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INTRODUCTION	

Overactive	 bladder	 (OAB)	 is	 a	 syndrome	 described	 by	 a	 collection	 of	 lower	

urinary	tract	symptoms	(LUTS).	These	typically	include	urgency,	with	or	without	

urge	incontinence,	along	with	frequency	and	nocturia,	 in	the	absence	of	proven	

infection	or	other	obvious	pathology1.	Considering	these	are	storage,	rather	than	

voiding	symptoms,	OAB	is	most	accurately	described	as	a	storage	syndrome.	In	

combination	 with	 behavioural	 therapies,	 first	 -	 line	 pharmacotherapy	 is	

treatment	 with	 anti	 -	 muscarinic	 drugs2.	 Unfortunately	 for	 some	 patients	 oral	

antimuscarinics	are	unsuitable;	either	due	to	insufficient	suppression	of	detrusor	

overactivity3	or	the	experience	of	significant	adverse	effects4.	For	such	patients,	

conservative	management	with	intravesically	delivered	oxybutynin	is	an	option5.	

Intravesical	 oxybutynin	 is	 highly	 effective	 in	 increasing	mean	 bladder	 capacity	

and	 decreasing	mean	maximum	 filling	 pressure6,7.	 It	 is	 also	well	 tolerated	 and	

associated	with	fewer	adverse	effects	than	its	oral	counterpart8.	The	mechanism	

of	action	(MOA)	of	intravesical	oxybutynin	was	believed	to	be	the	same	as	that	of	

oral	delivery,	that	 is	cholinergic	blockade	of	the	M3	muscarinic	receptors	 in	the	

bladder	detrusor	muscle9.	However,	the	last	decade	has	seen	significant	changes	

in	opinion	as	 to	 the	MOA	of	 antimuscarincs	as	a	whole10.	Accepted	 theory	was	

that	 storage	 LUTS	 arose	 as	 a	 result	 of	 abnormal,	 involuntary	 detrusor	

contractions	 during	 bladder	 filling11.	 Since	 antimuscarinics	 had	 been	 shown	

beneficial	in	treating	OAB12,	their	MOA	was	therefore	believed	to	be	antagonism	

of	 the	 detrusor	 M3	 muscarinic	 receptors	 and	 subsequent	 inhibition	 of	 these	

involuntary	contractions13,14.	However,	evidence	now	suggests	that	this	may	not	

be	the	case	and	alternative	MOAs	should	be	considered15.	Therefore,	although	it	
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is	well	established	that	antimuscarinics	reduce	the	symptoms	of	OAB16,	whether	

this	 is	 brought	 about	 by	 an	 inhibition	 in	 parasympathetic	 mediated	 detrusor	

contraction	 is	 in	 doubt15.	 Finney	 et	 al	 conducted	 a	 review	 of	 all	 articles	

containing	cystometric	data	for	both	storage	and	voiding	phases	in	OAB	patients	

before	and	after	antimuscarinic	therapy17.	They	found	that	although	at	clinically	

relevant	 doses	 antimuscarinics	 significantly	 improve	 variables	 associated	with	

storage,	 there	 was	 little	 evidence	 to	 support	 the	 notion	 that	 antimuscarinics	

significantly	alter	voiding	variables	such	as	maximum	detrusor	pressure	during	

voiding	 or	 maximum	 urinary	 flow.	 During	 bladder	 filling	 the	 parasympathetic	

switch	 is	 off	 and	 post	 -	 junctional	 muscarinic	 receptors	 in	 the	 detrusor	 are	

presumed	inactive18.	Therefore	the	ability	of	antimuscarinics	to	improve	storage	

symptoms	 is	 unlikely	 to	 be	 explained	 exclusively	 by	 antagonism	 of	 the	

parasympathetic	 -	 controlled,	 acetylcholine	 -	 activated	 M3	 receptors	 of	 the	

detrusor19.	Rather,	a	growing	evidence	base	suggests	antimuscarinics	elicit	their	

effects	 by	modifying	 afferent	 pathways	 in	 the	 storage	 phase	 of	 the	micturition	

cycle20,21.	

To	 date	 the	 majority	 of	 studies	 investigating	 intravesical	 oxybutynin	 have	

focused	 on	 post	 -	 intravesical	 pharmacokinetics	 and	 systemic	 levels	 of	

oxybutynin	and	N	–	desethyl	-	oxybutynin	(the	major	metabolite	responsible	for	

its	 adverse	 effects)22,23.	 Furthermore,	 despite	 the	 significant	 recent	 interest	 in	

the	 MOA	 of	 antimuscarinics	 in	 OAB,	 the	 fate	 of	 intravesically	 delivered	

oxybutynin	 in	 the	bladder	wall	 has	 received	 little	 attention.	To	our	 knowledge	

only	 one	 study	 has	 investigated	 the	 transurothelial	 permeation	 and	 resulting	

bladder	wall	concentrations	achieved	following	topical	application	of	oxybutynin	

to	 the	 urothelium24.	 Results	 from	 this	 study	 report	 average	 bladder	 wall	
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oxybutynin	concentrations	rather	than	drug	concentration	as	a	function	of	each	

tissue	layer.	We	report	a	more	detailed	analysis	of	drug	concentrations	achieved	

in	 the	 different	 layers	 of	 the	 bladder	 wall	 (urothelium,	 lamina	 propria	 and	

detrusor	 muscle),	 following	 the	 intravesical	 instillation	 of	 a	 clinically	 relevant	

oxybutynin	solution	in	an	ex	vivo	setting.		

MATERIALS	AND	METHODS	

Transurothelial	permeation	profile	of	oxybutynin	

 
En	bloc	 porcine	 urinary	 tracts,	 from	 pigs	 weighing	 70	 -	 90	 kg,	 were	 obtained	

fresh	from	a	local	abattoir.	Within	5	min	of	excision,	they	were	immersed	in	cold,	

oxygenated	Krebs	 buffer	 (composition:	NaCl	 118.3	mM,	NaHCO3	 25	mM,	 CaCl2	

2.5	mM,	MgSO4	1.2	mM,	KCl	4.7	mM,	KH2PO4	1.2	mM	and	D	-	glucose	11	mM,	pH	

7.4).	Excess	perivesical	fat	was	trimmed	and	the	bladder	dissected	out.	Bladders	

were	filled	and	drained	with	37	°C	Krebs	to	remove	any	residual	urine.	Bladder	

tissue	sections	(~	2	cm2)	were	excised	from	the	lateral	sides	and	dome	area	and	

loaded	 into	 custom	 -	 built	 Franz	 -	 type	diffusion	 cells	 (average	 surface	 area	 of	

tissue	 exposure	 1.32	 cm2)	 with	 the	 urothelium	 facing	 upwards.	 The	 receiver	

compartments	of	the	diffusion	cells	were	filled	with	oxygenated	Krebs	buffer	and	

equilibrated	 at	 37	 °C	 for	30	min	with	 continuous	 stirring.	A	0.75	ml	 aliquot	 of	

oxybutynin	chloride	(0.167	mg	ml-1	in	deionised	water,	oxybutynin	chloride,	≥	98	

%,	 Sigma	 -	 Aldrich	 Company	 Ltd,	 Dorset,	 UK)	 was	 pipetted	 into	 the	 donor	

chamber,	which	was	then	covered	to	prevent	evaporative	loss.	The	sampling	arm	

was	 capped	 and	 the	 Franz	 -	 type	 cells	 placed	 in	 a	 thermostatically	 controlled	

water	bath	(37	°C).	At	fixed	time	points	(20,	40	and	60	min),	the	contents	of	the	

receiver	and	donor	chambers	were	collected	and	the	tissue	sample	removed.	To	
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ensure	removal	of	surface	-	bound	drug,	the	urothelium	was	subjected	to	three	

saline	 rinses.	 Full	 thickness	 bladder	 wall	 from	 the	 area	 of	 drug	 contact	 was	

excised	with	 a	 scalpel	 and	 immediately	 snap	 frozen	 between	 two	metal	 plates	

using	 liquid	 nitrogen	 before	 being	 fixed	 to	 cork	 mounts	 with	 optimal	 cutting	

temperature	 medium	 (OCT)	 (Tissue-Tek™,	 CRYO	 -	 OCT	 Compound,	 Fisher	

Scientific	 UK	 Ltd,	 Leicestershire,	 UK).	 The	 time	 between	 experiment	 end	 and	

freezing	was	less	than	2	min.	Samples	were	serially	sectioned	(50	µm)	parallel	to	

the	 urothelial	 surface	 using	 a	 cryostat	 (Leica	 CM3050	 S,	 Leica	 Microsystems,	

Buckinghamshire,	UK)	and	sections	collected	in	pre	-	weighed	1.5	ml	eppendorf	

tubes.	 Tissue	 sections	 between	 0	 and	 250	 μm	 (urothelium)	 were	 collected	

individually	for	analysis.	Groups	of	four	50	µm	tissue	sections	between	250	and	

1,050	(upper	lamina	propria)	and	ten	50	µm	sections	between	1,050	and	1,550	

μm	 (lower	 lamina	 propria)	 were	 collected	 and	 pooled	 for	 analysis.	 Similarly,	

groups	 of	 ten	 50	 µm	 tissue	 sections	 between	 1,550	 and	 3,550	 µm	 (detrusor	

muscle)	 were	 collected	 and	 pooled	 for	 analysis.	 For	 pooled	 samples,	 tissue	

depths	 were	 expressed	 as	 the	midpoint	 depth	 of	 the	 sections.	 Tissue	 sections	

were	weighed,	homogenised	and	oxybutynin	extracted	in	0.75	ml	of	HPLC	mobile	

phase	 for	 36	 h	 with	 10	 min	 sonication	 per	 sample.	 Samples	 were	 then	

centrifuged	 for	 5	 min	 (7000	 RPM,	 2680	 g)	 and	 the	 supernatant	 isolated	 for	

analysis.	The	amount	of	oxybutynin	 in	 the	bladder	wall	at	each	 time	point	was	

quantified	 using	HPLC	 -	MS	 and	 average	 tissue	 concentrations	 achieved	 in	 the	

urothelium,	lamina	propria	and	detrusor	muscle	calculated	by	dividing	the	total	

amount	of	drug	recovered	by	the	total	weight	of	tissue	in	that	layer.		
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Intravesical	instillation	of	oxybutynin	

Ex	vivo	porcine	bladders	were	prepared	as	described.	Working	in	a	shallow	bed	

of	oxygenated	Krebs	buffer,	both	ureters	were	 ligated	by	suturing	0.5	cm	away	

from	 the	 bladder	 and	30	ml	 of	 oxybutynin	 chloride	 solution	 (0.167	mg	ml-1	 in	

deionised	water)	instilled	via	the	urethra	using	an	open	-	ended	ureteral	catheter	

(5	Fr,	70	cm,	Cook	medical	Inc,	Bloomington,	IN,	USA).	Care	was	taken	to	avoid	

contact	 with	 the	 urothelial	 surface	 and	 post	 -	 instillation	 the	 urethra	 was	

sutured.	Bladders	were	submerged	 in	oxygenated	Krebs	buffer	and	maintained	

at	37	°C.	To	half	of	the	bladders	the	catheter	remained	in	situ	and	synthetic	urine	

(composition:	NaCl	105.5	mM,	NaH2PO4	3.2	mM,	Na3C6H5O72H2O	3.2	mM,	MgSO4	

3.9	mM,	CaCl2	4.0	mM,	Na2SO4	17	mM,	KCl	64	mM,	Na2C2O4	0.3	mM	and	NaNO3	1.0	

mM,	pH	5.8,	pre	-	equilibrated	at	37	°C	25)	was	 introduced	at	a	rate	of	1	ml	min-1	

for	 the	 duration	 of	 the	 experiment	 (urine	 -	 diluted	 group).	 For	 the	 remaining	

bladders	 the	 catheter	 was	 retracted	 after	 drug	 instillation	 (undiluted	 group).	

After	60	min	bladders	were	removed,	emptied	and	opened	with	a	single	vertical	

incision	 along	 the	 length	 of	 the	 organ.	 To	 remove	 surface	 -	 bound	 drug,	 the	

urothelium	was	 subjected	 to	 three	 saline	 rinses.	 Samples	 of	 bladder	wall	 from	

areas	of	drug	contact	were	excised	using	a	scalpel.	Samples	were	frozen	in	liquid	

nitrogen,	sectioned	and	drug	extracted	and	quantified	as	described.	

Quantification	of	oxybutynin	in	the	bladder	wall	

Oxybutynin	was	analysed	by	HPLC	-	MS	(Quattro	Ultima	liquid	chromatography	-	

tandem	mass	spectrometer,	Waters	Micromass,	Elstree,	Herts,	UK,	coupled	to	a	

Thermo	Finnigan	Spec	-	traSYSTEM).	The	column	was	a	Telos	C18,	5	µm,	150	x	

4.6	mm	i.d	column,	Supelco	Inc	and	the	mobile	phase	was	50	%	aqueous	formic	
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acid	(0.1	%)	and	50	%	acetonitrile.	The	injection	volume	was	10	µl	and	the	flow	

rate	 0.4	ml	min-1.	 Positive	 ion	mass	 spectrometry	 was	 used	 for	 the	 detection,	

with	single	 ion	monitoring	 for	the	parent	 ion	between	357.7	and	358.15	m	/	z.	

The	limits	of	detection	and	quantification	were	1	and	3	ng	ml-1	respectively.				

Histology	

Samples	of	tissue	were	taken	from	bladders	after	60	min	intravesical	instillation	

of	 oxybutynin	 chloride	 (undiluted	 and	 urine	 -	 diluted	 groups).	 Samples	 were	

fixed	in	4	%	buffered	formaldehyde	(Fisher	Scientific	UK	Ltd,	Leicestershire,	UK)	

for	48	h	at	room	temperature.	Tissues	were	embedded	in	paraffin,	sectioned	at	

10	µm	thickness	and	stained	with	Mason’s	trichrome	prior	to	examination	under	

light	microscopy.	

Statistical	analysis	

All	 statistical	 analysis	 was	 performed	 using	 GraphPad	 Prism	 version	 6.0c	

(GraphPad	 Software,	 Inc,	 San	 Diego,	 California,	 USA).	 For	 all	 comparisons,	

multiple	 t	 -	 tests	with	multiple	 comparisons	 corrected	 using	 the	Holm	 -	 Šidák	

method	were	used.	For	all	tests,	the	significance	level	was	set	at	5	%	(p	=	0.05).	

Results	

Transurothelial	permeation	profile	of	oxybutynin	

The	 rate	 of	 permeation	 of	 oxybutynin	 into	 the	 bladder	 wall	 over	 60	min	 was	

constant	 (Figure	 1A)	 with	 concentrations	 achieved	 in	 the	 urothelium,	 lamina	

propria	 and	 detrusor	muscle	 generally	 increasing	with	 time.	 The	 exception	 to	

this	was	the	slight	decrease	between	the	40	and	60	min	timepoints	in	the	lamina	

propria	 layer	 (Figure	 1C).	 An	 apparent	 transurothelial	 permeability	 coefficient	
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(Kp)	 of	 1.36	 x	 10-05	 cm	 s-1	 was	 determined.	 Importantly	 we	 have	 made	 the	

assumption	 that	 sink	 conditions	 are	 maintained	 in	 the	 lower	 tissue	 layers	

throughout	 these	 experiments.	 This	 assumption	 was	 based	 upon	 the	 low	

concentrations	of	oxybutynin	achieved	in	these	layers	(maximum	concentration	

of	~	62	µg	g-1	achieved	in	the	lamina	propria,	Figure	1C)	compared	to	the	drug’s	

aqueous	solubility	(~	50	mg	ml-1	26).	Given	these	tissue	concentrations	represent	

~	0.12	%	of	saturated	solubility,	a	value	far	lower	than	the	~	10	-	20	%	sufficient	

to	 maintain	 sink	 conditions27,	 this	 assumption	 is	 reasonable.	 However	 it	 is	

appreciated	that	aqueous	solubility	is	only	an	estimation	of	tissue	solubility	and	

therefore	permeation	parameters	are	referred	to	as	‘apparent’.		

Oxybutynin	concentrations	in	the	detrusor	muscle	(more	clearly	visible	in	Figure	

1D)	 increased	 with	 time	 with	 concentrations	 of	 0.27,	 0.82	 and	 1.77	 µg	 g-1	

achieved	at	20,	40	and	60	min	respectively.	Mass	balance	studies	showed	that	on	

average	 94	%	 of	 the	 applied	 dose	 was	 recovered	 per	 Franz	 –	 type	 cell	 setup	

(Figure	1B).	
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Figure	1.	A)	Transurothelial	permeation	of	oxybutynin	into	the	bladder	wall	after	

20,	 40	 and	 60	 min.	 An	 apparent	 transurothelial	 Kp	 of	 1.36	 x	 10-05	 cm	 s-1	was	

calculated	by	normalising	 the	apparent	 flux	 (J,	 calculated	 from	the	slope	of	 the	

permeation	profile)	to	the	concentration	of	oxybutynin	applied	to	the	urothelium	

(167	 µg	 ml-1).	 B)	 Percentage	 recovery	 of	 oxybutynin	 from	 the	 Franz	 -	 type	

apparatus	 during	 permeability	 studies.	 Average	 recovery	 across	 the	 three	

sampling	 timepoints	was	94	%	of	 the	applied	dose.	Drug	concentrations	 in	 the	

receiver	 chamber	 were	 below	 detection	 limits	 at	 all	 timepoints.	 C)	 Average	

oxybutynin	 concentrations	 achieved	 in	 the	 urothelium,	 lamina	 propria	 and	

detrusor	muscle	after	20,	40	and	60	min.	D)	Average	oxybutynin	concentrations	

achieved	 in	 the	detrusor	muscle	after	20,	40	and	60	min.	For	all	 figures,	n	=	4	

tissue	sections	from	4	bladders	±	SD.	
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Intravesical	instillation	of	oxybutynin	

Following	60	min	intravesical	instillation	with	30	ml	of	0.167	mg	ml-1	oxybutynin	

solution	 (undiluted	dose),	 average	 tissue	 concentrations	 of	 298.69,	 43.65,	 0.93	

and	 25.81	 µg	 g-1	were	 achieved	 in	 the	 urothelium,	 lamina	 propria,	 detrusor	

muscle	 and	whole	 bladder	wall	 respectively	 (Figures	 2	 –	 3,	 blue	 symbols	 and	

bars).	 Urothelial	 concentrations	 were	 significantly	 greater	 than	 those	 in	 the	

lamina	 propria,	 which	 in	 turn	 were	 significantly	 greater	 than	 those	 in	 the	

detrusor	muscle	 (p	<	0.05).	When	urine	 -	 dilution	of	 the	 intravesical	 dose	was	

simulated,	tissue	oxybutynin	concentrations	were	significantly	reduced	(102.73,	

23.81,	0.56	and	10.14	µg	g-1	for	the	urothelium,	lamina	propria,	detrusor	muscle	

and	whole	bladder	wall	respectively)	(p	<	0.05,	Figures	2	-	3,	yellow	symbols	and	

bars).	As	was	 the	case	with	 the	undiluted	 instillation,	urothelial	 concentrations	

were	significantly	greater	than	those	 in	the	 lamina	propria,	which	in	turn	were	

significantly	greater	than	those	in	the	detrusor	muscle.	For	both	instillations,	the	

concentration	 of	 drug	 achieved	 in	 the	 urothelium	 and	 lamina	 propria	 was	

greater	 than	 reported	 IC50	 values	 for	 oxybutynin	 in	 isolated	 detrusor	 muscle	

(Figure	2B)28.	However	for	both	instillations,	the	dug	concentrations	achieved	in	

the	detrusor	muscle	fell	below	this	value.	
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Figure	 2.	 Concentration	 -	 depth	 profile	 (A)	 and	 Log	 –	 concentration	 -	 depth	

profile	(B,	same	data	as	A)	showing	the	concentrations	of	oxybutynin	achieved	at	

different	 depths	 of	 the	 bladder	 wall	 following	 60	 min	 intravesical	 instillation	

with	 undiluted	 (blue	 triangle)	 and	 urine	 -	 diluted	 (yellow	 circle)	 oxybutynin	

solution	(0.167	mg	ml-1).	From	a	reported	pIC50	value	of	5.24	mol	L-1	26,	an	IC50	of	

2.27	 µg	 g-1	 (red	 dotted	 horizontal	 line	 in	 figure	 2B)	 was	 calculated	 for	

oxybutynin27.	 For	 both	 figures,	 bladder	 wall	 layers	 are	 represented	 by	 the	

following	 depths;	 Urothelium	 (0	 –	 250	 μm),	 lamina	 propria	 (250	 –	 1,550	 μm),	



	 12	

detrusor	 muscle	 (1,550	 –	 3,500	 μm).	 For	 pooled	 samples,	 tissue	 depths	 were	

expressed	as	the	midpoint	depth	of	the	sections.	For	both	figures,	n	=	10	tissue	

samples	from	2	bladders	±	SD.	

	

Figure	 3.	 Average	 drug	 concentrations	 achieved	 in	 the	 different	 layers	 of	 the	

bladder	wall	following	60	min	intravesical	instillation	with	undiluted	(blue)	and	

urine	-	diluted	(yellow)	oxybutynin	solution	(0.167	mg	ml-1).	In	all	bladder	wall	

layers,	 concentrations	 achieved	 following	 instillation	 with	 the	 undiluted	

oxybutynin	 solution	 were	 significantly	 greater	 than	 those	 achieved	 with	 the	

urine	-	diluted	dose	(multiple	unpaired	t	-	tests,	*p	<	0.05).	n	=	10	tissue	samples	

from	2	bladders	±	SD.	
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Histology	

Analysis	of	histological	 sections	 taken	 from	ex	vivo	 bladder	 tissue	after	60	min	

intravesical	 instillation	 with	 oxybutynin	 solution	 (Figure	 4A	 and	 B)	 shows	

normal	 bladder	 morphology	 with	 the	 presence	 of	 an	 intact,	 multi	 -	 cell	

urothelium	(pink)	and	normal	lamina	propria	(blue).		

500#μm#

A#

500#μm#

B#

	

Figure	 4.	 Photomicrographs	 of	 Masson’s	 trichrome	 stained	 porcine	 bladder	

tissue	 taken	 from	 bladders	 A)	 following	 60	 min	 instillation	 with	 undiluted	

oxybutynin	 solution	 (0.167	mg	ml-1)	 and	 B)	 following	 60	min	 instillation	with	

urine	-	diluted	oxybutynin	solution	(0.167	mg	ml-1).	All	images	50x	magnification	

(scale	bar	represents	500	µm).	

	

DISCUSSION	

Despite	 the	 recent	 introduction	 of	 Mirabegron	 (β3	 agonist),	 antimuscarinics	

remain	first	-	 line	pharmacotherapy	for	the	treatment	of	OAB2	with	oxybutynin	

the	 most	 widely	 prescribed	 drug30.	 It	 is	 well	 established	 that	 intravesical	

oxybutynin	 is	beneficial	 for	 the	 treatment	of	OAB	 in	patients	 refractory	 to	oral	

treatment6,	 although	 the	 MOA	 remains	 unclear.	 Originally	 believed	 to	 act	 by	

inhibiting	 M3	 muscarinic	 receptors	 in	 the	 detrusor	 muscle,	 there	 is	 now	

considerable	evidence	that	antimuscarinics	activate	muscarinic	receptors	at	the	
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urothelial	 and	 /	 or	 suburothelial	 level	 to	 modulate	 the	 afferent	 arc	 of	 the	

micturition	 cycle31–36.	 When	 instilled	 intravesically	 at	 the	 same	 concentration	

used	 in	 this	 study,	 oxybutynin	 significantly	 increased	 bladder	 capacity,	

intercontraction	 interval	 and	pressure	 threshold	 (indicators	of	bladder	 storage	

function)	without	decreasing	detrusor	contractility	in	the	rat32.	Instillations	were	

retained	 in	 the	 bladder	 for	 short	 periods	 of	 time	 and	 cystometric	 effects	

observed	 immediately	 after	 emptying	 suggesting	 a	 local	 action	 on	 muscarinic	

receptors	 in	 the	 urothelium	 or	 suburothelial	 layer	 rather	 than	 the	 underlying	

detrusor	 muscle.	 Oxybutynin	 is	 a	 non	 -	 selective	 muscarinic	 acetylcholine	

receptor	antagonist	and	therefore	the	expression	of	muscarinic	receptors	in	the	

bladder	wall	is	significant.	In	addition	to	the	detrusor	muscle,	all	five	subtypes	of	

the	 muscarinic	 receptor	 (M1	-	 M5)	 are	 expressed	 by	 the	 human	 urothelium37,	

whilst	the	interstitial	cells	of	Cajal	(ICCs)	found	in	the	lamina	propria	have	been	

shown	 to	 express	 both	M2	 and	M3	 receptors38.	 Interestingly	 there	 is	 evidence	

that	 in	 OAB,	 the	 M2	 and	 M3	 receptors	 on	 the	 ICCs	 exhibit	 increased	

immunoreactivity38.	 The	 hypothesis	 that	 oxybutynin	 acts	 on	 muscarinic	

receptors	 at	 the	 mucosal	 level	 may	 explain	 the	 increased	 effectiveness	 of	

intravesical	 oxybutynin	 given	 the	 relatively	 high	 concentrations	 of	 drug	

presented	 to	 the	 urothelium	 in	 comparison	 to	 the	 low	 bladder	 bioavailability	

following	 oral	 dosing.	 Considering	 this,	 bladder	 wall	 concentrations	 achieved	

following	intravesical	delivery	of	oxybutynin	are	highly	valuable	in	ascertaining	

target	 concentrations	 necessary	 to	 modulate	 sensory	 pathways.	 Additionally,	

quantifying	drug	concentrations	 in	 the	different	 layers	of	 the	bladder	wall	may	

provide	 more	 information	 regarding	 the	 site	 of	 action	 of	 antimuscarinics.	 A	

recurring	 limitation	 to	 understanding	 the	 pharmacological	 site	 of	 action	 of	
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antimuscarinics	 in	 modulating	 bladder	 afferent	 activity	 has	 been	 the	 lack	 of	

understanding	of	the	extent	of	permeation	(and	hence	bladder	layer	and	cell	type	

likely	 to	 be	 exposed)	 of	 drug	 after	 direct	 application	 to	 the	 urothelium21.	

Quantifying	 concentrations	 of	 drug	 in	 the	 different	 layers	 of	 the	 bladder	 wall	

(concentration	-	depth	profiling)	 is	becoming	an	established	technique	and	one	

which	has	been	used	 to	 investigate	 the	 local	delivery	of	 chemotherapeutics39,40	

and	 NSAIDS41.	 However	 such	 studies	 have	 not	 been	 carried	 out	 for	

anticholinergics.	 In	 this	 study	 we	 aimed	 to	 quantify	 the	 concentrations	 of	

oxybutynin	achieved	in	the	different	layers	of	the	bladder	wall	after	intravesical	

instillation	 of	 a	 clinically	 relevant	 dose.	 Intravesical	 oxybutynin	 is	 usually	

administered	in	doses	ranging	between	0.3	and	0.6	mg	kg-1	per	day	divided	over	

two	or	three	instillations42.	Although	a	range	of	concentrations	have	been	used,	

most	clinics	crush	and	dissolve	a	single	5	mg	oxybutynin	chloride	tablet	in	30	ml	

of	distilled	water,	making	a	0.167	mg	ml-1	solution43.	It	was	for	this	reason	that	

0.167	mg	ml-1	oxybutynin	in	deionised	water	was	used	in	this	study.	Like	many	

intravesical	therapies,	oxybutynin	is	commonly	instilled	for	1	h44		and	therefore	

an	exposure	time	of	60	min	was	chosen.	

In	agreement	with	others39,40	we	recently	showed	 that	ex	vivo	porcine	 tissue	 is	

suitable	 for	use	 in	permeability	studies	with	urothelial	 integrity	maintained	for	

several	hours	post	excision41.	To	assess	the	effect	of	oxybutynin	on	the	intactness	

of	 the	urothelium	and	general	gross	morphology	of	 the	ex	vivo	porcine	bladder	

tissue,	 sections	 from	 bladders	 instilled	 with	 drug	 solution	 were	 treated	 to	 a	

Masson’s	trichrome	stain.	Histological	results	suggested	no	significant	changes	in	

the	overall	morphology	of	the	tissue	with	intact,	normal	urothelium	(ranging	4	-	

8	cells)	present	in	both	the	undiluted	and	urine	-	diluted	oxybutynin	instillations	
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(Figure	 4A	 and	 B).	 This	 concurs	 with	 other	 studies	 which	 have	 reported	 no	

evidence	 of	 mucosal	 or	 bladder	 wall	 abnormality	 after	 exposure	 to	

oxybutynin24,45.	

Results	 of	 the	 transurothelial	 permeation	 study	 (Figure	 1)	 show	oxybutynin	 is	

capable	of	crossing	the	urothelium	and	penetrating	into	the	underlying	bladder	

wall	 (apparent	 transurothelial	 Kp	 =	 1.36	 x	 10-05	 cm	 s-1).	 Mass	 balance	 studies	

showed	good	recovery	of	drug	from	the	diffusion	apparatus	(94	%	on	average),	

especially	considering	the	complex	process	involved	in	quantifying	drug	in	each	

of	 the	 bladder	 wall	 layers.	 As	 one	 may	 expect,	 given	 the	 urothelial	 barrier	

function	 and	 the	 short	 experimental	 time	 frame,	 the	 vast	majority	 of	 the	 drug	

was	 recovered	 from	 the	 donor	 compartment.	 To	 date	 only	 one	 group	 has	

investigated	the	penetration	of	oxybutynin	into	the	bladder	wall24.	Di	Stasi	et	al	

investigated	 the	 differences	 in	 bladder	 wall	 concentration	 achieved	 after	 the	

passive	 or	 electromotive	 administration	 of	 oxybutynin	 into	 ex	 vivo	 human	

bladder	tissue24.	From	a	reported	apparent	flux	value	of	0.16	µg	cm-2	min-1	after	

passive	 delivery,	 an	 apparent	 transurothelial	 Kp	 of	 5.93	 x	 10-05	 cm	 s-1	can	 be	

calculated	 for	 the	 passive	 diffusion	 of	 oxybutynin.	 Although	 higher	 than	 the	

apparent	Kp	of	1.36	x	10-05	cm	s-1	calculated	in	this	study,	values	are	comparable	

in	 that	 they	 are	 notably	 higher	 than	 those	 reported	 previously	 for	 other	

drugs41,46,47.	 This,	 in	 conjunction	 with	 the	 circumvention	 of	 first	 -	 pass	

metabolism,	 may	 explain	 recent	 work	 showing	 that	 intravesical	 oxybutynin	

results	 in	 significantly	 higher	 systemic	 bioavailability	 in	 comparison	 to	 oral	

oxybutynin22.	 Interestingly	 in	 guinea	 pigs,	 oxybutynin	 has	 been	 shown	 to	

increase	 bladder	 permeability	 to	 technetium	 compared	 to	 phosphate	 buffered	

saline	(~	5	 times	 increase	 in	permeability)48.	 It	 is	suggested	 that	oxybutynin,	a	
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tertiary	 amine,	 increases	 permeability	 by	 inactivating	 the	 glycosaminoglycan	

(GAG)	 layer	 in	 a	 similar	 fashion	 to	 the	 mechanism	 of	 the	 quaternary	 amine	

protamine.	Disruption	of	the	GAG	layer	could	explain	the	high	apparent	Kp	value	

although	it	should	be	noted	that	the	concentration	of	oxybutynin	instilled	(5	mg	

ml-1)	was	~	30	times	greater	than	that	used	in	this	study.	

Using	a	different	experimental	setup,	the	intravesical	delivery	of	oxybutynin	was	

investigated	 in	 a	 whole	 bladder	 model.	 Whilst	 applying	 drug	 solution	 to	 the	

urothelial	 surface	 of	 bladder	 tissue	 sections	 is	 a	 valid	 way	 of	 investigating	

urothelial	 permeability,	 it	 is	 not	 truly	 representative	 of	 intravesical	 drug	

delivery.	The	major	limitation	being	the	absence	of	urine	dilution	of	the	instilled	

oxybutynin	 dose.	 By	 using	 a	 whole	 bladder	 we	 were	 able	 to	 incorporate	 this	

variable	 into	 our	model.	 1	ml	min-1	 is	 an	 accepted	 rate	 of	 urine	 production	 in	

humans	 hence	 its	 choice49.	 Although	 urine	 drains	 into	 the	 bladder	 from	 the	

ureters,	 this	 study	 introduced	 synthetic	 urine	 via	 the	 urethra.	 Several	 factors	

influenced	 this	 decision:	 Firstly,	 oxybutynin	 solution	 was	 introduced	 via	 the	

urethra	making	it	necessary	to	ligate	both	ureters	to	prevent	any	leakage	of	the	

instilled	dose.	Furthermore,	urine	was	instilled	to	represent	the	dilution	effect	on	

the	 instilled	dose	 that	 occurs	 in	vivo.	 The	 same	dilution	 effect	will	 be	 achieved	

regardless	 of	 the	 site	 of	 urine	 introduction.	 Resulting	 concentration	 -	 depth	

profiles	 (Figure	 2)	 were	 typical	 of	 those	 obtained	 for	 other	 drugs41	 with	 the	

majority	of	drug	sequestered	in	the	superficial	urothelium.	For	both	instillations	

(diluted	and	undiluted),	urothelial	concentrations	were	significantly	higher	than	

those	achieved	in	the	underlying	lamina	propria	which	in	turn	were	significantly	

higher	 than	 those	 in	 the	 detrusor	 muscle	 (Figure	 3).	 The	 introduction	 of	

synthetic	urine	at	a	physiological	rate	had	a	marked	effect	on	the	permeation	of	
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oxybutynin	into	the	bladder	wall	with	significantly	lower	concentrations	of	drug	

achieved	 in	each	 layer	compared	 to	 the	undiluted	drug	solution	(Figure	3).	We	

and	 others	 have	 previously	 shown	 using	 pharmacokinetic	 modelling	 that	 the	

production	 of	 urine	 would	 have	 significant	 effects	 on	 drug	 concentrations	

achieved	in	the	bladder	wall41,50.	Urine	production	is	therefore	an	integral	part	of	

the	intravesical	delivery	process.		

Average	oxybutynin	concentrations	achieved	in	the	detrusor	muscle	after	60	min	

instillation	with	the	undiluted	and	urine	-	diluted	drug	solutions	were	0.93	and	

0.56	 µg	 g-1	 respectively.	 These	 concentrations	 were	 325	 -	 fold	 and	 183	 -	 fold	

lower	than	the	urothelium	and	47	-	 fold	and	43	-	 fold	 lower	than	that	 found	 in	

the	 lamina	 propria	 for	 the	 undiluted	 and	 urine	 -	 diluted	 oxybutynin	 doses	

respectively.	Based	on	 reported	 IC50	values	 for	oxybutynin	 in	 isolated	detrusor	

muscle28	 (red	 dotted	 line	 in	 Figure	 2B)	 and	 that	 systemic	 clearance	 would	

further	decrease	 these	 concentrations	 in	vivo,	 it	 is	 unlikely	 that	 concentrations	

achieved	 after	 instillation	 under	 either	 condition	 would	 significantly	 inhibit	

detrusor	 contraction.	 This	 was	 the	 case	 at	 all	 depths	 of	 detrusor	 muscle	

investigated	including	the	most	superficial	layers	located	immediately	below	the	

lamina	propria.		

This	 study	 sought	 to	 investigate	 the	 distribution	 and	 tissue	 concentrations	

achieved	following	the	intravesical	delivery	of	oxybutynin.		Although	the	effect	of	

oxybutynin	 concentration	 on	 detrusor	 contractility	 was	 not	 investigated,	 drug	

distribution	 data	 provides	 further	 supportive	 evidence	 that	 an	 antimuscarinic	

MOA	based	exclusively	on	direct	detrusor	inhibition	is	unlikely.		
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CONCLUSIONS	

A	 detailed	 analysis	 of	 oxybutynin	 concentrations	 achieved	 in	 the	 urothelium,	

lamina	 propria	 and	 detrusor	 muscle	 after	 intravesical	 delivery	 is	 provided.	

Oxybutynin	 permeated	 the	 bladder	 wall	 at	 a	 higher	 rate	 than	 other	 drugs	

previously	investigated.	For	the	first	time	the	effect	of	intravesical	dose	dilution,	

as	a	result	of	urine	production,	has	been	incorporated	into	ex	vivo	investigations	

and	 the	 significant	 effect	 this	 has	 on	 drug	 delivery	 reported.	 Concentration	 -	

depth	 profiles	 suggest	 that	 following	 intravesical	 therapy,	 oxybutynin	

concentrations	achieved	in	the	detrusor	muscle	would	be	insufficient	to	directly	

inhibit	 bladder	 wall	 contraction.	 This	 adds	 weight	 to	 the	 argument	 that	

intravesical	 antimuscarincs	 do	 not	 exclusively	 exert	 their	 effect	 through	 direct	

inhibition	of	the	detrusor	muscle.		
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