2 cm zone of C. 
caespitosa (white arrows) at the water line of an upper shore rock pool, with C. 
officinalis dominating below, (c) general dominance of Corallina in upper shore rock 
pools, (d) C. caespitosa turf (white circle) growing in a shallow (ca. 2 – 4 cm deep) 
middle shore rock pool, (e) mid and lower intertidal of Combe Martin dominated by 
fucoids, and (f) C. officinalis lining the edges of lower shore rock pools.  
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Figure 1.7: Northern Spanish field sites, showing (a) intertidal platform at Comillas 
covered in extensive Ellisolandia / Corallina assemblage, (b) exposed E. elongata on 
the intertidal platform at Comillas, (c) C. caespitosa fronds in shallow submerged 
area of Comillas intertidal, (d) C. caespitosa inhabiting the upper water line of rock 
pools at A Coruña, and (e) intertidal rocky reef at A. Coruña partially submerged by 
the rising tide.  
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Chapter 2: Towards resolution of species diversity and distribution in the genera 

Corallina and Ellisolandia (Corallinales, Rhodophyta) 

 

2.1. Introduction 

With over 637 currently accepted species (Guiry and Guiry 2014), the calcified red 

algal order Corallinales is one of the most species-rich orders in the red algae (Brodie 

and Zuccarello 2007). Given the ecological importance of coralline algae in marine 

communities and the significant impacts faced due to OA and increasing SSTs 

(Nelson 2009, Harley et al. 2012, Martone et al. 2012, Koch et al. 2013, Chapter 1), 

there is an urgent need to assess species diversity within the order and to revise 

phylogenetic relationships. It is generally acknowledged that morphological 

characters alone are not sufficient to assign individuals to various taxonomic levels 

within the Corallinales (Silva and Johansen 1976, Johansen 1981, Woelkerling 1988, 

Bailey and Chapman 1998) and previously emphasized ‘key diagnostic features’, such 

as conceptacle position (axial, marginal or lateral) (see e.g. Figure 1.3), or the 

presence/absence of genicula, have been demonstrated by combined morphological 

and molecular studies not to be taxonomically informative, and do not distinguish 

subfamilies (Bailey and Chapman 1998, Gabrielson et al. 2011, Hind and Saunders 

2013b). DNA comparisons have proven an essential tool in resolving phylogenetic 

relationships within the order (e.g. Kato et al. 2011, Bittner et al. 2011) and more 

specifically, the subfamily Corallinoideae (e.g. Gabrielson et al. 2011, Martone et al. 

2012, Hind and Saunders 2013b, Hind and Saunders 2013a). 

 

The subfamily Corallinoideae consists of two tribes, the Corallineae and Janieae. Kim 

et al. (2007) examined phylogenetic relationships within the Janieae and concluded 

that it contains a single genus, Jania, in which species formerly referred to 

Cheilosporum and Haliptilon should be included. The Corallineae, including the 

genera Alatocladia, Arthrocardia, Bossiella, Calliarthron, Chiharaea, Corallina, 

Ellisolandia, Johansenia, Masakiella, Pachyarthron and the species 

Pseudolithophyllum muricatum (Foslie) Steneck and R.T.Paine, has been the focus of 

several recent phylogenetic studies addressing issues of diversity, misidentification 

and taxonomic relationships (Robba et al. 2006, Walker et al. 2009, Gabrielson et al. 

2011, Martone et al. 2012, Brodie et al. 2013, Hind and Saunders 2013b, Hind and 

Saunders 2013a, Hind et al. 2014). Important for such work is the method outlined by 
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Gabrielson et al. (2011), in which species identity is approached through the 

application of molecular methods to systematic problems by focusing on sequences 

obtained from type specimens of generitype species and other species included in 

each genus.  

 

Corallina is the type genus for the subfamily Corallinoideae and recent work (Robba 

et al. 2006, Walker et al. 2009, Brodie et al. 2013, Hind and Saunders 2013b) has 

paved the way for phylogenetic studies of this genus. Comparison of mitochondrial 

and nuclear DNA sequences resulted in the splitting of C. officinalis Linnaeus, the 

generitype species, into two genetically distinct species, C. officinalis Linnaeus and a 

new species, C. caespitosa R.H. Walker, J. Brodie and L.M. Irvine (Walker et al. 

2009). Using epitype specimens, Brodie et al. (2013) revised the definition of C. 

officinalis and another species, C. elongata J.Ellis and Solander, based on both 

morphological and mitochondrial / nuclear DNA sequence data. Concurrently, Hind 

and Saunders (2013b) established the new genus Ellisolandia, with Ellisolandia 

elongata (J.Ellis and Solander) K.R.Hind and G.W.Saunders as the generitype 

(Basionym: Corallina elongata). These studies have provided a morphological and 

DNA sequence-based characterization of the generitype and other species of 

Corallina, allowing re-identification of recent and past collections, following 

Gabrielson et al. (2011) and Martone et al. (2012).  

 

There are currently 271 species and infraspecific names recorded for Corallina of 

which 44 are currently accepted (Guiry and Guiry 2014). The possibility of 

misidentification and cryptic diversity has profound implications for species 

delimitation within Corallina and consequently for the understanding of species’ 

distributions (Brodie et al. 2013). Martone et al. (2012), for example, observed that 

the generitype Yamadaia melobesioides Segawa belongs to the same clade as NW 

Atlantic C. officinalis, reducing Yamadaia to a synonym of Corallina. Similarly, Hind 

and Saunders (2013b) found that species assigned to Marginisporum (including the 

generitype Marginisporum crassissimum (Yendo) Ganesan) and the generitype 

Serraticardia maxima (Yendo) P.C.Silva resolve within the Corallina lineage, and 

thus synonymized Marginisporum and Serraticardia with Corallina, placing S. 

macmillanii (Yendo) P.C.Silva in a new genus, Johansenia, given its divergence from 

S. maxima. Additionally, they uncovered four cryptic Corallina species from 
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Canadian waters and demonstrated that four non-articulated entities, currently 

assigned to Pseudolithophyllum muricatum (sensu Steneck and Paine 1986), resolved 

as a sister group to Corallina (Hind and Saunders 2013b). Finally, Brodie et al. (2013) 

noted several misapplications of names within the genus Corallina, e.g. herbarium 

specimens of C. caespitosa from Atlantic France to which the name C. mediterranea 

Areschoug in J. Agardh (1852, p. 568) had been applied, a name previously 

considered a synonym of C. elongata, now Ellisolandia elongata.  

 

Evidence so far of cryptic species and misidentification of specimens in Corallina 

appears to be comparable to the situation found in other red algal genera where a 

concerted effort has been made to clarify taxonomy and relationships  (e.g. Hughey 

and Hommersand 2008, Sutherland et al. 2011, Lindstrom et al. 2011). In order to 

continue to advance our understanding of the diversity within these calcified species, 

effort needs to be concentrated on regional floras, as demonstrated by Hind and 

Saunders (2013b) who focused on the Canadian northwest. In addition, herbaria can 

be a valuable source of material for this work.  

 

The aim of the present study is to build on the recent progress of Brodie et al. (2013) 

and Hind and Saunders (2013b), studies that have provided DNA sequence data for 

the generitypes and other species of Corallina and Ellisolandia, by examining species 

diversity and geographic distributions within Corallina and Ellisolandia, and the 

extent to which names have been misapplied. We have concentrated our efforts on 

obtaining DNA sequence data from specimens identified as species of Corallina 

housed in the algal herbarium at the Natural History Museum (BM), which contains 

both contemporary and historic collections of Corallina from around the world, and 

from contemporary collections from the NE Atlantic and Mediterranean which we can 

compare with recently published datasets (Walker et al. 2009, Hind and Saunders 

2013b). Data have also been compared with that for the tribe Janieae because of the 

problems of misidentification.  

 

To this end, the mitochondrial cytochrome c oxidase subunit I (COI) gene was chosen 

to study species diversity as this marker is a powerful tool for DNA barcoding and is 

able to reveal potential incipient speciation, cryptic diversity and phylogenetic 

relationships (Saunders 2005, Robba et al. 2006). In order to draw effective 
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conclusions regarding species delimitation using molecular markers it is also 

imperative to assess divergence values and reciprocal monophyly at multiple 

molecular markers, across several taxa in the genus in question (Hind and Saunders 

2013a). Specimens were thus selected from clades identified in our COI phylogeny to 

sequence the ribulose-biphosphate carboxylase (rbcL) plastid gene, a preferred 

molecule for assessing phylogenetic relationships among species, genera, families and 

orders of red algae (Gabrielson et al. 2011), and additional sequences retrieved from 

GenBank to produce a complementary phylogeny.  

 

2.2. Methods 

 

2.2.1. Taxon sampling 

DNA was extracted from 69 specimens from the Natural History Museum (BM) algal 

herbarium, including individuals identified as C. caespitosa, C. chilensis Descaisne, 

C. gracilis J.V.Lamouroux, C. mediterranea, C. officinalis, C. pilulifera (Postels and 

Ruprecht) Setchell and N.J.Gardner, C. vancouveriensis Yendo and Corallina sp. 

(Supplementary Table S2.1). Given the only recent establishment of Ellisolandia 

(Corallina) elongata (Hind and Saunders 2013b), this selection included samples 

identified as C. elongata. Of these initial 69 samples, DNA amplification of the COI 

gene region was successfully achieved for 35 samples, 3 identified in the BM 

herbarium as Ellisolandia (Corallina) elongata (hereafter E. elongata) and 32 

identified as belonging to the genus Corallina; this represented ca. 50% success rate 

of DNA extraction and amplification of herbarium material.  

 

For construction of the COI phylogeny, in addition to the 35 sequences from BM 

specimens, sequences were successfully derived from contemporary specimens 

collected within 2011 - 2013 and identified by collectors as Corallina sp. (n = 6), E. 

elongata (n = 3), Jania sp. (n =1) and Haliptilon squamatum (Linnaeus) 

H.W.Johansen, L.M.Irvine and A.Webster (n = 2) (Supplementary Table S2.1). All 

unique COI sequences for specimens identified as belonging to the genus Corallina 

were retrieved from GenBank (n = 36), in addition to unique sequences for specimens 

identified as E. elongata (n = 6) and belonging to the genera Pseudolithophyllum (n = 

4) and Jania/Haliptilon (n = 12). Three outgroup sequences (Lithothamnion glaciale 

Kjellman, Chondrus crispus Stackhouse and Mastocarpus stellatus (Stackhouse) 
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Guiry) were also retrieved from GenBank, giving an overall total of 108 sequences in 

our COI phylogeny.  

 

For comparison with and validation of the larger COI phylogeny, the rbcL gene 

region of 33 BM herbarium specimens identified as belonging to Corallina was 

sequenced. Of these, 24 rbcL sequences were from specimens that also had the COI 

gene region sequenced during the present study. The remaining 9 rbcL sequences of 

‘Corallina’ BM herbarium specimens were from BM specimens for which COI 

sequence data was already available on GenBank (n = 4) and specimens for which 

COI amplification had not been successful (n = 5). In addition, rbcL sequences were 

successfully derived for 6 contemporary samples identified by collectors as Corallina 

sp. (3 of which COI was sequenced during this study), and for 5 E. elongata 

specimens (for 3 BM herbarium specimens which also had COI sequenced during the 

present study and 2 BM herbarium specimens for which COI data was already 

available on GenBank). Finally, all unique rbcL sequences for specimens identified as 

belonging to Corallina (n = 7), the epitype sequence of E. elongata, 2 sequences of 

Calliarthron spp. and Bossiella spp., 1 sequence each of species belonging to 

Chiharaea, Alatocladia, and Johansenia, and 2 out-group sequences (Chondrus 

crispus and Mastocarpus stellatus) were retrieved from GenBank for inclusion in the 

rbcL phylogeny, resulting in 61 sequences. A concatenated phylogeny was also 

produced for specimens for which both COI and rbcL data were available.  

 

2.2.2. DNA extraction, PCR amplification and sequencing 

DNA was extracted from approximately 0.5 cm2 of both fresh, silica gel preserved 

and herbarium material using a modified CTAB microextraction protocol (Rogers et 

al. 1994). The primers GazF1 and GazR1 (Saunders 2005) and new primers designed 

for this study (RWCOF1 5’ GTTATAGCTCCTGCTAAAACTGG 3’ and RWCOR1 

5’ TGTATTTCATTATTAATTCGTATGG 3’) were used for amplification of the 

COI gene region (trimmed to 533 bp during alignment, 112-645 bp of full COI gene 

based on the Chondrus crispus reference genome ASM35022v2, Collen et al. 2013), 

with the forward primer extending from 112-136 bp, and the reverse primer extending 

from 622-644 bp, of the COI gene. Amplification of the rbcL gene region (trimmed to 

1401 bp during alignment, 67-1467 bp of full rbcL gene) was achieved in two parts 

using the primer pairs F57 - R753 and F753 - RrbcS (Freshwater and Rueness 1994).  



!
!

35!

When reactions using the latter primer pair failed to amplify a PCR product, new 

primers designed for this study were used (RWCWF1 5’ 

AAATGTTACTGCAGCTACAATGGA ‘3 and RWCWR1 5’ 

CCGCCCTTGTGTTAGTCTCA ‘3) with the forward primer extending from 732-755 

bp of the rbcL gene and the reverse primer extending into the adjacent gene (rbcS) at 

position 2-21 bp. 

  

Each PCR run contained 2.5 µL NH4 RXN buffer, 1.5 µL of 50mM MgCl2, 0.5 µL 

Taq (all from BIOTAQ DNA Polymerase kit, Bioline, UK), 0.5 µL dNTP stock, 1 µL 

10 µM forward primer, 1 µL 10 µM reverse primer, 17.5 µL H20 and 1 µL of DNA 

template. The PCR reaction was run on a Techne Thermal Cycler (Bibby Scientific, 

UK). A standard protocol of PCR (1 cycle at 94oC for 2 minutes, 30 cycles each of 

94oC for 30 seconds, 50oC for 30 seconds and 72oC for 1 minute, 1 cycle at 72oC for 5 

minutes) was used for both COI and rbcL markers. Samples were cleaned using the 

Illustra GFX PCR DNA purification kits, following the manufacturer’s protocol (GE 

Healthcare, UK) and were prepared for sequencing using the Di deoxy cycle 

sequencing reaction using v1: 1 Big Dye (Life Technologies, UK), 2ng/100 bases of 

amplicon and 1 µM primer in 10 µl reaction volumes. Amplification was performed 

on a Techne Thermo cycler (Bibby Scientific, UK) programmed to perform 28 cycles 

each of 10 seconds at 96oC, 5 seconds at 50oC and 4 minutes at 60oC. Excess dye- 

labelled nucleotides were removed by ethanol/sodium acetate precipitation. Sequence 

products were dried, re-suspended and run on a 3730XL capillary DNA analyzer 

(Applied Biosystems). 

 

During DNA extraction and PCR amplification the following precautionary steps 

were undertaken to prevent contamination of historical specimens; (i) all extraction 

and amplification procedures were completed in the molecular laboratory facilities of 

the NHM, London, physically isolated from laboratories used for routine macroalgal 

research; (ii) to monitor for false positives, negative controls (containing no organic 

matter) were run with each set of extractions through the complete 

extraction/amplification process; (iii) extractions were performed for small batches of 

samples at one time, maximum number of 5, reducing the complexity and thus 

possibility for error; and (iv) DNA stocks, PCR reagents and PCR products were 
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stored in separate cases and reagents, reaction buffers and sterile water were discarded 

regularly. 

 

2.2.3. Data analysis 

Sequences were aligned and edited in Se-Al v2.0a11 (http://compbio.edu/seal/). 

Phylogenetic hypotheses were inferred using Bayesian and maximum likelihood 

optimality criteria. The 108 COI sequence dataset included three outgroup sequences 

and the 61 rbcL sequence dataset included two outgroup sequences (Supplementary 

Table S2.1). A combined analysis was performed on 37 of the 39 taxa for which both 

rbcL and COI data were available. Aligned datasets were run through jmodeltest 

v2.1.1 (Darriba et al. 2012), and the Akaike information criterion (AIC) was used to 

select the best-fit model. The GTR+I+G model was selected for all datasets. Prior to 

running the combined analysis, an incongruence length difference test (Farris et al. 

1995) was performed using the hompart command with 100 replicates in PAUP* 

v4.10 (Swofford 2003). The test showed no significant incongruence between regions 

in the combined dataset (p = 0.15). 

 

Bayesian analyses were implemented in MrBayes, version 3.2.2 (Ronquist et al. 

2012). All analyses employed 2 runs of 3 chains for 10 million generations, sampling 

every 1,000th. Stationarity of the Markov Chain Monte Carlo (MCMC) was 

determined by the average standard deviation of split frequencies between runs and by 

examination of the posterior in Tracer, version 1.5 (Rambaut and Drummond 2007). 

Consensus trees were constructed after 5 million generations; all analyses had 

converged at this point. Additionally, a maximum likelihood analysis was performed 

using garli v2.01 (Zwickl 2006; http://garli.googlecode.com). One hundred bootstrap 

replicates were run to generate bootstrap support statistics.  

 

2.2.4. Species delimitation 

Species boundaries determined from COI and rbcL sequence data were primarily 

based on the criteria of reciprocal monophyly, strong clade support, and congruence 

across both molecular markers (see Leliaert et al. 2014). Where all three criteria were 

not met, the delimitation of clades provisionally representative of species boundaries 

was based on evaluation of inter- and intra-clade sequence divergence and clade 

support values. Therefore, a conservative approach has been adopted, only referring to 



!
!

37!

clades as ‘species’ when supported by all three criteria and importantly, the inclusion 

of type sequences. Clades described in the subsequent results and discussion should 

therefore be interpreted as provisional species concepts at this stage. 

 

2.3. Results 

In the Corallineae, both the COI (Figure 2.1) and rbcL (Figure 2.2) gene analysis 

recovered the genera Corallina and Ellisolandia as monophyletic groups. Although 

not included in our rbcL phylogeny, Pseudolithophyllum was also recovered in this 

tribe by COI gene analysis, and resolved as sister genus to Corallina, with 

Ellisolandia more distant. In the Janieae, at least two genera were recovered in our 

COI phylogeny. One contained Jania squamata (Linnaeus) J.H.Kim, Guiry and H.-

G.Choi and J. rubens (Linnaeus) J.V.Lamouroux from England and Ireland, the other 

contained species identified as Haliptilon and Jania sp. from Hawaii and the 

Mediterranean and three specimens identified as Corallina sp. from Madeira, Hawaii 

and Malta. Only the latter Janieae genus was recovered in the rbcL phylogeny, 

containing samples identified as Corallina sp. from Malta, Madeira and Italy.  

 

Within Corallina, 18 COI clades, and 8 rbcL clades were resolved, two of which were 

not apparent in the COI phylogeny (Clades 19 and 20). Inter-clade sequence 

divergence for COI Corallina clades ranged from 3.5 to 13.0 %, mean 6.38 ± 0.04 % 

(Table 2.1), and for rbcL, 0.1 to 3.1 %, mean 1.11± 0.01 % (Table 2.2). In both 

phylogenies, two clades included sequence data from type material: Clade 15 

containing the epitype sequence of the generitype C. officinalis, and Clade 7 (COI) / 

Clade ‘6 and 7’ (rbcL) containing the holotype (both trees) and isotype (COI only) 

sequences of C. caespitosa. Of the samples included in both phylogenies, those that 

resolved to C. officinalis (15) and C. caespitosa (7) in the COI phylogeny did so in the 

rbcL phylogeny. 
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Figure 2.1. Phylogram inferred by Bayesian analysis of COI sequence data. Support 

values are listed as Bayesian posterior probabilities and bootstrap values for 

maximum likelihood analyses, respectively. * denote nodes that are strongly 

supported (posterior probabilities = 100, bootstrap support = 100) in all analyses. - 

denotes less than 50 % support for a node. Names in bold represent specimens for 

which both COI and rbcL sequence data is presented during the present study (see 

Fig. 2). Scale bar refers to substitutions per site. 
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Table 2.1. Inter-clade uncorrected p-distance (as percentage) between clades of the COI Corallina genus. Minimum/maximum % sequence 

divergence displayed for comparisons of clades including multiple non-identical sequences.  

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 7.1 9.0 6.9/7.1 4.4 8.4 6.6/9.2 6.5 6.9 7.5/8.6 6.5/7.3 6.9 6.5/7.3 6.9/7.5 6.7 6.5 7.8/8.4 6.5/7.1 

2  7.5 7.1/7.3 6.7 9.4 8.2/10.9 9.2 9.0 8.2/9.2 7.5/8.2 7.3 7.3/8.0 8.6/9.2 8.2 8.0 9.7/10.5 7.3/8.0 

3   6.7/6.9 8.4 9.7 9.0/11.6 10.5 9.9 8.8/9.9 8.6/9.2 7.8 9.4/9.7 10.5/11.1 9.9 8.8 9.4/10.1 9.0/9.4 

4    6.1/6.3 8.2/8.4 7.8/10.7 9.7/9.9 7.1/7.3 5.7/6.9 5.7/7.1 5.0/5.2 6.9/7.5 8.4/9.2 7.3/7.5 6.5/6.7 7.8/8.6 6.7/7.3 

5     8.8 6.9/10.1 8.0 7.1 7.1/8.2 6.9/7.8 6.7 6.3/6.7 7.1/7.8 7.3 6.3 8.0/8.2 5.0/5.7 

6      4.2/7.5 11.8 10.1 8.6/9.7 6.9/7.8 8.6 8.0/8.4 8.6/9.2 8.4 9.0 9.4/10.5 9.0/9.2 

7       9.2/10.5 9.4/11.6 8.8/13.0 6.5/10.3 8.0/10.7 6.9/11.3 6.7/10.5 7.8/10.5 7.1/10.5 8.0/11.8 7.1/10.3 

8        8.8 9.2/10.3 8.6/9.7 8.4 8.0/8.8 8.4/8.6 8.2 8.8 8.8/9.7 8.8/9.4 

9         6.9/8.2 6.7/7.3 5.0 6.7/7.5 8.0/8.6 8.6 7.8 8.0/9.2 7.8/8.4 

10          3.8/5.9 3.5/4.8 5.9/8.2 7.1/8.6 6.1/7.1 5.9/6.9 5.5/8.6 6.5/8.6 

11           4.2/4.8 6.3/8.0 6.3/7.8 5.7/6.7 5.9/6.5 6.1/8.6 5.7/6.9 

12            5.7/6.1 7.3/7.5 6.3 5.4 5.7/6.9 5.9 

13             4.0/5.0 3.8/4.6 4.6/5.7 7.3/9.0 6.5/7.5 

14              3.8/4.4 5.9/6.5 8.4/9.9 6.9/8.4 

15               5.7 8.2/9.0 6.7/7.1 

16                5.4 5.0/5.4 

17                 5.0/5.9 

 

!



 

 

Figure 2.2. Phylogram inferred by Bayesian analysis of rbcL sequence data. Support 

values are listed as Bayesian posterior probabilities and bootstrap values for 

maximum likelihood analyses, respectively. * denote nodes that are strongly 

supported (posterior probabilities = 100, bootstrap support = 100) in all analyses. - 

denotes less than 50 % support for a node. Names in bold represent specimens for 

which both COI and rbcL sequence data is presented during the present study (see 

Fig. 1). Scale bar refers to substitutions per site
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Table 2.2. Inter-clade uncorrected p-distance (as percentage) of the rbcL Corallina genus. Minimum/maximum % sequence divergence 

displayed for comparisons of clades including multiple non-identical sequences.  

 19 16 and 18 18 17 20 10 and 11 15 
6 and 7 0.4/1.0 0.6/1.0 1.0/1.3 0.7/1.0 2.0/2.3 2.0/2.4 1.3/2.0 
19  1.0/1.5 1.5/1.8 1.2/1.5 2.1/2.4 2.4/2.0 1.7/2.4 
16 and 18   0.4/0.6 0.1/0.3 1.5/1.7 1.3/1.7 0.9/1.3 
18    3.1 2.0 1.5/1.7 1.0/1.3 
17     1.7 1.2/1.3 0.7/1.0 
20      2.3/2.4 2.1/2.6 
10 and 11       2.0/2.4 

!
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The C. officinalis clade was well-resolved in both COI and rbcL phylogenies, with all 

samples resolving to this clade correctly identified. Samples were distributed from 

Northern Spain to Iceland in the NE Atlantic and across to Greenland and Eastern 

Canada and USA in the NW Atlantic, with two samples from British Columbia, 

Canada in the NE Pacific. Corallina officinalis intra-specific sequence divergence for 

COI ranged from 0 to 1.31% with a mean of 0.48 %, and for rbcL 0 to 0.57 %, mean 

0.12 %. Two clades containing samples identified as Corallina vancouveriensis (13) 

and Corallina sp. 2vancouveriensis (14), respectively, were resolved as sister to 

Corallina officinalis in the COI phylogeny.  

 

The Corallina caespitosa clade (7 - COI, ‘6 and 7’ - rbcL) contained the most 

samples and was well resolved in both Corallina phylogenies. Of the 28 samples in 

the COI C. caespitosa clade, 8 were correctly identified as C. caespitosa and were 

from the UK (2), Japan (1), the Azores (2), Greece (1) and South Korea (2). Of the 19 

samples resolved to the rbcL C. caespitosa clade, 2 were correctly identified, both 

from the UK. The remaining samples were from numerous locations and variously 

identified as Ellisolandia elongata, C. chilensis, C. officinalis, C. mediterranea, C. 

pilulifera and Corallina sp. (Supplementary Table S2.1). In the COI phylogeny, 

samples related by location tended to cluster together within the C. caespitosa clade, 

particularly for those collected from the Azores (3), Greece (2), and Ghana (2). 

Samples identified as Corallina sp. from South Africa resolved within the C. 

caespitosa clade in the rbcL phylogeny, showing a 0.43 % sequence divergence from 

the C. caespitosa holotype specimen, whereas these resolved separately (Clade 6) in 

the COI phylogeny. Overall, C. caespitosa intra-specific sequence divergence ranged 

from 0 to 2.61%, mean 1.25%, in the COI phylogeny, and 0 to 0.46%, mean 0.14%, in 

the rbcL phylogeny. Samples identified as C. pinnatifolia, C. pilulifera and C. 

(formerly Yamadaia) melobesioides, resolved in a clade (19) sister to C. caespitosa in 

the rbcL phylogeny.  

 

In our COI phylogeny, Clades 1 - 5 were well resolved from clades 6 - 18 and 

contained three named species from the Pacific, although resolution was poor between 

these clades. Poor resolution and low support were also apparent across Clades 9 - 12 

with 9 and 12 only represented by one sample. Clades 10 and 11 demonstrated intra-

clade sequence divergence of 1.69 % and 0.37 to 1.87 %, respectively. All samples in 
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clade 11 were from the Pacific west coast, but two sub-clades were apparent, one 

containing samples identified as C. vancouveriensis f. lycopodioides (W.R.Taylor) 

E.Y.Dawson and Corallina sp. 4frondescens from the Pacific coast of Canada and 

Mexico, and the other with C. vancouveriensis and C. gracilis from the western USA. 

rbcL Clade ‘10 and 11’ contained samples from both COI Clades 10 and 11, with an 

intra-clade sequence divergence of 0 to 0.57 %.  

 

Poor resolution was also apparent for clades 16, 17 and 18 in both the COI and rbcL 

phylogenies. In the COI phylogeny, 3 separate clades were resolved, while samples 

BM000767064 and BM000806015, representing COI clades 16 and 18, respectively, 

resolved together in the rbcL phylogeny (Clade ‘16 and 18’). BM000804385, which 

also resolved to COI Clade 18, further resolved separately from BM000806015 in the 

rbcL phylogeny, with a 0.46% sequence divergence apparent between the two 

samples.  

 

Of the 39 samples for which both COI and rbcL sequences were acquired, 37 were 

included in the concatenated phylogeny (Figure 2.3), 3 of which served as an 

Ellisolandia outgroup. Samples MALT1 and BM001033635 were not included in this 

analysis as they had not resolved to either the Corallina or Ellisolandia genus in 

previous analyses. Overall, the topology of the concatenated phylogeny closely 

mirrored the COI phylogeny. Clades 7 and 15 were well resolved and Clade 6 was 

resolved as separate to Clade 7 with strong support values (posterior probability = 

100, bootstrap support = 95). Clades 16 and 18 and Clades 10 and 11 were resolved 

separately in the concatenated phylogeny as was observed in the COI phylogeny, 

though not in the rbcL phylogeny. 
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Figure 2.3. Phylogram inferred by Bayesian analysis of concatenated COI and rbcL 

sequence data. Support values are listed as Bayesian posterior probabilities and 

bootstrap values for maximum likelihood analyses, respectively. * denote nodes that 

are strongly supported (posterior probabilities = 100, bootstrap support = 100) in all 

analyses. - denotes less than 50 % support for a node. Scale bar refers to substitutions 

per site 
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Table 2.3. Taxon names of clades recovered in molecular analysis. Clades recovered: 

COI 1-18, rbcL ‘6 and 7’, ‘10 and 11’, 15, 17-20; concatenated COI + rbcL : 6, 7, 10, 

11, 15-18. Clade no. in bold denotes new clade or a clade confirmed in this study. 

Clade 
no. 

Taxon names Clades 
in COI 

Clades 
in rbcL 

Source of clade 

1 Corallina declinata + - Hind and Saunders (2013b) 
2 Corallina sp. + - Hind and Saunders (2013b) 
3 Corallina maxima + - Hind and Saunders (2013b) 
4 Corallina sp. 2frondescens + - Hind and Saunders (2013b) 
5 Corallina crassissima + - Hind and Saunders (2013b) 
6 Corallina sp. South Africa + +* This study 
7 Corallina caespitosa + + Walker et al. 2009 
8 Corallina sp. 3frondescens + - Hind and Saunders (2013b) 
9 Corallina sp. W USA + - Hind and Saunders (2013b) 
10 Corallina vancouveriensis 

C. officinalis Trinidad 
+ + This study 

11 Corallina sp. 4frondescens 
Corallina vancouveriensis 
Corallina vancouveriensis f. 
lycopodioides 
Corallina gracilis 

+ + Hind and Saunders (2013b) 

12 Corallina sp. 5frondescens + - Hind and Saunders (2013b) 
13 Corallina vancouveriensis W 

Canada 
+ - Hind and Saunders (2013b) 

14 Corallina sp. 2vancouveriensis + - Hind and Saunders (2013b) 
15 Corallina officinalis + + Walker et al. (2009), Brodie 

et al. (2013) 
16 Corallina officinalis Azores + + This study 
17 Corallina officinalis Calloa Tenerife 

Corallina mediterranea Albania 
+ + This study 

18 Corallina sp. South America 
Corallina chilensis 
Corallina frondescens 

+ + Hind and Saunders (2013b) 

19 Corallina pinnatifida 
Corallina pilulifera 
Yamadaia (Corallina) 
melobesioides 

- + Martone et al. 2012 

20 Corallina vancouveriensis - + Gabrielson et al. 2011 
*resolved within clade 7.
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2.4. Discussion 

In the Corallineae, the resolution of 20 Corallina clades from phylogenetic analysis of 

COI and rbcL markers, which provisionally correspond to species, indicates that there 

is considerable diversity within the genus that is not readily apparent from their 

morphology. Of our 20 clades, the identification of two species is confirmed by 

inclusion of sequences from type material, Corallina officinalis and C. caespitosa, 

four clades are not associated with confirmed species names, potentially representing 

un-described species, and 14 clades were previously documented by Gabrielson et al. 

(2011), Martone et al. (2012) or Hind and Saunders (2013b) (Table 2.3).  

 

The results for the recently erected Ellisolandia (Hind and Saunders 2013b), including 

the epitype of Corallina elongata (Brodie et al. 2013), firmly establish this as a 

distinct genus within the Corallineae. However, based on the COI marker, the 

presence of a sister taxon, C. sp. BM001033632 from the Canary Islands, suggests the 

possibility of another genus in the tribe, and further work should focus on this region 

and related areas to establish the extent of the diversity. Also of note, no samples 

originally identified as Corallina mediterranea, previously considered a synonym of 

Corallina elongata (Irvine and Chamberlain 1994), were resolved to E. elongata 

during the present study. Of the five samples originally identified as C. mediterranea 

included in our phylogenies, four resolved as C. caespitosa (Clade 7) and one in a less 

resolved clade (18).  

  

Inclusion of the recently established epitype specimens for the generitype species 

Corallina officinalis and the congeneric C. caespitosa (sensu Brodie et al. 2013) gives 

definitive identification of these species within our phylogenies and enables utilisation 

of the intra-specific sequence divergence observed for these two species in subsequent 

clade analysis. We can thus be confident that samples resolved to Clade 15 and Clade 

7 within our COI, rbcL and concatenated phylogenies represent C. officinalis and C. 

caespitosa, respectively. Additionally, following the approach put forward by 

Gabrielson et al. (2011), inclusion of these sequences in our phylogenies allowed us 

to clearly demonstrate whether names have been correctly applied to collections and 

to gain useful information on the geographic extent of these species. 
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All samples recovered in the C. officinalis clade (15) were correctly identified as such 

in the BM collections but other samples identified as this species also appeared in 4 

other clades (Clades 7, 10, 16 and 17), confirming the assumptions of Brodie et al. 

(2013) that the name has been misapplied. To date, herbarium collections and 

literature records have indicated a cosmopolitan distribution for C. officinalis, largely 

in warm-temperate seas and less so in tropical and subtropical areas (Johnson 1970, 

Garbary and Johansen 1982, Womersley and Johansen 1996, Guiry and Guiry 2014). 

However, based on collection localities of the specimens identified as C. officinalis 

during the present study, we would restrict this distribution to cool-temperate regions, 

with a predominantly North Atlantic distribution and a small presence in the North 

Pacific (Gabrielson, pers. comm. Figures 2.1, 2.2 & 2.3). Brodie et al. (2013) also 

questioned whether C. officinalis occurred in the Mediterranean. The most southerly 

collection site recorded for C. officinalis in the present study was A Coruña, northern 

Spain and as such our data support the assertion that C. officinalis probably does not 

occur in the Mediterranean. 

 

In contrast, our data indicate that C. caespitosa (Clade 7) has a cosmopolitan 

distribution, with samples recorded from Asia, Australasia, Europe, Africa and 

America. This is the first study to confirm the global distribution of C. caespitosa, a 

conclusion which reflects its recent distinction from C. officinalis by Walker et al. 

(2009) and the problems of identification. For example, our results demonstrate 

widespread misidentification of C. caespitosa, with 20 of the 28 samples resolved to 

this species incorrectly identified within BM collections.  

 

Biogeographic sub-groups apparent within our COI C. caespitosa clade may indicate 

population structuring between distant geographic locations, as observed for the 

species by Hind and Saunders (2013b). A more pronounced divergence from C. 

caespitosa sensu stricto was identified for samples BM000806021 and BM000806020 

from the Atlantic coast of South Africa, which resolved as a separate sister clade to C. 

caespitosa in our COI and concatenated phylogeny but not in our rbcL phylogeny. 

This may indicate incipient speciation, though more sampling from this region would 

be required to fully elucidate this possibility. Our data indicate that C. caespitosa is a 

warm temperate species in the North Atlantic, with its northern limit apparently in 

northern England. To determine whether this was an artifact of sampling, a search 
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was made of the BM herbarium for any specimens collected from further north but 

none were found, nor has the species been collected during trips to Scotland since 

2009. Furthermore, the first known collections of this species in Britain are from 2005 

(Brodie, pers. comm.). C. caespitosa frequently grows in the uppermost parts of pools 

in the mid intertidal of semi-exposed shores and appears to be more tolerant of these 

conditions than C. officinalis which tends to occur on rock lower down the shore or 

deeper in pools. Given the frequency of samples from further south and dating back to 

the 19th century, this might be an example of a species exhibiting range extension. 

 

Attributing species names to the other Corallina clades identified during the present 

study is prevented by a lack of type sequence data. Based on the previous work of 

Hind and Saunders (2013b), Corallina clades 1, 3, 5 and 13 could be named 

appropriately by their original identification, if supported by the establishment of type 

or epitype sequences for these species names. Clades 13 (COI only, Hind and 

Saunders 2013b) and 20 (rbcL only, Gabrielson et al. 2011) of the present study both 

contain sequences of samples identified as C. vancouveriensis. As both COI and rbcL 

sequences are not available for any of these samples we must treat the separation of 

these two clades with caution. Clades 4, 8, 12 and 14 are comprised of samples 

previously highlighted as cryptic diversity within the Corallina population of the 

Pacific north-west region of Canada by Hind and Saunders (2013b) and await 

description. 

 

To fully elucidate diversity and phylogenetic relationships there is an urgent need for 

type material to be sequenced for comparison to historical collections, as shown by 

Gabrielson et al. (2011) and the present study. In the absence of type material, an 

epitype would serve as an interpretive type (see Brodie et al. 2013). Where no names 

apply, new species need to be described. When type specimens of species are 

designated and sequenced, correct application of species names assures accurate 

assessment of the phylogenetic position and geographic distribution. To successfully 

delimit species and identify incipient speciation, regional floras can also be studied in 

detail to provide increased resolution, as shown for previous efforts with the 

Bangiales (Mols-Mortensen et al. 2012, Vergés et al. 2013). The phylogeny reported 

here serves as a baseline for future phylogenetic assignment of Corallina species and 
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related genera, and highlights the degree to which species concepts within the tribes 

Corallineae and Janieae remain unresolved.  

Understanding species concepts and the level of cryptic diversity within target 

organisms is a key priority of climate change research (McCoy and Kamenos 2015). 

Until we have a well-developed understanding of species identity, diversity and 

distributions, efforts to project responses to future change will ultimately be flawed. 

Revised definitions of species’ distributions put forward by the present study have 

serious implications for potential vulnerability to future change. Specifically, the 

restricted distribution of C. officianlis to the North Atlantic highlights this species as a 

high risk of potential range contraction under future conditions. Macroalgae are 

expected to respond directly to increasing sea surface temperatures (SSTs) with range 

shifts, resulting in extinction at their southern edges and colonisation at northern 

boundaries (Juterbock et al. 2013, Harley et al. 2012). Data indicated that Northern 

Spain probably represents the southerly distribution limit of C. officinalis in the NE 

Atlantic and therefore it is likely that C. officinalis will be lost from this latitude as 

temperautes exceed physiological thresholds. In contrast, given the cosmopolitan 

distribution and general warm-temperate habitat identified for C. caespitosa, increases 

in SSTs could facilitate increased dominance of this species in higher latitude 

locations as C. officinalis abundance declines.  
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Supplementary Table S2.1: Sample information including sample names, original identification, placement in phylogenies and collection 

information. Rows highlighted in light grey indicate samples for which COI and/or rbcL genes were sequenced during the present study. Sample 

names beginning with ‘BM’ indicate accession numbers of samples held within the BM herbarium. * indicates multiple individual samples with 

the same BM accession number. C indicates contemporary sample (as opposed to herbarium sample). ND indicates no data available. 

Sample'Name' Original'
Identification'

Placement'in'
COI/rbcL'
phylogeny'

Collection'Information'

Locality' Date' Collector'

HM918812! Lithothamnion)
glaciale) Outgroup!

English!Harbour,!
Newfoundland,!

Canada!
20!Jul!2006!

L.!Le!Gall,!D.!
McDevit!&!J.!

Utge!

DQ191341! Chondrus)crispus) Outgroup! Sidmouth,!Devon,!UK! 23!Apr!2005! J.!Brodie!&!L.!
Robba!

DQ442899! Mastocarpus)stellatus) Outgroup! Combe!Martin,!Devon,!
UK! 27!Oct!2003! B.!Rinkel!

U209841! Chondrus)crispus) Outgroup! Bally!Castle,!Co.!
Antrim,!N.!Ireland,!UK.! 20!Jan!1992! C.A.!Maggs!

GQ338143! Mastocarpus)stellatus) Outgroup! Starboard,!ME,!USA.! 25!Apr!2006!

L.!Le!Gall,!D.!
McDevit,!S.!
Clayden!&!C.!

Lane!

HQ322282! Calliarthron)
cheilosporioides) Calliarthron)

Pacific!Grove,!
Monterey!Co.,!
California,!USA!

15!Mar!2007! P.!T.!Martone!

HQ322316! Calliarthron)
tuberculosum) Calliarthron)

Pacific!Grove,!
Monterey!Co.,!
California,!USA!

15!Mar!2007! P.!T.!Martone!
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JN701474! Chiharaea)silvae) Chiharaea) Bodega!Head,!Sonoma!
Co.,!California,!USA! 14!Jul!2010! K.!A.!Miller!

HQ322274! Alatocladia)modesta) Alatocladia) Katsuura,!Chiba,!Japan! 5!Aug!2009! S.!C.!
Lindstrom!

HQ322338! Johansenia)
macmillanii) Johansenia)

Botany!Beach,!Port!
Renfrew,!British!
Columbia,!Canada!

9!Aug!2007! P.!W.!
Gabrielson!

HQ322280! Bossiella)plumosa) Bossiella)
Moss!Beach,!San!

Mateo!Co.,!California,!
USA!

16!Nov!2009! K.!A.!Miller!&!
P.!T.!Martone!

HQ322279! Bossiella)orbigniana) Bossiella) Playa!Caleta,!Quintay,!
Valpariso,!Chile! 16!Jun!2007!

D.!Letelier!&!
R.!Garcia[
Huidobro!

BM000806005! Haliptilon)squamatum) Jania! Spiddal!Galway,!
Ireland! 12!Sep!1995! M.!Guiry!

BM000806011! Haliptilon)squamatum) Jania! Kimmeridge,!Dorset,!
UK! 06!Jul!1977! Y.!Butler!

HBY1! Haliptilon)squamatum) Jania! Heybrook!Bay,Devon,!
UK! Oct!2012C! C.!Williamson!

HBY2! Haliptilon)squamatum) Jania! Heyrbook!Bay,!Devon,!
UK! Oct!2012!C! C.!Williamson!

BM001033629! Jania)rubens) Jania! Kimmeridge,!Dorset,!
UK! 07!Dec!2006! J.!Brodie!

BM001033626! Jania)rubens)var.)
rubens) Jania! Kimmeridge,!Dorset,!

UK! 31!Aug!1977! O.!Morton!

BM000806009! Jania)rubens)var.)
corniculata) Jania! Pedngwinian,!Lizard,!

Cornwall,!UK! 08!Nov!1976! C.E.L.!Hepton!

HQ422647! Haliptilon)subulatum) Jania! Anahola!Beach!Park,! 17!Mar!2007! K.!Conklin!
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Kauai,!Hawaii!

HQ422699! Haliptilon)subulatum) Jania! Hookena!Beach!Park,!
Hawaii! 17!Mar!2007! T.!Sauvage!

HQ422997! Jania)sp.) Jania! Hauula!Beach!Park,!
Oahu,!Hawaii! 18!Nov!2007! A.!Kurihara!

HQ422700! Jania)sp.) Jania! Hookena!Beach!Park,!
Hawaii! 17!Mar!2007! T.!Sauvage!

HQ422629! Jania)sp.) Jania!
South!Point!Beach!
(Green!Sand!Beach),!

Hawaii!
25!Feb!2009!

T.!
Chandrasek[

haran!
BM000806004! Jania)sp.) Jania! Cefalu,!Sicily! 20!Jul!2012C! L.!Robba!

HQ423038! Jania)sp.) Jania! Kailua!Beach,!Oahu,!
Hawaii! 07!Feb!2009! A.!Kurihara!

HQ423039! Jania)sp.) Jania! Kailua!Beach,!Oahu,!
Hawaii! 07!Feb!2009! A.!Kurihara!

HQ422855! Corallina)sp.) Jania! Hauula!Beach!Park,!
Oahu,!Hawaii! 18!Sep!2007! A.!Kurihara!

MALT1! Corallina)sp.) Jania! Marshal,!Gozo,!
Maltese!archipelago! 17!Jul!2012C! L.!Robba!

BM001033635! Corallina)sp.) Jania! Funchal,!Madeira! 10!Dec!2006! ND!
BM001033634! Corallina)sp.) Jania! Leghorn,!Italy! 12!Dec!2012C! L.!Piazzi!
BM001033633! Corallina)sp.) Jania! Leghorn,!Italy! 12!Dec!2012C! L.!Piazzi!

BM001032350! Ellisolandia)elongata)
EPITYPE) Ellisolandia) Devon,!UK! 08!Mar!2012! C.A.!Maggs!

BM000531163! Ellisolandia)elongata) Ellisolandia) MweenishCounty!
Clare,!Ireland! 02!Mar!1984! Y.M.!

Chamberlain!
BM000806006! Ellisolandia)elongata) Ellisolandia) Llanes,!Asturias,!Spain! 04!Aug!2007! C.A.!Maggs!
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FM180065! Ellisolandia)elongata) Ellisolandia) Isles!of!Scilly,!UK! 8!Jun!1984! L.M.!Irvine!
BM000804981! Ellisolandia)elongata) Ellisolandia) Wembury,!Devon,!UK! Apr!1971! L.M.!Irvine!

JQ615843! Ellisolandia)elongata) Ellisolandia)
Mullaghmore!Head,!
County!Leitrim,!

Ireland!
28!Jul!2003! G.W.!Saunders!

COM1! Ellisolandia)elongata) Ellisolandia) Comillas,!Cantabria,!
Spain! Sep!2012C! C.!Williamson!

COM2! Ellisolandia)elongata) Ellisolandia) Comillas,!Cantabria,!
Spain! Sep!2012C! C.!Williamson!

COM3! Ellisolandia)elongata) Ellisolandia) Comillas,!Cantabria,!
Spain! Sep!2012C! C.!Williamson!

BM001033632! Corallina)sp.) Ellisolandia) Tenerife,!Canary!
Islands! 14!Jan!2007! C.A.!Maggs!

HM918929! Pseudolithophyllum)
sp.)16muricatum) Pseudolithophyllum)

McKay!Passage,!
Tahsis,!British!

Columbia,!Canada!
23!May!2008! K.!Hind!&!D.!

McDevit!

JQ615867! Pseudolithophyllum)
sp.)19muricatum) Pseudolithophyllum)

Esperanza!Channel,!
Rosa!Harbour,!Tahsis,!
British!Columbia,!

Canada!

24!May!2008! K.!Hind!&!D.!
McDevit!

JQ615868! Pseudolithophyllum)
sp.)20muricatum) Pseudolithophyllum) Tahsis,!British!

Columbia,!Canada! 23!May!2008! K.!Hind!&!D.!
McDevit!

JQ615875! Pseudolithophyllum)
sp.)5muricatum) Pseudolithophyllum) Tahsis,!British!

Columbia,!Canada! 23!May!2008! K.!Hind!&!D.!
McDevit!

HQ544036! Corallina)declinata) Corallina!Clade!1! Cheju[do,!Jeju,!
Seongsan,!Korea! 18!May!2010! G.W.!Saunders!

&!H[G.!Choi!

HM916684! Corallina)sp.) Corallina)Clade!2! Shizuoka[ken,!Izu[
shoto,!Niijima!Island,! 08!Jan!2009! K.!Hind!
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Japan!

HM916694! Corallina)maxima) Corallina!Clade!3! Chibaken,!Katsuura,!

Japan!
08!May!2009!

K.!Hind!&!M.!

Baba!

HQ545244!
Corallina)sp.)
2frondescens) Corallina)Clade!4! British!Columbia,!

Canada!
08!Jun!2010!

G.W.!Saunders!

&!K.!Dixon!

HQ544494!
Corallina)sp.)
2frondescens) Corallina)Clade!4!

Ucluelet,!Sargison!

Bank,!British!

Columbia,!Canada!

02!Jun!2010!
G.W.!Saunders!

&!K.!Dixon!

HM916675! Corallina)crassissma) Corallina)Clade!5! Chiba[ken,!Katsuura,!

Japan!
08!May!2009!

K.!Hind!&!M.!

Baba!

BM000806021! Corallina)sp.) Corallina)Clade!6! Atlantic!coast,!South!

Africa!
24!Aug!2011C! R.!H.!Walker!

BM000806020! Corallina)sp.) Corallina)Clade!6! Camps!Bay,!Atlantic!

coast,!South!Africa!
Aug!2011C! R.!H.!Walker!

BM000804549!
Corallina)caespitosa)

HOLOTYPE) Corallina)Clade!7! Sidmouth,!Devon,!UK! 23!Apr!2005!
J.!Brodie!&!L.!

Robba!

BM000804550!
Corallina)caespitosa)

ISOTYPE) Corallina)Clade!7! Sidmouth,!Devon,!UK! 23!Apr!2005!
J.!Brodie!&!L.!

Robba!

PLY2012! Corallina)caespitosa) Corallina)Clade!7!
Renny!Rocks,!

Weymouth!Bay,!

Devon,!UK!

8!Mar!2012C! J.!Brodie!

BM000804540!
Corallina)

mediterranea) Corallina)Clade!7!
Las!Palmas,!Gran!

Canaria,!Canary!

Islands!

Jan!1937! F.R.!Irvine!

BM000806012! Corallina)sp.) Corallina)Clade!7! Buarcos,!Portugal! 1877! Dr!Henriquez!

BM000899030

*!
Corallina)officinalis) Corallina)Clade!7!

Plage!Sirene,!Cap!Gris!

Nez,!Pas!de!Calais,!

Atlantic!France!

04!May!2008! I.!Tittley!
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BM000899030
*! Corallina)officinalis) Corallina)Clade!7!

Plage!Sirene,!Cap!Gris!
Nez,!Pas!de!Calais,!
Atlantic!France!

04!May!2008! I.!Tittley!

BM000804521! Ellisolandia)elongata) Corallina)Clade!7!
Herquemoulin,!

Cherbourg,!Atlantic!
France!

26!Jun!1980! L.!M.!Irvine!

BM000804535! Corallina)
mediterranea) Corallina)Clade!7!

Playa!de!Santa!
Catalina,!Gran!
Canaria,!Canary!

Islands!

1921!or!
earlier! ?!

HQ919507! Corallina)caespitosa) Corallina)Clade!7!
Caloura,!Sao!Miguel!
Island,!Azores,!
Portugal!

11!Aug!2010! M.!Parente!&!
S.!Clayton!

BM001033627! Ellisolandia)elongata) Corallina)Clade!7! Nea!Karvali,!Gulf!of!
Kavala,!Greece! 18!Apr!2007! S.!Orfanidis!

BM000804354!
! Corallina)officinalis) Corallina)Clade!7!

Las!Palmas,!Gran!
Canaria,!Canary!

Islands!
1895! Vickers!

BM001033628! Corallina)officinalis) Corallina)Clade!7! Tenerife,!Canary!
Islands! 1985! ND!

BM000044504! Corallina)sp.) Corallina)Clade!7! Porto!da!Baleia,!
Azores! 04!Aug!1995! I.!Tittley!

BM000804533! Corallina)
mediterranea) Corallina)Clade!7! Porto!Rendell,!Italy! 14!Apr!1951! K.M.!Drew!

BM000044627! Corallina)sp.) Corallina)Clade!7! Santa!Cruz,!Azores! 24!Jul!1995! I.!Tittley!&!A.I.!
Neto!

BM000806441! Ellisolandia)elongata) Corallina)Clade!7! Long!Reef,!Sydney,!
NSW,!Australia! 29!Aug!1981! L.M.!Irvine!
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HM918980! Corallina)caespitosa) Corallina)Clade!7! Oshoro!Bay,!Japan! 01!Dec!2008! T.!Abe!&!N.!
Yotsukura!

HQ919502! Corallina)caespitosa) Corallina)Clade!7!
Mosteiros,!Sao!Miguel!

Island,!Azores,!
Portugal!

10!Aug!2010! M.!Parente!&!
S.!Clayton!

BM000806003! Corallina)caespitosa) Corallina)Clade!7! Saronikos!Gulf,!Greece! 2012C! K.!Tsiamis!
BM000804403! Corallina)officinalis) Corallina)Clade!7! Port!Lun! ND! ND!
BM000804492! Corallina)sp.) Corallina)Clade!7! Ajua,!Ghana,!Africa! 1!Jan!1956! G.W.!Lawson!

BM000804499! Corallina)pilulifera) Corallina!Clade!7! Gold!coast,!Sekondi,!
Ghana,!Africa! 22!Dec!1949! N.J.!Foote!

DQ191344! Corallina)officinalis) Corallina!Clade!7! Jersey,!Channel!
Islands! 12!Mar!2005! B.!Rinkel!

BM001023961! Corallina)officinalis) Corallina!Clade!7! Filey,!North!
Yorkshire,!UK! 09!Mar!2007!

R.!Walker,!S.!
Anthony!&!H.!
Walker!

BM000804378! Corallina)chilensis) Corallina!Clade!7!
Monarch!Bay,!Orange!
County,!California,!

USA!
13!Nov!1974! L.M.!Irvine!

BM000804526! Corallina)
mediterranea) Corallina!Clade!7! Le!Croisic,!Atlantic!

France! 25!Apr!1877! E.!Bornet!

HQ544048! Corallina)caespitosa) Corallina!Clade!7!
Cheju[do,!Jeju,!
Seongsan,!South!

Korea!
18!May!2010! G.W.!Saunders!

&!H[G.!Choi!

HQ544043! Corallina)caespitosa) Corallina!Clade!7!
Cheju[do,!Jeju,!
Seongsan,!South!

Korea!
18!May!2010! G.W.!Saunders!

&!H[G.!Choi!

HM918949! Corallina)sp.)
3frondescens) Corallina!Clade!8! Stephenson!Point,!

Nanaimo,!British! 07!Jun!2008! G.W.!Saunders!
&!D.!McDevit!
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Columbia,!Canada!

HM918948!
Corallina)sp.)
3frondescens) Corallina!Clade!8!

Stephenson!Point,!
Nanaimo,!British!
Columbia,!Canada!

07!Jun!2008!
G.W.!Saunders!
&!D.!McDevit!

HQ544235! Corallina)sp.) Corallina!Clade!9! Bird!Rock,!Pacific!
Grove,!California,!USA!

22!May!2010!
B.!Clarkston,!
K.!Hind!&!S.!
Toews!

BM000804650!
Corallina)

vancouveriensis) Corallina!Clade!10!
San!Juan!Rocks,!Dana!
Point,!Orange!County,!

California,!USA!
3!Nov!1974! L.M.!Irvine!

BM000804482! Corallina)officinalis) Corallina!Clade!10! Taparo!Point,!
Trinidad!

Jul!1961!
W.D.!

Richardson!

BM000840047! Corallina)gracilis) Corallina!Clade!11!
San!Juan!Rocks,!Dana!
Point,!Orange!County,!

California,!USA!
3!Nov!1974! L.M.!Irvine!

BM000804512! Corallina)sp.) Corallina!Clade!11! Vancouver!Island,!
Canada!

ND! C.B.!Wood!

HQ544311!
Corallina)sp.)
4frondescens) Corallina!Clade!11!

Brady!Beach,!
Bamfield,!British!
Columbia,!Canada!

29!May!2010!
G.W.!Saunders!
&!K.!Dixon!

HQ919439!
Corallina)sp.)
4frondescens) Corallina!Clade!11!

Brady’s!beach,!
Bamfield,!British!
Columbia,!Canada!

29!May!2010!
G.W.!Saunders!
&!K.!Dixon!

BM000804659!
Corallina)

vancouveriensis)f.)
lycopodioides)

Corallina!Clade!11! Guadaloupe!Island,!
Mexico!

18!Dec!1949! E.Y.!Dawson!

HQ544858!
Corallina)sp.)
4frondescens) Corallina!Clade!11! East!Copper!Island,!

Gwaii!Haanas,!British!
14!Jun!2010!

G.W.!Saunders!
&!K.!Dixon!
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Columbia,!Canada!

BM000804651! Corallina)
vancouveriensis) Corallina!Clade!11!

San!Juan!Rocks,!Dana!
Point,!Orange!County,!

California,!USA!
3!Nov!1974! L.M.!Irvine!

HM918986! Corallina)sp.)
5frondescens) Corallina!Clade!12! British!Columbia,!

Canada! ND! ND!

HQ544630! Corallina)
vancouveriensis) Corallina!Clade!13!

Aider!Island,!Gwaii!
Haanas,!British!
Columbia,!Canada!

11!Jun!2010! G.W.!Saunders!
&!K.!Dixon!

HQ544634! Corallina)
vancouveriensis) Corallina!Clade!13!

Aider!Island,!Gwaii!
Haanas,!British!
Columbia,!Canada!

11!Jun!2010! G.W.!Saunders!
&!K.!Dixon!

HQ544786! Corallina)sp.)
2vancouveriensis) Corallina!Clade!14! Gwaii!Haanas,!British!

Columbia,!Canada! 13!Jun!2010! G.W.!Saunders!
&!K.!Dixon!

BM001062598! Corallina)officinalis)
EPITYPE) Corallina!Clade!15! Sidmouth,!Devon,!UK! 28!Apr!2007! J.!Brodie!

BM001033630! Corallina)officinalis) Corallina!Clade!15! Vattanes,!Iceland! 13!Jun!2007! J.!Brodie!
BM000804477! Corallina)officinalis) Corallina!Clade!15! West!Greenland! 1958! T.!Christensen!

BM000804472! Corallina)officinalis) Corallina!Clade!15! Long!Island!Sound,!
USA! 1873! D.!C.!Eaton!

BM000804371! Corallina)officinalis) Corallina!Clade!15!
Hestfjørdur!

Kirkubøur,!Streymoy,!
Faeroes!

12!Jul!1980! D.E.G.!Irvine!

BM000804459! Corallina)officinalis) Corallina!Clade!15!

Point!Lepreau,!
Passamaquoddy!Bay,!
New!Brunswick,!

Canada!

14!Jul!1986!

G.R.!South,!I.!
Tittley,!W.E.!
Farnham!&!D.!

Keats!
BM000806013! Corallina)officinalis) Corallina!Clade!15! Le!Croisic,!Atlantic! 27!Mar!1877! W.!Bornet!
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France!

BM000561399! Corallina)officinalis) Corallina!Clade!15! Skaill!Bay,!Orkney!
Isles,!Scotland,!UK! Aug!1998! I.!Tittley!

BM001033631! Corallina)officinalis) Corallina!Clade!15! Dalatangi,!Iceland! 05!Jun!2007! J.!Brodie!

BM000639019! Corallina)officinalis) Corallina!Clade!15! Filey!Brigg,!North!
Yorkshire,!UK! 15!Jul!1998! R.!Huxley!&!J.!

Bryant!

BM000804370! Corallina)officinalis) Corallina!Clade!15!
Skalafjørdur,!near!
Strendur,!Raktangi,!

Faeroes!
09!Jul!1980! D.E.G.!Irvine!

BM001004107! Corallina)officinalis) Corallina!Clade!15! Lilstock,!Somerset,!UK! 03!Jul!2008! J.!Brodie!

HQ544953! Corallina)officinalis) Corallina!Clade!15!
Hot!Spring!Island,!

Gwaii!Haanas,!British!
Columbia,!Canada!

15!Jun!2010! G.W.!Saunders!
&!K.!Dixon!

HM916124! Corallina)officinalis) Corallina!Clade!15!
Burnaby!Island,!Gwaii!

Haanas,!British!
Columbia,!Canada!

19!Jun!2009! G.W.!Saunders!
&!D.!McDevit!

BM000639033! Corallina)officinalis) Corallina!Clade!15! Flamborough!Head,!
UK! 15!Jul!1998! R.!Huxley!&!J.!

Bryant!

HQ919250! Corallina)officinalis) Corallina!Clade!15!
Mahone!Bay,!Upper!
Blandford,!Nova!
Scotia,!Canada!

29!Jul!2009! G.W.!Saunders!
&!D.!Saunders!

COR1! Corallina)officinalis) Corallina!Clade!15! A!Coruna,!Northern!
Spain! Oct!2012C! C.!Williamson!

COR2! Corallina)officinalis) Corallina!Clade!15! A!Coruna,!Northern!
Spain! Oct!2012C! C.!Williamson!

BM000771429! Corallina)officinalis) Corallina!Clade!15! St.!Margarets,!Kent,!
UK! 08!May!2004! I.!Tittley!
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BM000562442! Corallina)officinalis) Corallina!Clade!15! Folkestone,!Kent,!UK! 14!Jan!2001! I.!Tittley!
BM000767064! Corallina)officinalis) Corallina!Clade!16! Azores! Dec!1979! B.!Goncalves!

BM000804435! Corallina)officinalis) Corallina!Clade!17! Bay!of!Calloa,!Tenerife!
Canary!Islands! 18th!C! Hooker!

herbarium!

BM000804520! Corallina)
mediterranea) Corallina!Clade!17! Sarandë,!Albania! 15!Jul!1933!

A.!H.!G.!Alston!
&!N.!Y.!
Sandwith!

BM000806015! Corallina)sp.) Corallina!Clade18! South!America! 02!Nov!1914! Mr!&!Mrs.!J.N.!
Rose!

BM000804385! Corallina)chilensis) Corallina!Clade!18!
Monarch!Bay,!Orange!
County,!California,!

USA!
13!Nov!1974! L.M.!Irvine!

HQ545000! Corallina)frondescens) Corallina!Clade!18!
Tanuu!Island,!Haida!

Gwaii,!British!
Columbia,!Canada!

16!Jun!2010! G.W.!Saunders!
&!K.!Dixon!

HQ544623! Corallina)frondescens) Corallina!Clade!18!
Gwaii!Haanas,!Alder!
Island,!British!

Columbia,!Canada!
11!Jun!2010! G.W.!Saunders!

&!K.!Dixon!

HQ322333! Corallina)pinnatifolia) Corallina!Clade!19! California,!USA! 10!Oct!2007! S.!Whitaker!
DQ787558! Corallina)pilulifera) Corallina!Clade!19! Chiba,!Choshi,!Japan! 1!Aug!2004! ND!

JN701477! Corallina)(Yamadaia))
melobesioides) Corallina!Clade!19! Chiba,!Awa[Kominato,!

Japan! 4!Apr!1980! T.!Masaki!

HQ322334! Corallina)
vancouveriensis) Corallina!Clade!20! Port!Renfrew,!British!

Columbia,!Canada! 10!Aug!2007! P.W.!
Gabrielson!

 

 

!
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Chapter 3: Production, respiration, calcification and growth of Corallina in 

relation to tidal and seasonal fluctuations and latitudinal gradients in key abiotic 

stressors. 

 

3.1. Introduction 

Ongoing OA and climate change are dramatically altering the carbonate chemistry 

and temperature dynamics of the marine environment, with serious implications for 

calcifying macroalgae (Chapter 1). While fleshy macoalgal species may benefit from 

OA due to the higher availability of substrate for photosynthesis (Harley et al. 2012, 

Koch et al. 2013), calcified macroalgae may be negatively impacted by increases in 

the metabolic costs of calcification, and skeletal corrosion during periods of carbonate 

under-saturation (Nelson 2009, Koch et al. 2013, Brodie et al. 2014, Hofmann and 

Bischof 2014). However, other geochemical and biological processes can influence 

calcification and dissolution in biological organisms, such that these processes do not 

necessarily follow pure crystal dynamics (Feely et al. 2004, Ries et al. 2009, Koch et 

al. 2013). Natural variability in carbonate chemistry is also likely to be an important 

influence on calcified species’ responses to OA, as local adaptation to variable pH 

environments may confer increased resilience to future ocean conditions (Hofmann et 

al. 2011, Andersson and MacKenzie 2012, Hofmann et al. 2014). Water temperature 

profoundly influences the survival, recruitment, growth and reproduction of 

macroalgal species (Breeman 1988), and with continued increases in sea surface 

temperatures (SSTs) some species may become chronically or acutely stressed as 

temperatures exceed physiological thresholds (Brodie et al. 2014). Species will likely 

respond directly to SST increases with range shifts, resulting in extinction of species 

at their southern edges and colonization at northern boundaries (Jueterbock et al. 

2013).  

 

It is possible to learn about potential responses to future change by examining species 

responses to temporal and spatial fluctuations and gradients in key abiotic stressors in-

situ (Helmuth et al. 2006). This has the benefit of examining species within their 

natural environment, negating issues associated with transferring organisms to 

laboratory conditions, and attempting to replicate field conditions within a laboratory 

(Kholer 2002, Calisi and Bently 2009). Gaining a thorough understanding of species’ 

ecophysiology in-situ further provides an important baseline against which to monitor 
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future change (Helmuth et al. 2006, Harley et al. 2012), and allows contextual 

interpretation of the results of future-scenario incubation studies.  

 

Across the NE Atlantic, Corallina species are exposed to significant fluctuations in 

abiotic conditions including irradiance, temperature and rock pool water carbonate 

chemistry (Ganning 1971, Truchot and Duhamel-Jouve 1980, Morris and Taylor 

1983). Large fluctuations in irradiance occur because of changes in cloud cover, tides 

and the angle of the sun, and both predictable (changes in day length and solar angle) 

and unpredictable (cloudiness, turbidity and run-off) variability are observed 

seasonally (Lobban and Harrison 1994). Temperature fluctuations in rock pools are 

closely related to local climate, in particular air and ambient seawater temperature, 

irradiance, wind, the timings of tides and wave action (Ganning 1971, Lobban and 

Harrison 1994). Interactions between physio-chemical and biological processes also 

drive significant fluctuations in rock pool water carbonate chemistry (Ganning 1971, 

Daniel and Boyden 1975, Morris and Taylor 1983), with fluctuations in pO2, pCO2 

and pH (and thus the entire carbonate chemistry environment) directly related to the 

photosynthetic activity of the pool flora and to the respiration of both flora and fauna 

(Morris and Taylor 1983). Finally, across species’ ranges in the NE Atlantic, 

Corallina also span significant latitudinal gradients in abiotic parameters (Brodie et 

al. 2013), with decreases in irradiance, water temperature and CO3
2- saturation 

expected with increasing latitude (Kirk 1994, Lobban and Harrison 1994, Egleston et 

al. 2010, Beaugrand 2014). 

 

The aim of the present study was therefore to examine the relationships between tidal 

and seasonal fluctuations in key abiotic parameters and the physiology of rock pool 

inhabiting Corallina species, and to examine the growth of Corallina across a NE 

Atlantic latitudinal transect of abiotic conditions ranging from Iceland to northern 

Spain. To achieve this, two experiments were performed. Firstly, C. officinalis 

physiology (production, respiration and calcification) was quantified in UK intertidal 

rock pools, across daytime and night-time tidal emersion periods, over a complete 

seasonal cycle. In parallel, the irradiance, rock pool water temperature and carbonate 

chemistry conditions were quantified for comparison to physiological patterns. 

Secondly, the growth of Corallina species was assessed across the NE Atlantic by 
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staining plants with Calcofluor White, in rock pools located in Iceland, the UK and 

northern Spain, and monitoring of seasonal growth increments.  

 

3.2. Methods 

 

3.2.1. Corallina officinalis production, respiration and calcification  

Production and respiration rates of Corallina officinalis were quantified during the 

present study by measuring dissolved inorganic carbon (DIC) flux during closed 

chamber incubation experiments as detailed below. Production was thus measured as 

the amount of inorganic carbon up-take and fixation in the dark-reactions (i.e. the 

Calvin Cycle) of photosynthesis, while respiration rates were assessed by 

quantification of the product of the reaction (carbon dioxide).  

 

3.2.1.1. Field measurements 

Net production and respiration (DIC flux, µmol g dry weight (DW)-1 h-1), and light 

and dark calcification rates (µmol CaCO3 gDW-1 h-1) of C. officinalis were 

determined in upper shore Combe Martin rock pools, north Devon, UK (Chapter 1, 

section 1.8), during December 2013, and March, July and September 2014, at both the 

start (measurements initiated within 30 mins of tidal emersion) and end (over the final 

1.5 h of emersion) of daylight tidal emersion periods. In addition, respiration and dark 

calcification were assessed at the start and end of night-time tidal emersion periods 

during March, July and September 2014. Ambient irradiance, water temperature and 

the carbonate chemistry of rock pools were monitored for comparison throughout.  

 

During each daylight and night-time sampling period, ten discrete C. officinalis 

samples were collected randomly from upper shore CM rock pools and placed in 0.5 l 

clear glass chambers filled with rock pool water. Final dry weight of incubated 

Corallina averaged 4.0 ± 0.15 g across incubations. Two additional chambers were 

filled with just rock pool water to serve as controls for non-Corallina biological 

activity. For determination of pH and total alkalinity (TA), twelve 100 ml rock pool 

water samples were simultaneously collected from the positions of frond collection 

and poisoned with saturated mercuric chloride solution to prevent biological activity. 

Incubation chambers were sealed, and six chambers (5 containing Corallina, 1 blank) 

positioned within an upper shore rock pool to maintain ambient irradiance and 
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temperature conditions. The remaining six chambers (5 containing Corallina, 1 blank) 

were placed into opaque bags to create dark conditions during daytime incubations (or 

shield potential moonlight during night-time incubations) and positioned within the 

same rock pool to maintain ambient temperature. After incubating for ca. 1.5 h, 

chambers were removed from the rock pool and a final 100 ml water sample was 

collected from each chamber as above for pH and TA determination. In parallel to all 

incubations, ambient irradiance (PAR µmol photons m-2 s-1), rock pool water 

temperature (oC), and salinity (S), were monitored every 30 min using a 2-pi LI-COR 

cosine-corrected quantum sensor positioned ca. 5 cm above the surface of the rock 

pool (15 s average irradiance measurements were taken using an in-built function of 

the sensor), a digital thermometer, and a hand-held refractometer, respectively. The 

mean irradiance and water temperature for the start and end periods of tidal emersion 

were calculated as the mean of all measurements taken across respective incubation 

periods. Cumulative photodose (PAR, mol photons m-2) was calculated from 

irradiance measurements by integrating PAR over time from the start of tidal 

emersion of rock pools. Following incubations, C. officinalis samples were collected 

from incubation chambers for dry weight analysis after drying at 100oC for 24 hr. 

 

3.2.1.2. Sample Processing 

The pH (total scale) of water samples was measured immediately using a Mettler 

Toledo Inlab-expertpro pH probe calibrated using Tris-buffers (pH 4, 7, and 10) 

prepared in artificial seawater. TA of water samples was measured by the 

potentiometric method using Gran titration with a Mettler Toledo DL50 Graphix 

automatic titrator. Reference material measurements of carefully prepared Na2CO3 

standards (0.5 and 1 mmol kg-1) in 0.6 mol kg-1 NaCl background medium were used 

to correct sample measurement for accuracy. Although certified reference materials 

were not available, data accuracy was further validated by comparison with rock pool 

water analyses performed by the UK Ocean Acidification Carbonate Chemistry 

Facility (National Oceanography Centre, Southampton, UK) during a previous study 

at the same site (Williamson et al. 2014). Carbonate chemistry parameters derived 

(see below) are highly comparable between studies in regards to both seasonal and 

tidal period ranges in parameters recorded. 
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3.2.1.3. Data treatment 

To monitor the carbonate chemistry environment of rock pool water at the start and 

end of tidal emersion periods, and to calculate C. officinalis net production and 

respiration from DIC concentrations, measured pH, TA, water temperature and 

salinity were input into CO2SYS v2.1 to determine all carbonate chemistry 

parameters. For each water sample, DIC, pCO2, HCO3
-, CO3

2- and the saturation 

states of aragonite (Ωarg) and calcite (Ωcal) were calculated using the constants of 

Mehrbach et al. (1973) refitted by Dickson and Millero (1987). The carbonate 

chemistry of rock pool water was represented by water samples (n = 12) collected at 

the beginning of each incubation experiment. C. officinalis net production (assessed 

from daytime light treatment incubations), and respiration (assessed from daytime 

dark treatment and all night-time incubations), were calculated from the difference 

between initial and final incubation DIC concentrations, as: 

 

!"!(!"!!!"#/!"#$%) =
∆!"#!!
!"!∆! − !!" 

 

where NP and RDAY/NIGHT are net production and respiration during the day or night, 

respectively (µmol DIC gDW-1 h-1); ΔDIC is the change in dissolved inorganic carbon 

concentration during the incubation (µmol DIC kg-1 seawater); v is the incubation 

chamber volume (l); dw is the dry weight of C. officinalis incubated (g); Δt is the 

incubation time (h); and NG is the net calcification rate (µmol CaCO3 gDW-1 h-1).  

 

Calcification was estimated using the alkalinity anomaly technique (Smith and Key 

1975, Chisholm and Gattuuso 1991), whereby TA decreases by 2 equivalents for each 

mol of CaCO3 precipitated. Light calcification (assessed from daytime light treatment 

incubations) and dark calcification (assessed from daytime dark and all night-time 

incubations) were thus calculated as: 

!!"!"#(!"!!"!"#$%)!!"#$%/!"#$ = !
∆!"!!

2(!"!∆!) 

 

where NGDAY-LIGHT/DARK and NGNIGHT-LIGHT/DARK are net calcification during daytime or 

night-time tidal emersion periods, determined from light or dark treatment incubations 

(µmol CaCO3 gDW-1 h-1); ΔTA is the change in total alkalinity during the incubation 
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(µmol kg-1 seawater); v is the incubation chamber volume (l); dw is the dry weight of 

C. officinalis incubated (g); and Δt is the incubation time (h).  

 

3.2.2. Corallina growth across the NE Atlantic 

To estimate the growth of Corallina species over a seasonal cycle across multiple 

latitudes, a staining experiment was performed whereby algal fronds located in rock 

pools were stained in-situ using the method of Martone et al. (2010), with subsequent 

sampling for determination of growth increment.   

 

3.2.2.1. Study sites and field-work 

Staining of algal fronds was performed at Þorlákshöfn Iceland (ICE), Combe Martin 

UK (CM), and Comillas Northern Spain (NSP) (Chapter 1 section 1.8, Table 3.1). 

Corallina officinalis is the sole Corallina species present in ICE rock pools and is 

also present in CM rock pools with C. caespitosa (Table 3.1). As C. officinalis is only 

present from the lower intertidal to subtidal regions in NSP, the growth of C. 

caespitosa, which is present in upper shore rock pools, was studied.  

 

Table 3.1: Site and sampling details of latitudinal growth experiment 

Site Species 
sampled Staining dates Sampling dates 

Þorlákshöfn, 
Iceland C. officinalis 06.09.13 05.01.14 

13.04.14 

Combe Martin, 
UK 

C. officinalis 
C. caespitosa 

25.06.13 
23.10.13 
04.12.13 
16.03.14 
01.07.14 

23.10.13 
04.12.13 
16.03.14 
01.07.14 
09.09.14 

Comillas, 
Spain C. caespitosa 13.08.13 

02.02.14 

11.09.13 
04.12.13 
02.02.14 
31.03.14 
29.05.14 
29.07.14 
27.09.14 

 

CM was the main study site, with approximately three monthly staining/re-staining 

and collection of stained fronds performed from June 2013 to September 2014 (Table 

3.1), with the final four sampling dates corresponding to NP, R and NG assessment 

described previously. In ICE, staining was possible only once (September 2013), with 
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subsequent sampling performed during January, April and September 2014. In NSP, 

staining was possible twice (August 2013 and February 2014), with sampling of 

stained fronds regularly from August 2013 to September 2014 (Table 3.1).  

 

Each staining/sampling date at CM, three randomly selected 400 cm2 areas of vertical 

rock pool wall dominated by C. officinalis and C. caespitosa, in two large upper shore 

rock pools, were stained with 0.04% Calcofluor White solution (Sigma-Aldrich, St. 

Louis, MO, Fluroescent brightener 28). Stain was applied following the protocol of 

Martone et al. (2010), whereby an open-sided chamber was placed firmly against the 

Corallina covered rock pool wall, stain solution was added into the chamber, and the 

chamber containing stain solution was held in place over the Corallina fronds for a 

duration of 10 minutes. Following approximately three months of growth time, 

stained fronds were harvested for growth increment determination, and new areas 

along the same rock pool walls stained. In ICE, staining was performed in the same 

manner as at CM, but was possible only once and in a single 400 cm2 area. In NSP, 

large upper shore rock pools are absent and as such the volume of a small upper shore 

rock pool was estimated and sufficient stain added to achieve a 0.04% stain solution 

across the entire rock pool during staining events.  

 

3.2.2.2. Sample Processing 

Harvested fronds were mounted onto herbarium sheets, dried flat in a press, and 

stored on herbarium sheets until processing. All fronds harvested at each sampling 

time were photographed with a scale under UV light (365 nm) in a darkroom. Full 

protective measures (barrier protection from UV light including full face-mask) were 

taken during all photography. All photographs were taken using a Cannon Powershot 

G12 camera with an exposure of 8 s, aperture setting of F = 8 and ISO of 200. ImageJ 

software v1.48q (National Institutes of Health, USA) was used to identify stained 

fronds (Figure 3.1) and to calculate total frond planform area (cm2), and new 

planform growth (between the Calcoflour White stain line and the frond meristems), 

of 10 randomly selected stained fronds of each species harvested (Table 3.1). For CM, 

a total of 10 C. officinalis and 10 C. caespitosa stained fronds were randomly selected 

for growth quantification from across all stained areas of both pools, due to 

irregularities in staining success.  
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Figure 3.1: Example of stained C. caespitosa frond (a) collected in NSP during 
September 2013, showing conspicuous Calcofluor White stain band (white arrows), 
and (b) schematic of the same frond showing the original frond size (dark grey) and 
new growth above the stain line (pink). Scale bar = 5 mm in both cases. N.B. growth 
depicted occurred over a 27-day period from 13th August to 11th September 2013. 

 

3.2.2.3. Data Treatment 

The growth increment of stained fronds harvested from CM was calculated as: 

 

!"!" = !100 (!! !!)
∆!  

 

where GICM is percent growth increment of fronds harvested from CM (% planform 

area cm-2 d-1); Fn is new frond growth above the stain line (planform area cm-2); Ft is 

total frond planform area (cm-2); and Δt is the change in time (d) since the previous 

staining event. As staining was performed at a lesser frequency than frond harvesting 

in ICE and NSP, growth increment was calculated as: 

 

!"!"#/!"# =
100 (!! !!)

∆!!"#$%&'(!!!"#$%&
!− ! !"!"#$%&'(!!"#$%$%& 

 

where GIICE/NSP is the growth increment of Icelandic or northern Spanish fronds since 

the previous harvesting date (% planform area cm-2 d-1); Δtprevious harvest is the change in 

time (d) since the previous harvesting date; and GIprevious staining is the average growth 
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increment calculated for previous sampling periods since the previous staining event. 

For example, the growth increment of fronds harvested from NSP in July 2014 would 

be calculated as: 

 

!"!"# =
100(!! !!)

60 !− ! !"!"#!!"#,!!!!"#!!"# 

 

where July’s GI is normalized to the number of days since fronds were previously 

harvested during May (60 d), and the average GI of previous sampling periods 

(February- March, March - May) since the previous staining event (February) were 

subtracted from July’s GI, providing a GI estimation for the period May - July. 

 

3.2.3. Data analyses  

All statistical analyses and plotting of data were performed using R v.3.0.2 (R Core 

Team 2014). Prior to all analyses, normality of data was tested using the Shapiro-

Wilk test and examination of frequency histograms. If data were not normally 

distributed, Box-Cox power transformation was applied using the boxcox function of 

the MASS package (Venables and Ripley 2002), and normality re-checked. Following 

the application of models to data as described below, model assumptions were 

checked by examination of model criticism plots. Whilst sampling for determination 

of production, respiration, calcification and growth increment was performed in the 

same rock pools over a number of dates at each site, measurements were performed 

on different individual fronds during each sampling date and thus repeated measures 

analysis of variance (ANOVA) was not utilized during the present study. 

 

Abiotic Environment: For daytime data, differences in irradiance and rock pool water 

temperature between sampling months (December 2013, and March, July and 

September 2014) and tidal emersion periods (start and end), were examined using 

ANOVA with the fixed factors ‘month’ (4 levels) and ‘tide’ (2 levels) and the 

interaction term ‘month/tide’. Post hoc Tukey honest significant differences analysis 

was performed on significant ANOVA results. Night-time rock pool water 

temperature data were examined as above, though with 3 levels for ‘month’. To 

facilitate comparison of rock pool water carbonate chemistry between months and 

tidal emersion periods, all variables were summarized using principal components 
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analysis (PCA). PCA uses orthogonal transformation to convert a set of observations 

of possibly correlated variables into a set of values of linearly uncorrelated variables 

called principal components (PCs). In the present study, PCA allowed for 

transformation of the highly correlated carbonate chemistry variables into 

uncorrelated PCs for comparison between independent variables (month and tide). 

PCA was performed using the ‘prcomp’ function of R stats package, with scaled 

variables (R Core Team 2013). Scaling was achieved by division of each observation 

by the variable’s standard deviation and transformation was achieved by singular 

value decomposition, as per the base settings of the function. Differences in carbonate 

chemistry between sampling months and over tidal emersion periods were examined 

by analysis of principal component one (PC1) using ANOVA separately for daytime 

and night-time data, as previously described. Least squares multiple linear regression 

was used to examine relationships between daytime PC1 and irradiance (analysed 

separately as both irradiance measured and calculated cumulative photodose) and rock 

pool water temperature. The relative importance of predictor variables was calculated 

using calc.relimp function of the relaimpo package using type ‘lmg’, whereby R2 is 

partitioned by averaging over orders (Grömping 2006). Least squares linear 

regression was used to examine relationships between night-time PC1 and rock pool 

water temperature.  

 

Net production, respiration and calcification rates: NP, RDAY/NIGHT and NG rates were 

analyzed separately for daytime and night-time data, using 3-way ANOVA with the 

factors ‘month’ (4 levels for daytime data, 3 levels for night-time), ‘tide’ (2 levels) 

and ‘light treatment’ (2 levels), with all interactions. Differences between RDAY and 

RNIGHT were examined for all pooled dark incubation daytime and all night-time 

March, July and September data, using a 2-way ANOVA with the factors ‘day or 

night’ and ‘month’ and interaction ‘day or night/month’. Differences between NGDAY-

DARK and NCNIGHT were examined for all pooled dark treatment daytime and all night-

time March, July and September data, as above.  
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All C. officinalis NP/R and NG data were plotted as an exponential function P-E of 

ambient irradiance E (µmol photons m-2 s-1), as: 

 

!"/!! !" = !!!"# 1− !!!/!" + ! 

 

where Pmax is the rate of maximum net production (or calcification) (µmol DIC gDW-1 

h-1, or µmol CaCO3 gDW-1 h-1); Ek is the minimum saturating irradiance (µmol m-2 s-

1); and c is the night-time respiration rate (or calcification rate) (µmol DIC/CaCO3 

gDW-1 h-1). Curve fitting was performed using the ‘nls’ function of R (R Core Team 

2014) and an estimation of R2 calculated by dividing the squared residual sum of 

squares by the squared total sum of squares. To examine relationships between NP, R 

and NG with water temperature and carbonate chemistry (PC1day/night), temperature 

and PC1were added into the above model individually as linear terms, in addition to 

construction of a ‘global model’ containing irradiance as an exponential function, and 

both water temperature and PC1 as linear terms. The goodness-of-fit of the respective 

models was compared using estimated R2 and Akaike Information Criterion (AIC); a 

measure of the relative quality of a statistical model for a given set of data that 

rewards goodness-of-fit while penalizing for the number of parameters included in the 

model. The preferred model is that with the minimum AIC value. In addition, 

ANOVA comparison of models was performed to test the significance of the 

inclusion of respective terms into the models. Given the potential compounding effect 

of co-variance between abiotic parameters, individual linear regression of NP, RDAY, 

RNIGHT, NGDAY-LIGHT, NGDAY-DARK and NGNIGHT was performed versus water 

temperature and carbonate chemistry (as PC1) to highlight relationships. Finally, the 

relationship between C. officinalis NG and NP/R was modeled using a non-linear 

regression as detailed above.   

 

Differences in growth increment between sampling periods of the staining experiment 

were analysed separately per latitude. As preliminary examination of CM data 

highlighted no difference in growth increment between the two rock pools sampled, 

data were analyzed with a 2-way ANOVA with the factors ‘sampling period’ (5 

levels) and ‘species’ (2 levels), and interaction term ‘sampling period/species’. ICE 

and NSP data were analysed using 1-way ANOVA with the factor ‘sampling period’ 
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(3 levels ICE, 7 levels NSP). For intraspecific comparison of growth rates across 

latitudes, all C. officinalis data from ICE and CM were compared using a t-test with 

the factor ‘latitude’ (2 levels), as were all C. caespitosa data from CM and NSP. Least 

squares regression was used to examine relationships between frond size (planform 

area cm-2) and growth increment (% planform area cm-2 d-1).  

 

3.3. Results 

 

3.3.1. Corallina officinalis production, respiration and calcification 

 

3.3.1.1. Abiotic environment 

There was a significant difference in irradiance between all sampling months (F3,32 = 

193.385, P < 0.0001), with minimum irradiance in December and maximum in July 

(Figure 3.2). The only apparent tidal difference in irradiance was a significant 

decrease from the start to end of tidal emersion during July (F1,32 = 8.114, P < 0.01, 

TukeyHSD P < 0.05). Significant differences in daytime rock pool water temperature 

were evident between all sampling months (F3,32 = 760.94, P < 0.0001), with 

minimum temperatures recorded in March and maximum temperatures in July and 

September (Figure 3.2). Across daytime tidal emersion periods, significant increases 

in water temperature were observed in July and September (F1,32 = 97.48, P < 0.0001, 

TukeyHSD P < 0.05 in both cases), whereas no significant change in rock pool water 

temperature occurred over December or March daytime tidal emersion periods, as 

supported by significant interaction between month and tide (F3,32 = 37.01, P < 

0.0001). A significant difference in night-time water temperature was apparent 

between all sampling months (F2,13 = 168.534, P < 0.0001), lowest in March and 

greatest in September, with significant decrease in rock pool water temperature 

recorded over July (ca. 15.6 to 14.7oC) and September (ca. 16.8 to 15.7oC) night-time 

emersion (F1,13 = 20.049, P < 0.01, TukeyHSD P < 0.05 in all cases).  
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Figure 3.2: Irradiance (a) and rock pool water temperature (b) recorded at the start 
(black bars) and end (white bars) of daytime tidal emersion periods during December 
2013 (Dec ’13), and March (Mar ’14), July (Jul’14) and September (Sep ’14) 2014 
(average ± se). Upper-case and lower-case letters denote TukeyHSD homogenous 
subsets in relation to the factors ‘month’ and ‘tide’, respectively. 
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Changes in rock pool water carbonate chemistry were observed over daytime and 

night-time tidal emersion periods during each sampling month (Figure 3.3. & 3.4). 

Over daytime tidal emersion, pCO2 and HCO3
- decreased, with concomitant increases 

in pH, CO3
2-, Ωarg and Ωcal. From the start to end of night-time tidal emersion, the 

opposite trends were observed, with increases in pCO2 and HCO3
- paralleled by 

decreases in pH and CO3
2- saturation. Principal components analysis (PCA) served to 

summarize daytime and night-time carbonate chemistry parameters for subsequent 

analyses (Table 3.2 & Figure 3.5). Principal component one of daytime data (PC1day) 

and night-time data (PC1night) described 84 % and 83 % of the variance in daytime 

and night-time carbonate chemistry observed over tidal emersion periods, 

respectively. Principal component two accounted for a further 13 % and 16 % of 

daytime and night-time carbonate chemistry variance, respectively, mainly 

representing differences in TA within the data (Table 3.2 & Figure 3.5). For all 

subsequent analyses, PC1day and PC1night were taken as representative of carbonate 

chemistry dynamics.   

 

Significant differences in PC1day (F3,67 = 27.528, P  <0.0001) and PC1night (F2,47 = 

39.73, P < 0.0001) were observed in relation to sampling month (Figure 3.6), with 

significantly higher PC1day observed in July and September in comparison to 

December and March, and significantly different PC1night observed between all night-

time sampling months (March, July and September) (TukeyHSD, P < 0.05 in all 

cases). Over daytime tidal emersion periods, significant increases in PC1day were 

observed during all sampling months but December (F1,67 = 1.912, P < 0.0001, 

TukeyHSD P < 0.05 in all cases), demonstrating a significant decrease in rock pool 

water DIC, pCO2 and HCO3
-, resulting in significantly increased pH and CO3

2- 

saturation parameters. Over night-time tidal emersion the opposite trends were 

observed, with significant decrease in PC1night during every sampling month 

highlighting increases in DIC, pCO2 and HCO3
- and consequent decreases in pH and 

CO3
2- saturation (F1,47 = 810.90, P < 0.0001, TukeyHSD P < 0.05 in all cases). Over 

night-time tidal emersion, the magnitude of change in rock pool water carbonate 

chemistry increased from March to September, as evidenced by significant interaction 

between ‘month’ and ‘tide’ (F2,47 = 73.31, P < 0.0001). 

 



 76 

 

Figure 3.3: Average carbonate chemistry (TA, DIC, pH, pCO2, HCO3
-, CO3

2-, Ωarg 
and Ωcal) recorded at the start (black bars) and end (white bars) of daytime tidal 
emersion periods during December 2013 (Dec ’13), and March (Mar ’14), July (Jul 
’14) and September (Sep ’14) 2014 (average ± se, n = 12). Numbers denote % change 
in parameters in relation to start emersion values. 
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Figure 3.4: Average carbonate chemistry (TA, DIC, pH, pCO2, HCO3
-, CO3

2-, Ωarg 
and Ωcal) recorded at the start (black bars) and end (white bars) of night-time tidal 
emersion periods during March (Mar ’14), July (Jul ’14) and September (Sep ’14) 
2014 (average ± se, n = 12). Numbers denote % change in parameters in relation to 
start emersion values. 
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Figure 3.5: Principal components analysis of (a) daytime and (b) night-time 
carbonate chemistry parameters, showing principal component one in relation to 
principal component two. Upper-case letters indicate sampling month (D = 
December, M = March, J = July, S = September) and lower-case letters indicate start 
(s) or end (e) tidal emersion.  
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Figure 3.6: Boxplots showing the median, minimum, maximum and first and third 
quartiles of PC1day (a) and PC1night (b) in relation to sampling month (Dec = 
December, Mar = March, Jul = July, Sep = September) and tidal emersion period (S = 
start, E = End). Upper-case and lower-case letters denote TukeyHSD homogenous 
subsets in relation to the factors ‘month’ and ‘tide’, respectively. 
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Table 3.2: Component loadings of principal components analysis of daytime and 
night-time carbonate chemistry parameters (TA, DIC, pH, pCO2, HCO3

-, CO3
2-, Ωarg 

and Ωcal) 

 PC1DAY (%) PC2DAY (%) PC1NIGHT (%) PC2NIGHT (%) 

Proportion of 

variance 
84.3 13.2 83.6 16.0 

Cumulative 

proportion 
84.3 97.6 83.6 99.7 

Variable PC1DAY PC2DAY PC1NIGHT PC2NIGHT 

Component Loadings    

TA -0.07 0.94 -0.18 -0.77 

DIC -0.36 0.17 -0.35 -0.36 

pH 0.38 0.04 0.37 -0.16 

pCO2 -0.36 0.01 -0.38 0.05 

HCO3
- -0.38 0.09 -0.37 -0.23 

CO3
2- 0.37 0.14 0.37 -0.24 

Ωarg 0.37 0.14 0.37 -0.24 

Ωcal 0.37 0.14 0.37 -0.24 

 

Least squares multiple linear regression revealed significant relationships between 

PC1day, irradiance measured (28% relative importance) and water temperature (71% 

relative importance) (R2 = 0.63, P < 0.0001) (Table 3.3), and between PC1day, 

calculated cumulative photodose (58% relative importance) and water temperature 

(41% relative importance) (R2 = 0.69, P < 0.0001). PC1night showed a small but 

significant relationship to water temperature (R2 = 0.08, P < 0.05) (Table 3.3).  
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Table 3.3: Multiple linear regression analysis of PC1DAY in relation to irradiance (Irrad.) or cumulative photodose (Photo.) plus water 
temperature (Temp.), and linear regression analysis of PC1NIGHT in relation to water temperature (Temp.), showing associated standard error (SE) 
of coefficients, the significance of predictor variables (Pred. sig.) within the model, the percent relative importance of predictor variables (Rel. 
Imp.), the proportion of variance explained by the regression (R2), the overall model significance (P), and the number of observations (n). 

Relationship (y = a + b1(X1) + b2(X2)) 
Coefficient SE Pred. sig. Rel.Imp. (%) 

R2 P n 
a b1 b2 X1 X2 X1 X2 

PC1DAY = -7.03 + -0.002(Irrad.) + 0.61(Temp.) 0.73 0.00 0.07 <0.001 <0.001 28 71 0.63 <0.001 96 

PC1DAY = -2.52 + 1.41-7(Photo.) + 9.10-2(Temp.) 0.72 2.72-8 6.38-2 <0.001 <0.01 58 41 0.69 <0.001 96 

PC1NIGHT = -2.89 + 0.22(Temp.) 1.40 0.10 - <0.05 <0.05 - - 0.08 <0.05 72 
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3.3.1.2. Production and respiration 

Corallina officinalis NP (negative DIC flux) and RDAY (positive DIC flux) were 

significantly different during all sampling months (F1,69 = 155.811, P < 0.0001, 

TukeyHSD P < 0.05 in all cases). Between sampling months, greatest NP was 

observed in July (start of emersion = -25.80 ± 0.94 µmol DIC gDW-1 h-1), with lowest 

NP during December and March (end of March emersion = -1.56 ± 0.74 µmol DIC 

gDW-1 h-1) (F3,69 = 6.838, P < 0.001) (Figure 3.7). No significant difference in C. 

officinalis RDAY was observed between any sampling month (Figure 3.7). Although 

overall significant changes in NP and RDAY were recorded in relation to the factor 

‘tide’ (F1,69 = 8.684, P < 0.01), post-hoc TukeyHSD analysis did not recover 

significant differences in NP or RDAY between the start and end of tidal emersion, 

within any sampling month. Over night-time tidal emersion, significant differences in 

C. officinalis RNIGHT were observed between sampling months (F2,52 = 22.170, P < 

0.0001), with highest RNIGHT recorded during September (overall average = 4.52 ± 

0.57 µmol DIC gDW-1 h-1) and lowest during March (overall average = 1.00 ± 0.18 

µmol DIC gDW-1 h-1), and no significant difference between March and July (Figure 

3.8). No significant difference in C. officinalis RNIGHT was observed in relation to light 

treatment or between the start and end of tidal emersion during any sampling month. 

During March, July and September, no significant difference in RDAY and RNIGHT was 

observed (Figure 3.8). 

 

Across all data, NP showed a significant relationship with irradiance (R2 = 0.67, P < 

0.0001 for all parameters, AIC = 885.64), giving a Pmax of -22.35 µmol DIC gDW-1 h-

1, Ek of 300.76 µmol photons m-2 s-1 and estimated overall respiration rate of 3.29 

µmol DIC gDW-1 h-1 (Figure 3.9, Table 3.4). Addition of water temperature and 

carbonate chemistry (both individually and together) into the model did not 

significantly improve the goodness-of-fit (Table 3.4). This may be due to significant 

correlation between irradiance and water temperature (r = 0.42, P < 0.0001), 

irradiance and PC1 (r = 0.19, P < 0.05) and temperature and PC1 (r = 0.59, P < 

0.0001). Individual regression of NP, RDAY and RNIGHT with temperature and carbonate 

chemistry (as PC1) revealed moderate but significant relationships with temperature 

though no significant relationship of any parameters with PC1 (Supplementary Figure 

3.1).  
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Figure 3.7: Average daytime (a) NGDAY, and (b) NP and RDAY as determined from 
light (L – white bars) and dark (D – black bars) treatment incubations conducted at 
the start (s) and end (e) of daytime tidal emersion periods during December 2013 and 
March, July and September 2014 (average ± se, n = 5). Upper-case and lower-case 
letters denote TukeyHSD homogenous subsets in relation to the factors ‘month’ and 
‘tide’, respectively. 
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Figure 3.8: Average night-time (a) NGNIGHT and (b) RNIGHT  as determined from light 
(L – white bars) and dark (D – black bars) treatment incubations conducted at the start 
(s) and end (e) of night-time tidal emersion periods during March, July and September 
2014 (average ± se, n = 5). Upper-case letters denote TukeyHSD homogenous subsets 
in relation to the factor ‘month’. N.B. y-axis scales are maintained at the same 
resolution as Figure 3.7 to allow direct comparison between daytime and night-time 
magnitudes of calcification and respiration. 
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Figure 3.9: Relationship of (a) net calcification (NGDAY/NIGHT) and (b) net 
production/respiration (NP and R), with irradiance (Model 1, Table 3.4), showing 
regression line (solid red line) and 95 % confidence intervals (dashed red lines). 
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Table 3.4: Values of parameters (SE in parentheses) calculated by non-linear regression of net production (NP, µmol DIC gDW-1 h-1) and net 
calcification (NG, µmol CaCO3 gDW-1 h-1) versus: 
- Model 1: irradiance (E, µmol photons m-2 s-1) expressed as NP (NG) = P(G)max (1-e-E/Ek) + c, where c is dark respiration or calcification 
- Model 2: irradiance and temperature (T, oC) expressed as NP (NG) = P(G)max (1-e-E/Ek) + dT + f, where f is a constant 
- Model 3: irradiance and carbonate chemistry (PC1) expressed as NP (NG) = P(G)max (1-e-E/Ek) + ePC1 + f  
- Model 4: irradiance, temperature and carbonate chemistry expressed as NP (NG) = P(G)max (1-e-E/Ek) + dT + ePC1 + f  
Asterisks denote coefficient significance in models (P <0.05*, P <0.01**, P <0.001***). Estimation of overall model fit is presented as the 
proportion of variance explained by the regression (R2) and as Akaike Information Criterion (AIC). n denotes the number of observations. 
 P(G)max Ek c d e f R2 AIC n 
(a) Model 1           
NP -22.3(1.48)*** 300(65)*** 3.29(0.56)***    0.67 885 140 
NG 4.41(0.22)*** 200(34)*** -0.01(0.09)**    0.76 383 140 
(b) Model 2          
NP -23.8(1.97)*** 377(99)***    0.15(0.12)   1.07(1.82) 0.68 886 140 
NG 3.92(0.21)*** 115(24)***    0.08(0.01)***  -1.28(0.26)*** 0.80 363 140 
(c) Model 3          
NP -23.0(1.62)*** 343(80)***    0.29(0.20) 3.24(0.56)*** 0.68 885 140 
NG 4.18(0.21)*** 149(27)***   0.13(0.03)***  -0.03(0.08)* 0.79 367 140 
(d) Model 4          
NP -23.6(1.96)*** 375(99)***    0.07(0.14)    0.22(0.23)   2.12(2.12) 0.68 887 140 
NG 3.94(0.20)*** 113(23)***  0.06(0.02)** 0.08(0.03)* -0.93(0.30)** 0.80 360 140 
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3.3.1.3. Calcification 

Corallina officinalis NGDAY was greatest during July and September as compared to 

December and March (F3,69 = 16.814, P < 0.0001, TukeyHSD P < 0.05 in all cases), 

with a significant difference between NGDAY-LIGHT and NGDAY-DARK apparent in all 

sampling months (F1,69 = 290.075, P < 0.0001) (Figure 3.7). Highest NGDAY-LIGHT 

(4.62 ± 0.45 µmol CaCO3 gDW-1 h-1) was recorded at the end of daytime tidal 

emersion during July, with lowest NGDAY-LIGHT (1.70 ± 0.08 µmol CaCO3 gDW-1 h-1) 

recorded at the end of tidal emersion during December. Both negative (indicating 

CaCO3 dissolution) and positive (indicating CaCO3 precipitation) NGDAY-DARK values 

were observed, with maximal CaCO3 dissolution in the dark (-0.53 ± 0.20 µmol 

CaCO3 gDW-1 h-1) at the start of March daylight tidal emersion and maximal 

precipitation in the dark (2.01 ± 0.35 µmol CaCO3 gDW-1 h-1) at the end of September 

daylight tidal emersion (Figure 3.7). Significant differences in NGDAY observed in 

relation to ‘tide’ (F1,69 = 5.028, P < 0.05) were confined to increases in NGDAY-DARK 

from the start to end of July and September tidal emersion periods (TukeyHSD P < 

0.05 in both cases), with significant interaction between ‘month’ and ‘tide’ (F3,69 = 

5.104, P < 0.01). No significant differences in NGDAY-LIGHT were observed over tidal 

emersion periods. Interaction between ‘tide’ and ‘light treatment’ (F1,69 = 24.360, P < 

0.0001) highlighted differences in the magnitude and direction of NGDAY-LIGHT & DARK 

between start and end tidal emersion periods.  

 

Across night-time tidal emersion periods, a significant difference in C. officinalis 

NGNIGHT was observed between all sampling months (F2,52 = 25.50, P < 0.0001, 

TukeyHSD P < 0.05 in all cases) (Figure 3.8). Net CaCO3 dissolution was observed 

during March and September night-time tidal emersion, with maximal dissolution in 

September (overall average of -0.83 ± 0.11 µmol CaCO3 gDW-1 h-1). Conversely, net 

CaCO3 precipitation was observed during July night-time tidal emersion (overall 

average of 0.46 ± 0.14 µmol CaCO3 gDW-1 h-1). There was no difference between 

NGNIGHT-LIGHT and NGNIGHT-DARK, or between the start and end of tidal emersion, 

during any sampling month (Figure 3.8). A significant difference was apparent 

between NGDAY-DARK and NGNIGHT during September only (F1,57 = 15.054, P < 0.00, 

TukeyHSD P < 0.05), with no significant difference during March or July supported 

by significant interaction between ‘day or night’ and ‘month’ (F2,57 = 3.369, P < 

0.05).  
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Across all data, NG showed a significant exponential relationship with ambient 

irradiance (estimated R2 = 0.76, P < 0.0001 for all parameters, AIC = 383.17), 

providing a NGmax of 4.41 µmol CaCO3 gDW-1 h-1, and an Ek of 200.8 µmol photons 

m-2 s-1 (Figure 3.9, Table 3.4). Addition of water temperature and/or carbonate 

chemistry (as PC1) increased the goodness-of-fit (estimated R2 and AIC) of the 

models to NG data (Table 3.4), with the best representation of NG provided by the 

‘global model’ which included irradiance as exponential term, and both water 

temperature and carbonate chemistry as linear terms (estimated R2 = 0.80, P < 0.05 

for all parameters, AIC = 360.57) (Table 3.4). ANOVA comparison revealed all NG 

models to be significantly different to one another (data not shown). Individually, 

NGDAY-LIGHT and NGDAY-DARK showed significant regressions with water temperature 

and carbonate chemistry (as PC1) (Supplementarty Figure 3.2). Finally, across all 

data, a significant relationship between NG and NP/R was observed (R2 = 0.65, P < 

0.05 for all parameters) (Figure 3.1, Table 3.5). 

Figure 3.10: Relationship between calcification (NG) and production / respiration 

(NP/R) (Table 3.5). 
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Table 3.5: Values of parameters calculated by non-linear regression of net 
calcification (NG, µmol CaCO3 gDW-1 h-1) versus net production/respiration (NP(R), 
µmol DIC gDW-1 h-1), expressed as NG = a(1-e-NP(R)/b) + c, showing coefficients and 
associated standard error (SE) in parenthesis, coefficient significance in the model fit, 
the proportion of variance explained by the regression (R2) and the number of 
observations (n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients (SE) Coefficient significance 
R2 n 

a b c a b c 

8.25(3.38) -40.65(19.9) 0.85(0.11) <0.05 <0.05 <0.001 0.65 140 
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3.3.2. Corallina growth across the NE Atlantic 

Results of the staining experiment provide an assessment of Corallina growth across 

the NE Atlantic over approximately a one-year duration. Sampling frequency (Table 

3.1) was subject to site access and weather conditions and thus it was not possible to 

align staining and sampling frequencies across all latitudes. 

 

A significant difference in growth increment was observed in relation to ‘time-period’ 

in ICE (F2,29 = 45.44, P < 0.0001), CM (F4,195 = 3.183, P < 0.05) and NSP (F6,134 = 

36.16, P < 0.0001) (Figure 3.11), with significantly decreased growth and/or loss of 

frond biomass observed during winter months at all three latitudes (ICE = January-

April; CM = December-March; NSP = December-February). Maximal C. officinalis 

growth was observed across the period April-September in ICE, with an average rate 

of 0.26 ± 0.01 % planform area cm-2 d-1. With the exception of decreases recorded 

during winter periods, C. officinalis growth at CM demonstrated relatively constant 

rates across the study period, with no significant difference in growth recorded 

between June-December 2013 and March-September 2014 (Figure 3.11).  

 

A significant difference in growth was observed between C. officinalis and C. 

caespitosa at CM (F2,195 = 21.354, P < 0.0001), with the latter demonstrating higher 

growth rates in all periods, significantly so during June-October and July-September 

(Post hoc Tukey P < 0.05 in both cases) (Figure 3.11). In NSP, C. caespitosa maximal 

growth (1.26 ± 0.02 % planform area d-1) was recorded at the start of the experiment, 

from August-September 2013 (see Figure 3.1 for example frond), with no significant 

difference in growth recorded between September-December 2013 and February-

September 2014. 

 

Across all data, C. officinalis growth was significantly decreased in ICE as compared 

to CM (T33 = 2.178, P < 0.05), and C. caespitosa growth was significantly decreased 

in CM as compared to NSP (T156 = -7.129, P < 0.0001) (Figure 3.12). No significant 

relationship between frond size and growth increment was observed for either 

Corallina species at any latitude. 
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Figure 3.11: Average C. officinalis (grey bars) and C. caespitosa (white bars) growth 

increment in relation to time period at (a) Þorlákshöfn Iceland, (b) Combe Martin UK 

and (c) Comillas northern Spain (average ± se, n = 10). Upper-case and lower-case 

letters denote TukeyHSD homogenous subsets in relation to the factors ‘time period’ 

and ‘species’, respectively. 
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Figure 3.12: Boxplot showing the median, minimum, maximum and first and third 

quartiles of C. caespitosa (CC) and C. officinalis (CO) growth increment recorded in 

Comillas northern Spain (NSP), Combe Martin UK (CM) and Þorlákshöfn Iceland 

(ICE) across all data. Upper-case letters denote homogenous subsets. 
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consistent with previous accounts of rock pool habitats (e.g. Ganning 1971, Daniel 

and Boyden 1975, Truchot and Duhamel-Jouve 1980, Morris and Taylor 1983). These 

findings are important given the resilience to future OA conditions demonstrated by 

calcifying species that inhabit highly fluctuating abiotic environments (Kelly et al. 

2013, Wolfe et al. 2013, Hofmann et al. 2014), and the important role that diel, 

seasonal and inter-annual shifts in carbonate chemistry are likely to play in the long-

term persistence of calcified macroalgae in coastal ecosystems (Koch et al. 2013).  

 

During colder months, CO3
2- saturation was at a minimum, with high pCO2 and 

HCO3
- recorded at the start of December and March daytime emersion and March 

night-time emersion, in comparison to July and September. Such seasonal patterns in 

seawater carbonate chemistry have been observed in previous studies (e.g. McNeil 

and Matear 2007, Wootton et al. 2008, Olafsson et al. 2009, Gypens et al. 2011, 

Artioli et al. 2012, Gray et al. 2012, Manzello et al. 2012) and are known to be a 

function of both reduced CO2 solubility in seawater with increased summer 

temperatures, and decreased atmospheric, and thus oceanic, summer CO2 

concentrations due to increased utilization by terrestrial photosynthesis (Wootton et 

al. 2008). Discounting changes occurring over tidal emersion periods, our data 

indicate an approximate ambient seawater seasonal amplitude of 0.4 pH units, 650 

µatm pCO2, 280 µmol kg-1 HCO3
-, and 130 µmol kg-1 CO3

2- off the north Devonshire 

UK coastline.    

 

Over tidal emersion periods, the magnitude of change in carbonate chemistry was 

variable between seasons, with divergent patterns of change between daytime and 

night-time emersion highlighting the role of illumination, and thus photosynthetic and 

respiratory processes, in modification of the carbonate chemistry environment (Figure 

3.6). Across daytime tidal emersion, light-driven photosynthetic utilization of pCO2 

and HCO3
- caused a shift in the carbonate chemistry equilibrium of rock pool water in 

favour of pH and CO3
2- saturation during the present study, as has been previously 

observed (Truchot and Duhamel-Jouve 1980, Morris and Taylor 1983). Daytime 

changes in carbonate chemistry were significantly predictable (R2 = 0.63 – 0.69) by 

irradiance, expressed as either irradiance measured (28 % relative importance) or 

cumulative photodose (58 % relative importance), plus water temperature (71% or 

41% relative importance, respectively). Temperature likely influenced rock pool 
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carbonate chemistry both through indirect effects to rock pool inhabitant metabolic 

rates (Morris and Taylor 1983), and by direct effects to the solubility of CO2 in 

seawater (Wootton et al. 2008). Maximal pCO2 and HCO3
- depletion (down to 16% 

and 61.1% of start concentrations, respectively) was observed over July daylight 

emersion during the present study, when highest irradiance, temperature and 

Corallina productivity prevailed. This resulted in super-saturated rock pool water 

with respect to CO3
2-, Ωarg and Ωcal of ca. 223% initial values.  

 

Opposite trends were observed across night-time tidal emersion, with maximal 

increases in pCO2 and HCO3
- (up to 196% and 110% of start concentrations, 

respectively), and maximal decreases in CO3
2- concentration (down to ca. 61% of start 

values) occurring during September, when highest Corallina night-time respiration 

rates were observed. At the end of September night-time tidal emersion, rock pool 

water pCO2 concentrations reached 1428 ± 35 µatm, significantly greater than pCO2 

levels predicted by 2100 under IPCC RCP8.5 (IPCC 2013, Chapter 1). While 

fluctuations in pCO2 across night-time and daytime tidal emersion were 

approximately of a similar magnitude during March, July and September, the 

magnitude of night-time change in HCO3
- and CO3

2- concentrations was typically 

one-quarter to one-third of the change observed during the day. Daytime community 

photosynthetic activity thus generally dominated over night-time respiratory processes 

in shaping the carbonate environment of Corallina in Combe Martin rock pools, as 

also observed in rock pools during summer by Truchot and Duhamel-Jouve (1980).  

 

3.4.2. Corallina production 

This study highlights significant seasonality in C. officinalis production (Figure 3.7) 

that follows dynamics in irradiance, water temperature and carbonate chemistry. In 

marine macrophytes, photosynthetic capacity is generally greatest during months 

when irradiance and temperature are highest (Lüning 1990, Cabello-Pasini and 

Alberte 1997). We recorded maximal and minimal C. officinalis productivity during 

July and December respectively, and highlighted a significant relationship between 

production and ambient irradiance (R2 = 0.67), consistent with previous accounts for 

other calcifying macroalgae (Martin et al. 2006, 2007). While inclusion of water 

temperature and carbonate chemistry into models did not improve predictive ability, 

co-variance between predictors likely hindered interpretation of their influence. At 
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saturating levels of irradiance, the enzymatic reactions that limit photosynthesis are 

temperature dependent (Lüning 1990). Light-saturation coefficient (Ek) values 

reported by the present study (ca. 300 µmol photons m-2 s-1 ambient irradiance) 

highlight that C. officinalis photosynthesis was light-saturated for the majority of the 

annual cycle; ambient irradiance > Ek was recorded in every sampling month other 

than December (Figure 3.2). This indicates that C. officinalis is likely a shade-adapted 

plant relative to the irradiance it experiences in-situ, and that maximum rates of C. 

officinalis production were likely temperature-dependent, as previously shown for 

several intertidal macroalgae (Kanwisher 1966).  

 

The magnitude of C. officinalis production observed during the present study 

highlights the high productivity of geniculate corallines in comparison to other 

calcified algal groups from similar latitudes, e.g. maerl-forming species. Production 

recorded at the start of tidal emersion periods ranged from ca. -11 to -26 µmol DIC 

gDW-1 h-1 (or 144 to 312 µg C gDW-1 h-1). This is comparable to maximal production 

rates of other jointed calcareous macroalgae including Halimeda, Jania and Amphiroa 

species (200 – 600 µg C gDW-1 h-1) (Lüning 1990), although substantially higher than 

those reported for the maerl-forming calcified alga Lithothamnion corallioides off 

NW France (-0.68 to -1.48 µmol C gDW-1 h-1) (Martin et al. 2006). Maerl species are 

extremely slow growing (ca. 0.9 - 0.45 mm yr-1) relative to geniculate corallines such 

as C. officinalis (ca. 2 mm month-1) (Blake and Maggs 2003, Fisher and Martone 

2014, this study, section 3.4.5), demonstrating lower rates of production (Lüning 

1990). Significantly increased Corallina productivity in comparison to maerl species 

is therefore not unexpected, though serves to highlight the comparatively high 

productivity of geniculate corallines in temperate habitats. The seasonal magnitude of 

productivity reported here (ca. 2-fold increase in summer as compared to winter) 

does, however, reflect seasonal dynamics in maerl productivity (Martin et al. 2006, 

2007), perhaps indicating a comparable susceptibility to fluctuations in abiotic 

conditions. Calculated C. officinalis Pmax of -22.35 (0.26) µmol (mg) DIC gDW-1 h-1 

is lower than maximal rates reported for fleshy Ulva and Dictyota species (2 - 11 mg 

C gDW-1 h-1) and Fucus and Laminaria species (0.3 - 1 mg C gDW-1 h-1), reflecting 

the high photosynthetic cost associated with large proportions of non-photosynthetic, 

calcified biomass (Lüning 1990).  
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Over tidal emersion periods, patterns in C. officinalis production highlight the 

inorganic carbon (Ci) acquisition ability of this calcified alga over a range of pCO2 

and HCO3
- concentrations, and the potential influence of irradiance. The majority of 

marine macrophyte species, including C. officinalis (Cornwall et al. 2012, Hofmann et 

al. 2014), possess the ability to utilize HCO3
- in addition to CO2 as an Ci source for 

photosynthesis (Koch et al. 2013). HCO3
- is utilized via conversion to CO2 by 

extracellular carbonic anhydrase (CA) (Invers et al. 1997, Badger 2003), or by direct 

anion exchange-mediated uptake (Larsson and Axelsson 1999), allowing access to the 

relatively high HCO3
- concentrations in seawater when CO2 diffusion is limiting 

(Koch et al. 2013). Maintenance of high productivity over July and September tidal 

emersion periods despite decreases in rock pool pCO2 of 84% and 39%, respectively, 

highlight the ability of C. officinalis to effectively utilize both CO2 and HCO3
- as 

substrates for photosynthesis. During December and March, however, when minimal 

irradiance prevailed, decreases in C. officinalis production over tidal emersion may 

have been caused by low-light inhibition of HCO3
- utilization. Productivity was not 

effectively maintained despite consistent irradiance and water temperature from the 

start to end of emersion. Under low light conditions, the ability of a species to utilize 

HCO3
- or to employ a carbon concentrating mechanism, i.e. CA or anion-exchange 

pump, is energetically limited, increasing the reliance on CO2 diffusion (Koch et al. 

2013). As such, C. officinalis productivity may have been sensitive to the relatively 

small decrease in rock pool pCO2 (ca. 30%) that occurred over December and March 

emersion periods.  

 

3.4.3 Corallina respiration 

Constant rates of daytime respiration between seasons and over tidal emersion periods 

demonstrated by the present study, highlight potential adaptation of C. officinalis 

respiration to temperature fluctuations (Kanwisher 1966), and thus the ability of this 

intertidal species to regulate its metabolism in a highly changing environment. 

Typically, respiration rates of macroalgae, as with photosynthesis, double with a 10oC 

increase in water temperature (Lüning 1990). For example, Martin et al. (2006) 

reported seasonal respiration cycles of L. corallioides, with a 3-fold increase in 

respiration during summer months. However, for some species, e.g. Chondrus 

crispus, winter respiration rates have been shown the equivalent of those during 

warmer (+10oC) summer conditions (Kanwisher 1966). During the present study, 
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seasonal increases in water temperature, e.g. 11oC between March and July, were not 

accompanied by a change in C. officinalis respiration, nor were temperature increases 

over summer tidal emersion periods. Our data thus suggest that C. officinalis is able to 

exert strong control over metabolism to maintain stable respiration in the face of 

highly fluctuating abiotic conditions. This is consistent with the observations of 

Guenther and Martone (2014) for Corallina vancouveriensis, whereby respiration 

rates of fronds were un-affected by temperature and desiccation treatments over a 

simulated tidal cycle.  

 

Night-time data were consistent with daytime observations, with no significant 

difference in respiration observed between March and July and no change over tidal 

emersion periods. A slight (R2 = 0.27) but significant relationship between night-time 

respiration and water temperature was, however, observed, due to elevated night-time 

respiration rates during September. This may indicate that by September, the ability of 

C. officinalis to maintain low respiration is reduced, perhaps as a function of 

cumulative stress experienced over the duration of summer. With a reduction in 

irradiance, and thus relief from summer photo-stress, and decrease in water 

temperature, C. officinalis respiration is able to return to lower rates during December 

and March. 

 

Comparison of daytime net production and respiration rates indicates seasonal and 

tidal shifts in the physiological balance (net photosynthesis: respiration) of C. 

officinalis. This is important given that the growth performance of macroalgae 

depends upon the net excess of photosynthesis above respiration (Kanwisher 1966). 

At a seasonal resolution, C. officinalis net production was roughly 12-times 

respiration during summer (July), decreasing to 2.5-times respiration during winter 

(December), with an overall Pmax to respiration (c) calculated across all data of 6.79 

(Table 3.4, Model 1). Across several intertidal fleshy macroalgae taxa, Kanwisher 

(1966) observed maximum rates of photosynthesis to be 20-times that of respiration. 

Lower values in comparison to fleshy macroalgae presumably represent the 

aforementioned photosynthetic costs associated with calcified algal forms (Lüning 

1990).  
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Over tidal emersion periods, consistent decline in net production to respiration ratios 

indicated emersion effects on the physiological balance of C. officinalis during the 

present study. During July and September, production decreased from 12 to 7-times 

and 6.5 to 2-times respiration, respectively. The most extreme decreases were 

observed over December and March tidal emersion periods, with production rates 

falling below respiration by the end of tidal emersion in both months; respiration 

reaching 1.02-times and 4.76-times production at the end of tidal emersion during 

December and March, respectively. Our data thus highlight that C. officinalis 

physiology is negatively affected by changes in its abiotic environment occurring over 

tidal emersion periods, particularly during colder, low-light periods.   

 

3.4.4 Corallina calcification  

Quantification of C. officinalis calcification across seasons and tidal emersion periods 

allowed for delimitation of the varying influences of biology and abiotic conditions. 

Calcification was highly predictable (R2 = 0.80) by irradiance, water temperature and 

carbonate chemistry, providing a calculated NGmax of 3.94 µmol CaCO3 gDW-1 h-1 

and an Ek of 113.45 µmol photons m-2 s-1 across the annual cycle. Light calcification 

thus saturated at lower irradiances than production, and was light-saturated across the 

entire study period with one exception (end of December tidal emersion). Irradiance 

was the greatest predictor of calcification accounting for 76% of the variability in data 

if considered alone, likely due to photosynthetic enhancement of calcification (see 

below), with temperature and carbonate chemistry accounting for a further 4% of 

variability observed; though again, correlation between predictors likely decreased 

ability to assess relative influence.  

 

Significant light-enhanced calcification was observed across the entire year, with 

maximal light-calcification rates during July and September in comparison to 

December and March (Figure 3.7). The seasonal range of light-calcification (1.7 

(0.17) – 4.6 (0.46) µmol (mg) CaCO3 gDW-1 h-1) was significantly higher than 

reported for maerl species, e.g. L. corallioides (0.38 – 0.60 µmol CaCO3 gDW-1 h-1) 

(Martin et al. 2006), and lower than reported for Ellisolandia elongata from the 

Mediterranean (0.9 mg CaCO3 gDW-1 h-1) (El Haïkali et al. 2004). Light-enhanced 

calcification is typical for calcifying macroalgae and is a product of light-dependent 

increase in carbonate saturation at the site of calcification due to photosynthetic 
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activity (Littler 1976, Koch et al. 2013). In the Corallinales, calcification takes place 

in the cell wall, from which CO2 (and potentially HCO3
-) uptake by adjacent cells for 

photosynthesis increases the pH, shifting the carbonate equilibrium in favour of CO3
2- 

saturation and CaCO3 precipitation (Littler 1976, Borowitzka 1982, Koch et al. 2013). 

CaCO3 precipitation produces CO2, which can subsequently be taken up by adjacent 

cells and used in photosynthesis (Koch et al. 2013). Photosynthetic enhancement of C. 

officinalis calcification during the present study is strongly supported by the 

significant correlation identified between the two processes (R2 = 0.65) (Figure 3.10), 

as was also observed by Pentecost (1978). Additionally, given a lack of increase in 

calcification rates over summer emersion despite significant increases in rock pool pH 

and CO3
2- concentrations, our data highlight that internal, as opposed to external, 

enhancement of CO3
2- saturation was the dominant influence on calcification rate. As 

the relationship between production and calcification did not saturate, we would 

expect further increase in calcification with increases in productivity. With decreases 

in production over daytime emersion e.g. during March, an un-coupling between 

calcification and production inferred either a role of external CO3
2- saturation in 

maintenance of calcification rates, or that minimal levels of production were sufficient 

to maintain increased internal CO3
2- saturation at the site of calcification (Figure 3.7). 

 

In contrast to light calcification, daytime dark calcification rates were significantly 

correlated to rock pool water carbonate chemistry (R2 = 0.61) and water temperature 

(R2 = 0.39), mimicking abiotic CaCO3 precipitation dynamics (Millero 2007, Ries 

2009), with positive values demonstrating net CaCO3 precipitation on multiple 

occasions under dark conditions (Figure 3.7). CaCO3 precipitation in the dark has 

been documented for calcifying macroalgae (e.g. Pentecost 1978, Borowitzka 1981, 

Gao et al. 1993, Lee and Carpenter 2001, de Beer and Larkum 2001, Martin et al. 

2006), typically at a lower rates (e.g. 10 – 40 %) than light calcification (Pentecost 

1978, Borowitzka 1981), and has been attributed to a belated biological activity after 

a passage from light to dark conditions (Pentecost 1978, Martin et al. 2006).  As 

temperature, pH and CO3
2- concentration increased over March, July and September 

tidal emersion periods, initially negative (indicating net dissolution) or low positive 

dark calcification rates increased significantly over tidal emersion, to levels 40 - 46% 

of light calcification during July and September. During December, dark calcification 

rates indicated slow net dissolution across the entire emersion period at a rate ca. 6 - 
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11 % of light calcification, while in contrast, net CaCO3 precipitation in the dark was 

sustained across the entire daytime and night-time (see below) emersion periods 

during July. Our data thus indicate that C. officinalis dark calcification can be 

significantly exaggerated under conditions of rock pool water CO3
2- super-saturation.  

 

During night-time tidal emersion, a balance between ambient rock pool water CO3
2- 

concentration and respiration processes regulated the direction (precipitation vs. 

dissolution) of C. officinalis calcification. In March, low rates of net CaCO3 

dissolution were observed over night-time emersion, likely due to the overall seasonal 

minimum of CO3
2- saturation prevailing. Conversely, July night-time calcification 

was positive, demonstrating low but sustained CaCO3 precipitation across the entire 

emersion period. Given the duration of darkness across which net CaCO3 precipitation 

was observed (h), it is unlikely that belated biological activity from daylight periods 

was responsible. As such, seasonally high pH and CO3
2- saturation, in combination 

with low respiration rates, which can promote CaCO3 dissolution via internal 

generation of CO2 (Koch et al. 2013), likely allowed maintenance of favorable 

internal pH conditions, promoting CaCO3 precipitation. During September, increased 

respiration rates dominated over seasonally high rock pool water pH and CO3
2- 

saturation, resulting in maximal rates of CaCO3 dissolution over night-time emersion.  

Conserved respiration across seasonal and tidal fluctuations in abiotic parameters 

highlighted by the present study, may thus be an adaptation of C. officinalis to 

maintain a favorable balance between CaCO3 precipitation and dissolution, 

particularly during dark conditions.  

 

Calcification and dissolution rates of calcifying macroalgae are likely to be negatively 

impacted by future OA (Koch et al. 2013, Chapter 1). By observing patterns in these 

processes in relation to the current abiotic environment experienced by species, it is 

possible to make projections of the changes expected under high CO2 conditions. 

Given the strong coupling observed between light-calcification and photosynthesis, 

the findings of the present study indicate that light-calcification rates of Corallina will 

likely be maintained as OA proceeds. While CO3
2- concentrations will decrease with 

ongoing OA, data presented here indicate that photosynthetic enhancement of 

calcification, as opposed to seawater CO3
2- concentration, is the main determinant of 

light-calcification rates in Corallina. As photosynthetic rates of macroalgae are 
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projected to be maintained, or even increase, under OA conditions (Koch et al. 2013), 

photosynthetic enhancement of Corallina calcification will persist. This will further 

be aided by continued creation of high pH and CO3
2- saturation conditions in rock 

pools during daytime tidal emersion, driven by maintained (or increased) community 

photosynthesis.  

 

In contrast, increased dissolution of Corallina during nighttime emersion periods is 

projected based on the findings of this study. Data indicated that the degree of  

CaCO3 dissolution occurring over nighttime emersion was dependent on the ambient 

seawater CO3
2- saturation, and internal generation of CO2 by respiration. Although it 

is unlikely that Corallina and Ellisolandia respiration rates will increase with future 

OA (Hofmann et al. 2012b, Egilsdotttir et al. 2013, Noisette et al. 2013), and indeed 

Corallina demonstrates low, conserved rates of respiration across seasons and tidal 

emersion periods, declines in seawater pH and CO3
2- saturation with OA will likely 

exacerbate night-time dissolution. This will be particularly evident during winter 

periods when the seasonal minima in seawater pH and CO3
2- saturation are observed. 

Given that daytime calcification rates are also restricted during winter periods by 

irradiance and temperature limitations on photosynthetic rate, Corallina and 

Ellisolandia species will be most vulnerable to- and impacted by- future OA during 

winter months. These impacts will likely lead to a reduction in net growth during 

winter periods, as is currently observed under present-day climate conditions (see 

below), with potential implications for the outcomes of competitive interactions with 

other rock pool inhabiting macroalgae.  

 

3.4.5. Seasonal and latitudinal gradients in Corallina growth 

A prerequisite for macroalgal growth is that the energy trapped, and carbon fixed, 

must exceed the totals used in respiration (Lobban and Harrison 1994). For calcifying 

macroalgae, growth increment must therefore reflect the net outcome of 

photosynthesis, respiration and calcification activities, minus any loss due to frond 

damage or grazing. As such, examination of the seasonal growth increment of C. 

officinalis in combination with assessment of physiology, allowed for validation of 

data and true representation of the net outcome for growth. In addition, our data 

present the first quantification and comparison of C. officinalis and C. caespitosa 
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growth across a full seasonal cycle, and assessment of growth of the two species 

across latitudinal gradients in abiotic parameters.  

 

In the UK intertidal, in-situ staining demonstrated that C. officinalis growth was 

maintained across the entire year. Decreases in growth were apparent during winter 

periods (December to March, 0.13 % planform area cm-2 d-1), whilst growth was 

relatively stable growth across the remainder of the year (range from 0.17 - 0.22 % 

planform area cm-2 d-1). Reduced production, net production to respiration ratios, and 

calcification recorded by the present study during December and March, thus 

translated into a net decrease in C. officinalis growth, while no significant difference 

in production and calcification between July and September were equally represented 

by maintenance of growth rates across these periods. Staining data thus confirm 

down-turn in C. officinalis metabolism during winter periods, though maintenance of 

relatively stable growth across the remainder of the year despite significant abiotic 

fluctuations. These data indicate that the alga is well adapted to life in the highly 

fluctuating intertidal environment in which it is found. 

 

Stronger seasonality and higher rates of growth were observed in C. caespitosa as 

compared to C. officinalis at Combe Martin, with maximal growth during the periods 

June to October 2013 and June to September 2014 (0.30 and 0.26 % planform area 

cm-2 d-1, respectively), and minimal growth also during December to March (0.19 % 

planform area cm-2 d-1). These data support previous suggestions that growth rates 

may not be generalizable among congeneric coralline species (Fisher and Martone 

2014). C. caespitosa frequently grows in the uppermost parts of pools in the mid 

intertidal of semi-exposed shores, and appears to be more tolerant of these conditions 

than C. officinalis, which tends to occur lower down the shore or deeper in pools 

(Chapter 1, section 1.8.). This study represents the first demonstration of a 

physiological difference between these two species, which were only recently 

taxonomically separated (Walker et al. 2009, Brodie et al. 2013). Further investigation 

is required to establish the underlying mechanisms driving differences identified. 

 

Latitudinal gradients in Corallina growth are indicated by the present study for both 

C. officinalis and C. caespitosa (Figure 3.12). While organisms may be presented with 

a mosaic pattern of environmental stress across their range rather than a simple 
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latitudinal gradient (Helmuth 2006), across the NE Atlantic, irradiance, temperature 

and carbonate chemistry can be assumed to generally decrease with increasing 

latitude (Littler 1976, Kirk 1994, Lobban and Harrison 1994, Egelston et al. 2010, 

Beaugrand 2014). While it is not possible to delimit the relative roles of different 

abiotic stressors in generating the observed latitudinal gradients in growth, our data do 

confirm that ultimately, large-scale gradients in abiotic parameters translate into 

growth differences across Corallina species’ ranges. These differences are also 

reflected in the relative abundance of Corallina across latitudes; for example, C. 

officinalis is restricted to rock pools in Iceland, existing as a small turf, while the 

entire intertidal (rock pools and exposed rock) are covered in an abundant Corallina 

and Ellisolandia community in northern Spain (Chapter 1, section 1.8). Evidence 

presented in Chapter 2 indicated that C. officinalis is at its southern boundary in 

northern Spain, while C. caespitosa may be exhibiting a range expansion in the UK. 

Growth data indicate that C. caespitosa has significantly increased growth at lower 

warmer latitudes, and the potential for higher growth than C. officinalis in the UK. As 

such, with warming SSTs due to climate change, we may expect an increase in the 

relative abundance of C. caespitosa in the UK intertidal, in comparison to the more 

cold-temperate C. officinalis (see Chapter 6).  

 

Previous studies into coralline algal growth have noted a decrease in growth rate with 

increasing frond size due to determinate growth patterns, i.e. a decrease in growth rate 

occurs as organisms approach their maximum size (Johansen and Austin 1970, 

Martone 2010). During the present study, no relationship between frond size and 

growth rate was observed for either Corallina species, in any study site; as also seen 

for three articulated corallines (including C. vancouveriensis) studied over a 29 d 

summer period (Fisher and Martone 2014). Our data thus agree with the findings of 

Fisher and Martone (2014) that the species studied exhibited primarily indeterminate 

growth, either as no predetermined maximum size exists, or that maximum size is not 

attained in the habitat studied. Martone and Denny (2008) demonstrated that 

articulated corallines experience greater wave-induced drag forces as they increase in 

size, ultimately leading to dislodgement of large plants and constraining maximum 

size. In Iceland and northern Spain, a net loss in frond biomass observed from January 

to April and December to February, respectively, demonstrated frond damage likely 

caused by winter storms. In addition to complete plant dislodgement, this will have 
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served to restrict maximum size in these sites. In Combe Martin, bleaching of fronds 

during summer and consequent mortality also likely serves to restrict maximum size 

(Williamson, pers. obs.).  

 

In-situ growth of Corallina has previously been determined over durations ranging 

from 1 to 6 months, with rates based on linear extension of 1.4 – 2 mm month-1 

reported (Andrake and Johansen 1980, Blake and Maggs 2003, Martone and Fisher 

2014). In this study, growth was quantified as percent planform area cm-2 d-1, as 

Martone (2010) demonstrated that change in planform area is more ecologically 

informative; increases in area represent increased light interception for 

photosynthesis, risk of breakage due to drag, CaCO3 deposition and reproductive 

potential (Martone 2010). While this prevents direct comparison to previous studies 

on Corallina, our data are consistent with slow rates of geniculate coralline growth in 

comparison to e.g. fleshy macroalgae (Fisher and Martone 2014). For example, 

Lüning (1990) reported in-situ growth rates of Gracilaria species or juvenile plants of 

Macrocystis pyrifera of ca. 10% increase d-1. In comparison, the highest mean growth 

rate observed during the present study was 1.2 % planform area cm-2 d-1, roughly one 

tenth. Kanwisher (1966) estimated the time required for fleshy macroalgal species to 

double their biomass, with rates ranging from 1 day for Ulva species up to 5 days for 

Ascophyllum nodosum. Based on the maximum mean growth rate recorded for C. 

officinalis in Combe Martin (0.22 % planform area cm-2 d-1), our data would indicate 

an approximate doubling duration of 454 days at optimum growth conditions. These 

differences in physiology and growth between calcified and fleshy macroalgal species 

will likely have important consequences for the relative dominance of groups as OA 

and climate change proceed (Koch et al. 2013; Brodie et al. 2014).  

 

3.5. Conclusions 

This study provides the first quantification of Corallina officinalis physiology 

(production, respiration and calcification) in intertidal rock pools in relation to the 

prevailing seasonal and tidal fluctuations in key abiotic stressors (irradiance, 

temperature and carbonate chemistry). Additionally, the first quantification of C. 

officinalis and C. caespitosa growth in-situ over a complete seasonal cycle and across 

latitudes is presented. Data demonstrate that: 
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1. Corallina currently experience significant seasonal and tidal fluctuations in 

abiotic conditions that may be important when considering future responses to 

climate change and OA. 

2. C. officinalis demonstrates irradiance- and temperature-driven seasonal cycles 

in production, at significantly greater/lower rates than maerl/fleshy macroalgal 

species, respectively.  

3. C. officinalis can effectively access seawater HCO3
- concentrations to drive 

production during periods of CO2 limitation, though this ability is potentially 

restricted by low-light conditions. 

4. Strong metabolic regulation of C. officinalis respiration across both seasonal 

and tidal fluctuations in abiotic conditions is suggested, which may be 

important in promoting favorable internal pH conditions that facilitate CaCO3 

precipitation, particularly during dark periods.  

5. Decreased net production to respiration ratios during winter months and over 

tidal emersion periods, indicate increased metabolic stress in C. officinalis 

associated with prevailing abiotic conditions. 

6. C. officinalis light calcification rates are driven by light-dependent 

photosynthetic enhancement of CO3
2- saturation at the site of CaCO3 

precipitation, and vary seasonally with changes in light, temperature and 

carbonate chemistry. 

7. CaCO3 precipitation in the dark can be significant, with the direction of dark 

calcification (precipitation vs. dissolution) dependent on a balance between 

ambient rock pool water CO3
2- saturation and internal respiration processes. 

8. C. officinalis growth is relatively stable across the entire year, approximately 

one-tenth the rate of fleshy macroalgal species, though decreases during 

winter months. In the UK, C. caespitosa shows greater seasonality and 

consistently increased growth rates as compared to C. officinalis.  

9. Latitudinal gradients exist in Corallina species’ growth rates, likely in relation 

to gradients in abiotic stressors, which may have potential implications for the 

relative abundances of Corallina species under future climate change 

conditions.  
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3.6. Supplementary Figures 
 

 
Supplementary Figure 3.1: Least squares linear regression of C. officinalis net 
production (NP), daytime respiration (RDAY) and night-time respiration (RNIGHT) in 
relation to rock pool water temperature (left column) and carbonate chemistry (as PC1 
day or night, right column), showing the proportion of variance explained by 
significant regressions (R2), the overall model significance (P), 95 % confidence 
intervals (red dashed lines), regression coefficients (with standard error in 
parentheses), and significance of coefficients (* P <0.05, ** P < 0.01, *** P < 0.001). 
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Supplementary Figure 3.2: Least squares linear regression of C. officinalis daytime 
light calcification (NGDAY-LIGHT), daytime dark calcification (NGDAY-DARK) and night-
time dark calcification (NGNIGHT) in relation to rock pool water temperature (left 
column) and carbonate chemistry (as PC1 day or night, right column), showing the 
proportion of variance explained by significant regressions (R2), the overall model 
significance (P), 95 % confidence intervals (red dashed lines), regression coefficients 
(with standard error in parentheses), and significance of coefficients (* P <0.05, ** P 
< 0.01, *** P < 0.001). 
 



 108 

Chapter 4: Corallina and Ellisolandia photophysiology across the NE Atlantic: 

seasonal, tidal and latitudinal photoacclimation and photoregulation strategies.  

 

4.1. Introduction  

Irradiance is an essential, yet highly variable, resource for macroalgal growth and 

survival (Henley and Ramus 1989). In the intertidal, fluctuations in irradiance occur 

over a variety of time scales, ranging from seconds or less due to sunflecks (Dera and 

Gordon 1968), large diurnal changes due to cloud cover, tides and the angle of the sun 

(Lobban and Harrison 1994), to seasonal-scale variations that are both predictable 

(changes in day-length and solar angle) and unpredictable (cloudiness, turbidity and 

run-off) (Henley and Ramus 1989, Lobban and Harrison 1994). Intertidal species 

must cope with large gradients in irradiance that depend on both the daily course of 

solar irradiance, and the tidal range and temporal coincidence of maximum irradiance 

at mid-day with the timing of low tide (Goss and Jakon 2010). For a benthic 

macroalga in a fixed position in the intertidal zone, the challenge is therefore to 

optimize the use of the variable irradiance regime experienced (Henley and Ramus 

1989). 

 

To complicate this further, the quantity of photosynthetically active radiation (PAR, 

ca. 400 – 700 nm) experienced by intertidal macroalgae is often far in excess of that 

needed to saturate photosynthesis, particularly during summer periods (Franklin and 

Forster 1997). In most intertidal macroalgae, the photochemical apparatus operates to 

optimize photosynthesis at low light levels associated with immersion, with the result 

that emersed plants are exposed to a large excess of light energy (Davison and 

Pearson 1996). At high fluence rates, when photosynthesis is saturated, an excess of 

absorbed energy can damage the photosynthetic apparatus (Hänelt et al. 1993). For 

example, excess irradiance can lead to photo-oxidative damage via increased 

production of reactive oxygen species, and in extreme cases, this can cause pigment 

bleaching and death (Muller et al. 2001). As such, macroalgae must respond to 

changes in irradiance intensity in a manner that optimizes photosynthesis and growth, 

while controlling for potential stress (Muller et al. 2001).  

 

Three general processes allow algae to cope with their irradiance regimes: adaptation, 

acclimation and regulation (Huot and Babin 2011). Photoadaptation refers to a long-
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term selection process in response to irradiance, ultimately resulting in genetically 

different ecotypes (Huot and Babin 2011, Beer et al. 2014). In contrast, 

photoacclimation is a plastic response to change in the light field, e.g. addition or 

removal of pigments (Huot and Babin 2011, Beer et al. 2014). A species that is 

photoacclimated to a specific light regime may further need to rapidly tune their 

photosynthetic efficiency due to rapid changes in the light field, this is achieved by 

photoregulation (Huot and Babin 2011). Over the range of fluctuations in irradiance 

that are experienced by an intertidal macroalgae, photoacclimation and 

photoregulation serve to prevent or minimize photoinhibition, whereby excess 

irradiance becomes inhibiting or even damaging to the photosystem complexes 

(Consalvey et al. 2005), mainly due to damage of the D1 protein of photosystem II 

(PSII) (Beer et al. 2014).  

 

 
Figure 4a: (a) Schematic of photosynthetic unit (PSU) encompassing the light 
harvesting antenna pigment molecules (left side) and photosystem II (PSII) (right 
side) with its associated reaction centre (RC) and electron transfer chain. As photons 
(Ph) are absorbed by pigment molecules (PM) of the antenna in the thylakoid 
membrane (open circles on left), energy released by de-excitation is funnelled towards 
the RC (filled circle on right). As the RC chlorophyll (RC Chl) becomes excited, 
electrons are transferred to a primary electron acceptor (charge separation). (b) 
Photoacclimation to low light through (upper) increasing the size of the PSU or 
(lower) increasing the number of PSUs per cell. Schematics adapted from Beer et al. 
(2014). 
 

Photoacclimation is typically achieved by either an alteration of the ‘size’ of 

photosynthetic units (PSU; referring here to PSII and associated antennae pigments 

serving the reaction centre, Figure 4a), i.e. an alteration in the ratio of chlorophyll to 

PSII, or by an alteration in the number of PSUs (Figure 4a) (Falkowski and LaRoche 

1991, Muller et al. 2001, Beer et al. 2014). Morphologically, photoacclimation is 
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achieved by changes in cell volume, the number and density of thylakoid membranes, 

the size of pyrenoids, and the number of plastids per cell (see Falkowski and LaRoche 

1991). On a cellular level, there are changes in pigment and lipid content and 

composition (Falkowski and LaRoche 1991). For example, when algae experience a 

decrease in irradiance, cells must harvest more light to maintain growth rates, which 

can be achieved by an increase in light harvesting chlorophyll protein complexes, i.e. 

an increase in the size of PSU (Falkowski and LaRoche 1991, Talarico and 

Maranzana 2000). Conversely, large light harvesting antennae can be a liability when 

irradiance is abundant or excessive (Muller et al. 2001), thus the cell quota of 

pigments and light harvesting chlorophyll protein complexes decreases (Falkowski 

and LaRoche 1991). Overall, photoacclimation results in changes in the minimum 

quantum requirement for photosynthetic oxygen evolution, respiration and growth 

rate (Falkowski and LaRoche 1991).  

 

In order to prevent photoinhibition during short-term (seconds to hours) irradiance 

fluctuations, photoregulation processes provide a ‘photoprotective-network’ to safely 

dissipate the excess of absorbed light energy as heat and/or to balance the excitation 

energy within the photosynthetic apparatus to prevent or lower potential damage 

(Lavaud and Lepetit 2013). Non-photochemical quenching (NPQ) is one such means 

of photoregulation that quenches photochemistry through non-photochemical 

processes e.g. conversion of many of the excitations in the antennae complex to heat 

(Consalvey et al. 2005). NPQ relies on a build-up of a trans-thylakoid proton gradient, 

the inter-conversion of xanthophyll pigments and the presence of specific 

polypeptides of the light-harvesting antennae (Lavaud and Lepetit 2013). During 

NPQ, the light-driven de-epoxidation of specific xanthophyll pigments (typically 

violaxanthin, anteraxanthin and zeaxanthin) and the dark recovery of the initial pool, 

termed the xanthophyll cycle, is associated with thermal energy dissipation (Demmig-

Adams and Adams 1996, Goss and Jakob 2010, Esteban et al. 2009). For intertidal 

macroalgae exposed to excessive irradiance during periods of tidal emersion, NPQ 

has been shown to be an effective photoregulatory mechanism, with maximal NPQ 

observed under high irradiance at low tide in the kelp Saccharina latissima (as 

Laminaria saccharina; Gevaert et al. 2003). At present, however, the existence of a 

fully operative xanthophyll cycle in red macroalgae remains unclear (Goss and Jakob 

2010).   
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Non-destructive chlorophyll a (chl a) fluorescence measurements have become a 

popular means to examine the photophysiology of macroalgae in-situ (see Enriquez 

and Borowitzka 2011), allowing for detailed examination of photoacclimation and 

photoregulation processes (Consavely et al. 2005, Cosgrove and Borowitzka 2011, 

Beer et al. 2014). When irradiance strikes a macroalgal frond, the energy absorbed by 

a photosystem and its light harvesting complex can be used/dissipated through one of 

three competing pathways; (i) photochemistry (primary charge separation and 

photosynthetic electron transfer), (ii) thermal dissipation (non-radiative decay), or (iii) 

fluorescence emission (Cosgrove and Borowitzka 2011 and references therein). The 

sum of the quantum yields (i.e. yield per photons absorbed, or quantum efficiency) of 

these processes is unity, such that measurement of the fluorescence yield reflects 

changes in the other two complementary pathways (Consalvey et al. 2005, Cosgrove 

and Borowitzka 2011). At room temperature most of the fluorescence is emitted from 

the light harvesting complexes of PSII (Consalvey et al. 2005). In the transfer of 

electrons through PSII, oxidation/reduction of the quinone QA is the rate-limiting step, 

thus fluorescence measurements effectively relate to this state. (Cosgrove and 

Borowitzka 2011).  

 

Pulse-amplitude modulated (PAM) fluorometry is one method to measure chl a 

fluorescence that allows for discrimination between fluorescence yields and the 

actinic light provided to drive photochemistry (Consalvey et al. 2005, Beer et al. 

2014). Inferences about photosynthetic efficiency, electron transport and NPQ can be 

made via measurement of the minimum and maximum fluorescence yields in both the 

dark-adapted state and under conditions of actinic light (Consalvey et al. 2005). Due 

to simplicity and convenience, rapid light response curves (RLCs, Perkins et al. 2006) 

performed using PAM-fluorometry have been extensively used for the study of the 

photosynthetic performance of marine macrophytes (Enriquez and Borowitzka 2011). 

During a RLC, organisms are exposed to increasing steps of actinic irradiance ranging 

from 0 (i.e. darkness) to levels above light saturation of photosynthesis, providing 

information on energy use from limiting through to saturating levels of irradiance 

(Ralph and Gademann 2005, Perkins et al. 2006, Perkins et al. 2010). 
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In this thesis I have demonstrated that Corallina officinalis production is essentially 

light-saturated for the majority of the annual cycle (Chapter 3 - Figure 3.9, Table 3.4). 

During summer periods, C. officinalis maintained high production rates despite 

ambient irradiance ca. 4x estimated Ek values, while during winter and over tidal 

emersion periods, decreases in net production to respiration ratios indicated increased 

stress (Chapter 3 - Figures 3.7 & 3.8). While C. officinalis was able to maintain a 

relatively constant growth rate over the seasonal cycle (Chapter 3 - Figure 3.11), 

latitudinal gradients and interspecific differences in growth were highlighted (Chapter 

3 - Figures 3.11 & 3.12). It would follow, therefore, that C. officinalis and other 

intertidal Corallina species have photoacclimation and photoregulation mechanisms 

that allow them to both utilize energy from the variable light regime, while protecting 

themselves against stress and photoinhibition. In addition, differential photoadaptation 

between species and across latitudes may explain observed differences in species 

distributions (Chapter 2) and growth rates (Chapter 3).  

 

The aim of the present study was therefore to use RLCs performed with PAM-

fluorometry to examine the photophysiology of intertidal Corallina and Ellisolandia 

species in order to assess potential tidal, seasonal and latitudinal photo-acclimation 

and regulation mechanisms, and the potential for differential photoadaptation between 

species and across latitudes. The photophysiology of Corallina officinalis and C. 

caespitosa was quantified in-situ at regular intervals across a full seasonal cycle in the 

UK intertidal, and both Corallina and Ellisolandia species photophysiology was 

examined in-situ across tidal emersion periods and seasons at three latitudes. To 

compliment in-situ analyses and allow determination of optimal photophysiology, 

induction and relaxation kinetics of Corallina and Ellisolandia photochemistry were 

followed ex-situ under laboratory conditions across seasons and latitudes. This study 

represents the first large-scale analysis of Corallina and Ellisolandia photophysiology 

in the NE Atlantic, and explains how photoacclimation and photoregulation processes 

enable Corallina and Ellisolandia species to persist in their current ecological niches. 
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4.2. Methods 

To examine the photophysiology of Corallina and Ellisolandia species across the NE 

Atlantic, three main experiments were performed. Firstly, seasonal patterns in 

photophysiology were assessed by RLC examination of Corallina officinalis and C. 

caespitosa in-situ in upper shore rock pools of the UK intertidal at Combe Martin 

(CM), north Devon, during January, March, June and September 2012 (Table 4.1). 

Secondly, variability in photophysiology over tidal emersion periods was assessed 

using RLCs performed in-situ at the start, middle and end of daytime tidal emersion 

periods during summer (September) and winter (February) in upper shore CM rock 

pools, and across summer (July/August) and autumn (September/October) tidal 

emersion periods in Þorlákshöfn Iceland (ICE) (C. officinalis), and in two sites in 

northern Spain, Comillas (COM) and A Coruña (COR), where a mixture of C. 

officinalis, C. caespitosa and E. elongata were assessed dependent on season (Table 

4.2). Thirdly, assessment of Corallina and Ellisolandia species photophysiology over 

RLCs and during dark recovery was performed ex-situ for all species from respective 

sites, across different seasons, to aid in identification of longer-term seasonal, 

interspecific and latitudinal differences in photophysiology (Table 4.2).  

 

 

 

Table 4.1: Sampling details of seasonal photophysiology assessment at Combe 
Martin, UK, showing the dates of sampling, the species examined during all sampling 
dates, and the location of species examined within Combe Martin. CD = Chart Datum 
(the level of the lowest astronomical tide, LAT). 
Sampling dates Species examined Location of species examined 
27.01.12 

C. officinalis 
Upper shore rock pools (ca. 5.3 – 5.6 m above 
CD, from upper 5 cm of vertical rock pool 
walls 10.03.12 

20.06.12 
C. caespitosa 

Upper shore rock pools (ca. 5.3 – 5.6 m above 
CD, from upper 2 cm of vertical rock pool 
walls 03.09.12 
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Table 4.2: In-situ and ex-situ photophysiology study details, showing the date of in-situ sampling, low tide time with tidal height in parentheses 
(m, relative to chart datum, the level of the lowest astronomical tide, LAT) for respective seasons, the species present at each site (rp = rock pool, 
exp = exposed substratum), the seasons in which in-situ photophysiology assessment was performed per species (Sum = summer, Aut = autumn, 
Wint = winter), and the collection dates per site of respective species for ex-situ photophysiology assessment.  
 Þorlákshöfn, Iceland Combe Martin, UK Comillas, Spain A Coruña, Spain 
In-situ sampling details 
 Date Low tide Date Low tide Date Low tide Date Low tide 
Summer 17.07.12 11:27 (0.70) 02.09.12 12:49 (1.1) 13.08.13 14.00 (1.6) 12.08.13 13:21 (0.9) 
Autumn / Winter 05.09.13 12:25 (0.24) 10.02.13 12:00 (0.8) 19.10.12 13:23(1.1) 17.10.12 12:00 (0.3) 
In-situ species details 

 Species 
present 

Season 
assessed 

Species 
present 

Season 
assessed Species present Season 

assessed 
Species 
present 

Season 
assessed 

 C. officinalis Sum/Aut C. officinalis Sum/Wint C. caespitosa Sum/Aut C. caespitosa Sum/Aut 
   C. caespitosa Sum/Wint E. elongata (rp) Sum/Aut E. elongata Sum/Aut 
     E. elongata (exp) Sum/Aut C. officinalis Aut 
     C. officinalis Sum   
Ex-situ sampling details 
 Collection Dates Collection Dates Collection Dates Collection Dates 
 17.07.12 21.10.13 19.10.12 16.10.12 
 05.09.13 17.03.14 13.08.13 11.08.13 
  02.07.14   
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4.2.1. In-situ photophysiology assessment 

For both seasonal (at CM) and tidal (at ICE, CM, COM and COR) assessment of 

Corallina and Ellisolandia species photophysiology, algal fronds for RLC analysis 

(Perkins et al. 2006) were randomly selected from the upper 5 cm of rock pool walls 

to allow some degree of continuity in the light field experienced, with three 

exceptions: (i) C. caespitosa at CM was sampled from a ca. 2 cm narrow zone in 

which it is found along the upper water line of upper shore rock pools, (ii) C. 

caespitosa at COM was assessed from very shallow (ca. 2 cm deep) water covered 

areas of the upper intertidal, and (iii) completely air exposed E. elongata fronds were 

assessed at COM in addition to rock pool inhabiting E. elongata (Table 4.2). RLCs 

were performed on the tips of all fronds to avoid potentially self-shaded frond 

regions, and on the side of fronds facing direct sunlight, as the underside of fronds 

likely demonstrate differential photoacclimation. For both experiments, RLCs were 

performed using a Walz Water-PAM fluorometer using a saturating pulse at a setting 

of ca. 8,600 µmol photons m-2
 s-1 PAR, for 600 ms duration, and with nine 30 s 

incrementally increasing light steps from 0 to 1,944 µmol photons m-2 s-1 PAR. A 2 

mm wave guard was attached to the Water-PAM fibre-optic and auto-zeroing against 

a non-fluorescent background was performed prior to RLC determination. Light step 

duration was selected to balance potential photoregulation occurring during longer 

light steps (60 s), with errors associated with shorter light steps (10 s) when samples 

have been exposed to high light (Perkins et al. 2006).  

 

For seasonal assessment of photophysiology at CM, RLCs were performed on n = 5 

randomly selected Corallina fronds (as above) immediately at the start of tidal 

emersion periods. The order of RLC determination was randomized across species to 

minimize any time effect on RLC data. For tidal emersion photophysiology 

assessment, at CM and ICE, RLCs were performed on n = 3 fronds randomly selected 

from each of three upper shore rock pools, respectively, at the start, middle and end of 

tidal emersion periods. Start and end emersion periods were defined as being within 

1.5 hr of tidal isolation (start) and tidal reconnection (end) of the rock pool to the 

main tidal water mass. Middle emersion period was defined as the time midway 

between the start and end of emersion measurements. At COM and COR, given the 

higher number of species present and time constraints of measurements in the field, 

RLCs were performed on n = 3 fronds of each species (or for E. elongata in COM, 
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each ecotype, i.e. rock pool inhabiting and air-exposed) sampled on the shore, at the 

start, middle and end of tidal emersion.  

 

In parallel to all RLC determination, the ambient photosynthetically active radiation 

(PAR, µmol photons m-2 s-1) and rock pool water temperature (oC) were measured at 

regular intervals using a 2 pi LI-COR cosine-corrected quantum sensor positioned ca. 

5 cm above the surface of rock pools and a digital thermometer, respectively. For each 

PAR measurement, a 15 s average was taken using an automated function on the 

sensor. The average irradiance and temperature across the sampling period or for the 

start, middle and end of tidal emersion periods was calculated as the average of all 

measurements taken across respective periods.  

 

4.2.2. Ex-situ photophysiology assessment 

Ex-situ assessment of Corallina and Ellisolandia photophysiology was performed 

during the present study to allow determination of photoacclimation and regulation 

dynamics under less influence of in-situ abiotic conditions, thus permitting easier 

identification of longer-term seasonal, interspecific and latitudinal patterns in 

photochemistry. Ex-situ RLCs and recovery were performed for n = 3 C. officinalis 

and C. caespitosa samples from CM during winter (early March), summer (July) and 

autumn (October), and for n = 3 samples of all species present at ICE, COM and COR 

during summer (July/August) and autumn (September/October), respectively (Table 

4.2). Unfortunately instrument malfunction prevented ex-situ RLCs and recovery of 

C. caespitosa during summer from CM.  

 

In all sites and during all seasons, n = 3 discrete samples of each Corallina and 

Ellisolandia species/ecotype investigated was sampled by hand from the intertidal at 

the end of tidal emersion. Samples were placed separately into 1L containers 

containing site seawater obtained from rock pools at the time of sampling and 

transported immediately in darkness to laboratory facilities. In the laboratory, samples 

were left submerged in site seawater in 1L aquaria for a further 1 h in darkness to 

allow re-oxidation of QA, relaxation of NPQ and PSII repair (Ralph and Gademann 

2005); seawater was replenished every ½ h. Following the 1 h dark adaptation period, 

ex-situ RLCs and recovery were performed on an apical tip region of each sample. 

RLCs were performed as in-situ, and recovery of photochemistry subsequently 
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tracked over a 17.5 min period of darkness using the Walz Water-PAM inbuilt 

programme for recovery phase, with quantum efficiency measurements at 10, 40, 100, 

160, 460 and 1060 s.  

 

4.2.3. Data Treatment 

As long periods of dark-adaptation should be avoided prior to in-situ RLCs due to 

potential modification of the photoacclimation state of the cells investigated (Ralph 

and Gademann 2005, Perkins et al. 2010), the maximum light utilisation efficiency for 

in-situ RLCs (Fv/Fm) was calculated from Fm and Fo values obtained during the initial 

RLC step of 30 s darkness (see Table 4.3 for definition of all fluorescence terms). For 

ex-situ RLCs, full dark adaptation was apparent, though Fv/Fm was also calculated as 

above. Electron transport through PSII was calculated from all RLCs in relative units 

(rETR, Table 4.3), assuming an equal division of PAR between PSI and PSII. 

Analysis of all RLCs (rETR vs. PAR) followed Perkins et al. (2006), with iterative 

curve fitting using the ‘nls’ function of R base package (R Core Team, 2014) and 

calculation of the relative maximum electron transfer rate (rETRmax), the maximum 

light utilisation coefficient (α) and the light saturation coefficient (Ek) following Eilers 

and Peeters (1988).  
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Table 4.3: Fluorescence parameters, their definition and derivation (following 

Cosgrove and Borowitzka 2011). All parameters are dimensionless. (PAR = 

photosynthetically active radiation). 

Parameter Definition Derivation 
Fo Minimum fluorescence yield (dark 

adapted, all RCIIs open) 
 

Fm Maximum fluorescence yield (dark 
adapted, all RCIIs open with no NPQ) 

 

Fv Maximum variable fluorescence Fm – Fo 
Fv/Fm Maximum quantum efficiency (dark 

adapted) 
(Fm – Fo) / Fm 

F’ Fluorescence yield in actinic light  
Fm’ Maximum fluorescence yield in actinic 

light 
 

Fm’m The maximum value of Fm’  
Fq’ Fluorescence quenched in actinic light Fm’ – F’ 
Fq’ / Fm’ Effective quantum efficiency in actinic 

light  
(Fm’ – F’) – Fm’ 

 Relative quantum efficiency (Fq’ / Fm’) / (Fv / Fm) x 100 
rETR Relative electron transport rate 

(through PSII) 
Fq’ / Fm’ x PAR x 0.5 

rETRmax Maximum relative electron transport 
rate (through PSII) 

 

NPQ (Stern-Volmer) Non-photochemical 
quenching 

(Fm – Fm’) / Fm’ 

 Non-photochemical quenching 
calculated with the maximum value of 
Fm’ (Fm’m) after Serôdio et al. (2005) 

(Fm’m – Fm’) / Fm’ 

 

Calculation of non-photochemical quenching (NPQ) using the maximum fluorescence 

in the dark-adapted state (Fm) can be problematic if the dark adaptation period is not 

sufficient for full QA oxidation and the reversal of NPQ (Jesus et al. 2006, Perkins et 

al. 2010). In such cases, Fm’ is observed to increase above the measured Fm value 

(Serôdio et al. 2005, Cosgrove and Borowitzka 2011), and calculation of NPQ using 

the maximum Fm’ value (Fm’m) is preferred (Serôdio et al. 2005). Given the short dark 

adaptation period used during in-situ RLCs (30 s), fluorescence quenching was 

observed in the dark adapted state (i.e. Fm’ > Fm) and thus NPQ was calculated using 

the maximum Fm’ value (Fm’m) after Serôdio et al. (2005) (Table 4.3). Three NPQ 

parameters were subsequently calculated for each in-situ RLC; NPQ at the initial RLC 

step (NPQRESID) representing residual NPQ due to in-situ irradiance; NPQ at the final 

RLC step (NPQIDUC) representing the amount of NPQ induced by the RLC itself; and 
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the PAR step of the RLC at which residual NPQ was fully reversed (PAR0 NPQ) and 

NPQ induction was then initiated at the next incremental step. Note that reversal of 

residual NPQ during a RLC is the product of the duration of all the light curve 

incremental steps where the PAR is lower than that experienced in-situ prior to the 

start of the RLC, hence relaxing the proton gradient responsible for NPQ (Jesus et al. 

2006). It is thus an indication of previous photoacclimation in-situ and rapid 

photoacclimation during the light curve itself (Perkins et al. 2006, 2010). rETR values 

for the average ambient irradiance recorded in-situ at the time of in-situ RLC 

determination was calculated using equations determined from RLC curve fitting.  

 

Given the long dark-adaptation period prior to ex-situ RLCs, fluorescence quenching 

in the dark adapted state was not observed and thus typical Stern-Volmer NPQ was 

calculated using the maximum fluorescence in the dark adapted state (Fm) (Table 4.3). 

Quantum efficiency as a proportion of Fv/Fm (the relative quantum efficiency, Table 

4.3) was calculated for each ex-situ RLC step and dark recovery measurement to 

allow comparison of induction and recovery dynamics across seasons, species and 

latitudes. In addition, the rate of recovery in relative quantum efficiency and decrease 

in NPQ were calculated for the first 10 s of dark recovery, the subsequent 2.5 mins of 

dark recovery, and the final 15 mins of dark recovery.   

 

4.2.4. Data Analysis 

All statistical analyses and plotting of data were performed using R v.3.0.2 (R Core 

Team 2013). Prior to all analyses, normality of data was tested using the Shapiro-

Wilk test and examination of frequency histograms. If data were not normally 

distributed, Box-Cox power transformation was applied using the boxcox function of 

the MASS package (Venables and Ripley 2002), and normality re-checked. Following 

the application of models to data, model assumptions were checked by examination of 

model criticism plots. Whilst sampling for determination of photophysiological 

parameters was performed over a number of dates at each site, measurements were 

performed on different individual fronds during each sampling date and thus repeated 

measures analysis of variance (ANOVA) was not utilized during the present study. 

For all analyses described below, if measurements were performed across multiple 

rock pools on the date of sampling, differences in parameters between independent 

variables (e.g. season, tide) were analysed using linear mixed-effects models (lmer 
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models), which allow the inclusion of the factor ‘rock pool’ as a random term. This 

allows to statistically incorporate potential variance into models due to differences in 

the rock pool sampled, for those instances in which multiple rock pools were sampled. 

In all other cases, differences in measured parameters between independent variables 

were examined using analysis of variance (ANOVA); 1-way, 2-way or 3-way 

depending on the number of independent variables being compared. In the case of 

parameter comparison between two levels of a single independent variable (e.g. the 

factor levels ‘summer’ and ‘autumn’ of the independent variable ‘season’), t-test 

analysis has been performed, as per normal statistical practice.  

 

Seasonal photophysiology at CM: Differences in ambient irradiance and water 

temperature between sampling months were analysed by 1-way Analysis of Variance 

(ANOVA) with the factor ‘month’ (4 levels). Seasonal and interspecific differences in 

photophysiological parameters (Fv/Fm, rETRmax, α, Ek, and NPQ terms) were analysed 

using a 2-way ANOVA with the factors ‘month’ (4 levels) and ‘species’ (2 levels) and 

the interaction term ‘month/species’. Post hoc Tukey honest significant differences 

analysis was applied to significant ANOVA results. Least squares linear regression 

analysis was performed to compare relationships between photophysiological 

parameters and average irradiance across sampling months.  

 

Tidal emersion – Abiotic Parameters: Differences in ambient irradiance between 

seasons at ICE (summer & autumn) and CM (summer & winter) and over tidal 

emersion periods (start, middle and end), were examined separately per site using 2-

way ANOVA with the fixed factors ‘season’ (2 levels) and ‘tide’ (3 levels) and the 

interaction term ‘season/tide’. Differences in rock pool water temperature at ICE and 

CM were analysed separately per site using linear mixed-effects models with 

restricted maximum likelihood (REML) criterion, using the lmer function of package 

lme4 (Bates et al. 2013), with the fixed factors ‘season’ (2 levels), ‘tide’ (3 levels), the 

interaction term ‘season/tide’, and ‘pool’ as random term (3 levels). Upper- and 

lower-bound P values were calculated for lmer models using the pamer.fnc function 

of the LMERConvenienceFunctions package (Tremblay and Ransijn 2013). Lower-

bound P values (more conservative) and associated denominator degrees of freedom 

are reported. Post hoc analyses of significant differences highlighted by lmer models 

were performed using mcposthoc.fnc and summary.mcposthoc functions of the same 
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package (Tremblay and Ransijn 2013). COM and COR ambient irradiance and water 

temperature data were analysed across both sites using 3-way ANOVA with the 

factors ‘site’ (2 levels), ‘season’ (2 levels), ‘tide’ (3 levels) and interaction terms 

‘site/season’ and ‘site/tide’. Post hoc Tukey honest significant differences analysis 

was applied to significant ANOVA results. 

 

Tidal emersion - Photophysiology: Seasonal, tidal and interspecific differences in 

photophysiological parameters (Fv/Fm, rETRmax, α, Ek, and NPQ terms) were 

examined separately per sampling site (ICE, CM, COM and COR) given differences 

in sampling frequencies and species’ presence across sites. Statistical analyses applied 

to data are summarized in Table 4.4. Given variability in C. officinalis presence at 

COM and COR during the present study (present only in COM during August 2013 

and COR during October 2012) those species that were present at COM and COR 

during both August and October were analysed together per site, while separate 

analyses were performed to test for differences in C. officinalis photophysiology over 

tidal emersion periods in COM during August 2013 and in COR during October 2012 

(Table 4.4). E. elongata photophysiology was assessed both in rock pools and on 

exposed substratum in COM, with the two ecotypes treated as separate levels of the 

factor ‘species’ during analyses. Statistical analyses applied included t-test, ANOVA, 

and LMER models, with post hoc analyses performed for ANOVA and LMER 

models as previously described. Least squares linear regression analysis was 

performed to compare relationships between photophysiological parameters and 

irradiance both within- and across- seasons, for each species, at each site. Only 

significant regressions are reported.   
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Table 4.4: Statistical analyses of tidal emersion photophysiology assessment. All 
parameters (Fv/Fm, rETRmax, α, Ek and NPQ terms) were analysed separately per site 
(ICE = Iceland, CM = Combe Martin, COM = Comillas, COR = A Coruña). Separate 
analyses of C. officinalis data from Comillas during August and A Coruña during 
October were performed. Table displays; statistical analysis applied (ANOVA = 
analysis of variance, lmer = linear mixed effects model); factors of each test (m = 
month, sp = species, t = tide, p = pool); levels of each factor (jan = January, mar = 
March, jun = June, jul = July, aug = August, sep = September, oct = October, Co = C. 
officinalis, Cc = C. caespitosa, Ee = E. elongata, s = start, m = middle, e = end); and 
interaction terms. Factors in brackets represent random terms. Ee (pool) and Ee (exp) 
refer to E. elongata from rock pool or exposed substratum, respectively. 
 

Site Analysis Factors Levels Interaction 
ICE lmer m 

t 
(p) 

jul, sep 
s, m, e 
1, 2, 3 

m x t 
 

CM lmer m 
t 
sp 
(p) 

sep, feb 
s, m, e 
Co, Cc 
1, 2, 3 

m x t 

COM 3-wayANOVA m 
t 
sp 

aug, oct 
s, m, e 
Cc, Ee (pool), Ee (exp) 

m x t 
m x s 
sp x t 

COM 
August Co 

t-test t s, m  

COR 3-wayANOVA m 
t 
sp 

aug, oct 
s, m, e 
cc, ce 

m x t  
sp x t 

COR 
October Co 

1-wayANOVA t s, m, e  

 

 

Ex-situ photophysiology: Differences in ex-situ photophysiology were examined 

separately per site using a variety of analyses dependent on the data available. 

Parameters assessed included those calculated from ex-situ RLCs (Fv/Fm, rETRmax, α, 

Ek, relative quantum efficiency at the final light step and NPQ at the final light step) 

and recovery parameters (rates of recovery in relative quantum efficiency and 

relaxation of NPQ over (i) the first 10 s darkness (ii) 10 s to 2.5 mins darkness (iii) the 

final 15 mins of darkness, and the maximal recovery of relative quantum efficiency 

and relaxation of NPQ at the end of the dark recovery period). In ICE, parameters 

were compared using t-test analysis with the factor ‘season’ (2 levels). In CM 

parameters were assessed separately per species (due to lack of summer data for C. 

caespitosa), with C. officinalis data examined using 1-way ANOVA with the factor 
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‘season’ (3 levels) and C. caespitosa data examined using t-test analysis with the 

factor ‘season’ (2 levels). Additionally, species comparisons of parameters were made 

for CM July and October ex-situ RLCs and recovery using 2-way ANOVA with the 

factors ‘season’ (2 levels), ‘species’ (2 levels) and interaction term ‘season/species’. 

In COM and COR, C. caespitosa and E. elongata data were analysed using 2-way 

ANOVA as above, though with 3 levels for the factor ‘species’ at COM as E. 

elongata from rock pools and exposed substratum were treated as two different levels 

of the factor ‘species’.   

 

Latitudinal comparisons: To examine latitudinal differences in photophysiology, 

parameters derived from C. officinalis ex-situ RLCs and recovery were compared 

separately for summer and autumn periods across ICE, CM and COM/COR. Given 

that C. officinalis was not accessible in COM or COR during autumn and summer, 

respectively, latitudinal comparisons were made to different northern Spanish sites in 

respective seasons. Comparisons were performed using 1-way ANOVA with the 

factor ‘latitude’ (3 levels).  
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4.3. Results 

 

4.3.1. Seasonal photophysiology at Combe Martin, UK 

Significantly increased irradiance (F3,16 = 16.06, P < 0.001) and rock pool water 

temperature (F3,16 = 42.04, P < 0.001) were observed in CM during June and 

September as compared to January and March (Figure 4.1), with no significant 

difference in either parameter between June and September, or between January and 

March. Irradiance and water temperature ranged from 270 ± 16 to 1143 ± 124 µmol 

photons m-2 s-1 in March and 7.7 ± 0.4 to 19.2 ± 0.9 oC in September. 

 

 

 

Figure 4.1: Ambient irradiance (a) and water temperature (b) recorded at Combe 

Martin during January (Jan), March (Mar), June (Jun) and September (Sep) 2012 (av 

± se). Lower-case letters denote TukeyHSD homogenous subsets in relation to the 

factor ‘month’. 
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Figure 4.2: Rapid light response curves (RLCs) (a - d) for C. officinalis (black squares) and C. caespitosa (white triangles) performed at Combe 

Martin during January, March, June and September 2012 (av. rETR ± se, n = 5) and non-photochemical quenching (NPQ) (e – h) calculated 

from fluorescence parameters determined during respective RLCs (av. NPQ ± se, n = 5). Dashed lines (a – d) represent average ambient 

irradiance recorded in-situ at the time of RLC determination.  
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Rapid light response curves (RLCs) were successfully performed on C. officinalis and 

C. caespitosa in upper shore rock pools at Combe Martin during January, March, June 

and September 2012 (Figure 4.2), with significant differences in photophysiological 

parameters (Fv/Fm, rETRmax, α and NPQ) observed between sampling months (Table 

4.5, Figures 4.2 & 4.3). C. officinalis demonstrated declines in Fv/Fm, rETRmax and α 

from maximal values in January to minimal values in June, with recovery during 

September to similar values as observed during March (Figure 4.3). Similarly, C. 

caespitosa Fv/Fm, rETRmax and α were significantly decreased during June as 

compared to January with recovery in September, though a more abrupt decrease in 

parameters was observed between March and June as compared to C. officinalis 

(Figure 4.3).  

 

Table 4.5: Analysis of variance of C. officinalis and C. caespitosa seasonal 
photophysiology from Combe Martin (Fv/Fm, rETRmax, α, Ek, NPQRESID, NPQINDUC 
and PAR0 NPQ) in relation to sampling month and species. Table reports F-ratios, 
degrees of freedom (Fd.f.) and significance of factors (***P < 0.001; **P < 0.01; *P < 
0.05) determined from 2-way ANOVA. 
 Factor 
Parameter Month Species Month/Species 
Fv/Fm F3,39 = 22.83*** F1,39 = 0.00 F3,39 = 1.67 
rETRmax F3,39 = 17.42*** F1,39 = 0.88 F3,39 = 0.15 
α F3,39 = 20.72*** F1,39 = 0.33 F3,39 = 2.66 
Ek    F3,39 = 2.12 F1,39 = 1.94 F3,39 = 3.05* 
NPQRESID F3,39 = 11.52*** F1,39 = 1.06 F3,39 = 4.62** 
NPQINDUC   F3,39 = 8.11*** F1,39 = 1.37 F3,39 = 4.33* 
PAR0 NPQ   F3,39 = 5.47** F1,39 = 0.92 F3,39 = 1.71 
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Figure 4.3: Average C. officinalis (black bars) and C. caespitosa (white bars) Fv/Fm, 
rETRmax, α and Ek determined from RLCs performed in upper shore rock pools at 
Combe Martin during January (Jan), March (Mar), June (Jun) and September (Sep) 
2012 (av. ± se, n = 5). Lower-case letters denote TukeyHSD homogenous subsets in 
relation to the factor ‘month’.  
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While C. officinalis Ek showed seasonal patterns, with greatest values during March 

and lowest during September, Ek was not significantly different between sampling 

months. C. caespitosa Ek was variable across months with no clear seasonal pattern, 

resulting in a significant interaction term between month and species (Table 4.5). Ek 

values determined from RLCs were greater than ambient irradiance prevailing during 

January and March indicating that photosynthesis was light limited. During June and 

September, photosynthesis was light-saturated, with ambient irradiance ca. 2.4- and 

1.8-times Ek during June, and 3.6- and 2.5-times Ek during September, for C. 

officinalis and C. caespitosa, respectively. No significant difference in Fv/Fm, 

rETRmax, α or Ek was observed between C. officinalis or C. caespitosa during any 

month. 

 

Non-photochemical quenching (NPQ) parameters determined from RLCs showed 

seasonally cyclic patterns for C. officinalis (Figure 4.4), with greatest NPQRESID and 

PAR0 NPQ, and lowest NPQINDUC during RLCs observed for C. officinalis during June. 

Conversely, during January, C. officinalis samples demonstrated minimal NPQRESID, 

PAR0 NPQ, and maximal NPQINDUC during RLCs (Figure 4.4); C. caespitosa showing 

the same patterns in January and March. All NPQ parameters were significantly 

different in relation to sampling month (Table 4.5), though post-hoc Tukey HSD 

analysis did not discriminate homogenous subsets in NPQIDUC or PAR0 NPQ for C. 

officinalis between sampling months. C. officinalis and C. caespitosa demonstrated 

divergent patterns in NPQRESID and NPQINDUC across sampling months, as supported 

by significant interaction between month and species for these parameters (Table 4.5). 

In contrast to C. officinalis, C. caespitosa demonstrated greatest NPQRESID and 

NPQINDUC during September and March, respectively (Figure 4.4), with maximum 

NPQIDUC ca. 1.8-times greater for C. caespitosa (March) than C. officinalis (January). 

However, no significant difference in NPQ characteristics was evident across all data 

between C. officinalis and C. caespitosa (Table 4.5).  
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Figure 4.4: Average non-photochemical quenching parameters (NPQ) of C. 
officinalis (black bars) and C. caespitosa (white bars) calculated from RLCs 
performed during January (Jan), March (Mar), June (Jun) and September (Sep) 2012. 
Letters denote TukeyHSD homogenous subsets in relation to the factor ‘month’.   
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Electron transport rates calculated for average in-situ irradiance were ca. 50 to 60 % 

of January and March rETRmax values for both C. officinalis and C. caespitosa (Table 

4.6). Given light-saturated photosynthesis during June and September, rETR values at 

in-situ irradiance were highly comparable to rETRmax values for both species (Table 

4.6).  

 

Table 4.6: Average Corallina officinalis (co) and C. caespitosa (cc) rETRmax 
determined from Eilers and Peeters (1988) curve fitting, and rETR at ambient 
irradiance determined from fitted curve parameters during January (Jan), March 
(Mar), June (Jun) and September (Sep) 2012 (av. (se), n = 5). 

Month 
Ambient 
irradiance 
(µmol m-2 s-1) 

Species rETRmax 
rETR at ambient 
irradiance 

Jan 310(42.5) co 84.1 (14.7) 51.3 (4.7) 
cc 83.09 (12.1) 42.2 (3.8) 

Mar 270(16.3) co 63.9 (7.8) 31.3 (2.1) 
cc 67.3 (7.1) 36.3 (2.6) 

Jun 1110(207) co 30.2 (5.2) 32.3 (2.13) 
cc 33.6 (3.1) 32.3 (1.48) 

Sep 1140(124) co 36.5 (6.5) 39.2 (3.4) 
cc 43.2 (5.1) 46.3 (2.9) 

 

Across all data, a significant negative relationship between Fv/Fm, rETRmax and α with 

in-situ irradiance was observed for both C. officinalis and C. caespitosa (Table 4.7, 

Figure 4.5), though no significant relationship between Ek and in-situ irradiance was 

observed for either species. C. caespitosa demonstrated a significant positive 

relationship between NPQRESID and in-situ irradiance, and a significant negative 

relationship between NPQINDUC and in-situ irradiance (Table 4.7). No significant 

relationship was identified between C. officinalis NPQ terms and ambient irradiance 

(Table 4.7). 
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Table 4.7: Least squares linear regression analysis (y = mx + c) of C. officinalis and 
C. caespitosa photophysiological parameters (Fv/Fm, rETRmax, α, Ek, NPQRESID, 
NPQINDUC, PAR0 NPQ) in relation to ambient irradiance, showing coefficients (standard 
error in parentheses), associated significance (***P < 0.001, **P < 0.01, *P < 0.05), 
the proportion of variance explained by the regression (R2), the overall model 
significance (P) and the number of observations (n). 
 

Variable Coefficients (SE) & Significance R2 P n m c 
Corallina officinalis     
Fv/Fm -1.82-4(4.90-5)** 4.04-1(4.04-2)*** 0.43 < 0.001 20 
rETRmax -0.047(0.011)*** 87.61(9.48)*** 0.48 < 0.001 20 
α -7.66-5(3.04-5)* 1.87-1(2.51-2)*** 0.26 < 0.05 20 
Ek -0.104(0.075) 500.87(61.93)*** 0.09 0.183 20 
NPQRESID 8.255-5(4.99-5) 2.68-2(4.11-2) 0.13 0.116 20 
NPQINDUC -6.102-5(6.097-5) 1.927-1(5.02-2)** 0.05 0.330 20 
PAR0 NPQ 0.279(0.232) 203.547(191.56) 0.07 0.244 20 
Corallina caespitosa     
Fv/Fm -2.499-4(3.81-5)*** 4.543-1(3.141-2)*** 0.70 < 0.001 20 
rETRmax -0.043(0.009)*** 87.44(7.88)*** 0.53 < 0.001 20 
α -0.0001(0.00001)*** 0.2087(0.0133)*** 0.74 < 0.001 20 
Ek 0.105(0.066) 406.26(55.175)*** 0.12 0.132 20 
NPQRESID 1.25-4(1.79-5)*** -2.84-2(1.45-2) 0.73 < 0.001 20 
NPQINDUC -2.977-4(6.083-5)*** 4.143-1(5.01-2)*** 0.57 < 0.001 20 
PAR0 NPQ 0.582(0.205)* -67.99(169.16) 0.30 < 0.05 20 
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Figure 4.5: Least squares linear regression of C. officinalis (a, c, e – black dots) and 
C. caespitosa (b, d, f – white dots) photophysiology (Fv/Fm, rETRmax, and α) in 
relation to ambient irradiance, showing the proportion of variance explained by the 
regression (R2), the overall model significance (P), and 95 % confidence intervals (red 
dashed lines). Regression coefficients are displayed in Table 4.7. 
 

4.3.2. In-situ tidal emersion and ex-situ photophysiology assessment across 

latitudes  

 

4.3.2.1. Iceland in-situ photophysiology 

Irradiance was significantly lower during summer at ICE as compared to autumn 

(F1,24 = 50.80, P < 0.001) (Figure 4.6), with an overall average of 653 ± 29.7 and 1076 

± 108 µmol photons m-2 s-1 apparent in summer and autumn, respectively. No 

statistically significant change in irradiance was apparent over summer or autumn 

tidal emersion periods, though decreases in irradiance over summer emersion and 

increases over autumn emersion were reflected by a significant interaction between 

month and tide (F2,24 = 4.54, P < 0.05). Rock pool water temperature was 

significantly increased during summer as compared to autumn (F1, 24 = 6973.01 P < 

0.001) and was significantly increased at the end of tidal emersion during both 

seasons (F2,24 = 86.55, P < 0.001) (Figure 4.6).  
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Figure 4.6: Average irradiance (a - d) and rock pool water temperature (e - h) recorded at Iceland (a, e), Combe Martin (b, f), Comillas (c, g) 

and A Coruna (d, h) during summer (black bars), autumn (white bars) or winter (grey bars), at the start (S), middle (M) and end (E) of daytime 

tidal emersion (av. ± SE).  
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Corallina officinalis Ek values were lower than ambient irradiance during both 

summer and autumn in Iceland (Figures 4.6 & 4.7), indicating light-saturated 

photosynthesis across both sampling periods. During summer, C. officinalis rETRmax 

and α were significantly increased as compared to autumn, with rETRmax ca. 2-times 

greater at the start of tidal emersion, and ca. 3.5-times greater at the end of tidal 

emersion (Table 4.8, Figure 4.7). rETR calculated for the average in-situ irradiance at 

the start of tidal emersion was of a similar magnitude to rETRmax during summer 

(74.18 ± 3.47) and autumn (35.76 ± 3.65), indicating that rETRmax was representative 

of rETR at in-situ irradiance when photosynthesis was light saturated. In contrast to 

other parameters, significantly decreased Fv/Fm during summer as compared to 

autumn suggested increased stress during summer periods. 

 

Table 4.8: Analysis of variance of Icelandic C. officinalis photophysiology (Fv/Fm, 
rETRmax, α, Ek, NPQRESID, NPQINDUC and PAR0 NPQ) in relation to sampling season and 
tidal emersion period. Table reports F-ratios, degrees of freedom (Fd.f.), and 
significance of factors (***P < 0.001; **P < 0.01; *P < 0.05). See Table 4.4 for 
description of statistical analyses employed. 
 

 Factor 
 Season Tide Season:Tide 
Fv/Fm F1,54=19.10*** F2,54=0.31 F2,54=0.07 
rETRmax F1,54=136.66*** F2,54=16.65** F2,54=1.24 
α F1,54=1115.29*** F2,54=1.35 F2,54=2.72 
Ek F1,54=2.42 F2,54=1.92 F2,54=2.51 
NPQRESID F1,54=86.31*** F2,54=2.85 F2,54=0.61 
NPQINDUC F1,54=305.83*** F2,54=0.48 F2,54=4.65* 
PAR0 NPQ F1,54=138.72*** F2,54=1.15 F2,54=0.65 
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Figure 4.7: Corallina officinalis photophysiology in Þorlákshöfn Iceland in summer 
(left column) and autumn (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9). 
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NPQ was significantly different between summer and autumn in ICE (Table 4.8). 

Greatest C. officinalis NPQRESID (overall av. = 0.12 ± 0.007) and PAR0NPQ (overall av. 

= 769 ± 91 µmol photons m-2 s-1) were observed during autumn, highlighting maximal 

active NPQ under in-situ irradiance conditions (Figure 4.7). Following dissipation of 

residual NPQ over RLCs, i.e. PAR > PAR0NPQ, minimal NPQINDUC at the start of 

autumn tidal emersion (0.08 ± 0.023) was accompanied by a downturn in rETR, i.e. 

the onset of photoinhibition. At mid and end autumn emersion, rETR was maintained 

over RLCs though NPQ did not increase with increasing PAR > PAR0NPQ, indicating 

energy dissipation via processes other than NPQ. Minimal active in-situ NPQ was 

apparent during summer given significantly decreased NPQRESID and PAR0NPQ in 

comparison to autumn, while a greater capacity for NPQ was demonstrated during 

summer by both a continual linear increase in NPQ over RLCs, and significantly 

increased NPQINDUC (overall av. = 0.69 ± 0.07) as compared to autumn NPQINDUC 

(overall av. = 0.03 ± 0.02), and autumn NPQRESID (overall av. = 0.12 ± 0.007).  

 

Over tidal emersion periods, significant decreases in C. officinalis rETRmax were 

apparent during both summer and autumn in ICE (Table 4.8, Figure 4.7), though the 

onset and magnitude of decrease differed between seasons. During summer, rETRmax 

was maintained until the end of tidal emersion, whereby it decreased to 63 % of initial 

values. Conversely, rETRmax was significantly decreased by mid emersion during 

autumn, remaining decreased to end emersion at 38 % of initial values. 

Concomitantly, an increase in NPQINDUC by the end of summer emersion and a 

decrease in NPQINDUC by mid autumn emersion, resulted in significant interaction 

term between season and tide. No other differences were observed in C. officinalis 

photophysiology over tidal emersion periods in ICE.  

 

A significant positive relationship was identified between ambient irradiance and both 

rETRmax and Ek in summer, while during autumn, a significant negative relationship 

between NPQINDUC and ambient irradiance was observed (Table 4.9). Across all ICE 

data, rETRmax, α and NPQINDUC showed significant negative relationships with 

ambient irradiance, while Fv/Fm, NPQRESID and PAR0 NPQ showed significant positive 

relationships with ambient irradiance (Table 4.9).  
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Table 4.9: Least squares linear regression (y = mx + c) of ICE C. officinalis 
photophysiological parameters in relation to ambient irradiance, showing coefficients 
(standard error in parentheses), associated significance (***P < 0.001, **P < 0.01, *P 
< 0.05), the proportion of variance explained by the regression (R2), the overall model 
significance (P) and the number of observations (n).  

Variable Coefficients (SE) & Significance R2 P n m c 
Summer     
rETRmax 0.23(0.09)* -87.2(60.66) 0.22 < 0.05 27 
Ek 1.15(0.40)** -366.36(263.63) 0.27 < 0.01 27 
Autumn     
NPQINDUC -1.95-4(5.47-5)** 2.50-1(5.92-2) 0.34 < 0.01 27 
All data     
Fv/Fm 0.029-2(0.00)*** 0.20(0.065)** 0.24 < 0.001 54 
rETRmax -0.09(0.01)*** 123.23(11.73)*** 0.53 < 0.001 54 
α -2.58-4(3.10-5)*** 3.33-1(2.80-2)*** 0.59 < 0.001 54 
NPQRESID 2.10-4(3.95-5)*** -1.13-1(3.57-2)** 0.36 < 0.001 54 
NPQINDUC -0.001(0.00)*** 1.46(0.16)*** 0.51 < 0.001 54 
PAR0 NPQ 1.48(0.22)*** -873.81(200.63)*** 0.48 < 0.001 54 
 

 

 

4.3.2.2. Iceland ex-situ photophysiology 

Photophysiological parameters determined from ex-situ RLCs with recovery 

performed under laboratory conditions, differed from observations made in-situ in 

ICE. No seasonal difference was apparent in C. officinalis Fv/Fm (overall av. 0.45 ± 

0.03), or rETRmax (overall av. 47.68 ± 3.26), while α was significantly increased, and 

Ek was significantly decreased, during autumn as compared to summer (Table 4.10 & 

4.11, Figure 4.8). NPQ increased over the course of the RLCs during summer, 

achieving values of 0.73 ± 0.09 by the end of the RLCs, while during autumn, NPQ 

plateaued at ca. 580 µmol photons m-2 s-1 to the end of the RLCs, reaching values of 

0.43 ± 0.10. In parallel, down turn in rETR across the last four light steps of autumn 

RLCs indicated photoinhibition.  
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Table 4.10: Average ex-situ photophysiology of Icelandic C. officinalis determined 
during summer and autumn (n = 3 ± SE in parentheses). Table shows parameters 
determined from RLCs, and relative quantum efficiency (%) and NPQ over dark 
recovery periods (End RLC = relative quantum efficiency (%) and NPQ at the final 
RLC light step; 10 s, 2.5 mins and 15 mins = relative quantum efficiency recovery 
rate (% min-1) and NPQ relaxation rate (NPQ min-1) across the first 10 s, subsequent 
2.5 mins and final 15 mins of dark recovery period; End dark = the maximum 
recovery in relative quantum efficiency (%) and relaxation of NPQ achieved by the 
end of the dark recovery period). 
RLC parameters 
 Summer Autumn  Summer Autumn 
Fv/Fm 0.40(0.03) 0.49(0.03) rETRmax 45.70(6.92) 49.66(1.25) 
α 0.09(0.03) 0.28(0.08) Ek 561.17(111.74) 204.66(56.61) 
Recovery parameters 
 Relative quantum efficiency NPQ 
 Summer Autumn  Summer Autumn 
End RLC 12.25(1.1) 5.71(0.18) End RLC 0.73(0.1) 0.43(0.11) 
10 s 199.43(7.87) 152.42(0.11) 10 s -0.45(0.26) 0.07(0) 
2.5 mins 6.91(1.57) 10.99(0.03) 2.5 mins -0.13(0.01) -0.12(0) 
15 mins -0.16(0.41) 1.24(0) 15 mins 0(0) -0.01(0) 
End dark 61.18(3.02) 70.97(2.54) End dark 0.36(0.08) 0.04(0.03) 
 

 
Table 4.11: t-test analysis of Icelandic C. officinalis ex-situ photophysiology 
parameters in relation to the factor ‘season’. Table shows t-value and associated 
degrees of freedom (td.f.) and significance (***P < 0.001, **P < 0.01, *P < 0.05).  

RLC parameters 
 Season  Season 
Fv/Fm t4=-1.78 rETRmax t4=-0.56 
α t4=-2.31* Ek t4=2.84* 
Recovery parameters 

Relative quantum 
efficiency NPQ 

 Season  Season 
End RLC t4=5.88** End RLC t4=2.06 
10 s t4=4.64** 10 s t4=-1.93 
2.5 mins t4=-1.71 2.5 mins t4=-0.36 
15 mins t4=-2.86* 15 mins t4=3.34* 
End dark t4=-2.48 End dark t4=3.71* 
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Figure 4.8: Ex-situ RLCs and recovery of Icelandic C. officinalis during summer 
(black lines) and autumn (red lines), showing (a) rETR and (b) NPQ versus PAR over 
the RLC and (c) relative quantum efficiency and (d) NPQ versus time over both the 
RLC and dark recovery period (grey shaded area) (av. ± se, n = 3).  
 
Relative quantum efficiency at the final light step was decreased to 12.25 ± 1.09 % 

during summer in ICE and 5.70 ± 0.18 % during autumn (Table 4.20, Figure 4.8). 

Rapid increase in relative quantum efficiency and decrease in NPQ were observed 

during both seasons from 0 to 160 s of dark recovery period. Over the final 15 

minutes of recovery, NPQ remained active during summer, with consequently no 

further recovery of relative efficiency. During autumn, NPQ decreased across the 

final 15 mins of darkness, reaching values of 0.04 ± 0.03 by the end of recovery. 

Autumn relative quantum efficiency, whilst still increasing, did not fully recover by 

the end of the dark period despite reversal of NPQ, indicating that recovery was 

dependent on reversal of photoinhibition.  
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4.3.2.3. Combe Martin in-situ photophysiology  

Irradiance was significantly increased during summer at CM as compared to winter 

(Figure 4.6) (F1,17 = 10.07, P < 0.01), with statistically significant increases in 

irradiance at mid tidal emersion confined to summer (F2,17 = 6.78, P < 0.05). Rock 

pool water temperature was significantly increased during summer as compared to 

winter (Figure 4.6) (F1,17 = 2408.30, P < 0.001), with no significant difference in 

water temperature apparent over summer or winter tidal emersion periods.  

 

Light-saturated photosynthesis (i.e. ambient PAR > Ek) was apparent at mid summer 

tidal emersion for C. caespitosa, and start and mid summer emersion for C. 

officinalis, while during winter, light-limited photosynthesis (i.e. ambient Par < Ek) 

was apparent at all times (Figures 4.9 & 4.10). Both C. officinalis and C. caespitosa 

demonstrated significantly increased rETRmax and Ek during winter as compared to 

summer at CM (Table 4.12), with no significant difference in α observed between 

seasons for either species. rETR values calculated for ambient in-situ irradiance levels 

were 41.44 ± 1.98 and 36.56 ± 1.61 during summer, and 29.85 ± 1.41 and 32.00 ± 

2.33 during winter, for C. officinalis and C. caespitosa, respectively; ca. 60 – 75% of 

rETRmax during summer and 25 – 30% of rETRmax during winter, highlighting that 

rETRmax is not representative of actual rETR in-situ under conditions of light-limited 

photosynthesis. Highest NPQRESID and thus active NPQ in-situ was apparent during 

summer for both C. officinalis and C. caespitosa, with maximal NPQRESID (0.27 ± 

0.09) and PAR0NPQ (1017 ± 245 µmol photons m-2 s-1) recorded for C. officinalis at the 

start of summer emersion.  

 
Table 4.12: Analysis of variance of Combe Martin C. officinalis and C. caespitosa 
photophysiology (Fv/Fm, rETRmax, α, Ek, NPQRESID, NPQINDUC and PAR0 NPQ) in 
relation to season, tidal emersion, and species (Sp). Table reports F-ratios, degrees of 
freedom (Fd.f.), and significance of factors (***P < 0.001; **P < 0.01; *P < 0.05). See 
Table 4.4 for description of statistical analyses employed. 
 Factor 
 Season Tide Species Season:Tide Sp:Tide 
Fv/Fm F1,104=19.27*** F2,104=21.1*** F1,104=4.15* F2,104=2.67 F2,104=1.01 
rETRmax F1,104=86.32*** F2,104=2.82 F1,104=0.06 F2,104 = 6.04** F2,104=0.35 
α F1,104=1.36 F2,104=11.75*** F1,104=0.61 F2,104=6.80** F2,104=0.16 
Ek F1,104=84.90*** F2,104=8.48*** F1,104=1.09 F2,104=0.84 F2,104=0.03 
NPQRESID F1,104=74.01*** F2,104=13.26*** F1,104=3.45 F2,104=3.15* F2,104=0.74 
NPQINDUC F1,104=0.14 F2,104=3.07* F1,104=10.02** F2,104=19.19*** F2,104=1.44 
PAR0 NPQ F1,104=33.5*** F2,104=6.42** F1,104=1.10 F2,104=1.71 F2,104=0.25 
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Figure 4.9: Corallina officinalis photophysiology in Combe Martin, UK in summer 
(left column) and winter (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and winter tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9).



 142 

 
Figure 4.10: Corallina caespitosa photophysiology in Combe Martin, UK in summer 
(left column) and winter (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and winter tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 9).
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Significant changes in photophysiology parameters were observed at CM over tidal 

emersion periods (Table 4.12, Figures 4.9 & 4.10). Fv/Fm significantly decreased at 

mid emersion during both summer and winter for C. officinalis and during winter for 

C. caespitosa, showing recovery to initial values by the end of emersion. During 

summer, C. caespitosa Fv/Fm remained unchanged between start and mid emersion, 

though significantly increased by the end of emersion. C. officinalis and C. caespitosa 

rETRmax, α, NPQRESID and NPQINDUC demonstrated divergent trends over tidal 

emersion between seasons, supported by significant interaction between season and 

tide for these parameters (Table 4.12). During summer, both species’ rETRmax rose 

gradually over tidal emersion, though significant increases were restricted to C. 

caespitosa. Concomitantly, α increased, showing significantly higher values at the end 

of emersion when irradiance decreased, with significantly decreased Ek. NPQRESID and 

PAR0 NPQ significantly decreased at the end of emersion for both species, indicating 

reduced requirement for active in-situ NPQ, while NPQINDUC significantly increased 

over summer emersion.  

 
During winter, with relatively small changes in irradiance from start to mid and end 

emersion (Figure 4.6), C. officinalis and C. caespitosa rETRmax, α and Ek fluctuated 

with almost identical trends; rETRmax decreased from start to mid emersion, showing 

recovery by end emersion; α was significantly decreased at mid emersion; and Ek was 

significantly increased at mid emersion, in comparison to start and end (Table 4.12, 

Figures 4.9 & 4.10). While minimal NPQRESID was observed during winter, C. 

officinalis showed significantly increased NPQRESID at mid emersion, indicating 

requirement for active NPQ despite significantly light-limited photosynthesis, while 

C. caespitosa NPQRESID remained consistently low. NPQINDUC decreased significantly 

for both species over winter emersion, while no significant trends in PAR0 NPQ were 

apparent. At end emersion during autumn, C. caespitosa NPQINDUC was minimal 

despite a typical rETR profile, indicating energy dissipation by means other than 

NPQ. 

 

Species differences in photophysiology was restricted to Fv/Fm and NPQINDUC at CM. 

Significantly increased Fv/Fm was apparent for C. officinalis at the start of tidal 

emersion during both summer and winter in comparison to C. caespitosa (TukeyHSD, 
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P < 0.05), while NPQINDUC was significantly greater for C. caespitosa during all 

periods (TukeyHSD, P < 0.05).  

 

C. officinalis and C. caespitosa Fv/Fm showed a significant negative relationship with 

ambient irradiance over both summer and winter tidal emersion, but not across 

seasons for either species (Table 4.13). During summer, C. officinalis α was 

significantly negatively related to ambient irradiance, while during both summer and 

winter, C. officinalis NPQRESID showed a positive relationship to irradiance. During 

winter, C. caespitosa rETRmax and α were negatively correlated to irradiance, while Ek 

was positively correlated. Across both seasons, both C. officinalis and C. caespitosa 

demonstrated significant negative relationships between rETRmax and irradiance, and 

positive relationships between NPQRESID and irradiance, with C. officinalis also 

demonstrating positive relationship between PAR0 NPQ and irradiance (Table 4.13). 

 

Table 4.13: Least squares linear regression (y = mx + c) of Combe Martin C. 
officinalis and C. caespitosa photophysiological parameters in relation to ambient 
irradiance, showing coefficients (SE in parentheses), associated significance (***P < 
0.001, **P < 0.01, *P < 0.05), the proportion of variance explained by the regression 
(R2), the overall model significance (P) and the number of observations (n). 

Variable Coefficients (SE) & Significance R2 P n m c 
Summer – C. officinalis     
Fv/Fm -2.00-4(9.08-5)* 4.17-1(4.10-2)*** 0.16 < 0.05 27 
α -1.53-4(6.02-5)* 0.21(0.027)*** 0.20 < 0.05 27 
NPQRESID 4.96-4(2.33-4)* 0.002(0.105) 0.15 < 0.05 27 
Summer – C. caespitosa     
Fv/Fm -2.05-4(9.17-5)* 3.85-1(4.38-2)*** 0.15 < 0.05 27 
Winter – C. officinalis     
Fv/Fm -6.99-4(1.96-4)** 0.44(0.05)*** 0.33 < 0.01 27 
NPQRESID 5.36-4(1.13-4)*** -0.09(0.02)** 0.46 < 0.001 27 
Winter – C. caespitosa     
Fv/Fm -6.28-4(1.76-4)** 0.39(0.04)*** 0.33 < 0.01 27 
rETRmax -0.11(0.05)* 122.02(13.42)*** 0.16 < 0.05 27 
α -3.72-4(1.02-4)** 0.23(0.02)*** 0.34 < 0.01 27 
Ek 1.96(0.345)*** 260.45(119.10)* 0.43 < 0.001 27 
All C. officinalis data     
rETRmax -0.09(0.02)*** 113.18(8.26)*** 0.25 < 0.001 54 
NPQRESID 6.61-4(1.31-4)*** -0.10(0.04)* 0.32 < 0.001 54 
PAR0 NPQ 1.71(0.51)** -65.44(189.56) 0.17 < 0.01 54 
All C. caespitosa data     
rETRmax -0.06(0.01)** 101.39(6.60)*** 0.18 < 0.01 54 
NPQRESID 2.15-4(7.84-4)** -2.63-3(2.93-2) 0.12 < 0.01 54 
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4.3.2.4. Combe Martin ex-situ photophysiology 
Instrumentation failure prevented ex-situ photophysiology assessment of C. 

caespitosa during summer from CM. During autumn and winter, no significant 

difference between C. officinalis and C. caespitosa photophysiology was apparent, 

and as such statistical analyses are not reported. In contrast to in-situ 

photophysiology, no significant difference in C. officinalis or C. caespitosa rETRmax, 

α or Ek were evident between seasons (Tables 4.14 & 4.15, Figures 4.11 & 4.12), with 

an overall average rETRmax of 74.59 ± 3.12 and 84.96 ± 5.67 apparent for C. 

officinalis and C. caespitosa, respectively. In C. officinalis, the level of NPQ induced 

over RLCs was significantly lower in summer than autumn and winter, with no 

difference between the latter two seasons. For C. caespitosa, no difference in the 

magnitude of NPQ at the end of RLCs was observed between autumn and winter. 

 

Relative quantum efficiency decreased to 14.7 ± 1.5 % in C. officinalis and 14.9 ± 0.9 

% in C. caespitosa at the end of RLCs across respective seasons, with no seasonal 

difference apparent for either species. While no difference in the rates of recovery 

under darkness were evident for C. officinalis, maximal recovery by the end of 

darkness was significantly different between seasons, with greatest recovery observed 

during summer (87.3 ± 9.3 %) and autumn (88.3 ± 3.2 %) as compared to winter (60.1 

± 6.8 %). Similarly, C. caespitosa relative quantum efficiency showed greatest 

recovery during autumn (91.5 ± 6.9 %) as compared to winter (55.9 ± 6.1 %).  

 

While the rate of NPQ reversal was not different between seasons for either species, 

duration to complete NPQ reversal differed, being 160 s for summer-, and 460 s for 

autumn- C. officinalis, while complete NPQ reversal was only evident after 17.5 mins 

of darkness for winter C. officinalis. Similarly, C. caespitosa showed differences in 

duration to complete NPQ reversal between seasons, with NPQ reversal after 160 s 

during autumn and 460 s during winter. A lack of complete recovery in relative 

quantum efficiency, despite full reversal of NPQ for both species, indicates the 

induction and slow reversal of other energy dissipation processes additional to NPQ 

during RLCs, and/or photoinhibition.  
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Table 4.14: Average ex-situ photophysiology of Combe Martin C. officinalis and C. 
caespitosa across seasons (n = 3 ± SE in parentheses). Table shows parameters 
determined from RLCs, relative quantum efficiency (%) and NPQ over dark recovery 
periods (End RLC = relative quantum efficiency (%) or NPQ at the final RLC light 
step; 10 s, 2.5 mins and 15 mins = relative quantum efficiency recovery rate (% min-1) 
and NPQ relaxation rate (NPQ min-1) across the first 10 s, subsequent 2.5 mins and 
final 15 mins of dark recovery period; End dark = the maximum recovery in relative 
quantum efficiency (%) and relaxation of NPQ achieved by the end of the dark 
recovery period.  

 C. officinalis C. caespitosa 
RLC parameters 
 Summer Autumn Winter Autumn Winter 
Fv/Fm 0.36(0.06) 0.51(0.03) 0.53(0.02) 0.49(0.02) 0.55(0.03) 
rETRmax 68.48(3.63) 71.68(4.08) 83.63(4.9) 77.95(4.84) 91.97(9.41) 
α 0.17(0.02) 0.23(0.03) 0.2(0.02) 0.22(0.04) 0.17(0.02) 
Ek 418.79(71.5) 320.09(59.7) 426.26(29.29) 377.42(66.18) 548.11(24.09) 
Recovery parameters 

 Relative Quantum Efficiency 
 Summer Autumn Winter Autumn Winter 
End RLC 17.02(4.16) 11.71(2.21) 15.48(0.19) 13.69(1.16) 16.14(1.26) 
10 s 175.4(36.24) 149.47(30.66) 70.22(12.52) 134.91(19.99) 56.26(0.31) 
2.5 mins 10.46(2.12) 11.79(2.31) 8.07(1.38) 10.88(2.19) 7.89(0.01) 
15 mins 1.49(0.75) 2.22(0.55) 1.28(0.46) 3.16(0.08) 1.07(0.01) 
End dark 87.31(9.36) 88.33(3.23) 60.16(6.82) 91.54(6.9) 55.95(6.18) 

 NPQ 
 Summer Autumn Winter Autumn Winter 
End RLC 0.08(0.03) 0.29(0.02) 0.33(0.04) 0.15(0.04) 0.3(0.04) 
10 s 0.29(0.02) 0.34(0.07) 0.27(0.06) 0.35(0.08) 0.18(0) 
2.5 mins -0.04(0) -0.11(0.02) -0.08(0.01) -0.06(0.01) -0.1(0) 
15 mins 0(0) -0.01(0) -0.01(0.01) -0.01(0) 0(0) 
End dark 0.02(0.02) 0(0) 0.02(0.02) 0(0) 0.03(0.02) 
 
Table 4.15: Analysis of variance and t-test analysis of Combe Martin C. officinalis 
and C. caespitosa ex-situ photophysiology parameters in relation to the factor 
‘season’. Table shows f- and t-values and associated degrees of freedom (Fd.f. / td.f.) 
and significance (***P < 0.001, **P < 0.01, *P < 0.05).  
 C. officinalis C. caespitosa  C. officinalis C. caespitosa 
RLC parameters 
Fv/Fm F2,8=5.33* t4=1.51 rETRmax F2,8=3.55 t4=1.32 
α F2,8=2.06 t4=-1.18 Ek F2,8=1.10 t4=2.42 
Recovery parameters 
 Relative quantum efficiency  NPQ 
End RLC F2,8=1.00 t4=1.43 End RLC F2,8=17.35** t4=2.45 
10 s F2,8=3.73 t4=-2.28 10 s F2,8=0.42 t4=-1.38 
2.5 mins F2,8=0.91 t4=-1.42 2.5 mins F2,8=2.41 t4=-1.82 
15 mins F2,8=0.68 t4=-2.74 15 mins F2,8=3.61 t4=0.09 
End dark F2,8=5.29* t4=-3.49* End dark F2,8=0.48 t4=1.16 
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Figure 4.11: Ex-situ RLCs and recovery of Combe Martin C. officinalis during 
summer (black lines), autumn (red lines), and winter (blue lines), showing (a) rETR 
and (b) NPQ versus PAR over the RLC, and (c) relative quantum efficiency and (d) 
NPQ versus time over both the RLC and dark recovery period (grey shaded area) (av. 
± se, n = 3). 
 

 
Figure 4.12: Ex-situ RLCs and recovery of Combe Martin C. caespitosa during 
autumn (red lines), and winter (blue lines), showing (a) rETR and (b) NPQ versus 
PAR over the RLC, and (c) relative quantum efficiency and (d) NPQ versus time over 
both the RLC and dark recovery period (grey shaded area). (av. ± se, n = 3).
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4.3.2.5. Comillas in-situ photophysiology 

Irradiance was significantly increased during summer as compared to autumn at COM 

(F1,42 = 179.28, P < 0.001) (Figure 4.6), though no significant change was apparent 

over tidal emersion during either season. Significantly higher irradiance was recorded 

at COM as compared to COR (F1,42 = 37.68, P < 0.001), particularly during autumn 

(Figure 4.6). Differences in irradiance between COM and COR at the start of summer 

emersion and in the direction of change in irradiance over autumn tidal emersion were 

highlighted by significant interaction between site and tide (F2,42 = 9.41, P < 0.001). 

Rock pool water temperature was significantly increased during summer as compared 

to autumn in COM (F1,42 = 539.42, P < 0.001), and significantly increased over 

summer emersion (F2,42 = 35.13, P < 0.001). In comparison to COR, water 

temperature was consistently higher at COM (F1,42 = 768.45, P < 0.001), with a 

greater magnitude of increase in water temperature over summer emersion at COM 

highlighted by significant interaction between site and tide (F2,49 = 3.57, P < 0.05).  

 

C. caespitosa and E. elongata (from both rock pools and exposed substratum) showed 

significantly decreased Fv/Fm during summer, indicating increased summer stress 

(Figures 4.13, 4.14 & 4.15, Table 4.16). Light-saturated photosynthesis (i.e. ambient 

PAR > Ek) was apparent for all species/ecotypes across the duration of summer 

emersion, with irradiance ranging from ca. 1.6 to 7.3-times Ek across all data. During 

autumn, ambient irradiance and Ek were highly comparable for all species/ecotypes at 

start and mid emersion, though photosynthesis was light-limited in all cases at end 

emersion. rETRmax, α and NPQRESID significantly increased for all species/ecotypes 

during autumn, indicating greater capacity for photosynthesis, though greater in-situ 

NPQ (Table 4.16, Figures 4.13, 4.14, 4.15 & 4.16). rETR calculated for in-situ 

irradiance prevailing at the start of tidal emersion was higher during autumn than 

summer for C. caespitosa (31.68 ± 3.24 vs. 24.75 ± 1.24), rock pool E. elongata 

(44.05 ± 1.25 vs. 26.35 ± 3.32) and exposed E. elongata (27.10 ± 3.12 vs. 21.9 ± 

2.96). C. officinalis rETR at in-situ irradiance during summer at COM was 51.29 ± 

2.9. During both seasons, NPQRESID in the range of 0.2 – 0.4 was apparent for C. 

caespitosa and both ecotypes of E. elongata, indicating the requirement for active in-

situ NPQ during all sampling periods at COM. In most cases, reversal of residual 

NPQ over RLCs was not followed by NPQ induction at PAR > PAR0NPQ, indicating 

the action of excitation quenching processes other than NPQ.  
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Figure 4.13: Corallina caespitosa photophysiology in Comillas, N Spain in summer 
(left column) and autumn (right column) at the start (S), middle (M) and end (E) of 
daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs during each 
season and tidal period. Lower line plots show NPQ over RLCs during each season, 
and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3). 
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Figure 4.14: Ellisolandia elongata (rock pool) photophysiology in Comillas, N Spain 
in summer (left column) and autumn (right column) at the start (S), middle (M) and 
end (E) of daytime tidal emersion. Upper line plots show RLCs at the start (back 
squares), middle (grey squares) and end (white squares) of summer and autumn tidal 
emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3). 
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Figure 4.15: Ellisolandia elongata (exposed) photophysiology in Comillas, N Spain 
in summer (left column) and autumn (right column) at the start (S), middle (M) and 
end (E) of daytime tidal emersion. Upper line plots show RLCs at the start (back 
squares), middle (grey squares) and end (white squares) of summer and autumn tidal 
emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3). 
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Figure 4.16: Corallina officinalis photophysiology during summer in Comillas (left 
column) and autumn in A Coruna (right column), N. Spain, at the start (S), middle 
(M) and end (E) of daytime tidal emersion. Upper line plots show RLCs at the start 
(back squares), middle (grey squares) and end (white squares) of summer and autumn 
tidal emersion. Upper bar plots show Fv/Fm, rETRmax, α and Ek determined from RLCs 
during each season and tidal period. Lower line plots show NPQ over RLCs during 
each season, and lower bar plots show NPQRESID, NPQINDUC and PAR0 NPQ per season 
and tidal period. Lower-case letters denote homogenous subsets determined from 
TukeyHSD analysis in relation to the factor ‘tide’. All plots show average ± se (n = 
3). 
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Table 4.16: Analysis of variance of Comillas C. caespitosa and E. elongata (from 
both rock pools and exposed substratum) photophysiology (Fv/Fm, rETRmax, α, Ek, 
NPQRESID, NPQINDUC and PAR0 NPQ) in relation to sampling season, tidal emersion 
period and species (Sp) (N.B. E. elongata from rock pools and exposed substratum are 
treated as separate levels of the factor species during analyses). Table reports F-ratios, 
degrees of freedom (Fd.f.), and significance of factors (***P < 0.001; **P < 0.01; *P < 
0.05). See Table 4.4 for description of statistical analyses employed. 
 Factor 
 Season Tide Species Season:Tide Sp:Tide 
Fv/Fm F1,49=32.52*** F2,49=3.79* F2,49=12.07*** F2,49=3.51* F4,49=1.04 
rETRmax F1,49=35.31*** F2,49=2.85 F2,49=19.06*** F2,49=1.30 F4,49=1.91 
α F1,49=33.26*** F2,49=2.56 F2,49=18.82*** F2,49=1.87 F4,49=1.10 
Ek F1,49=3.09 F2,49=1.23 F2,49=5.38** F2,49=1.96 F4,49=1.60 
NPQRESID F1,49=8.01** F2,49=4.28* F2,49=3.36* F2,49=2.83 F4,49=0.58 
NPQINDUC F1,49=1.85 F2,49=0.23 F2,49=1.48 F2,49=1.03 F4,49=0.71 
PAR0 NPQ F1,49=1.66 F2,49=2.65 F2,49=4.06* F2,49=1.21 F4,49=0.87 
 

Species/ecotype differences in photophysiology were evident for all parameters 

excluding NPQINDUC  (Table 4.16). During summer, differences were apparent due to 

the almost complete shut-down of exposed E. elongata photosynthesis, with exposed 

E. elongata demonstrating significantly reduced Fv/Fm, rETRmax and α in comparison 

to both C. caespitosa and rock pool E. elongata. Additionally, rock pool E. elongata 

demonstrated increased Ek and NPQRESID in comparison to exposed E. elongata and  

C. caespitosa during summer, and C. caespitosa demonstrated decreased PAR0 NPQ 

during summer in comparison to both E. elongata ecotypes. During autumn, species 

differences were evident due to increased Fv/Fm, rETRmax and α of rock pool E. 

elongata in comparison to C. caespitosa and exposed E. elongata, with no significant 

difference between the latter two species.  

 

With the exception of increased C. caespitosa NPQRESID, no significant change in any 

photophysiological parameter was observed for any species / ecotype over summer 

tidal emersion at COM (Table 4.16, Figures 4.13, 4.14, 4.15 & 4.16). During autumn, 

C. caespitosa and rock pool E. elongata both demonstrated significantly decreased 

Fv/Fm and rETRmax by the end of tidal emersion, though exposed E. elongata did not 

demonstrate any significant difference in photophysiology in relation to tide.  

 

C. caespitosa NPQRESID and rETRmax were significantly positively related to ambient 

irradiance during summer and autumn, respectively (Table 4.17), with a significant 

negative relationship between C. caespitosa NPQINDUC and irradiance during autumn. 
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Across both seasons, C. caespitosa NPQRESID was positively correlated with ambient 

irradiance. During autumn, rock pool E. elongata Fv/Fm and NPQRESID showed a 

positive relationship with irradiance, and PAR0 NPQ a negative relationship. During 

summer, exposed E. elongata NPQRESID also showed a positive relationship with 

irradiance. Across both seasons, rock pool and exposed E. elongata Fv/Fm and 

rETRmax were significantly negatively related to irradiance, as was exposed E. 

elongata α (Table 4.17).  

 
Table 4.17: Least squares linear regression (y = mx + c) of Comillas, northern Spain, 
C. caespitosa and rock pool / exposed E. elongata photophysiological parameters in 
relation to ambient irradiance, showing coefficients (standard error in parentheses), 
associated significance (***P < 0.001, **P < 0.01, *P < 0.05), the proportion of 
variance explained by the regression (R2), the overall model significance (P) and the 
number of observations (n). 

Variable Coefficients (SE) & Significance R2 P n m c 
Summer – C. caespitosa     
NPQRESID 3.91-4(1.5-4)* -0.39(0.21) 0.47 < 0.05 9 
Summer – E. elongata exposed     
NPQRESID 4.16-4(1.02-4)** -0.43(0.14)* 0.70 < 0.01 9 
Autumn – C. caespitosa     
rETRmax 0.109(0.03)* -16.29(14.02) 0.62 < 0.05 9 
NPQINDUC -2.02-4(7.76-5)* 1.39-1(3.41-2)** 0.49 < 0.05 9 
Autumn – E. elongata pool     
Fv/Fm 5.79-4(2.29-4)* -0.05(0.10) 0.47 < 0.05 9 
NPQRESID 9.16-4(2.01-4)** 0.63(0.08)*** 0.74 < 0.01 9 
PAR0 NPQ -3.53(0.75)** 2463.66(333.14)*** 0.75 < 0.01 9 
All C. caespitosa     
NPQRESID -1.22-4(5.69-5)* 3.31-1(5.86-2)*** 0.22 <0.05 18 
All E. elongata pool     
Fv/Fm -8.59-5(4.01-5)* 2.19-1(4.13-2)*** 0.22 < 0.05 18 
rETRmax -0.02(0.00)* 62.05(8.15)*** 0.32 < 0.05 18 
All E. elongata exposed     
Fv/Fm -7.21-5(1.47-5)*** 1.32-1(1.51-2)*** 0.60 < 0.001 18 
rETRmax -0.01(0.00)* 35.43(7.54)*** 0.30 < 0.05 18 
α -4.13-5(7.62-6)*** 6.90-2(7.85-3)*** 0.64 < 0.001 18 
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4.3.2.6. Comillas ex-situ photophysiology 

Fv/Fm determined from ex-situ RLCs and recovery at COM was significantly 

increased during autumn as compared to summer for C. caespitosa and E. elongata 

from exposed substrata, though not significantly different between seasons for E. 

elongata from rock pools (Tables 4.18 & 4.19, Figure 4.17). rETRmax and α were 

significantly increased, and Ek significantly decreased, for all species during autumn.  

 

No difference in rETRmax was evident between species. α was significantly increased 

in E. elongata from exposed substratum in autumn, and in E. elongata from rock 

pools in summer, as compared to other species, resulting in significant interaction 

between season and species. Ek was significantly higher in C. caespitosa as compared 

to E. elongata from rock pools, with no other species differences. Greater NPQ was 

induced over RLCs during autumn as compared to summer for E. elongata from 

exposed substratum. In addition, the magnitude of NPQ induction was greater for E. 

elongata from exposed substratum during autumn in comparison to both other 

species. 

 

Relative quantum efficiency at the end of RLCs was not significantly different 

between seasons or species, with an overall decrease to 14.27 ± 0.69 % apparent 

across all data. Greater recovery in relative quantum efficiency over the initial 10 s of 

darkness was apparent during autumn for all species, with no other differences in 

recovery rates. During summer, E. elongata from exposed substratum recovered 

relative efficiency to 100 % of initial values within 160 s of darkness, in comparison 

to E. elongata from rock pools and C. caespitosa, whose relative quantum efficiency 

remained below initial values (95.4 ± 1.65 % and 88.4 ± 6.4 %, respectively) at the 

end of the dark recovery period (17.5 mins). During autumn, E. elongata from rock 

pools showed the quickest recovery to 100 % initial values after 460 s, while full 

recovery was evident in the other two species after 17.5 mins darkness. With the 

exception of exposed E. elongata during autumn, NPQ decreased to 0 within 100 to 

160 s of darkness for all species in both seasons. For exposed E. elongata, the greater 

degree of NPQ induced during RLCs took 17.5 mins to return to almost initial values 

(0.08 ± 0.08). Incomplete recovery of relative quantum efficiency despite fully 

dissipated NPQ was only evident for C. caespitosa during summer in COM.
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Table 4.18: Average ex-situ photophysiology of Comillas C. caespitosa, E. elongata (from both rock pools and exposed substratum) and C. 
officinalis across seasons (SE in parentheses, n = 3). Table shows parameters determined from RLCs, and relative quantum efficiency (%) and 
NPQ over dark recovery periods (End RLC = relative quantum efficiency (%) and NPQ at the final RLC light step; 10 s, 2.5 mins and 15 mins = 
relative quantum efficiency recovery rate (% min-1) and NPQ relaxation rate (NPQ min-1) across the first 10 s, subsequent 2.5 mins and final 15 
mins of dark recovery period; End dark = the maximum recovery in relative quantum efficiency (%) and relaxation of NPQ achieved by the end 
of the dark recovery period). 
 C. caespitosa E. elongata – rock pool E. elongata - exposed C. officinalis 
RLC parameters 

 Summer Autumn Summer Autumn Summer Autumn Summer 
Fv/Fm 0.29(0.02) 0.44(0.03) 0.4(0.03) 0.43(0.03) 0.33(0.05) 0.53(0.02) 0.35(0.03) 
rETRmax 42.33(2.53) 77.55(3.94) 59.19(4.74) 75.04(8.94) 49.87(3.75) 86.1(4.39) 45.01(4.26) 
α 0.07(0.01) 0.16(0.01) 0.13(0.01) 0.2(0) 0.09(0.01) 0.26(0.02) 0.12(0.01) 
Ek 575.85(22.55) 482.68(49.3) 455.9(14.27) 383.85(49.79) 576.71(35.4) 332.16(6.4) 372.52(20.85) 
Recovery parameters 

Relative quantum efficiency 
  Summer Autumn Summer Autumn Summer Autumn Summer 
End RLC 14.26(0.48) 16.13(1.88) 13.75(0.53) 15.55(3.37) 14.67(0.89) 11.28(1.06) 13.35(1.28) 
10 s 243.44(0.38) 164.28(19.31) 179.88(0.04) 173.03(3.77) 189.56(0.45) 173.47(11.04) 195.67(6.29) 
2.5 mins 7.66(0.03) 12.99(1.73) 12.34(0.01) 17.1(1.95) 17.83(0.02) 13.24(1.19) 10.15(0.82) 
15 mins 1.44(0.01) 2.36(0.53) 2.09(0.01) 1.29(0.38) 0.92(0.01) 2.57(0.2) 1.81(0.38) 
End dark 88.43(6.47) 99.56(0.44) 95.47(1.63) 100(0) 100(0) 98.96(1.04) 89.43(6.03) 

NPQ 
 Summer Autumn Summer Autumn Summer Autumn Summer 

End RLC 0.06(0.02) 0.19(0.07) 0.18(0.06) 0.24(0.03) 0.13(0.06) 0.51(0.12) 0.18(0.03) 
10 s 0.16(0) 0.23(0.04) 0.35(0) 0.5(0.05) 0.18(0) 0.35(0.01) 0.14(0.03) 
2.5 mins -0.03(0) -0.08(0.02) -0.07(0) -0.12(0.02) -0.07(0) -0.14(0.02) -0.05(0.01) 
15 mins 0(0) 0(0) -0.01(0) 0(0) 0(0) -0.01(0) 0(0) 
End dark 0.01(0.01) 0(0) 0.01(0.01) 0(0) 0(0) 0.08(0.08) 0.04(0.03) 
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Table 4.19: Analysis of variance of Comillas C. caespitosa and E. elongata (from 
both rock pools and exposed substratum) ex-situ photophysiology in relation to 
sampling season, tidal emersion period and species  (N.B. E. elongata from rock pools 
and exposed substratum are treated as separate levels of the factor species during this 
analysis). Table reports F-ratios, degrees of freedom (Fd.f.), and significance of factors 
(***P < 0.001; **P < 0.01; *P < 0.05). 

 Factor 
 Season Species Season:Species 
RLC parameters 
Fv/Fm F1,17=26.50*** F2,17=2.50 F2,17=4.49* 
rETRmax F1,17=48.35*** F2,17=1.48 F2,17=2.50 
α F1,17=159.65*** F2,27=15.33*** F2,17=13.85*** 
Ek F1,17=24.28*** F2,17=5.42* F2,17=3.84 
Recovery parameters 

Relative quantum efficiency 
End RLC F1,17=0.00 F2,17=0.92 F2,17=1.54 
10 s F1,17=5.89 F2,17=1.44 F2,17=2.62 
2.5 mins F1,17=2.36 F2,17=7.34** F2,17=7.27** 
15 mins F1,17=2.15 F2,17=0.10 F2,17=3.32 
End dark F1,17=4.66 F2,17=2.05 F2,17=2.43 

NPQ 
End RLC F1,17=12.16** F2,17=4.48* F2,17=3.11 
10 s F1,17=9.17* F2,17=10.44** F2,17=0.51 
2.5 mins F1,17=12.75** F2,17=2.70 F2,17=0.18 
15 mins F1,17=6.59* F2,17=5.03* F2,17=8.49** 
End dark F1,17=0.55 F2,17=0.75 F2,17=1.22 
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Figure 4.17: Ex-situ RLCs and recovery of Comillas C. caespitosa (a – d, triangle 
symbols), rock pool E. elongata (e – h, circle symbols) and exposed E. elongata (i – l, 
diamond symbols) during summer (black lines) and autumn (red lines), showing rETR 
(a, e, i) and NPQ (b, f, j) versus PAR over the RLC, and relative quantum efficiency 
(c, g, k) and NPQ (d, h, l) versus time over both the RLC and dark recovery period 
(grey shaded area) (av. ± se, n = 3). 
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Ex-situ RLCs with recovery were performed at COM for C. officinalis during summer 

only, preventing seasonal comparisons. However, C. officinalis Fv/Fm, rETRmax, α and 

Ek were comparable to those determined for other species from COM during summer 

(Table 4.18, Figure 4.18). Relative quantum efficiency decreased to 13.3 ± 1.2 % at 

the end of RLCs with NPQ increased to 0.17 ± 0.03. During recovery in darkness, 

relative quantum efficiency did not achieve complete recovery, reaching 89.4 ± 6.0 % 

of initial values, while NPQ decreased to 0 after 17.5 mins of darkness.  

 

 
Figure 4.18: Ex-situ RLCs and recovery of C. officinalis from Comillas during 
summer (black lines) and A Coruna during autumn (red lines), showing (a) rETR and 
(b) NPQ versus PAR over the RLC, and (c) relative quantum efficiency and (d) NPQ 
versus time over both the RLC and dark recovery period (grey shaded area) (av. ± se, 
n = 3). 
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4.3.2.7. A Coruña in-situ photophysiology 

Irradiance was significantly increased during summer as compared to autumn in COR 

(F1,42 = 179.28, P < 0.001) (Figure 4.6), with significant increase in irradiance 

recorded over summer tidal emersion (F2,42 = 12.63, P < 0.001) due to the prevalence 

of over-cast, cloudy conditions at the onset of tidal emersion, which rapidly dispelled. 

Rock pool water temperature was also significantly increased during summer as 

compared to autumn (F1,42 = 539.42, P < 0.001) and showed increase over summer 

tidal emersion (F2,42 = 35.13, P < 0.001). As previously noted, irradiance and water 

temperature prevailing in COR were significantly less than those recorded in COM 

during summer and autumn sampling. 

 

There was a significant difference in all photophysiology parameters at COR between 

summer and autumn with the exception of rETRmax (Figures 4.19 & 4.20, Table 4.20). 

During summer, both C. caespitosa and E. elongata photosynthesis was light-limited 

(ambient PAR < Ek) at start emersion, though ca. 2-fold light saturated (ambient PAR 

> Ek) at mid and end of emersion. During autumn, photosynthesis was significantly 

light-limited at start emersion, with ambient irradiance ca. 8 – 10 % of Ek, increasing 

to ca. 40 % of Ek at mid emersion, and progressing slightly above Ek by end emersion. 

C. caespitosa and E. elongata both demonstrated significantly increased Fv/Fm and α, 

and decreased Ek during autumn. While in-situ NPQ was active during summer given 

significantly increased NPQRESID and PAR0NPQ, no active NPQ was detected during 

autumn, whereas NPQINDUC over RLCs reached maximal values for both species. 

Between species, C. caespitosa demonstrated increased α in comparison to E. 

elongata during summer only, with no other species differences. rETR calculated for 

in-situ irradiance at the start of summer and autumn tidal emersion was considerably 

higher during summer than autumn for C. caespitosa (52.13 ± 1.67 vs. 8.71 ± 1.55) 

and E. elongata (31.67 ± 1.96 vs. 7.29 ± 2.08). C. officinalis rETR at in-situ irradiance 

at the start of autumn tidal emersion was 6.25 ± 1.71 (Figure 4.16).  
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Figure 4.19: Corallina caespitosa photophysiology in A Coruna, N. Spain, in 
summer (left column) and autumn (right column), at the start (S), middle (M) and end 
(E) of daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek from RLCs during each season and 
tidal period. Lower line plots show NPQ from RLCs during each season, with lower 
bar plots showing NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal emersion 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3). 
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Figure 4.20: Ellisolandia elongata photophysiology in A Coruna, N. Spain, in 
summer (left column) and autumn (right column), at the start (S), middle (M) and end 
(E) of daytime tidal emersion. Upper line plots show RLCs at the start (back squares), 
middle (grey squares) and end (white squares) of summer and autumn tidal emersion. 
Upper bar plots show Fv/Fm, rETRmax, α and Ek from RLCs during each season and 
tidal period. Lower line plots show NPQ from RLCs during each season, with lower 
bar plots showing NPQRESID, NPQINDUC and PAR0 NPQ per season and tidal emersion 
period. Lower-case letters denote homogenous subsets determined from TukeyHSD 
analysis in relation to the factor ‘tide’. All plots show average ± se (n = 3).
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Table 4.20: Analysis of variance of A Coruna C. caespitosa and E. elongata 
photophysiology (Fv/Fm, rETRmax, α, Ek, NPQRESID, NPQINDUC and PAR0 NPQ) in 
relation to sampling season, tidal emersion period and species (Sp). Table reports F-
ratios, degrees of freedom (Fd.f.), and significance of factors (***P < 0.001; **P < 
0.01; *P < 0.05). See Table 4.4 for description of statistical analyses employed. 
 Factor 
 Season Tide Species Season:Tide Sp:Tide 
Fv/Fm F1,34=5.99* F2,34=4.01* F1,34=0.19 F2,34=0.18 F2,34=2.32 
rETRmax F1,34=1.13 F2,34=9.09** F1,34=2.39 F2,34=0.08 F2,34=0.77 
α F1,34=58.98*** F2,34=9.10** F1,34=4.38* F2,34=4.27* F2,34=1.03 
Ek F1,34=46.51*** F2,34=3.25 F1,34=0.47 F2,34=1.77 F2,34=0.50 
NPQRESID F1,34=70.31*** F2,34=0.19 F1,34=0.00 F2,34=0.02 F2,34=0.65 
NPQINDUC F1,34=77.27*** F2,34=3.29* F1,34=0.17 F2,34=0.13 F2,34=0.14 
PAR0 NPQ F1,34=76.89*** F2,34=3.52* F1,34=2.83 F2,34=1.86 F2,34=1.92 
 
Over tidal emersion periods, significant differences in photophysiology were apparent 

for C. caespitosa during both seasons, and E. elongata and C. officinalis during 

autumn (Figures 4.16, 4.19 & 4.20, Table 4.20). During summer, C. caespitosa 

demonstrated significantly decreased Fv/Fm, α and NPQINDUC at mid tidal emersion, 

with recovery to approximately initial values by the end of tidal emersion. PAR0 NPQ 

showed the complimentary trend, increasing at mid emersion and returning to initial 

values by end emersion, while NPQRESID remained unchanged. rETRmax showed 

significant decline from start to mid tidal emersion, with no recovery by the end of 

emersion.  

 

Similar patterns in photophysiology were observed between C. caespitosa and E. 

elongata over autumn tidal emersion at COR; Fv/Fm significantly increased at the end 

of tidal emersion; rETRmax significantly decreased at mid emersion, remaining 

decreased to end emersion for C. caespitosa with some recovery for E. elongata; α 

was variable over emersion with significant decrease observed at mid emersion for C. 

caespitosa; while Ek showed decline in both species over autumn emersion, though 

not significantly. For C. officinalis, significant increase in Fv/Fm (F2,8 = 8.13, P < 

0.05) was also observed over autumn tidal emersion, with rETRmax and Ek dynamics 

similar to those of C. caespitosa and E. elongata, though not significantly different in 

relation to tide. C. officinalis NPQINDUC was significantly increased at mid and end 

emersion in comparison to initial values (F2,8 = 13.53, P < 0.01), with similar but non-

significant trends observed for C. caespitosa and E. elongata.   
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A significant negative relationship was apparent during summer between C. 

caespitosa α and ambient irradiance (Table 4.21). During autumn, both C. caespitosa 

and E. elongata demonstrated negative correlation between Ek and irradiance, with 

positive correlation between C. caespitosa NPQINDUC, and E. elongata Fv/Fm, to 

irradiance also apparent. Across both seasons, negative relationships were identified 

between (i) C. caespitosa Fv/Fm, α and NPQINDUC, and (ii) E. elongata rETRmax, α and 

NPQINDUC, and ambient irradiance. Conversely, both species Ek, NPQRESID and PAR0 

NPQ showed significant positive relationships with ambient irradiance across both 

seasons.  

 

Table 4.21: Least squares linear regression (y = mx + c) of A Coruna, northern Spain, 
C. caespitosa, E. elongata and C. officinalis photophysiological parameters in relation 
to ambient irradiance, showing coefficients (SE in parentheses), associated 
significance (***P < 0.001, **P < 0.01, *P < 0.05), the proportion of variance 
explained by the regression (R2), the overall model significance (P) and the number of 
observations (n). 

Variable Coefficients (SE) & Significance R2 P n m c 
Summer – C. caespitosa     
α -6.07-5(2.34-5)* 1.76-1(2.67-2)*** 0.48 < 0.05 9 
Autumn – C. caespitosa     
NPQINDUC 0.0016(0.00)* 0.37(0.12)* 0.47 < 0.05 9 
Autumn – E. elongata     
Fv/Fm 6.71-4(2.13-4)* 0.32(0.03)*** 0.58 < 0.05 9 
Ek -0.80(0.21)** 461.28(37.65)*** 0.67 < 0.01 9 
Autumn – C. officinalis     
Ek -0.94(0.30)* 490.24(55.01)*** 0.57 < 0.05 9 
All C. caespitosa     
Fv/Fm -1.41-4(5.80-5)* 4.46-1(4.74-2)*** 0.27 < 0.05 18 
α -7.58-5(1.84-5)*** 1.98-1(1.50-2)*** 0.51 < 0.001 18 
Ek 0.13(0.05)* 365.76(48.9)*** 0.23 < 0.05 18 
NPQRESID 8.83-5(1.87-5)*** 1.18-2(1.53-2) 0.58 < 0.001 18 
NPQINDUC -3.44-4(1.07-4)** 0.57(0.08)*** 0.39 < 0.01 18 
PAR0 NPQ 0.32(0.06)*** 56.69(56.25) 0.58 < 0.001 18 
All E. elongata     
rETRmax -0.01(0.00)* 62.45(5.91)*** 0.23 < 0.05 18 
α -7.26-5(2.32-5)** 1.72-1(1.89-2)*** 0.37 < 0.001 18 
Ek 0.13(0.06)* 387.50(49.72)*** 0.23 < 0.05 18 
NPQRESID 9.13-5(4.19-5)* 2.84-2(3.35-2) 0.23 < 0.05 18 
NPQINDUC -4.01-4(1.79-4)* 0.70(0.14)*** 0.23 < 0.05 18 
PAR0 NPQ 0.36(0.16)* 133.87(132.68) 0.24 < 0.05 18 
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4.3.2.8. A Coruña ex-situ photophysiology 

No seasonal or interspecific difference in Fv/Fm, rETRmax, α or Ek was observed in ex-

situ RLC and recovery data of C. caespitosa and E. elongata from COR, however 

general patterns were apparent (Tables 4.22 & 4.23, Figure 4.21). C. caespitosa Fv/Fm 

and rETRmax were relatively similar across seasons (Table 4.22), while E. elongata 

Fv/Fm and rETRmax were increased during autumn (0.54 ± 0.06 and 95.3 ± 2.5, 

respectively) as compared to summer (0.37 ± 0.06 and 60.0 ± 17.7, respectively). 

Whilst no significant difference in NPQ induction at the end of RLCs was apparent in 

relation to season or species, C. caespitosa NPQ was generally decreased during 

autumn in comparison to summer, with the opposite true for E. elongata. C. officinalis 

NPQ reached 0.32 ± 0.06 at the end of RLCs (Table 4.22, Figure 4.18). 

  

Table 4.22: Average ex-situ photophysiology of A Coruna C. caespitosa, E. elongata 
and C. officinalis across seasons (SE in parentheses) (n = 3). Table shows parameters 
determined from RLCs, and relative quantum efficiency (%) and NPQ over dark 
recovery periods (End RLC = relative quantum efficiency (%) and NPQ at the final 
RLC light step; 10 s, 2.5 mins and 15 mins = relative quantum efficiency recovery 
rate (% min-1) and NPQ relaxation rate (NPQ min-1) across the first 10 s, subsequent 
2.5 mins and final 15 mins of dark recovery period; End dark = the maximum 
recovery in relative quantum efficiency (%) and relaxation of NPQ achieved by the 
end of the dark recovery period). 

 C. caespitosa E. elongata C. officinalis 
RLC parameters 
  Summer Autumn Summer Autumn Autumn 
Fv/Fm 0.38(0.05) 0.39(0.05) 0.37(0.06) 0.54(0.07) 0.49(0.02) 
rETRmax 70.28(8.62) 54.63(15.86) 60.03(17.72) 95.3(2.55) 67.26(4.42) 
α 0.13(0.03) 0.1(0.02) 0.13(0.04) 0.18(0.02) 0.19(0.01) 
Ek 571.62(41.55) 515.87(96.49) 473.71(21.69) 537.62(44.93) 350(6.16) 
Recovery parameters 

Relative quantum yield 
 Summer Autumn Summer Autumn Autumn 
End RLC 19.14(0.47) 13.42(2.16) 14.17(2.84) 17.35(2.69) 12.94(0.27) 
10 s 177.52(15.69) 128.82(12.32) 193.4(25.19) 110.13(11.25) 92.35(14.24) 
2.5 mins 8.3(2.45) 10.84(3.49) 9.59(0.33) 8.34(1.94) 5.77(0.98) 
15 mins 0.63(0.35) 2.49(0.23) 2.43(0.17) 2.59(0.46) 2.44(0.43) 
End dark 75.79(5.98) 86.85(10.02) 94.65(2.71) 82.42(5.76) 67.19(8.84) 

NPQ 
 Summer Autumn Summer Autumn Autumn 
End RLC 0.38(0.06) 0.14(0.1) 0.23(0.07) 0.45(0.17) 0.32(0.06) 
10 s -0.03(0.11) 0.19(0.1) 0.11(0.12) 0.52(0.08) 0.28(0.04) 
2.5 mins -0.07(0.01) -0.04(0.02) -0.05(0.01) -0.06(0.01) -0.07(0.01) 
15 mins 0(0) -0.01(0.01) -0.01(0.01) -0.02(0.01) -0.01(0) 
End dark 0.16(0.04) 0(0) 0(0) 0.14(0.08) 0.11(0.05) 
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Table 4.23: Analysis of variance of A Coruna C. caespitosa and E. elongata ex-situ 
photophysiology in relation to sampling season and species. Table reports F-ratios, 
degrees of freedom (Fd.f.), and significance of factors (***P < 0.001; **P < 0.01; *P < 
0.05). 

Factor 
 Season Species Season:Species 
RLC parameters 
Fv/Fm F1,11=2.62 F1,11=1.57 F1,11=1.79 
rETRmax F1,11=0.59 F1,11=1.43 F1,11=4.01 
α F1,11=0.39 F1,11=2.01 F1,11=2.14 
Ek F1,11=0.00 F1,11=0.42 F1,11=1.05 
Recovery parameters 

Relative quantum efficiency 
End RLC F1,11=0.32 F1,11=0.05 F1,11=3.92 
10 s F1,11=15.02** F1,11=0.00 F1,11=1.03 
2.5 mins F1,11=0.07 F1,11=0.06 F1,11=0.64 
15 mins F1,11=9.83* F1,11=8.73* F1,11=6.98* 
End dark F1,11=0.00 F1,11=1.17 F1,11=3.06 

NPQ 
End RLC F1,11=0.00 F1,11=0.49 F1,11=4.26 
10 s F1,11=9.68* F1,11-5.28 F1,11=0.82 
2.5 mins F1,11=0.33 F1,11=0.03 F1,11=1.51 
15 mins F1,11=1.48 F1,11=4.61 F1,11=0.68 
End dark F1,11=0.04 F1,11=0.03 F1,11=11.59** 
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Figure 4.21: Ex-situ RLCs and recovery of A Coruna C. caespitosa (a – d) and E. 
elongata (e – h) during summer (black lines) and autumn (red lines), showing rETR 
(a, e) and NPQ (b, f) versus PAR over the RLC, and relative quantum efficiency (c, g) 
and NPQ (d, h) versus time over both the RLC and dark recovery period (grey shaded 
area) (av. ± se, n = 3). 
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Relative quantum efficiency decreased to 16.28 ± 1.61 % and 15.76 ± 0.76 % at the 

end of COR C. caespitosa and E. elongata ex-situ RLCs, respectively, with no 

significant difference between season or species evident (Tables 4.22 & 4.23, Figure 

4.21). C. officinalis relative quantum efficiency similarly decreased to 12.9 ± 0.2 % 

(Figure 4.18). Recovery in relative quantum efficiency after initial 10 s darkness was 

greater during summer than autumn for E. elongata, and recovery in the final 15 mins 

of darkness was greater in E. elongata than C. caespitosa during summer. Complete 

recovery of quantum efficiency was not achieved by any species during either season 

after 17.5 mins of darkness, though E. elongata efficiency was almost fully recovered 

during summer (94.6 ± 2.7 %). NPQ relaxation was not apparent at the end of the 

recovery period during summer for C. caespitosa, with values remaining at 0.15 ± 

0.03. In contrast, C. caespitosa NPQ decreased to 0 after approximately 160 secs 

during autumn. E. elongata showed steady decline in NPQ across the dark recovery 

period during summer, achieving complete reversal at 17.5 mins darkness. During 

autumn, similar trends were observed though NPQ did not fully reverse, remaining at 

0.14 ± 0.07 after 17.5 mins of darkness, consistent with partially decreased relative 

quantum efficiency. C. officinalis NPQ recovery proceeded to 0.10 ± 0.05 by the end 

of the dark recovery period, with relative yield at 67.1 ± 8.8 % of initial values.  
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4.3.2.9. Latitudinal comparison of photophysiology 

Latitudinal gradients in C. officinalis photophysiology were assessed separately per 

season (summer / autumn) by comparison of ex-situ RLCs and recovery between ICE, 

CM and northern Spain (summer data = COM, autumn data = COR). C. officinalis 

Fv/Fm was not significantly different between latitudes during summer or autumn 

(Table 4.24, Figure 22). rETRmax was significantly increased in CM during summer as 

compared to ICE and northern Spain. During autumn, C. officinalis demonstrated 

decreased rETRmax in ICE in comparison to other latitudes.  No significant difference 

in α or Ek was apparent between latitudes in either season, though divergent trends of 

increasing Ek with latitude during summer, and decreasing Ek with latitude during 

autumn were apparent (Figure 22, Panel d). Relative quantum efficiency at the start of 

dark recovery was not significantly different across latitudes during summer, while 

NPQ at the start of dark recovery was significantly increased in ICE. During autumn, 

ICE C. officinalis demonstrated significantly decreased relative quantum efficiency at 

the start of dark recovery in comparison to C. officinalis from other latitudes, though 

no significant difference in NPQ was apparent between latitudes. At the end of the 

dark recovery period during summer, ICE C. officinalis showed significantly 

decreased recovery in relative quantum efficiency and increased NPQ in comparison 

to C. officinalis from CM and northern Spain. No significant differences in relative 

quantum efficiency or NPQ at the end of dark recovery were apparent across latitudes 

during autumn.   

 

Table 4.24: Analysis of variance of C. officinalis ex-situ photophysiology in relation 
to the factor latitude. Table reports F-ratios, degrees of freedom (Fd.f.), and 
significance of factors (***P < 0.001; **P < 0.01; *P < 0.05). 
 

 

 Summer Autumn 
RLC parameters 
Fv/Fm F2,8=0.56 F2,8=0.10 
rETRmax F2,8=6.75* F2,8=10.78* 
α F2,8=3.27 F2,8=0.93 
Ek F2,8=1.60 F2,8=2.59 
Recovery Parameters 

Relative quantum efficiency 
End RLC F2,8=0.92 F2,8=8.97 
End dark F2,8=5.57* F2,8=4.00 

NPQ 
End RLC F2,8=31.82*** F2,8=1.08 
End dark F2,8=13.84** F2,8=2.33 
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Figure 4.22: Latitudinal comparison of C. officinalis ex-situ photophysiology. 
Summer and autumn data are presented from Þorlákshöfn, Iceland (ICE, white boxes), 
Combe Martin, UK (UK, light grey boxes), and from Comillas (summer) and A 
Coruna (autumn) northern Spain (NSP, dark grey boxes). Lower-case letters denote 
post-hoc TukeyHSD homogenous subsets in relation to the factor latitude. Start and 
End refer to the start and end of dark recovery period, respectively. 
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4.4. Discussion 

This study represents the most in-depth assessment of Corallina and Ellisolandia 

photophysiology across the NE Atlantic to-date, providing insight into 

photoacclimation and regulation strategies that allow these ecosystem engineers to 

maintain productivity under fluctuating irradiance conditions in-situ. Findings 

highlight (i) seasonal photoacclimation permitting maximal light harvesting capacity 

during low-light periods, (ii) the importance of non-photochemical quenching (NPQ) 

in Corallina and Ellisolandia photoregulation, (iii) light-limitation of Corallina and 

Ellisolandia productivity during autumn / winter periods, though the potential for 

limitation of productivity through photoinhibition during summer, (iv) the impacts of 

tidal emersion on photochemistry, and (v) inter- and intra-specific patterns in 

photophysiology. The information presented here contributes greatly to current 

knowledge on Corallina and Ellisolandia ecophysiology in the NE Atlantic, and is 

pertinent as research attempts to predict the impacts of climate change and ocean 

acidification on these calcifying macroalgal species (Harley et al. 2012).  

 

4.4.1. Seasonal photoacclimation 

Seasonal acclimation of photochemistry was apparent for all species at all latitudes, 

with both in-situ and ex-situ data indicating increased light-harvesting capability 

under low-light autumn/winter conditions and down regulation of photochemistry 

under high-light summer conditions. Photoacclimation can be achieved through either 

a change in the ‘size’ or number of photosynthetic units (PSU) (Figure 4a) (Ramus 

1981, Richardson et al. 1983, Falkowski and LaRoche 1991, Beer et al. 2014). Under 

low-light conditions, an increase in PSU size is reflected by an increase in light 

utilisation efficiency (α), but a decrease in maximal productivity (Pmax or ETRmax) 

(Richardson et al. 1983, Beer et al. 2014). Conversely, with photoacclimation to low 

irradiance via increase in PSU number, both antenna size and reaction centre numbers 

per cell increase in concert, such that all aspects of the photosynthetic functional 

apparatus are enhanced as light for growth is decreased (Beer et al. 2014). Given that 

both α and rETRmax of C. officinalis and C. caespitosa varied inversely with irradiance 

across seasons in the UK intertidal (Figure 4.3), data indicated that photoacclimation 

was achieved through alteration of PSU number, as opposed to size, allowing 

maximum light utilisation during low-light winter periods. These findings were 

supported by seasonal dynamics in photophysiology assessed over tidal emersion 
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periods in the UK (increased rETRmax of both species during winter, Figures 4.9 & 

4.10), and northern Spain in Comillas (increased rETRmax and α of all species / 

ecotypes during autumn, Figures 4.13 – 4.16) and A Coruña (increased α of both 

species during autumn, though rETRmax did not differ between seasons, Figures 4.19 

& 4.20). Data are thus consistent with previous designation of Corallina as typical 

‘shade-plants’, effective at harvesting and utilising irradiance at low fluence rates 

(Häder et al. 1997, 2003).  

 

Opposite seasonal dynamics in photophysiology observed in-situ in Iceland (i.e. 

increased α and rETRmax during summer as compared to autumn, Figure 4.7) were an 

effect of the irradiance apparent during field sampling, as opposed to differential 

seasonal photoacclimation at this latitude. During autumn, uncharacteristically high 

irradiance was apparent during field sampling in Iceland, to levels greater than during 

summer (Figure 4.6). Under these conditions, C. officinalis rETRmax and α were 

significantly decreased, with active NPQ in-situ highlighted by increased NPQRESID. 

Whilst photoregulation via NPQ can prevent long-lasting damage to photosynthetic 

components by diversion of excess energy away as heat (Franklin and Forster 1997, 

Consalvey et al. 2005, Lavaud and Lepetit 2013), NPQ can become exhausted during 

long or sudden exposure to excess irradiance, leading to damage of the D1 protein of 

PSII, decline in quantum efficiency and Pmax, and ultimately chronic photoinhibition 

(Franklin and Forster 1997). For low-light acclimated algae, increased light harvesting 

antenna can be a liability if high irradiance is encountered (Muller et al. 2001, Beer et 

al. 2014). Decreased C. officinalis α and rETRmax in Iceland during autumn were 

therefore likely due to photoinhibition triggered by a combination of high irradiance 

and a low-light acclimated state; as supported by findings of ex-situ photophysiology 

assessment (see below).  

 

Ex-situ examination of Corallina and Ellisolandia photophysiology allowed for 

validation of in-situ observations and assessment of photochemistry under less impact 

from the irradiance prevailing on the day of field sampling; shown above to 

potentially impact the interpretation of e.g. longer-term seasonal patterns. Prior to ex-

situ RLCs and recovery, samples were allowed a long period (> 1h) of dark adaptation 

to permit re-oxidation of reactions centres, relaxation of NPQ, and PSII repair. Given 

that fluorescence quenching was not observed in the dark-adapted state (i.e. Fm’ > 
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Fm), full QA oxidation and reversal of NPQ was apparent before ex-situ RLCs were 

performed. However, PSU repair can take on the order of hours depending on the 

degree of photoinhibition and/or photodamage apparent, and may not have been 

complete (Ralph and Gademann 2005). In contrast to in-situ dynamics, ex-situ RLCs 

performed in Iceland highlighted low-light photoacclimation of C. officinalis during 

autumn, given increased α in comparison to summer samples (Figure 4.8). In addition, 

(i) downturn in rETR and (ii) a plateau in NPQ at the end of autumn ex-situ RLCs, 

combined with (iii) incomplete recovery of quantum efficiency despite full NPQ 

reversal at the end of dark recovery, were consistent with the presence of 

photoinhibition in autumn samples (Ralph and Gademann 2005, Franklin and Forster 

1997). Thus while in-situ RLCs provided assessment of the actual photochemistry 

under the prevalent abiotic conditions, ex-situ RLCs following prolonged (> 1h) dark 

adaptation provided an important comparison allowing identification of the optimal 

photochemistry during different seasons.  

 

RLCs performed ex-situ for UK C. officinalis supported conclusions from in-situ data 

of seasonal photoacclimation through alteration of PSU number, though suggested 

that in-situ patterns in photochemistry may also be driven by high-light stress in 

addition to low-light photoacclimation. Following dark adaptation, summer C. 

officinalis samples assessed ex-situ, were capable of achieving the same levels of 

rETRmax, α and Ek as autumn and winter samples from Combe Martin, in contrast to 

seasonal dynamics recorded in-situ (compare Figures 4.11 & 4.12 panel a, with Figure 

4.2, panels a – d). Whilst differential photoacclimation was still indicated given 

seasonal differences in (i) the degree of NPQ apparent for a given level of PAR, and 

(ii) the magnitude of recovery in quantum efficiency during darkness (Figures 4.11 & 

4.12, panels b & c), data suggested that release from summer light-stress permitted the 

same capacity for photochemistry as observed during other seasons. Similarly, C. 

caespitosa and E. elongata (especially from exposed substratum) demonstrated 

increased α and rETRmax during ex-situ as compared to in-situ summer RLCs in 

Comillas, presumably due to release from high in-situ light-stress (compare in-situ 

RLCs Figures 4.13 – 4.15 with ex-situ RLCs Figure 4.17). Previously, Richardson et 

al. (1983) questioned whether algae exhibiting photoacclimation via change in PSU 

number actually ‘adapt’ to low irradiance conditions, or are merely stressed by higher 

light environments. Decreased Fv/Fm, indicative of increased stress in macroalgae 
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(Maxwell and Johnson 2000), was apparent in-situ for all species during summer, at 

all sites, indicating light stress impacts to Corallina and Ellisolandia photochemistry. 

However, alteration of pigment concentrations under different light environments has 

also been previously shown for Corallina and Ellisolandia species (e.g. Algarra et al. 

1991, Häder et al. 1997, Kim et al. 2013). Thus, while it is not possible to differentiate 

the relative roles of high light-stress and changes in pigment concentrations on the 

seasonal patterns in photophysiology observed during the present study, it is likely 

that both components play a governing role.  

 

4.4.2. Seasonal photoregulation 

NPQ is shown by this study to be an important photoregulation mechanism for 

Corallina and Ellisolandia species across the NE Atlantic, serving to prevent or 

minimise photoinhibition and maximise productivity. NPQ is a common means by 

which to dissipate excess irradiance energy as heat in algae, which, when 

photosynthesis is saturated, can damage the photosynthetic apparatus (Hänelt et al. 

1993, Franklin and Forster 1997, Lavaud and Lepetit 2013). NPQRESID, representing 

active NPQ due to in-situ irradiance, showed seasonal cycles in C. officinalis and C. 

caespitosa in Combe Martin, with summer/autumn maxima and winter/spring minima 

(Figure 4.4). In Iceland, increased NPQRESID was apparent during autumn when 

maximal irradiance prevailed (Figure 4.7), while in northern Spain, NPQRESID was 

recorded during both summer and autumn at Comillas (Figures 4.13 – 4.15) and 

during summer at A Coruña (Figures 4.19 & 2.10). Under seasonal conditions of 

reduced irradiance and minimal NPQRESID, NPQINDUC at the end of RLCs was greatest, 

demonstrating that NPQ was always available as a rapidly inducible means of 

photoregulation to prevent or reduce potential photoinhibition (compare NPQRESID and 

NPQINDUC in all in-situ photophysiology figures, though see Figure 4.4 C. officinalis 

data for a nice example).  

 

While NPQ is normally associated with energy dissipation as heat through the inter-

conversion of xanthophyll pigments during the xanthophyll cycle (Demmig-Adams 

and Adams 1996, Ralph and Gademann 2005, Goss and Jakob 2010), the existence of 

an operative xanthophyll cycle in red macroalgae remains unclear (see Goss and 

Jakob 2010). Based on examination of xanthophyll pigment concentrations in E. 

elongata from northern Spain, Esteban et al. (2009) concluded that if a xanthophyll 
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cycle exists in E. elongata, it must represent a truncated version of the violaxanthin – 

antheraxanthin – zeaxanthin (V-A-Z) cycle, restricted to the inter-conversion of A and 

Z, as shown for the red macroalgal species Gracilaria gracilis and G. multipartita. 

However, Esteban et al. (2009) did not observe a fast inter-conversion between 

xanthophylls in E. elongata after 30 minutes of high light treatment. While some 

authors have demonstrated the existence of xanthophyll cycles in some classes of red 

algae, others have postulated that phycobilisomes that make up the main antenna 

system in red algae, lack the necessary structures for efficient excitation dissipation 

that have been identified in cyanobacteria, which also contain phycobilisomes as their 

main antennae (Goss and Jakob 2010). The present study cannot demonstrate whether 

NPQ recorded was directly linked to the inter-conversion of xanthophyll pigments in 

Corallina and Ellisolandia species, though this would make an interesting future 

study. Our data do highlight, however, that rapid photoregulation through induction of 

NPQ over 30 second light steps was possible in all species at all latitudes during in-

situ and ex-situ RLCs, with rapid reversal of NPQ apparent in darkness (see below).  

 

Given more effective photoregulation through NPQ, Corallina and Ellisolandia at 

Combe Martin and Comillas were more tolerant to high light than the same species 

examined in Iceland and A Coruña (contrast dark recovery kinetics in Figures 4.11, 

4.12 & 4.17 with those in Figures 4.8 & 4.21). The faster NPQ returns to 0 in 

darkness, is an indicator of a plants tolerance to high light (Ralph and Gademann 

2005). By following the induction and relaxation kinetics of photochemistry during 

and after ex-situ RLCs, it was therefore possible to perform a detailed examination of 

recovery from light exposure during the present study, allowing the various 

components of NPQ to be distinguished. The component of NPQ which relaxes 

quickly (30 – 60 s) is thought to be associated with the removal of energy dependent 

NPQ (qE) and is linked to relaxation of the proton gradient across the thylakoid 

membrane, whereas a slower relaxation (> 10 mins up to hours), is thought to be 

associated with photoinhibition (qI) and changes in energy distribution in favour of 

PSII (Ralph and Gademann 2005). In Iceland, initial rapid decrease in NPQ and 

increase in quantum efficiency over the first 160 s of dark recovery during summer 

was consistent with rapid reversal of qE in summer C. officinalis, though qI was also 

indicated by the continued presence of some NPQ and incomplete recovery of 

quantum efficiency following 17.5 mins of darkness (Figure 4.8 panels c & d). During 
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autumn, qE was the main component of NPQ in Iceland, though qI was again 

indicated by persistent NPQ until 17.5 mins of darkness and decreased quantum 

efficiency to ca. 70 % of initial values at the end of dark recovery. In most other cases 

across latitudes, the main component of NPQ was highlighted as qE, with rapid 

relaxation to 0 by ca. 160 – 460 s of darkness apparent in C. officinalis and C. 

caespitosa from Combe Martin during all months (Figures 4.11 & 4.12, panel d), and 

C. caespitosa and E. elongata from rock pools in Comillas during both summer and 

autumn (Figure 4.17 panels d & h). In other cases, qI was apparent, though NPQ 

returned to 0 values, or close thereof, following 17.5 mins of darkness with few 

exceptions (Figure 4.17 panel l, Figure 4.18 panel d, Figure 4.21 panels d & h).  

 

Additional to NPQ, the presence of other active photoregulation processes in 

Corallina and Ellisolandia under conditions of high light was suggested by in-situ 

RLCs, potentially indicating detachment of PSII from light harvesting antenna as a 

means to reduce photo-stress. Over both summer and autumn in-situ RLCs in 

Comillas, for example, provision of significant amounts of PAR > PAR0 NPQ did not 

result in significant increase in NPQ, or down-turn in rETR that would indicate 

photoinhibition (Figures 4.13, 4.14 & 4.15). This is suggestive of irradiance 

quenching from PSII in addition to NPQ. In the thylakoid membranes of red algae, 

phycobilisomes serve as supplementary light harvesting antennae that can be attached 

to up to four PSII reaction centres (Talarico and Maranzana 2000). While 

phycobilisome basic shape, size and biliprotein composition are the result of long-

term light acclimation, Talarico and Maranzanna (2000) speculated a potential role for 

phycobilisomes in photo-protection analogous to systems in higher plants, where light 

harvesting antennae are detached from the rest of PSII to modulate or disrupt the 

transfer of energy. A reversible phycobilisome detachment would occur at the same 

time as, or prior to, the photoprotective mechanisms, e.g. NPQ, within photosynthetic 

membranes (Talarico and Maranzanna 2000). Such a putative mechanism in 

Corallina and Ellisolandia would explain maintenance of electron transport with 

increases in PAR once NPQ was seemingly exhausted, though this requires further 

investigation.  

 

 

 



 177 

4.4.3. Seasonal productivity 

Corallina and Ellisolandia generally experienced light-saturated photosynthesis in-

situ during summer across the NE Atlantic, with light limitation during winter and 

autumn. Notable exceptions to these patterns were (i) light saturated photosynthesis 

during autumn at Iceland, given the unusually high irradiance prevalent, (ii) highly 

comparable Ek values to the irradiance prevalent during autumn at Comillas, and (iii) 

light limitation of photosynthesis at the start of tidal emersion during summer in A 

Coruña, given the reduced irradiance apparent relative to the rest of summer emersion 

(Figure 4.6). Patterns in light saturation and limitation of photosynthesis were 

consistent with the findings of Chapter 3, whereby across the complete annual cycle, 

data indicated light saturation and limitation of C. officinalis photosynthesis during 

summer and winter, respectively. The range of Ek determined in-situ across the 

present study (ca. 45 – 1000 µmol photons m-2 s-1) was consistent with the high light 

intertidal habitat of Corallina and Ellisolandia. In comparison, the range of in-situ Ek 

reported for the maerl species Lithothamnion glaciale from Scotland was significantly 

lower (4.4 – 54.6 µmol photons m-2 s-1), corresponding to the low maximum 

irradiance level apparent at the growth site (90 µmol photons m-2 s-1) (Burdett et al. 

2012).  

 

While rETRmax determined from in-situ RLCs demonstrated increased capacity for 

electron transport during low light autumn and winter periods, data must be viewed in 

the context of the irradiance available in-situ when considering the actual rate of 

photosynthesis occurring. A benefit of RLCs is that the shape of the curve realistically 

represents the ETR – PAR relationship under in-situ conditions, thus inferences of 

electron transport for a given level of irradiance can be made (Beer et al. 1998, Beer 

et al. 2014). Through calculation of rETR from RLC data for the actual ambient 

irradiance recorded in-situ, data demonstrated that rETRmax was only representative of 

the actual electron transport in-situ when photosynthesis was light-saturated, i.e. 

ambient PAR > Ek. During light-limited photosynthesis, i.e. ambient PAR < Ek, 

rETRmax determined over RLCs was logically greater than the rETR calculated for in-

situ irradiance intensity. For example, during January and March in Combe Martin, C. 

officinalis and C. caespitosa rETR calculated for in-situ irradiance was ca. 50 – 60 % 

lower than rETRmax determined from curve fitted parameters (Table 4.6). 

Consequently, the seasonal patterns in maximal electron transport in-situ were the 
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reverse of rETRmax dynamics, with maximal electron transport at in-situ irradiance 

apparent during summer periods in Iceland, the UK, and A Coruña northern Spain, 

consistent with the results of productivity quantification based on gas-exchange 

measurements in Chapter 3 of this thesis. At Comillas, greatest rETR at in-situ 

irradiance recorded during autumn as compared to summer, was likely due to the 

increased photo-stress experienced at this site during summer and the subsequent 

substantial down-regulation of photochemistry via NPQ, possible PSII detachment, 

and photoinhibition. Thus both insufficient (winter periods) and excessive (summer 

periods) irradiance has the potential to limit Corallina and Ellisolandia productivity 

across the NE Atlantic. 

 

4.4.4. Tidal emersion impacts to photophysiology   

Corallina and Ellisolandia photophysiology was significantly impacted by 

fluctuations in irradiance occurring over tidal emersion periods, with the magnitude of 

impact seemingly dependent on the seasonal state of photoacclimation, the position on 

shore, and the degree of abiotic stress experienced. In general, reduced sensitivity to 

abiotic stress over tidal emersion was apparent during summer, when photochemistry 

was acclimated to high light conditions. In comparison, low light acclimation during 

autumn and winter was often associated with increased sensitivity to fluctuations in 

irradiance over the course of tidal emersion. These data are consistent with increased 

sensitivity of low light acclimated algae to excess irradiance (Muller et al. 2001) and 

low temperature constraints on the processes of photoregulation (Franklin and Forster 

1997). In some instances departures from these general trends were also observed, as 

discussed below.  

 

When high irradiance prevailed during autumn field sampling in Iceland, C. 

officinalis photochemistry was significantly inhibited over tidal emersion, with 

significantly decreased rETRmax at mid and end of emersion in comparison to initial 

values (Figure 4.7). As previously discussed, this likely reflected photoinhibition 

caused through a combination of low light acclimated state and high irradiance. Given 

that NPQRESID did not increase over tidal emersion despite increases in irradiance and 

downturn in rETRmax, NPQ was likely saturated under the irradiance experienced and 

we suggest PSII detachment from light harvesting antenna as a putative 

photoregulation mechanism at mid and end emersion, permitting some degree of 
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electron transport. Contrary to general trends, decrease in C. officinalis rETRmax was 

also observed at the end of summer tidal emersion in Iceland, despite no significant 

change in ambient irradiance (Figure 4.7). While increase in rock pool water 

temperature was observed, this was likely not responsible for rETRmax decrease, as 

maintenance of productivity with increased temperature has been shown for other 

Corallina species from rock pools (Guenther and Martone 2014). Given that 

NPQINDUC was increased at the end of tidal emersion, rETRmax decrease was likely due 

to energy dissipation via NPQ due to a cumulative irradiance dose effect over the tidal 

period. In comparison to other sites (see below) Icelandic C. officinalis may thus be 

generally more sensitive to irradiance change during summer, as suggested by NPQ 

relaxation kinetics following ex-situ RLCs (Figure 4.8). 

 

Over summer tidal emersion at Combe Martin, patterns observed in C. officinalis and 

C. caespitosa photophysiology were suggestive of the ability to rapidly regulate 

photochemistry in response to changes in irradiance experienced, allowing 

maintenance of electron transport across the duration of emersion (Figures 4.9 & 4.10, 

left column). From start to mid emersion, Fv/Fm decreased or remained reduced when 

increases in irradiance were observed, followed by complete recovery at the end of 

emersion when irradiance decreased. Active NPQ in-situ (NPQRESID) was greatest at 

start and mid emersion, relaxing by the end of emersion. Concomitantly, rETRmax was 

either maintained or increased over the emersion period. C. officinalis and C. 

caespitosa at Combe Martin thus possessed the ability to rapidly photoregulate in 

response to increases in irradiance over summer tidal emersion, while maintaining 

electron transport rates. This is consistent with the findings of Chapter 3, whereby 

productivity was maintained over summer tidal emersion at Combe Martin, and 

further supports ex-situ patterns in NPQ relaxation, highlighting that down regulation 

is a dynamic reversible process. Over winter emersion at Combe Martin, however, 

Corallina photophysiology appeared more sensitive to relatively small changes in 

irradiance as compared to during summer, supporting conclusions of low light 

acclimation during winter periods and highlighting less effective photoregulation 

(Figures 4.9 & 4.10, right column). While similar dynamics in Fv/Fm were observed in 

winter as during summer, decreases in Fv/Fm at mid emersion when irradiance showed 

a slight increase were proportionally larger than those during summer, and NPQ did 

not serve to maintain rETRmax, which was significantly decreased at mid emersion. 
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This may be expected given slower acclimation, protein turnover and xanthophyll de-

epoxidation under low temperature conditions (Franklin and Forster 1997) and again 

was consistent with decreases in productivity over tidal emersion observed during 

colder months in Chapter 3.  

 

The degree of down-regulation of photochemistry apparent in Comillas during 

summer dominated any potential tidal emersion impacts on photochemistry for C. 

caespitosa and E. elongata from rock pools, such that Fv/Fm, rETRmax and α all 

remained seemingly suppressed across the duration of summer emersion (Figures 4.13 

– 4.15, left column). This is reflective of a high degree of photo-stress experienced in-

situ in Comillas during summer periods, though the presence of photoacclimation and 

regulation processes that permit some degree of electron transport under these 

conditions. For C. officinalis examined from the very lower intertidal, lack of 

significant change in photophysiology over emersion was likely due to the shorter 

duration of emersion, and thus reduced emersion stress, experienced at this shore 

height (Figure 4.16, left column). During autumn, both C. caespitosa and E. elongata 

from rock pools Fv/Fm and rETRmax were significantly decreased at the end of tidal 

emersion, though not in response to an increase in irradiance (Figures 4.13 & 4.14, 

right column). High NPQRESID across the duration of autumn emersion indicated that 

both species experienced photo-stress, likely given low light acclimation of 

photochemistry and light-saturated photosynthesis apparent at the start and mid 

emersion. At the end of emersion, a down turn in ambient irradiance resulted in a shift 

to light-limited photosynthesis, i.e. ambient PAR < Ek, which may have caused the 

decrease in rETRmax observed. For example, rETR of the brown kelp species 

Saccharina latissima (as Laminaria saccharina) has been shown to slowly decline 

with falling irradiance during the afternoon rising tide (Gevaert et al. 2003).  

 

E. elongata inhabiting substratum that was exposed to air during tidal emersion at 

Comillas demonstrated the ability to both completely ‘shut-down’ photosynthesis 

during high abiotic summer stress and to photosynthesise in air under less stressful 

conditions (Figure 4.15). In comparison to rock pool environments, macroalgae 

growing on exposed substratum are impacted by more variable and extreme irradiance 

and temperature conditions and significant desiccation stress during low tide (Dethier 

1980, Metaxas and Scheibling 1993). At the start of summer emersion, exposed E. 
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elongata was capable of some electron transport, though this completely decreased to 

zero by mid emersion, remaining so until the end of summer emersion. Such patterns 

were also observed for Corallina vancouveriensis and Calliarthron tuberculosum 

over simulated tidal cycles, whereby both species demonstrated zero net 

photosynthesis in air (Guenther and Martone 2014). During the present study, 

following a long (> 1h) period of dark adaptation while submerged in site seawater, E. 

elongata collected during summer from an exposed substratum showed electron 

transport over ex-situ RLCs, with rapid relaxation of NPQ and full recovery of 

quantum efficiency after just ca. 160 s of dark recovery time (Figure 4.17 panels i – l). 

This indicated both that E. elongata from exposed substratum was significantly 

tolerant of high light conditions and that irreversible photoinhibition and/or 

photodamage was likely not the cause of photosynthesis ‘shut-down’ in-situ during 

summer. This again reflects the findings of Guenther and Martone (2014), whereby 

‘shut-down’ of photosynthesis during air exposure was not associated with a 

degradation of pigments for C. vancouveriensis and C. tuberculosum, with recovery in 

photosynthesis following re-immersion observed for C. vancouveriensis. One putative 

mechanism to prevent irreversible photoinhibition and photodamage of exposed E. 

elongata during summer in Comillas may be an alteration in the overall frond 

reflectance through alteration of pigment composition. For example, Burdett et al. 

(2014) observed diurnal variability in the reflectance of fronds of the tropical maerl 

species Lithophyllum kotschyanum in a Red Sea coral reef, with the greatest 

reflectance during times of highest irradiance proposed as a potential photoprotective 

mechanism.  

 

During autumn tidal emersion, with reduced light, temperature and presumably 

desiccation stress, E. elongata on exposed substratum at Comillas was capable of 

consistent rates of electron transport across the entire tidal period, indicating the 

ability for aerial photosynthesis (Figure 4.15, right column). This is in contrast to the 

findings of Guenther and Martone (2014) for other articulated coralline algal species, 

though consistent with observations for fleshy intertidal macroalgae (Johnson et al. 

1974, Dring and Brown 1982). Active in-situ NPQ during autumn emersion was 

consistent with observations of C. caespitosa and E. elongata from rock pools at 

Comillas, reflecting light-stress associated with low light acclimation, though exposed 

E. elongata photophysiology was not impacted over the tidal emersion period during 
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autumn as with the other species/ecotype, again supporting a high degree of light 

tolerance.  

 

Finally, in-situ photophysiology at A Coruña was consistent with general trends 

reported above for tidal emersion sensitivity to changes in irradiance dependent on the 

seasonal acclimation state. While changes over summer emersion were evident in 

photophysiology, these were driven by low irradiance prevailing at the start of tidal 

emersion during summer (Figure 4.6), again highlighting that alleviation of photo-

stress resulted in increased photosynthetic capacity in Corallina and Ellisolandia 

species (Figures 4.19 & 4.20, left column). During autumn, gradual increase in 

irradiance over tidal emersion caused change in C. caespitosa and E. elongata 

photophysiology consistent with increased photo-stress and less effective 

photoregulation, i.e. decreased Fv/Fm, rETRmax and α, though recovery was observed 

at the end of emersion in most cases (Figures 4.19 & 4.20, right column). C. 

officinalis in A Coruña showed effective photoregulation over autumn tidal emersion, 

with increases in NPQINDUC permitting maintenance of electron transport across the 

entire period (Figure 4.16, right column).  

 

4.4.5. Interspecific differences in photochemistry 

Where apparent, interspecific differences in in-situ photophysiology observed during 

the present study reflected species’ responses to differential abiotic stress given their 

respective positions on shore, as previously indicated for several intertidal macroalgae 

(Varela et al. 2006 and references therein). With removal of species from in-situ 

stressors for ex-situ analysis of photochemistry, however, data highlighted highly 

conserved photophysiology across Corallina and Ellisolandia species.  

 

Seasonal patterns in C. officinalis and C. caespitosa in-situ photophysiology at 

Combe Martin were almost identical, with no significant difference in Fv/Fm, rETRmax, 

α or Ek apparent between the two species across seasons (Figures 4.2 & 4.3); though 

C. officinalis Fv/Fm was increased as compared to C. caespitosa based on tidal 

analysis (compare figures 4.9 & 4.10). In the UK, C. caespitosa frequently grows in 

the uppermost parts of pools in the mid intertidal of semi-exposed shores, and appears 

to be more tolerant of these conditions than C. officinalis, which tends to occur on 

rock lower down the shore or deeper in pools (Brodie et al. 2013, Chapter 1, section 
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1.8). During the present study, C. caespitosa was assessed in a ca. 2 cm deep zone at 

the water line of upper shore Combe Martin rock pools, underneath which C. 

officinalis dominated. In this position, C. caespitosa likely experiences greater 

irradiance, temperature and desiccation stress than C. officinalis during periods of 

tidal emersion, as supported by differences in the timing (seasonal study, Figure 4.4) 

and magnitude (tidal study, compare Figures 4.9 & 4.10) of C. caespitosa NPQ in 

comparison to C. officinalis. Given the extremely similar ex-situ dynamics in 

induction / relaxation kinetics of photophysiology, however, differential 

photoadaptation of C. officinalis and C. caespitosa at Combe Martin was not indicated 

(Figures 4.11 & 4.12).  

 

In northern Spain, similar dynamics were true for C. caespitosa and E. elongata in 

both sites, with some interspecific / inter-ecotype differences highlighted in-situ 

corresponding to position on shore, and minimal ex-situ differences apparent. In A 

Coruña, C. caespitosa and E. elongata photophysiology were almost identical in-situ 

and ex-situ, consistent with conserved photochemistry across Corallina and 

Ellisolandia species (compare in-situ Figure 4.19 with 4.20, and ex-situ Figure 4.21 

panels a – d with e – h). In Comillas during summer, exposed E. elongata in-situ 

photophysiology was logically different to rock pool C. caespitosa or E. elongata, 

given the complete shut down of photosynthesis under exposed summer conditions 

previously discussed (compare Figure 4.15 with Figures 4.13 & 4.14). During 

autumn, increased Fv/Fm, rETRmax and α in rock pool E. elongata also reflected 

gradients in abiotic stress over the intertidal. Smaller and shallower rock pools 

experience more extreme environmental conditions than larger and deeper pools 

(Ganning 1971), and exposed macroalgae experience increased irradiance, 

temperature and desiccation stress as compared to rock pool inhabitants (Dethier 

1980, Metaxas and Scheibling 1993). Increased capacity for photosynthesis in E. 

elongata inhabiting intertidal rock pools was thus likely due to reduced abiotic stress 

in comparison to C. caespitosa from ca. 2 cm deep rock pool areas, and completely air 

exposed E. elongata (Chapter 1, section 1.8). On the whole, minimal difference in 

photophysiology between species / ecotypes from Comillas was apparent over ex-situ 

RLCs and recovery, consistent with data from other sites (Figure 4.17).  
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4.4.6. Latitudinal patterns in photophysiology 

Decreased capacity for photosynthetic electron transport (i.e. decreased rETRmax) 

was apparent during summer for C. officinalis near its northern (Iceland) and southern 

(northern Spain) range limits in the NE Atlantic (Chapter 2) (Figure 4.22, panel b), 

suggestive of differential photoacclimation (or photoadaptation) of C. officinalis over 

its latitudinal range. Species with an extended latitudinal distribution can be exposed 

to high environmental variability that may promote phenotypic plasticity and/or 

ecotype differentiation as an adaptive response to temporal and spatial variation 

(Lynch and Gabriel 1987). Across the NE Atlantic, the amount of solar radiation 

reaching the earth’s surface significantly decreases with increasing latitude 

(Beaugrand 2014). We might therefore expect C. officinalis in Iceland to be 

comparatively low-light photoacclimated (or potentially photoadapted), and thus more 

sensitive to light-stress (Muller et al. 2001), than C. officinalis from lower latitudes; as 

demonstrated for other macroalgae growing in high latitude locations (Gomez 2001). 

This is consistent with decreased rETRmax, increased NPQ induction, and decreased 

dark recovery of quantum efficiency and reversal of NPQ over summer ex-situ RLCs 

performed with C. officinalis from Iceland in comparison to other latitudes (Figure 

4.22, left hand pane of panels b, g, f and h, respectively). In contrast, C. officinalis 

from Comillas was likely more high-light photoacclimated during summer periods in 

comparison to higher latitude populations, given the high degree of photo-stress 

experienced in-situ during summer in northern Spain. Photoacclimation through 

reduced PSU number thus likely served to cause the decrease in rETRmax observed 

during summer ex-situ RLCs for C. officinalis from Comillas, while NPQ 

characteristics and recovery of quantum efficiency remained comparative to those at 

Combe Martin given the decreased sensitivity to light stress induced by such seasonal 

photoacclimation. During autumn, decreased rETRmax and relative quantum efficiency 

of Icelandic C. officinalis, as compared to UK or northern Spanish samples, further 

supported findings that high latitude C. officinalis in the NE Atlantic exhibits 

differential photoacclimation (or photoadaptation) (Figure 4.22, right hand pane of 

panels b & e, respectively). Whilst few studies have previously examined intraspecific 

differences in photophysiology across the latitudinal range of species’ distributions, 

results presented here are consistent with the findings of Varela et al. (2006), whereby 

seasonal photoacclimation of the red intertidal algae Mazzaella laminarioides differed 

across a 10o latitudinal range.  
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4.5. Conclusions 

Corallina and Ellisolandia species inhabiting intertidal areas experience significant 

temporal (ranging from seconds to seasons) and spatial (ranging from across a shore 

to across latitudes) variability in irradiance. In order to maximize photosynthesis and 

growth, Corallina and Ellisolandia must optimize light utilisation while controlling 

for potential stress. This study has provided a detailed account of the 

photoacclimation and photoregulation strategies employed by Corallina and 

Ellisolandia species across the NE Atlantic, demonstrating seasonal, tidal, 

interspecific and latitudinal patterns in photophysiology. Data demonstrate that: 

 

1. Corallina and Ellisolandia species show seasonal acclimation of 

photochemistry through alteration in the number of photosynthetic units (PSII 

and associated antennae pigments), permitting maximal light utilisation during 

low-light winter periods. Down-regulation of photochemistry due to high-light 

stress during summer periods is also wide-spread. 

2. Non-photochemical quenching (NPQ) is an important, rapidly inducible, 

photoregulation mechanism for Corallina and Ellisolandia species, serving to 

prevent or reduce potential photoinhibition. The main component of Corallina 

and Ellisolandia NPQ is energy-dependent NPQ (qE). 

3. When photo-stress is sufficient to saturate NPQ, Corallina and Ellisolandia 

may rely on other photoregulation processes to allow maintenance of electron 

transport, potentially including the detachment of PSII from light harvesting 

antennae. 

4. In-situ productivity is maximal during summer and minimal during winter / 

autumn periods, given light-limitation of photosynthesis during the latter. 

Excess irradiance may however, result in significant photoinhibition and 

decreased productivity during summer relative to other seasons. 

5. Fluctuations in irradiance occurring over tidal emersion periods significantly 

impact Corallina and Ellisolandia photophysiology, with the magnitude of 

impact seemingly dependent on the seasonal state of photoacclimation, the 

position on shore, and the degree of abiotic stress experienced.  

6. Corallina and Ellisolandia species demonstrate highly conserved 

photophysiology, with interspecific differences typically accountable by 

position on shore.  
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7. Latitudinal differences in C. officinalis photoacclimation are apparent across 

the NE Atlantic, with data generally indicating Icelandic C. officinalis to have 

comparatively lower maximum electron transport rates than lower latitude 

populations.  

4.6. Implications 
Chapter 3 of this thesis highlighted that photosynthesis and calcification are strongly 

coupled in Corallina species, to the extent that maintenance of photosynthetic rates 

may permit present-day calcification rates under future OA conditions, facilitating the 

continued dominance of Corallina in NE Atlantic rock pools. The present study has 

highlighted that irradiance is the primary factor governing Corallina and Ellisolandia 

photosynthetic rates, and has identified those mechanisms that allow species to 

maintain maximal rates of photosynthesis in the face of significant fluctuations and 

gradients in irradiance. With future OA and warming, it is likely that irradiance will 

continue to be the main determinant of Corallina and Ellisolandia photosynthetic 

rates, and thus calcification dynamics. Down-regulation of photochemistry as a photo-

protective response to excess summer irradiance, may restrict any potential increase in 

Corallina and Ellisolandia photosynthetic rates due to increased substrate availability 

with OA. However, summer photosynthetic rates will likely be maintained at present-

day values, unless warming exceeds physiological thresholds, thus permitting 

continued calcification. In contrast, despite winter photoacclimation to maximise light 

harvesting, low irradiance will continue to restrict photosynthetic rates during winter 

periods. As this coincides with the seasonal minima of seawater pH and CO3
2- 

saturation, and maxima in nighttime CaCO3 dissolution (Chapter 3), light-limitation 

of photosynthesis will likely exacerbate the winter time vulnerability of Corallina and 

Ellisolandia species to future OA, potentially restricting daytime calcification rates 

and contributing to overall net loss of biomass during winter periods. This will likely 

be more pronounced for high latitude, i.e. Icelandic, populations of C. officinalis, 

given the reduced photosynthetic capacity of Icelandic C. officinalis identified by the 

present study. Overall Corallina and Ellisolandia have well developed 

photoacclimation and photoregulation mechanisms that will persist into the future, 

underpinning their continued dominance of NE Atlantic rock pools, though these 

mechanisms will not aid in combating the negative impacts of OA during winter 

periods and at higher latitudes.  
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Chapter 5: Seasonal and spatial patterns in the skeletal mineralogy of Corallina 

and Ellisolandia. 

 

5.1. Introduction 

Varying responses of marine species to OA and increases in sea surface temperature 

(SST) have been reported, with numerous studies predicting adverse effects of OA on 

those species that deposit calcium carbonate (CaCO3) as shells or skeletal structures 

(e.g. Gao et al. 1993, 2009, Langdon et al. 2000, Langdon and Atkinson 2005, 

Anthony et al. 2008, Kuffner et al. 2008, Zheng and Gao 2009, Cohen et al. 2009, 

Kleypas and Yates 2009, Dupont et al. 2010, Dias et al. 2010, Gao and Zheng 2010, 

Diaz-Pulido et al. 2012, Hofmann et al. 2012b). Within the marine environment, 

different biogenic polymorphs of CaCO3 are deposited, each with different solubility 

in seawater (Ries 2011). Aragonite, the polymorph deposited by the tropical green 

macroalgae Halimeda, for example, is more soluble than pure calcite, however the 

solubility of calcite increases with increasing magnesium ion (Mg2+) content 

substituting for calcium (Ca2+) ions (Andersson et al. 2008, Ries 2010, 2011). High-

Mg biogenic calcite (i.e. > ca. 8 – 12 % MgCO3) is more soluble than aragonite in 

seawater (Andersson et al. 2008), thus species depositing this polymorph are likely to 

be more susceptible to the initial effects of OA (Gao et al. 1993, Morse et al. 2007, 

Kuffner et al. 2008, Ries et al. 2009, Ries 2010, Lombardi et al. 2011, Hofmann and 

Bischof 2014).  

 

Red coralline macroalgae (Corallinales, Rhodophyta) are the most common high-Mg 

calcite producers along with benthic foraminifera, bryozoans and echinoderms 

(Andersson et al. 2008). Coralline algae have limited control over their calcification 

processes in that they are able to specify deposition of the calcite polymorph, as 

opposed to aragonite, but are unable to actively control the degree of Mg2+ (hereafter 

Mg) incorporation into their calcite skeletons (Ries 2010). Variation in Mg content is 

controlled by mechanisms including the Mg/Ca ratio of seawater, which is only 

applicable over geological timescales (Ries 2006, 2010), and factors that influence 

growth rate, e.g. light availability (Andersson et al. 2008), the seawater carbonate 

saturation state (Andersson et al. 2008, Ries 2011, Egilsdottir et al. 2013), salinity 

(Kamenos et al. 2012), and temperature (Kamenos et al. 2008, Kuffner et al. 2008, 

Ries 2010, 2011a). For example, observed decreases in the Mg content of calcite in 
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coralline algae with increasing latitude have been attributed to concomitant decreases 

in light, seawater carbonate saturation and temperature (Chave 1954, Mackenzie et al. 

1983, Andersson et al. 2008).  

 

Within latitudes, temperature is the dominant influence on the skeletal Mg content of 

present-day coralline macroalgae (Kamenos et al. 2008). For example, seasonal cycles 

in Mg incorporation in the rhodolith species Lithothamnion glaciale (12.9 - 24.6 mol 

% MgCO3 range) and Phymatolithon calcareum (14.7 - 23.8 mol % MgCO3 range) 

show a strong positive regression  (R2 = 0.88 - 0.96) with in-situ seawater 

temperatures, with a change of 1.26 and 1.19 mol % MgCO3 oC-1, for the two species, 

respectively (Kamenos et al. 2008). Given the positive relationship between SST and 

Mg incorporation into calcite (Kamenos et al. 2008), climate change associated 

elevations in SST may lead to an increase in the relative proportion of more soluble 

calcite forms in coralline macroalgae, exacerbating the impacts of OA; as 

hypothesised for the bryozoan Myriapora truncata (Lombardi et al. 2011). 

Conversely, decreases in seawater carbonate saturation owing to OA itself, may serve 

to decrease Mg content in coralline macroalgae. In the rhodolith Neogoniolithon sp., 

calcite Mg/Ca ratio decreased from 0.249 to 0.197 with a decrease in seawater 

aragonite saturation state from 2.5 to 0.7 (Ries 2011a), and a decreased mol % Mg/Ca 

was observed in new structures formed by Ellisolandia elongata during elevated 

pCO2 incubations (0.177 ± 0.002) as compared to ambient conditions (0.190 ± 0.003) 

(Egilsdottir et al. 2013).  

 

Multi-stressor studies examining the simultaneous impacts of increased SST and OA 

on coralline macroalgal skeletal mineraology are currently lacking. When available, 

contextual interpretation of such results will depend on a clear understanding of the 

natural variability in the present-day carbonate skeletal mineralogy of these species, 

and its relationship with environmental conditions, in particular SST (Medakovic et 

al. 1995, Kamenos et al. 2008, Smith et al. 2012). In addition, given that present-day 

climate conditions, i.e. post-industrialisation, are already significantly shifted in 

comparison to pre-industrial times, examination of the skeletal mineralogy of 

coralline macroalgae to-date, where possible, will further add to our capacity to 

predict and interpret potential future change.  
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Despite their ecological significance (Nelson et al. 2009, Chapter 1) and predicted 

vulnerability to OA and climate change (Hoffmann et al. 2012a,b, 2013, Hofmann and 

Bischof 2014), we currently lack an understanding of the temporal and spatial patterns 

in Corallina and Ellisolandia species skeletal mineralogy, or the influence of SST on 

Mg incorporation. Additionally, despite extensive herbaria collections of Corallina 

and Ellisolandia spanning back decades-to-centuries, information is lacking on 

potential changes in skeletal mineralogy since pre-industrial times. This study 

therefore assessed the present-day and recent-past (i.e. 1850 – 2010) variation in 

skeletal Mg incorporation in species of Corallina and Ellisolandia across the NE 

Atlantic. The aims of the study were to (i) quantify the present-day temporal and 

spatial patterns in Mg/Ca ratios of Corallina officinalis and C. caespitosa from the 

UK intertidal over a seasonal cycle; (ii) examine interspecific variation in Corallina 

Mg/Ca ratios between C. officinalis, C. caespitosa and E. elongata; (iii) examine 

intraspecific variation in Corallina Mg/Ca ratios over small (within site) to large 

(across latitudes) spatial scales; (iv) assess the recent-past (ca. 1850 – 2010) patterns 

in UK C. officinalis Mg/Ca ratios from herbarium collections of the Natural History 

Museum (BM), London; (v) examine the relationship between Corallina Mg/Ca ratios 

and SST; and (vi) use identified relationships to produce projections of Corallina 

skeletal mineralogy under future ocean conditions.  

 

5.2. Methods 

5.2.1. Seasonal sampling 

To examine present-day seasonal, within-site, and interspecific patterns in Corallina 

skeletal Mg/Ca ratios (mol % Mg/Ca), 12 samples each of C. officinalis and C. 

caespitosa were collected randomly by hand from within rock pools at each shore 

height where they occurred (Table 5.1) during December 2011 and March, June, 

September and December 2012, from Combe Martin, North Devon, UK (Chapter 1, 

section 1.8). To ensure sampling of discrete individuals, samples were collected at 

least 30 cm away from each other. Each sample consisted of a discrete basal portion 

and attached upright fronds. Sample replication of n = 12 was selected by plotting n 

against cumulative mol % Mg/Ca variance. Cumulative variance decreased and 

saturated at n = 12 - 15 samples for both species. Following collection, samples were 

mounted onto herbarium sheets using site seawater collected on the day of sampling, 

dried in a press, and stored on herbarium sheets until processing.   
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Table 5.1: Sampling details including site, months of sampling, average sea surface 
temperature (Av. SST) and range (minimum – maximum) for sampling months, shore 
heights sampled per site (relative to Chart Datum, i.e. level of lowest astronomical 
tide, LAT), and species present (CO = C. officinalis, CC = C. caespitosa, EE = 
Ellisolandia elongata).  

Site Sampling 
Months 

Av. (min-max) 
SST 
(oC)  

Shore 
Height 

Sampled 

Shore 
Height  

Species 
present 

Combe 
Martin, UK 

Dec 2011 
March 2012 
June 2012 
Sept 2012 
Dec 2012 

9.9 (8.9-11.4) Upper + 5.5 CO 
CC 8.5 (7.0-10.2) 

14.2 (12-15.5) Middle + 5.0 CC 
16.4 (13.4-17.6) Lower + 3.5 CO 9.9 (8.9-11.4) 

Wembury 
Point, UK June 2012 13.8 (11.8-16.9) 

Upper + 4.0 CO 

Lower + 2.3 CO 
EE 

Þorlákshöfn
, Iceland July 2012 11.7 (10.1-13.6) Lower + 1.5 CO 

A Coruña, 
Spain October 2012 17.4 (16.2-19.7) Lower + 2.0 CO 

EE 
 

5.2.2. Comparative sampling 

To examine spatial variation and interspecific differences in Corallina mol % Mg/Ca 

between UK sites, C. officinalis and E. elongata were sampled from Wembury Point, 

South Devon, UK, during June 2012 (12 individual plants per species and shore 

height present; Table 5.1) for comparison to Combe Martin data. To examine 

intraspecific variation in mol % Mg/Ca over a NE Atlantic latitudinal transect, C. 

officinalis was sampled (n = 12 individual plants) from Iceland and northern Spain 

(Table 5.1) allowing differences to be assessed over 1418 miles, with Combe Martin 

and Wembury Point located 542 and 480 miles north from the northern Spain site, 

respectively (Chapter 1, section 1.8). Additionally, E. elongata was sampled as above 

from northern Spain for interspecific comparisons.  

 

5.2.3. Herbarium collections 

Corallina officinalis from UK sites were selected to examine recent-past patterns in 

Corallina mol % Mg/Ca, as they represented the largest collection of Corallina 

species held in the algal herbarium collections of the Natural History Museum (BM), 

London. These collections span from ca. 1850 to 2010, and are predominantly from 

donations made by individual collectors, not as established regular sampling 

initiatives, making samples over this period spatially and temporally heterogeneous, 
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and lacking replication (Supplementary Table S5.1). In total, 112 C. officinalis 

samples were selected from the herbarium collections for use in the current study. 

Sub-sampling for analysis was conducted as detailed below. 

 

5.2.4. Sample processing 

In order to examine the skeletal Mg content most representing the time of collection 

during the present study, whilst allowing sufficient material for X-Ray diffraction 

(XRD) analysis (see below), the apical intergeniculum was sampled from 10 - 15 

branches of each Corallina / Ellisolandia sample and pooled to comprise one sample 

for XRD analysis (Figure 5.1). Growth of Corallina species is mostly restricted to a 

finite group of elongating and dividing apical cells (Colthart and Johansen 1973, 

Chapter 3). In Chapter 3, C. officinalis growth was demonstrated to be relatively 

constant in Combe Martin upper shore rock pools across the seasonal cycle, with a 

slight decrease during December to March (Chapter 3, Figure 3.11). C. caespitosa 

showed stronger seasonality in growth, with higher growth rates during summer / 

autumn periods and decreased growth also during December to March. Mol % Mg/Ca 

reported by the present study thus represents recent Mg incorporation over a relatively 

constant time period for C. officinalis across much of the year (ca. the past 12 d based 

on Colthart and Johansen 1973), though longer/shorter periods for C. caespitosa 

during winter/summer, respectively, given seasonal fluctuations in growth.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Representative frond of Corallina officinalis collected from Combe 
Martin, UK (scale bar = 0.5 cm). Inlay demonstrates apical region of frond branch, 
with arrow indicating apical intergenicula sampled for X-Ray diffraction analysis 
(scale bar = 1 mm). 
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5.2.5. X-Ray diffraction analysis 

All X-Ray diffraction analyses were conducted in the Mineralogy Department of The 

Natural History Museum, London. Samples were ground with a mortar and pestle and 

suspended in acetone (ca. 1:20 sample:acetone suspension). A few drops of the 

sample-acetone suspension were placed onto a single crystal sapphire substrate (zero-

background holder). The dried samples were analysed using an Enraf-Nonius PDS120 

diffractometer equipped with a primary Germanium (111) monochromator and an 

INEL 120º curved position sensitive detector (PSD). Operating conditions for the Co 

source were 40 kV and 40 mA. The horizontal slit after the monochromator was set to 

0.14 mm to confine the incident beam to pure Co Ka1 radiation. The vertical slit was 

set to 5 mm.  

 

Samples were measured in asymmetric flat-plate reflection geometry. Diffracted X-

ray intensities were simultaneously collected over a 2-Theta range of 120º without 

angular movement of tube, sample or detector position. The tilting angle between 

incident beam and sample surface was kept constant at 6º and the sample was rotated 

during the measurements to improve particle counting statistics. Angular linearity of 

the PSD was calibrated using Y2O3 as external standard. A full 2-Theta linearization 

of the PSD was performed with a least-squares cubic spline function. 

 

The Mg content of the calcite skeletons of the Corallina and Ellisolandia species was 

derived from the position of the d104 reflection in the XRD pattern. All data of the 

present study fall into a compositional interval between 10 and 17 mol % Mg. A 

linear relationship between d104 value and Mg concentration of skeletal magnesian 

calcites was first reported by Chave (1952) over the range 2 - 16 mol % Mg. 

Considering compositions between 0 and 20 mol % Mg of biogenic and inorganic 

magnesian calcites, Mackenzie et al. (1983) concluded the d104 trend is equivalent to a 

straight line from calcite to disordered dolomite or magnesite. Therefore, the present 

study derived the molar Mg-content on the Ca site of magnesian calcites, i.e. the 

substitution of Ca ions for Mg ions in the crystal lattice of the calcite, using the linear 

relationship in Equation 1: 
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where data for calcite and magnesite were taken from well characterized NBS 

standards (PDF-2 database from International Centre for Diffraction Data; reference 

codes calcite [5-586] and magnesite [8-479]). Calculated d104 trendlines from equation 

1 and an overall fit of three synthetic magnesian calcite studies (Goldsmith et al. 

1961, Bischoff et al. 1983, Mackenzie et al. 1983) showed only minor differences in 

the compositional range between 0 and 20 mol % Mg. Deviations for a given d104 

value were generally below 0.1 mol % Mg.  

 

5.2.6. Predictive models 

To examine the relationship between sea surface temperature (SST) and skeletal Mg 

incorporation by Corallina species, present-day and recent-past derived mol % Mg/Ca 

ratios were regressed against locally reported SSTs which were obtained from the 

website of the Centre for Environment, Fisheries and Aquaculture Science (CEFAS). 

For Combe Martin present-day seasonal data, linear regression analysis was 

performed against the monthly mean SST calculated across the period 1992 to 2008 

from CEFAS SST records at Station 27, located at Ilfracombe (51o20’51N 4o12’67W) 

approximately 8.8 km from Combe Martin. The monthly mean SST across this period 

was used as SST monitoring ceased in 2008 and thus records for the year of study 

were not available. For recent-past mol % Mg/Ca derived from herbarium samples, 

monthly mean SST data were retrieved for the month of the specific year of sample 

collection, from the nearest CEFAS Station to the point of collection recorded 

(Supplementary Table S5.1). Given the non-continuous nature of CEFAS SST data 

throughout time, SST values for 45 of 112 herbarium data points were available for 

regression analysis. Changes in the mol % Mg/Ca oC-1 of Corallina species were 

derived from linear regression equations to SST. Regression equations derived for 

Combe Martin seasonal data were plotted using the monthly average SST data 

reported for the entire year from CEFAS Station 27, to demonstrate the complete mol 

% Mg/Ca seasonal cycle for C. officinalis and C. caespitosa. Additionally, pooled 

monthly herbarium mol % Mg/Ca data (n = 112) were modeled using a sine function 
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regression (using Sigmaplot v10 software) fitted to the apparent sine waveform of the 

data as a function of time.  

 

5.2.7. Data analysis 

Prior to all statistical analyses, normality of data was tested using the Anderson 

Darling test, and homogeneity of variance using Levene’s test (significant differences 

from normality and homogeneity of variance were taken at the 5% significance level). 

All data were normally distributed and demonstrated homogenous variance, or were 

transformed to meet these criteria as described below. All analyses were performed 

using Minitab v14 software. Whilst sampling for determination of present-day 

skeletal mineralogy was performed in the same site over a number of dates, different 

individual fronds were sampled at each sampling date and thus repeated measures 

analysis of variance (ANOVA) was not utilized during the present study. 

 

Seasonal sampling: To examine differences in mol % Mg/Ca between sampling 

months, shore heights, and species (C. officinalis and C. caespitosa) at Combe Martin, 

a nested Analysis of Variance (nested ANOVA) was performed with the factors 

‘month’ (5 levels), ‘shore height’ (2 levels) and ‘species’ (2 levels), with species 

nested within shore height, and the interaction terms ‘month / shore height’ and 

‘month / species’. Post-hoc Tukey honest significant differences analysis was used to 

examine significant differences highlighted by ANOVA analyses.  

 

Comparative sampling: As no significant difference in C. officinalis mol % Mg/Ca 

were evident between upper and lower shore Combe Martin or Wembury Point during 

June 2012, data from both shore heights were pooled per site for inter-site 

comparison. To examine differences in C. officinalis mol % Mg/Ca collected from 

Combe Martin and Wembury Point during June 2012 and from Iceland during July 

2012 a one-way ANOVA was performed with the factor ‘site’ (3 levels). To examine 

differences in mol % Mg/Ca between C. officinalis sampled in Combe Martin during 

September 2012 and northern Spain during October 2012, a t-test was performed with 

the factor ‘site’ (2 levels). Interspecific differences in mol % Mg/Ca of C. officinalis 

and E. elongata were examined by t-test comparison with the factor ‘species’ (2 

levels) between C. officinalis and E. elongata collected from lower shore Wembury 
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Point during June 2012, and between C. officinalis and E. elongata collected from 

northern Spain during October 2012.  

 

Herbarium collections: Statistical differences in mol % Mg/Ca of herbarium data 

were examined using Analysis of Co-Variance (ANCOVA) on square-root 

transformed data with the factors ‘location’, ‘year’ and ‘month’ (covariate within 

‘year’). The factor ‘location’ was derived by categorising herbarium samples into the 

county of collection (Supplementary Table S5.1).  

 

5.3. Results 

 

5.3.1. Seasonal sampling 

There was a significant difference in the mol % Mg/Ca of C. officinalis and C. 

caespitosa from Combe Martin in relation to ‘month’ (F4,220 = 174.61, P < 0.0001) 

(Figure 5.2). Highest mol % Mg/Ca was recorded for both upper (0.156 ± 0.003) and 

lower (0.143 ± 0.001) shore C. officinalis and upper shore C. caespitosa (0.142 ± 

0.001) during September 2012, while middle shore C. caespitosa demonstrated 

maximal values during June 2012 (0.155 ± 0.002) (average ± se, n = 12). Lowest mol 

% Mg/Ca were recorded during March 2012 for upper (0.118 ± 0.001) and middle 

(0.112 ± 0.001) shore C. caespitosa, and lower shore C. officinalis (0.113 ± 0.002), 

while upper shore C. officinalis demonstrated minimal values during December 2012 

(0.120 ± 0.001). Homogenous subsets determined from post-hoc TukeyHSD analysis 

are demonstrated in Figure 5.2.  

 

Though significant interaction was observed between ‘month’ and ‘species’ (F4,220 = 

19.92, P < 0.0001), no significant interspecific difference in mol % Mg/Ca was 

observed between Combe Martin C. officinalis and C. caespitosa. Similarly, no 

significant difference in mol % Mg/Ca was observed in relation to ‘shore height’, 

though significant interaction was apparent between ‘month’ and ‘shore height’ (F8,220 

= 14.22, P < 0.0001). For C. officinalis, upper shore samples demonstrated higher mol 

% Mg/Ca than lower shore during all months expect June 2012, whereas C. 

caespitosa from the mid shore had the highest mol % Mg/Ca in the summer, but had 

lower ratios than upper shore C. caespitosa collected in the winter and spring.  
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Figure 5.2: Seasonal variation in mol % Mg/Ca of (a) Corallina officinalis from 
upper (blank points) and lower (white points) shore, and (b) C. caespitosa from upper 
(black points) and middle (white points) shore Combe Martin, UK (average ± se, n = 
12). Letters denote homogenous subsets as determined from post-hoc TukeyHSD 
analysis; upper-case letters refer to upper shore data and lower-case letters to lower / 
middle shore data, respectively. 
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5.3.2. Comparative sampling 

A significant difference in C. officinalis mol % Mg/Ca was observed in relation to 

‘site’ (F2,59 = 9.44, P < 0.001), with post-hoc TukeyHSD analysis demonstrating 

significantly decreased values in C. officinalis collected from Iceland during July 

2012 and Combe Martin during June 2012 in comparison to Wembury Point, though 

no significant difference between Combe Martin and Iceland mol % Mg/Ca was 

apparent (Figure 5.3). Samples collected from lower shore Combe Martin in 

September 2012 demonstrated significantly lower mol % Mg/Ca in comparison to 

samples collected from northern Spain in October 2012 (T22 = -2.08, P < 0.05), 

though there was no significant difference between upper shore Combe Martin and 

northern Spanish samples (Figure 5.3). No interspecific differences were observed 

between the mol % Mg/Ca of C. officinalis and E. elongata from either Wembury 

Point or northern Spain.  

 

 
Figure 5.3: mol % Mg/Ca of (a) Corallina officinalis collected in June from Combe 
Martin (CM, black bars) and Wembury Point (WP, grey bar) (average ± se, n = 24), 
and July from Þorlákshöfn, Iceland (white bar) (average ± se, n = 12), and (b) mol % 
Mg/Ca of C. officinalis collected in September from Combe Martin upper (CM up) 
and lower (CM low) shore (back bars), and October from lower shore A Coruña, 
northern Spain (N. Spain, white bar) (average ± se, n = 12). Letters denote 
homogenous subsets as determined from post hoc TukeyHSD analysis. 
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5.3.3. Herbarium collections 

No significant difference in mol % Mg/Ca of Corallina officinalis apical tips was 

observed in relation to ‘location’ or ‘year’, though a significant difference was 

observed in relation to ‘month’ (F10,111 = 7.46, P < 0.001), with ‘month’ showing 

significant covariance within ‘year’ (P < 0.05). Average monthly mol % Mg/Ca of all 

herbarium data are presented in Figure 5.4, demonstrating an apparent seasonal 

temporal pattern of mol % Mg/Ca as a function of month, effectively with summer 

maxima and late winter / spring minima.  

 

Figure 5.4: Herbarium Corallina officinalis average monthly mol % Mg/Ca ± se 
(monthly averages are taken for data across all years, see Supplementary Table S5.1). 
Numbers represent sample size per respective month; no samples were available for 
December.  
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5.3.4. Temperature relationships 

Significant linear relationships were identified between local SST (monthly mean SST 

calculated over the period 1992 to 2008 from CEFAS Station 27)  and mol % Mg/Ca 

of Combe Martin seasonally sampled C. officinalis (both upper and lower shore) and 

C. caespitosa (both upper and middle shore) (Figure 5.5, Table 5.2). Based on 

relationships, changes in Mg concentration of 0.0035 and 0.0037 mol % Mg/Ca oC-1 

were determined for upper and lower shore C. officinalis, respectively, and 0.0028 

and 0.0047 mol % Mg/Ca oC-1 for C. caespitosa upper and middle shore, respectively. 

Significant linear relationships were also identified between local SST (monthly mean 

SST of the specific month and year of sample collection recorded at the nearest 

CEFAS Station) and C. officinalis mol % Mg/Ca determined from n = 45 herbarium 

samples (Figure 5.5, Table 5.2), with a change in mol % Mg/Ca of 0.0036 oC-1 

determined.  
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Figure 5.5: Mol % Mg/Ca – temperature relationships for (a) Corallina officinalis 
collected from upper (black points) and lower (white points) shore, and (b) C. 
caespitosa collected from upper (black points) and middle (white points) shore, 
Combe Martin, UK, and (c) herbarium C. officinalis. All regressions were significant 
at P < 0.0001 (Table 5.2) and are displayed with 95 % confidence intervals of 
predictions made from least-squares regressed linear relationships.
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Table 5.2: Upper table; mol % Mg/Ca – temperature relationships for Corallina officinalis and C. caespitosa from Combe Martin, UK and herbarium 
C. officinalis matched to sea surface temperature (SST), showing the proportion of variance explained by the regression (R2), coefficient standard error 
(mSE, cSE), correlation (r), regression significance (P), and sample size (n). Lower table; mol % Mg/Ca – month relationship for all herbarium 
Corallina officinalis samples where month is represented by values 1 to 11 (January to November) (see also  and Error! Reference source not 
found.), showing the proportion of variance explained by the regression (R2), coefficient standard error (SE) (all significant at P < 0.0001), correlation 
(r), regression significance (P), and sample size (n). 

 
Species Shore Height Relationship (y = mx + c) R2 m SE c SE r P n 
C. officinalis Upper mol % Mg/Ca = 0.00358 SST + 0.0894 0.51 ± 0.0004542 ± 0.005522 0.71 < 0.0001 60 

Lower mol % Mg/Ca = 0.00372 SST + 0.0813 0.76 ± 0.0002699 ± 0.003281 0.87 < 0.0001 60 
C. caespitosa Upper mol % Mg/Ca = 0.00286 SST + 0.1022 0.45 ± 0.0003628 ± 0.004410 0.67 < 0.0001 60 

Middle mol % Mg/Ca = 0.00479 SST + 0.0766 0.69 ± 0.0004138 ± 0.005030 0.83 < 0.0001 60 
C. officinalis 
(herbarium) 

na mol % Mg/Ca = 0.00367 SST + 0.0819 0.54 ± 0.0005073 ± 0.006247 0.74 < 0.0001 45 

 
Species Relationship (y = y0 + b sin (2 π (x / c) + d) R2 SE r P N 
C. officinalis (herbarium) mol % Mg/Ca = 0.1270 + 0.0145 sin (2 π (month / 11.2423) + 3.5493) 0.47 y0 ± 0.0013 0.68 < 0.0001 112 
   b ± 0.0015    
   c ± 0.9944    
   d ± 0.3211    
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Mol % Mg/Ca were predicted using CEFAS SST data from Station 27 for each month for 

both C. officinalis and C. caespitosa from Combe Martin (Figure 5.6). In addition, all 

herbarium data (n = 112) grouped into month of collection demonstrated a clear sine 

waveform function over time, with all equation parameters given significant at P < 0.001 

(Figure 5.6, Table 5.2). 

Figure 5.6: (a) Predicted seasonal cycles in mol % Mg/Ca of Corallina officinalis, upper and 
lower shore, and C. caespitosa upper and middle shore, from Combe Martin, UK, calculated 
using average monthly sea surface temperature reported from CEFAS Station 27 and linear 
regression equations (Table 5.2); and (b) herbarium C. officinalis mol % Mg/Ca (n = 112) 
with fitted sine waveform function in relation to month (Table 5.2), showing 95 % confidence 
intervals (red dashed lines). 
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5.4. Discussion 

 

5.4.1. Present day mol % Mg/Ca cycles 

Corallina species in the NE Atlantic have clear seasonal cycles in skeletal Mg incorporation, 

as demonstrated by seasonal variability in mol % Mg/Ca of present-day C. officinalis and C. 

caespitosa recorded during this study. These findings are in line with previous work that have 

demonstrated seasonally cyclic patterns of Mg/Ca ratios in rhodoliths (Kamenos et al. 2008), 

corals (Mitsuguchi et al. 1996) and other calcifying species (Chave 1954), and support the 

assertion that the Corallinaceae are a group with consistently high Mg content (ca. 10 mol % 

or more) (Vinogradov 1953).  

 

Concentrations and seasonal ranges of Mg in geniculate Corallina and Ellisolandia species 

are towards the lower end of those reported for other coralline macroalgae from similar 

geographic regions. For example, Combe Martin C. officinalis Mg content (expressed as mol 

% MgCO3) ranged from approximately 10 to 17 mol % MgCO3 and C. caespitosa from 10 to 

16 mol % MgCO3. These concentrations and ranges are noticeably lower than those reported 

for the rhodoliths Lithothamnion glaciale (12.9 - 24.6 mol % MgCO3) and Phymatolithon 

calcareum (14.7 - 23.8 mol % MgCO3) from Scotland (Kamenos et al. 2008), though are in 

the same range as those reported for E. elongata from France (0.177 ± 0.002 mol % Mg/Ca) 

(Egilsdottir et al. 2013). 

 

Biogenic Mg-calcites have been demonstrated to go through a maximum solubility at 

approximately 24 mol % MgCO3, with the most insoluble Mg-calcite containing about 2 mol 

% MgCO3 (Plummer and Mackenzie 1974). Given this increasing solubility of calcite with 

increasing Mg content, variation in skeletal mineralogy between coralline species has been 

suggested to impact their vulnerability to OA (Gao et al. 1993, Morse et al. 2007, Andersson 

et al. 2008, Kuffner et al. 2008, Ries et al. 2009, Ries 2010, Lombardi et al. 2011, Smith et al. 

2012). In this regard, NE Atlantic species of the genera Corallina and Ellisolandia may 

demonstrate reduced susceptibility to the impacts of OA on skeletal growth and dissolution in 

comparison to other high-Mg calcite depositing coralline species, in particular rhodoliths, 

from similar geographic regions. The seasonal range of Corallina Mg content reported here 

(approximately 0.11 to 0.16 mol % Mg/Ca) would correspond to a solubility product range 

(the equilibrium constant for a solid substance dissolving in an aqueous solution) of 

approximately -7.95 to -7.69 (log K at 25oC and 0.98 bar CO2) based on Table 3 of Plummer 
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and Mackenzie (1974). For comparison P. calcareum of Kamenos et al. (2008) would have a 

seasonal solubility product range of approximately -7.65 to -7.15, the less negative values 

indicating increased solubility. This supports recent work that has demonstrated differential 

susceptibility of rhodolith and crustose coralline algae to OA conditions in comparison to 

geniculate coralline species (Noisette et al. 2013). 

 

5.4.2. Temperature relationships and inter/intra-specific mol % Mg/Ca patterns 

Significant positive relationships identified between the mol % Mg/Ca of C. officinalis and C. 

caespitosa and local sea surface temperature (SST) (R2 = 0.45 – 0.76 across all data, Figure 

5.5) highlight that under present climatic conditions, Mg incorporation by Corallina species 

is closely related to ambient sea water temperature. This is in agreement with data for 

rhodolith species from a similar geographic region (Kamenos et al. 2008), which have been 

highlighted as robust Mg-palaeotemperature proxies (Kamenos et al. 2009),  and several 

marine calcifying species from numerous regions (Chave 1954). For example, Chave (1954) 

observed that in all groups of calcitic organisms where sufficient data are available, a linear 

or near-linear relationship exists between skeletal  Mg content and the water temperature in 

which the organisms grew.  

 

While strong Mg-temperature relationships have been identified in numerous studies, Mg 

content is known also to be a function of growth rate, which is affected by several other 

abiotic parameters (Moberly 1968, Andersson et al. 2008, Ries 2010, 2011a). For marine 

macroalgae, temperature and irradiance are two fundamental parameters controlling 

productivity, growth and distribution (Luning 1990, Lobban and Harrison 1994, Chapters 1, 3 

and 4), and for calcifying species, carbonate chemistry also plays a crucial role in regulating 

calcification and thus growth processes (Andersson et al. 2008, Ries 2010, Egilsdottir et al. 

2013, Koch et al. 2013, Chapters 1 and 3). In intertidal habitats, temperature, irradiance and 

carbonate chemistry are interdependent, showing covariance over both long (i.e. seasonal) 

and short (i.e. diurnal) time periods (Ganning 1971, Truchot and Duhamel-Jouve 1980, 

Morris and Taylor 1983, Chapter 3). While this study indicates a significant relationship 

between Corallina skeletal Mg concentrations and SST, we cannot rule out the potential 

influence of other factors, e.g. irradiance, on Mg incorporation via affects to growth. 

Multifactorial laboratory incubations with manipulation of temperature, irradiance and 

carbonate chemistry, are required to disentangle the individual roles of these factors. 
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Interspecific vital effects on Mg incorporation were found by the present study to be lacking 

or weak within the genus Corallina and between species of Corallina and Ellisolandia, as per 

the conclusions of Ries (2010). Different Corallina and/or Ellisolandia species sampled 

simultaneously from the same location within sites showed no significant difference in mol % 

Mg/Ca, while intraspecific differences in mol % Mg/Ca were evident between both local sites 

(i.e. Combe Martin and Wembury Point) and across latitudes. At the small spatial scale 

(within sites), differences in skeletal Mg content can be related to position on shore and thus 

the varying influence of abiotic conditions. Regular, short-term, fluctuations in temperature 

and other abiotic parameters (e.g. pCO2, O2, salinity, nutrient concentrations and irradiance) 

are experienced in intertidal rock pools inhabited by Corallina and Ellisolandia species 

(Ganning 1971, Daniel and Boyden 1975, Morris and Taylor 1983, Egilsdottir et al. 2013, 

Chapters 3 and 4). During daylight emersion, irradiance drives increases in rock pool water 

temperature and photosynthetic utilization of pCO2, increasing pH and carbonate saturation 

due to effects on the carbonate chemistry equilibrium (Chapter 3). During night-time 

emersion, the opposite trends are apparent, with conditions potentially corrosive to calcite 

established through production of pCO2 by respiration processes and subsequent decreases in 

pH and carbonate saturation (Chapter 3). All of these dynamics may potentially impact 

Corallina growth and calcification and thus Mg incorporation. In this regard, rock pools 

higher up a shore will experience longer periods of tidal emersion and therefore more 

extreme fluctuations in abiotic parameters, while lower shore rock pools, and the species 

therein, will be more influenced by ambient seawater conditions, e.g. SST. This trend is 

present in our data, whereby stronger regression of Corallina mol % Mg/Ca to ambient SST 

is observed the further down a shore the species was collected (Table 5.2). In addition, rock 

pool size may influence the degree of variability in abiotic conditions and thus skeletal Mg 

incorporation. Larger and deeper pools, for example, are known to have more stable 

conditions (Ganning 1971). The extremes in mol % Mg/Ca of C. caespitosa collected from 

middle shore pools in comparison to upper pools, likely relate to extremes in abiotic 

conditions experienced in these small/shallow middle shore pools (volume = ca. 0.09m3, 

depth = ca. 2 – 4 cm), in comparison to upper shore pools (ca. 40m3 and 500 cm deep) 

(Chapter 1, section 1.8).  

 

Across latitudes, intraspecific differences in C. officinalis mol % Mg/Ca observed during 

summer and autumn did not fully support that decreases in light, seawater carbonate 

saturation and temperature, caused a decrease in Mg concentration with increasing latitude, as 
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reported by other studies (Chave 1954, Mackenzie et al. 1983, Andersson et al. 2008). While 

C. officinalis mol % Mg/Ca was significantly lower in Iceland than Wembury point during 

June/July, and higher in A Coruña than lower shore Combe Martin during 

September/October (Figure 5.3), non-significant differences were also apparent across 

latitudes during each period. Latitudinal trends may thus have been impacted by the reduced 

sampling frequency in Iceland and northern Spain, and comparisons between different 

sampling months across latitudes. Additionally, samples of C. officinalis collected from 

Þorlákshöfn in south west Iceland may experience warmer conditions than implied by its 

location just south of the Arctic Circle. Despite the higher latitude, southwest coastal Iceland 

experiences a relatively moderate temperature regime due to the domination of the Irminger 

Current, a relatively warm offshoot from the North Atlantic Current, which results in summer 

sea surfaces temperatures over 10oC (Jiang et al. 2001). As such, ‘latitudinal’ differences in 

C. officinalis mol % Mg/Ca may be reduced between e.g. south west Iceland and the UK. To 

fully elucidate potential gradients in mol % Mg/Ca of Corallina species across latitudes, 

sampling over complete seasonal cycles is required at a range of latitudes. 

 

5.4.3. Recent past (i.e. 1850 – 2010) mol % Mg/Ca cycles 

Despite the sporadic nature of herbarium collections, analysis of Corallina officinalis samples 

housed in the algal herbarium of the Natural History Museum (BM), London, enabled 

investigation into recent past cycles in Mg incorporation by Corallina species in the NE 

Atlantic, providing important information with regard to natural variability in Corallina 

skeletal mineralogy. Herbarium collections can thus represent an important resource for OA 

and climate change research (though see Huisman and Millar (2013) for a discussion of 

herbarium limitations). 

 

Notably, over the period ca. 1850 – 2010, no significant change in the mol % Mg/Ca ratio of 

herbarium C. officinalis was detected during the present study, while within-year variability 

strongly reflected present-day seasonal cycles in skeletal Mg incorporation of Corallina 

species in terms of both absolute concentrations and ranges. The influence of SST on 

Corallina Mg incorporation was also supported by significant positive regression of 

herbarium C. officinalis mol % Mg/Ca cycles with locally reported SSTs. Our herbarium data 

thus confirm our present-day seasonal cycles in mol % Mg/Ca, strengthens the relationship 

between Mg incorporation and SST in Corallina species, and indicates that within the 
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intertidal, such seasonal cycles have not changed significantly over the last ca. 150 years (see 

below).  

 

5.4.4. Predictive models 

Corallina mol % Mg/Ca and SST relationships enable projection of Corallina’s skeletal 

mineralogy. Given the change in herbarium C. officinalis skeletal Mg content expected with 

temperature (Table 5.2), we would expect an increase of approximately 0.23 mol % MgCO3 

with the increase in global average SST of 0.65oC over the period 1850 to 2005 caused by 

climate change (Solomon et al. 2007). Such an increase in Mg concentration was not 

observable in herbarium samples over the period ca. 1850 to 2010, most likely owing to the 

sporadic nature and lack of replication of herbarium collections, and intraspecific variation in 

Corallina Mg concentration within and between sites. Additionally, simultaneous decreases 

in skeletal Mg content owing to decreased seawater carbonate saturation caused by 

concomitant OA over this period may have occurred (Ries 2011a, Egilsdottir et al. 2013). 

However, had an increase of 0.23 mol % MgCO3 occurred since 1850 in relation to increased 

SST, our data indicate that this would represent an increase of just 3.2 % of the seasonal 

variation experienced by C. officinalis in the UK intertidal. It is therefore unlikely that cycles 

in intertidal C. officinalis Mg incorporation have been significantly impacted by climate 

change over the last ca. 150 years.  

 

By 2100, climate change models predict increased global ocean average SST ranging from + 

0.6oC to more than + 3.0oC and a further decrease in average ocean  pH of 0.13 to 0.42 under 

IPCC RCP2.6 and RCP8.5, respectively (Collins et al. 2013). A 3oC increase in SST could 

cause an increase in C. officinalis and C. caespitosa Mg content of approximately 1.1 mol % 

MgCO3, corresponding to approximately 32 % of the seasonal variability in Mg concentration 

currently experienced by these species in the NE Atlantic. During periods of highest skeletal 

Mg content (i.e. August) Corallina mol % Mg/Ca would increase to approximately 0.15, 

while in cooler months (i.e. February) mol % Mg/Ca of approximately 0.12 would be 

expected, giving a new solubility product range (log K at 25oC and 0.78 bar CO2) of 

approximately -7.74 to -7.93 (Plummer and Mackenzie 1974). Although maximum Mg 

concentrations remain substantially less than observed in present day rhodolith species 

(Kamenos et al. 2008), increases in the Mg content of Corallina may have impacts on 

skeletal growth and dissolution. This may be particularly important given Corallina’s 

intertidal habitat, where rock pool pCO2 can naturally reach 1000 µatm during dark tidal 
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emersion periods due to respiration processes, causing significant decreases in rock pool 

carbonate saturation, and thus conditions corrosive to skeletal CaCO3 ( Chapter 3). 

  

Over the long-term, reductions in seawater carbonate saturation owing to OA that will occur 

simultaneously with increases in SST, may serve to decrease skeletal Mg concentrations, and 

therefore solubility / potential vulnerability to OA, and should also be considered when 

projecting future responses of calcifying organisms. For example, Egilsdottir et al. (2013) 

demonstrated an average reduction of 0.013 mol % Mg/Ca in new structures formed by E. 

elongata in acidified conditions. This represents approximately 39 % of the annual Mg 

variation experienced by present day UK Corallina populations, of a similar magnitude to the 

increase projected with + 3oC SST. However, as multi-stressor incubation studies (i.e. 

increased temperature and decreased calcite saturation) have not been conducted with 

Corallina or Ellisolandia species to-date, it is currently unknown which of these stressors (if 

either) will have a dominant influence on skeletal mineralogy and thus solubility under future 

oceanic conditions.  
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Supplementary Table S5.1: Herbarium Corallina officinalis samples of the Natural History 
Museum (BM) analysed for the present study. Where the same NHM barcodes are provided 
for more than one sample, multiple samples were present under the same barcode in the 
herbarium. (-) indicates samples were not barcoded in the NHM (BM) system. Numbers in 
brackets refer to the CEFAS Station ID from which sea surface temperatures were acquired 
for regression analysis. 
 

Year of 
Sampling 

Month of 
Sampling Collection Site County NHM (BM) 

Sample Barcode 
1837 11 Hastings Sussex BM000840093 
1855 9 Scarborough Yorkshire BM000840148 
1856 9 Ventnor Cove, Isle of Wight Hampshire BM000840063 
1867 4 Hastings Sussex BM000840097 
1867 4 Kemp Town, Brighton Sussex BM000774522 
1867 4 Kemp Town, Brighton Sussex BM000774521 
1883 3 Torbay Devon BM000804587 
1887 1 Berwick Northumberland  BM000840104 
1887 1 Berwick Northumberland BM000840103 
1887 1 Berwick Northumberland BM000840102 
1887 1 Berwick Northumberland BM000840101 
1889 1 Clacton on sea Essex BM000840110 
1889 8 Illfracombe Devon BM000804586 
1889 8 Illfracombe Devon BM000804591 
1890 6 Sidmouth Devon BM000804592 
1892 8 Swanage Dorset BM000840084 
1894 8 Swanage Dorset BM000840085 
1897 7 Clacton on sea Essex BM000840113 
1900 8 Portland Dorset BM000840083 
1903 7 Scarborough Yorkshire BM000840114 
1903 7 Scarborough Yorkshire BM000840114 
1903 7 Scarborough Yorkshire BM000840114 
1904 4 Scarborough Yorkshire BM000840100 
1904 4 Dover Kent BM000840123 
1907 3 Sandgate Kent BM000840125 
1914 3 Cullercoats Northumberland BM000840098 
1930 9 Plymouth Devon BM000804598 
1934 8 Robin Hood’s Bay Yorkshire BM000840115 
1934 8 Robin Hood’s Bay Yorkshire BM000840115 
1934 8 Robin Hood’s Bay Yorkshire BM000840115 
1934 8 Robin Hood’s Bay Yorkshire BM000840115 
1934 8 Robin Hood’s Bay Yorkshire BM000840112 
1934 8 Robin Hood’s Bay Yorkshire BM000840112 
1934 8 Robin Hood’s Bay Yorkshire BM000840112 
1937 8 Filey Brigg, Filey Yorkshire BM000840151 
1937 8 Filey Brigg, Filey Yorkshire BM00840150 
1937 8 Filey Brigg, Filey Yorkshire BM00840150 
1937 8 Filey Brigg, Filey Yorkshire BM00840150 
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Year of 
Sampling 

Month of 
Sampling Collection Site County NHM (BM) 

Sample Barcode 
1937 8 Filey Brigg, Filey Yorkshire BM00840150 
1938 1 Hastings Sussex (20) BM000840096 
1938 1 Hastings Sussex (20) BM000840095 
1940 11 Port Mellyn Cornwall - 
1947 7 Culver Cliff, Isle of Wight Hampshire BM000774533 
1947 7 Culver Cliff, Isle of Wight Hampshire BM000774532 
1948 4 Shanklin, Isle of Wight Hampshire BM000840092 
1948 4 Shanklin, Isle of Wight Hampshire BM000774534 
1948 4 Shanklin, Isle of Wight Hampshire BM000774520 
1948 4 Culver Cliff, Isle of Wight Hampshire BM000840061 
1948 4 Culver Cliff, Isle of Wight Hampshire BM000840058 
1953 4 Wembury Devon BM000804595 
1956 11 Combe Martin Devon BM000804593 
1966 3 Margate Kent (18) BM000840118 
1967 7 Rottingdean Sussex (21) BM000769308 
1967 11 Isle of Thanet Kent (18) BM000840129 
1968 3 Sidmouth Devon (24) BM000804594 
1968 3 Folkstone Kent (18) BM000806429 
1968 3 Folkstone Kent (18) BM000806429 
1968 7 Dover Kent (18) BM000840137 
1968 9 Whitstable Kent (17) BM000840140 
1968 11 Isle of Thanet Kent (18) BM000840134 
1969 4 Dover Kent BM000840124 
1969 8 Hastings Sussex (20) BM000774526 
1969 8 Lundy Devon (27) BM000804576 
1969 10 St Margrets Bay Kent (18) BM000840117 
1970 5 Newhaven Sussex (20) BM000774524 
1970 6 Folkstone Kent (18) BM000840138 
1970 7 Lundy Devon (27) BM000862026 
1970 11 Isle of Thanet Kent (18) BM000840146 
1971 5 Durham Northumberland (2) BM000840149 
1971 9 St Margrets Bay Kent (18) BM000840147 
1972 1 Portreath Cornwall - 
1972 3 Kingsdown Kent (18) BM000840126 
1972 8 Berwick Northumberland (1) BM000840105 
1973 4 Duckpool Cornwall - 

1988 6 Needles lighthouse, Isle of 
Wight Hampshire (22) BM000840091 

1988 7 Alum Bay, Isle of Wight Hampshire (22) BM000774531 
1998 7 Filey Brigg, Filey Yorkshire (3) BM000639019 
1998 7 Filey Brigg, Filey Yorkshire (3) BM000639019 
1998 7 Filey Brigg, Filey Yorkshire (3) BM000639019 
1998 7 Flamborough Head, Yorkshire Yorkshire (3) BM000639033 
2003 8 Harwich Essex BM000642503 
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Year of 
Sampling 

Month of 
Sampling Collection Site County NHM (BM) 

Sample Barcode 
2003 8 St Osyth Essex BM000642571 
2003 8 East Mersea Essex BM000642587 
2004 8 Black Water Estuary Essex BM000768688 
2004 8 Black Water Estuary Essex BM000768688 
2004 8 Black Water Estuary Essex BM000768688 
2005 4 Combe Martin Devon (27) BM000899294 
2005 4 Combe Martin Devon (27) BM000899294 
2005 4 Combe Martin Devon (27) BM000899294 
2007 2 Sheerness Kent (17) BM000804755 
2007 3 Filey Brigg, Filey Yorkshire (3) BM001023963 
2007 3 Filey Brigg, Filey Yorkshire (3) BM001023952 
2007 3 Filey Brigg, Filey Yorkshire (3) BM001023962 
2007 3 Filey Brigg, Filey Yorkshire (3) BM001023960 
2007 8 Filey Brigg, Filey Yorkshire (3) BM001023955 
2007 8 Filey Brigg, Filey Yorkshire (3) BM001023965 
2007 8 Filey Brigg, Filey Yorkshire (3) BM001023954 
2007 8 Filey Brigg, Filey Yorkshire (3) BM001023956 
2007 8 Filey Brigg, Filey Yorkshire (3) BM001023966 
2008 1 Hamton Kent (17) BM000779428 
2008 1 Hamton Kent (17) BM000779428 
2008 1 Hamton Kent (17) BM000779428 
2008 8 Combe Martin Devon (27) BM000899494 
2010 2 Hannafore Point Cornwall - 
2010 2 Hannafore Point Cornwall - 
2010 2 Hannafore Point Cornwall - 
2010 2 Hannafore Point Cornwall - 
2010 2 Hannafore Point Cornwall - 
2010 2 Hannafore Point Cornwall - 
2010 5 Fistral Bay Cornwall BM001023968 
2010 5 Fistral Bay Cornwall BM001023978 
2010 5 Caerthillian Cove Cornwall BM001023976 
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Chapter 6: Discussion 
 
For the first time, a large-scale comprehensive study of Corallina and Ellisolandia species 

ecophysiology has been undertaken across the NE Atlantic, underpinned by well-defined 

species concepts. The findings significantly advance knowledge on cryptic diversity and 

species’ distributions within the genera, and provide information on the dynamics of 

physiological traits in relation to temporal and spatial fluctuations and gradients in key 

abiotic stressors. It is extremely important to understand the functioning of ecosystem 

engineers such as Corallina and Ellisolandia in this time of rapid environmental change, in 

order to facilitate projections of future outcomes for the species themselves and the 

ecosystems that they support. The findings of this thesis allow conclusions to be drawn about 

the vulnerability of intertidal Corallina and Ellisolandia species of the NE Atlantic to future 

OA and warming. 

 

Fundamental to the basis of this project was the establishment of clear species concepts for 

the geniculate corallines under study. This was significantly aided by the recent efforts of 

Brodie et al. (2013) and previous work of Walker et al. (2009) in providing DNA sequences 

of type material, which permitted the identification of C. officinalis, C. caespitosa and E. 

elongata specimens within phylogenies. Notwithstanding this, a high degree of cryptic 

diversity was also identified that could not be associated with species names, given a general 

lack of type sequence data for the genus. Ascertaining this information is critical to 

understanding phylogenetic relationships within Corallina and related genera (Gabrielson et 

al. 2011), which is a key priority of climate change research (McCoy and Kamenos 2015). 

Until we have a well-developed understanding of species identity, diversity and distributions, 

efforts to predict responses to future change will ultimately be flawed. Clearly we do not yet 

know the number of species of Corallina in the world and evidence presented in Chapter 2 

highlights that diversity is likely to be significantly higher than originally thought based on 

morphology. Much more work needs to be done to establish the phylogenetic relationships 

within and between Corallina and Ellisolandia, which can then be related to species 

distributions, ecology and ultimately responses to future change, as per the outline of this 

project.  

 

Revised definitions of species’ distributions put forward by the present study have serious 

implications for potential vulnerability to future change. Primarily, C. officinalis is 
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highlighted as having a high vulnerability to climate change given its restricted distribution in 

the northern hemisphere, while C. caespitosa is identified as the less vulnerable cosmopolitan 

species. Macroalgae are expected to respond directly to increasing sea surface temperatures 

(SSTs) with range shifts, resulting in extinction at their southern edges and colonisation at 

northern boundaries (Jueterbock et al. 2013, Harley et al. 2012). Data indicated that northern 

Spain probably represents the southerly distribution limit of C. officinalis in the NE Atlantic 

and therefore it is likely that C. officinalis will be lost from this latitude as temperatures 

exceed physiological thresholds. Loss of macroalgal species from their southern limits has 

been documented for several kelp and fucoid species in the NE Atlantic (e.g. Lima et al. 

2007, Pearson et al. 2009, Fernandez 2011, Moy and Christine 2012, Tuya et al. 2012), with 

potentially wide-ranging consequences for community structure and ecosystem functioning 

(Brodie et al. 2014). While range expansion into cooler waters is projected for fleshy 

macrolagal species at their northern edges (Brodie et al. 2014), data from this project indicate 

that C. officinalis is likely to be negatively impacted by OA at higher latitudes (see 

subsequent discussion) and thus will experience complete range contraction in the NE 

Atlantic forced by both climate change (southern edge) and OA (northern edge) impacts. In 

contrast, provided that geniculate corallines remain dominant members of NE Atlantic rock 

pool communities, C. caespitosa and E. elongata have the potential for northwards expansion 

into higher latitudes with SST increases. Given the cosmopolitan distribution of C. caespitosa 

and the high abundance of E. elongata in the warmest site examined during the present study 

(Comillas), increases in SST could facilitate increased dominance of these species in higher 

latitude locations as C. officinalis abundance declines. This, however, may be mediated by 

direct negative impacts of OA and/or changes in the outcomes of competitive interactions 

with non-calcifying species. 

 

Before considering the potential direct impacts of OA on Corallina and Ellisolandia 

physiology, the carbonate chemistry environment currently experienced by the species in 

intertidal rock pools should be taken into account. Chapter 3 highlighted that Corallina and 

Ellisolandia are currently adapted to grow and survive in rock pools which experience a 

greater range of pH variability over the course of a diurnal cycle than the decline in pH 

predicted by the end of this century due to OA (IPCC 2013). This naturally leads to the 

hypothesis that tolerance of such pH variability may confer increased resilience to future 

change, as has been demonstrated for other coastal species (Wootton et al. 2008, Kelly et al. 

2013, Wolfe et al. 2013, Hofmann et al. 2014). Wootton et al. (2008), for example, found no 
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impact of long-term (8 year) pH declines on Corallina vancouveriensis located in tide pools 

that experience large pH fluctuations, while Kelly et al. (2013) showed offspring of the 

purple sea urchin from extreme pH sites to be insensitive to low pH treatments. At present, 

however, major questions remain about the ability of species to tolerate or adapt to changing 

ocean conditions (Sunday et al. 2013, Hofmann et al. 2014), taking into account that the 

rapidity and magnitude of present-day OA exceeds events known from the Earth’s geological 

past, potentially exceeding the capacity of most organisms to adapt (Hoegh-Guldberg et al. 

2007, Ries 2010). If adaptation to high pH variability does confer increased resilience to OA 

conditions, findings of the present study would suggest Corallina and Ellisolandia as 

potential candidates for tolerance, in accordance with the conclusions of previous work 

(Egilsdottir et al. 2013, Noisette et al. 2013).  

 

By examining physiology in relation to temporal (tidal and seasonal) and spatial (latitudinal) 

fluctuations and gradients in key abiotic stressors that will change under a high CO2 world, 

this project provides insight into the relative importance of stressors for Corallina and 

Ellisolandia growth and survival, enabling identification of the vulnerable physiological 

processes in regards to future change. Data highlight that Corallina and Ellisolandia 

photosynthesis and calcification processes may be unaffected by future OA, whilst 

dissolution is likely to increase as CO3
2- saturation declines. Under present-day seawater 

conditions, C. officinalis photosynthesis is DIC saturated, as evidenced by effective HCO3
2- 

utilisation in rock pools during periods of CO2 limitation over daytime tidal emersion. This 

was likely achieved through the use of a carbon concentrating mechanism (CCM, Giordano 

et al. 2005), most probably external carbonic anhydrase (Hofmann and Bischof 2014). CCM 

use by macroalgal species has been linked with a lack of increase in photosynthesis under 

elevated pCO2 conditions (Israel and Hophy 2002), although species may benefit under OA if 

CCM activity is down-regulated (Hepburn et al. 2011, Raven et al. 2011, Cornwall et al. 

2012, Harley et al. 2012, Koch et al. 2013). While C. officinalis has been shown to switch 

from HCO3
2- to CO2 uptake for photosynthesis under reduced pH conditions (Cornwall et al. 

2012), the pH variability experienced in rock pools will likely necessitate CCM reliance into 

the future. Thus C. officinalis photosynthesis is likely to proceed as usual under conditions of 

OA. Irradiance and water temperature will therefore continue to constitute the major 

regulators of Corallina and Ellisolandia photosynthesis, with light-limitation of 

photosynthesis during winter periods and temperature driven increases in productivity during 

summer months. The photoacclimation and photoregulation strategies currently employed by 
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the species across the NE Atlantic will therefore continue to play pivotal roles in the 

maintenance of productivity (e.g. photoacclimation to permit maximal light harvesting during 

winter months), and tolerance of photo-stress (non-photochemical quenching and other 

photoregulation mechanisms to reduce or prevent photoinhibition). While temperature 

increases may facilitate increased production during summer when irradiance is saturating, 

species will be negatively affected once temperatures rise above physiological thresholds, as 

previously discussed. 

 

Strong coupling between photosynthesis and calcification processes, in combination with 

continued pH increases in rock pools during daytime tidal emersion, may facilitate 

comparable rates of calcification to those observed under present-day conditions. With OA, 

reductions in calcification are predicted due to greater diffusion of CO2 and H+ to the site of 

calcification, coupled with lower H+ efflux from the site of calcification, reducing internal 

pH, CO3
2- saturation and thus CaCO3 precipitation (Jokiel 2011, Koch et al. 2013). For C. 

officinalis in intertidal rock pools, calcification rates were shown to be significantly enhanced 

by light-dependent photosynthesis (Chapter 3), presumably due to uptake of CO2 from the 

site of calcification (Koch et al. 2013). As photosynthesis will be maintained under OA (see 

above) this mechanism of internal pH regulation will persist. In addition, although OA will 

progressively lead to changes in the ambient seawater carbonate chemistry of coastal regions 

(Wootton et al. 2008), community photosynthetic uptake of CO2 and HCO3
- from rock pool 

water during daytime emersion will continue, or potentially increase, in the future (Harley et 

al. 2012, Koch et al. 2013, Kroeker et al. 2013), raising the pH relative to ambient seawater 

conditions, as in the present-day. Periodic exposure to high pH may ameliorate some of the 

negative impacts of OA for calcifying species (Anthony et al. 2011, Hofmann et al. 2011, 

Hurd et al. 2011, Andersson and Mackenzie 2012, Manzello et al. 2012, Hofmann et al. 

2014), providing a period of respite when calcification can occur at much higher rates 

(Semesi et al. 2009, Saderne et al. 2011, Cornwall et al. 2013). For Corallina and 

Ellisolandia species inhabiting rock pools, irradiance-driven, photosynthetic utilisation of 

inorganic carbon from rock pool water may thus serve as a self-protecting mechanism, 

raising pH and thus mitigating against the impacts of OA on calcification processes.  

 

Despite the potential resilience of photosynthesis and calcification processes to OA 

conditions, night-time dissolution pressures acting on Corallina and Ellisolandia in intertidal 

rock pools are likely to increase with OA, with consequences for net growth. The degree of 
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CaCO3 dissolution occurring over night-time emersion was shown to be dependent on the 

ambient seawater CO3
2- saturation, and both community and individual respiration rates 

(Chapter 3). Community respiration drives changes in rock pool water pH and CO3
2- 

saturation, while at the level of the individual, respiration can promote CaCO3 dissolution via 

internal generation of CO2 (Koch et al. 2013). The finding in this study that C. officinalis  

exerts a strong metabolic control over respiration, thus maintaining low rates across both 

seasonal and tidal fluctuations in abiotic conditions, is suggested here as a putative adaptation 

to allow favourable internal pH regulation. Despite conserved individual respiration, 

however, CaCO3 dissolution was apparent due to seasonal minima in seawater CO3
2- 

saturation during winter, and increased community respiration during summer. Although it is 

unlikely that Corallina and Ellisolandia respiration will increase with future OA (Hofmann et 

al. 2012b, Egilsdottir et al. 2013, Noisette et al. 2013, Hofmann and Bischof 2014), decline in 

seawater pH and CO3
2- saturation will likely exacerbate dissolution pressures, particularly 

during winter. Net growth will be decreased under these conditions, with potential 

implications for the outcomes of competitive interactions with other rock pool inhabiting 

macroalgae. 

 

The skeletal mineralogy of Corallina and Ellisolandia may also contribute to dissolution 

vulnerability with continued OA and warming. Given its increased solubility in seawater 

relative to other CaCO3 polymorphs, species depositing high-Mg calcite are likely to be more 

susceptible to dissolution under OA (Gao et al. 1993, Morse et al. 2007, Andersson et al. 

2008, Kuffner et al. 2008, Ries et al. 2009, Ries 2010, Lombardi et al. 2011, Hofmann and 

Bischof 2014). Chapter 5 highlighted that Corallina and Ellisolandia deposit exclusively 

high-Mg calcite in the NE Atlantic, and therefore may be particularly vulnerable to 

dissolution pressures. The significant positive relationship identified between SST and 

Corallina Mg incorporation, suggests that elevated SSTs due to climate change could drive 

greater Mg incorporation into calcite, increasing solubility and thus dissolution vulnerability 

under OA. One caveat to this, however, is the potential of OA itself to decrease Mg 

incorporation into calcite, potentially counteracting any temperature effect on skeletal 

mineralogy (Ries 2011a, Egilsdottir et al. 2013). In comparison to other temperate coralline 

species, e.g. rhodolith-forming species, Corallina and Ellisolandia demonstrated reduced 

concentrations of skeletal Mg content and conserved seasonal ranges with fluctuations in SST 

(Kamenos et al. 2008). This may indicate reduced sensitivity to OA dissolution pressures for 

geniculate corallines in comparison to rhodolith species, supporting the findings of Noisette 
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et al. (2013), and consistent with recent predictions for the fate of different coralline algal 

assemblages of the NE Atlantic in a high CO2 world (Brodie et al. 2014). Thus whilst 

Corallina and Ellisolandia skeletal mineralogy indicates potential vulnerability to dissolution 

processes, these species may be better placed to deal with dissolution pressures than other 

temperate corallines under future conditions.  

 

Examination of Corallina ecophysiology across a NE Atlantic latitudinal transect of 

irradiance, temperate and carbonate chemistry, allows for a “substitution of space for time” 

(Pickett 1989) approach in exploring the possible outcomes of the physiological changes 

predicted above under future conditions. In this regard, insights into the potential impact of 

OA on Corallina species can be drawn from the current ecophysiology of high latitude 

populations, given reduced CO3
2- saturation towards the poles (Egleston et al. 2010), whilst 

information on the potential implications of SST increases can be gained by examining 

physiology at lower latitudes, e.g. northern Spain, where temperatures are increased. It should 

be noted that both high temperatures and reduced CO3
2- saturation are not apparent at either 

end of this spectrum, as will be the case for the future oceans, and that several other factors 

also vary across species’ ranges, e.g. irradiance, with strong influence on ecophysiology. 

However, some interesting patterns can be seen across the data. For example, Icelandic C. 

officinalis demonstrated reduced maximum electron transport rates during summer and 

autumn in comparison to UK C. officinalis, and was shown to have reduced overall growth 

rates relative to con-specifics and con-generics at lower latitudes. Given the likelihood of OA 

impacts to Corallina dissolution previously described, as dissolution increases relative to 

calcification, more southerly populations might be expected to shift their growth dynamics 

towards those currently observed in Iceland. As Icelandic rock pools continue to be 

dominated by C. officinalis, continued dominance of Corallina at lower latitudes might also 

be expected despite reduced net growth in the future. In contrast, maximal growth rates and 

the shear biomass of Corallina and Ellisolandia present at Comillas could be indicative of 

future expansion of geniculate turf assemblages at lower latitudes with increased warming. 

Across this region of northern Spain, the distributional limits of cold temperate macroalgae 

species, e.g. fucoids and kelps, have retreated eastwards or westwards by hundreds of 

kilometres, due to increases in SSTs and reduction in the seasonality and intensity of summer 

upwelling (Fernández 2011). This loss of brown macroalgae may have facilitated the 

expansion of corallines across the entire intertidal region in Comillas. As cold-water adapted 

species continue to shift their ranges northwards with rising temperatures (Brodie et al. 
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2014), new habitat may become available for geniculate corallines at previous southern range 

edges. 

 

Finally, while there may be moderate decreases in growth of geniculate corallines at mid 

latitudes in the NE Atlantic, or potential increases in assemblages in more southerly 

locations, the fate of high latitude C. officinalis is comparatively bleak. As noted above, C. 

officinalis in Icelandic rock pools already demonstrates reduced growth and productivity 

relative to lower latitude populations. As OA proceeds, under-saturation with respect to 

calcite and aragonite will quickly become apparent in high latitude waters of the Arctic (Ciais 

et al. 2013), spreading further south into the North Atlantic by the end of the century (Gruber 

2011). It is highly likely that under these conditions, dissolution will dominate over 

calcification processes and C. officinalis will be lost from rock pool habitats. This species 

will thus be impacted both at its southern edge by increased SSTs and at its northern limit by 

OA, resulting in range contraction in the future. Locations in the current centre of its range, 

e.g. the UK and NW France, may thus become important refugia for the species, although 

increased competition with both fleshy macroalgal species and potentially other geniculate 

corallines, may exacerbate this species’ decline.  

 

6.1. Summary of Conclusions 

Understanding species identity, diversity and distributions is an important first step on the 

road to predicting the potential impacts of global change on marine species. Ocean warming 

will differentially impact Corallina and Ellisolandia species across the NE Atlantic 

depending on their current latitudinal distributions, with loss of C. officinalis from its 

southern edge (northern Spain), and increases in the northern ranges and relative abundances 

of C. caespitosa and E. elongata predicted. The direct, i.e. physiological, vulnerability of 

intertidal Corallina and Ellisolandia to OA will be dependent on the inter-play between a 

myriad of abiotic stressors (irradiance, temperature, carbonate chemistry) and physiological 

characteristics (photosynthesis, calcification, dissolution, skeletal mineralogy), the relative 

balance of which will vary through space and time. At mid and lower latitudes of the NE 

Atlantic, potential tolerance to OA conditions is inferred from a tight coupling between 

photosynthesis and calcification processes and presumed buffering of pH in rock pool 

environments into the future. It is predicted, however, that Corallina and Ellisolandia will 

face increased dissolution pressures during night-time tidal emersion, potentially exacerbated 

by their relatively soluble skeletal mineralogy. Observations across the NE Atlantic indicate 
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that geniculate corallines may continue to dominate rock pool habitats at mid latitudes and 

potentially increase significantly in abundance at lower latitudes where fleshy macroalgae are 

lost from their southern edges. Vulnerability to OA is however likely to be significantly 

increased at high latitudes, such that loss of C. officinalis is predicted with future decreases in 

CO3
2- saturation. Significant shifts in the geniculate coralline algal assemblage of the NE 

Atlantic are therefore likely to occur over the coming decades-to-centuries, which will 

potentially have far-reaching consequences for the species and ecosystems they support.  

 

6.2. Project limitations 

A priority of this project was to clearly define the species concepts for the organisms that 

would be studied. While this was achieved with relative ease due to the efforts of Brodie et 

al. (2013), delimitation and identification of other Corallina species within phylogenies was 

hampered by a lack of DNA sequences for type specimens. It followed therefore that of the 

20 Corallina clades resolved in the COI phylogeny, only C. officinalis and C. caespitosa 

could be confirmed. Several of the remaining clades await description from the authors who 

first published their sequences, e.g. the specimens previously highlighted as cryptic diversity 

within the Corallina population of the Pacific north-west of Canada by Hind and Saunders 

(2013b). While the phylogenies produced by the present study served their purpose, 

confirming the identification and distribution of C. officinalis, C. caespitosa and E. elongata 

specimens, more information on the diversity of Corallina could have been provided had 

more type specimen sequences been available. However, the availability of these will likely 

increase in the future and the phylogenies presented by this study can form the basis for 

future positioning of Corallina and Ellisolandia species. 

 

Two major studies were presented in Chapter 3 that aimed to elucidate the productivity and 

growth of Corallina and Ellisolandia species in relation to tidal, seasonal and latitudinal 

dynamics in abiotic stressors. In the UK intertidal, an assessment was performed of the 

carbonate chemistry environment of upper shore rock pools and the photosynthesis, 

respiration and calcification/dissolution of C. officinalis over day and night tidal emersion 

periods, across seasons. Given that C. caespitosa is also present in these upper shore rock 

pools it would have been informative to have a direct comparison between these species, 

however it was not logistically possible to double the number of incubations and analyses to 

accommodate assessment of two species. It was only possible therefore to present 

information on these dynamics for C. officinalis. Across latitudes, the initiation of a staining 
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experiment to compare Corallina growth aimed to also circumvent logistical constraints on 

performing the aforementioned incubation studies in Iceland and northern Spain. At these 

field-sites the laboratory equipment and infrastructure required to perform the appropriate 

analyses were unfortunately lacking. While the staining experiment did serve to provide the 

first complete seasonal assessment of C. officinalis and C. caespitosa relative growth rates in 

the UK (both species) and northern Spain (C. caespitosa only due to lack of accessible C. 

officinalis), site access and bad weather conditions restricted subsequent sampling of stained 

fronds in Iceland, such that the frequency of data collection was significantly reduced at that 

latitude. Given the cost of the stain, reduced replication of staining areas was also apparent in 

Iceland and northern Spain, while in the UK staining was performed in six replicated patches 

across two large upper shore rock pools, though with an unusually low rate of staining 

success. Thus, whilst the staining experiment provided a novel insight into the seasonal and 

latitudinal growth dynamics of intertidal Corallina species, increased replication and regular 

sampling frequencies across sites would aid interpretation of data in the future. 

 

In two studies of the present project (Chapters 2 and 5), the herbaria collections of the 

Natural History Museum (BM), London, were utilised as a source of samples. These were 

used in Chapter 2 for gene sequencing and in Chapter 5 for X-Ray diffraction analysis to 

determined Mg/Ca ratios. The herbarium offers an extensive collection of geniculate 

coralline algae, providing valuable access to specimens from all over the globe. It is, 

however, of relatively more value for phylogenetic studies as compared to ‘time-series’ 

assessment of skeletal mineralogy. For the former type of project, the only limit encountered 

was typical issues associated with extraction and amplification of DNA from historical 

specimens. Overall a ca. 50 % success rate was apparent for herbarium Corallina, which is an 

acceptable level of success. In the case of the skeletal mineralogy project, however, there 

were two main limitations. Firstly, sampling for X-Ray diffraction analysis is a destructive 

process, which for the methods employed by this project required removal of 10 – 15 apical 

intergenicula from each individual specimen examined. This represents a significant 

destruction burden for a long-time collection such as that housed at the NHM, which 

inevitably limited the number of samples that could be assessed. Overall, however, access 

was generously provided to 112 samples. The second problem with herbaria collections for 

such studies is that they come predominantly from donations made by individual collectors, 

not as established regular sampling initiatives. Over the period 1850 – 2010, across which the 

aim was to identify potential shifts in Mg incorporation due to climate change, available 
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samples were particularly heterogeneous in space and time, and lacking in replication. While 

data generally indicated a lack of long-term change in Corallina Mg incorporation over this 

period (N.B. several attempts were performed to ‘tease-out’ long-term trends, including 

grouping of summer/winter samples, comparing the most recent and oldest data, e.t.c), a 

much greater collection of samples, collected from the same site, at regular intervals, with 

replication, would likely be needed to identify such long-term trends.  

 

6.3. Future research 

There are three main areas that research should focus on in light of the findings of the present 

study (i) resolving issues of species identity, diversity and distribution for the genera 

Corallina and Ellisolandia, (ii) assessment of the potential ability of Corallina and 

Ellisolandia species to adapt to future change, and (iii) the outcome of OA and climate 

change impacts for the complete assemblages that these ecosystem engineers are associated 

with. While this project was able to provide novel information on the distributions of C. 

officinalis and C. caespitosa based on molecular phylogenetic research, a great deal of cryptic 

diversity was highlighted in the genus Corallina, and potentially Ellisolandia, the future un-

ravelling of which should be a high research priority. While we now have a better 

understanding of the range limits of C. officinalis in the NE Atlantic, this information is still 

lacking for e.g. E. elongata, such that predictions of range increases for this species proposed 

by the present study are hard to contextualise. Key to such research will be the sequencing of 

type specimens for definitive identification of species within phylogenies. In the absence of 

type material, an epitype can serve as an interpretive type, and where no names apply, new 

species need to be described. This will not be a small amount of work and thus collaborations 

between researchers across geographic areas will strongly facilitate a more methodological 

assessment of cryptic diversity and species distributions, and prevent significant loss of time 

due to duplication of effort. 

 

Assessing the potential for species to adapt to climate change remains a key research priority 

(e.g. Sunday et al. 2013), though an area that is also difficult to investigate, particularly for 

large (i.e macro), slow growing organisms. A current approach being adopted in the 

Californian Current Large Marine Ecosystem is to combine simultaneous oceanographic and 

biological research over a large latitudinal area that has contrasting zones of pH variability 

and more stable regions, across which populations of the same species are distributed (see 

Hofmann et al. 2014). By combining assessment of the abiotic environment with population 
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genetic surveys, and then examining the response of members of different populations to OA 

treatments using ‘common-garden’ experiments, it is possible to identify areas that might be 

refuges from acidification in the future, or reveal regions that are adaptation hot-spots, where 

selection for undersaturation-tolerant genotypes has been underway for long periods of time. 

For Corallina and Ellisolandia (and indeed the majority of coralline algae) the first step in 

this process will be the development of population genetic markers (e.g. single nucleotide 

polymorphisms, SNPs). Unfortunately this represents a large research gap at present.  

 

Finally, as OA and climate change research has progressed over recent years it has become 

increasingly recognised that research should move away from single-stressor, short-term 

incubation studies of isolated species if we want to truly observe the future responses to 

future conditions. For intertidal macroalgae that live in close association with other calcified 

and fleshy macroalgae, epiphytic and endophytic microalgae, and a host of associated fauna, 

the outcomes of OA and climate change are likely to be strongly influenced by indirect 

effects to species interactions. Future ‘incubation’ studies should therefore attempt to 

examine the response of the community as a whole. Ideally manipulation experiments would 

be conducted in-situ to circumvent problems associated with replicating the complexity of 

natural systems in laboratory conditions, however such experiments come with significant 

financial and logistical burdens. For Corallina and Ellisolandia initial research into the fate 

of community dynamics has been conducted (e.g. Hofmann et al. 2012a), though there is 

large scope to expand on this work.  
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Abstract – Corallina L. is the type genus of the subfamily Corallinoideae (Aresch.) Foslie
and Corallina officinalis L. is the type species of the genus. This name has been applied
worldwide, particularly in temperate waters. An attempt to obtain sequence data from the
lectotype specimen was not successful. In order to establish a species concept for C.
officinalis based on molecular sequence data as well as morphology, an epitype was selected
from Devon, England within the vague type locality ‘in O [Oceano] Europaeo’, and from
which mitochondrial (cox1) and plastid (rbcL) data were obtained. A second species,
Corallina elongata Ellis et Solander (type locality Cornwall, England), was shown previously
to include at least two species based on DNA sequences. The lectotype of C. elongata is an
illustration and therefore an epitype was selected to provide molecular sequence data, using
the same markers as for C. officinalis. These molecular sequences for C. officinalis and
C. elongata are compared with those of a third, recently described species from Great
Britain, Corallina caespitosa R.H. Walker, J. Brodie et L.M. Irvine: these data provide an
example for studying Corallina species taxonomy and diversity in other parts of the world.
The implications of this work are discussed in relation to concepts of species distribution.

Corallina caespitosa / Corallina elongata / Corallina officinalis / epitype

Résumé – Epitypification des Corallina officinalis L., le type de la genus, et C. elongata
Ellis & Solander (Corallinales, Rhodophyta). Corallina L. est le genre type de la sous-
famille des Corallinoideae (Aresch.) Foslie et Corallina officinalis L. est l’espèce type du
genre. Le nom d’espèce est couramment utilisé pour dénommer des spécimens provenant
du monde entier, principalement de zones tempérées. Les tentatives de séquençage du
spécimen type sont restées infructueuses. Dans le but de définir l’identité spécifique de
C. officinalis, basée sur des données moléculaires ainsi que morphologiques, un épitype
a été sélectionné. Celui-ci était originaire du Devon (Angleterre) au sein de la localité
(ou région) type ‘in O [Oceano] Europaeo’, et a été séquencé pour des marqueurs
mitochondriaux (cox1) et chloroplastiques (rbcL). Les séquences d’ADN avaient aussi mis
en évidence, dans une étude précédente, l’existence d’au moins deux espèces correspondant
à Corallina elongata Ellis et Solander (localité type : Cornouailles, Angleterre). Le
lectotype de C. elongata est une illustration, et par conséquent, un épitype a aussi été
sélectionné afin de réaliser des analyses moléculaires similaires. Les séquences de
C. officinalis et C. elongata sont comparées avec celles d’une troisième espèce décrite plus
récemment en Grande Bretagne, Corallina caespitosa R.H. Walker, J. Brodie et
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L.M. Irvine : ces données constituent un exemple d’étude de la taxonomie et de la diversité
des espèces du genre Corallina dans différentes régions du monde. Les implications de ce
travail sont discutées en parallèle avec les concepts de distribution des espèces.

Corallina caespitosa / Corallina elongata / Corallina officinalis / épitype

INTRODUCTION

Corallina L. is the type genus of the subfamily Corallinoideae (Aresch.)
Foslie and the oldest name in coralline literature (Irvine & Johansen, 1994). The
number of species in Corallina is uncertain: Guiry & Guiry (2012) list 16 although
approximately 272 species and infraspecific names have been recorded. Despite
a long history of study, concepts of species delimitation in Corallina remain
ambiguous.

The most commonly recorded species worldwide has been C. officinalis
sensu lato, which, according to distribution records from herbarium collections
(BM) and literature records (Guiry & Guiry, 2012), has a supposed cosmopolitan
distribution largely in temperate waters. It has also been the most studied species
in the genus and research includes development (Colthart & Johansen, 1973;
Andrake & Johansen, 1980), cytology (Peel, 1985), ultrastructure (Borowitzka &
Vesk, 1978), calcification (Digby, 1977a, 1977b; Pentecost, 1978) and
biogeography (Munda, 1977). Corallina officinalis has also been used as a
representative species for the Corallinales in molecular studies (Bailey and
Chapman 1996, 1998; Robba et al., 2006; Kim et al., 2007; Broom et al., 2008;
Martone et al., 2012).

However, all of this work requires review following a study by Robba et
al. (2006), based on analysis of the mitochondrial cox1 gene region and focussing
on red algae of Great Britain, which suggested that two genetically distinct species
had been included in C. officinalis. These were subsequently distinguished as
C. officinalis and C. caespitosa R.H. Walker, J. Brodie et L.M. Irvine. Hitherto,
two species of the genus Corallina, C. officinalis L. (1758) and C. elongata Ellis et
Solander (1786) were recorded for Great Britain and Ireland (Irvine & Johansen
1994), but a third Corallina species was thus recognised in the region by Walker
et al. (2009). This result highlights the difficulty of distinguishing species using
morphology alone and points to the importance of redefining C. officinalis and
other species by combining morphological and molecular data from type
specimens.

Corallina officinalis is the type species of the genus Corallina, and the
lectotype specimen (see Jarvis et al., 1993) is no. 1293.9 in Linnaeus’s herbarium
at the Linnean Society, London (LINN) (Walker et al., 2009, fig. 5 a). The
material consists of several separate pieces of fronds which may or may not belong
to one specimen. In order to discover whether this material belongs to
C. officinalis as currently understood in the type locality area ‘Oceano Europaeo’,
permission was sought to submit a small portion to molecular investigation.
Unfortunately it was not possible to obtain molecular sequence data thus leaving
the molecular identity of this material unresolved. The lectotype of C. elongata
(Irvine & Johansen, 1994) also presented a problem as it is a drawing made by
Ellis (1755). Results from Walker et al. (2009) and our unpublished data indicate
that there is more than one species going under the name C. elongata. To
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overcome these problems and to enable revised definitions of C. officinalis and
C. elongata to include both morphological and molecular data, an epitype
specimen has been selected for each species. Similar details for the type specimen
of C. caespitosa, included in the original description (Walker et al., 2009), are
repeated here for comparison.

MATERIALS AND METHODS

The specimens of Corallina officinalis, from which molecular sequence
data were generated by Walker et al. (2009), were reviewed and a suitable
specimen was selected as an epitype. A specimen from South Devon confirmed
from molecular data as C. elongata was chosen as an epitype of this species.
Descriptions were prepared for each species based on type, epitype and other
specimens for which molecular data existed (Walker et al., 2009). Comparisons
were made with the description of C. caespitosa. Terminology for species
descriptions follows that of Irvine & Johansen (1994).

RESULTS AND DISCUSSION

Proposed epitype of Corallina officinalis Linnaeus

Linnaeus’s (1758) description states ‘… in O. [Oceano] Europaeo’. It therefore is
appropriate to choose epitype material from this region, and a specimen from
Devon has been selected.

Corallina officinalis Linnaeus, Systema naturae ed. 12, Vol, 1., 1758, p. 805.
Lectotype (designated by L.M. Irvine in Jarvis et al., 1993: 37): LINN no. 1293.9
(Walker et al., 2009, fig. 5a).
Epitype (designated here BM001062598, Fig. 1): England: Devon, Sidmouth,
28 April 2007, leg. Juliet Brodie, JB39. In pool, lower shore, slightly silty, N50:40:30
W3:14:42. Genbank accession numbers: FM180073 [cox1], and JX315329 [rbcL]
(Walker et al., 2009).

Revised description. Thallus with a firmly attached crustose base, typically up to
70 mm in diameter, and individual uprights of branched, stiff, usually erect fronds
up to 120 mm long; sparsely branched below, upper branching often in more than
one plane, dense to sparse and straggly, simple to compound pinnate but often
irregular, successive lateral branchlets typically separated by conspicuous gaps
resulting from wide branch-angles combined with long intergenicula in the main
axes; fronds consisting of genicula alternating with unlobed intergenicula, which in
the main branches are 1-2 mm long and 0.3-1 mm broad, tending to be longer than
broad and cylindrical to compressed, especially near genicula1. Genicula in main

1. Note: there is much variation in the shape of intergenicula; for example, in all three species they are someti-
mes quite flat and extended into lateral wings. a Walker et al. (2009); b Walker et al. (unpublished); cfrom
Genbank.
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Figs 1-6. Corallina officinalis, C. caespitosa and C. elongata. 1. Corallina officinalis Linnaeus:
epitype. Scale bar = 7.5 mm. 2. Corallina officinalis detail of apical intergenicula: upper arrows -
trifurcate intergenicula; lower arrows – conspicuous gaps between lateral branchlets. Scale bar =
1 mm. 3. Corallina caespitosa R.H. Walker, J. Brodie & L.M. Irvine: holotype. Scale bar =
7.5 mm. 4. Corallina caespitosa detail of apical intergenicula: arrows – palm-like intergenicula
with quadrifurcate apical intergenicula. Scale bar = 1.3 mm. 5. Corallina elongata Ellis &
Solander: epitype. Scale bar = 12 mm. 6. Corallina elongata detail of apical intergenicula: arrows
– tiny or non-existent gaps between lateral branchlets. Scale bar = 1.4 mm.
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branches 180-350 µm long and 180-350 µm broad. Apical intergenicula mainly
trifurcate (Fig. 2), occasionally branched four or more times, or rarely a single,
undivided intergeniculum. Conceptacles axial and also often pseudolateral,
spermatangial conceptacles beaked, carposporangial and tetrasporangial
conceptacles rarely with surmounting branchlets.

Habitat. Marine, epilithic or occasionally on mollusc shells or non-geniculate
corallines; sheltered or, less commonly, wave exposed shores, in damp sites
throughout the littoral.

Distribution. The currently confirmed distribution, based on DNA sequence data,
is the North Atlantic, including: England and Scotland (FM180075, FM180080,
FM180070)a, Iceland (FM180078, FM180079)a, Faroesb, west coast of France (Le
Croisic)b, west Greenlandb, east coast of Canada (Nova Scotia, HQ919250)c and
east coast of USA (Long Island Sound)b.

Corallina caespitosa

Corallina caespitosa R.H. Walker, J. Brodie et L.M. Irvine
Holotype (designated in Walker et al., 2009: 290, BM000804549, Fig. 3): England:
Devon, Sidmouth, Chit Rocks, 23 April 2005, leg. Juliet Brodie and Lavinia Robba,
JBLR8; in a shallow rock pool on the exposed rocky shore, N50:40:29, W3:14:41.
Molecular sequence information (Walker et al., 2009): DQ191343 [cox1] and
JX315330 [rbcL].
Isotype: BM000804550, [JBLR10] (Walker et al., 2009, Fig. 3c).

Description. Thallus with a firmly attached crustose base, typically >10 mm in
diameter, and individual uprights of branched, stiff, usually erect, diamond to fan-
shaped, compact fronds up to 45 mm long; branching in one plane, dense, simple to
compound pinnate to palmate, successive lateral branchlets typically separated
by conspicuous gaps resulting from wide branch-angles combined with long
intergenicula in the main axes, often with extra branchlets contributing to fan-
shape; fronds of unlobed intergenicula, which in the main branches are 0.6-1.2 mm
long and 0.3-0.7 mm broad, tending to be longer than broad and cylindrical to
compressed, especially near genicula2. Genicula in main branches 160-220 µm
long and 200-340 µm broad. Apical intergenicula mainly trifurcate or 4- (Fig. 4),
sometimes up to 7 times branched, thus producing extra branchlets, or a single,
undivided, asymmetric intergeniculum. Conceptacles axial, sometimes also
pseudolateral, spermatangial conceptacles beaked, axial tetrasporangial
conceptacles rarely bearing surmounting branchlets. Carposporangial conceptacles
were not observed.

Habitat. Marine, epilithic on substrata in rock pools from upper limit of mid-
littoral to lower limit of littoral zone.

Distribution. The currently confirmed distribution, based on DNA sequence data, is
England (north to Yorkshire) (DQ191343, DQ191342, FM180072)a, Channel Isles
(Jersey, DQ191344)d, France (Channel and Atlantic)b, Portugalb, Azoresb, Canary
Islandsb, Italyb, Greece (FM180066, FM180067)a, east coast of Africa (Ghana)b,
west coast of USA (California)b, Australia (NSW)b, Japan (HM918980)c.

2. See note under C. officinalis. aWalker et al. (2009); bWalker et al. (unpublished); cfrom Genbank; dRobba et
al. (2006).
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Proposed epitype of Corallina elongata Ellis et Solander

The lectotype of this species is an illustration (Ellis, 1755) based on a
specimen from Cornwall and described in Ellis & Solander (1786). The proposed
epitype of Corallina elongata is a specimen from south-west Devon. This specimen
was chosen because it was collected in 2012 close to the Cornwall border. It was
in very good condition and a good example with which to illustrate the
morphological concept of this species. Such material is difficult to come across.

Corallina elongata Ellis et Solander, Nat. hist. Zooph., 1786, p. 119
Lectotype: (designated by Irvine & Johansen, 1994: 41): Ellis (1755) pl. 24, fig. 3
(drawn after decalcifying in vinegar).
Epitype (designated here BM001032350, Fig. 5): England: South Devon, Plymouth
Sound, Renny Rocks, 8 March 2012, leg. Christine A. Maggs (J. Brodie specimen
code: JBCorallina 2012-2), at lower littoral, N50:19:07, W4:07:18. Genbank
accession numbers: JX315327 [cox1], and JX315328 [rbcL].

Revised description. Thallus with a firmly attached crustose base, typically up to
150 mm in diameter and individual uprights of branched, limp, feather-like fronds
up to 200 mm long and often diamond-shaped towards the apex; branching in
one plane, usually dense, simple to compound pinnate, occasionally irregular,
successive lateral branchlets typically separated by inconspicuous (or absent) gaps
resulting from narrow branch-angles combined with short intergenicula in the
main axes; fronds consisting of genicula alternating with unlobed intergenicula,
which in the main branches are 0.5-1 mm long and 0.4-0.8 mm broad, tending to be
as long as broad, compressed, especially near genicula3. Genicula in main branches
140-190 µm long and 190-240 µm broad. Apical intergenicula mainly trifurcate
(Fig. 6), occasionally 4 or more times branched. Conceptacles axial, never
pseudolateral, spermatangial conceptacles beaked, carposporangial and
tetrasporangial conceptacles often with surmounting branchlets.

Habitat. Marine, epilithic in pools and hanging from rock faces in both shady and
well-illuminated damp sites; lower littoral to upper sublittoral.

Distribution. The currently confirmed distribution, based on DNA sequence data,
is the south west coasts of England (FM180065, FM180069)a and Ireland
(DQ191345)a.

Relationship of Corallina elongata to C. mediterranea

Corallina mediterranea Areschoug in J. Agardh (1852, p. 568) was based
on specimens from Egypt (Alexandria) sent to Areschoug by Johan Hedenborg
between 1820 and 1830 (Marianne Hamnede, Swedish Museum of Natural
History, pers. comm.). The name was still used throughout the Mediterranean
(Hamel & Lemoine, 1952) and on the eastern coast of the Atlantic (Gayral, 1966;
Ardré, 1970; Lawson & John, 1982) from France to Africa (Senegal) until Irvine
& Chamberlain (1994) listed it as a synonym of C. elongata.

In Great Britain and Ireland the name has been considered a synonym
of C. elongata since Batters (1902: ‘C. elongata Johnst. Br. Spong. et Corall. e spec.
auth. in herb. Batt. = C. mediterranea Aresch.’) but has continued to be used

3. See note under C. officinalis. a Walker et al. (2009).
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elsewhere. Its relationship to C. elongata, as here defined, awaits its typification
and taxonomic verification. We have found herbarium specimens of C. caespitosa
from Atlantic France to which the name C. mediterranea has been applied.

CONCLUDING REMARKS

The results of this study highlight the taxonomic problems and
misapplication of names within the genus Corallina, with profound implications
for species delimitation and consequently the understanding of species
distribution. For example, samples of C. elongata from Great Britain and Ireland,
including the epitype, formed a clade, providing a revised concept of this species,
whilst other specimens under that name from the Mediterranean grouped with
C. caespitosa (see Walker et al., 2009). Other authors (Babbini & Bressan, 1997;
Boudouresque & Perret-Boudouresque, 1987) have also commented on the
difficulty of distinguishing Mediterranean specimens of C. officinalis from
C. elongata and questioned whether C. officinalis occurs in the Mediterranean. In
the light of our study, further work is required to fully assess the range
of morphological variation within and between species so that a complete review
of all Corallina species concepts can be achieved (Walker et al., unpubl.). Until
that is undertaken the number of species and their distribution cannot be
resolved.
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was observed for all species. Dynamic photoinhibition was 
apparent over both summer and winter tidal emersion, in 
relation to irradiance fluctuations. More effective photoin-
hibition was apparent during summer months, with greater 
sensitivity to irradiance and slower recovery in Fv/Fm, 
observed during winter. With sustained high irradiance over 
tidal emersion, the establishment of high pH/low inorganic 
carbon conditions may impact photochemistry. This study 
represents the first assessment of C. officinalis, C. caespi-
tosa and E. elongata photophysiology underpinned by clear 
species concepts and highlights their ability to adapt to the 
dramatically fluctuating conditions experienced in inter-
tidal rock pools.

Introduction

Calcified macroalgae are particularly ecologically impor-
tant in shallow temperate regions (Johansen 1981). Acting 
as ecosystem engineers (sensu Jones et al. 1994), they pro-
vide habitat for numerous small invertebrates, shelter from 
the stresses of intertidal life via their physical structure, and 
surfaces for the settlement of microphytobenthos (see Nel-
son 2009 for a full review). The Corallinales are the pre-
dominant order of calcified macroalgae found in temper-
ate waters and comprise both non-genicluate genera that 
are mostly encrusting and turf forming geniculate genera 
(Irvine and Chamberlain 1994; Nelson 2009). In the UK 
intertidal, turfing species of the genera Corallina and Elli-
solandia are epilithic on both exposed substrata and in rock 
pool habitats (Brodie et al. 2013), where they must tolerate 
significant fluctuations in abiotic conditions including irra-
diance, temperature and rock pool water chemistry (Gan-
ning 1971; Truchot and Duhamel-Jouve 1980; Morris and 
Taylor 1983).

Abstract The photophysiology of three geniculate coral-
line algal species (Corallina officinalis, C. caespitosa and 
Ellisolandia elongata) was determined in intertidal rock 
pools in the south-west UK at Combe Martin (51°12′31N 
4°2′19W) and Heybrook Bay (50°31′66N 4°11′41W), at 
the start, middle and end of summer (September 1 and 2) 
and winter (February 9 and 10) daylight tidal emersion 
periods, in relation to prevailing irradiance, temperature 
and carbonate chemistry conditions. Algal photophysiology 
was assessed from rapid light curves performed using pulse 
amplitude modulation fluorometry. Corallina and Elliso-
landia experienced significant fluctuations in irradiance, 
temperature and carbonate chemistry over seasonal and 
tidal cycles. Rock pool carbonate chemistry was predict-
able (R2 = 0.82, P < 0.0001) by photodose (summed irradi-
ance) plus water temperature, but not significantly related 
to photophysiology. In contrast, Corallina and Ellisolan-
dia relative maximum electron transfer rate showed a sig-
nificant negative relationship (R2 = 0.65, P < 0.0001) with 
irradiance plus water temperature. At a seasonal resolution, 
photoacclimation to maximize both light harvesting during 
winter months and photoprotection during summer months 
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Irradiance is one of the most important factors control-
ling the distribution of macroalgae in the littoral zone and 
also one of the most complex (Luning 1990; Lobban and 
Harrison 1994). Large fluctuations occur diurnally because 
of changes in cloud cover, tides and the angle of the sun, 
and both predictable variability (changes in day length and 
solar angle) and unpredictable (cloudiness, turbidity and 
run-off) variability are observed seasonally (Lobban and 
Harrison 1994). Within the intertidal, sessile macroalgae 
have to cope with the changing irradiance regime, facing 
serious photostress during tidal emersion when exposed to 
high irradiances (Davison and Pearson 1996; Häder et al. 
1997; Franklin and Forster 1997). Production of reac-
tive oxygen species as by-products of photosynthesis is 
increased under high irradiance, causing photooxidative 
damage, which can ultimately lead to pigment bleach-
ing and death (Muller et al. 2001). Macroalgae have thus 
developed regulatory mechanisms to ameliorate light 
stress, including adjustment of the antenna size, thermal 
dissipation of excess excitation energy, antioxidant systems 
and the fast repair of photooxidative damage (Häder et al. 
2003).

Temperature is also a key factor governing both the 
large-scale geographical distribution of macroalgal spe-
cies and the small-scale vertical distribution of species on 
a shore (Luning 1990) and is of high importance when dis-
cussing rock pool ecology (Ganning 1971). In rock pools, 
temperature is closely related to local climate, especially 
air and ambient seawater temperature, irradiance, wind, 
the time of day at which low tide occurs and the extent of 
heating or cooling due to wave action (Ganning 1971; Lob-
ban and Harrison 1994). At the level of the individual, tem-
perature has fundamental effects on chemical reaction rates 
and, in turn, metabolic pathways, with complex interactions 
with other factors (Lobban and Harrison 1994). For exam-
ple, in photosynthesis, diffusion rates, carbonic anhydrase 
(CA) activity and active transport of CO2 and HCO3

− are 
all affected by temperature, and thus temperature will influ-
ence the supply of substrate to carbon fixation pathways 
(Lobban and Harrison 1994).

It has long been established that fluctuations in rock 
pool water chemistry are apparent due to the interactions 
between physio-chemical and biological processes (Gan-
ning 1971; Daniel and Boyden 1975; Morris and Taylor 
1983). Truchot and Duhamel-Jouve (1980) provided the 
first analysis of diurnal changes taking place in the carbon-
ate system of rock pools, and Morris and Taylor (1983) 
extended this work to examine both diurnal and seasonal 
changes, demonstrating that diurnal fluctuations in pO2, 
pCO2 and pH were directly related to the photosynthetic 
activity of the pool flora and to the respiration of both flora 
and fauna (Morris and Taylor 1983). More recently, inter-
actions between the carbonate system of seawater and the 

photosynthesis of macroalgae have been examined. The 
absence of certain macroalgal species from rock pool habi-
tats has, for example, been attributed to the establishment 
of adverse high pH and low inorganic carbon (Ci) condi-
tions due to the photosynthetic utilization of Ci by Ulva 
intestinalis in Swedish rock pools (Björk et al. 2004). In 
shallow water macroalgal habitats (0–1 m), high pH has 
also been shown to have a direct negative effect on the pho-
tosynthesis of Fucus vesiculosus, F. serratus, Ceramium 
rubrum and Ulva sp., not accounted for alone by the low 
availability of Ci (Middelboe and Hansen 2007a).

Variability in carbonate chemistry is also important with 
regard to species’ responses to future ocean acidification 
(OA) (Hofmann et al. 2011; Andersson and Mackenzie 
2012; Hofmann et al. 2014). With OA, increasing concen-
trations of dissolved CO2 are shifting the seawater carbon-
ate chemistry equilibrium, increasing hydrogen ion (H+) 
and bicarbonate (HCO3

−) concentrations, and subsequently 
decreasing the concentration of carbonate (CO3

2−) avail-
able for calcification (Doney 2006; Cao et al. 2007; Doney 
2010). These changes are predicted to pose significant 
negative impacts to calcifying macroalgal species (Harley 
et al. 2012). As OA proceeds, however, periodic exposure 
to high pH conditions may ameliorate some of the negative 
impacts on calcifying species (Hurd et al. 2011; Anthony 
et al. 2011; Manzello et al. 2012). In addition, local adap-
tation of calcifying species to natural pH variability has 
been linked to increased resilience to future OA conditions 
(Wootton et al. 2008; Hofmann et al. 2011; Kelly et al. 
2013; Wolfe et al. 2013; Hofmann et al. 2014).

The aim of the present study was to provide an assess-
ment of the in situ photophysiology of three turfing genicu-
late coralline algal species, Corallina officinalis, C. caespi-
tosa and Ellisolandia elongata, within rock pool habitats, 
in relation to the irradiance, temperature and carbonate 
chemistry conditions prevailing over tidal emersion peri-
ods. Recent molecular insights into cryptic diversity within 
the genus Corallina has resulted in (1) the splitting of the 
well-known C. officinalis into two genetically distinct spe-
cies, C. officinalis and C. caespitosa (Walker et al. 2009), 
(2) a revised definition of C. officinalis and C. elongata 
(Brodie et al. 2013) and (3) the establishment of a new 
genus, Ellisolandia, containing a single species, E. elon-
gata, previously Corallina elongata (Hind and Saunders 
2013). As such, almost no information is currently avail-
able on the ecology of C. caespitosa [though, see William-
son et al. (in review) and Brodie et al. (2013)], which was 
likely previously investigated under the name C. officinalis, 
particularly if originating from outside of the NE Atlantic 
(Williamson et al. in review). These phylogenetic advances 
allow for an examination of the three species’ ecology, 
underpinned by clear species concepts. In addition, while 
recent research has examined the potential impacts of OA 
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on C. officinalis and E. elongata (Egilsdottir et al. 2013; 
Hofmann et al. 2012, 2013; Noisette et al. 2013), we still 
lack a decent understanding of the present-day ecology 
of these species in situ, particularly in relation to abiotic 
parameters that will significantly change under a high CO2 
world, i.e. temperature and carbonate chemistry.

Observations for the present study were conducted 
over summer and winter daylight tidal emersion periods at 
two south-westerly UK intertidal sites. Rapid light curves 
(RLCs) were performed using pulse amplitude modulation 
(PAM) fluorometry to assess the actual photophysiology of 
algae at the time of sampling (Ralph and Gademann 2005; 
Perkins et al. 2010), as opposed to the theoretical poten-
tial of photochemistry, facilitating comparison to ambient 
irradiance and rock pool water temperature and carbonate 
chemistry monitored in parallel.

Methods

Study sites and species distributions

The photophysiology of Corallina officinalis, C. caespitosa 
and Ellisolandia elongata and the irradiance, water tem-
perature and carbonate chemistry conditions were moni-
tored over daylight tidal emersion periods during summer 
(1/2 September 2012) and winter (9/10 February 2013), 
at upper shore Combe Martin (CM), North Devon and 

upper and lower shore Heybrook Bay (HB), South Devon, 
UK (Fig. 1; Table 1). All sampling was performed on or 
±1 day of spring tides to allow observation of potential 
extremes in summer and winter photophysiology and abi-
otic parameters.

Corallina officinalis is widely distributed around the 
entire UK, while C. caespitosa appears to be more south-
erly, only occurring on shores in England, and Ellisolan-
dia elongata demonstrates a westerly distribution. At study 
sites, C. officinalis is present at both CM and HB occur-
ring from the lower to the upper shore. Corallina caespi-
tosa is present in upper shore rock pools at CM, where it 
inhabits a narrow zone (ca. 2 cm) at the upper water line 
of rock pools, C. officinalis dominating below this zone. 
Of the study sites, E. elongata is present in suitable abun-
dances for the present study at lower shore HB only. Field 
studies were therefore performed at upper shore CM (C. 
officinalis and C. caespitosa present) and upper (C. offici-
nalis present) and lower shore (C. officinalis and E. elon-
gata present) HB, to allow assessment of the three desired 
species. Species identification was verified by extraction 
and amplification of the COI gene region and comparison 
to published sequences of the three species as per Walker 
et al. (2009) and Brodie et al. (2013).

At upper shore in both CM and HB, Corallina photo-
physiology and abiotic conditions were monitored at the 
start, middle and end of tidal emersion periods in three rock 
pools (Fig. 1; Table 1). Start and end of the emersion period 

Fig. 1  Examples of sampled rock pools and associated Corallina 
assemblages. a A typical large upper shore rock pool at Combe Mar-
tin (Pool 1) created by man-made walkway, b showing rock pool 

assemblage during summer; c smaller lower shore rock pool at Hey-
brook Bay (Pool 1), d showing rock pool assemblage during winter. 
See Table 1 for rock pool attributes
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were defined as being within 30 min of tidal isolation (start 
of emersion) and tidal reconnection (end of emersion) of 
the rock pool to the main tidal water mass. Mid emersion 
period was defined as the time midway between the start 
and end of emersion measurements. At lower shore HB, 
Corallina and Ellisolandia photophysiology and abiotic 
conditions were monitored in three rock pools at the start 
and end of tidal emersion periods only, given the shorter 
duration of tidal emersion at this shore height. In all cases, 
rock pools were selected where Corallina and/or Ellisolan-
dia demonstrated >ca. 75 % cover, visually estimated by 
the authors.

Monitoring of abiotic conditions

Ambient photosynthetically active radiation (PAR, µmol 
photons m−2 s−1) was measured three times during each 
sampling period [start, middle (upper shore only) and end 
of emersion] per rock pool (total n = 9 measurements per 
emersion period), using a 2 pi LI-COR cosine-corrected 
quantum sensor positioned ca. 5 cm above the surface of 
the rock pools. For each recording, a 15-s average was taken 
using an automated function on the sensor. The average irra-
diance for the start, middle and end periods of tidal emersion 
was calculated as the average of all measurements taken 
across respective sampling periods for all pools. Cumulative 
photodose (PAR, mol photons m−2) was calculated from 
irradiance measurements by summing PAR over time from 
the start of tidal emersion of rock pools and calculation to 
more appropriate units. In parallel, rock pool water tempera-
tures were monitored with a digital thermometer as above.

Collection of water samples for determination of carbon-
ate chemistry followed the methods of Dickson et al. (2007) 
adapted for coastal fieldwork. During each period of tidal 
emersion [start, middle (upper shore only), and end], two 
water samples were collected in 250-ml borosilicate glass 
bottles (Schott Duran) from approximately 5-cm depth in 
the centre of each rock pool. 1 % volume (2.5 ml) was dis-
carded to allow for water expansion, and 0.02 % by volume 
(50 µl) of saturated mercuric chloride solution was added 
to poison the sample. Bottles were immediately closed and 
sealed with pre-greased, ground-glass stoppers to ensure 
gas-tight conditions, and bound with electrical tape. Sam-
ples were stored in a cool (approximately 4–6 °C), dark (no 
ambient detectable light) location until analysis.

Carbonate chemistry parameters, pCO2, pH, HCO3
−, 

CO3
2− and the saturation states of aragonite, Ωarg, and 

calcite, Ωcal, were determined from measurements of dis-
solved inorganic carbon (DIC) and total alkalinity (TA) 
performed on all carbonate chemistry water samples by 
the UK Ocean Acidification Carbonate Chemistry Facility 
at the National Oceanography Centre, Southampton, UK. 
DIC was analysed with an Apollo SciTech DIC analyzer 
(AS-C3), using a LI-COR (7000) CO2 infrared analyser. 
TA was determined using an open-cell titration (Dickson 
et al. 2007) with the Apollo SciTech’s AS-ALK2 Alkalin-
ity Titrator. For both DIC and TA, the precision was 0.1 % 
or better and the accuracy was controlled against Certified 
Reference Materials (A.G. Dickson, Scripps). Carbonate 
chemistry parameters were calculated with CO2SYS (ver-
sion 1.05, Pierrot et al. 2006), using the constants of Mehr-
bach et al. (1973) refitted by Dickson and Millero (1987).

Table 1  Site and sampling details

Tidal range demonstrates mean high/low water spring/neap expressed as range (m). Summer and winter tides report the time and tidal height (m) 
of high/low/high tides prevailing on sampling days. Lower table summarizes rock pool attributes

Combe Martin Heybrook Bay

Location 51°12′31N 4°2′19W 50°31′66N 4°11′41W

Tidal range MHWS–MLWS = 9.2 − 0.68 (8.52)
MHWN–MLWN = 6.9 − 3.1 (3.8)

MHWS–MLWS = 5.5 − 0.8 (4.7)
MHWN–MLWN = 4.4 − 2.2 (2.2)

Summer sampling date 02.09.12 01.09.12

Summer tides 06:48 = 9.2/12:49 = 1.1/19:05 = 9.4 06:03 = 5.4/12:12 = 0.6/18:16 = 5.6

Winter sampling date 10.02.13 09.02.13

Winter tides 05:51 = 9.5/12:00 = 0.8/18:15 = 9.4 04:46 = 5.4/11:12 = 0.8/17:18 = 5.3

Shore height sampled Upper Upper Lower

Corallina spp. present C. officinalis, C. caespitosa C. officinalis C. officinalis, C. elongata

Pool 1 2 3 1 2 3 1 2 3

Height above chart datum (m) 5.61 5.77 5.32 4.24 4.08 3.30 2.08 2.34 2.30

Volume (m3) 82.85 201.4 61.14 0.58 0.35 0.40 0.10 1.31 2.06

Surface area (m2) 165.7 493.74 181.45 5.14 3.43 2.92 0.80 13.68 15.39

Maximum depth (cm) 67.0 80.0 71.0 28.9 13.8 21.5 40.6 19.8 19.8
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Corallina and Ellisolandia photophysiology

The photophysiology of C. officinalis, C. caespitosa and 
E. elongata was determined using PAM fluorometry. RLCs 
(Perkins et al. 2006) were performed using a Walz Water-
PAM fluorometer, with three replicate light curves per-
formed per Corallina and/or Ellisolandia species present in 
each rock pool (Table 1), at the start, middle (upper shore 
only) and end of summer and winter tidal emersion. Algal 
fronds were randomly selected from the upper 5 cm of rock 
pool walls for RLC analysis to allow some degree of con-
tinuity in light field experienced, with the exception of C. 
caespitosa at CM that is only found in a ca. 2 cm narrow 
zone along the upper water line of rock pool walls. RLCs 
were performed on the tips of fronds to avoid potentially 
self-shaded frond regions, and care was taken to deter-
mine RLCs on the side of fronds facing direct sunlight, as, 
e.g., the underside of fronds likely demonstrate differential 
photoacclimation.

RLCs are an effective tool with which to detect the 
operational photophysiology of a sample at the time meas-
urements are made, providing information on the dissipa-
tion of energy from limiting levels of irradiance through 
to saturating levels, and can act as a proxy for the electron 
transport rate through photosystem II (Burdett et al. 2012). 
RLCs differ from traditional P–I curves in that they meas-
ure the actual, rather than the optimal, photosynthetic state, 
as steady state is not achieved during each light step dura-
tion (Ralph and Gademann 2005; Perkins et al. 2010).

RLCs were performed using a saturating pulse at a set-
ting of ca. 8,600 µmol photons m−2 s−1 PAR, for 600 ms 
duration, and with nine 30 s incrementally increasing light 
steps from 0 to 1,944 µmol photons m−2 s−1 PAR. Light 
step duration was selected to balance potential photoac-
climation occurring during longer light steps (60 s), with 
errors associated with shorter light steps (10 s) when sam-
ples have been exposed to high light (Perkins et al. 2006). 
Analysis of RLCs followed Perkins et al. (2006) with itera-
tive curve fitting (Sigmaplot v. 14) and calculation of the 
relative maximum electron transfer rate (rETRmax), the the-
oretical maximum light utilization coefficient (α) and the 
light saturation coefficient (Ek) following Eilers and Peeters 
(1988). In addition, the approximate maximum light use 
efficiency in the dark-adapted state, the Genty parameter 
(Genty et al. 1989), was calculated as:

where Fm is the maximum yield, and Fo is the minimum 
fluorescence yield in the dark-adapted state. As long peri-
ods of dark adaption should be avoided prior to RLCs due 
to potential modification of the photoacclimation state of 
the cells investigated (Ralph and Gademann 2005; Per-
kins et al. 2010) and can be impractical when working 

Fv/Fm = (Fm − Fo)/Fm

under time constraints in situ (Burdett et al. 2012), Fv/Fm 
was calculated from Fm and Fo values obtained during 
the initial light curve step of 30 s darkness. Burdett et al. 
(2012) demonstrated that a 10-s period was sufficient for 
the dark adaption of the red coralline alga Lithothamnion 
glaciale for in situ work, with Fv/Fm 95–98 % of the maxi-
mum Fv/Fm achieved after 5 min of darkness (=fully dark-
adapted state). Our methodology thus allowed time con-
straints to be balanced when working over tidal emersion 
periods in situ, while allowing for sufficient dark adapta-
tion of samples for RLC techniques (Ralph and Gademann 
2005; Burdett et al. 2012).

Data analysis

All statistical analyses and plotting of data were performed 
using R v.3.0.2 (R Core Team 2013). Prior to all analyses, 
normality of data was tested using the Shapiro–Wilk test 
and examination of frequency histograms. If data were not 
normally distributed, Box–Cox power transformation was 
applied using the boxcox function of the MASS package 
(Venables and Ripley 2002), and normality re-checked. 
Following the application of models to data as described 
below, model assumptions were checked by examination of 
model criticism plots.

Abiotic environment

Differences in irradiance between seasons (summer and 
winter) and tidal emersion periods (start, middle and end) 
were examined for upper shore data, per site, using analysis 
of variance (ANOVA) with the fixed factors ‘Season’ (two 
levels), ‘Tide’ (three levels) and the interaction term ‘Sea-
son/Tide’. Post hoc Tukey honest significant differences 
analysis was performed on significant ANOVA results. 
Lower shore HB data were analysed as above though with 
two levels for the factor ‘Tide’. Differences in rock pool 
water temperatures were examined separately per site, 
using linear mixed-effects models with restricted maximum 
likelihood (REML) criterion, using the lmer function of 
package lme4 (Bates et al. 2013). Upper shore data were 
analysed with the fixed effects ‘Season’ (two levels), ‘Tide’ 
(three levels), the interaction term ‘Season/Tide’ and ‘Pool’ 
as random term (three levels). Lower shore HB data were 
examined in the same manner though with two levels for 
the fixed effect ‘Tide’. Upper- and lower-bound P values 
for the ANOVA were calculated for lmer models using 
the pamer.fnc function of the LMERConvenienceFunc-
tions package (Tremblay and Ransijn 2013). Lower-bound 
P values (more conservative) and associated denomina-
tor degrees of freedom are reported. Post hoc analyses of 
significant differences highlighted by lmer models were 
performed using mcposthoc.fnc and summary.mcposthoc 
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functions of the same package (Tremblay and Ransijn 
2013).

All carbonate chemistry parameters were summarized 
using principal components analysis (PCA) with scaled 
variables. Differences in carbonate chemistry between sea-
sons and over tidal emersion periods were examined by 
analysis of principal component one (PC1) and principal 
component two (PC2) using linear mixed-effects models 
as described above. Least squares multiple linear regres-
sion was used to examine relationships between PC1 and 
irradiance (analysed separately as both irradiance measured 
and calculated cumulative photodose) and rock pool water 
temperature. The relative importance of predictor variables 
was calculated using the calc.relimp function of relaimpo 
package using type ‘lmg’, whereby R2 is partitioned by 
averaging over orders (Grömping 2006). Only statistically 
significant regressions are reported.

Photophysiology

Differences in rETRmax, α, Ek and Fv/Fm were analysed 
separately per site, using linear mixed-effects models. CM 
upper shore data were analysed with the fixed effects ‘Sea-
son’ (two levels), ‘Tide’ (three levels), ‘Species’ (two lev-
els), interaction terms ‘Season/Tide’ and ‘Species/Tide’, 
and the random term ‘Pool’ (three levels). HB upper shore 
data were analysed in the same manner though without the 
fixed effect ‘Species’ as only C. officinalis is present. HB 
lower shore data were analysed in the same manner with 
the exceptions of two levels for the fixed effect ‘Tide’. Cal-
culation of P values and post hoc analyses were conducted 
as detailed above using the LMERConvenienceFunctions 
package (Tremblay and Ransijn 2013).

To examine relationships between Corallina spp. and 
Ellisolandia photophysiology and the prevailing abi-
otic conditions, rETRmax, α, Ek and Fv/Fm were regressed 
against irradiance (separately as both irradiance measured 
and calculated photodose), rock pool water temperature, 
PC1 and PC2, using least squares multiple linear regression 
as detailed above. Only statistically significant regressions 
are reported.

Results

Abiotic conditions

Significantly higher irradiance was recorded during sum-
mer than winter at both CM (F1,17 = 10.07, P < 0.01) 
and upper/lower shore HB (F1,17/1,11 = 202.37/48.74, 
P < 0.001 in both cases) (Fig. 2). Significant differences 
in irradiance were also apparent over summer tidal emer-
sion at CM (F2,17 = 6.78, P < 0.05), and both summer and 

winter tidal emersion at HB (F2,17 = 54.48, P < 0.0001), 
with significant interaction between ‘Season’ and ‘Tide’ 
(F2,17 = 6.025, P < 0.05). No significant difference in irra-
diance was evident between start and end tidal emersion at 
lower shore HB.

Rock pool water temperatures were significantly higher 
during summer than winter at CM (F1,17 = 2,408.30, 
P < 0.0001) and upper/lower shore HB (F1,17/1,11 = 2,9
00.70/3,927.52, P < 0.0001 in both cases) (Fig. 2). Over 
tidal emersion periods, no significant difference in water 
temperature was evident during either summer or winter 
at CM, while temperatures showed significant increases 
in both upper (F2,17 = 67.15, P < 0.0001) and lower shore 
(F1,11 = 85.75, P < 0.0001) rock pools at HB during both 
seasons (Fig. 2). The magnitude of increase in water tem-
perature was greater during summer than winter at HB, as 
evidenced by significant interaction between ‘Season’ and 
‘Tide’ for upper (F2,17 = 21.89, P < 0.0001) and lower 
shore (F1,11 = 14.77, P < 0.01) rock pools.

Changes in rock pool water carbonate chemistry were 
observed over both summer and winter daylight tidal emer-
sion periods at CM and both upper and lower shore HB 
(Figs. 3, 4). pCO2 and HCO3

− decreased over tidal emer-
sion, with concomitant increases in pH, CO3

2−, Ωarg and 
Ωcal. The greatest magnitude of change in carbonate chem-
istry was observed over summer tidal emersion in upper 
shore rock pools at HB, with pCO2 and HCO3

− concentra-
tions decreasing to 4 and 25 % of start values, respectively, 
and pH increasing to 111 %, and CO3

2−, Ωarg and Ωcal all 
increasing to ca. 220 % of start values, by the end of tidal 
emersion.

PCA served to summarize all carbonate chemistry 
parameters for subsequent analysis (Table 2; Fig. 5). PC1 
described 89.3 % of the variance in carbonate chemis-
try data and represented changes in rock pool carbonate 
chemistry observed over tidal emersion periods, i.e. a shift 
from high pCO2, HCO3

− and high overall DIC, to high 
pH, CO3

2−, Ωarg and Ωcal (Table 2; Fig. 5). PC2 accounted 
for 8.2 % of the variance and, mainly, represented differ-
ences in TA within the data (Table 2; Fig. 5). Significantly 
higher values of PC1 were observed for summer data 
than winter data for CM (F1,32 = 94.92, P < 0.0001), and 
upper (F1,32 = 767.30, P < 0.0001) and lower shore HB 
(F1,20 = 165.14, P < 0.0001) (Fig. 6). PC1 also showed sig-
nificant increases over tidal emersion periods during both 
summer and winter for CM (F2,32 = 22.18, P < 0.0001), 
and upper (F2,32 = 345.72, P < 0.0001) and lower shore 
HB (F1,20 = 119.35, P < 0.0001) (Fig. 6). The magnitude 
of increase in PC1 was greater during summer than win-
ter for HB upper shore, as shown by significant interaction 
between ‘Season’ and ‘Tide’ (F2,32 = 9.38, P < 0.0001).

PC2, mainly representing TA within the dataset, was not 
significantly different between seasons for CM or upper 
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shore HB, though it was significantly different between 
summer and winter for lower shore HB (F1,20 = 15.64, 
P < 0.01) (Fig. 7). Over tidal emersion periods, PC2 sig-
nificantly decreased for CM upper shore during both sum-
mer and winter (F2,32 = 28.37, P < 0.0001). PC2 was also 
significantly different between start and end lower shore 
HB tidal emersion (F1,20 = 15.61, P < 0.01), with the direc-
tion of change different during summer and winter, as high-
lighted by significant interaction between ‘Season’ and 
‘Tide’ (F1,20 = 92.03, P < 0.0001). While no significant dif-
ference in PC2 was observed for HB in relation to ‘Tide’, 
there was a significant interaction between ‘Season’ and 
‘Tide’ (F2,32 = 3.85, P < 0.05).

Least squares multiple linear regression identified signif-
icant relationships between carbonate chemistry (as PC1) 
in relation to photodose and rock pool water temperature 

(R2 = 0.82, P < 0.0001) (Table 3; Fig. 8). The relative 
importance of predictors was given as 67 % for photodose 
and 32 % for temperature, respectively.

Corallina and Ellisolandia photophysiology

Corallina officinalis, C. caespitosa and E. elongata all 
demonstrated significantly higher rETRmax and Ek dur-
ing winter as compared to summer (Table 4; Figs. 9, 10). 
Fv/Fm recorded at the middle and end of tidal emersion at 
CM was significantly different between seasons for both 
C. officinalis and C. caespitosa (post hoc Tukey, P < 0.05), 
while no significant difference in α was observed for any 
species in relation to ‘Season’.

Over tidal emersion periods, significant changes in pho-
tophysiology parameters were observed at both CM and HB 

Fig. 2  Photodose, irradiance and rock pool water temperature over 
summer and winter tidal emersion periods at CM and HB. Large plots 
display photodose as a function of time, with start (S), middle (M) 
and end (E) sampling times highlighted in red for CM and start (Su), 
middle (Mu) and end (Eu) upper shore sampling times highlighted 

in red for HB. Start (Sl) and end (El) lower shore sampling times at 
HB are indicted in blue. Middle and right columns represent average 
(n = 9 ± SE) irradiance and water temperature at the start, mid and 
end tidal emersion, respectively. Letters and numerals denote signifi-
cant differences for upper and lower shore, respectively
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upper/lower shore (Table 4; Figs. 9, 10). At CM, C. offici-
nalis and C. caespitosa rETRmax and α demonstrated diver-
gent trends over tidal emersion between seasons, supported 
by significant interaction between ‘Season’ and ‘Tide’. Dur-
ing summer, both species’ rETRmax rose gradually over tidal 
emersion at CM, though significant increases were restricted 
to C. caespitosa. Concomitantly, α increased, showing sig-
nificantly higher values at the end of emersion, with signifi-
cantly decreased Ek. C. officinalis Fv/Fm decreased at mid 
emersion, but recovered by end emersion, with C. caespi-
tosa Fv/Fm also showing significant increase. During winter, 

C. officinalis and C. caespitosa photophysiology showed 
almost identical trends. rETRmax decreased from start to mid 
emersion, showing recovery by end emersion; α and Fv/Fm 
were significantly decreased at mid emersion in comparison 
with start and end; and Ek was significantly increased at mid 
emersion. No significant difference in rETRmax, α or Ek was 
observed between C. officinalis and C. caespitosa during 
summer or winter tidal emersion, while C. officinalis Fv/Fm 
was significantly increased at the start of tidal emersion dur-
ing both summer and winter in comparison with C. caespi-
tosa (post hoc Tukey, P < 0.05).

Fig. 3  Average carbonate chemistry (TA, DIC, pCO2, HCO3
−, pH, 

CO3
2−, Ωarg and Ωcal) recorded during summer (Sum) and winter 

(Win) at upper shore Combe Martin (CM) and Heybrook Bay (HB), 

at the start (black bars), middle (dark grey bars) and end (light grey 
bars) of tidal emersion periods (n = 6 ± SE). Percentages denote % 
change in parameters in relation to start values
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In upper shore rock pools of HB, C. officinalis rETRmax 
demonstrated the opposite trend to that observed during 
summer at CM, decreasing significantly to 41 % of initial 
values by the end of tidal emersion. α showed no signifi-
cant change over emersion, while Ek also demonstrated a 
significant decrease to 55 % of start values. Decreases in 
Fv/Fm observed from start to mid emersion showed recov-
ery, though this was not statistically significant. rETRmax 
also decreased over winter tidal emersion, though to a 
lessor extent than during summer (73 % of start values), 
accompanied by decreases in α and Fv/Fm and increases in 
Ek. The magnitude of decrease in Fv/Fm was greater during 
winter and the direction of change in Ek different between 
seasons, as highlighted by significant interaction between 
‘Season’ and ‘Tide’.

No significant difference in any photophysiology param-
eter was apparent for C. officinalis over summer tidal emer-
sion at lower shore HB, with E. elongata only showing 
decreased Ek from start to end emersion (Table 4; Fig. 10). 
During winter, significant decrease in C. officinalis 
rETRmax was evident from start to end emersion, accompa-
nied by decrease in α and Fv/Fm. Conversely, E. elongata 
demonstrated no significant change in any parameter. There 
was no significant difference between C. officinalis and E. 
elongata photophysiology at lower shore HB during either 
season over tidal emersion, though significant interaction 
between ‘Species’ and ‘Tide’ was apparent.

Corallina and Ellisolandia rETRmax showed a signifi-
cant negative linear relationship (R2 = 0.65, P < 0.001, 
n = 70) with irradiance (as measured) (37 % relative 

Fig. 4  Average carbonate chemistry (TA, DIC, pCO2, HCO3
−, pH, 

CO3
2−, Ωarg and Ωcal) recorded during summer (Sum) and winter 

(Win) at lower shore Hebrook Bay (HB), at the start (black bars) and 

end (light grey bars) of tidal emersion periods (n = 6 ± SE). Percent-
ages denote % change in parameters in relation to start values
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importance) and water temperature (45 % relative impor-
tance) (Table 5; Fig. 11). PC1 (16 % relative importance) 
and PC2 (0 % relative importance) were included in this 
regression to represent carbonate chemistry, though non-
significant coefficients were returned for these predictors 
(Table 5); removal of these predictors did not improve the 
model quality.

Discussion

Recent insights into the identity and distribution of NE 
Atlantic Corallina and Ellisolandia allow for updated 
assessment of species’ ecology underpinned by clear spe-
cies concepts (Williamson et al. in review, 2009; Brodie 
et al. 2013). This study represents the first documentation 
of C. caespitosa, as distinguished from C. officinalis, pho-
tophysiology and contributes to our general understanding 
of geniculate coralline algal photophysiology in relation 
to prevailing abiotic conditions. PAM fluorescence and 
the application of RLC techniques (Ralph and Gademann 
2005; Perkins et al. 2006; Burdett et al. 2012) permitted 
the non-destructive assessment of actual, as opposed to 
optimal, photosynthetic state of Corallina and Ellisolandia 
over summer and winter tidal emersion, facilitating com-
parison to prevailing irradiance, water temperature and 
carbonate chemistry conditions. This information is perti-
nent as research attempts to predict the potential impacts 
of climate change and OA on calcifying macroalgal species 
(Harley et al. 2012).

Abiotic conditions

Our data highlight that Corallina and Ellisolandia species 
inhabiting intertidal rock pools are exposed to highly fluc-
tuating irradiance, temperature and carbonate chemistry 
conditions over both long-term seasonal and short-term 
tidal emersion periods (Figs. 2, 3, 4, 6). These findings are 
consistent with previously reported accounts of rock pool 
habitats (e.g. Ganning 1971; Daniel and Boyden 1975; Tru-
chot and Duhamel-Jouve 1980; Morris and Taylor 1983). 
Irradiance and temperature increased and were compara-
tively variable over summer emersion, with irradiance 

Table 2  Component loadings of principal components analysis of carbonate chemistry parameters (TA, DIC, pH, pCO2, HCO3
−, CO3

2−, Ωarg 
and Ωcal)

PC1 (%) PC2 (%) PC3 (%)

Proportion of variance 89.3 8.2 2.0

Cumulative proportion 89.3 97.5 99.5

Variable PC1 PC2 PC3

Component loadings

TA −0.27 −0.81 0.12

DIC −0.36 −0.27 −0.11

pH 0.36 −0.09 0.01

pCO2 −0.34 0.23 0.89

HCO3
− −0.37 −0.13 −0.15

CO3
2− 0.36 −0.24 0.20

Ωarg 0.36 −0.23 0.23

Ωcal 0.36 −0.24 0.21
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ranging from ca. 487–1,467 µmol photons m−2 s−1 at HB, 
with a concomitant increase of ca. 6.4 °C in rock pool 
temperatures. Lack of significant increase in water tem-
perature over summer or winter tidal emersion at CM was 
likely due to the larger volumes of rock pools examined at 
this site (Table 1). Given that smaller and shallower rock 
pools experience more extreme environmental conditions 
(Ganning 1971), more stressful conditions may be pre-
dicted within upper shore rock pools at HB in comparison 
with CM. At lower shore HB, rock pool water temperature 
increases over emersion periods were smaller in magni-
tude than observed in upper shore pools, consistent with 
the shorter duration of tidal emersion experienced at lower 
shore and known gradients of stress experienced across the 
intertidal (Ganning 1971; Martins et al. 2007).

Significant fluctuations in rock pool carbonate chemis-
try recorded during the present study were explainable to a 
high degree (R2 = 0.82) by photodose and rock pool water 
temperature (Figs. 3, 4, 8). These findings are similar to a 
recent study that demonstrated prediction of DIC fluctua-
tions in a macrophyte meadow using a simple statistical 
model comprised of three parameters: wind speed, wind 

direction and PAR (Saderne et al. 2013). Of our two predic-
tors, photodose showed the strongest relative importance in 
explaining carbonate chemistry dynamics (67 % as com-
pared to 32 % for temperature) which is understandable 
given the cumulative nature of change in carbonate chem-
istry over tidal emersion, and the driving role of irradiance 
for photosynthesis and thus inorganic carbon utilization in 
rock pools (Truchot and Duhamel-Jouve 1980; Morris and 
Taylor 1983). Temperature may influence carbonate chem-
istry both through indirect effects to rock pool inhabitant 
metabolic rates (Morris and Taylor 1983) and by direct 
effects to the solubility of CO2 in seawater (Wootton et al. 
2008).

While Corallina and Ellisolandia photophysiology did 
not demonstrate significant relationships with carbonate 
chemistry across our data, carbonate chemistry dynamics 
highlighted by this work are important when considering 
their potential response’s to future OA. As OA proceeds, 
periodic exposure to high pH conditions may ameliorate 
some of the negative impacts of OA for calcifying spe-
cies (Hurd et al. 2011; Anthony et al. 2011; Manzello et al. 
2012). In addition, exposure to natural pH variability has 
been linked to increased resilience of calcifying species 
to future OA conditions (Wootton et al. 2008; Hofmann 
et al. 2011; Kelly et al. 2013; Wolfe et al. 2013). Mixed 
responses of C. officinalis and E. elongata to future OA 
conditions have been demonstrated to-date by incubation 
studies employing static pH conditions (Hofmann et al. 
2012, 2013; Noisette et al. 2013; Egilsdottir et al. 2013). To 
fully elucidate OA impacts to intertidal geniculate coralline 
species, incubation experiments should be conducted that 
incorporate natural variability in carbonate chemistry expe-
rienced in situ during both daylight and night-time tidal 
emersion; the latter of which results in opposite trends in 
carbonate chemistry to those described here (Truchot and 
Duhamel-Jouve 1980; Egilsdottir et al. 2013).

Photophysiology

Corallina and Ellisolandia photophysiology demonstrated 
patterns of both long-term, seasonal acclimation to chang-
ing irradiance and temperature and short-term (hours) 
acclimation to irradiance changes over tidal emersion 

Table 3  Multiple linear regression analysis of principal compo-
nent one (PC1) in relation to irradiance (as cumulative photodose) 
and rock pool water temperature (Temp.), showing associated stand-
ard error (SE) of coefficients, the significance of predictor variables 

within the model (Pred. sig.), the relative importance of predictor 
variables (Rel. imp.), associated overall model R2 and significance 
(Model P), and the number of observations (n)

Relationship (Y = a + b1*X1 + b2*X2) Coefficient SE Pred. sig. Rel. imp. R2 Model P n

a b1 b2 X1 X2 X1 X2

PC1 = − 3.456 + 0.270 Photodose + 0.134 Temp 0.321 0.019 0.025 <0.0001 <0.0001 67 % 32 % 0.83 <0.0001 96
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Fig. 8  Multiple linear regression of principal component one in rela-
tion to photodose (67 % relative importance) and rock pool water 
temperature (32 % relative importance). Dashed grid demonstrates 
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during the present study, with the efficiency of short-term 
acclimation seemingly dependent on the seasonal state. At 
the seasonal resolution, significantly lower rETRmax and Ek 
were observed for C. officinalis, C. caespitosa and E. elon-
gata during summer, with a negative relationship identified 
between rETRmax and irradiance and temperature across all 
data (Fig. 11). For most intertidal macroalgae, the quantity 
of PAR impinging on a plant during summer is often far in 
excess of that needed to saturate photosynthesis (Franklin 
and Forster 1997). Excess irradiance can lead to photooxi-
dative damage via increased production of reactive oxy-
gen species, and, in extreme cases, this can cause pigment 
bleaching and death (Muller et al. 2001). As such, macroal-
gae must acclimate to changes in light intensity in a manner 
that optimizes photosynthesis and growth, while control-
ling for potential stress. Long-term acclimation to changes 
in light intensity can be achieved via regulation of the size 
of light-harvesting pigment antennae, through changes in 
gene expression and proteolysis (Muller et al. 2001).

Reduced rETRmax and Ek during summer may therefore 
reflect seasonal acclimation of Corallina and Ellisolan-
dia photochemistry as a seasonal response to excess sum-
mer irradiance. In this respect, the reverse acclimation to 
low light conditions must be performed in winter to allow 
efficient harvesting of reduced irradiance levels. As signifi-
cantly higher values of rETRmax were observed for all spe-
cies during winter, when minimal irradiance was observed, 
our data indicate that Corallina and Ellisolandia are more 
effective at harvesting and utilizing light energy at low 

fluence rates, as proposed by Häder et al. (1997) and Häder 
et al. (2003), who described geniculate coralline species as 
typical ‘shade plants’.

Over summer tidal emersion at CM, diurnal patterns 
observed in Corallina photophysiology were suggestive of 
the ability to rapidly acclimate photochemistry to signifi-
cant changes in irradiance experienced. C. officinalis and 
C. caespitosa demonstrated diurnal patterns in Fv/Fm indic-
ative of photosynthetic downregulation by dynamic pho-
toinhibition, the dissipation of excess light energy as heat 
(Franklin and Forster 1997). This can serve to prevent long-
lasting photooxidative damage caused by excess irradiance, 
while allowing maintenance of photosynthetic rates (Davi-
son and Pearson 1996; Franklin and Forster 1997; Muller 
et al. 2001). From start to mid summer emersion, Fv/Fm 
decreased or remained reduced when increases in irradi-
ance were observed, followed by complete recovery at the 
end of emersion when irradiance decreased. Concomitantly, 
C. officinalis and C. caespitosa rETRmax was maintained 
and increased, respectively. This confirms that C. officinalis 
and C. caespitosa possess the ability to rapidly down-reg-
ulate photochemistry in response to excess irradiance over 
summer tidal emersion, while maintaining electron trans-
port rates. It further demonstrates that down regulation is a 
dynamic process in these species, easily reversible during 
summer over the duration of tidal emersion.

Significant decreases in HB upper shore C. officinalis 
rETRmax and Ek over summer tidal emersion, however, 
did not follow the same trend as observed at CM and may 

Table 4  Analysis of variance of Corallina and Ellisolandia photophysiology (rETRmax, α, Ek and Fv/Fm) in relation to season, tide and species

F ratios, degrees of freedom and associated significance (Fd.f. and Sig.) (*** P < 0.001; ** P < 0.01; * P < 0.05), and the relative importance of 
fixed effects (Imp.) are displayed, as determined from linear mixed-effects models. Significant differences are highlighted in bold

Factor

Season Tide Species Season/Tide Species/Tide

Fd.f. and Sig. Imp. (%) Fd.f. and Sig. Imp. (%) Fd.f. and Sig. Imp. (%) Fd.f. and Sig. Imp. (%) Fd.f. and Sig. Imp. (%)

Combe Martin

rETRmax F1,104 = 86.32*** 41 F2,104 = 2.82 2.7 F1,104 = 0.06 0.0 F2,104 = 6.04** 5.8 F2,104 = 0.35 0.3

α F1,104 = 1.36 0.9 F2,104 = 11.75*** 16 F1,104 = 0.61 0.4 F2,104 = 6.80** 9.7 F2,104 = 0.16 0.2

Ek F1,104 = 84.90*** 41 F2,104 = 8.48*** 8.3 F1,104 = 1.09 0.5 F2,104 = 0.84 0.8 F2,104 = 0.03 0.0

Fv/Fm F1,104 = 19.27*** 11 F2,104 = 21.14*** 24 F1,104 = 4.15* 2.4 F2,104 = 2.67 3.1 F2,104 = 1.01 1.1

Heybrook Bay upper

rETRmax F1,50 = 43.35*** 30 F2,50 = 21.33*** 30 F2,50 = 1.40 1.9

α F1,50 = 0.00 0.0 F2,50 = 1.30 1.6 F2,50 = 2.12 5.3

Ek F1,50 = 73.37*** 47 F2,50 = 12.77*** 32 F2,50 = 15.38*** 19

Fv/Fm F1,50 = 0.59 0.5 F2,50 = 29.56*** 49 F2,50 = 4.81* 8.0

Heybrook Bay lower

rETRmax F1,72 = 87.78*** 62 F1,72 = 9.63** 6.9 F1,72 = 0.00 0.0 F1,72 = 0.03 0.0 F1,72 = 0.04 0.0

α F1,72 = 2.75 5.4 F1,72 = 1.30 2.5 F1,72 = 0.88 1.7 F1,72 = 0.30 0.6 F1,72 = 2.96 5.9

Ek F1,72 = 40.22*** 44 F1,72 = 1.68 1.8 F1,72 = 1.06 1.1 F1,72 = 0.73 0.8 F1,72 = 4.64* 5.1

Fv/Fm F1,72 = 1.60 2.7 F1,72 = 7.90** 13 F1,72 = 0.24 0.4 F1,72 = 4.51* 7.6 F1,72 = 2.60 4.4
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indicate electron transport limitation by high pH/low inor-
ganic carbon conditions. While photoinhibition was evident 
in response to the relatively extreme irradiance prevail-
ing, as evidenced by decreases in Fv/Fm, these decreases 
were not proportional to rETRmax reduction and showed 
signs of recovery at end emersion, while rETRmax did not. 
Continual decrease in ETR has been observed for U. intes-
tinalis, F. vesiculosus and Chondrus crispus across simu-
lated tidal emersion periods in artificial rock pools, due to 
parallel increases in pH and decreases in inorganic carbon 
concentrations (Björk et al. 2004). With the depletion of 
pCO2, algae become dependent on HCO3

− utilization, via 
conversion to CO2 either by extracellular CA (Invers et al. 
1997; Badger 2003), or by direct anion exchange-mediated 

uptake (Larsson and Axelsson 1999). At high pH (8.45–
9.3), macroalgal CA activity is often ineffective (Middel-
boe and Hansen 2007a, b), with consequent decreases in 
photosynthetic rates (41–78 %) reported for several mac-
roalgal species, compared to rates measured at lower pH 
(8–8.1) (Israel and Hophy 2002; Middelboe and Hansen 
2007a, b; Semesi et al. 2009). While carbonate chemistry 
changes did not show significant regression to rETRmax 
across all data during the present study, extremes in pH 
(average pH 9.18 ± 0.08) and, significantly reduced pCO2 
(−96 %) and HCO3

− (−75 %) concentrations apparent in 
upper shore HB rock pools at the end of summer emersion, 
may have contributed to decreases in C. officinalis rETRmax 
and warrant further investigation.
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Over periods of winter emersion, Corallina photo-
physiology appeared more sensitive to relatively smaller 
changes in irradiance than those experienced during sum-
mer emersion (supporting our proposal of winter acclima-
tion to low irradiance conditions), and down regulation 

of photochemistry was less effective over tidal emersion 
periods. At CM, while similar dynamics in Fv/Fm were 
observed as during summer, decreases in Fv/Fm at mid 
emersion were proportionately larger than those during 
summer and did not serve to maintain rETRmax, which was 
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Table 5  Multiple linear regression analysis of rETRmax in relation to irradiance (expressed as irradiance measured) (Irra.), rock pool water tem-
perature (Temp.), and principal components one (PC1) and two (PC2) from PCA of rock pool water carbonate chemistry

Regression coefficients (intercept and predictors) are displayed ± standard error (SE) and with associated significance (*** P < 0.001; 
** P < 0.01; * P < 0.05), in addition to the relative importance of predictor variables, associated overall model R2 and significance (Model P), 
and the number of observations (n)

Variable Intercept Predictor coefficients ± SE and significance Relative importance R2 Model P n

Irra. Temp. PC1 PC2 Irra. Temp. PC1 PC2

rETRmax 122.5 ± 7.6 −0.025 ± 0.007** −2.505 ± 0.693*** −0.509 ± 1.00 0.017 ± 2.50 37 % 45 % 16 % 0 % 0.65 <0.0001 70
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significantly decreased at mid emersion. At HB, both upper 
and lower shore C. officinalis demonstrated significant 
decreases in Fv/Fm, rETRmax and α in response to relatively 
moderate increases in irradiance, with no recovery by the 
end of emersion in upper shore pools.

Large antennae are necessary for efficient light capture 
in light limiting conditions, but they can be a liability when 
light is abundant or excessive (Muller et al. 2001). Low 
light photoacclimation to winter conditions thus seemed 
to increase Corallina sensitivity to photostress during tidal 
emersion periods. In addition, photoinhibition was not as 
effective in maintaining rETRmax over winter emersion 
when irradiance increased. This may be expected given 
slower acclimation, protein turnover and xanthophyll de-
epoxidation under low temperature conditions (Franklin 
and Forster 1997). However, higher rates of rETRmax were 
still evident overall during winter as compared to summer, 
suggesting that Corallina and Ellisolandia achieved a bal-
ance between the long-term seasonal and short-term tidal 
emersion requirements for photoacclimation.

Limited evidence for inter-specific variability in photo-
physiology was observed during the present study. Though 
higher Fv/Fm was observed for C. officinalis at the start of 
tidal emersion in comparison to C. caespitosa at CM, pat-
terns in photophysiology were remarkably similar for the 
two species, with no other differences observed. Similarly, 
no significant difference in C. officinalis and E. elongata 
photophysiology was evident at lower shore HB, though on 
the whole, E. elongata appeared less responsive to changes 
in abiotic conditions than C. officinalis.

Given that the species examined demonstrate both 
large-scale geographic (Williamson et al. in review; Brodie 

et al. 2013) and small-scale within-site differences in dis-
tribution, differential tolerances to abiotic stressors likely 
exist. While our data provide information on the photo-
physiology of Corallina and Ellisolandia in situ under the 
influence of highly variable abiotic conditions, laboratory-
based analyses of photochemistry using steady-state fluo-
rescence techniques, with control/manipulation of abiotic 
parameters, are required to disentangle underlying species 
tolerances. This study provides an initial account of the 
photophysiology for these keystone species in the context 
of the environment to which they are adapted in the NE 
Atlantic.
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INTRODUCTION

Since 1961, an excess of 80% of climate change-
related atmospheric heating has been absorbed by
the world’s oceans, resulting in an increase in the
global average sea surface temperature (SST) of

0.65°C between 1850 and 2005, according to the
Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (Solomon et al. 2007).
Concomitantly, ocean acidification (OA), the increas-
ing acidity of the world’s oceans attributed to uptake
of anthropogenic CO2, has decreased the global
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ABSTRACT: Marine species depositing high-magnesium (Mg) calcite (>8% MgCO3) are pro-
jected to be among the first to show response to the impacts of climate change, i.e. increased sea
surface temperature (SST) and ocean acidification (OA), given the increasing solubility of calcite
in seawater with increasing Mg content. Temperature is a major driver of Mg incorporation into
the skeletons of calcifying macroalgae, and thus climate change may induce deposition of more
soluble calcite, exacerbating responses to OA. Assessment of the skeletal Mg content of 3 genic-
ulate, calcifying species of the genera Corallina and Ellisolandia (Rhodophyta, Corallinales), C.
officinalis, C. caespitosa and E. elongata, sampled during 2012−2013 in the UK intertidal, demon-
strated the existence of seasonal cycles in skeletal Mg. Seasonal cycles in skeletal Mg were also
observed for herbarium collections of the Natural History Museum (British Museum), London,
sampled during the recent past (1850−2010). Comparative sampling across a northeastern
Atlantic latitudinal transect (Iceland to northern Spain) indicated a decreasing Mg content with
increasing latitude for present-day C. officinalis, and relationships between SST and Corallina Mg
content (r2 = 0.45−0.76) demonstrated the dominant influence of temperature on Corallina species
skeletal mineralogy. Corallina and Ellisolandia species show lower absolute values of Mg content
(0.11−0.16 mol% Mg/Ca), and smaller variation with change in SST (0.0028−0.0047 mol% Mg/Ca
°C−1), than other temperate calcifying macroalgae studied to date. Over the period 1850−2010, no
change in the magnitude of Mg incorporation by C. officinalis was detected in herbarium samples.
However, the strong relationship between SST and Mg content indicates that projected increases
in SST by 2100, which are far greater than temperature increases that occurred between
1850−2010, could have substantial impact on geniculate coralline algae skeletal mineralogy, and
must be considered synergistically with the effects of OA.
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average ocean pH by 0.1 relative to pre-industrial
values, resulting in a 26% increase in hydrogen ion
(H+) concentration and reduced biologically avail-
able carbonate ions (CO3

2+) (Feely et al. 2004, Doney
2006, Hoegh-Guldberg et al. 2007, Rhein et al. 2013).
By 2100, climate change models predict increased
global ocean average SST ranging from +0.6°C to
more than +3.0°C and a further decrease in average
ocean pH of 0.13 to 0.42 under IPCC Representative
Concentration Pathways (RCPs) 2.6 and 8.5, respec-
tively (Collins et al. 2013).

Varying responses of marine species to increases
in SST and OA have been reported, with numerous
studies predicting adverse effects of OA on those
species that deposit calcium carbonate (CaCO3) as
shells or skeletal structures (e.g. Gao et al. 1993,
2009, Langdon et al. 2000, Langdon & Atkinson
2005, Anthony et al. 2008, Kuffner et al. 2008,
Zheng & Gao 2009, Cohen et al. 2009, Kleypas &
Yates 2009, Dias et al. 2010, Dupont et al. 2010, Gao
& Zheng 2010, Diaz-Pulido et al. 2012, Hofmann et
al. 2012). Within the marine environment, different
biogenic polymorphs of CaCO3 are deposited, each
with different solubility in seawater (Ries 2011).
Aragonite, the polymorph deposited by, for exam-
ple, scleractinian coral species, is more soluble than
pure calcite; however, the solubility of calcite
increases with increasing magnesium ion (Mg2+)
content substituting for calcium (Ca2+) ions (Anders-
son et al. 2008, Ries 2010, 2011). High-Mg biogenic
calcite (i.e. greater than 8−12% MgCO3) is more
soluble than aragonite in seawater (Andersson et al.
2008). Species depositing this polymorph are there-
fore likely to be more susceptible to the initial
effects of OA (Gao et al. 1993, Morse et al. 2007,
Kuffner et al. 2008, Ries et al. 2009, Ries 2010, Lom-
bardi et al. 2011).

Red coralline macroalgae (Corallinales, Rhodo -
phyta) are the most common high-Mg calcite produc-
ers, along with benthic foraminifera, bryozoans and
echinoderms (Andersson et al. 2008). Coralline
macro  algae comprise both geniculate genera (i.e.
jointed or articulated), and non-geniculate genera,
which are either encrusting, e.g. crustose coralline
algae, or free-living nodules, known as rhodoliths or
maerl (Irvine & Chamberlain 1994, Nelson 2009).
Coralline algae have limited control over their calci-
fication processes in that they are able to specify dep-
osition of the calcite polymorph, as opposed to arago-
nite, but are unable to actively control the degree of
Mg incorporation into their calcite skeletons (Ries
2010). Variation in Mg content is controlled by mech-
anisms including the Mg/Ca ratio of seawater, which

is only applicable over geological timescales (Ries
2006, 2010), and factors that influence growth rate,
e.g. light availability (Andersson et al. 2008), the sea-
water carbonate saturation state (Andersson et al.
2008, Ries 2011, Egilsdottir et al. 2013), salinity
(Kamenos et al. 2012) and temperature (Kamenos et
al. 2008, Kuffner et al. 2008, Ries 2010, 2011). For
example, observed decreases in the Mg content of
calcite in coralline algae with increasing latitude
have been attributed to concomitant decreases in
light, seawater carbonate saturation and temperature
(Chave 1954, Mackenzie et al. 1983, Andersson et al.
2008).

Within latitudes, temperature is the dominant
influence on the skeletal Mg content of present-day
coralline macroalgae (Kamenos et al. 2008). For
example, seasonal cycles in Mg incorporation in the
rhodolith species Lithothamnion glaciale (12.9−
24.6 mol% MgCO3 range) and Phymatolithon cal-
careum (14.7−23.8 mol% MgCO3 range) show a
strong positive regression (r2 = 0.88−0.96) with in situ
seawater temperatures, with a change of 1.26 and
1.19 mol% MgCO3 °C−1 for the 2 species, respectively
(Kamenos et al. 2008).

Given the positive relationship between SST and
Mg incorporation into calcite (Kamenos et al. 2008),
climate change-associated elevations in SST may
lead to an increase in the relative proportion of more
soluble calcite forms in coralline macroalgae, exacer-
bating the impacts of OA, as hypothesized for the
bryozoan Myriapora truncata (Lombardi et al. 2011).
Conversely, however, decreases in seawater carbon-
ate saturation owing to OA itself may serve to de -
crease Mg content in coralline macroalgae. In the
rhodolith Neogoniolithon sp., calcite Mg/Ca ratio
decreased from 0.249 to 0.197 with a decrease in sea-
water aragonite saturation state from 2.5 to 0.7 (Ries
2011), and a decreased mol% Mg/Ca was observed
in new structures formed by the geniculate Ellisolan-
dia elongata during elevated pCO2 incubations (0.177
± 0.002) compared to ambient conditions (0.190 ±
0.003) (Egilsdottir et al. 2013).

Multi-stressor studies examining the simultaneous
impacts of increased SST and OA on the skeletal
mineralogy of coralline macroalgae are currently
lacking. When available, contextual interpretation of
such results will depend on a clear understanding of
the natural variation in the present-day carbonate
skeletal mineralogy of these species, and its relation-
ship with environmental conditions, in particular SST
(Medakovic et al. 1995, Kamenos et al. 2008, Smith et
al. 2012). In addition, given that present-day climate
conditions, i.e. post-industrialization, are already sig-
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nificantly shifted in comparison to pre-industrial
times, examination of the skeletal mineralogy of
coralline macroalgae to date, where possible, will
further add to our capacity to predict and interpret
potential future changes.

This study therefore assessed the present-day and
recent-past (i.e. 1850−2010) variation in skeletal Mg
incorporation in species of the cosmopolitan genicu-
late coralline genera Corallina and Ellisolandia,
which are extremely ecologically important (Nelson
2009), yet relatively understudied in relation to cli-
mate change and OA. Erect, turfing species of Coral-
lina and Ellisolandia are near-ubiquitous in temper-
ate intertidal and subtidal environments (Smith et al.
2012), providing habitat for numerous small inver -
tebrates, shelter via their physical structure from
environmental stresses associated with intertidal
habitats, and a substratum for the settlement of
macro- and microalgae (Nelson 2009, Smith et al.
2012). Given these attributes, geniculate corallines
are considered important autogenic ecosystem engi-
neers (Jones et al. 1994, Nelson 2009), and as such,
potential impacts of climate change-driven increases
in SST and/or OA on these species could have seri-
ous implications for temperate coastal ecosystems
and species therein (Hofmann et al. 2012).

The aims of the present study were to (1) quantify
the present-day temporal and spatial patterns in
Mg/Ca ratios of C. officinalis and C. caespitosa from
the UK intertidal over a seasonal cycle; (2) examine
interspecific variation in Mg/Ca ratios between C.
officinalis, C. caespitosa and Ellisolandia elongata;
(3) examine intraspecific variation in Corallina
Mg/Ca ratios over small (within-site) to large (across

latitudes) spatial scales; (4) assess the recent-past
(ca. 1850−2010) patterns in UK C. officinalis Mg/Ca
ratios from herbarium collections of the Natural His-
tory Museum (British Museum), London; (5) exam-
ine the relationship between Corallina Mg/Ca ratios
and SST; and (6) use these relationships to produce
projections of Corallina skeletal mineralogy under
future ocean conditions.

MATERIALS AND METHODS

Seasonal sampling

To examine present-day seasonal, within-site,
and interspecific patterns in Corallina skeletal
Mg/Ca ratios (mol% Mg/Ca), 12 samples each of C.
officinalis and C. caespitosa were collected haphaz-
ardly by hand from within rock pools at each shore
height where they occurred (Table 1) during
December 2011 and March, June, September and
December 2012 from Combe Martin, North Devon,
UK (Fig. 1). To ensure sampling of discrete individ-
uals, samples were collected at least 30 cm away
from each other. Each sample consisted of a dis-
crete basal portion and attached upright fronds.
Sample replication of n = 12 was selected by plot-
ting n against cumulative mol% Mg/Ca variance.
Cumulative variance decreased and saturated at
n = 12−15 samples for both species (data not shown).
Following collection, samples were mounted onto
herbarium sheets using site seawater collected on
the day of sampling, dried in a press, and stored on
herbarium sheets until processing.

Site                     Location       Sampling   Avg. (min–max)   Shore height   Shore height       Species        Estimated     Estimated 
                                                  months           SST (°C)             sampled     relative to chart     present      pool volume   pool depth 
                                                                                                                              datum (m)                                   (m3)               (cm)

Combe           51°12’31”N,   Dec 2011     9.9 (8.9–11.4)           Upper                + 5.5          C. officinalis           40                 500
Martin, UK       4°2’19”W     Mar 2012     8.5 (7.0–10.2)                                                       C. caespitosa                                   
                                                  Jun 2012     14.2 (12–15.5)         Middle               + 5.0         C. caespitosa        0.09                2–4
                                                  Sep 2012   16.4 (13.4–17.6)         Lower                + 3.5          C. officinalis         0.25                500
                                                Dec 2012     9.9 (8.9–11.4)                                                                                                                 

Wembury       50°18’53”N,   Jun 2012   13.8 (11.8–16.9)         Upper                + 4.0          C. officinalis         0.25                500
Point, UK           4°4’58” W                                                             Lower                + 2.3          C. officinalis         0.25                500
                                                                                                                                                      E. elongata                                    

Þorlákshöfn,   63°53’36”N,     Jul 2012     11.7 (10.1–13.6)         Lower                + 1.5          C. officinalis         1.5                 500
Iceland            21°23’45”W

A Coruña,       43°22’13”N,   Oct 2012    17.4 (16.2–19.7)         Lower                + 2.0          C. officinalis       0.125               500
Spain                8°24’54”W                                                                                                          E. elongata

Table 1. Sampling site details (see also Fig. 1). SST: sea surface temperature. C.: Corallina; E.: Ellisolandia
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Comparative sampling

To examine spatial variation and interspecific dif-
ferences in mol% Mg/Ca between UK sites, Coral-
lina officinalis and Ellisolandia elongata were sam-
pled from Wembury Point during June 2012 (12
individual plants per species and shore height pres-
ent; Table 1) for comparison to Combe Martin data.
To examine intraspecific variation in mol% Mg/Ca
over a northeastern Atlantic latitudinal transect, C.
officinalis was sampled (n = 12 individual plants)
from Iceland and northern Spain (Table 1), allowing
differences to be assessed over 1418 miles (2282 km),
with Combe Martin and Wembury Point located 542
and 480 miles (872 and 772 km) north from the north-
ern Spain site, respectively (Fig. 1). Additionally, E.
elongata was sampled from northern Spain for inter-
specific comparisons. Species identification was
achieved by amplification of the cox1 gene region
and comparison with published sequences as per
Walker et al. (2009).

Herbarium collections

C. officinalis from UK sites were selected to exam-
ine recent-past patterns in Corallina mol% Mg/Ca,

as they represented the largest collection of Corallina
species held in the algal herbarium collections of the
Natural History Museum (BM), London. These col-
lections span from ca. 1850 to 2010, and are predom-
inantly from donations made by individual collectors,
not as established regular sampling initiatives, mak-
ing samples over this period spatially and temporally
heterogeneous, and lacking replication (Table S1 in
the Supplement at www.int-res.com/articles/suppl/
m513p071_supp.pdf). In total, 112 C. officinalis sam-
ples were selected from the herbarium collections for
use in the current study. Sub-sampling for analysis
was conducted as detailed in the following section.

Sample processing

In order to examine the skeletal Mg content most
representing the time of collection during the present
study, whilst allowing sufficient material for X-ray
diffraction (XRD) analysis (see next section), the  apical
intergeniculum was sampled from 10−15 branches of
each Corallina and Ellisolandia sample and pooled to
comprise 1 sample for XRD analysis (Fig. 2). Growth
of Corallina species is mostly restricted to a finite
group of elongating and dividing apical cells
(Colthart & Johansen 1973). Little data exists on the
growth rates of geniculate corallines, but Colthart &
Johansen (1973) reported rates of 2.2 mm per month
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Fig. 1. Study sites in the NE Atlantic indicating Corallina and 
Ellisolandia species present at each site (see also Table 1) 

Fig. 2. Representative frond of Corallina officinalis collected
from Combe Martin, UK (scale bar = 0.5 cm). Inset: apical
region of frond branch (scale bar = 1 mm); arrow: apical 

intergenicula sampled for X-ray diffraction analysis

http://www.int-res.com/articles/suppl/m513p071_supp.pdf
http://www.int-res.com/articles/suppl/m513p071_supp.pdf
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for C. officinalis at 12−18°C, corresponding to the
production of a single 1 mm long intergeniculum per
12 d, and Hofmann et al. (2012) reported relative
growth rates of 1.97 ± 0.15 % fresh weight d−1 for the
same species grown at 15°C with 50 µmol photons
m−2 s−1 light intensity. Mol% Mg/Ca reported by the
present study therefore likely represent Mg incorpo-
ration over approximately the previous 12 d before
the time of sampling during periods of SST ranging
from 12−18°C, and longer periods, given presumably
lower growth rates, below these temperatures.

X-ray diffraction analysis

All XRD analyses were conducted in the Mineral-
ogy Department of The Natural History Museum,
London. Samples were ground with a mortar and
pestle and suspended in acetone (ca. 1:20 sample:
acetone suspension). A few drops of the sample -
acetone suspension were placed onto a single crystal
sapphire substrate (zero-background holder). The
dried samples were analysed using an Enraf-Nonius
PDS120 diffractometer equipped with a primary
 Germanium (111) monochromator and an INEL 120°
curved position sensitive detector (PSD). Operating
conditions for the Co source were 40 kV and 40 mA.
The horizontal slit after the monochromator was set
to 0.14 mm to confine the incident beam to pure Co
Ka1 radiation. The vertical slit was set to 5 mm.

Samples were measured in asymmetric flat-plate
reflection geometry. Diffracted X-ray intensities
were simultaneously collected over a 2-Theta range
of 120° without angular movement of tube, sample or
detector position. The tilting angle between incident
beam and sample surface was kept constant at 6° and
the sample was rotated during the measurements to
improve particle counting statistics. Angular linearity
of the PSD was calibrated using Y2O3 as external
standard. A full 2-Theta linearization of the PSD was
performed with a least-squares cubic spline function.

The Mg content of the calcite skeletons of the
Corallina and Ellisolandia species was derived from
the position of the d104 reflection in the XRD pattern.
All data of the present study fall into a compositional
interval between 10 and 17 mol% Mg. A linear rela-
tionship between d104 value and Mg concentration of
skeletal magnesian calcites was first reported by
Chave (1952) over the range 2−16 mol% Mg. Consid-
ering compositions between 0 and 20 mol% Mg of
biogenic and inorganic magnesian calcites, Macken-
zie et al. (1983) concluded the d104 trend is equivalent
to a straight line from calcite to disordered dolomite

or magnesite. Therefore, the present study derived
the molar Mg content on the Ca site of magnesian
calcites, i.e. the substitution of Ca ions for Mg ions in
the crystal lattice of the calcite, using the linear rela-
tionship in Eq. (1):

(1)

where data for calcite and magnesite were taken
from well-characterized standards of the National
Bureau of Standards (PDF-2 database from Interna-
tional Centre for Diffraction Data; reference codes
calcite [5-586] and magnesite [8-479]). Calculated
d104 trendlines from Eq. (1) and an overall fit of 3 syn-
thetic magnesian calcite studies (Goldsmith et al.
1961, Bischoff et al. 1983, Mackenzie et al. 1983)
showed only minor differences in the compositional
range between 0 and 20 mol% Mg. Deviations for a
given d104 value were generally below 0.1 mol% Mg.

Predictive models

To examine the relationship between SST and
skeletal Mg incorporation by Corallina species, pres-
ent-day and recent-past derived mol% Mg/Ca ratios
were regressed against locally reported SSTs which
were obtained from the website1 of the Centre for
Environment, Fisheries and Aquaculture Science
(CEFAS). For Combe Martin seasonal data, linear
regression analysis was performed against monthly
average SST recorded from 1992 to 2008 at
CEFAS Stn 27, located at Ilfracombe (51° 20’ 51” N,
4° 12’ 67” W), approximately 8.8 km from Combe
 Martin. For mol% Mg/Ca derived from herbarium
samples, average SST data were retrieved for the
month of sample collection from the nearest CEFAS
station to the point of collection recorded (Table S1 in
the Supplement). Given the non-continuous nature
of CEFAS SST data throughout time, SST values for
45 of 112 herbarium data points were available for
regression analysis. Changes in the mol% Mg/Ca
°C−1 of Corallina species were derived from linear
regression equations to SST. Regression equations
derived for Combe Martin seasonal data were plot-
ted using the monthly average SST data reported for
the entire year from CEFAS Stn 27, to demonstrate
the complete mol% Mg/Ca seasonal cycle for C.
officinalis and C. caespitosa. Additionally, pooled

Mol% Mg
d d

d

calcite Mg–calcite (sample)

= 104 104

1

–

004 104
calcite magnesited–

1www.cefas.defra.gov.uk/our-science/observing-and-modelling/
monitoring-programmes/sea-temperature-and-salinity-trends/
station-positions-and-data-index.aspx
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monthly herbarium mol% Mg/Ca data (n = 112) were
modeled using a sine function regression (using
Sigmaplot v.10 software) fitted to the apparent sine
waveform of the data as a function of time.

Statistical analysis

Prior to all statistical analyses, normality of data
was tested using the Anderson-Darling test, and
homogeneity of variance using Levene’s test (signifi-
cant differences from normality and homogeneity of
variance were taken at the 5% significance level). All
data were normally distributed and demonstrated
homogeneous variance, or were transformed to meet
these criteria as described below. All analyses were
performed using Minitab v.14 software.

Seasonal sampling

To examine differences in mol% Mg/Ca between
sampling months, shore heights and species (C. offic-
inalis and C. caespitosa) at Combe Martin, a nested
ANOVA was performed with the factors ‘Month’,
‘Shore height’ and ‘Species’, with Species nested
within Shore height, and the interaction terms
‘Month × Shore height’ and ‘Month × Species’. Post
hoc Tukey HSD analysis was used to examine signif-
icant differences highlighted by ANOVA analyses.

Comparative sampling

As no significant difference in C. officinalis mol%
Mg/Ca were evident between upper and lower shore
Combe Martin or Wembury Point during June 2012,
data from both shore heights were pooled per site for
inter-site comparison. To examine differences in C.
officinalis mol% Mg/Ca collected from Combe Mar-
tin and Wembury Point during June 2012 and from
Iceland during July 2012, a 1-way ANOVA was per-
formed with the factor ‘Site’. To examine differences
in mol% Mg/Ca between C. officinalis sampled in
Combe Martin during September 2012 and northern
Spain during October 2012, a t-test was performed
with the factor ‘Site’. Interspecific differences in
mol% Mg/Ca of C. officinalis and E. elongata were
examined by t-test comparison with the factor ‘Spe-
cies’ between C. officinalis and E. elongata collected
from lower shore Wembury Point during June 2012,
and between C. officinalis and E. elongata collected
from northern Spain during October 2012.

Herbarium collections

Statistical differences in mol% Mg/Ca of herbar-
ium data were examined using ANCOVA on square-
root transformed data with the factors ‘Location’,
‘Year’ and ‘Month’ (covariate within ‘Year’). The fac-
tor ‘Location’ was derived by categorizing herbarium
samples into the county of collection.

RESULTS

Seasonal sampling

There was a significant difference in the mol%
Mg/Ca of Corallina officinalis and C. caespitosa from
Combe Martin in relation to ‘Month’ (F4,220 = 174.61,
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Fig. 3. Seasonal variation in mol% Mg/Ca of (a) Corallina
officinalis from upper and lower shore, and (b) C. caespitosa
from upper and middle shore of Combe Martin (mean ± SE,
n = 12). Letters denote homogeneous subsets as determined
by post hoc Tukey HSD analysis (at significance α = 0.05).
Upper case letters refer to upper shore data and lower case
letters refer to lower or middle shore data, respectively.
Actual values (avg., min/max) are provided in Table S2
in the Supplement at www.int-res.com/articles/suppl/ m513 

p071 _supp.pdf
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p < 0.0001) (Fig. 3a,b). Highest mol% Mg/Ca was
recorded for both upper (mean ± SE: 0.156 ± 0.003)
and lower (0.143 ± 0.001) shore C. officinalis and
upper shore C. caespitosa (0.142 ± 0.001) during
 September 2012, while middle shore C. caespitosa
demonstrated maximal values during June 2012
(0.155 ± 0.002). Lowest mol% Mg/Ca were recorded
during March 2012 for upper (0.118 ± 0.001) and mid-
dle (0.112 ± 0.001) shore C. caespitosa, and lower
shore C. officinalis (0.113 ± 0.002), while upper shore
C. officinalis demonstrated minimal values during
December 2012 (0.120 ± 0.001). Homogeneous sub-
sets determined from post hoc Tukey HSD analysis
are demonstrated in Fig. 3a,b.

Though significant interaction was observed be -
tween ‘Month’ and ‘Species’ (F4,220 = 19.92, p <
0.0001), no significant interspecific difference in
mol% Mg/Ca was observed between Combe Martin
C. officinalis and C. caespitosa. Similarly, no signifi-
cant difference in mol% Mg/Ca was observed in

relation to ‘Shore height’, though significant interac-
tion was apparent between ‘Month’ and ‘Shore
height’ (F8,220 = 14.22, p < 0.0001). For C. officinalis,
upper shore samples demonstrated higher mol%
Mg/Ca than lower shore during all months except
June 2012, whereas C. caespitosa from the mid shore
had the highest mol% Mg/Ca in the summer, but had
lower ratios than upper shore C. caespitosa collected
in the winter and spring.

Comparative sampling

A significant difference in C. officinalis mol%
Mg/Ca was observed in relation to ‘Site’ (F2,59 = 9.44,
p < 0.001), with post hoc Tukey HSD analysis demon-
strating significantly decreased values in C. offici-
nalis collected from Iceland during July 2012 and
Combe Martin during June 2012 in comparison to
Wembury Point, though no significant difference
between Combe Martin and Iceland mol% Mg/Ca
was apparent (Fig. 4a). Samples collected from lower
shore Combe Martin in September 2012 demon-
strated significantly lower mol% Mg/Ca in compari-
son to samples collected from northern Spain in
October 2012 (T22 = −2.08, p < 0.05), though there
was no significant difference between upper shore
Combe Martin and northern Spain samples (Fig. 4b).
No interspecific differences were observed between
the mol% Mg/Ca of C. officinalis and E. elongata
from either Wembury Point or northern Spain
(Table S2 in the Supplement at www.int-res.com/
articles/suppl/ m513 p071 _supp.pdf).

Herbarium collections

No significant difference in mol% Mg/Ca of C.
officinalis apical tips was observed in relation to
‘Location’ or ‘Year’, though a significant difference
was observed in relation to ‘Month’ (F10,111 = 7.46, p <
0.001), with ‘Month’ showing significant covariance
within ‘Year’ (p < 0.05). Average monthly mol% Mg/
Ca of all herbarium data are presented in Fig. 5, dem -
onstrating an apparent seasonal temporal pattern of
mol% Mg/Ca as a function of month, effectively with
summer maxima and late winter/spring minima.

Temperature relationships

Significant linear relationships were identified be-
tween local SST and mol% Mg/Ca of Combe Martin
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Fig. 4. (a) Corallina officinalis mol% Mg/Ca collected June
2012 from Combe Martin (CM) and Wembury Point (WP)
(mean ± SE, n = 24), and July 2012 from lower shore Þorlák-
shöfn, Iceland (mean ± SE, n = 12). (b) C. officinalis mol%
Mg/Ca (mean ± SE, n = 12) collected during September from
Combe Martin upper (CM up) and lower (CM low) shore,
and October from lower shore A Coruña, northern Spain.
Letters indicate homogeneous subsets as determined from 

post hoc Tukey HSD analysis (at significance α = 0.05)
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seasonally sampled C. officinalis (both upper and
lower shore) and C. caespitosa (both upper and mid-
dle shore) (Fig. 6a,b, Table 2A). Based on these rela-
tionships, changes in Mg concentration of 0.0035 and
0.0037 mol% Mg/Ca °C−1 were determined for upper
and lower shore C. officinalis, respectively, and 0.0028
and 0.0047 mol% Mg/Ca °C−1 for C. caespitosa upper
and middle shore, respectively. Significant linear re-
lationships were also identified be tween local SST
and C. officinalis mol% Mg/Ca determined from n =
45 herbarium samples (Fig. 6c, Table 2B), with a
change in mol% Mg/Ca of 0.0036 °C−1 determined.

Mol% Mg/Ca were predicted using CEFAS SST
data from Stn 27 for each month for both C. offici-
nalis and C. caespitosa from Combe Martin (Fig. 7a).
In addition, all herbarium data (n = 112) grouped into
month of collection demonstrated a clear sine wave-
form function over time, with all equation parame-
ters given significant at p < 0.001 (Fig. 7b, Table 2B).

DISCUSSION

Present-day mol% Mg/Ca cycles

Corallina species in the northeastern Atlantic have
clear seasonal cycles in skeletal Mg incorporation, as
demonstrated by seasonal variability in mol% Mg/Ca
of present-day C. officinalis and C. caespitosa
recorded during this study. These findings are in line
with previous work that have demonstrated season-

ally cyclic patterns of Mg/Ca ratios in rhodoliths
(Kamenos et al. 2008), corals (Mitsuguchi et al. 1996)
and other calcifying species (Chave 1954), and sup-
port the assertion that the Corallinaceae are a group
with consistently high Mg content (ca. 10 mol% or
more) (Vinogradov 1953).

78

Fig. 5. Herbarium Corallina officinalis average monthly
mol% Mg/Ca ± SE (monthly average across all years, see
Table S1 in the Supplement at www.int-res.com/articles/
suppl/ m513p071_supp.pdf). Numbers represent sample size 

of the respective month

Fig. 6. Mol% Mg/Ca−temperature relationships for (a)
Corallina officinalis collected from upper and lower shore
and (b) C. caespitosa collected from upper and middle shore,
from Combe Martin, and (c) herbarium C. officinalis (see
Table 2A for relationship equations). All regressions were
significant at p < 0.0001 (Table 2A) and are displayed with
95% confidence intervals (red and blue lines) of predictions 

made from least-squares regressed linear relationships
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Concentrations and seasonal ranges of Mg in
geniculate Corallina and Ellisolandia species are
towards the lower end of those reported for other
coralline macroalgae from similar geographic
regions. For example, Combe Martin C. officinalis
Mg content (expressed as mol% MgCO3) ranged
from approximately 10− 17 mol% MgCO3 and C. cae-
spitosa from 10−16 mol% MgCO3. These concentra-
tions and ranges are noticeably lower than those
reported for the rhodoliths Litho thamnion glaciale
(12.9− 24.6 mol% MgCO3) and Phymatolithon cal-
careum (14.7−23.8 mol% MgCO3) from Scotland
(Kamenos et al. 2008), though are in the same range
as those reported for the geniculate coralline E. elon-
gata from France (0.177 ± 0.002 mol% Mg/Ca) (Egils-
dottir et al. 2013).

Biogenic Mg-calcites have been demonstrated to
go through a maximum solubility at approximately
24 mol% MgCO3, with the most insoluble Mg-calcite
containing about 2 mol% MgCO3 (Plummer &
Mackenzie 1974). Given this increasing solubility of
calcite with increasing Mg content, variation in
skeletal mineralogy between coralline species has
been suggested to impact their vulnerability to OA
(Gao et al. 1993, Morse et al. 2007, Andersson et al.
2008, Kuffner et al. 2008, Ries et al. 2009, Ries 2010,
Lombardi et al. 2011, Smith et al. 2012). In this re -
gard, northeastern Atlantic species of the genera
Corallina and Ellisolandia may demonstrate reduced
susceptibility to the impacts of OA on skeletal growth
and dissolution in comparison to other high-Mg calcite-
depositing coralline species, in particular rho do liths,
from similar geographic regions. The seasonal range
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A
Species Shore Relationship (y = mx + c) R2 m SE c SE r p n

height

C. officinalis Upper Mol% Mg/Ca = 0.00358 SST + 0.0894 0.51 ±0.0004542 ±0.005522 0.71 <0.0001 60
Lower Mol% Mg/Ca = 0.00372 SST + 0.0813 0.76 ±0.0002699 ±0.003281 0.87 <0.0001 60

C. caespitosa Upper Mol% Mg/Ca = 0.00286 SST + 0.1022 0.45 ±0.0003628 ±0.004410 0.67 <0.0001 60
Middle Mol% Mg/Ca = 0.00479 SST + 0.0766 0.69 ±0.0004138 ±0.005030 0.83 <0.0001 60

C. officinalis na Mol% Mg/Ca = 0.00367 SST + 0.0819 0.54 ±0.0005073 ±0.006247 0.74 <0.0001 45
(herbarium)

B
Species Relationship (y = y0 + b sin(2π(x/c) + d) R2 SE r p n

C. officinalis Mol% Mg/Ca =  0.47 y0 ± 0.0013 0.68 <0.0001 112
(herbarium) 0.1270 + 0.0145 sin[2π(Month/11.2423) + 3.5493] b ± 0.0015

c ± 0.9944
d ± 0.3211

Table 2. (A) Mol% Mg/Ca−temperature relationships for Corallina officinalis and C. caespitosa from Combe Martin, and herbar-
ium C. officinalis matched to sea surface temperature (SST). (B) Mol% Mg/Ca−month relationship for all herbarium C. offici-
nalis samples, where month is represented by values 1 to 11 (January to November) (see also Figs. 6 & 7). na: not applicable

Fig. 7. (a) Predicted seasonal cycles in mol% Mg/Ca of
Corallina officinalis upper and lower shore, and C. caespi-
tosa upper and middle shore, from Combe Martin, calcu-
lated using average monthly sea surface temperature (SST)
reported from CEFAS Stn 27 and linear regression equa-
tions shown in Table 2A. (b) Herbarium C. officinalis mol%
Mg/Ca (n = 112) with fitted sine waveform function in rela-
tion to month, showing 95% confidence intervals (dashed 

red lines) (see Table 2B for model equation)
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of Corallina Mg content reported here (approxi-
mately 0.11−0.16 mol% Mg/Ca) would correspond to
a solubility product range (the equilibrium constant
for a solid substance dissolving in an aqueous solu-
tion) of approximately −7.95 to −7.69 (log K at 25°C
and 0.98 bar CO2) based on Plummer & Mackenzie
(1974, their Table 3). For comparison, P. calcareum of
Kamenos et al. (2008) would have a seasonal solubil-
ity product range of approximately −7.65 to −7.15,
the less negative values indicating increased solubil-
ity. This supports recent work that has demonstrated
differential susceptibility of rhodolith and crustose
coralline algae to OA conditions in comparison to
geniculate coralline species (Noisette et al. 2013).

Temperature relationships and inter/intra-specific
mol% Mg/Ca patterns

Significant positive relationships identified be -
tween the mol% Mg/Ca of C. officinalis and C. cae-
spitosa and local SST (R2 = 0.45−0.76 across our data;
Fig. 6) highlight that under present climatic condi-
tions, Mg incorporation by Corallina species is
closely related to ambient seawater temperature.
This is in agreement with data for rhodolith species
from a similar geographic region (Kamenos et al.
2008), which have been highlighted as robust Mg-
palaeotemperature proxies (Kamenos et al. 2009),
and several marine calcifying species from numerous
regions (Chave 1954). For example, Chave (1954) ob -
served that in all groups of calcitic organisms where
sufficient data are available, a linear or near-linear
relationship exists between skeletal Mg content and
the water temperature in which the organisms grew.

While strong Mg−temperature re lationships have
been identified in numerous studies, Mg content is
known also to be a function of growth rate, which
is affected by several other abiotic parameters
(Moberly 1968, Andersson et al. 2008, Ries 2010,
2011). For marine macroalgae, temperature and irra-
diance are 2 fundamental parameters controlling
productivity, growth and distribution (Luning 1990,
Lobban & Harrison 1994). For calcifying species, car-
bonate chemistry also plays a crucial role in regulat-
ing calcification and thus growth processes (Anders-
son et al. 2008, Ries 2010, Egilsdottir et al. 2013). In
intertidal habitats, temperature, irradiance and car-
bonate chemistry are interdependent, showing
covariance over both long (i.e. seasonal) and short
(i.e. diurnal) time periods (Ganning 1971, Truchot &
Duhamel-Jouve 1980, Morris & Taylor 1983). While
our data indicate a significant relationship between

Cor allina skeletal Mg concentrations and SST, we
cannot rule out the potential influence of other fac-
tors, e.g. irradiance, on Mg incorporation via effects
to growth. Multifactorial laboratory incubations with
manipulation of temperature, irradiance and carbon-
ate chemistry are required to disentangle the individ-
ual roles of these factors.

Interspecific vital effects on Mg incorporation were
found by the present study to be lacking or weak
within the genus Corallina and between species of
Corallina and Ellisolandia (previously all members of
Corallina), as per the conclusions of Ries (2010). Dif-
ferent Corallina and Ellisolandia species sampled
simultaneously from the same location within sites
showed no significant difference in mol% Mg/Ca,
while intraspecific differences in mol% Mg/Ca were
evident between both local sites (i.e. Combe Martin
and Wembury Point) and across latitudes. At the
small spatial scale (within sites), differences in skele-
tal Mg content can be related to position on shore
and thus the varying influence of abiotic conditions.
Regular, short-term fluctuations in temperature and
other abiotic parameters (e.g. pCO2, O2, salinity,
nutrient concentrations and irradiance) are experi-
enced in intertidal rock pools inhabited by Corallina
and Ellisolandia species (Ganning 1971, Daniel &
Boyden 1975, Morris & Taylor 1983, Egilsdottir et al.
2013). During daylight emersion, irradiance drives
increases in rock pool water temperature and photo-
synthetic utilization of pCO2, increasing pH and car-
bonate saturation due to effects on the carbonate
chemistry equilibrium. During nighttime emersion,
the opposite trends are apparent, with conditions
potentially corrosive to calcite established through
production of pCO2 by respiration processes and sub-
sequent decreases in pH and carbonate saturation
(Ganning 1971, Truchot & Duhamel-Jouve 1980,
Morris & Taylor 1983). All of these dynamics may
potentially impact geniculate coralline algae growth
and calcification and thus Mg incorporation. In this
regard, rock pools higher up a shore will experience
longer periods of tidal emersion and therefore more
extreme fluctuations in abiotic parameters, while
lower shore rock pools, and the species therein, will
be more influenced by ambient seawater conditions,
e.g. SST. This trend is  present in our data, whereby
stronger regression of Corallina mol% Mg/Ca to
ambient SST is observed the further down a shore
the species was collected. In addition, rock pool size
may influence the degree of variability in abiotic con-
ditions and thus skeletal Mg incorporation. Larger
and deeper pools, for example, are known to have
more stable conditions (Ganning 1971). The extremes
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in mol% Mg/Ca of C. caespitosa collected from mid-
dle shore pools in comparison to upper pools likely
relate to extremes in abiotic conditions experienced
in these small/shallow middle shore pools (volume:
ca. 0.09 m3, depth: ca. 2−4 cm), in comparison to
upper shore pools (ca. 40 m3 volume and 500 cm
deep) (Table 1).

Across latitudes, intraspecific differences in C. offi -
ci nalis mol% Mg/Ca observed during summer and
autumn may suggest that decreases in light, seawa-
ter carbonate saturation and temperature caused a
decrease in Mg concentration in Corallina with in -
creasing latitude (Chave 1954, Mackenzie et al. 1983,
Andersson et al. 2008). This data should, however, be
interpreted with caution, given the reduced sampling
frequency in Iceland and northern Spain, and com-
parisons between different sampling months across
latitudes. Additionally, samples of C. officinalis col-
lected from Þorlákshöfn in southwest Iceland may
experience warmer conditions than implied by its
location just south of the Arctic Circle. Despite the
higher latitude, southwest coastal Iceland experi-
ences a relatively moderate temperature regime due
to the domination of the Irminger Current, a rela-
tively warm offshoot from the North Atlantic Current,
which results in summer SST over 10°C (Jiang et al.
2001). As such, ‘latitudinal’ differences in C. officinalis
mol% Mg/Ca may be reduced between e.g. south-
west Iceland and the UK. To fully elucidate potential
gradients in mol% Mg/Ca of geniculate coralline algal
species across latitudes, sampling over complete sea-
sonal cycles is required at a range of latitudes.

Recent past (i.e. 1850−2010) mol% Mg/Ca cycles

Despite the sporadic nature of herbarium collec-
tions, analysis of C. officinalis samples housed in the
algal herbarium of the Natural History Museum
(BM), London, enabled investigation into recent past
cycles in Mg incorporation by Corallina species in
the northeastern Atlantic, providing important infor-
mation with regard to natural variability in Corallina
skeletal mineralogy. Herbarium collections can thus
represent an important resource for climate change
and OA research (though see Huisman & Millar 2013
for a discussion of herbarium limitations).

Notably, over the period ~1850−2010, no signifi-
cant change in the mol% Mg/Ca ratio of herbarium
C. officinalis was detected during the present study,
while within-year variability strongly reflected pres-
ent-day seasonal cycles in skeletal Mg incorporation
of Corallina species in terms of both absolute concen-

trations and ranges. The influence of SST on Coral-
lina Mg incorporation was also supported by signifi-
cant positive regression of herbarium C. officinalis
mol% Mg/Ca cycles with locally reported SSTs. Our
herbarium data thus confirm our present-day sea-
sonal cycles in mol% Mg/Ca, strengthens the rela-
tionship between Mg incorporation and SST in
Corallina species, and indicates that within the inter-
tidal, such seasonal cycles have not changed signifi-
cantly over the last ca. 150 yr (see below).

Predictive models

Corallina mol% Mg/Ca and SST relationships
enable projection of Corallina’s skeletal mineralogy.
Given the change in herbarium C. officinalis skeletal
Mg content expected with temperature (Table 2B),
we would expect an increase of approximately 0.23
mol% MgCO3 with the increase in global average
SST of 0.65°C over the period 1850−2005 caused by
climate change (Solomon et al. 2007). Such an in -
crease in Mg concentration was not observable in
herbarium samples over the period ~1850−2010,
most likely owing to the sporadic nature and lack of
replication of herbarium collections, and intraspecific
variation in Corallina Mg concentration within and
between sites. Additionally, simultaneous decreases
in skeletal Mg content owing to decreased seawater
carbonate saturation caused by concomitant OA over
this period may have occurred (Ries 2011, Egilsdottir
et al. 2013). However, had an increase of 0.23 mol%
MgCO3 occurred since 1850 in relation to increased
SST, our data indicate that this would represent an
increase of just 3.2% of the seasonal variation expe-
rienced by C. officinalis in the UK intertidal. It is
therefore unlikely that cycles in intertidal C. offici-
nalis Mg incorporation have been significantly
impacted by climate change over the last ~150 yr.

By 2100, climate change models predict increased
global ocean average SST ranging from +0.6°C to
more than +3.0°C and a further decrease in average
ocean pH of 0.13 to 0.42 under IPCC RCP2.6 and
RCP8.5, respectively (Collins et al. 2013). A 3°C
increase in SST could cause an increase in C. offici-
nalis and C. caespitosa Mg content of approximately
1.1 mol% MgCO3, corresponding to approximately
32% of the seasonal variability in Mg concentration
currently experienced by these species in the north-
eastern Atlantic. During periods of highest skeletal
Mg content (i.e. August), Corallina mol% Mg/Ca
would increase to approximately 0.15, while in cooler
months (i.e. February), mol% Mg/Ca of approxi-
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mately 0.12 would be expected, giving a new solu-
bility product range (log K at 25°C and 0.78 bar
CO2) of approximately −7.74 to −7.93 (Plummer &
Mackenzie 1974). Although maximum Mg concen-
trations re main substantially less than observed in
present-day rhodolith species (Kamenos et al. 2008),
in creases in the Mg content of Corallina may have
impacts on skeletal growth and dissolution. This
may be particularly important given Corallina’s
intertidal habitat, where rock pool pCO2 can natu-
rally reach 1000 µatm during dark tidal emersion
periods due to respiration processes, causing signifi-
cant decreases in rock pool carbonate saturation,
and thus conditions corrosive to skeletal CaCO3

(Ganning 1971, Daniel & Boyden 1975, Morris &
Taylor 1983, Egilsdottir et al. 2013).

Over the long term, reductions in seawater carbon-
ate saturation owing to OA that will occur simultane-
ously with increases in SST may serve to decrease
skeletal Mg concentrations, and therefore solubil-
ity/potential vulnerability to OA, and should also be
considered when projecting future responses of cal-
cifying organisms. For example, Egilsdottir et al.
(2013) demonstrated an average reduction of 0.013
mol% Mg/Ca in new structures formed by E. elon-
gata in acidified conditions. This represents approxi-
mately 39% of the annual Mg variation experienced
by present-day UK Corallina populations, of a similar
magnitude to the increase projected with +3°C SST.
However, as multi-stressor incubation studies (i.e.
increased temperature and decreased calcite satura-
tion) have not been conducted with Corallina or
Ellisolandia species to date, it is currently unknown
which of these stressors (if either) will have a domi-
nant influence on skeletal mineralogy and thus solu-
bility under future oceanic conditions.

The potential impacts of climate change (increased
SST and OA) on calcifying species of the genera Co -
rallina and Ellisolandia will be complex and should
be addressed by multi-stressor future scenario incu-
bations. Given the intertidal nature of these impor-
tant ecosystem engineers (Nelson 2009), the results
of such studies would benefit from knowledge of the
natural variation in temperature and seawater car-
bonate chemistry currently experienced during peri-
ods of tidal emersion. Results of the present study
demonstrate the present-day and recent-past skele-
tal mineralogy of temperate geniculate coralline
algal species, the relationship between skeletal Mg
content and SST, and place climate change and OA-
induced changes in the skeletal mineralogy of these
species into meaningful context with regard to pres-
ent-day seasonal cycles.
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Abstract

Seaweed and seagrass communities in the northeast Atlantic have been pro-
foundly impacted by humans, and the rate of change is accelerating rapidly
due to runaway CO2 emissions and mounting pressures on coastlines associ-
ated with human population growth and increased consumption of finite
resources. Here, we predict how rapid warming and acidification are likely
to affect benthic flora and coastal ecosystems of the northeast Atlantic in
this century, based on global evidence from the literature as interpreted by
the collective knowledge of the authorship. We predict that warming will kill
off kelp forests in the south and that ocean acidification will remove maerl
habitat in the north. Seagrasses will proliferate, and associated epiphytes
switch from calcified algae to diatoms and filamentous species. Invasive
species will thrive in niches liberated by loss of native species and spread
via exponential development of artificial marine structures. Combined
impacts of seawater warming, ocean acidification, and increased storminess
may replace structurally diverse seaweed canopies, with associated calcified
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and noncalcified flora, with simple habitats dominated by noncalcified, turf-
forming seaweeds.

Introduction

Seaweed and seagrass communities in the northeast
Atlantic have been profoundly impacted by humans, and
the rate of change is accelerating rapidly due to runaway
CO2 emissions, mounting pressures on coastlines associ-
ated with human population growth and increased con-
sumption of finite resources. Global reviews of the known
effects of global warming and ocean acidification (i.e.,
falling pH and carbonate levels combined with rising CO2

and bicarbonate levels) make it clear that although some
taxa will benefit, others will be adversely impacted (Har-
ley et al. 2012; Koch et al. 2013). Benthic phototrophs,
that is, fleshy and calcified macroalgae, seagrasses, and
microphytobenthos (MPBs), contribute significantly to
coastal primary production, facilitate export of carbon
from high to low productivity systems, and fuel entire
food webs (Steneck et al. 2002). They also produce vari-
ous volatiles, notably dimethyl sulfide (DMS) involved in
algal physiology and defense (Stefels et al. 2007) that
affect atmospheric chemistry and climate (Ayers and
Cainey 2007; Carpenter et al. 2012). Species distributions
are affected by a multitude of factors, but the major driv-
ers of change are considered to be acidification and
warming (Harley et al. 2012; Bijma et al. 2013). Some
benthic algae and seagrasses are expected to thrive at
higher CO2 levels, whilst others might be negatively
impacted (Koch et al. 2013; Kroeker et al. 2013). High-
latitude calcifying algae are at particular risk as surface
waters are becoming more corrosive to their skeletons
(Kamenos et al. 2013). Additionally, surface water warm-
ing is shifting the distributions of many species polewards
(Poloczanska et al. 2013). The success of any photoauto-
troph in a high CO2 world will be a balance between its
competitive ability for resources, resistance to herbivores,
and tolerance to the environmental conditions (Connell
et al. 2013).

Here, we make predictions as to how rapid warming
and acidification (Feely et al. 2008; Steinacher et al. 2009)
are likely to affect benthic flora and coastal ecosystems of
the northeast Atlantic in this century based on global evi-
dence from the literature as interpreted by the collective
knowledge of the authorship. There has been considerable
progress in our understanding of how primary producers
are affected by changes in ocean temperature and acidifi-

cation, but it is still unclear how this will affect ecosys-
tems at the regional scale. Here, we focus on the
northeast Atlantic as its long history of study provides a
unique baseline from which to assess change (Brodie
et al. 2009). The region supports a rich benthic flora
including habitats formed by brown algae (e.g., kelp
forests), coralline algae (e.g., carbonate deposits), and
seagrass beds.
Over the last century, human activities have had more

impact on the coastal zone than climate change but whilst
such human activities continue to increase (Nicholls et al.
2007 and refs therein) this is expected to change as sea
surface isotherms are moving polewards rapidly in the
northeast Atlantic whilst waters corrosive to carbonate are
now present in shallow Arctic waters and are spreading
south (Fig. 1).
In this study, we review evidence and make predictions

about the combined effect of warming and acidification
on the following major groups of organisms: fleshy, inva-
sive and calcified macroalgae, seagrasses, and MPBs. We
capture the combined predictions in Figures 1 and 2 and,
at the end, provide an outline of research that we
consider needs to be undertaken. Our overall objective is
to illustrate how these changes will affect the diverse and
well-studied benthic marine flora of the northeast Atlantic
and the impact on ecosystem structure and function. This
should serve as a template to stimulate further discussion
and work.

Fleshy Algae

In the northeast Atlantic, kelp forests (Laminariales)
dominate algal biomass in the subtidal and fucoids
(Fucales) in the intertidal. Kelp beds are amongst the
most productive habitats on Earth (Mann 1973, 2000;
Reed et al. 2008) and are a major source of primary pro-
duction in coastal zones of temperate and polar oceans
worldwide (Steneck et al. 2002). Other fleshy algae, such
as the large fucoids that dominate many intertidal habi-
tats (e.g., Ascophyllum nodosum), are also highly produc-
tive and play a key role in carbon capture and transfer in
coastal ecosystems (Goll!ety et al. 2008). In the Atlantic,
primary production can be 1000 g C m!2 year!1 for
Laminariales and in excess of 500 g C m!2 year!1 for
fucoids (Mann 1973, 2000; Vadas et al. 2004); this
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productivity represents a major component of coastal
food webs. Whilst some macroalgal biomass is consumed
directly by herbivorous fish and invertebrates, most bio-
mass is processed as detritus or dissolved organic matter.
Detrital biomass is then processed by microbes and may
be consumed by suspension feeders, detrital grazers, and
general consumers of organic material in soft sediments
(deposit feeders), thereby transferring energy to higher
trophic levels.

It is predicted, based on the relatively limited data
available, that rising temperatures and ocean acidificat-
ion will combine to profoundly alter fleshy algal species

composition, abundance, and productivity worldwide
(Harley et al. 2012; Krumhansl and Scheibling 2012;
Koch et al. 2013). With continued warming, some spe-
cies and populations will become chronically (gradual
warming) or acutely (extreme events) stressed as temper-
atures exceed physiological thresholds. If physiological
processes cannot be maintained, primary productivity
will decrease and, ultimately, widespread mortality may
ensue (Smale and Wernberg 2013), as evidenced by the
retraction of kelp beds at their low latitudinal limits
(Tuya et al. 2012; Wernberg et al. 2013). On the other
hand, where waters remain cool enough, assemblages
of fleshy macroalgae are expected to benefit from high
CO2 conditions as increased inorganic carbon availability
may enhance the growth and reproduction of fleshy
macroalgae (reviewed in Harley et al. 2012; Koch et al.
2013; Kroeker et al. 2013). In Figure 2, we show exam-
ples of how such changes are predicted to affect the
northeast Atlantic where the flora is dominated by kelps
(Laminariales) in the subtidal and fucoids (Fucales) in
the intertidal.
Such predictions are needed as kelp forests are amongst

the most productive habitats on Earth and together with
fucoids underpin the ecology of northeast Atlantic coastal
ecosystems (Mann 1973; Smale et al. 2013). Algal com-
munities are expected to increase in biomass, abundance,
and detrital production in Boreal and Arctic waters in
response to increased inorganic carbon availability as they
lack calcified skeletons and so are immune to corrosion
by acidified waters. We predict that North Pacific sea-
weeds, such as Alaria marginata, may colonize cooler
regions of the northeast Atlantic (Fig. 2) due to warming
and the opening of Arctic shipping routes. Species such
as Nereocystis luetkeana are less likely to spread to the
Atlantic as they are light limited at high latitudes and less
easily spread via shipping. As kelps and fucoids are cool
water adapted and stressed by high temperatures (Steneck
et al. 2002), we predict that they will undergo significant
changes in their distribution; there have already been
widespread northeast Atlantic losses of the kelps Saccha-
rina latissima (Moy and Christie 2012), Saccorhiza polysc-
hides, Laminaria ochroleuca (Fern!andez 2011), Laminaria
hyperborea (Tuya et al. 2012), Laminaria digitata (Yesson
et al., unpublished manuscript), and Alaria esculenta
(Simkanin et al. 2005; Mieszkowska et al. 2006; Merzouk
and Johnson 2011) attributed to ocean warming in con-
junction with other stressors. Of note, Bartsch et al.
(2013) have highlighted that the main determinant in
survival of Laminaria digitata from Helgoland was
restricted temperature windows for sporogenesis due to
sea surface temperature warming. Warming in the Boreal
region is expected to replace Laminaria hyperborea with
L. ochroleuca; this may have limited ecological impact, as

Figure 1. Present distribution of habitat-forming species in the

northeast Atlantic, and an estimate of environmental change by

2100. SST anomaly (change from the present) is based on annual

mean from an A1B scenario ensemble as Jueterbock et al. (2013).

Many species’ ranges such as the kelp L. hyperborea are thought

to be limited by summer and winter thermoclines (van den Hoek

1982; Dieck 1993). Temperature changes are expected to impact

distributions as species’ ranges track these limits (Harley et al. 2012).

Maerl are calcifying species utilizing high magnesium calcite, which

has a similar saturation state to aragonite in the northeast Atlantic

(Andersson et al. 2008). Most maerl are currently found in locations

supersaturated for aragonite (Ω > 2). Predictions of the saturation

state for 2100 (Steinacher et al. 2009) suggest that most of the

northeast Atlantic will be outside this range.
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(A)

(B)

(C)

Figure 2. Predicted change in northeast Atlantic benthic marine flora if CO2 emissions continue unabated. (A) Arctic region: warming will be

detrimental to cold-adapted species, and acidification will corrode maerl (M.). Pacific species, for example, Alaria marginata (Am), will invade as

polar ice melts, competing with native species such as Laminaria hyperborea (Lh) and Alaria esculenta (Ae). Fleshy invasives, for example,

Sargassum muticum (Sm), will move north competing with fucoids, for example, Fucus distichus (Fd), in the intertidal. Acidification will corrode

epiphytic calcified algae, for example, Titanoderma pustulatum (Tp), and increased CO2 levels will stimulate growth of diatoms (D.) (magnified

circles) and seagrasses such as Zostera marina (Zm). (B) Boreal region: Laminaria hyperborea (Lh) forests will be increasingly dominated by

Laminaria ochroleuca (Lo), with the loss of Alaria esculenta (Ae) and fucoids, for example, Fucus vesiculosus (Fv) and the continued spread of

invasive Undaria pinnatifida (Up), Sargassum muticum (Sm), and Grateloupia turuturu (Gt). As in the Arctic, maerl beds will be corroded,

seagrasses will thrive, but epiphytic calcified algae will be reduced or replaced with diatoms and filamentous seaweeds (magnified circles). (C)

Lusitanian region: kelps will be replaced by smaller, fleshy algae and invasive species, for example, Caulerpa taxifolia (Ct) will proliferate. Fucoids

will be replaced by invasives such as Asparagopsis armata (Aa). Seagrasses will thrive, and it is expected that maerl and epiphytic calcified algae

will be retained (magnified circles).
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these kelps are similar both structurally and functionally,
although subtle differences in kelp structure can influence
their associated communities (Blight and Thompson
2008).

There is considerable evidence of change in fucoid dis-
tribution in the northeast Atlantic. Range expansion in
F. vesiculosus and no apparent change in distribution of
F. serratus in Portugal (Lima et al. 2007) are countered
by depleted genetic diversity in the latter species (Pearson
et al. 2009; Jueterbock et al. 2013) and evidence of a sig-
nificant decline for both species in the UK (Yesson et al.,
unpublished manuscript). Further evidence of decline in
some regions includes Ascophyllum nodosum (Simkanin
et al. 2005; Davies et al. 2007), Pelvetia canaliculata (Lima
et al. 2007), Chorda filum (Eriksson et al. 2002), and
Himanthalia elongata (Fern!andez and Niell 1982; Lima
et al. 2007). We predict that there will be declines in the
fucoids Ascophyllum nodosum, Fucus serratus, F. vesiculosus
(Fig. 2), Pelvetia canaliculata, and the other large, com-
mon brown algae Chorda filum and Himanthalia elongata
(Yesson et al., unpublished manuscript). We also predict
that Fucus distichus will decline based on evidence of loss
from its southern limit in the UK (Brodie et al. 2009).

In parallel, an increase in the relative abundance of
fast-growing “annuals”, such as Saccorhiza polyschides and
Undaria pinnatifida, is expected to have major implica-
tions for kelp forest structure and functioning, as stable
perennial habitats become more “boom and bust” in nat-
ure (Smale et al. 2013). Whether or not a species is
replaced by a functional equivalent could be key in future
ecosystem functioning. For example, replacement of
Laminaria hyperborea with Laminaria ochroleuca, which
are similar both structurally and functionally, may have
less impact, although L. ochroleuca does not support the
diversity of stipe epiflora and fauna associated with
L. hyperborea, and subtle differences in kelp species traits
influence local biodiversity patterns (Blight and Thomp-
son 2008).

In contrast, warming is expected to cause losses of
the cool-temperate species Alaria esculenta in the Boreal
region (Fredersdorf et al. 2009) which will alter ecosys-
tems as it is the dominant species on very exposed
shores and an important mid-successional species
in more sheltered locations (Hawkins and Harkin
1985), yet there is no warm water equivalent to take
its place.

As the northeast Atlantic continues to warm and acid-
ify, we predict that kelp forests will die out in the Lusita-
nian region (Fig. 2). This shift from highly productive,
large, structural kelp species to smaller fleshy or filamen-
tous species is expected to decrease macrophyte biomass
and detrital input to coastal food webs (Krumhansl and
Scheibling 2012) with wide-ranging consequences for

community structure and ecosystem functioning (Smale
et al. 2013).
Both direct and indirect effects of changing water

chemistry are likely to affect grazers and alter food webs
(Alsterberg et al. 2013; Asnaghi et al. 2013; Borell et al.
2013; Falkenberg et al. 2013). Differences in algal defen-
sive chemistry, structural properties, and nutritional
quality in response to ocean acidification are likely to be
manifest at both intra- and interspecific levels as resource
allocation patterns (see Arnold and Targett 2003) and
assemblages (see Kroeker et al. 2013) respond to reduced
alkalinity; indeed, evidence already exists for the direct
effects of acidification upon defenses and structure (e.g.,
Borell et al. 2013; Kamenos et al. 2013). Phaeophytes may
be particularly implicated in cascading effects resulting
from altered biochemistry in response to acidification as
their carbon-dense phlorotannins, which can constitute
15% of algal dry mass (Targett et al. 1992), have reduced
energetic production costs (see Arnold and Targett 2003)
but are known to significantly influence both primary
consumer and detritivore exploitation of algal tissues.
Thus, both intrabenthic and benthic-pelagic trophic link-
ages are dependent upon the consumption of live and
decaying seaweeds by primary consumers, processes
mediated by acidity-sensitive algal characteristics (Hay
et al. 1994).

Invasive Species

The rate of recorded introductions of non-native algae
and the spread of invasive algae are increasing in the
northeast Atlantic (Arenas et al. 2006; Sorte et al. 2010),
although direct evidence to indicate non-native benthic
algae cause extinctions in communities is lacking (Reid
et al. 2009). Approximately 44 species of non-native ben-
thic macroalgae are reported for the northeast Atlantic
(Guiry 2012) including large brown species such as Sar-
gassum muticum and Undaria pinnatifida.
As with native species, those opportunistic invasive

fleshy algae that are tolerant of warming and low carbon-
ate saturation are likely to benefit from increased carbon
availability (Weltzin et al. 2003). There is also evidence
from a study of the invasive red seaweed Neosiphonia
harveyi where the effects of low temperatures on photo-
synthesis were alleviated by increased pCO2 (Olischl€ager
and Wiencke 2013) that suggests warmer water species
will be able to move into cooler areas where calcareous
algae and fleshy species such as the kelps and fucoids
have been lost. At Mediterranean CO2 vents, invasive gen-
era such as Sargassum, Caulerpa, and Asparagopsis thrive
where native coralline algae are excluded by acidified
waters (Hall-Spencer et al. 2008). Warming is expected to
facilitate the spread of Caulerpa taxifolia into Lusitanian
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waters (Fig. 2), whilst northward range shifts of native
fleshy species are expected to provide opportunities for
invasive macroalgae to colonize. In Lusitanian regions,
the die back of kelp forests due to increased temperatures
may increase rates of macroalgal invasions by such species
as Asparagopsis armata which is expected to proliferate
alongside cooler water invasive species such as Sargassum
muticum, Undaria pinnatifida, and Grateloupia turuturu
in the Boreal region (Fig. 2).

Indirect changes associated with a high CO2 world will
also likely impact the future dynamics of macroalgal inva-
sions in the northeast Atlantic. As we switch to reliance
on offshore renewable energy capture (Breton and Moe
2009), associated increases in new and artificial marine
structures will likely provide important, competitor free,
bare substrata, facilitating the spread, and establishment
of non-natives (Nyberg and Wallentius 2005). Melting of
the polar ice cap will also open up new invasion corridors
between the Pacific and Atlantic Oceans in the form of
both natural dispersion and introduction associated with
polar shipping routes (Reid et al. 2007).

On the whole, we predict that under a high CO2 world,
macroalgal invasions in the northeast Atlantic will
increase, aided by increased carbon availability, increased
stress imposed on native (especially calcareous) macroal-
gal species, loss of key habitat-forming kelps at their
southerly limits, and indirect factors facilitating dis-
persal, transportation, and establishment of non-native
populations.

Calcified algae

There are a wide range of calcified taxa in the northeast
Atlantic, including the red calcifying coralline algae, the
green algal genus Acetabularia, and the brown algal genus
Padina. The coralline algae include crustose coralline
algae (CCA), free-living coralline algae (rhodolith/maerl),
and geniculate (articulated) turfing algae. These form a
cosmopolitan group of marine flora, ubiquitous in inter-
tidal and shallow subtidal habitats, where they act as
important ecosystem engineers (Kamenos et al. 2004; Nel-
son 2009).

As with fleshy algae, each calcified alga has a thermal
optimum, so their distributions are probably already
changing due to global warming and are expected to shift
significantly as global sea surface temperatures continue
to rise. Furthermore, calcified algae may not benefit from
the increasing availability of inorganic carbon for photo-
synthesis as ocean acidification also increases the meta-
bolic costs of calcification and can corrode their skeletons
when carbonate becomes undersaturated (Nelson 2009).

We predict that one of the largest impacts of sustained
CO2 emissions will likely be the dissolution of areas of

dead maerl and to a lesser extent live maerl habitat in the
northeast Atlantic. Surface water that is corrosive to algal
carbonate is already expanding southwards in the Arctic
(Steinacher et al. 2009). Although there is conflicting lab-
oratory evidence over the vulnerability of live maerl to
future conditions (Noisette et al. 2013), field observations
show that maerl beds mainly form in waters with high
carbonate saturation (Hall-Spencer et al. 2010). Although
some coralline algae sustain calcification over long peri-
ods of exposure to elevated pCO2, a loss of structural
integrity is inherent (Ragazzola et al. 2012; Kamenos et al.
2013; Martin et al. 2013), which presumably comes with
an energetic cost to growth (Bradassi et al. 2013). Those
species that require stable conditions at high carbonate
saturation states are likely to be negatively impacted
(B€udenbender et al. 2011). We expect that maerl habitat
will be lost at high latitudes as aragonite saturation falls
(Fig. 1), although Lusitanian maerl will persist (Fig. 2).
As thin epiphytic coralline algae dissolve easily (Martin
et al. 2008), they are expected to decline in areas where
seawater becomes corrosive to their skeletons. Those spe-
cies that tolerate widely fluctuating levels of CO2, such as
intertidal Corallina and Ellisolandia species, will be more
resilient to ocean acidification (Egilsdottir et al. 2013).
However, competition from fleshy algal species that bene-
fit from high CO2 may indirectly lead to loss of calcified
species (Kroeker et al. 2013). Similarly, persistence of spe-
cies in decalcified forms under high CO2 may contribute
to phase shifts from calcified dominated assemblages to
fleshy algae (Johnson et al. 2012).
Northeast Atlantic coralline algal habitats are reported

to contain more than double the annual open-ocean
average of dissolved DMS concentration (Burdett 2013);
thus, loss of calcified algae, in combination with biogeo-
graphic shifts and species invasions, may alter habitat
taxonomic composition to low-DMSP-producing fleshy
algae (Fig. 2). The loss of structural integrity of coralline
algal skeletons under high CO2 conditions may also facili-
tate the release of DMSP into the surrounding water
column, stimulating the microbial consumption of DMSP
and production of DMS (Burdett et al. 2012).
Overall, we predict there may be significant loss of

primarily dead but also living calcified macroalgae in the
northeast Atlantic by 2100, beginning at high latitudes
and spreading further south over the century. Monitoring
is required to assess the impact of these changes given the
importance of calcified algae to fisheries and ecosystem
function (Kamenos et al. 2013).

Seagrasses

Extensive seagrass beds are found in the northeast
Atlantic (Fig. 1). They sequester carbon through photo-
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synthesis and store large quantities in both the plants, but
more importantly, in the sediment below them (Mcleod
et al. 2011; Fourqurean et al. 2012). Unlike rainforests
where the carbon captured remains for decades or centu-
ries, the carbon captured by sediments from seagrasses
can remain stored for millennia (Mateo et al. 1997).

At present, seagrasses are carbon limited and are thus
expected to benefit from ocean acidification due to
increased available substrate for photosynthesis. Therefore,
considering the carbon sequestration ability of seagrasses
and predicted increases in inorganic carbon utilization
due to ocean acidification (Koch et al. 2013), we predict
that in a high CO2 world the below-ground carbon
pool associated with northeast Atlantic seagrass beds
will increase. Paleoreconstruction of sediments underlying
old seagrass meadows may reveal the long-term carbon
sequestration patterns of northeast Atlantic seagrass
species (Mateo et al. 2010) and allow future predictions.

Although loss of seagrass’ calcareous epiphytes may be
beneficial through removal of associated oxidative stress,
under high CO2, nutrients and temperature, we predict
that non-calcareous epiphytes such as filamentous algae
and diatoms will increase (Alsterberg et al. 2013). This
may lead to shifts in the epiphyte community structure
from less palatable calcareous, to more palatable algae.
Additionally, decreased production of grazing deterrent
phenolics by seagrasses under high CO2 (Arnold et al.
2012) may increase the palatability of seagrass leaves for a
number of invertebrate and fish grazers, maintaining or
increasing grazing rates of seagrass blades, depending on
food preferences of grazers and the availability of other
food sources.

Positive effects of increased CO2 on seagrass physiology
may help to ameliorate negative effects of other environ-
mental stressors known to impact seagrass growth and
survival. If seagrasses are afforded the protection they
need from damage by fishing gear, dredging, and both
organic and nutrient pollution, we predict these habitats
will proliferate in a high CO2 northeast Atlantic, albeit
with the loss of certain calcified organisms and the
increasing spread of invasive macroalgae within seagrass
habitats (Fig. 2).

Microphytobenthos

The microphytobenthos (MPBs) are benthic microscopic
algae including cyanobacteria, diatoms, benthic dinofla-
gellates, and diminutive life-history stages of macroalgae.
They are the base of many food webs, sustaining thou-
sands of species of grazing and deposit feeding inverte-
brates in the northeast Atlantic, and they form biofilms
that affect the colonization of rocky substrata, the biogeo-
chemistry of sediments, and stabilize coastal mud flats.

Some MPBs effectively exist via symbiotic relationships
with invertebrates such as anemones and corals whilst
other MPBs live within shellfish and can be severely toxic
to humans.
We predict that there will be an increasing abundance

of diatoms in northeast Atlantic MPB, based on evidence
from studies conducted at CO2 vent sites in the Mediter-
ranean Sea where most insight into the potential impacts
of high CO2 on the MPB come from. In these vent
systems, diatom- and cyanobacteria-dominated biofilms
predominate, and broad scale analysis of microeukaryote
diversity has shown that MPB communities in high CO2

water are substantially modified compared with ambient
conditions (Lidbury et al. 2012). Responses to elevated
CO2 are, however, variable between different diatom and
cyanobacteria groups (Raven et al. 2012; Johnson et al.
2013). The response of toxic dinoflagellates to high CO2

conditions should also be considered in the northeast
Atlantic, given previous switches to toxic bloom states
observed in paleo/fossil records (Sluijs et al. 2007),
evidence of shift toward less toxic variants under high
CO2 (Eberlein et al. 2012), and the potential for enhanced
production of toxins during high CO2 conditions (Fu
et al. 2010).
Due to potential increased carbon uptake by MPB, it is

also possible to predict an increased export of organic
carbon and subsequent production of an extracellular bio-
film matrix, as has been observed under high CO2 condi-
tions at the Volcano vents (Lidbury et al. 2012), and in
analogous planktonic systems (Borchard and Engel 2012).
Given that MPBs, with seagrasses, determine sediment
organic matter composition (Hardison et al. 2013),
increased carbon export by CO2-stimulated MPB could
significantly alter carbon cycling processes across north-
east Atlantic sediment ecosystems. However, OA also
increases degradation of polysaccharides by bacterial
extracellular enzymes (Piontek et al. 2010), indicating that
OA-controlled feedback mechanisms will occur.
To allow further predictions, we require a deeper

understanding of the mechanistic effects of high CO2 on
key MPB groups. This will require research into dissolved
inorganic carbon (DIC) uptake-mechanisms and intracel-
lular pH regulatory mechanisms. The production of CO2

internally from active uptake of HCO!
3 or externally via

carbonic anhydrase activity will be strongly influenced by
intracellular and cell surface pH (Taylor et al. 2011; Flynn
et al. 2012). Additionally, cell size, shape, and biofilm
formation can have profound effects on cell surface pH
relations and consequent DIC speciation. pH at the sur-
face of larger cells or aggregates is influenced significantly
more by metabolic membrane H+ fluxes, with substantial
cell surface pH fluctuation in relation to photosynthetic
metabolism observed for large diatom cells (K€uhn and
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Raven 2008; Flynn et al. 2012). Under elevated CO2,
larger cells are likely to experience substantially larger
diurnal pH fluctuations than smaller cells (Flynn et al.
2012). A deeper understanding of the direct effects on
physiology will be critical in order to model impacts of
elevated CO2 on MPB.

In addition, MPB responses to high CO2 need to be
understood at the ecosystem level. For example, biogeo-
chemical impacts of CO2 enhanced MPB communities
may be modulated by heterotrophic components of the
same community (Witt et al. 2011), or increased MPB
biomass may be mediated by grazing pressure (Alsterberg
et al. 2013). In the northeast Atlantic, the impacts of OA
on MPB community diversity could further modify, or be
modified by, other impacts such as increased temperature
and eutrophication.

Conclusions

Carbon dioxide emissions are causing rates of global
warming and ocean acidification that will profoundly affect
marine flora worldwide (P€ortner et al. 2014). We have
illustrated how these changes will affect the diverse and
well-studied benthic marine flora of the northeast Atlantic
(Figs. 1 and 2), and how these changes will likely affect
ecosystem structure and function. It is clear that unless
CO2 emissions are curbed, there will be far-reaching
consequences for regional biodiversity patterns, trophic
linkages, nutrient cycling, and habitat provision for socio-
economically important marine organisms. Warming will
kill off kelp forests in the south, and ocean acidification
will remove maerl habitat in the north. Seagrasses will pro-
liferate, and associated epiphytes switch from calcified
algae to diatoms and filamentous species. Invasive species
will thrive in niches liberated by loss of native species and
spread via exponential development of artificial marine
structures. Thus, combined impacts of seawater warming,
ocean acidification, and increased storminess may replace
structurally diverse seaweed canopies with associated
calcified and noncalcified flora with simple habitats
dominated by noncalcified, turf-forming seaweeds.

Over the longer term, the ability and rate of species/
populations to evolve will be crucial (Sunday et al. 2014).
Evolutionary change may lead to adaptation, but it still
may not be enough to prevent extinctions due to warm-
ing and acidification (Lohbeck et al. 2012). It will be vital
to understand and measure predictors of evolution, such
as genetic variability within and between populations, and
to understand how knowledge of plastic responses can be
leveraged to predict the evolutionary and/or adaptive
potential of populations. A much greater effort is needed
to develop real time maps of the key populations and
their genetic diversity.

Future research must also address the impact that loss
of the calcified and fleshy algae and their habitats will
have on other benthic flora groups, and benthic, pelagic,
and terrestrial fauna that are dependent on such resources.
The responses of MPB assemblages, and species-specific
information for DMSP and DMS production in algae and
seagrasses that will form the benthic floral assemblages
under increased CO2, are required. Underpinning this is a
need to quantify natural variability in carbonate chemistry
in the northeast Atlantic to gain a complete understanding
of the carbonate chemistry environment experienced by
species.
Finally, unless we take action, we will sleepwalk

through radical ecological changes to the phycology of
our coasts.
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Toward resolution of species diversity and distribution in the calcified red algal genera
Corallina and Ellisolandia (Corallinales, Rhodophyta)
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ABSTRACT: Cryptic?1 species diversity and the misapplication of names have restricted an understanding of species
boundaries in the tribe Corallineae of the calcified red algal order Corallinales. Recent DNA sequencing of type material
provided a framework facilitating further examination of genera within the tribe. A phylogenetic study of the genera
Corallina and Ellisloandia, based on cytochrome c oxidase subunit 1 and ribulose-bisphosphate carboxylase gene
sequences, was undertaken using Natural History Museum herbarium collections and contemporary samples to explore
species diversity, geographic distributions and the extent to which names have been misapplied. Twenty Corallina clades
likely corresponding to species were resolved, of which C. officinalis and C. caespitosa were confirmed, four were clades
newly identified during the present study and 14 had been reported by other workers in previous studies. These data
indicated considerable genetic diversity within the genus that was not readily apparent on the basis of morphology. The
generitype C. officinalis was shown to have a predominantly North Atlantic Ocean, cool-temperate distribution, whereas
the global distribution of C. caespitosa is confirmed for the first time, with samples from Asia, Australasia, Europe, Africa
and America. Widespread misidentification of Corallina species was documented, as was the need for sequencing of type
specimens to correctly apply names and for comparison with historical collections. The phylogeny reported here serves
both as a baseline for future phylogenetic positioning of Corallina species and highlights the degree to which species
concepts within this genus remain unresolved.

KEY WORDS: COI, Corallina, Corallinales, rbcL

INTRODUCTION

The red algal order Corallinales is characterized by the
presence of calcite in the cell walls (Silva & Johansen 1986)
and, with over 637 currently accepted species (Guiry & Guiry
2014), it is one of the most species-rich orders in the red algae
(Brodie & Zuccarello 2007). Given the ecological importance
of coralline algae in marine communities (Nelson 2009;
Martone et al. 2012), there is an effort to assess species
diversity within the order and to revise phylogenetic
relationships. It is generally acknowledged that morpholog-
ical characters alone are not sufficient to assign individuals
to various taxonomic levels within the Corallinales (Johan-
sen 1981; Silva & Johansen 1986; Woelkerling 1988; Bailey &
Chapman 1998) and previously emphasized that ‘key
diagnostic features’, such as conceptacle position (axial,
marginal or lateral) or the presence/absence of genicula, have
been demonstrated by combined morphological and molec-
ular studies not to be taxonomically informative, and do not
distinguish subfamilies (Bailey & Chapman 1998; Gabrielson
et al. 2011; Hind & Saunders 2013b). DNA comparisons
have proven an essential tool in resolving phylogenetic
relationships within the order (e.g. Bittner et al. 2011, Kato
et al. 2011) and more specifically, the subfamily Corallinoi-
deae (e.g. Gabrielson et al. 2011; Martone et al. 2012; Hind
& Saunders 2013a, b).

The subfamily Corallinoideae consists of two tribes, the
Corallineae and Janieae. Kim et al. (2007) examined
phylogenetic relationships within the Janieae and concluded
that it contains a single genus, Jania, in which species
formerly referred to Cheilosporum and Haliptilon should be
included. The Corallineae, including the genera Alatocladia,
Arthrocardia, Bossiella, Calliarthron, Chiharaea, Corallina,
Ellisolandia, Johansenia, Masakiella, Pachyarthron and the
species Pseudolithophyllum muricatum (Foslie) Steneck &
R.T. Paine, have been the focus of several recent phyloge-
netic studies addressing issues of diversity, misidentification
and taxonomic relationships (Robba et al. 2006; Walker et
al. 2009; Gabrielson et al. 2011; Martone et al. 2012; Brodie
et al. 2013; Hind & Saunders 2013a, b; Hind et al. 2014).
Important for such work is the method outlined by
Gabrielson et al. (2011), in which species identity is
approached through the application of molecular methods
to systematic problems by focusing on sequences obtained
from type specimens of generitype species and other species
included in each genus.

Corallina is the type genus for the subfamily Corallinoi-
deae and recent work (Robba et al. 2006; Walker et al. 2009;
Brodie et al. 2013; Hind & Saunders 2013b) has paved the
way for phylogenetic studies of this genus. Comparison of
mitochondrial and nuclear DNA sequences resulted in the
splitting of C. officinalis Linnaeus, the generitype species,
into two genetically distinct species, C. officinalis and a new
species, C. caespitosa R.H. Walker, J. Brodie & L.M. Irvine
(Walker et al. 2009). Using epitype specimens, Brodie et al.
(2013) revised the definition of C. officinalis and another
species, C. elongata J. Ellis & Solander, on the basis of both
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morphological and mitochondrial/nuclear DNA sequence
data. Concurrently, Hind & Saunders (2013b) established the
new genus Ellisolandia, with Ellisolandia elongata (J. Ellis &
Solander) K.R. Hind & G.W. Saunders as the generitype
(Basionym: C. elongata). These studies have provided a
morphological and DNA sequence-based characterization of
the generitype and other species of Corallina, allowing
reidentification of recent and past collections, following
Gabrielson et al. (2011) and Martone et al. (2012).

There are currently 271 species and infraspecific names
recorded for Corallina, of which 44 are currently accepted by
Guiry & Guiry (2014). The possibility of misidentification
and cryptic diversity has profound implications for species
delimitation within Corallina and consequently for the
understanding of species’ distributions (Brodie et al. 2013).
Martone et al. (2012), for example, on the basis of DNA
sequence analysis, observed that the generitype Yamadaia
melobesioides Segawa belongs to the same clade as the
northwestern Atlantic Ocean C. officinalis, reducing Yama-
daia to a synonym of Corallina. Similarly, Hind & Saunders
(2013b), using a multigene phylogeny, found that species
assigned toMarginisporum [including the generitype Margin-
isporum crassissimum (Yendo) Ganesan] and the generitype
Serraticardia maxima (Yendo) P.C. Silva resolve within the
Corallina lineage, and thus synonymized Marginisporum and
Serraticardia with Corallina, placing S. macmillanii (Yendo)
P.C. Silva in a new genus, Johansenia, given its divergence
from S. maxima. Additionally, through assessment of
morphological characteristics and the 5 0 end of the
cytochrome c oxidase I gene (COI-5P) and ribosomal
DNA internal transcribed spacer sequences, they uncovered
four cryptic Corallina species from Canadian waters and
demonstrated that four nonarticulated entities, currently
assigned to P. muricatum (sensu Steneck & Paine 1986?2 ),
resolved as a sister group to Corallina (Hind & Saunders
2013b). Finally, Brodie et al. (2013) noted several misappli-
cations of names within the genus Corallina, e.g. herbarium
specimens of C. caespitosa from the Atlantic Coast region of
France to which the name C. mediterranea Areschoug in J.
Agardh (1852, p. 568?3 ) had been applied, a name previously
considered a synonym of C. elongata, now Ellisolandia
elongata.

Evidence so far of cryptic species and misidentification of
specimens in Corallina appears to be comparable with the
situation found in other red algal genera where a concerted
effort (based on a combination of morphological and DNA
phylogenies) has been made to clarify taxonomy and
relationships (e.g. Hughey & Hommersand 2008; Lindstrom
et al. 2011; Sutherland et al. 2011). To continue to advance
our understanding of the diversity within these calcified
species, effort needs to be concentrated on regional floras, as
demonstrated by Hind & Saunders (2013b), who focused on
the Canadian Northwest Pacific Ocean. In addition, herbaria
can be a valuable source of material for this work.

The aim of the present study is to build on the recent
progress of Brodie et al. (2013) and Hind & Saunders
(2013b), studies that have provided DNA sequence data for
the generitypes and other species of Corallina and Elliso-
landia, by examining species diversity and geographic
distributions within Corallina and Ellisolandia, and the
extent to which names have been misapplied. We have

concentrated our efforts on obtaining DNA sequence data
from specimens identified as species of Corallina housed in
the algal herbarium at the Natural History Museum (BM),
which contains both contemporary and historic collections
of Corallina from around the world, and from contemporary
collections from the northeastern Atlantic Coast regions and
the Mediterranean Sea, that we can compare with recently
published data sets (Walker et al. 2009, Hind & Saunders
2013b). We have also compared our data with those for the
tribe Janieae because of the problems of misidentification.

To this end, the mitochondrial COI gene was chosen to
study species diversity, as this marker is a powerful tool for
DNA bar coding and is able to reveal potential incipient
speciation, cryptic diversity and phylogenetic relationships
(Saunders 2005; Robba et al. 2006). In addition, the ribulose-
biphosphate carboxylase (rbcL) plastid gene was sequenced
for specimens selected from clades identified in our COI
analysis, and additional sequences retrieved from GenBank
to produce a complementary phylogeny.

MATERIAL AND METHODS

DNA was extracted from 69 specimens in BM, including
individuals identified as Corallina caespitosa, C. chilensis
Descaisne, C. gracilis J.V. Lamouroux, C. mediterranea, C.
officinalis, C. pilulifera (Postels & Ruprecht) Setchell & N.J.
Gardner, C. vancouveriensis Yendo and Corallina sp. (Table
S1). Given the only recent establishment of Ellisolandia
(Corallina) elongata (Hind & Saunders 2013b), this selection
included samples identified as C. elongata. Of these initial 69
samples, DNA amplification of the COI gene region was
successfully achieved for 35 samples, three identified in the
BM herbarium as E. (C.) elongata (hereafter E. elongata) and
32 identified as belonging to the genus Corallina; this
represented c. 50% success rate of DNA extraction and
amplification of herbarium material.

For construction of the COI phylogeny, in addition to the
35 sequences from BM specimens, sequences were success-
fully derived from contemporary specimens collected within
2011–2013 and identified by collectors as Corallina sp. (n ¼
6), E. elongata (n ¼ 3), Jania sp. (n ¼1) and Haliptilon
squamatum (Linnaeus) H.W. Johansen, L.M. Irvine & A.
Webster (n ¼ 2) (Table S1). All unique COI sequences for
specimens identified as belonging to the genus Corallina were
retrieved from GenBank (n ¼ 36), in addition to unique
sequences for specimens identified as E. elongata (n¼ 6) and
belonging to the genera Pseudolithophyllum (n ¼ 4) and
Jania/Haliptilon (n ¼ 12). Three outgroup sequences [Lith-
othamnion glaciale Kjellman, Chondrus crispus Stackhouse
and Mastocarpus stellatus (Stackhouse) Guiry] were also
retrieved from GenBank, giving an overall total of 108
sequences in our COI phylogeny.

For comparison with and validation of our larger COI
phylogeny, the rbcL gene region of 33 BM herbarium
specimens identified as belonging to Corallina was se-
quenced. Of these, 24 rbcL sequences were from specimens
that also had the COI gene region sequenced during the
present study. The remaining nine rbcL sequences of
‘Corallina’ BM herbarium specimens were from BM
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specimens for which COI sequence data were already
available on GenBank (n ¼ 4) and specimens for which
COI amplification had not been successful (n ¼ 5). In
addition, rbcL sequences were successfully derived for six
contemporary samples identified by collectors as Corallina
sp. (in three of which COI was sequenced during this study),
and for five E. elongata specimens (for three BM herbarium
specimens that also had COI sequenced during the present
study and two BM herbarium specimens for which COI data
were already available on GenBank). Finally, all unique rbcL
sequences for specimens identified as belonging to Corallina
(n¼ 7), the epitype sequence of E. elongata, two sequences of
Calliarthron spp. and Bossiella spp., one sequence each of
species belonging to Chiharaea, Alatocladia, and Johansenia,
and two outgroup sequences (Chondrus crispus and Masto-
carpus stellatus) were retrieved from GenBank for inclusion
in the rbcL phylogeny, resulting in 61 sequences. A
concatenated phylogeny was also produced for specimens
for which both COI and rbcL data were available.

DNA was extracted from approximately 0.5 cm2 of both
fresh, silica-gel-preserved and herbarium material using a
modified cetyltrimethylammonium bromide microextraction
protocol (Rogers et al. 1994). The primers GazF1 and GazR1
(Saunders 2005) and new primers designed for this study
(RWCOF1 50 GTTATAGCTCCTGCTAAAACTGG 30 and
RWCOR1 50 TGTATTTCATTATTAATTCGTATGG 30)
were used for amplification of the COI gene region [trimmed
to 533 base pairs (bp) during alignment, 112–645 bp of full
COI gene based on the Chondrus crispus reference genome
ASM35022v2, Collen et al. 2013], with the forward primer
extending from 112 to 136 bp, and the reverse primer
extending from 622 to 644 bp, of the COI gene. Amplification
of the rbcL gene region (trimmed to 1401 bp during
alignment, 67–1467 bp of full rbcL gene) was achieved in
two parts using the primer pairs F57–R753 and F753–RrbcS
(Freshwater & Rueness 1994). When reactions using the
latter primer pair failed to amplify a polymerase chain
reaction (PCR) product, new primers designed for this study
were used (RWCWF1 50 AAATGTTACTGCAGCTACAA-
TGGA 30 and RWCWR1 50 CCGCCCTTGTGTTAGTCT-
CA 30), with the forward primer extending from 732 to 755
bp of the rbcL gene and the reverse primer extending into the
adjacent gene (rbcS) at position 2–21 bp.

Each PCR run contained 2.5 ll of NH4 reaction buffer,
1.5 ll of 50 mM MgCl2, 0.5 ll of Taq polymerase (all from
BIOTAQ DNA polymerase kit, Bioline, UK), 0.5 ll of
deoxynucleotide triphosphate stock, 1 ll of 10 lM forward
primer, 1 ll of 10 lM reverse primer, 17.5 ll of H20 and 1 ll
of DNA template. The PCR reaction was run on a Techne
Thermal Cycler (Bibby Scientific,?4 UK). A standard protocol
of PCR (one cycle at 948C for 2 min, 30 cycles each of 948C
for 30 s, 508C for 30 s and 728C for 1 min, 1 cycle at 728C for
5 min) was used for both COI and rbcL markers. Samples
were cleaned using the Illustra GFX PCR DNA purification
kits, following the manufacturer’s protocol (GE Healthcare?5 ,
UK) and were prepared for sequencing using the dideoxy
cycle sequencing reaction using v1: 1 Big Dye (Life
Technologies,?6 UK), 2ng/100 bases of amplicon and 1 lM
primer in 10-ll reaction volumes. Amplification was
performed on a Techne Thermo cycler (Bibby Scientific)
programmed to perform 28 cycles each of 10 s at 968C, 5 s at

508C and 4 min at 608C. Excess dye- labelled nucleotides
were removed by ethanol/sodium acetate precipitation.
Sequence products were dried, resuspended and run on a
3730XL capillary DNA analyzer (Applied Biosystems ?7).

During DNA extraction and PCR amplification the
following precautionary steps were undertaken to prevent
contamination of historical specimens: (1) all extraction and
amplification procedures were completed in the molecular
laboratory facilities of the Natural History Museum,
London, physically isolated from laboratories used for
routine macroalgal research; (2) to monitor for false
positives, negative controls (containing no organic matter)
were run with each set of extractions through the complete
extraction/amplification process; (3) extractions were per-
formed for small batches of samples at one time, maximum
number of five, reducing the complexity and thus possibility
for error; and (4) DNA stocks, PCR reagents and PCR
products were stored in separate cases and reagents; reaction
buffers and sterile water were discarded regularly.

Sequences were aligned and edited in Se-Al v2.0a11
(http://compbio.edu/seal/). Phylogenetic hypotheses were
inferred using Bayesian and maximum likelihood optimality
criteria. The 108 COI sequence data set included three
outgroup sequences and the 61 rbcL sequence data set
included two outgroup sequences (Table S1). A combined
analysis was performed on 37 of the 39 taxa for which both
rbcL and COI data were available. Aligned data sets were
run through jmodeltest v2.1.1 (Darriba et al. 2012), and the
Akaike information criterion was used to select the best-fit
model. The GTRþIþG model was selected for all data sets.
Before running the combined analysis, an incongruence
length difference test (Farris et al. 1995) was performed using
the hompart command with 100 replicates in PAUP* v4.10
(Swofford 2003 ?8). The test showed no significant incongru-
ence between regions in the combined data set (P ¼ 0.15).

Bayesian analyses were implemented in MrBayes, version
3.2.2 (Ronquist et al. 2012). All analyses used two runs of
three chains for 10 million generations, sampling every
1,000th. Stationarity of the Markov chain Monte Carlo was
determined by the average standard deviation of split
frequencies between runs and by examination of the
posterior in Tracer, version 1.5 (Rambaut & Drummond
2007). Consensus trees were constructed after 5 million
generations; all analyses had converged at this point.
Additionally, a maximum likelihood analysis was performed
using garli v2.01 (Zwickl 2006; ?9http://garli.googlecode.com).
One hundred bootstrap replicates were run to generate
bootstrap support statistics.

Species boundaries determined from COI and rbcL
sequence data were primarily based on the criteria of
reciprocal monophyly, strong clade support, and congruence
across both molecular markers (see Leliaert et al. 2014).
Where all three criteria were not met, the delimitation of
clades provisionally representative of species boundaries was
based on evaluation of inter- and intraclade sequence
divergence and clade support values, assessed using the
collective knowledge of the authors. Therefore, we have
adopted a conservative approach, only referring to clades as
‘species’ when supported by all three criteria and, more
important, the inclusion of type sequences. Clades described

//titan/production/p/phya/live_jobs/phya-53-06/phya-53-06-10/layouts/phya-53-06-10.3d ! 26 November 2014 ! 8:31 am ! Allen Press, Inc. ! Customer MS# 14-024.1 Page 3

Williamson et al.: Corallina and Ellisolandia species diversity 0



in the subsequent Results and Discussion should therefore be
interpreted as provisional species concepts at this stage.

RESULTS

Both the COI and rbcL gene analyses recovered the genera
Corallina and Ellisolandia as monophyletic groups (Figs 1,
2). Although not included in our rbcL phylogeny, Pseudo-
lithophyllum was also recovered in this tribe by COI gene
analysis, and resolved as sister genus to Corallina, with
Ellisolandia more distant. In the Janieae, at least two genera
were recovered in our COI phylogeny. One contained Jania
squamata (Linnaeus) J.H. Kim, Guiry & H.-G. Choi and J.
rubens (Linnaeus) J.V. Lamouroux from England and
Ireland; the other contained species identified as Haliptilon
and Jania sp. from Hawaii and the Mediterranean Sea and
three specimens identified as Corallina sp. from Madeira,
Hawaii and Malta. Only the latter Janieae genus was
recovered in the rbcL phylogeny, containing samples
identified as Corallina sp. from Malta, Madeira and Italy.

Within Corallina, 18 COI clades and eight rbcL clades
were resolved, two of which were not apparent in the COI
phylogeny (clades 19 and 20). Interclade sequence divergence
for COI Corallina clades ranged from 3.5% to 13.0%, mean
6.38% 6 0.04% (Table 1), and for rbcL, 0.1% to 3.1%, mean
1.11% 6 0.01 % (Table 2). In both phylogenies, two clades
included sequence data from type material: Clade 15
containing the epitype sequence of the generitype C.
officinalis, and clade 7 (COI)/clade ‘6 and 7 0 (rbcL)
containing the holotype (both trees) and isotype (COI only)
sequences of C. caespitosa. Of the samples included in both
phylogenies, those that resolved to C. officinalis (15) and C.
caespitosa (7) in the COI phylogeny did so in the rbcL
phylogeny.

The Corallina officinalis clade was well resolved in both
COI and rbcL phylogenies, with all samples resolving to this
clade correctly identified. Samples were distributed from
northern Spain to Iceland in the northeastern Atlantic Ocean
and across to Greenland and eastern Canada and the United
States in the northwestern Atlantic Ocean, with two samples
from British Columbia, Canada in the northeastern Pacific
Ocean. Corallina officinalis intraspecific sequence divergence
for COI ranged from 0% to 1.31% with a mean of 0.48%, and
for rbcL 0% to 0.57%, mean 0.12%. Two clades containing
samples identified as C. vancouveriensis (13) and Corallina sp.
2 (14), respectively, were resolved as sister to C. officinalis in
the COI phylogeny.

The Corallina caespitosa clade (7, COI; 6 and 7, rbcL)
contained the most samples and was well resolved in both
Corallina phylogenies. Of the 28 samples in the COI C.
caespitosa clade, eight were correctly identified as C.
caespitosa and were from the UK (2), Japan (1), the Azores
(2), Greece (1) and South Korea (2). Of the 19 samples

resolved to the rbcL C. caespitosa clade, two were correctly
identified, both from the UK. The remaining samples were
from numerous locations and variously identified as
Ellisolandia elongata, C. chilensis, C. officinalis, C. medi-
terranea, C. pilulifera and Corallina sp. (Table S1). In the
COI phylogeny, samples related by location tended to cluster
together within the C. caespitosa clade, particularly for those
collected from the Azores (3), Greece (2), and Ghana (2).
Samples identified as Corallina sp. from South Africa
resolved within the C. caespitosa clade in the rbcL
phylogeny, showing a 0.43% sequence divergence from the
C. caespitosa holotype specimen, whereas these resolved
separately (clade 6) in the COI phylogeny. Overall, C.
caespitosa intraspecific sequence divergence ranged from 0%
to 2.61%, mean 1.25%, in the COI phylogeny, and 0% to
0.46%, mean 0.14%, in the rbcL phylogeny. Samples
identified as C. pinnatifolia, C. pilulifera and C. (formerly
Yamadaia) melobesioides resolved in a clade (19) sister to C.
caespitosa in the rbcL phylogeny.

In our COI phylogeny, clades 1–5 were well resolved from
clades 6–18 and contained three named species from the
Pacific, although resolution was poor between these clades.
Poor resolution and low support were also apparent across
clades 9–12, with 9 and 12 only represented by one sample.
Clades 10 and 11 demonstrated intraclade sequence diver-
gence of 1.69% and 0.37% to 1.87%, respectively. All samples
in clade 11 were from the Pacific West Coast, but two
subclades were apparent, one containing samples identified
as C. vancouveriensis f. lycopodioides (W.R. Taylor) E.Y.
Dawson and Corallina sp. 4 from the Pacific Coast of
Canada and Mexico, and the other with C. vancouveriensis
and C. gracilis from the western United States. rbcL clade
‘10 and 11’ contained samples from both COI clades 10 and
11, with an intraclade sequence divergence of 0% to 0.57%.

Poor resolution was also apparent for clades 16, 17 and 18
in both the COI and rbcL phylogenies. In the COI
phylogeny, three separate clades were resolved, whereas
samples BM000767064 and BM000806015, representing COI
clades 16 and 18, respectively, resolved together in the rbcL
phylogeny (clade ‘16 and 18’). BM000804385, which also
resolved to COI clade 18, further resolved separately from
BM000806015 in the rbcL phylogeny, with a 0.46% sequence
divergence apparent between the two samples.

Of the 39 samples for which both COI and rbcL sequences
were acquired, 37 were included in the concatenated
phylogeny (Fig. 3), three of which served as an Ellisolandia
outgroup. Samples MALT1 and BM001033635 were not
included in this analysis as they had not resolved to either the
Corallina or Ellisolandia genus in previous analyses. Overall,
the topology of the concatenated phylogeny closely mirrored
the COI phylogeny. Clades 7 and 15 were well resolved and
clade 6 was resolved as separate to clade 7 with strong
support values (posterior probability ¼ 100, bootstrap
support ¼ 95). Clades 16 and 18 and clades 10 and 11 were

!
Fig. 1. Phylogram inferred by Bayesian analysis of COI sequence data. Support values are listed as Bayesian posterior probabilities and
bootstrap values for maximum likelihood analyses, respectively. * denotes nodes that are strongly supported (posterior probabilities¼ 100,
bootstrap support¼ 100) in all analyses. - denotes less than 50% support for a node. Names in bold represent specimens for which both COI
and rbcL sequence data are presented during the present study (see Fig. 2). Scale bar refers to substitutions per site.
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resolved separately in the concatenated phylogeny as was
observed in the COI phylogeny, though not in the rbcL
phylogeny.

DISCUSSION

In the Corallineae, the resolution of 20 Corallina clades,
provisionally corresponding to species, from phylogenetic
analysis of COI and rbcL markers, indicates that there is
considerable diversity within the genus that is not readily
apparent from their morphology. Of our 20 clades, the
identification of two species is confirmed by inclusion of
sequences from type material, Corallina officinalis and C.
caespitosa, four clades are not associated with confirmed
species names, potentially representing undescribed species,

and 14 clades were previously documented by Gabrielson et
al. (2011), Martone et al. (2012) or Hind & Saunders (2013b)
(Table 3).

The results for the recently erected Ellisolandia (Hind &
Saunders 2013b), including the epitype of Corallina elongata
(Brodie et al. 2013), firmly establish this as a distinct genus
within the Corallineae. However, on the basis of the COI
marker, the presence of a sister taxon, C. sp. BM001033632
from the Canary Islands, suggests the possibility of another
genus in the tribe, and further work should focus on this
region and related areas to establish the extent of the
diversity. Also of note, no samples originally identified as C.
mediterranea, previously considered a synonym of C.
elongata (Irvine & Chamberlain 1994), were resolved to E.
elongata during the present study. Of the five samples
originally identified as C. mediterranea included in our

Fig. 2. Phylogram inferred by Bayesian analysis of rbcL sequence data. Support values are listed as Bayesian posterior probabilities and
bootstrap values for maximum likelihood analyses, respectively. * denotes nodes that are strongly supported (posterior probabilities¼ 100,
bootstrap support¼ 100) in all analyses. - denotes less than 50% support for a node. Names in bold represent specimens for which both COI
and rbcL sequence data are presented during the present study (see Fig. 1). Scale bar refers to substitutions per site.

//titan/production/p/phya/live_jobs/phya-53-06/phya-53-06-10/layouts/phya-53-06-10.3d ! 26 November 2014 ! 8:35 am ! Allen Press, Inc. ! Customer MS# 14-024.1 Page 6

0 Phycologia, Vol. 53 (6)



phylogenies, four resolved as C. caespitosa (clade 7) and one
in a less-resolved clade (18).

Inclusion of the recently established epitype specimens for
the generitype species Corallina officinalis and the congeneric
C. caespitosa (sensu Brodie et al. 2013) gives definitive
identification of these species within our phylogenies and
enables utilisation of the intraspecific sequence divergence
observed for these two species in subsequent clade analysis.
We can thus be confident that samples resolved to clade 15
and clade 7 within our COI, rbcL and concatenated
phylogenies represent C. officinalis and C. caespitosa,
respectively. Additionally, following the approach put
forward by Gabrielson et al. (2011), inclusion of these
sequences in our phylogenies allowed us to clearly demon-
strate whether names have been correctly applied to
collections and to gain useful information on the geographic
extent of these species.

All samples recovered in the C. officinalis clade (15) were
correctly identified as such in the BM collections but other
samples identified as this species also appeared in four other
clades (clades 7, 10, 16 and 17), confirming the assumptions
of Brodie et al. (2013) that the name has been misapplied. To
date, herbarium collections and literature records have
indicated a cosmopolitan distribution for C. officinalis,
largely in warm-temperate seas and less so in tropical and
subtropical areas (Johnson 1970; Garbary & Johansen 1982;
Womersley & Johansen 1996; Guiry & Guiry 2014).
However, on the basis of collection localities of the
specimens identified as C. officinalis during the present
study, we would restrict this distribution to cool-temperate
regions, with a predominantly North Atlantic distribution
and a small presence in the northern Pacific Ocean
(Gabrielson, personal communication; Figs 1–3). Brodie et
al. (2013) also questioned whether C. officinalis occurred in
the Mediterranean Sea. The most southerly collection site
recorded for C. officinalis in the present study was La
Coruna, northern Spain and as such our data support the
assertion that C. officinalis probably does not occur in the
Mediterranean Sea.

In contrast, our data indicate that C. caespitosa (clade 7)
has a cosmopolitan distribution, with samples recorded from
Asia, Australasia, Europe, Africa and America. This is the
first study to confirm the global distribution of C. caespitosa,
a conclusion that reflects its recent distinction from C.
officinalis by Walker et al. (2009) and the problems of
identification. For example, our results demonstrate wide-
spread misidentification of C. caespitosa, with 20 of the 28
samples resolved to this species incorrectly identified within
BM collections.

Biogeographic subgroups apparent within our COI C.
caespitosa clade may indicate population structuring be-
tween distant geographic locations, as observed for the
species by Hind & Saunders (2013b). A more pronounced
divergence from C. caespitosa sensu stricto was identified for
samples BM000806021 and BM000806020 from the Atlantic
coast of South Africa, which resolved as a separate sister
clade to C. caespitosa in our COI and concatenated
phylogeny but not in our rbcL phylogeny. This may indicate
incipient speciation, though more sampling from this region
would be required to fully elucidate this possibility. Our data
indicate that C. caespitosa is a warm-temperate species in the T
ab
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North Atlantic Ocean, with its northern limit apparently in
northern England. To determine whether this was an artifact
of sampling, a search was made of the BM herbarium for any
specimens collected from farther north but none was found,
nor has the species been collected during trips to Scotland by
JB since 2009. Furthermore, the first known collections of
this species in Britain are from 2005 (personal observation).
Corallina caespitosa frequently grows in the uppermost parts
of pools in the mid-intertidal of semiexposed shores and
appears to be more tolerant of these conditions than C.
officinalis, which tends to occur on rocks lower down the
shore or deeper in pools. Given the frequency of samples
from farther south and dating back to the 19th century, this
might be an example of a species exhibiting range extension.

Attributing species names to the other Corallina clades
identified during the present study is prevented by a lack of
type sequence data. On the basis of the previous work of
Hind & Saunders (2013b), Corallina clades 1, 3, 5 and 13
could be named appropriately by their original identifica-
tion, if supported by the establishment of type or epitype
sequences for these species names. Clades 13 (COI only,
Hind & Saunders 2013b) and 20 (rbcL only, Gabrielson et al.
2011) of the present study both contain sequences of samples
identified as C. vancouveriensis. As both COI and rbcL
sequences are not available for any of these samples we must
treat the separation of these two clades with caution. Clades
4, 8, 12 and 14 are comprised of samples previously
highlighted as cryptic diversity within the Corallina popula-

Fig. 3. Phylogram inferred by Bayesian analysis of concatenated COI and rbcL sequence data. Support values are listed as Bayesian posterior
probabilities and bootstrap values for maximum likelihood analyses, respectively. * denotes nodes that are strongly supported (posterior
probabilities¼ 100, bootstrap support¼ 100) in all analyses. - denotes less than 50% support for a node. Scale bar refers to substitutions per
site.

Table 2. Interclade uncorrected p-distance (as percentage) between clades of the rbcL Corallina genus. Minimum/maximum % sequence
divergence displayed for comparisons of clades including multiple nonidentical sequences.

19 16 and 18 18 17 20 10 and 11 15

6 and 7 0.4/1.0 0.6/1.0 1.0/1.3 0.7/1.0 2.0/2.3 2.0/2.4 1.3/2.0
19 1.0/1.5 1.5/1.8 1.2/1.5 2.1/2.4 2.4/2.0 1.7/2.4
16 and 18 0.4/0.6 0.1/0.3 1.5/1.7 1.3/1.7 0.9/1.3
18 3.1 2.0 1.5/1.7 1.0/1.3
17 1.7 1.2/1.3 0.7/1.0
20 2.3/2.4 2.1/2.6
10 and 11 2.0/2.4
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tion of the Pacific Northwest region of Canada by Hind &
Saunders (2013b) and await description.

Overall, to fully elucidate diversity and phylogenetic
relationships there is an urgent need for type material to
be sequenced for comparison with historical collections, as
shown by Gabrielson et al. (2011) and the present study. In
the absence of type material, an epitype would serve as an
interpretive type (see Brodie et al. 2013). Where no names
apply, new species need to be described. When type
specimens of species are designated and sequenced, correct
application of species names assures accurate assessment of
the phylogenetic position and geographic distribution. In
addition, to successfully delimit species and identify incipient
speciation, regional floras can be studied in detail to provide
increased resolution, as shown for previous efforts with the
Bangiales (Mols-Mortensen et al. 2012; Vergés et al. 2013).
The phylogeny reported here both serves as a baseline for
future phylogenetic assignment of Corallina species and
related genera, and highlights the degree to which species
concepts within the tribes Corallineae and Janieae remain
unresolved.
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DARLING A., HÖHNA S., LARGET B., LIU L., SUCHARD M.A. &
HUELSENBECK J.P. 2012. MrBayes 3.2: efficient bayesian phyloge-
netic inference and model choice across a large model space.
Systematic Biology 61: 539–542.

SAUNDERS G.W. 2005. Applying DNA barcoding to red macroalgae:
a preliminary appraisal holds promise for future applications.
Philosophical Transactions of the Royal Society London B
Biological Sciences 360: 1879–88.

SILVA P.C. & JOHANSEN H.W. 1986. A reappraisal of the order
Corallinales (Rhodophyceae). British Phycological Journal 21:
245–254.

SUTHERLAND J.E., LINDSTROM S.C., NELSON W.A., BRODIE J., LYNCH

M.D.J., HWANG M.S., CHOI H.-G., MIYATA M., KIKUCHI N.,
OLIVEIRA M.C., FARR T., NEEFUS C., MOLS-MORTENSEN A.,
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