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Summary

Antigen-specific T cell receptor (TCR) gene transfer via patient-derived T
cells is an attractive approach to cancer therapy, with the potential to circum-
vent immune regulatory networks. However, high-affinity tumour-specific
TCR clonotypes are typically deleted from the available repertoire during
thymic selection because the vast majority of targeted epitopes are derived
from autologous proteins. This process places intrinsic constraints on the
efficacy of T cell-based cancer vaccines and therapeutic strategies that
employ naturally generated tumour-specific TCRs. In this study, we used
altered peptide ligands and lentivirus-mediated transduction of affinity-
enhanced TCRs selected by phage display to study the functional properties
of CD8+ T cells specific for three different tumour-associated peptide anti-
gens across a range of binding parameters. The key findings were: (i) TCR
affinity controls T cell antigen sensitivity and polyfunctionality; (ii)
supraphysiological affinity thresholds exist, above which T cell function
cannot be improved; and (iii) T cells transduced with very high-affinity
TCRs exhibit cross-reactivity with self-derived peptides presented by the
restricting human leucocyte antigen. Optimal system-defined affinity
windows above the range established for natural tumour-specific TCRs
therefore allow the enhancement of T cell effector function without
off-target effects. These findings have major implications for the rational
design of novel TCR-based biologics underpinned by rigorous preclinical
evaluation.
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Introduction

The vast majority of tumour-associated peptide antigens
recognized by CD8+ T cells originate from autologous pro-
teins and, as such, remain protected by immune tolerance
mechanisms configured to prevent autoimmunity [1].
Indeed, as a consequence of thymic selection, cognate T cell
receptor (TCR) binding to these self-derived epitopes
occurs at substantially lower affinities compared to
pathogen-specific TCRs [2,3]. This distinction probably
explains why naturally generated T cell responses against
cancer are largely non-protective [4]. Moreover, the lack of
high-affinity tumour-specific TCRs in the periphery may
place intrinsic constraints on the efficacy of cancer vaccines
designed to elicit T cell immunity.

Antigen-specific TCR gene transfer via patient-derived T
cells is an attractive approach to cancer therapy, with the

potential to break self-tolerance [5,6]. Although only a
limited number of trials have been conducted to date, evi-
dence of clinical efficacy has generated substantial enthusi-
asm in the field [7–14]. Importantly, these studies suggest
that the use of engineered, affinity-enhanced TCRs may cir-
cumvent immune apathy towards tumour-derived antigens.
Approximating affinity to mimic optimal pathogen-specific
TCRs (KD = 0·1–10 μM) also makes sense from the biologi-
cal perspective [2,15]. Indeed, kinetic models of T cell acti-
vation propose that the potency of a peptide–major
histocompatibility complex (pMHC) ligand is determined
primarily by the duration of the TCR–pMHC interaction
[16]. However, it is difficult to disentangle the relative roles
of affinity (KD) and TCR–pMHC dwell-time (t1/2) as deter-
minants of ligand potency because, in most cases, these
parameters are proportional [17]. Thus, potent agonists
generally bind with the highest affinities and longest
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half-lives [17–19], although many other parameters also
affect T cell activation, antigen sensitivity and the response
to TCR triggering [17,20].

In this study, we report a detailed analysis in experimen-
tal cancer systems probing the relationship between TCR–
pMHC binding kinetics and T cell functionality. The data
suggest that modest TCR affinity enhancements can sub-
stantially improve the functional profile of cognate T cells
and indicate an optimal range for such modifications that
varies across specificities.

Materials and methods

Peptides

All peptides were purchased in lyophilized form (Peptide
Synthetics, Fareham, UK) and reconstituted in dimethyl
sulphoxide (Sigma-Aldrich, Poole, UK) to a stock solution
of 4 mg/ml. Working aliquots were prepared in RPMI
medium supplemented with 100 U/ml penicillin, 100 μg/ml
streptomycin and 2 mM L-glutamine (all from Life Tech-
nologies, Paisley, UK). Altered peptide ligands (APLs) were
generated as described previously [18,21,22]. Biophysical
data are shown in Table 1.

T cell clone and target cell lines

The CD8+ clone ILA1, specific for the human telomerase
reverse transcriptase (hTERT) peptide ILAKFLHWL (resi-
dues 540–548) restricted by human leucocyte antigen
(HLA)-A*0201 (HLA-A2 from here onwards), was gener-
ated as described previously [21,22,25]. Clonal cells were
maintained in RPMI medium supplemented with 100 U/ml
penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine and
10% heat-inactivated fetal calf serum (FCS; Gibco/
Invitrogen, Paisley, UK) (R10), together with 25 ng/ml
interleukin (IL)-15 (PeproTech, Rocky Hill, NJ, USA),
200 IU/ml IL-2 (PeproTech) and 2·5% Cellkines (Helvetica
Healthcare, Geneva, Switzerland). The following cell lines
were cultured in R10: (i) HLA-A2+ C1R [26,27]; (ii)
Mel624·38 and Mel526 (melanoma; Thymed, Wendelsheim,
Germany); (iii) HCT116 and HT144 [colorectal carcinoma;

American Type Culture Company (ATCC), Manassas, VA,
USA]; (iv) A375 and SKMel24 (melanoma; ATCC); (v)
IM-9 [Epstein–Barr virus (EBV)-transformed B-LCL;
ATCC]; (vi) SKMel37 (melanoma; Ludwig Institute for
Cancer Research, Oxford, UK); and (vii) EJM [immuno-
globulin (Ig)G lambda myeloma; DSMZ, Braunschweig,
Germany]. NY-ESO-1+ HLA-A2+ tumour cell lines tested in
this study were Mel624·38, Mel526, A375, SKMel37 and
IM-9 [28–31]. MageA3+ HLA-A*0101+ (HLA-A1 from here
onwards) tumour cell lines tested in this study were
HCT116, HT144, A375, SKMel24 and EJM [28,30,32–34].
The primary cell cultures HEP2 (HLA-A1+A2+ human
hepatocyte; Sciencell, Carlsbad, CA, USA), SMC3 (HLA-A2+

human colonic smooth muscle; Sciencell), CIL-1 (HLA-A1+

human non-pigmented ciliary epithelium; Sciencell) and
N9 (HLA-A2+ human epidermal melanocyte; ATCC) were
maintained in their own proprietary media. HLA-A1+ 221
cells [35,36] were cultured in R10 supplemented with
800 μg/ml G418-sulphate (AG Scientific, San Diego, CA,
USA).

Generation of CD8+ T cell cultures for
lentivirus transduction

Blood bags were obtained from anonymous donors via the
Welsh Blood Service (Pontyclun, UK) and confirmed seron-
egative for HIV-1. Lymphocytes were purified by standard
density gradient centrifugation (Axis-Shield, Dundee, UK)
and allotyped using αHLA-A1 and αHLA-A2 monoclonal
antibodies (mAbs), as listed below. CD8+ T cells were posi-
tively selected using CD8 microbeads, purified through a
magnetic-activated cell sorting (MACS) MS column
(Miltenyi Biotec, Bisley, UK) and resuspended at 106 cells/
well in R10 supplemented with IL-15, IL-2 and Cellkines, as
above. Cells were activated overnight with αCD3/CD28
Dynabeads (Invitrogen) at a bead-to-cell ratio of 3 : 1
before lentivirus transduction.

Lentivirus generation and transduction of CD8+ T cells

Primary CD8+ T cells were transduced with lentivirus con-
structs expressing TCRs specific for the HLA-A2-restricted

Table 1. Biophysical data for the ILA1 T cell receptor (TCR).

Peptide Primary sequence Half-life (s) KD eq (μM) Kon (M−1 s−1) Koff (s−1) KD kin (μM)

3G [18] ILGKFLHWL 14·7 3·7 1·6 × 104 4·7 × 10−2 2·9

3G8T [23] ILGKFLHTL 14·1 4 1·9 × 104 4·9 × 10−2 2·5

8T [18] ILAKFLHTL 7·3 27·6 4 × 103 9·5 × 10−2 23·75

ILA [2,18] ILAKFLHWL 4·9a 35·3a 3·8 × 103a 1·4 × 10−1a 36a

4L [24] ILALFLHWL 3·5 117 1·7 × 103 2 × 10−1 117

5Y [18,23] ILAKYLHWL 2·2 242 1·3 × 103 3·2 × 10−1 250

8E [18] ILAKFLHEL n.d. >500 n.a. n.a. n.a.

KD = affinity; Kon = association rate; Koff = dissociation rate; n.d. = not determined; n.a. = too fast for reliable measurement. The index peptide is

underlined. Variant amino acid residues are indicated in italics and bold type. aAverage of combined studies.
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cancer-testis antigen NY-ESO-1157–165 (SLLMWITQC) or
the HLA-A1-restricted melanoma antigen MageA3161–169

(EVDPIGHLY). Wild-type and high-affinity TCR mutants
for NY-ESO-1157–165 were generated as described previously
[37,38]. High-affinity TCR mutants for MageA3161–169 were
generated as part of this study. Biophysical data are shown
in Table 2. The lentivirus transduction system was kindly
provided by James Riley (University of Pennsylvania, PA,
USA). Lentivirus particles were generated using a plasmid
biosafe system as described previously [39]. Briefly,
lentivirus vector plasmids bearing each TCR construct were
combined with the packaging plasmids pRSV.REV, pMDLg/
pRRE and pVSG-V before transfection of 293T/17 cells
(ATCC) with the Express-in reagent (Open Biosystems,
Lafayette, CO, USA). Supernatant was collected after 24-h
and 48-h incubations, and lentivirus particles were concen-
trated by ultracentrifugation. Activated primary CD8+ T
cells (106 in 1 ml) were transduced with 1 ml of concen-
trated lentivirus. Three days later, transduction efficiency
was determined by flow cytometry after staining with the
relevant pMHCI tetramer and T cell antigen receptor vari-
able (TCRV)β-specific mAb. Dynabeads were removed by
magnet separation 5 days after transduction.

Monoclonal antibodies, amine reactive dyes and
tetrameric complexes

Directly conjugated mAbs were sourced as follows: (i)
αCD3-PacificBlue, αCD8-allophycocyanin-H7 (APCH7),
αCD19-AmCyan, αCD107a-fluorescein isothiocyanate
(FITC), anti-macrophage inflammatory protein-1β-
phycoerythrin (αMIP-1β-PE), anti-tumour necrosis
factor-α-peridinin chlorophyll protein-cyanin 5·5 (αTNF-
α-PerCPCy5.5), anti-interferon (αIFN)-γ-PECy7 and
αIL-2-APC (BD Biosciences, San Jose, CA, USA); (ii)
αTCRVβ5a-FITC (Thermo Scientific, Hemel Hempstead,
UK); (iii) αTCRVβ5·1-FITC and αTCRVβ13·1-FITC
(Beckman Coulter, High Wycombe, UK); (iv) αHLA-A2-

FITC (Serotec, Kidlington, UK); and (v) αCD19-BV510
(BioLegend, London, UK). Dead cells were excluded from
the analysis using live/dead fixable Aqua (Life Technolo-
gies). A purified mAb specific for HLA-A1/A36 was coupled
to mouse αIgM-PE (Abcam, Cambridge, UK). Soluble
pMHCI tetramers were generated as described previously
[40,41].

Intracellular cytokine staining

T cells were resuspended at 106 cells/ml in RPMI medium
supplemented with 100 U/ml penicillin, 100 μg/ml strepto-
mycin, 2 mM L-glutamine and 2% FCS (R2) overnight.
Target cells were pulsed with peptide as indicated for 1 h
and washed before the addition of T cells at an effector-to-
target ratio of 1 : 2. In experiments with CD8+ T cell
clones, target cells were pulsed with the index peptide and
each APL as listed in Table 1. In experiments with
transduced CD8+ T cells, target cells were pulsed only with
the index peptide (unless indicated otherwise). The irrel-
evant HLA-A2-restricted peptides HIV-1 Gag77–85

(SLYNTVATL) and influenza A matrix protein M158–66

(GILGFVFTL) were used as specificity controls [42,43].
Experiments with tumour targets were conducted in the
absence of exogenous peptide. In all assays, 1 μl/ml
brefeldin A (Sigma-Aldrich), 0·35 μl/ml monensin (BD
Biosciences) and 5 μl/ml αCD107a-FITC (where indi-
cated) were added and the cultures were incubated for 6 h.
After antigen stimulation, cells were washed and stained
sequentially with live/dead fixable Aqua and mAbs directed
against surface-expressed molecules. Cells were then
fixed/permeabilized using a Cytofix/Cytoperm kit (BD
Biosciences) and stained intracellularly for CD3, TCRVβ,
MIP-1β, TNF-α, IFN-γ and IL-2, as indicated. Five effector
functions were measured for experiments with the ILA1
clone. Four effector functions were measured for experi-
ments with transduced T cells, as the relevant αTCRVβ
mAb replaced αCD107a in the staining panel. Soluble

Table 2. Biophysical data for the NY-ESO-1157–165 and MageA3161–169 T cell receptors (TCRs).

Specificity (HLA restriction) TCR (α/β) Half-life (s) KD (nM) Kon (M−1 s−1) Koff (s−1)

NY-ESO-1157–165 (HLA-A*0201) wt/wt 6·4 32000 4 × 104 1·28 × 10−1

c259/wt 19 730 4·9 × 104 3·6 × 10−2

c12/c2 240 450 9 × 103 4 × 10−3

wt/c51 720 25 5·4 × 104 1·4 × 10−3

c58/c61 68100 0·026 5·7 × 105 2·72 × 10−5

MageA3161–169 (HLA-A*0101) wt/wt n.a. 300000 n.a. n.a.

a3c/wt 0·7 55000 1·7 × 104 9·45 × 10−1

wt/b2a 10·4 9430 1·2 × 104 7·7 × 10−2

a3a/wt 6·1 6550 1·7 × 104 1·14 × 10−1

a3/wt 66 190 5·5 × 104 1 × 10−2

wt/b2 120 169 3·3 × 104 6 × 10−3

KD = affinity; Koff = dissociation rate; Kon = association rate; HLA = human leucocyte antigen; n.a. = too fast for reliable measurement; TCR = T cell

receptor; wt = wild-type.
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αCD3 mAb (2 μg/ml) or phytohaemagglutinin (PHA)
(1 μg/ml) were used as positive controls for activation.
Stained cells were acquired using a FACS Canto II flow
cytometer (BD Biosciences) with DIVA software (TreeStar
Inc., Ashland, OR, USA). Fluorescence minus one (FMO)
controls were used to check compensation and determine
cell population gates. Events were gated as CD8+ (for the
ILA clone) or relevant TCRVβ+ CD8+ (for transduced T
cells) prior to effector function analysis after Boolean
gating using FlowJo software version 7·6.4 (TreeStar Inc.).
spice software version 5·33 was used for data presentation
and analysis [44].

Measurement of soluble factors by ELISA

T cells were resuspended in R2 overnight. Target cells were
pulsed with peptide as indicated for 1 h and washed before
the addition of T cells at an effector-to-target ratio of 1 : 2.
After overnight incubation, cells were pelleted and the
culture supernatant was harvested for measurement of
MIP-1β, TNF-α, IFN-γ and IL-2 by enzyme-linked immu-
nosorbent assay (ELISA), according to the manufacturer’s
protocol (R&D Systems, Abingdon, UK).

Measurement of soluble factors by Luminex

Transduced T cells were defrosted, incubated in R2 for 2 h
and added to target cells at an effector-to-target ratio of
1 : 2. After 24 h, the culture supernatant was harvested, cen-
trifuged and stored at −20°C. Soluble factors were measured
according to the manufacturer’s instructions using a
Human Cytokine 25-plex Panel (Invitrogen) with a
Luminex® 200TM analyser (Luminex, Austin, TX, USA).

Statistical analysis

The parametric Pearson’s correlation was used to determine
the strength of linear relationships between two variables.
Correlations were determined using Prism version 6 soft-
ware for Mac OSX (GraphPad Prism, Ashburton, UK).
Statistically significant differences between concatenated
polyfunctionality pies were determined using the permuta-
tion test in spice version 5·33 over 10 000 repetitions [44].

Results

CD8+ T cell polyfunctionality correlates with
TCR–pMHC affinity

To study the relationship between T cell polyfunctionality
and TCR–pMHC affinity, we made use of the HLA-A2-
restricted hTERT-specific CD8+ T cell clone ILA1 [18,45].
The ILA1 TCR is known to bind a series of agonist APLs
with affinity (KD) values ranging from 2·5 μM to >500 μM
and half-life (t1/2) durations estimated from 1 s to a meas-

ured time of 14·7 s (Table 1). Importantly, this monoclonal
system allows standardized comparisons as a function of
TCR–pMHC binding. Moreover, all seven peptide ligands
used in this study bind similarly to HLA-A2 [18].

The ILA1 clone was stimulated with peptide-pulsed
HLA-A2+ C1R cells across a range of concentrations for
each ligand, and five different effector functions (CD107a,
MIP-1β, TNF-α, IFN-γ and IL-2) were measured simultane-
ously by flow cytometry. At the highest peptide concentra-
tion, TCR–pMHC affinity correlated significantly with T
cell polyfunctionality (KD versus five functions: Pearson’s
r = −0·99, P < 0·0001; KD versus four functions: Pearson’s
r = −0·93, P = 0·0027) (Fig. 1a). The lowest-affinity ligand
(8E) elicited primarily single (MIP-1β) or dual (MIP-1β
and TNF-α) function cells, although less easily triggered
outputs were apparent at higher peptide concentrations.
Higher-affinity ligands induced progressively greater
numbers of polyfunctional cells at any given peptide con-
centration in accordance with a sensitivity hierarchy for
each effector output (Fig. 1b). Moreover, the quantity of
each soluble factor (MIP-1β, TNF-α, IFN-γ and IL-2)
released into the supernatant mirrored the corresponding
cellular percentages (Fig. 2a,b). Thus, under standardized
conditions controlled for potentially confounding factors,
TCR–pMHC affinity dictates the functional profile of
cognate CD8+ T cells by regulating peptide sensitivity.

TCR-transduced T cell polyfunctionality is dependent
on donor and target cells

The above results reinforce the concept that TCR–pMHC
affinity and/or half-life critically determine T cell antigen
sensitivity and suggest that the functional profile of cancer-
specific CD8+ T cells can be augmented via the manipula-
tion of TCR binding parameters. To explore this possibility,
we examined the impact of affinity enhancement on TCR-
transduced functional outputs.

In initial experiments, CD8+ T cells from three different
donors were transduced with a previously characterized
HIV-1-specific TCR [15]. The functional profiles observed
across a range of cognate antigen concentrations differed
substantially between donors (Supporting information,
Fig. S1). Moreover, in accordance with a previous study
[46], we found that antigen sensitivity varied across differ-
ent target cells pulsed with identical concentrations of
exogenous peptide (data not shown). Consequently, we
compared only results obtained in parallel using identical
target cells and the same parental CD8+ T cell donor (unless
stated otherwise).

Affinity enhancement augments the functional profile
of cancer-specific TCR-transduced CD8+ T cells

Next, we generated affinity-enhanced TCRs specific for two
cancer-associated peptide epitopes: (i) NY-ESO-1157–165
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Fig 1. Activation of the human leucocyte antigen (HLA)-A2-restricted ILA1 CD8+ T cell clone with biophysically characterized altered peptide

ligands (APLs). ILA1 cells were stimulated with peptide-pulsed HLA-A2+ C1R target cells as indicated. Five functional readouts [CD107a,

macrophage inflammatory protein (MIP)-1β, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-2] were measured by flow

cytometry. (a) Overview of functional profiles. Pie chart segments represent the fraction of cells expressing the number of functions indicated in the

key. Serial gating was performed as follows: (i) doublets were excluded in a forward scatter (FSC)-A versus FSC-W display; (ii) artefacts and

fluorochrome aggregates were removed by Boolean analysis; (iii) viable CD3+ CD8+ cells were selected; and (iv) individual functions were identified.

Combination gates were exported into spice software version 5·33 for further analysis. (b) Detailed analysis of functional profiles at peptide

concentrations of 10−5 M. The pie charts are extended with arcs defining expressed functions as indicated in the key. The index peptide is denoted in

red. Data shown are representative of three independent experiments. The corresponding biophysical parameters are listed in Table 1.
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(SLLMWITQC) restricted by HLA-A2; and (ii) MageA3161–169

(EVDPIGHLY) restricted by HLA-A1 (Table 2). CD8+ T
cells from HLA-matched donors transduced with the
highest affinity TCRs for NY-ESO-1 (c58/c61, KD = 26 pM)
and MageA3 (a3/wt and wt/b2, KD = 190 nM and 169 nM,
respectively) became non-viable in culture shortly after
transduction. In contrast, HLA-A2− T cells transduced with
the NY-ESO-1 c58/c61 TCR and HLA-A1− T cells
transduced with the MageA3 a3/wt or wt/b2 TCRs were
viable, but became activated in response to targets express-
ing the restricting HLA molecule without the addition of
cognate peptide (data not shown). This self-reactivity prob-
ably explains the non-viability, via fratricide, of transduced
T cells bearing the targeted HLA complex [47]. Conse-
quently, T cells engineered to express such super-enhanced
TCRs are not likely to be useful in the therapeutic setting.

In subsequent experiments, we examined the specificity
of HLA-A2+ CD8+ T cells transduced with more modestly

enhanced NY-ESO-1-specific TCRs (Fig. 3). Four functional
outputs (MIP-1β, TNF-α, IFN-γ and IL-2) were measured
in response to cognate peptide exposure. Non-transduced
CD8+ cells were used to control for non-specific activation
via endogenous TCRs. Transduced CD8+ T cells were gener-
ated with the wild-type TCR and each of the following three
affinity-enhanced variants: (i) c259/wt (KD = 730 nM,
t1/2 = 19 s; fold increase: KD = 44, t1/2 = 3); (ii) c12/c2
(KD = 450 nM, t1/2 = 4 min; fold increase: KD = 71, t1/2 = 38);
and (iii) wt/c51 (KD = 25 nM, t1/2 = 12 min; fold increase:
KD = 1280, t1/2 = 113). All transduced cells expressed equiva-
lent levels of TCR as determined by staining with the rel-
evant αTCRVβ mAb and cognate pMHCI tetramer (data
not shown).

No specific responses to SLLMWITQC peptide-pulsed
HLA-A2+ C1R target cells were observed in the absence of
TCR transduction. In contrast, CD8+ T cells transduced
with the wild-type, c259/wt or c12/c2 TCRs displayed
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detectable chemokine/cytokine production above back-
ground at cognate peptide concentrations as low as 10−11 M.
Even greater antigen sensitivity was observed for the wt/c51
TCR, which elicited functional outputs at peptide concen-
trations down to 10−13 M. A positive association was
observed between TCR affinity and the degree of
polyfunctionality for CD8+ T cells transduced with the
wild-type, c259/wt and c12/c2 TCRs. This was most evident
at peptide concentrations in the region of 10−7 M. Further-
more, as in the ILA1 system, effector functions were elicited
in a defined order (MIP-1β > TNF-α > IFN-γ > IL-2) with
increasing TCR affinity (Supporting information, Fig. S2a).
However, the proportion of wt/c51 TCR-transduced CD8+

T cells expressing three or four functions at equivalent
peptide concentrations was substantially smaller compared
with each of the other NY-ESO-1-specific TCRs, suggesting
that the 1280-fold affinity enhancement lies beyond an
optimum for the recognition of cognate antigen at the cell
surface. In addition, T cells bearing the wt/c51 TCR exhib-
ited background activation in the form of MIP-1β release.
This contrasts with a previous study in which the wt/c51
TCR did not show any off-target activity [48]. The most
likely explanation for this discrepancy relates to the fact that

MIP-1β release by CD8+ T cells is substantially more sensi-
tive to antigen density than most other readouts of effector
function [49]. It is therefore important to examine a wide
range of specific outputs when testing TCRs that may sub-
sequently be used in vivo. Collectively, these data show that
there is a TCR affinity window, exemplified by the c259/wt
TCR, which allows improved recognition of a tumour-
associated epitope in the absence of apparent cross-
reactivity with other self-derived pMHC molecules.

To extend these findings, we performed similar experi-
ments in the HLA-A1-restricted MageA3 system (Fig. 4).
Transduced HLA-A1+ CD8+ T cells were generated with the
wild-type TCR and each of the following three affinity-
enhanced variants: (i) a3c/wt (KD = 55 μM, t1/2 = 0·7 s; fold
increase: KD = 5·5); (ii) wt/b2a (KD = 9·43 μM, t1/2 = 10·4 s;
fold increase: KD = 32); and (iii) a3a/wt (KD = 6·55 μM,
t1/2 = 6·1 s; fold increase: KD = 46). Again, all transduced cells
expressed equivalent levels of TCR (data not shown). As in
the NY-ESO-1 system, there was a positive association
between TCR affinity and peptide sensitivity. Greater pro-
portions of polyfunctional CD8+ T cells, compared to wild-
type, were observed with the a3c/wt and a3a/wt TCRs. In
contrast, wt/b2a elicited functional profiles that were not
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represent the fraction of cells expressing the number of functions indicated in the key. The gating strategy followed that described for Fig. 1a, with

the exception that T cell antigen receptor variable (TCRV)β13·1 expression was used to identify transduced T cells where appropriate. Data shown

are representative of two independent experiments. The corresponding biophysical parameters are listed in Table 2. UnT = non-transduced.
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substantially enhanced with respect to the wild-type TCR. It
is notable that, despite a shorter half-life, the a3a/wt TCR
elicited higher frequencies of cells producing two or more
functions compared to the wt/b2a TCR. Marginally
increased non-specific activation, reflected predominantly
by MIP-1β release, was observed with both of these higher-
affinity TCRs. Nonetheless, the hierarchy of effector func-
tions (MIP-1β > TNF-α > IFN-γ/IL-2) elicited by increasing
TCR affinity for the cognate pMHCI complex remained
intact (Supporting information, Fig. S2b).

Overall, these results demonstrate that TCR affinity
enhancement can improve both T cell antigen sensitivity
and the number of effector functions elicited at a given
peptide concentration. However, such improvements in T
cell function will only be relevant clinically if they extend to
the recognition of tumour targets.

High-affinity cancer-specific TCRs mediate enhanced
functional recognition of tumour cells

Tumour cells are known to express a range of epitope densi-
ties at the cell surface [1,31,50,51]. We therefore examined

the functional profile of NY-ESO-1-specific TCR-
transduced CD8+ T cells in response to five different
NY-ESO-1+ HLA-A2+ tumour cell lines: (i) Mel624·38,
A375, SKMel37 and Mel526 (melanoma); and (ii) IM-9
(EBV-transformed B-LCL). Two NY-ESO-1− primary cell
cultures were used as negative controls: (i) HEP2 (HLA-
A1+A2+ hepatocyte); and (ii) SMC3 (HLA-A2+ colonic
smooth muscle). Background MIP-1β production relative
to non-transduced controls was observed with the c12/c2
and wt/c51 TCRs, most markedly in response to SMC3
primary cells (Fig. 5a). The Mel624·38 and A375 tumour
cell lines were recognized robustly by all NY-ESO-1-specific
TCR-transduced CD8+ T cells. In contrast, Mel526 was
poorly recognized, most probably because it presents fewer
than 10 copies of the cognate SLLMWITQC peptide per cell
[31]. Notably, the c259/wt and c12/c2 TCRs elicited compa-
rable functional profiles despite a pronounced (∼12-fold)
difference in binding half-life. Moreover, statistical analysis
across all five tumour cell lines confirmed the functional
enhancement conferred by these TCRs. For example, con-
catenated pies for c12/c2 were significantly different com-
pared to wt/wt (P = 0·047; Wilcoxon’s signed-rank test),
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and the fraction of cells that produced both MIP-1β and
TNF-α was significantly higher for c12/c2 in the same com-
parison (P = 0·047; Wilcoxon’s signed-rank test).

To extend these findings, we examined the functional
profile of MageA3-specific TCR-transduced CD8+ T cells in
response to five different MageA3+ HLA-A1+ tumour cell
lines: (i) HCT116 and HT144 (colorectal carcinoma); (ii)
A375 and SKMel24 (melanoma); and (iii) EJM (multiple
myeloma). Two MageA3− primary cell cultures were used as
negative controls: (i) HEP2 (HLA-A1+A2+ hepatocyte); and
(ii) CIL-1 (HLA-A1+ non-pigmented ciliary epithelium).
Affinity-enhanced TCR-transduced cells recognized all
tumour targets robustly, eliciting higher frequency
responses with increased polyfunctional profiles compared
to wt/wt TCR-transduced cells (Fig. 6a). These differences
were statistically significant. For example, concatenated pie
comparisons across all five tumour cell lines showed that
the affinity-enhanced TCRs elicited significantly different
functional responses compared to wt/wt (a3c/wt, P = 0·009;
a3a/wt, P = 0·006; wt/b2a, P = 0·001; Wilcoxon’s signed-
rank test). Clear differences were also apparent with respect
to individual combinations of functions (Fig. 6b,c). For
example, quadruple function cells were more common in
the responses elicited by affinity-enhanced TCRs compared
to wt/wt (a3c/wt, P = 0·047; a3a/wt, P = 0·047; wt/b2a,
P = 0·016; Wilcoxon’s signed-rank test). Similarly, triple
function cells producing MIP-1β, TNF-α and IL-2 were
more often observed with affinity-enhanced TCRs com-
pared to wt/wt (P = 0·016 for all comparisons versus a3c/wt,
a3a/wt and wt/b2a; Wilcoxon’s signed-rank test). Back-
ground responses against the primary cells, predominantly
in the form of MIP-1β production, were observed with
wt/b2a and, to a lesser extent, a3a/wt TCR-transduced cells;
no such off-target effects were apparent for either the wt/wt
or the a3c/wt TCRs.

Across both the NY-ESO-1 and MageA3 systems, the
combinations of effector functions displayed by the various
TCR-transduced CD8+ T cells in response to tumour targets
reflected the hierarchy observed with peptide-pulsed targets
(Supporting information, Fig. S2). In particular, dual func-
tion cells produced predominantly MIP-1β and TNF-α,
while triple function cells expressed primarily IFN-γ in
addition (Fig. 5b,c and 6b,c). Thus, polyfunctionality is
augmented by TCR affinity enhancement in accordance
with strict thresholds that are maintained in a cell-intrinsic
manner.

Affinity-enhanced cancer-specific TCRs augment
lymphokine production by transduced CD8+ T cells

The results presented above describe chemokine/cytokine
production at the single-cell level. However, it is highly
likely that the overall amount of each lymphokine will have
an important effect on tumour-specific immunity. To
address this issue, we used Luminex technology to measure

the secretion of six soluble factors [MIP-1α, granulocyte-
macrophage colony-stimulating factor (GM-CSF), MIP-1β,
TNF-α, IFN-γ and IL-2] in both the NY-ESO-1 and
MageA3 systems.

CD8+ T cells transduced with NY-ESO-1-specific TCRs
were stimulated with the IM-9 (NY-ESO-1+ HLA-A2+ EBV-
transformed B-LCL) tumour cell line or N9 (NY-ESO-1−

HLA-A2+ epidermal melanocyte) primary cells. Affinity-
enhanced TCR-transduced cells produced greater levels of
each soluble factor in response to IM-9 stimulation com-
pared to wt/wt TCR-transduced cells (Fig. 7a). In contrast,
lymphokine production was negligible in response to N9
stimulation.

CD8+ T cells transduced with MageA3-specific TCRs
were stimulated with the HCT116 (MageA3+ HLA-A1+

colorectal carcinoma) tumour cell line or HLA-A1+ periph-
eral blood mononuclear cells (PBMCs). No responses were
detected for non-transduced CD8+ T cells or wt/wt TCR-
transduced cells (Fig. 7b). In contrast, the higher-affinity
a3a/wt and wt/b2a TCR-transduced cells were activated by
HCT116 stimulation. Minimal lymphokine production was
observed in response to HLA-A1+ PBMCs.

Collectively, these data show that affinity-enhanced TCRs
can improve CD8+ T cell functionality en masse, in line with
the augmented profiles observed at the single-cell level.

Discussion

Thymic selection evolved to generate a T cell repertoire that
enables protective immunity while avoiding potentially
dangerous self-reactivity [4]. As a consequence, it is difficult
for the immune system to discriminate between self-derived
and endogenous tumour-associated antigens, many of
which are expressed to some extent by healthy cells. Indeed,
naturally occurring T cells that recognize tumour-
associated antigens typically display low levels of avidity
and sensitivity, in contrast to their pathogen-specific coun-
terparts [3]. These intrinsic differences in the available T
cell repertoire may explain, at least in part, the widespread
failure of cancer vaccines.

Accumulating data indicate that the functional capabili-
ties of antigen-specific T cell populations can determine the
outcome of immune responses against infectious agents,
such as HIV-1, Leishmania major and Mycobacterium tuber-
culosis [52–61]. Moreover, in a cancer model, T cells with
enhanced peptide sensitivity and tumour recognition were
found to display a distinctive Th1 cytokine profile [62]. The
emerging consensus from such studies therefore postulates
that the most effective T cell responses are highly antigen-
sensitive and deploy multiple effector functions [63]. These
correlates present two distinct problems for the generation
of effective immunity against cancer. First, tumour-
associated peptide antigens are generally present at fewer
than 50 copies per cell [31,51]. Secondly, as described
above, tumour-associated antigen-specific TCRs bind
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Fig 6. Stimulation of human leucocyte antigen (HLA)-A1-restricted MageA3-specific T cell receptor (TCR)-transduced CD8+ T cells with tumour

cell lines. (a) Non-transduced (UnT) or MageA3-specific TCR-transduced CD8+ T cells were stimulated with MageA3+ HLA-A1+ tumour cell lines
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tumour cell lines HCT116, A375 and SKMel24. (c) Detailed analysis of functional profiles elicited by stimulation of MageA3-specific
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Data shown are representative of two independent experiments. The corresponding biophysical parameters are listed in Table 2.
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weakly to cognate pMHC molecules [2,3]. This latter
feature is amenable to manipulation, specifically in the
setting of engineered TCR gene transfer therapy.

In the present study, we investigated the functional
properties of engineered cancer-specific TCRs with
affinities that approximate those measured for the best
anti-viral TCRs [2,3,15]. The key findings were: (i) TCR–
pMHC monomeric affinity/half-life correlates with T cell
antigen sensitivity and polyfunctionality; (ii) an affinity
threshold exists, above which T cell function is not
improved by further enhancement; and (iii) T cells
transduced with super-enhanced high-affinity TCRs
exhibit cross-reactivity with self-derived peptides presented

by the restricting HLA molecule. Collectively, these data
identify an optimal affinity window for cancer-specific
TCRs that allows the enhancement of T cell effector func-
tion without non-specific activation.

It is notable that a TCR–pMHC binding affinity/half-life
ceiling was observed in every system tested, beyond which
no further functional enhancements were apparent. Activa-
tion of the ILA1 clone with the 3G peptide, which has the
longest half-life of all APLs in this model, resulted in a
weaker functional profile compared to the other high-
affinity ligands (3G8T and 8T). Similarly, in the transduced
T cell systems, the highest-affinity TCRs for both NY-ESO-1
and MageA3 elicited fewer polyfunctional responses
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cell lines. (a) NY-ESO-1-specific
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with IM-9 tumour cells [NY-ESO-1+ human
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MageA3-specific TCR-transduced CD8+ T cells
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compared to those with more modest affinity enhance-
ments. These findings are consistent with data from other
groups. For example, Irving et al. characterized a set of nine
NY-ESO-1-specific TCRs with affinities ranging from
21 μM to 0·015 μM [64]. Maximal T cell responses were
observed at the lower end of this range and functional
outputs reached a plateau at affinities between 1 μM and
5 μM. At the molecular level, this effect appeared to corre-
late with SHP-1 expression levels regulated as a function of
TCR affinity [65]. Concordantly, we identified c259/wt as
the optimal NY-ESO-1-specific TCR (KD = 0·73 μM).
However, our study also demonstrates that different affinity
windows are optimal across different systems. In the case of
MageA3, the optimal TCR affinity lies approximately
10-fold below that observed in the NY-ESO-1 system.

Previous reports have described affinity threshold phe-
nomena in other systems. In one study, a single cancer-
specific TCR was used with mimotopes to generate a range
of affinities up to 4-fold higher than the wild-type interac-
tion [66]. Although the highest-affinity mimotopes elicited
the most vigorous responses (IFN-γ production and prolif-
eration) in vitro, optimal anti-tumour activity in vivo was
observed after vaccination with the intermediate affinity
mimotopes. Two studies in the NY-ESO-1 system, spanning
a range of TCR affinities up to 1430-fold greater than wild-
type, reached similar conclusions [38,48]. In particular,
target cell lysis was found to increase as a function of affin-
ity up to a threshold of ∼7 μM, beyond which further incre-
ments diminished killing activity. These findings were
confirmed recently using a series of seven gp100-specific
TCRs [67]. Excessive affinity enhancement has also been
shown to impair T cell function in the 2C system [68,69]. In
addition, a recent study using APL vaccination in a
diabetes/ovalbumin (OVA) mouse model showed that TCR
affinity dictates not only the magnitude of T cell activation
and target cell conjugation, but also the differentiation
status of responding T cells [70]. Similar observations have
been reported for pathogen-specific TCRs [71,72]. Thus,
each system is constrained by an affinity ceiling, the param-
eters for which can be highly variable [73].

In the present study, we identified optimal TCR affinities
in the NY-ESO-1 and MageA3 systems, defined across mul-
tiple functional readouts in the absence of non-specific
reactivity. Earlier studies with the wild-type NY-ESO-1-
specific TCR showed that transduced CD8+ T cells produced
IFN-γ and lysed target cells in an antigen-specific manner
[74]. Genetically modified cancer-specific T cells have also
been tested in the clinic [7]. In this particular case, the
investigators isolated a melanoma antigen recognized by T
cells-1 (MART-1)-specific TCR from a tumour-infiltrating
lymphocyte (TIL) clone derived from a patient who cleared
metastatic melanoma after autologous TIL transfer.
Reinfusion of CD8+ T cells transduced with this naturally
occurring TCR showed promising efficacy in a cohort of 17
study subjects with melanoma. Two patients demonstrated

near-complete tumour regression and were declared clini-
cally disease-free 21 months after treatment. In vitro studies
examining cancer-specific TCRs with enhanced binding
parameters have followed [48,75,76], generating enthusiasm
for various therapeutic applications. In a recent trial, objec-
tive clinical responses were observed using the NY-ESO-1-
specific c259/wt TCR in 67% of patients (n = 6) with
synovial cell sarcoma and 45% of patients (n = 11) with
melanomas expressing the NY-ESO-1 antigen [10]. Collec-
tively, these studies underline the remarkable potential of
optimally designed TCR gene transfer as an effective thera-
peutic option against cancer.

In summary, our data demonstrate that tumour-specific
TCRs can be engineered in a system-specific manner to
improve effector cell function without substantial off-target
effects. These findings have major implications for the
rational design of novel TCR-based biologicals under-
pinned by rigorous preclinical evaluation within each
antigen specificity to mitigate the risk of cross-reactivity
[77,78].
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