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Abstract 
 
A Heijunka Board is a Lean Production technique that helps to communicate a timed production plan to the 
factory floor. Lean advocates that production plans should be generated to level the volume and to level the mix. 
It is the mix levelling aspect of the Heijunka Board that we are concerned with. In particular, given that a 
number of products have to be produced on a production line, the order or sequence of production is of 
importance. This is because changing from one product to the next in the sequence incurs a set-up or changeover 
cost. If the set-ups are different for each pair of products in a changeover, the question arises “which is the 
optimal sequence that minimises the total set-up costs as we go round the Product Wheel?” It is this question that 
we answer here. 
 
We show that this mixed model production schedule problem can be represented as a Directed Acyclic Graph 
(DAG) where the edges of the graph represent the changeover costs. This allows us to apply various Shortest 
Path Algorithms to minimise the total changeover associated with going through one complete cycle of the 
product range. We show how the Product Wheel can be formulated as a DAG and solved by hand for small cases 
when all the changeover over costs are non-negative. Here we use the intuitive, logarithmic time, Dijkstra’a 
Shortest Path Algorithm (DSPA). For larger problems we have developed both a User Defined Function in Excel 
and a Java application based on both Topological Sort Algorithm operating in linear time and DSPA. Numerical 
examples are provided to test the solution methods and computational results illustrate the effectiveness of both 
approaches to randomly generated problem instances. 
 
Key words: Heijunka Board, Shortest Path, Directed Acyclic Graph, Changeover Costs, Product Wheel 
 
1. Introduction 
One of central themes of the Lean Production philosophy is to only produce (or assemble) 
what you sell in each period – to match production to demand. In order to do this the demand 
volume in each day must be fairly level, otherwise there will be significant losses due to the 
(expensive) production capacity not matching the demand volume. It is well known that if 
customer orders are simply passed along to the production facility, the variability of those 
orders is likely to be less that if it passes through a “standard” inventory replenishment rule 
(such as the Order-Up-To policy with exponential smoothing forecasts), Dejonckheere et al 
(2003). With clever design these volume variability amplifying replenishment algorithms can 
be made to smooth the replenishment orders. However this is fairly difficult task, Disney et al 
(2013), and much of the Lean advice simply avoids this issue by recommending that 
production targets are set to the most recent demands in a “pass-on-orders” strategy. Another 
way to reduce volume variability is to make the replenishment periods as short as possible. 
This conceptually simple, easy to communicate strategy helps companies to reduce finished 
goods inventory levels, Hedenstierna and Disney (2012). 
 
Another aspect of the Lean Production philosophy recognises that products rarely have a 
dedicated production line. In most cases several products share the same production facilities. 
This implies that, intermittently, the production line needs to be changed in some manner to 
allow for a different product to be produced. This “set-up” or “changeover” takes time and 
costs money. The Lean approach advocates reducing the set-up cost (or set-up time) as much 
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as possible by using the “SMED” principles of separating out the internal and external 
activities and reducing their cost and time (Shingo 1996). SMED allows lean companies to 
produce a complete range of products in each replenishment cycle, thus reducing the need to 
holding cycle stock to cover the time when a product is not being reduced. Reaching this state 
of producing “Every Product Every Day” is the Nirvana of Lean Production and is known as 
“Mix Levelling”, (Ohno 1998). 
 
The Heijunka Board is a Lean term used to communicate this “Volume Levelled” and “Mix 
Levelled” production plan to the shop floor, often dictating hour-by-hour what needs to be 
produced. It is important to determine the exact sequence of product produced as often there 
will be different set-up costs to be incurred when changing over from a different sequence of 
products. As all products need to have been produced before the end of each replenishment 
cycle, this is known as a “Product Wheel”, King (2009), see Figure 1. 
 

 
Figure 1. The product wheel 

King (2009) provides an excellent step-by-step guide to implement the Product Wheel. The 
steps are: 1) decide which parts of the process need a Heijunka Board; 2) determine whether 
products are to made-to-order or made-to-stock based on demand variability; 3) identify the 
optimum sequence; 4) calculate the shortest wheel time possible; 5) determine the most 
economic wheel time; 6) decide on the wheel time; 7) set inventory levels; 8) fine tune the 
design in light of stakeholder feedback; 9) update the scheduling process; and finally 10) 
communicate to the shop floor by visual displays. 

The problem of finding the best (in terms of cost or time) sequence of products is the focus of 
our paper; these are steps 3 and 4 in the framework of King (2009). This problem is to 
determine a production sequence while minimising total cost of product changeovers, see (1), 
 

min
p p

ij ij
i V j V

c x
 
  ,  (1)

 
here the decision variable xij = 1 if a product i has an changeover to product j otherwise xij = 0 
and ijc  is the changeover cost from product i to product j. In this paper we discuss that the 
optimum sequence can be efficiently solved using various Shortest Path Algorithms.  
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Our paper is structured as follows. First in Section 2 we motivate our problem with an 
industrial case example and show how it can be formulated as a Directed Acyclic Graph 
(DAG). We solve this problem manually using DSPA and we highlight a couple of common 
improvements to the DSPA for competent users of DSPA that slightly improve the process. In 
section 3 we discuss other approaches that can also be used to solve shortest path problems, 
and graph representation. Section 4 presents a methodology for solving the Shortest Path 
Problem in the product wheel. In Section 5 we present our computational results and Section 
6 concludes.  
 
Our contribution is to provide three new tools for practical use: blank DAG’s for manual use 
on problems with 3 to 5 products (in Appendix A); a Microsoft Excel Add-in which is hosted 
on www.bullwhip.co.uk for larger problems and Java Web Start Application (work in 
progress). 
 
2.  The product wheel: An industrially inspired case that can be solved manually 
In Cardiff, Princes produce fruit drinks. Let us highlight the basic production process by 
example of Orange Juice. Oranges are grown in Brazil. In Brazil the Oranges are squashed 
and the juice is distilled into a concentrate. The concentrate is much cheaper to transport than 
the raw oranges. The distillation process also separates out the juice from essential oils and 
these are stored in separate containers. The orange pulp is also saved and packaged separately 
to create the orange juice with “bits” in it later in the process. The three orange components 
are transported by ship from Brazil to Cardiff. When the orange juice, essential oils and pulp 
arrive in the packaging factory, they are combined with Cardiff water in, essentially, a big 
mixing machine. The fruit juice is then put inside a 1 litre TetraPak that is then aseptically 
sealed. The product is then sold as individual 1L boxes or in multi-packs of 6 or 12 1L boxes. 
Either way, a 1m cube of product is stacked up on a pallet and distributed to customers. 
Similar production processes are undertaken for Apple, Pineapple and Tomato juice. 
 

Changeover cost 
To 

A. Apple B. Orange C. Pineapple D. Tomato 

F
ro

m
 A. Apple - 3 3 3 

B. Orange 6 - 2 4 
C. Pineapple 9 7 - 4 
D. Tomato 12 13 14 - 

Table 1. Changeover costs on a juice production line 

 
The production is planned on a weekly basis, each mixing machine producing several 
different products during the week. Between the production of one product and another the 
machine has to be emptied, cleaned and new raw materials piped in. Some products are easier 
to clean out of the machine than others. For example apple juice is fairly easy to flush out, 
tomato juice is a lot harder to remove. So the changeover costs (and the time involved) are 
different as the production line is re-configured to produce a different product. The TetraPak’s 
also have to swapped over as they have different print designs on. Table 1 details the 
changeover cost matrix for the four products. 
 
The four different products,  , , ,A B C D , can be rearranged into 4! = 24 different 
permutations. However, as after each cycle of the wheel the production sequence is repeated, 
there are only 3! = 6 unique permutations of interest. These are:  , , , ,A B C D A ; 
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 , , , ,A B D C A ;  , , , ,A C B D A ;  , , , ,A C D B A ;  , , , ,A D B C A ; and  , , , ,A D C B A . Notice, 
here we have returned the wheel to its starting position that we arbitrarily choose to be 
product A. These six unique permutations can be represented as a DAG, with the edges 
representing the changeover cost (or time or other utility) and the vertexes representing the 
products (and, importantly its predecessors), see Figure 2 (a). 
 
We have chosen DSPA for solving the DAG in this introductory example as it is intuitive and 
easy to visualise, although there are faster shortest path algorithms available and others that 
can cope with DAG’s with negative edge weights. The shortest path is identified in the 
following manner with DSPA where shortest path is visualised in Figure 2 (b): 
 

Step 1.  Shade all vertices reachable from the current set of reachable nodes.  
Step 2.  Calculate the cost to reach all reachable nodes.  
Step 3.  Pick the vertex with the smallest cost and deem it reached (if more than one node 

has an equal smallest cost, pick one at random).  
Step 4.  Repeat steps 1-3 until you reach the destination.  
Step 5.  Determine the shortest path by working backward though the graph looking for 

the route with the shortest distance.  
 
Figure 2 (b) shows the output of the DSPA for the juice problem. The shortest path has a total 
changeover cost of 21 and is the shortest path through the product wheel is  , , , ,A B C D A . 

 

 
Figure 2. The product wheel represented as a shortest path problem (a) solved using DPSA (b) 

 
There are two common improvements to the DSPA. One is to take alternate step forwards and 
backwards through the DAG. The two paths will meet somewhere in the middle of the graph, 
highlighting the shortest path and distance by visiting less nodes within the DAG. Another 
variation is to first pre-process the DAG, consolidating nodes on a linear routes with no adjoin 
or diverging paths. However, it is unclear beforehand whether the pre-processing results in 
fewer calculations overall.  
 
The number of possible paths in the an n product wheel is  1 !n   With 2 products there is 
only one route (sequence) though the wheel, 3 products imply 2 routes, 4 products produce 6 
routes, 5 products require 24 routes and so on. It is possible to solve this scale of the problem 
by hand and we have provided in Appendix A the DAG’s required to undertake such as task 
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for easy reference. Notice, that the five products problem can be solved as four DAG’s 
simultaneously. However, for product wheels of six or more products the manual approach 
becomes unwieldy. Thus in the next section we turn our attention to computer based 
algorithms and solutions.     
 
3.  Computer based approaches to solving shortest path problems 
A number of algorithms exist to find shortest paths in DAGs. The DSPA and the Bellman-
Ford algorithm and are two well-known approaches that compute shortest paths (Bertsekas 
and Gallager 1992, Salama et al. 1997). The Bellman-Ford algorithm is more flexible as it can 
handle graphs with negative weights but is slower than the DSPA.  

Dijkstra’s shortest path algorithm was published in late 1959 by Edsger Dijkstra and used for 
solving shortest path problems with positive weights. It has been widely applied to routing 
problems in road and network protocols. The main idea of the algorithm is to search through 
each node of the graph that is located on the “unseen” shortest path from source to the 
destination node with the aim of finding the lowest cost solution. The algorithm stops when 
the shortest path to the destination node has been found. The algorithm operates in the 
logarithmic time. 

The Topological Sort Algorithm (TSA) is another approach for solving the shortest path 
problems in DAG’s. The TSA orders vertices in a DAG in a way that if there is a path from 
vertices v1 to v2 then v1 appears before v2 in the topological order. If there are cycles in the 
graph, then a graph cannot have a topological order (Weiss 2006).  We find however, that 
there are no cycles in our Product Wheel problem; hence we have an acyclic graph.  

The manner in which we represent the DAG in a computer program has implications for 
memory use and speed.  Getting it wrong will result in a program that will run out of memory. 
We explored two common data representations of the DAG’s: the adjacency matrix; and the 
adjacency list as illustrated in Table 2. The adjacency matrix is a two-dimensional array 
where cij is the edge cost and all non-zero values represent the cost of adjacency between two 
vertices. The matrix representation could be used for dense graphs (where the number of 
edges is close to the square of the number of vertices, |E| is close to |V|2) where information 
related to adjacency is stored in the matrix. However the adjacency matrix requires 
initialisation and this task has a cost that is quadratic in the number of nodes in the graph. In 
our relatively sparse matrix, the number of possible edges |E| is much less than the square of 
the vertices |V|2.   Thus there is a need for a different data structure, an adjacency list that 
allows the development of solutions which require only linear space. Adjacency lists were 
initially pioneered by Hopcroft and Tarjan (1973) and consists of an array of vertices where 
each node stores a list of all adjacent vertices that are connected to that node. For example, 
node A is adjacent to node B and to the node C' with associated costs are 8 and 4, see Table 2. 

Initially, for exploratory purposes and for constructing our Excel Add-in, we use an adjacency 
matrix representation. With this approach we were able to find a schedule for up to and 
including seven products when we applied a shortest path algorithm. The adjacency list 
representation allowed us to extend the product range and compute a schedule for up to 10 
products when we apply our technique. However, we found that adjacency list with 
appropriate data structure (e.g. priority queue) do not seem to be readily supported in VBA, 
therefore we are using Java that support those data structures for further explorations.  
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 Cost matrix Adjacency Matrix Adjacency List 
 

0 8 4

5 0 6

3 7 0

A B C

A

B

C

 

Input string: ABC 
 

Resulting Sequences: 
ABCA  ABCA' 
ACBA  AC'B'A' 

' ' '

8 4

6

3

' 5

' 7

A B C B C A

A

B

C

B

C

   
    
    
    
    

   A  B (8)  C'(4) 
       B  C (6) 
       C  A' (3) 
       C'  B' (7) 
       B'  A' (5) 
 

Table 2. Data representations derived from the cost matrix 
 
4.  Solution technique  
Here we present our methodology to identify the minimised costs and optimal sequence in the 
product wheel via a shortest path algorithm. We also compare the quality of the solutions 
obtained and computational performance of various shortest path algorithms and data 
structures. We show that all techniques find a unique optimum solution.  
 
The Topological Sort Algorithm (Figure 3(a)) visits vertices in the graph in the topological 
order. Initially, it computes the indegrees (number of incoming edges to a vertex) for each 
vertex in the graph. A vertex with the indegree of 0 is chosen as the first node to start a 
topological sort. If there is more than one vertex that has the indegree 0, then choose any one 
to be first in the topological order. All those vertices are added to the queue Q that stores the 
topological order of nodes to be visited. The main loop of the algorithm, removes each vertex 
from the queue, marks it as visited and updates the indegree information of each adjacent 
vertex (decrease by 1). If any updated vertex has indegree 0, it is added to the queue 
otherwise the distance of the path is updated. As a result of the main loop, the TSA “removes” 
vertices that do not have incoming edges. 
 
The “greedy” nature of the DSPA (Figure 3(b)) implies that at each stage, a search for the 
lowest value is extended until the destination node becomes reachable. The main loop starts 
searching from a source node (the current node), to all adjacent neighbours that have not been 
visited before in order to calculate distances to those nodes. The distance information is 
updated if it is less than any previously recorded value (which was set to infinity at 
initialisation). A node that is visited will not be considered in the search again and its distance 
is recorded as final with its lowest value. The next step is to select the next current (unvisited) 
node with the lowest distance, considering all its neighbours, and update distances if needed 
until the destination node has been reached.  
 

In a Java application, for the DSPA implementation, we tested two data structures (the 
priority queue and pairing heaps) from the Weiss package (Weiss 2006). The priority queue is 
used to add a new node to the queue that contains information on the vertex and the distance 
when the total distance to that node is updated (when lower than a previous value). To select 
the next vertex, the minimum distance object is removed from the priority queue and 
algorithm continues until stopping condition is satisfied. The implementation of the pairing 
heap structure also integrates a priority queue concept that uses the distance as the ordering 
function where ordering property is re-established when update takes place. 
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Topological Sort (Graph (G), start) 
 1:  Begin: 
 2:  Q -queue of nodes with indegree of 0 
 3:  Compute indegrees for each vertex in G 
 4:  Add vertices with indegree 0 to Q 
 5:  for each vertex v in Q 
 6:     Remove-Key v from Q 
 7:     for each e adjacent to v do 
 8:        update indegree of e 
 9:        if ( indegree of e==0) 
10:       Add-Key e to Q 
11:       end if 
12:       update distance if necessary 
13:     end for 
14:  end for 
15:  End 

(a) 

Dijkstra (Graph (G), start) 
 1:   Begin: 
 2:   Initialise all distances to each vertex v to ∞ 
 3:   dist [start]=0;    pred[start]=NIL 
 4:   Q - the set of vertices in G, add start to Q 
 5:   while (Non-Empty (Q)) 
 6:      u = extract min (Q) 
 7:      Remove - Key u from Q 
 8:      for each v adjacent to u do 
 9:         if (dist[u] + c(u, v) < dist[v]) 
10:             dist[v] = dist[u] + c(u, v);  pred [v]= u 
11:             Add key v to Q 
12:        end if 
13:     end for 
14:  end while 
15:  End 

(b) 
Figure 3. Shortest Path Algorithms: (a) TSA and (b) DSPA (based on Weiss (2006)) 

 

 

Figure 4. Overview of our methodology for finding a production schedule. 

 

Figure 4 illustrates our methodology to determine an optimum production schedule. The input 
data consists of a probable production sequence schedule S’ with an associated cost matrix, cij 

≥ 0 (Step 1). For example, sequence S’ = ABCD contains a collection of distinct n objects, 
representing products from a set S = {A, B, C, D}. The next step is to generate a list of 
permutations without repetition from a set S starting with only the first element. An initial 
element (node) is appended at the end of each permutation sequence in preparation for the 
encoding stage, e.g. ABCDA, ABDCA (Step 2). 
 

The encoding procedure in Step 3 and 4 translates each unique character in the permutation 
sequence into a unique symbol that is used to create an adjacency matrix/list. The adjacency 
matrix/list is populated with changeover costs of adjacent nodes during the execution of the 
technique and this step can be pre-computed to store “dummy” costs of adjacent vertices. We 
will call it an adjacency costs template for a specific number of products. The actual 
changeover costs from a cost matrix will populate our template just before a shortest path 
algorithm is executed. We have tested different encoding techniques and the procedure 
described below specifically focuses on generation of unique symbols. This allows us to 
create a “compact” template to solve larger instances. The encoding procedure 
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No. of 
products 

Data 
instance 

Minimised 
cost 

Shortest Path 

Computational times (ms)** 

Topological
Sort (TSA) 

DSPA 
(priority 
queue) 

DSPA 
(pairing 

heap) 

3 
set1_3pr 16 ACBA 2.4 3.9 8.7 

set2_3pr 21 ABCA 2.4 4.7 5.4 

4 
set1_4pr 17 

ABDCA*+ 
3.9 5.5 7 

ACBDA 

set2_4pr 45 ABDCA 1.7 3.1 6.4 

5 
set1_5pr 32 ADECBA 6.1 7.7 10.9 

set2_5pr 121 ACEBDA 6.1 8.4 10.9 

6 

set1_6pr 37 
AFCEBDA+ 

7.7 7.6 12.6 
AEBCFDA* 

set2_6pr 98 

AFBCEDA+ 

4.7 9.7 10.9 AEFBCDA*+ 

AEFDCBA 

7 
set1_7pr 30 

ADFGCBEA+ 
24.3 28.5 51.7 

ABCDFGEA*+ 

set2_7pr 60 ADBCEFGA 23.7 27.3 50.8 

8 
set1_8pr 23 AGDFCBHEA 81.2 75 93 

set2_8pr 79 ABFCEDHGA 82.9 73.5 100.8 

9 
set1_9pr 34 AIHBCDEFGA 262.1 264.6 433.1 

set2_9pr 62 ACBFIDGEHA 267.9 259.4 422.3 

10 
set1_10pr 36 

AHBJCGFEDIA*+

2373.3 3087.1 5798.4 
AHCFEJBGDIA 

set2_10pr 80 ADJHFCEBIGA 2254.1 3486.3 5586.8 
    *   solution determined by TSA       +   solution determined by DSPA(priority queue and/or pairing heap) 
    ** average time for 10 runs(unique encoding/cost assignment  excluded)  

Table 3. Computational results 
 
compares character strings in the permutation sequence to decide whether or not that character 
string is unique.  By unique we mean that a character has not yet appeared in that position of 
the wheel with the same set (without order) of proceeding characters. It transpires that we 
don’t need to consider the first character and the second and last character are trival. As way 
of an example, the permutation sequence ABCD, ABDC, ACBD, ACDB, ADBC, ADCB has 
the following unique encoding: ABCDD'C'C''B'D''B''D'''B'''C'''A'. As a result of unique 
encoding, four products will generate a list of 14 unique elements and for five products there 
are 34 unique elements. In the Step 5, the Shortest Path Algorithm (TSA or DSPA) is applied 
to the adjacency list/matrix representation and computes a shortest path cost from the start to 
the destination node and returns the associated path. Step 6, the shortest path is decoded to 
product representation and the optimal sequence in the Product Wheel is returned. 
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5. Computational results 
To test the quality of solutions of our solution framework, we generated 16 random data sets 
for the changeover costs, see Appendix B. Cost values for set1 instances are evenly generated 
random numbers in the range [1, 20] whereas set2 values are in the range [1, 50]. We solved 
these test problems using our methodology discussed in Section 4. Using a full solution space 
search we also identified the optimal solutions to verify the TSA and DSPA approaches. 
 

Table 3 summarizes all the test problems, the shortest path cost and the optimum sequence. 
The results indicate that our framework yields an optimal solution for every data instance 
using different shortest path algorithms. In some cases, there are two (or possibly more in the 
general case) production schedules available with a minimum cost solution. For example, 
set1_4pr has two production schedules (ABDCA, ACBDA), where each path yields to a value 
of 17. Our approach (using TSA or DSPA) determines only one schedule (marked with an * 
or +) for a production plan and at present we are working on adjusting algorithms to identify 
all shortest paths. In terms of computational times, we run each SPA algorithm 10 times and 
an average time is shown in the Table 3.  The times presented in the Table 3 do not include 
unique encoding with associated costs (Steps 3 and 4) because our initial intention for 
recording computational times was to compare the logarithmic vs linear performance of 
algorithms for our problem formulation on our data instances. In addition, we tested a number 
of encoding techniques and the procedure presented in this paper can be used in such way that 
it pre-computes and stores a unique encoding template that is populated by costs just before 
the execution of SPA. As a result of the comparison, we found that there is a relatively small 
difference between the two approaches for problem 9  products.  Surprisingly for some 
instances the DSPA is quicker than the TSA. We conclude that either algorithm (TSA or 
DSPA) is suitable for identifying the optimal sequence in the product wheel and its minimum 
cost. When we investigated DSPA implementation, the priority queue performed faster 
compared then the pairing heaps within the DSPA. 
 
6.  Concluding remarks 
We have presented an approach based on Shortest Path Algorithms for solving the mix 
levelling problem in a Heijunka Board. Small problems ( 5  products) can be easily solved 
by hand. We have used an adjacency list graph representation within computer software to 
solve larger problems. The solution framework was tested on the randomly generated data 
instances for a number of products where results also were compared to a full solution space 
search. The TSA and DSPA with priority queue algorithms performed equally well in terms 
of computational times and solution quality. The User Defined Function in Excel (using an 
adjacency matrix) is developed and is available on www.bullwhip.co.uk. Whilst finding a 
single shortest path is sufficient for a cost minimising production schedule our algorithms 
could be extended further to identify situations where more than one shortest path exists. 
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Appendix A. DAG’s for the 3-5 product wheel problem 
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Appendix B. Random cost matrices used for verification of our algorithm  
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Appendix C. VBA code for the Excel Add-In  

TSA (adjArr): 

Dim indegreeArr() As Integer 
Dim dist() As Integer 
Dim predecessors() As Integer 
Dim node As Integer 
Dim queueForIndeg As Collection 
Set queueForIndeg = New Collection 
ReDim dist(totCol) 
ReDim predecessors(totCol) 
ReDim indegreeArr(totCol) 
 
dist(1) = 0 
For i = 2 To totCol 
       dist(i) = 9999 
Next i 
' compute indegrees 
For i = 1 To totRow 
    For j = 1 To totCol 
        If adjArr(i, j) <> "‐1" Then 
            indegreeArr(j) = indegreeArr(j) + 1 
        End If 
    Next j 
Next i 
 
For i = 1 To totCol 
    If indegreeArr(i) = 0 Then 
       queueForIndeg.Add (i) 
    End If 
Next i 
 
For i = 1 To queueForIndeg.Count 
    If queueForIndeg.Count = 0 Then Exit For 
    node = queueForIndeg.Item(CInt(i)) 
    queueForIndeg.Remove (i) 
    i = i ‐ 1 
    For j = 1 To totCol 
       If adjArr(node, j) <> ‐1 Then 
          indegreeArr(j) = indegreeArr(j) ‐ 1 
          If indegreeArr(j) = 0 Then 
             queueForIndeg.Add (j) 
          End If 
          If (dist(node) + adjArr(node, j)) < dist(j) Then 
              dist(j) = dist(node) + adjArr(node, j) 
              predecessors(j) = node 
          End If 
       End If 
    Next j 
Next i 
 
MsgBox "shortest distance cost= " & dist(totCol) 

DSPA (adjArr): 

Dim fromStr As Integer 
Dim dist() As Integer 
Dim closed() As Boolean 
Dim predecessors() As Integer 
Dim minDist As Integer 
Dim node As Integer 
ReDim dist(totCol) 
ReDim closed(totCol) 
ReDim predecessors(totCol) 
Dim queueForElem  As Collection 
Set queueForElem = New Collection 
 
fromStr = 1 
queueForElem.Add (CStr(fromStr)) 
predecessors(fromStr) = ‐1 
dist(1) = 0 
For i = 2 To strLenAdjArr 
    dist(i) = 9999 
Next i 
 
While queueForElem.Count <> 0 
    minDist = 9999 
    node = ‐1 
    For i = 1 To queueForElem.Count 
        If dist(queueForElem.Item(i)) < minDist Then 
            minDist = dist(queueForElem.Item(i)) 
            node = queueForElem.Item(CInt(i)) 
        End If 
    Next i 
    For i = 1 To queueForElem.Count 
           If queueForElem.Item(i) = CStr(node) Then 
                  queueForElem.Remove (i) 
                  Exit For 
           End If 
    Next i 
    closed(node) = True 
    For i = 1 To totCol 
       If adjArr(node, i) <> ‐1 Then 
            If closed(i) = False Then 
               If (dist(node) + adjArr(node, i)) < dist(i) Then 
                    dist(i) = dist(node) + adjArr(node, i) 
                    predecessors(i) = node 
                    queueForElem.Add (CStr(i))      
              End If 
            End If 
        End If 
    Next i 
Wend 
MsgBox "shortest distance cost= " & dist(totCol) 

 


