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Abstract 
 

Demand response (DR) is able to contribute to the secure and efficient operation of 
power systems. The implications of adopting the residential DR through smart 
appliances (SAs) were investigated from the perspective of three actors: customer, 
distribution network operator, and transmission system operator. The types of SAs 
considered in the investigation are: washing machines, dish washers and tumble dryers. 

A mathematical model was developed to describe the operation of SAs including load 
management features: start delay and cycle interruption. The optimal scheduling of SAs 
considering user behaviour and multiple-rates electricity tariffs was investigated using 
the optimisation software CPLEX.  

Further, the financial benefits for SA users subscribing to multiple-rates electricity 
tariffs were investigated. The savings are mainly a result of the appliances’ load shifting 
feature and are sensitive to user settings. The savings averaged at 7% of the household 
annual electricity bill. For households in the United Kingdom, the SAs had a payback 
period of less than three years and a net present value of up to £206. 

Furthermore, the operation of distribution networks with different uptake rates of SAs 
was investigated. A simulation containing a load modelling method and a network 
model determines, through time series power flow analysis, the network branch loading 
and voltage profile. The thermal ratings and voltage limits were exceeded on the LV 
network due to deterioration in the temporal diversity of the appliance utilisation. A 
regional controller for SAs was developed which effectively limited the network peak 
demand and voltage drop.    

A framework was introduced which enabled transmission system operators to access 
demand response from SAs in a timeframe suitable for operating reserve. A multiple 
time-step simulation was developed that assessed the load reduction from a number of 
households as a response to a reserve instruction. The instruction was modelled as a 
price increase with a short notification period. It was estimated that up to half of the 
current operating reserve requirements of Great Britain’s power system can be obtained 
with 20% uptake of SAs.  
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Chapter 1 

1 Introduction 
 

 

Summary:  

The current drivers for the development of demand response in the United Kingdom are 

discussed. An overview of the theory behind residential demand response and 

programmes implemented by utilities worldwide is summarised. The state of the art on 

the applications of smart appliances in the power systems is outlined. Furthermore the 

mathematical methods found in the research literature used to model the operation of 

smart appliances are reviewed.     
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1.1 Research context 

The Intergovernmental Panel on Climate Change released in 2013 an analysis [1] which 

confirms with 95% certainty that human activity is the main cause of climate change. 

The atmospheric concentration of carbon dioxide (CO2) has increased by 40%, methane 

(CH4) by 150% and nitrous dioxide (NO2) by 20% since pre-industrial times. The 

European Commission adopted a series of guidelines, such as Energy Roadmap 2050 

[2] and Roadmap for moving to a competitive low carbon economy by 2050 [3], to assist 

the European Union (EU) Member States in forming their national legislation to 

promote the reduction of greenhouse gas emissions. In line with the EU targets, the 

government of the United Kingdom (UK) has pledged through the 2008 Climate 

Change Act and the 2013 Energy Act [4] to reduce the greenhouse gases (GHG) 

emissions in the UK by 2050 with 80% from the levels in 1990. Demand response (DR) 

is amongst the solutions supported by the UK policy mechanism in order to achieve the 

targets.  

The environmental policies are projected to cause the retirement of 11.5 GW of coal and 

oil-fired plants in the UK under the EU Large Combustion Plant Directive [5]. In 

addition, the low price of coal due to the drop off in United States (US) demand 

provoked the mothballing of combined cycle gas turbine (CCGT) plants [5]. A Capacity 

Market [6] is being introduced from 2018 in parallel with the energy market to ensure 

sufficient generation capacity. The Capacity Market is designed to accommodate DR, 

with auctions for DR taking place one year before delivery, in contrast with four years 

for generation. As a transitional arrangement, until the full implementation of the 

Capacity Market, the national electricity transmission system operator, National Grid 

Electricity Transmission (NGET), is implementing a new service, Demand Side 
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Balancing Reserve, starting from 2015 which will reward consumers for reducing their 

demand in winter weekdays [7]. 

The Renewable Obligation policy mechanism, which supported the installation of 

13GW of wind and solar capacity by the end of 2013 [8], is being replaced from 2017 

by the Feed-in Tariffs with Contracts for Difference (FiT CfD) [6]. The new mechanism 

is expected to continue to support the installation of generation from renewable sources. 

NGET expects the level of reserve needed to operate the power system in 2020 to 

increase by 53% from the 2011 level [9] as more wind power is introduced. The same 

reference highlights the importance of engaging more DR from the residential sector to 

meet the required level of balancing reserves.  

The Smart Meter Roll-out [10], which is set to finish in the UK by 2020, is another 

initiative with the potential to bring more DR online. The smart meter includes a digital 

electricity meter, a communication hub and an in-home display (IHD). It is designed to 

offer more information to the electricity supplier for billing purposes and to enable the 

customer to manage consumption better through information feedback from the IHD. 

Apart from connecting the meter with the supplier and the IHD, the communication hub 

offers the possibility to connect consumer devices [11]. It is expected that consumer 

devices such as domestic appliances with integrated communication modules will 

facilitate more DR.   

The Renewable Heat Incentive [12] supports the adoption of heat pumps by domestic 

consumers. In Driving the Future Today [13], the government has set-up mechanisms 

through which the adoption of plug-in electric vehicles will be supported in the near 

future. These policies which aim to decarbonise the heat and transport sector resulted in 

increasing the electricity demand considerably. As the uptake of low carbon loads in 
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residential areas can be clustered, there is a higher risk of stress to the distribution 

networks rather than to the transmission networks. The UK energy regulator, Office of 

Gas and Electricity Markets (OFGEM), is assisting the Distribution Network Operators 

(DNOs) to prepare for the coming challenges through Revenue Incentives Innovation 

Output regulation and Low Carbon Network Fund (LCNF) which supports 

demonstration projects. DR represents one of the preferred solutions, as revealed by the 

multitude of LCNF projects which include DR trials: Customer-Led Network 

Revolution [14], Low Carbon Networks [15], Capacity to Customers [16], Flexible 

Approaches for Low Carbon Optimised Networks [17] and Thames Valley Vision [18]. 

1.2 Current demand response practices  

A history of demand-side management (DSM) programmes is presented in [19]. DSM 

programes started in the United States (US) in the 1970s in a time when the country was 

facing an energy crisis.  The National Energy Conservation Policy of 1978 is regarded 

as the first law to promote DSM programmes. The vertically-integrated utilities were 

required to provide energy audits to their customers in order to reduce their energy 

consumption. Utility programmes falling under the umbrella of DSM include load 

management, strategic conservation, electrification, customer generation and 

adjustments in market share. Load management is a type of DSM programme that is 

designed to change the network operators’ load shape by influencing how the loads are 

used at the end-user premises.  

With the unbundling of the power sector, the load management was considered under 

the term Demand Response (DR). The US Department of Energy defines DR as 

“changes in electric usage by end-use customers from their normal consumption pattern 

in response to changes in the electricity price over time, or to incentive payments design 

to induce lower electricity use at times of high wholesale market prices or when system 
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reliability is jeopardized”[20]. In Europe the Council of European Energy Regulator has 

given a similar definition, in addition recognizing the role of distributed generators in 

DR: “Changes in electric usage by end-use customers/micro generators from their 

current/normal consumption/injection patterns in response to changes in the price of 

electricity over time, or to incentive payments designed to adjust the electricity usage at 

times of high wholesale market prices or when system reliability is jeopardised”[21].  

DR programmes can be divided into two categories: incentive based and rate-based 

pricing. A more detailed classification is presented in Figure 1.1. 

 

Figure 1.1: Demand response categories [22], [23]. 

For incentive based programmes customers are financially rewarded for reducing their 

electricity consumption at times when the power system is under stress. 

For direct load control, the DR programme provider remotely switches off the end-

users’ loads. It is the most popular DR programme in US with 5.13 million participants 

Demand 
response 

programmes
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Direct load control 
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Demand 
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Capacity markets
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(EDP)

Real time pricing 
(RTP)

Rising block tariffs 
(RBT)

Interruptible/ 
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in 2011 [24]. The programme targets small commercial customers (less than 100kW 

peak demand) and residential customers. The controlled loads are usually heating, 

ventilation and air conditioning (HVAC) systems. The residential customer enters into a 

contract with the DR programme administrator to hand over the control of the air 

conditioner for a number of hours per year. When a generation shortage occurs, the DR 

administrator broadcasts a signal to curtail the participants’ loads. Upon receiving the 

signal, controllable loads modify their operations. For example the temperature of the 

thermostat in air conditioners can be raised by a few degrees resulting in the delay of the 

cycle start or in the interruption of the cycle for those units which are in operation. In 

2014, California Independent System Operator rewards customers who agree to this 

type of DR programme with 25$ per year for 100 control hours. In the UK, a residential 

DLC programme was introduced in the 1970s [25]. Three million radio teleswitch 

meters where installed in households with storage and water heaters. The meters could 

connect or disconnect the loads at the receipt of a radio signal from long-wave radio 

transmitters. The loads were supplied for 7 overnight hours with reduced electricity 

rates; the exact schedule was transmitted using a radio signal. It is estimated that in 

2013 there were 550,000 participants enrolled in this programme [26], while the rest of 

the customers have adopted gas central heating or subscribed to Time-of-Use tariffs. It 

is expected that this DR programme will be replaced due to implementation of smart 

meters.  

In demand bidding/buyback programmes the participating customers can bid in a 

market created by the DR administrator for demand reduction. The bid is for day-ahead 

events or day-of events. There is a minimum duration for the demand reduction. The 

participating customer receives penalties if the reduction in demand is not delivered.  
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In the emergency reserve DR, the customers (usually large consumers) are paid for 

measured load reduction in a generation shortage event. This is a voluntary based 

program; therefore there are no commitments or penalties. 

A capacity market is a type of market running alongside the energy market. It was 

established to encourage the construction of new power plants and to allow the demand-

side easy access to revenues in exchange for its participation. The traded product can be 

a capacity certificate that represents the available capacity that the power plant or DR 

aggregator holds. The sellers are generators or DR aggregators and the buyers are the 

electricity suppliers. A report [27] concluded that in Europe only UK, France and 

Ireland are developing a capacity market opened for the entire demand side. Spain, 

Germany and Italy have a capacity market opened only to large consumers and 

generators. Greece and Poland have a capacity market opened only to generation.    

The ancillary markets are used by transmission system operators to procure extra 

reserve for maintaining the balance of generation and demand in the power system. The 

participant must commit to reduce load or increase generation when the system operator 

decides it is needed. Designed initially for the generators, this market is now opened for 

non-generator resources. Examples of balancing services managed by the Great Britain 

(GB) transmission operator NGET are given in Table 1.1. More details on the Fast 

Reserve and Short Term Operating Reserve are given in Section 4.1.2. 

Rate-based pricing DR programmes, shown in Figure 1.1, encourage customers to shift 

their demand from periods of peak demand to off-peak periods. The concept is widely 

used in a range of sectors including transport (train tickets are charged differentially 

throughout the day), and communication (voice calls are charged at different rates 

depending on the time of the day). 
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Table 1.1: Examples of balancing (ancillary) services of the GB trasmission system operator [28]. 

Ancillary service National Grid 
Balancing Service 

Open to 
demand 

Delivery 
time 

Minimum 
amount 

Spending 
in 2012 
(M£) 

Continuous 
Regulation 

Mandatory Frequency 
Response No continuous - 61.6 

Instantaneous 
Contingency 
Reserves 

Frequency Control 
Demand Management Yes < 2 s 3MW 

81.2 Firm Frequency 
Response Yes < 30 s 10MW 

Fast Reserves Yes < 2 min 50MW 92 

Replacement 
Reserve 

Short Term Operating 
Reserve  Yes < 240 min 3MW 104 

Demand Side 
Balancing Reserve Yes < 120 min 1MW - 

BM Start-up No < 90 min - 4.53 

Voltage control Reactive Power No continuous - 55.4 

Time of Use (TOU) tariffs incentivise customers to shift their demand from high price 

to low price time intervals. It has a minimum of two rates: peak and off-peak. The rates 

can also vary depending on the season. In the EU and the US, TOU tariffs have been 

available for industrial customers since 1970s. Currently, in the EU and the US, the 

electricity suppliers offer TOU tariffs for residential and commercial customers. In the 

EU the most successful TOU tariff was implemented in France, called ‘Heures Pleines / 

Heures Creuses’ (Full Hours / Hollow Hours) with 10 million participant customers. 

The electricity rates are reduced by 30% for 8 hrs each day. In the UK, approximately 3 

- 3.5 million residential customers are on TOU tariffs. Further details on the UK TOU 

tariffs are given in Section 3.2.  

The critical peak pricing (CPP) rate is applied over the flat rate or TOU rate at hours 

where the demand is high. Participants are notified the day before if CPP will be 

enabled. The CPP pilot projects review [29] reported a ratio of three to fifteen between 

the rates for the most expensive and the least expensive time periods. An average of 

14% peak demand reduction for residential customers during the CPP days was 
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recorded in California’s Statewide Pricing Pilot. The demand reduction increased to 

27% for customers who opted for smart thermostats able to receive the utility’s CPP 

signal and automatically modify their operation.  

For extreme day pricing (EDP), the higher rate is in effect for the entire 24 hrs during 

the days where the demand is predicted to be very high. The participants are notified on 

a day ahead basis. An example of EDP pricing is the Tempo Tariff, in France. Tempo 

Tariff has defined three types of days according to the forecasted demand conditions: 

white, blue and red. The colours, from white to red, correspond to incremental levels of 

demand and electricity rates. Tempo Tariff also incorporates a TOU tariff. In [30] 

300,000 residential and 100,000 small commercial customers are reported to participate 

in this DR program, giving a peak load reduction of 450MW. 

The electricity rate for a customer with real time pricing (RTP) tariff varies hour by 

hour. The customer receives the tariff on a day-ahead or hours-ahead basis. The hourly 

rate follows the wholesale electricity cost. This type of programme requires a 

communication link between the utility and the meter as well as the meter’s capability 

to record energy use on an hourly basis. Home automation can enhance the benefits of 

adopting RTP. According to [31], RTP is available for large and medium customers in 

Italy, Spain, Finland and Netherlands. Some utilities from the US have already made 

available hourly RTP for residential customers [32].       

Rising block tariffs (RBT) aim to reduce the overall customer electricity consumption. 

The electricity price (per kWh) rises after a certain electricity consumption threshold in 

each month. A study on the impact of RBT on customers in the UK estimated that 

domestic customers would reduce their consumption between 1 to 7.4% [33].  
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For the interruptible/curtailable rates, the DR administrator offers lower electricity rates 

to customers who agree to have a part or the whole load curtailed when an event 

happens. The number of events per year and their maximum duration is established 

before the contract is agreed. The targeted customers are commercial and industrial 

consumers.  

Most of the incentive based DR programmes outlined in this section target commercial 

and industrial consumers. Larger loads are preferred because the incentive is 

proportional to the load reduction level which requires that each load be metered and 

monitored. Contrasting with the incentive based DR programmes, the rate-based 

programmes are widely available for residential consumers. The reward for 

participating in the programme is embedded in the electricity tariff. The smart metering 

infrastructure will facilitate the implementation of more dynamic tariffs reflecting the 

daily changes in the wholesale cost of electricity and in the state of the electricity 

network. Automation of the response from appliances can make the rate-based 

programme more efficient for the participant and the administrator. 

1.3 Services provided by smart appliances 

As shown in Section 1.2, appliances with thermal inertia such as air conditioning and 

heating units are already used to assist the operation of power systems. There is a recent 

surge of interest to add other appliances such as washing machines – WM, tumble dryer 

– TD, dishwasher – DW, fridges and ovens to the residential DR programmes. These 

appliances, along with controllable distributed energy resources (DERs), are classified 

by Gellings in [24] as smart energy-efficient end-use devices. Smart devices are 

equipped with communication capabilities and advanced control strategy to respond to 

external signals. To differentiate between devices generating power and devices 

consuming power, the latter are named smart appliances. The Association of Home 
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Appliance Manufacturers (AHAM) defines smart appliances [34] as: “a product that 

uses electricity for its main power source which has the capability to receive, interpret 

and act on a signal received from a utility, third party energy service provider or home 

energy management device, and automatically adjust its operation depending on both 

the signal’s contents and settings from the consumer”. 

The studies on smart appliances can be classified by topic in three categories: 

• Smart appliances which are shifted from peak demand with the goal of reducing 

the user electricity cost. During the off-peak demand intervals the appliances are 

powered by power plants with lower marginal costs, such as baseload or 

renewable generation.  

• Smart appliances which are incorporated in the power systems operational 

procedures such as balancing services.   

• Smart appliances which are utilised for distribution network support, i.e. for 

congestion relief and integration of DERs.   

1.3.1 Peak load shifting 

A study on smart appliances - WM, DW, TD and plug-in hybrid electric vehicles 

(PHEV) - responding to utility signals is discussed by Mohsenian-Rad et al. in [35]. The 

utility signal was a RTP tariff combined with Rising Block Tariff (RBT). The authors 

began by arguing that the users could not keep track with changing electricity rates in a 

RTP case, therefore automation was needed to maximize the benefits of adopting such a 

tariff. The results showed a 25% reduction in the monthly electricity bill. The RTP tariff 

alone was responsible for lowering the peak-to-average (PAR) ratio of a household by 

38% compared with the case with regular appliances, while further reduction in PAR 

could be achieved by combining the tariff with RBT. For a group of ten houses, the 
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proposed automation had a smaller impact on the PAR of the aggregated demand, 

reducing it by only 22% as the PAR was already reduced by the load diversity. The 

authors further explored in [36] the coordination between a group of 10 houses with 

smart loads using game theory. An RBT tariff, represented by a quadratic cost function, 

incentivised the group of houses to collaborate to flatten their aggregated demand. The 

coordination was responsible for a 15% reduction in the monthly electricity bill for the 

group of houses and a 14% reduction in the PAR of the aggregated demand.  

Gottwalt et al. [37] investigated the possible savings for users using smart appliances 

and multiple-rates tariff. An RTP tariff was introduced by up scaling the wholesale 

electricity price from the European Energy Exchange. The authors introduced a 

household load profile generator that utilises statistical data on appliance availability in 

German households and occupancy profiles. A simulation on a sample of 1000 houses 

showed household savings of approximately €1300 for space heating, €150 for water 

heating, €5 for each cold appliance, and between €1.5 and €11.6 per year for each 

washing appliance. The authors argued that even though the heating load could bring 

more savings, their penetration rates in Germany were very low. The paper concluded 

that additional incentives are needed besides TOU tariffs in order to make smart 

appliances attractive to households. 

Dlamini and Cromieres [38] investigated peak reduction in the household load profile 

by controlling appliances. The activation times of appliances, taken from a survey on 30 

households in Japan, were an input of the simulation. Three algorithms were tested: 

shifting appliances to off-peak intervals, coordinate the appliances in order to avoid the 

running simultaneously and, thirdly, switching on the appliances only if the house load 

limits are not infringed. The load profile for the non-controllable loads was assumed to 

be known. The minimum load reduction across all the algorithms was 6%. The authors 
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underline the importance of the delay allowed by users, between the time the appliance 

is started and the time the service is delivered, towards reducing load. 

In reference [39], the authors introduced a home energy management system (HEMS) 

capable of receiving TOU tariff and controlling WM, DW and TD. The performance of 

the HEMS resulted in a 30% reduction on the monthly electricity cost and a 40% peak 

load reduction for individual households.  

1.3.2 Balancing services 

Studies in the literature cover the participation of smart appliances in balancing 

(ancillary) services: frequency response, operating (standing) reserve and transmission 

network congestions.   

System frequency is an indicator of the momentary balance between electricity demand 

and electricity generation. The concept of using system frequency as an input to 

controllable residential loads was first introduced in [40]. In the UK, the use of fridges 

and freezers as dynamic demand was investigated in [41]. The loads stop their cycles at 

a low system frequency and start at high frequency. The results showed that 40 million 

appliances are needed to satisfy the 1320 MW of spinning reserve required by the GB 

power system. In [42] it is reported that 596,299 refrigerators along with 176 bitumen 

tanks are needed for an aggregator to provide 10 MW of dynamic frequency response to 

the GB transmission system operator. However it was noted that to meet the system’s 

frequency requirements needs a large number of fridges and freezers due to their small 

consumption (on average 100W) and to their unavailability to simultaneously respond 

to a frequency event.   

The use of residential DR as operating reserve was investigated in the SMART-A 

project [43]. A first case study based on the UK power system assumed a 57 GW peak 
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demand, a 25 GW wind generation, and a generic controllable load. The DR helped to 

reduce wind curtailment and run the system with less part-loaded power plants securing 

the reserve margin. The reduction in GHG emissions varied between 0.8 to 4.3 MtCO2. 

A second case study was based on a power system with 19.8 GW peak demand and 5 

GW wind generation installed. This considered a detailed shifting algorithm of 

appliances (WM, DW, TD). The value of appliances as operating reserves was 

estimated to be between €3.7 for WM, €6.3 for DW and €16.4 for TD per annum. 

Reference [44], which considered a wider range of household appliances including 

HVAC and water heater, showed that residential consumers from the US could reduce 

their annual electricity bill by up to 2% by participating in the operating reserve market.   

In the SMART-A project, the use of smart appliances in the congestion management of 

the transmission network was discussed. The methodology included two steps: 

economic dispatch and a redispatch using Optimal Power Flow. In this study, an 

appliance model was not integrated but a generic aggregated controllable load was 

considered. Two case studies of 2 and 16-bus test systems representing the simplified 

UK power system were introduced. The benefits for the transmission network operator 

of using residential DR consisted of the reduction in the cost of disconnecting 

consumers and avoiding wind curtailment.  

1.3.3 Distribution network support   

The focus of the studies carried out on the topic of smart appliances for distribution 

network support can be divided into: congestion relief, and coordination with 

distributed energy resources (DERs). The studies usually incorporate a network model. 

An example of using smart appliances for network congestion relief was investigated in 

reference [45], where a Spanish distribution network with 700.000 residential 
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consumers was investigated for a summer day. Different correlations between the 

consumption curve of different types of appliances and the peak demand on a 

distribution network indicated that some appliances are better suited than others to 

reduce the peak demand. This is the case in [45], where shifting the WM, DW, TD and 

water-heaters managed a reduction in peak demand of only 3.2%, as the four appliances 

have a small contribution to the network’s peak demand. Up to 12.6% was obtained 

from curtailing all the residential and commercial air-conditioning units. However in the 

case of the UK the residential air-conditioning units may not be the best solution for DR 

as the ownership of air-conditioning units was estimated at 2.4% [46]. 

In reference [47], smart appliances of 12 houses belonging to the same feeder were 

controlled to reduce the peak demand. A reduction of 13.31% was obtained. A similar 

value, of 14.7%, was obtained in a study [48] on a feeder with 544 houses which 

investigated the load reduction during the peak pricing of a CPP. It was observed that a 

significant rebound peak was created after the end of the peak pricing. A release option, 

in which appliances had their start randomised after the peak pricing interval, reduced 

the magnitude of the rebound peak. The ending time of the peak pricing is another 

factor influencing the rebound peak. The most advantageous setting is for the peak 

pricing of the CPP to end during the off-peak demand period to accommodate the 

rebound peak. Early measurements taken during a recent trial [14] in the UK also 

revealed a rebound peak at the end of the CPP peak pricing interval. 150 smart 

appliances (WMs) were monitored during the trial. 

Coordination of smart appliances with DERs can be aimed at different levels: within a 

house, at Low Voltage (LV) level or High Level (HV) level. In [49], the author 

investigated the capability of the appliances (WM, DW, TD) to match the generation 

profile of residential photovoltaic panels (PVs). The argument is that the load shifting of 
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appliances will induce financial savings in the households without net metering or in 

those where the feed-in tariff from PVs will decrease below the electricity retail price. 

The results show an increase in household consumption from PV by 200 kWh each 

year, which converts into a financial benefit of €20 per annum.      

Congestion relief and coordination with DERs at HV level were addressed in the 

SMART-A project [43]. An appliance model of one hour resolution was used in the 

project. The role of smart appliances for a 30-bus distribution test system with a 

capacity of 175 MW and 186.4 MW peak demand was investigated. The results showed 

that smart appliances successfully removed any load shedding and reduced the wind 

curtailment by 618 MWh.    

Another utilisation for smart appliances on distribution network operation indicated in 

the review on smart appliances [50] is to manage the network in the event of a circuit 

outage. The demand at HV and higher voltage levels is supplied by at least two circuits, 

each with a capacity higher than the peak demand. In case of rare one-off events when 

one circuit becomes faulted the demand is supplied by the remaining functional circuit. 

There is an opportunity to allow the connection of additional demand, above the 

capacity of each circuit. The condition is that the DR is required to reduce the post fault 

demand below the rating of the remaining functional circuit. A trial testing the post fault 

handling from commercial and industrial loads is under way [16] in the UK; however, 

there are no investigations on residential loads.   

1.4 Modelling of smart appliances operation 

According to references [51]–[53] the load management actions implemented in smart 

appliances are: 
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• Delay the appliance starting time as exemplified in Figure 1.2 (a) on a tumble 

dryer load profile.     

• Interrupt the cycle of appliances for short periods as shown in Figure 1.2 (b).   

• Modify the appliance cycle by reducing the power consumption at the expense 

of increasing the cycle’s duration of operation as shown in Figure 1.2 (c). 

 

 

 

Figure 1.2: Smart appliances load management actions: (a) Delay cycle; (b) Interrupt cycle; (c) 
Modify cycle. 

Mathematical optimisation is widely used by researchers to model the operation of 

smart appliances. Other methods include: optimal stopping rule, heuristic rules, greedy 

algorithm and game theory.  
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1.4.1 Optimisation 

Mohsenian-Rad et al. introduced in [35] an optimal load control scheme based on linear 

programming (LP). In this study the appliance load profile is represented by a vector of 

continuous decision variables, while the appliance energy consumption is the sum of the 

variables. The continuous nature of the variable represents an approximation: the 

appliance power consumption can take any value between zero/minimum and 

maximum. The authors discussed a more detailed method for modelling smart 

appliances using discrete energy consumptions and cycle interruption; however, the 

method was not implemented in the paper. The user behaviour was modelled as a term 

in the optimisation objective function which weights between the cost reduction and the 

cost of delaying the appliance.  

The smart appliance shifting algorithm implemented by Gottwalt et al. [37] also 

employs LP-based optimisation. To the list of smart appliances, the authors add fridges 

and freezers which were modelled as a number of cycles across the day, each cycle 

being shifted by 30 minutes before and after the initial start time. The appliances are 

estimated to have constant power during the cycle. LP-based optimisation was also 

employed to shift appliances in reference [39] by Enrol-Kantarci. 

In the references presented until this point the cycles of appliances were modelled as 

energy consumption. Modelling appliances as a sequence of power phases, each with 

discrete power consumption, requires decision variables with integer or binary values. 

This is the case in [54], where a mixed-integer LP (MILP) based optimisation was 

employed. In order to model each power phase operation, the number of decision 

variables was multiplied by the number of phases. Additional binary decision variables 

were added to model the constant power consumption and the order of power phases in 

an appliance cycle. The binary variables have increased the number of variables by a 
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factor of four. This led to a significant computational time for scheduling even a small 

number of appliances. The same optimisation problem from [54] was solved in [55] by 

using dynamic programming, method which required more computational resources 

than MILP.        

LP and Quadratic Programming (QP) based optimisations were utilised in [45] for 

shifting the smart appliances. The appliances were represented by 2 one hour-long 

phases with constant power consumption. No interruptions were allowed between the 

power phases. A two step control strategy was discussed. At the first step, the 

appliances forecasted to be activated in the next day were optimally scheduled 

considering a list of control actions, e.g. delay the start by 1 hr, by 2 hrs and so forth. 

Two optimisation objectives were defined: cost minimisation (LP problem) and error 

minimisation between the forecasted load and desired load curve determined by the 

transmission system operator (QP problem). At the second step, users are assigned a 

control action from the list when they activate the appliance.     

1.4.2 Other methods   

In reference [56], optimal stopping rule was utilised to schedule smart appliances 

according to a RTP tariff. Because the considered tariff changes each hour, the authors 

demonstrated that the optimal schedule for a single appliance is a pure threshold policy. 

The threshold is a function of the user’s waiting cost. If the current price is higher than 

the threshold, the appliance should start, while if it is lower, the appliance should wait 

for the next tariff interval. In the case of more than one appliance, an additional step 

with binary optimisation was added to choose which of the appliances with a higher 

threshold should start and which should be delayed.  
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Another control logic based on thresholds for scheduling appliances was introduced in 

the Active House project, described in [57], [58]. The considered controllable devices 

were: smart appliances, EV, HVAC, lights and blinds. The RTP tariff received by 

HEMS was partitioned in a number of intervals. In the interval with the lowest price all 

the appliances could function unrestricted, while at the interval with the highest cost 

only the appliances that delivered an essential service were functioning. The loads were 

started, delayed, or have their operating parameters modified depending on the price 

interval and according to a logic agreed by the resident. A similar control strategy was 

described in [48], where the appliances checked the pricing signal at activation. If the 

price was normal the appliance starts without delay, while if it was high or critical, the 

start is delayed until the return to the normal price. An override option was given to the 

appliance user.  

The work in [49] proposes a greedy algorithm to shift the appliances. The power 

consumptions measured at 200 households were processed by imposing a power 

threshold to identify the appliances cycles. The greedy algorithm finds the interval with 

the lowest cost of running the appliance by running through each interval of the day, 

memorising any new minimum and discarding the old minimum. Although the resulting 

schedule is optimal, the method is suitable to model a small number of appliances. 

Scheduling a large number of appliances with greedy algorithm takes significantly more 

computational resources than with optimisation.      

A control logic for coordination of appliances based on heuristic rules was introduced in 

[59], [60].  At activation time, the appliance queries if the electricity rate is high. When 

it is high, the appliance queries if there is enough power produced by the household 

small-scale embedded generation or enough energy stored in the EV battery to cover its 
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demand. When there is enough storage, the battery should be discharged while the 

appliance is operating. The control logic prioritised the use of renewable sources.  

Game theory is one of the solutions proposed in the literature as an alternative to 

centralised control. Each appliance retains its individual control, yet its scheduling is 

influenced by the other appliances’ operations. In references [36],[61], game theory was 

employed to schedule domestic loads. The load consumption was modelled in terms of 

energy. The tariff, a quadratic equation function of load, ensured that the lowest cost for 

the aggregated demand from a group of households was achieved by the collaboration 

of appliances from all households to avoid a peak. The scheduling was a non-linear 

convex optimisation problem. Reference [62] introduced an additional game theory 

concept, of fairness in the billing system. The proposed solution ensures that the 

households are rewarded according to their contribution. While they showed some 

advantages over centralised control, such as computational efficiency, the 

implementations of game theory in smart grids requires high data traffic as all the 

households have to communicate between each other before reaching a decision. While 

the current research did not investigate the scalability of game theory in smart grids, the 

scalability issue was raised in other real world applications [63].  

The advantage of using optimisation to schedule the smart appliances is that it will yield 

the optimal solution. The outcome for other types of models can be suboptimal, or take 

more resources to reach the optimal solution.  

1.5 Research objectives and thesis structure  

The goal of this work was to investigate through simulation the effects of adopting 

smart appliance technology. The implications of this technology were sought for 

appliances users, transmission system operators and distribution network operators.  
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A smart appliance model incorporating load management features was needed to carry 

out the simulations. The smart appliance model had to be accurate enough to make 

observations at household level, while at the same time, scalable, to be used for system 

level simulations. A smart appliance model with the above objectives was developed 

starting from the optimal load control introduced in [35]. The improved model considers 

cycle interruption and discrete power consumption. 

The thesis set out to achieve the following objectives: 

• For appliances users: 

o To identify which parameters involved in the operation of smart 

appliances have the most influence in achieving cost savings; 

o To identify if the smart appliance technology is financially valuable for 

the UK residents. Multiple electricity tariffs already in use or designed 

for the UK electricity sector were considered. 

• For the transmission system operators: 

o To design a simulation that can assess the response of smart appliances 

to a reserve instruction from a number of households at each moment of 

the day;  

o To estimate the level of reserve which can be provided by the aggregated 

response of the smart appliances towards the operating reserve of the GB 

power system.  

• For the distribution network operators: 
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o To identify potential detrimental effects of the adoption of smart 

appliance technology for the MV and LV networks due to the loss in 

appliances diversity of usage;  

o To mitigate the potential detrimental effects by coordinating the 

operation of appliances and investigate further opportunities for the 

network operator. 

The structure of the thesis follows the research objectives presented, as shown in Figure 

1.3. In Chapter 2, the smart appliance model including the shifting algorithm which was 

used in the simulations of the other chapters is introduced. In Chapter 3, the electricity 

cost savings for users are calculated through financial analysis tools. In Chapter 4, the 

current operating reserve requirement of the GB power system is calculated. In addition, 

the level of reserve from smart appliances and the resulting financial and environmental 

achievements is estimated. In Chapter 5, the beneficial and detrimental impacts of smart 

appliance technology on distribution network operation are investigated using power 

flow analysis. The effects of using appliances for network support on the user cost 

savings are also evaluated.  

Smart appliance model
( Ch. 2)

Financial analysis
( Ch. 3)

Operating reserve 
analysis
( Ch. 4)

Power flow analysis
( Ch. 5)

Appliance user

Power system operator

Distribution network 
operator

Analysis modules Smart appliances 
stakeholders

 

Figure 1.3: High level structure of the analyses used and outline of the thesis.  
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2. S. Nistor, J. Wu, and M. Sooriyabandara, “The impact and opportunities of 

smart appliances on distribution networks,” In Proceedings of the 4th IEEE/PES 

Innovative Smart Grid Technologies Europe Conference, pp. 1–4, 2013, 
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Chapter 2 

2 Smart Grid ready appliances 
 

 

Summary:  

The objective of the chapter is the development of a tool to model the response from 

domestic smart appliances to utility signals. A mathematical method to describe the 

operation of different appliances is introduced. Models to delay and interrupt the 

operation of appliances are developed. The user behaviour is also considered: the 

appliance start times are obtained using a residential energy demand model, while the 

maximum start delays allowed by the user are obtained from statistics reported in the 

literature. A shifting algorithm that integrates the models and user behaviour is 

proposed. The algorithm uses optimisation, implemented in CPLEX software, to find the 

smart appliance actions with regard to the utility signal. The theory behind the 

optimisation solving algorithm is discussed. A validation of the energy demand model 

and a verification of the shifting algorithm are performed. The developed tool is generic 

in that it is capable to model demand response from appliances with predetermined 

power consumption profile.          
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2.1 Introduction 

The percentage of households in GB that have an Internet connection is increasing: 83% 

of households in 2013 [64], up from 57% in 2006. An additional communication 

infrastructure will be deployed with the smart metering roll-out, reaching every 

household by 2020. Therefore, there is a new opportunity to use this communication 

infrastructure to send DR signals to a large number of domestic loads for load 

management actions. This work focuses on small loads, such as appliances that are 

commonly available. Many of the established appliance manufacturers have introduced 

Internet connected appliances [65] with new features to increase user comfort such as 

sending a notification to the user’s smartphone when the appliance cycle finishes. Some 

of the manufacturers are also involved in research [48],[66] on load management. 

However, trials to demonstrate these features are at incipient stages [67].      

The appliances considered in this study - washing machine, dishwasher and tumble 

dryer (WM, DW, TD) - were chosen due to their high level of ownership shown in 

Table 2.1. Their electricity consumption makes up approximately 14% of the total 

household consumption in the UK. Other appliances have similar shares, as shown in 

Table 2.2. However, the selected appliances are the most likely to allow load 

management with minimum impact on user’s comfort. This is confirmed by the high 

user acceptance of smart operation for these appliances (95% for WMs, 91% for DWs 

and 92% for TDs [68]). 

Table 2.1. Penetration rate of selected appliances in the UK [69].  

 Washing Machine (WM) Dish Washer (DW) Tumble Dryer (DW) 
Ownership (%) 95 28 53 
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Table 2.2. Household electricity consumption by load type in the UK [70]. 

Load type Electricity consumption (%)  

Washing/Laundry (WM, DW, TD) 13.6 

Cold appliances 16.2 

Lighting 15.4 

Audiovisual 14.4 

Cooking 13.8 

Others 25.8 

 

2.2 Load profiles 

The power consumption of appliances varies with the appliance model, the programme 

selected, water intake temperature. In this study, the actual load profiles of appliances 

were averaged for mathematical modelling as proposed in the Smart-A project [71]. 

During the Smart-A project an average load profile for each type of appliance was 

constructed by matching the energy consumption measured on appliances from 100 

households [71]. The average load profile follows the typical power consumption of the 

specific type of appliance. For example, the average load profile for washing machines, 

shown in Figure 2.1 (a), comprises seven processes with constant power, called power 

phases, each lasting 15 minutes. For a visual comparison real measurements of the 

appliances, recorded during the 3-E Houses project [72], are also given. For example, 

the measured power consumption of a washing machine for the duration of one cycle is 

shown in Figure 2.1 (b).  

The main energy consumption elements of a washing machine are the resistive water 

heating element and the electric motor that spins the drum. At the start of the cycle, the 

tub, in which the drum with the garments is placed, is partly filled with water and soap. 

The water is heated by the heating element that has a rated power between 1.8 to 2.5 

kW. The heating phase is easily noticeable at the beginning of a washing machine load 
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profile both in the average load profile, shown in Figure 2.1 (a), and in the measured 

power consumption, shown in Figure 2.1 (b). After the heating phase, the cycle contains 

a number of spinning and rinsing phases with low power consumption and ends with 

high speed spinning phase to partially dry the garments. The energy consumption of the 

average load profile is 0.89kWh per cycle. 

(a) 

 
(b) 

 
Figure 2.1: Washing machine load curve: (a) Average load profile from SMART-A project;          

(b) Sample of measurements from 3-E Houses project.                        
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The main energy consumption elements of a dishwasher are the resistive heating 

element and the electric pump which creates water pressure for the rotating spray arms. 

At the start of the cycle the tub with the dishes is partially filled with water and heated 

by the resistive element that has a rated power between 1.8 to 2.5 kW. The water and 

detergent is sprayed onto dishes followed by a rinse phase. At the end of the cycle the 

air and the dishes in the tub are heated, facilitating evaporation of the water from the 

dishes which will condense onto the walls of the tub.  These two heating phases can be 

observed both in the average load profile, shown in Figure 2.2 (a), and in the measured 

power consumption, shown in Figure 2.2 (b). The energy consumption of the average 

load profile is 1.19kWh per cycle.  

(a) 
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(b) 

 
Figure 2.2: Dishwasher load curve: (a) Average load profile from SMART-A project;                     

(b) Sample of measurements from 3-E Houses project.                        

The main energy consumption elements of a tumble dryer are the resistive heating 

element and the electric motor that spins the drum. Air is heated by the resistive element 

with a rated power between 1.8 and 2.5 kW and blown into the rotating drum 

facilitating evaporation from the wet garments. Depending on the technology used, the 

humid hot air is either evacuated through a vent duct or circulated through an internal 

heat exchanger where vapours are condensed. Temperature and humidity sensors set the 

length of the cycle. The average load profile of a tumble dryer, which is used in this 

study, is shown in Figure 2.3 (a). The measured power consumption for a tumble dryer 

recorded during the 3-E Houses project is shown in Figure 2.3 (b). The energy 

consumption of the average load profile is 2.46 kWh per cycle.  
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(a) 

 
(b) 

 
Figure 2.3: Tumble dryer load curve: (a) Average load profile from SMART-A project ;   

(b)Sample of measurements from 3-E Houses project.                        

The power phases were used to mathematically model the smart appliances for load 

management. An example is shown in Figure 2.4, where a tumble dryer cycle is 

partitioned into six energy phases. For each power phase a binary operation vector was 

defined over a period of time. The elements of the vector, xv
t, represent the operation 

status of power phase v at time t. A value equal to zero indicates that the power phase v 

is ‘off’ at time t, i.e. xv
t = 0, while xv

t = 1 indicates that the power phase v is ‘on’ at time 

t.      
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Figure 2.4: Load management features of a smart appliance. 

The operation of the smart tumble dryer (Figure 2.4) between 22:30 and 00:15 is 

described with the help of the binary elements, xv
t, in Equation (2.1). The binary 

operation vector for the first power phase of the appliance is highlighted. 

   [𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 𝑃𝑃4 𝑃𝑃5 𝑃𝑃6] ∙

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥1

22:30 𝑥𝑥122:45 ⋯ 𝑥𝑥1𝑡𝑡 ⋯ 𝑥𝑥100:00

𝑥𝑥222:30 𝑥𝑥222:45 ⋯ 𝑥𝑥2𝑡𝑡 ⋯ 𝑥𝑥200:00

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑥𝑥𝒗𝒗22:30 𝑥𝑥𝒗𝒗22:45 ⋯ 𝒙𝒙𝒗𝒗𝒕𝒕 ⋯ 𝑥𝑥𝒗𝒗00:00

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑥622:30 𝑥𝑥622:45 ⋯ 𝑥𝑥6𝑡𝑡 ⋯ 𝑥𝑥600:00⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑃𝑃1
𝑃𝑃2
0
𝑃𝑃3
𝑃𝑃4
𝑃𝑃5
𝑃𝑃6⎦
⎥
⎥
⎥
⎥
⎥
⎤

 
(2.1) 

 

 

where: 

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥1

22:30 𝑥𝑥122:45 ⋯ 𝑥𝑥1𝑡𝑡 ⋯ 𝑥𝑥100:00

𝑥𝑥222:30 𝑥𝑥222:45 ⋯ 𝑥𝑥2𝑡𝑡 ⋯ 𝑥𝑥200:00

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝑥𝑥𝒗𝒗22:30 𝑥𝑥𝒗𝒗22:45 ⋯ 𝒙𝒙𝒗𝒗𝒕𝒕 ⋯ 𝑥𝑥𝒗𝒗00:00

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑥622:30 𝑥𝑥622:45 ⋯ 𝑥𝑥6𝑡𝑡 ⋯ 𝑥𝑥600:00⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

. 

 

2.3 Load management 

2.3.1 Smart timing  

One of the envisioned features of smart appliances that could facilitate DR interventions 

(e.g. load shifting), is called smart timing. For the smart timing feature, the starting time 
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tstart of the appliance cycle is determined considering the user preferences and also 

external signals (e.g. pricing) received from utilities or DR aggregators.  

Before introduction of the smart timing feature, appliance manufacturers facilitated 

users to postpone the operation of their appliances to off-peak time through a feature 

called start delay. This feature can be found on 30% of the appliance stock in the UK 

[71]. The difference between start delay and smart timing is highlighted in Table 2.3. 

With the start delay feature, after the appliance is loaded with garments at tactivation, the 

user introduces, through a user interface, how many hours after tactivation the appliance 

cycle should begin. This duration is noted with Tdelay. With the smart timing feature the 

appliance selects automatically when the cycle should begin, within the interval (tactivation 

,tactivation + Tmaximum delay), depending on the user input Tmaximum delay and an external signal. 

If the external signal is an electricity tariff with multiple-rates, the appliance will 

automatically select the interval that yields the cheapest cost of operation.  An example 

of this feature execution is shown in Figure 2.4, where the tumble dryer’s operation is 

delayed from 18:30 (tactivation) in the evening until 22:30 (tstart) in the night, avoiding 

peak electricity rates. In the example given, the user allows a maximum delay, Tmaximum 

delay, equal to six hours. This user defined parameter, maximum delay, is described in 

Section 2.4.2. 

Table 2.3: Evolution of start delay features from regular appliances to smart appliances. 

Appliance type Feature User input Start time  
Regular start delay Tdelay tstart = tactivation + Tdelay 

Smart smart timing Tmaximum delay 
tactivation ≤ tstart ≤ tactivation + Tmaximum 

delay 
 

2.3.2 Cycle interruption  

Cycle interruption is a second load management feature which is considered in the 

smart appliance model. The appliance’s cycle is interrupted for a period of time to avoid 
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high electricity rates or peak loading. An alternative way of looking at the effect it has 

on the appliance cycle is that it will increase the cycle’s duration. It is important that 

pausing the operation of the appliance should not affect its service quality. From the 

selected appliances, the cycle interruption feature can be implemented in tumble dryers 

without any effects on the service quality, as they store little thermal energy during their 

operations. For washing machines and dishwashers, interruptions at certain times of the 

cycle could result in the energy, which is stored in the heated water, being radiated 

through the tub walls. The resulting thermal energy loss detracts from the potential 

positive effects that interruption brings. However, in this study it was considered that in 

the near future, research and development efforts of the appliances manufacturers in tub 

insulation, such as the one in [73], will facilitate the interruption of cycles with close to 

zero energy loss.  

It is envisioned that the cycle interruption feature will allow the appliance to be paused 

at any point during the cycle. In this study, the interruptions of the appliance cycle were 

considered only at the boundaries between power phases. An example of the tumble 

dryer’s cycle being interrupted for Tinterruption= 15 min, between the power phases v = 2 

and v =3, is shown in Figure 2.4. Different values for the parameter maximum 

interruption time, denoted by 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣, were considered during this study.  

2.4 User dependent parameters 

2.4.1 Activation times 

One of the user dependent parameters is the activation time, tactivation, which is defined as 

the time the user presses the appliance ON button after he finished loading the 

appliances with the garments for WM and TD or dishes for DW. In the absence of a 

large database of appliance measurements a generator of artificial household demand 

was employed to generate the activation times for appliances. The CREST domestic 
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energy demand model [74], described in Appendix A, was selected as it uses time of use 

data collected in a UK survey [75] to create probabilities from which a infinite number 

of realistic household demand can be generated. The survey sample is representative for 

the entire UK population considering the income distribution as shown in [76]. The 

model outputs 24 hrs load profiles for each house, at a resolution of one minute, 

depending on the number of household occupants, season and day of the week. The 

profile of a house distinctly shows the load profiles of all the appliances that constitute 

it, as can be seen in Figure B-1 of the Appendix A. In this study, it was assumed that the 

activation times of appliances are the start times of the appliances from the CREST 

model.   

A scheme for the utilisation of the CREST model in this study is illustrated in Figure 

2.5. For this work, the script of the CREST model, written in Perl programming 

language [77], was modified1 to run over consecutive days and to output the activation 

times of WM, DW and TD and the aggregated demand of the households, excluding the 

demand from the three appliances. The aggregated demand represents the demand that 

is inflexible, not capable of responding to external signals.  

 

Figure 2.5: Scheme of CREST model utilisation. 

                                                           
1 The code developed by the author can be found at: https://github.com/hitron/adapted_crest 
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The activation times of WMs, DWs and TDs were structured as a matrix A with three 

columns, one for each appliance type, and T rows; where T is the number of 15 minutes 

intervals within the number of days considered. For example, in the activation times 

matrix from 1000 households shown in Table 2.4, eighteen WM users pressed the ON 

button in the time interval 18:01 – 18:15. Similarly, nine users pushed the ON button of 

their TDs in the time interval 18:16 – 18:30. 

Table 2.4: Activation times of WM, DW and TD from 1000 households. 

Time Washing machines Dishwashers Tumble Dryers 
... ... ... ... 
18:01 – 18:15 18 2 10 
18:16 – 18:30 12 1 9 
18:31 – 18:45 8 1 6 
... ... ... ... 

 

2.4.2 Maximum delay 

The maximum delay parameter is a measure of the flexibility offered by the user. It is 

envisioned that appliances equipped with the smart timing feature will require the user 

to select the maximum delay, after pressing the ON button. With the first pilot projects 

[78] [79] testing a similar type of feature still in progress, there is a lack of real world 

data on what values will the user select for the maximum delay. However, an 

approximation can be made by observing how the already implemented start delay 

function, described in Section 2.3.1, is used.         

The values from a survey completed in the Smart-A project [80] were considered when 

assigning values for the user defined maximum delay parameter. One of the questions 

that the survey addressed to the users of appliances equipped with start delay button 

was: “How long does your machine remains in the start delay position before the 

programme starts?” The percentages of the respondents under each number of hours of 

delay are given in Table 2.5. In this study, a random number generator was used to 
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assign from 1 hr to 7 hrs for the maximum delay parameter for each appliance according 

to the percentages given in Table 2.5.  

Table 2.5: Statistics for user defined maximum delay. 

Maximum delay (hrs) 1 2 3 4 5 6 7 
Percentage of respondents (%) 19 19 19 9 9 9 16 

 

2.5 Shifting algorithm 

A shifting algorithm was introduced to model the operations of smart appliances with 

load management features. The shifting algorithm uses optimisation to schedule the 

appliances operations with respect to user preferences and external signals. The 

algorithm produces delays in the start times and/or prolonged appliances cycles, due to 

interruptions.  

2.5.1 Optimisation 

2.5.1.1 Variables 

The mathematical model of the binary operation vectors, introduced in Section 2.2, is 

given in Equation (2.2). The elements of the vector are the optimisation decision 

variables. Each appliance a, from the total of At appliances activated at time t (a single 

row from matrix A), comprises of a number Va of power phases. Each power phase v has 

a binary operation vector with the length of the optimisation window H. 

Xv,a = �  𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∈ {0,1}  , ∀ℎ ∈ (1, … ,𝐻𝐻)�   ,      𝑣𝑣 ∈ (1, … ,𝑉𝑉𝑎𝑎)     𝑎𝑎 ∈ (1, … ,𝐴𝐴𝑡𝑡) 

(2.2) 

Where h is the time index corresponding to the position of the element 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ  in the binary 

operation vector Xv,a. 

The number of decision variables needed in the optimisation model is (At ∙ Va ∙ H). For 

example if the optimisation window is eight hours, or thirty-two time steps (quarter 
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hours), then the number of decision variables needed to model the operation of a 

washing machine with seven power phases is 1 x 7 x 32 = 224.  

2.5.1.2 Objective function 

The objective of the optimisation is to minimise the cost of operating the power phases. 

The mathematical formulation of the objective at time t is given in Equation (2.3).  

 min
𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∈{0,1}

��� � 𝑐𝑐𝑡𝑡+ℎ ∙ 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∙ 𝑃𝑃𝑣𝑣,𝑎𝑎 ∙ ∆𝑡𝑡

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎+Tcycle

ℎ=1

𝑉𝑉𝑉𝑉

𝑣𝑣=1

𝐴𝐴𝑡𝑡

𝑎𝑎=1

� 
(2.3) 

Where:  

xv,a
h             binary decision variables 

At the number of appliances activated at time t (from the activation times 

matrix) 

 TMaxDel , a user defined maximum delay for appliance a  

TCycle              duration of the appliance cycle 

Va            number of power phases of the appliance a  

ct+h            electricity rate at time (t+h) 

Pv,a            power consumption for the power phase v of the appliance a 

Δt             15 minutes time step 

2.5.1.3 Constraints 

The constraints are needed to model the operation of smart appliances. The constraints 

can be of two types: inequality and equality constraints. The optimisation introduced in 

this study has both types of constraints. One inequality constraint ensures that the power 

phases are supplied in the correct order within the operation of one appliance: 

⎝

⎜
⎛

� 𝑥𝑥𝑣𝑣+1,𝑎𝑎
ℎ ∙ ℎ

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎
+𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

ℎ=1

     −   � 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∙ ℎ

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎
+𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

ℎ=1

⎠

⎟
⎞
≥ 1 ,  

 
(2.4) 𝑥𝑥𝑣𝑣,𝑎𝑎

ℎ ∈ {0,1}  

ℎ ∈ �1,2, … ,𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ,𝑎𝑎 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 
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It should be noted that in Equation (2.4) the sum of the products between the decision 

variables 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ  and the time index ℎ identifies the operation time of the power phase v. 

Constraint (2.4) can be visualised using Table 2.6. This constraint states that the 

operation time of the power phase represented by the binary operation vector 𝑋𝑋𝑣𝑣+1,𝑎𝑎 

must be situated on the right side of the previous power phase represented by 𝑋𝑋𝑣𝑣+1,𝑎𝑎. 

Table 2.6: Table explaining constraint (2.4). 

                    Time index (h) 
Power phase  1 2 3 4 5 6 7 8 9 10 

Xv,a 0 0 1 0 0 0 0 0 0 0 
Xv+1,a 0 0 0 1 0 0 0 0 0 0 

 

The smart appliance cycle can be interrupted between any two power phases. The 

interruption time must not exceed a maximum interruption time Toff v. Restrictions 

between the two power phases were modelled using Equation (2.5). 

⎝

⎜
⎛

� 𝑥𝑥𝑣𝑣+1,𝑎𝑎
ℎ ∙ ℎ

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎
+𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

ℎ=1

     −   � 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∙ ℎ

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎
+𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

ℎ=1

⎠

⎟
⎞
≤ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣  ,        

 

 

(2.5) 𝑥𝑥𝑣𝑣,𝑎𝑎
𝑡𝑡 ∈ {0,1} ,  

 ℎ ∈ �1,2, … ,𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 

As for the previous constraint, it should be noted that in Equation (2.5) the sum of the 

products between the decision variables 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ  and the time index ℎ identifies the 

operation time of the power phase v. Constraint (2.5) can be visualised using Table 2.7. 

It shows the case for Toff v = 4. In that case, the number of time steps between the 

operation of the power phase v+1 and the previous power phase v cannot be larger than 

three.  
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Table 2.7: Table explaining constraint (2.5). 

                    Time index (h) 
Power phase  1 2 3 4 5 6 7 8 9 10 

Xv,a 0 0 1 0 0 0 0 0 0 0 
Xv+1,a 0 0 0 0 0 0 1 0 0 0 

 

An equality constraint, Equation (2.6) modelled the operation of a smart appliance in 

relation to the user preference. As part of the smart timing feature of the appliance, the 

user introduces the time when the cycle should end (Tcycle +TMaxDel). The constraint in 

Equation (2.6) requires the appliance a, and consequently each of its power phases, to 

operate in the interval bounded by the activation time h=1 and maximum delay: (1, Tcycle 

+TMaxDel ).  

� 𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+Tcycle

ℎ=1

= 1 ,                𝑥𝑥𝑣𝑣,𝑎𝑎
ℎ ∈ {0,1}, ℎ ∈ �1,2, … ,𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 

(2.6) 

2.5.1.4 Software implementation 

Finding the best schedule for the operation of smart appliances with respect to the 

electricity price is an optimisation problem. A widely used tool for solving optimisation 

problems is linear programming (LP). A LP problem where some or all the decision 

variables are integers and all the variables are non negative is called Integer 

Programming (IP) problem [81]. If only a part of the decision variables are integers the 

problem is called Mixed IP problem and if all the decision variables are non negative 

integers it is called Pure IP problem. In this study all the decision variables can take 

only two values: 0 and 1, both non negative integers, therefore the optimization problem 

can be formulated as a pure IP problem. 

In order to test DR interventions on power systems, a large number of appliances need 

to be simulated. A test implementing the optimisation described in Section 2.5.1.2 has 

been carried out in three optimisation software programs to assess the execution time 
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and the possibility to solve large IP problems. One of the software programs, Open 

Solver, extends the built-in Excel Solver. Open Solver uses Computational 

Infrastructure for Operations Research Branch and Cut (COIN-OR CBC) algorithm to 

solve IP problems. A second software program was Matlab which has an Optimisation 

Toolbox offering different algorithms to solve optimisation problems. Function 

bintprog can be used for 1-0 pure IP problems. The function uses a Branch and Bound 

algorithm. The third tested software, IBM ILOG CPLEX, utilises Branch and Cut. The 

results of the test are listed in Table 2.8.  

CPLEX is chosen for the optimisation model implementation, as it gives the best 

performances from the three of them. CPLEX has application programming interfaces 

(APIs) for different languages: C, C++, and Java. Because it is widely used as a 

programming language in the power system sector, Java has been chosen to code the 

shifting algorithm including the optimisation model and further, run simulations. 

Table 2.8: Solving times of the optimisation (Section 2.5.1) for different software programs. 

Decision variables MATLAB OpenSolver Excel CPLEX 

288 2s <0.1s <0.1s 

384 4s <0.1s <0.1s 

576 1300s 1s <0.1s 

768 >10,000s (~3hrs) 3s <0.1s 

2,000 >10,000s 7s <0.1s 

30,000 - 1200s 3.5s 

200,000 - - 68s 

400,000 - - 240s 

  

CPLEX uses the Branch and Cut method to solve the 1-0 pure IP problem. Branch and 

Cut method is a hybrid between Branch and Bound algorithm and Cutting Plane 
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algorithm [82]. At the beginning of the Branch and Bound method an LP relaxation is 

performed, meaning that the problem is solved as a LP problem through Simplex 

algorithm, omitting the integer restriction for the decision variables. In the case of a 1-0 

pure IP problem the decision variables will be constrained to: 0 ≤ xi  ≤ 1. If the solution 

of the LP relaxation is constituted only of integers then certainly that is the solution of 

the IP problem. If the solution is constituted of fractional values the feasible region is 

split in two regions. This is performed by arbitrary choosing from one of the decision 

variables to be: either smaller than the smallest integer that is near the fractional LP 

relaxation solution of that variable or greater than the biggest integer that is near the LP 

solution of that variable. Thus, if a tree is created starting from the initial LP relaxation 

solutions two branches have been added. For the 1-0 pure IP problem, one branch is 

formed by arbitrary choosing one of the decision variables to be zero xi = 0 and the other 

branch with xi =1. For each branch, which has a new constraint, the system is solved 

through Simplex algorithm. The branch that has the smallest solution is kept. If for this 

solution the resulting values for the decision variables are fractional, then a valid 

inequality constraint will be generated through Cutting Plane algorithm, constraint that 

will cut from the feasible region. The new LP problem is solved again, and if there still 

are decision variables with fractional values, the process is repeated until the candidate 

integer solutions are found. 

2.5.2 Execution of the shifting algorithm 

The operational diagram of the shifting algorithm is shown in Figure 2.6. The shifting 

algorithm runs at each quarter hour time step Δt until tfinal. At each time step the 

algorithm schedules a number of At appliances that users have activated during the past 

quarter hour (t- Δt, t). At is a time instance of the activation times matrix A, described in 

Section 2.4.1. If no appliances are activated in the time interval (t- Δt, t), At = 0, then the 
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algorithm moves to the next time step. If At ≠ 0, the shifting algorithm goes through a 

series of three loops and runs the optimisation model for time step t. The outer loop 

cycles through each appliance a in At. The second loop goes through each power phase 

v of the appliance a. In the last inner loop, each element of the binary operation vector 

of power phase v of appliance a, which are the optimisation decision variables, are 

added to the optimisation model. The optimisation is performed after all the appliances 

of time step t are added, followed by a progress of the shifting algorithm to the next 

time step.  
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Figure 2.6: Operational diagram of the shifting algorithm. 
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2.6 Model validation 

A two stage verification was performed. At the first stage, a validation of the adapted 

CREST model against real-world data was done. Furthermore a verification of the entire 

simulation, including the shifting algorithm, through sensitivity analysis was completed.  

The activation times of WM, DW and TD are essential for setting the available demand 

response in the studies carried out during this work. In the absence of a large number of 

measurements for the three appliances operation, simulated values are generated by the 

adapted CREST model outlined in Section 2.4.1. The output of the CREST model, 

which is the aggregated household daily demand, has been validated in [83]. A 

validation of the adapted CREST model output, which is the individual appliance daily 

demand, was carried out. The real-world values for the activation times were obtained 

from the 3-E Houses project [72]. The power consumption of a washing machine was 

recorded with a resolution of one minute using a smart plug. The observed washing 

machine was in the premises of a social house in Bristol, UK. The power consumption 

data was processed to show only the activation times during the month of June 2012. 

The CREST model was calibrated to match the conditions when measurements were 

taken (the household had four residents, measurement period was one month). The 

simulated and the measured activation times recorded during one month are plotted as a 

cumulative sum over 24 hrs in Figure 2.7. The total activation times are 34 for the 

simulation and 29 for the measured data, while the small difference could be attributed 

to the fact that the CREST model does not account for the household’s income. Another 

similarity is that no washing machines are activated during the early hours of the 

morning.           
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Figure 2.7: Cumulated daily activation times of a washing machine for a single household. 

After it was established that the adapted CREST model gives an accurate representation 

of the appliances utilisation, a verification through sensitivity analysis was performed 

on the entire simulation, including the shifting algorithm. The objective was to 

determine whether the algorithm performs as intended. The expectation is that the 

shifting algorithm will reduce the cost of the electricity consumed in the household. One 

hundred instances of the simulation were carried out with the resulted savings on the 

electricity bill from smart appliances shown in Figure 2.8. The savings are a result of 

shifting the appliances from peak to off-peak time of a Time of Use (TOU) tariff. For 

each simulation, one of the inputs, the number of days, was randomly chosen from the 

interval 1 to 30. The rest of the inputs are kept constant; the number of houses is equal 

to 10, the number of residents in each house is 3 and the month is June. The simulation 

returns savings for each of the 100 instances. The values tend to converge as the number 

of days gets higher. This is indicated by the standard deviation shown in Figure 2.8.       
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Figure 2.8: Savings on the electricity bill from SAs utilization, for 10 houses subscribing to a TOU 
tariff, each with 3 residents, considering different number of days. 

Figure 2.9 shows the energy shifted by smart appliances in 100 instances of the 

simulation. At each instance the number of residents was randomly chosen from the 

interval 1 to 5, while the rest of the parameters were kept constant. As expected, the 

results vary between instances, while the average increases with the number of 

residents. 

The observations from this section lead to the conclusion that the simulation is fit for 

the studies that were carried out in this work.  

 
Figure 2.9: Energy shifted by SAs over a period of 10 days, for 10 houses subscribing to a TOU 

tariff, considering different number of residents. 
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2.7 Overview of the simulation environment 
An overview of the simulation environment used in Ch. 3, Ch. 4 and Ch. 5 is shown in 

Figure 2.10. The programming language used for the simulation environment is Java. 

The simulation starts by specifying values for a number of parameters including the 

number of houses and residents in each house. These parameters are transferred from 

Java as input data to the adapted CREST model2, which is written in the Perl 

programming language. As described in Section 2.4.1, the outputs of the model are the 

activation times of smart appliances (WM, DW, TD) and the households’ load profiles, 

without smart appliances, over the specified length of time. The output of the adapted 

CREST model is stored in a comma-separated value (csv) file. At the end of this 

process, the csv is accessed by the Java simulation environment and passed to the 

shifting algorithm.     

 

Figure 2.10: Process flowchart of the simulation environment  

                                                           
2 The code developed by the author can be found at: https://github.com/hitron/adapted_crest  
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The shifting algorithm is listed in the Appendix A and is described in Section 2.5.2. It 

generates for each appliance a set of two parameters, user maximum delay and cycle 

interruption. The user maximum delay, described in Section 2.4.2, is calculated based 

on statistics from consumer research. The shifting algorithm also reads the electricity 

tariffs from a csv file. The tariffs, introduced in Section 3.2, have been constructed 

during this study. Information about the electricity distribution network, i.e. thermal 

rating of distribution circuits, is part of the input parameters for studies of the operation 

of distribution networks with smart appliances. 

With the input parameters set, the shifting algorithm builds an optimisation model at 

each time step of the simulation. Building this model includes defining the types of 

decision variables, constraints, and objective function to be employed in the 

optimisation. It does this by calling directly CPLEX through an Application 

Programming Interface (API) for Java which allows the use of Java objects to define the 

optimisation model. Further, the mathematical formulation is sent and solved by 

CPLEX. The solution, a binary vector, indicates the optimal time for running the 

appliances. The binary vector is translated by the shifting algorithm into power demand 

of appliances and further to electricity cost of supplying the appliances and to load 

profiles for households. The electricity cost of appliances is an output required in 

Chapter 3 to calculate the reduction in the user’s electricity bill due to the use of smart 

appliances. The power demand is an output required in Chapter 4 to calculate the 

aggregated demand reduction of smart appliances. In Chapter 5, the output of the 

shifting algorithm - load profiles of households - is stored in a csv file which is read by 

a code developed in the Python programming language. The code accesses IPSA Power 

software [84] through an API and carries out the power flow analysis. The output is the 

distribution test network’s state variables, e.g voltages and power flows.            
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Chapter 3 

3 Financial analysis for smart 
appliances users 

 

 

Summary: 

In this chapter, the reduction in the user’s electricity bill achieved by smart appliances 

and different parameters that influence the reduction are studied. The smart appliance 

model and the shifting algorithm developed in Chapter 2 are implemented in a 

simulation used to evaluate the savings resulting due to use of smart appliances with 

multiple-rates electricity tariffs. The savings are compared against the possible 

additional costs incurred by users to enable the smart operation of appliances.  
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3.1 Introduction 

Enabling demand response from appliances – washing machine WM, dishwasher DW, 

tumble dryer TD – relies on the users to buy the Smart-Grid ready appliances and to use 

their smart capabilities. An outcome of the user survey completed in the Smart-A 

project [68] was that the users’ main incentive for buying smart appliances was the 

potential financial benefit, while any ecological benefit was viewed as a positive side 

effect. A straightforward method through which users can gain financial benefits from 

smart appliances is by using them simultaneously with an electricity tariff that has 

variable rates throughout the day. With the roll-out of smart meters across the UK by 

2020, Time of Use (TOU) and Real Time Pricing (RTP) tariffs will be available to 

residential customers [10].        

3.2 Electricity tariffs  

Reference [85] reports an estimate of 3-3.5 million residential customers in the UK with 

some type of multiple-rates electricity tariff. A survey reported in [86] on 4761 

residential GB customers revealed that 620 (13%) were subscribing to multiple-rates 

electricity tariffs. The most common choices of TOU tariffs were Economy 7 and 

Economy 10 as can be seen in Figure 3.1.  Therefore, these two tariff choices were 

evaluated in this study.  

Economy 7 and Economy 10 were designed for customers with electric storage heaters 

to incentivise the use of overnight electricity from base load generators and to defer 

consumption from peak demand times. Economy 7 has seven hours of overnight low 

electricity rate whereas Economy 10 has ten hours of low electricity rate in the 

afternoon, evening and night.      
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Figure 3.1: Distribution of the residential customers according to the type of electricity tariff [86]. 

A survey on the standard (single rate) and TOU tariffs from six electricity suppliers in 

the UK is completed during this study; the electricity rates are listed in Table 3.1. The 

average electricity rates, illustrated in Figure 3.2, were used in this study. 

Table 3.1: Survey on existing GB electricity tariffs in 2012. 
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SWALEC 15 12.8 16.44 16.68 7.7 24.53 17.79 9 
Scottish 
Power 27.39 13.68 27.3 15.73 6.48 26.7 16.46 8.47 

EDF 18.9 14.81 18.9 17.94 6.3 18.9 18.36 6.37 
E-ON 26 12.8 26 15.78 6.62 - - - 
British Gas 16.32 13.68 15.34 17.91 6.33 - - - 
NPOWER 11.5 17.24 8.4 18.85 5.7 - - - 
Average 
rate3   15.75  18.38 6.85  18.73 8.7 

    

                                                           
3 Includes the standing charges for an average consumption of 3300 kWh/year or 9 kWh/day 
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Figure 3.2: Standard, Economy 7 and 10 electricity tariffs. 

Another tariff that was considered in this study is Real-Time Pricing (RTP). The 

electricity rate for a customer with RTP tariff varies hour by hour or with each half 

hour. The customer receives the tariff on a day ahead or hour ahead basis. Some utilities 

in the United States (US) have already made available hourly RTP for residential 

customers, an example is Ameren Illinois utility [32]. A snapshot of the Ameren RTP 

over a day in April 2012 is shown in Figure 3.3. The price component which varies over 

the day is the generation costs.   

RTP tariffs are not currently available for residential customers in GB. However, the 

smart meters that will be installed across the UK will have registers capable of storing 

half-hourly varying electricity rates and half-hourly consumption data [10]. An RTP 

tariff with half-hourly rates was designed for this study starting from the components of 

the retail electricity price in GB; details are given in Appendix B. An example from the 

designed RTP tariff for a weekday is shown in Figure 3.4. As in the case of the US 

utility, the generation costs vary over 24 hrs, however in the case of the British 
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distribution network operators the distribution charges also vary. The two rate tariff 

reflects the pattern of loading on the network. 

 
Figure 3.3: Structure of the Ameren Illinois RTP tariff. 

 

Figure 3.4: Structure of a RTP tariff specific for GB electricity sector. 
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3.3 Effects of parameters on household savings  

A simulation, illustrated in Figure 3.5, was constructed to study the effects of three 

parameters on the cost savings for a household resulting from operating the appliances. 

The parameters that were varied are: number of residents, user defined maximum delay 

and appliance maximum interruption time.  

The number of residents of the household is an input to the CREST model, described in 

Section 2.4.1, which outputs the activation times of the appliances (WM, DW, TD). The 

shifting algorithm described in Section 2.5.2 delays the start time of the appliances and 

introduces cycle interruptions according to the user defined maximum delay and 

maximum interruption time parameters. With the new starting times, the load profile 

model, introduced in Section 2.2, produces the demand of the appliances. The cost of 

electricity consumed by the appliances is the product of appliances demand and 

multiple-rates tariff. The cost savings result from shifting the appliances from time 

intervals with high electricity price to intervals with low price. The simulation period 

was thirty days. For each change in the value of one of the three parameters a set of one 

hundred simulations was carried out to give a clear picture of how the parameters 

influence the cost savings.  

 

Figure 3.5: Data flowchart of the simulation used to evaluate the cost savings of a single household 
from smart appliances. 
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3.3.1 Number of residents  

The household’s number of residents was varied from one to five. The number of 

residents influences the reduction that can be achieved within one household. The 

results are plotted in Figure 3.6. The highest cost savings are achieved by households 

with five residents, while the lowest by households with one resident. This is due to the 

fact that with a higher number of residents more cycles of appliances are activated 

resulting in additional cost savings. However, since these appliances are shared, the 

number of cycles doesn’t increase at the same rate as the number of residents. The 

average numbers of appliances cycles for households with different number of residents 

are given in Table 3.2.    

 
Figure 3.6: Effects of number of residents: (a) RTP; (b) Economy 7; (c) Economy 10. 

Table 3.2: Average number of appliance activations during one month for one household. 

Household 
number of 
residents 

Number of 
WMs 

activated 

Number of 
DWs 

activated 

Number of 
TDs activated 

1 22.09 2.39 9.79 
2 25.24 2.85 12.61 
3 27.13 3.28 13.14 
4 29.33 3.57 12.58 
5 30.24 3.80 14.97 
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3.3.2 Maximum delay  

The maximum delay parameter, described in Section 2.4.2, was varied from zero to ten 

hours. The cost savings on the electricity consumed by appliances as a function of 

maximum delay parameter, for different tariffs, are given in Figure 3.7. If the user 

decides that the cycles should be started immediately, or maximum delay is zero, the 

cost savings obtained by smart appliances is zero. This applies to any tariff, as can be 

seen in Figure 3.7.                    

 

Figure 3.7: Cost savings on the electricity consumed by the appliances (WM,DW,TD) in a 
household with 3 residents with different values for the maximum delay parameter. 

The cost savings obtained with the three tariffs follow a common profile: an increase 

with the maximum delay up to a saturation point followed by a period of constant 

savings. At the saturation point, the appliances are already in the lowest price interval; 

therefore an increase in the maximum delay will not produce any changes in savings. 

The values of the cost savings and the saturation point are tariff dependent. For 

Economy 10 the cost savings reach 42% for maximum delay equal to five hours and 

remain constant from that point. Thus, the users of smart appliances should provide a 

delay of five hours in order to ensure they maximize the benefits of Economy 10 tariff. 
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For the other tariffs, the increase in cost savings with the maximum delay parameter is at 

a slower pace and the saturation points are at nine hours. 

3.3.3 Cycle interruption 

The maximum interruption parameter, introduced in Section 2.3.2, was varied from zero 

to sixty minutes. The results of the simulations are shown in Figure 3.8 and represent 

the additional cost savings resulting from cycle interruptions.      

 

Figure 3.8: Additional cost savings on the electricity consumed by the appliances (WM,DW,TD) in 
a household with 3 residents on account of the maximum interruption parameter: (a) RTP; 

(b)Economy 7; (c) Economy 10. 

The maximum interruption parameter has a minor contribution (up to 0.68%) for the 

cost savings compared with the previous parameters. For Economy 10 tariff, as can be 

seen in Figure 3.8 (c), a user defined maximum delay greater than two hours allows the 

entire appliance cycle to be shifted away from the interval with peak price, thus 

mitigating the possible benefits of interruptions.  

A tariff that includes more peaks with a high ratio between peak and off-peak rates must 

be utilised in order for the cycle interruption to have a significant contribution in cost 

savings. This may well be the case in the future, because, as more wind generation 
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capacity is installed the variation of the electricity spot prices will increase [87]. 

Potential high price peaks could also arise if tariffs will integrate signals to avoid 

distribution and transmission networks issues [88].  

3.4 Annual savings for a group of one thousand GB households 

In this section the financial benefits resulting from adopting smart appliances were 

investigated for a group of one thousand houses. The simulation from Figure 3.5 has 

been extended from one household to one thousand households and the simulation 

period from one month to one year. Furthermore, the three parameters of the simulation 

presented in Section 3.3 were selected with the objectives of having a representative 

sample of the GB housing stock and of modelling the behaviour of smart appliances 

users.     

The first parameter is the number of residents in each household. The number of 

residents was chosen according to the distribution of the 25.6 million households of the 

GB housing stock by the number of people living in them as given in Table 3.3 [89]. A 

number generator was used to assign the number of occupants in each household 

according to the percentages given in Table 3.3. 

Table 3.3: Household distribution by number of people living in them in GB [89]. 

No. of residents 1 2 3 4 5+ 

Percentage from total no. of households 29 35 16.5 13 6.5 

A second parameter is the user defined maximum delay. For each appliance the value of 

the maximum delay parameter was selected according to Table 2.3 in Section 2.4.2. For 

the third parameter, the appliance maximum interruption, two values (zero and 60 

minutes) were assessed.   
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3.4.1 Electricity cost savings  

The annual electricity bills with regular appliances and with smart appliances are 

illustrated in Figure 3.9 for the four electricity tariffs described in Section 3.2. The 

number of cycles of appliances that were completed during the one year simulation 

period was approximately 740,000.  The difference between the bills with regular 

appliances for the four tariffs is caused by the aggregated load profile of the 1000 

households. The higher bill for Economy 7 compared with the Standard and Economy 

10 tariffs indicates that the majority of the customers have a low proportion of their 

electricity consumption during the off-peak hours of the Economy 7.  The RTP tariff 

has a good correlation with the aggregated load profile, yielding a higher electricity bill 

compared to Standard and Economy 10 tariffs. It is worth noting that no change in 

behaviour due to multiple-rates tariffs has been modelled, which is the reason why the 

Economy 7 and RTP yield higher rates than the single rate tariff.   

 

Figure 3.9: Annual electricity bills for 1000 households with regular appliances and with smart 
appliances (WM, DW, TD). 

Table 3.4 gives the annual electricity bills for the 1000 households and the cost savings 

resulted from using smart appliances with the four electricity tariffs. Under the 
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Economy 10 pricing scheme the smart appliances can reduce their annual running cost 

by 28.62% which is equivalent to 6.99% of the electricity bill.  

Table 3.4: Annual electricity bill and cost savings for 1000 households resulted from smart 
appliances (WM, DW, TD). 

Tariff Bill 
including 
regular 

WM,DW, 
TD 

(£000’s) 

Bill 
including 

smart 
WM,DW, 

TD 
(£000’s) 

Cost 
savings 
on the 

bill (%) 

Regular 
WM,TD,DW 
running cost 

(£000’s) 

Smart 
WM,TD,DW 
running cost 

(£000’s) 

Savings on 
the 

WM,TD,DW 
running cost 

(%) 

Standard  
(single 
rate) 

645.36 645.36 0 153.82 153.82 0 

Economy 
7 701.65 689.26 1.76 180.63 168.28 6.83 

RTP 692.23 675.76 2.38 177.85 161.4 9.24 

Economy 
10 632.09 587.86 6.99 154.46 110.25 28.62 

 

The results from Table 3.4 are for the appliances parameter maximum interruption set to 

zero. A repeat of the simulation with the maximum interruption set to sixty minutes 

allowed between the appliances’ power phases resulted in almost identical savings as 

the case where no interruption was permitted. For example running the appliances with 

no interruption resulted in a 6.99% savings of the electricity bill and allowing them to 

be interrupted resulted in a saving of 7.01%. The reason for this was discussed in 

Section 3.3.3. 

3.4.2 Costs of adopting smart appliances  

In the project Smart-A [90] the cost of implementing the smart operation for a domestic 

appliance was segmented in three categories. The categories that were identified are: 

additional appliance cost, additional in-house communication cost and appliance stand-

by consumption cost. The values for the three categories were revised for this thesis. As 
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identified in the state of the art, in Chapter 1, there are multiple solutions of 

implementing the smart operation of an appliance. Three possible solutions were 

covered in this study, with the cost estimations listed in Table 3.5.  

In the first solution, the appliances are connected to the Communication Hub that is part 

of the future Smart Metering infrastructure. According to the document on ‘Smart 

Metering Equipment Technical Specification 2’ [10], it is required that a 

Communication Hub must be able to connect with at least three Consumer Access 

Devices such as an enhanced energy display, a smart appliance or a home automation 

controller. The document also specifies that the preferred communication technology is 

ZigBee Smart Energy Profile (SEP). Therefore, for this solution, the additional 

appliance cost includes the ZigBee chipset cost and the engineering costs of planning 

and implementation, which are estimated in reference [91] at £9.5. The additional in-

house communication cost is considered to be zero as the cost of the Communication 

Hub is already included in the smart meters roll-out.  

For the second solution each appliance is fitted with an IP/WLAN module and connects 

directly to the broadband router. According to the Office for National Statistics [64], as 

at 2013 83% of households have an internet connection. This ensures that the second 

solution can be applied to a large majority of the consumers. The additional appliance 

cost consists of the IP/WLAN chipset cost. Also, according to [92], the appliance 

microprocessor required to control the IP/WLAN chipset demands a higher performance 

than one for ZigBee, adding £6.50 to the cost of the appliance. The additional in-house 

communication cost is considered zero because the broadband router is already installed 

for different Internet services.     
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For the third solution, the appliances connect to a Home Energy Management System 

(HEMS). The advantage of a HEMS is that it can collect data from sensors inside the 

house and offer additional services to the residents such as automatic disconnection of 

appliances in stand-by when no movement is detected. The additional appliance cost is 

that of a ZigBee chipset. The additional in-house communication cost includes the cost 

of the HEMS. The price of an HEMS in 2013 was approximately £100 [93]. 

The appliance consumption in start delay mode, described in Section 2.3.1, was 

measured in [94]. An average of 3 W was considered. The appliance is in start delay 

mode only between the moment when the ON button is pushed and the moment the 

appliance cycle starts. This time interval represents the maximum delay parameter and 

the average value according to Table 2.5 in Section 2.4.2 is 3.61 hours. Assuming the 

appliance runs each day, the maximum time the appliance is in start delay is 365 x 3.61 

hours each year at a cost of approximately £0.60 per annum (p.a).  

Table 3.5: Additional cost of implementing the smart operation of appliances (WM, DW, TD) in a 
household. 

Cost category Smart Metering 
solution 

IP based 
solution 

HEMS solution 

Additional appliance cost 3 x £9.50 3 x £16 3 x £9.50 

Additional in-home 
communication 

£0 £0 £100 

Appliance consumption cost in 
start delay (p.a.) 

3 x £0.60 3 x £0.60 3 x £0.60 

The payback period was used to evaluate the value of smart appliances for a household. 

The payback period is defined as the time required for an investment’s cumulative cash 

flow to reach zero [95]. The cash flow corresponds to the annual savings on the 

electricity cost from Table 3.4. The initial and annual household costs are given in Table 

3.5.  
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The cumulative cash flows for the three solutions of implementing the smart operation 

of an appliance are illustrated in Figure 3.10. The payback period for each of the 

considered tariffs is indicated by a marker at the intersection of the cumulative cash 

flow with the X-axis. An outcome of the user research completed in the Smart-A project 

[68] revealed that if the user is to bear the initial cost of enabling the smart operation of 

an appliance, then the maximum acceptable payback period is three years. The 

maximum payback period is satisfied for the majority of the scenarios. The only 

scenarios which will not match the user requirement are for the HEMS solution, when 

the household is subscribing to RTP or Economy 7 tariffs.           

 
Figure 3.10: Household cash flow and payback periods considering different implementation 
solutions for smart appliances: (a) Smart Metering solution; (b) IP based solution; (c) HEMS 

solution. 

The Net Present Value (NPV) was also used to evaluate the value of smart appliances 

for a household. NPV is defined as the investment’s discounted cumulative cash flow 
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over its life span [95]. For this study, the life span of the appliances is approximated to 9 

years, according to the user research completed during the E-Scope [96] project.   

A literature review on consumer discount rate for appliances, reported in [97], indicates 

that, depending on the households’ incomes, a discount rate between 7 percent to 35 

percent per year is possible. A discount rate of 20 percent has been considered in the 

NPV calculation. The formula used to calculate the NPV is given in Equation (3.1). An 

example of a NPV calculation is given in Table 3.6.    

 NPV = �CF ×
1

(1 + r)t

T

t=1

− 𝐼𝐼 
(3.1) 

   where, 

CF annual cash flow (annual savings on the electricity cost from smart appliances) 

r discount rate 

T life span  

t year number 

I initial cost (additional smart appliance cost and in-home communication)   

Table 3.6: Example of NPV calculation of investing in smart appliances for a household subscribing 
to the Economy 10 tariff in the Smart Metering solution. 

Year Initial Cost (£) Savings (£) Present Value Factor Present value cash flow (£) 
0 -30.30 - 1 -30.30 
1  44.21 0.83 36.84 
2  44.21 0.69 30.70 
3  44.21 0.57 25.58 
4  44.21 0.48 21.32 
5  44.21 0.40 17.76 
6  44.21 0.31 14.80 
7  44.21 0.26 12.33 
8  44.21 0.21 10.28 
9  44.21 0.19 8.56 

NPV  147.90 
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The NPV of investing in smart appliances for the three solutions described above are 

given in Table 3.7. A positive value of the NPV signifies that the investment in smart 

appliances is financially worthwhile for a household.  

Table 3.7: NPV of investing in smart appliances for a household considering different 
implementation solutions. 

Tariff Type Smart Metering 
solution 

IP based solution HEMS solution 

Economy 10 £ 147.90 £ 128.40 £ 47.90 
RTP £ 36.00 £ 16.50 £ -63.99 
Economy 7 £ 19.48 £ 0.00 £ -80.51 

 

3.5 Discussion 
A sensitivity analysis has examined the influence that the following parameters have on 

the cost savings of a household: number of residents, user defined maximum delay and 

appliance maximum interruption time. Out of the three parameters, the user defined 

maximum delay has the highest influence on the financial outcome, while the maximum 

interruption time has the lowest influence.    

The annual savings resulted from the smart operation of the three appliances (washing 

machine, dishwasher and tumble dryer) were calculated. The Net Present Value and 

Payback Period financial analyses were used to assess if the investment in smart 

appliances is beneficial for their users. There is a clear correlation between the results of 

both analyses, highlighting that the cost of the in-home communication technology that 

will facilitate the smart operation, along with the electricity tariff type, determine if 

smart appliances are a good investment for their users. It was found that installing 

HEMS for the single purpose of enabling the appliances to communicate is not 

financially worthwhile for two out of three electricity tariffs types (Economy 7 and 

RTP). Using the Economy 10 tariff and the smart metering infrastructure for in-house 

communication yields the highest return on investment.    
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The study in this chapter focused on the savings made by the user of smart appliances, 

savings resulted from shifting their operation from time intervals with peak electricity 

rates to intervals with off-peak electricity rates. A potential second revenue, resulted 

from the smart appliances capability to respond at short notice to power system 

balancing signals, is the focus of Chapter 4.  
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Chapter 4 

4 Reserve services from smart 
appliances 

 

 

Summary: 

This chapter addresses the feasibility of using smart appliances as operating reserve in 

the power systems balancing services. The current operating reserve requirement for 

the GB power system and the contribution of demand-side are first discussed. A 

framework outlining the actors and the communication infrastructure that enables 

appliances to respond to short-term operating reserve instructions from transmission 

system operators is proposed. A multiple-time-step simulation in Java is introduced, 

that can assess the response from smart appliances at each moment of the day. The 

simulation assessed the load reduction from a number of households as a response to a 

reserve instruction which was modelled as a price increase with a short notification 

period. The results were used to estimate the available demand response from GB 

households. Finally, the financial and environmental achievements of the proposed 

scheme are estimated.  
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4.1 Introduction 
Reserve services, as part of the transmission system operator’s instruments to balance 

the power system, are needed to supply the difference between the actual load or 

generation and the forecasted ones. In near-term, the Great Britain (GB) power system 

is experiencing a shortage of capacity margins [5], which prompted the National Grid 

Electricity Transmission (NGET) to investigate the introduction of a new reserve 

service designed exclusively for demand side [98].  The studies reported in [9] and [99] 

confirm that operating the GB power system with large amounts of wind generation 

requires an increased level of reserve. Therefore, there is now a greater emphasis of 

obtaining reserve services from demand side response.          

4.1.1 Operating reserve requirement in the GB power system 

In the NGET’s Grid Code [100], the role of the operating reserve is defined as: “to 

contribute to containing and correcting any system frequency fall to an acceptable level 

in the event of a loss of generation or a loss of import from an External Interconnection 

or mismatch between generation and demand”. Thus, the operating reserve need to 

cover for three risks: the risk of generator outages, the risk of generator shortfalls, and 

uncertainties in load and wind forecasts.  

The operating reserve level required for the generator outages is set by the largest power 

infeed loss. The risk of generator shortfalls is the risk of the generators not being able to 

output the contracted power. According to [9], the difference between the output and 

contracted powers can be modelled as Gaussian stochastic variables with a mean  𝜇𝜇𝑠𝑠 

and standard deviation 𝜎𝜎𝑠𝑠.  The load and wind forecast errors can also be modelled as 

Gaussian stochastic variables, with means of zero and standard deviations σd and σw. As 

the two errors are independent of each other, the forecast error of the residual demand 
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(the demand minus wind generation) has also a mean of zero and standard deviation 

given by Equation (4.1) [101].  

𝜎𝜎𝑟𝑟,ℎ
𝑡𝑡 = ��𝜎𝜎𝑑𝑑,ℎ

𝑡𝑡 �
2

+ �𝜎𝜎𝑤𝑤,ℎ
𝑡𝑡 �

2
 

(4.1) 

where 𝜎𝜎𝑟𝑟,ℎ
𝑡𝑡  represents the standard deviation of the residual demand forecast for a 

horizon h ahead of time t. 

The equation used to calculate the operating reserve level required to cover two of the 

three risks (the risk of outages and forecast error in residual demand) is given in 

reference [102]. Equation (4.2), used in this study, includes the third risk (the risk of 

generator shortfalls).  

𝑟𝑟ℎ𝑡𝑡 = max  {𝑢𝑢𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} + 𝜇𝜇𝑠𝑠,ℎ
𝑡𝑡 + 𝑍𝑍 ∙ (𝜎𝜎𝑠𝑠,ℎ

𝑡𝑡 + 𝜎𝜎𝑟𝑟,ℎ
𝑡𝑡 ) 

(4.2) 

Where: 

 𝑟𝑟ℎ𝑡𝑡    level of operating reserve for a horizon h ahead of time t 

 max {𝑢𝑢𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚}  the capacity of the largest unit committed at time t (usually this is 
set to 1320 MW for the GB power system to cover the risk of an 
outage at Sizewell B power plant)  

𝜇𝜇𝑠𝑠,ℎ
𝑡𝑡  the mean of generator shortfalls for a horizon h ahead of time t 

Z  the number of standard deviations required to cover for the 
residual demand forecast error and the risk of generators 
shortfalls 

𝜎𝜎𝑟𝑟,ℎ
𝑡𝑡 , 𝜎𝜎𝑟𝑟,ℎ

𝑡𝑡               standard deviations of demand forecast error and the risk of 
generators shortfalls 

 Because it is not cost efficient to procure a reserve capacity equal to the maximum 

possible error, the TSOs adopt a reliability criteria to select the optimal reserve capacity. 

TSOs use the criterion called Loss of load expectation (LOLE), which is the expected 

number of days in a year in which demand may exceed available generation (including 

the operating reserve). For NGET, LOLE is maintained at 1 in 365 days, which can be 
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interpreted as the level of operating reserve must be greater than 99.73% of the forecast 

errors. Considering this probability, a value for Z = 2.78 was found using Table D-3 in 

Appendix C. A graphical representation of Z is shown in Figure 4.1.    

 

Figure 4.1: Normal distribution of errors (forecast of residual demand and generator output) and 
the operating reserve, Z x σ, required to secure the NGET reliability criteria [103]. 

A calculation of the operating reserve requirement, four hours ahead of real time, using 

Equation (4.2), with NGET’s estimates for uncertainties at winter peak demand [9] was 

performed in Matlab®. The results are shown in Table 4.1. The resulting level of 

operating reserve 5532MW is in line with the results given in [9], of 5054 to 6163 MW.        

Table 4.1: Operating reserve requirement of the GB power system at winter peak. 

Uncertainty  
(Terms in Eq. (4.2)) 

Mean 
(MW) 

Standard deviation 
(MW) 

Operating reserve 
(MW) 

Generators outages 
(max �𝑢𝑢𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�) - - 1320 

Generators shortfalls (𝜇𝜇𝑠𝑠,ℎ
𝑡𝑡 +

𝑍𝑍 ∙ 𝜎𝜎𝑠𝑠,ℎ
𝑡𝑡 ) 600 600 2268 

Residual demand 
forecast error (𝑍𝑍 ∙
𝜎𝜎𝑟𝑟,ℎ
𝑡𝑡 ) 

Demand 0 450 
1944 

Wind* 0 535 
 Total 5532 
*Note: installed wind capacity of 10.5 GW, load factor 30% and forecast root mean square error 
(RMSE) of 17% at four hours ahead  
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4.1.2 Current contribution of DR to the GB operating reserve services  

NGET uses Balancing Mechanism (BM) (a spot electricity market) and contracted 

reserve services to procure the operating reserve. The most important participation of 

demand side response is in the contracted reserve services: Fast Reserve and Short Term 

Operating Reserve (STOR). The reserve contracted through the Fast Reserve service 

helps control the system frequency in case of sudden demand increase due to 

unexpected weather change or TV pick-ups. Fast Reserve will also be utilised to 

reinstate the frequency response reserves if a generation loss occurs. The provider’s 

maximum response time4 is 5 minutes and the delivery should last for 15 minutes. 

Hydro pump storage are among the main providers. The annual payment for Fast 

Reserve in 2011/2012 was £92 millions. 

Demand response (DR) is another technology that has been providing Fast Reserve 

using the radio teleswitch electricity meters which can disconnect consumers’ storage 

heaters when a radio instruction is issued. However, the DR from storage heaters is only 

available during the night in the off-peak hours of the Economy 7 tariff [104].  

Reserve provided through STOR covers for the imbalances caused by the errors in 

suppliers’ demand forecast and in wind forecast. Although NGET specifies a maximum 

response time for STOR of 4 hours, 98% of the selected STOR providers can respond 

within 20 minutes [105], as one of the roles of STOR is to take over from Fast Reserve 

and to reinstate the committed sources. The STOR provider should be able to maintain 

the response, either increase in generation or demand reduction, for a minimum of two 

hours. At the moment, the main providers of STOR are Open Cycle Gas Turbine 

(OCGT) power generators and standby diesel generators covering 54% and 18% of the 

                                                           
4 The maximum time until the provider should start the delivery of the service after receiving the NGET’s 
instruction 
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STOR market [106]. DR participation in STOR, mainly by large commercial and 

industrial customers, is approximately 200MW [107] from the maximum required of 

2800MW. Apart from the utilisation payment (£/MWh), NGET pays the providers for 

their reserved capacity (£/MW) during the periods – referred to as availability windows 

[108] - where events are most likely to occur. The annual STOR payment in 2011/2012 

was £104 millions.  

The decrease in communication costs have motivated the appliance manufacturers to 

provide integrated communication modules for home automation in appliances, such as 

fridges, ovens and washing machines. At the moment, the communication module is 

used to remotely turn on/off an appliance or the appliance to send an alarm to the user 

when the cycle is over or when maintenance is needed. However, there is an opportunity 

to make appliances automatically interact with the power system towards providing 

reserve services such as STOR, through load shifting, within minutes of receiving 

instructions. 

4.2 Framework for procuring reserve from smart appliances 

4.2.1 Business model 

The envisioned system to enable reserve from appliances is shown in Figure 4.2. The 

residential customers participating to the DR programme have smart grid ready 

appliances such as washing machine, dish washer and tumble dryer (WM, DW, TD). A 

DR aggregator, in this study the electricity supplier, takes the responsibilities of 

predicting the available response from the appliances, verifying the response and 

rewarding the customers. The supplier will enter the STOR market, operated by the 

TSO, to capitalize the response from the appliances.  
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The communication between the TSO’s central server and the electricity supplier is 

accomplished by an Asymmetric Digital Subscriber Line (ADSL). Through this link the 

supplier is declaring the available response ahead of real time. If the system TSO 

decides that reserve is needed from the supplier, it will issue a reserve instruction, e.g. 

15 minutes ahead of real time, when the demand reduction is needed. At receipt of the 

reserve instruction, the supplier will increase the electricity price starting from the next 

15 minutes interval for the duration specified by the TSO. The price increase will be 

delivered through the smart metering communication infrastructure, owned by the Data 

and Communication Company (DCC) in the UK, which consists of a Wide Area 

Network (WAN) and Communication Hubs [11]. The smart appliances connected to the 

hub will receive the increased price and will delay their cycle; thus, a decrease in 

aggregated consumption will be achieved.  

The above solution, where the DR signal is integrated in the price signal, is similar to 

Critical Peak Pricing (CPP) [109]. CPP is a DR programme that relies on the customers 

to respond manually, therefore the notification time is on a day-ahead basis and the 

critical rate is up to eight times higher than the normal rate. In this case, because the 

response is automatic, the notification time can be shorter, 15 minutes, and the price 

increase can be small, so that the cost of operating the appliances that are not shiftable 

to remain roughly the same. 
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Figure 4.2: Framework for the participation of residential DR to the power system balancing 
service. 

 

4.2.2 Simulation  

In this study the simulation modelled the aggregated consumption of smart appliances 

from N households and their response to a reserve instruction. The response is the load 

reduction for the duration of the reserve instruction resulted from the difference between 

the usual consumption and the consumption in the case with instruction. As described in 

Section 4.2.1, the reserve instruction is converted into an increase in electricity price 

after the notification time and lasts for the duration of the instruction. The appliances, 

assumed to be equipped with the load management features such as smart timing and 

cycle interruption described in Chapter 2, will try to minimise the cost of supplying 

their power phases. The simulation duration was 24 hrs with a time step Δt of 15 

minutes.  

The steps involved in the simulation are shown in Figure 4.3. The simulation starts by 

generating the number of residents living in a single household, according to the 

statistics given in Table 3.3 of Chapter 3. This number inputs to the CREST energy 

demand model and that will generate the activation times of appliances over 24 hrs. 

These above steps will be repeated for each of the N households. Conveyed to the next 
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step of a simulation is the matrix A, which gives the number of WMs, DWs, TDs that 

are in activation mode in each time step up to 24 hrs.  

At time step t of the simulation there are At appliances to be scheduled. A verification 

for reserve instructions is made before the execution of the shifting algorithm described 

in Section 2.5.2. If a reserve instruction is received at time step t, the electricity price is 

increased by 50% at (t + tnotification) until (t + tnotification + tduration); the values of the two 

STOR parameters have been varied to identify their influence on the simulation’s 

outcome.  

The scheduling algorithm, with the flowchart shown in Figure 4.3, is written in the 

JAVA programming language and constitutes an improvement of the algorithm 

described in Section 2.5. While the latter has been used in Chapter 3 to investigate the 

savings that smart appliances obtained from electricity tariffs with fixed rates for the 

next horizon H, the former algorithm is capable of shifting the appliance in response to 

tariffs that change the electricity rates from one time step Δt to another. This allows the 

smart appliances to respond to the reserve instructions from the system operator. 

Therefore, the appliance checks the tariff at each time step for as long as its start is 

delayed. 
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Figure 4.3: Flowchart of the simulation model 
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The additional procedure identifies delayed appliances in the output of the shifting 

algorithm. The output at time step t is shown in  Figure 4.4 and is constituted of binary 

elements xt
v,a  which represent the operation status of power phase v of appliance a at 

time step t. In the array shown in Figure 4.4, the highlighted element xt
1,a indicates if 

appliances a is delayed: xt
1,a = 1 indicates that appliance a starts at time t, while xt

1,a = 0 

indicates that appliance a is delayed. The delayed appliance will be scheduled at the 

next time step: A(t+Δt)  = A(t+Δt)+1. The user defined maximum delay parameter of the 

delayed appliance is decremented by Δt, reflecting the decrease in the time interval of 

the potential start time.   
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Figure 4.4: Array of decision variables for the optimisation at time step t. 

In order to assess the potential reserve level that could be obtained by appliances in the 

GB power system, the user behaviour in each of the 25.6 million households needs to be 

ascertained. However, considering the limited diversity in the utilization of appliance, a 

smaller number of customers can be assumed to represent this larger population. As 
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shown in Figure 4.5, the average load profile shows small changes after aggregating a 

certain number of households. For example the changes seen between the aggregated 

load profile of 1,000 households and 5,000 households are not significant. For this 

reason, and also for computational efficiency, 1000 households were used to model the 

response from the GB residences. 

 
Figure 4.5: Average household demand simulated for different size groups. 

4.3 Feasibility study of providing reserve services 

4.3.1 One thousand households  with single rate tariff 

Figure 4.6 (a) illustrates the response of smart appliances (WM, DW, TD) from 1,000 

households to a reserve instruction. The response as part of the total aggregated demand 

is represented in Figure 4.6 (b). In this example the households are subscribing to single 

rate electricity tariffs. The reserve instruction has the parameters of a STOR instruction: 

15 minutes notification time and duration of two hours. The appliances receive the 

increased electricity rates at 9:45 am. The load reduction that was considered as reserve 

was measured between 10:00 am and 12:00 am. The load reduction obtained from the 

1,000 households during the two hours is variable and has a mean of 156 kW.  
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(a) 

 
 

(b) 

 
Figure 4.6: Aggregated demand from 1000 households with single rate tariff and their response to a 
reserve instruction: (a) Demand of appliances WM, DW, TD only; (b) Demand of all the loads from 

households. 

The load reduction is followed by a load recovery period. The load recovery has higher 

values than the reduction due to the loss in diversity of usage of appliances. The 

appliances allowed to be delayed or interrupted by the user will start or continue their 

operations immediately after the instruction ends. The post instruction peak is increased 

by 270% compared to the original peak. The load diversity was reinstated by delaying 

the appliances that would otherwise start after the reserve instruction, with a random 



Chapter 4                                                           Reserve services from smart appliances 

81 
 

offset. The random offset takes values between 1 and 60 minutes and is applied to 

appliances for two hours after the instruction. For this scenario, the new peak, 

represented in blue in Figure 4.6, is reduced to 170% of the original peak. 

4.3.2 One thousand households with TOU tariff 

Figure 4.7 (a) shows the response to a reserve instruction of smart appliances (WM, 

DW, TD) from 1,000 households subscribing to the Time of Use (TOU) electricity 

tariff. The response as part of the total aggregated demand is represented in Figure 4.7 

(b). The tariff with ten off-peak hours, five of them in the afternoon and evening, shapes 

the aggregated load profile of the appliances. To exemplify the impact of the tariff on 

the appliances’ response, a STOR instruction is issued at 12:00. In the first hour of the 

instruction the load reduction obtained has an average of 42 kW due to the low 

availability of appliances during the peak price period. For the second hour, the load 

reduction has an average of 458 kW because the appliances that have been waiting to 

start at the lower price period will be further delayed at the end of the instruction. For 

TOU, the random offset between 1 and 60 minutes will reduce the original peak by 

47%. 
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(a) 

 
 

(b) 

 
Figure 4.7: Aggregated demand from 1000 households with TOU tariff and their response to a 
reserve instruction: (a) Demand of appliances WM,DW,TD only; (b) Demand of all the loads in 

households.  

4.4 Potential contribution of appliances to the GB operating reserve 

4.4.1 Effects of reserve instruction parameters  

The response obtained using the simulations described in Section 4.2.2 was scaled in 

order to estimate the reserve that smart appliances can provide at the national level. The 

assumption for this scenario is that 20% of GB households have adopted smart 

appliances (WM, DW and TD). The response was compared against the maximum 
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required STOR level in 2014 of 2,800 MW. As shown in Section 4.3, the response 

depends on the time of the day when the reserve instruction is issued. Hence, to obtain 

the available response during a day, simulations were repeated with uncorrelated reserve 

events over a 24 hrs period. The influence on the load reduction of the reserve 

instruction parameters - notification and duration - was investigated.  

The available reserve in the case where the instructions’ duration is two hours is shown 

in Figure 4.8. To highlight the relation between the available reserve and the time at 

which the instructions are issued, two lines have been plotted, representing the load 

reductions if instructions are issued at even or odd hours throughout the day. It is worth 

noting that even though Figure 4.8 shows a continuous variation of the available 

reserve, in fact it constitutes of a number of 2 hrs plots shown in a single 24 hrs time 

axis. 

A notification time of 15 minutes for the instructions is considered in Figure 4.8 (a) and 

60 minutes in Figure 4.8 (b). The load reduction can cover up to 49% of the maximum 

STOR that NGET requires to safely operate the GB power system. When the appliances 

are notified one hour prior to the delivery time a higher result is achieved: 54% or 

1.5GW. Additionally, the increased notification time means that demand reduction is 

prompter in its response, similar to a generator with a quicker ramp-up capability, at the 

times the delivery of the response is required. 
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(a) 

 
 

(b) 

 
Figure 4.8: Available reserve from 20% of appliances (WM, DW, TD) in GB for reserve 

instructions with duration of 2hrs: (a) Reserve instruction notification time 15 min; (b) Reserve 
instruction notification time 60 min. 

The available reserve in the case where the instructions’ duration is one hour is shown 

in Figure 4.9.  The instructions are issued with 15 minutes notification, in Figure 4.9 (a), 

at 00’ of each hour, with black, and at each 30’ of each hour with blue. In Figure 4.9 (b) 

the reserve instructions have a notification of one hour. By comparing with the previous 

case it can be seen that the notification of the reserve instruction has a bigger impact on 

the magnitude of the load reduction than the duration of the instruction.  



Chapter 4                                                           Reserve services from smart appliances 

85 
 

 

(a) 

 

 

(b) 

 

Figure 4.9: Available reserve from 20% of appliances (WM, DW, TD) in GB for reserve 
instructions with duration of 1hr: (a) Reserve instruction notification time 15 min; (b) Reserve 

instruction notification time 60 min. 

Although the available reserve varies throughout the day, the average values during the 

availability windows, when events are most likely to appear, could provide a rule of 

thumb for policy makers. The results for the estimated load reductions with different 

reserve instruction parameters are summarised in Table 4.2.  
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Table 4.2: Estimates of the availability of DR from 20% of appliances (WM, DW, TD) in GB 

Instruction parameters Reserve level available from smart appliances (MW) 
Availability window 

                   Notification 
Duration 

I (07:30 – 14:00) II (16:00 – 18:00) III (19:30 – 22:30) 
Summer Winter Summer Winter Summer Winter 

1 h \ 15 minutes 813 856 1097 1250 567 541 

1 h \ 60 minutes 989 1059 1324 1516 701 662 

2 h \ 15 minutes 843 895 1146 1255 584 576 

2 h \ 60 minutes 949 1022 1288 1462 677 642 

 

4.4.2 Financial and environmental achievements 

The shifting of the appliances will leave the electricity supplier, acting as the DR 

aggregator, with volumes of energy different from those contracted. For the period of 

the reserve instruction, the supplier has its contracted volume suitably adjusted with the 

response provided to the TSO, thus avoiding imbalance charges. However, the supplier 

will have to cater for the load recovery period. As the time of the load recovery is 

predictable, the suppliers can modify their contracted position by trading in the power 

exchanges as soon as the reserve notification is received.  

At a system level, the described solution facilitates the operating reserve to be supplied 

through more efficient power plants. By delaying the need for extra active power, the 

smart appliances response can help replace the fast and higher emissions response from 

OCGTs with the lower emissions combined cycle gas turbines (CCGTs). An estimate of 

the CO2 reduction for a period of one year is calculated in Matlab® with Equation (4.3).  

                                Δξ =  E ∙ (ϵOCGT − ϵCCGT)                                  
(4.3) 

where 

 Δξ  the annual emissions reduction (ktCO2) 

 E the annual energy provided by OCGTs in the STOR service 
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E ≅ 100 GWh in 2011 [106], [28] 

 ϵOCGT  carbon emissions factor of operating the OCGTs. 

 ϵOCGT = 0.46 tCO2/MWh [110] 

 ϵCCGT   carbon emissions factor of operating the CCGTs. 

 ϵCCGT = 0.353 tCO2/MWh [110] 

The resulting annual emission reduction with the parameter values of 2011 is Δξ = 10.7 

ktCO2. For comparison the annual emissions from electricity generation in UK 2011 

was approximately 150 MtCO2.  

Equation (4.4) was implemented in Matlab® to assess the financial benefit of providing 

STOR service when an uptake of 20% of appliances in GB is considered. The first term 

of the equation determines the revenues from availability, while the second, the 

utilisation revenue. It is assumed that the TSO accepts the full availability provided by 

DR given in Table 4.2 for instruction notification of 15 minutes and duration of 2hrs.  
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(4.4) 

where 

V  revenue for providing STOR service 

 𝑁𝑁𝑑𝑑  number of days in one year 

 𝑁𝑁𝑎𝑎  number of availability windows in each day 

𝑡𝑡𝑖𝑖  the duration of the availability window i  

𝑟𝑟𝑖𝑖  the available response from smart appliances in the availability window i 

𝑟̅𝑟  the average response over the 𝑁𝑁𝑎𝑎 windows 

𝑁𝑁𝑢𝑢 the annual average calling time for STOR providers 
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𝑐𝑐𝑎𝑎  availability payment 

𝑐𝑐𝑢𝑢 utilisation payment 

 The values for the parameters used are representative for the year 2011 and are given in 

Table D-4 of Appendix C. The resulting availability over one year is 3,572 GW∙hrs can 

bring revenue of £32.62M. Furthermore, a revenue from utilisation of £14.37M was 

obtained, bringing the total revenue to £47M.  

4.5 Discussion 
The capability of smart appliances to participate in power system balancing services 

was investigated. Two new procedures were added to the scheduling algorithm 

introduced in Chapter 2 in order to model the response from smart appliances to a 

reserve instruction with a short notification period.  

One thousand households in GB participating in the NGET’s STOR service were 

simulated. The shifting and interruption of appliance operation, triggered by STOR 

instruction, resulted in a fast decrease in consumption. The load reduction, or reserve, 

varies over 24 hrs and depends on the user behaviour. The electricity tariff, to which the 

user is subscribing, shapes the availability of smart appliances and, thus, the reserve 

they can provide over 24 hrs. Furthermore, the STOR instruction parameters influenced 

the level of reserve obtained. Increasing the time between the moment when the STOR 

instruction was issued and the moment appliances are expected to deliver the reserve 

ensures a higher value of reserve from appliances. Following the reduction, a loss in 

diversity of usage of appliances was observed and was mitigated by the introduction of 

a random start offset. 

The response from one thousand households was used to estimate the available response 

at system level, considering 20% penetration of smart appliances in the GB residential 
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sector. The results showed that the response of the considered appliances (washing 

machine, dishwasher and tumble dryer) is well suited to be integrated in the STOR 

service. A significant share of up to 54% of the maximum STOR level required in the 

GB power system operation was achieved. The greenhouse emissions savings of the 

proposed demand side response scheme are relatively small, 10.7 ktCO2 per year, due to 

low utilization of the STOR service. The yearly revenue for providing STOR was 

calculated at £47M.   

The results of this chapter show that at system level a peak demand is created when 

control signals are sent to the appliances, due to the loss in the diversity of usage of 

appliances. This leads to the question of how this peak would affect the electricity 

distribution network operation for a scenario where smart appliances are clustered in a 

residential area. To give an answer to this question a study on medium and low voltage 

distribution networks is carried out in Chapter 5. 
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Chapter 5 

5 Distribution network operation with 
smart appliances 

 

 

Summary:  

In this chapter a study was carried out to identify potential constructive or detrimental 

effects which the adoption of smart appliance technology will have for the distribution 

network operation. A generic simulation through which demand response initiatives can 

be tested on distribution networks is introduced. The simulation contains a load 

modelling method where each network node is allocated a number of households, while 

the node’s aggregated demand is the sum of the individual household profiles. The 

branch loading and voltage profile parameters are determined using time series power 

flow analysis, implemented in IPSA Power software. Two types of control have been 

considered for smart appliances: individual and regional control. An uptake over 25% 

of smart appliances with individual control leads to thermal stress on distribution 

circuits. The regional controller for smart appliances, introduced to assess the network 

support facilitated by coordination between loads, limits the appliances aggregated 

demand keeping the network parameters within the operational limits.  
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5.1 Introduction 

The distribution networks have been planned and designed with spare capacity to 

account for future demand growth and contingency overloads. With the electrification 

of the transport and heating sectors the load forecasted to connect to the distribution 

network will require uprating of network components [111]. The capacity allocated to 

distribution networks for the current demand is estimated by network operators 

considering temporal diversity in the appliance utilisation, since different appliances are 

turned on and off at different times. The reduction of temporal diversity in appliance 

utilisation due to utility signals was discussed in studies [2]-[3].  In GB more domestic 

consumers will have easy access to TOU type of electricity tariffs through the smart 

metering infrastructure, which could reduce the diversity factor due to the synchronising 

effect on smart appliances (SAs). The smart metering infrastructure will enable 

distribution network operators (DNOs) to send more complex control signals to smart 

appliances that will result in dynamic changes in consumption. It is thus essential to 

investigate the implications that the adoption of smart appliances will have on 

distribution networks.  

5.2 Regional controller 
A regional controller is introduced to investigate the network support solutions provided 

by smart appliances: washing machine, dishwasher and tumble dryer (WM, DW, TD). 

The proposed scheme for the operation of the regional controller is illustrated in Figure 

5.1. The location of the controller in this study is the secondary substation. The 

controller will schedule the operation of smart appliances connected to the electricity 

network downstream of the controller’s location.  

The objective of the shifting algorithm implemented in the controller is unchanged from 

that of smart appliances described in Section 2.5 by Equation (2.3): minimise the cost of 
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operating the appliances’ power phases. In addition the controller ensures that the 

aggregated demand of appliances does not drive the network parameters outside the 

operational limits. Therefore, in addition to the constraints related to the individual 

appliance operation from Equations (2.4)-(2.6), network constraints were considered in 

the shifting algorithm. Three types of constraints were investigated: network thermal 

limits, network voltage limits, and both thermal/voltage limits. 

 
Figure 5.1: Concept of a regional controller for smart appliances. 

The thermal constraint, modelled using Equation (5.1), keeps the loading at the 

secondary substation transformer lower than the transformer rating. The constraint 

formulation which was implemented in the optimisation model is found by replacing the 

appliance demand from Equation (5.1) with the expression given in Equation (5.2).   
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(5.2) 

where: 

Stransformer          MV/LV transformer nominal rating  

k              index of the residential consumer  
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K   number of residential consumers connected to the LV network  

PA
t

k
 , QA

t

k
          power consumption from appliances (WM, DW, TD) for customer k at t 

PD
t

k
 , QD

t

k
          power consumption from other household appliances for customer k at t 

T                     optimisation window 

t0                    current time step 

v    index of the power phase  

Va             number of power phases of the appliance a  

xv,a
t
             binary decision variables of power phase v of the appliance a 

Pv,a
k
            power consumption for the power phase v of the appliance a 

At0             number of appliances activated at time t0  

φ             phase angle 

The voltage constraints keep the voltage across the LV feeder within the declared 

voltage range of 230 volts +10% and -6%. Because the considered network is passive, it 

is sufficient to implement voltage constraints for only one node: at the end of the feeder. 

The constraint, modelled in Equation (5.3), ensures the voltage at the customer 

connected farthest from the substation is above the lower bound of the voltage range. 

The formulation of the constraints which were implemented in the optimisation model 

is found by replacing the appliance demand from Equation (5.3) with the expression 

given in Equation (5.2).   

Calculating the voltage is a non-linear problem and usually involves iterative steps, 

which cannot be integrated in the optimisation model of the shifting algorithm. Instead, 

a voltage calculation using linear equation was used as detailed in Appendix D.1. The 
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approximation is possible due to the particularities of a distribution circuit and the radial 

topology of the LV feeder. In Equation (5.3) a low value of the cable section index 

indicates the proximity to the secondary substation while a higher value to the end of 

the feeder (no branches were considered).    

𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 ≥ 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 
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∀ 𝑡𝑡 ∈ (𝑡𝑡0, … ,   𝑡𝑡0 + 𝑇𝑇)  

(5.3) 

where: 

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼   voltage limits for the LV network 

𝑉𝑉𝑆𝑆    voltage of the LV busbar at the secondary substation 

i             index of the cable section across the LV feeder 

n   number of cable sections on the LV feeder 

Ri             resistance of the cable section i 

Xi             reactance of the cable section i 

PA
t

j
 , PD

t

j
         power consumption connected to the cable section j at time t 

5.3 Simulation 

5.3.1 Flowchart 

An overview of the simulation constructed to study the impact of smart appliances on 

distribution network operation is shown in Figure 5.2. There are two sequences of 

processes in the simulation: one for modelling smart appliances with individual control 

(without coordination) and the second for modelling smart appliances with a regional 

controller that coordinates their operation.  
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Each node of the distribution network was allocated a number of houses according to 

the node’s nominal demand value specified in the network parameters. The CREST 

electricity demand model described in Section 2.4.1 generates for each node the 

activation times of WM, DW and TD. It also generates the households’ demand PD and 

QD excluding WM, DW and TD for 24 hrs at a resolution of one minute. The shifting 

algorithm outputs the appliances power consumption PA and QA at each node. The 

demand data at each minute throughout the 24 hrs was used to run steady state load 

flow analyses on the distribution network, a method called time series load flow 

analysis [113]. The results are the network voltages, loading of transformers and cables 

at each minute during the time span of a day. A script was developed in Python to run 

time series load flow analyses. At each time step the script invokes a load flow engine 

in IPSA Power [84] using an application programming interface. The selected load flow 

engine uses a fast decoupled Newton-Raphson power flow algorithm.   

For the simulation of appliances with individual control the shifting algorithm explained 

in Chapter 2 was used without any modifications. The model assumes each appliance is 

independently scheduling its operation to reduce the cost of the consumed energy. For 

modelling smart appliances with a regional controller, the shifting algorithm requires 

demand and network information.  
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Shifting 
Algorithm

Generate demand 
without WM,DW,TD for 

all nodes  

Generate activation 
times of WM,DW,TD for 

all nodes

PA, QA

PD, QD

P, Q, V

Sequence of processes for simulation of smart appliances without coordination

Sequence of processes for simulation of smart appliances with regional controller

Residential electricity demand model

Network parameters

Transformers and cables parameters
Nominal demand at network nodes

Time Series Load Flow Analysis

Loading of transformers 
and cables Voltage profiles

 

Figure 5.2: Data flowchart of the simulation. 

5.3.2 Distribution test system  

The voltage levels of the selected distribution networks are medium voltage (MV) and 

low voltage (LV). The one line diagram of the network is shown in Figure 5.3. Both the 

MV and LV networks have a radial topology with underground cables. The details of 

the 33 kV network are specified in the United Kingdom Generic Distribution System 

(UKGDS) project [114]. At the primary substation there are two 33/11kV transformers 

operating in parallel on the same busbar, each rated at 26.4 MVA. The transformers are 

equipped with on-load tap changers (OLTCs) and are controlling the voltage at the MV 
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busbar of the substation. There are eight feeders of different lengths leaving the 

substation which supply 75 aggregated MV loads, from which one is detailed as a LV 

network. At the secondary substation the step-down transformer 11/0.4 kV is rated at 

500 kVA and is fitted with off-load tap changer. The LV network’s design and 

parameters’ values are obtained from reference [115]. The network parameters are given 

in Table E-6 and Table E-7 of Appendix D.2.  

 
Figure 5.3: Distribution test network. 

5.3.3 Load model 

The network covers an urban area with high customer density. Demand on the selected 

distribution network is assumed to be only residential. There are a total of 75 loads at 

the MV level, each one representing an aggregation of LV consumers. Equation (5.4) 
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was used to assign a number of houses for each of the 75 loads by dividing the nominal 

demand value to the after diversity maximum demand (ADMD) parameter. The nominal 

value is the maximum demand that can be observed in normal operation. The nominal 

value of the demand at each 11kV busbar is specified in the MV network parameters 

[114], with values between 100 kVA to 392 kVA. A common value for ADMD 

considered in studies of distribution network operation in the UK is 1.3 kVA [116]. In 

total, the MV network serves 18,688 residential customers.  

𝑁𝑁𝑁𝑁𝑏𝑏 =
𝐷𝐷𝑏𝑏

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 (5.4) 

where: NHb is the number of houses at busbar b; Db is the nominal demand at busbar b; 

ADMD is the after diversity maximum demand parameter.    

For the LV network, reference [115] specifies that each of the four feeders serves 97 

residential consumers. They were partially lumped into groups of twelve residential 

consumers connected to eight distribution pillars placed across the feeder. For the last 

consumer, number 97, the service cable was also included. For example, in Figure 5.3 

each load 40011 to 40018 represents twelve consumers, while load 4019 is a single 

consumer.        

The CREST demand model described in Section 2.4.1 was used to model the load 

curves over one day for each of the residential consumers within the MV and LV 

networks. Modelling each dwelling gives a more realistic view of the allocation of the 

demand across the distribution network than using average load profiles. The resulting 

ADMD value for the LV network using the demand model is 1.2 kVA, close to the 

value considered in Equation (5.4). The daily load factor of the cumulated load seen at 

the MV/LV transformer, defined as the ratio of the average demand to the maximum 

demand, is 0.57. This value is close to the daily load factor for residential consumers in 
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the UK (0.55 according to [117]). A lagging power factor of 0.98 was considered for the 

connected residential loads, value consistent with the average power factor measured by 

a DNO in [118] . The loads were modelled as constant power loads.    

5.3.4 Pseudo-code 

The pseudo-codes of the simulation and the shifting algorithm used in this chapter are 

given in the following two tables. The details of the parameters used in the pseudo-code 

can be found in the explanations of Equation (5.1)-(5.4), Section 5.2 and Section 5.3.3. 

Simulation 
Input: No_LVnodes, Db[No_LVnodes] , ADMD , Stransformer , Tsimulation , VS [Tsimulation] , φ 

Begin 
1.   For each node in No_LVnodes 
2.   NHb(node)= Db(node) / ADMD  
3.      PD (node) = Run adapted_CREST( NHb(node)), SD(node)=PD (node) / cos(φ) 
4.            A = Run adapted_CREST( NHb(nodes)) 
5.    End For  
6.    For each time step of Tsimulation 
7.         For all each node in No_LVnodes 
8.             Power_limit_apl (time) =  Stransformer –  SD(time)(node) 
9.         End For  
10.  End For  
11.  PA= schedule_algorithm (A, price, VS, Tsimulation , Power_limit_apl, PD, φ) 
12.  QA(node)=tan(φ) ∙ PA (node) 
13.  Run IPSA_software(PA+PD, QA+QD) , Get network_state_variables 
End 
Output: Display network_state_variables 

 

Shifting algorithm (schedule_algorithm) 
Input: A,  price, VS , Tsimulation , Power_limit_apl[Tsimulation], PD[Tsimulation][No_LVnodes],  φ  
Set:   No_power_phase, apl_power_profile[No_power_phase], Volt_lim_inferior,                         
No_cables = No_LVnodes, R[No_cables], X[No_cables] 

Begin 
1.   Define decision variable in CPLEX: x[A ∙ No_power_phase ∙ Tsimulation] 
2.   For each apl in A  
3.  For each phase in No_power_phase 
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4.                  For each time in Tsimulation 

5.                         Add to objective_function: x(time + Tsimulation ∙ phase+ Tsimulation ∙ phase ∙apl) ∙  
6.                                                                       ∙apl_power_profile(phase)∙ price(time) 
5.                         Add to power_constraint: x(time + Tsimulation ∙ phase+ Tsimulation ∙ phase ∙apl) ∙  
6.                                                                       ∙apl_power_profile(phase) 
7.                  End For 
8.          End For 
10.  End For 
11.  For each cable in No_cables 
12.         Equivalent_R (cable)= Equivalent_R(cable-1)+R(cable)+X(cable)∙sqrt(1/( ϕ2-1))          
13.         For each apl in A(cable)  
14.        For each phase in No_power_phase 
15.                      For each time in Tsimulation 

16.                          Volt_fixed_load(time)= Volt_fixed_load(time)+Equivalent_R (cable) 
17.                                                        PD(time)(cable)/ VS(time) 
18.                          Add to voltage_constraint: x(time + Tsimulation ∙ phase+ Tsimulation ∙ phase ∙apl) ∙  
19.                                                       ∙apl_power_profile(phase)∙ Equivalent_R(cable)/ VS(time) 
20.                      End For 
21.               End For 
22.            End For 
23.  End For 
24.  Run CPLEX: power_constraint(time) <  Power_limit_apl(time) 
                           voltage_constraint(time) <VS - Volt_lim_inferior(time) - Volt_fixed_load(time) 
26.                      Minimize objective_function 
27.  For each cable in No_cables 
28.         For each apl in A(cable)  
29.        For each phase in No_power_phase 
30.                      For each time in Tsimulation 

31.                          PA(time)(cable)= x(time + Tsimulation ∙ phase+ Tsimulation ∙ phase ∙apl)∙  
32.                                                                       ∙apl_power_profile(phase) 
33.                      End For 
34.               End For 
35.            End For 
36.  End For 
End 
Output: Return PA 
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5.4 Results 

5.4.1 Operation of smart appliances with individual control 

In this scenario the smart appliances (WM, DW, TD) schedule their operation 

autonomously, without any coordination between them. Each appliance minimises its 

operation cost according to the electricity tariffs, as described in Chapter 3. In this 

scenario the focus was to identify if the loss in diversity in the appliance utilisation 

causes significant voltage drops on the distribution network or the distribution 

equipment to work in overload conditions. 

Figure 5.4 shows the transformer T3 loading with different uptake rates of smart 

appliances. The smart appliances reacting autonomously to the TOU tariff will decrease 

the load diversity at the off-peak hours of the tariff. The rating of the transformer is 

exceeded by the demand, the effect of it being a temperature build-up which could 

result in deterioration of winding insulation.  

 

Figure 5.4: Loading of substation transformer T3 in winter season. 

Transformer T3 loading was investigated for further circumstances, with the maximum 

loadings recorded during the time span of a day shown in Figure 5.5. Both Economy 10 
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and RTP tariffs show a correlation between the uptake rate of appliances and the 

maximum transformer loading. There are several reasons for the creation of a new peak 

demand with a higher value than the initial value (without smart appliances). The two 

tariffs have off-peak intervals during daytime, intervals preceded by periods with high 

availability of appliances. The appliances are shifted to daytime off-peak intervals 

where the demand is lower than the initial peak, yet still significant in comparison with 

night time demand. The appliances which have their start delayed will start their 

operations immediately after the end of the off-peak interval. Therefore, with the 

increase in the uptake rate of smart appliances, the new peak demand surpasses the 

initial peak and the transformer T3 rating. The limitation on the uptake rate of smart 

appliances is occurring first in winter when the spare capacity of T3 used to 

accommodate smart appliances is lower than in summer.   

For Economy 7 the maximum loading is slightly decreased with the increase of smart 

appliances uptake. This is because the appliances are shifted from the 17:00-18:00 peak 

to after 24:00, when the off-peak interval starts. The new peak created by Economy 7 

doesn’t surpass the initial peak because the availability of appliances for the hours 

leading to 24:00 is small compared with the availability during daytime of the other two 

tariffs (RTP and Economy 10). Another reason is that the initial demand is low during 

the off-peak interval.   
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Figure 5.5: Peak demand recorded at transformer T3 with different smart appliances uptake levels: 
(a) Summer; (b) Winter. 

Branch loading is another important aspect in distribution planning and operation. The 

results showed that the underground cables of MV feeders had enough capacity to carry 

the loading at peak load times for any of the discussed circumstances. The situation is 

more problematic for the underground cables of the LV network, where there is a risk of 

the peak demand exceeding the cable rated capacity. Figure 5.6 shows the maximum 

loading for Economy 10 and RTP tariffs. Overloads are recorded on the first three cable 

sections closest to the substation, cable of 185mm2 cross section, from node 40001 to 

40013 and also on the first 95mm2 section from 40014 to 40015.            
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Figure 5.6: LV feeder branch loading at peak load times with different smart appliances uptake 
levels: (a) Summer; (b) Winter. 

The peak demand recorded at the primary substation for the same circumstances as 

above is shown in Figure 5.7. License conditions require the DNO to supply group 

demands with a level of redundancy for security reasons. The aggregated demand on the 

MV network, classified in the range 12MW up-to 60MW, has to be supplied by at least 

two normally closed circuits [119]. This ensures that in case of a first outage on one of 

the circuits, situation also called ‘N-1’ single failure, the demand is still supplied by the 

other circuit. In the test system the aggregated demand is served by the transformers T1 

and T2 which are operated in parallel. Therefore, in order to be ‘N-1’ compliant the 

peak demand seen at the primary substation should not exceed the nominal rating of the 

transformers. For most of the circumstances the smart appliances do not interfere with 

this requirement. The nominal rating of the transformers is exceeded only for a smart 

appliance uptake rate higher than 75% for Economy 10 tariff in winter season.       
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Figure 5.7: Peak demand at the primary substation with different smart appliances uptake levels:            
(a) Summer; (b) Winter. 

The voltage profile across a medium length MV and LV feeder is plotted in Figure 5.8 

for different circumstances. Two voltage regulation (VR) practices are considered. For 

the first practice, the voltage on the MV busbar of the primary substation is set to the 

upper limit, of 1.06 p.u; while in the second practice the voltage is set to 1 p.u. The 

voltage is controlled by the tap changers of the two 33/11 kV transformers T1 and T2. 

The voltage at the LV network is boosted by 2.5% through the off-load tap changer at 

the 11/0.4 kV transformer. In the summer season the voltage at maximum loading is 

within the voltage limits for both voltage regulation practices and for all the tariffs 

considered. In the winter season, most of the values fall within the voltage limits. 

However, for the second voltage regulation practice the voltage on the last section of the 

LV feeder falls below the lower voltage limit if the tariff considered is Economy 10.              
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Figure 5.8: Voltage profile of MV feeder (medium length) and LV feeder at maximum loading:                    

(a) Summer; (b) Winter. 

Further, the voltage profile was investigated for the LV network connected to the 

longest MV feeder of the MV network, to consider the most onerous conditions. The 

voltage regulations practices and tariffs are unchanged from the previous investigation. 

The voltage profiles, shown in Figure 5.9, have deteriorated compared with the previous 

case. Yet still the Economy 10 tariff is the only tariff where voltages outside the limits 

are recorded. In the summer, for the second voltage regulation practice, the last section 

of the LV feeder falls below the lower voltage limit; while in winter both the MV feeder 

and most of the LV feeders are below the voltage limit.  
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Figure 5.9: Voltage profile of MV feeder (long length) and LV feeder at maximum loading:                                   

(a) Summer; (b) Winter. 

Three temporal voltage profiles at the LV consumer connected farthest from the 

substation are shown in Figure 5.10. The profiles correspond to the three situations 

identified in Figure 5.8 and Figure 5.9 in which voltages are outside the limits. The 

voltage magnitude suffers significant drops after 13:00 and 20:00, at the start of the 

Economy 10 off-peak daytime intervals.   
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Figure 5.10: Voltage temporal profile at the LV feeder’s end for a: (a) Winter day / medium length 
MV feeder; (b) Summer day / long length MV feeder; (c) Winter day / long length MV feeder. 

5.4.2 Network support provided by regional controller 

In this scenario the regional controller coordinates the operation of smart appliances 

(WM, DW, TD) with the objective of maximising the users financial benefits, while 

ensuring the network parameters remain within the operational limits. 

5.4.2.1 Network thermal constraints 

In Section 5.4.1 it was shown that one of the elements of the network at risk of 

overloading is the 11/04 kV transformer T3. Figure 5.11 shows the performance of the 

regional controller which implements a thermal constraint at the transformer. With the 

regional controller, the demand recorded at the transformer remains below the 
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transformer nominal rating. For comparison the profile obtained without the regional 

controller from Figure 5.4 is also shown.      

 
Figure 5.11: Performance of the regional controller with thermal limits (nominal rating) at the 

transformer T3.  

In the case of individual control strategy for smart appliances, the demand at the 

transformer T3 exceeds its nominal rating for Economy 10 and RTP tariff, as shown in 

Figure 5.5. For these tariffs, the simulations were re-executed to test the coordinated 

control strategy, with the regional controller imposing a network constraint equal to the 

transformer nominal rating. The results, shown in Figure 5.12, demonstrate the regional 

controller limits effectively the peak demand on the LV network to a value below the 

transformer rating.  
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Figure 5.12: Effects of the regional controller with thermal limits on the peak demand recorded at 
transformer T3: (a) Summer; (b) Winter. 

The change in demand due to the capacity constraint at transformer T3 implemented by 

the regional controller influences the branch loading, as shown in Figure 5.13. Due to 

the regional controller the maximum loadings of cable sections, from node 40011 to 

40015, which were overloaded for the individual control strategy, decreases below their 

rated capacities. A decrease is recorded for the cable section closest to the substation, 

from node 40001 to 40002, to a value of 109% of its capacity.       
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Figure 5.13: LV feeder branch loading at winter peak load times with different smart appliances 
uptake levels.  

The regional controller with capacity constraint delays the cycle of some appliances 

from the time interval which yields the lowest price. Therefore, a number of users of 

smart appliances will save less money as compared with the case where no capacity 

constraint is imposed. Table 5.1 shows the reduction in the total savings on the 

electricity price for different values of the capacity constraints imposed by the regional 

controller on the demand at transformer T3. With a capacity constraint equal to the 

transformer thermal rating of 500 kVA, the reduction in savings is minimal, the users 

retaining 97.6 to 99.9% of the maximum savings.    
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The regional controller can impose a capacity constraint (i.e. 450-400 kVA) that will 

cap the demand at values lower than the initial peak demand (0% uptake of SAs), as 

shown in Table 5.1. The newly created capacity can be utilised to integrate heat pumps 

and electric vehicles or accommodate future demand growth on the network. The 

smooth price curve of the RTP tariff allows the load that cannot be supplied in the time 

interval which yields the lowest price to be dispersed over the adjacent intervals without 

a sharp savings reduction. However, for Economy 10 tariff, the steep transitions 

between off-peak and peak intervals cause a significant reduction in savings.  

Table 5.1: Impact of the regional controller with capacity constraints on the total financial benefit 
of smart appliances users in the LV network. 

 Percentage of maximum SAs savings (%) 

          Limit (kVA) 

Tariff 

Summer Winter 

- 500 300 275 250 - 500 450 400 375 

Economy 10 100 99.9 99.8 
85.2

7 
66.1 100 97.6 93.1 77.3 67.8 

RTP 100 99.9 99.7 98.5 98 100 99.9 99.8 99.1 98.8 

5.4.2.2 Network voltage constraints 

In Section 5.4.1 it was shown that for a high uptake of smart appliances with individual 

control there is a risk the voltage magnitude across the network could sustain significant 

drops. The performance of the regional controller which implements a voltage 

constraint was investigated for the loading conditions previously found in Section 5.4.1 

to trigger voltage drops below the admissible voltage limit.  

The scenarios presented in Figure 5.14 have the following assumptions in common: the 

smart appliance uptake is 100%, the voltage at the MV busbar of the primary substation 

is set to 1 p.u. and the tariff considered is Economy 10. The regional controller 
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schedules just the smart appliances on the LV network, while the rest of the smart 

appliances from the MV network have individual control.             

 

Figure 5.14: Voltage temporal profile at the LV feeder’s end considering 100% uptake of SAs and a 
regional controller with voltage constraints for a:   (a) Winter day / medium length MV feeder; (b) 

Summer day / long length MV feeder; (c) Winter day / long length MV feeder. 

In Figure 5.14 (a) the LV network is connected to a medium length MV feeder, and the 

network demand is representative for the winter season. The controller keeps the 

voltage magnitude at the LV consumer connected farthest from the substation above the 

minimum limit. A successful result is also obtained when the LV network is connected 

to a long length MV feeder, with the demand being representative for the summer 

season, as shown in Figure 5.14 (b). In the winter season the voltage at the LV busbar of 
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the secondary substation, which is mostly dependent on the voltage of the MV feeder, is 

significantly deteriorated due to the smart appliances with individual control from the 

MV network. The regional controller has not enough demand on the LV network to 

shift from the periods where the substation voltage is low in order to keep the voltage 

above the minimum limit. However the voltage profile is significantly improved 

compared to the case without voltage constraint, as shown in Figure 5.14 (c). 

5.4.2.3 Network thermal and voltage constraints 

The performance of the regional controller which implements both the thermal and 

voltage constraints was compared in Figure 5.15 with the performances of the previous 

constraints strategies. Each point characterizes the voltage recorded at the farthest 

customer from the substation and the corresponding demand at the MV/LV transformer 

during one minute. The regional controller with both constraints displays similar results 

with the case when only the thermal constraint is enabled. 

In Figure 5.15 the points around the thermal rating are still within the voltage limits, 

while the points around the voltage limit correspond to a much higher demand than the 

transformer rating. The thermal rating of the MV/LV transformer is the most limiting 

constraint in the operation of smart appliances in the network. 
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Figure 5.15: Evaluation of different control strategies for SAs by observing the T3 loading and 

voltage at the farthest customer from the substation over a time span of a day in winter.   

A performance outline of the regional controller for smart appliances which implements 

three different constraints is given in Table 5.2. It has been observed that, while 

implementing the thermal constraints, the regional controller ensures the voltage 

remains above the minimum voltage limit. However, the minimum voltage constraint 

does not guarantee that the thermal ratings are not exceeded.      

Table 5.2: Capability of the regional controller for smart appliances with different network 
constraints to keep the LV network parameters within the operational limits. 

Network parameters 
Constraints 

Thermal  Voltage 

Thermal transformer rating √ √ 
Minimum voltage  x √ 

Thermal and voltage √ √ 

5.5 Discussion 

Smart appliances (WM, DW and TD) reacting to a multiple-rates electricity tariff 

deteriorate the temporal diversity in the appliance utilisation. The results of the 

simulation on a high customer density urban network indicate that, starting from an 

uptake of smart appliances of 25% in winter and 75% in summer, the thermal rating of a 
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number of distribution circuits was exceeded for tariff such as Economy 10 and RTP. 

Unlike the Economy 10 and RTP, Economy 7 does not create issues for the operation of 

distribution networks. However, as we’ve seen in Chapter 3, Table 3.7, it is also the 

tariff which yields the least amount of savings from smart appliance utilisation. The 

stressed elements of the network are the MV/LV transformer and sections of the LV 

underground cable close to the secondary substation. While the duration of the 

overloads is less than one hour each day, their magnitude can reach 70% of the circuit 

rating in winter if all the households adopt smart appliances. 

During the overloads the network voltage profile deteriorates. However, for most of the 

situations, the voltage across the network remains above the current admissible 

minimum voltage of 0.94. In the future, the UK voltage regulation will move towards 

the wider EU standard of ±10% around the nominal voltage of 230V [120], to which the 

appliance manufacturers already adhere to. It is only for a situation with 100% uptake of 

appliances and for the LV network connected at the end of the longest MV feeder that 

the LV voltage magnitude reaches 0.9 p.u. A concern that the low voltage magnitude 

raises is the disconnection of the small scale embedded generators (SSEGs), which are 

required to trip at a voltage lower than 0.9 p.u. [121]. A solution to the voltage issue 

was to increase the set point of the primary substation tap changer which controls the 

voltage at the MV busbar from 1 p.u. to the maximum of 1.06 p.u. The solution was 

tested successfully for the passive network, however further investigation is necessary 

in the case of MV feeders with high uptake of SSEGs, where the high value of the 

voltage at the primary substation might cause the voltage on the feeders to rise beyond 

the allowed range. Other solutions which should be tested in future work include the 

connection of capacitors at the end of the MV feeders and increasing the voltage rise at 

the MV/LV substation from the tap changer.    
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A regional controller for smart appliances is introduced as an alternative to uprating the 

distribution circuits and voltage regulation. The controller effectively limits the peak 

demand and the voltage drop on the LV network. For the selected distribution network, 

the controller imposing a limit on the demand at the MV/LV transformer equal to its 

rating is sufficient to keep the voltage within the operational limits. The use of a 

regional controller will reduce the potential savings from smart appliances for some 

users. Calculated at LV network level, the reduction resulting from a capacity constraint 

equal to the transformer rating is very small. With so many variables, the process by 

which the users can incur a reduction in their savings can be classified as random. This 

could result in the DNO paying a fixed incentive or a rebate to all the smart appliances 

users to cover the reduction in their savings. The regional controller can also create new 

capacity on the distribution network. However by doing this the users would have their 

savings reduced; in the case of the Economy 10 the reduction is significant. 
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Chapter 6 

6 Conclusions and future work 
 

 

Summary:  

The conclusions of the research carried out are highlighted in this chapter. The key 

contributions are outlined, and future research possibilities are identified.    
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6.1 Conclusions 

Demand response (DR) is amongst the solutions supported by policies in the UK and 

across the world aimed at greenhouse gas emission reduction. DR programmes for 

residential customers have been in use for many years, exclusively targeting large 

household loads such as heating and air conditioning units. However, with the expected 

deployments of smart meters, there is an opportunity to reach many more participants 

and engage a larger range of appliances in more efficient manner.  

In this research, the potential roles of smart appliances (washing machines WM, 

dishwashers DW or tumble dryers TD) in supporting the power system operation were 

investigated. The main stakeholders of the smart appliance technology: appliance users, 

transmission system operators (TSOs), and distribution network operators (DNOs), 

were considered.  

A smart appliance model was required to simulate different DR scenarios. A review on 

the modelling of smart appliances operation revealed a number of mathematical tools, 

from which an optimisation solution was selected. This work improves on previous 

research by modelling the operation of appliances with two load management features, 

cycle delay and cycle interruption. The load profile of the appliance’s cycle is 

partitioned with constant power phases of 15 minutes each. The shifting algorithm used 

to find the optimum schedule of one or more appliances employs linear programming 

implemented in IBM CPLEX software. The smart appliance model is generic and is 

applicable to any country. However, the user behaviour considered in this work such as 

the appliances’ start times and the users’ maximum delays is representative for the UK 

population.  
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6.1.1 Smart appliances users 

A simulation was developed to determine the electricity cost savings for a household 

subscribing to electricity tariffs having multiple-rates. The cost savings were obtained 

by shifting the appliances from time intervals with high price to low price intervals. The 

electricity prices considered were two Time of Use (TOU) tariffs (Economy 7 and 

Economy 10) which are offered by suppliers in the UK. In addition, a Real Time Pricing 

(RTP) tariff was designed based on the wholesale electricity price.   

The effects on the cost savings of three parameters involved in the operation of smart 

appliances were investigated. The simulations showed that the maximum delay set by 

the user for the appliance to be delayed provided the highest influence. For Economy 

10, the cost savings varied between 0%, if the user starts the appliance immediately, and 

42%, if the user allows five hours of delay. A saturation point is reached after a certain 

number of hours, from where the cost savings remain constant with the increase of 

maximum delay. The second parameter, number of residents per household, influences 

the cost savings; however, because the appliances are shared between residents, the 

interdependency was not directly proportional. The third parameter, the maximum cycle 

interruption, provided the lowest impact on the cost savings, that is up to 0.62%. 

The annual cost savings for a group of 1000 houses was investigated. The highest value 

of 28.62% savings from the cost of the electricity consumed by smart appliances, 

equivalent to 7% of the total household annual electricity bill, was recorded for 

Economy 10. Two financial tools, payback period and net present value, were used to 

weight the savings from smart appliances with the estimated costs of implementing the 

smart appliance technology. In most of the cost scenarios, the payback period was under 

three years, which is the maximum expected by the users. A positive net present value 
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was also obtained. Both analyses highlighted that smart appliances are considered a 

good investment.  

6.1.2 Reserve services from smart appliances 

The level of reserve, either generation or demand reduction, required by TSOs is 

expected to increase with the connection of more and more renewable sources. The 

feasibility of using smart appliances as operating reserve in Great Britain’s power 

system balancing services was assessed. The present level of operating reserve was 

estimated for the GB power system. The current participation of demand side in the 

Fast Reserve and Short Term Operating Reserve (STOR) was discussed. A framework 

outlining the actors and the communication infrastructure required for smart appliances 

to respond to STOR instructions was introduced. Within this framework, the instruction 

is sent from the TSO to the electricity supplier which will increase the electricity rate 

for the duration of the instruction. The appliances will receive the increased rates and 

automatically delay their start, resulting in a demand reduction. 

A multi-time step simulation which can determine the aggregated response of 

appliances from a number of households to a STOR instruction was introduced. A case 

study on 1000 households representative for the UK housing stock was carried out. The 

results showed that the response varies over 24 hrs and depends on the user behaviour 

and the electricity tariff to which the households are subscribing. After the reserve 

instruction ends a load recovery period is generated. Its peak demand is mitigated by a 

random start offset.  

The STOR capacity was estimated at system level assuming that 20% of the households 

in GB have adopted the smart appliance technology. The level of STOR from smart 

appliances varies over 24 hrs and can reach up to 54% of the current requirements of 
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STOR or 1.5 GW. The yearly revenue from smart appliances participating in STOR was 

estimated at £47M, while the GHG emission reduction was estimated at 10.7 ktCO2 per 

year.   

6.1.3 Distribution network operation with smart appliances 

Distribution networks have been designed considering temporal diversity in the 

appliances utilisation, since different customers start their appliances at different times. 

When considering smart appliances, the diversity factor is reduced at low price intervals 

due to the synchronisation of the appliances starting times. A simulation was developed 

to study the distribution network operation with smart appliances and multiple-rates 

tariffs. It incorporates a module which runs sequential power flow analysis in IPSA 

software to obtain the branch circuit loadings and nodal voltages throughout the day. 

The distribution test system includes a low voltage (LV) network connected to a 

medium voltage (MV).  

In the case of smart appliances (at an uptake rate of 25% in winter and 75% in summer) 

with individual control the first network elements which reached their thermal capacity 

were the MV/LV transformer and the LV underground cables close to the substation. 

The MV network has enough spare capacity to cope with the full adoption. However, 

the loading at the primary substation surpasses the maximum imposed by the ‘N-1’ 

security condition for an uptake rate higher than 75% during winter days. The voltage 

on the MV and LV network does not drop below the minimum admissible limits for the 

majority of the scenarios. However, at 100% uptake rate the voltage at the end of the 

longest MV feeder and on the LV connected to it reaches 0.9 p.u.  

A controller for smart appliances is introduced at the LV network as an alternative to 

network reinforcement. Three types of control strategies were tested, imposing: a 
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voltage constraint, a capacity constraint, and both constraints at once. The last two 

strategies are the most efficient since they solve the thermal overloads as well as the 

voltage issues. The regional controller can also create new capacity on the distribution 

network by imposing a capacity constraint below the peak demand measured before the 

uptake of smart appliances.             

6.2 Summary of contributions 

The contribution of this work includes:   

• Advancements were made to the way the operation of smart residential devices 

is modelled using optimisation, enabling the testing of load shifting and 

interruption features for devices with complex load profile. (Chapter 2) 

• A detailed analysis showed that smart appliances (WM, DW, TD) in conjunction 

with Time of Use tariffs can offer the user sufficient financial incentive to justify 

their adoption. (Chapter 3) 

• Concepts for the integration of smart appliances in the business models of 

different actors in the energy sector are introduced. (Chapter 4)   

• At system level, the magnitude of the load reduction achieved by the smart 

operation of appliances is significant, covering, at times, up to half of the current 

operating reserve requirements of the GB power system. (Chapter 4)  

• While smart appliances operated with individual control can overload the 

distribution network circuits and equipments, when coordinated by a regional 

controller, they can create new capacity on the distribution network. (Chapter 5)  
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6.3 Future work 

6.3.1 Use of smart appliances in operating reserve and frequency support  

This study investigated the maximum level of reserve obtainable from smart appliances. 

The future work should continue by investigating methods by which the TSO can 

control the level of demand response obtained from smart appliances. The aim is to 

obtain from the aggregated demand a similar flexibility to one of a power plant, e.g. 

output ramp-up or ramp-down capabilities. Segmenting a pool of consumers which own 

smart appliances by issuing reserve instructions at different times and selecting to how 

many consumers the reserve instructions are sent could improve the control accuracy of 

the response. Another important aspect could be to examine if the availability of DR 

after consecutive reserve instructions decreases, a process known as DR fatigue, and 

possible remedial actions.  

In addition to being utilised for providing operating reserve, smart appliances could be 

used for frequency support services. However, because of the essential role these 

services play in the security of electricity supply, they require from the participants not 

to be involved in more than one service. Further research is needed to investigate the 

coordination of smart appliances to provide various services effectively. 

6.3.2  Use of smart appliances in distribution network operation 

In this study a passive distribution network was considered. Future utilisations of the 

SAs controller could be in the integration of distributed energy resources, such as 

rooftop photovoltaic panels (PVs). The controller will shift the operation of appliances 

at the time of peak PV output, reducing the risk of breaches of the upper voltage limit. 

To be more effective, the SAs control should coordinate its actions with the voltage 

control strategy of the On-Load-Tap-Changers.  
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Another service for distribution network operators that smart appliances could provide 

is post fault handling. The loads connected to HV and MV networks are supplied by at 

least two circuits, each one capable to sustain the peak demand in case the other 

becomes faulty. By reducing the aggregated demand of smart appliances after the circuit 

outage, the extra capacity could be released and used in normal operation.  
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A. Java code for appliances scheduling algorithm  

package homeenergymanagement; 
 
/* Copyright 2015 Silviu Nistor 
 * The code schedules appliances according to price using CPLEX software   
 */ 
import ilog.concert.*; 
import ilog.cplex.*; 
import java.util.Arrays; 
 
public class Schedule { 
     
 
private double[] powerResultVector;    // output in [Watts] with length of the 
optimisation window [15 minutes resolution] 
 
    
public Schedule( int[] vectorApl, int optimWindow, double[] price, int 
interuption ) throws IloException{  
  // input vectorApl gives the number of appl to be scheduled e.g. [20 Washing 
Machines , 10 Dish Washer , 12 Tumble Dryer] 
  // input optimWindow the length of the optimisation window e.g.32=32x15 mins 
  // input price has the length of the optimisationWindowInervals 
  // input interruption is the maximum interruption parameter between 
appliance phases  
 
        
  /*--------------------------------------------------------*/         
  int intrp=interuption;   
  int aWm= vectorApl[0]; // number of washing machines  
  int aDw= vectorApl[1]; // number of dish washers 
  int aTd= vectorApl[2]; // number of tumble dryers                
  int virtWmNo=7;  // number of power phases that constitute a washing machine  
  int virtDwNo=8;  // number of power phases that constitute a dish washer 
  int virtTdNo=6;  // number of power phases that constitute a tumble dryer 
  double[] consumption;    // intermediary output  
  double[] binaryResult;   // intermediary output         
  int[] powerWm= {100, 2000, 900, 100, 100, 300, 50}; // [Watts] 
  int[] powerDw= {80, 2000, 80, 80, 80, 2000, 300, 150};  // [Watts] 
  int[] powerTd= {2000, 2000, 2000, 1600, 1300, 940};     // [Watts]                
  int[]  hour = makeTimeIntervalVector(optimWindow); // subrutine written at 
the end of the class          
  double[] powerResultMatrix= new double[(aWm*virtWmNo+ aDw*virtDwNo+ 
aTd*virtTdNo) *optimWindow];// intermediary output: power matrix after 
optimization 
         
  IloCplex cpm = new IloCplex();  //new CPLEX optimisation model 
 
  IloNumVar[] x = cpm.boolVarArray((aWm*virtWmNo+ aDw*virtDwNo+ aTd*virtTdNo) 
*optimWindow);  //define variables of the optimization model         
        /*  ---------the virtual appliance no 
         * -       x11  x21 ... xa1_1 next appliance : x(a1+1)_1 ... 
         * -       x12  x22 ... xa1_2 xa2_2 
         * -       x13  x23 ... .... 
         * optim   x14  x24 ... ... 
         * inter   .... ... ... ... 
         * val     ...  ... ... ... 
         * -       ...  ... ... ... 
         * -       x1m  x2m ... xa1_m        */         
         
   UserDelayTimes del = new UserDelayTimes(vectorApl); // subroutine 
generating the Maximum User delay 
  int[] delayTimes=del.getMaxDelayTime(); // vector with the length of 
aWm+aDw+aTd and represents the Maximum User delay: [wm1 wm2.....wm_aWm dw1 dw2 
dw3....dw_aDw td1 td2....td_aTd] 
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  /*--------Washing machine constraints -----------*/  
  //  Add washing machines constraints from Eq (2.4) and (2.5)           
  for( int aplNo= 0; aplNo<aWm; aplNo++) // Go through each washing machine  
     {  for( int v=0; v< virtWmNo-1 ; v++) // Go through each power phase of 
the washing machine 
       {   IloLinearNumExpr exprConWm12 = cpm.linearNumExpr();// Build a 
linear expression in the optim model                  
           for (int i=0; i<optimWindow; i++)// Go through each variable of the 
power phase vector with the length of the optimisation window 
              { exprConWm12.addTerm(hour[i],x[i+optimWindow*(v+1)+ 
optimWindow*virtWmNo*aplNo]);   //                        
                exprConWm12.addTerm(-hour[i], x[i+optimWindow*v+ 
optimWindow*virtWmNo*aplNo]);  

  }     
           cpm.addGe(exprConWm12, 1); // constraint imposing the order of the 
appliances power model  
           cpm.addLe(exprConWm12, intrp); // constraint imposing maximum 
interruption between appliances power phases                 
        }     

}         
     
 // Add washing machines constraint from Eq (2.6) 
 for( int aplNo= 0; aplNo<aWm; aplNo++)   
    {  for( int v=0; v< virtWmNo ; v++)     
      { IloLinearNumExpr exprConWm3 = cpm.linearNumExpr();                    
          for (int i=0; i<optimWindow && i<virtWmNo+ delayTimes[aplNo]; i++){  
//virtWmNo+delayTimes[aplNo] 
          exprConWm3.addTerm(1,x[i+optimWindow*v+ optimWindow* virtWmNo* 
aplNo]);   } 
          cpm.addEq(exprConWm3,1); // comstraints imposing user maximum delay 
       }    

} 
        
 /*---Dish washer constraints: the same commentaries as for washing machine --
--*/           
  for( int aplNo= 0; aplNo<aDw; aplNo++)         
     {  for( int v=0; v< virtDwNo-1 ; v++) 
           { IloLinearNumExpr exprConDw12 = cpm.linearNumExpr(); 
             for (int i=0; i<optimWindow; i++)     { 
                 exprConDw12.addTerm(hour[i],x[i+ optimWindow*(v+1)+ 
optimWindow*virtWmNo*aWm+optimWindow*virtDwNo*aplNo]);                         
                  exprConDw12.addTerm(-hour[i], x[i+optimWindow*v+ 
optimWindow*virtWmNo*aWm+ optimWindow*virtDwNo*aplNo]);  }      
           cpm.addGe(exprConDw12, 1);      //Eq (2.4)                        
           cpm.addLe(exprConDw12, intrp);  //Eq (2.5)   
           }   

}                 
         
 for( int aplNo= 0; aplNo<aDw; aplNo++)        
    { for( int v=0; v< virtDwNo ; v++) 
      { IloLinearNumExpr exprConDw3 = cpm.linearNumExpr(); 
        for (int i=0; i<optimWindow && i<virtDwNo+delayTimes[aWm+aplNo]; i++){                                  
             exprConDw3.addTerm(1,x[i+optimWindow*v+ optimWindow* 
virtWmNo*aWm+ optimWindow*virtDwNo*aplNo]); }                                             
             cpm.addEq(exprConDw3,1);   //  Eq (2.6) 
            }  
     }    
             
/*---Tumble Dryer constraints:same commentaries as for washing machine---*/ 
 for(int aplNo= 0; aplNo<aTd; aplNo++)         
    { for( int v=0; v< virtTdNo-1 ; v++) 
       {IloLinearNumExpr exprConTd12 = cpm.linearNumExpr();                
        for (int i=0; i<optimWindow; i++) 
         {exprConTd12.addTerm(hour[i], x[i+optimWindow*(v+1)+ optimWindow* 
virtWmNo*aWm+ optimWindow*virtDwNo*aDw+ optimWindow*virtTdNo*aplNo]);                         
          exprConTd12.addTerm(-hour[i], x[i+optimWindow*v+ optimWindow* 
virtWmNo*aWm+ optimWindow*virtDwNo*aDw+ optimWindow*virtTdNo*aplNo]); }                   
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        cpm.addGe(exprConTd12, 1);   //  Eq (2.4)  
        cpm.addLe(exprConTd12, intrp);  //  Eq (2.5)               
          }   

}                 
         
 for( int aplNo= 0; aplNo<aTd; aplNo++) {        
     for( int v=0; v< virtTdNo ; v++) { 
      IloLinearNumExpr exprConTd3 = cpm.linearNumExpr();       
       for(int i=0; i<optimWindow && i<virtTdNo+delayTimes[aWm+aDw+aplNo] ; 
i++){     
          exprConTd3.addTerm(1,x[i+optimWindow*v+ optimWindow* virtWmNo*aWm+ 
optimWindow*virtDwNo*aDw+ optimWindow*virtTdNo*aplNo]); 
          } cpm.addEq(exprConTd3,1);   //  Eq (2.6) 
        }  

}               
         
 /*-------Create objective function Eq(2.3)------------*/                 
 IloLinearNumExpr exprObj= cpm.linearNumExpr();                     
 for( int aplNo= 0; aplNo<aWm; aplNo++) // aplNo is an index that shows how 
many of the Washing Machines have been integragted 
    {for( int v=0; v< virtWmNo ; v++) { 
       for(int i=0; i<optimWindow; i++) 
          {exprObj.addTerm(price[i]*powerWm[v], x[i+optimWindow*v+ 
optimWindow*virtWmNo*aplNo] );    } 
          }   

}      
 for( int aplNo= 0; aplNo<aDw; aplNo++) {        
    for( int v=0; v< virtDwNo ; v++) { 
         for (int i=0; i<optimWindow; i++) 
          {exprObj.addTerm(price[i]*powerDw[v], x[i+optimWindow*v+ 
optimWindow*virtWmNo*aWm+ optimWindow*virtDwNo*aplNo] ); } 
           }  

}     
 for( int aplNo= 0; aplNo<aTd; aplNo++) {   
    for( int v=0; v< virtTdNo ; v++) { 
     for (int i=0; i<optimWindow; i++) 
        {exprObj.addTerm(price[i]*powerTd[v], x[i+optimWindow*v+ 
optimWindow*virtWmNo*aWm+ optimWindow*virtDwNo*aDw+ 
optimWindow*virtTdNo*aplNo] );} 
           }  

} 
           
 /*-------Add objective function to the optimisation model--------*/ 
 IloObjective obj=cpm.minimize(exprObj);      
 cpm.add(obj);     
 cpm.setOut(null); //suppresses the output of CPLEX to Java Output 
      
 /*-------Solve the optimisation------------*/ 
 cpm.solve();             
 binaryResult = cpm.getValues(x);           
 cpm.end(); 
     
 // Code transforms the binary solution to power consumption 
 for( int aplNo= 0; aplNo<aWm; aplNo++)         
  {  for( int v=0; v< virtWmNo ; v++) { 
     for (int i=0; i<optimWindow; i++) 
        {powerResultMatrix[i+optimWindow*v+ optimWindow*virtWmNo*aplNo] = 
(int) (powerWm[v] * binaryResult[i+optimWindow*v+ optimWindow*virtWmNo* 
aplNo]) ;  
          }     

}     
} 

     for( int aplNo= 0; aplNo<aDw; aplNo++) { 
        for( int v=0; v< virtDwNo ; v++) { 
         for (int i=0; i<optimWindow; i++) 
         {powerResultMatrix[i+optimWindow*v+ optimWindow*virtWmNo*aWm+ 
optimWindow*virtDwNo*aplNo] = (int) (powerDw[v]* binaryResult[i+ 
optimWindow*v+ optimWindow*virtWmNo*aWm+ optimWindow*virtDwNo*aplNo]) ;  
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             }  
}  

} 
     for( int aplNo= 0; aplNo<aTd; aplNo++) { 
        for( int v=0; v< virtTdNo ; v++) { 
            for (int i=0; i<optimWindow; i++) 
             {powerResultMatrix[i+optimWindow*v+ optimWindow*virtWmNo*aWm+ 
optimWindow*virtDwNo*aDw+ optimWindow*virtTdNo*aplNo] = (int) (powerTd[v] * 
binaryResult[i+optimWindow*v+optimWindow*virtWmNo*aWm+optimWindow*virtDwNo*aDw
+optimWindow*virtTdNo*aplNo]) ; }    

}   
}                                     

 consumption  = powerResultMatrix;     
 Sumation sumation= new Sumation();// subroutine SummationMatrix.SumMatrix 
({1, 2, 3, 10, 11, 12} , 3)= {11, 13, 15} 
 powerResultVector= sumation.SumMatrix(powerResultMatrix,optimWindow);    
} 
     
    // Subroutine used to create a time vector of the length of the 
optimization window [1 2 3 ... 32] 
    private int[] makeTimeIntervalVector(int optimWindow)  { 
        int[] timeIntervalVector =new int[optimWindow]; 
        for(int i=0; i < optimWindow ; i++){ 
             timeIntervalVector[i]=i+1;  } 
        return timeIntervalVector; 
    } 
     
    public double[] getPowerConsumption(){     
    return this.powerResultVector;}   // OUTPUT of the Schedule.java 
 
}  
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B. CREST domestic energy demand model 

Realistic load profiles for individual households are used instead of average demand 

profiles in studies such as demand side response and utilisation of energy from 

photovoltaic panels [122]. The models that stochastically generate load profiles can be 

split roughly in two categories, according to the literature survey reported in [37]: ‘top-

down’ or ‘bottom-up’ approach. For the former category, the simulation starts with an 

aggregated load profile from a number of houses that is decomposed to the appliance 

level. The models in the ‘bottom-up’ category require information about when people 

are at home, or occupancy, usually constructed from time-use data collected through 

surveys.  

The CREST energy demand model belongs to the second category. Information of 

occupancy, collected from Time Use Survey 2000 in the UK, is introduced in a 

Markov-chain model that will stochastically generate occupancy profiles for a number 

of houses larger than the one in the survey. The Time Use Survey is also used to 

determine daily probability functions of particular activities, such as cooking and 

washing. The two stochastic daily profiles, occupancy and activities, are combined to 

create load profiles for each appliance. An example of a single run of the CREST model 

is given in Figure B-1.  

 
Figure B-1: Plot of a single run of the CREST model. 
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C.  Design of a RTP tariff 

There are no electricity suppliers in UK that offer RTP tariffs to domestic consumers at 

the moment. However, the UK energy regulator, Office of Gas and Electricity Markets 

(OFGEM), recognises that in a competitive market the consumer should be passed 

promptly the increase or decrease in the wholesale price of electricity, as in the case of 

RTP tariffs. Consequently, a RTP tariff was designed for this study starting from the 

components of the retail electricity price for a typical UK electricity supplier, listed in 

Table C-1.  

Table C-1: Electricity retail price components for domestic sector in UK [123]. 

Component Approximate 
percentage Description 

Variable 
with time of 

day 

Wholesale costs 63% 

Wholesale energy costs; Yes 

Supply costs: Billing, customer 
service, debt collections, support 
services, sales and marketing, staff 
costs; 

Profit margin. 

No 

Distribution charges 17% Extra HV charges or HV/LV charges 
depending on the connection point. Yes 

Transmission 
charges 4% Transmission Network Use of System 

(TNUoS) charging. No 

Environmental costs 10% 

Carbon Emission Reduction Target 
(CERT); 

Community Energy Saving 
Programme (CESP); 

The Renewable Obligation (RO); 

Feed-in-Tariff Scheme (FITs). 

No 

Meter provision 1%  No 

Valued added tax 
(VAT) 5%  No 
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OFGEM estimates that the wholesale costs account for 63% of the retail electricity price 

[123]. This category includes the fuel costs, electricity supplier costs and supplier profit 

margins. Although for the current arrangements a supplier buys its electricity through 

long term contracts with generators, in this study the wholesale cost of electricity is 

obtained from the APX Power UK spot market [124]. APX Power UK is an 

independent power exchange where day-ahead and within the day energy products are 

commercialised. The average spot price for 2012 was £45.2/MWh, which represents 

28.7% of standard electricity price found in the survey presented in Table 3.1.   

There are two types of distribution charges depending on the voltage level at the grid 

connection point of the consumer. If the connection is point is at a voltage above 22kV, 

the tariff is established by Extra High Voltage Distribution Charging Methodology 

(EDCM) [125]. If the connection point is at a voltage below 22kV the tariff is 

established by Common Distribution Charging Methodology (CDCM) [126]. Both these 

methods include time of use charging options. For this study the focus being the 

domestic sector, where the consumers are connected to LV, only the CDCM is of 

interest. Examples of CDCM charges are shown in Table C-2.  For domestic customers 

DNOs have two tariffs: a flat tariff and a two rate tariff depending on the metering 

equipment. The two rate tariff reflects the pattern of loading on the distribution network. 

The “Domestic Two Rate”, the tariff selected for this study, has two rates: one for the 

time interval 09:00 to 20:30 and the second for 20:30 to 09:00 next day.  An average 

“Domestic Two Rates” DNUoS tariff was calculated from the DNO tariffs published on 

the Energy Networks Association website. 
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Table C-2: Examples of distribution charges designed with CDCM for consumers connected to the 
LV network. 

Consumer type Unit 
rate 1 
p/kWh 

Unit 
rate 2 
p/kWh 

Unit 
rate 3 
p/kWh 

Fixed 
charge 
p/MPAN*/ 
day 

Capacity 
charge 
p/kVA/day 

Reactive 
power 
charge 
p/kVArh 

Domestic 
Unrestricted 2.220 - - 3.49 - - 

Domestic Two 
Rate 2.899 0.223 - 3.49 - - 

Small Non 
Domestic 
Unrestricted 

1.978 - - 4.42 - - 

Small Non 
Domestic Two 
Rate 

2.731 0.301 - 4.42 - - 

LV HH Metered 8.847 0.783 0.103 16.79 1.99 0.302 

LV Sub HH 
Metered 6.708 0.482 0.069 5.93 3.80 0.231 

*Meter Point Administration Number 

The suppliers are liable to pay TNUoS charges to National Grid, the UK transmission 

network operator, charge that will be passed to its customers. There are two types of 

charges that a supplier pays: half-hourly (HH) demand capacity charges and non half-

hourly (NHH) energy charges. For the first case National Grid establishes the highest 

three peak average demand periods (equal to a half hour) of its system from November 

to February with a minimum of 10 days between periods. Then it multiplies the supplier 

measured demand at those time intervals with a regional rate (£/MW). For the second 

component of the TNUoS the sum of the energy consumed by the supplier in each day 

in the time interval 16:00 to 19:00 over one year is multiplied by a regional rate 

(p/kWh). These charges have the potential to manage the demand, as they offer 

incentives to reduce the demand at high peak periods. However, at the moment they are 

passed to the domestic consumer as a fixed charge.    
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From the tariff components listed in Table C-1 only the wholesale energy costs and the 

DNUoS charges were used in the variable (with the time of day) part of the RTP tariff, 

as they can easily be passed directly to consumers. The TNUoS charges are considered 

fixed.    

An example of RTP tariff design is given in [127]. Equation (C.1) shows how the half-

hourly rates are being calculated in this study.      

 
𝑐𝑐ℎ = �∝ +𝛽𝛽 ∙

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝛾𝛾 ∙

𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ

𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎
� ∙ 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 (C.1) 

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ represents the wholesale electricity price; 𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ  is the DNUoS charge which 

varies with the time of day and depends if it is weekday or weekend; ∝ is a coefficient, 

equal to 0.53, that reflects the sum of the tariff components, from Table C-1, that are 

time invariable; 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 is the average standard tariff found in Table 3.1;  𝛽𝛽 is a coefficient, 

equal to 0.29, the percentage that the average spot market price takes in 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 ; 𝛾𝛾 is equal 

to 0.18 and represents the percentage that the distribution charges takes in 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎;  1
𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎𝑎𝑎𝑎

 

and  1
𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎

 will normalize the RTP tariff so that the average over one year to be 

equal to 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎. Thus, for loads that are functioning constantly, such as fridges and 

refrigerators, there will be no changes in the cost of the electricity they consume in one 

year. 
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D. Parameters 

Table D-3: Z-score table [128] (Φ(z) is the probability of normal distributed variables  to be 
bounded by z standard deviations). 

z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z) z Φ(z) 

 
0. 

 
0. 

 
0. 

 
0. 

 
0. 

 
0. 

0.01 5040 0.51 6950 1.01 8438 1.51 9345 2.01 9778 2.51 9940 
0.02 5080 0.52 6985 1.02 8461 1.52 9357 2.02 9783 2.52 9941 
0.03 5120 0.53 7019 1.03 8485 1.53 9370 2.03 9788 2.53 9943 
0.04 5160 0.54 7054 1.04 8508 1.54 9382 2.04 9793 2.54 9945 
0.05 5199 0.55 7088 1.05 8531 1.55 9394 2.05 9798 2.55 9946 
0.06 5239 0.56 7123 1.06 8554 1.56 9406 2.06 9803 2.56 9948 
0.07 5279 0.57 7157 1.07 8577 1.57 9418 2.07 9808 2.57 9949 
0.08 5319 0.58 7190 1.08 8599 1.58 9429 2.08 9812 2.58 9951 
0.09 5359 0.59 7224 1.09 8621 1.59 9441 2.09 9817 2.59 9952 
0.1 5398 0.6 7257 1.1 8643 1.6 9452 2.1 9821 2.6 9953 

0.11 5438 0.61 7291 1.11 8665 1.61 9463 2.11 9826 2.61 9955 
0.12 5478 0.62 7324 1.12 8686 1.62 9474 2.12 9830 2.62 9956 
0.13 5517 0.63 7357 1.13 8708 1.63 9484 2.13 9834 2.63 9957 
0.14 5557 0.64 7389 1.14 8729 1.64 9495 2.14 9838 2.64 9959 
0.15 5596 0.65 7422 1.15 8749 1.65 9505 2.15 9842 2.65 9960 
0.16 5636 0.66 7454 1.16 8770 1.66 9515 2.16 9846 2.66 9961 
0.17 5675 0.67 7486 1.17 8790 1.67 9525 2.17 9850 2.67 9962 
0.18 5714 0.68 7517 1.18 8810 1.68 9535 2.18 9854 2.68 9963 
0.19 5753 0.69 7549 1.19 8830 1.69 9545 2.19 9857 2.69 9964 
0.2 5793 0.7 7580 1.2 8849 1.7 9554 2.2 9861 2.7 9965 

0.21 5832 0.71 7611 1.21 8869 1.71 9564 2.21 9864 2.71 9966 
0.22 5871 0.72 7642 1.22 8888 1.72 9573 2.22 9868 2.72 9967 
0.23 5910 0.73 7673 1.23 8907 1.73 9582 2.23 9871 2.73 9968 
0.24 5948 0.74 7704 1.24 8925 1.74 9591 2.24 9875 2.74 9969 
0.25 5987 0.75 7734 1.25 8944 1.75 9599 2.25 9878 2.75 9970 
0.26 6026 0.76 7764 1.26 8962 1.76 9608 2.26 9881 2.76 9971 
0.27 6064 0.77 7794 1.27 8980 1.77 9616 2.27 9884 2.77 9972 
0.28 6103 0.78 7823 1.28 8997 1.78 9625 2.28 9887 2.78 9973 
0.29 6141 0.79 7852 1.29 9015 1.79 9633 2.29 9890 2.79 9974 
0.3 6179 0.8 7881 1.3 9032 1.8 9641 2.3 9893 2.8 9974 

0.31 6217 0.81 7910 1.31 9049 1.81 9649 2.31 9896 2.81 9975 
0.32 6255 0.82 7939 1.32 9066 1.82 9656 2.32 9898 2.82 9976 
0.33 6293 0.83 7967 1.33 9082 1.83 9664 2.33 9901 2.83 9977 
0.34 6331 0.84 7995 1.34 9099 1.84 9671 2.34 9904 2.84 9977 
0.35 6368 0.85 8023 1.35 9115 1.85 9678 2.35 9906 2.85 9978 
0.36 6406 0.86 8051 1.36 9131 1.86 9686 2.36 9909 2.86 9979 
0.37 6443 0.87 8078 1.37 9147 1.87 9693 2.37 9911 2.87 9979 
0.38 6480 0.88 8106 1.38 9162 1.88 9699 2.38 9913 2.88 9980 
0.39 6517 0.89 8133 1.39 9177 1.89 9706 2.39 9916 2.89 9981 
0.4 6554 0.9 8159 1.4 9192 1.9 9713 2.4 9918 2.9 9981 

0.41 6591 0.91 8186 1.41 9207 1.91 9719 2.41 9920 2.91 9982 
0.42 6628 0.92 8212 1.42 9222 1.92 9726 2.42 9922 2.92 9982 
0.43 6664 0.93 8238 1.43 9236 1.93 9732 2.43 9925 2.93 9983 
0.44 6700 0.94 8264 1.44 9251 1.94 9738 2.44 9927 2.94 9984 
0.45 6736 0.95 8289 1.45 9265 1.95 9744 2.45 9929 2.95 9984 
0.46 6772 0.96 8315 1.46 9279 1.96 9750 2.46 9931 2.96 9985 
0.47 6808 0.97 8340 1.47 9292 1.97 9756 2.47 9932 2.97 9985 
0.48 6844 0.98 8365 1.48 9306 1.98 9761 2.48 9934 2.98 9986 
0.49 6879 0.99 8389 1.49 9319 1.99 9767 2.49 9936 2.99 9986 
0.5 6915 1 8413 1.5 9332 2 9772 2.5 9938 3 9987 
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Table D-4: Parameters used for calculation of the financial benefits of using smart appliances as 
operating reserve. 

Parameter Symbol Value 

Number of days  𝑁𝑁𝑑𝑑 365 

Number of STOR availability windows  𝑁𝑁𝑎𝑎 3 

Duration of availability windows  𝑡𝑡𝑖𝑖 6.5, 2, 3 hrs 

Available response from smart appliances in the 

availability window i (see Table 4.2) 

𝑟𝑟𝑖𝑖 843/895, 1146/1255, 

584/526 MW 

Average available response from smart 

appliances in the availability windows 

𝑟̅𝑟 883 MW 

Annual average calling time for STOR 

providers 

𝑁𝑁𝑢𝑢 70 hrs [129] 

Availability payment  𝑐𝑐𝑎𝑎 9.13 £/MW/hr [129] 

Utilisation payment  𝑐𝑐𝑢𝑢 232 £/MWh [129] 
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E. Distribution network 

E.1 Approximate calculation of voltages for a radial LV feeder 
Voltages on a distribution circuit can be obtained by knowing the active and reactive powers 

and the line impedance, as explained in [130]. A simple calculation of voltages from a two-

busbar distribution circuit, illustrated in Figure E.1, is given in Equation (E.1).  

𝑉𝑉𝑅𝑅 = 𝑉𝑉𝑆𝑆 − (𝑅𝑅 + 𝑗𝑗𝑗𝑗) �
𝑃𝑃 − 𝑗𝑗𝑗𝑗
𝑉𝑉𝑆𝑆∗

� (E.1) 

 

Figure E.1: Two-busbar distribution circuit: network equivalent and phasor diagram [130]. 

Considering VS as reference, Equation (E.1) is rewritten:  

𝑉𝑉𝑅𝑅 = 𝑉𝑉𝑆𝑆 − �
𝑅𝑅𝑅𝑅 + 𝑋𝑋𝑋𝑋

𝑉𝑉𝑆𝑆
� − 𝑗𝑗 �

𝑋𝑋𝑋𝑋 − 𝑅𝑅𝑅𝑅
𝑉𝑉𝑉𝑉

� (E.2) 

For a distribution circuit where R>>X the last term of Equation (E.2) (|δV| in Figure E.1) can 

be neglected [130]:  

𝑉𝑉𝑅𝑅 = 𝑉𝑉𝑆𝑆 − �
𝑅𝑅𝑅𝑅 + 𝑋𝑋𝑋𝑋

𝑉𝑉𝑆𝑆
� (E.3) 
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A simple radial feeder is illustrated in Figure E.2. To calculate the voltages at the end of the 

feeder without an iterative procedure an assumption is required. The powers at the sending 

end, P and Q, are known and can be approximated by Equation (E.4).  

 
Figure E.2: Network equivalent of a radial distribution feeder 

𝑃𝑃 ≅�𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

  ,   𝑄𝑄 ≅�𝑄𝑄𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (E.4) 

Applying (E.3) and (E.4) to the radial distribution feeder of Figure E.2, the voltage at Busbar 

1 is given by (E.5) and at Busbar 2 by (E.6).  

𝑉𝑉1 = 𝑉𝑉𝑆𝑆 − �
𝑅𝑅1 (𝑃𝑃1 + 𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑋𝑋1 (𝑄𝑄1 + 𝑄𝑄2+. .𝑄𝑄𝑛𝑛)

𝑉𝑉𝑆𝑆
� (E.5) 

𝑉𝑉2 = 𝑉𝑉1 − �
𝑅𝑅2 (𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑋𝑋2 (𝑄𝑄2+. .𝑄𝑄𝑛𝑛)

𝑉𝑉1
� (E.6) 

Substituting (E.5) in (E.6), the voltage at Busbar 2 is: 

𝑉𝑉2 = 𝑉𝑉𝑆𝑆 − �
𝑅𝑅1 (𝑃𝑃1 + 𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑋𝑋1 (𝑄𝑄1 + 𝑄𝑄2+. .𝑄𝑄𝑛𝑛)

𝑉𝑉𝑆𝑆
� − �

𝑅𝑅2 (𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑋𝑋2 (𝑄𝑄2+. .𝑄𝑄𝑛𝑛)
𝑉𝑉1

�

≅ 𝑉𝑉𝑆𝑆 − �
𝑅𝑅1 (𝑃𝑃1 + 𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑅𝑅2 (𝑃𝑃2+. .𝑃𝑃𝑛𝑛) + 𝑋𝑋1 (𝑄𝑄1 + 𝑄𝑄2+. .𝑄𝑄𝑛𝑛) + 𝑋𝑋2 (𝑄𝑄2+. .𝑄𝑄𝑛𝑛)

𝑉𝑉𝑆𝑆
� 

(E.7) 

Accordingly, the voltage at Busbar n can be approximated by the linear Equation (E.8).   

𝑉𝑉𝑛𝑛 ≅ 𝑉𝑉𝑆𝑆 − �
𝑅𝑅1 (𝑃𝑃1 + 𝑃𝑃2+. . . +𝑃𝑃𝑛𝑛) + 𝑅𝑅2 (𝑃𝑃2+. . . +𝑃𝑃𝑛𝑛) + ⋯+ 𝑅𝑅𝑛𝑛 𝑃𝑃𝑛𝑛)

𝑉𝑉𝑆𝑆
� − ⋯

− �
𝑋𝑋1 (𝑄𝑄1 + 𝑄𝑄2+. . . +𝑄𝑄𝑛𝑛) + 𝑋𝑋2 (𝑄𝑄2+. . . +𝑄𝑄𝑛𝑛) + ⋯+ 𝑋𝑋𝑛𝑛 𝑄𝑄𝑛𝑛)

𝑉𝑉𝑆𝑆
� =

= 𝑉𝑉𝑆𝑆 − ���𝑅𝑅𝑖𝑖 ∙�𝑃𝑃𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

+ ��𝑋𝑋𝑖𝑖 ∙�𝑄𝑄𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

� 𝑉𝑉𝑆𝑆�  

 

(E.8) 
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Equation (E.8) was verified against a commercial software, IPSA Power. The value calculated 

is the voltage magnitude at the end of the LV feeder highlighted in Figure E.3. The error, 

listed in Table E-5 is acceptable for the objective of this study.   

 

Figure E.3: Radial feeder in a LV network 

 

Table E-5: Verification of the approximate voltage calculation 

Method Voltage at last connection point (p.u.) Error (%) 

IPSA ( Fast-decoupled Newton-Raphson) 1.00251 - 

Equation (E.8) 1.00297 0.046 
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E.2 Distribution network parameters 
Table E-6. Branches parameters for the MV network (SB=100MVA) 

From 
Bus 

To 
Bus 

R    
(p.u.) X (p.u.) 

Rating 
(MVA) 

 From 
Bus To Bus 

R 
(p.u.) 

X 
(p.u.) 

Rating 
(MVA) 

33 1100 0.04707 0.654 26.4  1132 1136 0.0542 0.0147 4.84 
33 1100 0.04707 0.654 26.4  1137 1138 0.0917 0.0706 8.86 

1100 1137 0.0917 0.0706 8.86  1138 1139 0.0917 0.0706 8.86 
1100 1151 0.0665 0.0512 8.86  1138 1146 0.0571 0.0155 4.84 
1100 1126 0.0745 0.0574 8.86  1139 1140 0.0917 0.0706 8.86 
1100 1115 0.0745 0.0574 8.86  1140 1141 0.0917 0.0706 8.86 
1100 1110 0.266 0.1378 6.82  1140 1147 0.0571 0.0155 4.84 
1100 1107 0.2038 0.1056 6.82  1141 1142 0.0917 0.0706 8.86 
1100 1104 0.2038 0.1056 6.82  1141 1148 0.0571 0.0155 4.84 
1100 1101 0.2038 0.1056 6.82  1142 1143 0.0917 0.0706 8.86 
1101 1102 0.2038 0.1056 6.82  1143 1144 0.0917 0.0706 8.86 
1102 1103 0.0624 0.017 4.84  1143 1149 0.0571 0.0155 4.84 
1104 1105 0.2038 0.1056 6.82  1144 1145 0.0917 0.0706 8.86 
1105 1106 0.0624 0.017 4.84  1145 1150 0.0571 0.0155 4.84 
1107 1108 0.2038 0.1056 6.82  1145 40001 0.0125 0.1875 0.5 
1108 1109 0.0624 0.017 4.84  1151 1152 0.0665 0.0512 8.86 
1110 1111 0.266 0.1378 6.82  1152 1153 0.0665 0.0512 8.86 
1111 1113 0.0663 0.018 4.84  1152 1167 0.0729 0.0198 4.84 
1111 1112 0.266 0.1378 6.82  1153 1154 0.0665 0.0512 8.86 
1112 1114 0.0663 0.018 4.84  1154 1155 0.0665 0.0512 8.86 
1115 1116 0.0745 0.0574 8.86  1154 1168 0.0729 0.0198 4.84 
1116 1122 0.0542 0.0147 4.84  1155 1156 0.0665 0.0512 8.86 
1116 1117 0.0745 0.0574 8.86  1155 1169 0.0729 0.0198 4.84 
1117 1118 0.0745 0.0574 8.86  1156 1157 0.0665 0.0512 8.86 
1118 1123 0.0542 0.0147 4.84  1157 1158 0.0665 0.0512 8.86 
1118 1119 0.0745 0.0574 8.86  1157 1170 0.0729 0.0198 4.84 
1119 1124 0.0542 0.0147 4.84  1158 1159 0.0665 0.0512 8.86 
1119 1120 0.0745 0.0574 8.86  1159 1160 0.0665 0.0512 8.86 
1120 1121 0.0745 0.0574 8.86  1159 1171 0.0729 0.0198 4.84 
1121 1125 0.0542 0.0147 4.84  1160 1161 0.0665 0.0512 8.86 
1126 1127 0.0745 0.0574 8.86  1161 1162 0.0665 0.0512 8.86 
1127 1133 0.0542 0.0147 4.84  1161 1172 0.0729 0.0198 4.84 
1127 1128 0.0745 0.0574 8.86  1162 1163 0.0665 0.0512 8.86 
1128 1129 0.0745 0.0574 8.86  1162 1173 0.0729 0.0198 4.84 
1129 1134 0.0542 0.0147 4.84  1163 1164 0.0665 0.0512 8.86 
1129 1130 0.0745 0.0574 8.86  1164 1165 0.0665 0.0512 8.86 
1130 1135 0.0542 0.0147 4.84  1164 1174 0.0729 0.0198 4.84 
1130 1131 0.0745 0.0574 8.86  1165 1166 0.0665 0.0512 8.86 
1131 1132 0.0745 0.0574 8.86  1166 1175 0.0729 0.0198 4.84 
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Table E-7. Branches parameters for the LV network (SB=100MVA) 

From 
Bus To Bus 

R    
(p.u.) 

X 
(p.u.) 

Rating 
(MVA) 

 From 
Bus To Bus 

R 
(p.u.) 

X 
(p.u.) 

Rating 
(MVA) 

40001 40011 3.843 1.734 0.142  40027 40028 7.5 1.757 0.094 
40001 40021 3.843 1.734 0.142  40028 40029 15.95 0.768 0.048 
40001 40031 3.843 1.734 0.142  40031 40032 3.843 1.734 0.142 
40001 40041 3.843 1.734 0.142  40032 40033 3.843 1.734 0.142 
40011 40012 3.843 1.734 0.142  40033 40034 3.843 1.734 0.142 
40012 40013 3.843 1.734 0.142  40034 40035 7.5 1.757 0.094 
40013 40014 3.843 1.734 0.142  40035 40036 7.5 1.757 0.094 
40014 40015 7.5 1.757 0.094  40036 40037 7.5 1.757 0.094 
40015 40016 7.5 1.757 0.094  40037 40038 7.5 1.757 0.094 
40016 40017 7.5 1.757 0.094  40038 40039 15.95 0.768 0.048 
40017 40018 7.5 1.757 0.094  40041 40042 3.843 1.734 0.142 
40018 40019 15.95 0.768 0.048  40042 40043 3.843 1.734 0.142 
40021 40022 3.843 1.734 0.142  40043 40044 3.843 1.734 0.142 
40022 40023 3.843 1.734 0.142  40044 40045 7.5 1.757 0.094 
40023 40024 3.843 1.734 0.142  40045 40046 7.5 1.757 0.094 
40024 40025 7.5 1.757 0.094  40046 40047 7.5 1.757 0.094 
40025 40026 7.5 1.757 0.094  40047 40048 7.5 1.757 0.094 
40026 40027 7.5 1.757 0.094  40048 40049 15.95 0.768 0.048 
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