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Abstract 

The majority of breast cancers express the oestrogen receptor and are potentially 

amenable to endocrine therapy, however the clinical effectiveness of these agents is 

limited by the phenomenon of acquired resistance which is associated with disease 

relapse and poor prognosis. It has been previously demonstrated that the CD44 

receptor is overexpressed in acquired tamoxifen resistance where it associates with 

an enhanced migratory phenotype, however little is known regarding the effects of 

CD44 splice variants in this context. This thesis aimed to explore the role of CD44 

variant isoforms in a model of ER+ breast cancer derived tamoxifen-resistance (Tam-

R cells) and expand these explorations into an additional model of acquired 

fulvestrant-resistance (Fas-R cells).  

Multiple CD44 isoforms were found to be upregulated in resistance although a 

differential expression profile was observed between Tam-R and Fas-R cells. 

Inhibition of global CD44 expression in both endocrine resistant models led to a loss 

in their migratory, proliferative and invasive capacity and attenuated their responses 

to the CD44 ligand, hyaluronan. Overexpression of CD44v6 in endocrine sensitive 

MCF-7 cells induced EGFR pathway activation leading to enhanced cellular invasion, 

and attenuated response to fulvestrant. Accordingly, CD44v6 suppression in Tam-R 

cells resulted in a loss of EGFR pathway signalling and reduced invasion. Preliminary 

clinical analysis revealed that co-expression of CD44v6 and EGFR associated with a 

trend for worsened outcome in ER+ breast cancer patients treated with tamoxifen. 

These data suggest that upregulation of CD44v6 may contribute to an aggressive 

phenotype in tamoxifen resistant cells through a mechanism involving the EGFR. 

Future use of CD44v6 and EGFR as biomarkers may have potential therapeutic value 

to predict a cohort of ER+ breast cancer patients which relapse earlier on tamoxifen 

and may thus require more aggressive treatment strategies. 
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1. Introduction 

1.1 Breast cancer and risk factors 

Breast cancer is the second most common cancer among women worldwide and the 

second leading cause of cancer death among women (DeSantis et al. 2011). Breast 

cancer incidence and mortality varies significantly globally and in general a higher 

incidence rate is found within developed countries whilst a lower incidence rate is 

observed within developing countries (Parkin and Fernandez 2006). In the UK alone, 

approximately 50, 000 women and 350 men were diagnosed with invasive breast 

cancer in 2011 (Cancer Research UK statistics 2011). However, through intensified 

detection efforts and the introduction of screening programmes, mortality rates are 

now decreasing within high risk countries. 

The majority of breast cancers are a result of sporadic mutations that result from an 

accumulation of uncorrected genetic changes in somatic genes. Therefore the large 

differences observed between incidence rates of breast cancer worldwide have 

stimulated the search to identify specific risk factors for breast cancer. Numerous 

breast cancer risk factors are now well-established and include: age (Slattery and 

Kerber 1993; Fraser and Shavlik 1997), ethnicity (Chlebowski et al. 2005), body mass 

index (Suzuki et al. 2009; Rohan et al. 2013), dietary factors (Bao et al. 2012; Link et 

al. 2013) cumulative exposure to endogenous and exogenous oestrogens and 

possibly progesterones (Clemons and Goss 2001) and family history of the disease 

(Claus et al. 1994; King et al. 2003). Further, history of benign breast cancer, 
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particularly atypial hyperplasia and dense breasts are also risk factors for breast 

cancer development (Dupont et al. 1993; Byrne et al. 1995; Marshall et al. 1997).  

1.1.1 Oestrogen exposure 

Endogenous and exogenous exposure to oestrogen in pre- and postmenopausal 

women are well-defined risk factors for breast cancer (Clemons and Goss 2001). 

Oestrogens increase cell proliferation which may decrease likelihood of DNA damage 

repair thus potentially leading to the accumulation of mutations (Preston-Martin et 

al. 1990; Pike et al. 1993a). Additional studies have suggested that oestrogens may 

also be directly genotoxic through their reactive metabolites however evidence for 

this mechanism remains limited (Liehr 2000; Yared et al. 2002).  

Of crucial importance in breast cancer etiology is the timing of exposure to risk 

factors as early and late exposure may mediate different risks (Okasha et al. 2003). 

Although oestrogen exposure early in life may increase the risk of breast cancer 

onset, conversely, the reduction of these levels later in life may rapidly decrease risk 

of disease development. Factors that increase lifetime exposure to oestrogens 

include: early menarche (Ewertz and Duffy 1988; Hsieh et al. 1990), regular ovulation 

(Henderson et al. 1985; La Vecchia et al. 1985), late menopause (Alexander and 

Roberts et al. 1987; Hsieh et al. 1990), nulliparity or late age at first birth and lack 

of/or short term breast feeding (Ewertz et al. 1990; Negri et al. 1990). Alcohol 

consumption of a minimum of one drink per day also increases endogenous 

oestrogen levels which may further contribute to disease development (Harvey et al. 

1986; Smith-Warner et al. 1998). Additionally, in postmenopausal women, obesity 
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(Hunter et al. 1993; Huang et al. 1997; Morimoto et al. 2002) and long term use of 

hormone replacement therapy (HRT) (Lauritzen and Meier 1984; Hunt et al. 1990) 

are principle determinants of oestrogen exposure and have been linked to an 

increased risk of breast cancer. Other growth factors in addition to oestrogen, 

including insulin like growth factor 1 (IGF-1) and prolactin, are also thought to also 

contribute to breast cancer risk although the mechanisms underlying these 

associations are less well-defined (Hill et al. 1976; Clevenger et al. 2003; Renehan et 

al. 2004).  

1.2 Oestrogen receptors 

Oestrogens are steroid hormones that regulate cell growth and differentiation and 

play an important role in a variety of biological functions including reproduction, 

metabolism, homeostasis and brain function (Tsai and O’Malley 1994). Oestrogen 

exerts its biological effect on target tissues through binding to oestrogen receptors 

(ER) of which there are two main types, ERα and ERβ (Walter et al. 1985; Mosselman 

et al. 1996). These receptors are members of the nuclear hormone receptor family 

which also include receptors for: androgens, thyroid hormones, progestins, 

glucocorticoids, retinoids and vitamin D (Tsai and O’Malley et al. 1994; Evans 1998). 

Numerous orphan receptors for which no ligands have been identified also belong to 

this family of receptors. ERα and ERβ are modular proteins composed of six 

functionally distinct domains referred to as A – F and depicted in Figure 1.1 (Tsai and 

O’Malley 1994). Domain A/B is located within the amino-terminal domain of the 

protein and encodes a hormone-independent transcriptional activation function 

domain (AF1). The AF1 domain regulates transcription of oestrogen-responsive 
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genes independent of ligand binding and is alternatively activated through the 

phosphorylation of serine residues located within this region, particularly in response 

to ERK/MAPK action (Schwabe et al. 1993). Domain C encodes a highly conserved 

DNA binding domain (DBD) which is comprised of two functionally distinct zinc finger 

motifs. These motifs facilitate ER dimerization and bind specifically to oestrogen 

response elements (EREs) or ERE-like sequences (small palindromic DNA sequences) 

located within the 5’ promoter region of target genes (Schwabe et al. 1993). Domain 

D is referred to as the hinge region as it separates the DBD from the ligand binding 

domain (LBD) of ER. This domain is required for binding to heat shock proteins in a 

resting state however upon activation, the flexibility conferred within the secondary 

structure of this domain is critical for ER dimerization (Kuiper et al. 1996). This region 

also contains a nuclear localisation signal which is exposed upon ligand activation 

(Kuiper et al. 1996). Domain E/F encodes the LBD and is situated at the carboxy-

terminal region of the ER. The LBD is composed of 12 α helices which fold to form a 

compact three-layered helical core. This layered structure forms a hydrophobic 

pocket cavity which facilitates ligand binding to the ER. In a resting state, helix 12 

extends away from the LBD core, however, upon ligand binding to the hydrophobic 

pocket, a conformational change is induced which leads to the repositioning of helix 

12 over the core thus sealing the hydrophobic pocket; a prerequisite action for 

transcription initiation to occur (Wurtz et al. 1996; Brzozwski et al. 1997; Singh and 

Kumar 2005). This sealing mechanism creates a hydrophobic groove on the LBD 

which is recognised and bound to by coregulatory proteins which facilitate/inhibit 

gene transcription (Savkur and Burris 2004). This domain also contains a second 
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transcriptional activation functional domain (AF2) which is critical for transactivation 

in response to ligand binding (Kumar and Chambon 1988; Green and Chambon 1991).  

 

 

 

 

 

 

Whilst both AF1 and AF2 domains are capable of initiating transcription separately, 

it is thought that maximal transcriptional activity of ER is achieved through synergistic 

action of both domains and their activities (Tzuckerman et al. 1994). However, the 

differential modes of AF1 (ligand-independent) and AF2 (ligand-dependent) 

activation leads to the association of these domains with distinct coregulatory 

proteins thus the contribution of these activating function domains to gene 

transcription is cell type specific (Paech et al. 1997). 

ERα and ERβ receptors confer a high degree of homology between their DNA binding 

domains (approximately 96%) however display only a moderate level of homology 

between their ligand binding domains (approximately 53%) and a low level of 

homology between their hinge regions (approximately 36%) (Matthews and 

Gustafsson 2003; Singh and Kumar 2005). The major functional difference between 

these receptors is with respect to their AF1 domains. Whereas ERα exhibits a high 

Figure 1.1. A schematic diagram of the human ERα and ERβ receptors adapted from Kumar et al. 
2011. Each ER contains six functional domains denoted as A – F with the starting amino acid position 

for each domain shown above. The table describes the function of each domain region.  
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level of AF1-mediated transcriptional activity, this domain shows negligible activity 

in ERβ (Hall and McDonnell 1999); this difference is suggested to be the major 

functional variation between the responses of these receptors to various ligands. 

Additional differences can be observed with respect to the expression patterns of 

these receptors. Whereas ERα is predominantly expressed in the breast, uterus and 

vagina, the majority of ERβ expression is found within tissues of the central nervous 

system, cardiovascular system, immune system, gastrointestinal system, kidneys, 

lungs and bone, with low expression levels found within the breast (Couse et al. 1997; 

Kuiper et al. 1997). These differences in expression may explain the selective action 

of oestrogens between tissues.  

Importantly, ERα and ERβ appear to take on different roles within breast cancer 

biology. Approximately two thirds of breast cancers express the ERα, which has been 

shown to be the main mediator of oestrogen-induced proliferation (Matthews and 

Gustafsson 2003). In contrast, studies suggest that ERβ may act as a tumour 

suppressor (Paruthiyil et al. 2004; Strom et al. 2004) however the prognostic value of 

ERβ remains unclear. In light of ERα representing the dominant ER subtype in breast 

cancer, this protein will subsequently be referred to as ER throughout this project. 

1.2.1 Mechanisms of ER action 

1.2.1.1 Genomic action of ER 

In the classical mechanism of ER action, oestrogen diffuses through the plasma 

membrane and associates with an ER bound to heat shock protein 90 (hsp90) in its 

resting state. The binding of oestrogen to the ER induces a conformational change 
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within the LBD causing the dissociation of hsp90 and the subsequent formation of a 

stable dimer complex (Cowley et al. 1997; Powell and Xu 2008). The oestrogen-ER 

dimer then undergoes nuclear translocation and binds to oestrogen receptor 

elements (EREs) (via the DBD) located in the promoter region of oestrogen 

responsive genes (Kumar and Chambon 1988). Once bound to DNA, the ER recruits 

coregulatory proteins (coactivators or corepressors) to the LBD which form a 

transcriptional complex leading to the activation or inhibition of gene transcription 

(Cowley et al. 1997; Kling et al. 2004). Coactivator proteins facilitate transcription 

through their intrinsic chromatin remodelling functions and through supporting 

linkage of ER to the basal transcription machinery (including activation of RNA 

polymerase II), whilst corepressors inhibit this process (McKenna and O’Malley 2001; 

Metivier et al. 2003). This mechanism is referred to as the classical mechanism of 

genomic ER action (Figure 1.2, pathway 1) and accounts for the majority of 

oestrogen-induced gene transcription.  

1.2.1.2 ERE-independent action of ER 

Evidence now exists which shows that ERs can regulate gene expression through 

various pathways separate from this classical genomic mechanism. O’lone et al. 2004 

reported that approximately one third of genes regulated by the ER do not contain 

ERE/ERE-like sequences. This finding revealed a mechanism through which ERs are 

capable of regulating gene expression without directly binding to DNA in the 

promoter regions of their target genes. This is referred to as the ERE-independent 

genomic mechanism of ER action and is facilitated through the ability of ERs (bound 

to oestrogen and dimerized) to bind and modulate the function of other classes of 
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transcription factors (through protein-protein interactions in the nucleus) which in 

turn bind to their respective response elements within the DNA (depicted in Figure 

1.2, pathway 2) (Gaub et al. 1990; Castro-Rivera et al. 2001). This phenomenon is 

referred to as ‘transcriptional cross talk’ and through this mechanism ERs are capable 

of regulating a vast array of oestrogen responsive genes that do not contain EREs 

(Gottlicher et al. 1998). 

1.2.1.3 Oestrogen-independent action of ER 

In addition to oestrogen, it is now known that the ER can be activated as a result of 

intracellular signalling molecules. For example various kinases, notably those 

downstream of EGFR and IGFR1, including MAPK (Tang et al. 2004) and protein kinase 

A (PKA) (Chen et al. 1999), can phosphorylate multiple serine residues within the 

ligand-independent AF1 domain of ER (Lannigan et al. 2003). Serine phosphorylation 

activates the ER in the absence of oestrogen and promotes ER dimerization (Chen et 

al. 1992), nuclear localisation (Lee and Bai et al. 2002), and subsequent transcription 

of oestrogen-responsive genes (Ali et al. 1993; Le Goff et al. 1994). This mechanism 

is referred to as the oestogen-independent genomic mechanism of ER action 

(depicted in Figure 1.2, pathway 3). Additionally, growth factor signalling has been 

shown to directly activate coregulatory proteins of the ER thus providing an 

alternative influence on ER-mediated transcription (Osborne and Schiff et al. 2003).  

1.2.1.4 Non-genomic ER action 

Whilst it has been shown that oestrogen can mediate its effects through ER-regulated 

gene expression, other effects known to be facilitated by oestrogen occur rapidly 
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within cells and thus cannot be accounted for by ER-induced transcription and 

subsequent RNA and protein synthesis (Watters et al. 1997; Kelly and Levin 2001; 

Jakacka et al. 2002). This mode of ER function is termed the non-genomic mechanism 

of ER action and is mediated through oestrogen activation of a proportion of ERs 

which localise to the plasma membrane (membrane-associated ER) and the 

subsequent stimulation of multiple protein kinase interactions (Norfleet et al. 1999; 

Abraham et al. 2004; Guerra et al. 2004). Various signalling molecules are activated 

through oestrogen binding to membrane-associated ERs including: cAMP (Watters 

and Dorsa 1998), MAPK (Wade and Dorsa 2003), PI3K (Alexaki et al. 2004), protein 

kinases A and C (Qiu et al. 2003) and src kinase (Pawlak et al. 2005). These activated 

molecules induce downstream signalling pathways which modulate the 

phosphorylation status of multiple non-ER transcription factors leading to initiation 

of gene transcription (Figure 1.2, pathway 4) (Watters and Dorsa 1998; Hennessy et 

al. 2005). Conversely, these signalling pathways can also phosphorylate nuclear ER 

and influence coregulatory protein binding thus regulating its own transcription (Kow 

and Pfaff 2004; Vasudevan et al. 2004) (Figure 1.2, pathway 4). This non-genomic 

mode of ER action provides a further mechanism through which ERs can regulate the 

expression of genes which both contain EREs and those which do not, thus further 

diversifying the array of ER-mediated cellular functions. 

Taken together, it is now apparent that ER regulation of gene expression is a 

multifactorial process involving both its genomic and non-genomic actions which 

may often converge at response elements in the promoters of target genes. However 

the final output of gene expression is dependent upon numerous cell-specific factors 
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including: the combination of transcription factors recruited to a specific gene 

promoter, the availability of coregulatory proteins and signal transduction elements, 

the cellular localisation of ERs and the nature of extracellular stimuli. These variable 

elements can be highly cell type specific, thus oestrogens may utilise numerous 

signalling pathways to induce distinct gene expression responses dependent upon 

the specific cellular context.  
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1.3 Molecular and clinical subtypes of breast cancer 

Breast cancer is characterised by its clinical and molecular heterogeneity. In the 

clinical setting breast cancer can be classified according to its hormone receptor (ER 

and/or PR) or human epidermal growth factor 2 receptor (HER2/ErbB2) status which 

indicates prognosis and directs for specific treatment options. Breast cancers 

displaying a positive hormone receptor status (approximately 70 – 75 % of patients 

are ER+) are more likely to respond to endocrine therapies which specifically target 

the ER (and indirectly the PR, as this is regulated by ER activity) (Cancer Genome Atlas 

Network, 2012). In tumours presenting as HER2+ (approximately 20 – 25 % of 

patients) treatments that target the HER2 receptor are used (Spector and Blackwell 

2009; Dawood et al. 2010). At present there is no available targetted therapy in 

widespread use for tumours classified as ‘triple negative’ (do not display ER, PR or 

HER2 and represent 5 – 10 % of patients). Consequently, patients presenting with 

triple negative breast cancer have the poorest prognosis (Crown et al. 2012). 

Over the past decade microarray profiling studies have further classified breast 

cancer into subtypes defined by a large number of genes and associated with 

different clinical outcomes. Each subtype displays a characteristic gene expression 

pattern thought to be partly dependent upon cellular origin. These molecular 

subtypes include: basal-like, normal-like, HER2-overexpressing, luminal A and 

luminal B (Sorlie et al. 2001; Perou et al. 2000; Sotiriou et al. 2003). The basal-like 

molecular subtype predominantly represent ER-/PR-/HER2- (triple negative) breast 

tumours whereas the HER2-overexpressing subtype represents HER2+ breast 

tumours (Creighton 2012). Normal-like, luminal A and luminal B molecular subtypes 
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all represent ER+ breast tumours however the significantly worse prognosis 

associated with diagnosis of luminal B breast cancer (highly proliferative ER+ ± 

HER2+) suggests that ER+ breast cancers may be made up of at least two distinct 

diseases with differing biology (Sorlie et al. 2001; Dawood et al. 2010). 

1.4 Endocrine therapies 

Since approximately 75 % of breast cancers diagnosed in postmenopausal women 

express the ER and/or PR they are likely to be stimulated to proliferate via the action 

of oestrogens (Anderson et al. 2002). Of these, approximately 80 % are ER+/HER2- 

(Harvey et al. 1999) and may benefit from endocrine treatment, whilst the other 20 

% are ER+/HER2+ and show a greater response to HER2 targetted therapies (Brufsky 

et al. 2005; Spector and Blackwell 2009). Several types of endocrine therapies are 

available for the treatment of ER+ (HER2-) breast cancer in postmenopausal women 

which are designed to interfere with oestrogen/ER signalling and thus subsequently 

inhibit cell growth; these agents are routinely employed in a sequential manner. 

Endocrine therapies have been proven to be invaluable agents for adjuvant therapy 

following surgery in early ER+ breast cancer patients and can lead to extended 

survival rates or even act as a curative (Jordan and Ford 2011). These agents are also 

utilised in the advanced (metastatic) stage of ER+ breast cancer where they have 

been shown to inhibit tumour growth (Joensuu et al. 2005). Further, in the 

neoadjuvant setting, endocrine therapy has been shown to be effective in tumour 

reduction thus allowing for more conservative breast surgery (Olson et al. 2009).  
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1.4.1 SERMs and tamoxifen 

Selective oestrogen receptor modulators (SERMs) are a class of endocrine 

therapeutic agents designed for the prevention and treatment of diseases including 

breast cancer and osteoporosis (Jordan 2004). Unlike oestrogens (which act as 

uniform agonists) and anti-oestrogens (which act as uniform antagonists), SERMs 

display an unusual tissue pharmacology in which they act as agonists and/or 

antagonists in a tissue-dependent manner (Wegner and Grady 1999; Muchmore 

2000). The most widely used SERM to date is tamoxifen, a non-steroidal 

triphenyethylene that exhibits antagonist action in the breast (Fisher et al. 1998). It 

has been reported that tamoxifen displays ER agonist action in the bone, liver and 

cardiovascular system and antagonist action in the brain and breast whilst mixed 

agonist and antagonist action of tamoxifen can be observed within the uterus (Fisher 

et al. 1994). Therefore, this distinct mechanism of action is ideal for the treatment of 

breast cancer where tamoxifen can function as an antagonist in the breast whilst 

simultaneously exerting the beneficial effects of oestrogen within the hearts and 

bones of patients.  

Tamoxifen competes with oestrogen for ER binding, however once bound, the bulky 

side chains of tamoxifen prevent the repositioning of helix 12 in the LBD which is 

necessary to seal the hydrophobic pocket and facilitate transcription (Brzozwski et 

al. 1997). Therefore, binding of tamoxifen to the ER prevents the recruitment of 

coactivator proteins to the LBD and inhibits AF2 driven gene transcription; however 

the activity of the AF1 domains remains unaffected (MacGregor-Shafer et al. 2000). 

In the breast, where ER activity is predominantly mediated by AF2-driven gene 
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transcription, tamoxifen functions as an antagonist (Metzger et al. 1995), however in 

the bone and uterus, where ER activity is mediated primarily through the AF1 

domain, tamoxifen exhibits agonist activity (Tzukerman et al. 1994; McDonnell et al. 

1995). Tamoxifen binding to ER can also favour the recruitment of corepressors to 

this complex which further contributes to the suppression of its agonist activity 

(Lavinsky et al. 1998; Shang and Brown 2002). Therefore it is postulated that altered 

availability/recruitment of coregulatory proteins to the tamoxifen-ER complex may 

also contribute to the specificity of tamoxifen function in different tissues (Schiff et 

al. 2003; Lonard et al. 2004; Shao et al. 2004). Interestingly, tamoxifen treatment can 

also lead to the induction of oestrogen responsive genes through association of 

tamoxifen-bound ER with cell surface signalling proteins (e.g. HER2) in the breast. 

This suggests that tamoxifen can facilitate the non-genomic activities of the ER thus 

leading to the promotion of agonist activity on a molecular level whilst functioning 

overall in these tissues as an antagonist of ER signalling (Chen et al. 1996).  

In 1999, tamoxifen became the first drug to be approved by the US Food and Drug 

Administration (FDA) for the prevention of breast cancer and until relatively recently 

was given as the first line of treatment to pre- and postmenopausal women (Michaud 

et al. 2001) and men (Giordano et al. 2005) with metastatic ER+ breast cancer and in 

the adjuvant setting after surgery. An important question still to be answered 

however is that of defining the most appropriate treatment time for patients to 

receive the most benefit from this drug. Evidence has shown that adjuvant tamoxifen 

treatment over a 5 year period can suppress breast cancer recurrence and decrease 

incidence of contralateral breast tumours by 50% (EBCTCG 2011). Moreover, 
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beneficial effects from this agent remain for 5 years following treatment cessation 

(EBCTGG 1998). However, long term tamoxifen treatment has been associated with 

an increased incidence of thromboembolism, cataracts and endometrial cancer 

within breast cancer patients (EBCTGG 1998) and healthy women (Fisher et al. 1998) 

participating in chemopreventative trials. More recently, studies have also shown 

that tamoxifen treatment alternated with an aromatase inhibitor over a 5 year period 

can lead to benefits of a more extended time frame (Rao et al. 2012; Davies 2013).  

1.4.2 Aromatase Inhibitors 

Tamoxifen treatment as a first line therapy for ER+ breast cancer patients has been 

succeeded by aromatase inhibitors (AIs): endocrine agents which inhibit the 

synthesis of oestrogen in the body (Brodie et al. 2003).  AIs have been shown to 

achieve more than 95 % inhibition of aromatase activity (an enzyme which converts 

androgens to oestrogen) and reduce circulating oestrogens to almost undetectable 

levels in postmenopausal ER+ breast cancer patients (Geisler et al. 1996). These 

endocrine agents have fewer side effects in comparison to tamoxifen. Following 

findings from the ATAC (‘Arimidex’, Tamoxifen,  Alone or in Combination) trial, the AI 

anastrozole, was found to be superior to tamoxifen as first line treatment in the 

adjuvant setting of early disease for ER+ postmenopausal women (5 year treatment) 

(Baum et al. 2003; Howell et al. 2005). Therefore tamoxifen is now used as a second-

line therapy following disease progression from AIs in hormone-dependent breast 

cancer.  
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1.4.3 SERDs and fulvestrant 

Due to the failure of tamoxifen and other SERMs to eradicate total oestrogen agonist 

activity within breast cancer patients, a search for pure anti-oestrogens with a high 

potency led to the discovery of an additional class of drugs; selective oestrogen 

receptor downregulators (SERDs). The most effective SERD discovered to date is 

fulvestrant (trade name faslodex). Fulvestrant is a steroidal 7α-alkylsulfinyl analogue 

of oestradiol and functions as a pure antagonist of the ER (Wakeling 2000). This SERD 

is structurally distinct from the non-steroidal SERMs and exhibits a higher affinity for 

the ER compared with tamoxifen (89 % versus 2.5 % of the binding affinity of 

oestradiol respectively) (Wakeling et al. 1991). In comparison to tamoxifen, 

fulvestrant exerts additional effects on the ER leading to a more effective inhibition 

of oestrogen action. Fulvestrant also competes with oestrogen for ER binding, 

however once bound, the long side chains of fulvestrant severely alter ER 

conformation such that ER dimerization is inhibited (Fawell et al. 1990; Nicholson et 

al. 1995). This interaction leads to the formation of a highly unstable complex which 

impairs ER shuttling from the cytoplasm to the nucleus thus reducing nuclear 

localisation of ER (Dauvois et al. 1993). Fulvestrant-ER complexes that may enter the 

nucleus are additionally functionally redundant as, unlike tamoxifen, fulvestrant 

binding impairs both AF1 and AF2 transcriptional activating domains. Furthermore, 

the formation of highly labile fulvestrant-ER complexes results in their rapid 

degradation from the cytoplasm (Nicholson et al. 1995). In summary, fulvestrant 

binds to, blocks and causes accelerated degradation of ERs leading to abrogation of 

ER expression, gene transcription and signalling (Osborne et al. 1995; Wakeling et al. 
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1995). Thus in contrast to alternative anti-oestrogens, fulvestrant shows full 

antagonist activity of the ER and has no known oestrogen agonist activity (Wardley 

2002). 

Despite the greater efficacy of fulvestrant to abrogate ER expression and signalling in 

breast cancer cells as compared to tamoxifen and AIs (Nicholson et al. 1995; Pink and 

Jordan 1996) this anti-hormone remains a second line therapy where these agents 

have failed. However, utilisation of therapies in this sequential manner may be 

beneficial to patients as fulvestrant has been shown to remain active within 

tamoxifen-resistant patients and does not confer cross-resistance with other anti-

oestrogens (DeFriend et al. 1994; Osborne et al. 1994). Furthermore, studies have 

suggested that HER2 status also does not preclude a response to fulvestrant; which 

is beneficial as HER2 is a limiting factor for tamoxifen treatment and may ultimately 

lead to acquired tamoxifen-resistance (Nicholson et al. 2004). To this end, in May 

2002, the U.S Food and Drug Association (FDA) approved the use of fulvestrant for 

the treatment of hormone receptor positive metastatic breast cancer in 

postmenopausal women with disease progression following endocrine therapy. 

Further, in March 2004, the European Union licenced the use of fulvestrant for the 

treatment of postmenopausal women with advanced breast cancer for disease 

relapse on or after endocrine therapy or disease progression with anti-oestrogen 

treatment. Research suggests that fulvestrant is at least as effective as the most 

widely used AI, anastrozole, in patients that have progressed from adjuvant or first-

line tamoxifen therapy (Howell et al. 2002; Osborne et al. 2002; Robertson et al. 

2003) whilst others suggest the value of fulvestrant treatment after AI failure (Ingle 
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et al. 2004;  Perey et al. 2004). However, some evidence suggests that fulvestrant 

may produce better results upon earlier administration in the treatment sequence 

(Howell et al. 2002; Steger et al. 2005). To this means, fulvestrant is now also being 

trialled in the first line clinical setting for advanced ER+ breast cancer disease with 

results revealing that fulvestrant may be at least as effective as anastrozole in this 

setting (Robertson et al. 2009). Overall, fulvestrant remains an ideal agent for 

combination treatment with other endocrine treatments and/or novel agents 

through its unique mechanism of function, good tolerability profile and lack of cross-

resistance.  

1.5 Therapeutic resistance in ER+ breast cancer 

Whilst endocrine therapies have proven successful for the treatment of ER+ breast 

cancer, de novo or acquired resistance to these therapies remains a significant 

problem. In the setting of metastatic disease, it has been reported that only 

approximately 30 % of breast tumours display objective regression with initial 

endocrine therapy with an additional 20 % exhibiting a prolonged stable disease 

(Osborne and Schiff 2003). Acquisition of endocrine resistance to these therapies 

leads to disease progression, formation of a more aggressive cancer and worsened 

prognosis for breast cancer patients and further treatment options for relapsed 

patients remains limited. For the provision of better therapeutic options for these 

patients it is imperative to understand the mechanisms through which cells develop 

resistance. In recent years several resistance mechanisms have been identified 

through which cells may overcome the growth suppressive effects of endocrine 

therapy. These mechanisms focus around three general categories: i) loss or altered 
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ER expression and/or function ii) differential availability of coregulatory proteins and 

cell-cycle regulators and iii) modulated growth factor receptor signalling, leading to 

a shift from genomic to non-genomic ER activity. However it has now become evident 

that multiple mechanisms exist which combine to orchestrate the acquisition of, and 

sustained, endocrine resistance (Massarweh et al. 2008).  

1.5.1 ER and resistance 

At present, the ER remains the most powerful biomarker for the prediction of patient 

response to endocrine therapy, thus, alterations in ER expression may affect 

endocrine sensitivity. Loss of ER expression occurs in approximately 20 % of breast 

cancer patients treated with endocrine therapy (Gutierrez et al. 2005). ER expression 

is not thought to be controlled at the genomic level, instead it is thought to be 

predominantly regulated by epigenetic modifications and post-translational 

mechanisms (Giacinti et al. 2006). Indeed, ER mutations have been shown to occur 

in less than 1 % of ER+ breast cancers (Herynk and Fuqua 2004). Further complexity 

is added through the observation that the ER undergoes post-translational 

modifications (including phosphorylation, methylation and ubiquitination) which 

alter its interactions with coregulatory proteins thus influencing transcriptional 

activity and sensitivity to various endocrine therapies (Gururaj et al. 2006).  

1.5.2 Coregulatory protein availability and cell cycle and apoptosis regulators 

The ER regulates gene expression through interactions with coregulatory proteins 

that form complexes required for the initiation of transcription (McKenna et al. 

1999). The presence of these proteins in the nucleus at rate-limiting levels can 
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significantly alter ER signalling and it has been observed that enhanced expression of 

ER coactivators and/or reduced expression of corepressors may negate the effects of 

endocrine therapy through influencing the balance of agonist versus antagonist 

activity of SERMs. Indeed, preclinical and clinical evidence suggests that enhanced 

expression of the ER coactivator AIB1/SRC3 is correlated with tamoxifen resistance 

(Osbourne and Schiff. 2003; Shou et al. 2004), whilst reduced expression of the co-

repressor protein NCoR appears to be involved in tamoxifen-refractory tumours 

(Lavinskey et al. 1998). Additionally, increased levels of transcription factors such as 

NFKß, AP1 and SP1, critical for ER-mediated signalling in the non-genomic pathway, 

have also been associated with endocrine resistance (Schiff et al. 2003; Osborne and 

Schiff 2003). Therefore, the availability and altered function of coregulatory proteins 

has been shown to directly influence ER-mediated transcription and efficacy of 

endocrine therapy. 

New evidence from preclinical and clinical studies suggests that the activity of cell 

cycle regulators and survival molecules contribute towards tumour sensitivity to 

endocrine therapies (Musgrove and Sunderland 2009). For example, overexpression 

of the cell cycle regulators MYC and cyclin D1 and E1 contribute to endocrine 

resistance through the activation of cyclin-dependent kinases that are critical for G1 

phases or through negation of the inhibitory effects of the negative cell cycle 

regulators p21 and p27 (Butt et al. 2005). Indeed, studies have revealed that 

resistance to tamoxifen has been associated with decreased expression of the 

negative cell cycle regulators p21 and p27 along with inactivation of the tumour 

suppressor RB (Perez-Tenorio et al. 2006; Chu et al. 2008). Additionally, evidence 
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suggests that downregulated expression of pro-apoptotic proteins (e.g. caspase 9) 

and upregulated expression of anti-apoptotic proteins (e.g. BCL-XL) also facilitates 

acquisition of endocrine resistance (Kumar et al. 1996) through promoting cell 

survival. The activity of these cell cycle regulators and survival molecules can be 

modulated through receptor tyrosine kinase (RTK) and transcription factor signalling 

(Zhou et al. 2007); factors also influenced by endocrine treatment.  

1.5.3 Cross-talk with receptor tyrosine kinases and their downstream signalling 

pathways 

Preclinical and clinical evidence has also shown that RTKs can contribute to endocrine 

resistance. Indeed, studies have revealed a bidirectional cross-talk mechanism 

whereby membrane ER activates RTK signalling which in turn leads to 

phosphorylation of the ER and its coregulatory proteins (Shou et al. 2004). 

Phosphorylation of serine residues in the AF1 domain of the ER, particularly serine’s 

118 and 167, activate ER in a ligand-independent manner and lead to the 

transcription of oestrogen-sensitive genes thus forming a positive feedback loop 

(Bunone et al. 1996; Joel et al. 1998). This activation of ER in the presence of 

endocrine agents may switch the transcriptional programme from genomic to non-

genomic pathway of ER action. Such signalling pathways implicated in reducing the 

efficacy of endocrine therapy include: the ErbB family of RTKs (Arpino et al. 2008), 

src (Morgan et al. 2009), ERK/MAPK (Britton et al. 2006), PI3/AKT (Campbell et al. 

2001) and receptors for insulin/IGF, FGF and VEGF (Chakraborty et al. 2010). These 

pathways lead to the activation of various transcription factors which regulate the 

transcription of multiple genes either in combination with the ER or bypassing it. The 
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RTKs, EGFR and HER2, have been heavily implicated as prominent mediators of 

endocrine resistance in ER+ breast cancer (Konecny et al. 2003; De Laurentiis et al. 

2005). Indeed, enhanced EGFR and/or HER2 expression has been found to become 

elevated in MCF-7 derived acquired tamoxifen-resistant (Tam-R) and fulvestrant-

resistant (Fas-R) in vitro cell models compared to their wild-type MCF-7 cells. Studies 

have revealed that these endocrine resistant cell models show enhanced EGFR/HER2 

heterodimerisation and activity leading to downstream activation of MAPK and 

PI3K/AKT signalling cascades which function to drive endocrine resistant cell growth 

(McClelland et al. 2001; Knowlden et al. 2003; Jordan et al. 2004; Nicholson et al. 

2007). In Tam-R cells, hyperactivated EGFR/HER2 signalling has been shown to 

activate ER and its coregulatory proteins in a ligand-independent manner (Font de 

Marc and Brown 2000; Britton et al. 2006) and EGFR/MAPK signalling in these cells 

was shown to promote AF1 phosphorylation of the ER leading to enhanced agonist 

behaviour of tamoxifen and expression of oestrogen-regulated genes (Britton et al. 

2006). Furthermore, immunohistochemical analysis of clinical breast cancer tissue 

revealed overexpression of EGFR, HER2 and MAPK in both de novo ER+ (and ER-) and 

acquired-tamoxifen resistant patients (Gee et al. 2005; Gutierrez et al. 2005). 

Additionally, in breast tumours resistant to fulvestrant, upregulation of HER2 and 

MAPK has been observed thus suggesting an involvement of this pathway in the 

acquisition of a resistant phenotype (Massarweh et al. 2006).  

To this end, the use of specific blockers or inhibitors of RTK signalling has been a 

promising therapeutic approach in endocrine resistant breast cancer. Indeed, 

gefitinib (a selective inhibitor of EGFR) has been shown to restore the effects of 



  

 

 

 

24 

 

tamoxifen in HER2 overexpressing acquired tamoxifen-resistant MCF-7 cells, whilst 

trastuzumab (monoclonal antibody that blocks HER2) has been shown to inhibit 

growth of endocrine resistant ZR-75-1 cells (Shou et al. 2004). Furthermore, co-

treatment of targetted therapies in conjunction with endocrine agents, e.g. 

tamoxifen, has also been shown to subvert the emergence of resistance in MCF-7 

cells (Gee et al. 2003; Leary et al. 2010) and targetted therapies of downstream 

signalling kinases, MAPK and PI3K/AKT, have also been shown to inhibit growth of 

endocrine resistant cells (McClelland et al. 2001; Knowlden et al. 2003; Jordan et al. 

2004).  

Taken together, it is likely that multiple factors contribute to the acquisition of 

endocrine resistance in breast cancer, however a greater understanding of the 

mechanisms which drive this process is necessary to improve treatment options for 

patients. Progress is being made in this area through the identification of biomarkers 

of resistance and search for molecular targets through which to treat resistant 

disease in patients. Over the past few decades multiple proteins have been reported 

to be involved in the acquisition of endocrine resistance in breast cancer. One such 

protein is the cell surface receptor CD44 which has been implicated in the acquisition 

of tamoxifen resistance in an ER+ breast cancer cell model (Hiscox et al. 2012) and 

extensively found to become upregulated in numerous carcinomas where it is 

thought to contribute, in some instances, to disease progression (Ma et al. 2005; 

Misra et al. 2012; Saito et al. 2013; Shi et al. 2013; Todaro et al. 2014). CD44 will be 

subsequently reviewed in this project.  
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1.6 CD44 

The CD44 protein belongs to a family of cell surface glycoproteins known as cell 

adhesion molecules (CAM) due to the strong bonds they form to specific ligands 

(Goodison et al. 1999). The CD44 family encompasses a polymorphic group of 

proteins which differ in size, glycosylation and function. Although CD44 is encoded 

by a single, highly conserved gene (Screaton et al. 1992; Rudzki and Jothy, 1997), the 

heterogeneity of CD44 proteins arise through the process of alternative splicing and 

post-translational modifications which may vary according to cell type and growth 

conditions (Jackson et al. 1992; Tolg et al. 1993). CD44 proteins are found present on 

the surface of most vertebrate cells and along with other members of the CAM 

family, are implicated in a diverse array of cellular functions including: cell to cell 

adhesions, cell to matrix adhesions, cell motility, growth, differentiation and 

signalling (Yu and Stamenkovic 1999; Mylona et al. 2006; Subramaniam et al. 2007; 

Cho et al. 2012; Montgomery et al. 2012; Bjorkland et al. 2013; Tsuneki and Mmadri 

2014). Additionally, a large proportion of CD44-mediated functions are facilitated 

through binding to its principle ligand hyaluronan (HA) (Bartolazzi et al. 1994; 

Knudson et al. 2002; Hamilton et al. 2007; Bourguignon et al. 2012). Thus, CD44 

belongs to a family of proteins linked by their shared ability to bind HA, termed 

hyaladherins.  

1.6.1 CD44 gene structure 

The human CD44 gene is located at the chromosomal locus 11p13 and is comprised 

of two groups of exons as denoted in Figure 1.3 (Goodfellow et al. 1982). The first 
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group are composed of exons 1 – 5 and 16 – 20. These constitutively expressed exons 

(termed standard exons) can be spliced together to form an isoform known as CD44 

standard (CD44 Std). The second group comprise the exons 6 – 15 (termed variant 

exons 1 – 10). These variant exons may be alternatively spliced individually, or in 

combinations, and included with the constitutively expressed standard exons at the 

insertion site between exons 5 and 16; this process allows for the formation of a vast 

array of CD44 isoforms with differing exon compositions (Dougherty et al. 1991; 

Hoffman et al. 1991; Tolg et al. 1993). Additional complexity arises through the 

alternative splicing of standard CD44 exons or use of cryptic splice sites (Screaton et 

al. 1992; Ermack et al. 1996). However, unlike mice, the human CD44 gene contains 

a stop codon in exon 6 (variant 1) within the seventeenth amino acid and thus is not 

usually included within processed transcripts (Screaton et al. 1993). 
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1.6.2 CD44 protein structure 

The CD44 protein structure is comprised of three domains; an N-terminal 

extracellular domain, a transmembrane domain and a C-terminal cytoplasmic 

domain (Figure 1.4) (Bosworth et al. 1991).  

 

 

 

 

Figure 1.4. CD44 protein structure adapted from Ponta et al. 2003. A schematic diagram to show 

the 3 structural domains of CD44 including: i) the N-terminal extracellular domain folded into a 

globular tertiary structure, which includes the stem structure containing the insertion site for 

individual or combinations of variant exons 2 – 10, ii) the highly conserved hydrophobic 

transmembrane domain and iii) the C-terminus cytoplasmic domain. The table lists the exon 

number(s), binding motifs/attachment sites and post-translation modifications attributed to each 

domain. Abbreviations represent: NH2 (amino terminus), COOH (carboxy-terminus), S-S 

(disulphide bond formed between 2 cysteine residues).  
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The extracellular domain of CD44 can be divided into two regions: conserved and 

non-conserved. The largely conserved (85 %) N-terminal domain is encoded by exons 

1 – 4 and forms a globular tertiary structure through the formation of disulphide 

bonds between three pairs of cysteine residues (Goodison et al. 1999) (Figure 1.4). 

Exon 1 encodes an N-terminal signal sequence whilst exons 2 – 3 comprise a stretch 

of 90 amino acids which contain the binding site for HA and other glycosaminoglycans 

(GAGs); this domain is termed the ‘link module’ (Aruffo et al. 1990; Culty et al. 1990; 

Naor et al. 1997). This domain also contains the conserved cysteine residues which 

form interchain disulphide bonds which are required for the stability of the domain 

and correct folding into the globular tertiary structure of this protein (Kohda et al. 

1996; Banjeri et al. 1998; Day and Sheehan 2001). The less conserved N-terminal 

region (approximately 35 – 50 %) is the membrane proximal stem domain and is 

encoded partly by exon 5 and exons 16 and 17 (Goodison et al. 1999). This stem 

structure (46 amino acids in length) separates the N-terminal domain from the 

plasma membrane. This domain contains numerous carbohydrate modifications and 

putative proteolytic cleavage sites and is thought to form a stem structure due to 

heavy glycosylation (Screaton et al. 1992; Okamoto et al. 1999). The stem structure 

may be expanded (by up to 381 amino acids in humans, or 423 amino acids in mice) 

to contain individual or combinations of variant exons through the previously 

mentioned process of alternative splicing (Jackson et al. 1992) (Figure 1.4). This 

domain also contains various binding sites for alternative CD44 ligands including: 

chondroitin sulphate (exons: 5, 15, 16 and 17) (Knutson et al. 1996; Kawashima et al. 

2000; Fujimoto et al. 2001; Murai et al. 2004), heparan sulphate (exon 8) (Bennet et 
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al. 1995; Jackson et al. 1995; Jones et al. 2000), collagen (Carter and Wayner 1988), 

laminin (Ishii et al. 1993; Hibino et al. 2004), fibronectin (Jalkanen and Jalkanen 1992) 

and osteopontin (Weber et al. 1996; Pietras et al. 2014) and is capable of forming 

complexes with various growth factors, cytokines, matrix-metalloproteinases and 

non-protein/protein integral membrane receptors (Bennet et al. 1995; Lammich et 

al. 2002; Murakami et al. 2003).  

The transmembrane region is encoded by exon 18 and comprises 23 hydrophobic 

amino acids and a cysteine residue and shows 100 % conservation between species 

(Figure 1.4) (Isacke et al. 1994); Lesley and Hyman 1998). The functional significance 

of this highly conserved transmembrane region has not yet been fully elucidated. 

However, studies have suggested a role for this domain within CD44 oligomerisation 

and incorporation into lipid rafts for the stabilisation and regulation of CD44 ligand 

associations and subsequent downstream signalling and initiation of migration 

(Neame et al. 1995; Perschl et al. 1995; Thankamony and Knudson 2006; Donatello 

et al. 2012; Babina et al. 2014). Additional studies hypothesise a role for this domain 

in efficient ligand binding (Lesley et al. 1992; Thomas et al. 1992) however this is 

disputed (Lesley et al. 2000; Gal et al. 2003; Perschl et al. 2005).  

The cytoplasmic region of CD44 is highly conserved and is encoded partially by exon 

18 (3 amino acids) and by exons 19 and 20 (Figure 1.4) (Goodison et al. 1999). 

However exon 19 is usually excluded from the majority of CD44 transcripts as 

inclusion of this exon results in a short-tail variant of CD44 through the use of an 

alternative translation stop codon (Goldstein et al. 1989; Goldstein and Butcher. 

1990; Jiang et al. 2001). Indeed, Jiang et al. 2002 revealed that inclusion of exon 19 
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in chondrocytes led to subsequent inhibition of HA endocytosis suggesting a possible 

role for this truncated isoform as a dominant negative regulator of HA internalisation. 

The cytoplasmic tail contains motifs for the cytoskeletal linker proteins ezrin, radixin, 

moesin (ERM) (Tsukita et al. 1994; Yonemura et al. 1994) and ankyrin (Bourguignon 

et al 1986; Kalomiris et a. 1988). These proteins are found to localise to membrane 

ruffles, filopodia, microvilli and cleavage furrow and are implicated within 

cytoskeletal and membrane remodelling, regulation of cell shape and migration and 

may act as a scaffold for signalling events (Bretscher et al. 1997; Hiscox and Jiang 

1999; Yonemura et al. 1999). Phosphorylation of the CD44 cytoplasmic tail by 

intracellular signalling components (including calmodulin-dependent protein kinase 

(CAMKII) and Rho-kinase (ROK)) enhance interactions between CD44 proteins and 

cytoskeletal linkers ERM and ankyrin, respectively, which regulate cell motility 

processes through facilitating indirect binding of CD44 to the actin cytoskeleton (as 

the CD44 gene itself does not encode actin binding motifs) (Zohar et al. 2000; Legg 

et al. 2002; Bourguignon et al. 2003; Donatello et al. 2012) shown in Figure 1.5. 

Furthermore the cytoplasmic tail plays an important role in subdomain localisation 

and in response to ligand binding can transduce intracellular signalling events leading 

to subsequent modulation of gene expression. As with all major classes of adhesion 

receptors, the CD44 molecule lacks intrinsic kinase activity therefore interactions 

with other proteins are required for the modulation of signalling within cells (Taher 

et al. 1996). Indeed, many intracellular signalling components have been reported to 

complex with the CD44 cytoplasmic tail including the Rho family of GTPases (and 

their exchange factors and adaptor molecules) (Oliferenko et al. 2000; Bourguignon 



  

 

 

 

32 

 

et al. 2003) and members of the src family of non-receptor tyrosine kinases 

(Llangumaran et al. 1998; Bourguignon et al. 2001). Numerous studies have shown 

that HA binding to CD44 stimulates Rho-guanine nucleotide exchange factors 

(RhoGEFs) (including p115RhoGEF and leukemia-associated RhoGEF (LARG)) which 

act as GDP/GTP exchange proteins for the Rho subfamily of GTPases, including RhoA. 

HA binding to CD44 stimulates RhoGEF/LARG mediated activation of RhoA which 

subsequently interacts with and activates downstream signalling components 

phospholipase C ɛ (PLCɛ) and ROK (Bourguignon et al. 2004; Bourguignon et al. 2006). 

Interactions between RhoA and PLCἐ promote inositol trisphophate (IP3) production 

and calcium (Ca2+) mobilisation leading to CamKII activation and subsequent 

phosphorylation of the cytoskeletal protein filamin, resulting in cellular 

migration/invasion (Bourguignon et al. 2006) (Figure 1.5). Conversely, RhoA 

activation of ROK leads to the subsequent phosphorylation of several signalling 

proteins including Na+/H+ exchanger 1 (NHE1), Grb-2 associated binder 1 (Gab-1) and 

myosin-phosphatase which contribute to enhanced cellular survival, growth, 

migration and invasion (Bourguignon et al. 2003; Bourguignon et al. 2004; 

Bourguignon et al. 2006) (depicted in Figure 1.5). Furthermore, Src has been shown 

to directly bind to the CD44 cytoplasmic tail leading to PKC activation and subsequent 

stimulation of the Ras-MEK-ERK signalling pathway resulting in enhanced cellular 

survival/growth (Bourguignon et al. 2001; Bourguignon et al. 2010) (Figure 1.5). 

Additionally, CD44 proteins are subject to proteolytic cleavage in the cytoplasmic 

domain (Okamoto et al. 2001; Lammich et al. 2002; Murakami et al. 2003). 

Extracellular domain cleavage of CD44 (by proteases) triggers subsequent 
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intracellular cleavage and the resultant fragment is translocated to the nucleus 

where it mediates the transcription of a variety of genes, including CD44 itself 

(Okamoto et al. 2001; Murakami et al. 2003).  

In summary, CD44 proteins can contribute to multiple cellular functions through i) 

co-receptor formation with integral membrane proteins, ii) binding of growth factors, 

cytokines and MMPs, iii) incorporation into lipid rafts, iv) transduction of intracellular 

signalling through interactions with proteins via the cytoplasmic tail, v) cytoskeletal 

remodelling through indirect binding to the cytoskeleton and vi) transduction of gene 

expression through proteolytic cleavage. These interactions facilitate a highly diverse 

array of CD44-mediated functions. 
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Figure 1.5. A proposed model for HA-stimulated CD44-mediated signalling during tumour 

progression, adapted from Bourguignon et al. 2009. HA binding to CD44 stimulates RhoGEF/LARG 

mediated activation of RhoA in a GTP-dependent manner which subsequently interacts with, and 

activates, downstream signalling components PLCἐ and ROK. Interactions between RhoA and PLCἐ 

promotes IP3 production and Ca2+ mobilisation leading to CamKII activation and subsequent 

phosphorylation of the cytoskeletal protein filamin, resulting in cellular migration/invasion. RhoA-

activated ROK phosphorylates several signalling proteins including: i) myosin phosphatase leading 

to actomysin mediated membrane motility, ii) NHE-1 leading to intracellular acidification and 

acidic ECM conditions resulting in cysteine proteinase-mediated matrix degradation and cellular 

migration/invasion and iii) Gab-1 leading to PI3K-AKT pathway activation and subsequently 

enhanced cell survival and growth. Furthermore, ROK phosphorylates the CD44 cytoplasmic tail 

leading to enhanced interaction with the cytoskeletal protein ankyrin resulting in cytoskeleton 

reorganisation. Phosphorylation of an alternative site in the CD44 cytoplasmic tail leads to 

interaction with the cytoskeletal linker proteins ERM also resulting in cytoskeletal reorganisation. 

The cytoplasmic domain of CD44 can also directly bind to Src leading to PKC activation and 

stimulation of the Raf-MEK-ERK signalling pathway resulting in enhanced cell survival and growth. 

Additionally, the extracellular region of CD44 can interact with numerous ligands, growth factors, 

cytokines, MMPs and integral/non-integral membrane receptors thus contributing towards the 

activation of numerous alternative cellular signalling pathways.  
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1.6.3 Post-translational modifications of the CD44 protein  

The calculated theoretical mass of the standard CD44 isoform (comprised of 363 

amino acids) is 37 kDa however its apparent mass (determined by gel 

electrophoresis) is approximately 80 kDa (Stamenkovic et al. 1989; Goodison et al. 

1999). Moreover, the observed mass of the largest CD44 isoform (containing all CD44 

variant exons and termed ‘epican’) can be over 200 kDa; with other CD44 variant 

isoforms falling within this size range (Goodison et al. 1999). The differences between 

the theoretical and observed mass of CD44 isoforms are due to extensive post-

translational modifications which tend to be cell specific. Such modifications of CD44 

may occur within the N-terminal domain which harbours: (i) a minimum of seven 

conserved consensus N-glycosylation sites (Bartolazzi et al. 1996;  English et al. 1998), 

(ii) chondroitin- (Knutson et al. 1996) tyrosine- (Sleeman et al. 1998) and keratin 

sulphate attachment sites  (Bennet et al. 1995) (iii) O-linked glycosylation sites (Lesley 

et al. 1995) and (v) sialic residues located on the standard extracellular region 

(Goodison et al. 1999) (shown in Figure 1.4). The splice variant exons also have the 

potential for various post-translational modifications including extra sites for N- and 

O-linked glycosylation, GAG consensus motifs and attachment sites for heparan 

sulphate on exon 8 (variant 3) and chondroitin sulphate on exon 15 (variant 10) 

(Jackson et al. 1995; Jones et al. 2000; Fujimoto et al. 2001; Murai et al. 2004) (Figure 

1.4).  

Post-translational modifications have also been shown to occur within the 

transmembrane and cytoplasmic domains of the CD44 molecule. Bourguignon et al. 

1991 revealed that CD44 can be reversibly palmitoylated at the acylation sites 
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cysteine 286 and 295 in the transmembrane and cytoplasmic domain respectively 

(Figure 1.4). The functional significance of this post-translational modification has 

been suggested to enhance the interactions between CD44 and the cytoskeletal 

protein ankyrin (Bourguignon et al. 1991) and play a role in the portioning of CD44 

into lipid rafts (Thankamony et al. 2006; Babina et al. 2014). Additionally, the 

cytoplasmic tail of CD44 contains two phosphorylation sites at serine 235 and 291 

(Neame and Isacke 1992) and 4 other potential phosphorylation sites (Figure 1.4). 

Studies have revealed a functional importance of these post-translational 

modifications in HA-stimulated migration. Indeed, Legg et al. 2002 revealed that 

protein kinase C (PKC) mediates phosphorylation switching between serine 235 and 

serine 291 on the CD44 molecule. Complete dephosphorylation of CD44 at position 

serine 235 followed by phosphorylation of serine 291 by PKC causes dissociation of 

ezrin from the molecule; these events are essential for the regulation of CD44 

interactions with ERM proteins and subsequent cytoskeleton modulation (Legg et al. 

2002).  

Clearly the CD44 molecule has the potential to be extensively modified following 

translation. The degree of glycosylation, acetylation and phosphorylation can alter 

the ligand binding characteristics of the protein and may thus account for altered 

functions observed between CD44 family members. Therefore incorporation of 

different combinations of CD44 exons into the CD44 protein can lead to the 

formation of multiple isoforms with distinct post-translational modifications, thus 

adding a further level of complexity to understanding CD44 functions.  
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1.6.4 CD44 variant expression and its pathological roles 

CD44 proteins do not exhibit uniform expression within tissues. Whereas the 

standard CD44 isoform (CD44 Std) has been shown to be ubiquitously expressed in 

the majority of vertebrate tissues (Terpe et al. 1994; Mackay et al. 1994), the larger 

CD44 variant isoforms exhibit a more restricted expression pattern and are 

predominantly located in cells of a stressed/diseased state e.g. during wound repair 

(Oksala et al. 1995; Huebener et al. 2008), inflammatory diseases (Pure and Cuff 

2001; Teder et al. 2002) and cancer cells (Gunthert et al. 1991; Foekens et al. 1999; 

Lopez et al. 2005; Louderbough et al. 2011). Further, CD44 variant expression 

changes during distinct stages of maturation (Zoller et al. 1997). Although most 

hematopoietic and epithelial cells display a CD44 variant positive phenotype during 

embryonic development and lymphocyte maturation and activation (Weber et al, 

1996), adult CD44 variant expression is confined predominantly to the skin (Haggerty 

et al. 1992; Tuhkanen et al. 1997), squamous and epithelia and ductal parts of the 

glands (Gansauge et al. 1995) and proliferating cells of epithelial tissues (Mackay et 

al. 1994). Various cell types have been identified which do not appear to express any 

of the CD44 isoforms amongst which include: hepatocytes, pancreatic acinar cells, 

adrenal glands, striated muscle, astrocytes and epithelium of the stromal intestine 

(Terpe et al. 1994; Mackay et al. 1994).  

CD44 proteins have been shown to mediate a diverse array of physiological cellular 

and tissue functions including: embryonic development (Sherman et al. 1996; 

Wainwright et al. 1996), haematopoiesis (Lewinsohn et al. 1990; Rossbach et al. 

1996), lymphocyte homing (Goldstein et al. 1989; Stamenkovic et al. 1989) and 
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migration (Bourguignon et al. 2001; Subramaniam et al. 2007; Donatello et al. 2012), 

leucocyte activation (Huet et al. 1989), effector functions and activation induced cell 

death (AICD) (McKallip et al. 2002), angiogenesis (Griffioen et al. 1997; Cao et al. 

2006) and cell adhesion (Aruffo et al. 1990; Bjorklund et al. 2013) and neoplasia 

(Gunthurt et al. 1991; Bartolazzi et al. 1994; Cho et al. 2012; Montgomery et al. 2012). 

Surprisingly, despite the well-defined role for CD44 in many physiological processes, 

CD44 null mice remain viable and develop normally showing only mild phenotypic 

abnormalities (Schmits et al. 1997; Protin et al. 1999) potentially suggesting a 

compensatory mechanism for loss of CD44. However, the effects of CD44 deletion in 

response to wound repair (Huebener et al. 2008), inflammatory diseases (Pure and 

Cuff et al. 2001; Teder et al. 2002) and tumour prone mice/tumour progression 

(Gunthurt et al. 1991; Foekens et al. 1999; Lopez et al. 2005; Louderbough et al. 2011) 

are prominent, suggesting that the main role of CD44 may be in response to 

environmental insult and disease progression.  

A large body of evidence has been gathered to support the finding of aberrant CD44 

variant expression in cancer; however this area remains largely controversial due to 

contradictory findings. Indeed, multiple studies have established a role for CD44 

variants (and in some instances upregulated expression of CD44 Std) in tumour 

progression and correlation with poor prognosis in many cancers including: breast 

carcinomas (Kalish et al. 1999; Herrera-Gayol and Jothy 1999a; Ma et al. 2005; Afify 

et al. 2009; Yae et al. 2012), colorectal carcinomas (Kuniyasa et al. 2002; Misra et al. 

2011; Saito et al. 2013), pancreatic cancer (Takada et al. 1994; Gotoda et al. 1998), 

ovarian cancer (Jaggupilli and Elkord 2012; Shi et al. 2013) and cancers of the prostate 
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(Hao et al. 2010; Ni et al. 2014; Tei et al. 2014) and brain (Marzese et al. 2014). 

However, conversely, the absence of CD44 expression (including variant proteins) 

has been shown to confer poorer prognosis in prostate cancer (Aaltomaa et al. 2001; 

Gupta et al. 2013) and neuroblastomas (Shtivelman and Bishop 1991; Favrot et al. 

1993). 

Further, in recent years, CD44 has been established as a marker of cancer stem cells 

(CSCs) (in combination with other markers) in multiple carcinomas including: breast 

(CD44+/CD24-) (Al-Hajj et al. 2003; Honeth et al. 2008; Idowu et al. 2012), pancreas 

(CD44+/CD133+ or CD44+/CD24+) (Li et al. 2007; Soner et al 2014), prostate 

(CD44+/CD133+) (Collins et al. 2005; Hurt et al. 2008; Lui et al. 2011), colon 

(CD44+/CD133+) (Du et al. 2008; Sahlberg et al. 2014), and gallbladder 

(CD44+/CD133+/CD24-) (Shi et al. 2010; Yin et al. 2011) where it has been reported 

to be associated with metastasis, chemo- and/or radioresistance, disease relapse and 

poor prognosis. However, whilst CD44 has been widely identified as a CSC maker in 

multiple organs, it remains unclear which isoforms of CD44 are specifically associated 

with the stem cell phenotype. Recent studies have shown that in particular, the 

presence of the CD44v6 isoform has been suggested to be a marker of CSCs in breast 

(Synder et al. 2009), pancreatic (Gaviraghi et al. 2011; Wang et al. 2013), prostate (Ni 

et al. 2014), colorectal (Todaro et al. 2014), bladder (Yang and Chang 2008) and 

tongue (Yanamoto et al. 2014) where it has been shown to contribute to tumour 

development and aggressive phenotype. 

Overall these studies suggest a substantial role for CD44 as a marker of tumour 

initiating cancer stem cells and as a protein involved in multiple processes critical for 
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tumour progression behaviours, however results remain contradictory. Therefore 

additional analyses are required to further substantiate the role of individual 

isoforms within these processes and divulge the mechanisms through which these 

proteins may contribute to disease progression.  

1.6.5 Therapeutic targetting of CD44 in cancer 

In light of its strong association with disease progression and poor prognosis in many 

cancer types including breast cancer, CD44 could present as an attractive therapeutic 

target. Multiple groups have investigated the value of CD44 as a therapeutic target 

in numerous cancers through the use of various techniques including: monoclonal 

antibodies against CD44 proteins (Seiter et al. 1993; Koppe et al. 2004; Tijink et al. 

2006), mimic peptides, miRNA therapies (Liu et al. 2011) or tumour specific 

nanocarriers/shRNA nanoparticles (Misra et al. 2009; Qian et al. 2013). Whilst these 

approaches have been met with some success in multiple cancers including 

pancreatic (Qian et al. 2013), colon (Misra et al. 2009) and prostate (Liu et. al. 2011) 

their effectiveness in breast cancer remains limited. These limited successes may be 

due to the development of therapies designed to target total CD44 proteins and may 

suggest a requirement for more specified targetting of individual CD44 variant 

isoforms.  

To reduce the off target effects of chemotherapeutic drugs in normal non-cancerous 

cells, researchers are investigating approaches in which to exploit the HA-binding 

properties of CD44 as a mechanism of localising drugs to specific sites and through 

which they can be endocytosed by cancer cells. HA is the principle ligand of CD44 and 
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is often found in abundance within the breast tumour stroma where it is correlated 

with poor prognosis (Auvinen et al. 2000; Auvinen et al. 2013). Recent studies have 

shown that these approaches have been met with some success in breast cancer cells 

highly expressing CD44 proteins (Ganesh et al. 2013; Yang et al. 2013) however more 

research is required before these treatments can be taken to clinical trials.  

However in recent years, studies have tended to focus upon CD44 targetting in the 

context of CSCs, defined by their CD44+/CD24- expression in breast cancer cells 

amongst other markers. This has been met with some success as Diessner et al. 2014 

revealed that targetting breast CSCs with the new antibody drug conjugate T-DM1 

(comprised of the potent chemotherapeutic agent, DM1, coupled with the HER2 

targetted antibody, trastuzumab) led to the depletion of a pre-existing subset of 

CD44+/CD24- stem cells and efficiently suppressed colony formation across a panel 

of breast cancer cell lines and primary tumours. Furthermore, therapies which act to 

induce differentiation of stem cells have shown that knockdown of CD44 in breast 

CSCs sensitised them to the anti-tumour drug doxorubicin and inhibited the 

‘stemness’ and differentiation properties of these cells (Pham et al. 2011). Whilst 

Ginestier et al. 2009 revealed that modulation of retinoid signalling may be sufficient 

to induce differentiation of breast CSCs. Additionally, multiple pathways are known 

to play a fundamental role in the maintenance and regulation of stem cells, of which, 

the Notch signalling pathway has been well-established. Studies aiming to target this 

pathway have been met with success including McGowan et al. 2011 which revealed 

that inhibition of Notch1 signalling significantly reduced the CD44+/CD24-/low 

subpopulation in a breast cancer cell line whilst also lowering the incidence of 
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metastases to the brain. In support of this, Harrison et al. 2010 revealed that 

inhibition of Notch4 mediated signalling decreased CSC populations in breast cancer 

cells whilst simultaneously inhibiting tumour initiation. 

Taken together, these studies reveal promising results for CD44 proteins as 

candidates of novel therapeutic strategies for breast cancer. Therefore it is hoped 

that with the advent of breast CSC targetted therapies, specific targetting of CD44 

variant isoforms and exploitation of the HA binding capacity of CD44 proteins, better 

therapies may become available in the future for the treatment of CD44+ breast 

cancer and patients who experience disease progression from endocrine-, chemo- 

and radio- therapies.  

1.7 Aims and Objectives 

CD44 expression has been extensively shown to become upregulated in numerous 

carcinomas where it correlates with an enhanced metastatic phenotype (Ma et al. 

2005; Afify et al. 2009; Saito et al. 2013; Shi et al. 2013; Ni et al. 2014) however these 

findings are controversial due to contradictory results. One aspect of CD44 that may 

account for variability between studies is the extensive alternative splicing attributed 

to this molecule which may lead to the production of novel CD44 isoforms with 

enhanced migratory/invasive functions. At present there is no substantial data 

surrounding the role of CD44 variant isoforms in clinical endocrine resistance, 

however previous work by the Breast Cancer Molecular Pharmacology Group 

(BCMPG) showed elevated total CD44 expression in a model of acquired tamoxifen 

resistance which associated with an increase in their migratory capacity (Hiscox et al. 
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2012). Therefore, the overall goals of this thesis were to characterise CD44 variant 

isoform expression across cell models of acquired tamoxifen-resistance and further 

extend these studies into a model of fulvestrant-resistant breast cancer to explore 

the hypothesis that upregulation of specific CD44 isoforms in endocrine resistant 

breast cancer promote an aggressive phenotype. To achieve this, a number of 

objectives were decided: 

1. To characterise CD44 isoform expression in endocrine sensitive and 

endocrine resistant breast cancer cells.  

2. To determine whether CD44-overexpressing resistant cells were sensitised to 

their principle ligand, HA, leading to enhanced activation of receptor tyrosine 

kinases and augmented cellular behaviours. 

3. To validate a potential link between CD44 and an adverse cellular phenotype 

in resistance by exploring the effects of CD44 suppression in endocrine 

resistant cells and investigating specific CD44 isoform overexpression upon 

the phenotype of endocrine sensitive cells. 

4. To define a mechanism through which CD44 specific isoforms promote 

aggressive cellular behaviours.  
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2. Materials and Methods 

2.1 Materials and reagents 

The materials and reagents used for experimental procedures in this project and their 

source of purchase are listed in Table 2.1.  

Materials/Reagents Supplier 

2-propanol (isopropanol) Sigma-Aldrich, Poole, Dorset, UK 

Acetic acid, glacial Sigma-Aldrich, Poole, Dorset, UK 

Acrylamide/bis-acrylamide (30 % solution, 

29:1 ratio) 
Sigma-Aldrich, Poole, Dorset, UK 

Activated charcoal Sigma-Aldrich, Poole, Dorset, UK 

Agarose Bioline Ltd, London UK 

Alexa Fluor 488 conjugated secondary 

antibody (anti-rabbit) 
Life Technologies, Inc. UK 

Alexa Fluor 594 conjugated secondary 

antibody (anti-mouse) 
Life Technologies, Inc. UK 

Ammonium Persulphate (APS) Sigma-Aldrich, Poole, Dorset, UK 

Amphortericin B (Fungizone) Invitrogen, Paisley, UK 

Ampicillin Sigma-Aldrich, Poole, Dorset, UK 

Anti-mouse IgG HRP-linked antibody Cell Signaling Technology, UK 

Anti-rabbit IgG HRP-linked antibody Cell Signaling Technology, UK 

Antibiotics: Penicllin/Streptomycin Life Technologies, Inc. UK 

Aprotinin Sigma-Aldrich, Poole, Dorset, UK 

BamHI 
New England Biolabs Inc, Ipswich, 

UK 

BglII restriction endonuclease 
New England Biolabs Inc, Ipswich, 

UK 

Bijou vials – sterile (5 ml) Bibby Sterilin Ltd, Stone, UK 

Bio-Rad Dc Protein Assay 
Bio-Rad Laboratories Ltd, Herts, 

UK 

Bovine serum albumin (BSA) Sigma-Aldrich, Poole, Dorset, UK 

Bromophenol Blue (BPB) BDH Chemicals Ltd, Poole, UK 

RPMI 1640 (containing Glutamine (200 mM) 

phenol-red-free RPMI 1640 
Life Technologies Inc, UK 

Sterile cell culture Corning plasticware 

(flasks, Petri-dishes, 24-, 48- and 96-well 

plates) 

ThermoFisher Scientific, 

Leicestershire, UK 

Cell scrapes 
Greiner Bio-One Ltd, 

Gloucestershire, UK 
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Chemiluminescent Supersignal West HRP 

Substrate (Pico, Dura, Femto) 

Pierce and Warriner Ltd, Chesire, 

UK 

Chloroform Sigma-Aldrich, Poole, Dorset, UK 

Corning Standard Transwell inserts (6.5 mm 

diameter, 8 µm pore size) 

Fisher Scientific, Leicestershire, 

UK 

Coulter Counter counting cups and lids 
Sarstedt AG and Co.,  Numbrecht, 

Germany 

Crystal Violet Sigma-Aldrich, Poole, Dorset, UK 

Dako diaminobenzidine (DAB)/substrate 

chromogen system solution 
Dako Ltd, Cambridgeshire, UK 

Dako Envision+ system-HRP labelled polymer 

anti-mouse, 
Dako Ltd, Cambridgeshire, UK 

Dextran from Leuconostoc spp. Sigma-Aldrich, Poole, Dorset, UK 

DharmaFECT 1 Transfection Reagent 
Thermo Scientific Dharmacon, GE 

Healthcare, UK 

Disposable cuvettes 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

Di-thiothreitol (DTT) Sigma-Aldrich, Poole, Dorset, UK 

Deoxyribonucleotides (dNTPs) Invitrogen, Paisley, UK 

DPX mountant (06522) Sigma-Aldrich, Poole, Dorset, UK 

Dulbecco’s Phosphate Buffered Saline Sigma-Aldrich, Poole, Dorset, UK 

Ethidium Bromide (EtBr) Sigma-Aldrich, Poole, Dorset, UK 

Ethylene diamine tetraacetic acid (EDTA) Sigma-Aldrich, Poole, Dorset, UK 

Ethylene glycol-bis(2-aminoethylether)-

N,N,N’,N’-tetraacetic acid (EGTA) 
Sigma-Aldrich, Poole, Dorset, UK 

Falcon tubes – sterile (15 ml and 50 ml) 
Sarstedt AG and Co, Numbrecht, 

Germany 

Fibronectin (from human plasma; 1 mg/ml in 

0.05 TBS. pH 7.5) 
Sigma-Aldrich, Poole, Dorset, UK 

Filter paper (Grade 3) Whatman, Maidstone, UK 

Foetal calf serum (FCS) Life Technologies Inc, UK 

Formaldehyde solution Sigma-Aldrich, Poole, Dorset, UK 

FuGENE 6 transfection reagent Promega, Southampton, UK 

Gefitinib Gift from Astrazeneca, UK 

General laboratory glass and plastic ware 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

Glacial Acetic Acid 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

Glass coverslips (thickness no. 2, 22 mm2) 
BDH Chemicals Ltd, Poole, 

Dorset, UK 

Glass slides (1.0 – 1.2 mm thickness) 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

Glycerol 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

Glycine Sigma-Aldrich, Poole, Dorset, UK 
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Hydrochloric acid (HCI; 5M) 
Fisher  Scientific UK Ltd, 

Loughborough, UK 

HyperladderTM I and HyperladderTM IV Bioline Ltd, London, UK 

Isoton II azide-free balanced electrolyte 

solution 

Beckman Coulter Ltd, High 

Wycombe, UK 

Kodak MXB Autoradiography film (blue 

sensitive; 18 cm x 24 cm) 

Genetic Research 

Instrumentation (GRI), Rayne, UK 

Lennox L Agar  Sigma-Aldrich, Poole, Dorset, UK 

LB broth EZmixTM powder dust Sigma-Aldrich, Poole, Dorset, UK 

Leupeptin Sigma-Aldrich, Poole, Dorset, UK 

L-glutamine Life Technologies Inc, UK 

Liquid DAB+ substrate chromogen substrate DAKO, Cambridgeshire, UK 

Lower buffer for SDS-PAGE Gels (Tris 1.5 M, 

pH 8.8) 

Bio-Rad Laboratories Ltd, 

Hertfordshire, UK 

Magnesium Chloride (MgCl2) Sigma-Aldrich, Poole, Dorset, UK 

MatrigelTM Basement Membrane Matrix BD Biosciences, Oxford, UK 

Max Efficiency DH5αTM E.coli competent cells Life Technologies Inc, U 

Methyl green (M8884) Sigma-Aldrich, Poole, Dorset, UK 

Micro-centrifuge tubes (0.5 and 1.5 ml) 
Elkay Laboratory Products, 

Basingstoke, UK 

Mineral oil  PCR reagent Sigma-Aldrich, Poole, Dorset, UK 

Molony-murine leukemia virus (MMLV) 

reverse transcriptase enzyme 
Promega, Southampton, UK 

NEBuffer 3 
New England Biolabs Inc, Ipswich, 

UK 

N,N,N’,N’-tetramethylene-diamine (TEMED) Sigma-Aldrich, Poole, Dorset, UK 

Nitrocellulose transfer membrane (Protran 

B85; 0.45 µm pore size) 

Thermo Fisher Scientific, 

Leicestershire, UK 

Normal goat serum (10 %) Sigma-Aldrich, Poole, Dorset, UK 

PCR Buffer (10X) without MgCl2 Sigma-Aldrich, Poole, Dorset, UK 

Phenol Sigma-Aldrich, Poole, Dorset, UK 

Phenylarsine oxide Sigma-Aldrich, Poole, Dorset, UK 

Phenylmethylsulfonyl fluoride (PMFS) Sigma-Aldrich, Poole, Dorset, UK 

Phosphate buffered saline – sterile (PBS) Life Technologies Inc, UK 

Pipette tips 
Greiner Bio-One Ltd, 

Gloucestershire, UK 

Polyoxyethlene-sorbitan monolaurate 

(Tween 20) 
Sigma-Aldrich, Poole, Dorset, UK 

Ponceau S solution  Sigma-Aldrich, Poole, Dorset, UK 

Potassium Chloride (KCI) Sigma-Aldrich, Poole, Dorset, UK 

Potassium di-hydrogen orthophosphate 

(KH2PO4) 

Fisher Scientific UK Ltd, 

Loughborough UK 

Precision Plus ProteinTM All Blue Standards 

(10 – 250 kDa) 

Bio-Rad Laboratories Ltd, 

Hertfordshire, UK 
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Protein Assay Reagent A 
Bio-Rad Laboratories Ltd, 

Hertfordshire, UK 

Protein Assay Reagent B 
Bio-Rad Laboratories Ltd, 

Hertfordshire, UK 

Protein Assay Reagent C 
Bio-Rad Laboratories Ltd, 

Hertfordshire, UK 

pUC19 vector Life Technologies Inc, UK 

Random Hexamers (RH) Amersham, Little Chalfont, UK 

Recombinant RNasin Ribonuclease Inhibitor Promega, Southampton, UK 

RestoreTM Western blot Stripping Buffer  

RNase-free H2O Sigma-Aldrich, Poole, Dorset, UK 

Serological pipettes – sterile, disposable (5 

ml, 10 ml, 15 ml) 
Sigma-Aldrich, Poole, Dorset, UK 

siRNA buffer (5X) 
Thermo Fisher Scientific, 

Leicestershire, UK 

Super Optimal broth with Catabolic 

repression (SOC) media 
Life Technologies Inc, UK 

Sodium Azide Sigma-Aldrich, Poole, Dorset, UK 

Sodium Chloride (NaCl) Sigma-Aldrich, Poole, Dorset, UK 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Fluoride (NaF) Sigma-Aldrich, Poole, Dorset, UK 

Sodium hydroxide (NaOH; 5M) 
Fisher Scientific UK Ltd, 

Loughborough, UK 

Sodium Molybdate (Na2,M0O4) Sigma-Aldrich, Poole, Dorset, UK 

Sodium Orthovanadate (Na3VO4) Sigma-Aldrich, Poole, Dorset, UK 

Solvents (acetone, chloroform, ethanol, 

formaldehyde, isopropanol, methanol) 

Fisher Scientific UK Ltd, 

Loughborough, UK 

Sucrose Sigma-Aldrich, Poole, Dorset, UK 

Syringe filters – sterile (0.2 µm) 
Corning Inc, Corning, New York, 

USA 

Syringe needles – sterile (BD MicrobalanceTM 

3/25G x 5/8) 

Becton Dickenson (BD) UK Ltd, 

Oxford, UK 

Syringe needles – sterile (Sherwood Medical 

Monoject; 21G x 11/2) 

Sherwood Davis and Geck, 

Gosport, Hampshire, UK 

Sucrose 
Fisher Scientific UK Ltd, 

Loughborough, UK 

T4 DNA ligase 
New England Biolabs Inc, Ipswich, 

UK 

T4 DNA ligase reaction buffer 10X 
New England Biolabs Inc, Ipswich, 

UK 

Taq DNA polymerase (BioTaqTM; 5 U/µl) Bioline Ltd,  London, UK 

Test tubes – sterile (5 mls) 
Fisher Scientific UK Ltd, 

Loughborough, UK 

TRI Reagent Sigma-Aldrich, Poole, Dorset, UK 

Tris HCI Sigma-Aldrich, Poole, Dorset, UK 
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Tris-EDTA buffer solution (100X) Sigma-Aldrich, Poole, Dorset, UK 

Triton X-100 Sigma-Aldrich, Poole, Dorset, UK 

Trizma (Tris) base Sigma-Aldrich, Poole, Dorset, UK 

Trypsin/EDTA 10x solution Life Technologies Inc, UK 

TWEEN20 Sigma-Aldrich, Poole, Dorset, UK 

Universal containers – sterile (30 ml) 
Greiner Bio-One Ltd, 

Gloucestershire, UK 

Upper Buffer for SDS-PAGE gels (Tris 0.5 M, 

pH 6.8) 

Bio-Rad Laboratories Ltd, Inc, 

Hertfordshire, UK 

VectorShield hard-set mounting medium 

containing DAPI nuclear stain 

Vector Laboratories, Inc, 

Peterborough Ukk 

Western Blocking Reagent 
Roche Diagnostics,  Mannheim, 

Germany 

Whatman qualitative filter paper, Grade 4 

(diameter, 125 mm) 
Sigma-Aldrich, Poole, Dorset, UK 

X-ray film developer solution (X-O-dev) 
X-O- graph Imaging System, 

Tetbury, UK 

X-ray film fixative solution (X-O-fix) 
X-O- graph Imaging System, 

Tetbury, UK 
Table 2.1. A list of the materials and reagents used within this project and their source of purchase.  

2.2 Cell culture 

2.2.1 In vitro cell models of endocrine sensitive and endocrine resistant breast 

cancer 

To model a hormone sensitive ER+ breast cancer, MCF-7 (Michigan Cancer 

Foundation-7) wild type cells (a gift from AstraZeneca Pharmaceuticals (Macclesfield, 

Chesire, UK) and obtained from American Type Cell Collections (ATCC) Number HTB-

22TM) were maintained as a monolayer culture in vitro. The routine maintenance 

media used to culture MCF-7 cells was composed of: phenol-red pH indicator (RPMI-

medium 1640) media containing glutamine (200 mM) and supplemented with 5 % 

(v/v) foetal calf serum (FCS) and 1 % antibiotics (Fungizone (2.5 µg/ml) and penicillin 

(100 IU/ml)/streptamycin (100 µg/ml)). For experimental comparison between cell 

lines, MCF-7 cells were transferred into experimental media composed of: phenol-
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red-free pH indicator 1640 media (WRPMI) and supplemented with 5 % (v/v) 

charcoal-stripped foetal calf serum (SFCS), 2 % (v/v) L-Glutamine (200 mM) and 1 % 

antibiotics (Fungizone (2.5 µg/ml) and penicillin (100 UI/ml)/streptomycin (100 

µg/ml)).  

In vitro cell models of acquired-resistance to the endocrine agents, 4-

hydroxytamoxifen (tamoxifen) and fulvestrant (trade name faslodex), were 

previously created by the Breast Cancer Molecular Pharmacology Group (BCMPG) 

through culturing MCF-7 cells in the presence of tamoxifen (100 nM) or fulvestrant 

(100 nM) respectively, for 6 months. Upon acquisition of endocrine resistance (as 

determined by the ability of the cells to grow in the presence of the endocrine agent) 

these cells were then maintained for a further 3 months to develop a stable resistant 

phenotype which could then be used for routine culture. MCF-7 cells which have 

acquired resistance to the endocrine agent tamoxifen are denoted as Tam-R cells. 

MCF-7 cells which have acquired resistance to the endocrine agent fulvestrant are 

denoted as Fas-R cells. Both the Tam-R and Fas-R cell lines used within these 

experimental studies are models of early acquired endocrine resistance and have 

been cultured for 18 months in their respective endocrine agent. Tam-R and Fas-R 

cells were routinely maintained in phenol-red-free pH indicator (WRPMI-medium 

1640) supplemented with 5 % (v/v) charcoal-stripped foetal calf serum (SFCS), 2 % 

(v/v) L-Glutamine (200 mM), 1 % antibiotics (Fungizone (2.5 µg/ml) and penicillin (100 

UI/ml)/streptomycin (100 µg/ml)) and 4-hydroxytamoxifen (100 nM) or fulvestrant 

(100 nM) respectively. The key molecular features and characteristics of all cell 

models used in this project are described in Table 2.2.  
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Table 2.2. Key molecular features and characteristics of the cell models used in this project (adapted 

from Neve et al., 2006). 

2.2.2 Routine maintenance of in vitro cell models 

For routine maintenance and experimental studies, all cell lines were grown under 

sterile conditions in a 37 ˚C/5 % CO2 incubator (Sanyo MCO-17AIC incubators, Sanyo 

Gallenkamp, Loughborough, UK). Cell culture was carried out under sterile conditions 

in an MDH Class II laminar-flow safety cabinet (Bioquell UK Ltd, Andover, UK) and all 

equipment and consumables were either purchased sterile for single use or sterilised 

at 119 °C in a Denley BA825 autoclave (Thermoquest  Ltd, Basingstoke, UK). 

2.2.2.1 Cell passaging 

Growth of the cell lines was visually assessed using a phase-contrast microscope 

(Nikon Eclipse TE200n, Nikon Ltd, Kingston-upon-Thames, UK). At 70 – 80 % 

confluency, cell lines were passaged through the aspiration of culture media and 

addition of 0.05 % trypsin (with 0.02% EDTA) to each flask. The flasks were then 

returned to the incubator for 3 – 5 minutes to allow complete cell detachment from 

the flask walls. The trypsin suspension containing the detached cells was then 

transferred to a universal tube where it was combined with an equal volume of 

routine maintenance media, the suspension was then centrifuged for 5 minutes at 

1000 rpm (Mistral 3000i centrifuge, Sanyo Gallenkamp, Loughborough, UK). After 

Cell Line 
Molecular 

Subtype 

ER 

status 

PR 

status 

Original source of 

cells 

Tumour  

type 

MCF-7 Luminal + + Pleural effusion 
Invasive ductal 

carcinoma 

Tam-R Luminal + + Pleural effusion 
Invasive ductal 

carcinoma 

Fas-R Luminal - - Pleural effusion 
Invasive ductal 

carcinoma 
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centrifugation, the supernatant was discarded and the pellet was resuspended in 10 

ml of maintenance media and mixed gently. A 1:10 dilution of cell suspension to 

maintenance media was then dispensed into a clean flask and returned to the 

incubator. Flasks were subsequently replaced with fresh maintenance media every 3 

days until harvesting for experimentation or further passaging was required. Cell 

lines were passaged in total for no more than 25 times and then discarded. Cell line 

stocks were stored in liquid nitrogen and thawed as necessary. 

2.2.2.2 Setting up cells for experimental analysis 

For experimental analysis, cells underwent the primary trypsin/EDTA dispersion, 

centrifugation and re-suspension steps as described above and were then passed 

through a sterile 25G syringe needle to obtain a single cell suspension. 100 µl of this 

cell suspension was added to 10 ml Isoton II solution and cells were counted using a 

Coulter CounterTM Multisizer (Beckman Coulter Ltd, High Wycombe, UK). Once cell 

number was determined, the appropriate volume of cells was combined with 

experimental media and seeded into sterile dishes at the required density.  

2.2.3 Cell treatments 

Cell lines were subjected to various treatments for experimental procedures in this 

project. Table 2.3 lists the treatment types along with their corresponding diluent 

and source of purchase. Details of the concentration and duration of these 

treatments are displayed in the figure legends throughout the results chapters. 

 

 



  

 

 

 

52 

 

Treatment Diluent Source 

Tamoxifen Ethanol Sigma-Aldrich, UK 

Faslodex Ethanol AstraZeneca, UK 

Oestradiol Ethanol AstraZeneca, UK 

Charcoal Stripped FCS - In-house (Appendix A) 

Gefitinib Ethanol AstraZeneca, UK 

Epidermal Growth Factor (EGF) 
PBS containing 

0.1% BSA 
Sigma-Aldrich, UK 

Hyaluronan RPMI/WRPMI R&D Systems, UK 
Table 2.3. A list of the cell treatments used within this project along with their corresponding source 

of the purchase and diluents used for storage.  

2.3 Microarray analysis  

Prior to this project, RNA samples from all cell models routinely maintained by the 

BCMPG cell culture staff were obtained in triplicate and sent to the Cardiff University 

Central Biotechnology Services (CBS) to be microarrayed and gene expression 

analysis using the resultant data was used as a focus of this project. Initial 

assessments were performed on samples of the cell models by the CBS to determine 

the quality (analysis of degradation or contamination) of RNA and once satisfied 

these samples were run on Affymetrix Human Genome U133A gene chips containing 

approximately 23, 000 gene probes. The Affymetrix suite 5.0 programme used for 

microarray analysis provides powerful algorithms that analyse the data and generate 

appropriate analysis output files for subsequent analysis. The triplicate raw data 

obtained from microarraying was then uploaded onto the online bioinformatics 

software programme GeneSifter (https://login.genesifter.net/) where median 

normalisation across all datasets and log transformation was performed. Log2 

intensity plots were also generated by this programme to visualise gene expression 

changes across the models and fold change calculations for each gene were 

https://login.genesifter.net/
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performed. In some instances, the Affymetrix U133A gene chips contained more than 

one gene probe for each gene therefore particular importance was placed on the 

‘Jetset’ gene probe. Jetset is an online software programme created by the Technical 

University of Denmark which allocates each gene probe used for affymetrix analysis 

with a score (ranging from 0 – 1) determined by their performance across three 

parameters: i) specificity of the probe to bind to the target sequence, ii) ability of the 

probe to detect as many splice isoforms of the target gene as possible to estimate 

overall gene expression and iii) the degradation resistance of each probe (robust 

score). This tool then combines these scores to determine the best overall 

performing probe (on a scale of 0 – 1, with a score closer to 1 showing the best 

performance) for a given gene which is termed the ‘Jetset’ probe and identifies the 

most reliable profile in the array for the gene of interest (see Appendix B for further 

information) (Li et al. 2011). Expression ‘call’ for all gene probes assessed by 

microarraying was also analysed using the GeneSifter programme via the ‘detection 

call’ algorithm to determine the reliability of transcript expression. A detection call 

of ‘absent’ suggests unreliable or low/no detection of gene expression whilst 

‘present’ suggests existing/reliable gene expression across the cells and ‘mixed’ 

represents partial detection of gene expression. In this project, for each gene 

analysed, GeneSifter was used to a create a heatmap expression profile and 

corresponding log2 intensity plot for each Jetset probe along with their fold change 

values. Statistical significance was determined by ANOVA analysis with Tukey post-

hoc testing and significance was set at p <0.05. In this project, data created from 

microarraying and subsequent online analysis was used to explore the endogenous 
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gene expression of CD44, HMMR, LYVE-1, TL4, STAB2, ICAM-1, VCAN, HAS1, HAS2, 

HYAL1, HYAL2 and HYAL3 across MCF-7, Tam-R and Fas-R cells. All microarray and 

subsequent statistical analysis was performed by the CBS and the BCMPG statistician 

Lynne Farrow respectively.   

2.4 Kaplan Meier plotter analysis 

The Kaplan Meier (KM) plotter is a publically available online database tool 

(http://kmplot.com/analysis/) which was used in this project to assess the 

relationship between the expression levels of CD44 and clinical outcome with 

endocrine therapy. The KM plotter interrogates Affymetrix microarray chip-derived 

mRNA expression data accumulated from breast cancer patients prior to therapy in 

relation to survival outcome measures (Györffy et al. 2010). The database utilises this 

information to derive survival plots which are used to relate gene expression levels 

to clinical outcome by splitting patients into two groups based on various quantile 

expression of the proposed gene and integrating this data simultaneously with 

clinical data (Györffy et al. 2010). In this project, KM survival curves were generated 

to examine the clinical relevance of CD44 gene expression in an ER+ breast cancer 

patient cohort where any endocrine treatment (n=1190) or tamoxifen treatment 

alone (n=615) was known with up to 20 year follow up, to determine the relationship 

between CD44 and overall survival (OS) and relapse-free survival (RFS). All analyses 

were generated using the Jetset Affymetrix CD44 gene probe (212063_at) and output 

was displayed as KM survival curves with associated Hazard ratio (HR) and 

significance value (log rank p < 0.05).  

http://kmplot.com/analysis/
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2.5 Reverse transcription polymerase chain reaction (RT-PCR) analysis 

2.5.1 RNA extraction 

MCF-7, Tam-R and Fas-R cells were seeded into 150 mm dishes at a density of 3.4 x 

106 cells/dish and cultured until 70 – 80 % confluency. Media from the dishes was 

removed and cells were washed twice with 10 ml tissue culture grade PBS (1X). 1 ml 

TRI Reagent/10 cm2 surface area was added to each dish and gently rocked for 1 

minute to ensure complete coverage. Cell lysates were then collected using a sterile 

disposable cell scraper, transferred into a 1.5 ml eppendorf tube and equilibrated for 

5 minutes at room temperature. 200 µl Chloroform/1 ml TRI Reagent was added to 

the lysates followed by brief vortexing (20 seconds) and incubation at room 

temperature for 10 minutes. Lysates were then placed into a pre-cooled centrifuge 

(Labofuge 400R centrifuge, Heraeus, Germany) and spun for 15 minutes at 4 ˚C, 12, 

000 rpm. After centrifugation, the lysate separates into 3 phases; the upper aqueous 

phase containing the RNA, the middle layer containing the DNA and the lower 

phenolic phase containing proteins. The upper aqueous phase of each supernatant 

was carefully removed without disturbing the interface to avoid genomic DNA 

contamination and transferred to a clean 1.5 ml eppendorf tube. 500 µl isopropanol 

was added to each tube and briefly vortexed before incubation at room temperature 

for 10 minutes to precipitate the RNA. The samples were then returned to the 

centrifuge and spun at 12, 000 rpm, 4 ˚C for 15 minutes. The supernatant was 

removed from the tubes and the RNA pellet was washed in 1 ml 75 % ethanol. 

Samples were then briefly vortexed and centrifuged at 7, 500 rpm, 4 ̊ C for 5 minutes. 

Ethanol was discarded from the tubes and the RNA pellets were air dried for 5 
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minutes and re-dissolved in 20 µl RNase-free distilled water. RNA concentration 

(µg/ml) and purity was quantified by diluting 1 µl RNA in 499 µl RNase-free water and 

absorbance was measured at 260 nm (A260) on a spectrophotometer (Cecil CE2041, 

Cambridge UK) based on the following formula: RNA = A260 x 40 x dilution factor. A 

ratio of 1.8 – 2.0 represented pure preparations of RNA. RNA integrity was assessed 

via gel electrophoresis for each sample. Intact RNA would lead to the formation of 

two bands identifying the 18S and 28S ribosomal RNA with a smear in between 

denoting mRNA of different sizes. Intact RNA was observed in all samples examined 

in this project. Samples were stored at – 80 ˚C.  

2.5.2 Reverse transcription  

This procedure converts isolated RNA molecules into their complementary DNA 

(cDNA) which is required for RT-PCR experiments. For each reverse transcription 

reaction, 1 µg RNA (diluted to a total volume of 7 µl in sterile RNase-free water) was 

added to 11.5 µl master mix solution in an sterile eppendorf tube on ice comprising 

of: 5 µl dNTPs (2.5 mM), 2 µl 10 x PCR buffer (10 mM Tris-HCI, pH 8.3, 50 mM NH4, 

0.001 % w.v gelatin), 2 µl Dithiothreitol (DTT), (0.1 M), 2 µl random hexamers (100 

µM), 0.5 µl MgCl2 (50 mM). Samples were then denatured at 95 ˚C for 5 minutes in a 

PTC-100 thermocycler (MJ Research Ltd, USA) and rested on ice for 5 minutes. The 

samples were then pulse spun in a microfuge (Biofuge, Heraeus, Germany) and 

returned to ice. To each reaction, 1 µl Molony-murine leukemia virus (MMLV) 

(200U/µl) reverse transcriptase enzyme and 0.5 µl commercial RNase inhibitor 

RNasinTM (40U/µl) was added to give a final volume of 20 µl. Samples were then 

transferred to the thermocycler and reverse transcribed using the following 
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parameters: annealing at 22 ˚C for 10 minutes, reverse transcriptase extension at 42 

˚C for 40 minutes, denaturation at 95 ˚C for 5 minutes. The resultant cDNA was then 

stored at - 20 ˚C. 

2.5.3 Oligonucleotide primer design 

The oligonucleotide primers used for RT-PCR analysis were designed using the 

Invitogen OligoPerfectTM Designer software 

(http://tools.lifetechnologies.com/content.cfm?pageid=9716) using the CD44 

(Appendix C) and HMMR (Appendix D) gene sequences obtained from the National 

Centre for Biotechnology Information (NCBI) online database 

(http://www.ncbi.nlm.nih.gov/). This programme allowed the consideration of 

product size, melting temperature and likelihood of undesirable primer-dimer 

formation between the primer pairs. Table 2.4 lists the target gene along with the 

corresponding designed forward and reverse primer sequences, parameters 

required for the RT-PCR reaction and expected product sizes. Once primer pairs were 

selected, these sequences were inputted into the online bioinformatics programme 

Basic Local Alignment Search Tools (BLAST) (http://blast.ncbi.nlm.nih.gov/) which 

allowed similarity comparison of the primer sequences to other DNA sequences 

across the human genome. BLAST analysis confirmed the high level of specificity of 

these primers to the gene of interest for all primer pairs used within this project.  

 

 

http://tools.lifetechnologies.com/content.cfm?pageid=9716
http://www.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
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Table 2.4. A list of each target gene along with their corresponding forward and reverse primer 

sequences, reaction conditions used for RT-PCR analysis and expected product size.  

2.5.4 RT-PCR analysis 

RT-PCR reactions were performed in 0.5 ml sterile eppendorf tubes containing a total 

volume of 25 µl consisting of 0.5 µl cDNA and 24.5 µl master mix solution for each 

sample. The master mix was prepared on ice and contained: 2 µl dNTPs (2.5 mM), 

2.5 µl 10X PCR buffer (10 mM Tris-HCl pH 8.3, 50 mM KCI, 1.5 mM MgCl2 and 0.001 

% w/v gelatin), 0.625 µl forward primer (20 µM), 0.625 µl reverse primer (20 µM), 

0.2 µl Taq DNA polymerase (5 U/µl) and 18.6 µl sterile RNase free water. For each RT-

PCR reaction, an eppendorf containing the master mix solution without the cDNA 

was used as a negative control. The reaction mixture was briefly vortexed and a drop 

of sterile mineral oil was placed on top of the solution to prevent evaporation during 

the reaction. The samples were then placed into a PTC-100 thermocycler (MJ 

Research Ltd, Massachussets, USA). Table 2.5 reveals the thermocycle parameters 

performed for RT-PCR detection and describes the optimal conditions required for 

Gene Forward Sequence Reverse Sequence 
RT-PCR 

reaction 

Expected

product 

size  

CD44 Std 
5’-GACACATATTGC 

TTCAATGCTTCAGC-3’ 
5’-GATGCCAAGATGAT 

CAGCCATTCTGGAAT-3’ 
61 ˚C 

30 cycles 

482 – 

1496 bp 

CD44v3 
5’-CGTCTTCAAAT 

ACCATCTCAGC-3’ 
5’ TCATCATCAA 

TGCCTGATCC-3’ 
60 ˚C 

29 cycles 
100 bp 

CD44v6 
5’-CAACGGAAGA 

AACAGCTACCC-3’ 
5’ CCTGTTGTCG 

AATGGGAGTC-3’ 
61 ˚C 

30 cycles 
100 bp 

CD44v10 
5’-GGAATGATGTCA 

CAGGTGGA-3’ 
5’-AAGGTCCTGCT 

TTCCTTCGT-3’ 
57 ˚C 

29 cycles 
109 bp 

HMMR 
5’-TGCAGCTCAG 

GAACAGCTAA-3’ 
5’-GCTGACAGCGG 

AGTTTTGAT-3’ 
60 ˚C 

29 cycles 
149 bp 

β-actin 
5’-GGAGCAATGATC 

TTGATCTT-3’ 
5’-CCTTCCTGGGCA 

TGGAGTCCT-3’ 
55 ˚C 

27 cycles 
204 bp 
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the detection of each target gene. To visualise the results of the RT-PCR, the samples 

were electrophoresed on a 2 % agar gel (2 g agar, 100 ml 1X Tris Acetate (TAE) buffer 

(20 ml 50X TAE buffer (242g Tris, 57.1 ml glacial acetic acid, 100 ml 0.5 EDTA, 1 L 

distilled water, pH 8.3) diluted in 1 L distilled water), 1 µl ethidium bromide). The set 

agar gels were placed into a Mini-Sub Cell GT electrophoretic tank (Bio-Rad 

Laboratories Ltd, Hertfordshire, UK) filled with 1 X TAE buffer. To 9 µl RT-PCR product 

was added 5 µl loading buffer (6 g sucrose, 2 mg bromophenol blue, 10 ml distilled 

water) and pipetted into the wells of the 2 % agar gel and 5 µl hyperladder IV was 

used as a marker. The electrophoresis reaction was allowed to run for 1 hour at 75 

volts constant. RT-PCR products were visualised and photographed using a Bio-Rad 

GS-690 Imaging Densitometer (Bio-Rad Laboratories Ltd, Hertfordshire, UK). 

Qualitative quantitation of RNA bands was performed using densitometry analysis 

(ImageJ software programme) (Appendix E).  

 Table 2.5. Thermocycle program conditions required for RT-PCR amplification. 

 

 

 

Phase Step Temperature  (˚C) Duration 
Cycle 

Number 

1 

denaturing 

annealing 

extension 

95 

dependent on target gene 

72  

2 minutes 

1 minute 

2 minutes 

1 x 

2 

denaturing 

annealing 

extension 

94  

dependent on target gene 

72 

1 minute 

30 seconds 

1 minute 

dependent 

on target 

gene 

3 denaturation 94  1 minute 1 x 

4 
final 

extension 
60  7 minutes 1 x 
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2.6 Western Blotting analysis 

2.6.1 Cell lysis 

For cell lysis, protease inhibitors were added immediately before use to the required 

volume of lysis buffer (0.61 g TRIS base (50 mM), 0.19 g EGTA (5 mM), 0.875 g NaCl 

(150 mM), 1 ml 1 % TritonX-100 (diluted in 1X PBS), 100 ml distilled water, pH 7.6) on 

ice (Table 2.6). Cells were then removed from the incubator, placed onto ice and 

briefly washed 3 times with PBS (1X) ensuring thorough drainage on the final wash. 

A sufficient volume of lysis buffer (dependent on cell container volume and cell 

density) to cover the surface of the culture dish was added and the cell material was 

collected using a disposable cell scraper and transferred into a 1.5 ml eppendorf. The 

cell lysate was incubated on ice for 5 minutes before centrifugation at 12, 000 rpm, 

4 ˚C for 15 minutes to remove insoluble cell debris. The resultant supernatant was 

then transferred to a clean eppendorf and stored at – 20 ˚C. 

Inhibitor 1 ml Lysis Buffer Final Concentration 

Sodium Orthovanadate (100 mM) 20 µl 2 mM 

Sodium Fluoride (2.5 M) 20 µl 50 mM 

Phenylmethylsulfonyl (100 mM) 10 µl 1 mM 

Sodium molybdate (1M) 10 µl 10 mM 

Phenylarsine (20 mM) 1 µl 20 µM 

Leupeptin (5 mg/ml) 2 µl 10 µg/ml 

Aprotinin (2 mg/ml) 4 µl 8 µg/ml 
Table 2.6. The volume of protease inhibitors required for 1 ml Lysis Buffer for cell lysis.  

2.6.2 Bio-Rad Detergent Compatible protein assay 

The concentration of total soluble protein contained within the collected cell lysates 

was determined using a Bio-Rad colorimetric Detergent Compatible (DCTM) protein 

assay which is a modified version of the Lowry protein assay (Lowry et al. 1951; 
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Peterson 1977). A standard curve was prepared in duplicate using 1.45 mg/ml BSA 

stock diluted in lysis buffer (described in Table 2.7). To each 1 ml cuvette was added, 

5 µl cell lysate diluted in 45 µl of lysis buffer. 250 µl Protein Assay Reagent A 

(containing 5 µl Protein Assay Reagent S) was then added to each cuvette followed 

by 2 ml Protein Assay Reagent B. The contents of the cuvettes were thoroughly mixed 

by pipetting and allowed to incubate for 5 minutes. The absorbance of the standard 

curve and cell lysate samples was then measured at 750 nM using a 

spectrophotometer (Cecil CE2041 Spectrophotomer, Cecil Instruments, Cambridge, 

UK) to obtain the total amount of protein contained within each lysate.   

BSA Concentration BSA Stock (1.45 mg/ml) Lysis Buffer Solution 

0 mg/ml 0 µl 50 µl 

0.247 mg/ml 8.5 µl 41.5 µl 

0.508 mg/ml 17.5 µl 32.5 µl 

0.754 mg/ml 26 µl 24 µl 

1.0 mg/ml 34.5 µl 15.5 µl 

1.45 mg/ml 50 µl 0 µl 
Table 2.7. The volume of BSA stock (1.45 mg/ml) and lysis buffer solution required for the final BSA 

concentration to generate a standard curve for a Bio-Rad Detergent Compatible protein assay.  

2.6.3 Preparation of samples for SDS-PAGE 

To prepare samples for SDS-PAGE, 3x Laemmli loading buffer (400 µl distilled water, 

3 ml SDS (20 %), 3 ml Glycerol, 3.6 ml TRIS base (0.5 M), 2 mg bromophenol blue, 24 

mg/ml dithiothreitol (DTT)) was added to each lysate. The volume of loading buffer 

added to each sample was calculated as 50 % of the total cell lysate volume. The 

lysates were then placed into a heating block for denaturation (Techne DRI-Block 

DB.2, Bibby Scientific Limited, Staffordshire, UK) and boiled at 100 ˚C for 5 minutes. 

Samples were briefly centrifuged for 5 seconds and stored at - 20˚C.  
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2.6.4 SDS-PAGE analysis 

Each gel for SDS-PAGE analysis was prepared as follows: 2 x 1.5 mm glass plates were 

cleaned with 70 % ethanol and placed into a casting stand (Bio-Rad Laboratories Ltd, 

Hertfordshire, UK). An 8 % resolving gel was prepared (Table 2.8) and poured 

between glass plates until ¾ full and overlaid with distilled water to prevent 

evaporation and produce a sharp interface between the resolving gel and stacking 

gel. Once set, the overlaying water was removed and a 4 % stacking gel was then 

prepared (Table 2.8) and poured on top of the resolving gel. A 10 or 15 well (1.5 mm) 

moulding comb (Bio-Rad Laboratories Ltd, Hertfordshire, UK) was then inserted into 

the stacking gel. The set gel/glass plate cassette was then assembled into the inner 

chamber of the electrophoresis unit as per manufacturer’s instructions (Bio-Rad 

Mini-Protean III apparatus power pack, Bio-Rad Laboratories Ltd, Hertfordshire, UK) 

and the inner and outer reservoir of the tank was filled with SDS-PAGE 1X running 

buffer (3.03 g TRIS Base, 14.4 g glycine, 1 g SDS in 1 L distilled water, pH 8.3). 5 µl 

protein molecular weight marker (Precision Plus ProteinTM All Blue Standards (10 – 

250 kDa)) was loaded into the first lane of the gel followed by 20 - 40 µg of cell lysate 

into the proceeding wells. Electrophoresis was performed at 120 volts constant 

current for approximately 90 minutes or until the marker reached the bottom of the 

gel.  
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Substrate 8 % Resolving Gel 4 % Stacking Gel 

Distilled water 4.6 ml 3.05 ml 

Lower buffer (1.5 M Tris pH 8.8) 2.5 ml - 

upper buffer (0.5 M Tris pH 6.6) - 1.25 ml 

30 % acrylamide/bis Acrylamide (29:1) 2.7 ml 650 µl 

10 % SDS (in distilled water) 100 µl 50 µl 

10 % APS (in distilled water) 100 µl 25 µl 

TEMED 10 µl 3 µl 
Table 2.8. The volume of substrates required to produce one electrophoresis gel with an 8 % resolving 

gel and a 4 % stacking gel.  

2.6.5 Western Blotting transfer 

Proteins separated by SDS-PAGE were transferred onto a protran B85 nitrocellulose 

membrane (0.45 µm pore size) using a Bio-Rad Protean III Mini Trans Blot apparatus 

(Bio-Rad Laboratories Ltd, Hertfordshire, UK). For each gel, a Western blot transfer 

cassette was assembled by placing a Teflon sponge fibre pad onto the side of the 

negative electrode followed by two filter papers, a nitrocellulose membrane cut to 

the size of the gel, SDS-PAGE electrophoresis gel, two filter papers and a Teflon 

sponge fibre pad (depicted in Figure 2.1). All components were pre-soaked in transfer 

buffer before assembly (800 ml distilled water, 3.03 g TRIS base, 14.4 g glycine, 200 

ml methanol). The cassette was then inserted into the Trans Blot module with the gel 

positioned nearest to the negative electrode. The module was then placed into a tank 

containing transfer buffer along with an ice block and a magnetic stirrer to maintain 

an even temperature and ion distribution. The transfer process was performed at 

100 volts constant current for 60 minutes for sufficient protein transfer.  
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2.6.6 Immunoprobing of Western blots 

The nitrocellulose membrane onto which the proteins were transferred was then 

removed from the transfer apparatus and washed briefly with 10 ml 1X Tris-Buffered 

Saline-Tween (TBS-Tween) (1.2 g TRIS Base, 8.7 g NaCl, 50 µl Tween20, pH 7.6 in 1 L 

distilled water). To assess the efficiency of protein transfer and loading, the 

membrane was briefly incubated in 10 ml Ponceau S solution (475 ml distilled water, 

25 ml acetic acid, 0.5 g Ponceau S powder) to stain the proteins. The membrane was 

subsequently washed with 1X TBS-Tween until the Ponceau S stain was completely 

removed. A blocking step was performed using 25 ml/membrane of 5 % non-fat dried 

Figure 2.1. A diagram to show the assembly of a Western blotting transfer apparatus. NC-

membrane represents the nitrocellulose membrane.  
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dry skimmed milk (Marvel) in 1X TBS-Tween (w/v) for 1 hour at room temperature 

on a rocking platform. The nitrocellulose membrane was then incubated on a roller 

bed at 4˚ C overnight or for 1 hour at room temperature with the appropriate primary 

antibody solution (9.5 ml 1X TBS-Tween, 500 µl Western blotting reagent, 100 µl 

sodium azide (1M) and diluted primary antibody). The dilution for each primary 

antibody used in this project is listed in Table 2.9 along with the corresponding 

antibody host species, incubation conditions, predicted molecular weight and source 

of purchase. Following incubation, the nitrocellulose membrane underwent 3 x 5 

minute washes with 1X TBS-Tween before incubation with a 1:10, 000 dilution of 

secondary antibody solution (0.1 g marvel dry skimmed milk, 10 ml 1X TBS-Tween, 1 

µl anti-mouse/anti-rabbit IgG HRP-secondary antibody) at room temperature for 1 

hour. Following incubation, the membrane underwent 4 x 5 minute washes with 1X 

TBS-Tween. Chemiluminescence was then performed using the appropriate 

luminol/peroxide based enhanced chemiluminescent (ECL) reagent (SuperSignalTM 

West Pico (high sensitivity), SupersignalTM West Dura (medium sensitivity) or 

SupersignalTM West Femto (low sensitivity)). The membrane was placed into a clean 

light-proof cassette and sufficient ECL reagent (prepared according to 

manufacturer’s instructions) to cover the blot (100 – 250 µl) was pipetted onto the 

membrane. X-ray films were exposed to the membranes for different lengths of time 

to obtain the optimal signal emitted from the protein of interest bound to the 

membrane. The X-ray films were then developed using an X-O-graph compact X2 X-

ray developer (Konica Minolta SRX-101A, Photon Imaging Systems Ltd, Wiltshire, UK). 
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X-ray films were scanned and quantitation of protein bands was performed using 

densitometry analysis (ImageJ software) (Appendix E). 

2.6.7 Primary antibody stripping of nitrocellulose membranes 

For detection of proteins on the same nitrocellulose membrane with a 

similar/identical molecular weight (e.g. phospho- and total proteins) the membrane 

was stripped of primary and secondary antibodies before being re-probed.  After the 

initial immunoblotting procedure was completed, the nitrocellulose membranes 

underwent 2 x 5 minute washes in 1X TBS-Tween, followed by 2 x 5 minute washes 

in distilled water. The membranes were then immersed in 10 ml RestoreTM Western 

blot Stripping Buffer (Thermo Fisher Scientific, UK) and incubated on a rocker for 10 

minutes at room temperature, followed by 2 x 5 minute washes in 1X TBS-Tween. To 

ensure the primary antibody had been completely removed, the membrane was re-

probed with secondary antibody (as described above) and underwent immuno-

detection. If no signal was emitted from the membrane using the appropriate ECL-

chemiluminescent reagent, it was assumed that the stripping protocol was 

successful. Nitrocellulose membranes were then probed with alternative primary 

and secondary antibodies and immuno-detection was carried out as described 

above.  
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Table 2.9. A list of primary antibodies used for Western blotting analysis in this project with their 

corresponding dilution, host species, incubation conditions, predicted molecular weight (MW) (kDa) 

and source of purchase. The abbreviations represent Cell Signalling Technology, UK. (CST, UK), 

overnight (O/N) and room temperature (RT). 

 

Antibody 
Host 

species 

Incubation 

conditions 
Dilution 

MW 

(kDa) 

Source of 

Purchase 

CD44 Standard 

(Clone 156-3C11) 
Mouse O/N 4 °C 1:1000 80 

Fisher 

Scientific, UK 

anti-CD44v3 

(Clone VFF-327) 
Mouse O/N 4 °C 1:1000 85 – 250  

R&D Systems, 

UK 

anti-CD44v6 

(Clone 2F10) 
Mouse O/N 4 °C 1:1000 85 - 250 

R&D Systems, 

UK 

anti-CD44v10 

(Clone VFF-14) 
Mouse O/N 4 °C 1:1000 90 - 250 

Thermo Fisher 

Scientific, UK 

anti-

RHAMM/CD168 
Rabbit O/N 4 °C 1:1000 25 - 85  Abcam, UK 

phospho-

HER2/ErbB2 

(Y1248) 

Rabbit O/N 4 °C 1:1000 185 CST, UK 

Total HER/ErbB2 Rabbit O/N 4 °C 1:1000 185 CST, UK 

phospho-EGFR 

(Y1068) 
Rabbit O/N 4 °C 1:1000 175 CST, UK 

Total EGFR Rabbit O/N 4 °C 1:1000 175 CST, UK 

phospho-c-Met 

(Y1234/1235) 
Rabbit O/N 4 °C 1:1000 145 CST, UK 

Total c-Met Rabbit O/N 4 °C 1:1000 145 CST, UK 

phospho-FAK 

(Y397) 
Rabbit O/N 4 °C 1:1000 125 CST, UK 

Total  FAK Rabbit O/N 4 °C 1:1000 125 CST, UK 

phospho-AKT 

(S473) 
Rabbit O/N 4 °C 1:1000 60 CST, UK 

Total AKT Rabbit O/N 4 °C 1:1000 60 CST, UK 

Phospho-Src 

(Y416), 
Rabbit O/N 4 °C 1:1000 60 CST, UK 

Total Src Rabbit O/N 4 °C 1:1000 60 CST, UK 

phospho-ERK1/2 

(T202/Y204) 
Rabbit O/N 4 °C 1:1000 42,44 CST, UK 

Total ERK1/2 Rabbit O/N 4 °C 1:1000 42,44 CST, UK 

β-actin Mouse 1 hr RT 1:20000 45 CST, UK 

GAPDH Mouse 1  hr RT 1:15000 37 CST, UK 
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2.7 Immunocytochemistry 

Log phase cells were seeded into 35 mm dishes containing Tespa-coated (Appendix 

F) glass coverslips at a density of 2 x 105 cells/dish and allowed to grow to 70 – 80 % 

confluency. After incubation the media was removed from the dishes and cells were 

fixed in 1 ml 2.5 % phenol formal saline (0.25g phenol dissolved in 10 ml formal saline 

solution (1.8 g NaCl, 20 ml formaldehyde, 180 ml tap water)) for 5 minutes. Cells were 

then washed with 1 ml 100 % ethanol for 5 minutes followed by 2 x 5 minute washes 

in 1 ml 0.02 % PBS/Tween (100 µl Tween20 diluted in 500 ml PBS (0.1 M). To each 

coverslip, 50 µl primary antibody diluted in 1 % BSA/PBS (CD44 Std: 1/1200, CD44v3 

(1/40), CD44v6 (1/40), CD44v10 (1/50), RHAMM (1/50)) was added for 60 minutes. 

Cells were then washed with 0.02 % PBS/Tween for 2 x 5 minutes. Secondary 

antibody detection was performed by adding 50 µl/coverslip Dako mouse EnVision 

(Dako Envision+ system-HRP labelled polymer anti-mouse) for 30 minutes. Cells were 

then washed with 1 ml 0.02 % PBS/Tween for 2 x 5 minutes. Cells were then 

incubated with 50 µl/coverslip Dako 2,3-diaminobenzidine (DAB)/substrate 

chromogen system solution for 8 minutes followed by 3 x 5 minute washes in 1 ml 

distilled water. Counterstaining was performed using 1 ml/dish 0.05 % methyl green 

(dissolved in water) for 10 minutes followed by 3 x 5 minute washes in distilled water. 

The coverslips were then dried in a heating and drying oven (KelvitronR  t, Heraeus, 

Thermo Scientific, UK) for 1 hour and mounted onto glass microscope slides (1.0 – 

1.2 mm) using di-butylpthalatexylene (DPX) mountant (a mixture of Distyrene, a 

plasticizer, and xylene). 
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2.7.1 Analysis of immunocytochemical and immunohistochemical staining using H-

Scoring 

Cells were analysed using a light microscope (Olympus BH-2) at x10 magnification 

and photographs were taken at x20/x40 magnification. A modified histochemical 

score (H-score) method was used for semi-quantitative analysis of both the intensity 

and percentage positivity immunostaining of cells. For H-score evaluation, 6 fields of 

view/sample were analysed. To assess plasma membrane and cytoplasmic intensity, 

a score of 0 – 3 was given for each sample corresponding to negative (0), weak (1), 

moderate (2) and strong (3) immunostaining. The percentage plasma membrane and 

cytoplasmic immunostaining positivity was also estimated. Together these values 

were used to derive a total H-score value for each sample using the following 

formula: (% at 0) x 0 + (% at 1) x 1 + (% at 2) x 2 + (% at 3) x 3 to give an overall score 

ranging from 0 – 300. H-score evaluation has been successfully used for 

immunocytochemical and immunohistochemical analysis and TMA evaluation as 

seen in Rimm et al. 2001, Ginestier et al. 2002 and Callaby et al. 2003. 

2.8 Immunofluorescence 

Log phase cells were seeded into 35 mm dishes containing glass coverslips at a 

density of 2 x 105/dish and allowed to grow until cells reached 70 – 80 % confluency. 

After incubation the media was removed and the cells were fixed in 1 ml 3.7 % 

formaldehyde (diluted in 0.01 M PBS) for 10 minutes. Cells were then briefly washed 

3 times with 1 ml PBS (0.01 M). Permeabilisation was performed using 200 

µl/coverslip 0.2 % Triton-X 100 (diluted in 0.01 M PBS) for 8 minutes. Cells were then 
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briefly washed 3 times with 1 ml 0.01 M PBS. Blocking was performed using 200 

µl/coverslip 10 % normal goat serum (diluted in 1 % BSA in 0.01 M PBS solution) for 

20 minutes. The washing step was repeated with PBS. Primary antibody detection 

was performed using 200 µl/coverslip of appropriate antibody (1:100 dilution with 1 

% BSA in 0.01 M PBS solution) for 30 minutes. The wash step with PBS was then 

repeated. Secondary antibody detection was performed using 200 µl/coverslip Alexa 

Fluor 488 (anti-mouse) or 594 (anti-rabbit) conjugated secondary antibodies (1:1000 

dilution in 1 % BSA in 0.1 M PBS solution) for 30 minutes. The wash step with PBS was 

repeated. Coverslips were drained and mounted onto slides using DAPI-containing 

Vectashield mountant. The cells were analysed using a fluorescent microscope (Leica 

DMiI, Leica Microsystems Ltd, Milton Keynes, UK) at x63 magnification. For analysis, 

6 fields of view/coverslip were photographed and cell immunofluorescence was 

quantitated using a previously published approach (Burgess et al. 2010, Gavet and 

Pines 2010 and Potapova et al. 2011), details of which are described in Appendix G.  

2.9 Boyden Chamber migration assay 

In vitro cell migration was measured using 24 well plates containing Corning Standard 

Transwell porous polycarbonate inserts (6.5 mm, 8 µm pore size). Before use, the 

underside of each polycarbonate membrane was coated with 300 µl fibronectin (10 

µl/ml) diluted in 1X tissue culture grade PBS (PBS) and incubated at 37 ˚C for 2 hours. 

Following coating, insert membranes were washed twice with PBS and allowed to air 

dry. 600 µl of the appropriate experimental media (± treatments) was placed into the 

lower chamber of each well and air-dried inserts were placed into the wells taking 

care to avoid air bubble formation. Cells were then trypsinised and resuspended in 
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experimental media at 2 x 105 cells/ml and 200 µl cell suspension was placed into the 

upper chamber of each insert to obtain a cell density of 40,000 cells/insert. Transwell 

plates were then returned to the incubator for 24 hours to allow cells to migrate to 

the underside of the membrane. Following incubation, the transwell plates were 

removed from the incubator and media contained in the upper chamber of the insert 

was removed using a pipette. Any cells remaining on the upper surface of the 

membrane (non-migratory cells) was removed by gentle swabbing using a cotton 

bud. Inserts were then placed into wells containing 600 µl 3.7 % formaldehyde 

diluted in PBS for 10 minutes to fix cells that had migrated to the underside of the 

membrane. Following fixation, inserts were removed and washed twice with PBS 

(1X). Inserts were then added to wells containing 600 µl 0.5 % crystal violet for 30 

minutes to stain fixed cells for viewing under the microscope. Following staining, 

inserts were washed twice with PBS and allowed to air dry. Upon analysis using a 

light microscope (Olympus BH-2) at X20 objective, 6 fields of view/insert were 

assessed to obtain the average cell number count for each insert. Each determination 

represents the average of 3 individual experiments, each performed in duplicate. 

2.10 Boyden Chamber invasion assay 

In vitro cell invasion was measured using 24 well plates containing Corning Standard 

Transwell porous polycarbonate inserts (6.5 mm, 8 µm pore size). Insert membranes 

were coated on their upper surface with 50 µl Matrigel (9.6 mg/ml) (diluted in 

WRPMI (1:3)) and incubated at 37˚C for 2 hours. 600 µl of the appropriate 

experimental media (± treatments) was placed into the lower chamber of each well 

and air-dried inserts were placed into the wells taking care to avoid air bubble 
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formation. Cells were then trypsinised and resuspended in experimental media at 2 

x 105 cells/ml and 200 µl cell suspension was placed into the upper chamber of each 

insert to obtain a cell density of 50,000 cells/insert. Transwell plates were then 

returned to the incubator and cells were allowed to invade to the underside of the 

membrane for 3 days. Following incubation, the transwell plates were removed from 

the incubator and media contained in the upper chamber of the insert was removed 

using a pipette. The Matrigel and any remaining (non-invasive) cells was then 

removed from the upper surface of the membrane using a cotton bud by gentle 

swabbing. Inserts were then placed into wells containing 600 µl 3.7 % formaldehyde 

in PBS (1X) for 10 minutes to fix cells that had invaded to the underside of the 

membrane. Following fixation, inserts were removed and washed twice with PBS (1X) 

and allowed to air dry for 1 hour. The membrane from each insert was then excised 

using a scalpel blade and placed cell side up onto a glass microscope slide (1.0 – 1.2 

mm) containing a drop of DAPI-containing Vectashield hardset mountant. An 

additional drop of the Vectashield mountant was then added to the top of the insert 

and overlaid with a glass coverslip. The slides were allowed to set at room 

temperature and stored at 4 ˚C. For quantification of the number of cells that had 

invaded to the underside of each membrane, the slides were analysed using a 

fluorescent microscope (Leica DMiI, Leica Microsystems Ltd, Milton Keynes, UK) and 

cell nuclei counts and photographs were taken from 6 fields of view at X63 

magnification. Each determination represents the average of 3 individual 

experiments.  
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2.11 Coulter Counter proliferation assay  

Log phase cells were harvested and seeded into a 24 well plate at a density of 1 x 106 

cells/plate and returned to the incubator for 24 hours. Following incubation the 

media was removed and replaced with 1 ml/well experimental media (± treatments) 

and returned to the incubator for the required incubation time. The media was 

replaced every 3 days. After the treatment time had elapsed the media was removed 

and 1 ml trypsin was added to each well and incubated until cells were in suspension. 

To each well 1 x 3 ml Isoton was added and drawn into a sterile 25G 5 ml syringe to 

separate cells into a single cell suspension and this solution was added to 6 ml Isoton. 

The 10 ml Isoton cell suspension was counted twice on a Coulter counter (CoulterTM 

Multisizer II (Beckam Coulter UK, Ltd, High Wycombe, UK) according to 

manufacturer’s instructions. The average count was multiplied by 20 to calculate 

cells/well.  

2.12 Genetic Manipulation of CD44 expression  

In this project, CD44 expression was manipulated in endocrine resistant and sensitive 

cell models by siRNA knockdown or transfection respectively in order to determine 

the role of CD44 in cellular behaviours. 

2.12.1 siRNA-mediated CD44 suppression  

Global CD44 expression was suppressed in endocrine resistant cells using a pool of 

CD44 siRNAs supplied by Dharmacon. Similarly, RHAMM expression was suppressed 

using a pool of RHAMM siRNAs obtained from Santa Cruz Biotechnology. For specific 

knockdown of CD44v6, an siRNA sequence was designed using the Invitrogen online 
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stealth RNAiTM siRNA design tool, BLOCK-iTTM RNAi Designer 

(http://rnaidesigner.lifetechnologies.com/rnaiexpress/) from the gene sequence 

encoding the CD44v6 exon obtained from the online NCBI database (Appendix C). 

This programme allowed the consideration of GC content and knockdown probability 

as calculated by the online tool for each sequence generated. Once the siRNA 

sequence was selected, the corresponding DNA sequence was inputted into the 

online bioinformatics programme BLAST which compared sequence similarity to 

other DNA sequences across the human genome. BLAST analysis confirmed the high 

level of specificity for the CD44 and CD44v6 siRNA sequences used within this project 

(listed in Table 2.10) to their respective gene target, however RHAMM specificity 

could not be determined as these sequences were not supplied. For additional 

confirmation, the gene sequences for CD44 and CD44v6 obtained from the NCBI 

online database were used to verify siRNA sequence target specificity (Appendix C). 

Target siRNA, their corresponding RNA sequences and source of purchase for all 

siRNAs used within this project are detailed in Table 2.10. 
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Target 

siRNA 

RNA sequences Source 

  

CD44 

(total) 

GAAUAUAACCUGCCGCUU 

CAAGUGGACUCAACGGAGA 

CGAAGAAGGUGUGGGCAGA 

GAUCAACAGUGGCAAUGGA 

ON-TARGETplus SMARTpool 

Human CD44) Thermo 

scientific Dharmacon,  

Leicestershire, UK 

        

CD44v6 

   

CAGAUGGCAUGAGGGAUUCGCCAA 

BLOCK-iTTM RNAi Designer, 

InvitrogenTM, 

 Life Technologies, UK 

 

RHAMM  

 

siRNA pool sequences not supplied 

RHAMM siRNA Santa Cruz 

Biotechnology, Inc.  

Heidelberg, Germany 

NT-siRNA 

(control) 

UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

ON-TARGETplus control pool 

Non-Targeting Pool, Thermo 

scientific Dharmacon,  

Leicestershire, UK 
Table 2.10.  A list of target siRNA, RNA sequences and source of purchase for all siRNAs used within 

this project. 

2.12.2 CD44 siRNA transfection protocol 

Log phase cells were seeded into 35 mm dishes (2 x 105 cells density) in experimental 

media without the presence of antibiotics and returned to the incubator until 50 % 

cell confluency was reached. To achieve a working solution of 100 nM, siRNA stock 

solution was diluted to 2 µM using 1 x siRNA buffer (5 x siRNA buffer diluted in sterile 

RNase free water). Table 2.11 lists the 3 control arms that were used for each siRNA 

experiment: control (cells grown in experimental media), lipid-only (cells incubated 

with lipid transfection reagent only (DharmaFECT 1 Transfection Reagent)) and non-

targetting (NT)-siRNA (negative control siRNA, described in Table 2.10). The 

constituents for each sample were assembled into 2 sterile eppendorf tubes (A and 

B) according to Table 2.11, mixed by gentle pipetting and incubated at room 

temperature for 5 minutes. The eppendorfs (A and B) for each sample were then 

combined, mixed by gentle pipetting and incubated at room temperature for 20 
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minutes. Each sample was then diluted 1:5 in warmed media (WRPMI containing 5% 

SFCS, 2 % glutamine, no antibiotics). Experimental media was removed from the 35 

mm dishes and replaced with 1 ml siRNA control or transfection media. Dishes were 

gently rocked to ensure even coverage of transfection media and returned to the 

incubator for 48 hours to allow sufficient siRNA protein knockdown before harvesting 

the cells for experimental purposes. 

Table 2.11. The volumes required for the transfection of 35 mm dishes at a working solution of 100 

nM. All volumes are in µl.  

2.12.3 Transformation of plasmid DNA 

To determine the role of CD44 in endocrine sensitive MCF-7 cells that express low 

levels of endogenous CD44, a transfection-based method was used. Plasmid DNA 

constructs containing CD44v3 and CD44v6 isoforms and their cytoplasmic tail 

truncation mutation counterparts (denoted as CD44v3∆cyt and CD44v6∆cyt 

respectively) were a kind gift from Dr Ursula Gunthert (Basel University, Switzerland). 

Each plasmid construct is fused with an EGFP-tag at the carboxy terminus and 

contained in a p-PGKT-T7/2 vector (plasmid map shown in Appendix H). Previous use 

of these plasmids are found in the 2006 and 2007 publications by Mielgo et al.  

 

100 nM 

working 

Solution 

Control Lipid-only NT-siRNA 
Target-specific 

siRNA 

Eppendorf A B A B A B A B 

WRPMI 100  100 100 98.4 50 98.4 50 98.4 

2 µM siRNA - - - - 50 - 50 - 

Dharmafect #1 - - - 1.6  1.6  1.6 

Total Volume 200 200 200 200 
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2.12.3.1 Recovering plasmid DNA from filter paper 

Plasmid DNA constructs were sent embedded onto filter papers. To extract the 

plasmid DNA, each filter paper was placed into a 1.5 mm sterile eppendorf tube and 

immersed in 100 µl TE buffer (10 mM Tris, 1 mM EDTA), briefly vortexed and 

incubated at room temperature for 15 minutes. 1 - 10 µl of this solution was then 

removed from the eppendorf and added to 100 µl DH5α competent E.coli cells. The 

remainder of the plasmid DNA/TE buffer solution was stored at -20 ̊ C as a permanent 

archive.  

2.12.3.2 Transformation procedure 

DH5α E.coli cells were thawed on wet ice. Once thawed, 100 µl DH5α cells were 

placed into the required number of 17 x 100 mm polypropylene tubes on ice and 

gently mixed. Any unused DH5α cells were refrozen in a dry ice/ethanol bath for 5 

minutes before returning to -70 ˚C for storage. To determine transformation 

efficiency, a control of 5 µl stock pUC19 solution (0.01 µg/ml) was added to a 

polypropylene tube containing 100 µl DH5α E.coli cells and the tube was mixed by 

gentle tapping. 1 – 10 ng of plasmid DNA/TE solution was added to a polypropylene 

tube containing 100 µl DH5α cells and the tube was mixed by gentle tapping. The 

tube was then allowed to incubate on ice for 30 minutes. The DH5α cells were heat 

shocked in a 42 ˚C water bath (Grant W14, Grant Instruments, UK) for 45 seconds to 

allow entrance of the plasmid and immediately placed onto ice for 2 minutes to 

reclose the cell walls. 900 µl room temperature Super Optimal broth with Catabolite 

repression (SOC media, nutrient rich bacterial growth medium for maximal 
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transformation efficiency of E.coli cells) was then added to each polypropylene tube 

and the tubes were incubated for 1 hour with vigorous shaking, 37 ˚C, 225 rpm 

(Gallenkamp cooled orbital incubator, Sanyo, UK). Following incubation, the control 

pUC19 and experimental plasmid were each diluted 1:100 with SOC media. 100 µl of 

each of these diluted media was then spread onto individual LB agar plates 

containing 100 µg/ml ampicillin and the plates were incubated upside down 

overnight at 37 ̊ C. After the overnight incubation a single colony from each plate was 

selected and inoculated in a starter culture containing 2 ml warm LB media with 100 

µg/ml ampicillin. The starter cultures were contained in a vessel of at least 4 times 

the volume of the culture and incubated with vigorous shaking for 8 hours at 37 ˚C, 

300 rpm (Gallenkamp cooled orbital incubator, Sanyo, UK). Following incubation, the 

starter culture was diluted 1:1000 into selective warm LB medium containing 100 

µg/ml ampicillin. The cultures were contained in a vessel of at least 4 times the 

volume of the culture and incubated with vigorous shaking for 14 hours at 37 ˚C, 300 

rpm (Gallenkamp cooled orbital incubator, Sanyo, UK).  

2.12.3.3 Harvesting bacterial cells for collection and purification of plasmid DNA 

The bacterial cells were then harvested and purified using an Endotoxin Free Plasmid 

Maxiprep Kit (10) (QIAGEN Ltd, Manchester, UK #12632), all equipment and reagents 

used for this process were enclosed within the kit upon purchase. Table 2.12 lists all 

reagents used with their corresponding composition, storage temperature and 

function. After the 14 hour incubation, bacterial cells were transferred into a sterile 

container and centrifuged at 6000 rpm for 15 minutes, 4 °C (Sorvall RC5B PLUS, 

Thermo Scientific, UK). The bacterial pellets were then resuspended in 10 ml pre-
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chilled (4 °C) Buffer P1 (containing RNase and pre-mixed with LyseBlue reagent) by 

pipetting until no cell clumps remained. 10 ml Buffer P2 was then added to the 

solution and mixed thoroughly by vigorously inverting the sealed tube 4 – 6 times 

and then incubated at room temperature for 5 minutes. 10 ml pre-chilled (4 °C) 

Buffer P3 was then added to the lysate and mixed immediately and thoroughly by 

vigorously inverting the sealed tube 4 – 6 times. The lysate was then immediately 

poured into the barrel of the QIAfilter Cartridge (with the cap screwed onto the outlet 

nozzle and placed in a convenient tube) and incubated at room temperature for 10 

minutes ensuring the cartridge was not agitated during this incubation period. The 

cap from the QIAfilter cartridge outlet nozzle was then removed, the plunger was 

gently inserted into the cartridge and the cell lysate was filtered into a 50 ml sterile 

falcon tube recovering approximately 25 µl of the lysate. 2.5 ml of Buffer ER was then 

applied to the filtered lysate, mixed by inversion 10 times and incubated on ice for 

30 minutes. During the incubation period, a QIAGEN-tip 500 column was equilibrated 

by applying 10 ml Buffer QBT and the column was allowed to empty by gravity flow. 

After incubation, the filtered lysate was then applied to the equilibrated QIAGEN-tip 

500 column and allowed to enter the resin by gravity flow. The QIAGEN-tip 500 

column was then washed twice with 30 ml Buffer QC and allowed to empty by gravity 

flow. The DNA attached to the column was then eluted with 15 ml Buffer QN and 

collected in a 30 ml endotoxin/pyrogen-free tube. The DNA was then precipitated by 

adding 10.5 ml (0.7 volumes diluted with RNase free water) room-temperature 

isopropanol to the eluted DNA, mixed and centrifuged immediately at 9000 rpm for 

30 minutes, 4˚C. The supernatant was then carefully decanted at room temperature 
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and the resultant DNA pellet was washed with 5 ml endotoxin-free room 

temperature 70 % ethanol and centrifuged at 9, 000 rpm for 10 minutes. The 

supernatant was carefully decanted without disturbing the DNA pellet and allowed 

to air dry for 5 – 10 minutes. The DNA pellet was then re-dissolved in 100 µl of 

endotoxin-free Buffer TE without pipetting the DNA up and down to avoid shearing. 

The DNA yield was then determined by UV spectrophotometry at 260 nm and 

quantitative analysis on a 2 % agarose gel. DNA concentration (µg/ml) and purity was 

quantified using the DNA260/280 programme on the spectrophotometer where A260 

readings should lie between 0.1 and 1. To measure DNA concentration, 1 ml 1X TNE 

buffer (100 µl 10X TNE buffer in 900 µl RNAse free water) was placed into a glass 

cuvette and used as a blank. 2 µl DNA sample was added to 1 ml 1X TNE buffer and 

placed into the glass cuvette, the absorbance was measured at 260 nm (A260) on the 

spectrophotometer (Cecil CE2041, Cambridge UK). DNA concentration was 

calculated using the following formula: DNA = A260 x 50 x dilution factor. DNA integrity 

was also assessed via gel electrophoresis for each sample. Samples were stored at - 

20 ° C.  
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Component Composition Storage (°C) Function 

Buffer P1 

50 mM Tris HCI pH 8 

100 mM EDTA 

100 µg/ml RNase A 

2 - 8 
Resuspension buffer 

  

Buffer P2 
200 mM NaOH 

1 % SDS (w/v) 
15 – 25 Lysis buffer 

Buffer P3 
3 M potassium acetate 

pH 5.5 
2 - 8 Neutralisation buffer 

Buffer ER Not disclosed 15 - 25 
Endotoxin removal 

buffer 

Buffer QBT 

750 mM NaCl 

50 mM MOPS pH 7 

15 % isopropanol (v/v) 

0.15 % triton-X-100 

15 – 25 Equilibration buffer 

Buffer QC 

1 M NaCl 

50 mM MOPS pH 7 

15 % isopropanol (v/v) 

15 - 25 

Wash buffer 

(removes excess salt 

residues/contaminants) 

Buffer QN 

1.6 mM NaCl 

50 mM MOPS pH 7 

15 % isopropanol (v/v) 

15 - 25 
Elution buffer 

 

Isopropanol 
70 % isopropanol 

30 % sterile water 
15 - 25 

Precipitates DNA 

Removes excess salts 

Ethanol 

70 % ethanol 

30 % endotoxin-free 

water 

15 - 25 Removes excess salts 

TE buffer 
10 mM Tris Cl pH 8 

1 mM EDTA 
15 - 25 

Solubilised DNA  

Protects from DNA 

degradation 
Table 2.12. A list of the components purchased with the Endotoxin-Free Plasmid Maxiprep kit (10) 

(QIAGEN, Manchester, UK) detailing their composition, storage temperature and function.  

2.12.4 DNA sequencing of plasmid constructs 

The successful transformation of the plasmid constructs was verified by DNA 

sequencing. The plasmid constructs and corresponding primers were transferred on 

dry ice to the CBS where they underwent a clean-up procedure and DNA sequencing 

analysis. To obtain an accurate read, each CD44 plasmid construct underwent a 

sequence reaction with 3 primers including: T7 promoter primer, CD44 Std forward 

primer and CD44v3/CD44v6 primer (dependent on plasmid construct). Table 2.13 
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lists each primer used for DNA sequence and their corresponding sequence, 

concentration and source of purchase. The sequencing results files were then 

analysed using the Chromas Lite software programme 

(http://technelysium.com.au/) and the DNA sequences for each plasmid construct 

are shown in Appendix I. To determine whether any changes in DNA base pair 

sequence resulted in amino acid changes in the protein structure, the DNA sequence 

obtained for each plasmid was uploaded onto the online protein translation tool 

ExPasy (http://web.expasy.org/translate/) and the results are shown in Appendix I). 

Primer Sequence Source of Purchase 

T7 promoter 
5’-TAATACGACTCAC 

TATAGGG-3’ Integrated DNA Technologies, Belgium 

CD44 Std 
5’-GACACATATTGC 

TTCAATGCTTCAGC-3’ Life Technologies Inc, UK 

CD44v3 
5’-CGTCTTCAAAT 

ACCATCTCAGC-3’ Life Technologies Inc, UK 

CD44v6 
5’-CAACGGAAGA 

AACAGCTACCC-3’ Life Technologies Inc, UK 

Table 2.13. A list of each primer sent to the CBS for DNA sequencing analysis of the plasmid constructs 

along with their corresponding sequence and source of purchase. 

2.12.5 CD44 transient transfection protocol 

MCF-7 cells were seeded (2 x 105 cells density) into 35 mm dishes in RPMI with 5 % 

FCS (no antibiotics) and incubated at 37 ˚C until cells reached 50 % cell confluency. 

For transfection of one 35 mm dish, 117.5 µl pre-warmed RPMI was combined with 

7.5 µl FuGENE 6 transfection reagent, mixed by pipetting and incubated for 5 minutes 

at room temperature. 100 ng plasmid DNA was added to each eppendorf (3:1 

FuGENE 6:DNA), mixed by gentle pipetting and incubated for 15 minutes at room 

temperature. 125 µl transfection solution was then added to 1.5 ml RPMI with 5 % 

http://technelysium.com.au/
http://web.expasy.org/translate/
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FCS (no antibiotics) and placed into a 35 mm dish. Dishes were rocked gently to 

ensure even coverage of transfection media and returned to the incubator for 48 

hours before harvesting to allow optimal transfection to occur.  

2.13 Statistical analysis 

In the results chapters, all data from 3 independent experiments are shown or 

representative images/immunoblots are presented. Statistical analysis of the results 

were carried out where data allowed. Where replicates were performed, 

quantitative data are presented as standard error of the means (SEM). For 

comparison between two groups, paired/unpaired student’s t-tests were performed. 

For comparisons between 3 or more groups, a one-way ANOVA was carried out with 

Tukey post-hoc analysis. Significance was determined as p < 0.05. 
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3. Characterisation of CD44 isoform expression in endocrine resistant 

breast cancer cell models versus their endocrine sensitive counterpart 

3.1 Introduction 

Whilst a large body of evidence has been gathered to support a role for CD44 as a 

significant factor in tumour progression, this area remains controversial due to 

contradictory findings and a lack of clear association between CD44 expression and 

clinical outcome. Indeed, CD44 has been heavily implicated as a contributor towards 

the metastatic phenotype of numerous carcinomas including breast, pancreatic and 

ovarian, however, whilst some studies report that elevated CD44 expression 

correlates with poor prognosis in these carcinomas (Takada et al. 1994; Looi et al. 

2006; Li et al. 2008a; Huh et al. 2009; Klingbeil et al. 2010; Auvinen et al. 2014) others 

suggest that the presence of CD44 associates with a favourable outcome (Sillanpaa 

et al. 2003; Diaz et al. 2005; Lopez et al. 2005; Al-Maghrabi et al. 2012; Takahara et 

al. 2012). Furthermore, reports have suggested that both overexpression 

(Lokeschwar et al. 1995; Hao et al. 2012) and loss (Verkaik et al. 2000; Kito et al. 2001) 

of CD44 is associated with advanced progression and metastasis of prostate cancer. 

One aspect which makes CD44 difficult to study and undoubtedly contributes to 

variability between studies is the extensive alternative splicing attributed to this 

molecule. Thus a possible explanation for these discrepancies may lie in the fact that 

a high proportion of studies have analysed total CD44 expression and not taken into 

account the differential expression of specific CD44 variant isoforms. For example, it 

has been extensively established that individual CD44 exons have the potential for 
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the addition of specific post-translational modifications thus conferring differential 

affiliation for membrane receptor binding and ligand sensitivity (Jalkanen et al. 1988; 

Bennet et al. 1995; Hasenauer et al. 2013). Therefore, the incorporation of specific 

exons into the CD44 molecule via alternative splicing may lead to novel cell functions 

through association of these molecules with, and subsequent activation of, various 

growth factor receptors and their downstream targets. Indeed, alternative splicing, 

a phenomenon known to be upregulated in cancer cells, allows for the formation of 

an extensive array of CD44 isoforms, each with a potentially distinct function with 

regards to their role in cancer development (Goldstein and Butcher 1990; 

Stamenkovic et al. 1991; Screaton et al. 1992).  

With relation to the characterisation and function of specific CD44 isoforms in breast 

cancer, this area remains largely unstudied, however multiple reports present 

convincing evidence for the role of several individual isoforms in breast cancer 

progression (Cheng et al. 2006; Lian et al. 2006; Afify et al. 2009; Lida et al. 2014), 

although these reports have also been contradictory. Olsson et al. 2011 published 

findings indicating that individual CD44 isoform expression may be associated with 

specific breast cancer characteristics and molecular subtypes and may also 

contribute to specific oncogenic signalling pathways. In addition, previous studies by 

the BCMPG (Hiscox et al. 2012) suggested a role for CD44 expression in acquired 

tamoxifen-resistance where it correlated with an enhanced migratory phenotype. 

However, given the lack of knowledge regarding the role of individual CD44 isoforms 

in cancer, particularly within the context of acquired endocrine resistance, this was 

explored further in this project.  
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To begin these studies, it was first necessary to characterise CD44 variant isoform 

expression in endocrine sensitive MCF-7 cells along with two endocrine resistant cell 

models, a tamoxifen-resistant (Tam-R) and fulvestrant-resistant (Fas-R) cell line, both 

derived from MCF-7 cells (see Materials and Methods 2.2.1). For the purpose of this 

project, it was decided to focus on CD44 Std, CD44v3, CD44v6 and CD44v10 as these 

isoforms have previously been identified as markers of poor prognosis and related to 

tumour progression functions in breast cancer (Kalish et al. 1999; Herrera-Gayol and 

Jothy 1999; Bourguignon et al. 2008; Afify et al. 2009; Lida et al. 2014; Fahe et al. 

2014). An important aspect of CD44-mediated function is its ability to bind to its 

principle ligand HA, an extracellular matrix component abundantly expressed in 

breast carcinomas and correlated with poor outcome (Auvinen et al. 2000; Auvinen 

et al. 2014). Therefore, in addition to CD44, alternative members of the HA-binding 

family (hyaladherins) which have been implicated in breast cancer progression were 

also investigated to evaluate their contribution to the endocrine resistant phenotype 

of Tam-R and Fas-R cells.  

3.1.1 Objectives 

1. To explore the expression of CD44 variant isoforms and additional 

hyaladherin family members across endocrine sensitive and endocrine 

resistant cell models at gene level using an existing microarray database. 

2. To validate microarray gene expression data by RT-PCR analysis. 

3. To determine hyaladherin expression and cellular localisation at protein level 

by Western blotting, immunocytochemistry and immunofluorescence 

analysis.  
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3.2 Results 

3.2.1. Analysis of hyaladherin family member gene expression in cells models of 

acquired endocrine resistance compared to their endocrine sensitive counterpart 

Of the multiple hyaladherins identified to date, several have been implicated in 

breast cancer progression including: RHAMM (HMMR) (Wang et al. 1998; Hamilton 

et al. 2007; Maxwell et al. 2011), lymphatic vessel endothelial hyaluronan acid 

receptor 1 (LYVE-1) (Bono et al. 2004), Stabilin 2 (STAB2) (Hirose et al. 2012), Toll-like 

receptor 4 (TL4) (Yang et al. 2010; Yang et al. 2013) versican (VCAN) (Du et al. 2013) 

and intracellular adhesion molecule 1 (ICAM-1) (Rosette et al. 2005; Guo et al. 2014). 

Therefore the gene expression of these hyaladherins, along with CD44, were 

assessed using affymetrix analysis. 

Following the completion of microarray gene expression profiling of RNA samples 

from the cell models, the resultant triplicate expression data for each gene analysed 

was uploaded into the software analysis programme GeneSifter (see Materials and 

Methods 2.3). Using this programme, the raw data underwent median normalisation 

and log transformation which led to the construction of heatmap profiles and log2 

intensity plots for the visualisation of individual gene expression changes across the 

cell models. In some instances, the affymetrix U133A gene chips contained more than 

one probe set ID for each gene. Therefore upon analysis, particular importance was 

placed upon the best performing ‘Jetset’ probe for each gene which was determined 

by the online Jetset programme based upon the performance of each probe across 

three parameters (shown in Table 3.1). Figure 3.1 reveals the heatmap profile for 
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each gene probe assessed within this project along with log2 intensity plots 

displaying the average normalised data (±SEM) for each Jetset probe (with their 

corresponding fold change values shown in Table 3.2). Heatmap analysis revealed 

that the expression of the majority of gene probes corresponding to LYVE-1, STAB2, 

TL4, ICAM-1 and VCAN in Tam-R and Fas-R cells were either reduced or unaltered 

compared to MCF-7 cells. Furthermore, the detection calls for each Jetset probe 

corresponding to these genes were absent in all cell lines and the log2 expression 

values were below 0, indicative of absent/very low expression of these genes across 

all cell models. Statistical analysis to compare gene fold changes revealed that STAB2 

expression was significantly reduced in Tam-R and Fas-R cells compared to MCF-7 

cells (Table 3.2) however these data may be unreliable as the detection of this gene 

was determined as absent across these cells. No other statistically significant 

differences in fold changes for these gene probes were detected across all cell 

models.  

In contrast, heatmap analysis revealed increased HMMR gene expression in Tam-R 

and Fas-R cells compared to MCF-7 cells (Figure 3.1). Detection calls revealed that 

HMMR was present in both endocrine resistant cell models but absent in MCF-7 cells 

(Table 3.1) which was confirmed by the log2 expression values from the Jetset probe 

(Figure 3.1). Fold change analysis revealed substantially enhanced HMMR gene fold 

changes in both Tam-R and Fas-R cells compared to MCF-7 cells however these 

changes were not statistically significant (Table 3.2). Additionally, heatmap analysis 

revealed that the majority of gene probes corresponding to CD44 showed enhanced 

gene expression in Tam-R and Fas-R cells compared to MCF-7 cells. However, these 
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probes showed poor ‘overall scores’ (Table 3.1) and thus data for these genes may 

be unreliable. The Jetset probe for CD44 (indicated on row 5 of the heatmap profile) 

appeared as ‘present’ across all cell models suggesting that CD44 is expressed within 

these cells. Furthermore, log2 expression and fold change analysis for the Jetset 

probe revealed enhanced CD44 expression in Fas-R cells, but not Tam-R cells, 

compared to MCF-7 cells and statistical testing revealed a significant increase in gene 

fold change in Fas-R cells compared to both MCF-7 and Tam-R cells (Table 3.2). Based 

on these data, CD44 and HMMR expression were explored further in these cell 

models. 
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Gene 
Probe Set 

 ID 

Specificity 

Score 

Cover 

Score 

Robust 

Score 

Overall 

Score 

Detection Call 

(MCF-7/Tam-R/Fas-R) 

HMMR 207165_at 1 1 0.8064 0.8064 A/P/P 

CD44 209835_x_at 0.8182 0.8421 0.0037 0.0026 P/P/P 

CD44 204489_s_at 0.9091 0.8947 0.115 0.0093 M/M/P 

CD44 212014_x_at 0.8182 0.8421 0.0036 0.0025 P/P/P 

CD44 212063_at 0.8182 0.8947 0.4285 0.3508 P/P/P 

CD44 210916_s_at 0.8182 1 0.0005 0.0004 A/A/P 

CD44 204490_s_at 0.9091 0.8947 0.0037 0.003 P/P/P 

CD44 217523_at - 1 - - A/A/P 

HMMR 209709_s_at 0.901 1 0.4785 0.3896 A/P/P 

LYVE-1 219059_s_at 0.9091 1 0.2277 0.2070 A/A/A 

LYVE-1 220037_s_at 0.9091 1 0.0883 0.0803 A/A/A 

TL4 221060_s_at 1 1 0.0285 0.0285 A/A/A 

CD44 216056_at - 1 - - A/A/A 

STAB2 220114_s_at 0.8182 0.6666 0.4901 0.2673 A/A/A 

ICAM-1 202637_s_at 0.9091 1 0.1809 0.1644 A/A/A 

ICAM-1 202638_s_at 0.7277 1 0.4848 0.3566 A/A/A 

ICAM-1 215485_s_at 1 1 0.0631 0.0631 A/A/A 

VCAN 211571_s_at 0.7272 1 0.2021 0.0146 A/A/A 

VCAN 204620_s_at 0.1818 1 0.0894 0.0732 A/A/A 

VCAN 215646_s_at 1 1 0.0319 0.0319 A/A/A 

VCAN 204619_s_at 0.9090 1 0.6459 0.5872 A/A/A 

VCAN 221731_x_at 0.5454 1 0.1230 0.0671 M/A/M 

Table 3.1. A list of the probe set IDs for each gene assessed using the GeneSifter programme with their 

corresponding performance across an array of parameters and detection call. Each probe appears in 

accordance to the sequence shown in the heatmap profile (Figure 3.1). Jetset probe identifies the probe 

set ID which scored the highest overall performance score for each gene and is indicated in bold. All 

parameters are assessed on a scale ranging from 0 – 1 with a score closer to 1 indicating a better 

performance. Detection call identifies whether the gene expression was determined as absent (A), 

present (P) or mixed (M) for each probe set ID in MCF-7, Tam-R and Fas-R cells respectively. 
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Figure 3.1. A heatmap profile displaying changes in gene expression for all hyaladherins analysed 

and the log2 intensity plots for the Jetset probe of each gene with the average normalised gene 

expression (±SEM) across 3 independent experiments.   
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Gene MCF-7 versus Tam-R MCF-7 versus Fas-R Tam-R versus Fas-R 

HMMR 2.45 3.64 1.48 F 

CD44 1.06 6.71 6.30 F 

LYVE-1 1.15 1.16 1.33 T 

TL4 1.06 3.14 2.97 F 

STAB2 2.84 3.19 1.12 F 

ICAM-1 1.21 1.04 1.17 F 

VCAN 1.08 1.14 1.23 T 

Table 3.2. The fold change values in gene expression of the Jetset probes for each gene analysed by 

affymetrix. ANOVA testing with Tukey post-hoc analysis was performed to identify any significant 

changes in gene fold across all 3 cells models and significant changes are highlighted in bold and 

underlined. Green represents decreased fold changes, red indicates increased fold changes and black 

indicates no change in fold levels. CD44 gene fold change was significantly increased in Fas-R cells 

compared to MCF-7 cells (p = 0.00038) and Tam-R cells (p value = 0.00045). STAB2 gene fold changes 

were significantly decreased in Tam-R cells (p = 0.0291) and Fas-R cells (p = 0.0186) compared to MCF-

7 cells. In the final column, fold change values relating to either Tam-R or Fas-R cells are indicated by 

‘T’ or ‘F’ respectively.  
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3.2.2 Validation of microarray data by RT-PCR analysis 

Whilst microarray analysis provided important insight into CD44 and HMMR gene 

expression across the cell models, this technique cannot distinguish between 

different splice variants of these genes. Therefore, to validate microarray results and 

further investigate the presence of different CD44 and HMMR splice variants across 

the cell lines, RT-PCR was performed on mRNA isolated from MCF-7, Tam-R and Fas-

R cells using CD44 isoform and HMMR specific primers designed in-house. Primers 

designed for detection of CD44 Std and HMMR were situated in the domain common 

to all isoforms therefore use of these primers was anticipated to result in multiple 

PCR products. It should also be noted that primers used for detection of CD44v3, 

CD44v6 and CD44v10 detected any isoforms containing these exons. Figure 3.2 

reveals the expression of multiple bands (200 – >1000 bp) using the CD44 Std primer 

across all cell models, however overall these bands showed stronger expression 

within Tam-R and Fas-R cells compared to MCF-7 cells. Figure 3.2 further reveals the 

upregulation of bands corresponding to the predicted base pair sizes of CD44v3 (100 

bp) and CD44v6 (100 bp) in Tam-R and Fas-R cells compared to MCF-7 cells. The band 

corresponding to CD44v10 (109 bp) expression showed a modest increase in Fas-R 

cells compared to MCF-7 cells (Figure 3.2). No signal could be detected for HMMR 

across the cell models (Figure 3.2). Densitometry analysis revealed enhanced gene 

expression of CD44 Std and CD44v6-containing isoforms in Fas-R cells compared to 

MCF-7 cells (Figure 3.3).  
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Figure 3.2. Representative RT-PCR images from 3 independent experiments showing CD44 isoform 

expression in MCF-7, Tam-R and Fas-R cells with ß-actin loading control. 
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RT-PCR densitometry analysis
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Figure 3.3. Densitometry graph for CD44 isoform expression detected in MCF-7, Tam-R and Fas-R 

cells by RT-PCR analysis normalised to ß-actin. Error bars represent the average normalised data 

±SEM from 3 independent experiments and statistical analysis was performed using a one-way 

ANOVA with Tukey post-hoc testing to identify any significant changes across all 3 cell models. 

Significance was set at p < 0.05.  
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3.2.3 Protein expression of CD44 and RHAMM in endocrine resistant cells versus 

their endocrine sensitive counterparts 

Given that CD44 isoform gene expression appeared to be elevated in resistant cell 

models versus their MCF-7 counterparts, the next step was to assess CD44 isoform 

expression at the protein level along with their cellular localisation patterns. Whilst 

HMMR was undetectable by RT-PCR analysis, microarray data revealed elevated 

expression of this gene across the endocrine resistant cell models compared to their 

endocrine sensitive counterpart, MCF-7 cells. Therefore HMMR (RHAMM) expression 

was also investigated at the protein level across the cell models. 

3.2.3.1 Western blotting  

Western blotting analysis revealed enhanced expression of an 80 kDa band 

corresponding to the hypothetical size of CD44 Std in Tam-R and Fas-R cells 

compared to MCF-7 cells; with the highest expression level observed in Fas-R cells 

(Figure 3.4). Further analysis revealed elevated expression of protein products 

corresponding to CD44v3 (85 kDa), CD44v6 (85 kDa) and CD44v10 (90 kDa) in Tam-R 

and Fas-R cells compared to MCF-7 cells (Figure 3.4). Interestingly, detection of 

CD44v6 and CD44v10 resulted in the presence of multiple bands (130 – 250 kDa) in 

the endocrine resistant cell lines that were not observed in MCF-7 cells (Figure 3.4). 

These are likely to be due to the presence of unidentified splice variants containing 

these exons and/or differences in glycosylation of these exons, also observed by 

other groups including Dougherty et al. 1991; Gansauge et al. 1995; Kuncova et al. 
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2005. Western blotting analysis also detected an 85 kDa band corresponding to a 

variant of RHAMM with a similar expression profile across all cell models (Figure 3.4).  

 

Figure 3.4. Representative Western blot images from 3 independent experiments showing 

CD44 isoform and RHAMM expression in MCF-7, Tam-R and Fas-R cells with a GAPDH loading 

control.  
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Densitometry analysis confirmed significantly elevated CD44 Std and CD44v6 protein 

expression in Fas-R cells compared to both MCF-7 and Tam-R cells and enhanced 

CD44v10 expression in Fas-R cells compared to MCF-7 cells (Figure 3.5). Furthermore, 

these analyses revealed increased CD44 Std and CD44v3 protein expression in Tam-

R cells compared to MCF-7 cells (Figure 3.5). 
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Figure 3.5. Densitometry graph showing CD44 isoform and RHAMM expression detected in MCF-

7, Tam-R and Fas-R cells by Western blotting analysis normalised to GAPDH. Error bars represent 

the average normalised data ±SEM from 3 independent experiments and statistical analysis was 

performed using a one-way ANOVA with Tukey post-hoc testing to identify any significant changes 

across all 3 cell models. Significance was set at p < 0.05.  
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3.2.3.2 Immunostaining analysis  

Immunostaining approaches were used to quantify the expression and subcellular 

localisation pattern of CD44 and RHAMM proteins across all cell lines. These 

approaches detected all CD44 isoforms containing the specific variant exon.  

Immunocytochemical analysis revealed intense staining of CD44 Std and CD44v6-

containing isoforms in Tam-R and Fas-R cells versus MCF-7 cells, particularly at the 

cell surface (Figure 3.6). A similar trend for increased expression of CD44v3- and 

CD44v10-containing isoforms was observed in the resistant cell models compared to 

the endocrine sensitive MCF-7 cells although to a lesser degree than CD44 Std and 

CD44v6 proteins (Figure 3.7). Interestingly, CD44v3 and CD44v10 proteins showed 

predominant cytoplasmic localisation in the resistant cells (Figure 3.6). Upregulated 

protein expression of these isoforms in the resistant cells was further confirmed by 

quantitative assessment of immunostaining by H-score analysis (Figure 3.7). H-score 

quantitation suggested enhanced membrane staining of CD44 Std in Tam-R and Fas-

R cells compared to MCF-7 cells, and increased CD44v6 expression in Fas-R cells, 

compared to MCF-7 and Tam-R cells (Figure 3.7). These analyses also revealed 

increased cytoplasmic CD44 Std, CD44v6 and CD44v10 protein expression in Fas-R 

cells compared to MCF-7 cells (Figure 3.7) and CD44v6 and CD44v10 expression was 

enhanced in Fas-R cells compared to Tam-R cells (Figure 3.7). Cytoplasmic expression 

of CD44v6 was increased in Tam-R cells compared to MCF-7 cells (Figure 3.7). Analysis 

of RHAMM showed decreased staining in Tam-R and Fas-R cells compared to MCF-7 

cells and H-score analysis revealed reduced cytoplasmic RHAMM expression in Fas-R 

cells compared to MCF-7 cells (Figure 3.6 and 3.7 respectively).  
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Figure 3.6. Representative images from 3 independent experiments showing CD44 isoform and 

RHAMM expression by immunocytochemical analysis (x20 magnification). 
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            H-score quantitation of CD44 cytoplasmic staining
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Figure 3.7. Membrane and cytoplasmic H-score assessment of CD44 isoform and RHAMM 

expression in MCF-7, Tam-R and Fas-R cells by immunocytochemistry analysis. Error bars represent 

the average normalised data ±SEM from 3 independent experiments and statistical analysis was 

performed using a one-way ANOVA with Tukey post-hoc testing to identify any significant changes 

across all 3 cell models. Significance was set at p < 0.05.  
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To further validate CD44 and RHAMM expression, immunofluorescence microscopy 

was undertaken. This assessment also revealed intense staining of CD44 Std and 

CD44v6-containing isoforms in Tam-R and Fas-R cells compared to MCF-7 cells, with 

elevated staining observed on the plasma membrane (Figure 3.8). These data further 

revealed intense cytoplasmic staining of proteins corresponding to CD44v3- and 

CD44v10- containing isoforms in Tam-R cells compared to MCF-7 cells (Figure 3.8). 

Quantitative analysis using ImageJ to determine total cell fluorescence revealed 

enhanced staining of CD44 Std and CD44v6 in Fas-R cells compared to MCF-7 and 

Tam-R cells (Figure 3.9). Analysis of RHAMM revealed a heterogeneous staining 

pattern in MCF-7 and Fas-R cells, interestingly these proteins revealed cytoskeletal 

localisation across all cell models, an observation also shown by others (Assmann et 

al. 1999; Jiang et al. 2013) (Figure 3.8). 
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Figure 3.8. Representative images from 3 independent experiments showing CD44 isoform and 

RHAMM expression by immunofluorescence analysis (x63 magnification). 
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Figure 3.9. Total cell fluorescence analysis of CD44 isoform and RHAMM expression in MCF-7, Tam-

R and Fas-R cells by immunofluorescence analysis. Error bars represent the average normalised 

data ±SEM from 3 independent experiments and statistical analysis was performed using a one-

way ANOVA with Tukey post-hoc testing to identify any significant changes across all 3 cell models. 

Significance was set at p < 0.05.  
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3.3 Discussion 

The purpose of this chapter was to explore whether the expression of CD44 isoforms 

and alternative hyaladherin family members were altered in cell models of acquired 

endocrine resistance versus their endocrine sensitive counterparts. It has been well-

established that deregulated CD44 expression contributes to the metastatic 

behaviour of numerous carcinomas (Klingbeil et al. 2010; Al-Maghrabi et al. 2012; 

Takahara et al. 2012; Hao et al. 2012), therefore the overall goal of this thesis was to 

explore the hypothesis that augmented CD44 isoform expression may confer an 

aggressive phenotype onto endocrine resistant cell models, potentially through 

enhanced growth factor pathway activation. Thus in order to elucidate the function 

of CD44 in the context of resistance, initial studies focussed around characterization 

of CD44 and related hyaladherin family members in endocrine sensitive and resistant 

breast cancer models.  

Of the multiple hyaladherins identified to date, several have been reported to be 

implicated in various cancers including: CD44, HMMR, LYVE-1, TL4, STAB2, ICAM-1 

and VCAN (Gao et al. 2006; Li et al. 2009; Hirose et al. 2012). In particular, CD44 (Afify 

et al. 2009; Ma et al. 2005; Lian et al. 2006), HMMR (Hamilton et al. 2007; Maxwell 

et al. 2011), LYVE-1 (Bono et al. 2004), TL4 (Yang et al. 2010; Yang et al. 2013), STAB2 

(Hirose et al. 2012), VCAN (Du et al. 2013), and ICAM-1 (Rosette et al. 2005; Guo et 

al. 2014) have all been reported to be highly expressed in breast cancer where they 

have been shown to correlate with poor prognosis. However, with the exception of 

CD44 and HMMR, results obtained from affymetrix analysis did not suggest a role for 

these hyaladherin family members in endocrine resistance. It could be suggested that 
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downregulation, rather than overexpression, of specific hyaladherin genes may 

confer an aggressive phenotype in endocrine resistance through a tumour 

suppressor function, however no known tumour suppressor functions have been 

reported for the alternative hyaladherins assessed in this project. Despite microarray 

analysis revealing elevated gene expression of HMMR in both endocrine resistant cell 

models versus their MCF-7 counterpart, this effect was not statistically significant. 

Although HMMR gene expression was unable to be detected across the cell models 

by RT-PCR analysis, protein detection revealed a similar level of RHAMM expression 

across all cell models and staining appeared to show predominant cytoskeletal 

localisation. Thus together, these data could infer that RHAMM may not act as a 

major contributor towards the aggressive phenotype of these endocrine resistant cell 

models, however it could be argued that the presence of RHAMM in these cells alone 

is important to their aggressive phenotype.  

In contrast, both affymetrix analysis and RT-PCR validation demonstrated elevated 

CD44 gene expression in endocrine resistance, however significant upregulation of 

CD44 splice variants was only observed for CD44 Std- and CD44v6-containing 

proteins in Fas-R cells compared to MCF-7 cells. Western blotting analysis confirmed 

upregulation of CD44 Std in both endocrine resistant cell models versus their 

endocrine sensitive MCF-7 counterpart. However these data revealed a differential 

expression profile of CD44 variants between Tam-R and Fas-R cells, with a significant 

upregulation of CD44v6 and CD44v10 proteins in Fas-R cells and enhanced CD44v3 

in Tam-R cells, compared to MCF-7 cells (depicted in Figure 3.10). Interestingly, 

Western blotting data suggested the presence of multiple CD44v6- and CD44v10-
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containing isoforms in the resistant cell models that were undetectable in MCF-7 

cells, potentially suggesting that greater amounts of alternative splicing may occur in 

endocrine resistance. Indeed, aberrant splicing frequently occurs in carcinomas, 

although it remains unclear whether the production of abnormal transcripts is of 

functional importance to cancer cells or merely a by-product of transformation. 

However, growing evidence suggests that aberrant splicing contributes to the 

aggressive phenotype of cancer cells through the production of proteins with altered 

or novel functions (Xing et al. 2003; Hiller et al. 2005; Fackenthal and Godley 2008). 

Indeed numerous reports document upregulation of CD44 splice variants in 

aggressive carcinoma tissues compared to their normal tissues (Herrera-Gayol et al. 

1999; Ni et al. 2002; Ma et al. 2005; Shi et al. 2013; Misra et al. 2012). These data 

may suggest that upregulation of CD44 splicing leading to the production of 

alternative CD44 variant isoforms, as observed within Tam-R and Fas-R cells, may 

contribute to the acquisition of an aggressive phenotype observed in resistant 

models since these CD44 isoforms may have altered pro-invasive/migratory 

functions.   
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Immunostaining analysis confirmed upregulation of CD44 Std, CD44v6 and CD44v10 

in Fas-R cells and revealed elevated expression of CD44 Std and CD44v6 proteins in 

Tam-R cells compared to their MCF-7 counterparts. Furthermore, these techniques 

revealed distinct subcellular localisation patterns of individual CD44 isoforms across 

cell models. Whereas CD44 Std- and CD44v6-containing isoforms appeared to 

localise to the membrane, CD44v3- and CD44v10-containing proteins showed 

predominant cytoplasmic staining in models of endocrine-resistance; and these 

expression patterns may allude to differential cellular functions. For example, whilst 

CD44 Std and CD44v6 isoforms may interact with extracellular factors at the cell 

surface (including extracellular matrix components, growth factor receptors and 

growth factors themselves), CD44v3 and CD44v10 isoforms may have more 

distinguished roles within intracellular signalling, receptor/ligand internalisation and 

cytoskeleton binding. Indeed, CD44 Std has been suggested to confer enhanced HA 

Figure 3.10. A diagram to represent the level of CD44 isoform expression and presence of splice 

variants in endocrine resistant Tam-R and Fas-R cells compared to their endocrine sensitive 

counterpart MCF-7 cells according to the characterisation results in Chapter 3. The size of each CD44 

isoform represents its expression level across the cell lines with an increase in size corresponding to 

enhanced protein expression. The arrows represent the presence of multiple isoforms containing 

the specific exon in the cell models. In MCF-7 cells, the level of CD44 Std, CD44v3, CD44v6 and 

CD44v10 is low and multiple splice isoforms containing specific exons are not present in these cells. 

In Tam-R cells, CD44 Std, CD44v3 and CD44v6 protein expression becomes enhanced compared to 

MCF-7 cells and multiple splice variants containing variant exons 6 and 10 are present in these cells. 

In Fas-R cells, CD44 Std, CD44v6 and CD44v10 expression becomes upregulated compared to MCF-

7 cells, and to a greater level compared to Tam-R cells, and multiple splice variants containing variant 

exons 6 and 10 are also present in these cells. 
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binding through the accessibility of its extracellular HA-binding N-terminus and its 

expression has been tightly coupled with HER2 in cancer cells and found to be 

strongly expressed in HER2-enriched breast tumours (Bourguignon et al. 1997; Bao 

et al. 2011, Olsson et al. 2011). In support of this, Hiscox et al. 2012 reported that HA 

activation of CD44 led to dimerization with HER2 and subsequent downstream 

signalling resulting in promotion of aggressive cellular behaviours in Tam-R cells. 

Additionally, it has been reported that CD44v6 is required for the full activation of 

the membrane tyrosine kinase receptor c-Met (Orian-Roussea et al. 2002; Hasenauer 

et al. 2013); a protein overexpressed in approximately 20 – 30 % of invasive basal 

breast cancers (Lengyel et al. 2005; Zagouri et al. 2013; Ho-Yen et al. 2014) and shown 

to be an independent predictor of poor clinical outcome (Ghoussoub et al. 1999; 

Camp et al. 1999; Gonzalez-Angulo et al. 2012). Further, Hiscox et al. 2006 reported 

that the c-Met receptor is overexpressed in Fas-R cells where it is has been suggested 

to augment an aggressive cellular phenotype. These data may implicate a role for 

CD44v6 in the activation of the c-Met receptor in Fas-R cells where it may play a role 

in the initiation of signalling pathways leading to enhanced invasive behaviours. 

However unlike CD44 Std, the contribution of CD44v6 to HA-binding and ErbB 

receptor activation currently remains unknown.  

Conversely, the CD44v10 exon has been shown to undergo extensive post-

translational modifications within cells that subsequently prevents dimerization of 

CD44 molecules at the cell surface, an event known to promote high affinity HA-

binding (Droll et al. 1995; Bourguignon et al. 1998). Therefore it is thought that 

CD44v10 proteins exhibit reduced capability of HA binding and may thus provide an 
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explanation for its predominant cytoplasmic localisation in endocrine resistant cells 

potentially through its enhanced turnover. Furthermore, CD44v3 and CD44v10 

variant isoforms have been shown to be involved in enhanced cellular motility 

through interactions with cytoskeletal proteins, ROK and ankyrin (Bourguignon et al. 

1999; Singleton and Bourguignon 2002; Singleton and Bourguignon 2004). Therefore, 

it may be suggested that within these cell models, the role of CD44v3- and CD44v10- 

containing proteins may predominantly involve cytoskeletal-mediated functions and 

may therefore support evidence for the cytoplasmic localisation of these proteins. 

Taken together, the intracellular localisation of CD44 isoforms containing variant 

exons 3 and 10 may be postulated to be a result of enhanced turnover and 

degradation, cytoskeletal binding, endosomal signalling, receptor/ligand endocytosis 

or cellular processing in the endoplasmic reticulum. Whilst numerous studies report 

cytoplasmic localisation of CD44 proteins, intracellular roles for variant isoforms have 

not yet been reported in literature.  

Several approaches were undertaken to explore CD44 isoform expression across 

these cells models as discrepancies in antibody detection have previously been 

reported due to differences in immunostaining techniques which may alter or mask 

the access of antibodies to protein epitopes (Martegani et al. 1999; Louderbough et 

al. 2011). The analyses revealed a similar expression profile of CD44 isoforms across 

these techniques (Table 3.3) suggesting an accurate representation was gained 

across the cell models in Fas-R cells, however some variation was shown in Tam-R 

cells. A limitation to using immunostaining analysis for the detection of specific CD44 

variants in this study was that antibodies detected any CD44 variant possessing the 
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specific exon and could not distinguish between different splice variants. This effect 

was overcome by Western blotting analysis which detected multiple bands 

potentially correlating to CD44 variant-containing isoforms, however the 

composition of these splice variants across the cell models remains undetermined. It 

must be noted that the CD44 Std antibody used in this study detected all CD44 

isoforms present in the cell models and therefore was a representation of total CD44 

expression. Given that CD44 Std and CD44v6 detection appeared to show similar 

expression profiles between all cell models, it may be suggested that the CD44 Std 

antibody mainly detected the CD44v6-containing proteins. Thus, the expression of 

the CD44 Std isoform alone may be difficult to interpret in this study. This thesis 

therefore highlights the importance of using a breadth of detection techniques to 

gain an accurate representation of CD44 isoform expression across models and may 

go some way to explain experimental discrepancies between studies. 

 RT-PCR WB ICC (M) ICC (C) IF 

MCF-7 v Tam-R - Std, v3 Std v6 - 

MCF-7 v Fas-R Std, v6 Std, v6, v10 Std, v6 Std, v6, v10 Std, v6 

Tam-R v Fas-R - Std, v6, v10 Std, v6 Std, v6, v10 Std, v6 
Table 3.3. A table to show significant differences observed in CD44 isoform expression between all 

cell models across several detection techniques. Abbreviations represent: WB (Western blotting), ICC 

(M) (immunocytochemistry, membrane H-score), ICC (C) (immunocytochemistry, cytoplasm H-score), 

IF (immunofluorescence), Std (CD44 Std), v3 (CD44v3), v6 (CD44v6) and v10 (CD44v10).  

Overall, the data demonstrated that the expression of specific CD44 splice variants 

was increased in endocrine resistant cell models versus their endocrine sensitive 

counterpart. Interestingly, analyses revealed a greater level of CD44 isoform 

expression in the ER- Fas-R cells, compared to ER+ Tam-R cells (Table 3.3), which 
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supports previous research suggesting that CD44 expression is inversely proportional 

to ER expression (Klingbeil et al. 2010; Montgomery et al. 2012), although suggests 

that this relationship is not absolute. Both Tam-R and Fas-R cells are known to display 

an aggressive, metastatic phenotype (Hiscox et al. 2011) mediated in part by altered 

growth factor signalling. A number of studies support a role for CD44 isoforms as 

contributors towards the aggressive cellular features that may ultimately promote 

tumour spread. For example, a pioneering study by Gunthurt et al. 1991 revealed 

that CD44v6 transfection into non-metastatic rat carcinomas converted them into 

metastatic cells and subsequent co-injection of anti-CD44v6 antibody suppressed 

this metastatic behaviour. Furthermore, Yae et al. 2012 showed that inoculation of 

the CD44 variant (v8-v10) isoform-expressing subpopulation of breast cancer cells 

into mice conferred metastatic potential and led to the formation of lung metastases 

which was accompanied by an expansion of stem-like cancer cells, an observation 

that was not seen in the CD44 variant-negative (CD44 Std) subpopulation. Indeed, it 

is generally considered that tumours expressing specific CD44 variants are more 

aggressive than those which display the CD44 Std protein alone. In support of this, 

Banky et al. 2012 reported that CD44 proteins containing variant exons 3 and 6 

showed dominant expression compared to other CD44 variants across colorectal 

cancer cell lines and suggested that in a minority of tumour subclones these variants 

may act as ‘metastasis genes’ and drivers of the metastatic phenotype in these cells.  

3.3.1 Summary 

In this chapter it was demonstrated that CD44 variant isoforms are upregulated in 

acquired endocrine resistance, however a differential expression profile of CD44 
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isoforms was detected between the resistant cell models, with the greatest level of 

CD44 isoform expression found in Fas-R cells compared to their endocrine sensitive 

MCF-7 parental cells. Given that these resistant cells display an aggressive phenotype 

combined with the well-established roles for CD44 proteins in tumour progression 

behaviours, these observations may point to a role for CD44 isoforms in acquired 

endocrine resistance.  
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4. CD44 overexpression in endocrine resistant breast cancer models 

augments their aggressive phenotype and sensitisation to HA 

4.1 Introduction 

In the previous chapter, it was demonstrated that the expression of multiple CD44 

isoforms are elevated within endocrine resistant cell models versus their endocrine 

sensitive counterpart. However the contribution of CD44 proteins to the aggressive 

resistant phenotype of these cells remains unclear. Many studies have shown a link 

between high levels of CD44 expression and enhanced metastatic behaviour in a 

number of cancer cell models, which is mirrored in the clinical setting (Lui et al. 2005; 

Lian et al. 2006; Harrison et al. 2006; Shi et al. 2013; Ni et al. 2014) however results 

remain contradictory. Whilst the full extent of CD44 contribution towards tumour 

progression remains to be elucidated, two key mechanisms underlying CD44 function 

appears to be mediated through binding to their principle ligand hyaluronan (HA), 

and associations with, and regulation of, receptor tyrosine kinases (RTKs) (Kim et al. 

2008; Hiscox et al. 2012; Hasenauer et al. 2013). 

HA is found in abundance within the tumour stroma of many carcinomas where its 

accumulation is often predictive of unfavourable prognosis (Anttila et al. 2000; 

Nykopp et al. 2010; Kultti et al. 2014). In particular, HA concentration in breast 

carcinomas has been shown to be an independent predictor of poor patient outcome 

(Auvinen et al. 2000; Auvinen et al. 2014). However the origins of HA in these 

tumours remains under debate and whilst numerous studies have shown that HA is 

produced by stromal cells stimulated by tumour cells (Anttila et al. 2000; Tammi et 
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al. 2008), others reveal evidence that carcinoma cells also synthesise HA (Kimata et 

al. 1983; Heldin et al. 1996; Simpson et al. 2002). 

HA is synthesised within the inner face of the plasma membrane by HA synthases 

which produce different length HA polymers that are subsequently extruded into the 

tumour matrix or retained at the cell surface (Udabage et al. 2005a; Weigel and 

DeAngelis 2007). HA polymers that are released into the microenvironment 

contribute to the provision of structural integrity, tissue hydration and homeostasis 

of the tumour (Turley et al. 2002; Toole and Hascall 2002). Alternatively, HA retained 

at the cell surface may further aggravate tumourigenecity through binding to 

hyaladherins leading to the activation of signalling cascades, or become endocytosed 

(via a CD44-mediated mechanism), together resulting in the consequent induction of 

numerous cellular processes including angiogenesis, migration and differentiation 

(Tammi et al. 1998; Knudson et al. 2002; Evanko et al. 2007 Qhattal and Lui 2011). 

Indeed, CD44 proteins have been shown to be strongly expressed at sites of HA 

accumulation in breast cancer cells thus suggesting a link between enhanced HA 

levels, CD44 expression and poor patient survival (Udabage et al. 2005a, Auvinen et 

al. 2014). Furthermore, Hamilton et al. 2007 showed that the highly CD44-expressing 

invasive MDA-MB-231 breast cancer cell line produced higher levels of endogenous 

HA compared to the low CD44-expressing less invasive MCF-7 cell line. From these 

findings this group proposed that invasive breast cancer cells rely more upon 

endogenous HA production and establish an autocrine mechanism required for rapid 

rates of motility; a mechanism which less invasive cells lack.  
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Furthermore, CD44 activation of RTK signalling, which occurs endogenously or upon 

HA-activation, has been implicated towards the induction of the metastatic cascade 

in numerous carcinomas (Palyi-Krekk et al. 2008; Bao et al. 2011; Hasenauer et al. 

2013). Indeed, several receptor tyrosine kinase (RTKs), including EGFR, HER2 and c-

Met are commonly found to be expressed in invasive breast carcinomas were they 

correlate with an aggressive phenotype (Lengyel et al. 2005; Reis-Filho et al. 2006; 

Graveel et al. 2009; Dawood et al. 2010; Baek et al. 2011; Auvinen et al. 2013). 

Numerous studies have reported that CD44 proteins act as co-receptors for EGFR, 

HER2 and c-Met leading to the subsequent transduction of downstream signalling 

cascades and enhanced tumourigenic activity (Kim et al. 2008; Bao et al. 2011; 

Hatano et al. 2011; Hasenauer et al. 2013). Importantly, these RTKs have been 

implicated in the acquisition of tamoxifen- and/or fulvestrant-resistance (Knowlden 

et al. 2003; Britton et al. 2006; Hiscox et al. 2006) coinciding with upregulated CD44 

expression. 

Taken together, the fact that CD44, HA and RTKs have been shown to become 

elevated in invasive breast carcinomas (separately or in combination) and correlated 

with poor prognosis suggests that these factors may be a critical requirement for 

breast tumour progression. Therefore, the aims of this chapter were to investigate 

whether CD44 contributes to the aggressive phenotype of endocrine resistant breast 

cancer models by augmenting RTK activation and/or sensitising these cells to HA. 
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4.1.1 Objectives 

1. To explore the effects of exogenous HA upon migration, invasion, growth and 

modulation of RTK signalling in endocrine sensitive versus endocrine resistant 

cell models. 

2. To investigate whether CD44 contributes to the intrinsic aggressive nature of 

endocrine resistant cells by RTK activation and/or response to HA through 

global CD44 siRNA knockdown.  

3. To determine whether endocrine resistant cells express the relevant 

machinery required for HA production at the gene level. 
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4.2 Results  

4.2.1. Exogenous HA stimulation enhances the aggressive phenotype of Tam-R and 

Fas-R cells and modulates receptor tyrosine kinase signalling 

To begin to explore whether upregulated CD44 expression may alter the aggressive 

phenotype of endocrine resistant cell models, it was first necessary to measure their 

endogenous cellular behaviours. Given that high levels of CD44 have been associated 

with metastatic behaviours of breast cancer cells (Afify et al. 2009; Montgomery et 

al. 2012; Babina et al. 2014), primary exploration was focused upon the basal level of 

cellular migration, invasion and proliferation across all cell models. Boyden chamber 

assays revealed that Fas-R cells exhibited a higher level of endogenous migration 

across fibronectin-coated membranes and enhanced proliferative capacity 

compared to MCF-7 cells (Figure 4.1). Further, these analyses revealed that both 

Tam-R and Fas-R cells exhibited enhanced endogenous invasive capacity through 

Matrigel compared to their endocrine sensitive counterpart (Figure 4.1). 
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Figure 4.1. The endogenous migratory, invasive and proliferative responses of MCF-7, Tam-R and 

Fas-R cells were determined using Boyden Chamber (migration and invasion) and Coulter Counter 

(proliferation) assays. Error bars represent the average normalised data ±SEM from 3 independent 

experiments. Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc 

testing to identify any significant changes across all 3 cell models. Significance was set at p < 0.05.  
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Given that CD44 is the principle receptor for HA, an extracellular matrix component 

found in abundance in the tumour stroma and identified as an independent predictor 

of poor patient outcome (Auvinen et al. 2000; Auvinen et al. 2014), it was next 

explored whether the highly CD44-expressing endocrine resistant cell models were 

sensitised to HA, compared to their low CD44-expressing endocrine sensitive 

counterpart. As HA has been well documented to activate signalling cascades that 

induce cell migration, invasion and growth in breast tumours through CD44-

mediated mechanisms (Bourguignon et al. 2002; Kung et al. 2012; Montgomery et al. 

2012), the effect of exogenous HA stimulation upon these functions across the cell 

models was evaluated. 

Optimisation procedures (Appendix J) revealed that medium molecular weight HA 

(215 kDa) induced the best signalling response across the cell models, an effect also 

observed by other groups (Hamilton et al. 2007; Montgomery et al. 2012; Ouhtit et 

al. 2013), and was therefore used for subsequent exogenous stimulation. MCF-7, 

Tam-R and Fas-R cells were treated with HA in a dose dependent manner for the 

times indicated and the resultant effects on cellular function were measured.  

Boyden chamber assays revealed HA stimulation enhanced the migratory capacity of 

Tam-R and Fas-R cells compared to their MCF-7 counterpart; this effect was dose-

dependent in Tam-R cells up to a concentration of 200 µg/ml HA (Figure 4.2). Boyden 

chamber invasion assays revealed a dose-dependent increase in Fas-R cell invasion 

compared to MCF-7 cells, this effect was not seen in Tam-R cells (Figure 4.2). 

Proliferation assays revealed enhanced growth of Fas-R cells in response to 100 

µg/ml HA stimulation compared to MCF-7 cells (Figure 4.2).  
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Figure 4.2. The migratory, invasive and proliferative responses of MCF-7, Tam-R and Fas-R cells 

upon HA stimulation (215 kDa, 0 – 400 µg/ml) were determined using Boyden Chamber (migration 

and invasion) and Coulter Counter (proliferation) assays. Error bars represent the average 

normalised data ±SEM from 3 independent experiments and data is presented as the percentage 

of the untreated control. Statistical analysis was performed using a one-way ANOVA with Tukey 

post-hoc testing to identify any significant changes across all 3 cell models. Significance was set at 

p < 0.05.  
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Deregulation of receptor tyrosine kinase signalling has been heavily implicated in the 

acquisition of tamoxifen- and fulvestrant- resistance and previous studies from the 

Breast Cancer Molecular Pharmacology group (BCMPG) have shown that these cell 

models display enhanced EGFR and/or HER2 endogenous expression compared to 

their parental MCF-7 cells (McClelland et al. 2001; Knowlden et al. 2003; Hiscox et al. 

2006). Thus, given that CD44 is known to activate these receptors upon HA binding 

(Bourguignon et al. 1997; Kim et al. 2008; Hatano et al. 2011), the effect of exogenous 

HA stimulation upon ErbB receptor activation across the cell models was next 

investigated. MCF-7, Tam-R and Fas-R cells were treated with HA in a dose dependent 

manner and the effects upon EGFR and HER2 activation and subsequent induction of 

the downstream effector, ERK1/2, was assessed across all cell models by Western 

blotting analysis. 

The results revealed a dose-dependent increase in HER2 and EGFR activation up to 

200 µg/ml and 400 µg/ml HA stimulation in Tam-R cells respectively (Figure 4.3). 

Densitometry analysis confirmed a significant increase in HER2 phosphorylation upon 

stimulation with 100 – 200 µg/ml HA in Tam-R cells in comparison to MCF-7 cells 

(Figure 4.4). Western blotting analysis revealed that Fas-R cells showed modestly 

enhanced HER2 and EGFR activation in response to HA stimulation and densitometry 

assessment revealed enhanced HER2 (200 µg/ml), but not EGFR activation, in these 

cells compared to MCF-7 cells (Figures 4.3 and 4.4). Western blotting analysis also 

revealed a dose dependent increase in ERK1/2 activation in Tam-R and Fas-R cells 

compared to MCF-7 cells (Figure 4.3). Densitometry assessment showed that this 
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effect was significant in Fas-R cells (50 – 400 µg/ml) and Tam-R cells (200 µg/ml) 

compared to MCF-7 cells (Figures 4.3 and 4.4). 
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Figure 4.3. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR and ERK1/2 activation in MCF-7, Tam-R and Fas-R cells in response to dose-dependent HA 

stimulation (215 kDa, 0 – 400 µg/ml) for 10 minutes with ß actin as a loading control. Total protein 

levels were unchanged. 
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Figure 4.4. Densitometry graphs for HER2, EGFR and ERK1/2 activation across MCF-7, Tam-R and 

Fas-R cell models in response to dose dependent HA stimulation (215 kDa, 0 – 400 µg/ml) for 10 

minutes before cell lysis and detection by Western blotting analysis. The data shows the relative 

protein levels in the cell lines expressed as a ratio of the active protein:total protein normalised 

to ß-actin. Error bars represent the average normalised data ±SEM from 3 independent 

experiments and the data is presented as the percentage of the untreated control. Statistical 

analysis was performed using a one-way ANOVA with Tukey post-hoc testing to identify any 

significant changes across all 3 cell models.  

p-ERK1/2

0 25 50 100 200 400
0

200

400

600
MCF-7

Tam-R

Fas-R

**

**

*

***
*

*** p < 0.001
**  p < 0.01
*   p < 0.05

HA concentration (µg/ml)

%
 C

o
n

tr
o

l

p-EGFR

0 25 50 100 200 400
0

100

200

300

400

500
MCF-7

Tam-R

Fas-R

HA concentration (µg/ml)

%
 C

o
n

tr
o

l

    p-HER2

0 25 50 100 200 400
0

100

200

300

400
MCF-7

Tam-R

Fas-R
*

*
*

*   p < 0.05

HA concentration (µg/ml)
%

 C
o

n
tr

o
l



  

 

 

 

125 

 

4.2.2 CD44 suppression reduces endogenous migration, invasion and proliferation 

in Tam-R and Fas-R cells 

To explore whether CD44 proteins may play a role in the observed endogenous 

aggressive nature and HA-sensitised phenotype of the endocrine resistant cell 

models, an siRNA-based approach was used to suppress global CD44 expression and 

re-evaluate these behaviours. In this chapter it was also investigated whether 

RHAMM, an additional hyaladherin family member, previously shown to be 

expressed by endocrine resistant cell models and implicated in breast cancer 

(Hamilton et al. 2007; Veiseh et al. 2014), may play a role in any observed HA 

responses. For all subsequent experiments, 100 µg/ml HA was chosen for exogenous 

stimulation of resistant cell lines based upon previous data which showed that this 

concentration enhanced cellular behaviours in both Tam-R and Fas-R cells.  

Optimisation experiments using Western blotting analysis and 

immunocytochemistry revealed that treatment of Tam-R and Fas-R cells with CD44 

siRNA resulted in suppression of global CD44 protein expression compared to the 

non-targetting (NT) controls between 24 hours to 144 hours post-transfection 

(Figures 4.5 and 4.6 respectively). Densitometry analysis revealed a significant 

suppression of CD44 global expression (including CD44 Std (Figure 4.5) CD44v3, 

CD44v6 and CD44v10 (Appendix K)) between 48 hours – 144 hours post-transfection 

in Tam-R and Fas-R cells compared to the NT-siRNA control cells (however CD44v6 

suppression was only significant in Tam-R cells between 72 – 144 hours), but did not 

alter RHAMM expression (Appendix K). Analysis of the functional effects of CD44 

suppression in endocrine resistant cell lines revealed that Tam-R and Fas-R cells 
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treated with CD44-siRNA showed reduced endogenous and HA-stimulated migration, 

invasion and proliferation compared to the NT-siRNA control (Figure 4.7 and Figure 

4.8 respectively). 

 

 

 

Figure 4.5. Representative Western blot images from 3 independent experiments showing CD44 

isoform and RHAMM expression in Tam-R and Fas-R cells after treatment with global CD44 siRNA 

for 24 – 144 hours post transfection in comparison to the untreated and NT-siRNA treated 

controls. GAPDH was used as a loading control. Densitometry graphs show CD44 Std expression 

in Tam-R and Fas-R cells between 24 – 144 hours post-transfection. Error bars represent the 

average normalised data ±SEM from 3 independent experiments. Data is normalised to GAPDH 

and presented as the percentage of the untreated control. Statistical analysis was performed 

using an ANOVA test with tukey post-hoc analysis and values were compared to the NT-siRNA.  
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Figure 4.7. Measurement of endogenous and HA-stimulated behavioural responses of Tam-R cells 

after CD44 suppression. Tam-R cells were treated with NT- and CD44- siRNA for 48 hours prior to 

the assessment of migration, invasion (Boyden Chamber) and proliferation (Coulter Counter) 

assays in the presence (100 µg/ml) or absence of HA. Error bars represent the average normalised 

data ±SEM from 3 independent experiments and the data is presented as the percentage of the 

untreated control. Statistical analysis was performed using an unpaired t-test and significance set 

at p < 0.05.  
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Figure 4.8. Measurement of endogenous and HA-stimulated behavioural responses of Fas-R cells 

after CD44 suppression. Fas-R cells were treated with NT- and CD44- siRNA for 48 hours prior to 

the assessment of migration, invasion (Boyden Chamber) and proliferation (Coulter Counter) in 

the presence (100 µg/ml) or absence of HA. Error bars represent the average normalised data 

±SEM from 3 independent experiments and the data is presented as the percentage of the 

untreated control. Statistical analysis was performed using an unpaired t-test and significance set 

at p < 0.05.  
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Since the data suggested a potential role for CD44 in HA-mediated EGFR, HER2 and 

ERK1/2 activation in endocrine resistant cell models, the next approach was to 

investigate the ability of HA to induce activation of these components in the absence 

of CD44, using siRNA. This approach additionally allowed the analysis of endogenous 

CD44-induced cellular signalling and c-Met, FAK, AKT and Src activation was also 

assessed as these proteins have additionally been substantially implicated in breast 

tumour progression behaviours and resistance to endocrine therapy (Hiscox et al. 

2006; Tokunaga et al. 2006; Morgan et al. 2009; Hiscox et al. 2011; Elsberger et al. 

2012; Raghav et al. 2012). Initially Western blotting analysis revealed a small increase 

in c-Met, FAK and AKT activation in Tam-R cells (Figure 4.9), and an increase in FAK 

and AKT activation in Fas-R cells (Figure 4.11), upon HA stimulation, suggesting an 

involvement of these proteins in the HA-induced behavioural responses of these 

cells. Upon CD44 suppression, Western blotting analysis further revealed a reduction 

in endogenous and HA-stimulated HER2, EGFR and ERK1/2 activation and HA-

stimulated FAK and AKT signalling in Tam-R cells treated with CD44-siRNA compared 

to the NT-siRNA control (Figure 4.9) which were confirmed to be significantly reduced 

by densitometry analysis with the exception of HER2 (Figure 4.10). Comparatively, 

CD44 suppression in Fas-R cells led to a reduction in endogenous c-Met, FAK and AKT 

activation and HA-stimulated FAK activation compared to the NT-siRNA control 

(Figure 4.11), which was confirmed by densitometry analysis (Figure 4.12). 
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Figure 4.9. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Tam-R cells after 48 hour treatment with 

global CD44 siRNA in the presence (215 kDa, 10 minutes, 100 µg/ml) or absence of HA. Total levels 

of each protein analysed were unchanged and GAPDH was used as a loading control. 

Figure 4.7. Measurement of endogenous and HA-stimulated cell behaviour responses of 

Fas-R cells after CD44 suppression. Fas-R cells were treated with CD44 siRNA for 48 hours 

prior to the assessment of migration, invasion and proliferation in the presence (100 

µg/ml) and absence of HA. Error bars represent standard error of the means and 
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Figure 4.10. Densitometry graphs showing CD44 Std expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in Tam-R cells after 48 hour treatment with global CD44 siRNA in the 

presence (215 kDa, 100 µg/ml, 10 minutes) or absence of HA, before cell lysis and detection by 

Western blotting analysis. The data shows the relative protein levels in the cell lines expressed as 

a ratio of the active protein:total protein normalised to GAPDH. Error bars represent the average 

normalised data ±SEM from 3 independent experiments and the data is presented as the 

percentage of the untreated control. Statistical analysis was performed using an unpaired t-test 

and significance was set at p < 0.05.  
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Figure 4.11. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Fas-R cells after 48 hour treatment with global 

CD44 siRNA in the presence (215 kDa, 10 minutes, 100 µg/ml) or absence of HA. Total levels of 

each protein analysed were unchanged and GAPDH was used as a loading control.  
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Figure 4.12. Densitometry graphs showing CD44 Std expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in Fas-R cells after 48 hour treatment with global CD44 siRNA in the 

presence (215 kDa, 100 µg/ml, 10 minutes) or absence of HA, before cell lysis and detection by 

Western blotting analysis. The data shows the relative protein levels in the cell lines expressed as 

a ratio of the active protein:total protein normalised to GAPDH. Error bars represent the average 

normalised data ±SEM from 3 independent experiments and the data is presented as the 

percentage of the untreated control. Statistical analysis was performed using an unpaired t-test 

and significance was set at p < 0.05.  
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4.2.3 Endogenous HA synthesis and metabolism does not contribute to the 

aggressive phenotype of Tam-R and Fas-R cells 

Numerous studies have revealed correlations between high levels of HA synthases 

(HAS) and degradation enzymes (hyaluronidases (HYAL)) and enhanced breast cancer 

progression and poor patient prognosis (Udabage et al. 2005a; Tan et al. 2011; 

Auvinen et al. 2014). Given that the data implicated an important role for CD44 as a 

mediator of the highly migratory and invasive behaviour of endocrine resistant cell 

lines, it was hypothesised that this may be due to autocrine CD44 activation through 

HA synthesis (as previously reported by Hamilton et al. 2007). To begin to explore 

this, the gene expression of the HA synthases (HAS1/2/3) and hyaluronidases 

(HYAL1/2/3/SPAM1) was characterised across the cell models using affymetrix 

analysis.  

Figure 4.13 reveals the heatmap profile for each gene probe assessed in this project 

with the corresponding log2 intensity plots displaying the average normalised data 

(±SEM) and Table 4.1 lists the gene probe set IDs with their performance scores and 

detection calls. It should be noted that the HAS3 gene probe was not available on the 

U133A microarray gene chip and therefore subsequently could not be assessed 

within this study. Heatmap analysis revealed no change or reduced expression for all 

gene probes assessed in Tam-R and Fas-R cells compared to MCF-7 cells (Figure 4.13). 

Furthermore, the detection calls for each probe corresponding to HAS1, HAS2, 

HYAL1, HYAL3 and SPAM1 were absent in all cell lines and the log2 expression values 

were below 0, indicative of very low/no expression of these genes across all cell 

models (Figure 4.13, Table 4.1). Conversely, log2 intensity values for HYAL2 were 
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above 0 and the detection calls showed that this gene was present across all cell 

models (Figure 4.13, Table 4.1). Statistical analysis to compare gene fold changes 

across the cell models (shown in Table 4.2) revealed that HYAL2 gene expression was 

significantly reduced in Fas-R cells compared to MCF-7 cells. Further analysis revealed 

a significant suppression of HYAL1 gene expression in Tam-R cells versus MCF-7 cells, 

however, these data may be unreliable as the detection of this gene probe was 

determined as absent across these cells. Taken together, microarray analysis 

revealed a reduced expression of HYAL2 in Fas-R cells compared to their MCF-7 

counterpart and suggests that HAS and HYAL gene expression is very low/absent 

across all the cell models. This data does not implicate these genes towards the 

aggressive phenotype of the endocrine resistant cells thus verification of gene 

expression by RT-PCR analysis would likely be unsuccessful. Based on these data, 

further exploration of HAS/HYAL gene expression was not undertaken.  

 

 

 

 

 



  

 

 

 

137 

 

 

 

 

 

 

 

 

 

Figure 4.13. Heatmap profile displaying changes in gene expression of all HAS and HYAL genes 

analysed and their corresponding log2 intensity plots with the average normalised gene 

expression (±SEM) across 3 independent experiments.   
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Gene Probe Set 

ID 

Specificity 

Score 

Coverage 

Score 

Robust 

Score 

Overall 

Score 

Detection Call 

 

HAS1 207316_at 0.5454 1 0.6175 0.3368 A/A/A 

HAS2 206432_at 0.5454 1 0.2974 0.1622 A/A/A 

HYAL1 210619_s_at 0.7272 0.75 0.6002 0.3274 A/A/A 

HYAL2 206855_s_at 1 1 0.5577 0.5577 P/P/P 

HYAL3 211728_s_at 0.9090 1 0.5596 0.5987 A/A/A 

SPAM1 210536_s_at 1 1 0.4357 0.4357 A/A/A 

Gene MCF-7 versus Tam-R MCF-7 versus Fas-R Tam-R versus Fas-R 

HAS1 1.13 1.26 1.42 F 

HAS2 1.90 4.96 2.62 T 

HYAL1 3.90 1.67 2.34 F 

HYAL2 1.06 1.49 1.40 F 

HYAL3 1.30 1.21 1.57 F 

SPAM1 1.20 3.38 2.80 F 

Table 4.2. The fold change values in gene expression for each gene analysed by affymetrix. ANOVA 

testing with Tukey post-hoc analysis was performed to identify any significant changes in gene fold 

expression across all 3 cells models and significant changes are highlighted in bold and underlined. 

Green represents decreased fold changes, red indicates increased fold changes and black 

represents no change. HYAL1 gene fold change was significantly decreased in Tam-R cells 

compared to MCF-7 cells (p = 0.02554) and HYAL2 gene fold change was significantly decreased in 

Fas-R cells compared to MCF-7 cells (p = 0.036404). In the final column, fold change values relating 

to either Tam-R or Fas-R cells are indicated by ‘T’ or ‘F’ respectively. 

Table 4.1. A list of the probe set IDs for each gene assessed using the GeneSifter programme, their 

performance scores across an array of parameters and corresponding detection calls. All 

parameters are assessed on a scale ranging from 0 – 1 with a score closer to 1 indicating a better 

performance. Detection call identifies whether the gene expression was determined as absent (A), 

present (P) or mixed (M) for each probe set ID in MCF-7, Tam-R and Fas-R cells respectively. 

 



  

 

 

 

139 

 

4.3 Discussion 

This chapter set out to explore the consequence of CD44 overexpression for both the 

intrinsic and HA-stimulated phenotype of endocrine resistant cell models. In 

particular, the hypothesis that upregulated expression of CD44 proteins in Tam-R and 

Fas-R cells leads to HA-sensitisation and subsequently induced migratory, invasive 

and/or proliferative responses by RTK activation was explored.  

The results primarily revealed that enhanced CD44 expression correlated with an 

increase in the endogenous aggressive phenotype of endocrine resistant cell models. 

Analysis showed an enhanced basal invasive capacity of Tam-R cells compared to 

MCF-7 cells, however Fas-R cells (which exhibit the highest level of CD44 expression) 

displayed an elevated migratory, invasive and proliferative capacity compared to 

their endocrine sensitive MCF-7 counterpart. This association was validated by global 

suppression of CD44 proteins which reduced the endogenous migratory, invasive and 

proliferative capacity of Tam-R and Fas-R cells. However, upon investigation of the 

signalling mechanisms through which CD44 proteins may mediate these events, 

differences in RTK activation and downstream signalling was observed between 

these resistant cell models. Indeed, the siRNA data suggested a role for CD44 proteins 

within the endogenous activation of the RTKs, EGFR and HER2, leading to 

downstream activation of ERK1/2 in Tam-R cells. These results were not surprising as 

EGFR and HER2 have been heavily implicated within the acquisition of tamoxifen 

resistance and high levels of endogenous HER2 and EGFR expression are exhibited in 

Tam-R cells (Knowlden et al. 2003; Hiscox et al. 2012). Furthermore, these data 

corroborate with other studies which have shown dimerization to occur between 
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CD44 and ErbB receptors in carcinoma cells (Bao et al. 2011; Hatano et al. 2011; 

Hiscox et al. 2012) and revealed a role for CD44-mediated activation of these RTKs 

leading to enhanced cellular motility (Wang et al. 2006; Kim et al. 2008). However, 

although previous data from the BCMPG revealed elevated levels of EGFR and HER2 

in fulvestrant-resistant cells (McClelland et al. 2001; Gee et al. 2005), the contribution 

of these receptors to their aggressive phenotype remains to be elucidated and data 

here suggests that these receptors do not play a prominent role in CD44-mediated 

behaviours in these cells. However, previous studies by the Hiscox group (2006) 

revealed that c-Met is overexpressed in fulvestrant-resistance and CD44 global 

suppression data in this study revealed reduced endogenous c-Met activation in Fas-

R cells, thus potentially suggesting a role for CD44-mediated c-Met activation in this 

cell line. In support of this, Orian-Rousseau et al. 2002 identified that CD44 is required 

for the full activation of the c-Met receptor and Hasenauer et al. 2013 published 

evidence for the requirement of CD44v6 in c-Met internalisation. In further support 

of an association between CD44 and c-Met, numerous clinical studies have revealed 

upregulation of both CD44 (Klingbeil et al. 2010; Montgomery et al. 2012) and c-Met 

(Garcia et al. 2007; Graveel et al. 2009; Ho-Yen et al. 2014) expression to be strongly 

correlated with the aggressive triple negative basal subtype of breast cancer and 

poor prognosis. Interestingly, an ER-negative, basal-like phenotype is also exhibited 

by Fas-R cells. Taken together, whilst our siRNA suppression data revealed an 

importance for CD44 proteins towards the aggressive phenotype of both endocrine 

resistant cell models, the signalling mechanisms through which they contribute to 
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these behaviours appear to be mediated through differential pathways, potentially 

due to variances in the bioavailability of specific co-receptors between these cells.  

To explore whether enhanced CD44 protein expression sensitised endocrine 

resistant cells to HA, these cells were treated with exogenous HA and their 

behavioural responses were re-evaluated. The results revealed that HA stimulation 

led to an enhanced migratory response in Tam-R cells and elevated migration, 

invasion and growth responses in Fas-R cells, an effect not observed in MCF-7 cells. 

These results implicate CD44 proteins towards the augmentation of HA responses in 

the endocrine resistant cell models, particularly within Fas-R cells which exhibit the 

greatest level of CD44 expression compared to MCF-7 and Tam-R cells. As a further 

demonstration that CD44 was responsible for these HA-induced cellular behaviours, 

it was also observed that HA failed to elicit a response in endocrine resistant cells 

upon CD44 suppression by siRNA. These data are supported by findings from 

Hamilton et al. 2007 which revealed that the highly CD44- (and RHAMM-) expressing 

invasive MDA-MB-231 breast cancer cell line showed significantly enhanced motility 

in response to HA stimulation, which was not found in MCF-7 cells. Furthermore, 

Vieseh et al. 2014 revealed that the more malignant MDA-MB-231 and T4-2 breast 

cancer cells (high CD44 and RHAMM expression) showed enhanced total levels of HA 

binding and a greater degree of HA heterogeneity binding compared to MCF-7 and 

SKBr3 cells (low CD44 and RHAMM expression), and conversion of MDA-MB-231 cells 

to a less malignant phenotype reverted these HA binding capabilities. The data also 

suggested that CD44, and not the alternative hyaladherin RHAMM (also present 

within the endocrine resistant cells), mediated these effects as RHAMM expression 
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was not substantially impaired upon CD44 suppression. Taken together, the data 

corroborates with previously reported findings and suggests that enhanced HA 

binding capabilities in cells may act as a determinant towards the degree of their 

malignant behaviour; an effect likely to be the result of enhanced CD44 expression 

in the endocrine resistant cell models. 

To determine the mechanisms through which HA stimulation may enhance the 

adverse cellular behaviour of these endocrine resistant cell models, the effect of 

exogenous HA induction upon ErbB activation was investigated. The results revealed 

enhanced HER2 and EGFR activation in Tam-R cells upon HA stimulation, an effect 

observed to a lesser degree in MCF-7 and Fas-R cells. Furthermore, these 

investigations revealed a dose dependent increase in HER2 activation in Tam-R cells 

upon HA stimulation which mirrored their migratory response, thus potentially 

implicating CD44 in the activation of HER2 and subsequently enhanced migration in 

these cells. These data were further verified through CD44 siRNA analyses which 

revealed that suppression of CD44 proteins reduced both migration and HER2 

signalling upon HA stimulation in Tam-R cells. These data corroborate with published 

studies which implicate CD44 (particularly the standard isoform) in the activation of 

HER2-mediated signalling and subsequently enhanced tumour progression 

behaviours of cancer cells (Bourguignon et al. 1997; Palyi-Krekk et al. 2008; Bao et al. 

2011). Furthermore, studies by Duru et al. 2012 showed that HER2+/CD44+ breast 

cancer stem cells exhibited a more aggressive phenotype and were found to be more 

frequently detected in recurrent tumours as compared to the HER2-/CD44+ 

subpopulation. These findings have also been observed in the clinical setting through 
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strong associations between the co-expression of CD44, HA and HER2 in breast 

cancer patients and poor prognosis (Baek et al. 2011; Auvinen et al. 2013).  

The siRNA data also suggested an important role for CD44 proteins in the HA-induced 

invasive and growth capabilities of Tam-R cells; an effect which may involve 

downstream ErbB receptor signalling activation of FAK, AKT and ERK1/2 cascades. 

Indeed, numerous studies have reported a role for CD44-ErbB dimer complexes in 

enhanced cellular motility through the activation of various signalling molecules 

including those identified in this study (Wang and Bourguignon et al. 2006; Kim et al. 

2008; Bao et al. 2011; Hatano et al. 2011). In Fas-R cells, HA also promoted a CD44-

dependent increase in migration, invasion and proliferation although the 

mechanisms through which this occurs remains unclear. Western blotting data 

suggested an involvement of FAK, AKT and ERK1/2, however did not implicate the 

activation of these effectors downstream of the ErbB receptor signalling cascade.  

As the data revealed an important role for HA towards the augmentation of adverse 

cellular behaviour in the resistant cells, the role of endogenous HA synthesis across 

all cell models was investigated. Whilst the majority of HA is thought to be produced 

by stromal cells in the tumour microenvironment, several studies have revealed that 

carcinoma cells themselves can also synthesise HA (Kimata et al. 1983; Heldin et al. 

1996; Simpson et al. 2002) and numerous reports have shown a role for the enzymes 

responsible for HA synthesis and degradation in the development of a pro-metastatic 

environment and enhanced breast tumourigenesis (Li et al. 2007; Tan et al. 2011; 

Auvinen et al. 2014). Furthermore, Hamilton et al. 2007 revealed that the highly 

CD44-expressing invasive MDA-MB-231 breast cancer cell line produced higher levels 
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of endogenous HA compared to the low CD44-expressing, less invasive MCF-7 cell 

line. From these findings this group suggested that invasive breast cancer cells 

establish an autocrine HA-CD44 mechanism to promote cellular motility. In this 

context, HA production by breast cancer cells could involve an alteration in its 

synthesis and/or metabolism. 

Whilst many reports have correlated high levels of HAS/HYAL gene expression with 

breast cancer progression and poor prognosis (Udabage et al. 2005a; Tan et al. 2011; 

Auvinen et al. 2014), the microarray data suggested that enzymes involved in HA 

synthesis or metabolism were not overexpressed in the endocrine resistant cell 

models. Whilst endogenous HA production by these cells through alternative 

measures such as an ELISA was not examined, it is unlikely that significant levels of 

HA synthesis occur in these cells due to the low/absent levels of these enzymes 

detected by microarray analysis. Whilst these results are in discordance with findings 

from Hamilton et al. 2007 and do not suggest that the aggressive endocrine resistant 

cells exhibit a greater reliance upon endogenous HA, it may be argued that 

upregulation of CD44 in these cells would sensitise them to HA present in the tumour 

microenvironment. Indeed, although Auvinen et al. 2014 found a wide expression of 

HAS enzymes in both stromal and carcinoma cells across 278 breast cancer cases, a 

stronger correlation of these enzymes with disease recurrence and poor prognosis 

was found in stromal cells. These studies suggested that enhanced HAS expression in 

stromal cells was a more robust marker for tumour progression compared with HAS 

in carcinoma cells. Whilst numerous reports present a convincing role for HAS/HYAL 

enzymes in tumour progression behaviours in multiple carcinomas, including breast 
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cancer, this area remains largely unstudied and results have been contradictory. 

Furthermore, understanding the role of HAS/HYAL enzymes in breast cancer cell 

models under cell culture conditions remains complicated as cells may exhibit 

reduced capabilities to synthesise HA in vitro, even when derived from HA-enriched 

tumours (Knudson et al. 1989). Taken together, the role of HAS/HYAL enzymes across 

the cell models in this project remains incompletely understood and requires further 

elucidation, however data may indicate a greater reliance of Tam-R and Fas-R cells 

upon HA production from the microenvironment for their subsequent utilisation and 

HA-induced activities. 

4.3.1 Summary 

In this chapter, an important role for CD44 proteins in both the basal and HA-

stimulated adverse cellular phenotype of Tam-R and Fas-R cells has been shown. 

However due to the phenotypic differences between Tam-R (ER+) and Fas-R (ER-) 

cells and differential protein compositions, results suggest that CD44 proteins may 

activate alternative RTK signalling pathways in these cell lines to mediate distinct 

behavioural functions. Taken together, these data suggest that upregulation of CD44 

proteins in endocrine resistance may enhance their aggressive phenotype through 

RTK activation and sensitivity to their principle ligand, HA.  
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5. Exploration of RHAMM as a mediator of the aggressive phenotype 

of endocrine resistant breast cancer cells 

5.1 Introduction 

In the previous chapter it was demonstrated that HA augmented the migratory, 

invasive and proliferative capacity of the endocrine resistant, but not endocrine 

sensitive, cells. Given that the endocrine resistant cell models both overexpress 

CD44, the major receptor for HA, and siRNA suppression of CD44 reduced the HA 

augmented cellular functions in these cells, it is likely that these effects are mediated 

through the CD44 receptor. However, initial characterisation studies also revealed 

the expression of an additional hyaladherin, RHAMM, in Tam-R and Fas-R cells, albeit 

at a level similar to that observed in their parental endocrine sensitive MCF-7 cell 

line, thus, the contribution of RHAMM to the endogenous and HA-induced cellular 

behaviours of the endocrine resistant cell models remains unclear. Given that several 

studies have revealed a link between RHAMM expression and enhanced metastasis 

and poor prognosis in breast cancers (Wang et al. 1998; Hamilton et al. 2011; Veiseh 

et al. 2014; Wang et al. 2014), it may be possible that RHAMM possesses tumour-

promoting activity in endocrine resistant cells. 

Similarly to CD44, RHAMM undergoes alternative splicing, however the biological 

roles of  RHAMM are complex and it is one of the first proteins to be identified in 

which its intracellular and extracellular functions are distinct (Chivasa et al. 2006; 

Tjaslma et al. 2006). Intracellular full length RHAMM isoforms are cytoskeletal, 

centrosomal and nuclear proteins which mediate functions critical for mitotic spindle 
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integrity, progression through the cell cycle and cell division fidelity (Maxwell et al. 

2003; Groen et al. 2004; Tolg et al. 2010). Conversely, truncated cell surface RHAMM 

isoforms are exported to the cell surface where they associate with integral non-

protein/protein tyrosine kinase receptors to bind HA and mediate downstream 

signalling responses leading to enhanced cellular motility (Hamilton et al. 2007; 

Hatano et al. 2011; Park et al. 2012). At present the separate and coordinated 

functions of extracellular and intracellular RHAMM proteins remains to be elucidated 

(Chivasa et al. 2006; Tjaslma et al. 2006).  

The oncogenic functions of RHAMM have been predominantly linked to its 

extracellular functions as a consequence of its HA-binding capacity. Indeed, RHAMM 

has been implicated in breast cancer progression through the activation of multiple 

signalling cascades which control the expression of cell cycle and motility genes 

including: ras (Hall et al. 1995), Src (Hall et al. 1996), and MAPK (Wang et al 1998). 

Since RHAMM proteins lack a membrane spanning domain, cell surface RHAMM 

partners with various integral membrane receptors to mediate these functions 

(Savani et al. 2001; Manzanares et al. 2007; Hatano et al. 2011; Park et al. 2012). Of 

these, the most extensively studied associations of RHAMM in breast cancer is with 

the CD44 receptor. Indeed, Veiseh et al. 2014 revealed that CD44 and RHAMM co-

expression was found to be highest in aggressive triple negative subtypes of breast 

cancer cells which also exhibited the greatest degree of HA-binding; properties 

thought to contribute to the malignant phenotype. Furthermore, Hamilton et al. 

2007 established a role for the formation of RHAMM-CD44 complexes at the cell 

surface of the highly invasive MDA-MB-231 breast cancer cell line towards the 
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promotion of an HA-induced autocrine motility mechanism in an ERK1/2 dependent 

manner. These studies, and observations from other groups, have raised the 

possibility that cell surface RHAMM may partner with CD44 to enhance its 

localisation at the cell surface and ‘unleash’ its pro-migratory and invasive functions 

(Tolg et al. 2006). 

Taken together, numerous studies potentiate a role for RHAMM proteins within 

breast cancer oncogenesis particularly through their extracellular HA-binding 

capacity. As it was previously revealed that HA stimulation enhances the aggressive 

phenotype of the endocrine resistant cell models, the contribution of RHAMM to 

these HA-mediated behaviours was explored. As initial characterisation studies 

revealed that RHAMM proteins showed predominant cytoskeletal staining across all 

cell models, the role of RHAMM proteins towards the endogenous phenotype of the 

endocrine resistant cell models was also investigated.  

5.1.1 Objectives 

1. To investigate the contribution of RHAMM proteins towards the endogenous 

and HA-stimulated migratory, invasive and proliferative phenotype of 

endocrine resistant cell models by siRNA-mediated RHAMM suppression. 

2. To determine whether RHAMM is involved in endogenous and HA-stimulated 

signalling activity across the cell models of endocrine resistance. 
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5.2 Results 

5.2.1 RHAMM suppression inhibits proliferation of Tam-R cells 

Numerous reports have shown that RHAMM proteins mediate migratory, invasive 

and proliferative behaviours in breast cancer cells (Hamilton et al. 2007; Heldin et al. 

2013; Wang et al. 2014). Therefore, to investigate the contribution of RHAMM 

towards the aggressive phenotype of Tam-R and Fas-R cells, an siRNA based 

approach was used prior to the assessment of these behaviours in the presence (100 

µg/ml) and absence of HA. Initial Western blotting and immunocytochemistry 

analysis revealed that treatment of both Tam-R and Fas-R cells with global RHAMM 

siRNA reduced RHAMM expression in comparison to the NT-siRNA control and 

untreated control samples between 24 – 144 hours post-transfection (Figures 5.1 and 

5.2 respectively). Densitometry analysis revealed that RHAMM expression was 

significantly reduced between 72 - 144 hours post-transfection in Tam-R cells and 

between 48 – 144 hours post-transfection in Fas-R cells, compared to the NT-siRNA 

control cells (Figure 5.1). Densitometry analysis also confirmed that CD44 isoform 

expression was not significantly altered in Tam-R and Fas-R cells upon RHAMM 

suppression (Appendix L).  

Analysis of the functional effects of RHAMM suppression in the endocrine resistant 

cells revealed no significant alterations in the migratory or invasive capacity of Tam-

R or Fas-R cells (Figure 5.3 and Figure 5.4 respectively), however reduced the 

endogenous and HA-stimulated proliferation of Tam-R cells, but not Fas-R cells, 

compared to the NT-siRNA control (Figure 5.3 and Figure 5.4 respectively). 
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Figure 5.1. Representative Western blot images from 3 independent experiments showing 

RHAMM and CD44 isoform expression in Tam-R and Fas-R cells after treatment with global 

RHAMM siRNA between 24 – 144 hours post transfection in comparison to the untreated and NT-

siRNA treated control. GAPDH was used as a loading control. Densitometry graphs show RHAMM 

expression in Tam-R and Fas-R cells between 24 – 144 hours post-transfection. Error bars 

represent the average normalised data ±SEM from 3 independent experiments. The data is 

normalised to GAPDH and presented as the percentage of the untreated control. Statistical 

analysis was performed using an ANOVA test with tukey post-hoc analysis and values were 

compared to the NT-siRNA control sample. Significance was set at p < 0.05.  

           Tam-R RHAMM

C
on

tr
ol

N
T-

si
R
N
A

24
 h

ou
r

48
 h

ou
r

72
 h

ou
r

14
4 
ho

ur

0

50

100

150
*** p < 0.001

******

%
 C

o
n

tr
o

l

           Fas-R RHAMM

C
on

tr
ol

N
T-

si
R
N
A

24
 h

ou
r

48
 h

ou
r

72
 h

ou
r

14
4 
ho

ur

0

50

100

150
*** p < 0.001
*    p < 0.05

*

***

***

%
 C

o
n

tr
o

l



  

 

 

 

151 

 

  F
ig

u
re

 5
.2

. 
R

e
p

re
se

n
ta

ti
v

e
 i

m
a

g
e

s 
fr

o
m

 3
 i

n
d

e
p

e
n

d
e

n
t 

e
xp

e
ri

m
e

n
ts

 s
h

o
w

in
g

 g
lo

b
a

l 
R

H
A

M
M

 e
xp

re
ss

io
n

 f
ro

m
 i

m
m

u
n

o
cy

to
ch

e
m

is
tr

y
 a

n
a

ly
si

s 
(x

2
0

 m
a

g
n

if
ic

a
ti

o
n

) 
in

 

T
a

m
-R

 a
n

d
 F

a
s-

R
 c

e
ll

s 
a

ft
e

r 
R

H
A

M
M

 s
iR

N
A

 t
re

a
tm

e
n

t 
fo

r 
2

4
 –

 1
4

4
 h

o
u

rs
 p

o
st

-t
ra

n
sf

e
ct

io
n

 i
n

 c
o

m
p

a
ri

so
n

 t
o

 t
h

e
 u

n
tr

e
a

te
d

 a
n

d
 N

T
-s

iR
N

A
 t

re
a

te
d

 c
o

n
tr

o
l 

sa
m

p
le

s.
 

 



  

 

 

 

152 

 

  

 

Figure 5.3. Measurement of endogenous and HA-stimulated cell behaviour of Tam-R cells after 

RHAMM suppression. Tam-R cells were treated with RHAMM siRNA for 48 hours prior to the 

assessment of migration, invasion (Boyden Chamber) and proliferation (Coulter Counter) in the 

presence (100 µg/ml) and absence of HA. Error bars represent the average normalised data ±SEM 

from 3 independent experiments and the data is presented as the percentage of the untreated 

control. Statistical analysis was performed using an unpaired t-test and significance set at p < 0.05.  
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Figure 5.4. Measurement of endogenous and HA-stimulated cell behaviour of Fas-R cells after 

RHAMM suppression. Fas-R cells were treated with RHAMM siRNA for 48 hours prior to the 

assessment of migration, invasion (Boyden Chamber) and proliferation (Coulter Counter) in the 

presence (100 µg/ml) and absence of HA. Error bars represent the average normalised data ±SEM 

from 3 independent experiments and the data is presented as the percentage of the untreated 

control. Statistical analysis was performed using an unpaired t-test and significance set at p < 0.05.  
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5.2.2 RHAMM suppression augments cellular signalling in Tam-R and Fas-R cells 

Given that RHAMM suppression led to a reduction in the proliferation of Tam-R cells, 

the next step was to explore the hypothesis that RHAMM may act to control cell 

growth through activation of signalling pathways. The effect of RHAMM suppression 

upon Fas-R signalling was also investigated. To investigate this hypothesis, the effect 

of RHAMM suppression upon endogenous and HA-stimulated FAK, Src and ERK1/2 

activation in the endocrine resistant cell models was explored; effectors known to be 

involved in RHAMM-mediated motility in breast cancer cells (Hall et al. 1994; Hall et 

al. 1996; Wang et al. 1998). Western blotting analysis revealed that RHAMM 

suppression led to a non-significant reduction in endogenous ERK1/2 activation in 

Tam-R cells and suppressed endogenous and HA-stimulated FAK activation in Fas-R 

cells, however Src activity was unaltered (Figures 5.5 - 5.8).  

RHAMM binding to CD44 has been reported to impact upon the signalling 

competency of this receptor (Hatano et al. 2011; Park et al. 2012), therefore it was 

important to determine the role of RHAMM in CD44-mediated signalling. As previous 

studies in this thesis revealed a role for CD44 in the activation of ErbB receptors, c-

Met and AKT in the endocrine resistant cell models, the modulation of these 

receptors upon RHAMM suppression was investigated. Western blotting analysis 

revealed a reduction in endogenous c-Met and AKT signalling and HA-induced c-Met 

and EGFR activation in Tam-R cells compared to the NT-siRNA control, confirmed by 

densitometry analysis (Figures 5.5 and 5.6). RHAMM suppression in Fas-R cells led to 

a non-significant decrease in endogenous c-Met activation and HA-stimulated EGFR 

and AKT signalling compared to the NT-siRNA control (Figures 5.7 and 5.8). 
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Figure 5.5. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Tam-R cells treated with RHAMM siRNA for 

48 hours in the presence (10 minute treatment, 100 µg/ml) and absence of HA. GAPDH was used 

as a loading control. Total levels of each protein analysed were unchanged.  
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Figure 5.6. Densitometry graphs showing RHAMM expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in Tam-R cells after 48 hour treatment with global RHAMM siRNA in the 

presence (215 kDa, 100 µg/ml, 10 minutes) of absence of HA, before cell lysis and detection by 

Western blotting analysis. The data shows the relative protein levels in the cell lines expressed as 

a ratio of the active protein:total protein normalised to GAPDH. Error bars represent the average 

normalised data ±SEM from 3 independent experiments and the data is presented as the 

percentage of the untreated control. Statistical analysis was performed using an unpaired t-test 

and significance was set at p < 0.05.  
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Figure 5.7. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Fas-R cells treated with RHAMM siRNA for 48 

hours in the presence (10 minute treatment, 100 µg/ml) and absence of HA. GAPDH was used as 

a loading control. Total levels of each protein analysed were unchanged.  
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Figure 5.8. Densitometry graphs showing endogenous and HA-stimulated (215 kDa, 100 µg/ml, 10 

minutes) RHAMM expression and HER2, EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Fas-

R cells before cell lysis and detection by Western blotting analysis. The data shows the relative 

protein levels in the cell lines expressed as a ratio of the active protein:total protein normalised to 

GAPDH. Error bars represent the average normalised data ±SEM from 3 independent experiments 

and the data is presented as the percentage of the untreated control. Statistical analysis was 

performed using an unpaired t-test and significance was set at p < 0.05.  
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5.3 Discussion 

This chapter set out to determine the contribution of the alternative hyaladherin 

RHAMM to endocrine resistance. Given that initial characterisation studies revealed 

the presence of RHAMM across our cell models and data revealed a role for HA in 

the augmentation of adverse cellular behaviours in both endocrine resistant cell 

models, together with numerous reports implicating RHAMM in breast tumour 

progression (Wang et al. 1998; Hamilton et al. 2007; Tolg et al. 2010), it was 

important to determine the contribution of RHAMM to these processes within the 

endocrine resistant cell models.  

The findings revealed that suppression of RHAMM did not alter the basal or HA-

stimulated behavioural functions of Fas-R cells and had only a modest impact upon 

EGFR, c-Met and AKT activation in these cells, however FAK activation was 

significantly suppressed in these cells. Furthermore, RHAMM suppression did not 

significantly impair the migratory or invasive function of Tam-R cells. Despite several 

reports linking RHAMM expression with breast cancer progression, RHAMM appears 

to be transforming only when overexpressed in these cells (Wang et al. 1998; Pujana 

et al. 2007) and high levels of RHAMM correlate with an aggressive phenotype 

(Hamilton et al. 2007; Vieseh et al. 2014). Given that the previous characterisation 

data revealed a similarly low level of RHAMM expression across all cell models, 

coupled with the data here, the inference is that RHAMM may not be a major 

contributor to the endocrine resistant phenotype.   
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However, an exception to this was observed in Tam-R cells where RHAMM inhibition 

impaired their basal and HA-stimulated proliferative capabilities potentially through 

a pathway involving c-Met and EGFR signalling respectively. Numerous studies 

document a role for RHAMM proteins towards the promotion of cellular motility in 

several carcinomas, however evidence remains limited in the context of breast 

cancer (Wang et al. 1998; Hamilton et al. 2007). It is thought that HA-induced 

RHAMM-mediated motility occurs through the cell surface activity of RHAMM 

proteins. However, as RHAMM proteins do not exhibit a membrane-spanning region, 

RHAMM must partner with various membrane receptors at the cell surface to 

mediate HA-induced signalling cascades. Numerous receptors have been 

characterised to partner with RHAMM, however the most extensively studied of 

these is with the CD44 and the CD44-EGFR complex (Tolg et al. 2006; Hatano et al. 

2011; Nikitovic et al. 2013). Indeed, multiple studies have revealed that high 

expression levels of both CD44 and RHAMM proteins are restricted to highly 

aggressive breast cancer cell lines (Hamilton et al. 2007; Veiseh et al. 2014). These 

studies propose that RHAMM enhances CD44 localisation to the surface of invading 

breast cancer cells thereby promoting sustained CD44-mediated signalling and 

elevated cellular motility (Tolg et al. 2006; Hatano et al. 2011). Through this 

mechanism RHAMM is thought to activate the motogenic functions of CD44 proteins.  

Given that CD44 and EGFR expression is elevated in the highly motile Tam-R cells, in 

combination with data which reveals that suppression of both RHAMM and CD44 

separately led to reduced HA-induced EGFR activation and cellular proliferation in 

these cells, it may be postulated that RHAMM plays a role in HA-stimulated CD44-
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EGFR mediated cellular motility of Tam-R cells. In support of this hypothesis, 

Hamilton et al. 2007 revealed that RHAMM and CD44 form a complex at the cell 

surface of highly invasive breast cancer cells to coordinate enhanced cellular motility 

in an ERK1/2 dependent manner. However, this group suggested that the aggressive 

breast cancer cell lines, MDA-MB-231 and Ras-MCF10A, establish an autocrine 

mechanism to promote enhanced cellular motility through high rates of endogenous 

HA synthesis; a phenomenon which the affymetrix data in this thesis suggested may 

not be exhibited by Tam-R cells. Furthermore, this group revealed that RHAMM and 

CD44 were both highly expressed in MDA-MB-231 cells and the formation of 

RHAMM-CD44 complexes was mediated by the oncogenic cell surface 63 kDa 

RHAMM isoform; which was upregulated in these invasive cell lines compared to 

their less invasive counterparts. Here lies further discordance with the data from the 

initial Western blotting characterisation studies in this thesis which detected only the 

full length 85 kDa RHAMM isoform at low levels across all cell models (Chapter 3, 

Figure 3.4) with little/no membrane staining observed by immunostaining analysis 

(Chapter 3, Figures 3.6 and 3.8). Whilst it may be suggested that the 85 kDa RHAMM 

isoform expressed by Tam-R cells may contribute to HA-mediated cellular signalling, 

numerous reports suggest that these isoforms are predominantly localised 

intracellularly and found to be associated with microtubules and mitotic spindles 

(Assmann et al. 1999; Tolg et al. 2010; Ma et al. 2014), whereas the amino-terminal 

truncated 63 kDa isoform is primarily implicated in cell surface activity (Hoffmann et 

al. 1998; Ahrens et al. 2001; Zaman et al. 2005). Indeed, the previous immunostaining 

analyses in this thesis support these findings and revealed predominant RHAMM 
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cytoskeleton and microtubule staining across all cell models (see Chapter 3, Figure 

3.6 and 3.8). Taken together, these data do not suggest a role for RHAMM in HA-

mediated CD44-EGFR activation in Tam-R cells. However, for further investigation of 

RHAMM-CD44 complex activity in the endocrine resistant cell models, future studies 

could be undertaken using double siRNA knockdown to investigate whether an 

additive effect upon proliferation occurs upon suppression of both RHAMM and 

CD44 expression. Furthermore, utilisation of confocal microscopy to investigate 

RHAMM interactions with CD44 and EGFR at the cell surface of Tam-R cells could be 

analysed to explore the mechanisms through which RHAMM may contribute to 

cellular motility.  

Whilst the extracellular functions of RHAMM are thought to be instrumental to the 

oncogenic effects of this protein, the mitotic spindle and centrosomal binding 

properties of RHAMM also have the potential to influence tumour progression. These 

centrosomal functions of RHAMM are critical for mitotic spindle integrity, 

progression through the cell cycle and cell division fidelity of breast cancer cells 

(Maxwell et al. 2003; Groen et al. 2004; Joukov et al. 2006). Furthermore, 

intracellular RHAMM has also been shown to regulate cell directionality, migration 

and facilitate cytoskeletal reorganisation (Smith et al. 2013; Chen et al. 2014). Indeed, 

the crucial role of RHAMM in these processes has been proven through 

overexpression and loss of function studies which reveal that, in both instances, 

deregulation of RHAMM expression results in the deformation of mitotic spindles 

(Maxwell et al. 2005; Tolg et al. 2010). Therefore, it could be postulated that loss of 

RHAMM expression in Tam-R cells may significantly impair cellular division processes 
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and cytoskeletal reorganisation leading to decreased cellular growth, and may 

suggest a minimal role for RHAMM proteins in HA-mediated activities in these cells; 

however the mechanism of this remains unclear.  

5.3.1 Summary 

In this chapter it has been shown that loss of RHAMM expression did not significantly 

alter the aggressive phenotype of Fas-R cells however impaired the proliferative 

capacity of Tam-R cells through an as-yet unknown mechanism. Whilst numerous 

studies have implicated a role for CD44-RHAMM complexes in breast cancer 

progression, these studies report that high expression levels of both hyaladherin 

receptors are required for enhanced cellular motility with particular importance 

placed upon the oncogenic amino-terminal truncated 63 kDa RHAMM protein; an 

isoform not detected across these cell models. Taken together, these data may not 

implicate RHAMM as a major contributor to acquired endocrine resistance and may 

infer a greater importance for CD44 proteins within the aggressive phenotype of 

these cells and as the principle receptor of HA-mediated signalling.   
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6. CD44 variants differentially modulate the aggressive phenotype of 

breast cancer cells 

6.1 Introduction 

In the previous chapters, it was demonstrated that loss of global CD44 expression 

impaired the aggressive phenotype of endocrine resistant cell models and 

attenuated their HA responses thus suggesting an important role for CD44 proteins 

in endocrine resistance. Whilst initial characterisation studies revealed elevated 

expression of multiple CD44 variants in endocrine resistant cell models compared to 

their endocrine sensitive counterpart, it remains unclear which of these may act as 

dominant contributors to the endocrine resistant phenotype. Numerous CD44 

isoforms have been shown to become upregulated in multiple carcinomas, however 

a large proportion of in vitro studies have focused upon CD44v3 and CD44v6 isoform 

expression and their prominent roles as promoters of tumour migration, invasion and 

spread, which has also been observed in the clinical setting (Kuniyasa et al. 2002; 

Wang et al. 2007; Saito et al. 2013; Shi et al. 2013; Marzese et al. 2014).  

In breast carcinomas, CD44v3 has been implicated in cytoskeletal-mediated cellular 

migration (Bourguignon et al 1998; Bourguignon et al. 1999) and in the clinical setting 

has been found to become upregulated in highly invasive tumours (Auvinen et al. 

2005) and correlated with lymph node metastases (Kalish et al. 1999; Rys et al. 2003). 

CD44v6 expression has also been shown to become upregulated in primary breast 

carcinomas (Auvinen et al. 2005; Lian et al. 2006) and correlated with tumour size, 

lymph node metastases and patient survival (Ma et al. 2005; Lian et al. 2006; Yu et 
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al. 2010). However, whilst some studies suggest CD44v6 as an independent 

prognostic factor of breast cancer (Lian et al. 2006; Yu et al. 2010) others suggest this 

is not the case (Jansen et al. 1998; Ma et al. 2005). In recent years the presence of 

CD44v6 has also been suggested to be a marker of cancer stem cells (in combination 

with other proteins) in breast cancer (Synder et al. 2009) as well as numerous other 

carcinomas (Wang et al. 2013; Ni et al. 2014; Todaro et al. 2014). However 

controversy regarding the role of specific CD44 isoforms in breast cancer still remains 

a problem due to contradictory findings (Morris et al. 2001; Berner et al. 2003; Shah 

et al. 2010).  

Whilst the HA-binding domain is common to all CD44 isoforms, thus conferring the 

potential for HA-mediated cellular responses, individual CD44 variants exhibit 

specific ligand and membrane receptor affinity which may also enhance their 

metastatic capacity. For example, the CD44 variant 3 exon contains the attachment 

site for the proteoglycan heparan sulphate (HPS) which is responsible for the 

presentation of several growth factors to their receptors (Bennet et al. 1995; Van der 

Voort et al. 1999). In this respect, CD44v3 isoforms have been shown to contribute 

to the malignant behaviour of cancer cells through HPS binding. Indeed, in colon 

cancer cells, HPS interaction with CD44v3 proteins has been shown to enhance 

tumour growth and invasion, in some instances in collaboration with the c-met 

receptor (Van der voort et al. 1999; Wielenga et al. 2000; Kuniyasa et al. 2001). 

Additionally, CD44v3-containing isoforms have been functionally linked to TGFßR1, 

MMP-9 and the cytoskeletal proteins ankyrin and Rho-kinase, resulting in the 

promotion of breast cancer invasion and metastasis through invadopodia formation 
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and enhanced degradation of the extracellular matrix (Bourguignon et al. 1998; 

Bourguignon et al. 1999; Bourguignon et al. 2002). Alternatively, CD44v6 has been 

reported to exhibit specific co-receptor function for the activation of the receptor 

tyrosine kinases, c-Met and VEGFR2 (Tremmel et al. 2009; Hasenaeur et al. 2013; 

Elliot et al. 2014). Indeed, CD44v6 has been shown to be required for the full 

activation and internalisation of the c-Met receptor (Orian-Roussaeu et al. 2002; 

Hasenauer et al. 2013) and loss of CD44 correlates with c-Met haploinsufficiency in 

mouse models (Matkze et al. 2007). Therefore, it could be suggested that 

contradictory results involving CD44 isoforms in breast cancer may be due to the 

differential bio-availability of specific ligands/membrane co-receptors between 

tumours.  

Given that CD44v3 and CD44v6 isoforms have been strongly implicated within breast 

cancer progression and elevated in models of endocrine resistance, the aims of this 

chapter were to explore the functional contribution of these specific variant isoforms 

to the endocrine resistant phenotype.  

6.1.1 Objectives 

1. To overexpress CD44v3 and CD44v6 isoforms in endocrine sensitive MCF-7 

cells and investigate their subsequent effect upon the aggressive nature 

and/or response to HA in these cells. 

2. To suppress specific CD44 isoform expression using targetted siRNA in 

endocrine resistant Tam-R and Fas-R cells and explore the resultant effect on 

cellular phenotype and response to HA along with changes in cell signalling. 
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3. To determine whether CD44 isoforms are linked to outcome on tamoxifen 

through immunohistochemical analysis of clinical samples and to perform 

survival analysis on publically available breast cancer datasets (KM plotter). 
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6.2 Results 

6.2.1 Optimisation of CD44v3 and CD44v6 overexpression in MCF-7 cells 

To begin to explore the functional contribution of CD44v3 and CD44v6 to endocrine 

resistant cell behaviour, a transfection-based approach was used to overexpress 

these isoforms in the endocrine sensitive MCF-7 cell model. Plasmid vectors 

containing DNA encoding full length human CD44v3 and CD44v6 were obtained from 

Dr Ursula Gunthert (Basal University, Switzerland). This group additionally provided 

the cytoplasmic tail truncated counterparts of CD44v3 and CD44v6 (missing the DNA 

sequence encoding the cytoplasmic tail domain, denoted as CD44v3∆cyt and 

CD44v6∆cyt respectively) to use as transfection controls, as loss of the cytoplasmic 

tail is reported to block CD44 cellular signalling and functional activities (Mielgo et al. 

2007). All plasmid constructs contain an EGFP-tag fused at the carboxy-terminus end 

of the CD44 protein.  

Plasmid DNA constructs were transformed and purified before being utilised for 

transfection into MCF-7 cells. To confirm the successful purification of plasmid DNA 

constructs, samples were initially sequenced (see Materials and Methods 2.12.4). 

The results confirmed the presence of the variant 3 and variant 6 exon in the CD44v3 

and CD44v6 plasmid DNA construct respectively and further verified the truncation 

of the CD44 cytoplasmic tail sequence at the correct position in the CD44∆cyt 

samples (Appendix I). Sequencing analysis revealed a base pair mutation in the 

variant 3 exon of the CD44v3 and CD44v3∆cyt DNA constructs leading to an amino 

acid substitution (N239D), however subsequent investigations suggested that this 



  

 

 

 

169 

 

substitution is unlikely to alter CD44v3 function (shown in Appendix M and N) and 

evaluated in the discussion section below (6.3)). No other base pair mutations were 

detected across the plasmid DNA constructs. 

Western blotting analysis using antibodies specific for CD44v3 and CD44v6 detection 

confirmed the successful transfection of plasmid constructs and showed upregulated 

expression of CD44v3, CD44v3∆cyt, CD44v6 and CD44v6∆cyt in MCF-7 cells between 

48 - 144 hours post-transfection compared to the control cells which did not alter the 

expression of alternative CD44 variant isoforms (Figures 6.1 and 6.2). Densitometry 

analysis could not be performed on this overexpression data due to limitations by 

Western blotting analysis due to exposure issues, however analysis revealed that the 

expression of alternative isoforms were not altered upon CD44 overexpression in 

MCF-7 cells (Appendix O and P).Whilst RHAMM expression was modestly reduced in 

MCF-7 cells overexpressing CD44v3, CD44v6 and CD44v6∆cyt proteins, densitometry 

analysis revealed that this was not significant (Figure 6.1 and 6.2 and Appendix O and 

P). Whilst analysis revealed that CD44 variant overexpression in MCF-7 cells 

enhanced CD44 Std isoform expression (Figure 6.1 and 6.2) this is likely to be a result 

of the CD44 Std antibody recognising an epitope which is common to all CD44 

isoforms.  

An increase in the expected molecular weight of these proteins was observed due to 

the presence of a 27 kDa EGFP tag on each construct (Figure 6.1 and 6.2). The CD44 

cytoplasmic tail (excluding exon 19 which is not present in the majority of CD44 

transcripts (Goldstein and Butcher 1990; Jiang et al. 2001)) is encoded by 70 amino 

acids and has a molecular weight of approximately 7.8 kDa. Therefore CD44v3∆cyt 
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and CD44v6∆cyt isoforms were detected at 104 kDa in MCF-7 cells (a molecular 

weight of 7.8 kDa lower than their full length counterparts) (Figure 6.1 and 6.2). This 

observation has also been shown by other groups using CD44 cytoplasmic tail 

truncated mutants (Neame and Isacke 1993; Gal et al. 2003; Mielgo et al. 2007 
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Figure 6.1. Representative Western blot images from 3 independent experiments showing 

CD44v3 and CD44v3∆cyt protein expression levels in MCF-7 cells 24 – 144 hours post-transfection 

compared to the untreated and lipid-only control samples. Protein expression levels of CD44 Std, 

CD44v6 and CD44v10 were unchanged however CD44v3 overexpression modestly reduced 

RHAMM expression. ß-actin was used as a loading control.  
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Figure 6.2. Representative Western blot images from 3 independent experiments showing 

CD44v6 and CD44v6∆cyt protein expression levels in MCF-7 cells 24 – 144 hours post-transfection 

compared to the untreated and lipid-only control samples. Protein expression levels of CD44 Std, 

CD44v3 and CD44v10 were unchanged however RHAMM expression was modestly reduced. ß-

actin was used as a loading control.  
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Immunostaining analysis was utilised to confirm the protein expression and 

localisation of CD44 variant constructs in transfected MCF-7 cells. 

Immunocytochemistry revealed the upregulation of CD44v3, CD44v3∆cyt, CD44v6 

and CD44v6∆cyt proteins in MCF-7 cells 48 – 144 hours post transfection, compared 

to the control samples (Figure 6.3). These data also revealed that CD44v3 and CD44v6 

isoforms overexpressed in MCF-7 cells showed similar localisation patterns to their 

endogenous control cells, whilst CD44v3∆cyt and CD44v6∆cyt isoforms were 

predominantly expressed in the cytoplasm, however limited membrane expression 

of these isoforms was also observed (Figure 6.3). Furthermore, Figure 6.4 reveals that 

transfection of MCF-7 cells with CD44v6 and CD44v6∆cyt led to a similar expression 

level as that observed for the endogenous levels of CD44v6-containing proteins in 

endocrine resistant Tam-R and Fas-R cell models. Conversely, CD44v3 and 

CD44v3∆cyt transfection in MCF-7 cells led to an enhanced expression of these 

proteins as compared with levels of endogenous CD44v3-containing proteins in Tam-

R and Fas-R cells (Figure 6.4) which must be taken into consideration upon further 

analysis.  

These results were further validated by immunofluorescence analysis using CD44 

specific antibodies and visualisation of the EGFP-tagged constructs. The results also 

showed predominant cytoplasmic staining for CD44v3, CD44v3∆cyt and CD44v6∆cyt 

proteins, and predominant membrane staining for CD44v6 proteins, in MCF-7 cells 

compared to their untransfected lipid-treated control cells (Figures 6.5 and 6.6).   
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6.2.2 CD44v6, but not CD44v3, overexpression enhanced the invasive capacity of 

MCF-7 cells and attenuated their sensitivity to fulvestrant 

As previous data revealed that loss of global CD44 protein expression impaired the 

migratory, invasive and proliferative phenotype of both endocrine resistant models, 

the hypothesis that overexpression of CD44v3 and CD44v6 in endocrine sensitive 

MCF-7 cells may replicate these behaviours to some extent was explored. Previous 

data also revealed that the highly CD44-expressing endocrine resistant cell models 

were sensitised to HA, an observation not observed in the low CD44-expressing 

endocrine sensitive MCF-7 cells. Therefore it was also investigated whether 

overexpression of individual CD44 isoforms in MCF-7 cells augmented their 

sensitivity to HA leading to an enhanced aggressive phenotype. The same 

concentration of HA (100 µg/ml), previously shown to stimulate functional responses 

in the highly CD44-expressing Tam-R and Fas-R cells, was used for these assays.  

Boyden chamber assays revealed that CD44v3 overexpression in MCF-7 cells reduced 

their endogenous and HA-stimulated migratory capacity across fibronectin-coated 

membranes, however enhanced HA-induced invasion through Matrigel compared to 

the CD44v3∆cyt transfection control cells (Figure 6.7). In contrast, CD44v6-

overexpression in MCF-7 cells enhanced their endogenous invasive phenotype 

through Matrigel compared to the CD44v6∆cyt control (Figure 6.8). 
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Figure 6.7. Measurement of endogenous and HA-stimulated cell behaviour responses of MCF-7 

cells overexpressing CD44v3. MCF-7 cells were transfected with CD44v3 or CD44v3∆cyt plasmid 

DNA for 48 hours prior to the assessment of migration and invasion (Boyden Chamber assays) and 

proliferation (Coulter counter assays) in the presence (100 µg/ml) or absence of HA. Control cells 

represent lipid-treated MCF-7 cells. Error bars represent the average normalised data ±SEM from 

3 independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using an unpaired t-test and significance set at p < 0.05. 
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Figure 6.8. Measurement of endogenous and HA-stimulated cell behaviour responses of MCF-7 

cells overexpressing CD44v6. MCF-7 cells were transfected with CD44v6 or CD44v6∆cyt plasmid 

DNA for 48 hours prior to the assessment of migration and invasion (Boyden Chamber assays) and 

proliferation (Coulter counter assays) in the presence (100 µg/ml) or absence of HA. Control cells 

represent lipid-treated MCF-7 cells. Error bars represent the average normalised data ±SEM from 

3 independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using an unpaired t-test and significance set at p < 0.05. 
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Previous published studies from the Hiscox group (2012) suggested that CD44 

expression may also limit endocrine response in breast cancer cells. To investigate 

this, the growth of CD44-transfected MCF-7 cells in the presence of tamoxifen or 

fulvestrant for 5 days was assessed. Coulter counter proliferation assays revealed 

that tamoxifen treatment significantly inhibited the growth of lipid-treated MCF-7 

control cells and MCF-7 cells overexpressing CD44v3, CD44v3∆cyt, CD44v6 or 

CD44v6∆cyt proteins (Figure 6.9). However, whilst treatment with fulvestrant 

significantly reduced the growth of untransfected MCF-7 control cells, no significant 

impairment in growth was observed in MCF-7 cells overexpressing any of the CD44 

constructs (Figure 6.10). Surprisingly, the CD44v3∆cyt and CD44v6∆cyt transfection 

controls exhibited a similar growth response in the presence of fulvestrant compared 

to their full length CD44v3 and CD44v6 counterparts respectively (Figure 6.10). 

ANOVA testing to reveal significant changes between each group revealed an 

increase in growth between untransfected and CD44v6-overexpressing MCF-7 cells 

in the presence of fulvestrant (Figure 6.10). These results suggest that CD44v6 

overexpression attenuates the ability of MCF-7 cells to respond to fulvestrant, 

resulting in an enhanced proliferative capacity of these cells compared to the 

untransfected control cells.  
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Figure 6.9. Measurement of growth response in MCF-7 cells overexpressing CD44 proteins in the 

presence of tamoxifen. MCF-7 cells were transfected with CD44v3, CD44v3∆cyt, CD44v6, or 

CD44v6∆cyt plasmid constructs for 48 hours prior to the assessment of growth (Coulter Counter 

assay) in the presence (100 nM) or absence of tamoxifen for 5 days. Control cells represent lipid-

treated MCF-7 cells.  Error bars represent the average normalised data ±SEM from 3 independent 

experiments and the data is presented as the percentage of the untreated control for each group. 

Statistical analysis was performed using a paired t-test and one-way ANOVA with Tukey post-hoc 

testing and significance set at p < 0.05. 
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Figure 6.10. Measurement of growth response in MCF-7 cells overexpressing CD44 proteins in the 

presence of fulvestrant. MCF-7 cells were transfected with CD44v3, CD44v3∆cyt, CD44v6 or 

CD44v6∆cyt plasmid constructs for 48 hours prior to the assessment of growth (Coulter Counter 

assay) in the presence (100 nM) or absence of fulvestrant for 5 days. Control cells represent lipid-

treated MCF-7 cells. Error bars represent the average normalised data ±SEM from 3 independent 

experiments and the data is presented as the percentage of the untreated control for each group. 

Statistical analysis was performed using a paired t-test and one-way ANOVA with Tukey post-hoc 

testing and significance set at p < 0.05. 
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6.2.3 CD44v6 overexpression in MCF-7 cells enhanced EGFR pathway activity 

Data generated from the global CD44 siRNA studies (Chapter 4) suggested a role for 

CD44 proteins in the activation of several signalling pathways potentially through co-

receptor activation of receptor tyrosine kinases, EGFR, HER2 or c-Met. To explore the 

mechanisms through which CD44v3 and CD44v6 overexpression may alter the 

behavioural phenotype of MCF-7 cells, the activation of these signalling molecules 

were reassessed by Western blotting analysis in the presence (100 µg/ml) or absence 

of HA.  

Surprisingly, the data revealed that the CD44v3∆cyt and CD44v6∆cyt transfection 

controls induced cellular signalling upon overexpression in MCF-7 cells, a previously 

unreported phenomenon (Figure 6.11 – 6.14). MCF-7 cells overexpressing either 

CD44v3 or CD44v3∆cyt proteins showed an enhanced endogenous activation of AKT, 

reduced HA-stimulated HER2 activation and reduced endogenous and HA-stimulated 

ERK1/2 compared to control cells (Figures 6.11 and 6.12). CD44v3 overexpression 

alone reduced endogenous and HA-stimulated EGFR and HA-stimulated Met 

activation compared to the control cells (Figures 6.11 and 6.12). Conversely, MCF-7 

cells overexpressing either CD44v6 or CD44v6∆cyt proteins substantially enhanced 

endogenous and HA-induced activation of EGFR, AKT and ERK1/2 and reduced c-Met 

activation compared to the untransfected control cells (Figures 6.13 and 6.14). 

CD44v6 overexpression alone reduced HA-stimulated HER2 activation compared to 

the untransfected control cells (Figures 6.13 and 6.14). Surprisingly, overexpression 

of CD44 variants in MCF-7 cells did not appear to sensitise the cells to HA (Figures 

6.11 – 6.14).  
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Figure 6.11. Representative Western blot images from 3 independent experiments showing 

HER2, EGFR, c-Met, FAK, Src, AKT and ERK1/2 activation in MCF-7 cells after 48 hour transfection 

with CD44v3 or CD44v3∆cyt plasmid DNA in the presence (10 minute treatment, 100 µg/ml) or 

absence of HA. Control cells represent lipid-treated MCF-7 cells. Total protein levels were 

unchanged however total HER2 became reduced and GAPDH was used as a loading control. 
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Figure 6.12. Densitometry graphs showing CD44v3 expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in MCF-7 cells after 48 hour transfection with CD44v3 or CD44v3∆cyt 

plasmid DNA in the presence (10 minute treatment, 100 µg/ml) or absence of HA. The data shows 

the relative protein levels in the cell lines expressed as a ratio of the active protein:total protein 

normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using an unpaired t-test and significance was set at p < 0.05.  
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Figure 6.13. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, Src, AKT and ERK1/2 activation in MCF-7 cells after 48 hour transfection with 

CD44v6 or CD44v6∆cyt plasmid DNA in the presence (10 minute treatment, 100 µg/ml) or absence 

of HA. Control cells represent lipid-treated MCF-7 cells. Total protein levels were unchanged and 

GAPDH was used as a loading control. 
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Figure 6.14. Densitometry graphs showing CD44v6 expression and HER2, EGFR, c-Met, FAK, AKT, Src 

and ERK1/2 activation in MCF-7 cells after 48 hour transfection with CD44v6 or CD44v6∆cyt plasmid 

DNA in the presence (10 minute treatment, 100 µg/ml) or absence of HA. The data shows the relative 

protein levels in the cell lines expressed as a ratio of the active protein:total protein normalised to 

GAPDH. Error bars represent the average normalised data ±SEM from 3 independent experiments 

and the data is presented as the percentage of the untreated control. Statistical analysis was 

performed using an unpaired t-test and significance was set at p < 0.05.  



  

 

 

 

189 

 

6.2.4 CD44v6 overexpression in MCF-7 cells enhanced cellular invasion via EGFR 

activation and subsequent downstream signalling responses 

The data thus far suggested that CD44v6 overexpression in MCF-7 cells led to 

enhanced EGFR pathway activation and increased cellular invasion. To investigate 

the hypothesis that CD44v6 may promote the aggressive phenotype of MCF-7 cells 

through the activation of the EGFR pathway, inhibition of EGFR (by use of the 

inhibitor, gefitinib) and subsequent assessment of cellular invasion in MCF-7 cells was 

explored.  

Boyden Chamber assays revealed a significant reduction in the ability of CD44v6-

overexpressing MCF-7 cells to invade through Matrigel in the presence of gefitinib 

compared to the untreated CD44v6-overexpressing cells, and reduced their invasive 

capacity similar to the level of untransfected and CD44v6∆cyt-transfected MCF-7 

control cells (Figure 6.15). Although CD44v6∆cyt overexpression in MCF-7 cells 

enhanced EGFR signalling, this did not lead to enhanced invasion and treatment with 

gefitinib did not alter the invasive capacity of these cells (Figure 6.15).  

 

As previous data revealed that CD44v6 overexpression in MCF-7 cells enhanced the 

activation of the downstream effectors of the EGFR pathway, AKT and ERK1/2, the 

effect of gefitinib treatment upon the activity of these signalling molecules was 

investigated. Western blotting and densitometry analysis revealed that gefitinib 

treatment significantly attenuated the activity of EGFR, AKT and ERK1/2 in CD44v6- 

and CD44v6∆cyt-overexpressing MCF-7 cells compared to their untreated 

counterparts (Figure 6.16).  
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Figure 6.15. Measurement of cell invasion in MCF-7 cells overexpressing CD44v6 or CD44v6∆cyt 

proteins in the presence and absence of gefitinib. MCF-7 cells were transfected with CD44v6 or 

CD44v6∆cyt plasmid DNA for 48 hours prior to the assessment of invasion (Boyden Chamber 

assay) in the presence (1 µM) or absence of the EGFR inhibitor, gefitinib. Control cells represent 

lipid-treated MCF-7 cells. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a paired t-test and significance set at p < 0.05. 
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Figure 6.16. Representative Western blot images and densitometry graphs from 3 independent 

experiments showing EGFR, AKT and ERK1/2 activation in MCF-7 cells after 48 hour transfection 

with CD44v6 or CD44v6∆cyt plasmid DNA in the presence (1 µM, 5 minutes) or absence of the 

EGFR inhibitor gefitinib. Control cells represent lipid-treated MCF-7 cells. Total protein levels were 

unchanged with the exception of total EFGR which was reduced in CD44v6∆cyt and CD44v6 cells 

treated with gefitinib. GAPDH was used as a loading control.  The data shows the relative protein 

levels in the cell lines expressed as a ratio of the active protein:total protein normalised to GAPDH. 

Error bars represent the average normalised data ±SEM from 3 independent experiments and the 

data is presented as the percentage of the untreated control. Statistical analysis was performed 

using an unpaired t-test and significance was set at p < 0.05.  
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6.2.5 CD44v6 suppression attenuated growth and invasion of Tam-R cells and 

enhanced their cellular migration 

Based on the transfection data which suggested a role for both CD44v3 and CD44v6 

as promoters of cellular invasion in MCF-7 cells, together with numerous reports 

revealing a correlation between overexpression of these isoforms and enhanced 

tumour metastasis and invasion in numerous carcinomas (Herrera-Gayol and Jothy 

1999; Ni et al. 2002; Lui et al. 2005; Shi et al. 2013; Ni et al. 2014), the next step was 

to investigate whether these effects were also observed in the endocrine resistant 

cell models. For this purpose, CD44v6-specific siRNA was designed using BLOCK-iTTM 

RNAi Designer (Invitrogen Life Technologies, see Materials and Methods 2.12.1). 

However, due to the small size of CD44 variant 3 exon (126 bp), no unique sequence 

was available to specifically target this isoform, therefore investigation of CD44v3 

function in endocrine resistant cell models using an siRNA based approach could not 

be undertaken.  

Optimisation experiments revealed that treatment of Tam-R and Fas-R cells with 

CD44v6 siRNA resulted in a significant suppression of all CD44v6-containing isoforms 

compared to the NT-siRNA-treated cells between 24 - 144 hours post-transfection 

(Figure 6.17 and 6.18). Furthermore, these data confirmed that CD44v6 suppression 

did not substantially alter the expression of alternative CD44 isoforms in these cells 

(Figure 6.17 and Appendix Q). Whilst Western blotting analysis revealed that 

RHAMM expression become modestly suppressed in Tam-R cells between 48 – 72 

hours post-transfection, densitometry analysis revealed that this was not significant 

(Appendix Q). Furthermore, a small reduction in CD44 Std isoform expression was 
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observed in these cells which is likely the result of the CD44 Std antibody recognising 

an epitope common to all CD44 isoforms (Figure 6.17). Densitometry analysis 

revealed that CD44 Std suppression was significant between 24 – 144 hours post-

transfection in Tam-R cells, and at 144 hours post-transfection in Fas-R cells, 

compared to the NT- siRNA control cells (Appendix Q). 

 

 

 

 

 

 

Figure 6.17. Representative Western blot images from 3 independent experiments showing CD44 

isoform and RHAMM protein expression in Tam-R and Fas-R cells after treatment with CD44v6 

siRNA for 24 – 144 hours in comparison to the untreated and NT-siRNA treated controls.  GAPDH 

was used as a loading control. Densitometry graphs show CD44v6 expression in Tam-R and Fas-R 

cells between 24 – 144 hours post-transfection. Error bars represent the average normalised data 

±SEM from 3 independent experiments. Data is normalised to GAPDH and presented as the 

percentage of the untreated control. Statistical analysis was performed using an ANOVA test with 

tukey post-hoc analysis and values were compared to the NT-siRNA control sample.  
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Analysis of the functional effects of CD44v6 suppression in the endocrine resistant 

cell lines revealed that Tam-R cells treated with CD44v6-siRNA led to a reduction in 

their invasive capacity through Matrigel and attenuated their endogenous and HA-

induced proliferative capacity compared to the NT-siRNA control cells (Figure 6.19). 

In contrast, CD44v6 suppression enhanced the endogenous and HA-stimulated 

migratory capacity of Tam-R cells compared to the NT-siRNA control cells (Figure 

6.19). Interestingly, CD44v6 suppression in Fas-R cells had no significant impact upon 

their migratory, invasive or proliferative behaviours compared to the NT-siRNA 

control cells (Figure 6.20).  
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Figure 6.19. Measurement of endogenous and HA-stimulated cell behaviour responses of Tam-R 

cells upon CD44v6 suppression. Tam-R cells were transfected with NT- or CD44v6-siRNA for 48 

hours prior to the assessment of migration and invasion (Boyden Chamber assays) and 

proliferation (Coulter counter assays) in the presence (100 µg/ml) and absence of HA. Error bars 

represent the average normalised data ±SEM from 3 independent experiments and the data is 

presented as the percentage of the untreated control. Statistical analysis was performed using an 

unpaired t-test and significance set at p < 0.05. 
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Figure 6.20. Measurement of endogenous and HA-stimulated cell behaviour responses of Fas-R 

cells upon CD44v6 suppression. Fas-R cells were transfected with NT- or CD44v6-siRNA for 48 

hours prior to the assessment of migration and invasion (Boyden Chamber assays) and 

proliferation (Coulter counter assays) in the presence (100 µg/ml) and absence of HA. Error bars 

represent the average normalised data ±SEM from 3 independent experiments and the data is 

presented as the percentage of the untreated control. Statistical analysis was performed using an 

unpaired t-test and significance set at p < 0.05. 
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Previous data revealed that CD44v6 overexpression in MCF-7 cells enhanced EGFR, 

AKT and ERK1/2 activation (Figure 6.12). To determine whether these proteins were 

modulated upon CD44v6 suppression in endocrine resistant cells, and to further 

explore the mechanisms through which CD44v6 suppression may alter the 

behavioural function of Tam-R cells, the activation of several signalling components 

were reassessed by Western blotting analysis in the presence or absence of HA. The 

effect of CD44v6 suppression upon cellular signalling was also investigated in Fas-R 

cells. 

Western blotting and densitometry analysis revealed that CD44v6 suppression 

almost significantly reduced endogenous and HA-stimulated EGFR, AKT and ERK1/2 

activation and HA-stimulated FAK in Tam-R cells compared to the NT-siRNA control 

cells (Figures 6.21 and 6.22). In Fas-R cells, CD44v6 suppression significantly reduced 

endogenous c-Met and AKT activation and HA-stimulated c-Met activation compared 

to the NT-siRNA control cells (Figure 6.23 and 6.24).  
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Figure 6.21. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Tam-R cells after 48 hour transfection with NT- 

or CD44v6-siRNA in the presence (10 minute treatment, 100 µg/ml) or absence of HA. Total protein 

levels were unchanged and GAPDH was used as a loading control.  
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Figure 6.22. Densitometry graphs showing CD44v6 expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in Tam-R cells after 48 hour treatment with CD44v6 siRNA in the presence 

(215 kDa, 100 µg/ml, 10 minutes) and absence of HA, before cell lysis and detection by Western 

blotting analysis. The data shows the relative protein levels in the cell lines expressed as a ratio of 

the active protein:total protein normalised to GAPDH. Error bars represent the average normalised 

data ±SEM from 3 independent experiments and the data is presented as the percentage of the 

untreated control. Statistical analysis was performed using an unpaired t-test and significance was 

set at p < 0.05.  
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Figure 6.23. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR, c-Met, FAK, AKT, Src and ERK1/2 activation in Fas-R cells after 48 hour transfection with NT- 

or CD44v6-siRNA in the presence (10 minute treatment, 100 µg/ml) or absence of HA. Total 

protein levels were unchanged and GAPDH was used as a loading control.  
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Figure 6.24. Densitometry graphs showing CD44v6 expression and HER2, EGFR, c-Met, FAK, AKT, 

Src and ERK1/2 activation in Tam-R cells after 48 hour treatment with CD44v6 siRNA in the presence 

(215 kDa, 100 µg/ml, 10 minutes) and absence of HA, before cell lysis and detection by Western 

blotting analysis. The data shows the relative protein levels in the cell lines expressed as a ratio of 

the active protein:total protein normalised to GAPDH. Error bars represent the average normalised 

data ±SEM from 3 independent experiments and the data is presented as the percentage of the 

untreated control. Statistical analysis was performed using an unpaired t-test and significance was 

set at p < 0.05.  
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6.2.6 CD44 is associated with an increased duration of response to endocrine 

therapy in ER+ breast cancer 

To begin to establish if there is an association between CD44 and clinical parameters, 

CD44 mRNA expression was analysed in clinical breast cancer using the publically 

available online KM Plotter tool (see Materials and Methods 2.4) to determine any 

clinical value following endocrine treatment. This tool is able to study publically 

available breast cancer gene microarray mRNA expression data collected from 

clinical samples prior to endocrine therapy and also contains associated survival-

related information. KM plotter allows the generation of survival curves with Log 

Rank testing to determine any significant association between inherent expression 

levels for genes of interest and clinical outcome. As of yet, no fulvestrant-treated 

clinical microarray datasets are publically available for KM Plotter analyses.  

To analyse the association between CD44 and duration of relapse free survival (RFS) 

in this project, the patient data was split into 2 groups using the optimal cut-off tool 

provided within KM Plotter using a Kaplan-Meier plot. RFS was used as the measure 

of clinical outcome and patients selected were ER+ and had subsequently received 

any form of endocrine therapy (excluding chemotherapy). Analysis revealed that high 

CD44 mRNA expression associated with significantly increased duration of response 

to endocrine therapy compared to patients with low CD44 mRNA expression (p = 

0.0055) (Figure 6.25). However, when RFS was used as a measure of clinical outcome 

and patients selected were ER+ and subsequently received tamoxifen treatment 

only, although high levels of CD44 were again associated with increased duration of 

response, this did not reach significance (p = 0.28) (Figure 6.25).  
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Figure 6.25. Kaplan Meier survival curves generated by KM Plotter to display the association 

between CD44 mRNA expression and relapse free survival (RFS) in ER+ treated with any endocrine 

therapy (n = 1190) or confined to tamoxifen treatment (n = 615). The survival curves were 

generated using the Jetset affymetrix gene probe for CD44 (212063_at) and patients were 

grouped by optimal fit (as calculated by KM Plotter). The Hazard Ratio (HR) (with 95% confidence 

intervals) and logrank p values are shown.  

CD44 mRNA expression, RFS, ER+, tamoxifen treatment only 

CD44 mRNA expression, RFS, ER+, any endocrine treatment 
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6.2.6.1 CD44v6 and EGFR co-expression is associated with a worsened outcome in 

a small exploratory patient series of tamoxifen-treated ER+ breast cancer patients 

Whilst KM Plotter analyses revealed an association between high CD44 mRNA 

expression levels and prolonged RFS in endocrine-treated ER+ breast cancer patients, 

this analysis does not take into consideration the expression of specific CD44 

isoforms and accounts only for total CD44 mRNA expression in these patients. Given 

that the experimental data suggested evidence for different roles for CD44 isoforms 

in breast cancer behaviours, notably implicating a role for CD44v6-mediated EGFR 

activation as a contributor towards cellular invasion in tamoxifen resistance, the 

clinical relevance of these findings using in-house immunohistochemistry data was 

explored. 

A series of formalin-fixed paraffin-embedded tissue microarray (TMA) sections 

(provided by Dr Andrew Green, Nottingham University) including 140 patients with 

primary breast cancers from ER+ adjuvant tamoxifen patients with 20 year follow up 

was assessed by the group for CD44v6 using H-score analysis (see Appendix R). 

Derived H-scores were subsequently analysed in this project versus relevant 

clinicopathological parameters including: EGFR immunostaining (10 % cutpoint), 

disease-free interval (DFI) and overall survival (OS) available for all these in 

tamoxifen-treated patients. This allowed to further evaluate if any interplay existed 

between CD44v6 expression and EGFR in relation to tamoxifen resistance. The web-

based algorithm X-tile was used to define optimal CD44v6 membrane cut point (47) 

versus patient outcome and statistical testing was performed using Log Rank. Of the 

140 TMA’s studied in this series, 20 were negative for CD44v6 membrane expression. 
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After the cutpoint was applied, 71/140 TMAs were >47. Figures 6.26 reveals 

representative images of TMA cores from this series with high and low CD44v6 

immunostaining.  

Using the respective cut points, 4 CD44v6/EGFR status phenotypes were 

discriminated in the 140 ER+ breast cancers examined in this series as shown in Table 

6.1; the most abundant phenotypes were EGFR- thus reflecting this is an ER+ series. 

The survival curve data initially revealed that higher CD44v6 expression correlated 

with significantly better outcome in ER+ disease in tamoxifen-treated patients with a 

longer DFI (p = 0.013) and OS (p = 0.001) compared to patients whose tumours did 

not express CD44v6 (Figures 6.27 and 6.28). However these analyses suggested 

promising separation between CD44v6+ patients when subdivided with EGFR status. 

Whilst CD44v6+/EGFR- patients experienced the longest DFI (141.952 months), this 

was greatly reduced for patients whose tumours co-expressed CD44v6 and EGFR 

(CD44v6+/EGFR+) (105.662 months) (p = 0.023) (Figure 6.29). Interestingly, 

CD44v6+/EGFR+ patients displayed a similar DFI to patients whose tumours did not 

express either receptor (104.330 months) (Figure 6.29).  

These analyses also suggested promising separation between CD44v6+ patients with 

high and low EGFR expression and OS. Whilst CD44v6+/EGFR- patients also displayed 

the longest OS on tamoxifen treatment (161.793 months), this was reduced for the 

sub-cohort of patients co-expressing CD44v6 and EGFR (138.130 months) (p = 0.005) 

(Figure 6.30). However, patients whose tumours phenotype were CD44v6-/EGFR+ or 

CD44v6-/EGFR- tumours also showed a comparatively poorer OS (134.465 and 

132.465 months respectively) (Figure 6.30). 

CD44v6+ 153mo [95%CI 140-166mo] 
CD44v6-  128mo [95%CI 117-139mo]
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Figure 6.26. Representative images from TMA cores with high (left) and low (right) CD44v6 

immunostaining from the Nottingham Immunohistochemical clinical series (x40 magnification). 

 

Table 6.1. The number of patients and associated percentage frequency for the 4 CD44v6 and EGFR 

tumour phenotypes in 140 ER+ tamoxifen-treated primary breast cancer patients from the TMA series. 

 

Tumour Phenotype Patient Number Patient Frequency (%) 

CD44v6+/EGFR+ 9 6.4 

CD44v6+/EGFR- 62 44.3 

CD44v6-/EGFR+ 13 9.3 

CD44v6-/EGFR- 56 40 

Total 140 100 
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Means for Disease-Free Interval (DFI) on tamoxifen 

Estimate Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

CD44v6 <47 109.480 10.219 89.452 129.509 

CD44v6 >=47 138.241 7.512 123.500 152.981 

Overall 128.548 6.901 115.022 142.024 

Figure 6.27. Investigation of high versus low CD44v6 membrane staining upon the impact of 

disease-free interval (DFI) in a small exploratory series of ER+ breast cancer patients treated with 

tamoxifen (n = 140). The Kaplain–Meier plot shows tumours grouped according to high versus low 

CD44v6 membrane expression (cut point 47) and analysed in relation to DFI (p = 0.013) in months. 

The table shows the corresponding mean survival estimates, standard error and lower and upper 

bound 95 % confidence intervals for each phenotype. 
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Means for Overall Survival (OS) on tamoxifen 

Estimate Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

CD44v6 <47 134.420 9.963 114.892 153.948 

CD44v6 >=47 159.443 6.254 147.181 171.701 

Overall 156.933 6.489 144.216 169.651 

Figure 6.28. Investigation of high versus low CD44v6 membrane staining upon the impact of 

overall survival (OS) in a small exploratory series of ER+ breast cancer patients treated with 

tamoxifen (n = 140). The Kaplain–Meier plot shows tumours grouped according to high versus low 

CD44v6 membrane expression (cut point 47) and analysed in relation to OS (p = 0.001) in months. 

The table shows the corresponding mean survival estimates, standard error and lower and upper 

bound 95 % confidence intervals for each phenotype. 
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Means for Disease-Free Interval (DFI) on tamoxifen 

Estimate Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

CD44v6+/EGFR+ 105.622 23.402 59.754 151.491 

CD44v6+/EGFR- 141.952 7.713 126.834 157.070 

CD44v6-/EGFR+ 130.077 23.485 84.046 176.108 

CD44v6-/EGFR- 104.330 11.069 82.634 126.026 

Overall 128.548 6.901 115.022 142.074 

Figure 6.29. Investigation of CD44v6 and EGFR co-expression upon the impact of disease-free 

interval (DFI) in a small exploratory series of ER+ breast cancer patients treated with tamoxifen (n 

= 140). The Kaplain-Meier plot shows tumours grouped according to the 4 phenotypes of CD44v6 

and EGFR and analysed in relation to DFI in months (Log Rank p value = 0.023). The table shows 

the corresponding mean survival estimates, standard error and lower and upper bound 95 % 

confidence intervals for each phenotype.  
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Means for Overall Survival (OS) on tamoxifen 

Estimate Std. Error 
95% Confidence Interval 

Lower Bound Upper Bound 

CD44v6+/EGFR+ 138.130 22.459 94.111 182.149 

CD44v6+/EGFR- 161.793 6.230 149.583 174.003 

CD44v6-/EGFR+ 134.906 21.920 91.943 177.869 

CD44v6-/EGFR- 132.465 10.948 110.007 153.922 

Overall 156.933 6.489 144.216 169.651 

Figure 6.30. Investigation of CD44v6 and EGFR co-expression upon the impact of overall survival 

(OS) in a small exploratory series of ER+ breast cancer patients treated with tamoxifen (n = 140). 

The Kaplain-Meier plot shows tumours grouped according to the 4 phenotypes of CD44v6 and 

EGFR and analysed in relation to OS in months (Log rank p value = 0.005). The table shows the 

corresponding mean survival estimates, standard error and lower and upper bound 95 % 

confidence intervals for each phenotype. 
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6.3 Discussion 

In this chapter, the contribution of specific CD44 variant isoforms to endocrine 

resistance was explored. Given that data previously identified that loss of global CD44 

expression impaired cellular migration, invasion and proliferation in both endocrine 

resistant cell models and enhanced their sensitisation to HA (Chapter 4), it was next 

explored whether specific isoforms may act as dominant promoters of these 

processes. Initial characterisation data revealed enhanced expression of CD44v3 and 

CD44v6 proteins in endocrine resistant cells (Chapter 3), which have also been shown 

to become upregulated in primary breast carcinomas and correlate with numerous 

clinical parameters including metastasis, lymph node status and survival (Kuniyasa et 

al. 2002; Wang et al. 2007; Saito et al. 2013; Shi et al. 2013; Marzese et al. 2014), 

therefore these variant isoforms were decided to be the focus of this project. 

Initially, optimisation data revealed that CD44v6 transfection into MCF-7 cells led to 

a similar endogenous expression and localisation pattern of CD44v6-containing 

proteins found in endocrine resistant Tam-R and Fas-R cells, thus allowing 

comparisons to be made between these cell models. However CD44v3 transfection 

into MCF-7 cells led to enhanced expression compared to the endogenous levels of 

CD44v3-containing proteins in endocrine resistant cells, although localisation 

patterns were similar; this must be taken into consideration upon interpretation of 

results. Functional analysis revealed that individual CD44 isoforms may mediate 

specific roles across the cell models. Indeed, the MCF-7 transfection data revealed 

that CD44v3 may act as a suppressor of cellular migration, whilst CD44v6 appeared 

to play an important role in the attenuation of endocrine response to fulvestrant. 
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Although both CD44 isoforms were implicated in invasion processes, CD44v6 

overexpression in MCF-7 cells enhanced their endogenous invasion, whilst CD44v3 

appeared to promote invasion upon HA binding.  

The experimental data in this study which suggested CD44v3 may act to suppress 

cellular migration in MCF-7 cells appears to be in discordance with some other 

studies which suggest a role for CD44v3 proteins as promoters of a migratory 

phenotype in breast cancer (Bourguignon et al. 1998; Bourguignon et al. 1999), 

however it must be noted that these reports implicate the CD44v3,8-10 variant 

isoform in these processes. Thus, it may be suggested that CD44v3 isoforms require 

the additional presence of variant exons 8 - 10 to mediate cytoskeletal binding and 

promote a subsequently induced migratory response in these cells. Furthermore, 

discrepancies between the data and findings from others may be due to differences 

in the bioavailability of specific ligands and/or co-receptors. Indeed, CD44v3 contains 

the attachment site for HPS which has been shown to facilitate malignant behaviours 

in numerous carcinomas through the presentation of several growth factor receptors 

(Bennet et al. 1995; Van de Voort et al. 1999). Therefore variability in the expression 

of HPS and co-receptors, such as TGFßR1, MMP-9 and c-Met, between cancer cell 

lines may account for differences in the reported function of CD44v3 in the literature.  

Conversely, the data here revealed a role for CD44v3 in enhanced invasion in MCF-7 

cells upon HA stimulation, however the mechanism remains elusive (although unlike 

CD44v6-mediated invasion, a role for EGFR was not implicated) but may involve 

downstream activation of AKT, Src and ERK1/2. These results are supported by 

previous clinical findings by other groups which showed that CD44v3 was 
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upregulated in highly invasive breast tumours (Auvinen et al. 2005) where it has been 

shown to correlate with lymph node metastases (Kalish et al. 1999; Rys et al. 2003). 

Thus, given that HA is found in abundance in breast tumour stroma, this may suggest 

an important role for CD44v3 proteins in the enhancement of tumour progression 

behaviours in HA-rich environments. Taken together, the experimental data 

potentially implicate roles for CD44v3 proteins in both the suppression of cellular 

migration and enhancement of HA-stimulated invasion, however, validation of these 

results in endocrine resistant cell models could not be undertaken due to 

unavailability of siRNA to specifically target CD44v3 and lack of clinical data.  

It must also be taken into consideration that sequencing analysis revealed a base pair 

mutation at position 17 in the CD44 variant 3 exon of the plasmid DNA leading to an 

amino acid substitution (N239D) from an arginine (uncharged, polar) to an aspartic 

acid (acidic) in the protein sequence (Appendix I). Whilst use of this CD44v3 plasmid 

has been published in several articles (including Meilgo et al. 2006 and 2007) the 

effect of the amino acid mutation remains unknown and may affect the results of this 

data. However the immunostaining data revealed similar localisation of transfected 

CD44v3 proteins in MCF-7 cells compared to their endogenous localisation in Tam-R 

and Fas-R cells suggesting that this amino acid substitution does not alter the 

localisation of CD44v3 proteins in these cells. To investigate whether this amino acid 

substitution may alter the function of the CD44v3 protein, several publically available 

online programmes were used to predict the effect of amino acid substitutions on 

protein function. Three separate online programmes were utilised for this purpose 

(referenced in Ng and Heinikoff 2006) and each predicted that the amino acid 
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substitution in CD44v3 was neutral, tolerated and unlikely to cause deleterious 

effects or change protein function (results shown in Appendix M). Furthermore, the 

attachment site for HPS found in variant exon 3 and critical for its reported functions 

is located between amino acid positions 32 – 39 in the DNA sequence and not near 

the site of the amino acid substitution (position 17) (Greenfield et al. 1999) thus 

suggesting low probability that the amino acid substitution may alter HPS binding. 

Finally, to assess whether any conserved sequences were found in the CD44 variant 

3 exon which may be altered upon amino acid substitution, the publically available 

online conserved domain and protein classification database tool 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was utilised and revealed 

no known conserved sites in this exon (Appendix N). Taken together, these analyses 

suggest that the amino acid substitution in this exon is unlikely to change its protein 

function. 

The experimental data further suggested a role for CD44v6-mediated activation of 

the EGFR pathway as a promoter of cellular invasion in tamoxifen resistance 

(depicted in Figure 6.31). Indeed the results revealed that overexpression of CD44v6 

in MCF-7 cells enhanced cellular invasion in an EGFR-dependent manner, whilst loss 

of CD44v6 protein expression in Tam-R cells reduced invasion and proliferation and 

attenuated EGFR pathway signalling. Enhanced EGFR signalling has been heavily 

implicated in the acquisition of tamoxifen-resistance, therefore it could be 

hypothesised that CD44v6-mediated EGFR activation in MCF-7 cells may reduce their 

response to tamoxifen leading to the acquisition of resistance. Although this thesis 

did not reveal a role for CD44v6 in the attenuation of tamoxifen response in MCF-7 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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cells, these experiments were conducted over a short 5 day period due to the nature 

of the transient transfections. Thus, to further explore whether CD44v6 

overexpression may reduce tamoxifen response by enhancing cellular 

invasion/proliferation through EGFR activation, future studies which involve 

culturing stable CD44v6-transfected MCF-7 cells in the presence of tamoxifen could 

be conducted. Surprisingly, loss of CD44v6 did not alter the behavioural functions of 

Fas-R cells, (although appeared to attenuate fulvestrant response in MCF-7 cells 

through an unidentified mechanism) however this endocrine resistant cell model 

expresses low levels of endogenous EGFR, which unlike Tam-R cells is not heavily 

implicated in the acquisition of fulvestrant-resistance, thus the inference would be 

that CD44v6 may play a more important role in cells where EGFR is co-expressed.  

This was supported by data from a small exploratory clinical series which revealed 

that whilst high levels of CD44v6 correlated with a significantly better outcome in 

ER+ primary breast cancers treated with tamoxifen (potentially due to the 

enhancement of cellular migration observed in the experimental data), a promising 

separation was shown between CD44v6+ patients when subdivided with EGFR status. 

This data revealed that patients whose tumours co-expressed CD44v6 and EGFR 

(CD44v6+/EGFR+) displayed a worse outcome compared to CD44v6+/EGFR- patients. 

Interestingly, the cohort that associated with the worst overall outcome were 

patients whose tumours did not express either receptor (CD44v6-/EGFR-) and data 

suggested a clear clustering of CD44v6+/EGFR+ with the CD44v6- patients away from 

the CD44v6+/EGFR- cohort in both DFI and OS survival curves, thus suggesting that 

patients expressing low/negative CD44v6 levels perform badly irrespective of EGFR 
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status. These data suggest that other signalling pathways may drive misbehaviour of 

the CD44v6- cohorts (which may or may not involve interplay with EGFR) leading to 

worsened outcome.  

 

Figure 6.31. A proposed mechanism for CD44v6-mediated EGFR activation leading to enhanced 

cellular invasion and growth. This thesis identified that CD44v6 mediated EGFR activation led to 

enhanced AKT and ERK1/2 signalling and enhanced invasion and growth in Tam-R cells. Additional 

experimental analysis is required to determine whether a direct interaction between CD44v6 and 

EGFR occurs in these cells and to further elucidate the signalling mechanisms through which 

cellular invasion and growth is activated. 
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Overall, these data infer that high levels of CD44v6 expression are protective in ER+ 

patients treated with tamoxifen, however patients whose tumours co-express 

CD44v6 and EGFR could predict earlier relapse and a poorer overall outcome on 

tamoxifen (as seen in the experimental work with CD44v6 and EGFR interplay leading 

to enhanced invasion). Whilst this study remains exploratory due to low patient 

numbers (particularly for EGFR+ subsets, given this is a ER+ sample series) these 

results are in accordance with previous data from the BCMPG (Gee et al. 2012; IACR 

Manchester Group Abstract, personal communication) which has previously shown 

that CD44v6 expression strongly correlates to a better outcome in ER+ disease. 

Although significance was shown in both survival curves in this thesis, study numbers 

were too low to compare individual subgroups, therefore further studies are needed 

with larger TMA sections (including a greater sample number of EGFR+ patients) to 

validate these preliminary findings. 

Whilst suppression of CD44v6 appeared to reduce endogenous invasion and HA-

stimulated proliferation in Tam-R cells, a concomitant significant enhancement of 

cellular migration was also observed; an effect not shown upon CD44v6 

overexpression in MCF-7 cells. Although the mechanism(s) through which this may 

occur remains undetermined and require future exploration, one hypothesis may be 

that different CD44v6-containing isoforms are involved in different cellular 

processes. Whilst only the CD44v6 isoform was overexpressed in MCF-7 cells, CD44v6 

siRNA suppressed the expression of all isoforms containing the CD44v6 exon. Given 

that the characterisation data revealed the presence of several CD44v6-containing 

isoforms in Tam-R cells (Chapter 3), it may be postulated that certain isoforms e.g. 
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containing the variant 6 exon only, may possess greater affinity for co-receptors, e.g. 

EGFR, thus promoting cellular invasion, whilst others e.g. containing a combination 

of variant exons including variant 6, may have a prominent role in the suppression of 

cellular migration. These data may infer that specific CD44v6 isoforms mediate 

distinct behaviours in cells and may in part explain the contradictory results found 

between studies which have correlated enhanced CD44v6 expression with both 

favourable (Shah et al. 2010), unfavourable (Lian et al. 2006) or no association with 

clinical parameters (Morris et al. 2001; Diaz et al. 2003 Ma et al. 2005) in breast 

cancer.  

Previous data from this study showed that CD44 global suppression in Tam-R and 

Fas-R cells reduced their migratory, invasive and proliferative phenotype. Given that 

overexpression of CD44v3/CD44v6 proteins in MCF-7 cells, and CD44v6 suppression 

in Tam-R cells, impaired cellular migration across these cell models, this may imply 

that alternative CD44 isoforms are involved in the promotion of aggressive cellular 

behaviours in Tam-R and Fas-R cells. Furthermore, CD44 global suppression 

attenuated the response of both endocrine resistant cell models to HA, thus 

potentially suggesting a role for CD44 proteins in HA-sensitisation. Therefore, it was 

hypothesised that overexpression of CD44 variants in endocrine sensitive MCF-7 cells 

would sensitise these cells to HA leading to enhanced cellular responses. However 

this was not observed in MCF-7 cells, and CD44 variant overexpression did not 

significantly impact HA-mediated signalling/responses. These data may potentially 

be explained by the lower reliance of MCF-7 cells for HA and may suggest that these 

cells require numerous changes in protein composition and phenotype, and not just 
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CD44 variant overexpression alone, to become sensitised to HA. Additionally, 

experimental environment may also account for the lack of response observed by 

MCF-7 transfected cells. Whilst both endocrine resistant cell models are maintained 

in experimental media (WRPMI media with charcoal-stripped serum), it was not 

possible to transfect MCF-7 cells in stripped serum therefore these cells were 

maintained in their maintenance media which contained foetal calf serum. An 

unquantified level of HA and additional growth factors may be present in this serum 

thus potentially masking the effect of additional HA stimulation in MCF-7 cells. Future 

experiments to determine the HA concentration required to stimulate these cells to 

observe behavioural outputs/stable CD44-overexpressing MCF-7 transfectants are 

required to assess the effect that CD44 overexpression causes upon HA sensitivity. 

An additional interesting observation from this study revealed that whilst 

overexpression of CD44∆cyt proteins in MCF-7 cells led to the activation of several 

cell surface receptors and/or downstream signalling components (a previously 

unreported phenomenon), unlike their full length CD44 isoform counterparts, no 

significant modification of cellular behavioural processes was observed in these cells 

compared to the untransfected controls. One explanation for this phenomenon may 

be that whilst CD44∆cyt proteins are capable of being transported to the plasma 

membrane (as observed by immunoanalysis data) whereupon they activate 

numerous signalling components, these events may be transient due to the 

instability of these proteins and thus not sufficient to stimulate prolonged cellular 

signalling leading to functional outputs. This is supported by observations from 

numerous studies exploring the role of CD44 cytoplasmic tail truncated mutants 
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(Isacke 1994; Perschl et al. 1995; Jiang et al. 2002). Indeed, Neame and Isacke et al. 

1993 showed that removal of the CD44 cytoplasmic tail in fibroblast cells does not 

prevent presentation of this protein at the plasma membrane however alters its 

localisation to the apical, rather than the baso-lateral, cell surface. In support of this, 

Sheik and Isacke 1996 identified a dihydrophobic leucine331/valine332 motif in the 

CD44 cytoplasmic tail required for the delivery of CD44 to the lateral plasma 

membrane of polarised epithelial MDCK cells. Furthermore, this study revealed a 

population of CD44 cytoplasmic tail mutants in intracellular vesicles suggesting that 

loss of cytoplasmic tail region may reduce protein stability leading to enhanced 

endocytosis and subsequent degradation by lysosomes and Wollner et al. 1992 

reported that tailless CD44 mutants exhibit a 2 – 4 reduced stability compared to full 

length isoforms. It has also been suggested that removal of the CD44 cytoplasmic tail 

allows easier entry into the coated pit thus leading to enhanced internalisation and 

degradation of this molecule (Pelchen-Matthews et al. 1991; Neame and Isacke 

1993).  

Additionally, the cytoplasmic tail domain of CD44 is crucial to its cellular functions. 

This domain contains numerous motifs for cytoskeletal binding proteins, sites for 

post-translational modifications required for cellular motility events (Bretscher et al. 

1997; Bourguignon et al. 1991; Legg et al. 2002; Thankamony et al. 2006; Babina et 

al. 2014), binding sites for intracellular signalling components (Bourguignon et al. 

2003; Jia-Lin et al. 2008) and cleavage sites for translocation of the intracellular 

domain to the nucleus for the regulation of several genes (Okamoto et al. 2001; 

Murakami et al. 2003). Therefore, loss of the cytoplasmic domain may attenuate 
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numerous cellular processes particularly involving cellular motility and adhesion 

through loss of cross-linking ability with the cytoskeleton and binding to 

cytoskeletal/downstream effector molecules. Taken together, these observations 

may account for the increased intracellular localisation of CD44v3∆cyt and 

CD44v6∆cyt proteins observed in MCF-7 cells upon transfection and support an 

explanation as to why these isoforms were able to enhance cellular signalling but did 

not modify cellular behaviours in these cells. However future studies to further 

elucidate the mechanisms through which these cytoplasmic tail truncations may 

mediate cellular signalling, but not functional outputs, are required.  

Given that the CD44∆cyt plasmid DNA constructs were provided by Dr Ursula 

Gunthert (Basel University, Switzerland) to use as transfection controls, however led 

to enhanced cellular signalling, experiments were undertaken at the end of this 

project to create an empty vector plasmid DNA backbone construct (without the 

inserted CD44 gene sequence) to use as an alternative transfection control. Given 

that the CD44 constructs contain a GFP-tag fused to their carboxy-terminus end, it 

was also investigated whether the presence of this tag altered cellular behaviours 

through transfection of MCF-7 cells with a pEGFP-N1 plasmid vector containing the 

GFP-tag construct only. These preliminary results (shown in Appendix S) suggest that 

the plasmid vector and GFP-tag do not substantially alter the behaviour of MCF-7 

cells thus supporting that the effects observed by CD44v3/CD44v6 transfection arise 

from the activities of these proteins alone.  
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Summary 6.3.1 

In this chapter, an important role was shown for CD44v6 proteins in EGFR-mediated 

cellular invasion in Tam-R cells which was supported by exploratory clinical analysis 

showing a trend for worsened outcome in ER+ breast cancer patients co-expressing 

high levels of CD44v6 and EGFR treated with tamoxifen. These preliminary findings 

require further exploration however suggest that co-expression of CD44v6 and EGFR 

may predict earlier relapse in a sub-cohort of ER+ breast cancer patients and could 

present as candidates for therapeutic targetting to delay resistance onset. 

Interestingly, CD44v6 suppression in Fas-R cells did not significantly alter cellular 

behaviours, and exploratory clinical analysis revealed that high levels of CD44v6 

expression alone associated with a trend for better patient outcome in ER+ breast 

cancer patients treated with tamoxifen. These findings may infer that the 

contribution of CD44v6 to resistance is likely to depend upon other contextual and 

microenvironmental factors, e.g. the presence of co-receptor proteins, which may be 

specific to each resistant state. 
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7. General Discussion 

Endocrine resistance is a major hurdle for the successful treatment of breast cancer 

therefore gaining knowledge of the molecular mechanisms that underlie this process 

may offer the opportunity for the identification of novel therapeutic targets through 

which resistance might be delayed or circumvented. Moreover, given that the 

literature supports that resistance is accompanied by an aggressive cell phenotype, 

targetting resistance mechanisms may also have the potential to suppress such cell 

behaviours. In light of a previous study by the BCMPG (Hiscox et al. 2012) which 

reported upregulation of total CD44 expression in a model of ER+ breast cancer-

derived tamoxifen resistance where it associated with an enhanced migratory 

phenotype, part of the aims of this thesis were to extend these investigations into a 

further model of resistance, to the endocrine agent fulvestrant, in order to determine 

whether CD44 upregulation represented a generic feature of acquired resistance. 

Furthermore, one aspect of CD44 which makes it difficult to study and undoubtedly 

contributes to variability between published studies is the extensive alternative 

splicing attributed to this molecule. Whilst CD44 is often found to become 

overexpressed in invasive breast cancer, CD44 isoforms have been shown to mediate 

both pro- and anti-tumoural signalling pathways in vitro (Cheng et al. 2006; Afify et 

al. 2008; Bourguignon et al. 2010; Babina et al. 2014) and have been correlated with 

both favourable and unfavourable patient outcome in clinical breast cancer (Morris 

et al. 2001; Rys et al. 2003; Ma et al. 2005; Lian et al. 2006; Afify et al. 2009). 

Therefore the main aims of this thesis were to explore CD44 isoform contribution to 
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tamoxifen- and fulvestrant- resistance and to investigate the hypothesis that specific 

CD44 isoforms promote an aggressive phenotype in these cells. 

The findings from this thesis confirmed results from Hiscox et al. 2012 and showed 

that total CD44 expression was upregulated in Tam-R cells compared to their 

parental endocrine sensitive MCF-7 cells. Importantly, this thesis reported the novel 

finding that CD44 expression also becomes upregulated in the model of fulvestrant-

resistance and further identified that a different expression profile of CD44 isoforms 

exists between resistant cell models thus suggesting that there is not a generic cohort 

of CD44 isoforms that become upregulated in resistance. Indeed, upregulation of 

CD44v3-containing proteins was specific to tamoxifen-resistance whilst CD44v10-

containing proteins were upregulated only in Fas-R cells. Although CD44v6 proteins 

were upregulated in both models of resistance, Western blotting analysis revealed a 

differential expression profile of CD44v6 splice isoforms between these cell models; 

however the composition of these isoforms was not determined.  

These findings may suggest that upregulation of particular CD44 isoforms may be 

specific to each resistant state. In support of this, Olsson et al. 2011 reported that 

individual CD44 isoform expression is associated with specific breast cancer 

characteristics and molecular subtypes and contributes to distinct oncogenic 

signalling pathways. For example, this study examined 187 primary breast tumours 

and 13 breast cancer cell lines and revealed that CD44v2-v10 and CD44v3-v10 

isoforms correlated with luminal A breast cancer, CD44v8-v10 isoforms were 

predominantly expressed in basal-like breast cancers, and CD44 Std was associated 

with HER2+ breast cancer. Furthermore, this group showed a correlation between 
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CD44 isoform expression and different clinical biomarkers in tumours. The 

CD44v2/v3-v10 isoforms correlated with positive steroid hormone receptor status, 

CD44v8-v10 was strongly correlated with EGFR positive/HER2 low/negative status 

and CD44 Std associated with HER2 expression. This study concluded that CD44 

isoforms may be part of a programme that drives development of distinct molecular 

subtypes in breast cancers or may be a consequence of this process.  

Given that only two models of acquired endocrine resistance were examined in this 

thesis, it is difficult to draw firm conclusions between the expression of individual 

CD44 isoforms and specific resistant states, however future studies using alternative 

models of acquired resistance may confirm these observations. Interestingly, the 

findings from Olsson et al. 2011 suggested that CD44 expression may be linked to the 

ER, with the greatest total level of CD44 isoform expression found in luminal A (ER+) 

breast cancers. Conversely, other groups have reported that CD44 expression is 

inversely proportional to ER expression and associated with the most aggressive 

triple negative subtype of breast cancer (Klingbeil et al. 2010; Montgomery et al. 

2012). In this thesis, the greatest level of total CD44 expression was shown in the ER- 

Fas-R cells, however CD44 was also elevated in ER+ Tam-R cells suggesting that an 

absolute relationship between CD44 and ER expression may not necessarily exist.  

To determine whether a relationship exists between CD44 and the ER in the resistant 

cell models, the effects of short term endocrine treatment upon CD44 expression 

was investigated (Appendix T). The data revealed that MCF-7 cells treated with the 

ER downregulator, fulvestrant, abrogated CD44 expression, whilst tamoxifen and 

oestradiol treatment (partial agonist and agonist of the ER respectively) enhanced 
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CD44 expression between 3 – 52 day treatments, compared to the untreated control 

cells. This data suggested a potential role for the ER within the regulation of CD44 

expression and further investigation by the Jason Carroll research group (Cancer 

Research UK, Cambridge Institute, personal communication) revealed that whilst the 

presence of an oestrogen receptor element (ERE) could not be found within the first 

500 bp of the CD44 gene promoter, sites for p300 and CPB binding proteins (known 

to bind and regulate ER activity) were located in this region. Therefore these data 

may infer a potential role for the indirect regulation of CD44 expression by the ER, 

which may provide an explanation for the modulation of CD44 expression shown 

within MCF-7 cells treated with endocrine agents that differentially alter ER 

expression. However, whilst the loss of ER expression that occurs upon fulvestrant 

treatment in MCF-7 cells abrogated CD44 expression in early endocrine treatment, 

CD44 becomes upregulated upon acquisition of fulvestrant-resistance, thus 

suggesting that alternative signalling pathways may be activated which upregulate 

CD44 isoform expression at a later stage of fulvestrant treatment in these cells.  

The data in this thesis showed that CD44 variant expression is upregulated in 

endocrine resistance, however the mechanisms which regulate CD44 alternative 

splicing are not yet fully understood. CD44 alternative splicing has been shown to 

occur in response to specific stimuli, such as oxidative stress (Takeo et al. 2009) and 

epigenetic changes on histones (Batsche et al. 2006; Ameyar-Zazou et al. 2012; 

Cappellari et al. 2013), however most often results from signalling transduction 

pathways, particularly MAPK activation (Matter et al. 2002; Cheng and Sharp 2006) 

and post-translational modifications that influence components of the alternative 
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splicing machinery, such as splicing factors (Weg-Remers et al. 2001; Cheng et al. 

2006). Ras/MAPK signalling has been shown to phosphorylate and subsequently 

activate the splicing factors, Sam68 and SRm160, which regulate the inclusion of 

CD44 variant exons into mRNA transcripts (Weg-Remers et al. 2001; Matter et al. 

2002; Cheng and Sharp 2006), however the signalling pathways between Ras/MAPK 

activation and stimulation of alternative splicing are not well defined. Cheng et al. 

2006 revealed a positive feedback loop in HeLa cells which coupled Ras/MAPK 

signalling and CD44 alternative splicing. This group revealed that RTK signalling 

stimulated CD44 splicing (by induction of Ras/MAPK signalling) and in turn, the 

specific upregulation of the CD44v6 isoform promoted further sustained Ras/MAPK 

activation leading to cell cycle progression. The inclusion of variant exons into the 

CD44 mRNA transcript has additionally been shown to be mediated by the epithelial 

cell type specific splicing regulator proteins (ESPR1 and ESRP2), which also connects 

growth factor signalling and CD44 splicing (Warzecha et al. 2009; Brown et al. 2011). 

Therefore it may be hypothesised that upregulation of specific growth factor 

receptor signalling pathways that activate these splicing factors and lead to the 

subsequent production of CD44 variant isoforms, may be an important factor in the 

acquisition of endocrine resistance. Whilst changes in the gene expression of splicing 

factors across the cell models was not investigated in this thesis, enhanced RTK 

signalling occurs in response to oestrogen withdrawal (endocrine treatment) 

(Normanno et al. 2005) and has been shown to be involved within the acquisition of 

endocrine resistance in breast cancer causing cells to change from an oestrogen-

dependent phenotype (endocrine responsive) to a non-responding phenotype and 
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eventually to oestrogen independence (Knowlden et al. 2003; Britton et al. 2006; 

Hiscox et al. 2006). Elevated ErbB receptor signalling has been shown to induce 

downstream signalling responses, including Ras/MAPK activation, which may lead to 

enhanced CD44 splicing in these cells (Kurokawa et al. 2000; Weigelt et al. 2010). 

Given that this thesis identified a role for CD44-mediated ErbB activation towards an 

aggressive phenotype, it may be postulated that this mechanism could lead to the 

enhanced aggressive phenotype in cells which accompanies endocrine resistance.  

Indeed, it has been reported that tumours expressing CD44 variant isoforms are 

more aggressive than tumours expressing the CD44 standard isoform only, and 

numerous reports document upregulation of CD44 splice variants in aggressive 

carcinoma tissues compared to their normal tissues (Lui et al. 2005; Lian et al. 2006; 

Wang et al. 2007; Ni et al. 2014).  Yae et al. 2012 showed that inoculation of the CD44 

variant (v8-v10) isoform-expressing subpopulation of mouse T41 breast cancer cells 

into severely immunocompromised mice conferred metastatic potential and led to 

the formation of lung metastases which was accompanied by an expansion of stem-

like cancer cells, an observation that was not seen in the CD44 variant-negative (CD44 

Std) subpopulation. Further, Banky et al. 2012 reported that CD44 proteins containing 

variant exons 3 and 6 showed dominant expression compared to other CD44 variants 

across colorectal cancer cell lines and suggested that in a minority of tumour 

subclones these variants may act as ‘metastasis genes’ and drivers of the metastatic 

phenotype in these cells. In accordance with these findings, data from this thesis 

showed that the upregulation of CD44 variant isoforms in resistant cell models 

associated with an increase in their endogenous aggressive cellular behaviours. For 
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example, endocrine resistant cells showed a significantly enhanced invasive (Tam-R 

and Fas-R cells) and migratory and proliferative (Fas-R cells) capacity compared to 

their endocrine sensitive MCF-7 counterpart. However, whilst CD44 expression was 

greatest in Fas-R cells, this study suggested an importance for CD44 proteins in both 

models of endocrine resistance as global knockdown of CD44 significantly reduced 

the migratory, invasive and proliferative capacity of Tam-R and Fas-R cells.  

As well as contributing to the endogenous aggressive phenotype of the resistant cell 

models, CD44 upregulation also led to the sensitisation of these cells to their 

principle ligand, hyaluronan (HA). The data revealed increased cellular migration 

(Tam-R and Fas-R cells), invasion and proliferation (Fas-R cells) in response to HA 

stimulation which was attenuated upon CD44 suppression. Interestingly, this thesis 

revealed that the mechanisms through which HA stimulation enhances the 

aggressive behaviour of Tam-R and Fas-R cells occurs through different pathways and 

thus may be dependent upon the composition of proteins in cells. For example, HA 

stimulation appeared to enhance cellular migration and invasion in Tam-R cells in an 

ErbB receptor dependent manner which corroborates from previous data from the 

BCMPG (Hiscox et al. 2012) and with other studies which have shown a role for CD44 

activation of ErbB receptors towards the induction of the metastatic cascade 

(Bourguignon et al. 1997; Kim et al. 2008; Palyi-Krekk et al. 2008; Bao et al. 2011). 

However, the mechanisms through which HA stimulated the CD44-mediated 

functions in Fas-R cells remains elusive but this thesis does not heavily implicate the 

RTKs EGFR, HER2 or c-Met in this process. These data suggest an importance for the 

bioavailability of co-receptor proteins in the determination of CD44-mediated 
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functions in cells and suggests that the presence of HA is likely to promote adverse 

behaviours in breast tumours which highly express CD44 proteins. These findings 

may have important implications with regards to the augmentation of breast tumour 

sensitivity to HA which is often found to be abundantly expressed in the 

microenvironment of breast carcinomas (Auvinen et al. 2000; Auvinen et al. 2014). 

Indeed, both HA and CD44 have been shown to be highly expressed within the 

peritumour stroma and tumour mass, respectively, in breast cancer where they are 

associated with tumour metastasis, increased relapse and poor patient prognosis 

(Udabage et al. 2005a; Auvinen et al. 2013).  

These data along with numerous other studies suggest that breast cancer cells which 

co-express high levels of HA and CD44 exhibit an enhanced susceptibility for 

metastasis and may predict tumour recurrence and therapeutic resistance. Whilst at 

present no current therapy is available which targets CD44 proteins in breast cancer, 

in recent years a large amount of interest has surrounded the exploitation of the HA-

binding properties of CD44 a mechanism for targetting drugs to tumour cells to 

reduce off-target effects of chemotherapeutic agents (Hyun-Jong et al. 2011; Lui et 

al. 2011; Young-II et al. 2012). Yang et al. 2013 revealed that treatment of the highly 

CD44-expressing breast cancer cell lines, BT549 and MDA-MB-231, with 

oligosaccharide HA nanoparticles conjugated with the chemotherapeutic drug, 

paclitaxel, diminished their endogenous protective HA coating, enhanced their 

sensitivity to paclitaxel and demonstrated growth inhibition in a breast cancer 

xenograft mouse model. Furthermore, Ganesh et al. 2013 revealed the use of HA as 

a vehicle for the delivery of RNA interference therapies into highly CD44-expressing 
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tumours. This group synthesised and evaluated a series of HA-based nanosystems to 

stably encapsulate and deliver siRNAs to a range of highly CD44-expressing human 

cancer cell lines, including the breast cancer cell line, MDA-MB-486. The results 

showed that several of the engineered HA-based nanosystems were effective in 

entering the cell lines leading to gene silencing activity, and also showed inhibition in 

models of in vivo lung cancer with and without resistance to chemotherapeutic 

drugs. Whilst these approaches may represent therapeutic value, a large amount of 

work is required before they can become a viable clinical treatment option. 

The overall aims of this thesis were to explore whether specific CD44 isoforms 

promote adverse cellular behaviours in endocrine resistance and the main findings 

of this study may go some way to explain the contradictory results found in CD44 

research. This thesis identified that CD44v3 overexpression in MCF-7 cells enhanced 

HA-induced invasion and suppressed cellular migration, however these results could 

not be validated in endocrine resistant models due to unavailability of CD44v3 siRNA 

and lack of clinical data. Whilst this thesis identified that CD44v6 was upregulated in 

both endocrine resistant cell models, no consistent relationship was observed 

between CD44v6 expression and increased aggressive cell behaviour. Indeed, despite 

Fas-R cells exhibiting the highest level of CD44v6 expression compared to Tam-R 

cells, CD44v6 siRNA knockdown modulated the activity of Tam-R cells but did not 

significantly alter Fas-R cell behaviour. These data suggest that it is likely that the 

contribution of CD44v6 to resistance occurs amongst other contextual factors and 

microenvironmental cues which may be specific to each resistant state. For example, 

CD44v6 enhanced invasion in Tam-R cells in an EGFR-dependent manner, however 
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did not significantly alter the behaviour of Fas-R cells which exhibit endogenously low 

levels of EGFR. This may infer a reliance on specific CD44 isoforms for the expression 

of alternative co-receptors, e.g. EGFR, to mediate an aggressive phenotype in these 

cells. Indeed, this is further observed in the exploratory immunohistochemical study 

shown in this thesis, where high CD44v6 expression associated with a trend for better 

outcome in ER+ breast cancer patients treated with tamoxifen which may relate to 

its role in the suppression of cellular migration as observed in the experimental data. 

However, this clinical series showed a trend for worsened outcome in patients whose 

tumours co-express high levels of CD44v6 and EGFR compared to the CD44v6+/EGFR- 

sub-cohort of tumours. These preliminary findings require further exploration 

however may implicate CD44v6 as a marker for better outcome in ER+ patients on 

tamoxifen treatment, whilst co-expression of CD44v6 and EGFR may represent a sub-

cohort of patients which may respond worse to this treatment.  

Whilst this thesis is the first to investigate CD44 isoform expression in ER+ breast 

cancer endocrine resistance, other studies have revealed a role for CD44v6 and EGFR, 

along with a panel of several other proteins including c-Met, as markers of highly 

invasive breast carcinomas where their expression has been shown to predict poor 

clinical outcome and may identify patient cohorts that require more aggressive 

treatment strategies (Charpin et al. 2009a; Charpin et al. 2009b). Furthermore, 

Vermeulen et al. 2012 screened tissue microarrays containing 483 cases of highly 

invasive breast carcinomas to identify the minimal number of targetted antibody 

probes required for the highest possible detection rate. This group revealed that 

whilst no single membrane marker is likely to detect all breast cancers, 80 % of 
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samples expressed at least one of a panel of 5 markers including CD44v6, EGFR, HER2, 

IGFR1 and GLUT1; thus concluding that at least 5 probes may be required for a high 

detection rate of breast cancers in vivo by molecular imaging. These studies along 

with others have revealed that CD44v6 and EGFR (along with several other receptors) 

are established markers of highly invasive/basal breast carcinomas that may be used 

to enhance detection rates and better predict disease outcome in patients. 

Additional studies have also identified these receptors as prognostic markers in 

alternative carcinomas, particularly colorectal cancer (Elliot et al. 2014; Zhao et al. 

2015). For example, Garouniatis et al. 2013 revealed that CD44v6, EGFR, c-Met and 

FAK were expressed in 183 cases of colorectal carcinoma and all correlated with 

cancer invasiveness and progression. Specifically, CD44v6 and FAK were 

demonstrated to be independent predictors of poor survival. This group further 

showed that aberrant co-expression of all receptor combinations remained 

significant thus also suggesting the occurrence of receptor cross-talk action. 

Collectively, these data revealed a predictive role for these receptors in colorectal 

carcinoma and highlighted their use as biomarkers for determining cohorts of 

patients which may respond worse to treatment and require more aggressive 

strategies. 

7.1 Future Work 

Given that global CD44 siRNA knockdown studies in this thesis reduced the 

migratory, invasive and proliferative capacity of Tam-R and Fas-R cells, these data 

may implicate additional CD44 isoforms within specific roles in endocrine resistance. 

Therefore, future work to explore alternative isoforms e.g. CD44 Std and CD44v10 
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proteins, and validate the role of CD44v3 in endocrine resistance, could be 

considered in these MCF-7 derived acquired resistant cell models.  

Whilst this study revealed that CD44 variant isoform expression becomes 

upregulated in acquired endocrine resistant cell models which associated with an 

increase in their aggressive phenotype, this thesis focused upon early resistance (1.5 

– 2 years) in MCF-7 derived tamoxifen- and fulvestrant- resistant cell models. To 

further explore the contribution of CD44 proteins to endocrine resistance, evaluation 

in the long term setting is required. During this thesis, the BCMPG developed MCF-7 

cell-derived models of late (3 years) tamoxifen- and fulvestrant- resistance. Whilst 

time did not allow for the study of CD44 isoform expression and function in these cell 

models in this thesis, unpublished and ongoing work by the BCMPG has shown that 

although CD44 isoform expression (including CD44 Std, CD44v3 and CD44v6) is 

elevated in the models of late tamoxifen- and fulvestrant- resistant cells compared 

to their endocrine sensitive counterpart, this level of expression is lower than that 

found in early resistance. These studies further revealed that despite a reduction in 

CD44 expression, these models of late resistance still show a high level of basal 

migration (no other function was tested), particularly revealing an increase in 

migration in late tamoxifen resistance. Therefore future work is required to further 

investigate the roles of CD44 isoforms in late endocrine resistance in MCF-7 cells 

including the analysis of additional functional roles (invasion, proliferation) and 

interactions with RTKs and HA in these cells MCF-7 derived cell models to determine 

their roles in early versus late endocrine resistance.  



  

 

 

 

236 

 

In this thesis the MCF-7 cell line was used as the only model of acquired endocrine 

resistance in ER+ (HER2-) breast cancer as, at the beginning of the project, this was 

the only available cell model for which to study acquired endocrine resistance and 

MCF-7 cells are used as a ‘standard’ for ER+ breast cancer research ubiquitously 

around the world. Since the start of this project, the BCMPG have subsequently 

developed several other models of acquired tamoxifen- and fulvestrant- resistance 

in the ER+/HER2- breast cancer cell line, T47D, and in the ER+/HER2+ cell lines, BT474 

and MDA-MB-361. The duration of this thesis did not allow time to study these 

additional cell models, therefore future work to investigate CD44 isoform expression, 

in particular the exploration of CD44v6 and EGFR and their contribution to the 

aggressive phenotype, in these models may validate the findings of this thesis.  

Given that RTK signalling is heavily implicated in the acquisition of endocrine 

resistance, and is known to activate Ras/MAPK signalling which may influence 

alternative splicing of CD44 isoforms. Future work to investigate the mechanisms 

which regulate the splicing of CD44 variant isoforms leading to their upregulated 

expression in endocrine resistance may offer therapeutic value. 

7.2 Conclusions 

This thesis revealed upregulated CD44 expression in models of endocrine resistance 

which associated with an increase in their aggressive phenotype and suggested that 

CD44 variant isoforms may associate with specific resistant states. The main aims of 

this thesis were to explore the hypothesis that specific CD44 variant isoforms 

promote an aggressive phenotype in endocrine resistance. The experimental and 
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clinical data in this thesis points to the importance of cellular context for CD44 

function. Whilst CD44v6 expression correlates with a better clinical outcome in ER+ 

breast cancer patients treated with tamoxifen, co-expression of CD44v6 and EGFR 

may provide a context where CD44v6 functions to enhance cellular invasion/growth 

leading to a worsened patient outcome. Whilst this finding requires validation from 

future work in a larger clinical series, CD44v6 and EGFR may have potential 

therapeutic value to predict a cohort of patients in ER+ breast cancer which relapse 

earlier on tamoxifen and may thus require more aggressive treatment strategies. 

Taken together, this thesis highlights that a clear understanding of the composition 

of CD44 splice variants and bioavailability of specific co-receptor proteins/ligands is 

of crucial importance towards understanding the role of CD44 in endocrine 

resistance and correlating this with clinical outcome. Whilst a predictive role for CD44 

proteins may be given to specific CD44 isoforms alone or in combinations with other 

proteins, the complex dual nature of these proteins as shown in this thesis may go 

some way to explain the contradictory results surrounding CD44 research and 

provide an explanation as to why at present there are no definitive correlations 

between CD44 expression and clinical parameters in breast cancer. 
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9. Appendices 

Appendix A. Charcoal-stripping procedure for 100 ml FCS 

Charcoal-stripped FCS (SFCS) was added to the culture media in replacement of FCS 

to mimic oestrogen deprivation conditions through the removal of non-polar 

materials including steroid hormones. A charcoal solution (2 g activated charcoal, 

0.01 g dextran T70 diluted in 18 ml distilled water) was stirred for one hour at room 

temperature. A solution of FCS used in routine culture media was adjusted to pH 4.2 

with HCI (5M) and equilibrated at 4 ˚C for 30 minutes. To 100 ml of adjusted FCS 

solution was added 5 ml charcoal solution and stirred gently for 16 hours at 4 ˚C. The 

charcoal contained within this solution was then removed by centrifugation at room 

temperature for 40 minutes, 12, 000 rpm (Labofuge 400R centrifuge, Heraeus, 

Germany). The resultant supernatant was coarse-filtered through Whatman filter 

paper NO.4 to ensure complete charcoal removal. The remaining solution was then 

readjusted to pH 7 using NaOH (5 M) and filter sterilised with a 2 μM Super Vacucap 

membrane (Gellman Laboratory Pall, Ann Arbor, USA). The resultant charcoal-

stripped FCS was aliquotted into sterile universal tubes and stored at - 20 ˚C. This 

procedure was performed by research technician staff in the Breast Cancer 

Molecular Pharmacology Group (BCMPG), Cardiff University. 

Appendix B. Jetset gene probes 

The affymetrix microarray platform contains multiple gene probe sets for each target 

gene which differ slightly in sequence. These differences in gene probe set sequences 

may lead to inconsistent or contradictory measurements dependent upon their 
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performance on the microarray platform which may ultimately result in difficulties 

determining the expression of the target gene. To assess the efficacy of each probe 

set sequence, Li et al. 2011 developed a method to score their performance based 

on 3 determinants which assessed overall specificity, coverage and degradation 

resistance (reviewed in Li et al. 2011). All probes sets achieve a score ranging from 0 

– 1 and the probe with the highest performance score (closer to 1) is determined as 

the Jetset probe.  

Appendix C. CD44 gene sequence and primer sequences 

The human gene sequence encoding CD44 mRNA obtained from the NCBI database 

(http://www.ncbi.nlm.nih.gov/) (Figure 9.1) with each variant exon depicted and 

described in Table 9.1 below. This sequence was utilised to (i) design primers for RT-

PCR analysis that bound to specific regions of DNA encoding the desired target exon 

corresponding to a specific CD44 isoform, (ii) design siRNA molecules which bound 

specifically to a sequence within the CD44v6 exon and (iii) confirm the specificity of 

the global CD44 siRNA molecules (purchased by Thermo Scientific, Dharmacon, UK) 

to the gene sequence. The primers that were designed and utilised for CD44 

detection in this project are highlighted in the gene sequence below and described 

in Table 9.2. The DNA sequences to which each siRNA target molecule used within 

this project bound to the CD44 gene are highlighted in the sequence below and 

described in the Table 9.3. 
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gagaagaaagccagtgcgtctctgggcgcaggggccagtggggctcggaggcacaggcaccccgcgac

actccaggttccccgacccacgtccctggcagccccgattatttacagcctcagcagagcacggggcg

ggggcagaggggcccgcccgggagggctgctacttcttaaaacctctgcgggctgcttagtcacagcc

ccccttgcttgggtgtgtccttcgctcgctccctccctccgtcttaggtcactgttttcaacctcgaa

taaaaactgcagccaacttccgaggcagcctcattgcccagcggaccccagcctctgccaggttcggt

ccgccatcctcgtcccgtcctccgccggcccctgccccgcgcccagggatcctccagctcctttcgcc

cgcgccctccgttcgctccggacaccatggacaagttttggtggcacgcagcctggggactctgcctc

gtgccgctgagcctggcgcagatcgatttgaatataacctgccgctttgcaggtgtattccacgtgga

gaaaaatggtcgctacagcatctctcggacggaggccgctgacctctgcaaggctttcaatagcacct

tgcccacaatggcccagatggagaaagctctgagcatcggatttgagacctgcaggtatgggttcata

gaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaacaacacaggggtgta

catcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacctgaagaag

attgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccc

tactgatgatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatctttt

acaccttttctactgtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacaga

atccctgctaccactttgatgagcactagtgctacagcaactgagacagcaaccaagaggcaagaaac

ctgggattggttttcatggttgtttctaccatcagagtcaaagaatcatcttcacacaacaacacaaa

tggctggtacgtcttcaaataccatctcagcaggctgggagccaaatgaagaaaatgaagatgaaaga

gacagacacctcagtttttctggatcaggcattgatgatgatgaagattttatctccagcaccatttc

aaccacaccacgggcttttgaccacacaaaacagaaccaggactggacccagtggaacccaagccatt

caaatccggaagtgctacttcagacaaccacaaggatgactgatgtagacagaaatggcaccactgct

tatgaaggaaactggaacccagaagcacaccctcccctcattcaccatgagcatcatgaggaagaaga

gaccccacattctacaagcacaatccaggcaactcctagtagtacaacggaagaaacagctacccaga

aggaacagtggtttggcaacagatggcatgagggatatcgccaaacacccaaagaagactcccattcg

acaacagggacagctgcagcctcagctcataccagccatccaatgcaaggaaggacaacaccaagccc

agaggacagttcctggactgatttcttcaacccaatctcacaccccatgggacgaggtcatcaagcag

gaagaaggatggatatggactccagtcatagtataacgcttcagcctactgcaaatccaaacacaggt

ttggtggaagatttggacaggacaggacctctttcaatgacaacgcagcagagtaattctcagagctt

ctctacatcacatgaaggcttggaagaagataaagaccatccaacaacttctactctgacatcaagca

ataggaatgatgtcacaggtggaagaagagacccaaatcattctgaaggctcaactactttactggaa

ggttatacctctcattacccacacacgaaggaaagcaggaccttcatcccagtgacctcagctaagac

tgggtcctttggagttactgcagttactgttggagattccaactctaatgtcaatcgttccttatcag

gagaccaagacacattccaccccagtggggggtcccataccactcatggatctgaatcagatggacac

tcacatgggagtcaagaaggtggagcaaacacaacctctggtcctataaggacaccccaaattccaga

atggctgatcatcttggcatccctcttggccttggctttgattcttgcagtttgcattgcagtcaaca

gtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaatggagctgtggaggacaga

aagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtgaacaaggagtc

gtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatgaaga

ttggggtgtaacacctacaccattatcttggaaagaaacaaccgttggaaacataaccattacaggga

gctgggacacttaacagatgcaatgtgctactgattgtttcattgcgaatcttttttagcataaaatt

ttctactctttttgttttttgtgttttgttctttaaagtcaggtccaatttgtaaaaacagcattgct

ttctgaaattagggcccaattaataatcagcaagaatttgatcgttccagttcccacttggaggcctt

tcatccctcgggtgtgctatggatggcttctaacaaaaactacacatatgtattcctgatcgccaacc

tttcccccaccagctaaggacatttcccagggttaatagggcctggtccctgggaggaaatttgaatg

ggtccattttgcccttccatagcctaatccctgggcattgctttccactgaggttgggggttggggtg

tactagttacacatcttcaacagaccccctctagaaatttttcagatgcttctgggagacacccaaag

ggtgaagctatttatctgtagtaaactatttatctgtgtttttgaaatattaaaccctggatcagtcc

tttgatcagtataattttttaaagttactttgtcagaggcacaaaagggtttaaactgattcataata

aatatctgtacttcttcgatcttcaccttttgtgctgtgattcttcagtttctaaaccagcactgtct
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gggtccctacaatgtatcaggaagagctgagaatggtaaggagactcttctaagtcttcatctcagag

accctgagttcccactcagacccactcagccaaatctcatggaagaccaaggagggcagcactgtttt

tgttttttgttttttgtttttttttttgacactgtccaaaggttttccatcctgtcctggaatcagag

ttggaagctgaggagcttcagcctcttttatggtttaatggccacctgttctctcctgtgaaaggctt

tgcaaagtcacattaagtttgcatgacctgttatccctggggccctatttcatagaggctggccctat

tagtgatttccaaaaacaatatggaagtgccttttgatgtcttacaataagagaagaagccaatggaa

atgaaagagattggcaaaggggaaggatgatgccatgtagatcctgtttgacatttttatggctgtat

ttgtaaacttaaacacaccagtgtctgttcttgatgcagttgctatttaggatgagttaagtgcctgg

ggagtccctcaaaaggttaaagggattcccatcattggaatcttatcaccagataggcaagtttatga

ccaaacaagagagtactggctttatcctctaacctcatattttctcccacttggcaagtcctttgtgg

catttattcatcagtcagggtgtccgattggtcctagaacttccaaaggctgcttgtcatagaagcca

ttgcatctataaagcaacggctcctgttaaatggtatctcctttctgaggctcctactaaaagtcatt

tgttacctaaacttatgtgcttaacaggcaatgcttctcagaccacaaagcagaaagaagaagaaaag

ctcctgactaaatcagggctgggcttagacagagttgatctgtagaatatctttaaaggagagatgtc

aactttctgcactattcccagcctctgctcctccctgtctaccctctcccctccctctctccctccac

ttcaccccacaatcttgaaaacttcctttctcttctgtgaacatcattggccagatccattttcagtg

gtctggatttctttttattttcttttcaacttgaaagaaactggacattaggccactatgtgttgtta

ctgccactagtgttcaagtgcctcttgttttcccagagatttcctgggtctgccagaggcccagacag

gctcactcaagctctttaactgaaaagcaacaagccactccaggacaaggttcaaaatggttacaaca

gcctctacctgtcgccccagggagaaaggggtagtgatacaagtctcatagccagagatggttttcca

ctccttctagatattcccaaaaagaggctgagacaggaggttattttcaattttattttggaattaaa

tacttttttccctttattactgttgtagtccctcacttggatatacctctgttttcacgatagaaata

agggaggtctagagcttctattccttggccattgtcaacggagagctggccaagtcttcacaaaccct

tgcaacattgcctgaagtttatggaataagatgtattctcactcccttgatctcaagggcgtaactct

ggaagcacagcttgactacacgtcatttttaccaatgattttcaggtgacctgggctaagtcatttaa

actgggtctttataaaagtaaaaggccaacatttaattattttgcaaagcaacctaagagctaaagat

gtaatttttcttgcaattgtaaatcttttgtgtctcctgaagacttcccttaaaattagctctgagtg

aaaaatcaaaagagacaaaagacatcttcgaatccatatttcaagcctggtagaattggcttttctag

cagaacctttccaaaagttttatattgagattcataacaacaccaagaattgattttgtagccaacat

tcattcaatactgttatatcagaggagtaggagagaggaaacatttgacttatctggaaaagcaaaat

gtacttaagaataagaataacatggtccattcacctttatgttatagatatgtctttgtgtaaatcat

ttgttttgagttttcaaagaatagcccattgttcattcttgtgctgtacaatgaccactgttattgtt

actttgacttttcagagcacacccttcctctggtttttgtatatttattgatggatcaataataatga

ggaaagcatgatatgtatattgctgagttgaaagcacttattggaaaatattaaaaggctaacattaa

aagactaaaggaaacagaaaaaaaaaaaaaaaaa 

Figure 9.1. The human CD44 mRNA sequence obtained by NCBI. Base pairs shown in dark yellow 

depict the non-coding sequence and base pairs shown in black depict the coding sequence. Base 

pair letters highlighted in bold and underlined represent the first base pair of each exon. The 

sequence highlighted in red shows the start codon found in exon 1. The sequence highlighted in 

green shows the polyA site found in exon 20. CD44 variant exons are depicted by a different colour 

(described in Table 9.1) and the base pair sequences targetted by primers or siRNA molecules are 

highlighted (described in Table 9.2 and 9.3 respectively). 
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Table 9.1. A list of the exon number, corresponding standard/variant exon number and their depicted 

colour and base pair size (as shown in Figure 9.1) for each exon in the human CD44 mRNA sequence 

obtained from the NCBI. It is important to note that exon 6 (variant 1) is not translated into mRNA in 

the human genome due to the position of a stop codon in exon 6 (Screaton et al. 1992). Exon 19 

(standard 9) is usually absent from most CD44 proteins as inclusion of this exon results in the 

formation of a short-tail CD44 isoform due to the presence of an alternative translation stop codon 

(Goldstein and Butcher 1990).  

 

 

 

 

 

 

Exon number Standard/Variant number Colour Base pair size 

1 Standard 1  501 

2 Standard 2  166 

3 Standard 3  134 

4 Standard 4  69 

5 Standard 5  231 

6 Variant 1  Not translated to mRNA - 

7 Variant 2 Red 129 

8 Variant 3 Purple 126 

9 Variant 4 Green 114 

10 Variant 5 Dark Blue 117 

11 Variant 6 Orange 129 

12 Variant 7 Dark Green 132 

13 Variant 8 Dark red 102 

14 Variant 9 Dark Yellow 90 

15 Variant 10 Light Blue 204 

16 Standard 6  63 

17 Standard 7  73 

18 Standard 8  79 

19 Standard 9 Not translated to mRNA - 

20 Standard 10  3271 
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Table 9.2. A list of the CD44 primers used in this project with their corresponding forward and reverse 

sequences and colour in which they are shown in the above human CD44 mRNA sequence (Figure 

9.1).  

 

Target 

siRNA 

RNA sequence DNA sequence 

 

NT-siRNA 

(control) 

UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

TGGTTTACATGTCGACTAA 

TGGTTTACATGTTGTGTGA 

TGGTTTACATGTTTTCTGA 

TGGTTTACATGTTTTCCTA 

 

CD44 

(total) 

GAAUAUAACCUGCCGCUU 

CAAGUGGACUCAACGGAGA 

CGAAGAAGGUGUGGGCAGA 

GAUCAACAGUGGCAAUGGA 

GAATATAACCTGCCGCTT 

CAAGTGGACTCAACGGAGA 

CGAAGAAGGTGTGGGCAGA 

GATCAACAGTGGCAATGGA 

CD44v6  CAGAUGGCAUGAGGGAUUCGCCAA CAGATGGCATGAGGGATATCG

CCAA 
Table 9.3. A list of the target siRNAs and their corresponding RNA and DNA sequences for each siRNA 

used in this project. The colour of each target siRNA DNA sequence identifies their location in the 

above human CD44 mRNA sequence (Figure 9.1).  

 

 

 

 

 

Gene Forward Sequence Reverse Sequence 

CD44 Std 
5’-GACACATATTGC 

TTCAATGCTTCAGC-3’ 
5’-GATGCCAAGATGAT 

CAGCCATTCTGGAAT-3’ 

CD44v3 
5’-CGTCTTCAAAT  

ACCATCTCAGC-3’ 
5’ TCATCATCAA 

TGCCTGATCC-3’ 

CD44v6 
5’-CAACGGAAGA 

AACAGCTACCC-3’ 
5’ CCTGTTGTCG 

AATGGGAGTC-3’ 

CD44v10 
5’-GGAATGATGTCA 

CAGGTGGA-3’ 
5’-AAGGTCCTGCT 

TTCCTTCGT-3’ 
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Appendix D. HMMR gene sequence and primer sequences 

The human gene sequence encoding HMMR (RHAMM) mRNA obtained from the 

NCBI database (http://www.ncbi.nlm.nih.gov/) (Figure 9.2) with each exon depicted 

and described in Table 9.4. This gene sequence was utilised to design primers for RT-

PCR analysis that bound to DNA sequences common to all RHAMM isoforms (shown 

in Table 9.4) 

attctttcttcgtgttcctgtgcgggattggtgtgcccaggggtttggctttccaattggctaacgcc 

ggggtgggtggggaatgtggggagatttgaatttgaaaccggtagggagtgataatccgcattcagtt 

gtcgaggagtgccagtcaccttcagtttctggagctggccgtcaacatgtcctttcctaaggcgccct 

tgaaacgattcaatgacccttctggttgtgcaccatctccaggtgcttatgatgttaaaactttagaa 

gtattgaaaggaccagtatcctttcagaaatcacaaagatttaaacaacaaaaagaatctaaacaaaa 

tcttaatgttgacaaagatactaccttgcctgcttcagctagaaaagttaagtcttcggaatcaaaga 

aggaatctcaaaagaatgataaagatttgaagatattagagaaagagattcgtgttcttctacaggaa 

cgtggtgcccaggacaggcggatccaggatctggaaactgagttggaaaagatggaagcaaggctaaa 

tgctgcactaagggaaaaaacatctctctctgcaaataatgctacactggaaaaacaacttattgaat 

tgaccaggactaatgaactactaaaatctaagttttctgaaaatggtaaccagaagaatttgagaatt 

ctaagcttggagttgatgaaacttagaaacaaaagagaaacaaagatgaggggtatgatggctaagca 

agaaggcatggagatgaagctgcaggtcacccaaaggagtctcgaagagtctcaagggaaaatagccc 

aactggagggaaaacttgtttcaatagagaaagaaaagattgatgaaaaatctgaaacagaaaaactc 

ttggaatacatcgaagaaattagttgtgcttcagatcaagtggaaaaatacaagctagatattgccca 

gttagaagaaaatttgaaagagaagaatgatgaaattttaagccttaagcagtctcttgaggagaata 

ttgttatattatctaaacaagtagaagatctaaatgtgaaatgtcagctgcttgaaaaagaaaaagaa 

gaccatgtcaacaggaatagagaacacaacgaaaatctaaatgcagagatgcaaaacttaaaacagaa 

gtttattcttgaacaacaggaacgtgaaaagcttcaacaaaaagaattacaaattgattcacttctgc 

aacaagagaaagaattatcttcgagtcttcatcagaagctctgttcttttcaagaggaaatggttaaa 

gagaagaatctgtttgaggaagaattaaagcaaacactggatgagcttgataaattacagcaaaagga 

ggaacaagctgaaaggctggtcaagcaattggaagaggaagcaaaatctagagctgaagaattaaaac 

tcctagaagaaaagctgaaagggaaggaggctgaactggagaaaagtagtgctgctcatacccaggcc 

accctgcttttgcaggaaaagtatgacagtatggtgcaaagccttgaagatgttactgctcaatttga 

aagctataaagcgttaacagccagtgagatagaagatcttaagctggagaactcatcattacaggaaa 

aagcggccaaggctgggaaaaatgcagaggatgttcagcatcagattttggcaactgagagctcaaat 

caagaatatgtaaggatgcttctagatctgcagaccaagtcagcactaaaggaaacagaaattaaaga 

aatcacagtttcttttcttcaaaaaataactgatttgcagaaccaactcaagcaacaggaggaagact 

ttagaaaacagctggaagatgaagaaggaagaaaagctgaaaaagaaaatacaacagcagaattaact 

gaagaaattaacaagtggcgtctcctctatgaagaactatataataaaacaaaaccttttcagctaca 

actagatgcttttgaagtagaaaaacaggcattgttgaatgaacatggtgcagctcaggaacagctaa 

ataaaataagagattcatatgctaaattattgggtcatcagaatttgaaacaaaaaatcaagcatgtt 

gtgaagttgaaagatgaaaatagccaactcaaatcggaagtatcaaaactccgctgtcagcttgctaa 

aaaaaaacaaagtgagacaaaacttcaagaggaattgaataaagttctaggtatcaaacactttgatc 

cttcaaaggcttttcatcatgaaagtaaagaaaattttgccctgaagaccccattaaaagaaggcaat 

acaaactgttaccgagctcctatggagtgtcaagaatcatggaagtaaacatctgagaaacctgttga 

agattatttcattcgtcttgttgttattgatgttgctgttattatatttgacatgggtattttataat 

gttgtatttaattttaactgccaatccttaaatatgtgaaaggaacattttttaccaaagtgtctttt 

gacattttattttttcttgcaaatacctcctccctaatgctcacctttatcacctcattctgaaccct 

http://www.ncbi.nlm.nih.gov/
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ttcgctggctttccagcttagaatgcatctcatcaacttaaaagtcagtatcatattattatcctcct 

gttctgaaaccttagtttcaagagtctaaaccccagattcttcagcttgatcctggaggtcttttcta 

gtctgagcttctttagctaggctaaaacaccttggcttgttattgcctctactttgattctgataatg 

ctcacttggtcctacctattatccttctacttgtccagttcaaataagaaataaggacaagcctaact 

tcatagaaacctctctatttttaatcagttgtttaataatttacaggttcttaggctccatcctgttt 

gtatgaaattataatctgtggattggcctttaagcctgcattcttaacaaactcttcagttaattctt 

agatacataaaaatctgagaaactctacatgtaactatttcttcagagtttgtcatatactgcttgtc 

atctgcatgtctactcagcatttgattaacatttgtgtaatatgaaataaaattacacagtaagtcat 

ttaaccaattaaaaa 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2. The human HMMR (RHAMM) mRNA sequence obtained by NCBI. Base pairs shown in 

dark yellow depict the non-coding sequence and base pairs shown in black depict the coding 

sequence. Base pair letters highlighted in bold and underlined represent the first base pair of each 

exon. The sequence highlighted in red shows the start codon found in exon 1. The sequence 

highlighted in green shows the polyA site found in exon 18. HMMR (RHAMM) base pair sizes and 

position of primer pairs (highlighted in grey) are described in Tables 9.4 and 9.5 respectively. The 

existence of several HMMR (RHAMM) isoforms have so far been characterised which contain N-

terminal truncations of i) exon 4, ii) exon 5, iii) exon 13, iv) exons 1 – 5 and v) exons. 1 – 9. 
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Table 9.4. A list of the exon number and corresponding base pair size for each exon in the human 

HMMR (RHAMM) gene.  

 

Table 9.5. The HMMR primer used in this project with its corresponding forward and reverse sequence 

and colour in which it is highlighted in the mRNA sequence (Figure 9.2). 

 

 

 

 

Exon Base pair size 

1 228 

2 99 

3 80 

4 48 

5 189 

6 87 

7 101 

8 75 

9 179 

10 149 

11 215 

12 117 

13 147 

14 153 

15 100 

16 177 

17 163 

18 836 

Gene Forward Sequence Reverse Sequence 

HMMR 5’-TGCAGCTCAGGAACAGCTAA-3’ 5’-GCTGACAGCGGAGTTTTGAT-3’ 
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Appendix E. Densitometry analysis using ImageJ software 

Band intensities obtained from Western blotting detection were quantified using the 

ImageJ software programme (http://imagej.nih.gov/ij/download.html) for analysis 

of protein expression levels. Each image analysed was scanned and uploaded into the 

software programme and converted to grayscale by using the Image>Type>8-bit 

command. Using the rectangle icon on the ImageJ selection toolbar a tall narrow 

rectangle was drawn around the first band representing the expression level of a 

protein of interest.  It was important to draw the box as close to the protein band as 

possible whilst containing all of the band in the box. Using the tool bar, the 

Analyse>Gels>Select First Lane command was then used to highlight the box and 

identify it as lane ‘1’. The box in lane 1 was then copied and pasted (to ensure all 

boxes were the same size for comparison) and moved to the protein band situated 

in lane 2. Using the tool bar, the Analyse>Gels>Select Next Lane command was then 

used to highlight the box and identify it as lane ‘2’. This was then repeated for each 

band in the image. Once all bands contained a rectangle around their perimeter 

including the number corresponding to their lane position, profile plots were then 

drawn for each band using the Analyse>Gel>Plot Lanes command. The resulting plots 

showed the relative density within each of the highlighted lanes. The width of the 

peaks represented the size/area of the bands and the peak height represented the 

shade/darkness of the bands. The straight line tool situated on the ImageJ selection 

toolbar was then used to draw a line across the base of each peak to enclose it so 

that the area could be measured with little/no background noise. This required 

subjective judgement as to where each peak ended and the background began. After 

http://imagej.nih.gov/ij/download.html
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each peak was enclosed the wand tool from the ImageJ selection toolbar was used 

to measure and highlight each peak. Measurements for each peak appeared in a 

results pop-up window. When all peaks were highlighted using the wand tool, the 

peaks were then labelled using the Analyse>Gels>Label Peaks command on the 

toolbar. This labelled each peak with its size, expressed as a percentage of the total 

size of all the highlighted peaks. The values were then exported to an Excel 

spreadsheet to calculate the relative density of each peak. This process was repeated 

for bands representing housekeeping/loading control proteins. To determine the 

relative density of a protein normalised to the loading control the following formula 

was calculated. The relative densitometry value (RDV) for each loading standard 

band was calculated by dividing the percentage value for each lane by the percentage 

value in the control lane. The RDV for each sample band was then calculated by 

dividing the percentage value for each lane by the percentage value in the control 

lane. The total RDV for each protein was then calculated by dividing the RDV for each 

sample lane by the RDV of the loading control. 

Appendix F. (3-Aminopropyl)triethoxysilane-coating of coverslips 

Glass coverslips were cleaned with 100 % ethanol and allowed to air dry. Once fully 

dried, coverslips were incubated with 2 % (3-Aminopropyl)triethozysilane (Tespa) in 

acetone for 5 seconds. The coverslips were then placed into 100 % acetone for 2 

minutes before undergoing 2 x 1 minute washes in distilled water. Coated-coverslips 

were air-dried and sterilised before use. This procedure was performed by research 

technician staff in the BCMPG, Cardiff University. 
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Appendix G. Total cell fluorescence analysis using ImageJ software 

The total level of cell fluorescence was quantified for each image taken by 

immunofluorescence analysis using the ImageJ software analysis programme 

(http://imagej.nih.gov/ij/download.html). Each image was uploaded into the 

programme and each channel was measured separately and converted to 8-bit by 

using the Image>Colour>Split Channels command on the toolbar. Using the 

Analyse>Set Measurements command on the toolbar the following parameters alone 

were selected: area, integrated density and grey value. Each cell in the image was 

then outlined using the freehand tool on the ImageJ selection toolbar which allowed 

the user to precisely draw around the perimeter of the cells. The images were then 

measured using the Analyse>Measure command on the toolbar and the values for 

each parameter appeared in a results pop-up window. To obtain a background 

reading, a region with no fluorescence was selected and measured using the 

Analyse>Set Measurements command. To gain an accurate reading of the 

background fluorescence, 3 measurements of no fluorescence were taken. The data 

in the pop-up window was then imported into an Excel spreadsheet and total cell 

fluorescence for each cell was calculated using the following formula: integrated 

density – (area of selected cell x mean of fluorescence of background readings). The 

mean total cell fluorescence for all cells in the image was then calculated and 3 

independent experiments were repeated.  

 

 

http://imagej.nih.gov/ij/download.html
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Appendix H. CD44 plasmid construct map 

The plasmid construct map common to each CD44 plasmid used in this project. 

Plasmid DNA constructs containing sequences encoding CD44v3, CD44v6 and their 

cytoplasmic tail truncation mutants (denoted as CD44v3∆cyt and CD44v6∆cyt) fused 

with an EGFP-tag in a p-PGKT-T7/2 vector were a kind gift from Dr Ursula Gunthert 

(Basel University, Switzerland).  

 

Figure 9.3. The plasmid construct map for the CD44v3, CD44v3∆cyt, CD44v6 and CD44v6∆cyt 

constructs obtained from Dr Ursula Gunthert, Basal University, Switzerland. This p-PGK-T7/2 

vector map shows the T7 promoter region, multiple cloning site (MCS) containing the CD44 gene 

insertion flanked by restriction enzymes EcoRI and BglII/BamHI and the Ampicillin resistance 

(AmpR) conferred within this vector.  
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Appendix I. CD44 Sequencing Results 

The sequencing results for each DNA plasmid construct used in this project, 

sequenced by the CBS and analysed using the Chromas Lite software programme 

(http://technelysium.com.au/). Each DNA sequence was translated into its protein 

sequence using the Expasy (http://web.expasy.org/translate/) online analysis 

software tool.  

CD44v3 plasmid DNA sequence 

Original sequence 

Plasmid sequence 

Promoter sequence 

EGFP tag 

 

gcggttacccgac 

 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

 

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt             

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt 

 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccagtacgtct 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccagtacgtct 

 

tcaaataccatctcagcaggctgggagccaaatgaagaaaatgaagatgaaagagacagacacctcagtttttct 

tcaaataccatctcagcaggctgggagccaaatgaagaaGatgaagatgaaagagacagacacctcagtttttct 

 

ggatcaggcattgatgatgatgaagattttatctccagcaccagagaccaagacacattccaccccagtgggggg 

ggatcaggcattgatgatgatgaagattttatctccagcaccagagaccaagacacattccaccccagtgggggg 

 

tcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacctct 

tcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacctct 
 

http://technelysium.com.au/
http://web.expasy.org/translate/


  

 

 

 

299 

 

ggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgattctt 

ggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgattctt 

 

gcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaatgga 

gcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaatgga 

 

gctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtgaac 

gctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtgaac 

 

aaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatgaag 

aaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatgaag 

 

attggggtgtaa 

attggggtagat 

 
agatccccgggccgggtcgccaccatggtgagcaagggcgagagctgttcaccggggtggtgccatcctgtcgac 

tggacgcgacgtaaacgacacagttcagcgtgtccggcgaggccgaagccgaatgcactaccgcaaggctgaacc 

cttgaagtttcaaattcttgtgca  

 

CD44v3 DNA to protein translation 

 
Original sequence 

Plasmid sequence 

 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATSTSSNTISAGWEPNEENE 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATSTSSNTISAGWEPNEEDE 

 

DERDRHLSFSGSGIDDDEDFISRDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGP 

DERDRHLSFSGSGIDDDEDFISRDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGP 

 

IRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLNG 

IRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLNG 

 

EASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 

EASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop  

Figure 9.4. The DNA sequencing results performed by the CBS and analysed using the software 

programmes Chromas Lite and Expasy for the CD44v3 plasmid construct. The variant 3 exon is 

highlighted in bold and underlined. The plasmid DNA sequence revealed a substitution mutation 

from guanine to alanine in the variant 3 exon (highlighted in yellow). Protein analysis using the 

online protein translation tool Expasy revealed this base pair substitution converted the amino 

acid from an asparagine (N) to an aspartic acid (D). No other differences between the original 

and plasmid CD44v3 sequence were found.  
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CD44v3∆cyt plasmid DNA and protein sequence 

Original sequence 

Plasmid sequence 

Promoter sequence 

EGFP tag 

 

ccccttcccaccccgccc 

 
atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

 

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt             

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt 

 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccagtacgtct 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccagtacgtct 

 

tcaaataccatctcagcaggctgggagccaaatgaagaaaatgaagatgaaagagacagacacctcagtttttct 

tcaaataccatctcagcaggctgggagccaaatgaagaaGatgaagatgaaagagacagacacctcagtttttct 

 

ggatcaggcattgatgatgatgaagattttatctccagcaccagagaccaagacacattccaccccagtgggggg 

ggatcaggcattgatgatgatgaagattttatctccagcaccagagaccaagacacattccaccccagtgggggg 

 

tcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacctct 

tcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacctct 
 

ggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgattctt 

ggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgattctt 

 

gcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaatgga 

gcagtttgcattgcagtcaacag 

 

gctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtgaac 

 

 

aaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatgaag 

 

 

attggggtgtaa 

 

 

agatccccggccggtcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcga

gctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagct



  

 

 

 

301 

 

gaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacgg

cggtgcagtgctttcagccgctaccccgaccacatgaagcagcacgacttcttcagtccgccatgcccgatgcta

cgttcagagcgcaacaatctctcagacgacggcaacctacaagaccgcgccgaggtgaaggttcgaaggggcgac

aac 
 

 

DNA to protein translation 
 

Original sequence 

Plasmid sequence 

 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATSTSSNTISAGWEPNEENE 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATSTSSNTISAGWEPNEEDE 

 

DERDRHLSFSGSGIDDDEDFISRDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGP 

DERDRHLSFSGSGIDDDEDFISRDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGP 

 

IRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLNG 

IRTPQIPEWLIILASLLALALILAVCIAVN 

 

EASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 

 

Figure 9.5. The DNA sequencing results as performed by the CBS and analysed using the software 

programmes Chromas Lite and Expasy for the CD44v3∆cyt plasmid construct. The variant 3 exon is 

highlighted in bold and underlined. The DNA and protein sequence show the loss of the cytoplasmic 

tail starting at amino acid position 330. The plasmid DNA sequence revealed a substitution mutation 

from guanine to alanine in the variant 3 exon (highlighted in yellow). Protein analysis using the 

online protein translation tool Expasy revealed this base pair substitution converted the amino acid 

from an asparagine (N) to an aspartic acid (D). No other differences between the original and 

plasmid CD44v3∆cyt sequence were found.  
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CD44v6 plasmid DNA and protein sequence 

Original sequence 

Plasmid sequence 

Promoter sequence 

EGFP tag 

 

acggatacacgtc 

 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

 

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt             

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt 

 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccatccaggca 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccatccaggca 

 

actcctagtagtacaacggaagaaacagctacccagaaggaacagtggtttggcaacagatggcatgagggatat 

actcctagtagtacaacggaagaaacagctacccagaaggaacagtggtttggcaacagatggcatgagggatat 

 

cgccaaacacccaaagaagactcccattcgacaacagggacagctggagaccaagacacattccaccccagtggg 

cgccaaacacccaaagaagactcccattcgacaacagggacagctggagaccaagacacattccaccccagtggg 

 

gggtcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacc 

gggtcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacc 

 

tctggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgatt 

tctggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgatt 

 

cttgcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaat 

cttgcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaat 

 

ggagctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtg 

ggagctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtg 

 

aacaaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatg 

aacaaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatg 

 

 

aagattggggtgtaa 

aagattggggtagat 

 

agatccccgggccgggtcgccaccatggtgagcaaggacgaggagctgttcaccggggtggtgcccatcctggtc

gagctgggacggcgacgttaaacgtcacagtttcagcgtgtccgccaagtcgaagtcgatgccaccgtaccggca

gcttgaaccctgaaggttcat 
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DNA to protein translation 
 

Original sequence 

Plasmid sequence 

 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATIQATPSSTEETATQKEQW 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATIQATPSSTEETATQKEQW 

 

FGNRWHEGYRQTPKEDSHSTTGTAGDQDTFHPSGGSTTHGSESDGHSHGSQEGGANTTSG 

FGNRWHEGYRQTPKEDSHSTTGTAGDQDTFHPSGGSTTHGSESDGHSHGSQEGGANTTSG 

 

PIRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLN 

PIRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLN 

 

GEASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 

GEASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 
 

Figure 9.6. The DNA sequencing results as performed by the CBS and analysed using the software 

programmes Chromas Lite and Expasy for the CD44v6 plasmid construct. The variant 6 exon is 

highlighted in bold and underlined. No differences between the original and plasmid CD44v6 DNA and 

protein sequence were found.   
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CD44v6∆cyt plasmid DNA and protein sequence 

 
Original sequence 

Plasmid sequence 

Promoter sequence 

EGFP tag 

 

acacttcacgac 

 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcgcagatcgatttgaat 

 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

ataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctctcggacggaggccgct 

 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

gacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctgagcatcggatttgag 

 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

acctgcaggtatgggttcatagaagggcacgtggtgattccccggatccaccccaactccatctgtgcagcaaac 

 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

aacacaggggtgtacatcctcacatccaacacctcccagtatgacacatattgcttcaatgcttcagctccacct 

 

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt 

gaagaagattgtacatcagtcacagacctgcccaatgcctttgatggaccaattaccataactattgttaaccgt 

 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

gatggcacccgctatgtccagaaaggagaatacagaacgaatcctgaagacatctaccccagcaaccctactgat 

 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

gatgacgtgagcagcggctcctccagtgaaaggagcagcacttcaggaggttacatcttttacaccttttctact 

 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccatccaggca 

gtacaccccatcccagacgaagacagtccctggatcaccgacagcacagacagaatccctgctaccatccaggca 

 

actcctagtagtacaacggaagaaacagctacccagaaggaacagtggtttggcaacagatggcatgagggatat 

actcctagtagtacaacggaagaaacagctacccagaaggaacagtggtttggcaacagatggcatgagggatat 

 

cgccaaacacccaaagaagactcccattcgacaacagggacagctggagaccaagacacattccaccccagtggg 

cgccaaacacccaaagaagactcccattcgacaacagggacagctggagaccaagacacattccaccccagtggg 

 

gggtcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacc 

gggtcccataccactcatggatctgaatcagatggacactcacatgggagtcaagaaggtggagcaaacacaacc 

 

tctggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgatt 

tctggtcctataaggacaccccaaattccagaatggctgatcatcttggcatccctcttggccttggctttgatt 

 

cttgcagtttgcattgcagtcaacagtcgaagaaggtgtgggcagaagaaaaagctagtgatcaacagtggcaat 

cttgcagtttgcattgcagtcaacag 

 

ggagctgtggaggacagaaagccaagtggactcaacggagaggccagcaagtctcaggaaatggtgcatttggtg 

 

 

aacaaggagtcgtcagaaactccagaccagtttatgacagctgatgagacaaggaacctgcagaatgtggacatg 

 

 

aagattggggtgtaa 

 

 

agatccccggccggtcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcga

gctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagct

gaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacgg

cgtgcagtgcttcagccgctaccccgaccacatggagcagcacgacttcttcagtccgccatgccgatgcctacg

tcagagcgcacatctctcaagacgaccgcacctacaagaccggcgcccggaggggtgaagtcg 
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DNA to protein translation 
 

Original sequence 

Plasmid sequence 

 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATIQATPSSTEETATQKEQW 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATIQATPSSTEETATQKEQW 

 

FGNRWHEGYRQTPKEDSHSTTGTAGDQDTFHPSGGSTTHGSESDGHSHGSQEGGANTTSG 

FGNRWHEGYRQTPKEDSHSTTGTAGDQDTFHPSGGSTTHGSESDGHSHGSQEGGANTTSG 

 

PIRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLN 

PIRTPQIPEWLIILASLLALALILAVCIAVN 

 

GEASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 

 

Figure 9.7. The DNA sequencing results as performed by the CBS and analysed using the software 

programmes Chromas Lite and Expasy for the CD44v6∆cyt plasmid construct. The variant 6 exon is 

highlighted in bold and underlined. The DNA and protein sequence show the loss of the cytoplasmic 

tail starting at amino acid position 330. No other differences between the original and plasmid 

CD44v6∆cyt sequence were found.  
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Appendix J. Optimisation of HA stimulation across MCF-7, Tam-R and Fas-R cells 

The effect of high molecular weight HA upon the induction of growth factor signalling 

across the cell models. The cell lines were treated with high molecular weight HA 

(>500 kDa, R&D Systems, UK) for 10 minutes before cell lysis and investigation of 

protein activation by Western blotting. The results revealed that high molecular 

weight HA stimulated less of a signalling response to HER2, EGFR and ERK1/2 across 

the cell models compared to stimulation with medium molecular weight HA (215 

kDa) (shown in Figure 4.3). Therefore medium molecular weight HA was used for 

subsequent exogenous HA stimulation in this project.  

 

 

 

 

 

Figure 9.8. Representative Western blot images from 3 independent experiments showing HER2, 

EGFR and ERK1/2 activation in MCF-7, Tam-R and Fas-R cells in response to dose-dependent high 

molecular HA stimulation (>500 kDa, 0 – 400 µg/ml) for 10 minutes with ß actin as a loading 

control.  
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Appendix K. Densitometry analysis for CD44 isoform and RHAMM expression in 

Tam-R and Fas-R cells treated with global CD44 siRNA 
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Figure 9.10. Densitometry graphs showing CD44v3, CD44v6, CD44v10 and RHAMM expression in 

Tam-R and Fas-R cells after 24 – 144 hour treatment with global CD44 siRNA before cell lysis and 

detection by Western blotting analysis. The data shows the total protein levels in the cell lines 

normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc testing and all 

values were compared to the NT-siRNA control to identify any significant changes across all 3 cell 

models. Significance was set at p < 0.05. 
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Appendix L. Densitometry analysis for CD44 isoform expression in Tam-R and Fas-

R cells treated with global RHAMM siRNA 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.11. Densitometry graphs showing CD44 Std, CD44v3, CD44v6 and CD44v10 expression in 

Tam-R and Fas-R cells after 24 – 144 hour treatment with global RHAMM siRNA before cell lysis 

and detection by Western blotting analysis. The data shows the total protein levels in the cell lines 

normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc testing and all 

values were compared to the NT-siRNA control to identify any significant changes across all 3 cell 

models. Significance was set at p < 0.05. 
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Appendix M. Predicting the effect of amino acid substitutions on protein function  

To predict whether the N239D amino acid substitution (arginine to aspartic acid) 

detected by sequencing analysis in the variant 3 exon of the CD44v3/CD44v3∆cyt 

plasmid constructs may alter its protein function, several online publically available 

software programmes were utilised.  

PROVEAN 

The Protein Variation Effect Analyser (PROVEAN) online software tool 

(http://provean.jcvi.org/index.php) was utilised to predict whether the amino acid 

substitution (N239D) in the variant 3 econ may alter its protein function (Choi et al. 

2012). The results revealed a PROVEAN score of -1.436 which scored above the -2.5 

threshold thus suggesting that this substitution was ‘neutral’ and did not have a 

deleterious effect upon protein function.  

PROVEAN Prediction - Job ID: 012466680014698 

 Query sequence (fasta) 

 Supporting sequence set used for prediction 

Number of sequences: 163 (fasta, E-values) 

Number of clusters: 30 

 Score thresholds for prediction 

(1) Default threshold is -2.5, that is: 

-Variants with a score equal to or below -2.5 are considered "deleterious," 

-Variants with a score above -2.5 are considered "neutral." 

(2) How to use a more stringent threshold. 

Variant PROVEAN score Prediction (cutoff= -2.5)  

N239D -1.436 Neutral  

http://provean.jcvi.org/index.php
http://provean.jcvi.org/serve_file.php?VAR=p012466680014698/012466680014698.query.txt
http://provean.jcvi.org/about.php#about_1a
http://provean.jcvi.org/serve_file.php?VAR=p012466680014698/012466680014698.sss.fasta
http://provean.jcvi.org/serve_file.php?VAR=p012466680014698/012466680014698.sss
http://provean.jcvi.org/about.php#about_1a
http://provean.jcvi.org/about.php#about_1b
http://provean.jcvi.org/about.php#about_1c
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PANTHER 

The online Protein ANalysis Through Evolutionary Relationships (PANTHER) 

classification System tool (www.pantherdb.org/) (Mi et al. 2013a; Mi et al. 2013b) 

was used as an additional means to investigate the effect of the N239D amino acid 

substitution in the CD44v3 exon. The results confirmed those gathered from the 

PROVEAN tool and the subPSEC score was -1.83966 which was above the threshold 

of -3 suggesting that this substitution does not have a deleterious effect upon protein 

function.  

 

SIFT 

The Sorting Intolerant From Tolerant (SIFT) sequence online tool 

(http://sift.jcvi.org/www/SIFT_seq_submit2.html) provides predictions for a given 

http://www.pantherdb.org/
http://sift.jcvi.org/www/SIFT_seq_submit2.html
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FASTA sequence whether an amino acid substitution may alter protein function (Ng 

and Henikoff 2006; Kumar et al. 2009). SIFT scores of <0.05 were predicted to be 

deleterious. The results of this analysis revealed a score of 0.74 with the amino acid 

substitution at this position predicted to be tolerated. The web page below shows 

the list of tolerated amino acids sequences in the CD44v3 exon. At position 239 the 

amino acid asparagine (N) is predicted to tolerate the substitution to an aspartic acid 

(D).  
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Appendix N. Conserved domains in the CD44v3 sequence 

To determine whether any conserved domains in the CD44v3 sequence existed which 

may become altered upon amino acid substitution, the online Conserved Domains 

and Protein Classification tool was utilised 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marcherl-Bauer et al. 

2015). This tool revealed that the only conserved sequence found in the CD44v3 

protein sequence was the link module (HA binding domain) found in the extracellular 

domain of CD44 and not within the variant 3 exon.  

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Appendix O. Densitometry analysis for CD44 isoform expression and RHAMM in 

MCF-7 cells treated with CD44v3 and CD44v3Δcyt plasmid DNA 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.12. Densitometry graphs showing CD44v6, CD44v10 and RHAMM expression in MCF-7 

cells after 24 – 144 hour treatment with CD44v3 (left) or CD44v3Δcyt (right) plasmid DNA, before 

cell lysis and detection by Western blotting analysis. The data shows the total protein levels in the 

cell lines normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc testing and all 

values were compared to the lipid-only control to identify any significant changes across all 3 cell 

models. Significance was set at p < 0.05. 
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Appendix P. Densitometry analysis for CD44 isoform expression and RHAMM in 

MCF-7 cells treated with CD44v6 and CD44v6Δcyt plasmid DNA 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13. Densitometry graphs showing CD44v3, CD44v10 and RHAMM expression in MCF-7 

cells after 24 – 144 hour treatment with CD44v6 (left) or CD44v6Δcyt (right) plasmid DNA, before 

cell lysis and detection by Western blotting analysis. The data shows the total protein levels in the 

cell lines normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc testing and all 

values were compared to the lipid-only control to identify any significant changes across all 3 cell 

models. Significance was set at p < 0.05. 
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Appendix Q. Densitometry analysis for CD44 isoform expression and RHAMM in 

Tam-R and Fas-R cells treated with CD44v6 siRNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.14. Densitometry graphs showing CD44v3, CD44v6, CD44v10 and RHAMM expression in 

Tam-R and Fas-R cells after 24 – 144 hour treatment with CD44v6 siRNA, before cell lysis and 

detection by Western blotting analysis. The data shows the total protein levels in the cell lines 

normalised to GAPDH. Error bars represent the average normalised data ±SEM from 3 

independent experiments and the data is presented as the percentage of the untreated control. 

Statistical analysis was performed using a one-way ANOVA with Tukey post-hoc testing and all 

values were compared to the NT-siRNA control to identify any significant changes across all 3 cell 

models. Significance was set at p < 0.05. 
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Appendix R. Immunohistochemical analysis of CD44v6 expression in clinical breast 

cancer 

This technique and quantitation analysis was performed by the BCMPG research 

technician, Sue Kyme. Formalin-fixed paraffin-embedded tissue microarray sections 

(TMAs) (provided by Andrew Green, Nottingham University) were studied comprising 

140 breast cancers from ER+ adjuvant tamoxifen patients with 20 year follow up. The 

study population was derived from the Nottingham Tenovus Primary Breast Cancer 

series of women aged 70 or less who presented with primary operable invasive 

breast carcinoma (with tumours less than 5 cm diameter on clinical/pre-operative 

measurement stage I and II) between 1986 – 1998 (Rec: C2020313) (Abd El-Rehim et 

al. 2005; Habashy et al. 2009). For immunohistochemical analysis, the TMA’s were 

sectioned on a Microtome (3 – 5 microns) and dried at 37 °C overnight before being 

incubated at 60 °C for 20 minutes and allowed to cool. TMA’s were dewaxed and 

rehydrated by the following incubation steps: xylene (2 x 7 minutes), 100 % ethanol 

(2 x 2 minutes), 90 % ethanol (2 x 2 minutes), 70 % ethanol (2 x 2 minutes) and 

distilled water (1 x 5 minutes).  A 3 % aqueous solution of hydrogen peroxide was 

then applied to the sections for 5 minutes to eliminate endogenous peroxidases 

before being washed in distilled water for 5 minutes. For antigen retrieval, TMA’s 

were microwaved in 1 L 0.01 M Sodium Citrate buffer pH 6 for 30 minutes at Power 

level 6 (560 W) and cooled in running tap water for 5 minutes. TMA’s were then 

blocked in 10 % normal human serum diluted in PBS for 10 minutes. Excess blocking 

reagent was then removed before the addition of the primary antibody CD44v6 (1/40 

dilution in PBS, R&D Systems, UK)) for 2 hours at room temperature. Following 
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incubation TMA’s were washed for 3 minutes in PBS and 2 x 5 minutes in 0.02 % 

PBS/Tween. Dako EnVision seconday antibody (Dako Envision+ system-HRP labelled 

polymer anti-mouse) was then applied to the TMA’s for 90 minutes at room 

temperature. Following incubation TMA’s underwent a 2 x 1 minute wash in PBS and 

2 x 5 minute washes in 0.02 % PBS/Tween. Dako 2,3-diaminobenzidine 

(DAB)/substrate chromogen system solution was then applied to the TMA’s for 10 

minutes at room temperature and after incubation underwent 2 x 5 minute washes 

in distilled water. Counterstaining was performed by the addition of 1 % methyl 

green (diluted in distilled water) to the TMA’s for 15 minutes followed by 3 x 2 minute 

washes in distilled water. TMA’s were air dried before being mounted with coverslips 

using di-butylpthalatexylene (DPX) mountant (a mixture of Distyrene, a plasticizer, 

and xylene). The tumour epithelial cells in sections were assessed for staining level 

and localisation simultaneously by 2 observers blinded to the clinical data using a 

dual-viewing light microscope (Olympus BH-2) at x40 magnification. Plasma 

membrane percentage positivity and intensity were then assessed to derive a 

CD44v6 membrane H-score value for each TMA core (described in Materials and 

Methods section 2.7.1). Along with pathological parameters, EGFR and disease-free 

interval (DFI) and breast cancer-specific survival (OS) were available for analysis 

versus CD44v6 membrane expression in this endocrine treated series. The web-

based algorithm X-tile was used to define optimal CD44v3/CD44v6 membrane cut 

point versus patient outcome. Mantel-cox (Log Rank) statistical analysis was 

employed using SPSS96.0 and performed by BCMPG statistician Lynne Farrow. 
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Appendix S. Construction of alternative transfection controls 

In order to create an alternative transfection control to confirm that the effects 

observed by CD44 transfection into MCF-7 cells were due to the presence of the CD44 

variant isoforms and not the transfection method, experiments at the end of this 

project were undertaken in an attempt to create an empty vector plasmid DNA 

backbone construct (without the inserted CD44 gene sequence). However, the DNA 

sequence of the plasmid vector was not provided by Dr Gunthert therefore the 

plasmid map alone (Appendix H) was utilised for this investigation. The map revealed 

that the inserted full length CD44 sequences into the vector backbone are flanked by 

the restriction enzymes EcoRI and BamHI, however, these restriction enzymes were 

not compatible to create sticky ends for re-ligation after restriction digest. Using the 

vector map alone, no compatible restriction enzymes for vector re-ligation could be 

identified and the plasmid vector was not commercially available. Therefore, due to 

time limitations, a BamHI restriction enzyme was used to cut the CD44v6 plasmid 

vector at two sites: (i) at the end of the multiple cloning site and (ii) at the beginning 

of the CD44 sequence (Appendix H). This led to the creation of a plasmid vector which 

contained the backbone and the first 273 bp’s of the CD44 sequence, referred to as 

‘empty vector’ (EV). Given that the CD44 constructs contained a GFP-tag fused to 

their carboxy-terminus end, it was also investigated whether the presence of the GFP 

protein altered cellular behaviours through transfection of MCF-7 cells with a pEGFP-

N1 plasmid vector containing the GFP-tag construct only (referred to as GFP). The 

below sections show the methodology and results from these experiments. 
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DNA restriction endonuclease digest and electrophoresis detection 

To create an empty vector for use as an alternative control for the plasmid DNA 

constructs, the plasmid containing the CD44v6 DNA sequence was digested using a 

BamHI restriction enzyme to cut the plasmid vector at two sites: (i) at the end of the 

MCS and (ii) at the beginning of the CD44 sequence. For a 2 µl double DNA digest 

reaction, to a sterile eppendorf was added: 5 µl 10X NEBuffer 3, 4 µl plasmid DNA 

(diluted in RNase–free water), 2 µl BamHI restriction enzyme and 39 µl sterile RNase-

free water. The reaction was gently mixed by pipetting and allowed to incubate at 37 

°C for 1.5 hours. To visualise the results of the DNA double digest reaction, the 

samples were electrophoresed on a 0.7 % agar gel (0.7 g agar, 100 ml 1X TAE buffer 

(20 ml 50X TAE buffer (242g Tris, 57.1 ml glacial acetic acid, 100 ml 0.5 EDTA, 1 L 

distilled water, pH 8.3) diluted in 1 L distilled water), 2 mg/ml crystal violet solution 

(diluted in sterile water)). The set agar gels were placed into a Mini-Sub Cell GT 

electrophoretic tank (Bio-Rad Laboratories Ltd, Hertfordshire, UK) filled with 1 X TAE 

buffer (ensuring no contamination with ethidium bromide). 5 µl hyperladder I was 

used as a marker. To 9 µl DNA digest reaction was added 5 µl loading buffer (4 g 

sucrose, crystal violet, 10 ml distilled water) and pipetted into the wells of the agar 

gel. The electrophoresis reaction was allowed to run for 4 hours at 75 volts constant 

to ensure complete separation of differential sized digested DNA bands. The agar gel 

was then removed from the tank and transferred onto a light box where DNA bands 

intercalated with crystal violet could be viewed. The desired DNA fragment 

(containing the vector DNA backbone) was excised from the agarose gel using a 

sterile razor blade (ensuring as little agarose gel transfer as possible) and placed into 



  

 

 

 

320 

 

a sterile microfuge tube. The microfuge tube was weighed before and after the 

addition of the DNA/agarose fragment to determine its weight.  

Gel extraction and purification 

The excised DNA/agarose sample then underwent gel extraction and purification 

using a QIAquick Gel Extraction Kit (QIAGEN Ltd, Manchester, UK), all equipment and 

reagents used for this process were contained within the kit upon purchase. Table 

3.12 lists all reagents used with their corresponding composition, storage 

temperature and function. Once the weight of the DNA/agarose fragment was 

determined, 3 volumes of Buffer QG was added to 1 volume of gel fragment (100 mg 

= 100 µl) and incubated in a hot plate (Techne DRI-Block DB.2, Bibby Scientific 

Limited, Staffordshire, UK) at 50 °C for 10 minutes. During this incubation period, the 

sample was removed from the hot plate every 2 minutes and briefly vortexed to 

ensure the agarose gel was completely dissolved into the solution. After incubation, 

1 gel volume of isopropanol was added to the sample (100 mg = 100 µl) and mixed. 

A QIAquick spin column was then placed into a 2 ml collection tube and the sample 

was applied to the column and spun in a centrifuge (Labofuge 400R centrifuge, 

Heraeus, Germany) for 1 minute (room temperature, 13,000 rpm). The flow-through 

was then discarded and 0.5 ml Buffer QG was added to the column and centrifuged 

again for 1 minute (room temperature, 13,000 rpm). The column was then washed 

by addition of 0.75 ml Buffer PE and centrifuged for 1 minute (room temperature, 

13,000 rpm). The flow-through was discarded and the centrifugation step was 

repeated (1 minute, room temperature, 13,000 rpm). For DNA elution, the column 

was then placed into a sterile 1.5 ml microcentrifuge tube and 30 ml Buffer EB was 
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added to the centre of the column (directly applied to the membrane) and incubated 

at room temperature for 1 minute. The column was then centrifuged for 1 minute 

(room temperature, 13,000 rpm). DNA concentration was determined using a 

NanodropTM 2000/2000c spectrophotometer (Thermo Scientific, UK). The DNA 

programme was selected on the spectrophotometer and 2 µl TE buffer was measured 

twice as a blank. 2 µl of DNA sample was added to the spectrophotometer and 

measured in ng/µl, the spectrophotomer was then cleaned and the process was 

repeated for each sample.  DNA samples were stored at - 20 °C. 

Component Composition Storage °C Function 

Buffer QC 

5 mM guanide 

thiocyanate (GuSCN) 

20 mM Tris HCI pH 6.6 

15 – 25 

Solubilisation of 

agarose gel 

pH indicator 

Buffer PE 
10 mM Tris-HCI pH 7.5 

80 % ethanol 
15 – 25 

Washing agent 

(removes excess salt 

from the membrane) 

Buffer EB 10 mM Tris CI, pH 8.5 15 – 25 Elution buffer 

Isopropanol 100 % 15 – 25 DNA precipitation 
Table 9.6. A list of the components purchased with the QIAquick Gel Extraction kit (QIAGEN, 

Manchester, UK) detailing their composition, storage temperature and function.  

Vector DNA ligation 

For a 20 µl DNA ligation reaction, a sterile microcentrifuge tube was placed on ice 

and to this was added: 2 µl 10X T4 DNA ligase buffer (thawed and resuspended at 

room temperature), 50 ng vector DNA, 1 µl T4 DNA ligase (added last to the reaction) 

and made up to a volume of 20 µl by addition of sterile RNase free water. The 

reaction was gently mixed by pipetting, briefly microfuged and incubated at room 

temperature for 10 minutes. The samples were then heat inactivated at 65 °C for 10 

minutes in a hot plate (Techne DRI-Block DB.2, Bibby Scientific Limited, Staffordshire, 
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UK) before being chilled on ice and stored at -20 °C. To visualise the results and 

determine the success of the DNA ligation reaction, the samples were 

electrophoresed on a 1.2 % agar gel (1.2 g agar, 100 ml 1X TAE buffer, 1 µl ethidium 

bromide) as previously described. The samples were then stored at -20 °C.  

Transformation of plasmid constructs and transfection into MCF-7 cells 

The transformation of the plasmids were carried out following the protocol described 

in Materials and Methods 12.3.2. The EV was then sent to the CBS for sequencing 

using the T7 promoter (see Material and Methods 2.12.4) and analysed using the 

online Chromas Lite DNA sequencing software programme and Expasy protein 

translation tool and the results are shown below. The transfection procedure was 

undertaken as described in Materials and Methods 2.12.5 using 100 ng of EV and GFP 

plasmid DNA. 
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Empty vector plasmid DNA gene sequence 

Vector 

CD44 plasmid sequence 

CD44 original sequence 

 

               atggacaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcg               

gggtgtcccccgtccatggtcaagttttggtggcacgcagcctggggactctgcctcgtgccgctgagcctggcg 

 

cagatcgatttgaatataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctct 

cagatcgatttgaatataacctgccgctttgcaggtgtattccacgtggagaaaaatggtcgctacagcatctct 

 

cggacggaggccgctgacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctg 

cggacggaggccgctgacctctgcaaggctttcaatagcaccttgcccacaatggcccagatggagaaagctctg 

 

agcatcggatttgagacctgcaggtatgggttcatagaagggcacgtggtgattccccggatcttattaaagcag 
agcatcggatttgagacctgcaggtatgggttcatagaagggcacgtggtgattccccggatc 

 

gaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcattttt

ttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggtcgagcaggtggcactt

ttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagac

aataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgccctta

ttcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaag

atcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccg

aagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggc

aagagcaactcggtcgccgcatacactattctcagaatgacttggtttgagtactcaccagtcacagaaaagcat

cttacggatgggcatgacagtaaggagattatgcagtgctgcccataaccatgatgatacactgcgtcaacctaa

ctttctgacacggatcgggagggaaccgaaaaag 

 

 

 

DNA to protein translation 
 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTL 

       

PTMAQMEKALSIGFETCRYGFIEGHVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFN 

PTMAQMEKALSIGFETCRYGFIEGHVVIPRI 

 

ASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPSNPTDDDVSS 

 

GSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATIQATPSSTEETATQKEQW 

 

FGNRWHEGYRQTPKEDSHSTTGTAGDQDTFHPSGGSTTHGSESDGHSHGSQEGGANTTSG 

 

PIRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVINSGNGAVEDRKPSGLN 

 

GEASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV Stop 

 

Figure 9.15. The DNA sequencing results as performed by the CBS and analysed using the software 

programmes Chromas Lite and Expasy for the Empty Vector plasmid construct. The CD44 DNA 

sequence (1 – 273 bp) and protein (1 – 91 amino acids) expressed in this vector are highlighted in red 

(plasmid DNA sequence) and black (original DNA sequence).  
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Plasmid map for the pEGFP-N1 vector 

 

Figure 9.16. A map of the pEGFP-N1 vector used for transfection of MCF-7 cells in this project.  

Transfection of MCF-7 cells with EV and GFP plasmid constructs 

Western blotting analysis revealed that transfection of EV or GFP constructs into 

MCF-7 cells did not alter CD44 isoform or RHAMM expression between 24 – 72 hours 

post-transfection compared to lipid-treated control cells, however a modest 

reduction in CD44v10 expression was observed (Figure 9.11). Immunofluorescence 

analysis was further used to determine transfection efficiency and analyse CD44 

expression and localisation in MCF-7 cells transfected with the EV or GFP constructs; 

with CD44v6 used as a positive transfection control. Results revealed that GFP 

constructs were transfected into MCF-7 cells at a similar efficiency to the CD44v6 

constructs and did not alter total CD44 expression level or localisation in these cells 
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compared to the lipid-treated control (Figure 9.12). However transfection of the EV 

construct appeared to modestly enhance total CD44 expression at the cell surface 

compared to the untreated and lipid-treated control cells (Figure 9.12).   

To investigate whether transfection of these constructs altered cellular signalling 

activities in MCF-7 cells, EGFR and ERK1/2 activity was assessed, as these signalling 

components were modulated upon transfection of these cells with the CD44v3 and 

CD44v6 plasmid constructs. The results revealed that transfection of the GFP plasmid 

into MCF-7 cells did not alter EGFR activity, however transfection of the EV plasmid 

reduced EGFR activity, compared to the lipid-treated cells (Figure 9.13) and CD44v6 

enhanced EGFR expression as previously observed in Chapter 6. Transfection of both 

EV and GFP constructs led to a modest increase in ERK1/2 activity compared to the 

lipid-treated control cells, however this was less than compared to cells transfected 

with CD44v6 (Figure 9.13).  

To analyse the effect of these constructs upon MCF-7 cell function, endogenous and 

HA-stimulated (100 µg/ml) cellular migration was assessed. The results revealed that 

transfection of MCF-7 cells with EV and GFP constructs led to a small reduction in 

endogenous and HA-stimulated migration compared to the lipid-only treated control 

cells, however this effect was not significant (Figure 9.14). Whilst these preliminary 

data require further validation, these experiments suggest that transfection of the 

vector backbone and GFP-tag into MCF-7 cells does not significantly alter cell 

function, thus supporting that the effects observed from CD44v3/CD44v6 

transfection arise from the activities of these proteins alone. Future experimentation 
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is required to create a plasmid vector backbone without the CD44 sequence to 

confirm these observations. 

 

 

Figure 9.17. Western blot images showing CD44 isoform and RHAMM expression in MCF-7 cells 

after 24 - 72 hour transfection with the EV or GFP plasmid DNA compared to the untreated and 

lipid-only treated control (n=1). GAPDH was used as a loading control. 
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Figure 9.18. Immunofluorescence images showing CD44 Std expression in MCF-7 cells after 72 hour 

transfection with the EV, GFP or CD44v6 plasmid DNA compared to the untreated and lipid-only 

treated control (x63 magnification) (n=1).  
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Figure 9.19. Western blotting images showing CD44 Std expression and EGFR and ERK1/2 

activation in MCF-7 cells after 72 hour transfection with the EV, GFP or CD44v6 plasmid DNA 

compared to the untreated and lipid-only treated control. Total protein level was unaltered and 

GAPDH was used as a loading control (n=1).  

Figure 9.20. Measurement of endogenous and HA-stimulated cellular migration in MCF-7 cells 

transfected with EV, GFP or CD44v6 plasmid DNA. MCF-7 cells were transfected with the EV, GFP 

and CD44v6 plasmid DNA for 48 hours prior to the assessment of cellular migration (Boyden 

Chamber assay) in the presence (100 µg/ml) and absence of HA (n = 3). Error bars represent 

standard error of the means and statistical testing was performed using a one-way ANOVA and 

significance was set at p <0.05. 
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Appendix T. The effect of endocrine treatment upon CD44 expression in MCF-7 

cells 

To investigate whether a relationship exists between CD44 and ER, MCF-7 cells were 

treated with endocrine agents and the effect upon CD44 expression was 

investigated. Heatmap analysis (generated by Affymetrix analysis, see Materials and 

methods 2.3) revealed that the majority of gene probes corresponding to CD44 

showed enhanced gene expression in MCF-7 cells treated with oestradiol and 

tamoxifen for 10 days, however 10 day fulvestrant treatment reduced CD44 gene 

expression compared to the untreated control cells. Furthermore, Western blotting 

analysis revealed that CD44 Std expression became enhanced in MCF-7 cells upon 3 

– 52 day tamoxifen and oestradiol treatment, whilst fulvestrant treatment abrogated 

CD44 expression during this exposure time, compared to the untreated control cells.  
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Figure 9.21. Effect of short-term endocrine treatment upon CD44 expression in MCF-7 cells. A 

heatmap profile was generated by AffymetrixU-133A gene microarray analysis from 3 independent 

experiments to show CD44 gene expression after 10 day exposure to tamoxifen (100 nM), 

fulvestrant (100 nM) and oestradiol (1 nM) in MCF-7 cells compared to the untreated control cells. 

Representative Western blotting images from 3 independent experiments showing CD44 Std 

expression in MCF-7 cells after exposure to tamoxifen (100 nM), fulvestrant (100 nM) and 

oestradiol (1 n M) between 3 – 52 days. β-actin was used as a loading control.  


