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ABSTRACT

The amount of dust estimated from infrared to sub-millimetre (submm) observations strongly
depends on assumptions of different grain sizes, compositions and optical properties. Here we
use a simple model of thermal emission from cold silicate/carbon dust at a range of dust grain
temperatures and fit the spectral energy distribution (SED) of the Crab Nebula as a test. This
can lower the derived dust mass for the Crab by ∼50% and 30-40% for astronomical silicates
and amorphous carbon grains compared to recently published values (0.25M⊙ → 0.12M⊙
and 0.12M⊙ → 0.072M⊙, respectively), but the implied dust mass can also increase by as
much as almost a factor of six (0.25M⊙ → 1.14M⊙ and 0.12M⊙ → 0.71M⊙) depending
on assumptions regarding the sizes/temperatures of the coldest grains. The latter values are
clearly unrealistic due to the expected metal budget, though. Furthermore, we show by a
simple numerical experiment that if a cold-dust component does have a grain-temperature
distribution, it is almost unavoidable that a two-temperature fit will yield an incorrect dust
mass estimate. But we conclude that grain temperatures is not a greater uncertainty than the
often poorly constrained emissivities (i.e., material properties) of cosmic dust, although there
is clearly a need for improved dust emission models. The greatest complication associated
with deriving dust masses still arises in the uncertainty in the dust composition.

Key words: Stars: AGB and post-AGB, supernovae: general, individual: Crab Nebula; ISM:
dust, extinction

1 INTRODUCTION

Observations suggest Lyα systems, quasars and gamma-ray burst

hosts at high-z contain very large amounts of dust (see, e.g.

Bertoldi et al. 2003; Beelen et al. 2006; Michalowski et al. 2008,

2010a,b), which forces models of stellar dust production and galac-

tic dust evolution to extremes in order to reproduce these results

(?Dwek et al. 2007; Gall, Andersen & Hjorth 2011a,b; Mattsson

2011). Assuming stars as the primary source of dust suggests

the dust is due to supernovae (SNe) and a top-heavy initial mass

function favouring the formation of SNe. This scenario can in

principle explain the observations, provided the dust-destruction

rate in the interstellar medium is much lower than expected

based on the kinetics of SN explosions (see ?Dwek et al. 2007;

Gall, Andersen & Hjorth 2011a,b; ?; Mattsson 2011).

Recent observations in the FIR/sub-mm of nearby core-

collapse supernova remnants (SNRs), with ages > 25 years, sug-

gest high dust-formation efficiencies in the SN ejecta (Barlow et al.

2010; Matsuura et al. 2011; Gomez et al. 2012, henceforth G12)

⋆ E-mail: larsmat@kth.se

though these are limited in sample size. The dust masses esti-

mated using canonical single or two-temperature component fits

to the spectral energy distributions in the FIR/-submm imply dust

masses which are uncomfortably close to (or indeed exceed) the

amount of metals predicted to be ejected in these supernovae (see

e.g. Matsuura et al. 2011, G12). The Inferred dust mass depends

on the assumed dust properties, which can thus change whether

SNRs appears to contain unrealistically large amounts of dust or

not. If the grains are silicates, the grain masses are high relative

to the emissivity. For carbonaceous dust the mass/emissivity-ratio

is much smaller, which is also the case for ice-coated grains and

various other types of coagulates.

Variation in dust temperatures, grain sizes and material prop-

erties makes dust-mass estimates from SEDs uncertain, which

is recognised in the literature. The fact that SEDs arising from

dust emission often suggest there is a range of grain temper-

atures in a dust population, has inspired several publications

on how to solve the inverse problem of finding the corre-

sponding grain-temperature distribution (GTD) from an observed

SED (see, e.g., Xie, Goldsmith & Zhou 1991; Xie et al. 1993;

Li, Goldsmith & Xie 1999). Solving this inverse problem would
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2 Mattsson et al.

thus provide empirical constraints on the functional form of the

GTD that can be used to improve dust estimates. In principle, there

is a detailed correspondence between the dust SED and the GTD,

but finding the exact shape of the latter is unfortunately often a

badly conditioned problem (Hobson & Padman 1994). Common

practice is still to fit one or two single-temperature components to

model the SED, which may affect the implied dust mass; in par-

ticular, the mass of cold dust (∼ 20 K) may be overestimated by

pushing too much flux into this component.

It has recently been suggested by, e.g., G12, Richardson et al.

(2013) and Temim & Dwek (2013, henceforth TD13) that the treat-

ment of grain temperatures may be important in the case of the Crab

Nebula. Initially G12 used a two-temperature fit to the observed

SED to derive dust masses of 0.25 M⊙ and 0.12 M⊙ for silicates

and carbon within the Crab respectively. In parallel with our work,

TD13 have made a model of the FIR dust emission in the Crab

Nebula explicitly taking the synchrotron radiation field and grain-

sizes into account in calculating the radiation balance. They claim

that the required dust mass to explain the SED is significantly re-

duced in their model but this is due to a combination of the model

as such and the use of a different set of optical constants (for which

laboratory measurements are only available at λ < 300 µm). We

note, also, that detailed modelling can give very different results

compared to TD13 (Owen & Barlow 2015). It is therefore worth

elaborating on the effect of considering a cold-dust GTD and in

particular, to consider how sensitive the dust masses obtained from

SED fitting are to the assumed dust temperatures. We use a simple,

computationally inexpensive, ‘model’ based on known constraints

on the GTD, which can be applied in any environment regardless

of whether the radiation field heating the dust can be specified or

not. Kovács et al. (2010); Magnelli et al. (2012), have successfully

modelled the GTD of star forming galaxies using a power-law in a

similar manner. Attempts to solve the inverse problem mentioned

above for molecular clouds have suggested the GTD may be closer

to an exponential form, however (see, e.g., Xie et al. 1993). The

purpose of this paper is not to provide a precise and realistic model

of dust emission, though. We merely aim to investigate how much

of a difference introducing a range of grain temperatures makes in

general, compared to other uncertainties in deriving the dust mass.

2 FIR/SUB-MM EMISSION FROM DUST

In this section we will just briefly summarise the physics underly-

ing the conventional way of inferring dust masses and grain tem-

peratures from FIR/sub-mm fluxes1.

2.1 Dust masses

It is normally assumed that dust grains absorb and emit photons

according to Kirchhoff’s law and that the source function can be

described by a Planck function Bλ |dλ/dν| and that optically thin

conditions apply in the FIR/sub-mm of the surrounding medium.

1 In the present paper we refer to ‘flux’ in the following way: the total flux

F from a source is the energy output (luminosity) per unit surface area, e.g.

in units of W m−2. The specific or monochromatic flux is per wavelength

(or frequency) Fλ is the same as ‘spectral flux density’ commonly used in

observational work (usually with the unit being Jy = 10−26 W m−2 Hz−1).

However, to keep the terminology simple we only use the term ‘flux’, and

ask the reader to bear in mind that a subscript λ means the flux at a specific

wave length.

If Qem = Qabs, where Q denotes the ratio of the effective and ge-

ometric cross sections (Kirchhoff’s law) and ρκλ∆x ≪ 1, where

ρ is the gas density, κλ is the opacity due to absorption and ∆x is

the geometric thickness of the surrounding medium (optically thin

conditions), then the observed FIR/sub-mm flux is the sum of all

reemitted flux from dust grains, where the flux from a grain of ra-

dius a and temperature Td is

F
gr

λ
(a) = πD−2 Bλ(Td) a2Qabs(λ, a) n(a) da. (1)

In the equation above, D is the distance to the observer and n(a)

is the grain-size distribution (GSD) by number normalised per unit

volume. With the additional assumption that an ensemble of dust

grains can be described with a single grain temperature Td and that

a/λ ≪ 1 (the Rayleigh limit), the flux from this ensemble can be

expressed as

Fdust
λ =

3

4

Bλ(Td) Q′
abs

Vgr

D2
, (2)

where Q′
abs

(λ) = Qabs(λ, a)/a in the Rayleigh limit and Vgr is the

total volume taken up by the dust. Multiplying both sides of the

above equation with the bulk density of the grains ρgr, one obtains

the relation (Hildebrand 1983; Gall, Hjorth & Andersen 2011)

Md =
4

3

ρgr D2 Fdust
λ

Q′
abs

Bλ(Td)
=

D2 Fdust
λ

κ̃λ Bλ(Td)
, (3)

where κ̃λ is a quantity to be referred to as ‘emissivity’ (or ‘absorp-

tivity’, depending on the context) which has the same dimension as

opacity, but reflects the optical properties of the grain material and

should not be confused with the opacity of the surrounding medium

κλ referred to above.

Eq. (3) conveniently evades the essentially unknown GSD.

However, it is not obvious that the assumptions made to derive

this simple relation between dust flux and mass are valid in gen-

eral. In particular, it is only valid in the Rayleigh limit and if all

dust grains have the same temperatures, where the latter implies

that they should all have the same size as well. The Rayleigh limit

only applies to emission at long wavelengths (absorption and scat-

tering is mainly in the optical/UV), which may cause an implicit

dependence on grain size with different grain temperatures as the

result. In any realistic dust model one has to integrate over a suit-

able size distribution and make use of a variety of dust compo-

sitions/materials. That is, the dust mass corresponding to a given

SED depends on the GTD W(Td) ≡ dMd/dTd. The flux from dust

for such a distribution is given by

Fdust
λ = κ̃λD

−2

∫ Thigh

Tlow

W(Td)Bλ(Td) dTd. (4)

We will in the following elaborate on how much of an effect W(Td)

has on the dust masses derived from FIR/-sub-mm SEDs.

2.2 Grain temperatures

The basic assumption underlying the relation between dust flux

and dust mass is that it is the same dust grains that absorb light

in the UV/optical or gain energy due to collisions with other par-

ticles (usually electrons) that are also emitting radiation in the

IR/FIR/sub-mm. The physical underpinnings for radiative and col-

lisional heating are different, however, but the equilibrium temper-

ature distributions for the grains may not be that different.

c© 2013 RAS, MNRAS 000, 1–??



From flux to dust mass 3

2.2.1 Radiative heating and cooling

Radiative heating is normally due to absorption of radiation in the

UV/optical and assuming the grains are in local thermal equilib-

rium with the mean intensity of the radiation field we can equate

the absorbed and emitted power, i.e. Pabs = Pem. The optical depth

of the surrounding medium may in principle affect the energy ab-

sorption but has little effect on the re-emission at long wavelengths.

Thus, making use of Q′
abs

(as previously defined) in the Rayleigh

limit and assuming the surrounding medium is optically thin, we

have
∫ ∞

0

Qabs(λ, a) J⋆,λ dλ ≈ 4πa

∫ ∞

0

Q′abs(λ)Bλ(Td) dλ, (5)

where J⋆,λ is the mean intensity of the radiation field. Note that

Q′
abs

(the Rayleigh-limit approximation) can only be used on the

right-hand side of Eq. (5), which represents emission at long wave-

lengths, and that Eq. (5) is strictly valid only locally (but can be

generalised, resulting in an effective overall GTD). Conveniently,

the emission at long wavelengths is approximately a power-law in

λ. Thus, replacing Q′
abs

with Q′
0
(λ/λ0)−β, integrating over wave-

length and assuming that heating occurs in the grey-absorption

limit (or large-particle limit) where Qabs is constant, we have then

a simple power-law of the form

Td(a) = Ts

(

a

as

)−1/(4+β)

, (6)

where Ts and as are scaling parameters. Note that even if one adopts

an explicitly grain-size dependent Qabs, the grain temperature is still

(locally) uniquely determined by the grain size under thermal equi-

librium conditions. For further details on the above, see Appendix

A.

The GTD W(Td) can be determined from

W(Td) = ϕ(a)

∣

∣

∣

∣

∣

dTd

da

∣

∣

∣

∣

∣

−1

, (7)

where ϕ(a) is the GSD in terms of mass. For a canonical MRN dis-

tribution (Mathis, Rumpl & Nordsieck 1977) ϕ(a) ∝ a−0.5. Thus,

adopting an MRN distribution and the grey-absorption limit, the

GTD is simply also a power-law W(Td) ∝ T
−3−β/2

d
. Such a GTD

has been recovered for hot dust (heated by short-wavelength ra-

diation) around active galactic nuclei (Wang & Zhou 1996). The

grey-absorption limit may not be strictly applicable in other cases

(e.g., SNRs) and the slope of the temperature distribution is there-

fore likely steeper than in Eq. (7) and may deviate from the simple

power-law form above, i.e., the scale temperature Ts would in this

case be a function of a. We note also that collisional heating should

give rise to a GTD in a way similar to radiative heating (see Ap-

pendix B).

2.2.2 Temperature fluctuations?

Previous work has shown how the GTD is affected for small grains

undergoing significant temperature fluctuations (non-equilibrium

conditions) as a result of being hit by energetic photons or

other particles (see, e.g., Purcell 1976; Aannestad & Kenyon 1979;

Draine & Anderson 1985; Dwek 1986; Draine & Li 2001; Draine

2003, and references therein). The heat capacity determines how

much energy the dust particle can hold, i.e., the energy in an ab-

sorbed photon will partly heat up the material and the remainder

will be emitted at longer wavelengths. The amount of energy a grain

can hold is proportional to its mass, which is why small grains do

not easily obtain an equilibrium temperature if heated with short-

wavelength radiation. For radiative heating, we have that an en-

ergy increment dE is causing a temperature increment according to

dE = CV dTd, where CV is the heat capacity at a constant volume.

The heat capacity for a spherical grain is, in the low-temperature

limit of Debye’s model (Td/TD ≪ 1, with TD the Debye tempera-

ture),

CV ≈
12π4

5
kN

(

T

TD

)3

=
16π5

5

k ρgra
3

mX

(

Td

TD

)3

, (8)

where N is the number of monomers in the grain, mX their mass

(Aannestad & Kenyon 1979; Draine & Anderson 1985). The tem-

perature increase is effectively ∆Td ∼ Qabs(a, λ) C−1
V Ephot ∼ E

1/4

phot
,

where Ephot is the energy of the photon and Qabs is the ratio of the

effective and geometrical cross sections of the grain. Inserting suit-

able numbers shows that a single UV photon could suffice to raise

the temperature of a cold (∼ 30 K) nano-sized grain almost an order

of magnitude. Very small grains will usually also cool rapidly and

regain their initial temperatures of ∼ 30 K in typically a couple of

hours or less (Purcell 1976; Draine & Li 2001). Thus, at any given

time, a population of cold, very small grains may therefore have

wide range of temperatures, leading to a GTD even for a popula-

tion of grains with exactly the same sizes.

At first glance it may seem like the above factors compli-

cate the picture a lot. But, fortunately, the effect on the estimated

mass of cold dust is negligible. First, most of the mass is ex-

pected to be in the large grains (cf. the MRN size distribution

in terms of dust mass, dρd/da ≡ ϕ(a) ∝ a−0.5) and dust in

SNe appears to have a strong bias towards large grains in general

according to recent results (Gall et al. 2014; Wesson et al. 2014;

Owen & Barlow 2015). Not more than a few percent of the mass

can be in grains small enough to undergo significant temperature

fluctuations (Purcell 1976; Aannestad & Kenyon 1979). From eq.

(8) we can also see that size can easily compensate for the fact

that the grains are cold. Second, if temperature fluctuates are im-

portant, they will cause emission in the infrared and near infrared

bands (Li & Draine 2001). Cold dust radiates almost exclusively in

the FIR/sbmm bands. Thus, in conclusion, we do not have to worry

greatly about temperature fluctuations as long as we are dealing

with cold dust and a steep GTD.

3 THE EFFECTS A GRAIN-TEMPERATURE

DISTRIBUTION

Under most circumstances it is inevitable that there is a distribution

of dust temperatures rather than distinct representative dust tem-

peratures for specific dust components (e.g., a cold, warm and hot

component) as we have touched upon above. This fact has pre-

viously been pointed out as a caveat (see, e.g., G12, TD13 and

Richardson et al. 2013, in the case of the Crab Nebula). Such a dis-

tribution must be very steep and narrow not to create SEDs which

are inconsistent with the featureless ‘bumps’ associated with cold

dust, but it can still have a significant effect on the derived dust

mass. In this Section we describe a simple multi-temperature model

for the FIR/sub-mm dust emission. We use the Crab Nebula as a

test case, to show that an observed SED can be reproduced with

very different dust masses, and then continue with a more general

analysis of how multi-temperature SED fits may differ from two-

temperature fits, by generating a large mock sample of SEDs from

simple GTDs.

c© 2013 RAS, MNRAS 000, 1–??



4 Mattsson et al.

3.1 Grain-size or temperature distribution?

There are essentially just two ways to incorporate the effect of a

range of grain temperatures when modelling an SED: either one

has to (computationally) find the GTD from an assumed GSD and

a (possibly) known radiation field, or, one could make a direct as-

sumption or estimate of the GTD (or its functional form, more pre-

cisely). TD13 preferred the first approach, while we will here ex-

plore the latter.

There is no actual advantage of any of these two approaches

over the other in terms of their physical correctness (we simply

have too little information to distinguish between the two), though

it is clear that an assumption directly regarding the GTD is much

simpler to deal with. There is also a direct link between the ob-

served SED and the corresponding GTD that could (in theory)

be used to constrain the functional form (Xie, Goldsmith & Zhou

1991; Xie et al. 1993; Li, Goldsmith & Xie 1999). In principle one

could thus construct a fairly consistent model even without any

knowledge about the heating radiation field.

One could of course argue that the best option would be to

use a GSD that results from theoretical modelling of SN dust for-

mation and then chose an approach similar to that used by TD13.

But unfortunately the models do not offer a consistent picture.

Nozawa et al. (2003) suggest the GSD produced by SNe may be

somewhat flatter [n(a) ∝ a−2.5], except for very large grains, where

the MRN distribution seems to be recovered. But the effective GSD

may be even flatter still, if small grains are destroyed (Nozawa et al.

2007), and the upper and lower size limits do not correspond to

sharp cut-offs, so the assumption of a power-law GSD made by

TD13 is not obviously the optimal ansatz.

3.2 Multi-temperature SED

Modelling of the dust contribution to the SED is often done by fit-

ting one or two components (cold and warm dust), with weighting

factors that specify the mass contribution from each component.

We generalise this to N components, but with the weighting factors

constrained by a GTD assumed to follow a power law or expo-

nential as motivated above. Thus, we maintain the same number of

parameters (four) when fitting the SED, while at the same time dust

grains can have an arbitrary range of temperatures.

Regarding the functional form of the GTD W(Td), the energy

balance (Eq. 5) suggest that if a grain has a temperature T1 and

another grain has a temperature T2 > T1, then grains with tem-

perature T2 cannot be larger than grains with temperature T1 (see

also the Appendix A). That is, dW/dTd 6 0 for all Td. Further-

more, because Qabs, at any given wavelength, normally is a smooth

function of a without very prominent features, there is no reason

to expect that W(Td) is a complicated function of Td. It is there-

fore reasonable to assume that the GTD is a smooth, monotonously

decreasing function of grain temperature. Steep power-laws have

previously been considered in other contexts (Aguirre et al. 2003;

Kovács et al. 2010; Magnelli et al. 2012).

3.2.1 Power-law

As discussed previously, radiative heating that occurs in the grey-

absorption limit corresponds to a power-law GTD W(Td) where the

GSD is a power-law. If the dust is heated by short-wavelength radi-

ation (UV, X-ray etc.) this is in fact a good approximation of reality.

We have therefore as good reasons to try a power-law form as our

ansatz for the effective GTD as there are reasons to expect a power-

law GSD.

With W(Td) = W0 (Td/T0)−α, where we set T0 = Tlow, we can

model the flux from an ensemble of dust grains with different sizes

and temperature using a function

S λ(Thigh,Tlow;α) = S 0(N)

N−1
∑

i=0

(

Ti

Tlow

)−α

Bλ(Ti), (9)

in which Ti = i N−1(Thigh − Tlow) + Tlow, where Thigh and Tlow are

the high and low temperature cut-off, respectively. S 0 is a constant

such that S λ represents the blackbody flux from all N components.

This function replaces the Planck functions and the weighting co-

efficients in, e.g., a two-component model and the exponent α can

be treated as a free parameter. If N is large (we assume N = 100000

in subsequent applications), the fitting result corresponds to a con-

tinuous GTD W(Td) as in Eq. (4).

3.2.2 Exponential

The power-law form of W(Td) is strictly valid only under very spe-

cial circumstances, as we have pointed out in Section 2.2.1. It is

more realistic that the slope of the GTD changes with the grain

temperature Td. The GTDs derived by Xie et al. (1993) from the

SEDs of cold molecular clouds are very close to exponential for

Td & 25 K and detailed computer simulations of molecular clouds

do in fact suggest this may be a realistic functional form of the

GTD of a single dust species (Bethell et al. 2004). If an expo-

nential form of W(Td) works well for molecular clouds it seems

reasonable it could work as well for cold dust in SNRs. Thus,

we try also an exponential model. Using an exponential GTD,

W(Td) = W0 exp(−Td/T0), we have in analogy with the power law

case,

S λ(Thigh,Tlow; T0) = S 0(N)

N−1
∑

i=0

exp

(

−
Ti

T0

)

Bλ(Ti), (10)

where T0 is a free scaling parameter. Since a GTD must be steep, a

realistic value of T0 is only a few K.

Power-law models used on very cold dust suggest the GTD is

flattening out at low dust temperatures (Aguirre et al. 2003), which

further motivates that we should consider a GTD of the exponen-

tial form above (see Fig. 1 for an example of how this flattening

naturally occurs at low Td for an exponential GTD).

3.2.3 Temperature cut-offs

Obviously, there has to be a lowest and a highest possible grain tem-

perature, because grains are neither arbitrarily small, nor arbitrarily

large (see Appendix A). We use these cuts on the temperature distri-

bution as fitting parameters as well (see Eq. 9), which corresponds

to the integration limits above. Initial values for Tlow and Thigh may

be determined by a two-temperature fit, which stabilises the fit-

ting procedure. One may argue that the lower limit Tlow may also

be fixed to this value, since the lowest possible dust temperature

is essentially defined by the shape of the FIR/-sub-mm tail of the

SED (see fig. 4 in G12). But this is not necessarily a good approach,

since the flux contribution from very cold (and large) grains may be

small, while their contribution to the dust mass is significant. Note,

also, that this is related to the upper grain-size limit as well (the

coldest grains are the largest ones), while the upper temperature

limit, and thus also the lower grain-size limit, is harder to constrain

(we will return to this later). TD13 assume an upper grain-size limit

c© 2013 RAS, MNRAS 000, 1–??



From flux to dust mass 5

Figure 1. Grain temperature distributions for the dust SED models with

Tlow fixed to the temperature of the cold component in a two-temperature

fit of the Crab Nebula. The temperature interval used to model the SED for

each model is shown by solid lines. See also Table 1.

which, according to their model, corresponds to approximately the

temperature of the cold component in a two-temperature fit. There-

fore, in our ‘test application’ to the Crab Nebula below, we have

included a case where Tlow is fixed to the temperature of the cold

component in the two-temperature fit, in order to compare with the

results of TD13.

3.3 Test case: fitting the Crab Nebula SED

We have chosen to use the Crab Nebula to test our simple multi-

temperature component model since it has a wide FIR/sub-mm

SED which seems to suggest a range of grain temperatures is possi-

ble (see also the papers by TD13 and Richardson et al. 2013, where

a range of grain temperatures is discussed as well). SN 1987A, on

the other hand, has a very narrow SED which appears consistent

with a single-temperature population with an extremely low dust

temperature (Matsuura et al. 2011) and thus makes it irrelevant as

a test case in the present context.

There is also a third well-observed remnant that has received

a lot attention because of its seemingly large dust mass, Cas A (see

Dunne et al. 2009, and references therein), but Cas A is known to

be a complicated case. It is far from established that the FIR/sub-

mm part of the SED primarily reflects dust in the SNR, because

of foreground contamination from a spiral arm (Dunne et al. 2003;

Krause et al. 2004; Gomez et al. 2009; Barlow et al. 2010). Thus,

we decided to not consider Cas A as a test case either, although the

shape of the SED would suggest a fairly wide temperature distribu-

tion as seen in the Crab Nebula.

We use the photometric data from G12 to plot the SED

of the Crab Nebula (Figure 2) with wavelengths ranging from

1−1000 µm. The Crab Nebula is a somewhat special object in that it

has a strong synchrotron radiation field originating from the pulsar

wind nebula (PWN). The PWN is the main heating source, a fact

that TD13 take advantage of in their model (i.e., in this particular

case, the heating source can also be specified quantitatively, but this

is not the case for other SNRs). For our purposes, we only have to

subtract the synchrotron component from the SED, which is rela-

tively easy since it is well-described by a power-law (see G12 and

references therein). The integrated fluxes need also to be corrected

for line emission. In some cases it is small, e.g., only 8.7% of the

total flux at 100 µm and 4.9% of the 70 µm (see Table 2 in G12).

But the 24 µm flux due to dust emission is 43% of the synchrotron

subtracted flux (Temim et al. 2012), which is important to take into

account.

Since G12 obtained a valid fit with a canonical two-

temperature fit with astronomical silicates (Draine & Lee 1984;

Weingartner & Draine 2001) and amorphous carbon (Zubko et al.

1996), we first modelled the SED using astronomical silicates but

now with the two forms of GTDs described in Section 3. The range

of dust temperatures (Table 1) obtained through the SED fitting

corresponds to a steep distribution favouring cold dust (see Fig.

1). Since the low-temperature limit Tlow is decisive for the in-

ferred mass, we have considered two cases: (1) a lower limit on

the dust temperature set to the cold dust component temperature

derived in G12 (again, see Table 1) and (2) a lower limit which

is treated as free parameter, albeit with an absolute lower limit set

by the cosmic background temperature TCMBR = 2.73 K. We will

later discuss the effects of assumptions about Tlow in more detail

(Section 3.4). The upper limit is treated as a free parameter for all

cases, but is unsurprisingly rather similar to the temperature of the

warm component as obtained from a two-temperature fit (see Ta-

ble 1). The models with a range of temperatures (full-drawn black

and dot-dashed red curves in Figs. 2 and 3) are as good fits to the

data (lower χ2) as the two-temperature fits (the blue dashed lines).

But the corresponding dust masses are quite different. Assuming

silicate dust and Tlow fixed at the value obtained from the two tem-

perature fits, only ∼50% of the dust mass is required (compared

to the two-temperature fit). Using amorphous carbon grains (data

taken from Zubko et al. 1996) with a range of temperatures instead

of silicates yields similar results, though with a revised dust mass of

60-70% compared to the carbon grain model in G12. The second

case, where Tlow is a fitting parameter, leads to lower Tlow values

and thus significantly higher dust masses. With a power-law GTD

the dust masses, assuming silicates as well as amorphous carbon,

are roughly doubled compared to the two-temperature fits. Using

an exponential GTD, the fitting algorithm pushes Tlow to the min-

imum value Tlow = TCMBR = 2.73 K. Maximising the amount of

very cold grains like this suggests dust masses which are a factor 4-

6 higher than those obtained in the two-temperature fits. Obviously,

this last result is not very realistic, but it clearly demonstrates why

fitting simple SED models to data can be dangerous.

The power-index values we obtain for the power-law models

agree well with the values obtained by, e.g., Kovács et al. (2010);

Magnelli et al. (2012) who used a similar GTD approach for de-

riving the dust mass in galaxies. Kovács et al. (2010, see also ref-

erences therein) discussed that a power index in the range α =

6.5...8.5 is expected in diffuse media, while for dense interstellar

media α = 5...7 is more likely. The upper end of these ranges cor-

respond to an effective emissivity index β = 2, which is appro-

priate for, e.g., astronomical silicates. Thus, a SNR (which can be

regarded as a dense medium) with silicate dust should have α = 7,

which is exactly the value we have obtained for the Crab Nebula

with Tlow fixed (see Table 1). For amorphous carbon dust, which

has β ≈ 1, we should expect α ≈ 6, in agreement with our results

in Table 1.

In principle, the dust masses obtained with a fixed Tlow could

lower the tension between the expected metal budget and the

amount of dust formed in the ejecta. The mass of the progenitor

star is constrained by the fact that one can put relatively strict con-

straints on the mass of the neutron star, Mns ≈ 1.4M⊙, which sug-

gest a progenitor mass below 13 M⊙ according to theoretical mod-
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Table 1. Comparison of parameters derived from fitting the SED of the Crab Nebula with two-temperature and GTD models. Tlow and Thigh denote the low

and high cut offs of the GTD as well as the temperatures of the cold and warm components in the two-component models. α is the resultant power-law index

for the GTD.

Model Dust type ρgr Tlow Thigh T0 α Md χ2 Remark

[g/cm3] [K] [K] [K] [M⊙]

A Astron. silicate 3.3 28.1 55.6 - - 0.25 8.54 Two-temperature fit.

B Astron. silicate 3.3 28.1 72.6 - 7.0 0.14 7.98 Power-law GTD, Tlow fixed.

C Astron. silicate 3.3 17.4 68.7 - 5.2 0.51 7.98 Power-law GTD, Tlow free.

D Astron. silicate 3.3 28.1 78.3 6.38 - 0.12 8.23 Exponential GTD, Tlow fixed.

E Astron. silicate 3.3 2.73 74.1 6.37 - 1.14 7.87 Exponential GTD, Tlow free.

F Amorphous carbon 1.81 33.8 63.4 - - 0.12 8.19 Two-temperature fit.

G Amorphous carbon 1.81 33.8 78.7 - 6.5 0.077 7.66 Power-law GTD, Tlow fixed.

H Amorphous carbon 1.81 19.8 74.0 - 4.1 0.22 7.79 Power-law GTD, Tlow free.

I Amorphous carbon 1.81 33.8 83.9 7.79 - 0.072 7.75 Exponential GTD, Tlow fixed.

J Amorphous carbon 1.81 2.73 76.2 11.0 - 0.71 7.73 Exponential GTD, Tlow free.

Figure 2. SED model fits to the Crab Nebula using a power-law GTD

with photometric data from G12. The dashed blue lines correspond to the

two-component models by G12, while the solid black and read dot-dashed

lines show temperature-distribution models with Tlow fixed and as a firing

parameter, respectively. The thin dashed black line shows the estimated syn-

chrotron component. The upper panel show models based on silicate dust,

while the lower panel shows models based on amorphous carbon dust.

els (see, e.g., Woosley & Weaver 1995). But we note also that the

chemical abundances seem to be in better agreement with a pro-

genitor above 11 M⊙ (MacAlpine & Satterfield 2008). In general,

it seems a progenitor of relatively low mass is favoured, which

is supported by the slow expansion velocity (Fesen et al. 1997;

Smith 2003). A recent assessment by Smith (2013) has strongly

constrained the progenitor mass to 8-10 M⊙, suggesting a super-

AGB star that suffered an electron-capture SN rather than an Fe

core collapse event, which puts a severe limit on the metal bud-

get. The masses found by G12 are then only marginally consis-

tent with the metal budget if one accepts the nucleosynthetic mod-

els by Woosley & Weaver (1995). A 13 M⊙ star in such case al-

Figure 3. Same as Fig. 2 but for an exponential GTD.

lows 0.37 M⊙ of silicates (assuming an effective mass number

Asil = 170) and 0.11 M⊙ carbon dust to be formed. Thus, while the

dust masses found by G12 are not obviously overestimates, a model

suggesting close to 100% dust-condensation efficiency is not very

convincing since one expects a non-negligible sublimation rate in a

SNR. The lower dust masses may seem like a reasonable and con-

servative choice, but one has to be aware that the total SED cannot

provide conclusive evidence.

3.4 How much difference does a multi-temperature fit make?

3.4.1 Shape of the SED

The range of dust temperatures is directly connected to the width

of FIR/sub-mm (dust) bump in the SED. ‘Warmer’ grains (with

temperatures above the coldest grains, that is) will inevitably add

flux on the short-wavelength side of the dust SED. What this extra

flux will look like in the SED depends on the dust type, though.
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Table 2. Parameter ranges for the grid of artificial SEDs.

Parameter Range Step size

Tlow 20 - 50 K 0.3 K

Thigh 60 - 100K̇ 0.6 K

T0 3 - 9 K 0.06 K

α 4 - 9 0.05

Astronomical silicates can provide a tell-tale signature – the 10 µm

feature – that reveals the presence of warm dust (Td & 100 K), while

the carbon-dust FIR/sub-mm SED is mostly featureless. The 10 µm

feature cannot arise from cold dust, however. But the location of

the peak wavelength and slope of the short-wavelength tail poses a

constraint on the cold-dust GTD regardless of the presence of any

dust-emission features.

The kurtosis (‘peakedness’) of the dust SED can also be af-

fected by the GTD. In particular, using a continuous GTD may re-

sult in more flux in the middle of the SED than in the case of a

two-temperature model. This is clearly seen in the fits to the Crab

Nebula with a fixed low-temperature limit (see Section 3.3, Figs. 2

and 3). Thus, a continuous GTD may differ slightly from the two-

temperature model in terms of the shape of the resultant SED. This

affects the required dust mass of the model because the fit to the

observed SED will be different. An increased kurtosis in the model

SED should result in a lower dust mass, which is also what we ob-

tained in our application to the Crab Nebula.

3.4.2 Reducing the dust mass?

In the continuous case (the number of temperature components

N → ∞), we can write S λ as a temperature mean of the Planck

function Bλ weighted by the GTD W(Td),

S λ =

[∫ Thigh

Tlow

W(Td) dTd

]−1 ∫ Thigh

Tlow

W(Td) Bλ(Td) dTd, (11)

which replaces Bλ in the derivation of the dust mass from a given

SED. The total dust mass obtained from a two-temperature fit is

completely dominated by the cold component (see, e.g., G12) and,

as we have pointed out above, it seems reasonable to associate the

low temperature cut-off Tlow with the temperature of the cold com-

ponent Tcold from the two-temperature fit (although this is not ob-

viously the case, which we will discuss later). Hence, if we com-

pare S λ(Tlow,Thigh; T0) and Bλ(Tlow), we would have an approxi-

mate measure of how much the GTD affects the implied dust mass

for a given set of parameters, if the cold-dust temperature is equal to

the lower temperature limit Tlow of the GTD. Since we are consid-

ering thermal radiation at long wavelengths, we may also approxi-

mate the Planck function using the fact that e1/x−1 ≈ x for x≫ 1. It

is then straight forward to show that, for W(Td) = W0 exp(−Td/T0),

T0 ≪ Thigh (very steep GTD) we have at large wavelengths

S λ

Bλ
≈ 1 +

T0

Tlow

, (12)

which is because the effect of a wide range of dust temperatures

is in such case limited and depends on the balance between cold

and warm dust. That is, the effect of a realistic GTD (which must

be steep) on the implied dust mass depends mostly on the temper-

ature of the coldest dust. Moreover, using Eq. (12) and since Tlow

is typically a few times T0 (if the temperature Tlow is that of the

two-temperature fit), one can easily verify that the increase in flux

from a GTD compared to the two-temperature fit is not likely more

than 20 − 30%.

We have also computed Eq. (11) by numerical integration us-

ing an exponential as well as an power-law GTD with Qabs for

‘astronomical silicates’ (Weingartner & Draine 2001) and amor-

phous carbon (Zubko et al. 1996). Because this integration is com-

putationally fairly inexpensive, we generated a large, dense grid

of artificial SEDs with either a fixed lower temperature limit or

a fixed upper temperature limit and a range of values for the re-

maining parameters (see Table 2). For each SED we then fitted

two-temperature models with the temperature of the cold compo-

nent fixed to Tcold = Tlow and with Tcold as a free parameter. We

then compared the required dust masses, i.e., we computed the ra-

tio M
2−temp

d
/Mmulti

d
. These ratios are shown in Figs. 4, 5, 6 and 7. In

total we computed 4 · 106 SEDs and made two-temperature fits all

of these, but we only show a subset of 80000 SEDs here (since the

results for silicates are very similar to those for amorphous carbon

and we do not display all the various cases of fixed upper and lower

temperature limits either).

As can be seen on Figs. 4 and 5, the M
2−temp

d
/Mmulti

d
-ratios sug-

gests the introduction of a GTD (with Tlow = Tcold) only lowers

the implied dust mass by ∼ 30 − 40% for realistic values of Tlow,

Thigh and T0 in case of an exponential GTD (left panels in Fig. 4

and 5) and a similar result is obtained for the power-law case (right

panels in Fig. 4 and 5). Comparing the Figures, it is also clear that

the lower temperature limit Tlow is more important than the upper

limit Tlow for any reasonable GTD (which must have T0 ≪ Thigh or

α ∼ 5...8), as we predicted from Eq. (12) above.

The ∼ 50% (or 30− 40%) reduction of the (silicate or carbon)

dust mass that we obtained by including a GTD in the SED mod-

elling of the Crab Nebula is in fact due to two factors that make

comparable contributions: the increased flux due to the addition of

a range of grain temperatures (higher average Td) and a mere dif-

ference in the fit due to the slightly different shape of the model

SED. The latter can be seen in Figs. 2 and 3, as well as Fig. 5 in

TD13. The combined effect amounts to a factor of two for silicates

in the Crab Nebula, which is likely the largest reduction one can ex-

pect in employing a GTD in general (not only for the Crab Nebula).

This is expected since in case of an exact fit to the SED, the rela-

tive mass reduction would be the same as the relative flux increase

from adding more warmer dust (typically 20 − 30%). As is evident

from figure 4 and 5, the expected dust-mass ratio, comparing a two-

temperature fit with a GTD-model fit, would only in extreme cases

(e.g., very cold dust) reach above two.

It is worth stressing that the mass reduction we describe above

is totally dependent on the assumption that the temperature of the

cold-dust component in a two-temperature fit is the same as the

lower temperature limit of the GTD (Tlow = Tcold). This assumption

is similar to assuming an upper-limit grain size, as in TD13, and has

essentially the same effect: it limits the amount of dust mass. How-

ever, we performed further numerical experiments which showed

that if one allows the GTD to reach down to very low dust temper-

atures, a two-temperature fit to that GTD may actually predict the

same or even a higher dust mass, compared to the two-temperature

fit by G12. The effect of the extra flux from warmer dust on the pre-

dicted dust mass may, in reality, be counteracted by the presence of

dust colder than the cold component of a two-temperature fit. Such

cold grains may affect the dust mass without making a significant

contribution to the SED, thus still yielding a good model fit.

In Figs. 6 and 7 we show the implied dust masses from a two-

temperature fit to a grid of SEDs generated from simple GTDs com-

pared to the ‘true’ dust masses corresponding to the adopted GTDs
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Figure 4. The implied dust masses from a two-temperature fit to a grid of SEDs generated from simple GTDs compared to the ‘true’ dust masses corresponding

to the adopted GTDs. Left panel: the effect on the dust mass assuming an exponential GTD with Thigh = 100 K and T0 the scaling temperature of the GTD.

Right panel: same as left panel, but for a power-law GTD with power index α. The temperature of the cold component in the two-temperature fits are assumed

to be the same as the low-temperature cut-off in the GTD, which represents a reasonable upper limit to the grain size. These figures may not display well in

b/w, but are available in colour in the online version of the journal.

as in Figs. 4 and 5, except that the temperature of the cold com-

ponent in the two-temperature fits is here treated as a free fitting

parameter2. The dust masses inferred from the two-temperature

fits are typically ∼ 10 − 40% lower than the ‘true’ dust masses.

The cold component temperature is typically 5 − 10 K higher than

the low-temperature cut-off in the GTD, although there is no gen-

eral scaling relation (see the contours in Figs. 6 and 7). With a

fixed high-temperature cut-off at Thigh = 100 K the low-temperature

range Tlow = 25−35 K represents a special case: for an exponential

GTD the two-temperature dust mass has a local minimum, and for

a power-law GTD there is local maximum in this Tlow interval. This

special low-temperature range depends somewhat on the choice of

Thigh and for narrow GTDs such a temperature range may not exist.

But it coincides with the range of dust temperatures that is the most

interesting for cold dust in supernovae. It seems, therefore, that the

effect on the inferred dust mass depends on the form of the GTD,

which indicate that detailed radiative transfer models may be the

best option as it will provide the best possible information about

the GTD. Overall, our numerical experiments presented here, sug-

gest that a two-temperature fit may not be as bad as it may seem at

first, judging from the results of TD13 as well as our results pre-

sented in Figs. 2 and 3, but simple SED fits are still not reliable.

2 Note that this is different from the Crab Nebula fits with Tlow as a free

parameter, although it illustrates the same phenomenon.

3.5 Temperature-size relation

In an equilibrium model, there is a direct relation between grain

size and grain temperature for a given (invariant) radiation field,

which should be evident from Section 2.2.1 (but see also Appendix

A). In a simple model, like the one we have used here, it is not

meaningful to discuss grain sizes in quantitative terms based on the

steepness of the GTD and temperature cuts as obtained from SED

fitting. The reason is that Eq. (5) is a local relation and adopted

GTD is a global approximation. But locally the grain size must

uniquely determine the grain temperature as long as nothing breaks

the equilibrium. The steepness of the GTD is also directly depen-

dent of dTd/da, i.e., the temperature-size relation is fundamental to

the connection between the dust mass and the dust SED (see Eq.

7 and Appendix A). But one should also remember that there is a

degeneracy between the upper size limit of the grains and the slope

of the GSD, which can become problematic even in models with

detailed radiative transfer (see Owen & Barlow 2015).

The upper temperature limit (corresponding to lower size

limit) may have bearing on the implied dust mass obtained from the

SED (see Figs. 5 and 7) since the small grains usually only make up

a small fraction of the dust mass, but still contribute significantly

to the SED since they are slightly warmer than the large grains (the

flux from a grain is essentially proportional to the temperature).

TD13, on the other hand, argue that the choice of amin has no par-

ticular effect on their results for the Crab Nebula (according to their

Monte Carlo simulation) which is a result we can only reproduce

when Tlow is fixed and the GTD has a certain slope. Possibly, this

is related to the fact that their model yields dTd/da ≈ 0 for small
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Figure 5. Same as Fig. 4 but with the lower temperature limit fixed at Thigh = 25 K and variation of the upper limit. Left panel shows the case of an exponential

GTD and the right panel a power-law.

Figure 6. Same as Fig. 4 but without assuming that the temperature of the cold component in the two-temperature fits is the same as the low-temperature

cut-off in the GTD.
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Figure 7. Same as Fig. 4 but without assuming that the temperature of the cold component in the two-temperature fits is the same as the low-temperature

cut-off in the GTD.

grain radii a, though it is unclear why Td becomes size independent

for small grains in their model, which is also an equilibrium model.

4 DISCUSSION AND CONCLUSION

Since there is known to be a distribution of dust-grain sizes, there

must also be a distribution of grain temperatures (GTD) – even in

case of thermal equilibrium, which should apply to cold dust. We

illustrated how this can increase the emission from any type of dust

component, whether it is silicates, carbonaceous dust or another

composition. We applied a GTD model to the SED of the Crab

Nebula, which can be explained using thermal emission from solid

dust grains at a range of dust temperatures (rather than the canon-

ical two-temperature component model). A range of dust temper-

atures lower the required dust mass by ∼50% and 30-40% for as-

tronomical silicates and amorphous carbon grains compared to re-

cently published values (0.25M⊙ → 0.14M⊙ and 0.012M⊙ →

0.0085M⊙, respectively), but the implied dust mass can also in-

crease by as much as almost a factor of six (0.25M⊙ → 1.14M⊙
and 0.12M⊙ → 0.71M⊙) depending on assumptions regarding the

sizes/temperatures of the coldest grains. In general, we find/confirm

that:

(i) The width of the SED determines how much small warm

grains can contribute to the FIR/sub-mm flux excess. Only SNRs

with relatively wide SEDs may show GTD effects worth consider-

ing.

(ii) Introducing a GTD has a significant but limited effect on

the derived dust mass compared to a two-temperature fit. With the

lower temperature limit of the GTD set equal to temperature of the

cold component of the two-temperature fit, the implied dust mass

is typically ∼ 50% larger for the two-temperature fit. But without

this coupling there is not necessarily any dust-mass reduction

resulting from the introduction of a GTD (the inferred dust mass

may in fact increase).

(iii) The difference in shape of the SED (e.g., its ‘peakedness’)

for a two-temperature model compered to a GTD model, in com-

bination with the flux uncertainties, lead to different fitting results,

which may affect the implied dust mass as much as the extra flux

from warmer grains added due to the GTD.

We have therefore shown that introducing a GTD may predict

a different dust mass than a canonical two-component model. But

we also demonstrate that the effect is limited: we have shown that

this depends strongly on the temperature of the coldest dust and

how well-constrained the observed SED is in the FIR/sub-mm. It is

not appropriate to claim that introducing a GTD (or a grain-heating

model as in TD13) gives us better constraints on the dust mass of a

SNR, such as the Crab Nebula. First, we cannot know whether there

should be a low-temperature limit in the GTD with a value similar

to the temperature of the cold component in a two-temperature fit,

even if this seems a reasonable assumption. The dust mass is uncer-

tain by at most a factor of a few due to this. Second, the distances

to many Galactic SNRs are relatively uncertain. The Crab Nebula

is no exception: G12 adopt D = 2 kpc, which is exactly in the mid-

dle of the range D = 1.5 − 2.5 kpc given by Kaplan et al. (2008).

Assuming D = 2.0 ± 0.5 kpc the uncertainty of the dust mass is al-

most a factor of three. Third, uncertainties in the optical and struc-

tural properties of the dust component amounts to at least a factor

of a few: the emissivity of dust may vary considerably according

to some observational estimates (see, e.g., Alton et al. 2000, 2004;

Dasyra et al. 2005) and if volatiles (e.g. ice mantles, which we will
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discuss in a forthcoming paper) makes up a significant part of the

dust, there may be an additional factor of two in the uncertainty.

Combining all of the above, the total (maximum) uncertainty range

spans at least an order of magnitude, somewhat depending on avail-

able constraints. A major point is that while the present GTD ap-

proach is not more accurate than the two-temperature approach, it

demonstrates that simple SED fitting cannot really constrain the

dust mass.

One may then ask whether the GTD is ultimately an improve-

ment. Here we would argue that incorporating a more physical

model for dust heating and FIR/sub-mm emission from dust grains

is indeed always a qualitative improvement, but the most concern-

ing uncertainty in the model – what the dust is actually made of –

still remains. However, we have demonstrated that the GTD does

not always reduce the dust mass derived from SEDs (as implied by

TD13), but also that the GTD-related uncertainty is typically not a

dominant source of uncertainty i.e. the effect of grain temperatures

is usually a part of the total uncertainty in deriving dust masses

from the SED.

The degree of dust condensation (the fraction of condensible

material that end up in dust grains) is unlikely close to 100%, but

the uncertainties in the conversion from FIR/sub-mm flux to dust

mass and the amount of metals available for dust formation prevent

precise estimates. In conclusion, the efficiency of dust production

in supernovae remains poorly constrained, even if we would con-

struct a sophisticated model of dust emission. This does of course

not mean that radiative transfer models based on dust-grain pop-

ulations with a range of grain sizes and temperatures are not im-

portant (and needed) tools for converting infrared to submm SEDs

to dust masses. We conclude that one should avoid using simple

SED fits as far as possible whenever there is evidence of a range

of grain temperatures. But the overall error in the amount of dust

formed in supernova is still largely due to the uncertainties in dust

composition, structure and behaviour of optical constants and thus

determining the mass of dust remains extremely difficult.
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APPENDIX A: HEATING, COOLING AND EQUILIBRIUM

If the dominant source of heating is radiation (typically in the

UV/optical), the dust grains may be regarded as being in local

thermal equilibrium with the mean intensity of the radiation field

around them, i.e., for grains of a specific radius a and temperature

Td we have an energy gain (heating) due to absorption given by
(

dE

dt

)

abs

=

∫ ∞

0

π a2 Qabs(λ, a) J⋆,λ dλ, (A1)

and an energy release (cooling) due to emission given by
(

dE

dt

)

em

=

∫ ∞

0

4π a2 Qabs(λ, a) πBλ(Td) dλ, (A2)

where J⋆,λ is the mean intensity of the local radiation field, Bλ is the

Planck function. We could easily obtain (dE/dt)abs = (dE/dt)em

if the surrounding medium is optically thin in the wavelength

range where the energy/radiation is absorbed/released and colli-

sional heating is negligible. The optical depth of the medium af-

fects the energy absorption but has little effect on the re-emission

at long wavelengths, i.e., where emission can be described using

the Rayleigh limit. Thus, in that limit and in thermal equilibrium

we have
∫ ∞

0

Qabs(λ, a) J⋆,λ dλ ≈ 4πa

∫ ∞

0

Q′abs(λ)Bλ(Td) dλ, (A3)

where Q′
abs
= Qabs/a. The emission at long wavelengths tends to

follow a power-law in λ. Replacing Q′
abs

with Q′
0

(λ/λ0)−β we may

then write

J⋆(a) ≡ 〈Qabs〉⋆ J⋆ ≈ 4πa

∫ ∞

0

Q′0

(

λ

λ0

)−β

Bλ(Td) dλ, (A4)

where we have defined the mean value

〈Qabs〉⋆ ≡
1

J⋆

∫ ∞

0

Qabs(λ, a) J⋆,λ dλ, J⋆ ≡

∫ ∞

0

J⋆,λ dλ. (A5)

J⋆ is the wavelength-integrated mean intensity (regarded as con-

stant in the present context) and β ∈ [1, 2] for all common types of

dust. The constant Q′
0

can be determined by considering Q′
abs

(λ0)

for a specific dust type which conforms to a power-law approxima-

tion with a constant β. Now, the integral over wavelength on the

right-hand side can be evaluated analytically, which yields

J⋆(a)

a
≈ 4πQ′0λ

β

0
σ̃SB T

4+β

d
, (A6)

where σ̃SB is not the usual Stefan-Boltzmann’s constant, but the

corresponding number for a modified blackbody. In case β = 0

we would have σ̃SB equal to the usual Stefan-Boltzmann constant.

By Eq. (A6) it is clear that grain temperature should be weakly

(anti-)correlated with grain size, though this correlation depends

slightly (but not much) on the heating source and the validity of the

approximations used above of course (cf. Table 3 in Draine & Lee

1984). Note that an equilibrium model such as the one above is

strictly valid only locally.

If heating is due to short-wavelength radiation, we are close to

the grey-absorption limit (particles are large compared to the wave-

length) in which case 〈Qabs〉⋆ = 1 and thus J⋆ = J⋆ = constant.

Taking Eq. (A6) at face value, we have then a simple power-law of

the form

Td(a) = T0

(

a

a0

)−1/(4+β)

. (A7)

Our aim is to arrive at a temperature distribution and for that we

need some information about the GSD. A natural ansatz is the

canonical MRN distribution (Mathis, Rumpl & Nordsieck 1977),

n(a) ∝ a−3.5, for which the GSD in terms of mass is ϕ(a) ∝ a−0.5.

We thus have

W(Td) =
dMd

dTd

=
dMd

da

∣

∣

∣

∣

∣

dTd

da

∣

∣

∣

∣

∣

−1

∝ T
−3−β/2

d
. (A8)

In this special case (thermal equilibrium, MRN distribution, grey-

absorption limit) the temperature distribution is simply also a

power-law, which serves well as a first approximation of the func-

tional form of W(Td) since J⋆ is typically only weakly dependent

on the grain radius a. A similar derivation of the power-law above

can be found in Li, Goldsmith & Xie (1999).

In a more detailed picture the grey-absorption limit may not

be strictly applicable and the slope of the temperature distribution

is therefore likely steeper than in Eq. (A8) and may also deviate

from the simple power-law form above, i.e., T0 would in such case

be a function of a. However, regardless of whether J⋆ = J⋆ is a

constant or not, Eq. (A8) tells us that we must have ϕ → 0 as

dTd/da → 0. That is, absence of a temperature-size relation is

not compatible with a the existence of grains having a range of

sizes and temperatures, unless both heating and cooling take place

at long-wavelengths, in which case the grain radius a is cancelled

out in Eq. (A3).

APPENDIX B: COLLISIONAL HEATING

In case heating is due mainly to collisions with ambient gas parti-

cles, we may write (Dwek & Werner 1981; Dwek 1986, 1987)

(

dE

dt

)

coll

=

(

32π

me

)1/2

a2ne (kTe)3/2 h(a, Te), (B1)

where k is Boltzmann’s constant, me is the electron mass, ne the

electron density, Te the electron temperature and h(a, Te) is a unit-

less function describing the efficiency of energy deposition. By def-

inition, h = 1 when the efficiency is maximal (see Dwek & Werner

1981). The fact that the heating rate is inversely proportional to

the particle mass in the expression above, explains why collisions

with electrons should be more important than collisions with any

other gas particle, because the electron mass is very small in com-

parison with, e.g., the proton mass. Since the cooling rate is the

same as in the case of radiative heating, i.e., cooling is still due to

long-wavelength radiation, and adopting once again a power-law

approximation for Q′
abs

at long wavelengths, we obtain

(

2 k3T 3
e

π3me

)1/2

ne h(a, Te) ≈ a Q′0λ
β

0
σ̃SBT

4+β

d
, (B2)

where all quantities are as previously defined. With h ≈ 1 (efficient

energy deposition), we recover a power-law of the same form as in
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the case of radiative heating. Thus, a power-law temperature distri-

bution is a reasonable first approximation not only in case the dust

heating is due to short-wavelength radiation, but also when it is

due to efficient collisional heating. Another important aspect of the

above is that it is difficult to have a dust population where all grains

have very similar temperatures unless they also have very similar

sizes, regardless of whether the heating is radiative or collisional.
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