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Abstract

Two recent deformation schemes for quantum field theories on the two-dimensional
Minkowski space, making use of deformed field operators and Longo-Witten endomor-
phisms, respectively, are shown to be equivalent.
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1 Deformations of QFTs by inner functions and their roots

In recent years, there has been a lot of interest in deformations of quantum field theories
[11, 8, 7, 9, 18, 17, 19, 16, 23, 2, 1, 20, 21] in the sense of specific procedures modifying quantum
field theoretic models on Minkowski space, mostly motivated by the desire to construct new
models in a non-perturbative manner. Various constructions have been invented, relying on
different methods such as smooth group actions, non-commutative geometry, chiral conformal
field theory, boundary quantum field theory, and inverse scattering theory.

In many situations, it is possible to set up the deformation in such a way that Poincaré
covariance is completely preserved and locality partly. More precisely, often the deformation
introduces operators which are no longer localized in arbitrarily small regions of spacetime,
but rather in unbounded regions like a Rindler wedge W := {x ∈ ❘d : x1 > |x0|}. In
the operator-algebraic framework of quantum field theory [13], such a wedge-local Poincaré
covariant model can be conveniently described by a so-called Borchers triple (M, U,Ω) [3, 7],
consisting of a von Neumann algebra M of operators localized in the wedge W , a suitable
representation U of the translations, and an invariant (vacuum) vector Ω (see Def. 1.2 below).
Depending on the method at hand, the von Neumann algebra M is generated by different
objects, like deformed field operators or twisted chiral observables.

It is the aim of this letter to show that some of the constructions on two-dimensional
Minkowski space are identical in the sense of unitary equivalence of their associated Borchers
triples. More precisely, we will show that the deformations presented in [23], starting from
a chiral field theory, are equivalent to the deformations in terms of deformed field operators,
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presented in [16], for mass m = 0 and dimension d = 1 + 1 (Section 2). In the special case of
the so-called warped convolution deformation [7], such an equivalence was already observed
in [23]. Here we prove that also for the infinite family of deformations considered in [16], one
obtains the same construction as in [23] in the chiral situation, where the deformation amounts
to a unitary equivalence transformation by a Longo-Witten endomorphism [18] on each light
ray. Furthermore, we will show that certain aspects of the chiral construction carry over to
the massive situation (Section 3).

The deformations we are interested in here take certain families of analytic functions as
input parameters, whose relations we will now clarify. We will write ❍ ⊂ ❈ for the open upper
half plane, S(0, π) := {ζ ∈ ❈ : 0 < Im ζ < π} for the strip, and H∞(❍), H∞(S(0, π)) for
the Hardy spaces of bounded analytic functions on these domains. Recall that for a function
f ∈ H∞(❍), the limit limεց0 f(t+ iε) exists almost everywhere1 and defines a boundary value
function in L∞(❘). The same holds for functions in H∞(S(0, π)) and their boundary values
at ❘ and ❘+ iπ.

Definition 1.1. i) A symmetric inner function is a function ϕ ∈ H∞(❍) whose boundary
values on the real line satisfy ϕ(t) = ϕ(t)−1 = ϕ(−t) for almost all t ∈ ❘.

ii) A root of a symmetric inner function ϕ is a function R ∈ L∞(❘) such that R(t) =
R(t)−1 = R(−t) and R(t)2 = ϕ(t) for almost all t ∈ ❘. The family of all roots of
symmetric inner functions will be denoted R.

iii) A scattering function is a function S ∈ H∞(S(0, π)) whose boundary values satisfy S(θ) =
S(θ)−1 = S(−θ) = S(iπ + θ) for almost all θ ∈ ❘.

Symmetric inner functions provide the input into deformations making use of Longo-Witten
endomorphisms [18, 23, 17, 2], whereas scattering functions are used in inverse scattering
approaches such as [14, 4]. For convenience, the latter are usually defined with the additional
requirement of extending continuously to the closure of S(0, π). However, going through the
construction, say in [14], one realizes that this continuity assumption is not necessary. What
is required is that the boundary conditions on S hold almost everywhere, the boundary values
are regular enough to define multiplication operators on L2(❘), and for f ∈ H∞(S(0, π)) with
Schwartz boundary values, [0, π] ∋ λ 7→ ∫

❘
dθ f(θ + iλ)S(θ + iλ) is continuous. As this is the

case for any S ∈ H∞(S(0, π)), one can just as well work with the more general definition of
scattering function given above.

We also note that scattering functions and symmetric inner functions are in one to one
correspondence by S(ζ) := ϕ(sinh ζ), ζ ∈ S(0, π). As sinh(iπ + ζ) = − sinh ζ = sinh(−ζ), this
identification produces the required properties of the boundary values in Def. 1.1 iii). On the
other hand, ϕ(z) := S(sinh−1 z), z ∈ ❍, is well-defined and analytic because of the crossing
symmetry S(iπ + θ) = S(−θ) of S. This identification of the strip and the half plane via sinh
is the one encountered in massive theories [11]. In massless theories, also the identification
exp : S(0, π) → ❍ occurs [18], and under this identification, scattering functions correspond
to the subset of symmetric inner functions with the additional symmetry ϕ(t) = ϕ(t−1) , see
(1.13) below.

Regarding Def. 1.1 ii), we note that each symmetric inner function has infinitely many
different roots, and the family of roots R contains all symmetric inner functions because
Def. 1.1 i) is stable under taking squares. These roots are the input into the deformations in
[16, 1, 21], where under additional regularity assumptions, they are called deformation func-
tions. We note that these additional requirements are only necessary when working on the

1By “almost everywhere” (a.e.) and “almost all” we always refer to Lebesgue measure on ❘.
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tensor algebra of test functions [16], but not when working directly on a representation space
such as in [1]. In particular, the roots will not be required to be analytic, and also the condition
R(0) = 1 [16], related to fixing a root of an inner function, will not be assumed here.

In the following, we will be concerned with deformations of free field theories of mass m ≥ 0
on two-dimensional Minkowski space, and now set up some standard notation for this. We
will be working on the Bose Fock space

H := Γ(H1) , H1 := L2(❘, dp
ωm(p)) , ωm(p) := (m2 + p2)1/2 .

Its Fock vacuum will be denoted Ω, and we have the usual representation Γ(U1) of the proper
Poincaré group as the second quantization of

[U1(x, λ)Ψ1](p) := ei(x0ωm(p)−x1p) Ψ1(λp) , [U1(j)Ψ1](p) := Ψ1(p) , (1.1)

where x = (x0, x1) ∈ ❘2 is the translation, λ ∈ ❘ denotes the boost rapidity parameter,
λp := − sinhλ · ωm(p) + coshλ · p, and j(x) = −x is the space-time reflection. We will also
write U(x) := Γ(U1(x, 0)) for the translations.

From an operator-algebraic point of view, a wedge-local quantum field theory is equivalent
to a Borchers triple.

Definition 1.2. A Borchers triple (M, U,Ω) on ❘2 consists of a von Neumann algebra M ⊂
B(H), a strongly continuous unitary positive energy representation U of the translation group
❘2 on H, and a U -invariant unit vector Ω ∈ H such that

i) U(x)MU(x)−1 ⊂ M for any x ∈ W ,
ii) Ω is cyclic and separating for M.

Two Borchers triples (M, U,Ω) and (M̃, Ũ , Ω̃) will be called equivalent, written (M, U,Ω) ∼=
(M̃, Ũ , Ω̃), if there exists a unitary V such that VMV ∗ = M̃, V U(x)V ∗ = Ũ(x) for all
x ∈ ❘2, and V Ω = Ω̃.

Recall that by a famous theorem of Borchers [3], the representation U can be extended
to a (anti-) unitary representation UM of the proper Poincaré group P+ with the help of the
modular data JM,∆M of (M,Ω), by

UM(x, λ) := U(x)∆
− iλ

2π

M , UM(j) := JM . (1.2)

As is well known, a Borchers triple gives rise to a Poincaré-covariant net of wedge algebras [3],
which can under further conditions be extended to a net of double cone algebras [6, 15]. We
will not discuss the extension question here, but rather focus on the wedge-local aspects only.
Note that the net of wedge algebras generated from a Borchers triple (M, U,Ω) will transform
covariantly under a representation UM of the Poincaré group which depends on M. However,
in the case of two equivalent Borchers triples (M, U,Ω) ∼= (M̃, Ũ , Ω̃), modular theory tells us
that the modular data of (M,Ω) and (M̃, Ω̃) are related by V JMV ∗ = JM̃, V∆it

MV ∗ = ∆it
M̃,

i.e. equivalence of Borchers triples implies equivalence of the associated wedge-local nets in-
cluding their representations UM ∼= UM̃ of the proper Lorentz group.

A particular example of a Borchers triple is provided by the model of a free scalar quan-
tum field: Let a(ξ) and a†(ξ) := a(ξ)∗, ξ ∈ H1, denote the standard CCR annihilation and
creation operators on H, and for f ∈ S (❘2), let

φm(f) := a†(f+) + a(f−) , f±(p) := f̃(±ωm(p),±p) , (1.3)
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denote the free Klein-Gordon field of mass m ≥ 0 (with f restricted to directional derivatives of
test functions in the case m = 0 because of the well-known infrared divergence in the measure
dp
|p|). With the wedge algebra

Mm := {eiφm(f) : f ∈ S❘(W )}′′ , (1.4)

the Fock translations U (1.1) and the Fock vacuum Ω, we then have a Borchers triple (Mm, U,Ω).
In this case, the modular data of (Mm,Ω) reproduce the Poincaré representation (1.1), i.e.
UMm

= Γ(U1). For convenience of notation, we will write

J := JMm
= Γ(U1(j)) , ∆it := ∆it

Mm
= Γ(U1(0,−2πt)) . (1.5)

Fixing the representation U of the translations and the vector Ω, the algebra Mm is
however by no means the only von Neumann algebra completing U,Ω to a Borchers triple. In
the following, we will introduce for each R ∈ R two von Neumann algebras MR,m, NR with
this property, obtained by (generalizations of) the deformation procedures in [16] and [23],
respectively. For R = 1, both families reduce to the undeformed situation, i.e. M1,m = Mm,
N1 = M0.

To define the first set of deformed wedge algebras MR,m, we introduce a unitary-valued
function TR,m : ❘→ U(H) [16]

[TR,m(p)Ψ]n(p1, . . . , pn) :=
n∏

k=1

Rm(p, pk) · Ψn(p1, . . . , pn) . (1.6)

Here the function Rm ∈ L∞(❘2) is in the case of positive mass defined as

Rm(p, q) := R
(

1
2(ωm(q)p− ωm(p)q)

)
, m > 0 , (1.7)

where the factor 1
2 is a matter of convention. Taking the limit m → 0, one observes that the

argument 1
2(|q|p − |p|q) of R vanishes if p and q have the same sign. As the root R is only

defined up to equivalence in L∞(❘), its value at 0 is not fixed. We therefore define

R0(p, q) :=





R(−pq) ; p > 0, q < 0
R(+pq) ; p < 0, q > 0

1 ; p > 0, q > 0 or p < 0, q < 0
. (1.8)

Note that for any mass m ≥ 0, we have for almost all p, q ∈ ❘

Rm(q, p) = Rm(p, q)−1 , m ≥ 0 . (1.9)

The assignment aR(p) := a(p)TR,m(p) defines an operator-valued distribution for any R ∈
R, which explicitly acts on a vector Ψ of finite particle number according to, ξ ∈ H1,

[aR(ξ)Ψ]n(p1, . . . , pn) =
√
n+ 1

∫
dq

ωm(q)
ξ(q)

n∏

k=1

Rm(q, pk)Ψn+1(q, p1, . . . , pn) . (1.10)

Its adjoint is denoted a
†
R(ξ) := aR(ξ)∗, and the corresponding deformed field operator is

φR,m(f) := a
†
R(f+) + aR(f−) , f ∈ S (❘2) . (1.11)

As φR,m(f) is essentially self-adjoint on the subspace of finite particle number for real f , one
can pass to the generated von Neumann algebra

MR,m := {eiφR,m(f) : f ∈ S❘(W )}′′ . (1.12)
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Theorem 1.3. Let R ∈ R and m ≥ 0. Then (MR,m, U,Ω) is a Borchers triple with modular
data JMR,m

= J and ∆it
MR,m

= ∆it.

For m > 0, this has been established in [16], and for m = 0, one can use essentially the
same proofs, so that we do not have to go into details here. In fact, as for m = 0 the mass
shell decomposes into two half-rays which are left invariant by the Lorentz boosts, one can in
this case more generally consider three roots R,R1, R2 ∈ R, with the additional requirement
Rk(t) = Rk(t−1) for almost all t ∈ ❘, k = 1, 2, and put

R0(p, q) :=





R(−pq) ; p > 0, q < 0
R(+pq) ; p < 0, q > 0
R1(+p

q ) ; p > 0, q > 0

R2(−p
q ) ; p < 0, q < 0

. (1.13)

Also with this more general definition of R0, the algebra MR,0 completes U,Ω to a Borchers
triple. In the terminology of [10], the functions R1, R2 govern the left-left and right-right
“scattering” of the model, whereas R determines the left-right (wave) scattering [5, 9]. If
R = 1, the corresponding model is chiral – this is in particular the case for the short distance
scaling limits of the models generated by the massive wedge algebras MR,m, m > 0. In this
context one finds R = 1, R1(t)2 = R2(t)2 = ϕ(t− t−1) with some symmetric inner function ϕ

[4]. For the purposes of this letter, we will however restrict ourselves to the case R1 = R2 = 1
(1.8), which corresponds to the construction in [23].

To define the second set of deformed wedge algebras NR, one works in the massless case
m = 0, and uses the chiral structure present in this situation. Here the Fock space, the repre-
sentation U , the invariant vector Ω, and the wedge algebra M0 split into two (chiral) factors.
With H±

1 := L2(❘±,
dp
|p|), we have H1 = H+

1 ⊕ H−
1 and

H ∼= H+ ⊗ H− , H± := Γ(H±
1 ) , (1.14)

Ω ∼= Ω+ ⊗ Ω− , (1.15)

U(x) ∼= U+(x−) ⊗ U−(x+) , x± := x0 ± x1 , (1.16)

M0
∼= M0,+ ⊗ M0,− , (1.17)

where Ω± denotes the Fock vacuum in H±. The canonical unitary V : H+ ⊗H− → H realizing
the above isomorphisms is recalled in (2.4). Note that

V ∗Γ(U1(x, λ))V = Γ+(U1,+(x−, λ)) ⊗ Γ−(U1,−(x+, λ)) , (1.18)

V ∗Γ(U1(j))V = Γ+(U1,+(j)) ⊗ Γ−(U1,−(j)) , (1.19)

where Γ± denotes second quantization on H±, with (U1,±(x∓, λ)Ψ1)(p) = e±ipx∓Ψ1(e∓λ · p)
and (U1,±(j)Ψ1)(p) = Ψ1(p). For the sake of a concise notation, we will write

J⊗ := Γ+(U1,+(j)) ⊗ Γ−(U1,−(j)) = V ∗JV , (1.20)

∆it
⊗ := Γ+(U1,+(0,−2πt)) ⊗ Γ−(U1,−(0,−2πt)) = V ∗∆itV . (1.21)

Given R ∈ R, one introduces the unitary SR ∈ U(H+ ⊗ H−) [23],

[
SRΨ

]
n,n′(p1, . . . , pn, q1, . . . , qn′) =

∏

i=1...n
j=1...n′

R0(pi, qj) · Ψn,n′(p1, . . . , pn, q1, . . . , qn′) , (1.22)
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and defines the von Neumann algebra

NR := (M0,+ ⊗ 1) ∨ SR2(1 ⊗ M0,−)S∗
R2 . (1.23)

Theorem 1.4. Let R ∈ R. Then (NR, U+ ⊗ U−,Ω+ ⊗ Ω−) is a Borchers triple with modular
data JNR

= SR2J⊗ and ∆it
NR

= ∆it
⊗.

This theorem has been proven in [23]. From (1.23), it is clear that NR depends on R only
via the symmetric inner function R2.

Our results can now compactly be summarized as follows (R ∈ R, m ≥ 0):

• (NR, U+ ⊗ U−,Ω+ ⊗ Ω−) ∼= (MR,0, U,Ω) (Theorem 2.4).

• (MR1,m, U,Ω) ∼= (MR2,m, U,Ω) if and only if R2
1 = R2

2 (Proposition 3.2).

As R2 is essentially the two-particle S-matrix of the model described by the Borchers triple
(MR,m, U,Ω), the last result amounts to a proof of uniqueness of the solution of the inverse
scattering problem in the setting of the deformations studied here. In case of continuous R,
such an effect was already observed in [1], and for a characterization of massless nets through
their wave S-matrix and asymptotic algebra, see [23] (however, the asymptotic algebra can be
any tensor product of chiral CFT, hence the uniqueness of the solution for an S-matrix alone
does not hold in general [24]).

The convenient deformation formula (1.23) is a result of the chiral structure present in the
massless case, and has no direct analogue in the massive case. In Section 3, we will discuss
why the situation is more complex in the massive case even though (formal) relations between
deformed and undeformed creation and annihilation operators still exist. Furthermore, we do
not know whether there exists a massive analogue of the family of Borchers triples with more
complex S-matrix obtained in [2]. This is another manifestation of the difference between
massless and massive cases.

2 Equivalence of the two deformations in the massless case

The aim of this section is to demonstrate the equivalence of the mass zero Borchers triples
(MR,0, U,Ω) (1.12) and (NR, U+ ⊗ U−,Ω+ ⊗ U−) (1.23) for arbitrary roots R ∈ R. From
Theorem 1.3 and Theorem 1.4, we see that the modular groups of these von Neumann algebras
coincide with the one parameter boost groups on their respective Hilbert spaces, but their
modular conjugations differ by SR2 , i.e. we have JNR

= SR2V ∗JMR,0
V with the canonical

unitary V : H+ ⊗ H− → H (2.4). We will therefore in a first step go over to an equivalent
form of NR which has modular conjugation V ∗JMR,0

V , without the factor SR2 . In general,
this can be accomplished by conjugating with a root of the “S-matrix” JNR

V ∗JMR,0
V [25],

and in our present situation, this amounts to considering

N̂R := S∗
R(M0,+ ⊗ 1)SR ∨ SR(1 ⊗ M0,−)S∗

R . (2.1)

Lemma 2.1. Let R ∈ R. Then (N̂R, U+ ⊗ U−,Ω+ ⊗ Ω−) is a Borchers triple equivalent to
(NR, U+ ⊗ U−,Ω+ ⊗ Ω−), with modular data

JN̂R
= J⊗ , ∆it

N̂R
= ∆it

⊗. (2.2)
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Proof. As SR (1.22) satisfies S2
R = SR2 , we have the unitary equivalence of algebras N̂R =

S∗
RNRSR. The unitary SR clearly commutes with all translations U+(x−)⊗U−(x+) and leaves

Ω+ ⊗ Ω− invariant. Hence (N̂R, U+ ⊗ U−,Ω+ ⊗ Ω−) ∼= (NR, U+ ⊗ U−,Ω+ ⊗ Ω−); this also
shows that (N̂R, U+ ⊗ U−,Ω+ ⊗ Ω−) is a Borchers triple.

Regarding the modular data of (N̂R,Ω+ ⊗ Ω−), we first have by modular theory

JN̂R
= S∗

RJNR
SR , ∆it

N̂R
= S∗

R∆it
NR
SR = S∗

R∆it
⊗SR . (2.3)

Taking into account the action of Γ±(U1,±(0, λ)), one sees from (1.8) and (1.22) that SR

commutes with the Lorentz boosts. As these coincide with the modular unitaries ∆it
⊗, the

second equation in (2.2) follows. To establish the claimed form of the modular conjugation,
we note J⊗SR = SRJ⊗ = S∗

RJ⊗ and compute

JN̂R
= S∗

RJNR
SR = S∗

RSR2J⊗SR = S∗
RS

2
RS

∗
RJ⊗ = J⊗ .

This completes the proof.

The equivalence between the two deformed Borchers triples with wedge algebras MR,0 and
N̂R will now be established using the creation and annihilation operators into which the fields
generating M0 can be decomposed. Corresponding to the splitting M0 = M0,+ ⊗ M0,− we

have creation and annihilation operators a±, a†
± acting on H±.

In the following, we will always suppress the canonical embeddings ιn± : (H±
1 )⊗n → H⊗n

1 ,
(ιn±Ψ±

n )(p1, ..., pn) := Ψ±
n (p1, ..., pn) for p1, ..., pn ∈ ❘± and (ιn±Ψ±

n )(p1, ..., pn) := 0 otherwise.
With these embeddings understood, H1 = H+

1 ⊕ H−
1 , and hence H ∼= H+ ⊗ H−. This isomor-

phism is given explicitly by a unitary

V : H+ ⊗ H− → H ,

which is uniquely determined by its action on the total set [12] of “exponential vectors” eΨ1 :=∑∞
n=0

1√
n!

Ψ⊗n
1 by

V (eΨ1 ⊗ eΦ1) := eΨ1⊕Φ1 , Ψ1 ∈ H+
1 , Φ1 ∈ H−

1 . (2.4)

The definitions of MR,0 and NR make use of the realizations of H as Γ(H+
1 ⊕ H−

1 ) and
Γ(H+

1 )⊗Γ(H−
1 ), respectively. We will work on H = Γ(H+

1 ⊕H−
1 ), and first compute an explicit

expression of SR on this space.

Lemma 2.2. Let R ∈ R and ŜR := V SRV
∗. Then, Ψ ∈ H,

[
ŜRΨ

]
n
(p1, . . . , pn) =

n∏

i,j=1

R+
0 (pi, pj) · Ψn(p1, . . . , pn) , (2.5)

where

R+
0 (p, q) =

{
R(−pq) p > 0, q < 0

1 else
.

Proof. As exponential vectors form a total set in H, it is sufficient to compute ŜR on eΨ1⊕Φ1

to verify (2.5). The action of V from (2.4) on vectors Ξ =
∑∞

n,m=0 Ξn,m ∈ ⊕∞
n,m=0((H+

1 )⊗sn ⊗
(H−

1 )⊗sm) = H+ ⊗ H− is explicitly given by

[
V Ξ]n =

n∑

k=0

(
n

k

)1/2

Symmn Ξk,n−k , (2.6)
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where for f : ❘n → ❈,

[Symmn f ](p1, . . . , pn) :=
1

n!

∑

π∈Sn

f(pπ(1), . . . , pπ(n))

denotes total symmetrization. Combining this with (1.22), we find

[ŜR(eΨ1⊕Φ1)]n(p1, . . . , pn) =
n∑

k=0

(
n

k

)1/2

Symmn(SR(eΨ1 ⊗ eΦ1)k,n−k)(p1, . . . , pn)

=
n∑

k=0

(n
k

)1/2

n!

∑

π∈Sn

∏

i=1...k
j=k+1...n

R+
0 (pπ(i), pπ(j))

Ψ1(pπ(1)) · · · Ψ1(pπ(k)) · Φ1(pπ(k+1)) · · · Φ1(pπ(n))√
k!
√

(n− k)!
.

In the second line, R0 was replaced by R+
0 , which does not change the result since the factors

of Ψ1 and Φ1 (explicitly writing out the embedding Ψ1 ◦ ι+ and Φ1 ◦ ι−) are equal to zero
unless pπ(i) > 0 and pπ(j) < 0, and R0(p, q) = R+

0 (p, q) for p > 0, q < 0.
Next we change the range of indices i = 1, ..., k, j = k + 1, ..., n of the product to i =

1, ..., n, j = 1, ..., n. This does not change the result because for the indices i, j which were
not present before, we have R+

0 (pπ(i), pπ(j)) = 1 on the support of the remaining factors.

After these manipulations, (p1, ..., pn) 7→ ∏n
i,j=1R

+
0 (pπ(i), pπ(j)) is a totally symmetric function

independent of π and k. Thus we get

[ŜR(eΨ1⊕Φ1)]n(p1, . . . , pn)

=
n∏

i,j=1

R+
0 (pi, pj)

n∑

k=0

(
n

k

)1/2
1

n!

∑

π∈Sn

Ψ1(pπ(1)) · · · Ψ1(pπ(k)) · Φ1(pπ(k+1)) · · · Φ1(pπ(n))√
k!
√

(n− k)!

=
n∏

i,j=1

R+
0 (pi, pj)

[
V (eΨ1 ⊗ eΦ1)

]
n

(p1, . . . , pn)

=
n∏

i,j=1

R+
0 (pi, pj)

[
eΨ1⊕Φ1

]
n

(p1, . . . , pn) ,

and the proof is finished.

After these preparations, we can now state the precise relation between the generators
appearing in the two types of deformations.

Proposition 2.3. Let R ∈ R be a root of a symmetric inner function. Then, ψ± ∈ H±
1 ,

aR(ψ+) = V S∗
R(a+(ψ+) ⊗ 1)SRV

∗ , aR(ψ−) = V SR(a+(ψ−) ⊗ 1)S∗
RV

∗ . (2.7)

Proof. Let Ψ ∈ H be a vector of finite particle number. Using a ◦ ι+ = V (a+ ⊗ 1)V ∗,

a◦ ι− = V (1 ⊗a−)V ∗ and the corresponding relations for a† and a†
±, we can equivalently show
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Ŝ∗
Ra(ψ+)ŜR = aR(ψ+), ŜRa(ψ−)Ŝ∗

R = aR(ψ−). To this end, we compute (p1, ..., pn ∈ ❘):

[ŜRa(ψ)Ŝ∗
RΨ]n(p1, . . . , pn) =

n∏

i,j=1

R+
0 (pi, pj) ·

√
n+ 1

∫
dq

|q| ψ(q) [Ŝ∗
RΨ]n+1(q, p1, . . . , pn)

=
√
n+ 1

n∏

i,j=1

R+
0 (pi, pj)

∫
dq

|q|ψ(q)
n∏

i′,j′=1

R+
0 (pi′ , pj′) ·

n∏

k=1

R+
0 (q, pk)R+

0 (pk, q) Ψn+1(q, p1, .., pn)

=
√
n+ 1

{∫ ∞

0

dq

|q| ψ(q)
n∏

k=1

R+
0 (q, pk)Ψn+1(q, p1, . . . , pn) (2.8)

+

∫ 0

−∞

dq

|q| ψ(q)
n∏

k=1

R+
0 (pk, q)Ψn+1(q, p1, . . . , pn)

}
,

where in the last equality R+
0 (p, q) = 1 unless p > 0 and q < 0 was used.

On the other hand, using R0(p, q) = R+
0 (p, q) for p > 0, q < 0, and R0(p, q) = R+

0 (q, p) for
p < 0, q > 0, we find

[aR(ψ)Ψ]n(p1, . . . , pn) =
√
n+ 1

∫
dq

|q| ψ(p)
n∏

k=1

R0(q, pk)Ψn+1(q, p1, . . . , pn)

=
√
n+ 1

{∫ ∞

0

dq

|q| ψ(q)
n∏

k=1

R+
0 (q, pk)Ψn+1(q, p1, . . . , pn) (2.9)

+

∫ 0

−∞

dq

|q| ψ(q)
n∏

k=1

R+
0 (pk, q)Ψn+1(q, p1, . . . , pn)

}
,

from which we read off ŜRa(ψ)Ŝ∗
R = aR(ψ) for suppψ ⊂ ❘−. For suppψ ⊂ ❘+, the remaining

integrals in (2.8) and (2.9) agree up to complex conjugation of R+
0 ; this is compensated by

using Ŝ∗
R = ŜR , i.e. in this case we have Ŝ∗

Ra(ψ)ŜR = aR(ψ).

To obtain the equivalence of Borchers triples, recall that the massless field φ0 decomposes
into chiral components φ0,±, each depending on one light ray coordinate x∓ = x0 ∓ x1 only,
namely for f which is the derivative of a function in S (❘2),

φ0(f) = V
(
φ0,+(f+) ⊗ 1 + 1 ⊗ φ0,−(f−)

)
V ∗ , φ0,±(f±) = a

†
±(f̃±|❘±) + a±(f̃±|❘±) ,

f±(∓x∓) =
1

2
√

2π

∫

❘

dx± f
(

1
2(x+ + x−), 1

2(x+ − x−)
)
. (2.10)

The algebras in question are generated by these field operators (all of which are essentially
self-adjoint on their respective subspaces of finite particle number) by

M0 = {eiφ0(f) : f ∈ S❘(W )}′′ , (2.11)

M0,± = {eiφ0,±(f±) : f ∈ S❘(W )}′′ = {eiφ0,±(g) : g ∈ S❘(❘+)}′′ . (2.12)

We now come to the main result of this section.

Theorem 2.4. Let R ∈ R. Then (MR,0, U,Ω) ∼= (NR, U+ ⊗ U−,Ω+ ⊗ Ω−).

Proof. The equivalence (NR, U+ ⊗ U−,Ω+ ⊗ Ω−) ∼= (N̂R, U+ ⊗ U−,Ω+ ⊗ Ω−) was established
already, and by construction of V , we have V (U+(x−)⊗U−(x+))V ∗ = U(x) and V Ω+⊗Ω− = Ω.
Hence the claim follows once we have shown V N̂RV

∗ = MR,0.
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By (2.1) and (2.12), N̂R is generated by the bounded functions of the field operators
S∗

R(φ0,+(f+) ⊗ 1)SR and SR(1 ⊗ φ0,−(f−))S∗
R, f± ∈ S (❘+). Conjugating with V , we have

V S∗
R

(
φ0,+(f+) ⊗ 1

)
SRV

∗ = Ŝ∗
R

(
a†(f̃+|❘+

) + a(f̃+|❘+
)
)
ŜR

= a
†
R(f̃+|❘+

) + aR(f̃+|❘+
) ,

where in the second step, we have used Proposition 2.3, which also holds for the creation
operators by taking adjoints. Given f+ which is the derivative of a function in S (❘+), we
find f which is the derivative in x+ direction of some function in S (W ) such that f+ is
recovered from f by (2.10) and f− = 0 (namely, one can take the product of f+ (which is
a function of x−) and a function of x+ with integral one). In this situation, f+ = f̃+|❘+

,

f− = f̃+|❘+
, and thus

V S∗
R

(
φ0,+(f+) ⊗ 1

)
SRV

∗ = φR,0(f) .

As all vectors of finite particle number are analytic for these field operators, this equivalence
also holds for their associated unitaries eiφR,0(f) and eiφ0,+(f+), and thus we have the inclusion
V S∗

R(M0,+ ⊗ 1)SRV
∗ ⊂ MR,0.

Similarly, for the other light ray we obtain

V SR

(
1 ⊗ φ0,−(f−)

)
S∗

RV
∗ = a

†
R(f̃−|❘−) + aR(f̃−|❘−) = φR,0(f)

for suitably chosen f ∈ S (W ), and hence V SR(1 ⊗ M0,−)S∗
RV

∗ ⊂ MR,0. Thus V N̂RV
∗ ⊂

MR,0. As Ω is cyclic and separating for both V N̂RV
∗ and MR,0, and their modular groups

w.r.t. Ω coincide, ∆it
V N̂RV ∗ = V∆it

⊗V
∗ = ∆it

MR,0
, the equality of von Neumann algebras

V N̂RV
∗ = MR,0 follows by Takesaki’s theorem [22] (see [24, Theorem A.1] for an explicit

application).

Recall that by construction, NR (1.23) depends on R only via the symmetric inner function
R2, i.e. NR1

= NR2
if R2

1 = R2
2. By the equivalences

(NR, U+ ⊗ U−,Ω+ ⊗ Ω−) ∼= (N̂R, U+ ⊗ U−,Ω+ ⊗ Ω−) ∼= (MR,0, U,Ω) ,

this also implies (MR1,0, U,Ω) ∼= (MR2,0, U,Ω) if R2
1 = R2

2.

3 Structure of massive deformations

The analysis in the previous section resulted in particular in two equivalence properties of the
massless deformed models: On the one hand, the two deformed Borchers triples (MR,0, U,Ω) ∼=
(NR,0, U+ ⊗U−,Ω+ ⊗ Ω−) depend only on the symmetric inner function ϕ = R2, i.e. choosing
a different root of ϕ results in an equivalent model. On the other hand, the deformed and
undeformed (chiral) fields are unitarily equivalent. This equivalence however depends on the
light ray, and thus the triples (MR,0, U,Ω) and (M1,0, U,Ω) are not equivalent for general
roots R ∈ R (the operator SR2 = Sϕ appears as the S-matrix, an invariant of Borchers triple
[23, 9]).

In this section, we show that the first property also holds in the massive case, whereas the
second one only holds in a weaker sense which is specified below.
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Independence of different choice of roots

We begin with a preparatory lemma.

Lemma 3.1. Let m ≥ 0 and r ∈ R be a root of the (trivial) symmetric inner function ϕ(t) = 1.
Then the operator

[YrΨ]n(p1, . . . , pn) :=
∏

1≤i<j≤n

rm(pi, pj) · Ψn(p1, . . . , pn) (3.1)

is a well-defined unitary on H which commutes with the representation U , leaves Ω invariant,
and satisfies

YrφR,m(f)Y ∗
r Ψ = φr·R,m(f)Ψ , f ∈ S (❘2) , R ∈ R , Ψ ∈ D . (3.2)

Proof. As r is a root of 1, it takes only the values ±1 and is in particular real. Hence
rm(pj , pi) = rm(pi, pj) = rm(pi, pj) is symmetric and thus the product in (3.1) preserves the
totally symmetric subspace of L2(❘n), and Yr defines a unitary on the Bose Fock space H.

It is clear that Yr commutes with translations and leaves Ω invariant. To establish (3.2),
we first calculate for an annihilation operator aR(ψ), ψ ∈ H1,

[YraR(ψ)Y ∗
r Ψ]n(p1, . . . , pn)

=
√
n+ 1

∏

i<j

rm(pi, pj)

∫
dq

ωm(q)
ψ(q)

n∏

k=1

Rm(q, pk) · [Y ∗
r Ψ]n+1(q, p1, . . . , pn)

=
√
n+ 1

∏

i<j

|rm(pi, pj)|2
∫

dq

ωm(q)
ψ(q)

n∏

k=1

(
rm(q, pk)Rm(q, pk)

)
Ψn+1(q, p1, . . . , pn)

= [ar·R(ψ)Ψ]n(p1, . . . , pn) .

Thus YraR(ψ)Y ∗
r Ψ = ar·R(ψ)Ψ, and by taking adjoints, we also find Yra

†
R(ψ)Y ∗

r Ψ = a
†
r·R(ψ)Ψ.

As φR,m(f) = a
†
R(f+) + aR(f−), the claimed equivalence (3.2) follows.

With this lemma, it is now easy to show that the Borchers triple (MR,m, U,Ω) is indepen-
dent of the choice of root up to equivalence.

Proposition 3.2. Let R1, R2 ∈ R be roots of the same symmetric inner function R2
1 = R2

2.
Then (MR1,m, U,Ω) ∼= (MR2,m, U,Ω), m ≥ 0.

Proof. As R2
1 = R2

2, the function r(t) := R1(t)R2(t)−1 is a root of 1 as in Lemma 3.1, i.e.
we have YrφR2,m(f)Y ∗

r = φR1,m(f) (3.2) for any f ∈ S (❘2). But these field operators have
the dense subspace D of vectors of finite particle number as entire analytic vectors [16], and
YrD = D. Hence the equivalence (3.2) lifts to the unitaries eiφRk,m(f), k = 1, 2, f ∈ S❘(❘2),
and the von Neumann algebras they generate, YrMR1,mY

∗
r = MR2,m. Since Yr also commutes

with U and leaves Ω invariant, the claimed equivalence of Borchers triples follows.

As mentioned in Section 1, this result states that within the class of Borchers triples
considered here, the inverse scattering problem for the two-particle S-matrix R2 has a unique
solution up to unitary equivalence. For massless asymptotically complete nets, the uniqueness
is known in a stronger form, that the S-matrix and the free nets give an explicit formula to
construct the interacting Borchers triple [23]. It is an interesting open problem to find its
massive counterpart.
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Equivalence at fixed momentum

We now come to the discussion of equivalences between deformed and undeformed field oper-
ators. In the massless case, this equivalence can be expressed as, R ∈ R,

aR(ξ) =

{
Ŝ∗

Ra(ξ)ŜR supp ξ ⊂ ❘+

ŜRa(ξ)Ŝ∗
R supp ξ ⊂ ❘−

, m = 0 .

For m > 0, the Lorentz group acts transitively on the upper mass shell, so that there is no
invariant distinction between its left and right branch. However, we still have an equivalence
of the above form at sharp momentum. Recall that for p ∈ ❘, the annihilator a(p) is a well-
defined unbounded operator on the dense domain D0 ⊂ D of vectors Ψ ∈ D of finite particle
number with continuous wave functions Ψn ∈ C(❘n), n ∈ ◆.

To implement this equivalence, we define an operator-valued function ❘ ∋ p 7→ ŜR,m(p) ∈
U(H) by

[ŜR,m(p)Ψ]n(p1, . . . , pn) :=
∏

1≤i<j≤n

R((pi + pj) ∧m p) · Ψn(p1, . . . , pn) , (3.3)

where p ∧m q := 1
2(ωm(q)p − ωm(p)q). Note that in case the root R is continuous, one has

ŜR(p)D0 = D0.
Using R(t) = R(t)−1 = R(−t), the definition of Rm (1.7), and (p + q) ∧m p = q ∧m p, we

then get

[ŜR,m(p)a(p)ŜR,m(p)∗Ψ]n(p1, .., pn)

=
√
n+ 1

n∏

i<j

R((pi + pj)∧m p) · [ŜR,m(p)∗Ψ]n+1(p, p1, .., pn)

=
√
n+ 1

n∏

i<j

(
R((pi + pj) ∧m p)R((pi + pj) ∧m p)

)
·

n∏

k=1

R((p+ pk) ∧m p) · Ψn+1(p, p1, ..., pn)

=
√
n+ 1

n∏

k=1

R(pk ∧m p) · Ψn+1(p, p1, ..., pn)

=
√
n+ 1

n∏

k=1

Rm(p, pk) · Ψn+1(p, p1, ..., pn)

= [aR(p)Ψ]n(p1, ..., pn) ,

where the last equality follows from comparison with (1.10). We thus have on D0

ŜR,m(p)a(p)ŜR,m(p)∗ = aR,m(p) . (3.4)

It should be noted, that there is actually a big freedom in the choice of ŜR,m(p) with this
property, as it is only the adjoint action of ŜR,m(p) on a(p) that matters in the end. One
manifestation of this freedom is the fact that ŜR,0(p) for p > 0 does not agree with Ŝ∗

R, whereas
their adjoint action on a(p) does. For m > 0, another implementation of the equivalence is

(ŜR,m(p)Ψ)n(p1, . . . pn) =
∏

i<j

R(sgn(max(pj , pi) − p)|pi ∧m pj |) · Ψn(p1, . . . , pn) ,

where the sign function sgn is defined with sgn(0) := −1. This can be checked by a computation
analogous to the previous one. Observe that if p is sufficiently large, this coincides with the
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root of the two-particle S-matrix [16], and for p sufficiently small with its inverse. Hence this
latter implementation is analogous to the massless case, where the deformation is given exactly
by the S-matrix ŜR and its adjoint.

By (formally) taking adjoints one gets the same relation between a†(p) and a†
R,m(p). How-

ever even when making this adjoint rigorous (e.g. in the sense of quadratic forms) one cannot
expect to get an equivalence of the Fourier transform of the deformed and undeformed field at
sharp p. One might be confused by the fact that relations transfer from the creation and anni-
hilation operators to (chiral) fields in the massless case, but one has to keep in mind that the
splitting into chiral components is not a splitting of the field according to momentum transfer
but related to a split of the one-particle Hilbert space into positive and negative momentum
parts. Thus creation and annihilation operators appear either both with positive or both
with negative momentum, so both are transformed with ŜR,m or Ŝ∗

R,m. For the massive case
this mechanism is not available and therefore the relations between deformed and undeformed
creation and annihilation operators will not yield a corresponding relation between the fields.

To conclude, the structure of the wedge algebra is deformed in a very transparent manner
in the chiral situation (1.23), but not for m > 0, where one has to rely on the use of generating
fields. This observation is to some extent in parallel with the simpler structure of the wave
S-matrix in the chiral case in comparison to the many particle S-matrix in the massive case,
and deserves further investigation.
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