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ABSTRACT 

The aim of this study is to understand the complexity and control challenges of the 

locomotion of a three-link mechanism of a robot system. In order to do this a three-link 

robot gymnast (Robogymnast) has been built in Cardiff University. The Robogymnast is 

composed of three links (one arm, one torso, one leg) and is powered by two geared DC 

motors. Currently the robot has three potentiometers to measure the relative angles 

between adjacent links and only one tachometer to measure the relative angular position 

of the first link.  

 A mathematical model for the robot is derived using Lagrange equations. Since the 

model is inherently nonlinear and multivariate, it presents more challenges when 

modelling the Robogymnast and dealing with control motion problems. The proposed 

approach for dealing with the design of the control system is based on a discrete-time 

linear model around the upright position of the Robogymnast.  

To study the swinging motion of the Robogymnast, a new technique is proposed to 

manipulate the frequency and the amplitude of the sinusoidal signals as a means of 

controlling the motors. Due to the many combinations of the frequency and amplitude, 

an optimisation method is required to find the optimal set. The Bees Algorithm (BA), a 

novel swarm-based optimisation technique, is used to enhance the performance of the 

swinging motion through optimisation of the manipulated parameters of the control 

actions. The time taken to reach the upright position at its best is 128 seconds. 
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Two different control methods are adopted to study the balancing/stablising of the 

Robogymnast in both the downward and upright configurations. The first is the optimal 

control algorithm using the Linear Quadratic Regulator (LQR) technique with 

integrators to help achieve and maintain the set of reference trajectories. The second is a 

combination of Local Control (LC) and LQR. Each controller is implemented via 

reduced order state observer to estimate the unmeasured states in terms of their relative 

angular velocities.  

From the identified data in the relative angular positions of the upright balancing 

control, it is reported that the maximum amplitude of the deviation in the relative angles 

on average are approximately 7.5° for the first link and 18° for the second link. It is 

noted that the third link deviated approximately by 2.5° using only the LQR controller, 

and no significant deviation when using the LQR with LC. 

To explore the combination between swinging and balancing motions, a switching 

mechanism between swinging and balancing algorithm is proposed. This is achieved by 

dividing the controller into three stages. The first stage is the swinging control, the next 

stage is the transition control which is accomplished using the Independent Joint Control 

(IJC) technique and finally balancing control is achieved by the LQR. The duration time 

of the transition controller to track the reference trajectory of the Robogymnast at its 

best is found to be within 0.4 seconds. An external disturbance is applied to each link of 

the Robogymnast separately in order to study the controller's ability to overcome the 

disturbance and to study the controller response.  
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The simulation of the Robogymnast and experimental realization of the controllers are 

implemented using MATLAB
®
 software and the C++ program environment 

respectively. 
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Chapter 1 

Introduction 

1.1 Introduction 

A mechanical system is classified as underactuated when the number of actuators is less 

than the number of degrees of freedom (Liu and Yamaura 2011; Xue et al. 2011; Hara et 

al. 2009; Spong 1998). In recent years, interest in the study of underactuated systems has 

been increasing. This field of research is attractive for several reasons including: (1) 

Underactuated systems are commonly found in many real-life applications; (2) There is 

an increasing demand for reducing the number of actuators in systems in order to reduce 

cost and weight, and hence optimise energy usage. (3) There is a strong trend of recent 

developments in underactuated systems to address this demand. 

1.2 Motivation 

One very interesting underactuated control system is the inverted pendulum. It forms 

one of the most widely used groups of underactuated systems and has been extensively 

utilised for examining control algorithms. For example, a single inverted link mounted 

on a movable cart (Saberi et al. 1995; Yi et al. 2001; Rock 2001; Zhi-Hao Xu et al. 
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2002; Bugeja 2003; Yamada et al. 2004; Mus et al. 2006) is a good illustration of a 

rocket booster during lift off.  

The structure of inverted pendulums has often included multiple links. This increases the 

number of degrees of freedom, which leads to an increase in the complexity of the 

system. Although the definition of an underactuated system is simple, this simplicity 

masks a number of complex needs and challenges. The multi-link systems are inherently 

nonlinear, multivariable and present challenging modelling and control problems.  

Due to the dynamic structures of the complex (underactuated) multi-link systems, they 

provide useful testbeds for performance simulation, evaluation, optimisation, validation 

and comparison of different control techniques. In particular, the study of such systems 

will enable researchers to develop solutions aimed at addressing motion problems 

encountered by disabled and/or injured people experiencing limb impairment. In 

addition to the analysis of locomotion, the development of a walking robot (Dariush and 

Fujimura 2000; Hasegawa and Fukuda 2004; Tsuji and Ohnishi 2002; Stephens 2007; 

Vukobratovic et al. 1970; Golliday Jr and Hemami 1976; Hemami and Chen 1984) can 

be implemented through consideration of the robot as a multi-link system which mimics 

a simplified model of a human standing on two legs.  

In this work, the research presents a new design for a three-link robot gymnast 

(Robogymnast) with two powered joints. Each of the links consists of two parallel rods 

which represent the symmetry of the human body (two hands and two legs). The system 

is mounted on a free rotating high bar. This robot should be capable of carrying out a 
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dynamic movement to achieve a desired motion. In this work, Robogymnast mimics the 

human acrobat who hangs from a high bar and tries to ‗swing-up‘ to an upside-down 

position with his/her hands still on the bar. Unlike human acrobats, Robogymnast‘s 

hands are firmly attached to a freely rotating high bar which is mounted on ball bearings. 

Although the rotating of the high bar helps during the ‗swinging-up‘ phase, it poses a 

great challenge when attempting to balance the robot in an upright position. The 

research investigates the development and implementation of various control strategies. 

Figure 1.1 represents the real Robogymnast. 

1.3 Research aim and objectives 

The aim of this project is to model, simulate and design a controller for an under-

actuated Robogymnast system that can achieve the swing-up and balance of a triple link 

structure (Robogymnast), and can combine these actions into a single movement. 

Throughout this project, the objectives of this work were: 

 To develop a new method for the ‗swinging-up‘ of a 3-link Robogymnast system 

mounted on a freely rotating high bar.  
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Figure 1.1: Robogymnast 
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 To apply a novel swarm-based optimisation technique to optimise a parameter that 

manipulates the control action applied simultaneously to the two motors driving the 

robot. 

 To apply the optimised parameters for swinging-up on the real system. 

 To design a different types of controllers under which the robot can be brought into 

any arbitrarily small neighbourhood of the downward/upright equilibrium point, where 

all three links of the Robogymnast stay in their desired location. 

 To design a reduced order observer to estimate the unmeasured states. 

 To validate and evaluate the different proposed controllers experimentally by using 

them to balance the Robogymnast in the downward position during the application of an 

external disturbance to each link separately. 

 To simulate and analyse the control system for stablising the Robogymnast in the 

upright configuration using its mathematical model together with the proposed 

controllers techniques. 

 To design a switching controller to enable the swing-up and balancing control systems 

to be combined. 

 To apply a proposed transition controller to achieve the transition of the Robogymnast 

from the swinging to balancing locomotion. 

 To assess the ability of the designed controller to overcome external disturbances, and 

to analyse the Robogymnast motion response. 
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1.4 Methodology 

To achieve the above objectives, the following methodology was adopted: 

 Reviewing previous works through an extensive search of the most relevant papers for 

each research topic, in order to identify any shortcomings in the current state of the art. 

This investigation focuses on identifying the potential solutions to the project objectives. 

  The Euler-Lagrange approach will be used to derive a mathematical model and 

dynamic equations of the Robogymnast in the stable equilibrium point (downward 

position) and the second in the unstable position (upright). 

 The simulation of the swing-up control will be achieved using the MATLAB® 

software and its associated toolboxes. The parameters of the swing-up control will be 

optimised using the BA, then implementing the findings on the real system using the 

C++ program environment. 

 The problem of balancing/stablising the Robogymnast in the downward/upright 

position will be investigated. The optimal control theory and a combination of a local 

control with an optimal control theory will be used to satisfy the desired motions. The 

MATLAB
®
 software will be used to simulate the designed controllers of 

balancing/stablising the Robogymnast. The implementation of the designed controller on 

the real system will be achieved via the C++ program environment. 
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 The combining of the swing-up and balancing control systems will be carried out. 

That will be achieved through proposing a switching control mechanism to transfer the 

Robogymnast from the swing-up to transition control, and then to balance control. The 

MATLAB
® 

software will be utilised to simulate the behaviour of Robogymanst during 

all the controller phases, and to evaluate the performance of the transition controller. 

 Finally the disturbance rejection and controller response of the Robogymnast will be 

investigated. 

1.5 Thesis outline 

The remainder of the thesis is organised as follows: 

Chapter 2 presents a comprehensive review of the relevant literature in the field of 

underactuated systems. The chapter focuses on the most relevant structures which are 

the single, double and triple inverted link systems. The swing-up and balancing motion 

are highlighted with different control methods. Furthermore the combining of the swing-

up and balancing motions is demonstrated.  

Chapter 3 describes the design and modelling of a complex three degree of freedom 

Robogymnast mounted on a freely rotating high bar. The system description and the 

overall experimental setup are discussed. The Euler-Lagrange approach is used to depict 

the system dynamics through the derivation of a mathematical model of the 

Robogymnast in the upright and downward positions.  
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Chapter 4 is devoted to the analysis and design of the controller for the swing-up motion 

of the Robogymnast system. A new proposed technique is used to manipulate the 

frequency and the amplitude of the sinusoidal control signals which supply to motors. 

Moreover the BA is utilised to enhance the performance of the swinging motion through 

optimisation of the manipulated parameter of the control actions. Both experimental and 

simulation results are given. 

Chapter 5 describes the controllers of the Robogymnast. The purpose of the work in this 

chapter is to design different controller methods. These methods are adopted to study the 

balancing/stablising of the Robogymnast in both the downward and upright 

configurations. The realisation performance of the Robogymnast is conducted through 

implementing the controller for the downward balancing problem of the Robogymnast 

on the real system. Each designed controller uses state feedback, which is implemented 

with a reduced order observer.  

Chapter 6 investigates the problem of stabilising and balancing the Robogymnast system 

in the upright position. The simulation performance of the Robogymnast is considered. 

The designed controller is applied via a reduced order observer to estimate the 

unmeasured states (angular velocities). 

Chapter 7 tackles the combining of the swing-up and balancing control systems. A 

switching control mechanism is suggested. A transition controller is proposed to transfer 

the Robogymnast from the swing-up regime to the balancing regime. Moreover, the 

disturbing effect on the each component of the Robogymnast is studied in this chapter. 
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Chapter 8 summarises the conclusions and the contributions of the research and provides 

suggestions for further research. 

Figure 1.2  shows an outline of the thesis structure and the research questions which it 

addresses. 
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Figure 1.2: Thesis outlines and research questions 
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Chapter 2 

Background Review 

2.1 Introduction 

This chapter reviews the notation associated with underactuated control systems, and 

explores the basic concepts and problems of some of the most used examples. Several 

pieces of relevant literature describe single, double and triple link dynamic system 

problems. This literature is reviewed and analysed in this chapter. In addition, the 

theories of conventional control and trainable control have been summarised. Each 

previous study has focused on a different type of controller design. Some of the 

researchers focused on designing a control system for swinging-up, while a large volume 

of separate publications has focused on designing a control system for balancing in the 

up-right configuration. Some attempts have been made to combine the swing-up and 

balancing control systems. 

2.2 Background 

There are many volumes of published studies establishing a dynamic model of the single 
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inverted pendulum system (Zhai et al. 2007; Landry et al. 2005; Mus et al. 2006; Chen et 

al. 2007; Farmanbordar et al. 2011; Bush 2001; Medrano-Cersa 1999; Yi et al. 2001). 

Several other studies have examined the double inverted pendulum (Yu et al. 2012; 

Jadlovska and Sarnovsky 2012; Yadav et al. 2012; Graichen et al. 2007; Yamakita et al. 

1995; Medrano-Cerda et al. 1995; Brown and Passino 1997; Henmi et al. 2004; Xin and 

Yamasaki 2012).  

One of the most important investigations for the current research is the triple inverted 

pendulum. A considerable amount of literature has been published on the dynamic 

modelling and control of triple inverted pendulums (Medrano-Cerda et al. 1995; 

Eltohamy and Kuo 1998; Lam and Davison 2006; Furut et al. 1984; Fer and Enns 1996; 

Eldukhri and Pham 2010; X Xin and Kaneda 2007; Araki et al. 2005; Awrejcewicz et al. 

2008; Lingling Yang et al. 2010). A major challenge with this kind of application is the 

inherent nonlinearity of the system which presents a challenge in modelling and control 

problems. The literature review is classified based on the type of the desired motion of 

the system (i.e. swing-up, balancing, and a combination of swing-up and balancing). In 

addition, the literature explains the using of different optimisation  technique to find the 

optimal control parameters.  
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2.3 Swing-up control 

The problem of the swing-up of inverted pendulums with passive joints was extensively 

studied by many researchers (Eldukhri and Pham 2010; Fantoni et al. 2000; Bradshaw 

and Shao 1996; Xin Xin and Kaneda 2007; Xin et al. 2010; Furuta and Iwase 2004; 

Åström and Furuta 2000; Chung and Hauser 1995; Gordillo et al. 2003). Spong (1995) 

in particular, proposed an approach based on partial feedback linearisation (Isidori 1995) 

. This approach was very sensitive to the gain values of the outer loop and the switching 

times. Fantoni et al. (2000) discussed the swinging of the pendubot, where a pendubot is 

simply a double pendulum with one end connected to a motor, and an encoder attached 

at the elbow. The authors suggested utilising energy based approach to establish the 

proposed control law to move the first link to the upright position. As compared with 

(Spong and Block 1995), this method does not demand a high controlling gain. 

However, the approach appears to be inefficient to overcome the oscillation of the 

second link. 

As noted by Yamakita et al. (1995) various methods are proposed to control the 

movements of the rotary inverted pendulum. Yamakita et al. (1995) proposed a designed 

controller which combined a feedforward controller that swings-up pendulums and a 

feedback controller that stabilises the pendulum in the upright position.  

In an analysis of an inverted pendulum, Åström and Furuta (1996) showed which factors 

affected the global behaviour of the swing-up. They determined that the maximum 
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acceleration of the pivot enables the pendulum to achieve an upright position in one 

swing. 

Acosta et al. (2001) compared their results with Åström and Furuta (1996), focusing on 

the Furuta pendulum swing-up. By way of this research, the controller design was 

reported using the Speed Gradient (SG) Algorithm technique (Andrievskii et al. 1996). 

In this exploratory investigation, the author was able to show experimentally the 

effectiveness of the new control law by accounting for the velocity of the arm and the 

reaction torques from the pendulum to the arm. 

Furuta and Iwase (2004) emphasised the duration of a pendulum swing-up from the 

downright to the upright position. It should be noted that the State Dependent Riccati 

Equation (SDRE) (Mracek and Cloutier 1996) has been implemented along with the 

sliding mode (Lu 1999). Moreover, the parameters of the nonlinear system control and 

initial states have been evaluated through utilising the colour map set technique 

(Graichen et al. 2005; Devaney and Devaney 1989). 

To study the problem of a swinging two-bar linkage and to maintain a different pattern 

of movements, Han et al. (2007) designed a neural controller to control the motion of the 

system by mimicking human arms in a harmonic swing-up movement. The authors 

designed a neural controller to attain the small swing and giant rotating movements. The 

preference of this type of methodology is that it has better control over the movement of 

the character. It does have the fundamental detriment that the authenticity of the 
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subsequent movements depends profoundly on the precision of the model and the 

movement controller. 

(Xin et al. 2010) reconsidered the use of the energy based approach to solve the problem 

of the swing-up which was used previously by Fantoni et al. (2000). In this detailed 

analysis of the swing-up problem, Xin et al. (2010) were able to attain the control 

objectives by avoiding the singular points in the control law with a higher controller 

factor than was used in the previous work.  

Another method was used to study the swing-up problem by Xin and Kaneda (2007). 

They considered links 2 and 3 to be a virtual composite link. They then used a 

coordinate transformation on the angles of the active joints 2 and 3. 

Analysis of the control of a three-link gymnastic robot was carried out by Duong et al. 

(2009). In their analysis, the researchers proposed a neurocontrol system to implement 

the swing-up of the 3-DOF manipulator. The proposed controller was implemented via a 

neural network and a genetic algorithm. 

Eldukhri and Pham (2010) suggested a new control technique to solve the problem of 

driving the Robogymnast from its downward position to its upright position. The basic 

principle of this method was to apply frequently varying sinusoidal torques to the two 

motors located at the hip and shoulder joints. In this method the angular positions and 

angular velocities are not involved in the derivation of the control signals. 
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An alternative method, known as Multiple-prediction Delayed Feedback Control 

(MDFC), was used to generate homogenous swinging by studying the characteristics of 

chaotic systems (Liu and Yamaura 2011). In this case the control signal was dependent 

on the angular positions of the joints. 

Xue et al. (2011) discussed the three-link acrobat swing-up problem. They used a 

sensory motor schema method and divided the controller actions into multiple stages 

(multi stage). In some stages they used the Bang Bang method, in some the other 

Proportional Derivative (PD) controller, and in some a combination of the two. The 

simulation results were obtained using MATLAB
®
 software, and showed that the swing-

up to the upright stance had been successfully achieved.  

Glück et al. (2013) experimentally achieved swing-up of a triple inverted pendulum on a 

cart. They suggested that the key challenge of the swing-up manoeuvre is the design of 

an appropriate feedforward controller. The design was based on the solution of a 

boundary value problem (BVP). The experimental results illustrate a successful swing-

up of the system.  

2.4 Upright position control 

A number of researchers have studied the problem of stabilising inverted pendulums 

with passive joints at the upright position (Sahba 1983; Furut et al. 1984; Meier Farwig 

and Unbehauen 1990; Arai and Tachi 1991; Larcombe 1992; Medrano-Cerda et al. 

1995; Fer and Enns 1996; Eltohamy and Kuo 1998; Lakshmi 2007; Zhai et al. 2007; 
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Farmanbordar et al. 2011; Wu et al. 2011; Vinodh Kumar and Jerome 2013). The 

problem of stabilising and controlling the attitude of a triple inverted pendulum was also 

studied by Furut et al. (1984). In this system, the lower link was hinged to the ground 

and, to support the control of the whole system, horizontal bars were fixed to the links to 

increase their moments of inertia.  

In the same vein, the problem of stabilising control of a double inverted pendulum 

mounted on a single parallel bar was presented by Hauser and Murray (1990). The 

researchers proposed a nonlinear control method of approximate linearisation to cause 

the system to move along the set of inverted equilibrium positions. In the suggested 

design, a braking mechanism was supplied to unactuated joints to reduce the coupling 

between the linkages and to simplify the control problem,. The simulation results show 

that this strategy functioned well but required slow motion. 

Arai and Tachi (1991) published a paper in which they described the method of control 

of two degrees of freedom systems. The constructed system consisted of an active joint 

with an actuator and a passive joint with a holding brake instead of an actuator. The 

proposed controller was based on using the coupling physical characteristics of 

manipulator dynamics (Arai and Tachi 1991).    

Medrano-Cerda et al. (1995) designed a robust computer control system for balance and 

position control of double and triple link inverted pendulums (TLIPs). The controllers 

were based on linearised models of the pendulums and included integral actions and 

optimal state feedback implemented via functional observers.  
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In a similar study, Fer and Enns (1996) discussed the difficulty of utilising a single 

control input to stabilise a triple inverted pendulum on a cart which moves on a rail. The 

system has four degrees of freedom, so the stabilisation problem is more complicated 

than in some other studies (Furut et al. 1984; Meier Farwig and Unbehauen 1990). Fer 

and Enns (1996) used two types of controller to achieve a solution. The first was the 

LQR method (Anderson and Moore 1990) and the second was the multiple time-scale 

approximation (Bugajski and Enns 1992) with a nonlinear dynamic inversion approach. 

Eltohamy and Kuo (1998) used a numerical optimisation algorithm for the controller 

design, which included a globally convergent numerical technique. Their designed 

controller was produced as an optimisation problem which accounted for the constraints 

of physical boundaries, system stability conditions, and the nonlinear infinite 

dimensional difference. 

Bogdanov (2004) presented a comparison between various optimal controller algorithms 

for use in a Double Inverted Pendulum Controller (DIPC). In this research a feedback 

gain matrix was used to stabilise the system. The gain matrix manipulation was achieved 

via employing the LQR, State Dependent Riccati Equation (SDRE), Neural Network 

(NN) and NN+LQR/SDRE control schemes. 

Delibasi (2007) described the stabilisation and disturbance rejection of an inverted 

double pendulum, which was achieved experimentally. In this research, the state 

feedback controller idea was dependent on the use of Proportional Integral Derivative 

(PID) controller technology. 
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Wongsathan and Sirima (2009) described how to find the optimal values of the 

controller to stabilise an inverted pendulum system using a genetic algorithm. There 

were significant simulated results obtained from the preliminary analysis of the system 

response with the optimised controller. 

Sehgal and Tiwari (2012) used a continuous LQR optimal control system to understand 

the mechanisms involved in balancing a triple inverted pendulum. The simulation results 

showed that the controller successfully stabilised the system with good performance. In 

the same manner Gupta et al. (2014) utilised the LQR system to stabilise a triple link 

inverted pendulum on a moving cart. The presented results show that the proposed 

controller could achieve the balancing of a system of upside down pendulums.  

Yadav (2012) investigated the stablisation of a single input and multiple outputs Double 

Inverted Pendulum (DIP) on a cart. They presented the LQR to maintain stabilisation 

about the upright equilibrium position. For the same system structure, Singh and Yadav 

(2012) compared the optimal LQR controller with a PID controller based on a pole 

placement technique. 

For trajectory tracking and balancing of a single inverted pendulum on a cart, Kumar et 

al. (2013) proposed two ways to stablise the system by utilising traditional and optimal 

control techniques. The controller was introduced using a proportional-integral-

derivative and optimal state variable feedback using an optimal control LQR. The 

reported results show that the system was swung up and was then stabilised using the 
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two suggested balancing controllers. The LQR controller was found to be a more robust 

controller than the PID controller. 

Analysis of the stablisation and tracking control for a triple link structure Robogymnast 

(Eldukhri and Kamil 2013) was first carried out by Kamil et al. (2014). In this research 

the author combined a discrete-time linear quadratic regulator (DLQR) controller and an 

integral control action to satisfy the required performance of the control system. The 

simulation results showed that the overshoot of angular positions of the first, second and 

third links were satisfactory, and the Robogymnast could be settled in the upright 

position for an acceptable amount of time (Kamil et al. 2014).  

2.5 Combining the swing-up and balancing control 

A considerable amount of literature has been published on the swing-up of single and 

multiple pendulum systems, and the subsequent stablisation at the upright equilibrium 

point. Several control researchers have been achieving and analysing the locomotion of 

different frameworks of inverted pendulums through utilising various control methods 

(Kobayashi et al. 2002; Jian and Zushu 2003; Lakshmi 2007; Zhai et al. 2007; Wu et al. 

2011; Xue et al. 2011; Park et al. 2011; Jianbao and Xinbing 2011; Saito et al. 1994). 

Saito et al. (1994) discussed the challenges and strategies for swinging-up and balancing 

a two-link robot. In their research, the authors used a combination of the feedforward 

input (generated by a heuristic method) and feedback control. This enabled the 
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locomotion to be organised, and was represented through the generated motion and the 

direction of the arm to the target. 

Another study focused on the combination of the swing-up and balance control for an 

underactuated planar revolute robot known as pendubot (Block 1996). A pendubot is a 

two-link pendulum with an actuator at the shoulder, but no actuator at the elbow. The 

researchers managed the control movement by introducing an approach for switching 

between the swinging-up control to the balance control. The proposed switching 

controller begins working when the links are within the attractive region of balancing. 

Partial feedback linearisation techniques were used for the swing-up control, while the 

optimal LQR controller was utilised for stabilisation around the desired equilibrium 

position. 

One study by Brown and Passino (1997) utilised intelligent and classical control for 

swing-up and balancing of the acrobot. This was achieved by using a PD controller with 

inner-loop partial feedback linearisation, a state feedback, and a fuzzy controller to 

swing-up the acrobat from its stable equilibrium position of the inverted region. As a 

part of this study, Brown and Passino (1997) investigated optimisation of the 

performance of the designed controller by developing two genetic algorithms to tune the 

controller.  

Zhong and Rock (2001) proposed the energy shaping method to swing-up a double 

inverted pendulum system and used the LQR controller to optimise the control gains for 

the feedback controller which balances the system. The authors reported the results 
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through simulation plots where the controller begins the swinging from the initial 

condition and then balances in the upright position. 

Kobayashi and Komine (2002) demonstrated two types of control method to maintain 

the swing-up and then balancing of the pendulum about the upright position. Two kinds 

of technique were used in their study. The first technique is based on energy control. The 

second technique is based on linear feedback control and was prepared according to the 

assignment of closed system poles which make the pendant position unstable and the 

upright position stable. The simulation results show a good swing-up of the system and 

good stable balancing. 

Bugeja (2003) set out to investigate the swinging of underactuated pendulum systems, 

and recommended the energy based method. The designed stabilisation controller was 

based on the state feedback method and utilised a simple pole assignment control 

approach.  

In another major study, Jian and Zushu (2003) discussed the challenges of planning the 

motion of a three link horizontal bar gymnastic robot. By means of characteristic states 

or energy transfer processes, the swing-up and inverted equilibrium were described. 

Furthermore, an extension of the conventional particle swarm optimisation (PSO) 

algorithm, called quantum particle swarm optimisation (QPSO) (Jun Sun et al. 2004), 

provided a new approach for controller modification. (Hassani and Lee 2014) deployed 

this controller to automatically and optimally adjust the weighting matrices of the LQR. 

This method was implemented to stabilise an inverted pendulum system. 
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Inoue et al. (2006) carried out an investigation into the control of a cart-type serial 

double inverted pendulum (Deng et al. 2007; Inoue 2005). The authors implemented this 

work on an experimental system, and the sliding mode control was adopted as a 

controller to manoeuvre between the first or second pendulum and the cart. This allowed 

the swing-up and the stabilisation of the first and the second pendulums in the upright 

position (Inoue et al. 2006). 

Furthermore, the problem of the Swing-up and Stabilising Control of a cart with inverted 

pendulum was presented by (Lakshmi 2007). The research focused on using an energy 

control method called a total energy shaping (TES) and two swing-up controls. The 

stabilisation of the inverted pendulum was also considered. Additionally, the 

investigators designed an intermediate algorithm to transfer from the swing-up controller 

to the stabilising controller depending on the state variable.  

Graichen et al. (2007) achieved experimentally the stabilisation and side-stepping of the 

triple inverted pendulum problem. The inversion based feedforward control design and 

optimal feedback controllers, are applied to determine trajectories for the swing-up 

manoeuvre and the stablising at the upright position respectively (Graichen et al. 2007). 

The author reported that the swing-up manoeuvre was successfully implemented and 

tested. The results show a good response of the system with stable balancing. 

Another study proposed a new method to consider a swing-up and stabilisation problem 

for an inverted pendulum, through switching control (Zhai et al. 2007). The proposed 
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controller consists of a combination of a linear optimal regulator, a SDRE and an energy 

dissipative controller to stabilise the system within the linear operating region. 

In the same way, the double inverted pendulum system controller was designed using a 

fuzzy logic control (Cheng-jun et al. 2009). The weighting coefficients of a fuzzy logic 

controller can be optimised by utilising the genetic algorithm optimisation technique. It 

is apparent that the approach can attain stronger, robust, real time and controllers, 

(Zhang et al. 2012) used the same approach to design the controller for a triple inverted 

pendulum on a cart. 

Wu et al. (2011) studied the motion of the 3-link gymnast robot moving. In this 

investigation, the researchers considered two spaces of motion in the vertical plane. 

They divided the space of motion into two subspaces, one for balancing about the 

upright position and one for resting in the swing-up area. Consequently, in order to 

achieve the control motion of the gymnast robot, a different controller is considered for 

each subspace. The validation of this method was fulfilled through the simulated results. 

Swing-up and Stablising of a rotary inverted pendulum was demonstrated 

experimentally by Park et al. (2011). A modified bang-bang control technique was used 

to swing-up the pendulum safely and quickly. Thereafter to achieve the stabilisation and 

balance at the upright position a LQR was used. The Experimental results illustrate that 

the swing-up time was generally less than 3 seconds and the system was able to recover 

after applying a disturbance. 
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In a study which set out to establish the combination of the swing-up and stabilisation of 

the single pendulum system, Angeli (2001) used an energy-shaping method, with 

smooth switching between positive and negative feedback, to obtain a globally stabilised 

controller. Meanwhile, Mihara and Yokoyama (2012) suggested a two step control 

method for single pendulum system locomotion (Mihara and Yokoyama 2012).  

2.6 Optimisation algorithm 

There is a large volume of published studies describing the role of evolutionary 

optimisation algorithms in the control system design (Ha and Kim 1997; Zhang 2007; 

Mobaieen et al. 2012; Qian et al. 2008). (Ha and Kim 1997) used a genetic algorithm to 

optimise the weights of an LQR controller for stablising a single inverted pendulum 

system. In the same way, the genetic algorithm can be used to find the optimised weight 

matrices of the linear quadratic regulator. This approach was applied on an active 

suspension system (Zhang 2007). Qian et al. (2008) achieved the stabilisationn of a 

double inverted pendulum on a cart at the upright position by constructing a sliding 

mode controller. The author utilised improved genetic algorithms to determine the 

optimal sliding controller surface in the design.  

Due to their increasing popularity, swarm-based optimisation algorithms have been used 

by researchers to solve a diverse range of engineering and manufacturing problems. In 

recent studies, a PSO (Kennedy and Eberhart 1995) has been used to develop the 

designed controller for the inverted pendulum system. For example, Xiong and Wan 
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(2010) optimised the optimal controller with an improved PSO and realised the stability 

control of a double inverted pendulum. Chandra Debnath et al. (2013) extended the 

capability of the PSO algorithm to improve the Gaussian membership functions of the 

fuzzy model of a nonlinear problem. In this way an effective adaptive fuzzy logic 

controller was designed to attain the target problem for the cart with the inverted 

pendulum system. Fierro and Castillo (2013) employed the particle swarm optimisation 

metaheuristic and two of its variants to calculate the optimal membership functions of 

fuzzy control systems for the water tank and inverted pendulum benchmark problems. 

Solihin and Akmeliawati (2009) adopted the PSO optimisation technique to tune the 

state feedback gains and analyse the stablisation and tracking of a single inverted 

pendulum on a cart.    

A multi-objective evolution algorithm (MOEA) was considered by Li et al. (2008) to 

achieve the Pareto-optimal solutions of the LQR weighting matrices. Consequently, the 

desired multiple performance indices were established to meet the control system. The 

suggested method for controller design was applied to a double inverted pendulum 

system. 

A novel swarm-based optimisation technique called the Bees Algorithm (BA) (Pham et 

al. 2006) provided a new approach for controller tuning. Pham et al. (2009) used this to 

regulate the parameters of a fuzzy logic controller designed to balance an under-actuated 

two-link acrobatic robot (Spong 1995). They developed a Linear Quadratic Regulator to 

obtain the scaling gains needed to design the fuzzy logic controller.  
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In another major study, (Darwish 2009) suggested the use of fuzzy logic to design a 

controller to stabilise and balance an under-actuated two-link acrobatic robot 

(ACROBOT) in the upright position. (Darwish 2009) utilised the BA to optimise the 

membership functions and the scaling gains of the fuzzy system. The simulation results 

show a good response of the system and with stable balancing.   

Eldukhri and Kamil (2013) and Kamil et al. (2012) proposed a new way to swing-up a 

Robogymnast consisting of three links and three joints. The process was to pump in 

energy and consequently swing Robogymnast until it flipped past the upright position. 

This was achieved by manipulating the input control signals applied to the two Direct 

Current (DC) motors mounted at the shoulder and hip joints. The BA was used to 

optimise the parameters regulating the amplitudes and frequencies of the sinusoidal 

control signals. 

2.7 Summary 

A review of different designs of single and multi link underactuated systems has been 

presented. This chapter gave an overview of various controller methods that have been 

used to satisfy different types of complex n-link robot system locomotion focusing on 

the literature for swing-up control, balancing control, and the combination of the swing-

up control and balance control. In addition, the literature of using an optimisation 

technique to achieve the control performance has been presented. In the next chapter, the 
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description of the Robogymnast system is given and a mathematical model for the 

Robogymnast will be derived. 
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Chapter 3 

System Description and Mathematical Modelling 

3.1 Introduction 

This chapter presents a mathematical model and system description for Robogymnast. 

The Robogymnast relies on a greatly coupled complex dynamical multi-joint mechanical 

framework. The multifaceted nature of this framework is not unusual for a mechanical 

structure of this complexity and a control system of this difficulty. The lack of full 

actuation brings challenges when setting up feasible trajectories and planning 

controllers. In the design, the Robogymnast had a total of three degrees of freedom, 

including two powered degrees of freedom. 

The main fundamental problems with Robogymnast are (i) the ability to move from one 

place to another, (ii) determining the complex mathematical equations of motion and 

(iii) the analysis and control of multiple kinds of movement.  

The equations of motion must be derived in order to understand the behaviour of the 

Robogymanst under different conditions. Moreover, these laws are used to derive 

appropriate feedback control laws and to simulate the Robogymnast‘s performance 

under feedback control (Hemami and Farnsworth 1977). 
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The Lagrangian motion methodology has been used to determine the system dynamics 

of a serial-chain mechanical manipulator with a rigid link (Arnold 1989; Spong et al. 

2006; Craig 1985). The dynamic system model and equations of motion of the multilink 

system are determined mathematically using Lagrange‘s equation method to depict the 

system dynamics. This approach has been used in many previous studies (Furut et al. 

1984; Medrano-Cerda et al. 1995; Eltohamy and Kuo 1998). 

In this study, the Robogymnast is a planar three-link system in the vertical plane, with 

two actuators at the second joint (shoulder joint) and the third joint (hip joint), but no 

actuator at the first joint (hand joint). Lagrange's mathematical statements are used to 

determine the mathematical representation for the Robogymnast, in the same manner as 

used by Eldukhri and Pham (2010). 

The Robogymnast configuration was designed to be adaptable for future adaptations or 

modifications. These may include: changing the actuators for more powerful ones; 

increasing the degrees freedom by adding extra link(s); changing the length of the shaft 

or the free rotating bar; adding sensors to measure the angular velocity (e.g. tachometer) 

of the second and third links; replacing the angular position sensors (potentiometers) 

with more accurate ones; disposing of the impact of the backlash in some if not all joints 

(e.g. hip joint) by utilising anti-backlash. 

Section 3.2 presents a description of the system, including sketches and schematic 

diagrams of the Robogymnast. In Section 3.3, the mathematical continuous-time model 

of the Robogymnast at its upright position is derived. The numerical continuous-time 



32 

 

and discrete-time models are then presented. In Section 3.4 presents the numerical 

continuous-time and discrete-time models of the Robogymnast at the downward 

position. A summary of the chapter is given in Section 3.5. 

3.2 System description  

In this study, the controller is to be implemented by a PC supported by an appropriate 

AD/DA converter. A block diagram representation of the experimental apparatus is 

shown in Figure 3.1.  

The ADLINK DAQ-2501 AD/DA converter has a resolution of 12 bits for analogue 

input and 14 bits for analogue output. The converter time is 1 microseconds and the 

settling time is less than 3 microseconds. The bipolar input and output range of the 

voltage is ±l0 V and ±12 V respectively.  

The interfacing circuit between the computer and the robot comprises amplifiers and 

first-order filters. These filters reduce effects introduced by sampling the system‘s 

outputs, and smooth the control signals sent to the power amplifiers/motor drive units 

(Medrano-Cerda et al. 1995, Fadali and Visioli 2012).  

The analogue feedback signals y(t) consist of two types of information. The first is the 

sensors readings, which are considered as a controllable disturbance. This type of 

disturbance is relatively low frequency. The second type is the uncontrollable 

disturbance, which is related to high frequency noise. This type may relate to 
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measurement noise, or drift in electrical pickup (Anderson and Moore 1990). Such noise 

signals cause problems in analogue systems, such that low-pass filtering is regularly 

used to permit greater control execution (Burns 2001). Therefore, the computer interface 

in this study contains first order anti-aliasing filters for each sensor. All the anti-aliasing 

filters were chosen to be first-order resistor capacitor (RC) filters with the same cut-off 

frequency. Additional filters were used to smooth the reconstructed continuous-time 

controls u(t). These were chosen to be first order and to have the same cut-off frequency. 

The amplifiers are 741 series operational amplifiers. They are connected in non-

inverting mode. The amplifiers for the control signals (u) have a gain of 2 for Ri = Rf =

10kΩ. The amplifier for the first output signal (y1) have a gain of 3.7 for Ri = 1kΩ and 

Rf = 2.7kΩ. Each one of the second and third output signals (y2 and y3) have a gain of 2 

for Ri = Rf = 10kΩ. The amplifier for the fourth output signal (y4) have a gain of 7.8 

for Ri = 1kΩ and Rf = 6.8kΩ. The amplifiers for the control signals (u) and the output 

signals (y) are biased with ±15V DC. Figure 3.2 shows the circuit diagram of a first 

order filter in series with the amplifiers. Before sending, the computed control signals 

u(k) are divided by the amplifier gain of 2. The read signals y(k) are also divided by the 

gain of each signal amplifier gain before being processed. 

The power amplifiers are LM12 series. The LM12 is a power operational amplifier 

capable of driving ±25V at ±10A while operating from a ± 30V  power supply. Every 

pair of LM12 power amplifiers is supplied from ±13.8V, ±13A peak, ±10A continuous, 

or regulated DC power supplies. The circuit diagram of the power amplifier is shown in 
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Figure 3.3. A description of LM12CL 80W Operational Amplifier of is given in 

Appendix A.1. 

 

D-A 

Clock 

u(k) 
A-D 

Robotic Gymnast 

Anti-aliasing 

Filters 

Amplifiers 

Computer 

Controller 

y 
f 

u 

u f 

y 
Power Amplifiers 

Filters 

u f 

Overall System 

Amplifiers 

y 
k (k) 

 

Figure 3.1: Block diagram representation of the experimental apparatus 
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Figure 3.2: Circuit diagram of 1st order filter in series with operational amplifier 
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Figure 3.3: Circuit diagram of the power amplifier 

C++ program environment is used to transmit the input/output commands between the 

Personal Computer (PC) and the Robogymnast. The program consists of a code to 



36 

 

record experimental data and store the information on a hard disk. The computer 

controller programs contain: a state feedback controller, discrete integrator, and a 

reduced order observer. It also contains an adjustment to the offset in the control 

outputs. Furthermore, the programs contain scaling factors and sensor gains to convert 

the input channels signals from volts to radians and to use them in the control action 

calculations. Figure 3.4 depicts the Robogymnast hardware components (Eldukhri and 

Pham, 2010). The structure of Robogymnast is modelled on a human gymnast swinging 

on a freely rotating high bar with his/her hands firmly fixed to the bar. Link 1 represents 

the arms without the elbow and wrist joints. The head, neck and torso are combined into 

Link 2 as a single rigid body. Link 3 represents the legs without knee and ankle joints. 

The main part of each link is manufactured from two rigid carbon fibre tubes, which are 

50 mm in diameter. These are economical, simple to cut, and weigh just 0.213 kg/m. At 

both ends of each link, aluminum segments (3 mm in thickness) are appended to give 

structure on which to mount the sensors and actuators. 

Joint 1 consists of a steel shaft mounted on ball bearings. At one end of the shaft a 

potentiometer is mounted to measure the angle of Link 1. At the other end of the shaft a 

tachometer is mounted to measure the angular velocity of Link 1. A description of E-

series tachometer generators is given in Appendix A.2. Joints 2 and 3 consist of two 

parts. The first part comprises a DC motor/gearbox combination with its output shaft 

coupled to the respective link. Planetary gearboxes with a rated continuous capacity of  
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Figure 3.4: Hardware components of Robogymnast 
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4.5 Nm were chosen. The second part includes the potentiometer, which measures the 

relative angles between adjacent links. The potentiometer is attached to a short steel 

shaft mounted on both sides on ball bearings. One of the most important points in robot 

design is the selection of the actuators. Good selections give a robot more capability to 

achieve different types of movement. Conversely, the speed and torque of the actuator 

are an important characteristic in the performance of the robot, and they play a key role 

in the selection of actuators to maintain the required locomotion. In this study, electric 

actuators were selected to control the joints of the robot on the grounds that they are 

generally less expensive and lighter in weight than other available options. The 

movements of the Robogymnast are modelled mathematically as described in the 

following section. 

3.3 Mathematical model of the Robogymnast in the upright position 

The equations of motion for Robogymnast, as represented by the schematic diagram in 

Figure 3.5, were derived using Lagrange equations (Eldukhri and Pham 2010; Eltohamy 

and Kuo 1998; Furuta et al. 1984; Medrano-Cerda et al. 1995). It is considered as a 

triple-link pendulum in an unstable equilibrium configuration.  

The mathematical model is derived using the Lagrange equation: 

 
d

dt
 
∂K

∂θ i
 − 

∂K

∂θi
+  

∂D

∂θ i
+

∂P

∂θi
= Ti         i = 1,2,3… (3.1) 
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The system Kinetic energy K, the potential energy P and the dissipation energy D are 

computed through Equations (3.2), (3.3) and (3.4) respectively. θi is defined as the 

absolute angle of the ith  link measured from the vertical line. Ti is the generalised torque 

at angle θi.   

The kinetic energy in terms of robot parameters is given by: 

 
K =

1

2
 

 
 
 
 

 
 
 

 

Iiθ i
2+m i 

d

dt
  lk

i−1

k =i−3

sin (θk )+ ai sin (θ i )  

2

+

 
d

dt
  lk

i−1

k =i−3

cos (θk )+ ai cos (θ i )  

2

 
 
 
 

 
 
 

 .      
3

i=1

 
(3.2) 

The potential energy is defined as: 

 

P =  mig  ai cos θi +  lk  cos(θk)

i−1

k=i−3

 

3

i=1

, (3.3) 

and the dissipative energy is given by: 

 
D =

1

2
  Ci θ i−θ i−1 

2
 ,

3

i=1

 
(3.4) 
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Figure 3.5: Schematic representation of  Robogymnast in the upright position 

 

li, mi , Ii  , ai and Ci are defined respectively as: the length of the ith  link; the mass of the 

ith  link; the moment of inertia of the ith  link around its centre of gravity; the center of 

gravity of the ith  link, and the viscous friction coefficient of the ith  joint. Here, g is the  

acceleration due to gravity. 
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The Robogymnast has three joints. Since it is freely rotating on a high bar, there is no 

actuator at the first joint (the hands).I Its motion is manipulated by two DC motors 

mounted at the second joint (shoulder) and third joint (hip). Hence, the first joint is 

affected by the torques applied to powered joints (second joint and third joint). The 

torques of the two DC motors that are located at the shoulder and hip are represented as 

follows: 

 Tm1
= G1 u1 − Ip1

 θ2
 − θ 1 − Cp1

 θ 2 − θ 1 , (3.5) 

 Tm2
= G2 u2 − Ip2

 θ3
 − θ 2 − Cp 2

 θ 3 − θ 2 , (3.6) 

where u1 and u2 ( u1  and  u2 ≤ 10V) represent the input voltage to the DC motors. 

Gi , Ipi
 and Cpi

 are the static gain of ith  motor/gearbox, the moment of inertia of ith  

motor/gearbox reflected at the output shaft of the gearbox, and the viscous friction 

coefficient of the ith  motor/gearbox reflected at the output shaft of the gearbox 

respectively. 

The torque of the first joint of the Robogymnast is generated by the effect of the second 

joint DC motor torque. Hence T1 = −Tm1
 , and also T2 = Tm1

− Tm2
  and  T3 = Tm2

. 

The total kinetic energy of system components is expressed as follows: 
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K =
1

2
  I1θ1

 2
+ I2θ2

 2
+ I3θ3

 2
 +

1

2
 m1a1

2 +  m2l1
2 +  m3l1

2  θ1
 2

 cos2(θ1)

+  
1

2
 a1

2 + 2l1
2  θ1

 2
 sin2(θ1)

+
1

2
 m2a2

2 +  m3l2
2  θ2

 2
 cos2(θ2)

+   m2l1a2 + m3l1l2    θ1
 θ2

 cos( θ1) cos(θ
2

)

+
1

2
 a2

2 + l2
2  θ2

 2
 sin2(θ2)

+  l1a2 +  l1l2 θ1
 θ2

  sin(θ
1

) sin(θ2)

+  
1

2
 m3a3

2  θ3
 2

 cos2 θ3 + 
1

2
a3

2  θ3
 2

 sin2(θ3) 

(3.7) 

ThThe  total potential energy of system components is presented as follows: 

P = g   m1 a1 +  m2  l1 +  m3 l1 cos(θ
1

) +  g  m2 a2 + m3  l2   cos(θ
2

)

+ m3 g a3 cos(θ
3

) 

(3.8) 

In addition, the total dissipation energy of system components is written as follows: 

D =
1

2
 C1 +  C2  θ1

 2
+  

1

2
 C2 + C3  θ2

 2
+

1

2
 C3  θ3

 2
− C2θ1

 θ2
 − C3θ2

 θ3
  (3.9) 
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The system equations of motion can be derived by solving Equation (3.1) for each 

system coordinate [θ1  θ2 θ3] as follows: 

d

dt
 
∂K

∂θ 1
 −

∂K

∂θ1
+

∂D

∂θ 1
+

∂P

∂θ1
= T1   

(3.10) 

d

dt
 
∂K

∂θ 2
 −

∂K

∂θ2
+

∂D

∂θ 2
+

∂P

∂θ2
= T2  

(3.11) 

d

dt
 
∂K

∂θ 3
 −

∂K

∂θ3
+

∂D

∂θ 3
+

∂P

∂θ3
= T3  

(3.12) 

Substituting Equations (3.7), (3.8) and (3.9) in Equations (3.10), (3.11) and (3.12) yields 

three nonlinear differential equations describing the system dynamics. In order to 

simplify the control system analysis and design, the differential equations are linearised 

about the upright position (θi= 0). System equations of motion can hence be written as 

follows: 

 I1 + m1a1
2 + m2l1

2 + m3l1
2 + Ip1 θ 1 +  m2l1a2 + m3l1l2 − Ip1 θ 2

+  m3l1a3 θ 3 +  C1 + C2 + Cp1
 θ 1 +  −C2 − Cp1 θ 2

+  −gm1a1 − gm2l1 − gm3l1 θ1 + G1u1 = 0 
(3.13) 
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 m2l1a2 + m3l1l2 − Ip1 θ 1 +  I2 + m2a2
2 + m3l2

2 + Ip1 + Ip2 θ 2

+  −Ip2 + m3l2a3 θ 3 +  −C2 − Cp1 θ 1

+  C2 + C3 + Cp1 + Cp2 θ 2 +  −C3 − Cp2 θ 3

+  −gm2a2 − gm3l2 θ2 − G1u1 + G2u2 = 0 

(3.14) 

 

 I3 + m3a3
2 + Ip2 θ 3 +  m3l2a3 − Ip2 θ 2 +  m3l1a3 θ 1 +  −Cp2 − C3 θ 2

+ [C3 + Cp2]θ 
3

+  −m3a3g θ3 − G2u2 = 0 
(3.15) 

The linearised continuous model is expressed below:  

 M  

θ1
 

θ2
 

θ3
 

 + N  

θ1
 

θ2
 

θ3
 

 + P  

θ1

θ2

θ3

 + G  
u1

u2
 =  

0
0
0
  (3.16) 

 

where  

M =  

 J1 + Ip1
              l1M2 − IP1                            l1M3

l1M2 + IP1             J2 + Ip1
+ Ip2

      l2M3 − Ip2
 

l1M3                     l2M3 − Ip2
               J3 − Ip2

    

N =  

C1 + C2 + Cp1
                         − C2 − Cp1

                                      0

  −C2 − Cp1
                     C2 + C3 + Cp1

+ Cp2
         − C3 − Cp2

 0                                             − C3 − Cp2
                             C3 − Cp2
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P =    

−M1g           0               0
0            −M2g          0
0                0       −M3g

  

G =  −
G1           0
G1         G2

0      − G2

  

where 

M1 = m1a1 + m2l1 + m3l1 

M2 = m2a2 + m3l2  

M3 = a3m3 

J1 = I1 + m1a1
2 + (m2 + m3)l1

2 

J2 = I2 + m2a2
2 + m3l2

2  

J3 = I3 + m3a3
2  

Next the linearised continuous model can be re-written in terms of the relative angle qi. 

These angles are measured by potentiometers. The relationship between the relative 

angle qi and the angle θi  is explained below: 

W =  
  1           0         0
−1          1         0
 0       − 1        1

   , θ =  

θ1

θ2

θ3

    and  q =  

q1

q2

q3
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then 

 q =  

q1

q2

q3

 =  

θ1

θ2 − θ1

θ3 − θ2

 = Wθ 

In the next step, each θ is replaced by W−1q in Equation (3.16). This equation can 

therefore be re-written as follows: 

MW−1  

q 1
q 2
q 3

 + NW−1  

q 1
q 2
q 3

 + PW−1  
q1

q2
q3

 + G  
u1

u2
 =  

0
0
0
  

(3.17) 

  and then: 

 

q 1
q 2
q 3

 = −WM−1NW−1  

q 1
q 2
q 3

 − WM−1PW−1  
q1

q2
q3

 − WM−1G  
u1

u2
  (3.18) 

From Equation (3.18) the state space representation in terms of relative angle can be 

expressed as below: 

x = Ax + Bu =  
03 I3

−WM−1PW−1 −WM−1NW−1
 x +  

03×2

−WM−1G
  

u1

u2
  

y = Cx = [I4    04×2]x 

(3.19) 
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where  

I4 =  

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

 , 04×2 =  

0 0
0 0
0 0
0 0

 , 03×2 =  
0 0
0 0
0 0

  

Here, the output vector y = q. 

The numerical model of the Robogymnast is calculated by substituting the values of the 

parameters given in Table 3.1 and Table 3.2 into the Equation (3.19) using 

MATLAB
®
/toolboxes and additional M-files developed by the researcher.  

 

Table 3.1:  Parameters of Robogymnast 

  

 

Link1 Link2 Link3 

𝑙1 m = 0.155 𝑙2 m = 0.180 𝑙3 m = 0.242 

𝑎1 m = 0.0426 𝑎2(m)=0.138 𝑎3(m)=0.065 

𝑚1(kg)=2.625 𝑚2(kg)=0.933 𝑚3(kg)=0.372 

𝐼1(kgm2) = 0.014 𝐼2(kgm2) = 0.018 𝐼3(kgm2) = 0.002 

𝐶1(Nms)=0.0172 𝐶2(Nms)=0.0272 𝐶3(Nms)=0.035 
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Table 3.2: Motors Parameters 

Motor1 Motor2 

Ip1
 kgm2 = 0.0358 Ip2

 kgm2 = 0.0358 

Cp1
(Nms)=7.73 Cp2

(Nms)=7.73 

G1(Nm/V)=1.333 G2(Nm/V)=0.625 

k1 = 246: 1 k2 = 110.6: 1 

 

This gives A and B as: 

A=  
03 I3

A21 A22
 , 03 =  

0    0   0
0    0   0
0    0    0

  , I3 =  
1 0 0
0 1 0
0 0 1

  

A21 =  
−36.42 −0.35 0.21
13.10 −22.06 −2.23
−2.14 −1.50 −5.68

 , A22 =  
−0.20 88.38 9.17
0.20 −168.29 7.70
0.02 7.69 −201.45

  

B=  

03×2

−15.19       − 0.74
28.92       − 0.62
−1.32          16.21

  

The eigenvalues of the continuous time model shown in Equation (3.19) at the upright 

position. These are:                         

[-166.8506     -203.1990     -5.4598     5.3762     0.1662     0.0270]. 
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From the eigenvalues above, it appears that the system is unstable as there are three 

positive characteristic roots. 

The discrete time model of the Robogymnast is obtained by discretising the continuous 

time model. The important point to find in the discrete dynamic model of the 

Robogymnast is the calculation of the sampling time to control the system motion 

perfectly. The sampling time represents the communication time required to operate the 

computer controller within a real system for every iteration of all the control system 

process. At each step the process time actually consists of the following sub-processes: 

1- Initialisation of the system situation through reading sensors via the A-D 

conversion. 

2- Load the control parameters. 

3- Compute the control actions. 

4- Output control to the motor by sending the control actions via the D/A convertor. 

The experimental determination of the sampling time Ts relies on upon being 

sufficiently short, and the reproduced control signal being near to the signal that the 

creative analogue controller would have generated. The discrete time model of the 

Robogymnast is obtained by discretising the continuous time model in Equation (3.19) 

with a sampling time interval 25 milliseconds using MATLAB
®
 software. The discrete 

time model is the sampling time 
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x k + 1 = Ad x k + Bd u k  

y k = Cdx k . 

(3.20) 

The Ad , Bd  and Cd  matrices can be written as: 

Ad =

 
 
 
 
 
 

1.0100 0.0024
−0.0015 1.0025

0.0002 0.0250
0.0003 0.0000

0.0101 0.0021
0.0059 0.0002

−0.0003 0.0002
0.7770 0.2337

1.0006 0.0000
0.0241 1.0070

 0.0002 0.0049
0.5232 0.0646

 −0.0772 0.1300
−0.0134 0.0122

0.0143 −0.0003
0.0286 −0.0001

0.0158 0.0021
0.0020 0.0068 

 
 
 
 
 

 

 

Bd =

 
 
 
 
 
 
 −0.0017 −0.0001

0.0033 −0.0000
−0.0000 0.0016
−0.0895 −0.0052
0.1696 −0.0001

 −0.0002 0.0800  
 
 
 
 
 

 ,  Cd =  

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

  

The discrete time model represented in Equation (3.20) also has three unstable 

eigenvalues (outside the unit circle) as given below: 

[0.0156  0.0062   1.1439   0.8724   1.0042   1.0007]. 
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3.4 Mathematical model of the Robogymnast in the downward 

position 

In this section the Robogymnast is regarded as a triple pendulum in a stable equilibrium 

configuration as shown in Figure 3.6. The system mathematical model in the downward 

position has been described as being similar to the methodology used in Section 3.3.  

For the linearised continuous-time state-space model of the Robogymnast in the 

downward position, the matrices A, B and C in Equations (3.19) are expressed as 

follows: 

A=  
03 I3

A21 A22
 , 03 =  

0    0   0
0    0   0
0    0    0

  , I3 =  
1 0 0
0 1 0
0 0 1

  

A21 =  −
36.42 0.35 −0.21
13.10 22.06 2.23
−2.14 1.50 5.68

 ,  A22 =  
−0.20 88.38 9.17
0.20 −168.29 7.70
0.02 7.69 −201.45

  

B=  

03×2

−15.19       − 0.74
28.92       − 0.62
−1.32          16.21
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Figure 3.6: Schematic representation of  Robogymnast at the downward position 

 

The eigenvalues of the continuous time model shown in Equation (3.19) at the 

downward position are: 

[-166.5012    -203.1428     -0.0511+5.4175i     -0.0511-5.4175i    -0.1665    -0.0269]. 

From the eigenvalues above, it can be noted that four of the eigenvalues are real and 

stable, while two of them are stable complex conjugates.  
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In the same manner applied to Equation (3.20) in Section 3.3, the Ad , Bd  and Cd  

matrices for the downward position can be written as: 

Ad =

 
 
 
 
 
 

1.0100 0.0024
−0.0015 1.0025

0.0002 0.0250
0.0003 0.0000

0.0101 0.0021
0.0059 0.0002

−0.0003 0.0002
0.7770 0.2337

1.0006 0.0000
0.0241 1.0070

 0.0002 0.0049
0.5232 0.0646

 −0.0772 0.1300
−0.0134 0.0122

0.0143 −0.0003
0.0286 −0.0001

0.0158 0.0021
0.0020 0.0068 

 
 
 
 
 

 

Bd =

 
 
 
 
 
 
 −0.0017 −0.0001

0.0033 −0.0000
−0.0000 0.0016
−0.0895 −0.0052
0.1696 −0.0001

 −0.0002 0.0800  
 
 
 
 
 

 ,  Cd =  

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

  

For the discrete time model represents in Equation (3.20) with the downward position, it 

can be seen all the eigenvalues are inside the unit circle and are given below. 

[0.0156  0.0062   0.9896+0.1349i   0.9896-0.1349i   0.9958   0.9993].  

3.5 Summary 

The objective of this chapter was to design a complex three degree of freedom 

Robogymnast. The system description and the characteristics of the system parts have 

been demonstrated. Furthermore, a mathematical model of the Robogymnast has been 

derived based on the Euler-Lagrange approach describing the system dynamics. The 

linearised equations of motion and their state-space representation were then introduced. 

The linearised model of the system represented by the upright (unstable) and downward 
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(stable) positions. A linearised general model of the system is needed in order to test the 

Robogymnast‘s ability to perform different movements with various types of controllers. 

This will be discussed in detail in the following later chapters. In particular, chapter 4 

will present the swing-up control. 
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Chapter 4 

Swinging-up Control 

4.1 Introduction 

In this chapter, the swing-up problem of a nonlinear, three-link robot gymnast 

(Robogymnast) is discussed. Different control strategies were used to study the swing-

up of such an inverted pendulum-like mechanism (Eldukhri and Pham 2010; Xin and 

Kaneda 2002; Spong 1995; Han et al. 2007).  

With a specific end goal to enhance the system reaction and reduce the energy 

consumption, which are prompting more productive utilization of energy, the ideal 

control increases gains to be explored through utilizing optimal control parameters. 

In this chapter, a novel optimization technique called the Bees Algorithm (BA) (Pham et 

al. 2006) provided a new approach to optimise the control system parameters. The BA is 

used to tune the parameters of the swing up control developed by Eldukhri and Pham 

(Eldukhri and Pham 2010). The BA is applied for the first time in this research to a 

constrained enhancement issue by means of penalty capacities and characterizing the 

limits of the Robogymnast system. 

The remainder of the chapter is organized as follows. In Section ‎4.2, the swing-up 

control problem is investigated. Section ‎4.3 introduces the BA. Section ‎4.4 demonstrates 
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how the BA is used for tuning the swing-up control parameters. Section ‎4.5 discusses 

the simulation and experimental results. The summary is given in Section ‎4.6. 

4.2 Swing-up control problem 

The challenge posed by Robogymnast is how to make it swing up from the downward 

position (stable equilibrium posture) to upward attitude (unstable configuration). The 

swing-up must be achieved in a reasonable operation time without the risk of damaging 

any of the structure components. This requires determining of suitable input control 

signals to the motors located at joints 2 and 3 to obtain satisfactorily smooth sequence of 

oscillations. Eldukhri and Pham (2010) proposed a solution to this problem by 

manipulating the frequency and amplitudes of the sinusoidal input control signals 

applied to the two DC motors driving links 1 and 2. This enabled the two motors to 

pump energy into the system and consequently swing Robogymnast until it eventually 

flipped past the upright position. This was, in effect, achieved by causing the value of 

the first angle (q1 = θ1) moves from the initial status (q1 = 0) to the upright position, 

i.e. q1 = π (or q1 = −π, depending on the direction of movement). The equations of the 

input control signals are given as:      

u1 = A1α sin(∅1) (4.1) 

u2 = A2α sin(∅2) (4.2) 
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Where without loss of generality, [u1, u2]
T
=u(k) as described in equation (3.20) in 

Chapter 3. A1 and A2 are constants and ∅1 and ∅2 are dependent on δ.  

During each sinusoidal cycle (multiple of sampling intervals Ts  depending on the value 

of δ), ∅1 and ∅2 were varied between 0 and 2π with a step increment of η δ  applied 

during each sampling interval. η is constant and fractional to π.  At the end of each duty 

cycle (∅1and ∅2 = 2π) α, δ were increased by ∆α and ∆δ respectively. A1, A2, α,  η and 

δ were initially set at 3, 2.5, 1, 0.3142 and 1 respectively (Eldukhri and Pham 2010). By 

means of exploitation of MATLAB
® 

software and its associated toolboxes, the discrete 

time model (Equation (3.20) in Chapter 3) was used to simulate the dynamic behavior of 

Robogymnast during the swing up phase.  

In Eldukhri and Pham‘s (2010) work, both the amplitudes and frequencies of the 

sinusoidal signals u1 and u2 were varied simultaneously using the same parameter, δ 

whose periodic increment ∆δ was obtained manually (through trial and error process). 

In this chapter, the BA was used as an optimization technique to automatically tune the 

values of the periodic increments  ∆α and ∆δ to obtain acceptably smooth swinging of 

Robogymnast. 

4.3 The Bees Algorithm 

The Bees Algorithm (BA) is a population-based search algorithm that simulates the food 

foraging behaviour of honeybees to find the optimal solution (Kennedy et al. 2001). The 
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Algorithm emulates the harvesting process of the natural bees by doing a local search, 

till an acceptable result is found, or a pre-defined number of iterations has been reached 

(Otri 2011). It requires a number of parameters to be set, namely (Pham et al. 2009): 

number of scout bees (n), number of sites selected out of n visited sites (m), number of 

best sites out of  m selected sites (e), number of bees recruited for best e sites (nep), 

number of bees recruited for the other (m-e) selected sites (nsp), initial size of patches 

(ngh) which includes site and its neighborhood and stopping criterion. The pseudo codes 

and the flowchart of the BA are described in Figure 4.1 and Figure 4.2 respectively. 

The use of the algorithm to optimize the increments  ∆α and ∆δ for attaining reasonably 

smooth swing-up control of Robogymnast will be discussed in the following section.  
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Generate initial population. 

Evaluate fitness value of initial population. 

Sort the initial population based on fitness result. 

While stopping criteria not met 

Select the elite patches and non-elite best patches for neighbourhood search. 

 Recruit forager bees for selected sites. 

Evaluate the fitness value of each patch. 

 Sort the results based on their fitness. 

Allocate the rest of the bees for global search to the non-best locations. 

Evaluate the fitness value of non-best patches. 

Sort the overall results based on their fitness. 

End While if termination criteria met. 

Figure 4.1: Pseudo code of the BA 
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Figure 4.2: Flowchart of the BA (Fahmy et al. 2011) 
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Before running the BA, 20 (number of scout bees) random values of ∆δ and ∆α were 

selected to generate the initial population of solutions (θ1) by simulating the 

Robogymnast model described in Equation (3.20) in Chapter 3 using the control signals 

given in Equations (4.1) and (4.2). Each of the solutions satisfy the fitness criterion θ1=-

180
°
 within a reasonable error margin. The reason for setting the fitness criterion at θ1=-

180
°
 is because the two control signals described in Equations (4.1) and (4.2) will tend 

initially to drive links 2 and 3 in the positive direction (Figure 3.6 in Chapter 3) causing 

link 1 to drift towards the opposite direction generating a negatively biased swing angle. 

Table 4.1 shows for each selected pair of ∆δ and ∆α, how long it takes to swing up 

Robogymnast past the upright position (θ1~-180°). The results are ordered according to 

the fitness of the obtained solutions (θ1) satisfying both the criteria for reasonable error 

margin (closest to 0.02°) and swing up time. The fittest solutions (m=8) are selected for 

smallest errors and duration time between 120 and 200 seconds. The elite (e=2) of the 

fittest are selected to satisfy minimum error and shortest swing up time between 120 and 

160 seconds. The remaining (n−m=12) solutions are ordered accordingly. These results 

will be used to define the parameters for implementing the BA code (Figure 4.1). In 

Table 4.1, the class of each solution is determined according to the combined criteria for 

error margin and duration time (time to reach the upright position). The fittest solutions 

satisfy the criteria for smallest error and duration time between 120 and 200 seconds. 

The non-best solutions are the remaining solutions ordered according to their smallest 

error margins only.  
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Table 4.1: Initial population of solutions. 

∆α ∆δ Angular position 

 θ1 (Deg.) 

Time (second) to 

reach the upright 

position 

Fitness class* 

0.3215 4.7493 -180.1205 145.075 Elite of fittest 

0.3026 6.3464 -180.1682 158.025 Elite of fittest 

0.2439 2.4221 -180.0762 181.05 fittest 

0.3503 4.1570 -180.1878 128 fittest 

0.2439 6.0003 -180.1951 182.125 fittest 

0.3410 6.0865 -180.2341 124.1 fittest 

0.2450 3.7547 -180.3446 187.075 fittest 

0.3338 5.1102 -180.3703 129.3 fittest 

0.6400 4.8985 -180.0022 61.9 Non-best 

0.3423 4.5662 -180.0235 117.1 Non-best 

0.1667 2.7247 -180.0253 252.65 Non-best 

0.1297 6.5532 -180.0475 417.175 Non-best 

0.2103 3.2993 -180.0731 215.5 Non-best 

0.1739 3.9989 -180.0951 259.35 Non-best 

0.1455 6.3434 -180.1276 355.4 Non-best 

0.5681 6.2651 -180.1339 77.025 Non-best 

0.3945 2.7276 -180.1730 102.925 Non-best 

0.3935 2.6803 -180.2081 101.5 Non-best 

0.6416 2.9092 -180.2928 62.475 Non-best 

0.6668 3.3190 -180.7377 69.725 Non-best 

   * Elite of fittest (e)=2; fittest (m)=8; non-best (n-m)=12. 
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4.4 Tuning the swing-up control parameters using the BA 

The BA was used to investigate the optimum values of the increments in α (∆α)  and δ 

(∆δ) that will enable smooth swing up of the Robogymnast model (Equation (3.20) in 

Chapter 3) in a reasonable time. This is achieved by manipulating independently the 

amplitudes and the frequencies of the control signals given in Equations (4.1) and (4.2). 

The parameter values of the BA were set as in Table 4.2. The number of scouts (range of 

∆α and ∆δ) was selected to be 20 (equivalent to 20 randomly selected values of ∆α and 

∆δ) satisfying, respectively, the conditions 0.1 < ∆α < 0.7 and 2 < ∆δ < 7. The randomly 

selected values of ∆δ and ∆α vary each time the BA code is executed. Figure 4.3 

demonstrating the flowchart of the swing-up control parameter optimization using the 

BA. 

The other parameters were selected based on internally imposed conditions limiting the 

error boundary in the upright angle θ1. Using the initial results of Table 4.1 and the 

parameters described in Table 4.2, the BA (Figure 4.1) starts to compute the fitness (i.e. 

the swing-up angle of Robogymnast θ1 reaching approximately ±180°) by simulating 

the discrete-time model of Robogymnast (Equation (3.20) in Chapter 3) using the 

control signals described in Equations (4.1) and (4.2) for each of the incremented α and 

δ applied simultaneously. This further tuned ∆α and ∆δ to achieve an optimum fitness 

(θ1= -180°) with small margins of error (<0.02) at which the Algorithm will stop 

searching. The fine-tuned results are shown in Table 4.3. Unlike the case in Table 4.1, 
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each of the solution classes presented in Table 4.3 were ordered according to the 

smallest error margin irrespective of the duration time. 

 

Table 4.2: The parameter values of the BA. 

The parameters of the BA Values Description  

Number of scout bees(n) 20 Number of randomly chosen values of 

∆α and ∆δ from the solution space 

(ranges of ∆α and ∆δ). 

Number of recruited bees 

around elite selected patches 

(nep) 

15 Number of bees (foragers) recruited to 

search new values of ∆α and ∆δ which 

are placed within squares of sides ngh 

centred on the elites of ∆α and ∆δ. 

Number of recruited bees 

around best selected patches 

(nsp) 

10 Number of bees (foragers) recruited to 

search new values of ∆α and ∆δ which 

are placed within a square of side ngh 

centered on the (m-e) locations of ∆α 

and ∆δ. 

Patch radius for 

neighbourhood search (ngh) 

0.001 The boundary of neighbourhood 

search for new values of ∆α and ∆δ by 

recruited bees. 
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Figure 4.3: Flowchart of the swing-up control parameter optimization using the 

BA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tuning of the values ∆α and ∆δ by the BA 
 

 

 

 

 

 

Tuning of the values ∆α and ∆δ by the Bees Algorithm 
 

Assign the (n–m) remaining bees to random search 

Set the values of nep=15, nsp=10, ngh=0.001 

Recruit nep bees (foragers) to search for the higher fitness (θ1) from the elite 

sites placed within a square of side ngh centred on the fittest elite from the 

previous iteration. If a forager lands on a position of higher fitness then an 

exchange will happen, else exploration will continue. 

 

  Recruit nsp bees to search for the higher fitness (θ1) from the (m-e) sites of 

the best selected locations each placed within a square of side ngh centred 

on the fittest (m-e) sites from the previous iteration. If a forager lands on a 

position of higher fitness then an exchange will happen, else exploration 

will continue. 

Yes 

No 

If the error margin of the 

(m) selected locations is 

<= 0.02 

Solution 

 

Randomly choose (n-m) values from the solution space of ∆α and ∆δ 

No 

Randomly choose 20 values (number of scout bees (n)) from the solution space of 

∆α and ∆δ 

Set the values of n=20, ∆α(min)=0.1, 

∆α(max)=0.7, ∆δ(min)=2, ∆δ(max)=7 

Select the fittest θ1. (m) locations are selected from the solution space. 

The selection depends on the minimum error margin (0.02). 

 

Find the top elite (e) sites which have a high fitness from the (m) selected 

locations. The selection depends on the reasonable swing-up duration time. 

 

 

Evaluate the fitness (θ1) of each bee where it landed at each value of ∆α and ∆δ 

by simulating the dynamic behaviour of Robogymnast during the swing-up phase 

(equations 5 and 6) 

Start 
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4.5 Simulation and experimental results  

The parameters in Table 4.2 were used to further tune ∆α and ∆δ by the BA to achieve 

an optimum fitness (θ1= -180°) with small margins of error (<0.02) at which the 

Algorithm will stop searching. The fine-tuned results are shown in Table 4.3. To 

simulate the behaviour of Robogymnast during the swing-up phase, three values of ∆α 

and ∆δ were selected from Table 4.3. At each sampling interval, the control input signals 

u1 and u2 described in Equations (4.1) and (4.2) were recalculated and applied to the 

discrete-time model of Robogymnast (Equation (3.20) in Chapter 3). The first question 

in this study sought to determine the behavior of the relative angular position (q1 = θ1) 

of the first link, where the most important point in the swing up control that reach the 

first link to the upright position (θ1 reaching approximately ±180°) and then flipping 

regardless of the situation of the second and third link.  

The system was simulated with ∆α equal to 0.6400 and ∆δ equal to 4.8985 as shown in 

Figure 4.4. The time taken to reach the upright position is short (61.9 seconds) which, 

from experience, may cause damage to the motor/gearbox structures. According to the 

above selected values of ∆α and ∆δ, the simulation results of the second relative angular 

position q2, third relative angular position q3, first control signal u1 and second control 

signal u2 are presented in Figure 4.5 to Figure 4.8. 
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Table 4.3: Results after tuning by the BA. 

∆α  ∆δ Angular position 

 θ1 (Deg.) 

Time (second) to reach 

 the upright position 

Error margin 

0.3212 4.7487 -180.0100 145.075 0.0101 

0.3032 6.3466 -180.0048 158.125 0.0048 

0.2457 2.4230 -180.0115 181 0.0115 

0.3499 4.1568 -180.0158 128 0.0158 

0.2449 5.9988 -180.0035 182.05 0.0036 

0.3419 6.0862 -180.0077 124.05 0.0078 

0.2451 3.7569 -180.0012 187.15 0.0012 

0.3103 4.9255 -180.0009 129.15 0.0010 

0.6400 4.8985 -180.0022 61.9 0.0022 

0.3423 4.5662 -180.0235 117.1 0.0235 

0.1667 2.7247 -180.0253 252.65 0.0253 

0.1297 6.5532 -180.0475 417.175 0.0475 

0.2103 3.2993 -180.0731 215.5 0.0731 

0.1739 3.9989 -180.0951 259.35 0.0951 

0.1455 6.3434 -180.1276 355.4 0.1276 

0.5681 6.2651 -180.1339 77.025 0.1339 

0.3945 2.7276 -180.1730 102.925 0.1730 

0.3935 2.6803 -180.2081 101.5 0.2081 

0.6416 2.9092 -180.2928 62.475 0.2928 

0.6668 3.3190 -180.7377 69.725 0.7377 
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Figure 4.4: Simulated relative angular position q1 for ∆α=0.6400 and ∆δ= 4.8985 

 

Figure 4.5: Simulated relative angular position q2 for ∆α=0.6400 and ∆δ= 4.8985 

 

Figure 4.6: Simulated relative angular position q3 for ∆α=0.6400 and ∆δ= 4.8985 
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Figure 4.7: Simulated control action applied to first motor u1 for ∆α=0.6400 and ∆δ= 

4.8985 

 

Figure 4.8: Simulated control action applied to second motor u2 for ∆α=0.6400 and ∆δ= 

4.8985 

At ∆α equal to 0.1297 and ∆δ equal to 6.5532, the system‘s operation was very smooth. 

However, it reached the upright position in a very long time (417.175 seconds) as shown 

in Figure 4.9. Additionally the behavior of the second link, third link and the control 

signals applied to the first and second motor are shown in Figure 4.10 to Figure 4.13. 
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Figure 4.9: Simulated relative angular position q1 for ∆α=0.1297 and ∆δ= 6.5532 

 

Figure 4.10: Simulated relative angular position q2 for ∆α=0.1297 and ∆δ= 6.5532 

Figure 4.11: Simulated relative angular position q3 for ∆α=0.1297 and ∆δ= 6.5532 
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Figure 4.12: Simulated control action applied to first motor u1 for ∆α=0.1297 and ∆δ= 

6.5532 

 

 

Figure 4.13: Simulated control action applied to second motor u2 for ∆α=0.1297 and 

∆δ= 6.5532 
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when ∆α and ∆δ equal to 0.3499 and 4.1568 respectively gave a satisfactory response in 

a reasonable duration (128 seconds) as illustrated in Figure 4.14 as comparing to the 

authors‘ previous work (Eldukhri and Pham 2010). As a part of this, it can be seen from 

the data in Figure 4.15 to Figure 4.18 the behavior of the second and third relative 

angular position as well as the applied control signals to first and second motor, which is 

determined by selecting best values of ∆α and ∆δ to give a reasonable response. 

To implement the best-selected values on the real system and finding the experimental 

results, the controller is implemented using C++ program environment. The overall 

program includes code to capture experimental data and store them in the hard disk.  

Figure 4.19 shows the experimentally measured relative angular position (q1 = θ1) for 

the same value of ∆α (0.3498) whereas ∆δ was initiated at 0.041569 (1/100th of its 

original value) to avoid damaging the robot‘s motor/gearbox structures because of the 

inherent backlash in the gearboxes. Comparing the experimental results Figure 4.19 to 

those reported by (Eldukhri and Pham 2010), it is evident that in this work the swing up 

time is about 40 second faster. The results showing the respective relative positions of 

the second and third link were presented in Figure 4.20 and Figure 4.21 respectively. 

Furthermore, the measured control action applied to the first and second motor were 

shown in Figure 4.22 and Figure 4.23. Figure 4.24 demonstrating the flowchart of swing 

up control implementation. 
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Figure 4.14: Simulated relative angular position q1 for ∆α=0.3499 and ∆δ=4.1568 

 

Figure 4.15: Simulated relative angular position q2 for ∆α=0.3499 and ∆δ=4.1568 

 

Figure 4.16: Simulated relative angular position q𝟑 for ∆α=0.3499 and ∆δ=4.1568 
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Figure 4.17: Simulated control action applied to first motor u1 for ∆α=0.3499 and 

∆δ=4.1568 

 

 

Figure 4.18: Simulated control action applied to second motor u2 for ∆α=0.3499 and 

∆δ=4.1568 
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Figure 4.19: Measured relative angular position q1 for ∆α=0.3499 and ∆δ=0.041568 

 

Figure 4.20: Measured relative angular position q𝟐 for ∆α=0.3499 and ∆δ=0.041568 

 

Figure 4.21: Measured relative angular position q𝟑 for ∆α=0.3499 and ∆δ=0.041568 
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Figure 4.22: Measured control action applied to first motor u1 for ∆α=0.3499 and 

∆δ=0.041568 

 

 

Figure 4.23: Measured control action applied to second motor u2 for ∆α=0.3499 and 

∆δ=0.041568 
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Yes 

Figure 4.24: Flowchart of swing-up control implementation 

Set the values of A1=3, A2=2.5, α=1, δ=1,  η=0.3142, 

∆α=0.3212, ∆δ=0.047487, Ø1=0, Ø2=0 

 

Start 

Read sensors the sensors to decide the links locations through the A-D convertor 
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4.6 Summary  

This chapter focused on using  the swarm-based BA to tune the parameters of a swing-

up control of the Robogymnast developed by Eldukhri and Pham (Eldukhri and Pham 

2010). Unlike the previous approach, the BA allowed a flexible and random selection of 

the parameter affecting the amplitudes and frequencies of the sinusoidal signals applied 

to the two DC motors driving Robogymnast. The selection of the best parameters was 

decided regarding to the attaining of the Robogymnast to the upright position with 

minimum error margin in an appropriate time. From the group of optimized parameters, 

the system was simulated and analyzed using MATLAB
®
 software with three selected 

sets from this group. The best values of those three sets were selected to satisfy a desired 

system performance. In the next stage, the best values of those three sets were used to 

operate the real system and a satisfactory experimental result was obtained. In the 

following chapter, the controller design and downward balancing will be discussed. 
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Chapter 5 

Controller Design and Downward Balancing  

5.1 Introduction 

The general problem of multi-link mechanical systems is one of the most widely used 

for control education and research. Recently, researchers have shown an increased 

interest in investigating different configurations of multi-link mechanical systems. A 

considerable amount of literature has been published on this type of system (Larcombe 

1992; Eltohamy and Kuo 1997; Sehgal and Tiwari 2012).  

This chapter considers the design of a robust computer control system for the 

Robogymnast. The aims of this chapter are to design different control strategies to 

control the Robogymnast locomotion and then to validate the designed controllers 

experimentally by accomplishing downward balancing.  

The chapter is organised as follows. Section ‎5.2 describes the design of the system 

controller. The observer design is presented in Section ‎5.3, and Section ‎5.4 presents the 

experimental setup. The downward balancing control problem is demonstrated in 

Section ‎5.5. The experimental results of downward balancing using the LQR controller 

are reported in Section ‎5.6. Section ‎5.7 presents the experimental results of downward 
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balancing using the LQR with LC. A discussion of the results is given in Section ‎5.8, 

and a summary of this chapter is given in Section ‎5.9. 

5.2 Controller design 

This section presents descriptions and analyses of the proposed balancing and stablising 

controllers. To control the system and to establish the desired mechanical movement 

with high performance, various methods are used to solve the control problems. Each 

has its advantages and disadvantages, which will be explained and analysed in Section 

‎5.8. Superior system performance can be characterised as a system with high situating 

precision, low tracking error, high force controlling ability and a quick appropriate 

response to unknown disturbances.  

In order to achieve attitude control in the Robogymnast, reference signals representing 

the relative angular positions of the first, second and third link are generated and 

monitored. These are maintained through determining robust stablising control actions 

u(k), by means of the relative states to reach the desired reference. The control actions 

u(k) are computed using state feedback control. To establish feedback gain, two 

different control techniques are used. The first technique is the optimal control algorithm 

which uses the LQR. The second technique is a combination of LC and LQR. Each 

controller will be implemented via a reduced order state observer.  
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In addition to understanding the characteristics of the system, it is important to check the 

controllability of the system‘s state variables. The controllability matrix of the system is 

given by: 

 [ B  AB  A2B  A3B  A4B  A5B ]     

The rank of this controllability matrix is equal to 6. This is equal to the number of state 

variables belonging to the system, which means that the system is controllable. 

5.2.1 Design of optimal controller using the LQR technique  

The theory of optimal control is concerned with operating a dynamic system at 

minimum cost. Many current robot applications need to find optimal trajectories with an 

energy efficient movement. However, it is more important to guarantee that the system 

remains stable with the candidate trajectories. The LQR method is one of the more 

practical methods of stablising trajectories of underactuated frameworks (Zaidan et al. 

2012; Sharif and Ucar 2013; Bradshaw and Shao 1996).  

The LQR controller law is used to stabilise and balance a linearised model around its 

unstable/stable equilibrium point by finding the optimal gain matrix F. For the modelling 

system given in Equation (3.20) in Chapter 3, the performance function is defined as 

(Ramani and Atherton 1974): 
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J =  (xk

TQ xk +  uk
TR uk) 

∞

k=0

, 
(5.1) 

where Q is a real symmetric positive semi-definite matrix, and R is and a real symmetric 

positive definite matrix.   

The feedback control law is defined as: 

 u(k) = −Fx(k) (5.2) 

A block diagram of the regulating control system is shown in Figure 5.1. 

 

 

 

 

 

 

The robustness of the LQR controller depends on the selection of the weight matrices Q 

and R. Indeed, with just the basic character weighting matrices the framework is 

sufficiently rigorous to recover from huge unsettling influences in the initial conditions 

Figure 5.1: Block diagram of regulating control system 

𝐱(𝐤) 
𝐀𝐝𝐱(𝐤) + 𝐁𝐝𝐮(𝐤) 

 

𝐂𝐝 
𝐲(𝐤) 𝐮(𝐤) 

𝐅 
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while operating within actuator limits. Nevertheless, the selection of the weight matrices 

is very difficult and optimum results are obtained according to the designer‘s intuition 

and experience. In order to achieve the system performance requirement, an extensive 

computer simulation and analysis is required to find the appropriate weighing matrices 

that determine the feedback gain matrix. 

A discrete time integrator is used to achieve the system performance requirement 

through improving the steady-state performance with the introduction of an additional 

gain parameter in the state feedback law. An integrator could then be used to obtain an 

integral of the error signal (e). 

e k = yr k − yi k . (5.3) 

Here 

yr k =  
yr2

yr3
 =  

0
0
 , (5.4) 

yi k =  
yi2

yi3
 = Ci  y k , (5.5) 

where 

Ci =  
0 1 0    0
0 0 1    0

 . 
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e k  is the difference between the desired reference yr k  and the actual relative angular 

position yi k  of the second and third links. The desired reference signals yr  for the 

second and third links are equal to zero for balancing.  

The difference equation of the discrete time integrator can be written as:  

w k + 1 = w k + Tse k , (5.6) 

where w refers to the states of the integrator. Figure 5.2 presents a block diagram of the 

closed loop control system with controller design using the LQR. The augmented plant 

model can be written as follows: 

 
x(k + 1)
w(k + 1)

 = Abar  
x(k)
w(k)

 + Bbar  u k +  
06x1

Tsyr
  

y k = Cbar   
x(k)
w(k)

  

(5.7) 

(5.8) 

The terms Abar , Bbar  and Cbar  have come to be used to refer to the augmented state 

matrix, the augmented input matrix and the augmented output matrix respectively. They 

can be written as: 

Abar =  
Ad 06x2

−TsCy I2x2
  , Bbar =  

Bd

02x2
 , Cbar = Cd 04x2 , 

where 
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06x1 =

 
 
 
 
 
 
0
0
0
0
0
0 
 
 
 
 
 

, 06x2 =

 
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0 
 
 
 
 
 

 ,  I2x2 =  
1 0
0 1

  , 02x2 =  
0 0
0 0

 , 04x2 =  

0
0
0
0

0
0
0
0

  

The optimal state feedback for both motors was calculated using the LQR. The 

feedback, in terms of states and integrators, is reported as below: 

 
u k = −F  

x(k)
w(k)

  (5.9) 

where F is the optimal gain feedback corresponding to the state matrix Abar  and the 

input matrix Bbar . Q and R are selected as diagonal matrices: 

Q =

 
 
 
 
 
 
 
 
Q1

0
0
0
0
0
0
0

0
Q2

0
0
0
0
0
0

0
0

Q3

0
0
0
0
0

0
0
0

Q4

0
0
0
0

0
0
0
0

Q5

0
0
0

0
0
0
0
0

Q6

0
0

0
0
0
0
0
0

Q7

0

0
0
0
0
0
0
0

Q8 
 
 
 
 
 
 
 

 

R =  
R1 0
0 R2
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 Figure 5.2: Block diagram of closed loop control system with designed controller using the LQR 
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𝐲𝐢(𝐤) 

+ - 

+ 
- 

+ 
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5.2.2 Controller design using a combination of the LQR and LC 

High positioning accuracy and low tracking error, in both position and velocity, are 

important performance indicators in robotics and precision motion control. The LC 

design can be achieved by a combination of proportional and integral position feedback, 

which is applied to the second motor. The combination of proportional and integral 

terms is important as it increases the speed of the response and reduces the steady state 

error. One advantage of this method is that it reduces the control action saturation of the 

second motor. Additionally, the LQR is used to find the optimal state feedback for the 

first motor. 

In this case the second control signal is defined as: 

 u2 k = Kp e2 k + w2(k) (5.10) 

 e2 k = yr3
(k) − yi3

(k) (5.11) 

 w2 k + 1 = w2 k + KITse2 k  ( 5.12) 

where e2 k  is the difference between the desired reference yr3
 and the actual relative 

angular position yi3
 of the third link; w2 k  is the integral value of the third relative 
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angular position (q3); and Kp  and KI are the proportional and integral gain respectively. 

In order to align link 2 with link 3, the values of Kp  and KI have been tuned extensively. 

Now, the augmented plant model can be written as follows: 

 

 
x(k + 1)

w1(k + 1)
 = Abar  

x(k)
w1(k)

 + Bbar  u1 k +  
Bd2

Kp

0
 yr3

 k 

+  
Bd2

0
 w2 k +  

06x1

Tsyr2

  
(5.13) 

 y k = Cbar   
x(k)

w1(k)
  (5.14) 

The terms Abar , Bbar  and Cbar  can now be written as: 

Abar =  
Ad
    06x1

−TsC2 1
  , Bbar =  

Bd1

0
 , Cbar = Cd 04x1  

Ad
    = Ad − Bd2

Kp  C3  

C2 =  0 1 0 0 0 0 ,  06x1 =

 
 
 
 
 
 
0
0
0
0
0
0 
 
 
 
 
 

, 04x1 =  

0
0
0
0

 , C3 =  0 0 1 0 0 0  

Bd1
 and Bd2

 represent the first and second column of Bd  respectively. w1 k  is the 

integral value of the second relative angular position (q2). 



89 

 

The state feedback controller for the first motor was obtained by using the LQR method. 

The feedback in this case, according to Equation 5.9, is hence: 

 u1 k = −F  
x(k)

w1(k)
  (5.15) 

where, F is the optimal gain feedback corresponding to the state matrix Abar  and the 

input matrix Bbar . Q and R are selected as the diagonal matrices: 

Q =

 
 
 
 
 
 
 
Q1

0
0
0
0
0
0

0
Q2

0
0
0
0
0

0
0

Q3

0
0
0
0

0
0
0

Q4

0
0
0

0
0
0
0

Q5

0
0

0
0
0
0
0

Q6

0

0
0
0
0
0
0

Q7 
 
 
 
 
 
 

 

R =  r  

The block diagram of a closed loop control system with controller designed using a 

combination of LQR and LC is shown in Figure 5.3. 
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Figure 5.3: Block diagram of closed loop control system with controller designed using a combination of 

the LQR and LC 
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5.3 State observer  

The control law in the previous section assumed that all state elements were available 

for feedback. Typically, not all state elements are measured. In fact, the Robogymnast 

system does not include sensors to measure the angular velocities of the second and third 

link. This increases the difficulty of measuring the exact state values. In order to apply 

the designed controller to the real system, a reduced order observer is used to estimate 

the unmeasured state of the system. This reconstructed state information can then be 

supplied to the controller. In addition to understanding the characteristics of the system, 

it is important to check the observability of the Robogymnast system. The observability 

matrix of the system is given by: 

 [ C  CA  CA2  CA3   CA4   CA5  ]   

The rank of the observability matrix is equal to the number of state variables in the 

system, so the system is observable. The overall observer block diagram showing the 

estimator with full state feedback is presented in Figure 5.4. 

 

 

 

𝐮 𝐲 𝐫 

Figure 5.4: Block diagram of estimator with full state feedback  

Plant 

F 

Estimator 

+ 
− 

http://en.wikipedia.org/wiki/Observability
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http://en.wikipedia.org/wiki/Observability
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5.3.1 Design of a reduced-order state observer to estimate unmeasured 

states 

The reduced order estimator is a dynamic system that aims to estimate the unmeasured 

states using the inputs and outputs of the system. In this case, only two states need to be 

observed. 

A reduced order observer of the discrete-time model presented in Equations (5.16) and 

(5.17) was given by  (Medrano-Cerda et al. 1995): 

 v k + 1 = Ev k + Hu k + Ky(k) (5.16) 

 x  k = L1y(k) + L2v(k) (5.17) 

Where x  k  and v k  are estimates of the state x k  and the state observer respectively. 

E represents the reduced order observer dynamics. The values of E, H, K, L1 and L2 

should satisfy (Medrano-Cerda et al. 1995):  

TA− ET = KC (5.18) 

H = TB (5.19) 

[L1      L2]= 
C
T
 
−1

 (5.20) 

where T is a design parameter for which the inverse of Equation (5.20) is true. 



93 

 

The term H is a relatively new name for a B matrix which relates to the reduced 

observer. It is commonly referred to as the consistence number of the reduced observer 

states, and is definitely less than the plant  states. Figure 5.5 presents the overall 

construction of the state feedback and reduced order observer. 

In the literature (Medrano-Cerda et al. 1995; O‘Reilly 1983), the term H tends to be set 

to zero for systems with more outputs than inputs. The reduced order observers are 

achieved without breaking the invertibility condition of Equation (5.20). 

MATLAB
®

 software was used to determine a set of observer designs based on rewriting 

Equations (5.18) and (5.19) according to the Kronecker tensor products (Wonham 1985) 

and according to E and H: 

 Sα = 0 (5.21) 

where α is a column vector constructed by sequentially arranging the rows of T and  K, 

and taking the transpose: 

α =  t1 t2 .  .  . tp k1 k2 .  .  . kp T  

T =  t1
T t2

T .  .  . tp
T 

T
 

Matrix S then takes the form: 

S =  
TE ⊗ AT − E ⊗ IA −IE ⊗ CT

IE ⊗ BT 0
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where IE  and IA  refer to identity matrices the same size as E and A respectively. The set 

of the designed observer parameters T and K were calculated using MATLAB
®
 software 

by computing an orthonormal basis for the null space of S. For each solution, the 

invertiblity condition of Equation (5.20) had to be checked; if it was not satisfied then it 

was be discarded.   

More important is the determination of the dynamic response of the observer, which is 

related to the selection of the observer eigenvalues (E). The system is stable if all the 

eigenvalues lie on or within the unit circle and unstable if they are outside of this. It 

should be noted that the performance of the observer is associated with the location of 

the selected observer eigenvalues, i.e. whether or not they are located within the unit 

circle (Phillips and Nagle 2007; Franklin et al. 1998).  

Figure 5.6  shows the exponential decay response of the system associated with positive 

real poles located within the unit circle. The system is oscillatory if the real poles lie on 

the negative real axis within the unit circle.  

To obtain a response with constant magnitude, the real poles should be on the unit circle. 

In order to make the system oscillatory with a variable rate of decay and varying 

frequency of oscillations, the observer poles should be complex conjugates inside the 

unit circle. Moreover, in case of the complex conjugate poles on the unit circle, the 

response leads to oscillations which continue for an extended period or without 

interruption. 
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5.3.2 Controller design via reduced order observer  

The overall controller (observer and integrator) is now written as: 

 
v(k + 1)
w(k + 1)

 =  
E 0
0 1

  
v(k)
w(k)

 +  
H
0
 u k +  

K
0 −Ts 0 y k 

+  
0
Ts

 yr(k) 
(5.22) 

 

Figure 5.6: Relationship between discrete system pole locations and the system 

transient response  
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x (k)
w(k)

 =  
L2 0
0 1

  
v(k)
w(k)

 +  
L1

0
 y k  (5.23) 

by using the LQR to find the feedback gain matrix, the control actions in term of 

measured and estimated states is reported as: 

 
u k = −F  

x (k)

w(k)
  (5.24) 

For the controller designed as a combination between LQR and LC, the input voltage 

applied to the first motor is written as:  

 
u1 k = −F  

x  k 

w1 k 
 , 

(5.25) 

and the control action u2 applied to the second motor is described in Equation (5.10). 

5.4 Experimental setup  

For the experimental parts of this work, the control system was implemented using the 

C++ program environment. The programs generally include code to capture 

experimental data and store them on the hard disk. The controlling parameters were 

calculated by MATLAB
®
 software and the data were loaded at the beginning of the C++ 

program. 
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Before applying the proposed controller, the relative angular positions and velocity 

sensors were calibrated to give a zero volt reading for zero relative angular positions and 

velocity. The sequence of the computer control algorithm at each sampling time can be 

divided into steps. The first step is to read in the sensor data (A/D conversion). After 

this, the second and third links‘ angular velocities are estimated. In the following stage, 

the control actions are calculated and checked to determine whether they are within the 

admissible range (± 10V) or not. After conversion from digital to analog (by the D/A 

convertor) the control actions are sending to the plant. Following this, the observer and 

integrator states are updated. Finally, the controller waits for next sampling time and 

then goes back to the first step. Figure 5.7 presents a flowchart of the 

balance/stablisation control system implementation using LQR. The flowchart of the 

balance/stablisation control system implementation using the LQR with LC is given in 

Appendix B 
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 Figure 5.7: Flowchart of the balance control system implementation using the LQR 
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5.5 Downward balancing control problem 

The main objective of this study is to validate the use of the designed controller for 

balancing the Robogymnast in the downward configuration. This was achieved via 

studying the ability of the designed controller to respond to an external disturbance. The 

experiments were carried out introducing small torque disturbances by gently pushing 

each link separately. In addition, the evaluation of the designed controller's ability to 

overcome the disturbance force was demonstrated through monitoring the system 

response and the exerted control effort. 

The system performance was analysed via monitoring the control methods which were 

demonstrated in the designed controller Section ‎5.2. The mathematical model of the 

Robogymnast around the stable point in the downward position was presented in Section 

3.4 in Chapter 3.  

The response to a disturbance of the free-swinging Robogymnast in the downward 

position is shown in Figure 5.8 without any applied control action. It can be seen that the 

disturbance force caused a movement in the Robogymnast from the stable point by -30° 

and the system regained the steady state after 45 seconds without applying any control 

actions.  

To implement the downward balancing control, the Robogymnast was put into the 

downward configuration and then of the all potentiometers were calibrated by measuring 

the zero offset (the difference in the voltage reading from the expected zero).  
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Figure 5.8: Response of free swinging Robogymnast in the downward position 

 

5.6 Experimental results using the LQR  

In this section, the reduced order observer dynamics are selected as E = [0.5  0.5], and 

H is set to zero. The values of T and K are hence: 

T =  
−0.548 −0.629 −0.074 0.047 0.031 0.003
0.169 −0.212 −0.025 0.009 0.010 0.001

  

K =  
−0.304 −0.327 −0.040 0.009

0.076 −0.01 −0.013 0.008
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L =

 
 
 
 
 
 

1       0
0        1

  
0            0

0               0
0       0
0        0

0        0
0        0

1             0
0            1

0       0
0        0

−0.0017 0.0218
0.0001 −0.1684

0.1857 0.3228
0.1829 −0.0274

−0.0016 0.0048
0.0001 −0.0003 

 
 
 
 
 

 

For the augmented plant model, the weight matrices Q and R were chosen through trials 

depending on the experience of the designer.  

Q=

 
 
 
 
 
 
 
 
1090

0
0
0
0
0
0
0

0
400

0
0
0
0
0
0

0
0

50
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0

0.1
0
0
0

0
0
0
0
0

0.01
0
0

0
0
0
0
0
0
5
0

0
0
0
0
0
0
0
3 
 
 
 
 
 
 
 

 

R= 
0.9 0
0 0.9

  

For this selection, the optimal gain matrix is given by: 

F =  
−26.82
−2.703

12.139
−0.924

−0.649
8.166

1.061
−0.062

0.718
−0.028

0.081
0.037

−2.209
0.034

−0.02
−1.81

  

5.6.1 Applying a disturbance to the passive swinging Robogymnast  

An external disturbance by gently pushing the first link was applied to cause the system 

to start swinging freely, without any control actions applied to the motors. The controller 

was then applied to balance the Robogymnast in its downward configuration. From 

Figure 5.9 it can be seen that the feedback control law can balance the Robogymnast 
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system. The steady state of the first link is achieved after 11 seconds of the control 

system startup. The maximum average oscillation in relative angular position of first link 

(q1) and second link (q2) are within the ranges of ±6° and ±5° respectively. Moreover, 

there is a significant oscillation in the results of the third relative angular position (q3). 

The range of relative angular position for q3 varied between approximately −2° and 

+28° to maintain the first link in the downward equilibrium point after 10 seconds. It 

can be noted that the first and third link re-obtained the balancing point with a 1° steady 

state error. 

Figure 5.10 shows that the control actions were applied 2 seconds after beginning free 

swinging and data recording. The control effort of the second motor is greater than that 

of the first motor, however both of them are still within the maximum input voltage 

range ±10V. 
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Figure 5.9: Measured relative angular positions q1, q2 and q3  

 

 

Figure 5.10: Measured control actions u1 and u2 applied to the motors  
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5.6.2 Applying a disturbance to the first link 

In this case, the Robogymnast is at the downward equilibrium point and the control 

actions are active. A disturbance is then introduced to the first link, shifting that link 

from its equilibrium position. From the data shown in Figure 5.11, the magnitude of the 

relative angular displacement (q1) from the equilibrium point was around ±10°  by the 

cause of the disturbance. It is apparent that the length of time between the disturbance 

and regaining of steady state was about 11 seconds. There was a significant steady state 

error of about 1° and 2° in the first and third links respectively. In addition, it can be 

seen from this figure that the third link reported significantly more movement from the 

balance point than the first and second links. This was required to return the first link to 

its downward configuration and then to track the reference signals for the second and 

third links. Hence, strong evidence of the effect of the third link is shown in Figure 5.12, 

where the control action of the second motor reached the maximum input voltage ±10V 

in one of the oscillation peaks. The first motor‘s input voltage was still in the input 

voltage range. 

5.6.3 Applying a disturbance to the second link 

In order to understand the effect of a disturbance to the second link, a disturbance was 

introduced to shift it from its equilibrium position. As shown in Figures 5.13 and 5.14, 

there are no considerable differences between the behaviour of the system in this case 

compared to the instance shown in Section ‎5.6.2. 
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Figure 5.11: Measured relative angular positions q1, q2 and q3 

 

 

 

 

 

 

Figure 5.12: Measured control actions u1 and u2 applied to the motors 
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Figure 5.13: Measured relative angular positions q1, q2 and q3 

 

 

Figure 5.14: Measured control actions u1 and u2 applied to the motors 
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5.6.4 Applying a disturbance to the third link 

A further instance of investigation was implemented by applying a disturbance to the 

third link. From the records shown in Figure 5.15, it is clear that when the disturbance 

was created the angle of the third link oscillated between −11° and 54°. There was also 

a large deviation in the relative angular position of the first link (q1) and the second link 

(q2) from the desired reference angles. The relative angular position of the first link (q1) 

and the second link (q2) oscillated within the ranges of ±11° and ±12°  respectively. It 

can be seen from Figure 5.16 that the second motor requires a large amount of energy to 

maintain the system in a satisfactory level of performance. Consequently the control 

signal reached the saturation limit multiple times during the oscillation. However less 

power was required for the first motor. In this case, the system reaches the steady state 

after 11 seconds, with a significant steady state error in the third link of about -3°. 
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Figure 5.15: Measured relative angular positions q1, q2 and q3 

 

 

Figure 5.16: Measured control actions u1 and u2 applied to the motors 
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5.7 Experimental results using a combination of the LQR and LC  

For this situation, the reduced order observer is selected as E = [0.3 0.3] and H was set 

to zero. In this case the values of T, K and L become: 

T =  
−0.397 −0.592 −0.071 0.0263 0.021 0.002
0.030 −0.235 −0.027      0.001 0.008 0.0009

  

K =  
−0.293   − 0.421  − 0.050   0.0082

0.207   − 0.166  − 0.019    0.008
  

L =

 
 
 
 
 
 

1       0
0        1

  
0            0
0             0

0       0
0        0

0        0
0        0

1             0
0            1

0       0
0        0

−1223.33 29.306
10255.6 −12.270

0.130 23.002
26.754 −200.144

−1022.86 2702.88
8833.99 −22318.7 

 
 
 
 
 

 

The weight matrices Q and R are chosen as follows: 

Q =

 
 
 
 
 
 
 
1050

0
0
0
0
0
0

0
40
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0

0.01
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0

0.9 
 
 
 
 
 
 

 

R =  0.1  

For this selection, the optimal gain matrix for the first motor is given by: 

F =  −23.758    4.799 − 0.799    0.113    0.357    0.043  − 2.574  

Additionally, the values of Kp  and KI have been selected as 10 and 1 respectively. 
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5.7.1 Applying a disturbance to the passive swinging Robogymnast 

The system began by swinging freely. This was initiated by applying a disturbance to the 

system without any control actions being applied to the motors. While the system was 

swinging, the control action was engaged to balance the Robogymnast in the downward 

configuration. The results of this study indicate that the control action began 2 seconds 

after the free-swinging start-up. This is shown in Figure 5.18. It can also be seen in  

Figure 5.17 that the first link reached a steady state after 7 seconds whilst the second 

link reached steady state in 10 seconds. This is too long compared with the first link‘s 

settling time. There is no significant deviation of the third link, with the relative angular 

position of the third link (q3) oscillating between 0.45° and -0.35°. This is considered to 

be a negligible angular position variation. It can be seen in Figure 5.18 that the control 

action of the first motor reached the maximum peak input voltage ±10V multiple times. 

5.7.2 Applying a disturbance to the first link 

For this test, the Robogymnast was in the downward equilibrium position, and the 

control signal was applied to the motors while a disturbance was introduced to the first 

link. It was found that the first link oscillated between 9° and −7° as shown in Figure 

5.19. The second link (q2) shows a larger movement from the desired reference angle, 

varying between 27° and −22° and the settling time of the response of the second link 

was about 7 seconds. The first link settled to within 1° steady state error from the desired 

reference (q1 = 0). From the plotted result in Figure 5.20, the control voltage can be 
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seen to be within the maximum range, though it did reach the saturation limit in the 

negative direction at one point. 

 

Figure 5.17: Measured relative angular positions q1, q2 and q3 

 

 

Figure 5.18: Measured control actions u1 and u2 applied to the motors 
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Figure 5.19: Measured relative angular positions q1, q2 and q3    

 

Figure 5.20: Measured control actions u1 and u2 applied to the motors 

5.7.3 Applying a disturbance to the second link 

This experiment was implemented to study the effect of introducing a disturbance to the 

second link while the Robogymnast was in the downward equilibrium position and the 
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control action was activated. It can be seen from the plotted results in Figures 5.21 and 

5.22 that the results did not report significant differences with those presented in Section 

‎5.7.2 when the disturbance applied to the first link. 

 

Figure 5.21: Measured relative angular positions q1, q2 and q3    

 

 

Figure 5.22: Measured control actions u1 and u2 applied to the motors 
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5.7.4 Applying a disturbance to the third link 

This experiment was repeated under the same conditions as those described in Section 

‎5.7.2 and Section ‎5.7.3. In this case the disturbance is applied to the third link. Figures 

5.23 and 5.24 illustrate the main characteristics of the Robogymnast behaviour when the 

disturbance was applied to the third link. It is apparent that the control action began after 

4 seconds. Furthermore, the controller was successful in rejecting the disturbance, as it 

was able to balance all the links around the downward equilibrium point after 7 seconds. 

There is a steady state error of about -2° in the relative angle of the second link while 

and about 1° in the relative angle of the first link. The results indicate that the required 

energy of the first motor is less than the energy required in previous instances. The 

maximum input voltage of the first motor is variable between 9V and -9V.  

5.8 Discussion of results  

In the case of the downward setup in the absence of an external disturbance, the system 

is statically stable without powering any motors. The configuration of the Robogymnast 

can be set physically because all joints are back drivable.  

The experimental performance of the Robogymnast using the LQR controller is shown 

in Figure 5.9 to Figure 5.16, while the performance of the Robogymnast using the 

combined LQR and LC is presented in Figure 5.17 to Figure 5.24.  
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Figure 5.23: Measured relative angular positions q1, q2 and q3    

 

 

Figure 5.24: Measured control actions u1 and u2 applied to the motors 
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When rebalancing the system about the reference balancing point, the first type of 

controller mainly applied force to the third link, while the second type of controller 

mainly uses the second link to do the work. This is clearly shown by the large 

oscillations in the angular response of the third and second links for the first and second 

controllers respectively. In the current study, comparing the system response using the 

LQR controller with the response using the combination controller has shown that the 

response of the Robogymnast is faster by using the combined LQR and LC.  

The most interesting finding was that the control effort of the second motor when using 

the LQR with LC is considerably less than the control effort of the first motor. 

Despite all potentiometers being calibrated, there are unknown measurement errors in 

the second and third links for all the experimental cases. These errors could be related to 

the offsets in the potentiometer readings due to the backlash in the gearboxes during 

calibration. The free swinging of the Robogymnast in Figure 5.8 shows nonlinear 

backlash effect in the response of the second and third joints‘ gearboxes. In addition to 

this, there is a significant initial error in the reading from the second and third links, as 

expressed in Figures 5.9, 5.11, 5.13, 5.15, 5.17, 5.19, 5.21 and 5.23. The present results 

are significant in at least two major respects. The first one is the effect of the nonlinear 

backlash in the gearbox and the second one is the offsets in the signal measurement. 

This is related to the difficult calibration of the potentiometers and the measurement 

noise. 



119 

 

Nevertheless, even with the nonlinear backlash production, the unknown offsets in the 

sensor readings, and the power limitations, the controller was able to respond robustly to 

the applied disturbance and track the desired reference balancing point with a reasonable 

steady state error and short settling time. 

5.9 Summary 

The purpose of this chapter was to design different controller methods to govern the 

movement of the Robogymnast system. The first type of controller was an LQR 

controller with an integrator action. The second type was a combination between LQR 

and LC. A reduced order observer was also designed to estimate the unmeasured states 

(angular velocities). The validation of the designed controller was conducted through 

implementing the controller for the downward balancing problem of the Robogymnast 

on the real system. The first part focused on using the LQR and the application of 

external disturbances. Another controller was designed by using a combination between 

LQR and LC for balancing Robogymnast in the downward position. Downward 

balancing was implemented using the two types of controller, which were both able to 

balance the Robogymnast in the downward configuration. The next procedure which is 

the upright balancing will be discussed in chapter 6. 
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Chapter 6  

Upright Balancing Control 

6.1 Introduction 

This chapter concerns the stabilising and balancing of the Robogymnast in its upright 

position. The problem of stabilising inverted pendulums with passive joints at the 

upright position was extensively investigated (Arai and Tachi, 1991, Furuta et al., 1991, 

Medrano-Cerda et al., 1995, Spong, 1995). The dynamics of the Robogymnast around 

the upright position are totally different from when it is in the downward position. The 

controller design for balancing the Robogymnast in the upright position was investigated 

through use of the controller methods described in Section 5.2 in Chapter 5. 

A major problem with this kind of dynamic system is the balancing mechanism. In this 

study, control of the Robogymnast system is challenging because the Robogymnast‘s 

hands are firmly attached to a freely rotating high bar that is mounted on ball bearings. 

The aim of this chapter is to investigate the problem of stabilising and balancing the 

Robogymnast system in the upright position through applying disturbance forces to the 

pendulum links of the Robogymnast while monitoring the system response and the 

exerted control effort. 
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The chapter is organised as follows. Section ‎6.2 demonstrates the upright balancing 

control problem. The experimental difficulties with upright balancing are discussed in 

Section ‎6.3. Section ‎6.4 shows the limitations of simulation analysis. The use of the 

LQR controller is presented in Section ‎6.5, while the use of the combined LQR and LC 

is reported in Section ‎6.6. The result is discussed in Section ‎6.7, and a summary of this 

chapter is given in Section 6.8. 

6.2 Upright balancing control problem 

In the case of upright balancing, it is important to keep the first link close to the upright 

equilibrium point, with a reasonable steady state error and minimum settling time. In the 

same way, the oscillation of the second and third link should stay within a realistic 

range. In other words, the link deviation from the upright equilibrium position should be 

within the range that can be controlled. Any high overshoot in the second or third link 

can cause the Robogymnast to fall from its vertical position.  

In order to understand how to balance the real system at the specified position, it is 

necessary to know the dynamic model of the Robogymnast, including the parameters 

that affect the dynamic behavior of the system. This necessity can be satisfied through 

simulation analysis. The simulation study and analysis of the upright balancing is 

dependent on proper value selection for the weighting matrices, and proper observer 

dynamics. Also important is the range of the initial relative angular position of all the 

links when the real system starts up.  
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6.3 Experimental difficulties with upright balancing 

Many upright balancing experiments were carried out on the real system. The startup 

was carried out by manually holding the links of the Robogymnast close to the vertical 

position. In this study the accuracy of the initial sensor values are important. The 

controller was designed with the assumption that all the initial relative angular positions 

were equal to zero for the upright balancing position. In the real physical system, it is 

extremely difficult to satisfy this condition. This was producing unexpected control 

action values applied to the first and second motors, leading to increasing probability of 

Robogymnast falling from its vertical position. 

In these particular attempts, there are many problems which can prevent the achievement 

of upright balancing. The first, and most significant one is a nonlinear backlash in the 

second joint (shoulder joint) and third joint (hip joint) gearboxes that cause inaccurate 

feedback control reference signals. The second problem is the transducer offset error, 

which is related to the noise in the sensor measurements that affects the actual signal 

values. A further issue is the difficulty of sensor calibration, because the high backlash 

in the gearboxes can affect the error in the feedback of relative angular positions. 

Additionally, an aliasing filter is used to smooth and amplify the input signals, but this 

can generate an offset in the data. Figure ‎6.1 presents the flowchart of the stabilisation 

and balance control system implementation. Some of the unsuccessful experimental 

trials are given in Appendix C. 
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Load the values of F, E, L, K, T (These values were calculated by MATLAB) 

Compute the control actions   u k = −F  
x (k)
w(k)

  

Set saturation level for u1 and u2 

 

 
Send u1  and u2 to D-A convertor 

 

 

Delay 

Calculate the measured and estimated state feedback  x  k = L1y(k) + L2v(k) 

1 



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No 

Figure ‎6.1: Flowchart of the stablise and balance control system implementation 

using the LQR 

Stop 

Update errors e1 and e2 

Compute the angular velocity of the second and third link by observer equation 

v(k+1)=Ev(k) + Hu(k) + Ky(k) 

 

Store 

data 

Calculate the integration values w1(k+1) = w1(k) + Ts e1(k), 

w2(k+1) = w2(k) + Ts e2(k) 

Is keyboard hit or any relative 

angle exceed limit 

(Realtive angle limit 

q1=± 30°, q2= ± 80°, q3=±80°) 

 

 
Yes 

Read sensors to check the links locations through the A-D convertor 
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6.4 Limitations of simulation  

Simulation was carried out to check the validity of the proposed controller in balancing 

the Robogymnast at the upright position. The simulation was conducted with the 

proposed designed controller. The results were presented to evaluate and assess the 

capability of the controller to achieve upright balancing. The selection of the weighting 

matrices and the reduced order dynamics were based on the gained experience from the 

attempts to implement the upright balancing of the real system. The upright balancing 

analysis was obtained by means of exploitation of MATLAB
®
 software and its 

toolboxes. M-files were written by the author using the mathematical model of the 

Robogymnast in the upright configuration.  

The main limitation of upright balancing control is how far the initial angles can be 

taken. For the purpose of analysing the challenges of the upright position, different 

initial situations have been considered to find the maximum recoverable initial angles. 

Consequently, the Robogymnast is kept stable around the upright position provided it 

does not exceed the maximum values of oscillation in each link. Three of the most 

probable initial configurations were utilised for analysing the balancing problem, as 

shown in Figure ‎6.2. 

Simulations were conducted with multiple sets of initial conditions to describe the 

behavior of the system. This was conducted using the numerical model of the 

Robogymnast system in the upright position as described in Section 3.3 in Chapter 3. 
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 The initial angles that will be used to test the designed controller can be listed as 

follows: 

 

θ1

θ2

θ3

 =  
1.1°
0.9°
0.8°

   where the relative angular position  

q1

q2

q3

 =  
1.1°
−0.2°
−0.1°

  

 

θ1

θ2

θ3

 =  
1.3°
1.5°
−5°

   where the relative angular position  

q1

q2

q3

 =  
1.3°
0.2°
−6.5°

  

 

θ1

θ2

θ3

 =  
1°

1.1°
1.2°

   where the relative angular position  

q1

q2

q3

 =  
1°

0.1°
0.1°
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θ3 

Figure ‎6.2: Different initial situations in the upright position 
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6.5 Simulation results using the LQR  

In order to validate the designed controller‘s ability to attain upright balancing with the 

best selected values of the LQR weighting matrices and proper observer dynamics, the 

Robogymnast simulation was run with three sets of initial conditions. 

In this investigation the reduced order observer dynamics were selected as E = [0.5 0.5] 

and H was set zero. Apart from this, the best selected values of T, K and L are calculated 

as follows: 

T =  
0.316 −0.344 −0.041 0.013 0.017 0.002
0.655 0.394 0.048     − 0.035 −0.019 −0.002

  

K =  
 0.171   − 0.167 − 0.020   0.014
0.308   0.189    0.023   − 0.001

  

L =

 
 
 
 
 
 

1       0
0        1

  
0            0
0             0

0       0
0        0

0        0
0        0

1             0
0            1

0       0
0        0

−1730.33 18.306
14222.6 17.270

0.130 32.002
22.754 −275.144

1979.86 1682.88
15956.99 −13979.7 

 
 
 
 
 

 

 To achieve the system performance requirements, the weighting matrices Q and R for 

the augmented plant model were chosen depending on the experience of the designer. 

The weight matrices Q and R are hence chosen as follows: 
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Q =

 
 
 
 
 
 
 
 
50
0
0
0
0
0
0
0

0
425

0
0
0
0
0
0

0
0

125
0
0
0
0
0

0
0
0

10
0
0
0
0

0
0
0
0

0.1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0

10
0

0
0
0
0
0
0
0
6 
 
 
 
 
 
 
 

 

R =  
0.7 0
0 0.5

  

According to the selected weighting matrices, the optimal feedback gain matrix F is 

given by: 

 
−949.493
 −167.788

−410.994
−76.920

−47.034
10.024

−173.730
−30.673

−91.288
−16.139

−11.326
−1.909

 2.832
1.141

0.702
−3.252

  

 

Test 1: Simulation results with initial relative angles of [1.1° -0.2° -0.1°] 

At this stage of the investigation it was prescribed that the Robogymnast in the upright 

position had initial relative angular positions equal to [1.1° -0.2° -0.1°]. Figure ‎6.3 

illustrates the controlled system response. It is clear that the designed controller was able 

to stabilise the system and converged to the set values. The control efforts of the first 

motor and the second motor of the system are illustrated in Figure ‎6.4 and Figure ‎6.5 

respectively. It can be seen that the first link displacement had a stable response with 

acceptable overshoot, and a negative peak in relative angle of about -6.5°.  
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Figure ‎6.3: Simulated relative angular positions with initial q1 =1.1°, q2 = -0.2°, q3 = 

-0.1° 

 

Figure ‎6.4: Simulated first control action with initial q1 =1.1°, q2 = -0.2°, q3 = -0.1° 

Figure ‎6.5: Simulated second control action with initial q1 =1.1°, q2 = -0.2°, q3 = -

0.1° 
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Additionally, it reached the settling point after approximately 10 seconds. In spite of the 

high deviation of the second link (about 15.5°) the controller was able to stabilise and 

balance the Robogymnast in the upright position. 

 

Test 2: Simulation results with initial relative angles of [1.3° 0.2° -6.5°]   

The transient and steady state response results are presented in Figure ‎6.6 with the 

assignment of initial relative angular positions equal to [1.3° 0.2° -6.5°]. In this case, the 

relative angular position of the first link overshoots to about -7.5° and the deviation in 

the second link‘s relative angle reaches about 17.5°.There is no significant overshot in 

the transient response of the third link. With these assumed values of the initial relative 

angles, it can be seen that the first and third links reached the steady state within 3.5 

seconds, while the second link took 10 seconds. Figure ‎6.7 illustrates the first motor 

control effort used to stabilise the system. It is clear that the control effort begins at the 

saturation level. While the maximum control effort of the second motor is approximately 

3.1 V as shown in Figure 6.8.  
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Figure ‎6.6: Simulated relative angular positions with initial q1 =1.3°, q2 = 0.2°, q3 = 

6.5° 

 

Figure ‎6.7: Simulated first control action with initial q1 =1.3°, q2 = 0.2°, q3 = 6.5° 

 

Figure ‎6.8: Simulated second control action with initial q1 =1.3°, q2 = 0.2°, q3 = 6.5°  



132 

 

Test 3: Simulation results with initial relative angles of [1° 0.1° 0.1°]   

In this stage of the study, the test was conducted according to the procedure used in the 

previous instances in Test 1 and Test 2. It should be noted from Figure ‎6.10 that the 

control action of the first motor initially reached the saturation value of 10V. From the 

data in Figure ‎6.11, it is apparent that the control action of the second motor was within 

the supply voltage limitation, with a maximum voltage of about 2.7V. The 

corresponding simulation transient and steady state results of the Robogymnast‘s links 

are presented in Figure ‎6.9. Further analysis showed that the Robogymnast returned to 

the full vertical balance point after approximately 9 seconds.  

6.6 Simulation results using a combination of the LQR and LC  

In this control strategy, as was mentioned in Section 5.3.2 in Chapter 5, the first motor 

and second motor will be controlled through the LQR and PI controllers respectively. 

For this study, the observer dynamics were selected as E =  0.3 0.3  and H was set to 

zero. In addition, the values of T, K and L are determined as follows: 

T =  
0.699 0.425 0.052    −0.026 −0.015 −0.001

−0.068 0.057 0.006      − 0.0004 −0.002 −0.0002
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Figure ‎6.9: Simulated relative angular positions with initial q1 =1°, q2 = 0.1°, q3 = 

0.1° 

 

Figure ‎6.10: Simulated first control action with initial q1 =1°, q2 = 0.1°, q3 = 0.1° 

Figure ‎6.11: Simulated second control action with initial q1 =1°, q2 = 0.1°, q3 = 0.1 
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K =  
0.476       0.292    0.036     − 0.001
−0.048   0.039     0.004    − 0.002

  

L =

 
 
 
 
 
 

1       0
0        1

   
0            0
0            0

0       0
0        0

0        0
0        0

   
1            0
0            1

0       0
0        0

−1234.927 26.695
10360.701 12.250

     
−0.130 23.027

29.243 −200.416
995.186 −7866.606

−8583.245 63609.954 
 
 
 
 
 

 

The weight matrices Q and R were chosen through extensive trials, designer's intuition 

and experience. They are chosen as follows: 

 

Q=

 
 
 
 
 
 
 
70
0
0
0
0
0
0

0
600

0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0

0.1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
5 
 
 
 
 
 
 

 

R= 0.5  

For this selection, the optimal gain matrix for the first motor is given by: 

F =  −1128.683   − 493.795 − 54.451  − 206.494  − 108.541   − 13.455  2.536  

Moreover, the values of Kp  and KI have been selected as 12 and 2 respectively. 
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Test 1: Simulation results with initial relative angles of [1.1° -0.2° -0.1°]   

It can be seen from Figure ‎6.12 that the first and second links reached the steady state 

after approximately 1.5 seconds, while there was no significant deviation in the third 

link from the vertical position. The angle of the first and second link from the vertical 

line had maxima of about -7.5° and 17° respectively. As shown in Figure ‎6.13, a lot of 

energy was used in the first motor to keep the system upright. Additionally, from this 

figure, it is clear that there was a high power demand at the start of the balancing 

operation where the control action began with the saturation level of 10 V. On the 

contrary, there is no considerable amount of energy expenditure in the second motor as 

shown in Figure ‎6.14.  

Test 2: Simulation results with initial relative angles of [1.3° 0.2° -6.5°] 

A further examination of balancing the Robogymnast is considered in this section with 

initial relative angular positions equal to [1.3° 0.2° -6.5°]. As noted in Figure ‎6.15, the 

maximum peak in oscillation of the first link was increased because of the initial value 

increment. The maximum relative angular deviation of the first and second links was 

about -8.5° and 19° respectively. Consequently, the settling time is increased, with the 

settling time of the second and third links being about 8 seconds, and the first link settled 
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Figure ‎6.12: Simulated relative angular positions with initial q1 =1.1°, q2 = -

0.2°, q3 = -0.1° 

 

Figure ‎6.13: Simulated first control action with initial q1 =1.1°, q2 = -0.2°, q3 = -0.1° 

Figure ‎6.14: Simulated second control action with initial q1 =1.1°, q2 = -0.2°, q3 = -

0.1° 
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in about 10 seconds.  On the other hand, a significant increase was noted in the control 

effort exerted by the first motor as shown in Figure ‎6.17. The control effort began with 

the maximum input voltage +10V. In order to keep the third link in line with the second 

link, more power is required from the second motor. Furthermore, the reason for 

increasing the initial control effort of the second motor, as presented in Figure ‎6.16, is 

due to the increments in the initial value of the third link.  

 

Test 3: Simulation results with initial relative angles of [1° 0.1° 0.1°] 

Further testing was conducted to determine the effect of initially starting all links of the 

Robogymnast system with positive relative angular positions. This was expected to 

produce a decrease in the upper limit of the initial value of the first link because all the 

system links slope in one direction, leading to an increases probability of falling under 

the effect of the gravity. Figure ‎6.18 illustrates the controlled system response. The 

overall Robogymnast‘s performance is similar to the response in Figure ‎6.12, with an 

increase in the maximum peak of the second relative angular position (19°). Movements 

in the third link were negligible. However, the controller was able to stabilise the system 

in the desired position within 1.5 seconds, with a maximum divergence of about -7.5° 

from the balance point in the first relative angular position. Figure ‎6.19 and Figure ‎6.20 

provide the simulated control action applied to the motors. Figure ‎6.20 shows that no 

significant power was required from the second motor. 
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Figure ‎6.15: Simulated relative angular positions with initial q1 =1.3°, q2 = 0.2°, q3 = 

-6.5° 

 

Figure ‎6.16: Simulated first control action with initial q1 =1.3°, q2 = 0.2°, q3 = -6.5° 

Figure ‎6.17: Simulated second control action with initial q1 =1.3°, q2 = 0.2°, q3= -6.5° 
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Figure ‎6.18: Simulated relative angular positions with initial q1 =1°, q2 = 0.1°, q3 = 

0.1° 

 

Figure ‎6.19: Simulated first control action with initial q1 =1°, q2 = 0.1°, q3 = 0.1° 

Figure ‎6.20: Simulated second control action with initial q1 =1°, q2 = 0.1°, q3 = 0.1° 
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6.7 Discussion of results  

Based on feedback control theory, the offset error is generally seen as a factor strongly 

related to the upright balancing of the real system. Errors in the readings of the feedback 

signal will lead to a significantly incorrect value in the control action applied to the 

actuators. This control action could lead the Robogymnast to drift away from the desired 

upright balancing point.  

Another type of controllable constant offset error was caused by the power amplifiers 

that were used to drive the Robogymnast. This error is treated by adding or subtracting a 

constant value from the control action signals before sending them to the A-D convertors 

and then to the motors.  

More importantly, the power limitation of the Robogymnast‘s actuators cannot be 

disregarded. Difficulties arise when an attempt is made to implement the upright 

balancing. Practically the power limitation is not sufficient to enable the control system 

to maintain upright balancing. The limitations of the input control signals u(k) are due to 

the power limitation of the actuators (motors). Hence, the result of the response speed 

was affected by the power limitation.  

Due to the linearisation of the system at the upright equilibrium point, there is an 

acceptable limit range for the relative angular positions. Therefore, the simulation study 

and analysis were focused on the upright balancing with different initial conditions (this 

practically represents the sensors‘ measurement errors). Hence, the simulation results 
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present the validation of the designed controller‘s ability to stabilise and balance the 

Robogymnast in the upright position within limited initial values of the links‘ deviation 

from vertical.  

For the various (small) initial relative angles of the Robogymnast, it appears from 

Figures 6.3, 6.6, 6.9, 6.12, 6.15 and 6.18 that both designed controllers were able to 

stabilise the Robogymnast around the upright equilibrium point. Despite small initial 

relative angular positions, a large overshot appeared in the relative angular positions of 

the first and second links. From the identified data in the relative angular positions plot, 

it is reported that the maximum amplitude of the relative angle was approximately 7.5° 

for the first link, and 18° for the second links.   

Comparison between the use of the LQR and the combination LQR and LC shows that 

the simulated upright balancing task is consistent with the practical findings of the 

downward balancing task in Chapter 5. From the system response, it can be seen that the 

system is ensured a much faster time to balance at the desired reference point when 

using the combination LQR and LC. 

It is clear that at the start of each test the first motor demanded the maximum 10 V 

supply, regardless of which controller was used. This is despite the participating of the 

second motor. However, the control effort of the second motor is considerably less than 

the control effort for the first motor when using the second type of designed controller 

(LQR + LC).   
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6.8 Summary 

The purpose of this chapter was to investigate the problem of balancing the 

Robogymnast in the upright position. There have been many attempts to implement the 

practical balancing. Here, the stabilising and balancing problem of the Robogymnast in 

the upward configuration was simulated. The first section focused on using the LQR to 

achieve the upright balancing, and the second section used LQR combined with an LC. 

The designed controller was applied via a reduced order observer to estimate the 

unmeasured states (angular velocities). According to the simulations, the Robogymnast 

is able to recover its balance from initial unbalanced configuration and balance itself in 

the vertical plane (upright configuration). A hybrid method is proposed by combining 

swing-up and balancing control in the next chapter. 
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Chapter 7    

Combining Swinging-up and Balancing Control 

7.1 Introduction 

The aim of this chapter is to study the combination of the swing up of the Robogymnast 

from the pending position to balance in the upright position. Several studies 

investigating the problem of swinging, then balancing of an n-link underactuated robot 

have been carried out in the literature (Brown and Passino 1997; Spong 1995; Aoustin et 

al. 2011). In this study, a switching mechanism between a swinging and balancing 

algorithm was proposed. This can be achieved by dividing the controller into three 

stages. The first stage was a swinging controller and the next stage was implemented 

through designing a transition controller, which was implemented using independent 

PID joint control. Finally, the balancing controller was implemented utilising the 

proposed controller in Section 5.3.2 in Chapter 5. The simulations were carried out to 

mimic real life gymnasts and compared with the results of different Robogymnast 

situations. This chapter also presents the robustness of the designed controller and the 

ability to deal with unknown external disturbance.  

The organisation of this chapter is as follows. In Section ‎7.2, the problem of combining 

the swinging and balancing control is discussed. Section ‎7.3 demonstrates the 

independent joint control idea. In Section ‎7.4, the proposed controller is described. The 
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movement from one place to another ―Locomotion‖ of the Robogymnast is presented in 

Section ‎7.5. In Section ‎7.6, simulation results and discussion are presented. In Section 

‎7.7, the robustness analysis through analysing disturbance force is studied. The summary 

of the chapter is given in Section ‎7.8. 

7.2 Swing-up and balancing control combination problem 

The main purpose of the swing up control is to drive the Robogymnast away from a 

point of stable equilibrium toward an inverted configuration and, to force the 

Robogymnast to enter the transition control region (transformed states region) with 

minimal speed to empower the balancing controller to hold it and maintain it steadily in 

the upwards position.  

The main challenge posed by the Robogymnast is when the first link of the system 

reaches the upright position q1 = π (or q1 = −π, depending on the direction of 

movement). The relative angular positions for the second and third link are diverted 

from the equilibrium point as shown in Figure 4.15 and Figure 4.16. The relative angular 

position of the second link was equal to 58° as presented in Figure 4.15, while the third 

relative angular position was equal to 70° as shown in Figure 4.16. In this case, it is 

extremely important to bring the second and the third link to the acceptable initial 

relative angles to start applying the adjusting balancing controller. Therefore, a transition 

controller using independent PID joint control was proposed to make the Robogymnast 

track the desired relative angular positions to start the balancing process. Therefore, a 
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switching algorithm was used to automatically switch between swinging control, then 

transition control and finally balancing control. The movement trajectories of the 

Robogymnast:  Swing up, transition and balancing stages is presented in Figure ‎7.1. 

Furthermore, there is another challenge which is determining suitable input control 

signals to motors located at joints 2 and 3 to obtain satisfactory tracking with a 

reasonable operating time without causing a falling of the Robogymnast from the 

upright position. The switching between the role of swinging and balancing should be 

performed smoothly. 

In this chapter, the controller algorithm consists of three types of controller: the 

swinging controller (as described in Chapter 4), the upright balancing controller (as 

described in Chapter 6) and the transition controller (independent PID joint control). 

This design is presented in the next section. Through the use of MATLAB
® 

software, the 

discrete time model Equation (3.20) was used to validate and evaluate the designed 

controller via the dynamic behaviour of all Robogymnast phases. 
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Swinging region Swinging region 

Transition region 
Balancing region 

Transition region 

Figure ‎7.1: Movement trajectories of the Robogymnast : Swing up, transition and 

balancing 
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7.3 Independent Joint Control technique 

The independent joint control (IJC) technique is one of the more practical ways to 

control the motion of the robot manipulator independently (Spong et al. 2006). The basic 

idea of the IJC is dealing with the robot actuators as a set of independent actuators. In 

other words, the control inputs of each actuator depend on the measured displacement 

and velocity of the corresponding joint. In this type of controller, the reaction and 

interaction with other joints is considered as a disturbance. 

In this study, to achieve the transition controller, the PID controller was introduced as an 

independent joint controller (IJC) technique. The PID controller was used to satisfy the 

trajectory tracking path through transfer of the controlled joints from an initial position 

to the final position. The final position for each motor was set out using an independent 

PID joint control, which represents the initial angular positions of the second and third 

link in order to switch to start the balance control. 

The strongest advantage of PID control is its straightforwardness and simplicity. This 

sort of controller is best in most procedures for the control of mechanical robot arms, if 

the execution improved by utilising complex control does not stand in different levels 

(Choi and Chung 2004). Design of the independent PID joint control involves deciding 

appropriate values of proportional, integral, and derivative gains to satisfy the design 

requirements. 
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7.4 Controller design 

The control problem is how to combine swinging and balancing movements. Three 

proposed combined controller candidates for swinging, transition and balancing control 

were studied. The switching control scheme of the Robogymnast is shown in Figure ‎7.2. 

For the swinging control, the best selected result that was used to simulate the swing-up 

in Chapter 4 will be utilised in this chapter to drive the Robogymnast to the balancing 

area. For this study the equations of the input control signals are given as:      

u1 = A1α sin(∅1) (7.1) 

u2 = A2α sin(∅2) (7.2) 

Where the values of A1, A2, α, η and δ were previously given in Section 4.2 in Chapter 

4. As developed before, in the swinging part, ∅1 and ∅2 are dependent on δ.  For the 

duration of each sinusoidal cycle (multiple sampling intervals Ts  depending on the value 

of δ), ∅1 and ∅2 were varied between 0 and 2π with a step increment of η δ  applied 

during each sampling interval. η is constant and fractional to π. At the end of each duty 

cycle (∅1and ∅2 = 2π) α, δ were increased by ∆α and ∆δ respectively. By selecting the 

values of ∆α and ∆δ equal to 0.3499 and 4.1568 respectively, the first link gave a 

satisfactory response in a reasonable duration (128 seconds) as illustrated Figure 4.14 

and the response of second and third link were presented in Figure 4.15 and Figure 4.16 

respectively.  
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Robogymnast 

Swing up controller 

Balancing controller 

Transition controller 

 Switching 

Reference (r)   

(Initial angle to start the 

stage of balancing 

control) 
r = 0 

+ - 

+ - 

Output 

Figure ‎7.2:  Switching control scheme of the Robogymnast 
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It is more important to focus on what is a realistic time to switch to the transition 

controller. However, if the transition controller waiting until the first link angle (q1) 

reaches 0° (or q1 = ±180° depending on the initial angle of the swing up), this will 

cause the system to fall because the controller cannot compel the Robogymnast to 

stablise in the upright equilibrium point. Thus, it is very important to switch to transition 

control when the Robogymnast enters the upright balancing area. Consequently, 

switching from the swinging controller to the transition controller will start when the 

first relative angular position reaches 10°. The aim of switching is to make the second 

and the third relative angular positions in the acceptable range of the initial angle to start 

the stage of the balancing controller. The passive joint (first joint) is indirectly controlled 

by the motion of the active joints (second and third joints). The main problem, to satisfy 

movement or the ability to move from one place to another, is the selection of suitable 

reference trajectories for the control system which was developed in Section ‎6.4 in 

Chapter 6. Such trajectories should be periodic signals and allow smooth switching 

between the role of swinging and balancing which is achieved using an IJC technique 

for the second and third joints. To control the position of the Robogymnast at the upright 

position, the IJC is utilised to bring the second and third links from the last swinging 

states to the desired state to start the balancing (which is representing the desired initial 

values to start the balancing control). To use IJC, the first step is to define the desired 

references of the second and third links to start the balancing, and the actual states. yr2
 

and yr3
 represent desired references of the second and third link respectively (desired 

initial relative angular positions to start the balancing). yi2
 and yi3

 represent the actual 
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relative angular position of the second and third link respectively. In this study, this 

represents the final actual values of the relative angular positions of the swinging stage. 

In this step, the equations of the input control signals for the transition controller using 

the Independent PID Joint Control are presented as: 

u1 k = Kp1
e1 k + w1 k + d1(k) (7.3) 

u2 k = Kp2
e2 k + w2 k + d2(k) (7.4) 

where 

e1 k = yr2
(k) − yi2

(k) (7.5) 

e2 k = yr3
(k) − yi3

(k) (7.6) 

Kp1
 and Kp2

are the proportional gain of the first and second control input signals. The 

variables e2 k  and e2 k  represent the tracking errors, the difference between the 

desired reference yr2
and yr3

 and the actual relative angular position yi2
 and yi3

 

respectively. 

w1 k + 1   and w2 k + 1  are defined as: 

w1 k + 1 = w1 k + KI1
Ts   e1 k  (7.7) 

w2 k + 1 = w2 k + KI2
Ts  e2 k  (7.8) 
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w1 k  and w2 k  are the integral values of the first and second error signals. KI1
and KI2

 

are the integral gain of the first and second control input signals. Ts is the sampling time. 

Furthermore, d1 k  and d2 k  are given as: 

d1 k = Kd1

e1 k − e1 k − 1 

Ts
 (7.9) 

d2 k = Kd2

e2 k − e2 k − 1 

Ts
 (7.10) 

d1 k  and d2 k  are the derivative values of the first and second error signals. Kd1
 and 

Kd2
 are the derivative gains of the first and second control input signals. 

 After the second and third relative angular positions of the Robogymnast are at the 

balancing desired initial values, the balancing controller is applied. For the balancing 

control, the LQR was considered in this study. The controller design is similar to the 

methodology used for the upright balancing in Section 5.3.2 in Chapter 5 with some 

insignificant modifications. These modifications include different values of the observer 

dynamics. 

As presented before, the control signals applied to the Robogymnast for the balancing 

control are given by 

u k = −F  
x (k)
w(k)

  (7.11) 
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7.5 Locomotion 

A controller algorithm which was designed to switch from a swing-up controller to a 

stabilizing controller is explained in three stages as follows:  

 Swinging Stage 

In this investigation, the swinging of the Robogymnast was simulated with ∆α equal to 

0.3499 and ∆δ equal to 4.1568. According to the selected values of ∆α and ∆δ, the 

Robogymnast reached the upright position q1 = θ1 = 0° (the swing-up starts with 

q1 =180°) within reasonable time duration (128 seconds). Whilst, the switching to 

transition should be started before the first relative angle (q1) attains the 0° to avoid the 

collapse of the Robogymnast. Consequently, switching from the swinging to transition 

controller was started at q1 = 10°. 

 Transition control stage   

When the first relative angular position becomes equal or more than 10°, the transition 

controller was activated. An independent PID joint controller was used to drive the 

second and third links to make them in line with the first and second links respectively. 

For independent PID joint control design, it is more important to find the best values of 

the PID gains (Kp1
, KI1

, KD1
,Kp2

, KI2
, KD2

). 
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It should be noted that it is very difficult to find accurate values of  Kp1
,KI1

and KD1
also 

Kp2
, KI2

 and  KD2
 because they depend on each other. Thus, heuristically adjusted robust 

PID controller gains were investigated to satisfy desired performance through finding 

fast rise time, minimum overshoot and no steady-state error in the transient relative 

angular positions. The tracking references on the second and third relative angular 

positions are equal to 0.1° and 0.1° respectively, whereas they are representing the initial 

values to start switching to the balancing controller.     

At this stage of verification, the control parameters were tuned heuristically with the 

gains in Table 7.1. The second part moves on to describe in detail the balancing control. 

 

Table 7.1: PID controller gains  

PID gains Duration time 

(second) of  

Transition 

controller 
First motor Second motor 

𝐊𝐩𝟏
 𝐊𝐈𝟏 𝐊𝐃𝟏

 𝐊𝐩𝟐
 𝐊𝐈𝟐 𝐊𝐃𝟐

 

1 1.6 2 0.1 0.1 0.02 5.725 

1 0.45 0.1 0.1 0.25 5 5 

0.52 0.2 0.0001 1 0.3 0.0002 0.4 
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 Balancing control stage 

As was mentioned in Section 5.2 in Chapter 5, there were two proposed designs for the 

controller to balance and stablise the Robogymnast in the upright position. In this study, 

the LQR was considered to balance the Robogymnast after the transition controller 

forces the second and third link to reach the initial relative angular positions to start the 

balancing. It is very important to note that the first relative angular position is affected 

by the control on the second and third joints. Consequently, the initial first relative 

angular position started with a value less than 1°. This value is various, this is depending 

indirectly on PID controller gains and how much the reaction forces from the second and 

third links influence on the first link motion. In this analysis, the reduced order observer 

dynamics were selected as E = [0.1 0.1] and H was set to zero. In this case the values of 

T, K and L become: 

T =  
−0.2302 0.2850 0.031   0.000 −0.007 0.000
0.6349    0.1283 0.0181     − 0.01428 −0.0035 0.000

  

K =  
−0.2093   0.2556  0.0279  − 0.0057
0.5668   0.1354    0.0160   − 0.0029

  

L =

 
 
 
 
 
 

1       0
0        1

  
0            0
0             0

0       0
0        0

0        0
0        0

1             0
0            1

0       0
0        0

−739.57 35.244
6499.121 7.686

−0.075 13.739
36.783 −125.724

−556.977 962.706
3937.257 −8807.104 

 
 
 
 
 

 

To achieve the system performance requirements, the weight matrices Q and R were 

chosen as follows:  
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Q =

 
 
 
 
 
 
 
 
50
0
0
0
0
0
0
0

0
425

0
0
0
0
0
0

0
0

125
0
0
0
0
0

0
0
0

10
0
0
0
0

0
0
0
0

0.1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0

10
0

0
0
0
0
0
0
0
6 
 
 
 
 
 
 
 

 

R =  
0.7 0
0 0.5

  

According to the selected weight matrices, the optimal feedback gain matrix F was given 

by: 

 
−949.493

 −167.7886
−410.994
−76.9209

−47.034
10.0244

−173.730
−30.6737

−91.288
−16.1395

−11.326
−1.9091

 2.832
1.1418

0.702
−3.2524

  

7.6 Simulation results 

The controller was implemented using MATLAB
®
 software. The overall program codes 

are to capture simulation parameters of ∆α and ∆δ of the swinging part, and PID gain 

values for the transition control. Additionally, the feedback gain matrices and the 

observer parameters were used to balance the control. When starting the swinging stage, 

the initial conditions of the first, second and third relative angular positions were 180°, 

0° and 0° respectively. The transition control, however, started when the first relative 

angular position was equal to 10° or less, as well as the initial values to start the balance 

control when the transition control makes the relative angular positions of the second 

and third links equal to 0.1° and 0.1° respectively.  



157 

 

In order to understand how to find the best values of the transition control parameters, 

three different cases were performed. In other words, the parameters of the independent 

PID joint control were tuned to satisfy the desired performance. The conditions of the 

desired performance are limited to two constraints. The first one was the time duration to 

switch from the swinging stage to the transition stage until switching from the transition 

stage to the balancing stage. Secondly, the maximum overshoot in the first, second and 

third links.  

From Figure ‎7.3 to Figure ‎7.8, the plots of the simulated relative angular positions of all 

links for the three cases of the designed controller are presented. The relative angle of 

the first link of the system was simulated while considering the parameters of all cases in 

Table 7.1 as shown in Figure ‎7.3. The time taken to reach 10° was 107 seconds and is 

equal for all cases because the same parameter was used to swing-up the Robogymnast. 

The more important parts of this analysis were depicted in Figure ‎7.4, which presents a 

zooming portion of transition control of Figure ‎7.3. It can be noted that the time duration 

of the transition control for the first case was 5.725 seconds as well as the first relative 

angular position (q1) which oscillated with average relative angles equal to ±2° in the 

transition control period.  Furthermore, it was diverted from the equilibrium point about 

−4° in the balancing stage. For the second case, the time duration of the transition 

control equalled 5 seconds and the maximum average oscillation of the relative angular 

position of first link (q1) was within the range of ±2°. For the third case, the first link 

transited from swinging to balancing in a very short time of 0.4 seconds with negligible 

oscillation.  
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Figure ‎7.3:  Simulated first relative angular position q1 

 

Figure ‎7.4:  Zoomed view of simulated transition control part of first relative angular 

position q1 
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Figure ‎7.5 and Figure ‎7.6 show the simulation response of the second relative angular 

position (q2) with the three cases reported in Table 7.1. The time duration of the 

transition control of the second relative angular position was likely a result of the time 

duration of the first relative angular position (q1).  What is interesting in this data is that 

the second link diverted by 8° and  2° by considering the parameters in case 1 and case 2 

respectively. On the other hand, by tuning the PID controller gains more to explore the 

best performance, case 3 reported significantly more enhancements in the behaviour of 

the second relative angular position. Hence, it can be seen from this figure that there is 

no significant movement reported in the second link and it tracks the reference trajectory 

of the second link in a very short time of 0.4 seconds. In the same way, in all cases, it 

can be seen from the information reported in Figure ‎7.7 and Figure ‎7.8 that there were 

no considerable movements reported in the third link with different transition control 

parameters. Interestingly, there were not any considerable diversions from the 

equilibrium point during the transition control or through the balancing stage.  

Figure ‎7.9 to Figure ‎7.12 represent the simulated control signals in volt applied to the 

motors mounted at the respective joints. As can be seen from these controls signal plots 

that the first motor demanded more voltage than the second motor. The voltage required 

by the first motor to switch from the swinging control to transition control was equal to 

the saturation range of ±10V. In contrast, the required voltage of the second motor was 

very small compared to the first motor. Furthermore, the responses of the two motors 

appeared in the switching between the transition control stage and the balancing control 
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stage. Figure ‎7.13 presents the flowchart of switching control mechanism 

implementation. 

 

Figure ‎7.5:   Simulated of second relative angular position q2 

 

Figure ‎7.6:  Zoomed view of simulated transition control part of first relative angular 

position q2 
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Figure ‎7.7:  Simulated of second relative angular position q3 

 

 

Figure ‎7.8: Zoomed view of simulated transition control part of first relative angular 

position q3 
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Figure ‎7.9: Simulated control action applied to first motor u1 

 

 

Figure ‎7.10: Zoomed view of simulated transition control part of  control action applied 

to first motor u1 
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Figure ‎7.11: Simulated control action applied to first motor u2 

 

 

Figure ‎7.12: Zoomed view of simulated transition control part of control action applied 

to first motor u2 
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 Figure ‎7.13:  Flowchart of switching control mechanisim 
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7.7 Control system response under disturbance  

In this section, the robustness of the designed controller to stablise the Robogymnast at 

upright balancing is discussed through studying the ability of the designed controller to 

deal with unknown external disturbance (Almeshal et al. 2013; Brown and Passino 

1997). After the swing-up phase of the Robogymnast and then stablising in the upright 

position, disturbance was introduced on each link of the system separately, which led to 

three cases being analysed. The disturbance was applied after 138.75 seconds from the 

startup of the swinging for each case. To determine the greatest magnitude of 

disturbance which could be applied to each link, an extensive search was done through 

repeating the process several times. For the purpose of analysis, the behaviour of the 

Robogymnast was plotted and discussed through showing instant response for all links 

for each case. In addition, the effect of the introduced disturbance on the control actions 

was discussed. The corresponding control loop including disturbance is shown in Figure 

‎7.14.  
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Figure ‎7.14: Block diagram of closed loop system including disturbance 
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The output of the closed loop system in terms of the disturbance is reported as below: 

yy k = y k + d(k) (7.12) 

where d(k) represents the disturbance acting on the system outputs. 

7.7.1 Applying a disturbance to the first link 

In order to validate the ability of the designed controller to keep the Robogymnast in the 

upright position, a disturbance force was applied to the first link of the Robogymnast. It 

was found that the controller could stablise the system with an applied disturbance that 

tilted the first link by 0.4°. All the movement stages of the Robogymnast (swinging, 

transition, balancing and applying disturbance) are shown in Figure ‎7.15, which presents 

the simulated relative angular positions with applied disturbance on the first link. From 

the zoomed view of simulated relative angular positions with disturbance applied on the 

first link in Figure ‎7.16, it can be seen that the disturbance produced negative and then 

positive peaks at the displacement of the first link with values equal to -2° and 7.5° 

respectively. On the other hand, a significant deviation occurred in the second link 

which was between 5° and -17°. There is no big movement in the third link from the 

upright equilibrium point. The designed controller was capable of stabilising the 

Robogymnast at the trajectory reference point within an average time of approximately 5 

seconds. It can be seen from Figure ‎7.17 and Figure ‎7.18 that there is a large amount of 

consumed energy from the first motor to maintain the system in a satisfactory level of 

performance. Consequently, when the disturbance was introduced, the first control 
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signal reached the saturation limits. Conversely, a large amount of energy was not 

consumed from the second motor. 

 

Figure ‎7.15: Simulated relative angular positions with applied disturbance to the first 

link 

 

Figure ‎7.16:  Zoomed view of simulated relative angular positions with applied 

disturbance to the first link 
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Figure ‎7.17:  Simulated control action applied to the motors with applied disturbance to 

the first link

 

Figure ‎7.18:  Zoomed view of simulated control action applied to the motors with 

applied disturbance to the first link 
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7.7.2 Applying a disturbance to the second link 

In this case, after the Robogymnast reached the upright balancing position, a disturbance 

was introduced to the second link. From an extensive search, it is apparent that the 

controller could stablise the system with an applied disturbance that tilted the second 

link by 0.9°. The response of the Robogymnast undergoing a disturbance force applied 

to the second link and the zoomed view of the response of all the relative angular 

positions are presented in Figure ‎7.19 and Figure ‎7.20 respectively. As a result of this 

examination, the response of the Robogymnast undergoing disturbance applied to the 

second link was closely analogous to the Robogymnast‘s response in Figure ‎7.15 and 

Figure ‎7.16. As a consequence of introducing disturbance to the second link, it appears 

from Figure ‎7.21 and Figure ‎7.22 that the second motor spent more voltage to stabilize 

the Robogymnast around desired trajectories compared to the study of applying a 

disturbance to the first link as explained in Section ‎7.7.1. Hence, it can be seen from 

Figure ‎7.22 that the control action reported a significant increase in the demand energy 

of the second motor. Thus, the saturation limit was reached simultaneously with the 

applied disturbance. Furthermore, the control action applied to the first motor started 

with a maximum input voltage of +10 V. 
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Figure ‎7.19: Simulated relative angular positions with applied disturbance to the second 

link 

 

Figure ‎7.20: Zoomed view of simulated relative angular positions with applied 

disturbance to the second link 
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Figure ‎7.21: Simulated control action applied to the motors with applied disturbance to 

the second link

Figure ‎7.22: Zoomed view of simulated control action applied to the motors with 

applied disturbance to the second link 
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7.7.3 Applying a disturbance to the third link 

A further assessment was implemented to examine the ability of the designed controller 

to stablise the system through introducing a disturbance on the third link. For the 

purpose of analysis, as was done in the first and second cases, it is important to know the 

maximum value of the disturbance that could be applied to the third link and that was 

done through repeating the process several times. The tests showed that the controller 

could stablise the system with applying a disturbance on the third link that was tilted by 

8° from its upright position. Referring to the Figure ‎7.23 and Figure 7.24, the effect of 

applying disturbance to the third link can be noted. From the zoomed view of relative 

angular positions responses, it can be seen that the applying of the disturbance on the 

third link resulted in oscillations between 8° and -7° in the third link. Moreover, the 

performances of the first and second links were similar to the performances when the 

disturbance was applied to the first or second link. It can be seen from Figure ‎7.25 and 

Figure ‎7.26 that a large amount of energy was demanded from the first motor to 

maintain a satisfactory level of system performance. Consequently, the control signal 

reached the saturation limit at ±10 V. From the results, the control voltage of the second 

motor reached the saturation limit in the negative direction at one point in order to bring 

the third link to the equilibrium point. 
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Figure ‎7.23: Simulated relative angular positions with applied disturbance to the third 

link 

 

Figure ‎7.24: Zoomed view of simulated relative angular positions with applied 

disturbance to the third link 
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Figure ‎7.25: Simulated control action applied to the motors with applied disturbance to 

the third link 

 

Figure ‎7.26: Zoomed view of simulated control action applied to the motors with 

applied disturbance to the third link 



176 

 

7.8 Summary 

This chapter has been divided into two parts. The first part deals with the 

implementation of combining the swing up and balancing control of the Robogymnast. 

In this part, a switching mechanism between a swinging and balancing algorithm was 

suggested. A transition controller was proposed to establish the switching between 

swinging and balancing. A PID controller was designed as a transition controller. The 

results of this study illustrated that the controller and the ability of the controller to reject 

the applied disturbance. The performance and robustness of the system outputs were 

assessed through applying a disturbance to each link of the Robogymnast separately. 

Through it, the limitations of disturbance that could be controller was able to stabilise 

the Robogymnast in a satisfactory manner. The second part deals with the assessment of 

robustness of the designed applied to the system have been decided with a specific 

disturbance time duration. The simulation results showed that the controller was able to 

re-balance the Robogymnast around the upright equilibrium point. 
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Chapter 8 

Conclusion, Contribution and Future Work 

8.1 Conclusions 

The purpose of this study was to understand and control the locomotion a of 3-DOF 

robot (Robogymnast). The Robogymnast is very complex and a highly nonlinear 

dynamical system. Furthermore, to satisfy different types of motion, it is important to 

take into account the dynamics of the entire system and to determine suitable control 

actions. One problem with this type of dynamic system is that it is difficult to model its 

nonlinear nature. 

Due to the nonlinearity and complexity of the governing, dynamics has been simplified 

by considering linear approach to derive a mathematical model and dynamic equations. 

A continuous time model of the proposed structure of the Robogymnast was derived 

mathematically using the Euler-Lagrange approach and was then linearised in two 

different configurations (models). The first configuration was when the robot was at the 

stable equilibrium point (downward position) and the second was when it was at the 

unstable position (upright). These models were then discretised using a sampling time 

interval of 25 milliseconds. 
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In this work, the Robogymnast has been successfully controlled to satisfy different types 

of motion. The first motion is the swing-up control which was achieved by forcing the 

Robogymnast to move from the downward stable equilibrium point to the unstable 

inverted equilibrium point. A new method has been suggested for the swing-up control 

whereby the amplitudes and frequencies used as inputs to the control signals were 

intelligently manipulated. Two parameters have been proposed for the manipulation, one 

to tune the frequency and the second to tune the amplitude of the first and second control 

signals applied to the first and second motors respectively. A newly developed 

optimisation technique (BA) has been used to tune the parameters of a swing-up 

controller for the Robogymnast. The simulation and analysis of the designed controllers 

were implemented on MATLAB
®
 software. The BA allowed a flexible and random 

selection of the parameters affecting the amplitudes and frequencies of the sinusoidal 

control signals. The simulation and experimental results of swing-up using the optimised 

parameters show that the controller can swing-up a Robogymnast from the lower 

position to the upper position in a reasonable duration (128 seconds). The simulations 

and experimental results demonstrated considerable improvements in the Robogymnast 

response with 40 seconds reduction in the swing-up time compared to that reported by 

Eldukhri and Pham (2010). The experimental swinging was implemented on the real 

system using C++ program environment. The controller was implemented on a PC 

supported by an appropriate AD/DA converter. 

The second desired motion was the stablising and balancing of the Robogymnast in the 

upright position. In order to achieve this, two different controllers were designed. These 
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are the LQR and a combination of LC with the LQR. The first controller dealt with the 

Robogymnast as a triple inverted pendulum whilst the second as double inverted links 

by treating the second and third links as a rigid body. In the first case, both motors 

contribute to the balancing control, whilst in the second approach there is no 

contribution by the second motor, other than to keep the second and third links in 

alignment as a single rigid body.  

The Robogymnast has three potentiometers that were used to measure the relative 

angular positions between the adjacent links, and one tachometer to measure the relative 

angular velocity of the first link. Based on this, a reduced order observer was designed to 

estimate the velocity of the second and third links. The two types of controllers were 

used for the design of a feedback control system to stabilise and balance the 

Robogymnast via the reduced order observer.    

The integral action was used to eliminate the error between the reference trajectory 

signal and the actual instantaneous signal. The effect of this is to keep the Robogymnast 

links in line during downward balancing, and to help it to overcome gravity during 

upright stablising.  

The performance of the control algorithm has been validated via the experimental results 

of the downward balancing. This was achieved through studying the ability of the 

designed controller to respond to an external disturbance. The key problems in 

downward balancing control are the calculation of the feedback controller gain, and 

reaching equilibrium between the system response speed and the level of oscillation 
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around the balancing point. This was achieved via suitable selection of the observer 

dynamics.   

Analysis of the upright balancing was also considered, and was implemented through 

studying the system response with different initial configuration. The analysis based on 

the performance quality was determined based on the oscillation range of each link, the 

settling time, and the steady state error. The Robogymnast was able to stabilise and 

balance from various initial conditions by calculating a proper state feedback gain and 

selecting realistic dynamics for the reduced order observer. This ability was expressed 

and proven via simulation results. The analysis was explored using MATLAB
®
 software 

and the discrete mathematical model for the upright configuration.  

The third desired motion of the Robogymnast was a combination of swinging-up and 

balancing in the upright configuration. For this purpose, a transition controller was 

designed to achieve this transfer. The IJC mechanism was proposed to implement the 

transition control. The transition control was represented as a local PID controller which 

was used to compel the second and third links to be in line with first link. This would 

bring the second and third links to be within the attractive area for commencing 

balancing control. The validation of the designed switching mechanism has been 

demonstrated and proven via simulation results. The objective of the design has hence 

been achieved and demonstrated.  

Further investigations were conducted to evaluate the robustness of the control system 

through analysis of its response to the application of an unknown external disturbance on 
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each link separately. The simulation results showed that the proposed control law can 

successfully overcome the applied disturbance with different allowed ranges of 

deviation for each link. 

8.2 Contributions 

The novel contributions made in this study are: 

1. Investigating the problem of swinging-up of a 3-links Robogymnast through 

introducing a new method to manipulate the amplitudes and the frequencies of 

the sinusoidal control input signals. This was achieved by assigning one 

parameter to manipulate the control signal amplitudes, and another for 

manipulating the frequencies. (Chapter 4) 

2. Employing a novel optimisation technique (Bees Algorithm) to calculate the 

optimal values of the manipulating control signal parameters to satisfy a desired 

system performance. (Chapter 4) 

3. Implementing the optimised parameters of the proposed method on the real 

system. (Chapter 4) 

4. Designing new type of controllers to obtain different motions for the new 

Robogymnast system. The designed controller was implemented via a reduced 

order observer. (Chapter 5) 
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5. Validating and evaluating the designed controller on the real system through 

realising downward balancing under the influence of external disturbances. 

(Chapter 5) 

6. Balancing the Robogymnast in the up-right configuration using its mathematical 

model together with the designed control techniques, and attempting to 

implement the designed controller on the real system.  (Chapter 6) 

7. Designing a switching control mechanism (transition controller) to maintain the 

combination of the swing-up and balancing control systems. (Chapter 7)  

8. Studying the ability of the designed controller to overcome on an external 

disturbance. (Chapter 7) 

8.3 Limitations  

The main limitation of motion control is the accuracy of the initial sensors‘ values. The 

controller was designed with the assumption that all the initial relative angular positions 

were equal to zero for the upright balancing position. In the real physical system, it is 

particularly difficult to satisfy this condition. This produced unexpected control action 

values applied to the first and second motors, leading to increasing the probability of 

Robogymnast to be far away from its desired position. 
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8.4 Future work 

Future work on this topic should involve: 

1. Introducing different scenarios for tuning multiple parameters which affect the 

control signals‘ amplitudes and frequencies independently, and validating their 

effects on the real system 

2. Using the BA to optimise and manipulate the findings of point 1, and then 

implementing the results on the real system. 

3. Replacing the actuators of the second joint (shoulder joint) and third joint (hip 

joint) with more powerful ones, and reducing the backlash as much as possible. 

These amendments would allow faster motion of the links and a reduction in the 

range of motion. Hence the balancing control could enable faster recovery from a 

deviation of the links. 

4. Replacing the potentiometers of all the links with more accurate ones which are 

easy to adjust. This is particularly important when it is related to the offset in 

potentiometer readings due to calibration difficulties because of the backlash in 

the gearboxes or the difficult adjustment of the potentiometers. 

5. Carrying out more trials to examine upright balancing on the real system after 

considering the modifications mentioned in point 3 and 4.  

6. Using the BA to design and tune the controller for balancing Robogymnast at the 

upright position. This could be achieved through finding the optimum values of 

the optimal control weighting matrices.  
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7. Checking the effect of filter dynamics, which were not included in the present 

controller.  

8. Adding extra mass on the third link in order to increase the moment of inertia 

and ease the control balancing problem of the real system. 

9. Investigating the adaptation of the designed controller with respect to varying the 

external disturbance durations. This would be an extension to the proposed 

controller, as it already manages the upright balancing successfully. 

10. Carrying out more investigations on different control algorithms for upright 

balancing, and applying these to the real system.
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APPENDIX 

 

Appendix A 

A.1.  LM12CL 80W Operational Amplifier 

The LM12 is a power op amp capable of driving ±25V at ±10A while operating from 

±30V supplies. The monolithic IC can deliver 80W of sine wave power into a 4Ω load 

with 0.01% distortion. Power bandwidth is 60 kHz. Further, a peak dissipation capability 

of 800W allows it to handle reactive loads such as transducers, actuators or small motors 

without derating. Important features include: 

The IC delivers ±10A output current at any output voltage yet is completely protected 

against overloads, including shorts to the supplies. The dynamic safe area protection is 

provided by instantaneous peak- temperature limiting within the power transistor array. 

The turn-on characteristics are controlled by keeping the output open-circuited until the 

total supply voltage reaches 14V. The output is also opened as the case temperature 

exceeds 150°C or as the supply voltage approaches the BV of the output transistors. 

The IC withstands over voltages to 80V. 

This monolithic op amp is compensated for unity-gain feedback, with a small-signal 

bandwidth of 700 kHz. Slew rate is 9V/μseconds, even as a follower. Distortion and 

capacitive-load stability rival that of the best designs using complementary output 



186 

 

transistors. Further, the IC withstands large differential input voltages and is well 

behaved should the common-mode range be exceeded. 

The LM12 establishes that monolithic ICs can deliver considerable output power 

without resorting to complex switching schemes. Devices can be paralleled or bridged 

for even greater output capability. Applications include operational power supplies, 

high-voltage regulators, high-quality audio amplifiers, tape-head petitioners, x-y plotters 

or other servo-control systems. 

The LM12 is supplied in a four-lead, TO-220 package with V− on the case. A gold-

eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue problems. 

The LM12 is specified for either military or commercial temperature range. 

The LM12 is prone to low-amplitude oscillation bursts coming out of saturation if the 

high-frequency loop gain is near unity. The voltage follower connection is most 

susceptible. This glitching can be eliminated at the expense of small-signal bandwidth 

using input compensation.  

When a push-pull amplifier goes into power limit while driving an inductive load, the 

stored energy in the load inductance can drive the output outside the supplies. Although 

the LM12 has internal clamp diodes that can handle several amperes for a few 

milliseconds, extreme conditions can cause destruction of the IC. The internal clamp 

diodes are imperfect in that about half the clamp current flows into the supply to which 
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the output is clamped while the other half flows across the supplies. Therefore, the use 

of external diodes to clamp the output to the power supplies is strongly recommended.  

 

A.2. E-Series Tachometer Generators  

The E-Series (Subminiature) 3 volts/1000 RPM DC tachometer generator is the smallest 

tach generator among those offering similar technical characteristics. Many outstanding 

features make it particularly suitable for use in all types of servo systems. Although the 

diameter is only 0.760‖ the E-Series provides up to 3 V/1000 RPM output. 

Almost any Servo-Tek DC tachometer generator can be manufactured with special 

configurations, various electrical specs and shaft modifications such as flats, pinions, 

holes, etc.  
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Appendix B 
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Figure B: Flowchart of the balance control system implementation using the LQR 

with LC 

 

Stop 

Update errors e1 and e2 

Compute the angular velocity of the second and third link by observer equation 

v(k+1)=Ev(k) + Hu(k) + Ky(k) 

Store 

data 

Calculate the integration values w1(k+1) = w1(k) + Ts e1(k), w2 k + 1 =
w2 k + KITse2 k  

Is keyboard hit or any relative angle 

limit exceeded? 

(Relative angle limit 

q1=± 50°, q2= ± 80°, q3=±80°) 

 

 

No 

Yes 

Read sensors to check the links‘ locations through the A-D convertor 

1 2 

No 

 

Yes 

 



190 

 

Appendix C 

C.1. Upright balancing results using the LQR 

 

 

Figure C.1.1: Measured relative angular positions q1, q2 and q3 

 

Figure C.1.2: Measured control action u1 applied to the first motor 
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Figure C.1.3: Measured control action u2 applied to the second motor 

 

C.1. Upright balancing results using the LQR with LC 

 

Figure C.2.1: Measured relative angular positions q1, q2 and q3 
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Figure C.2.2: Measured control action u1 applied to the first motor 

 

 

Figure C.2.3: Measured control action u2 applied to the second motor 
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