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Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived func-
tional and structural networks. However, false positive (FP) connections arise frequently and influence the in-
ferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate
threshold often relies on a priori assumptions, which will alter inferred network topologies.
Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and
smallworldness) were tested using a model tractography dataset. It was found that all four network metrics
were significantly affected even by just one FP. Results also show that thresholding effectively dampens the im-
pact of FPs, but at the expense of adding significant bias to network metrics.
In a larger number (n=248) of tractography datasets, statistics were computed across random group permuta-
tions for a range of thresholds, revealing that statistics for networkmetrics varied significantlymore than for non-
network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were
introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some networkmet-
rics, this atrophy was detected as significant (p b 0.05, determined using permutation testing) only across a lim-
ited range of thresholds.
Wepropose amulti-threshold permutation correction (MTPC)method, based on the cluster-enhanced permuta-
tion correction approach, to identify sustained significant effects across clusters of thresholds. This approachmin-
imises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-
corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of
MTPC on a previously published network analysis of tractography data derived from a clinical population.
In conclusion, we show that there are large biases and instability induced by thresholding, making statistical
comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using
MTPC, true group differences can be robustly identified.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

In the past decade, interest in brain connectivity among neuroimag-
ing researchers has grown substantially. There is now a wide array of
techniques for inferring brain connectivity from in vivo brain imaging.
Structural connectivity derived from diffusion-weighted imaging (DWI)
is well established and several approaches for deriving axonal pathways
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have been developed (Basser et al., 1994; Behrens et al., 2007; Conturo
et al., 1999; Dell'acqua et al., 2010; Descoteaux et al., 2009; Jansons and
Alexander, 2003; Jeurissen et al., 2011; Jones, 2008; Jones et al., 1999;
Parker and Alexander, 2005; Tournier et al., 2008; Tuch et al., 2004;
Wedeen et al., 2005). Functional connectivity, which is defined as statis-
tical relationships between neural signals (Sporns, 2007), can be derived
from electroencephalography (EEG) and magnetoencephalography
(MEG) (Baccalá and Sameshima, 2001; Granger, 1969; Kamiński et al.,
2001; Lachaux et al., 1999; Nolte et al., 2004; Nunez et al., 1997;
Schreiber, 2000; Stam et al., 2007; Walter, 1968; Wibral et al., 2009)
and functional magnetic resonance imaging (fMRI) (Baumgartner et al.,
2000; Biswal et al., 1995; Chuang et al., 1999; Ngan and Hu, 1999;
Worsley et al., 2005).
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The increasing interest in brain connectivity has led to new questions
being asked about how to characterise properties of networks, beyond
examining piecemeal components. Graph theory (GT) is a powerful
mathematical framework for quantifying topological properties of net-
works. A graph is comprised of nodes (or vertices) and edges. Nodes
are defined usingbrain regions and edges defined by anatomical or func-
tional connections derived using themethods described above. In recent
years, the approach has emerged as a useful tool for characterising func-
tional and structural brain networks (Bullmore and Sporns, 2009; Filippi
et al., 2013; Guye et al., 2010; Rubinov and Sporns, 2010; Sporns and
Tononi, 2007; Stamand Reijneveld, 2007). This type of analysis (referred
to as graph theoretical analysis or network analysis) moves away from
the traditional neuroimaging approach of examining individual compo-
nents of the brain, such as cortical regions or white-matter tracts, and
moves towards characterising regional or global structure of networks.
This can be particularly valuable in the study of clinical disorders of
non-focal degeneration (e.g., Alzheimer's disease) or systemic dysfunc-
tion (e.g., schizophrenia) and for understanding information processing
differences in healthy and diseased brains. Network analysis has been
utilised to examine network changes in several clinical disorders (see
Griffa et al., 2013; Petrella, 2011; Xia and He, 2011 for reviews) in
resting-state networks (Achard and Bullmore, 2007; Salvador et al.,
2005; van den Heuvel et al., 2008;Wang et al., 2010). Some recent stud-
ies have also used network analysis to investigate event-related or task-
related changes in the topology of functional networks (Kida and Kakigi,
2013; Markett et al., 2014; J.X. Wang et al., 2013).

Additionally, the edges can be weighted by the original connectivity
indices, or by other quantitative anatomical or physiological measure-
ments. This is common for structural connectivity metrics; where
edges can initially be defined from tractography analysis, and then
weighted by a microstructural measurement, such as fractional anisot-
ropy or myelination (e.g., van den Heuvel et al., 2010).

Sources of error in inferred brain connectivity

While network analysis is a powerful tool for understanding the to-
pology of brain networks, there is a critical issue in that these measures
are sensitive to the errors in the inferred edges, both in the presence of
edges and in their derived weights. False positives (FPs) and false nega-
tives (FNs) can arise when inferring both functional and structural net-
works and, depending on the processing parameters employed, there is
always a trade-off between the two. In the context of tractography, an
FP refers to finding a streamline between two regions, which, either
connect regions when there is no true connection, or between two re-
gions where there is a true connection, but takes a pathway which is
not true to the underlying anatomy. An FN is the failure to generate
streamlines between regions for which there is a true connection.

In tractography-derived assessments of structural connectivity,
there are several sources of error: The well-established approach of dif-
fusion tensor imaging (DTI) is unable to resolve fibre orientation distri-
butions (FODs) adequately in regions of crossing fibres (Alexander,
2006; von dem Hagen and Henkelman, 2002). Streamlines derived
with DTI tractography are likely to terminate or choose only one domi-
nant direction in such regions. DTI tractography is therefore prone to a
large number of FNs. In contrast, using other FOD reconstruction
methods, such as constrained spherical deconvolution (CSD) (Tournier
et al., 2008) can lead to spurious peaks in the FOD due to low angular
resolution, low SNR or poorly characterised fibre response functions
(Parker et al., 2013a,b). This will result in more erroneous streamline
trajectories and more FPs.

Another source of error is the difficulty in determining the true tra-
jectory of streamlines emerging from regions of merging or kissing fi-
bres (e.g., Fillard et al., 2011). In such cases, streamlines may be
‘diverted’ to a path that is not consistent with the underlying anatomy.
Another source of error is an inherent bias due to distance, curvature
and branching. In longer, curving or branching pathways, the
accumulated error in tract propagation means that the termination
criteria is more likely to be reached than in short, straight fibres
(Jones, 2010). This bias will alter the topology of the inferred network
considerably. Furthermore,more general confounds in network analysis
can arise irrespective of the connectivity measure employed (see
Fornito et al., 2013; Papo et al., 2014 for reviews). There are multiple
strategies for deriving the nodes of the graph, which can significantly
alter the topology of the inferred networks (see Stanley et al., 2013 for
a review). Also the way edge weights are derived will lead to biases in
the network topology particular to the measurement employed.

Test–retest reliability of network metrics has been examined in a
number of recent studies (see Telesford et al., 2013, for a review). For
example, Vaessen et al. (2010) found that many network metrics from
tractography data were relatively stable across acquisitions with differ-
ent gradient amplitudes and number of diffusion encoding directions,
although clustering coefficient was slightly more variable.

Subsequent studies have also suggested the network metrics from
tractography are highly reproducible across acquisitions (Bassett et al.,
2011; Dennis et al., 2012; Owen et al., 2013). However, there are studies
that indicate otherwise. Bastiani et al. (2012) showed that graphmetrics
are biased by the chose of tractography algorithm andparameters, while
Buchanan et al. (2014) found that the reliability of graphmetricswas de-
pendent on the positioning of the seed points and the FOD model used.

More generally, the approach of test–retest reliability assumes a ran-
dom variation in the FP/FN rates in the inferred networks. Some of the
sources of FPs described above give rise to systematic biases in FP/FN
rates that do not necessarily change across acquisitions, and therefore
will not affect test–retest reliability. For example, a subject with partic-
ularly high curvature of the uncinate fasciculus will be less easily recon-
structed than for other subjects (Jones, 2010), but the test–retest
reliability of the inferred topology from this subject will not be affected.
In such cases there is an interaction between subject-specific variability
(e.g., anatomy) and the stochastic processes that contribute to FPs. This
type of interaction cannot be ruled out by only examining test–retest
reliability.

Thresholding

One approach is to threshold the network prior to network analysis.
The motivation for this is that small edge weights are assumed to arise
from FPs rather than genuine anatomical connections. However, there
are a number of issues with this approach: (1): The threshold chosen
is often arbitrary. The appropriate threshold should be able to suppress
FPs adequately. However, the FP rate is typically unknown and is
specific to the unique methodology used to infer the network; and
(2) thresholding increases the chance of FNs in the network. This can
have equally detrimental effects on network metrics because of the po-
tential removal of small but functionally relevant connections. There is
also the issue that increasing threshold will reduce the networks to
the core network components, which, when comparing between
groups, may remove distinguishing network features, resulting in
non-significant group differences.

For this reason, many researchers opt not to apply thresholds to
graphs and to compute GT metrics on unthresholded weighted graphs
(e.g., van den Heuvel et al., 2010). This approach relies on the assump-
tion that, provided the edges are weighted, small (and presumably
false) edge weights will have inconsequential effects on the computed
metrics. However this assumption is contentious in the literature and
recently shown to be incorrect (Ginestet et al., 2011, 2014).

Some approaches have been proposed to reduce the arbitrariness of
threshold selection. VanWijk et al. (2010) reviewed a number of criteria
used for the determination of the appropriate threshold. Many studies
that used statistical indices of connectivity (e.g., correlation coefficients)
simply choose a threshold that is deemed statistically significant (Chen
et al., 2008; Ferrarini et al., 2009). Other studies have used a minimal
level of network density or degree (the number of edges connecting
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each node) as the criterion for thresholding (Meunier et al., 2009; van
den Heuvel et al., 2009). Bassett et al. (2006) used a number of criteria
to determine an appropriate threshold. One is the false discovery rate
(FDR) correction method (Benjamini and Hochberg, 1995) to estimate
the FP rate and keep this to below 5%. Bassett et al. (2006) also
constrained the threshold using the average node degree, which must
be maintained at a minimum number of connected nodes. Some other
studies chose a threshold where a minimum mean degree has to be
maintained across all groups (Bartolomei et al., 2006; Bernhardt et al.,
2011; de Haan et al., 2009; Dimitriadis et al., 2009; Ferri et al., 2008).
This however assumes that node degree is the same between groups.
This will be particularly problematic in ‘disconnection syndromes’ or
cases of neurodegeneration, where this assumption is likely to be inva-
lid. In such cases, fixing node degreewill bias the network structure and
hence any comparisons of network metrics. Choosing different criteria
for different groups also causes problems, as other network metrics will
be dependent on this property. This will increase the risk of erroneous
inference of significant group differences.

In all these cases, a priori assumptions of core network properties
need to bemade to judge the criteria for thresholding correctly. To over-
come these issues, a number of studies have opted to compute network
metrics across a range of thresholds in a more agnostic fashion
(Hosseini et al., 2012; van den Heuvel et al., 2009). Although this pro-
vides a more complete picture of network differences, it makes the re-
sults more ambiguous and difficult to interpret. Another approach is
to summarise the networkmetrics across a range of thresholds, typical-
ly computing the area under the curve (AUC) of the resultant profile of
network metrics across thresholds (Cao et al., 2013; Hosseini et al.,
2012; Rubinov et al., 2009; Zhang et al., 2011). This approach is attrac-
tive as it is easy to compute and considers network topology across
many thresholdswith reduced reliance on a priori assumptions. Howev-
er, the range of thresholds to sumacross should be chosenwith care. In-
clusion of low thresholds is likely to include effects from FPs while
inclusion of very high thresholds will include measurements of highly
disconnected networks that are not reflective of the true connectome.
Also there can be a failure to detect true group effects if the effect only
manifests in a limited range of thresholds.

Langer et al. (2013) explored the effects of thresholding on statistical
inference in network metrics derived from EEG functional connectivity.
They showed that thresholding affected the ability to detect differences
between groups. Summarising network metrics, such as computing
AUCs, prior to testing for group differences, can therefore be problemat-
ic as group effects can become diluted, particularly if the effect is visible
in only a narrow range of thresholds (Ginestet et al., 2011). Langer et al.
(2013) proposed applying multiple thresholds, computing network
metrics for each sample and performing inferential statistics across
samples for each group. The authors point out that this approach
is problematic due to the non-independence between networks at
different thresholds. They also investigated an alternative approach
computing group-permuted metrics, where connectivity metrics were
permuted between groups and a null distribution of networks was
computed. A number of recent papers have promoted the use of permu-
tation testing to perform statistical tests on network metrics given the
highly complex and, often, non-linear operations involved in their
computation (Hosseini et al., 2012; Langer et al., 2013; Simpson et al.,
2013; Zalesky et al., 2010). Langer et al. (2013) further proposed the
use of permutation testing across thresholds for more reliable testing
on network metrics. However, to our knowledge, this has yet to be
implemented.

Aims

The main aim of the present study was to determine, systematically,
the extent to which false positive streamline reconstructions impact on
the network metrics of structural networks derived using tractography,
and to examine the effects of thresholding to overcome this issue. Our
aims were threefold: (1) to study the effects of FPs on a simplified
model dataset and to examine the effects of thresholds on the network
metrics themselves; (2) to examine the effects of thresholding on infer-
ential statistics of networkmetrics on a large dataset; and (3) to propose
and demonstrate a multi-threshold permutation correction (MTPC) ap-
proach for improved sensitivity to genuine group effects withminimal a
priori assumptions. The MTPC method is then applied to a previously
published graph theoretical analysis of structural networks in a clinical
population.

General method

MRI acquisition

MRI scans from 248 healthy participants (mean age = 19.6 y, 86
male, 162 female) obtained from the Avon Longitudinal Study of
Children and Parents (ALSPAC) birth cohort (Golding et al., 2001) were
used. Informed consent was obtained prior to scanning and the study
was performedwith ethical approval from the local ethics review boards.
MRI data were acquired on a 3 T General Electric HDx MRI system (GE
Medical Systems, Milwaukee, WI) using an eight-channel receive-only
head RF coil. A cardiac-gatedHARDI EPI protocol was usedwith 60 gradi-
ent orientations (Jones et al., 1999) and 6 unweighted (b=0 s/mm2) im-
ages. TE = 87 ms, b = 1200 s/mm2, 60 slices, slice thickness = 2.4 mm,
FoV=230× 230mm, acquisitionmatrix=96 × 96, with a 2.4mm3 iso-
tropic resolution. Each slice was up-sampled within-plane to 1.8 mm2,
giving a voxel-size = 1.8 × 1.8 × 2.4 mm.

Tractography

HARDI data were analysed in ExploreDTI v4.8.2 (Leemans et al.,
2009). Data were corrected for motion, eddy current and field inhomo-
geneity distortions prior to tractography (Leemans and Jones, 2009;Wu
et al., 2008). Whole-brain tractography was performed using the
damped Richardson–Lucy algorithm (Dell'acqua et al., 2010), This is a
modified spherical harmonic method which is more robust to spurious
peaks in the FOD than the standard CSDmethod (Tournier et al., 2007).
Seed points were arranged in a 3 × 3 × 3 mm grid in white matter, step
size = 1 mm, angle threshold = 45°, length threshold = 20–500 mm,
FOD threshold = 0.05, β = 1.77, λ = 0.0019, η = 0.04, number of
iterations = 200 (see Dell'acqua et al., 2010 for details of these
parameters).

Connectivity matrices

Fig. 1 shows a flowchart for the process of obtaining connectivity
matrices. The Automated Anatomical Labelling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) was registered to the HARDI data using a non-
linear transformation (Klein et al., 2010). The AAL atlas is commonly
used to derive nodes in network analyses of neuroimaging data. The
streamline termination points were co-registered to each AAL region.
The numbers of streamlines connecting each pair of AAL regions were
aggregated into a 116 × 116 connectivity matrix.

Network metrics

Four commonly used networkmeasures of global network topology
were computed throughout this work: Global efficiency, mean cluster-
ing coefficient, mean betweenness and smallworldness. Comprehensive
descriptions and equations for these metrics can be found in Rubinov
and Sporns (2010). These metrics were chosen because: (1) they are
all commonly used in network neuroimaging analyses; (2) they all
measure distinct features of network topology; and (3) they are not
necessarily inter-correlated with each other. In all cases, the network
metrics were computed from weighted networks. The edges were
weighted by the proportion of streamlines relative to the total number



Fig. 1. Flowchart of derivation of connectivity matrices from tractography data.
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of streamlines. All networkmetricswere computed using the Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010).

1. Global efficiency (Latora and Marchiori, 2001) is a measure of net-
work integration. It is formally the inverse of the characteristic path
length, which is the mean minimum (geodesic) distance required
to travel from one node to another. It represents how efficiently in-
formation can be transmitted across the network.

2. Mean clustering coefficient (Onnela et al., 2005; Opsahl and
Panzarasa, 2009;Watts and Strogatz, 1998) is a measure of function-
al segregation. More specifically, it is the tendency of the network to
organise into functionally distinct clusters, with numerous and
strong edges within clusters and few and weak edges between clus-
ters. Formally, the clustering coefficient of a node is the ratio of the
sum of the weights across all complete triangles around the node,
to the number of edges connecting the node.

3. Mean betweenness centrality (Freeman, 1979) is a measure of cen-
trality. Betweenness of a node is defined as the fraction of all shortest
paths in the network that pass through a given node. This measures
the importance of nodes to overall network integrity (Tijms et al.,
2013; van den Heuvel et al., 2010). Formally, betweenness of a
node is the sumof ratios of shortest paths traversing the node, versus
the number of shortest paths in the whole network.

4. Smallworldness (Humphries and Gurney, 2008; Watts and Strogatz,
1998) is characterised by a high degree of clustering but each node
can be reached easily by a low path length. It is typically used as a
measure of ‘wiring-efficiency’ and is a structure found inmany natu-
rally occurring systems. Formally, smallworldness is the ratio of the
normalized clustering coefficient vs. the normalized path length.
The normalised versions of these twomeasurements are the original
measure, normalised to the equivalent measure from a random net-
work with the same density.

In addition to these metrics, some node-level metrics were also
tested (see Supplementary material S1).
Experiment 1a — effects of FPs in an model dataset

In this experiment, a ‘model’ dataset was created and regarded as a
‘ground truth’network. FPswere added and the effects on networkmet-
rics quantified.

Method

Creating the model dataset
A model dataset was created from a single tractography dataset

(male, 19 y) selected from the cohort described above. The streamlines
were ‘pruned’ by removing any portions of the tracts that enter grey
matter. Tracts traversing greymatter multiple times were split into sep-
arate tracts. Thiswasdone to eliminate FPs that can arise fromerroneous
trajectories taken when the streamline enters grey matter. Eight major
fibre pathways between cortical regions were segmented manually
within ExploreDTI (Fig. 2): Uncinate fasiculus (UF), superior longitudi-
nal fasciculus (SLF), arcuate fasciculus (AF), inferior longitudinal fascicu-
lus (ILF), inferior fronto-occipital fasciculus (IFOF), temporo-parietal
pathway (TPP), cingulum (Cing) and corpus callosum (CC). Connecting
AAL regions were identified by coregistering an inflated AAL atlas to
the tract termination points. Cortical U-fibres were also included by
identifying tracts connecting adjacent AAL regions. Anatomically incon-
sistent fibres, determined by visual inspection, were removed.

All intra-hemispheric fibres were restricted to the left hemisphere.
The corpus callosum fibres were restricted to those connecting left
and right homologues of each AAL region. Right hemisphere fibres
weremirrored from the left hemisphere. The graphwas based on an ad-
jacency matrix mapping connectivity between all cortical AAL regions
and initially weighted by the number of connecting streamlines associ-
ated with each pair of AAL regions.

Effects of false positives (FPs)
FPs were simulated by adding streamlines to edges of the network.

Two different types of FPs were simulated to differentiate the effects



Fig. 2. Selected bundles for construction of ‘ground truth’model network. Arcuate fasiculus (AF) superior longitudinal fasiculus (SLF) inferior longitudinal fasciculus (ILF) uncinate fascic-
ulus (UF) cingulum (Cing) temproparietal pathway (TPP) corpus calosum (CC) short-range U-fibres.
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of FPs creating new edges and FPs that overestimate existing edge
weights. Both types of FPs can arise from streamlines taking anomalous
trajectories through white matter. In addition to the main experiment,
the effects of edge displacements were also investigated.

1. FPs creating new edges (FP-NEs): Streamlines were added to non-
connecting pairs of nodes, creating new artefactual edges. Each FP
that is added creates a unique edge, so the number of FPs is equal
to the number of additional edges.

2. FPs added to existing edges (FP-EEs): Streamlines were added to
existing edges only, so the number of edges in the network remains
constant but the weighting of edges is overestimated.

FPs of each type were sampled from sets of FPs derived from the
original ‘superset’ of streamlines, prior to manual segmentation and
pruning, and excluding those streamlines included in themodel dataset.
The proportion of streamlines in each edge, relative to the total number
in the set, is the probability of the streamline being sampled. This was
done to create a distribution of FPs that reflects the FP rates encountered
in a typical tractography analysis. This set was further divided into FP-
NEs and FP-EEs in themodel dataset, for the two experimental settings.
These sets are visualised in Fig. 3.
In both cases, the number of FPs added to the network was varied
between 0 and 20. The sampling of FPs was repeated across 100
randomisations. After adding FPs, the edge weights were normalised
by the total number of streamlines to compensate for changes in net-
work density. Network metrics were computed for each FP count and
randomisation. The proportional change in each network metric
relative to the ground truth network, and corresponding standard
z-scores (i.e., the mean change normalised to its standard error) across
randomisations was computed. Additional analysis of the effects of FPs
on specific edges was also carried out (see Supplementary material S3).
Results

Results from our first experiment, examining the effects of FP-NEs
and FP-EEs on network metrics are shown in Fig. 4. For FP-NEs, all met-
rics deviated significantly (at p b 0.01) from the model network with
just one or more FPs, with the exception of clustering coefficient,
which only deviated significantly with 6 or more FP-NEs. Global
efficiency is systematically overestimated while other metrics are
underestimated. Mean betweenness shows a non-monotonic change
across thresholds at small FP-NE counts.



Fig. 3. Visualisation of networks used in simulations. (a) is the original tractography dataset without any additional processing; (b) is the model network derived using manual segmen-
tation of cortico-cortical pathways; (c) and (d) are the sets of FP-NEs and FP-EEs to be sampled, respectively. These were derived from the streamlines present in the original tractography
dataset but not in the ground truth network.
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For FP-EEs, all metrics deviate from themodel networkwith just one
or more FPs. Clustering coefficient is overestimated while global effi-
ciency and smallworldness are underestimated. Mean betweenness
shows a very erratic non-monotonic profile of change across FP counts.

The range of proportional change at which significant differences
occur are generally low (particularly for FP-EEs which are typically in
the range of 0–0.03). However these are still in the range where signif-
icant topological network differences are identified in clinical popula-
tions (see Supplementary material S2).

Experiment 1b— effects of edge displacement

In addition to the effects of FPs,we also tested the effects of displace-
ment. This is where edges are moved from a correct pair of node to an
incorrect pair. Although this is not a realistic scenario in the context of
tractography analysis (except perhaps for very large errors in atlas reg-
istration), this type of error is interesting as there is no change in the
number of edges (as in the FP-NE manipulation) or change in the edge
weights (as in the FP-EE manipulation) and is influenced directly by
false network topology.

Method

Proportional change in the four GT metrics as a result of the varying
number displacement was computed (0 to 20). Displacements were
only made between adjacent streamline bundles, determined by a vol-
umetric overlap of 30% or more in each pair of bundles.
Results

Results (Fig. 5) show that effects of global efficiency and mean be-
tweenness are relatively unaffected, although close to the critical level
of significance. Mean clustering coefficient and smallworldness howev-
er show strong negative effects. This shows that GT analysis is still vul-
nerable to topological errors, other than those involving changes in the
number of edges or the edge weights.

Experiment 1c — effects of thresholding in an model dataset

Using the original and altered networks from experiment 1a, the ef-
fects of thresholding on network metrics were quantified and their ef-
fectiveness at reducing the effects of FPs investigated.

Method

To test the effects of thresholding on altered networks, network
metrics were calculated across thresholds, τ, from 0 to 10 streamlines.
Any edgewith τ or less streamlineswas removed. Thresholdingwas ap-
plied to all networks with all FP rates. Edges were weighted by the pro-
portion of streamlines relative to the total number of streamlines. The
overall inter-threshold effect was determined by computing the propor-
tional change relative to theunthresholded ground truth network. To ex-
amine the intra-threshold effects on FPs (i.e., effect of thresholding on
FPs, while normalising to the overall effects of thresholding on network
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dard error across iterations. Dotted lines on z-score plots indicate critical values of z for
p b 0.01.
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metrics) the proportional change relative to the thresholded ground
truth was computed. An additional analysis of the effects of thresholds
on specific edges was also performed (see Supplementary material S3).

Note that for this experiment, only FP-EEswere investigated. As each
FP-NE is unique to each edge, FP-NEs will be completely removed by
thresholding. There will be no intra-threshold effects and inter-
threshold effects would be the same as those shown by the ground-
truth network.

Results

Fig. 6a shows the proportional effect of thresholding relative to the
unthresholded network while Fig. 6b shows the proportional change
relative to the thresholded network. Thresholding has the effect of
supressing the impact of FPs within-threshold. Network metrics of al-
tered networks obtained at higher thresholds are in greater agreement
with the metrics derived from the ground truth metrics, provided the
same threshold is applied to that ground truth network. However,
there is substantial bias across thresholds, which is shown in Fig. 7. All
network metrics deviate significantly from the unthresholded ground
truth network. The effects of thresholding differed across network met-
rics. Global efficiency increased with increasing thresholds while mean
clustering coefficient decreased with increasing thresholds. Mean be-
tweenness and smallworldness showed a non-monotonic pattern of
change.

Discussion

Thefirst set of experiments investigated the effects of FPs on amodel
network and examined the effectiveness of thresholding to overcome
the confounding effect of FPs. We show that FPs have a hugely
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detrimental effect on the quantification of network topology. We found
differential effects of FP-NEs and FP-EEs, whichmakes the impact of FPs
particularly difficult to predict, even if FP rates can be reliably estimated.
However, applying a threshold to the corrupted network does effective-
ly reduce the bias due to FPs.

Identifying the appropriate threshold will depend on the underlying
FP rate, which is often unknown. Thresholding also introduces its own
bias, which needs to be corrected. It is therefore difficult to make com-
parisons between network metrics directly. Statistical comparisons
will be able to correct for this bias to an extent. However, given the un-
predictable pattern of threshold bias in some network metrics, statisti-
cal comparisons are therefore likely to be unstable across thresholds.
In the following set of experiments, we examine how statistics for
network metrics vary across thresholds in a large dataset. We also test
the detectability of genuine group differences in the presence of this
instability.

Experiment 2a — effects of thresholding on statistical inference in
random groups

This experiment examines the instability of statistical inference in
networks where the FP rates are unknown. A statistically stable metric
would be expected to vary smoothly across thresholds. In contrast, a
statistical test whose results do not vary smoothly across thresholds
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will more likely be due to instability in themeasurement, and lead to in-
correct inferences being made.

Method

All 248 tractography datasets from the ALSPAC cohort were used.
HARDI data acquisition and parameters were the same as for experi-
ment 1. However, no a priori constraints or pruning were used to ex-
clude anatomically inconsistent streamlines, thus the number of FPs in
each dataset was unknown.

The same four network metrics were measured as in the previous
experiments. In addition, two non-network connectivity metrics were
also computed as controls: the total number of edges and the number
of streamlines across the whole computed network.

Subjects were randomly assigned to one of two groups of 124 sub-
jects, in each of 250 permutations. Within each permutation, and for
each network and non-network metric, Mann–Whitney U-tests were
performed across a range of thresholds (0 b τ b 30 streamlines). This
test was chosen because not all network metrics tested positively for
normality consistently across thresholds (see Supplementary material
S4). We quantified instability, by computingσ� ; an analogue of the stan-
dard deviation that only includes deviations of the U-statistic between
adjacent pairs of thresholds, as opposed to all pairs as computed by
the traditional standard deviation.

σ� U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn−1τ 1
2

Uτ−Uτþ1ð Þ2

n−1

vuut
ð1Þ

This can equivalently be expressed as the L2 norm of the derivative
of the statistics across thresholds.

σ� U ¼ dU
dτ

����
���� ð2Þ

where U and τ are the statistics and thresholds expressed as vectors.
We opted for this approach instead of computing the variance in the

standard way because we wish to examine variability of the statistic
only between adjacent thresholds. Although only noise is effectively
measured in the test statistic, the apparent topology at particular
thresholdswill have strong dependency of those at adjacent thresholds.
Therefore, it should be expected that the statistic varies smoothly from
one threshold to another.

Results

Results are shown in Fig. 8. All network metrics have significantly
higher instability compared to the non-network metrics, with the ex-
ception of global efficiency, which has a level of instability similar to
that of the number of edges. Smallworldness shows the highest instabil-
ity while the number of streamlines shows the lowest instability.
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Experiment 2b— effects of thresholding on statistical inferencewith
genuine group differences

In the previous experiment, statistical instability was measured in
randomly assigned groups. Although our data show network metrics
have more statistical instability compared to non-network metrics,
this experiment still does not show how genuine group differences
manifest in the presence of this instability. In the following experiment
we investigated the effects of genuine group differences on statistical
inference.

Method

In the same 248 datasets, half the subjects were randomly assigned
to a ‘healthy’ group and the other half to an ‘atrophied’ group. In the lat-
ter, the number of interhemispheric streamlines was reduced. The pro-
portion of streamlines removed from interhemispheric edges was
randomly sampled from a half-normal distribution with a mean of 0
and a standard deviation (denoted ξ) varying from 0 (i.e., no atrophy)
to 0.3 in increments of 0.05. Atrophy of interhemispheric pathways
have been implicated in several neurological and psychiatric conditions
(Booth et al., 2011; Di Paola et al., 2010; Fields, 2008; Innocenti et al.,
2003; Renard et al., 2014) and therefore is a realistic simulation of a clin-
ical sample. This type of atrophy should also lead to changes in all net-
work metrics tested.

Network metrics were computed for each network and thresholded
at levels of 0 b τ b 30. Statistical comparisons were made with Mann–
Whitney U-tests for each threshold. U-statistics were also computed
for 1000 random permutations of the healthy-atrophied group assign-
ments, to generate an estimate of the null-distribution of U-statistics.
Two control metrics were also computed and tested: total number of
edges and number of streamlines.

To additionally test that the effects were consistent and not due to
underlying noise in the data, the healthy-atrophied group assignments
were randomised prior to inducing atrophy. This was performed for
10 randomisations with atrophy applied at ξ = 0.25.
0 5 10 15 20 25 30
1

1.5

2

2.5
x 10

4 Global Efficiency

0
0

1

2

3
x 1

0 5 10 15 20 25 30
1

1.5

2
x 10

4 Mean Clustering Coefficient

U
-s

ta
tis

tic

0
1

1.5

2
x 1

0 5 10 15 20 25 30
1

1.5

2

2.5
x 10

4 Number of Streamlines

0
1

1.5

2

2.5
x 1

Threshold
(number of strea

Fig. 9.U-statistics obtained from comparing network and non-networkmetrics from healthy an
mutations are shown in grey.
Results

Results are shown in Fig. 9. Each of the network-metrics showed sig-
nificant group effects across a range of thresholds. In all cases the mag-
nitude of the apparent effect was proportional to ξ. The U-statistics for
the global efficiency and mean betweenness produced broad peaks
across a wide range of thresholds. U for global efficiency deviated
from the null distribution at τ ≥ 1 and peaked at τ=10. U for mean be-
tweenness significantly deviated from the null distribution at τ ≥ 5 and
peaked at τ=14. For clustering coefficient significant effects were seen
in narrower threshold ranges. U for mean clustering coefficient was sig-
nificant for 1 ≤ τ ≤ 7 and peaks at τ = 3. U for smallworldness was sig-
nificant at 7 ≤ τ ≤ 15 with a peak at τ = 10.

In contrast, the non-networkmetrics showed very consistent effects.
The number of streamlines was consistently significant across all
thresholds, while number of edges showed significant effects for τ ≥ 1,
which is similar to the pattern seen for global efficiency.

Fig. 10 shows the same comparisons made with different assign-
ments of the healthy and atrophied groups (ξ = 0.25). The effects
seen are consistent across randomisations although there is slightly
more variability inU formean clustering coefficient and smallworldness.

Multi-threshold permutation correction (MTPC)

We have shown in experiment 2b that network metrics compared
between groupswith genuine topological differences remain statistical-
ly significant, despite the instabilities reported in experiment 2a. How-
ever, the thresholds at which the group differences appear statistically
significant are not predictable. In somemeasures (e.g., global efficiency)
group differences remain significant across a wide range of thresholds,
while for others (e.g., mean clustering coefficient) the window is
narrower. The threshold atwhich the peak effect is seen is also inconsis-
tent between network metrics.

These results can be explained analytically as shown in Appendix A.
Here, we showed that the parameters that determine the visibility of
the group are dependent on the true connectome structure and the
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distribution of FPs, neither of which are known a priori. The range of
thresholds in which a significant effect can be observed is therefore
highly unpredictable. Therefore it is necessary to take a more data-
driven, agnostic approach to searching for significant group effects.

To this end, we propose a new approach: multi-threshold permuta-
tion correction (MTPC), which performs statistical mapping on the
graphmetrics along thresholds and identifies clusterswhere a sustained
group effects can be identified. TheMTPCmethod can additionally tack-
le some of the standard issues in neuroimaging statistics such as the
multiple comparisons problem and assumptions of the data distribu-
tion. There are three main components to the approach: (1) permuta-
tions (2) multiple thresholds and (3) cluster size.

(1). Permutation correction is well established as a way to identify
significant clusters of voxels in standard statistical parametric
mapping (SPM) analyses (Maris and Oostenveld, 2007; Nichols
and Holmes, 2002; Smith and Nichols, 2009). This approach is
particularly useful when the researcher has no a priori hypothe-
sis as to the location of the effect of interest. Hence, it is suitable
for detecting group effects with unknown windows of visibility,
as is the case with graph metrics. This approach samples a null-
distribution of test-statistics by permuting group assignments,
and then comparing the original test statistic to this distribution.
The maximum of the null test statistic across the whole image is
usually sampled as a means of correcting for multiple compari-
sons. Given the complex and non-linear operations involved in
network analysis, permutation tests are generally more advis-
able than standard parametric tests, since they do not make as-
sumptions about the distributions of these measures (Hosseini
et al., 2012; Langer et al., 2013; Simpson et al., 2013; Zalesky
et al., 2010).

(2). As demonstrated in the previous experiment, the effects of FPs
can be corrected by applying thresholds. As it is unknown what
the underlying FP rate is, a wide range of thresholds is applied
and the effects under each threshold are quantified.
(3). Given that reliable statistics should vary smoothly across thresh-
olds, a rapidly varying result is less likely to be due to a genuine
group effect. To further ensure that any super-critical clusters
are not due to random variation in the test statistic, the size of
each super-critical cluster is computed from the super-critical
area under the curve (AUC). This can then be compared to the ex-
pected size of clusters due to noise. This can be easily derived
from the mean AUC of the super-critical clusters for the permut-
ed statistics.

The MTPC pipeline

TheMTPC pipeline for networkmetrics is as follows (also see Fig. 11
for a graphical representation):

1. Apply thresholds, τ, to the networks, from 0 to nτ and compute net-
work metrics for all networks across all thresholds.

2. Compute test statisticsSH (e.g., t, F orU) on networkmetricswith the
correct group assignments for each threshold.

3. Permute the group assignments across nrand iterations and recom-
pute test statistics for each permutation and each threshold, giving
a distribution of null test statistics at each threshold.

4. Take themaximum test statistic across all thresholds for each permu-
tation, resulting in one summarised null statistic for each permuta-
tion. To additionally correct for multiple comparisons of node-level
metrics across regions, take the maximum across nodes as well as
thresholds.

5. Identify the critical value (denoted here as Scrit) for the test-statistic
from the top αth percentile of the null test statistics, where α is the
desired confidence level (e.g., 5%).

6. Identify clusterswhere the true test statistic is higher than the critical
value for each threshold and compute the AUC for these clusters (de-
noted AMTPC). The peak statistic and the corresponding threshold are
denoted SMTPC and τMTPC, respectively.
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7. Compute a critical AUC from the mean of the super-critical AUCs for
the permuted tests (denoted Acrit).

8. Reject the null hypothesis if the AUC of the significant clusters ex-
ceeds the critical AUC (AMTPC N Acrit).

Parameter selection

Two parameters for MTPC, nrand and nτ need to be specified. There
are no definitive ways for choosing these parameters but some recom-
mendations are described below:

1. Number of permutations (nrand). Ideally the set of all possible permu-
tations should be computed for a complete test. However, for even
modest sample sizes this is often unfeasible. Generally, the higher
the number of permutations, the greater the precision of the
corrected test. The limiting factor is often computational resources
and time. A general guideline is that 500–1000 permutations are ac-
ceptable for an initial test. If any statistics are found to be close to the
critical value, 10,000–100,000 permutations are recommended for a
more robust test (Edgington and Onghena, 2007; Jöckel, 1986).

2. Range of thresholds (nτ). An advantage of MTPC is its agnostic ap-
proach to thresholding. a priori assumptions need not be made. In-
stead, a wide range of thresholds should be tested. As with nrand,
the larger nτ is, themore robust the test. Because theMTPC performs
statistical tests on each threshold separately, there will not be a dilu-
tion of effect with wider threshold ranges (unlike other multi-
threshold approaches such as the AUC method). However, to ensure
an efficient use of computational resources, some strategies may be
employed to ensure the best candidate range is chosen. Some studies
have used the mean node degree as a criterion for thresholding net-
works (Meunier et al., 2009; van denHeuvel et al., 2009). This is use-
ful with other non-discrete connectivity measures (e.g., coherence)
with different scales. Another example is Bassett et al. (2006) who
used a minimum node degree of 2ln(N) as an upper limit for their
chosen threshold, of the assumption that the core ‘skeleton’ of the
network is retained above this level, beyond which the networks
are implausible. Another data-driven approach for limiting the
range of thresholds is to choose a maximum threshold limit, which
retains a particular architectural characteristic, such as a small-
world or rich-club architecture (van den Heuvel and Sporns, 2011).

The workflow of this procedure is presented in Fig. 11 using the ex-
ample of mean clustering coefficient from experiment 2b (ξ=0.2). The
parameters of theMTPCwere nrand=1000 and nτ=30. In this case, the
critical U-statistic from the computed null distribution at α = 0.05 is
Ucrit=1354. A cluster at 2 ≤ τ ≤ 6, exceeds Ucrit, with a peak of UMTPCx=
1267 at τMTPC=5. The super-critical AUC of this cluster is AMTPC=2488,
which exceeds the critical cluster size of Acrit =306.9. The group differ-
ence inmean clustering coefficient is therefore deemed to be significant.
This contrasts with the standard uncorrected test, which would deem
this effect to be non-significant (Uorig = 1537, n.s.).

Experiment 2c— applying MTPC to the atrophied-healthy
group comparison

In this section we take the data from experiment 2b and apply the
MTPC method to test its ability to detect group effects across varying
levels of atrophy.

We compare the method to the more established approach of com-
puting AUCs for network metrics prior to computing group statistics.
This approach is an attractive data-driven way of consolidating effects
across thresholds and is less computationally intensive than MTPC.
However, by summing across thresholds at the subject-level, the
inter-threshold variability in the test statistics, as demonstrated in ex-
periment 2a, will be lost in the summary measures. This is potentially
problematic as this variability may be important for robust estimating
the null distribution. Also, as mentioned previously, the AUC method
is likely to dilute genuine group effects if they only manifest in narrow
ranges of thresholds.

Method

The MTPC method was applied to the data from experiment 2b.
U-Statistics were computed comparing the healthy and atrophied
group at each level of atrophy (0 ≤ ξ ≤ 0.3) and thresholds
(0 ≤ τ ≤ 30). U-Statistics were additionally computed for n = 1000
group permutations. The peak U-statistic (UMTPC) and the super-
critical AUC (AMTPC) were recorded.

For the AUCmethod, the AUC of each network metric across thresh-
olds was computed for each subject. U-statistics were then computed
for the group comparison of the AUCs (denoted UAUC) and the same
set of permutationsperformed forMTPC. The test statisticwas then test-
ed for significance against the null distribution.

The critical values for bothmethodswere computed for p b 0.05. The
values of UAUC, UMTPC and AMTPC and their respective critical valueswere
plotted against ξ. The sensitivity of each statistic was measured using
the minimum detectable atrophy, derived from the value of ξ at the in-
tercept between the relevant statistic and its respective critical value.

Results

Fig. 12 shows the resultant statistics for the two methods for each
networkmetric. The AUCmethod failed to identify an effect of global ef-
ficiency for any ξ. In contrast, the MTPC method was able to identify an
effect at ξ ≈ 0.1. For mean betweenness, both AUC and MTPC methods
detected the effect at ξ≈ 0.1. For mean clustering coefficient, TheMTPC
method showed a slightly higher sensitivity (ξ ≈ 0.1) compared to the
AUC method (ξ ≈ 0.15). For smallworldness, the MTPC method again
showed higher sensitivity (ξ ≈ 0.1) compared to the AUC method
(ξ ≈ 0.2).

Experiment 3 — application of the MTPC method

Here, theMTPCmethodwas applied to structural networks obtained
from adults suffering traumatic brain injury (TBI) and healthy controls.
Network analysis of this dataset has previously been published in
(Caeyenberghs et al., 2014).

Method

Diffusion MRI data were acquired from 37 adult TBI patients and 27
healthy controls. Full details of the participant inclusion criteria,
MRI acquisition, pre-processing and derivation of the connectivity
matrices are provided in (Caeyenberghs et al., 2014). Edges were
weighted by the proportion of streamlines relative to the total number
of streamlines.

The same four network metrics used in the previous experiments
were computed. Group effects were tested with independent-samples
t-tests. For all four metrics, the t-statistic was computed at thresholds
from 0 ≤ τ ≤ 50. Permuted t-statistics were computed across n = 1000
iterations. MTPC was applied with a significance threshold of α= 0.05.

Results

The permuted and unpermuted t-statistics are plotted in Fig. 13,
with the corresponding results of MTPC. Twometrics show a significant
group effect: Global efficiency and smallworldness. Global efficiency
showed a super-critical cluster at 0 ≤ τ ≤ 26, which exceeded the critical
cluster size (tMTPC=−2.98, tcrit =−2.38, AMTPC= 476.8, Acrit = 191.9,
τMTPC = 0, pMTPC b 0.05). Smallworldness showed a consistent
super-critical effect across all thresholds, which tested significant with
MTPC tMTPC = −3.43, tcrit −2.02, AMTPC = 2985.3, Acrit = 240.5,
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pMTPC b 0.05, τMTPC = 50). The other two metrics were found to be non
significant. Mean betweenness did not produce any super-critical
clusters, and therefore tested as non-significant (tMTPC = 1.27, tcrit =
2.21, n.s.). Mean clustering coefficient did produce a super-critical effect
at τ ≥ 20. However the size of this cluster did not exceed the critical clus-
ter size and therefore tested non-significant with MTPC (tMTPC = 2.18,
tcrit = 1.76, AMTPC = 364.1, Acrit = 760.3, n.s.).

Discussion

Graph theory (GT) is a powerful framework for quantifying topolog-
ical properties of brain networks. However, the sensitivity to false posi-
tives (FPs) in the reconstructed networks can give rise to spurious
inferences. This study investigated these effects in four commonly
used network metrics: Global efficiency, mean clustering coefficient,
mean betweenness and smallworldness. We then investigated the ef-
fects of thresholding on thesemetrics and the stability of statistical com-
parisons with these metrics. We developed a new method of multi-
threshold permutation correction (MTPC) that reliably detects genuine
group differences in network metrics.

Effects of false positives

The results of our first experiment show that even a single false pos-
itive will have significant impact on inferred network metrics. This is
true for cases where FPs created new edges (FP-NEs) or FPs added to
existing edges (FP-EEs), causing an overestimation of the edge weights.
The only exception is mean clustering coefficient, which only deviated
significantly at 6 or more FP-NEs. More importantly, the direction of
bias produced by FPs varied depending on where the FPs lie. Global ef-
ficiency showed a strong positive bias in the presence of false edges, but
a slight negative bias to the presence of additional streamlines in
existing edges. This difference is due to the normalisation of the edge
weights to the number of streamlines. While the inferred efficiency of
the affected edges increases, the weights of the unaffected edges will
be scaled down causing an overall decrease in efficiency. The addition
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of edges causes a much stronger bias in global efficiency, and therefore
the streamline normalisation produces no noticeable effect. Clustering
coefficient showed a comparatively weak, but still significant effect.
Again FP-NEs show a negative effect while FP-EEs lead to a positive
effect. A network with a high degree of clustering will appear less clus-
tered when artefactual edges are added, but if existing edges are en-
hanced without additional edges, the apparent strength of the existing
clusters will be enhanced. Smallworldness shows a consistent negative
effect in both FP-NEs and FP-EEs. Betweenness centrality showed
monotonic change due to FPs, particularly for FP-EEs. Previous studies
have found, that measurements of centrality are particularly unstable
(Borgatti et al., 2006; Costenbader and Valente, 2003; Segarra and
Ribeiro, 2014).

Importantly, the normalisation of edge weights means that the
observed effects are not only due to changes of network density. The
FP-EE experiment also shows significant changes without changes in
the number of edges. An additional analysis (experiment 1b) also
shows that alterations of network topology, without changes in the
number of edges or edge weights can still result in significant differen-
tial changes in network metrics. Although we corrected for network
density in our study, this may not always be appropriate. If reduction
in density is a primary driving force in a topological change, then
controlling for density may result in failure to detect the effect of inter-
est. This is likely to be the case in studies of neurodegenerative condi-
tions. However, if there is a hypothesised network reorganisation, not
due to change in density, which is more likely for psychiatric or
neurodevelopmental conditions, then controlling for density is appro-
priate. The decisionwhether or not to control for density should depend
on the specific nature of the hypothesised effect.

There is substantial variability in the regional sensitivity to FPs
across network metrics, with global efficiency and smallworldness
showing the greatest regional variability (see Supplementary material
S3). The most heavily implicated region was the posterior and middle
cingulate cortex, and precuneus. This is interesting in the context of
previous studies that have analysed general topological features of
structural brain networks. A number of studies in healthy adults
(Gong et al., 2009; Hagmann et al., 2008; van den Heuvel and Sporns,
2011) and clinical populations (Tijms et al., 2013; van den Heuvel
et al., 2010) have identified the posterior cingulate as a critical hub in
structural brain networks. This suggests that FPs in particularly critical
parts of the network introduces greater detrimental impact on inferred
global topology.

Effects of thresholding

Thresholding has been shown to significantly reduce the effects of
FPs. When comparing network metrics across FP rates within thresh-
olds, the rate of FPs has less effect as threshold increases. This means
that at low thresholds, a small number of FPs can be effectively con-
trolled for, while higher thresholds are required to correct higher FP
rates.

Although within thresholds, there is a reduced effect of FPs, when
comparing network metrics across thresholds, it becomes clear that
thresholding comes at the expense of introducing its own bias, which
for some network metric is unpredictable (particularly for mean be-
tweenness). For some metrics, this bias follows a predictable pattern,
for example, global efficiency shows an exponential decrease with
increasing thresholds. It may be possible to model the effects of
thresholding on specific network metrics, but such an approach re-
quires a priori assumptions of the FP rate in the inferred network. In
Supplementary Materials S1, we show the same is true for node-level
network metrics, with the effects of thresholding showing very large
variability across regions as well as thresholds. This bias will again
lead to erroneous estimates of network metrics.

We also showed, in experiment 2a, that network metrics are signif-
icantly more unstable than non-network measurements of the same
networks. FPs and thresholds will both bias the topology of the network
(sometimes in opposing directions) such that their effects on network
metrics will be difficult to predict across thresholds. However, the re-
sults from experiment 2b showed that genuine group differences can
still be detected in network metrics and that the magnitude of the ob-
served effects are roughly proportional to the size of the true group ef-
fect (see Fig. 12). Global efficiency and mean betweenness showed
strong and consistent effects at thresholds of τ ≥ 3. Smallworldness
and mean clustering coefficient also showed effects, but spanning a
more limited range of thresholds. This is due to the effects of rapid
phase transitions in the connectome structure with increasing thresh-
olds, contributing to fluctuating variance (see Appendix A). Further-
more, the ranges in which the effects are seen differ. For clustering
coefficient, this is approximately 1 ≤ τ ≤ 7, and smallworldness,
5 ≤ τ ≤ 15. This means that, although results show detectable group ef-
fects for all network metrics, the effects are not necessarily seen in the
same threshold ranges. A multi-threshold approach is therefore still re-
quired. There may also be the possibility of scenarios where threshold
bias can counteract the visibility of group effects, leading to false accep-
tance of a null hypothesis.

Factors affecting bias due to FPs and thresholding

Consideration should be given to the type of network change that is
expected between groups. In our simulated example, we induced topo-
logical changes by simulating changes in the corpus callosumpathways,
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which has been implicated in several neurological and psychiatric con-
ditions (Booth et al., 2011; Di Paola et al., 2010; Fields, 2008; Innocenti
et al., 2003; Renard et al., 2014). However, other types of atrophy may
result in altered sensitivity to thresholding. For example, distributed
loss of connections is more likely to impact on clustering coefficient
and global efficiency thanmore focal insults to the network. In addition,
the measurement used for weighting the graph edges requires consid-
eration. Some weighting strategies will influence how thresholds affect
derivation of network metrics (Hagmann et al., 2008; Sporns et al.,
2005). Further investigation into the stability of measurements using
other connectivity indices is required. Here we have only shown effects
using streamline-based indices, but there are a wide range of measures
which can also be used to weight structural networks, such as fractional
anisotropy, myelination or FOD-based indices (Dell'Acqua et al., 2013).
Differences in these weighting measurements may manifest in the
threshold-induced bias and statistical instability differently to the
weightingmeasures used here. Another factor that is likely to be impor-
tant is the consistency of these measurements across sessions or sub-
jects. For this reason it is unlikely that network metrics from different
modalities (e.g., comparing structural and functional networks), or
even using different acquisition and analysis parameters, are compara-
ble with each other. For example, tractography performed with an
angular threshold of 45° would have fewer FPs than with a threshold
of 60°. The hidden differences in FP rates will lead to variation in their
sensitivity to thresholding. As such, comparisons of networkmetrics be-
tween networks inferred using different processing pipelines, parame-
ters or different modalities should not be made without a good
estimate of the FP rates of each network andmaking appropriate correc-
tion for these differences.

FP rates may be managed by imposing anatomical a priori con-
straints on tractography immediately after tract reconstruction. Con-
straints such as pruning the streamlines when they enter grey matter,
as performed in this study, will achieve this to an extent. Manual seg-
mentation of all existing fibre pathways is usually unfeasible. However,
there are automated clustering techniques that can perform clustering
of whole-brain connectomes with a priori anatomical information. For
example, using a coregistered white-matter atlas to constrain the
tractography output (Maddah et al., 2005), defining streamlines as
unique chains of ROIs (Q. Wang et al., 2013) or using machine learning
to capture salient features of tracts from a training set of exemplar tracts
(Parker et al., 2013b). Unfortunately, even the most robust clustering
methods will still be subject to some error. Given the low tolerance of
network analysis to FPs, thresholding will still be a requirement. How-
ever, use of such methods will allow more confidence of a low FP rate
and therefore safely reduce the maximum threshold to test.

Another issue to consider is the effects of false negatives (FNs). The
MTPC method does not account for the effect of FNs and thresholding
the network will inevitably lead to increases in the FN rate. For this rea-
son it may be appropriate to derive the connectivity matrix using more
lenient parameters to ensure the inferred networks have higher FP rates
(which are easier to control for) than FN rates.

Relevance to functional connectivity

Although our investigations focused on tractography-derived con-
nectivity, the same issues highlighted here will also affect functional
connectivity measures. Our findings are therefore relevant to network
analysis of functional networks and similar biases should be expected.

In EEG/MEG functional connectivity, a common source of FPs is
artefactual correlations arising due to volume conduction or magnetic
field spread (Nolte et al., 2004; Nunez et al., 1997). Additionally, in the
source domain, the ill-posed nature of the source inverse problem
leads to additional short-range cross talk between reconstructed
sources, causing more FP correlations (Hui et al., 2010; Sekihara et al.,
2011). While measures have been developed which are more robust
to these effects, such as imaginary coherency (Nolte et al., 2004) and
phase lag index (Stamet al., 2007), all these still suffer from the problem
of higher-order artefacts, which are much more difficult to control
(Drakesmith et al., 2013). Also, there is lack of sensitivity to deep
sources, which will result in subcortical parts of the functional neural
network being permanently invisible, meaning that network metrics
will only ever capture features of a sub-set of the true network.

In fMRI-derived functional connectivity (e.g., cross-correlations),
aberrant connections can arise from assumptions made about the
uniformity of the haemodynamic response to neural activity. Haemody-
namic response functions vary considerably in their time-course across
different regions. This can lead to highly erroneous connections toman-
ifest. Physiological noise that has not been effectively controlled, such as
respiration and heart rate is highly correlatedwith the BOLD signal, fur-
ther contributing to spurious correlations (Murphy et al., 2013). One
study examining the stability of fMRI-derived network metrics as a
function of acquisition time found network metrics stabilise at suffi-
ciently longacquisition times (Whitlow et al., 2011). However, thisfind-
ing does not discount any systemic bias due to correlated noise sources.

Advantages of MTPC

The results of experiment 2b show genuine group effects are visible
even with the high instability of statistics across thresholds. Our pro-
posed MTPC approach is developed to detect such effects in a robust
manner.

MTPC addresses a number of issues in the statistical analysis of net-
work metrics. Firstly, the method obtains a true null distribution of test
statistic by permutation. This is a valuable approach for networkmetrics
given the highly complex and non-linear operations involved in their
computation (Hosseini et al., 2012; Langer et al., 2013; Simpson et al.,
2013). The permutation framework also allows for the correction of
multiple comparisons across thresholds and, in the case of node-level
metrics, across regions. Second is the issue of arbitrariness of the selec-
tion of a single threshold. Although some have proposed measures to
more accurately estimate the correct threshold to use (e.g., Bassett
et al., 2006), our approach systematically computes null distributions
across a feasible range of thresholds, and tests each point for significant
effects. This minimises the a priori assumptions required for choosing a
single threshold. Third, the method accounts for instability in statistics
by testing for effects across thresholds and imposing the condition
that any clusters of apparent significant effects should exceed the ex-
pected cluster size due to noise.

In experiment 2c,we show that theMTPC approach ismore sensitive
to group effects than the existing AUCmethod. This approach also con-
siders networkmetrics atmultiple thresholds (Cao et al., 2013; Hosseini
et al., 2012; Rubinov et al., 2009; Zhang et al., 2011). However, in con-
trast to MTPC, network metrics are summarised across thresholds at
the subject-level prior to group comparisons. As a result, the AUCmeth-
od is less sensitive to effects traversing narrow ranges of thresholds, as
the values at non-significant thresholds will dilute the observed effect.
For example, if one subject shows a consistently high but sub-critical
measurement, this can have a higher AUC than a subject whose mea-
surement is low throughmost thresholds but significantly high in a nar-
rowwindow of thresholds, as demonstrated in experiment 2b. A similar
confound can take place in the opposite direction. See Ginestet et al.
(2011) for a more detailed discussion of this problem (see also Fig. 14).

The improved performance ofMTPC can also be attributed to the abil-
ity to consider variance of test statistics across thresholds, and therefore
allowing a more accurate estimate of the null distribution. This is sug-
gested by the fact that the two measurements showing effects in only
narrow thresholds (mean clustering coefficient and smallworldness)
are two measurements MTPC outperforms the AUC method on.

A more critical observation of the AUC method is the total failure to
detect any effect in global efficiency, despite the relatively stable effects.
This is most likely due to the sharp exponential decay of global efficien-
cy with increasing thresholds (see Fig. 7). The computed AUCs will be



Fig. 14. A toy illustration of a scenario where the AUC method will fail to identify a differ-
ence between graph metrics with very different profiles along τ. The two networks (red
and blue) show distinct behaviour across τ, yet computing the AUC will reveal no differ-
ences between the two networks.
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heavily biased towards the values at small thresholds, where the group
effects do not manifest (see Fig. 9). Therefore, effects at higher thresh-
oldswill be less detectable. TheMTPCmethod does not suffer this prob-
lem, as each threshold is tested separately.

Considerations for MTPC

An issue with MTPC is the assumption that topological differences
between groups do not lead to different sensitivities to the varying
threshold. For example, one group might show a larger change in clus-
tering coefficient in the step from one threshold to another. Andreotti
et al. (2014) have found that differences in network density between
groups can inflate group differences and suggest normalising for net-
work density. Therefore, thresholding such that the density of the net-
works is matched at each threshold rather than a uniform scale on the
connectivitymeasure, should bemore robust. Thismatched strategy ap-
proach has been utilised in some network analysis studies (Bonilha
et al., 2012; Dennis et al., 2011; Schindler et al., 2008). However, as
discussed above, the appropriateness of correcting for density will de-
pend on the specific hypotheses being tested.

Another potential problem with MTPC approach is the assumption
of equivalence of statistics performed at different thresholds across dif-
ferent network metrics. In the results of experiment 2b, there is some
variation in the location of the most significant peak. Particularly, for
Fig. 15. A toy illustration of the fluctuations of variance. Two groups of networks (red and
blue) with different topologies are shown around a core transition point,φp

C with subject-
specific and group specific offsets Δφp

E and Δφp
H, respectively. Bold lines indicate the vari-

ance of f(τ) for each group. The variance of f(τ) is inflated aroundφp
C leading to lowSH. Asτ

moves away from φp
C, variance reduces and SH is larger, allowing the group differences to

be identified.
mean clustering coefficient (peak effect at τ = 3) and smallworldness
(peak effect at τ = 10). If one were to search independently for effects
in these three measures using MTPC, we would identify effects in
some network metrics that are not necessarily apparent at the same
thresholds as other network metrics (e.g., mean clustering coefficient
will not be deemed significant thresholded at τ = 10, where the most
significant peak lies for smallworldness). It is unclear whether the in-
ferred effects at these peaks can be treated as equivalent measures of
the same network. The network metrics derived at different thresholds
are, strictly, measuring different networks, but are being treated as the
same network. It may therefore be more appropriate to constrain the
search across thresholds such that only network metrics with peaks in
the same windows are treated as significant. However, if there are
large differences in the location for significant peaks, this will lead to
more ambiguity as to whether a significant effect exists overall. In addi-
tion, our results show there is large variation in how thresholds affect
different network metrics. Van Wijk et al. (2010) illustrate flaws with
assuming that network metrics between groups will be equivalent
and that the appropriate threshold will itself be depended on the ex-
pected network metrics. It is therefore more prudent to search a range
of thresholds for each metric independently to accommodate for this
variability.
Conclusion

Network metrics are highly susceptible to FPs, but applying thresh-
olds to the networks prior to network analysis can reduce these effects.
Unfortunately this introduces additional bias to the network metrics
and it is not possible, without a priori knowledge, to predict this bias,
which is rarely known in neuroimaging experiments. There is also
high instability in statistical inference in these metrics. However, genu-
ine group effects can be seen in some networkmetrics, across a range of
thresholds. The range of thresholds across which the effect can be de-
tected is not known, but by performing permutation tests across a
wider range of thresholds, it is possible to identify clusters of significant
group effects to correctly identify genuine group effects. The MTPC ap-
proach is more sensitive to group effects than the existing AUC ap-
proach. This approach will more robustly identify genuine group
differences in networkmetrics and can beused for testingnetworkmet-
rics derived from both structural and functional connectivity. The ap-
proach of graph theory, and particularly statistics in graph theory, is
still in its infancy in neuroimaging, with little consensus or standardiza-
tion of analyses. The presented approach is therefore an important step
beyond those currently implemented in the literature.
Acknowledgements

The imaging data in this study was funded by a grant from theMed-
ical Research Council, UK (grant number G0901885). Imaging data was
obtained from The Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort. We are extremely grateful to all the families who
took part in this study, the mid-wives for their help in recruiting
them, and the whole ALSPAC team, which includes interviewers, com-
puter and laboratory technicians, clerical workers, research scientists,
volunteers, managers, receptionists and nurses. The UK Medical Re-
search Council, theWellcome Trust and the University of Bristol provide
core support for ALSPAC.

This studywas also supported by aWellcomeTrust New Investigator
Award (grant number 096646/Z/11/Z), awarded to Prof. Derek K Jones.
Prof. Anthony S David is supported by the NIHR Biomedical Research
Centre at South London &Maudsley NHS Foundation Trust and Institute
of Psychiatry, King's College London.

Wewould also like to express thanks to Dr. Dafydd Evans for provid-
ing valuable advice on Appendix A.



330 M. Drakesmith et al. / NeuroImage 118 (2015) 313–333
Appendix A

Here we present an analytical explanation for narrow windows of
thresholds in which statistically significant effects can be observed.
We show for a sample of graphs with a hypothesised group effect, sig-
nificant group effects are only detectable in small windows of thresh-
olds, which, without knowledge of the true underlying topology and
the distribution of FPs, cannot be determined.

Given a set of graphs, where eachmember, Gk,l is a graph for subject l
in group k. Each group has nk graphs and there arem groups in total.

G ¼ G1;1;G1;2…G1;n1

� �
; G2;1;G2;1…G2;n2

� �
… …Gk;l…
� ��

… Gm;1;Gm;2… Gm;nm

� �g:
ð1Þ

Each graph inG is represented by a set of nV vertices, nE edges and nE
edge weights.

Gk;l ¼ G V ; E;Wð Þ ð2Þ

We use the nE × nE weighted connectivity matrixWk,l as a proxy for
Gk,l where wi,j are the weights corresponding to the edges EVi↔V j . Each
graph represented by Wk,l, can be expressed as a sum of matrices

Wk;l ¼ Cþ ΔHk þ ΔEl ð3Þ

where C is the core structure of the connectome common to all subjects
and groups,ΔHk is the change in C due to effects specific to group k.ΔHk

can include group differences that influence any topological measure-
ment (e.g., global efficiency, clustering coefficient, betweenness central-
ity, etc.). ΔEl is the change in C due subject-specific factors. This can
include true individual differences in topology as well as false positive
edge weights arising from the data acquisition or analysis. We will
only consider graphs with positive edge weights, so C has only positive
elements.ΔHk and ΔEl can have positive or negative elements but none
such that any element in Wk,l is negative.

To quantify some topological property of Wk,l we use some graph
metric function, denoted f(Wk,l). The goal of the analysis is to compute
a statistic testing whether or not the hypothesized topological effects
of ΔHk on f(Wk,l) exists. SH Gð ÞNSα indicates a significant effect, where
Sα is the critical value of the test statistic at the acceptable type I error
rate (e.g., α = 0.05).

We additionally assume that the variance (both subject-specific and
group specific) of connectome topology in human brains is very small in
the context of all possible variations of C.

∀i; j : ci; j
�� �� N var Δhi; j;k

� �
∧ ci; j
�� ��N var Δei; j;l

� � ð4Þ

where ci,j Δhi,j,k and Δei,j,l are the ith and jth elements of C, ΔHk and ΔEl,
respectively.

To apply a threshold, we make Wk,l a function of threshold τ.

Wk;l τð Þ ¼ Wk;l 0ð Þ−Tk;l τð Þ ð5Þ

where,Wk,l(0) denotes the unthresholded matrix and Tk,l(τ) is the ma-
trix of edge weights to be removed at of threshold τ, which is monoton-
ically increasing, with elements ti,j such that

ti; j ¼ wi; j
0

:
:

τ b ui; j
τ≥ui; j

	
ð6Þ

where ui,j are the elements of the matrix, Uk,l, some criteria for
thresholding. Uk,l may be the same as Wk,l or may be derived from
some other measure (e.g., density, node degree, and cost-functions).
We further denote G τð Þ as the full set of graphs thresholded at τ.

For simplicity, wewill assume throughout thatUk,l=Wk,l. However,
where Uk,l ≠ Wk,l, the relationship between components of Wk,l

expressed in Eq. (4) should instead apply to the equivalent components
in Uk,l. The components of Wk,l need not obey this relationship in this
case.

We can show simply that there is dependency ofSH G τð Þð Þon τ. Con-
sider a set of graphs Ĝ, equivalent toGwhereΔEl=0. i.e., all variability in
Ĝ is due only to the effect in ΔHk. In this case, SH Gð ÞNSα will always be
true, as long as |ΔHk| N 0. When thresholds are applied Ĝ τð Þ; all effects
observed are due to ΔHk and there is no between-subject variability.

Therefore SH Ĝ τð Þ

 �

is constant across all τ. Under this condition, the

AUC approach (see introduction) would be valid for detecting group ef-
fect (see Ginestet et al., 2011). However, outside of this unique case,
there will always be some variation of SH G τð Þð Þ. If this variation is suffi-
ciently large, the AUC approach will fail to identify genuine group ef-
fects. Ginestet et al. (2011) illustrates this in more detail (see also
Fig. 14).

Belowwe illustrate two ways in which the sensitivity of SH G τð Þð Þ to
ΔHk is highly variable. We first describe a broad interval along τ where
effects are detectable, and secondly, show how the statistic fluctuates
over thresholds.

Interval of detectable group effects

We can express f(τ) in terms of it constituting components in a sim-
ilar way to Eq. (3):

f Wk;l τð Þ�  ¼ f C þ Δ fHk þ Δ f Ek;l τð Þ ð7Þ

where

f C ¼ f Cð Þ
Δ f Hk ¼ f Cþ ΔHkð Þ− f C

Δ f Ek;l τð Þ ¼ f Wk;l τð Þ� 
− f C−Δ f Hk

ð8Þ

i.e., fC is the topology of the core connectome, C. ΔfkH is the group-
specific change in f(Wk,l(τ)) and Δfk,lE (τ) is the subject-specific change
in f(Wk,l(τ)), which includes the error due to Tk,l(τ). Note that only the
subject-specific effects vary over τ.

The sensitivity of SH G τð Þð Þ, will depend on the ratio of the inter-
group variance to the inter-subject variance.

SH G τð Þð Þ∝
var Δ f Hk

h i

var Δ f Ek;l τð Þ
h i : ð9Þ

If, as is common in network analysis, we assume that the elements of
ΔEl are small compared to the non-zero elementsΔHk, then var[Δfk,lE (τ)]
will decrease most rapidly at lower τ. However, when τ is sufficiently
larger, elements of ΔHk will be removed by Tk,l(τ), resulting a large in-
crease in var[Δfk,lE (τ)]. We can therefore define approximate limits
along τ where SH G τð Þð Þ NSα is most likely as [τa, τb] such that:

τa b τb;where

τa ¼ argmax
τ

−
d
dτ

var Δ f Ek;l τð Þ
h i

τb ¼ argmax
τ

d
dτ

var Δ f Ek;l τð Þ
h i ð10Þ

The interval [τa , τb], will be dependent on the structure of C and ΔEl
which are not known a priori.

Fluctuating variance of graph metrics

Even if the assumptionmade in Eq. (10) is valid, this is not sufficient
to describe the fluctuations in variance of graph metrics. Fluctuations
arise due to the interaction of subject-specific variance with the
core connectome topology (and to a lesser extent, the group-specific
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topology). The topology of graphs typically show large phase transitions
when their edges are manipulated, such as by thresholding (Janson
et al., 2011). The phase transitions can be either positive or negative;
therefore f(τ) is not necessarily monotonic. We create a simple model
to approximate such behaviour using a stepwise function.

f Wk;l τð Þ� 
:¼ f τð Þ ¼ ∑

nφ−1

p¼1
ϑp

1 : τ∈ φp;φpþ1

h i
0 : τ∉ φp;φpþ1

h i
8<
: ð11Þ

where f(τ) is the graph metric being modelled as a function of τ. φp

is the location on τ where phase transition p takes place, ϑi is the
value of f(τ) between two phase transitions [φp, φp + 1] and nφ is the
total number of phase transitions that take place across τ. The position
and size of the phase transitions depends on the specific topology of
Wk,l(τ).

We express the parameters of the modelled version of f(τ) in a sim-
ilar way as in Eq. (7), such that:

φp ¼ φC
p þ ΔφH

p þ ΔφE
p ð12Þ

where φp
C is the locations on τwere phase transition p take place due to

the changes in the core connectome structure C, Δφp
H is the group-

specific offset in φp and Δφp
E is subject-specific offset in φp. The same

principle also applies to ϑp.

ϑp ¼ ϑC
p þ ΔϑH

p þ ΔϑE
p ð13Þ

Note that from here on, we consider the effects of Δφp
E on ϑp

C and the
effects Δφp

E of Δφp
H as equivalent (with the exception of a caveat

mentioned below). Therefore, only the effects of Δφp
E on φp

C are
demonstrated.

Following Eq. (4), we assume the greatest variation in φp and ϑp is
that due to C while the smallest variation is due to ΔEl.

var φC
p

h i
N var ΔφE

p

h i
ð14Þ

and

var ϑC
p

h i
N var ΔϑE

p

h i
ð15Þ

As τ approaches a particular core phase transition φp
C with a variable

offset Δφp
E, the variance of f(τ) around these values will increase, ap-

proaching the variance of the magnitude of the phase transitions (the
inter-transitional variance).

lim
τ→φC

p

var f τð Þ½ � ¼ var ϑp−ϑpþ1
� � ð16Þ

Conversely, as τ approaches the intervals between phase transitions,
1
2 φC

p þ φC
pþ1


 �
, the varianceΔfk,lE (τ)will decrease, approaching the intra-

transitional variance:

lim
τ→1

2 φC
pþφC

pþ1


 � var f τð Þ½ � ¼ var ϑp
� � ð17Þ

The minimum possible intra-transitional variance only consists of
variance due toΔϑp

Ewhile themaximumpossible inter-transitional var-
iance will consist of variance due to Δϑp

E and ϑp
C. Therefore, these limits

can be expressed as:

var ϑp
� � ¼ var ΔϑE

p

h i
var ϑp−ϑpþ1

� � ¼ var ϑC
p þ ΔϑE

p

h i ð18Þ
And therefore, following Eq. (15), the variance at the inter-
transitional point is always higher than that of the intra-transitional
point.

var ϑp−ϑpþ1
� �

N var ϑp
� �

: ð19Þ

And equivalently,

var f φC
p


 �h i
N var f

1
2

φC
p þ φC

pþ1


 �� �� �
: ð20Þ

As a result, the subject-specific variance of f(τ) fluctuates between
these limits, depending on the proximity of τ to the phase transitions
p. Since ΔfkH and fC are invariant to τ (Eq. (8)), var[f(τ)] is proportional
to var[Δfk,lE (τ)]. Therefore, fluctuations in var[f(τ)] are inversely propor-
tional to the fluctuations in SH G τð Þð Þ (Eq. (9)). A toy illustration of this
effect is shown in Fig. 15.

The rate at which var[f(τ)] varies, will depend on var[φp
E]. If

var[Δφp
E] = 0, there is no increase in variance except at the precise

point the phase-transitions takes place. The graph metric variance will
remain stable across the transition interval, i.e., var[f(τ)] = var[ϑp]. As
var[Δφp

E] increases, the window of stable variance within each interval
decreases. A large var[Δφp

E], or a large nφwill result in very narrowwin-
dows of stability, leading to increased var[f(τ)] and therefore poor sen-
sitivity of SH G τð Þð Þ to ΔHk.

The same principle applies to the effects of Δφp
E on group specific

phase transitions, Δφp
H, except that the increase in var[f(τ)] around

Δφp
H will be group-specific. This will have a less pronounced impact as

the overall subject-specific variance of f(τ) across all groups will be
lower around Δφp

H than φp
C. However, this can also introduce

heteroscedasticity to f(τ) which, depending on the choice of statistic,
can bias the statistical inference.

In conclusion, var[f(τ)], and hence SH G τð Þð Þ, fluctuates considerably
across τ. the parameters that determine the exact behaviour of var[f(τ)]
are dependent on the structure of C and ΔEl, which are not known a
priori. This necessitates a more data-driven agnostic approach to
searching for intervals of τ where SH G τð Þð Þ NSα.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.05.011.
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