Investigating the Transurothelial Delivery of Therapeutic Agents

A thesis submitted for the degree of Philosophiae Doctor in Cardiff University

By

Nicholas Alexander Williams

May 2015

Cardiff School of Pharmacy and Pharmaceutical Sciences
Cardiff University
Acknowledgements

I would first like to thank my supervisors, Dr Chris Allender, Professor Mark Gumbleton, Dr Jenna Bowen, and Mr Hrishi Joshi, for the encouragement, support and wisdom you have provided me with over the course of this project. As a mentor, Chris always put me first and the support I received from Jenna and himself was far above and beyond what is expected of supervisors. For your time, dedication and knowledge I am truly grateful.

I would also like to thank Boston Scientific and the Cardiff School of Pharmacy and Pharmaceutical Sciences, for funding this project. Dr Tim Harrah deserves a special mention for his kindness, support and the invaluable experience he afforded me whilst I was over in the US.

In addition, I would also like to express my gratitude to collaborators from outside of the department; Derek Scarborough for his impeccable histology work and Dr Yuri Anissimov for his help with mathematical modelling. A special thank you also goes to Dave Havard for providing me with an endless supply of pig bladders. Without his generosity this project would not have been possible. Dave is a lovely gentleman and someone who is totally dedicated in his own way to helping the progression of science; that said I am not sure I can forgive the fact that he nicknamed me ‘Bladder Man’ on the first day we met and that ever since he has refused to use my Christian name.

A massive thank you goes to all of my fellow lab colleagues, Danielle, Jenna, Vibs, Ghaith, Adi and Ericka. I have had an amazing time working, and socialising, with each of them. This was a great lab and a fantastic place to spend 4 years.

Last, and most importantly, I would like to thank my family and Zein. I have worked tirelessly throughout this project and consequently have not dedicated them anywhere near the time and attention they deserve. Their patience, support and encouragement has been invaluable and without them this project would not have been completed. I love you all.
Summary

Intravesical drug delivery (IDD) offers a unique opportunity to target pathology of the lower urinary tract. High concentrations of drug can be delivered directly to the bladder with minimal systemic absorption. IDD has been used successfully to manage a range of conditions such as bladder cancer and overactive bladder and continues to be investigated for novel indications. Despite this the majority of IDD regimens remain empirically driven and as a result its potential largely unfulfilled.

This thesis developed and validated an ex vivo porcine model to investigate the transurothelial delivery and bladder wall distribution of drugs after topical application to the urothelium. Using the model, transurothelial permeability coefficients were determined and tissue layer specific bladder wall concentrations calculated for a range of clinically relevant drugs including ketorolac and oxybutynin. The results of these studies were used to inform on the viability of delivering these drugs intravesically in vivo. Additionally a computer – based pharmacokinetic model of IDD was developed using STELLA® modelling software. The model was used to investigate the key variables associated with IDD and suggest novel techniques and dosing concepts to improve its efficacy. For the first time, the relative permeability of the upper and lower urinary tract was investigated for a single drug. Ex vivo porcine ureteral urothelium was shown to be significantly more permeable to mitomycin C than that of the bladder. If translated into human, the more permeable urothelium may provide higher target tissue concentrations after local delivery and a significant opportunity to manage upper tract urothelial carcinoma conservatively.

This project developed novel ex vivo and in silico methods to investigate IDD. These techniques can be used to rationally inform on the design of new, or optimisation of existing, IDD regimens.
Table of Contents

Declaration... ii
Acknowledgements... iii
Summary.. iv
Table of Contents .. v
List of Figures ... xi
List of Tables .. xv
List of Publications ... xvii
List of Abbreviations .. xviii

Chapter One: General Introduction .. 1
 1.1. The Urinary Bladder ... 2
 1.1.1. Structure of the bladder wall ... 3
 1.1.2. Structure of the Urothelium ... 6
 1.1.2.1. Umbrella Cells ... 6
 1.1.2.1.a. Uroplakin Plaques ... 7
 1.1.2.1.b. Tight junctions ... 9
 1.1.2.1.c. Glycosaminoglycan (GAG) Layer ... 10
 1.1.3. Permeability of the Urothelium ... 10
 1.2. Intravesical Drug Delivery (IDD) .. 12
 1.2.1. Definition of IDD .. 12
 1.2.2. Advantages of IDD .. 16
 1.2.3. Disadvantages of IDD ... 16
 1.2.4. Advancements in IDD ... 17
 1.3. Aims and Objectives of Thesis .. 19
 1.3.1. Aims ... 19
 1.3.2. Objectives ... 19
 1.4. Reference List .. 20

Chapter Two: Development of an Ex Vivo Model for Investigating the Transurothelial Delivery and Bladder Wall Distribution of Therapeutic Agents ... 39
 2.1. Introduction .. 40
 2.1.1. Relevant Prologue: Boston Scientific collaboration ... 40
 2.1.2. The paucity of basic science underlying IDD regimens .. 42
 2.1.3. Methods to investigate transurothelial delivery ... 43

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3.1</td>
<td>In vivo studies</td>
<td>43</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>In vitro / ex vivo studies</td>
<td>44</td>
</tr>
<tr>
<td>2.1.3.2.a</td>
<td>Cell culture systems</td>
<td>44</td>
</tr>
<tr>
<td>2.1.3.2.b</td>
<td>Ex vivo bladder tissue</td>
<td>45</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Aims and Objectives of Chapter Two</td>
<td>47</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials and Methods</td>
<td>48</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Materials</td>
<td>48</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Analysis of propranolol hydrochloride</td>
<td>48</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Analysis of sodium fluorescein</td>
<td>48</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Analysis of ketorolac tromethamine</td>
<td>48</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Bladder tissue preparation</td>
<td>49</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Confirmation of tissue viability</td>
<td>51</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>Investigating markers of permeability</td>
<td>51</td>
</tr>
<tr>
<td>2.2.6.2</td>
<td>Transepithelial electrical resistance (TEER)</td>
<td>52</td>
</tr>
<tr>
<td>2.2.6.3</td>
<td>Scanning electron microscopy (SEM)</td>
<td>53</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Evaluation of the delivery of ketorolac to the bladder wall</td>
<td>53</td>
</tr>
<tr>
<td>2.2.7.1</td>
<td>Permeation of ketorolac across the urothelium</td>
<td>53</td>
</tr>
<tr>
<td>2.2.7.2</td>
<td>Distribution of ketorolac into the bladder wall</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>Results and Discussion</td>
<td>54</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Using ex vivo porcine bladder tissue</td>
<td>54</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Confirmation of tissue viability</td>
<td>55</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Tissue procurement and transportation</td>
<td>55</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Investigating markers of permeability</td>
<td>56</td>
</tr>
<tr>
<td>2.3.2.2.a</td>
<td>Analysis of sodium fluorescein and propranolol hydrochloride</td>
<td>56</td>
</tr>
<tr>
<td>2.3.2.2.b</td>
<td>Permeation of sodium fluorescein and propranolol hydrochloride into the bladder wall</td>
<td>57</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>Transepithelial electrical resistance (TEER)</td>
<td>59</td>
</tr>
<tr>
<td>2.3.2.4</td>
<td>Scanning electron microscopy (SEM)</td>
<td>61</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Evaluation of the delivery of ketorolac to the bladder wall</td>
<td>63</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Analysis of ketorolac tromethamine</td>
<td>64</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Permeation of ketorolac across the urothelium</td>
<td>66</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Distribution of ketorolac into the bladder wall</td>
<td>69</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusions</td>
<td>73</td>
</tr>
<tr>
<td>2.5</td>
<td>Reference List</td>
<td>75</td>
</tr>
</tbody>
</table>
Chapter 3: Investigating the Transurothelial Permeation and Bladder Wall Distribution of Oxybutynin

3.1. Introduction ... 89
 3.1.1. Oxybutynin ... 89
 3.1.2. Overactive bladder (OAB) ... 89
 3.1.3. Neural control of the detrusor muscle ... 90
 3.1.3.1. Parasympathetic control ... 90
 3.1.3.2. Sympathetic control ... 90
 3.1.3.3. Afferent pathways .. 90
 3.1.3.4. Bladder filling and voiding .. 91
 3.1.4. Signalling in the urothelium and lamina propria .. 91
 3.1.5. Distribution of muscarinic receptors in the bladder wall ... 92
 3.1.5.1. Detrusor muscle ... 92
 3.1.5.2. Lamina propria .. 93
 3.1.5.3. Urothelium ... 93
 3.1.6. The mechanism of action of antimuscarinics in OAB ... 93
 3.1.6.1. Afferent mechanisms of antimuscarinic drugs ... 94
 3.1.6.2. Pharmacology underlying bladder afferent pathways .. 95
 3.1.7. Clinical use of Intravesical oxybutynin ... 98
 3.1.8. Aims and Objectives of Chapter Three ... 100

3.2. Materials and methods ... 101
 3.2.1. Materials .. 101
 3.2.2. Analysis of oxybutynin chloride ... 101
 3.2.3. Bladder tissue preparation ... 101
 3.2.3.1. Removal of the urothelium ... 101
 3.2.4. Permeation of oxybutynin across the urothelium ... 101
 3.2.5. Intravesical instillation of oxybutynin .. 102
 3.2.6. Histology .. 104
 3.2.7. Statistical analysis ... 105

3.3. Results and Discussion .. 105
 3.3.1. Analysis of oxybutynin chloride ... 108
 3.3.2. Evaluation of the delivery of oxybutynin to the bladder wall 110
 3.3.2.1. Permeation of oxybutynin across the urothelium ... 110
 3.3.2.2. Intravesical instillation of oxybutynin ... 117
3.3.2.3. Histology...123
3.4. Conclusions ..125
3.5. Reference List ..126

Chapter 4: Development of a Computer - Based Pharmacokinetic Model of Intravesical Drug Delivery ...143

4.1. Introduction ..144
 4.1.1. Introduction to STELLA® modelling software ..144
 4.1.2. Modelling IDD ..144
 4.1.3. Aims and Objectives of Chapter Four ..145
4.2. Methods ..146
 4.2.1. STELLA® ..146
 4.2.2. Model construction ..146
 4.2.2.1. Step 1: Transfer of drug from bladder lumen into the bladder wall147
 Underlying equations ..149
 (i) Bladder lumen ..149
 (ii) Urothelium ..149
 (iii) Lamina propria ..150
 (iv) Detrusor muscle ..151
 Geometric assumption ..151
 4.2.2.2. Step 2: Incorporating drug clearance from the bladder wall154
 4.2.2.3. Step 3: Incorporating urine dilution ...155
 4.2.2.4. Step 4: Moving from a ‘mass’ to ‘concentration’ - based model155
 4.2.2.5. Step 5: Allowing for multiple intravesical doses ...156
 4.2.2.6. Step 6: Allowing for multiple intravesical doses ...156
4.3. Results and Discussion ...157
 4.3.1. Validating the model with PYTHON® ...158
 4.3.1.1. Validating Step 1: Transfer of drug from bladder lumen into the bladder wall ...159
 4.3.1.2. Validating Step 2: Incorporating drug clearance from the bladder wall162
 4.3.1.3. Validating Step 3: Incorporating urine dilution ..166
 4.3.1.4. Validating Step 4: Moving from a ‘mass’ to ‘concentration’ - based model ...168
4.3.1.5. Validating Step 5: Allowing for multiple intravesical doses171
4.3.1.6. Validating Step 6: Incorporating post - void residual (PVR)
volume ..174
4.3.2. Investigating the effect of individual variables on the efficacy of
intravesical drug delivery ...174
4.3.2.1. Drug diffusion coefficient (D) ...175
4.3.2.2. Concentration of drug instillation ...182
4.3.2.3. Volume of drug instillation ...185
4.3.2.3.a Solving the ideal volume of intravesical instillation189
4.3.2.4. Instillation time ..192
4.3.2.5. Urine production rate ...197
4.3.2.6. Dosing regimen: Single versus double dosing200
4.3.3. Using the PK model to optimise an IDD regimen203
4.4. Conclusions ..208
4.5. Reference List ..209

Chapter Five: Comparison of Upper and Lower Urinary Tract Permeability to
Mitomycin C ...216

5.1. Introduction ...217
5.1.1. Aims and Objectives of Chapter Five ..221
5.2. Materials and Methods ..222
5.2.1. Materials ..222
5.2.2. Topical instillation of MMC to isolated porcine bladder, ureter and
kidney ...222
5.2.3. Investigating total permeation of MMC into the bladder, ureter and kidney
wall: Preliminary studies ...223
5.2.3.1. Analysis of MMC ..224
5.2.4. Investigating the distribution of MMC into the bladder, ureter and kidney
wall: Concentration - depth studies ..224
5.2.4.1. Validating extraction of MMC ..224
5.2.4.2. Quantifying tissue layers depths of the ureter, bladder and kidney
wall ..224
5.2.5. Statistical analysis ...225
5.3. Results and Discussion ...225
5.3.1. Investigating total permeation of MMC into the bladder, ureter and kidney wall: Preliminary studies...225
 5.3.1.1. Analysis of MMC..227
 5.3.1.2. Quantifying tissue layers depths of the ureter, bladder and kidney wall...232
 5.3.2. Investigating the distribution of MMC into the bladder, ureter and kidney wall: Concentration - depth studies...233

5.4. Conclusions ...241
 5.4.1. Future Studies ...242

5.5. Reference List ...243

Chapter Six: General Discussion ..248
 6.1. General Overview of Thesis ...249
 6.2. Reference List ...255
List of Figures

Figure 1.1. Anatomy of the male urinary tract ... 2
Figure 1.2. Anatomy of the bladder trigone ... 3
Figure 1.3. Histology of porcine bladder wall .. 5
Figure 1.4. Schematic of an individual uroplakin subunit ... 7
Figure 1.5. Selective binding of FimH to umbrella cells ... 8
Figure 1.6. Intracellular bacteria in a shed urothelial cell .. 9
Figure 1.7. ZO - 1 labelling in umbrella cell tight junctions 9
Figure 1.8. GAG layer deficiency in IC / PBS ... 10
Figure 1.9. Examples and indications of drugs that have been delivered intravesically ... 13
Figure 1.10. IDD - related scientific publications ... 14
Figure 1.11. List of licensed intravesical therapies ... 15
Figure 2.1. Example of a double - J ureteral stent ... 40
Figure 2.2. Chemical structure of ketorolac tromethamine .. 42
Figure 2.3. Schematic of Franz - type diffusion cell ... 50
Figure 2.4. Separation of porcine bladder mucosa ... 51
Figure 2.5. External standard calibration curves for sodium fluorescein and propranolol hydrochloride ... 57
Figure 2.6. Permeation profile of sodium fluorescein and propranolol hydrochloride across porcine mucosa ... 58
Figure 2.7. Percentage and absolute decrease in transepithelial electrical resistance (TEER) across ex vivo porcine bladder mucosa exposed to saline or ketorolac ... 60
Figure 2.8. SEM of ex vivo porcine bladder tissue exposed to ketorolac 62
Figure 2.9. Further SEM micrographs of ex vivo porcine bladder exposed to ketorolac ... 63
Figure 2.10. External standard calibration curve for ketorolac 64
Figure 2.11. HPLC chromatograms of ketorolac .. 65
Figure 2.12. Percentage of applied ketorolac dose recovered 67
Figure 2.13. Permeation of ketorolac across porcine urothelium 68
Figure 2.14. Concentration - depth profile of ketorolac .. 70
Figure 2.15. Necropsy of porcine bladder post ureteral stent placement 72
Figure 3.1. Chemical structure of oxybutynin ... 89
Figure 3.2. Cholinergic signalling in the bladder wall ... 96
Figure 3.3. Chemical structures of N – desethyl - oxybutynin and oxybutynin – N - oxide ... 99
Figure 3.4. Schematic of the whole bladder setup ... 103
Figure 3.5. External standard calibration curve for oxybutynin ... 108
Figure 3.6. UV and relative abundance traces for oxybutynin .. 109
Figure 3.7. Oxybutynin transurothelial permeation study ... 111
Figure 3.8. Oxybutynin transurothelial permeation study continued 112
Figure 3.9. Predicted transurothelial permeation profiles for oxybutynin 114
Figure 3.10. Photomicrographs adapted from Di Stasi .. 115
Figure 3.11. Photomicrographs of Masson’s trichrome stained porcine bladder before and after removal of the urothelium ... 116
Figure 3.12. Photograph of cryostat in use .. 118
Figure 3.13. Concentration - depth profile of oxybutynin ... 120
Figure 3.14. Log concentration - depth profile of oxybutynin .. 121
Figure 3.15. Oxybutynin concentrations achieved in the different layers of the bladder wall .. 122
Figure 3.16. Photomicrographs of Masson’s trichrome stained porcine bladder following oxybutynin instillation ... 124
Figure 4.1. Overview of the multilayered diffusion model ... 147
Figure 4.2. Full schematic of multilayered 18 - compartment diffusion model 148
Figure 4.3. Comparing the spherical geometry of the bladder with the flat geometry assumed in the PK model .. 153
Figure 4.4. Overview of the multilayered diffusion model with clearance 154
Figure 4.5. Mass of drug accumulated in the model ... 160
Figure 4.6. Mass of drug accumulated with and without clearance 163
Figure 4.7. Mass balance analysis of the model .. 164
Figure 4.8. Mass of drug accumulated with and without urine dilution 166
Figure 4.9. Simulations showing drug concentration achieved at different tissue depths ... 170
Figure 4.10. Simulations comparing bladder lumen volume, drug concentration and urothelial drug concentration with multiple doses ... 173
Figure 4.11. Simulations comparing luminal volume and luminal drug concentration for different PVR volumes .. 174
Figure 4.12. Simulations showing average drug concentrations in the bladder wall with different transurothelial diffusion coefficients..180
Figure 4.13. Simulations showing average drug concentrations in the bladder wall with different transurothelial diffusion coefficients continued.................................181
Figure 4.14. Simulations showing average drug concentrations in the bladder wall with different concentrations of drug solution...183
Figure 4.15. Simulations showing average drug concentrations in the bladder wall with different concentrations of drug solution continued...............................184
Figure 4.16. Simulations showing average drug concentrations in the bladder wall with different volumes of instilled drug solution..187
Figure 4.17. Simulations showing average drug concentrations in the bladder wall with different volumes of instilled drug solution continued............................188
Figure 4.18. Total exposure of urothelium to drug with different volumes of instilled drug solution..191
Figure 4.19. Simulations showing average drug concentrations in the bladder wall with different instillation times...194
Figure 4.20. Simulations showing average drug concentrations in the bladder wall with different instillation times continued..195
Figure 4.21. Simulations showing average drug concentrations in the urothelium over the course of a 30, 60 and 90 min instillation..196
Figure 4.22. Simulations showing average drug concentrations in the bladder wall with a urine production rate of 1, 5 and 10 ml min⁻¹...198
Figure 4.23. Simulations showing average drug concentrations in the bladder wall with a urine production rate of 1, 5 and 10 ml min⁻¹ continued.............................199
Figure 4.24. Simulations showing average drug concentrations in the bladder wall following a standard and double dosing regimen..201
Figure 4.25. Simulations showing bladder lumen concentrations and average drug concentrations in the urothelium over the course of a standard or double dosing regimen...202
Figure 4.26. Simulations showing average drug concentrations in the bladder lumen, urothelium, lamina propria, and detrusor muscle over the course of an optimised IDD regimen..206
Figure 4.27. Simulations showing average drug concentrations in the bladder wall and full concentration - depth profiles following instillation with an optimised IDD regimen

Figure 5.1. Overview of the EAU UTUC treatment pathway

Figure 5.2. Image of the renal pelvis from an ex vivo porcine kidney

Figure 5.3. Stepwise dissection of the renal pelvis wall from the underlying renal cortex

Figure 5.4. Porcine kidney instilled through the ureteral orifice with methylene blue

Figure 5.5. Ex vivo porcine bladder, kidney and ureter following 60 min instillation with MMC

Figure 5.6. External standard calibration curve for MMC

Figure 5.7. HPLC chromatograms of MMC

Figure 5.8. Transurothelial permeation of MMC into urinary tract tissue following 60 min instillation of MMC

Figure 5.9. Drug – tissue concentrations achieved in urinary tract tissue following 60 min instillation of MMC

Figure 5.10. Photomicrographs of ex vivo porcine bladder, kidney and ureter sections stained with Masson's trichrome

Figure 5.11. Average concentration - depth profiles of MMC in the different urinary tract tissues

Figure 5.12. Individual concentration - depth profiles for each of the four urinary tracts investigated

Figure 5.13. Comparison of MMC concentration - depth profiles reported in this study and that of Wientjes et al.
List of Tables

Table 1.1. TEER values for different species of urothelium. .. 11
Table 3.1. Masson’s trichrome staining protocol ... 104
Table 3.2. Examples of different intravesical oxybutynin solutions ... 107
Table 4.1. Parameter values used to validate Step 1 design of the PK model 161
Table 4.2. Example outputs generated with the STELLA® and PYTHON™ model for
Step 1... 161
Table 4.3. Example outputs generated with the STELLA® and PYTHON™ model for
Step 2... 165
Table 4.4. Example outputs generated with the STELLA® and PYTHON™ model for
Step 3... 167
Table 4.5. Parameter values used in Step 4 design of the PK model .. 169
Table 4.6. Transurothelial diffusion coefficients derived from experimentally
determined transurothelial permeability coefficients .. 178
Table 4.7. Overview of the dosing regimen used to investigate the effect
transurothelial diffusion coefficient .. 178
Table 4.8. Overview of the PK model inputs used to investigate the effect of
transurothelial diffusion coefficient .. 179
Table 4.9. Overview of the dosing regimen used to investigate the effect of
concentration of drug instillation .. 182
Table 4.10. Overview of the dosing regimen used to investigate the effect of
instilled drug volume .. 186
Table 4.11. Overview of the dosing regimen used to investigate V_{ideal} .. 190
Table 4.12. Overview of the dosing regimen used to investigate the effect of
instillation time ... 193
Table 4.13. Overview of the dosing regimen used to investigate the effect of urine
production rate ... 197
Table 4.14. Overview of the dosing regimen used to investigate the effect of double
dosing... 200
Table 4.15. Intravesical parameters used to investigate an optimised oxybutynin
instillation ... 205
Table 5.1. Individual organ dimensions and volumes of MMC instilled in each of the
ex vivo porcine urinary tracts investigated: Preliminary studies .. 225
Table 5.2. Tissue layer depth measurements for *ex vivo* porcine ureter, bladder and kidney wall..233

Table 5.3. Individual organ dimensions and volumes of MMC instilled in each of the *ex vivo* porcine urinary tracts investigated: Concentration - depth studies...234
List of Publications

The following publications resulted directly from work reported in this thesis:

The following publications resulted from studies carried out since the start of this thesis but are not directly related to work reported herein:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BAUS</td>
<td>British Association of Urological Surgeons</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette – Guérin</td>
</tr>
<tr>
<td>BSC</td>
<td>Boston Scientific Corporation</td>
</tr>
<tr>
<td>Cmax</td>
<td>Peak drug concentrations</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EAU</td>
<td>European Association of Urology</td>
</tr>
<tr>
<td>EMDA</td>
<td>Electromotive drug administration</td>
</tr>
<tr>
<td>FCE</td>
<td>Finished consultant episodes</td>
</tr>
<tr>
<td>GAG</td>
<td>Glycosaminoglycan</td>
</tr>
<tr>
<td>H & E</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>HES</td>
<td>Hospital episode statistics</td>
</tr>
<tr>
<td>HPC</td>
<td>Hydroxypropylcellulose</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IC / PBS</td>
<td>Interstitial cystitis / painful bladder syndrome</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Half maximal inhibitory concentration</td>
</tr>
<tr>
<td>ICC</td>
<td>Interstitial cells of Cajal</td>
</tr>
<tr>
<td>IDD</td>
<td>Intravesical drug delivery</td>
</tr>
<tr>
<td>LLOD</td>
<td>Lower limit of detection</td>
</tr>
<tr>
<td>LLOQ</td>
<td>Lower limit of quantification</td>
</tr>
<tr>
<td>LUTS</td>
<td>Lower urinary tract symptoms</td>
</tr>
<tr>
<td>MMC</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>MOA</td>
<td>Mechanism of action</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NHU</td>
<td>Normal human urothelial cells</td>
</tr>
<tr>
<td>NMIBC</td>
<td>Non - muscle invasive bladder cancer</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non - steroidal anti - inflammatory drug</td>
</tr>
<tr>
<td>OAB</td>
<td>Overactive bladder</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>OCT</td>
<td>Optimal cutting temperature medium</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetic</td>
</tr>
<tr>
<td>PVR</td>
<td>Post-void residual</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>RNU</td>
<td>Radical nephroureterectomy</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SRD</td>
<td>Stent-related discomfort</td>
</tr>
<tr>
<td>STELLA</td>
<td>Structural Thinking Experimental Learning Laboratory with Animation</td>
</tr>
<tr>
<td>TEER</td>
<td>Transepithelial electrical resistance</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight junction</td>
</tr>
<tr>
<td>UP</td>
<td>Uroplakin</td>
</tr>
<tr>
<td>UPEC</td>
<td>Uropathogenic E. coli</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>UTUC</td>
<td>Upper-tract urothelial carcinoma</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>ZO – 1</td>
<td>Zonular occludin 1</td>
</tr>
</tbody>
</table>
Chapter One: General Introduction
1.1. The Urinary Bladder

Located behind the pubic symphysis in the pelvic cavity, the bladder is a hollow, distensible sac that provides a reservoir for urine prior to micturition (Figure 1.1). Collapsed when empty, it expands upon filling adopting a balloon-like shape as its capacity increases. The bladder is highly flexible and capable of stretching to hold large volumes of urine, whilst being able to contract and expel urine once a certain capacity is reached\(^1\). When fully distended, the adult human bladder has a maximum capacity of \(\sim 800\) mls\(^2\), however a strong urge to void is usually initiated at 25 - 50% of maximum capacity beyond which voluntary control diminishes\(^2,3\).

![Diagram of the male urinary tract](image)

Figure 1.1. Anatomy of the male urinary tract. The bladder lies in the pelvic cavity between the rectum and the pubic symphysis. Figure adapted from Simon\(^4\).

Urine contains harmful waste products such as urea and ammonia and electrolytes including sodium, potassium, calcium and chloride\(^5\). The reabsorption of such molecules can be associated with metabolic consequences such as hyperchloremic acidosis\(^6\). Fortunately, the structure of the bladder wall prevents the uncontrolled movement of substances back into the bloodstream.
1.1.1. Structure of the bladder wall

The bladder wall is comprised of a number of distinct layers: urothelium, lamina propria, detrusor muscle and adventitia / serosa (Figure 1.3)\(^7\).

The urothelium forms the inner lining of the organ, separating the contents of the bladder lumen from the underlying bladder wall. It covers the entire luminal surface, transitioning to ureteral and proximal urethral urothelium at the ureteral and internal urethral orifices respectively\(^8\). Owing to the triangular shape formed between the ureteral and urethral openings, this region of the bladder base is known as the trigone (Figure 1.2). The thickness of the urothelium varies depending on the extent of bladder distension\(^9\). In the contracted bladder the human urothelium is \(\sim 5 \sim 7\) cells thick, whilst in the distended state it can be as thin as \(2 \sim 3\) cells\(^10\). The urothelium is a highly specialised barrier to the movement of substances from the urine back into systemic circulation and is discussed further in section 1.1.2.

Figure 1.2. Anatomically, the interior of the bladder lumen is separated into the posterior wall, anterior wall (not shown), lateral walls, dome region and trigone\(^{11}\). The trigone is the triangular region of the bladder base, formed by the convergence of the ureteral and internal urethral orifices. Figure adapted from Webster\(^{12}\).
Chapter One: General Introduction

The lamina propria lies directly below the urothelium and consists largely of connective tissue with blood vessels, lymphatics and small amounts of adipose tissue\(^\text{10}\). Intermittent wisps of smooth muscle (muscularis mucosa) are often found in the lamina propria\(^\text{13}\), however these cells are discontinuous and distinguishable from the underlying detrusor layer.

The detrusor constitutes the thickest layer of the bladder wall and consists of inner longitudinal, circular and outer longitudinal layers of smooth muscle\(^\text{10}\). It is fundamental to the normal functioning of the bladder, remaining relaxed during filling and then contracting to expel urine during micturition\(^\text{14}\).

The outermost serosal layer does not cover the entire bladder; it is only present on the top third of the organ forming part of the peritoneum\(^\text{15}\). Where there is no serosa, the connective tissue between the bladder and other organs merges and is termed the adventitia\(^\text{15}\). Additionally, a layer of perivesical fat surrounds the outside of the serosa and adventitia covering the entire exterior surface of the bladder\(^\text{15}\). Even amongst urological pathologists, different terminology is used to describe the microstructure of the bladder wall. Some advocate the use of terms such as ‘submucosa’ to describe the lower section of the lamina propria\(^\text{15}\), whilst others classify all tissue between the urothelium and detrusor muscle as lamina propria\(^\text{10}\). Collectively the urothelium and lamina propria are referred to as the mucosal layer or mucosa\(^\text{10}\).
Figure 1.3. Cross section histology of porcine bladder wall stained with Masson's trichrome. Figure represents original work (Chapter 3, section 3.2.6).
1.1.2. Structure of the Urothelium

The urothelium is the principal barrier to the permeation of molecules into the bladder wall. It is a highly differentiated, stratified epithelial layer that lines not only the bladder but also the apical surface of the renal pelvis, ureters and upper urethra. The urothelium consists of three distinct layers; umbrella cells, intermediate cells and a basal layer. The superficial umbrella cells line the apical surface of the bladder; they are the largest of the three cell types (diameter ~ 50 - 120 µm) and vary in diameter depending on the distension of the bladder. Below lie the intermediate cells (diameter ~ 20 µm) whilst the basal layer, consisting of germinal cells (diameter ~ 5 - 10 µm), lines the basolateral side of the urothelium. Cell recycling involves progenitor basal cells migrating and differentiating into intermediate cells which in turn are partially differentiated forms of the distinct umbrella cells. The intermediate and basal layers are unremarkable in morphology and investigations have shown that they pose no significant barrier to the movement of substances through the bladder wall. Rather it is the umbrella cells that are responsible for the impermeability of the urothelium and they are highly differentiated to fit their role as the rate-limiting permeation barrier.

1.1.2.1. Umbrella Cells

Umbrella cells form a single layer of specialised cells lining the apical membrane of the urothelium. They are often multinucleated. Dynamic in nature, they change shape in accordance with the filling state of the bladder, adopting a cuboidal form when the bladder is empty and an elongated squamous shape as the bladder fills. This stretching can double the diameter of the cells and is thought to help the bladder achieve the required distension during filling. The umbrella cells demonstrate distinct morphological features that increase the impermeability of the urothelium.
1.1.2.1.a. Uroplakin Plaques

The apical membrane of the umbrella cells is covered in scalloped shaped plaques that are separated by plasma membrane domains referred to as ‘hinges’24–26. These polygonal plaques (~ 0.5 µm in diameter, 12 nm thick) are thought to cover ~ 90% of the surface area of the umbrella cells24. The hinge membranes (~ 8 nm thick) surround the plaques in a mosaic pattern occupying the remaining ~ 10% of the membrane surface area16,27. The membrane is referred to as an asymmetrical unit membrane because the plaques make the outer leaflet up to twice as thick as the inner leaflet28. The plaques are comprised of ~ 1,000 subunits, each made up of cell surface proteins known as uroplakins (UPs). Four major UPs (UPIa, UP1b, UPII and UPIII) have been identified29–33. UPs form heterodimers with one another, forming two sets of uroplakin pairs, UPIa / UPII and UP1b / UPIII (Figure 1.4)34. The formation of heterodimers marks the first step of UP assembly and is necessary for UPs to exit the endoplasmic reticulum35. Furthermore, the presence of both heterodimers is essential to correct assembly at the apical membrane. UPIII is an integral subunit to the formation of normal urothelial plaques and the subsequent generation of a fully functional urothelium36,37. Ablation of the UPIII gene results in the formation of smaller, less organised plaques36,38. Consequently the urothelium of UPIII knockout animals is more leaky and exhibits increased permeability to molecules such as water and urea39. The mechanism by which UP plaques contribute to urothelial barrier function is unclear, however it is hypothesised to centre on their highly ordered organisation at the apical membrane36,39. Such organisation allows dense packing of the plaques, protecting the bladder luminal surface from damage during distension38,40.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{uroplakin_plaques.png}
\caption{Schematic of an individual uroplakin subunit. UPIa forms a heterodimer with UPII, whilst UP1b forms a heterodimer with UPIII. Figure adapted from Sun et al41.}
\end{figure}
UPs are thought to underlie the aetiology of bladder diseases which exhibit increased urothelial permeability such as interstitial cystitis / painful bladder syndrome (IC / PBS). Additionally, UPs may play a significant role in urinary tract infections (UTIs). Cystitis, a syndrome characterised by dysuria, urgency, frequency and lower abdominal pain, is usually caused by bacterial infection with uropathogenic *E. coli* (UPEC) being the most common causative pathogen. UPEC expresses type 1 fimbrial FimH adhesin that facilitates adherence of the bacteria to the surface receptors of the umbrella cells (Figure 1.5). It has been elucidated that UP1a is the urothelial surface receptor for UPEC and this docking marks the beginning of a cascade eventually resulting in internalisation of the bacteria into the umbrella cell. Identifying intracellular bacteria in shed urothelial cells (Figure 1.6) has recently been shown beneficial in the diagnosis of latent UTIs in renal transplant recipients. The FimH - mediated binding of UPEC to UP1a is integral to the pathogenesis of the bacteria as it provides a foothold to the urothelium, preventing them from being removed during micturition cycles. Inhibiting this binding event may prove to be a useful strategy to treat bacterial cystitis and in the future might provide novel antibacterials for patients refractory to currently available treatment options.

Figure 1.5. Selective binding of FimH (green) to murine umbrella cells (blue). Figure adapted from Zhou et al.
1.1.2.1.b. **Tight junctions**

Adjacent umbrella cells are held together by tight junctions (TJ). TJs are composed of integral transmembrane proteins, such as occludin, junctional adhesion molecule and claudins that comprise the paracellular barrier\(^{48}\). Cytoplasmic proteins, such as zonular occludin 1 (ZO - 1), link the transmembrane proteins to the umbrella cell cytoskeleton (Figure 1.7)\(^{49}\). In addition to bringing structural integrity to the urothelium, TJs form a paracellular diffusion barrier to the movement of molecules between adjacent cells as well as an intramembrane diffusion barrier preventing the movement and mixing of intracellular components\(^{48,50,51}\).

![Image of tight junctions](image1)

Figure 1.6. Intracellular bacteria identified in a shed urothelial cell from a renal transplant recipient. Figure adapted from Kelley et al\(^{47}\).

![Image of ZO-1 labelling](image2)

Figure 1.7. ZO-1 labelling (fluorescent green) in human umbrella cell tight junctions. Figure adapted from Southgate and Baker\(^{52}\).
1.1.2.1.c. Glycosaminoglycan (GAG) Layer

The impermeability of the urothelium is further augmented by a glycosaminoglycan (GAG) formed mucin layer that coats the luminal side of the umbrella cell membrane. GAGs are long, unbranched polysaccharides that form a thin hydrophilic layer on top of the umbrella cells\(^{53-55}\). The GAG layer protects the bladder wall from the permeation of irritant urinary substances (e.g. urea\(^{56}\), potassium ions\(^{57}\) and calcium ions\(^{56}\)) and has a functional role in preventing UTIs by reducing bacterial adherence to the bladders luminal surface\(^{58,59}\). Studies have revealed that the GAG layer consists of heparan sulphate (~ 50 %), chondroitin sulphate (~ 30 %) and dermatan sulphate (~ 15 %)\(^{60}\). IC / PBS is associated with GAG deficiency\(^{61}\) resulting in increased permeation of irritant potassium ions into the bladder wall\(^{62-64}\) (Figure 1.8). Accordingly, GAG replenishment with agents such as chondroitin sulphate, heparin and pentosan polysulphate have become mainstay therapies for IC / PBS management\(^{65,66}\).

![GAG layer diagram](image)

Figure 1.8. In IC / PBS, a deficiency in the protective GAG layer results in an increased exposure of irritant solutes such as potassium (K\(^{+}\)) to the urothelium, resulting in localised inflammation, irritation and pain. Figure adapted from Pohl Boskamp Ltd\(^{67}\).

1.1.3. Permeability of the Urothelium

The combination of UPs, TJs and the GAG layer prevent the movement of unwanted substances from the urine back into the systemic circulation. The main mechanism by which molecules enter the bladder wall is passive permeability\(^{7}\); specifically, the passive diffusion of molecules across the urothelium down a concentration gradient. As with all epithelia there are two basic routes by which ions and solutes can move across the urothelium; paracellularly through the TJs of adjacent
umbrella cells and transcellularly moving over cell membranes through the cytoplasm and out the basal membrane68.

The most common measure of ion permeability is transepithelial electrical resistance (TEER)16. TEER is considered a sensitive, well defined determinant of epithelial permeability and takes into account the overall resistance of the transcellular and paracellular routes68,69. The urothelium exhibits one of the highest recorded TEER values of any epithelia measured16. Frömter and Diamond collected TEER values for a wide range of epithelial tissues and using the trends observed grouped them into two categories; ‘leaky’ and ‘tight’70. A resistance of ≥ 500 Ω cm2 is indicative of a tight epithelium. Although there is significant inter-species variation (Table 1.1), the urothelium is undoubtedly a tight epithelia with greater TEER than others investigated such as rabbit ileum (115 Ω cm2)71 or even rat blood brain barrier (5,900 Ω cm2)72.

<table>
<thead>
<tr>
<th>Urothelium origin</th>
<th>TEER ((\Omega) cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human (cultured cell line)</td>
<td>3,000</td>
</tr>
<tr>
<td>Porcine (cultured cell line)</td>
<td>7,000</td>
</tr>
<tr>
<td>Rabbit75</td>
<td>75,000 – 160,000</td>
</tr>
<tr>
<td>Feline76</td>
<td>310,000</td>
</tr>
<tr>
<td>Guinea pig77</td>
<td>3,000</td>
</tr>
<tr>
<td>Rat78</td>
<td>1,800</td>
</tr>
</tbody>
</table>

Table 1.1. Example TEER values for different species of urothelium.
1.2. Intravesical Drug Delivery (IDD)

1.2.1. Definition of IDD

The urethra allows for direct access to the bladder via a catheter. This presents significant opportunity to deliver high concentrations of drug directly to the bladder; such opportunities generally do not exist for other organs. Intravesical drug delivery (IDD) describes the local application of drug to the bladder lumen via the urethra. This is commonly achieved by formulating the drug as a solution and instilling the dose directly into the bladder through a urinary catheter (Figure 1.9A). Post-instillation the catheter is removed and the patient asked to hold their bladder for a predefined period of time (usually 1 - 2 h). Once the instillation period is complete, the patient is able to urinate and void the instilled dose. The intravesical route is used to deliver a wide range of therapies and treat many different diseases of the bladder (Figure 1.9B). The majority of IDD treatments used clinically are for bladder cancer, IC / PBS and overactive bladder (OAB). This is reflected not only by current research (Figure 1.10) and clinical practice (Figure 1.11B), but also by the licensed intravesical therapies currently available (Figure 1.11A).
Figure 1.9. A) Schematic depicting the process of IDD in a male patient. Drug solution is instilled directly into the bladder through a urinary catheter. Figure adapted from Krames Staywell patient education S0. B) Examples and indications of drugs that have been delivered intravesically.
Figure 1.10. The number of IDD-related scientific publications published between 2012 and 2014. Data was obtained by searching Pubmed using the key words ‘intravesical’ + ‘drug’. The search was limited to articles published between 01/01/2012 and 31/12/2013. The search yielded 371 articles, of which 109 were excluded on the basis of relevance. Articles were then stratified into four groups: bladder cancer ('Cancer'), 'Cystitis', overactive bladder ('OAB') or 'Other' depending on their relevant therapeutic area. Cancer, cystitis and OAB included all varieties of bladder cancer, cystitis and bladder dysfunction respectively. All articles outside of these parameters were grouped into 'Other' and this included UTIs, local analgesia, bladder spasm and haematuria. Articles were then further stratified into 'Pre-clinical research', 'Reviews' or 'Clinical studies'. Pre-clinical research included all in vivo and in vitro pre-human investigations. Reviews included all reviews, round-table discussions, treatment guidelines and patterns of practice. Clinical studies included all clinical trials, case-series, case reports, cohort studies and retrospective analysis.
A

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Product</th>
<th>Active agent</th>
<th>Marketing authorisation holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>Mitomycin-C Kyowa®</td>
<td>Mitomycin-C (MMC)</td>
<td>ProStrakan Ltd</td>
</tr>
<tr>
<td>Cancer</td>
<td>ImmuCyst®</td>
<td>Bacillus Calmette-Guerin (BCG)</td>
<td>Alliance Pharmaceuticals Ltd</td>
</tr>
<tr>
<td>Cancer</td>
<td>Valstar®</td>
<td>Valrubicin</td>
<td>Endo Pharmaceuticals Ltd</td>
</tr>
<tr>
<td>Cancer</td>
<td>Doxorubicin (generic)</td>
<td>Doxorubicin</td>
<td>Actavis Ltd</td>
</tr>
<tr>
<td>Cancer</td>
<td>Thiotepa (generic)</td>
<td>Thiotepa</td>
<td>Boehringer Ingelheim Ltd</td>
</tr>
<tr>
<td>IC/PBS</td>
<td>Uracyst®</td>
<td>sodium chondroitin sulfate</td>
<td>Stellar Pharmaceuticals Inc</td>
</tr>
<tr>
<td>IC/PBS</td>
<td>Gepan®</td>
<td>sodium chondroitin sulfate</td>
<td>Pohl Boskamp Ltd</td>
</tr>
<tr>
<td>IC/PBS</td>
<td>iAluril®</td>
<td>sodium hyaluronate + chondroitin sulfate</td>
<td>Aspire Pharmaceuticals Ltd</td>
</tr>
<tr>
<td>IC/PBS</td>
<td>Hyacyst®</td>
<td>sodium hyaluronate</td>
<td>Syner-Med Ltd</td>
</tr>
<tr>
<td>IC/PBS</td>
<td>Cystistat®</td>
<td>sodium hyaluronate</td>
<td>Bioniche Life Sciences Inc</td>
</tr>
<tr>
<td>OAB</td>
<td>BOTOX®</td>
<td>Onabotulinumtoxin-a</td>
<td>Allergan Ltd</td>
</tr>
<tr>
<td>OAB</td>
<td>Dysport®</td>
<td>Abobotulinumtoxin-a</td>
<td>Ipsen Ltd</td>
</tr>
</tbody>
</table>

B

2012 - 2013, NHS England Hospital episode statistics (HES)

<table>
<thead>
<tr>
<th>Pathology</th>
<th># FCEs</th>
<th>Intravesical treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>99,522</td>
<td></td>
</tr>
<tr>
<td>IC / PBS</td>
<td>10,605</td>
<td>70,294*</td>
</tr>
<tr>
<td>OAB</td>
<td>7,865</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.11. A) List of licensed intravesical therapies currently available in the UK. B) Number of finished consultant episodes (FCEs) where the primary diagnosis was bladder cancer, IC / PBS or OAB in England NHS trusts between 2012 and 2013121,122. There were 70,294 intravesical treatments administered in England NHS trusts between 2012 and 2013121,122. * Stratified data for the indication of treatment was not available.
1.2.2. Advantages of IDD

IDD has a number of advantages, the most significant of which is targeted drug delivery123. High concentrations of drug can be delivered directly to the luminal surface of the bladder wall7. For specific pathologies, such as superficial bladder cancer, this is the site of action of the drug124. For other indications the target may be deeper in the bladder wall within the lamina propria or detrusor muscle layers125. In these instances the topical application of high concentrations of drug should favour transurothelial permeation and the subsequent accumulation of drug in these layers. Compared to IDD, the bladder wall bioavailability of systemically delivered drugs is small and large doses are often required to deliver effective concentrations7. Furthermore, systemic absorption after IDD is minimal and consequently adverse - effect profiles are highly favourable compared to systemic therapy123. Additional advantages relate to the anatomy and accessibility of the bladder126. IDD is minimally invasive; the bladder can be accessed directly through the urethra without surgery. Therapy therefore can be conducted in outpatient clinics minimising morbidity / mortality risks to the patient and negating the need for overnight hospital admission. Additionally, an instilled dose can be immediately removed if necessary. If a patient has a local allergic reaction to an instilled drug solution, the bladder can be instantly drained and subsequently flushed with saline. The same cannot be said for systemically - introduced targeted delivery strategies127 or even organ - targeted injections128. IDD is also highly flexible; instillation volumes, concentrations and durations can be tailored to suit a particular therapy, indication or even patient.

1.2.3. Disadvantages of IDD

Despite its advantages, IDD has several inherent limitations. Even in the diseased state, the urothelium has evolved to prevent the movement of small molecules back into the bloodstream and hence its permeability to drugs is low7. Subsequently, although high concentrations of drug may be introduced to the bladder surface, concentrations achievable beyond the urothelium are usually low and often subtherapeutic126. Several normal physiological processes associated with the urinary tract hinder IDD. Urine produced by the kidneys is constantly draining into the bladder diluting the instilled drug solution. At a normal urine
production rate (~1 ml min⁻¹), a 30 ml instillation of drug will have decreased in concentration by at least 50 % after only 30 min. Furthermore, the bladder has limited capacity and voiding excretes the entire dose. This limited residence time means that a constant concentration gradient across the bladder wall can only be maintained for a limited period of time. Because it requires catheterization, IDD is impractical as a long – term therapy. Unless the patient practices intermittent or permanent catheterization, frequent IDD dosing is inconvenient. This is highlighted by the fact that with the exception of bladder cancer, IDD is a secondary treatment option initiated only subsequent to failed oral management. As IDD requires catheterization, it also increases the risk of UTIs and bleeding. Finally, although perhaps not an inherent limitation, a significant pitfall of IDD is the way in which regimens are designed and implemented. The majority of IDD regimens are empirically driven, with minimal scientific, clinical or physiological understanding underpinning treatment design. Examples include poor choice of instillation volume, arbitrary instillation times and dosing concentrations derived without knowledge of resulting target bladder wall drug concentrations. As a result IDD remains poorly understood and its potential unfulfilled.

1.2.4. Advancements in IDD

Considering the barrier function of the urothelium restricts the penetration of drug into the bladder wall, one way to improve IDD is to minimize TEER. This has been approached in two ways: physical methods to perturb barrier function and the use of chemical permeation enhancers. The most commonly exploited physical method is iontophoresis (also referred to as Electromotive Drug Administration (EMDA)), a form of electrophoresis that describes the administration of water-soluble drugs across a membrane barrier under the influence of an electric field. With regard to the bladder, the application of a small electrical current temporarily disrupts the electrochemical gradient either side of the luminal membrane increasing the passive diffusion of drug molecules through the urothelium and into the bladder wall. Intravesical EMDA has been investigated for several drugs including mitomycin - C (MMC), oxybutynin, lidocaine and hyaluronic acid with significantly increased permeation rates shown versus passive diffusion. Subsequently, improved clinical outcomes have been achieved.
uptake of drug into the bladder wall. Chemical permeation enhancers such as dimethyl sulfoxide (DMSO) and protamine sulfate interact chemically with the urothelium to disrupt its barrier function. Chemical enhancers have been used to improve the delivery of anti-cancer drugs such as doxorubicin and cisplatin into the bladder wall.

In addition to physical and chemical enhancement, several groups have sought to increase the efficiency of IDD by modulating the release, absorption and retention characteristics of drugs using advanced formulations such as liposomes, nanoparticles, hydrogels and mucoadhesive polymers. Such formulations have shown potential in the management of IC / PBS, bladder cancer and cystitis - induced incontinence. An additional approach (discussed further in Chapter 2) is the development of intravesical medical devices. Such devices include drug-eluting ureteral stents, which are formulated to release drug over long periods of time (usually days or weeks) and have shown promise in the treatment of stent-related discomfort and UTIs. Recently Taris Biomedical® developed a continuous lidocaine-releasing intravesical system (LiRIS®) for the treatment of IC / PBS. LiRIS® is currently in phase II clinical trials (correct for 01.11.2014) with phase I results suggesting the system is well tolerated and produces clinically significant improvements that are maintained for several months after device removal. If approved, LiRIS® will be the first drug-releasing device approved for IDD.

Recently, the first IDD specialty pharmaceutical (spec pharma) company has emerged. TheraCoat Ltd specialise in IDD solutions for bladder cancer, IC / PBS and OAB. Their patented, thermosensitive hydrogel technology (TCGel®) adheres to the urothelium providing the sustained, controlled release of drug over the designated treatment period. The company have completed safety and tolerability studies of a MMC - TCGel formulation for bladder cancer and are currently recruiting participants for similar studies in IC / PBS and OAB. The emergence of IDD spec pharma stands testament to not only the clinical but also the commercial progression occurring in the IDD field.
1.3. Aims and Objectives of Thesis

1.3.1. Aims

The overarching aim of this project was to further understanding of the basic science underlying the IDD process and in doing so reduce the empiricism preventing this drug delivery strategy from realising its potential.

1.3.2. Objectives

The main objective was to develop an *ex vivo* porcine model of IDD and use this to investigate the transurothelial permeation and bladder wall distribution of clinically relevant drugs. Investigating the transurothelial permeation of existing or potential intravesical agents reveals crucial information about the target concentrations achievable in the bladder wall and subsequently the viability of delivering drugs in this manner. This bottom-up approach will lead to the design of more rational and ultimately efficient intravesical regimens.
1.4. Reference List

Chapter One: General Introduction

16. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol. 2000;278(6):F867.

Chapter One: General Introduction

Chapter One: General Introduction

35. Tu L, Sun T-T, Kreibich G. Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell. 2002 Dec;13(12):4221–30.

Chapter One: General Introduction

121. The NHS Information Centre for Health and Social Care. Hospital Episode Statistics, Admitted Patient Care, England 2012-2013 [Internet]. 2013 [cited
Chapter One: General Introduction

Chapter One: General Introduction

Chapter One: General Introduction

Chapter One: General Introduction

Chapter One: General Introduction

Distribution of the Nonsteroidal Anti-Inflammatory Ketorolac. Mol Pharm. 2014 Feb 6;

165. Lose G, Nørgaard JP. Intravesical oxybutynin for treating incontinence resulting from an overactive detrusor. BJU Int. 2001 Jun;87(9):767–73.

Chapter Two: Development of an Ex Vivo Model for Investigating the Transurothelial Permeability and Bladder Wall Distribution of Therapeutic Agents
2.1. Introduction

2.1.1. Relevant Prologue: Boston Scientific collaboration

Ureteral stents are thin, flexible, hollow tubes that are placed in the ureter between the kidney and the bladder¹. In contemporary urological practice, the most commonly used stent is the double - J or double - pigtail variety² (the two names are used interchangeably) (Figure 2.1A). Double - J stents are specially designed to form a ‘J’ shape at either end of the device. Once inserted, these ends form coils in the kidney and bladder preventing displacement of the stent³ (Figure 2.1B).

![Figure 2.1. Double - J ureteral stent out of the packet (A) and in situ as viewed on x - ray (B)⁴.](image)

Inserted after a wide range of procedures, ureteral stents aid urine drainage by relieving or preventing obstruction of the upper urinary tract¹. Specifically, they passively dilate the ureter allowing urine to drain through the centre and around the outside of the device⁵. Stents may remain indwelling for several weeks or even months at a time⁶, and although effective, their use is associated with a wide range of morbidities often leading to a reduced quality of life for the patient⁷. Since their
envisagement in the 19th century⁹, stent design has advanced considerably. Developments have focused on producing more tolerable stents by using softer biomaterials⁹,¹⁰, varying the stent size¹¹ and shape¹² and designing novel biodegradable stents¹³. Despite this, their use continues to be associated with significant patient morbidity¹⁴,¹⁵. Stent-related discomfort (SRD) remains one of the most problematic adverse effects with occurrence rates as high as 80 %¹⁶. Patients commonly report SRD as pain in the suprapubic, flank area (side to middle of the back)¹⁷. Its exact aetiology remains unknown, with pain varying in site of presentation and intensity. For some patients, stents have to be removed prematurely such is the level of discomfort¹⁸. The pharmacological management of SRD has traditionally lacked a sufficiently strong evidence base with no consensus on the effectiveness of non-steroidal anti-inflammatory drugs (NSAIDs), antimuscarinics, anaesthetics or alpha-blockers, all of which only provide partial symptomatic relief¹⁹.

Boston Scientific Corporation (BSC), who co-sponsored this project, is a global medical device manufacturer who currently occupies a significant portion of the ureteral stent market²⁰. The collaboration between BSC and this research group arose as a result of BSC’s unsuccessful attempt to develop a drug-eluting ureteral stent known as the Lexington™ stent (Lexington™ stent, Boston Scientific, Natick, MA, USA)²¹. By providing localised, controlled release of drug at the very site of stent placement, Lexington™ was designed to reduce SRD and in doing so make up for the shortcomings of oral therapies. Early drug-selection studies, based on intravesical efficacy, highlighted ketorolac tromethamine as the lead candidate for incorporation into the stent²². Alternative agents, such as intravesical oxybutynin chloride and intravesical alkaline-buffered lidocaine hydrochloride, were found to be less efficacious²². Ketorolac is a non-selective NSAID that is particularly effective in the management of post-surgical pain (Figure 2.2)²³.
A pre-clinical safety study demonstrated Lexington™ to be safe, with low systemic absorption of ketorolac and no indication of local urinary tract inflammation or ulceration in any of the test animals. Subsequently, BSC rolled out a prospective, double-blind, randomised controlled trial (RCT) evaluating the efficacy of Lexington™ against a control stent after uteroscopy. Surprisingly the Lexington™ stent provided no clinical benefit over the control group with suggestions that further studies with higher drug concentrations were likely required.

2.1.2. The paucity of basic science underlying IDD regimens

As a result of the Lexington™ study, BSC believed that a new, bottom-up approach was required if the ketorolac-eluting stent was to be successful. Although pre-clinical studies suggested intravesical ketorolac to be effective in SRD, there was no knowledge of bladder wall concentrations achieved. It is difficult to establish required stent-loading and drug-elution rates without knowledge of the target bladder wall concentrations desired. This example is not unique, the empirical nature of IDD is recognised by key opinion leaders in both the clinical and scientific remit and is evident in the majority of IDD regimens. A good illustration of this concerns the intravesical delivery of Bacillus Calmette–Guerin (BCG) for non-muscle invasive bladder cancer (NMIBC). Originally, the dose was determined to be 120 mg as this dose was tolerated when administered intradermally. Furthermore, instillations were given once a week for 6 weeks because BCG came packaged in 6 vials and adverse events lasted less than a week. Intravesical BCG has been used clinically since 1976 and remains first-
line pharmacotherapy for NMIBC30, however the optimum dose is unknown and the mechanism of action poorly understood25.

So despite having been used for a number of decades, IDD regimens, such as the one BSC used to identify Ketorolac, remain largely empirical. Consequently little is known of target tissue concentrations achievable or ultimately the viability of delivering drugs locally to the urinary tract. \textit{In vivo} data remains limited due to the difficulty in obtaining bladder tissue concentrations in human and animal subjects. Intravesical pharmacokinetic (PK) studies have been carried out for several drugs including MMC31, doxorubicin32, gemcitabine33 and oxybutynin34. While such investigations reveal valuable information concerning systemic drug levels, they rarely elucidate concentrations achieved in the bladder wall or urine. Consequently IDD regimens are largely based on clinical outcomes such as tolerability or perceived benefit. Although such qualitative end points are clinically useful, quantitative data on urothelial permeability and bladder wall tissue distribution is equally important when predicting the usefulness of local drug delivery approaches. BSC believed fundamental research investigating the transurothelial permeability of ketorolac would help ascertain whether bladder wall concentrations achieved after local delivery are sufficient to justify incorporation into a drug - eluting ureteral stent.

\textbf{2.1.3. Methods to investigate transurothelial delivery}

Considering what has been discussed, it is important to review some of the techniques that have been used to investigate the transurothelial delivery and bladder wall distribution of drugs.

\textbf{2.1.3.1. \textit{In vivo} studies}

\textit{In vivo}, bladder wall penetration after IDD has been investigated in mice35, rats36 and larger animals such as rabbits37, dogs38,39 and pigs40-43. The urinary tract of larger animals, such as pigs, is anatomically closer in structure and size to man44 and subsequently offers significant advantages over smaller species in pre - clinical studies. Pig bladders can hold ~ 500 ml of urine45 (similar to the human bladder46) whereas the maximum capacity of the mouse and rat bladder is ~ 0.15 and ~1 ml respectively47. Accordingly when conducting pre - clinical studies of potential IDD regimens, pharmaceutical companies generally use pigs43,48,49. Studies are
designed to mimic human IDD regimens. Animals receive instillations (~ 50 ml49) through a urinary catheter and the drug solution is maintained in the bladder for the desired instillation period (usually ~ 1 - 2 h48,49) prior to bladder draining. Note only female pigs are used as the shape of the porcine penis makes urethral catheterisation difficult if not impossible50. Blood samples are usually taken periodically after instillation and urine collected upon bladder drainage48.

Interestingly, two studies (from the same research group) have investigated bladder wall concentrations after IDD in humans51,52. Ethical approval was obtained to give intravesical instillations to radical cystectomy patients prior to the start of their surgery. Radical cystectomy is a surgical procedure used in bladder cancer to remove the whole of the bladder and nearby lymph nodes53. Such studies are extremely rare, would likely be impossible to obtain ethical approval for in the present day and as such have been included for completeness rather than relevance to current \textit{in vivo} techniques.

By their nature, \textit{in vivo} studies encompass all the attributes associated with a living animal. For IDD the major advantages are dilution of the instilled dose by urine and systemic clearance of drug from the bladder wall. \textit{In vivo} studies in large animals are the gold standard model of IDD and if designed correctly can yield a plethora of data including urine pharmacokinetics, bladder wall drug concentrations and systemic levels of drug achieved after treatment40. That said, bladder wall concentrations are often neglected in favour of focusing on local bladder toxicology and systemic PK48,49. Furthermore these studies are extremely costly (~ $15,000 per pig, Tim Harrah, personal communication, June 20th, 2013) and as such are typically only carried out when phase 1 human studies are anticipated. Consequently the majority of early - stage research into transurothelial delivery is investigated \textit{in vitro} or \textit{ex vivo}.

\textbf{2.1.3.2. \textit{In vitro / ex vivo studies}}

\textbf{2.1.3.2.a. Cell culture systems}

Although not used to investigate delivery across the urothelium, cell culture has been used to investigate the uptake of chemotherapeutics into target urothelial cells54,55. The most commonly used system is immortalised human urothelial cell
cultures56, although normal human urothelial cells (NHU) are also used57. A significant limitation from a drug delivery point of view is the barrier function provided by these systems. The immortalization process appears to prevent normal cellular differentiation and subsequently the urothelial cells do not develop a functional barrier58. NHU are superior to immortalized systems and, when cultured on permeable membrane supports, can form an apparently functional or ‘biomimetic urothelium’ exhibiting significant barrier functionality (TEER values of $> 3 \text{ k}\Omega \text{ cm}^2$)59. Additionally, seeding onto these permeable membranes allows the modelling of systemic and intravesical drug exposure by addition of the compound the basal or apical chamber respectively58. Although cell culture systems provide a useful tool to investigate urothelial - drug interactions, they are less valuable in terms of drug delivery studies. Such systems represent isolated urothelium and do not therefore permit investigations of drug distribution into other layers of the bladder wall. When investigating IDD, distribution of drug into the different layers of the bladder wall is essential as bladder wall targets may reside in tissue layers below the urothelium (Section 1.2.2).

2.1.3.2.b. \textit{Ex vivo bladder tissue}

\textit{Ex vivo}, bladder wall penetration after local application to the urothelium has been investigated using rabbit60, porcine61 and human62 bladder tissue. Although whole bladder models have been reported63,64, the majority of studies use sections of \textit{ex vivo} bladder tissue loaded into diffusion apparatus61,65–68. Typically drug solution is applied to the bladder surface and removed after a predefined period of time representative of the intravesical instillation period67. Unlike urothelial cell culture systems, full thickness sections of bladder tissue allow determination of drug concentrations throughout the bladder wall. An established technique to do this is concentration - depth profiling where bladder tissue exposed to drug is sectioned parallel to the urothelial surface all the way down to the serosal side of the tissue61. This, in combination with knowledge of tissue - layer depths, allows quantitation of drug in the different layers of the bladder wall and has been used to investigate the IDD of agents such as paclitaxel66 and docetaxel67.

\textit{Ex vivo} studies, while more feasible than \textit{in vivo} work, are inherently limited by the absence of systemic drug clearance and processes such as urine dilution and periodic voiding which are fundamental to IDD28 (Section 1.2.3). To date, no
studies have sought to incorporate allowances for these processes into ex vivo studies. Furthermore many of the investigations reported have done little to verify the suitability of the ex vivo urothelial barrier as a model for transurothelial permeation61,65,69,70. In terms of apparatus, examples include the use of diffusion cells without a receiver chamber to supply the tissue with buffer69,70, whilst experimentally basic histological studies are often relied on to demonstrate urothelial barrier function62. A recent study used de-frosted porcine bladder tissue to investigate transurothelial delivery; histological analysis showed abnormal looking tissue with minimal evidence of an intact urothelium71.

2.1.4. Aims and Objectives of Chapter Two

The overall aim of this section of work was to develop an *ex vivo* model facilitating investigation of the transurothelial permeability and bladder wall distribution of drugs after their local application to the urothelium.

The key objectives were:

1. To design an *ex vivo*, diffusion cell setup to investigate the transurothelial permeability of drugs into bladder tissue

2. To validate the viability and appropriateness of the *ex vivo* porcine tissue by investigating markers of permeability, measuring TEER and examining the urothelial surface using scanning electron microscopy.

3. To investigate the transurothelial permeation of Ketorolac tromethamine and evaluate target drug concentrations achieved in the bladder wall.
Chapter Two: Development of an Ex Vivo Model

2.2. Materials and Methods

2.2.1. Materials

All chemicals were purchased from Sigma - Aldrich, Poole, UK and were used as received unless otherwise stated. All organic solvents were of HPLC grade and were obtained from Fisher Scientific, Loughborough, UK unless otherwise stated.

2.2.2. Analysis of propranolol hydrochloride

Propranolol hydrochloride was analysed by high – performance liquid chromatography (HPLC) using a Thermo Scientific HPLC automated system fitted with a Kromasil, 5 µm, C18, 250 mm x 4.6 mm i.d column (Sigma - Aldrich, Poole, UK). The mobile phase consisted of 70 % acetonitrile (ACN) : 30 % sodium dodecyl sulfate (10 mM), disodium hydrogen phosphate (10 mM) adjusted to pH 2.3 with phosphoric acid. UV detection was set at 290 nm. The injection volume was 20 µl and flow rate 1 ml min⁻¹.

2.2.3. Analysis of sodium fluorescein

Sodium fluorescein was analysed by fluorescence (Fluostar Optima microplate reader, BMG Labtech GmbH, Ortenburg, Germany). The excitation and emission wavelengths were set at 485 nm and 520 nm respectively.

2.2.4. Analysis of ketorolac tromethamine

Ketorolac was analysed by HPLC (2.2.2). The mobile phase consisted of 60 % 0.02 M phosphate buffer (adjusted to pH 3.5 with phosphoric acid) : 40 % ACN. UV detection was set at 315 nm. The injection volume was 20 µl and flow rate 1 ml min⁻¹.
2.2.5. **Bladder tissue preparation**

Porcine bladders from pigs weighing 70 - 90 kg, were obtained fresh from a local abattoir within five min of excision and transported in ice - cold oxygenated Krebs - Henseleit buffer (Krebs buffer, composition: NaCl 118.3 mM, NaHCO₃ 25 mM, CaCl₂ 2.5 mM, MgSO₄ 1.2 mM, KCl 4.7 mM, KH₂PO₄ 1.2 mM and D - glucose 11 mM, pH 7.4). Bladders were filled and drained with 37 °C saline to remove any residual urine. Using a scalpel, excess perivesical fat was trimmed away and a vertical incision made along the length of the bladder. Tissue sections (~ 2 cm²) from the posterior wall, lateral walls and dome area of the bladder (Figure 1.2) were loaded into glass Franz - type diffusion cells (Figure 2.3, average exposed tissue area 1.32 cm², custom - made, UK) with the urothelium facing upwards. Care was taken to avoid contact with the urothelial surface and a metal clamp was used to secure the tissue between the donor and receiver chambers of the apparatus. The receiver compartment was filled with oxygenated Krebs buffer and equilibrated at 37 °C for 30 min with a micro - stirrer bar providing continuous stirring. A solution of the drug was pipetted into the donor chamber (on to the urothelial surface), which was covered with a glass disc to prevent evaporative loss. The sampling arm was capped and the cells placed in to a thermostatically controlled water bath at 37 °C.
Figure 2.3. Schematic of the custom built Franz - type diffusion cell loaded with porcine bladder tissue.
2.2.6. Confirmation of tissue viability

2.2.6.1. Investigating markers of permeability

The viability of the bladder tissue was evaluated in an assay investigating the co-permeation of propranolol hydrochloride and sodium fluorescein. A 500 µl aliquot of a saline solution containing 1 mM propranolol hydrochloride and 0.1 mM sodium fluorescein was added to the donor chamber of the Franz-type cell. At fixed time points (0.5, 1.5, 3.5 and 6.5 h), the contents of the receiver and donor chambers were collected and the bladder tissue removed.

Prior to removal with a cork borer, the area of tissue in contact with the drug was rinsed 3 x 1 ml with saline to remove any surface-adsorbed drug and the urothelium and lamina propria (mucosa) carefully separated from the underlying detrusor muscle by cutting along the natural plane of division with a scalpel (Figure 2.4). Tissue sections were then weighed, homogenised (Precellys®24, Bertin Technologies Inc, Bordeaux, France) and drug extracted in 1 ml of mobile phase (section 2.2.2) for 36 h with 10 min sonication per sample. Samples were then centrifuged for 5 min (7,000 RPM, 2,680 g) and the supernatant isolated for analysis.

Figure 2.4. Separation of porcine mucosa from the underlying detrusor muscle.
Accurate separation of the bladder mucosa from the underlying detrusor muscle was confirmed histologically. The mucosa was removed from one half of a bladder section, leaving the other half as full thickness bladder wall. Tissue samples were fixed to cork mounts with optimal cutting temperature medium (OCT) (Tissue-Tek™, CRYO-OCT Compound, Fisher Scientific UK Ltd, Leicestershire, England) and snap frozen between two metal plates using liquid nitrogen. Samples were sectioned at 10 µm using a cryostat (Leica CM3050 S, Leica Microsystems, Buckinghamshire, England). Sections were then stained with haematoxylin - eosin (H & E) and examined by light microscopy.

2.2.6.2. Transepithelial electrical resistance (TEER)

The integrity of urothelial, paracellular tight junctions (TJs) was investigated by measuring TEER across the bladder mucosa over 2.5 h. The urothelium and lamina propria was carefully removed and a 1 cm² section mounted into an Ussing chamber (NaviCyte vertical multichannel Ussing chambers, Warner Instruments, Hamden, CT, USA). The mucosal chamber was filled with 4 ml of either normal saline or ketorolac 1.1 mg ml⁻¹ in saline, whilst the serosal chamber was filled with 4 ml of oxygenated Krebs buffer. The Ussing chambers were maintained at 37 °C and after a 10 min equilibration period, TEER across the mucosa measured at 15 min intervals. TEER was measured using a multi-channel voltage – current clamp (EC-800 single channel, Warner Instruments, Hamden, CT, USA). The Ussing chambers were equipped with two pairs of Ag / AgCl electrodes, for measuring potential difference (V) and for passing current (I). The experiments were performed under open circuit conditions, whereby the current was set to zero and the natural transepithelial potential difference could be observed. Electrical resistance was determined according to Ohm’s law (R = V / I). The TEER value at time zero was taken to be the baseline reading, from which the percentage change was calculated. TEER was calculated as the net electrical resistance of the mucosa multiplied by the apparent exposed tissue area of the Ussing chamber (0.12 cm²). Percentage change from baseline TEER was compared for the saline and ketorolac groups. All statistical analysis was performed using GraphPad Prism version 6.0c (GraphPad Software, Inc, San Diego, California, USA). Unpaired t-tests were used for all comparisons.
2.2.6.3. **Scanning electron microscopy (SEM)**

To further confirm the integrity of the urothelial barrier under experimental conditions, bladder tissue was examined by scanning electron microscopy (SEM). Bladder sections were loaded into Franz - type diffusion cells and 500 µl of normal saline (negative control), ketorolac 1.1 mg ml⁻¹ in saline (test agent) or protamine sulfate 10 mg ml⁻¹ in saline (positive control) added to the donor chamber. After 90 min the contents of the donor chamber was discarded, the urothelial surface subjected to 3 x 1 ml saline rinses and the tissue sample removed. An additional sample, fixed on - site at the abattoir immediately post – excision of the bladder (approximately 5 min after slaughter), was examined as a control. Sections of tissue (~ 2 cm²) were carefully cut without touching the urothelial surface and fixed in a solution of 4 % formaldehyde and 0.2 % glutaraldehyde in 0.1 M phosphate buffer for 24 h at room temperature. Following washing with distilled water (2 x 60 min), tissue samples were dehydrated in isopropyl alcohol solutions of increasing concentrations (50 – 100 %) before undergoing chemical drying in 100 % hexamethyldisilazane. Samples were then sputter - coated with gold (Emscope sputter coater, Emscope, Ashford, Kent, UK) before SEM examination (5 kV, Jeol JSM 840A, Tokyo, Japan). Images were acquired with an ADDA 2 image grabber and processed using Scandium analysis software (Soft Imaging System GmbH, Münster, Germany).

2.2.7. **Evaluation of the delivery of ketorolac to the bladder wall**

2.2.7.1. **Permeation of ketorolac across the urothelium**

Franz - type cells were assembled as described (Section 2.2.5) and a 500 µl aliquot of a 1.1 mg ml⁻¹ ketorolac solution (in normal saline) applied to the donor chamber. At fixed time points (0.5, 1, 2, 3.5 and 5 h), the contents of the receiver and donor chambers were collected and the tissue sample removed. The tissue was rinsed 3 x 1 ml with saline and ketorolac extracted in 1 ml of mobile phase (Section 2.2.6.1). Drug was quantified using HPLC (Section 2.2.4).

2.2.7.2. **Distribution of ketorolac into the bladder wall**

Franz - type cells were assembled as described (Section 2.2.5) and a 500 µl aliquot of a 1.1 mg ml⁻¹ ketorolac solution (in normal saline) applied to the donor
chamber. After 90 min the Franz - type cells were dismantled, the donor and receiver compartments collected and the urothelial surface rinsed 3 x 1 ml with saline. The area of drug contact was isolated, immediately snap frozen between two metal plates using liquid nitrogen, fixed to cork mounts with OCT and the tissue sectioned using a cryostat (Section 2.2.6.1). Care was taken to ensure OCT was only present on the serosal side of the tissue. Samples were serially sectioned parallel to the urothelial surface at 50 µm thickness and sections collected in pre - weighed 1.5 ml eppendorf tubes. Tissue sections between 0 and 200 µm (urothelium) were collected individually for analysis. Groups of five 50 µm tissue sections between 200 and 1,200 µm (lamina propria) and ten tissue sections between 1,200 and 3,200 µm (detrusor muscle) were collected and pooled prior to analysis. For pooled samples, tissue depths were expressed as the midpoint depth of the sections. Tissue sections were then weighed, extracted in 500 µl mobile phase for 24 h and drug quantified using HPLC (Section 2.2.4). Average tissue concentrations achieved in the urothelium, lamina propria, detrusor muscle and whole bladder wall were calculated by dividing the total amount of drug recovered by the total weight of tissue in that layer.

2.3. Results and Discussion

2.3.1. Using ex vivo porcine bladder tissue

When designing an ex vivo model, fresh human tissue is the gold standard tissue upon which to carry out investigations. For certain organs, such as human skin, obtaining fresh samples is feasible owing to the steady supply of surgical excess tissue72. Unfortunately the same is not true for human bladder tissue. Statistics published by the British Association of Urological Surgeons (BAUS) reported that only 743 cystectomies, across 45 health centres in England, Scotland and Wales were performed in 201273. Such a low procedure rate, an average of less than two cystectomies per health centre per month, would not yield an adequate supply of human bladders for this research project. Considering this, pig bladders were chosen.
Porcine bladder tissue was a natural choice owing to the long history of pigs being used as animal models in urology74–76. A number of studies have reported the physiology of the porcine urinary tract to be similar to that of humans45,77,78. Anatomically, the porcine urinary tract is a good representation of man79 and for several decades anaesthetised pigs have been, and continue to be, used for urological surgical training44,80. Histological analysis has shown parallels between the structure and composition of the porcine and human bladder wall; both comprise an ordered layering of urothelium, lamina propria, detrusor muscle and adventitia81–83. An additional advantage of procuring abattoir - derived porcine tissue concerns ethical approval. As none of the animals at an abattoir are killed for experimental reasons, ethical approval is not required.

\subsection*{2.3.2 Confirmation of tissue viability}

\subsubsection*{2.3.2.1 Tissue procurement and transportation}

The ability to obtain fresh tissue was considered essential to this project. Porcine bladders were obtained immediately at the time of excision, the total warm ischemic time between killing the animal and bladder retrieval was consistently under 10 min. Bladders were transported from the abattoir in oxygenated Krebs buffer84. Krebs is a balanced salt solution used to maintain tissue at a physiological pH and ensure intracellular and extracellular osmotic balance85. It was a logical choice based on its extensive use in \textit{ex vivo} full bladder86,87 and isolated bladder tissue studies66,67,88,89.

Buffer was made fresh for each experiment and was cooled such that the temperature during bladder transportation was \(\sim 4 \degree C\). Cooling prevents hypoxic injury by reducing cellular metabolism and therefore the oxygen requirements of the organ90. The van’t Hoff - Arrhenius law states that the rate of a biochemical reaction is halved for each 10 \degree C decrease in temperature91 and data obtained from perfused rat livers has shown oxygen requirements to be significantly reduced at lower temperatures compared to 37 \degree C90. Such cooling techniques are used in organ transplantation, where hypothermia remains the principal method of maintaining organ viability during ischaemic transfer from donor to recipient90. In addition to cooling, the Krebs buffer was bubbled with carbogen (95 \% O\textsubscript{2}, 5 \% CO\textsubscript{2}) to provide oxygen for the bladder tissue. Prior to oxygenation the buffer was
chilled, as oxygen solubility is higher at lower water temperatures92. Consistent with other reported Krebs recipes86,89,93, the buffer was modified by the addition of glucose to provide an energy source for cell maintenance.

2.3.2.2. \textit{Investigating markers of permeability}

Whilst the literature suggested that gross bladder viability should be maintained under the conditions described66,86 (Section 2.3.2.1), there was uncertainty as to how the urothelial barrier function would be affected by bladder excision, transport and experimentation. In addition to preventing the significant permeation of molecules, a functional barrier would be expected to differentiate between molecules that permeate paracellularly and those that permeate transcellularly94. Sodium fluorescein and propranolol hydrochloride are recognised paracellular and transcellular markers respectively95,96. In this study the two compounds were used to evaluate the integrity of the urothelial barrier over 6.5 h.

2.3.2.2.a. \textit{Analysis of sodium fluorescein and propranolol hydrochloride}

Sodium fluorescein was analysed by fluorescence (Section 2.2.3). The lower limit of detection (LLOD) and quantification (LLOQ), calculated as 3 and 10 - fold the signal to noise ratio, was 4.12 nM and 13.73 nM respectively. Propranolol hydrochloride was quantified by HPLC (Section 2.2.2). The LLOD and LLOQ was 0.15 \(\mu\)M and 0.5 \(\mu\)M respectively. Quantitation was calculated using an external standard solution ranging in concentration from 0.001 to 10 \(\mu\)M for sodium fluorescein and 0.05 to 100 \(\mu\)M for propranolol hydrochloride. Calibration curves (response plotted against external standard concentration) were run in triplicate to ensure reproducibility and showed high linearity across the expected analyte concentration range (Figure 2.5).
2.3.2.2.b. Permeation of sodium fluorescein and propranolol hydrochloride into the bladder wall

Figure 2.6A shows the amount of each marker permeated across the mucosa over time, normalised to the surface area of the urothelium. This was calculated by summing the amount of drug extracted from the detrusor muscle and any drug recovered from the receiver compartment. Figure 2.6B shows the successful removal of the mucosa (urothelium and lamina propria (U and LP)) leaving the underlying detrusor muscle (M). Apparent permeability coefficients (K_p), calculated by normalising the transurothelial flux to the concentration of drug applied to the urothelium at time zero, were 5.1×10^{-6} cm s$^{-1}$ and 1.3×10^{-6} cm s$^{-1}$ for propranolol hydrochloride and sodium fluorescein respectively. Over 6.5 h the permeation rate of both molecules was constant, indicative of little change in the tissue’s behaviour. Furthermore the calculated K_p values were distinct and, although there are no directly comparable figures available in the literature, in the same range as those reported for other small molecules such as urea (5.1×10^{-5} cm s$^{-1}$)97 and ammonia (6.4×10^{-5} cm s$^{-1}$)97.

Figure 2.5. External standard calibration curves for sodium fluorescein (A) and propranolol hydrochloride (B).
Figure 2.6. (A) Permeation profile of 0.1 mM sodium fluorescein and 1 mM propranolol hydrochloride across porcine mucosa. Permeability coefficients (K_p, cm s$^{-1}$) were calculated by normalising the flux (J, µg cm$^{-2}$ s$^{-1}$) to the dosing concentration. ($n = 6$ tissue samples from 2 bladders ± SD). (B) Photomicrograph of H & E stained bladder wall with the mucosa excised from half the section (400 x). U / LP – urothelium and lamina propria (mucosa), M – detrusor muscle.
2.3.2.3. **Transepithelial electrical resistance (TEER)**

TEER is an established method of investigating the paracellular permeability of the urothelium\(^{98-100}\). By assessing the resistance across bladder mucosa, the maintenance of umbrella cell TJs crucial to the barrier function of the urothelium can be evaluated. Absolute TEER and deviation from baseline TEER across the bladder mucosa was investigated after the application of saline (negative control) and ketorolac to the urothelium (Figure 2.7). At time zero, average TEER values were 8.3 and 7.8 kΩ cm\(^2\) for the saline and ketorolac samples respectively; indicative of tight epithelia\(^{101}\). Although not previously reported for \textit{ex vivo} porcine bladder, these values are comparable to those in the literature for fully functional \textit{in vitro} human (3.0 kΩ cm\(^2\))\(^{59}\) and porcine (6.7 kΩ cm\(^2\))\(^{102}\) urothelium. TEER values decreased marginally with time and at the end of the experiment (2.5 h) mucosa exposed to saline and ketorolac exhibited 77 and 78 % of baseline TEER respectively. This decrease was within range of what can be expected for \textit{ex vivo} experiments such as this. There was no significant difference in relative or absolute TEER reduction between samples exposed to saline or ketorolac at any timepoint investigated (\(p > 0.05\), calculated by unpaired t-test). In agreement with these observations \textit{ex vivo} rat bladder tissue has been shown to retain transurothelial barrier function for several hours post excision\(^{99}\).
Figure 2.7. Percentage (A) and absolute (B) decrease in transepithelial electrical resistance (TEER) across *ex vivo* porcine bladder mucosa exposed to saline or ketorolac. There was no significant difference in percentage or absolute TEER reduction at any timepoint (*p > 0.05 at 2.5 h, calculated using unpaired t-test). (n = 4 bladders ± SD).
2.3.2.4. **Scanning electron microscopy (SEM)**

In addition to alterations in TJ integrity, an increase in permeability may result from epithelial cell loss\(^{100}\). SEM was used to microscopically examine the urothelial surface of the *ex vivo* porcine bladder tissue (Figure 2.8). Tissue exposed to saline (negative control) and ketorolac displayed normal surface morphology with no evidence of significant damage. Scallop-shaped, polygonal umbrella cells with intact tight junctions were evident and closely resembled that reported by others (Figure 2.9A)\(^{103-105}\). The morphology of the saline and ketorolac samples (Figure 2.8C - D and E - F respectively) did not differ from the control tissue fixed on-site at the abattoir (Figure 2.8A - B). Protamine sulfate was used as a positive control (Figure 2.8G - H) as it has been shown to cause immediate umbrella cell sloughing accompanied by a significant decrease in TEER across the urothelium\(^{103}\). Close examination of the urothelium exposed to protamine (Figure 2.9B) showed a significant loss of integrity, evidenced by widened TJs, extensive cell lysis and the apparent shedding of the umbrella cell’s apical membrane.

In combination, results of paracellular permeation, TEER and SEM analysis suggested the *ex vivo* porcine bladder tissue was appropriate for use in our studies. This is in agreement with others who have used *ex vivo* porcine bladder tissue in a similar manner for similar lengths of time\(^{66,67,69}\).
Figure 2.8. SEM of ex vivo porcine bladder tissue. Control samples fixed on-site at the abattoir within 5 min of excision (A and B). Samples loaded in Franz-type diffusion cells and exposed to saline (C and D), 1.1 mg ml\(^{-1}\) ketorolac (E and F) and 10 mg ml\(^{-1}\) protamine sulfate (G and H) for 90 min.
2.3.3. Evaluation of the delivery of ketorolac to the bladder wall

Ketorolac, although not commonly used in the UK, has an established role in reducing post-operative pain in the US106 and has been shown effective in the relief of renal, ureteral and bladder pain107–109. BSC's decision to use ketorolac in the Lexington™ stent was the result of a clinical study evaluating the effectiveness of localised, intravesical therapies to reduce ureteral SRD22. They found that an intravesical solution of ketorolac (1.1 mg ml-1) caused a significant reduction in SRD when compared to the control instillation (0.9 % saline). While this provides an opportunity for developing more advanced local delivery techniques such as the Lexington™ stent, its translation into effective patient management will undoubtedly benefit from an understanding of the rate and extent of delivery of ketorolac into the bladder wall. By gathering information regarding the barrier properties of the urothelium and investigating, in quantitative terms, ketorolac delivery, we can begin to make predictions about the viability of delivering ketorolac intravesically and the bladder tissue concentrations necessary to bring
about a therapeutic effect. We chose therefore to use a 1.1 mg ml\(^{-1}\) ketorolac solution in our ex vivo studies.

2.3.3.1 Analysis of ketorolac tromethamine

HPLC analysis of ketorolac produced narrow, near symmetrical peaks eluting at a stable retention time (Figure 2.11). Analyte quantitation (based on peak area) was calculated using an external standard solution ranging in concentration from 0.0011 to 11 µg ml\(^{-1}\) (Figure 2.10). Calibration curves were run in triplicate to ensure reproducibility and showed high linearity across the expected analyte concentration range. The LLOD and LLOQ was 0.0173 and 0.0575 µg ml\(^{-1}\) respectively. There was minimal analyte peak interference in the homogenised bladder tissue and background noise was low enabling good precision around the LLOQ (Figure 2.11C).

![Figure 2.10. External standard calibration curve used in the HPLC analysis of ketorolac.](image-url)
Figure 2.11. Example HPLC chromatograms showing the analysis of a calibration standard (A), blank tissue sample (B), tissue recovery near the LLOQ (C) and higher concentration tissue recovery (D) of ketorolac.
2.3.3.2
Permeation of ketorolac across the urothelium

In section 2.2.6.1, where the permeation of sodium fluorescein and propranolol hydrochloride was investigated, the mucosa was separated from the detrusor muscle prior to drug determination. The amount permeated across the mucosa was then calculated by summing drug extracted from the detrusor muscle and receiver compartment. This was a precautionary measure to ensure no surface-adsorbed drug was included in permeability calculations. In this experiment the two layers were not separated. Rather the amount permeated was calculated by summing drug extracted from the entire tissue and receiver compartment. This was a case of experimental improvement; studies showed that after several saline rinses of the urothelial surface, any remaining surface-adsorbed drug was within the standard deviation (SD) of the drug extracted from the tissue (Figure 2.12). Therefore any drug extracted from the tissue following the saline rinse was considered to have permeated the urothelium making the separation step unnecessary. After the third saline rinse, the amount of drug extracted (0.1 % of the applied dose) was more than 10 fold smaller than the SD of that extracted from the tissue (1.3 % of the applied dose). Additional washes resulted in similar values suggesting at this point drug may be drawn out of the umbrella cells. Considering this, a 3 x 1 ml saline rinse protocol was considered sufficient for the removal of surface-adsorbed drug.
Figure 2.12. Percentage of applied ketorolac dose recovered from a 5 h application of a 0.5 ml aliquot of 1.1 mg ml⁻¹ ketorolac solution according to the methods described in section 2.2.7.1. (n = 10 tissue samples from 2 bladders ± SD).

Figure 2.13A shows that ketorolac was capable of permeating across the urothelium. Drug permeated in a linear fashion and after 5 h approximately 60 µg cm⁻² of ketorolac had permeated into the bladder wall. An apparent transurothelial K_p value of 2.63×10^{-6} cm s⁻¹ was calculated by normalising the flux to the concentration applied to the donor chamber at time zero. Results of mass balance analysis showed good recovery of drug from the Franz - cell apparatus with an average 95.2% of the applied ketorolac dose recovered per sample (Figure 2.13B). Over the 5 h experiment the majority of drug remained in the donor chamber, whilst the amount accumulating in the bladder tissue increased steadily with time. Drug was only present in the receiver compartment for the 5 h time point, constituting ~ 0.2 % of the applied ketorolac dose.
Figure 2.13. (A) Permeation profile of 1.1 mg ml⁻¹ ketorolac across porcine bladder urothelium, permeability coefficients (K_p, cm s⁻¹) were calculated by normalising the flux (J, μg cm⁻² s⁻¹) to the dosing concentration. (B) Mass balance analysis of the recovery of ketorolac from the Franz - type cell setup per sampling timepoint. (n = 4 tissue samples from 2 bladders ± SD).
2.3.3.2 Distribution of ketorolac into the bladder wall

According to the mean urination time reported in the BSC intravesical study22, ketorolac would have been voided from the bladder after \sim 90 min. Given this, an endpoint of 90 min was chosen in this study. To understand the distribution of ketorolac into the different layers of the bladder wall, a concentration - depth profile was constructed (Figure 2.14A). Tissue - layer depths for porcine bladder wall were based on those reported in the literature66. Drug concentrations declined with tissue depth with average concentrations of 400, 141 and 21 μg g$^{-1}$ achieved in the urothelium, lamina propria and detrusor muscle respectively (Figure 2.14B). In agreement with others who have performed similar studies on \textit{ex vivo} porcine bladder, our distribution study shows a linear decrease in drug concentration over the urothelium, followed by an exponential decrease in concentration over the lamina propria and detrusor muscle66,69. After 90 min the average concentration in the whole bladder wall was calculated to be 87 μg g$^{-1}$ (Figure 2.14B).
Figure 2.14. (A) Concentration - depth profile of ketorolac into porcine bladder wall after 90 min. For pooled samples, tissue depths were expressed as the midpoint depth of the sections. \(IC_{50} \) represents the top - end value reported at COX - 1 and COX - 2 for ketorolac\(^{110} \). (B) Corresponding average ketorolac concentrations achieved in the urothelium (0 – 200 \(\mu \)m), lamina propria (200 – 1,200 \(\mu \)m), detrusor muscle (1,200 – 3,200 \(\mu \)m) and whole bladder wall (0 – 3,200 \(\mu \)m) after 90 min (B). (n = 5 bladders ± SD).
Although the exact aetiology of SRD is unclear, one proposed theory is that the bladder coil rubs against the urothelium resulting in irritation, inflammation, spasm and pain. BSC conducted an in-house porcine study (details confidential) that stipulated the unilateral placement of a double-J ureteral stent for 72 h. Necropsy findings provide a good example of the urothelial irritation caused by the ureteral stent (Figure 2.15). Prostaglandins have been shown to produce contractions of isolated detrusor muscle in vitro and in vivo and their synthesis can be initiated by urothelial damage. Blocking prostaglandin synthesis with indomethacin, a non-selective cyclooxygenase (COX) inhibitor, has recently been shown to decrease acetylcholine-mediated autonomic contractions in the isolated bladder. In addition, afferent C-fibres terminating in the urothelium and lamina propria are known to respond to prostaglandins released (from cells in the urothelium and lamina propria) in response to injury; suggesting the possibility that, by inhibiting mediators released from urothelial and lamina propria cells, intravesically delivered ketorolac may provide pain relief in part via modulation of sensory pathways. The NSAID ketorolac non-selectively inhibits COX-1 and COX-2, the enzymes responsible for the production of prostaglandins and has been shown to inhibit ureteral contractility in vitro. It follows that by reducing inflammation and spasm, ketorolac has the potential to be beneficial in reducing SRD.
Figure 2.15. Necropsy examination of porcine bladders from three test animals 72 h post placement of a ureteral stent (A - C). Irritation and associated erythema near the ureteral orifice, where the distal coil of the ureteral stent resides, is highlighted.
The production of prostaglandins within the bladder wall is well established with synthesis occurring not only in the detrusor muscle but also within the urothelium and lamina propria117-119, all of these regions can therefore be taken to be targets for the IDD of ketorolac. After 90 min the total concentration in these target regions was 87 µg g-1. The reported potency of ketorolac, in terms of IC\textsubscript{50} values, varies widely with top end values of 31.5 and 60.5 µM for COX - 1 and COX - 2 respectively110. Taking the average bladder wall concentration of 87 µg g-1 and making the assumption that 1 g of bladder tissue has a volume of \(\sim 1 \text{ cm}^3\), a target bladder wall concentration of 231.1 µM was achieved after 90 min. This equates to a predictive ketorolac concentration of at least seven times the IC\textsubscript{50} for COX - 1 and three and a half times the IC\textsubscript{50} for COX - 2 at the site of action (Figure 2.14B), suggesting that levels of ketorolac in the bladder wall could indeed be sufficient to provide an anti-inflammatory effect.

It is important to point out however that these studies are \textit{ex vivo} and therefore have inherent limitations. Systemic clearance and dilution of the intravesical instillation by urine are notably absent in our model. As shall be discussed later in this thesis, these processes can have significant effects on the delivery of drug into the bladder wall. Subsequently, concentrations achieved in these \textit{ex vivo} studies likely overestimate the \textit{in vivo} situation.

2.4. Conclusions

This chapter described and validated an \textit{ex vivo} porcine bladder tissue model for studying the barrier properties of the urothelium and investigating, in quantitative terms, drug delivery into the bladder wall. Using this model the transurothelial permeation of the NSAID ketorolac was studied and its delivery into the different layers of the bladder wall investigated. Fundamental studies such as these can be used to inform on the viability of delivering drugs intravesically \textit{in vivo}. The data suggest that, in the \textit{ex vivo} setting, the levels of ketorolac delivered to the bladder wall following local application to the urothelium would be pharmacodynamically appropriate to provide an anti-inflammatory effect. In practice local delivery strategies to the urinary tract are largely guided by clinical outcome, with little
outcome, with little information available on target drug concentrations. Investigations such as those described here yield quantitative *ex vivo* data that can be used to rationally design new transurothelial drug delivery strategies and optimise existing intravesical drug regimens.
Chapter Two: Development of an Ex Vivo Model

2.5. Reference List

Chapter Two: Development of an Ex Vivo Model

89. Rivera L, Brading AF. The role of Ca2+ influx and intracellular Ca2+ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle. BJU Int. 2006 Oct;98(4):868–75.

Chapter Two: Development of an Ex Vivo Model

Chapter Three: Investigating the Transurothelial Permeation and Bladder Wall Distribution of Oxybutynin
Chapter Three: Oxybutynin

3.1. Introduction

3.1.1. Oxybutynin

Oxybutynin is an antispasmodic, non-specific antimuscarinic agent which exhibits local anaesthetic properties on the bladder wall. Administered as a racemate of the R- and S-isomers, oxybutynin is a tertiary amine with a molecular weight of 357 g mol\(^{-1}\). Pharmacologically it competively antagonises the M\(_1\), M\(_2\) and M\(_3\) subtypes of the muscarinic acetylcholine (ACh) receptor. Oxybutynin’s primary indication is the treatment of overactive bladder (OAB), for which it remains the most widely prescribed drug worldwide.

![Figure 3.1. Chemical structure of oxybutynin](image)

3.1.2. Overactive bladder (OAB)

OAB is a condition described by a collection of lower urinary tract symptoms (LUTS). LUTS are classified as either storage or voiding in origin. In OAB, symptoms typically include urgency, with or without urge incontinence, often with frequency and nocturia, in the absence of proven infection or other obvious pathology; it is therefore best described as a storage condition. OAB is a chronic disorder, affecting approximately 17% of men and women over the age of forty. It significantly affects quality of life, with symptoms having a profound affect on social behaviour, physical activity and psychological wellbeing. In combination with behavioural therapies such as pelvic floor muscle training and fluid management, first-line pharmacotherapy is treatment with antimuscarinics. The last decade has seen significant advancement in our understanding of the
mechanism of action (MOA) by which antimuscarinics improve OAB symptoms12. Traditional dogma was based on the understanding of nervous control of detrusor muscle contraction13. Accordingly, an overview of bladder detrusor neurology is necessary.

3.1.3. Neural control of the detrusor muscle

3.1.3.1. Parasympathetic control

Bladder voiding is initiated by contraction of the detrusor muscle, a process mediated by the parasympathetic system. Preganglionic neurons originating in sacral spinal cord segments S2 - S4 travel in the pelvic nerve and synapse with postganglionic fibres in the pelvic plexus and bladder wall14. Transmission to postganglionic fibres is cholinergic and mediated through nicotinic receptors14. Postganglionic fibres, if not already present, travel to the bladder wall where excitatory parasympathetic innervation causes the detrusor to contract. Cholinergic transmission is mediated through M\textsubscript{3} muscarinic receptors, whilst non-cholinergic transmission is mediated by adenosine triphosphate (ATP) at P2X purinergic receptors. It is ACh however that is the principal parasympathetic neurotransmitter in the detrusor14.

3.1.3.2. Sympathetic control

Relaxation of the bladder detrusor muscle, which is essential during filling, is regulated by the sympathetic system. Sympathetic innervation of the bladder originates in the lower thoracic and upper lumbar segments of the spinal cord (T10 - L2)14. Preganglionic axons synapse with postganglionic fibres in the inferior mesenteric ganglia and pelvic plexus. Postganglionic neurons travel in the hypogastric and pelvic nerves to the detrusor muscle, where innervation causes relaxation mediated predominantly through β\textsubscript{3} - adrenoceptors and to a lesser extent β\textsubscript{2} - adrenoceptors15.

3.1.3.3. Afferent pathways

The afferent division of the peripheral nervous system is responsible for transmitting sensory information. Bladder afferent pathways initiate the micturition reflex and are essential to the normal functioning of the organ. In response to filling, afferent fibres are excited by mechanical (e.g. bladder wall...
stretch, torsion, increased intravesical pressure) and chemical (e.g. ATP, ACh) stimuli. Afferent fibres in the urinary tract travel in three sets of nerves to the central nervous system, the most important for micturition being the pelvic nerve. Myelinated Aδ and unmyelinated C - fibres are activated by mechanoreceptors in the bladder wall that relay sensory information to second - order neurons in the dorsal horn of the spinal cord. Aδ fibres are involved in normal micturition, whilst C - fibres are typically associated with painful sensations. From the spinal cord, sensory information is conveyed to higher centres in the periaqueductal gray area of the midbrain, which itself receives input from several forebrain structures (hypothalamus, amygdala and orbital - medial prefrontal cortex). These structures participate in limbic networks that evaluate certain risks and emotional significance. In the context of bladder voiding this may include whether it is safe and socially appropriate for an individual to urinate.

3.1.3.4. **Bladder filling and voiding**

The neural pathways controlling bladder filling and voiding operate according to an on - off switch mechanism. When bladder volume is low or moderate, micturition is inhibited because sympathetic activity is greater than parasympathetic activity, i.e., the ‘switch’ is off. This voiding ‘switch’ can be turned on involuntarily (autonomic, referred to as reflexly) or voluntarily (somatic). In the autonomic pathway increased afferent firing from mechanoreceptors in the bladder wall at the micturition threshold reverses the overall efferent signal; parasympathetic activity increases, while sympathetic decreases. This results in relaxation of the internal urethral sphincter followed shortly by contraction of the bladder detrusor, an increase in bladder luminal pressure and urination.

3.1.4. **Signalling in the urothelium and lamina propria**

Nervous innervation extends beyond the detrusor muscle with evidence of unmyelinated C - fibres located in the lamina propria at close proximity to the urothelium. These nerve fibres can synthesise a number of neurotransmitters and express a wide range of receptors including muscarinic and purinergic receptors. In addition, they are known to respond to mediators released from
cells in response to inflammation, injury and ischaemia including prostaglandins, serotonin and ATP23.

There is now considerable evidence that cells in the urothelium and lamina propria can modulate, and be modulated by these sensory pathways23,27. Urothelial cells express a variety of receptors and ion channels allowing them to be modulated by mechanical and chemical inputs from a variety of sources27–31. In addition to muscarinic receptors (Section 3.1.5.3)32–36, examples include nicotinic receptors37, purinergic receptors38–40 and adrenoceptors41,42. Suggested mechanical inputs include changes in intravesical pressure and tension/torsion in the bladder wall during filling. Chemical inputs include factors found in the urine such as epidermal growth factor or mediators such as ACh, adenosine and noradrenaline released from sympathetic nerve terminals, inflammatory cells and blood vessels23,27. These inputs can cause various outputs from the urothelium such as the secretion of ATP, ACh, prostaglandins, prostacyclin, nitric oxide and cytokines23. It is believed that through paracrine signalling these outputs allow functional processes to occur in nearby and underlying cells and that this propagation can be enhanced by a number of stimuli including stretch of the bladder wall and states of pathological disease23,43–45.

3.1.5. Distribution of muscarinic receptors in the bladder wall

Five subtypes of muscarinic receptors (M\textsubscript{1} - M\textsubscript{5}) have been cloned and pharmacologically characterised46 and although all are expressed in the bladder wall, population density and subtype varies depending of the tissue layer in question.

3.1.5.1. Detrusor muscle

At the protein level, immunoprecipitation and radioligand binding studies have shown the human detrusor to express the M\textsubscript{1}, M\textsubscript{2} and M\textsubscript{3} but not the M\textsubscript{4} or M\textsubscript{5} subtypes35,47–49. In terms of population density the M\textsubscript{2} subtype predominates over the M\textsubscript{3} and M\textsubscript{1} subtypes representing ~ 70 %, 20 – 30 % and 10 % of the muscarinic receptor population respectively35,47. However, in all species investigated, it is the relatively minor population of M\textsubscript{3} receptors that mediate direct detrusor contractile responses49.

92
3.1.5.2. Lamina propria

The lamina propria contains a population of cells with similar morphology to the interstitial cells of Cajal (ICC) of the gastrointestinal tract. ICCs are found throughout the lamina propria, including just below the urothelium, and have been shown to form connections with afferent nerves. The function of the ICCs in the bladder is unclear. It has been suggested that they may play a role in sensory pathways, acting to regulate the contractile activity of detrusor. There is also evidence that ICC cell expression is up-regulated in bladder pathology such as OAB. Immunostaining has shown ICCs of the human bladder to express both M2 and M3 receptors.

3.1.5.3. Urothelium

All five subtypes of the muscarinic receptor are expressed by the human urothelium. Like the detrusor, at the protein level the M2 subtype appears to be the most highly expressed. Expression is urothelial cell layer dependent. In human urothelium M2 receptors are found exclusively in the umbrella cells, whilst M1 receptors are located solely in the lower basal layer. Conversely, the M3, M4 and M5 subtypes are expressed throughout the urothelium.

3.1.6. The mechanism of action of antimuscarinics in OAB

Traditionally, storage LUTS were believed to result from abnormal, involuntary detrusor contractions during the bladder filling (detrusor overactivity). Since antimuscarinics are effective in treating such symptoms and are established to be beneficial in OAB, their MOA was believed to be antagonism of the M3 muscarinic receptors in the detrusor muscle and subsequent inhibition of these involuntary contractions. However significant evidence now suggests this may not be the case and the MOA of antimuscarinics has come under scrutiny. Although it is well established that antimuscarinics reduce the symptoms associated with OAB, whether this is brought about by an inhibition in parasympathetic mediated detrusor contraction is unclear. Finney et al conducted a review of all articles containing cystometric data for both storage and voiding phases in OAB patients before and after antimuscarinic therapy. They found that although antimuscarinics significantly
improved the storage symptoms associated with OAB, they did not cause a significant reduction in detrusor muscle contraction. In agreement, although at high doses antimuscarinics can inhibit detrusor contraction during voiding and as such cause retention, the likelihood of this occurring at clinical doses is low12,60. Some have made the point that the common antimuscarinics prescribed for OAB such as oxybutynin, tolteradine and solifenacin are competitive antagonists and therefore their effectiveness should be reduced during times of significant ACh release, such as during micturition57. During bladder filling the parasympathetic switch is off (there is no parasympathetic outflow form spinal cord / no activity in the parasympathetic nerves innervating the detrusor) and post - junctional muscarinic receptors in the detrusor are presumably inactive17. Therefore the ability of antimuscarinics to improve storage symptoms is unlikely to be explained exclusively by antagonism of the parasympathetic - controlled, ACh - activated M\textsubscript{3} receptors of the detrusor61.

\subsection*{3.1.6.1. Afferent mechanisms of antimuscarinic drugs}

Kim \textit{et al} investigated the possibility that antimuscarinic agents improve OAB symptoms by inhibiting sensory pathways62. When instilled intravesically at a concentration of 0.167 mg ml-1, oxybutynin significantly increased bladder capacity, intercontraction interval and pressure threshold (indicators of bladder storage function) without decreasing detrusor contractility in the normal rat bladder62. Instillations were retained for short periods of time (~ 30 min) and cystometric effects observed immediately after emptying. The authors therefore attributed the effects of oxybutynin to a local action on muscarinic receptors in the urothelium or lamina propria rather than the underlying detrusor muscle62. The MOA was suggested to be desensitisation of afferent C - fibres. This agrees with previous work showing that intravesical oxybutynin desensitises C - fibre afferents in the rat bladder1. In a different study Iijima \textit{et al} showed that systemic administration of the M\textsubscript{3} antagonist darifenacin reduced afferent activity induced by bladder filling in the normal bladder63.

There is evidence that in patients with OAB, the M\textsubscript{2} and M\textsubscript{3} receptors on the suburothelial ICCs exhibit increased immunoreactivity36,50. This increased immunoreactivity has been correlated with patient urgency, suggesting a role for these receptors in the underlying aetiology of urgency13,36. Although the
parasympathetic switch is off during filling, the bladder exhibits spontaneous (myogenic) contractions of the detrusor12. This is believed to be reinforced by neuronal and non-neuronal mediators and helps the bladder exhibit tone during filling64–66. It is suggested that this myogenic activity can modulate afferent signals65 and that in OAB these signals may be enhanced12,67. In addition to the detrusor, it has recently been shown that isolated porcine mucosa exhibits spontaneous phasic contractile activity that is increased during stretch68. Contractions appear to be ACh mediated through M\textsubscript{3} muscarinic receptors and clinically used antimuscarinics were shown to depress this activity68.

Evidence suggests therefore that in OAB, antimuscarinics might elicit their effects not by decreasing direct contractility of the detrusor muscle, but rather by modifying afferent mechanisms in the storage phase12,69.

3.1.6.2. Pharmacology underlying bladder afferent pathways

The pharmacology underlying afferent modulation in OAB is thought to centre on two intertwined mediators; ATP and ACh (Figure 3.2). During filling, stretch of the bladder wall results in ATP release from urothelial cells70–72. The concentration of ATP in voided urine correlates strongly with voided volume, suggesting ATP is released in an incremental fashion in response to bladder wall stretch73. In comparison to the normal bladder, ATP release is significantly increased in detrusor overactivity74 and interstitial cystitis / painful bladder syndrome75,76 suggesting a functional role in bladder pathology. ATP released from the urothelium can directly activate afferents in the mucosa through P2X3 receptors, resulting in the increased firing associated with bladder filling16,72,77,78. ATP can also activate purinergic receptors (P2X\textsubscript{79} or P2Y\textsubscript{80}) on ICCs, indirectly activating closely associated afferent nerves81–83 and subsequently amplifying afferent firing during bladder filling84,85.

The urothelium is also capable of synthesising ACh86,87 and bladder stretch is associated with non-neuronal ACh release from the urothelium88,89. OAB seems to be associated with an increased release of ACh during the storage phase suggesting the mediator contributes to the pathophysiology of the disorder12. Interestingly basal and stretch-induced urothelial ACh release increases with age and is significantly higher in those aged > 65 years86. It is unclear whether muscarinic
receptor expression or function changes with age12, however it would appear clinical response to antimuscarinics does not differ in older patients90,91. Up regulation of urothelial muscarinic receptors appears to be involved in the aetiology of bladder disorders92,93. However, despite some evidence that mucosal M\textsubscript{2} and M\textsubscript{3} receptor functionality is altered in OAB36, no consistent changes in muscarinic receptor function have been attributed to the condition12.

Figure 3.2. The suggested mechanism of cholinergic signalling in the bladder wall and proposed MOA of antimuscarinics in modulating afferent activity. Figure adapted from Mansfield et al13.
Intravesical administration of muscarinic agonists has been shown to increase afferent excitability in vivo62,94,95. These effects were attributed to muscarinic receptor activation and the subsequent ATP-mediated activation of purinergic receptors on afferent nerves. The location of these muscarinic receptors was believed to be the urothelium or underlying lamina propria62,95. In agreement, antimuscarinics have been shown to inhibit bladder afferent excitation. Systemically administered oxybutynin inhibits A\(\delta\) and C-fibre afferent firing during bladder filling72 and long term administration is associated with decreased afferent nerve activity96. Antimuscarinics are thought to improve bladder capacity by inhibiting C-fibre afferents; intravesical tolteradine increased bladder capacity in non-resiniferatoxin pre-treated rats, but had no effect in those that had received the C-fibre desensitising toxin97. In addition intravesical oxybutynin significantly reduced bladder C-fibre afferent response to intravesical pressure and volume1. Kullmann et al found activation of muscarinic receptors located in the apical cells of the urothelium leads to modulation of afferent C-fibres which in turn alters the frequency of reflex voiding95. Yokoyama showed that intravesically induced hydrodistention of the bladder leads to increased intravesical concentrations of urothelial-released ATP and that antimuscarinics significantly suppressed this increase98. Indeed it has recently been confirmed that M\(2\) and M\(3\) muscarinic receptor antagonism inhibits stretch-induced ATP release from the bladder mucosa, further suggesting urothelial muscarinic receptor involvement in the MOA of antimuscarinics in bladder pathology99. In addition to the urothelium, the M\(2\)-M\(4\) subtypes of muscarinic receptor are found on bladder afferent nerves100; raising the possibility that ACh (like ATP) may directly activate afferent nerves in the mucosa101. Interestingly, activation of M\(2\) receptors in the bladder urothelium by the muscarinic agonist carbachol leads to release of ‘urothelial derived inhibitory factor’ (UDIF), which directly inhibits detrusor muscle contractions102-105.

The exact MOA through which antimuscarinics inhibit afferent firing in the bladder wall is still uncertain. However the evidence strongly suggests mucosal muscarinic receptors are integral to the process. Based on the pharmacology elicited, a MOA has been suggested (Figure 3.2)12,13,101. During filling the bladder wall stretches and releases ATP and ACh. ACh may activate muscarinic receptors in the
urothelium leading to the release of more ATP95,99. ATP and ACh can modulate afferents indirectly through activation of purinergic and muscarinic receptors on ICCs. In addition ATP and ACh can activate afferent nerves directly through P2X3 and M\textsubscript{2} / M\textsubscript{3} receptors located on afferent nerves. Afferent firing then initiates the micturition reflex and / or enhances the spontaneous (myogenic) contractile activity of the detrusor which occurs during filling13. Therefore the MOA of antimuscarinics in OAB is believed to be the competitive antagonism of the mucosal muscarinic receptors, although the exact location of these targets (urothelium, suburothelial ICCs, suburothelial afferent nerves) is unknown. It is postulated that after oral administration, antimuscarinics reach the mucosa through the plexus of blood vessels located in the lamina propria or via drug excreted in the active form in the urine13,106.

Therefore on the basis of growing evidence suggesting the antagonism of muscarinic receptors in the bladder mucosa is the MOA for antimuscarinics in OAB, it would seem probable that locally delivered drug might lead to improved clinical outcomes.

\textbf{3.1.7. Clinical use of Intravesical oxybutynin}

Although oral antimuscarinics are first - line pharmacotherapy for OAB, for some patients they are unsuitable either due to insufficient suppression of detrusor overactivity12 (up to 45 \% of patients discontinue treatment owing to a lack of efficacy107) or the experience of significant adverse effects such as dry mouth, constipation and blurred vision108-110. For such patients, conservative management with intravesical oxybutynin is an option108. In the late 1980's Kato \textit{et al} documented the first investigation into the IDD of oxybutynin using an \textit{in vitro} rabbit bladder model111. They suggested that the local delivery of antimuscarinics might be advantageous in the treatment of neurogenic bladder, especially for patients already managed by clean intermittent catheterisation. Since then a wealth of evidence has documented intravesical oxybutynin to be not only highly efficacious in increasing mean bladder capacity and decreasing mean maximum filling pressure, but also to be well tolerated and associated with less adverse effects than its oral counterpart112-124. Although more commonly reported in neurogenic patients, the efficacy of intravesical oxybutynin extends also to the non
neurogenic population125–127. In most reports intravesical oxybutynin is administered in doses between 0.2 and 0.6 mg kg-1 day-1 divided over two or three instillations108,128. Tolerability studies have shown this can be further increased to 0.9 mg kg-1 day-1 without causing toxicity124.

The mechanism underlying the improved adverse effect profile of intravesical oxybutynin compared to oral delivery is well understood. When administered orally, oxybutynin undergoes rapid hepatic metabolism into its major oxidative metabolites N – desethyl - oxybutynin and oxybutynin N - oxide (Figure 3.3)129. The reduced adverse effects of intravesical oxybutynin are attributed to reduced first - pass metabolism and subsequently lower systemic levels of N – desethyl - oxybutynin122,129. Subsequently significant work has focused on post - intravesical pharmacokinetics and the systemic levels of oxybutynin and N – desethyl - oxybutynin achieved128–132. However to our knowledge only one study has investigated bladder wall concentrations achieved after the local application of oxybutynin to the urothelium133. Furthermore results from this study detailed only average, rather than tissue - layer specific, drug concentrations for the bladder wall. Given the development in the understanding of the MOA, it would seem pertinent to investigate the concentrations of oxybutynin achieved in the different layers of the bladder wall.

This chapter reports a more detailed analysis of oxybutynin concentrations achieved in the urothelium, lamina propria and detrusor muscle after intravesical delivery to ex vivo porcine bladder. Crucially dilution by urine from the kidneys is accounted for.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chemical_structures.png}
\caption{The chemical structures of N – desethyl - oxybutynin (A) and oxybutynin – N - oxide (B).}
\end{figure}
3.1.8. **Aims and Objectives of Chapter Three**

The overall aim of this section of work was to investigate the transurothelial permeability and bladder wall distribution of oxybutynin chloride after intravesical delivery in an *ex vivo* setting.

The key objectives were:

1. To investigate the bladder wall permeability of oxybutynin and generate an apparent transurothelial K_P value using the Franz - type diffusion apparatus.

2. To investigate the tissue - layer specific concentrations of oxybutynin achieved in the bladder wall after intravesical delivery of a clinically relevant dose.

3. To incorporate urine dilution into the *ex vivo* IDD studies and investigate the effect this has on drug concentrations achieved in the bladder wall.
Chapter Three: Oxybutynin

3.2. Materials and methods

3.2.1. Materials

All chemicals were purchased from Sigma - Aldrich, Poole, UK and were used as received unless otherwise stated. All organic solvents were of HPLC grade and were obtained from Fisher Scientific, Loughborough, UK unless otherwise stated.

3.2.2. Analysis of oxybutynin chloride

Oxybutynin was quantified using a Quattro liquid chromatography - tandem mass spectrometer (Waters, Elstree, Herts, UK) coupled to a Thermo Spectra System using a HPLC column (Section 2.2.2). The mobile phase consisted of 50 % aqueous formic acid (0.1 %) : 50 % ACN. The injection volume was 10 µl and flow rate 0.4 ml min⁻¹. Positive ion mass spectrometry was used for the detection, with single ion monitoring for the parent ion between 357.5 and 358.5 m / z.

3.2.3. Bladder tissue preparation

Porcine bladder tissue was prepared as previously described (Section 2.2.5). To one group of bladder tissue samples the urothelium was removed prior to loading in the Franz - type diffusion cells (urothelium denuded group). The other group were untreated (intact urothelium group).

3.2.3.1. Removal of the urothelium

After cutting the bladder tissue into sections, a cotton swab was rolled across the entire surface of the urothelium. Following this an additional cotton swab, this time dipped in Krebs, was used to gently wipe the urothelial surface. The tissue was then gently rinsed with Krebs to remove any debrided urothelial cells.

3.2.4. Permeation of oxybutynin across the urothelium

Bladder tissue sections were loaded in Franz - type cells (Section 2.2.5) and a 750 µl aliquot of oxybutynin chloride (0.167 mg ml⁻¹ in deionised water) applied to the donor chamber. At fixed time points (20, 40 and 60 min) the Franz - type cells were disassembled (Section 2.2.7.1). Tissue samples were immediately snap frozen, fixed with OCT and sectioned using a cryostat (Section 2.2.7.2). Tissue
sections between 0 and 250 µm (urothelium) were collected individually for analysis. Four tissue sections between 250 and 1,050 µm (upper lamina propria) and 10 sections between 1,050 and 1,550 µm (lower lamina propria) were collected and pooled for analysis. Similarly ten tissue sections between 1,550 and 3,550 µm (detrusor muscle) were collected and pooled for analysis. The slight difference between tissue layer depths compared to the ketorolac study (Section 2.2.7.2) was based on histological analysis of the bladder samples used in this study (Section 3.2.6). The decision to collate 10 sections for the lower lamina propria was the result of preliminary experiments (in rare cases drug concentrations approached the LLOD when collating only four sections).

Drug was extracted in 0.75 ml mobile phase (Section 2.2.6.1) and the amount of oxybutynin in the bladder wall at each time point quantified using HPLC - MS (Section 3.2.2). Average tissue concentrations achieved in the urothelium, lamina propria and detrusor muscle were determined as described (Section 2.2.7.2).

3.2.5. Intravesical instillation of oxybutynin

Ex vivo porcine bladders were prepared as described (Section 2.2.5), however this time bladders were not cut open. Working in a shallow bed of Krebs, both ureteral orifices were sutured (0.5 cm apical to the serosal side of the bladder) and using an open - ended ureteral catheter (5 Fr, 70 cm, Cook medical Inc, Bloomington, IN, USA) 30 ml of oxybutynin chloride solution (0.167 mg ml⁻¹ in deionised water) instilled into the bladder through the urethra. Care was taken to avoid contact with the urothelial surface and post - instillation the urethra sutured around the catheter prior to its retraction. Bladders were submerged in oxygenated Krebs and maintained at 37 °C in a waterbath (Figure 3.4). To one group of bladders, the ureteral catheter remained *in situ* and 37 °C artificial urine (composition: NaCl 105.5 mM, NaH₂PO₄ 3.2 mM, Na₃C₆H₅O₂H₂O 3.2 mM, MgSO₄ 3.9 mM, CaCl₂ 4.0 mM, Na₂SO₄ 17 mM, KCl 64 mM, Na₂C₂O₄ 0.3 mM and NaNO₃ 1.0 mM, pH 5.8¹³⁴) was introduced at a rate of 10 ml every 10 min for the duration of the experiment. After 60 min bladders were removed, emptied and opened with a vertical incision along the length of the organ. Samples of bladder wall from areas of drug contact were excised, sectioned and drug extracted and quantified as described (Section 3.2.4).
Figure 3.4. Schematic of the whole bladder setup used to investigate the intravesical instillation of oxybutynin.
3.2.6. Histology

Samples of bladder tissue were taken from: A.) bladders excised immediately post-sacrifice on-site at the abattoir, B.) bladders exposed to 60 min of oxybutynin instillation and C.) bladders before and after urothelial removal. Sections were fixed in 4% buffered formaldehyde (Fisher Scientific UK Ltd, Leicestershire, England) for 48 h at room temperature. Tissues were embedded in paraffin, sectioned at 10 μm thickness and stained with Masson’s trichrome prior to examination under light microscopy (Table 3.1).

<table>
<thead>
<tr>
<th>Step</th>
<th>Slide treatment</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Xylene</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Xylene</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>100 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>100 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>95 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>70 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Running tap water</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Iron alum</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Running tap water</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Mayer’s haematoxylin</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Running tap water</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Ponceau Fuchsin</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Running tap water</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Phosphomolybdic acid (1 %)</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>Light Green SF Yellowish</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Running tap water</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Acetic acid (1 %)</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Running tap water</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>95 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>100 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>100 % alcohol</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>Xylene</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>Xylene</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 3.1. Stepwise description of the Masson’s trichrome staining protocol.
3.2.7. Statistical analysis

All statistical analysis was performed using GraphPad Prism version 6.0c (GraphPad Software, Inc, San Diego, California, USA). Unpaired t-tests were used for all comparisons.

3.3. Results and Discussion

It is well established that intravesical oxybutynin is beneficial for the treatment of OAB in patients refractory to oral treatment112--124, although the MOA remains unclear12. Furthermore, the last decade has seen significant advancement, and a major change in direction, regarding our understanding of the MOA of antimuscarinics as a whole. Originally believed to act by inhibiting M\textsubscript{3} muscarinic receptors in the detrusor muscle and subsequently preventing involuntary bladder contractions during filling, there is now significant evidence that antimuscarinics activate muscarinic receptors at the urothelial and/or suburothelial level to modulate the afferent arc of the micturition cycle12,13,57. This hypothesis may explain the increased effectiveness of intravesical oxybutynin considering relatively high concentrations of drug are presented to the urothelium in comparison to the low bladder bioavailability after oral dosing. Considering this, bladder wall concentrations achieved after intravesical delivery of oxybutynin are valuable in ascertaining target concentrations necessary to modulate sensory pathways. Additionally, quantifying drug concentrations in the different layers of the bladder wall may provide more information regarding the site of action of antimuscarinics. A recurring limitation to understanding the pharmacological site of action of antimuscarinics has been not knowing the depth of penetration of drug after direct application to the urothelium58,62,133,135. This is particularly relevant to antimuscarinics as studies have shown muscarinic receptor subtype distribution to vary depending on the cell layer of the urothelium (Section 3.5.1.3)33. Concentration-depth profiling (Section 2.3.3.2) is becoming an established technique to quantify drug disposition in the bladder wall and has been used to investigate the local delivery of chemotherapeutics136,137. Such studies have not been carried out for antimuscarinics. This chapter aimed to quantify
concentrations of oxybutynin achieved in the different layers of the bladder wall following intravesical administration.

Intravesical oxybutynin is usually administered in doses ranging between 0.2 and 0.6 mg kg\(^{-1}\) day\(^{-1}\) (Section 3.1.7)\(^{108,128}\). Unfortunately, translating this dose into an instillation concentration was difficult. There is no suitable, commercially available intravesical oxybutynin solution and subsequently clinicians have improvised their own instillations. A range of preparation techniques (crushing oxybutynin tablets\(^{112,114}\), formulating solutions from pure oxybutynin chloride salt\(^{123,138}\), concentrations (ranging from 0.05\(^{139}\) to 1 mg ml\(^{-1}\)\(^{128}\)) and vehicles (water\(^{117,140–143}\), 0.9 % saline\(^{114,122}\), 0.45 % saline\(^{131,139}\), 0.1 % hyaluronic acid\(^{144}\), 1 % hydroxypropylcellulose (HPC)\(^{145,146}\)) have been used (Table 3.2). In their review of intravesical oxybutynin, Lose and Nergaard commented that most investigators crush and dissolve a single 5 mg oxybutynin chloride tablet in 30 ml of distilled water (making a 0.167 mg ml\(^{-1}\) solution)\(^{127}\). Despite the range of concentrations reported, many groups have used this or similar\(^{112,130,147}\). Accordingly a 0.167 mg ml\(^{-1}\) solution was used in this study. Like many intravesical therapies oxybutynin is commonly instilled for ~ 1 h\(^{148,149}\). Given this a 60 min endpoint was chosen.
<table>
<thead>
<tr>
<th>Dose (mg kg⁻¹)</th>
<th>Dose (mg)</th>
<th>Vehicle</th>
<th>Volume (ml)</th>
<th>Concentration (mg ml⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>5</td>
<td>Saline</td>
<td>20, 30</td>
<td>0.25, 0.167</td>
<td>112</td>
</tr>
<tr>
<td>0.1, 0.2, 0.3</td>
<td>5, 10, 15</td>
<td>Saline</td>
<td>20</td>
<td>0.25, 0.5, 0.75</td>
<td>124</td>
</tr>
<tr>
<td>0.1 - 0.2</td>
<td>NR</td>
<td>Water</td>
<td>10</td>
<td>NR</td>
<td>143</td>
</tr>
<tr>
<td>NR</td>
<td>5, 15</td>
<td>Saline</td>
<td>100</td>
<td>0.05, 0.15</td>
<td>131,139</td>
</tr>
<tr>
<td>NR</td>
<td>5</td>
<td>Water</td>
<td>30</td>
<td>0.167</td>
<td>130</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
<td>Water</td>
<td>10</td>
<td>0.5</td>
<td>138</td>
</tr>
<tr>
<td>NR</td>
<td>10</td>
<td>Saline</td>
<td>10</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>NR</td>
<td>5</td>
<td>1 % HPC</td>
<td>10</td>
<td>0.5</td>
<td>145</td>
</tr>
</tbody>
</table>

Table 3.2. Examples of different intravesical oxybutynin solutions used clinically (NR – not reported).
3.3.1. Analysis of oxybutynin chloride

Oxybutynin was quantified by HPLC - MS (Section 3.2.2). The LLOD and LLOQ was 0.9 and 3 ng ml\(^{-1}\) respectively. Quantitation was calculated using an external standard solution (Section 2.3.3.1) ranging in concentration from 0.0017 to 1.7 µg ml\(^{-1}\). Calibration curves showed high linearity across the expected analyte concentration range (Figure 3.5). MS analysis of drug in homogenised bladder tissue significantly reduced background noise otherwise present in UV analysis (Figure 3.6A) enabling good precision around the LLOQ (Figure 3.6B).

![Graph](image)

y = 3.544x
R^2 = 0.9999

Figure 3.5. Example of an external standard calibration curve used in the HPLC - MS analysis of oxybutynin chloride.
Figure 3.6. Representative UV (A) and relative abundance (B and C) traces from the HPLC - MS analysis of oxybutynin chloride (~ 5 ng ml$^{-1}$).
3.3.2. Evaluation of the delivery of oxybutynin to the bladder wall

3.3.2.1. Permeation of oxybutynin across the urothelium

Over the 60 min investigated, oxybutynin permeated into the bladder wall in a linear fashion with an apparent K_p value of 1.36×10^{-05} cm s$^{-1}$ (Figure 3.7A). Mass balance studies showed that on average 94 % of the applied oxybutynin dose was recovered per diffusion cell with > 90 % recovered from the donor chamber (Figure 3.7B). Concentrations achieved in the urothelium, lamina propria and detrusor muscle generally increased with time with the exception being the slight decrease between the 40 and 60 min timepoints in the lamina propria layer (Figure 3.8A). Oxybutynin concentrations in the detrusor muscle (more clearly visible in Figure 3.8B) were 0.27, 0.82 and 1.77 µg g$^{-1}$ after 20, 40 and 60 min respectively.
Figure 3.7. Results of the oxybutynin chloride transurothelial permeation study. A) Transurothelial permeation of oxybutynin into the bladder wall over 60 min. An apparent Kp of 1.36×10^{-6} cm s$^{-1}$ was calculated by normalising the flux (J, µg cm$^{-2}$ s$^{-1}$) to the dosing concentration (167 µg ml$^{-1}$). B) Mass balance analysis showing the percentage recovery of oxybutynin from the Franz - type cell apparatus per sampling timepoint. (n = 4 bladders ± SD).
Figure 3.8. Results of the oxybutynin chloride transurothelial permeation study continued. A) Average oxybutynin concentrations achieved in the urothelium, lamina propria and detrusor muscle after 20, 40 and 60 min. B) Average oxybutynin concentrations achieved in the detrusor muscle after 20, 40 and 60 min. (n = 4 bladders ± SD).
Di Stasi et al investigated the overall bladder wall concentration achieved after the application of oxybutynin to *ex vivo* human bladder tissue\(^{133}\). In comparison to this work, the study used a lower concentration of oxybutynin (45 µg ml\(^{-1}\)) and drug was applied for a shorter period of time (15 min). Consequently direct comparisons to overall drug concentrations achieved in the bladder wall are of little value. However Di Stasi et al do report an apparent transurothelial flux and from this an apparent transurothelial \(K_p\) value can be derived according to the equation

\[
k_p = \frac{J}{\Delta C}
\]

where \(K_p\) is the apparent transurothelial permeability coefficient (cm s\(^{-1}\)), \(J\) is the apparent transurothelial flux (mg cm\(^{-2}\) s\(^{-1}\)) and \(\Delta C\) is the dosing concentration of oxybutynin applied to the donor chamber of the diffusion apparatus at time zero.

\(K_p\) values are more comparable than tissue concentrations or flux values as they are normalised to the concentration of oxybutynin applied to the urothelium. From a reported flux value of 0.16 µg cm\(^{-2}\) min\(^{-1}\), an apparent transurothelial \(K_p\) value of 5.93 \(\times\) 10\(^{-05}\) cm s\(^{-1}\) was determined. This is higher than the \(K_p\) value determined in this study (1.36 \(\times\) 10\(^{-05}\) cm s\(^{-1}\), Figure 3.7A). Using their \(K_p\) value, a simulation was created to display the predicted permeation of oxybutynin in the Di Stasi study compared to this study had the concentration applied to the urothelium been the same (0.167 mg ml\(^{-1}\)) (Figure 3.9). The predicted profile helps visualise the difference in permeation rate reported by the two studies.
Figure 3.9. Predicted transurothelial permeation profiles of oxybutynin chloride over 60 min. Dosing concentration at time zero is assumed to be 0.167 mg ml\(^{-1}\) for both studies. Apparent transurothelial K\(_P\) values were calculated experimentally for this work (Figure 3.7A) and extracted from the literature for Di Stasi et al\(^{133}\).

A possible explanation for the disparity in the values reported concerns the integrity of the urothelial barrier. Histological analysis of their ex vivo bladder tissue shows an eroded urothelium consisting of only basal cells and an absence of the superficial umbrella cells fundamental to barrier function (Figure 3.10). Although the value extracted from the Di Stasi study is > 4 fold greater than that determined in this study, they are ‘similar’ in that they are both markedly higher than that calculated for ketorolac (2.63 x 10\(^{-6}\) cm s\(^{-1}\), Section 2.3.3.2). Interestingly in guinea pigs, oxybutynin has been shown to significantly increase bladder permeability to technetium compared to phosphate buffered saline (~ 5 fold increase in permeability)\(^{150}\). It is suggested that oxybutynin, a tertiary amine, increases permeability by inactivating the GAG layer in a similar fashion to the mechanism of the quaternary amine protamine. Disruption of the GAG layer could explain the high K\(_P\) value although it should be noted that the concentration of oxybutynin used in that study (5 mg ml\(^{-1}\)) was ~ 30 fold greater than this study (0.167 mg ml\(^{-1}\)).
In this chapter a new technique to selectively remove the urothelium was investigated. Histological analysis showed the urothelium was successful removed using a cotton swap (Figure 3.11B). In comparison to the same bladder tissue prior to removal (Figure 3.11A), the majority of the urothelium is absent with only basal cells remaining in the natural folds of the tissue layer. Despite urothelial removal, the lamina propria is still intact and of normal morphology. This technique was a modified version of one which has been shown effective in selectively removing rat urothelium151. Porcine urothelium is thicker than that of the rat152 and therefore a more vigorous process was employed. Ideally no urothelial cells would be left intact after the process, however considering the natural folds of the urothelium this may be unrealistic. The cells that remained in the folds were characteristic of the lower, basal urothelial cells and not the superficial umbrella cells believed to be responsible for the barrier function of the urothelium. It is reasonable therefore to assume they provide a lesser barrier to that of an intact urothelium. Indeed this appears to be the case as urothelial removal resulted in a higher rate of permeation into the detrusor muscle, although this was not considered statistically significant (Figure 3.11D). Subsequently higher detrusor muscle concentrations of oxybutynin were achieved at each time point investigated (Figure 3.11C).
Although investigating detrusor concentrations in the denuded urothelium bladder may not have clinical relevance, it does provide a negative control for assessing the intactness of the urothelial barrier in our standard, urothelial intact samples. If there were damage to the urothelium in the non-denuded samples then you would not expect to see any difference in the rate of detrusor permeation or the concentrations achieved in this layer. Additionally histological validation of urothelial removal shows this to be a useful technique for removing porcine urothelium. Whilst this has been shown to be an effective technique in rats, groups using porcine bladder often resort to surgically removing the whole mucosa102.

Figure 3.11. Photomicrograph of Masson’s trichrome stained porcine bladder tissue before (A) and after (B) removal of the urothelium. Images A and B taken from the same bladder with 50 x magnification (scale bar represents 500 µm). C) Average oxybutynin concentrations achieved in the detrusor muscle of bladder tissue with and without the presence of an intact urothelium. D) Permeation of oxybutynin into the detrusor muscle after application to the surface of bladder tissue with and without the presence of an intact urothelium. (n = 4 bladders ± SD).
The advantage of the conservative technique used here is that an intact lamina propria remains (Figure 3.11B).

3.3.2.2. Intravesical instillation of oxybutynin

The intravesical delivery of oxybutynin was investigated in a whole bladder model. Whilst applying drug solution to the surface of bladder tissue sections (the Franz-cell setup) is a valid way of investigating urothelial permeability, it is not truly representative of IDD where urine production constantly dilutes the instilled dose. By using a whole bladder model we were able to incorporate this variable and additionally instil the same volume of drug solution used clinically (30 ml). Using a ureteral catheter, artificial urine was instilled at a rate of 10 ml every ten min (1 ml min\(^{-1}\)) for the duration of the 60 min experiment. This is an accepted rate of human urine production\(^{153}\). Ideally urine would have been instilled every minute rather than every ten minutes, however this was not feasible with the experimental setup available. Future iterations could employ a pre-loaded syringe driver set at a rate of 1 ml min\(^{-1}\). Artificial urine was prepared from an established recipe, which mirrors the salt content, pH and isotonicity of human urine\(^{134}\).

Concentration - depth profiles (Figures 3.13 - 14) were typical of those generated for other drugs with the majority of drug sequestered in the superficial urothelium (Section 2.3.3.2)\(^{154}\). Bladder sectioning using the cryostat was consistent with no significant differences in average tissue layer weights between bladders instilled with standard or continually diluted with artificial urine oxybutynin solution (p > 0.05, Figure 3.12B).
Figure 3.12. A) Representative photograph of the cryostat in use. In this example porcine bladder tissue is being sectioned at the detrusor muscle level. B) Mean total weights of bladder wall tissue layers sectioned from bladders instilled with standard and continually diluted with artificial urine oxybutynin solution. (n = 10 tissue samples from 2 bladders ± SD).
Average tissue concentrations of 298.7, 43.7, 0.93 and 25.8 µg g⁻¹ were achieved in the urothelium, lamina propria, detrusor muscle and whole bladder wall respectively (Figure 3.15, blue bars). The introduction of a physiological rate of artificial urine had a significant effect on the penetration of oxybutynin into the bladder wall. In comparison to the standard oxybutynin solution, lower concentrations of 102.7, 23.8, 0.56 and 10.1 µg g⁻¹ were achieved in the urothelium, lamina propria, detrusor muscle and whole bladder wall respectively (p < 0.05, Figure 3.15, yellow bars). Pharmacokinetic (PK) modelling of IDD has shown the production of urine decreases drug concentrations achieved in the bladder wall. It is therefore an integral part of the IDD process. Despite this, it is a physiological variable frequently absent from studies and to date no other groups have incorporated it experimentally into ex vivo bladder permeability studies.

For both solutions, drug - tissue concentrations achieved in the urothelium and lamina propria but not the detrusor muscle were greater than reported IC₅₀ values for oxybutynin in isolated detrusor muscle (2.27 µg g⁻¹, Figure 3.14); suggesting these concentrations are insufficient to significantly inhibit detrusor muscle contraction. This was the case at all depths of detrusor muscle investigated including sections located immediately beneath the lamina propria. This data suggests detrusor concentrations are not sufficient to justify an antimuscarinic MOA based exclusively on direct detrusor muscle inhibition. Furthermore, considering these studies are ex vivo, systemic drug clearance from the bladder wall is unaccounted for and therefore in vivo detrusor concentrations would likely be lower. These results agree with in vivo rat studies, which showed intravesical oxybutynin of the same concentration improved OAB symptoms without affecting detrusor muscle contractility.
Figure 3.13. Concentration-depth profile showing concentrations of oxybutynin achieved in the bladder wall following 60 min instillation with undiluted or continually diluted with artificial urine oxybutynin solution. ($n = 10$ tissue samples from 2 bladders ± SD).
Figure 3.14. Log concentration - depth profile showing concentrations of oxybutynin achieved in the bladder wall following 60 min instillation with undiluted or continually diluted with artificial urine oxybutynin solution (same data as Figure 3.13). IC_{50} value for oxybutynin is included156. (n = 10 tissue samples from 2 bladders ± SD).
Figure 3.15. Average oxybutynin concentrations achieved in the different layers of the bladder wall following 60 min instillation with undiluted or continually diluted with artificial urine oxybutynin solution. (*p < 0.05, calculated by unpaired t – test, n = 10 tissue samples from 2 bladders ± SD).
3.3.2.3. **Histology**

Landau *et al* investigated the effects of intravesical oxybutynin on the morphology of the bladder wall using an *in vivo* rabbit model157. Oxybutynin (3.5 mg ml\(^{-1}\) in saline) was instilled daily and animals sacrificed at 1, 10 and 30 days. The authors did not specify how long instillations were retained in the bladder. Post-sacrifice, bladder tissue was examined under light microscopy and assessed for inflammation by a blinded pathologist. Intravesical oxybutynin caused no harmful local effects to the bladder tissue, with the mild inflammation observed attributed to the effects of daily catheterisation (as the same was observed in the control group).

To assess any effects oxybutynin may have had on the gross morphology of the *ex vivo* porcine bladder tissue, sections from bladders instilled with oxybutynin solution were stained with Masson’s trichrome and compared to control samples excised immediately post-sacrifice (Figure 3.16). Masson’s trichrome is a three-colour stain used to distinguish cellular layers (nuclei stain black, whilst cytoplasm, keratin and muscle cells stain pink) from surrounding connective tissue (collagen stains blue). Compared to a standard H & E technique, Masson’s trichrome allows easy differentiation of the different bladder wall layers158,159.
Figure 3.16. Photomicrographs of Masson’s trichrome stained porcine bladder tissue taken from bladders excised immediately post-sacrifice (A), following 60 min instillation with standard (undiluted) oxybutynin solution (B) and following 60 min instillation with oxybutynin solution continually diluted with artificial urine (C). All images 50 x magnification (scale bar represents 500 μm).

In agreement with the aforementioned studies157, the histological results of the \textit{ex vivo} porcine bladder used in this study suggest no significant changes in the overall morphology of the tissue with intact, normal urothelium (pink) and lamina propria (blue) present in both the standard and urine diluted oxybutynin instillations (Figures 3.16B - C). Drug-treated sections are comparable to control sections taken on-site at the abattoir, immediately post-sacrifice of the animal (Figure 3.16A). The urothelium of the control bladder is slightly thicker than that of the drug-treated bladders, however it is well established that urothelial thickness varies not only between morphologically normal bladders of the same specie (the control section has to be taken from a different bladder to those used in the study) but also depending on bladder wall distension at the time of sectioning160. Additionally umbrella cells are present in photomicrographs of bladders instilled with oxybutynin solution (Figures 3.16B - C). In comparison to the histology
reported by Di Stasi et al (Figure 3.10)133, the \textit{ex vivo} bladder tissue used in this work displays a normal morphology with a complete, multi-cell layered urothelium.

\section*{3.4. Conclusions}

This chapter aimed to increase our understanding of the concentrations of oxybutynin achieved in the bladder wall after intravesical delivery. A detailed analysis of drug concentrations achieved in the urothelium, lamina propria and detrusor muscle is provided. Oxybutynin permeated the bladder wall more readily than other drugs previously investigated. Abrading the urothelium with a cotton swab has been shown an effective way of selectively removing porcine urothelium and one that may be beneficial for future studies. For the first time, urine dilution has been incorporated into \textit{ex vivo} permeability studies and its effect on concentrations achieved in the bladder wall shown. Concentration - depth profiles suggest oxybutynin concentrations achieved in the detrusor muscle after application of a clinically relevant intravesical dose are insufficient to directly inhibit bladder wall contraction. Consequently, these drug delivery studies add more weight to the growing argument that antimuscarinics exert their effects on the bladder wall through mechanisms other than direct detrusor inhibition. An inherent limitation of this study is that it did not concomitantly investigate detrusor muscle contractility with drug concentrations achieved in the bladder wall. We cannot therefore directly state that these concentrations are insufficient to inhibit detrusor muscle contraction. Ideally pharmacology groups will work hand in hand with drug delivery groups to achieve real time, functional concentration - depth profiles. This would elicit knowledge of \textit{in vivo} tissue concentrations, and therefore information regarding site of action, necessary to modulate afferent activity in the bladder wall.
3.5. Reference List

10. Milsom I, Abrams P, Cardozo L, Roberts RG, Thüroff J, Wein AJ. How widespread are the symptoms of an overactive bladder and how are they

Chapter Three: Oxybutynin

Chapter Four: Development of a Computer-Based Pharmacokinetic Model of Intravesical Drug Delivery
4.1. Introduction

4.1.1. Introduction to STELLA® modelling software

STELLA® (Structural Thinking Experimental Learning Laboratory with Animation, Isee systems Inc, New Hampshire, USA) is a computer program that facilitates the mapping, modelling, simulation, and communication of dynamic processes\(^1\). It allows users to build dynamic models of complex systems. A system can be interpreted as a process or mechanism, the functioning of which depends on multiple parts working together. As these parts change over time, so does the functioning of the system. By embedding advanced mathematical equations behind simple, diagrammatical building blocks, STELLA® offers a practical way to study the underlying processes of complex systems. Once built, models can be used to investigate the contribution of different variables to the system as a whole. The human body is arguably the most complex system of all and certainly one about which a great deal remains unknown. It follows that STELLA® is well suited to PK modelling and has become a valuable resource for doing so\(^2\). Examples include investigating the effect of antibacterial doses on bacterial resistance\(^3\), developing PK profiles of enteric coated tablets\(^4\) and modelling ocular permeation\(^5,6\). In this chapter STELLA® was used to create a PK model of IDD.

4.1.2. Modelling IDD

Despite its common use, little work has been undertaken to maximise the potential of IDD. From a practical aspect IDD is a simple technique. The underlying pharmacokinetics however are complex, with many variables contributing to the overall process. This chapter documents the development of a PK model that investigates these variables. A greater understanding will yield more insight into how these variables can be manipulated to maximise the potential of IDD. The model combines equations from PK / diffusion theory, physiological variables and experimentally determined values.
4.1.3. Aims and Objectives of Chapter Four

The aim of this chapter was to develop a computer-based PK model of IDD.

The key objectives were:

1. To build a PK model using STELLA® that combines key physiological variables with experimentally determined values to predict:
 - Changes in bladder volume
 - Concentrations of drug in the urine
 - Drug concentration - depth profiles in the bladder wall

2. To validate model outputs using an independent PK model built using PYTHON™ coding language.

3. Use the model to optimise existing IDD regimens.
4.2. Methods

4.2.1. STELLA®

STELLA® models are built diagrammatically using building blocks, each having a specific purpose. ‘Stocks’ represent accumulation. For example, a stock may calculate the collection of urine in the bladder. Stock levels are controlled by ‘flows’. Flows control the movement in and out of stocks, such as the passage of urine from the kidneys to the bladder. ‘Converters’ determine the rate at which flows alter stocks. Converters allow you to control how building blocks interact with one and other. They contain algebraic equations, input by the user, which allow variables to be calculated for a single point in time. For example, a converter will control the rate at which urine collects in the bladder. The frequency at which variables are calculated, known as the time - step (DT), is specified by the user. Changing the DT from 2 to 1 will double the rate at which calculations are performed. All model simulations in this work were performed with a DT value of 1 second.

4.2.2. Model construction

The PK model was constructed in a stepwise manner, with each step validated (Section 4.3) before advancing to the next. For clarity, STELLA® model schematics have been redrawn using Microsoft PowerPoint.
4.2.2.1. **Step 1: Transfer of drug from bladder lumen into the bladder wall**

The PK model was constructed as a multilayered diffusion model approximated by compartments (Figure 4.1). The model was initially designed to describe drug transfer between compartments in terms of ‘mass’ and later ‘concentrations’. A total of 18 compartments were used to describe; the bladder lumen (1 compartment), urothelium (5 compartments), lamina propria (5 compartments), detrusor muscle (6 compartments) and peritoneum (1 compartment) (Figure 4.2).

Figure 4.1. Schematic overview of the multilayered diffusion model. Drug is transferred between compartments according to equations 1 - 6. Drug is free to diffuse in both directions, e.g. C_1 to C_2 and C_2 to C_1 with the exception of the final detrusor muscle compartment (C_{16}) where movement is in the direction of the peritoneum (C_{perit}) only (sink conditions assumed). k is the drug transfer coefficient (s$^{-1}$) calculated according to equations 1 - 6.
Figure 4.2. Full schematic of the multilayered, 18-compartment diffusion model. The bladder lumen is represented by one compartment (C_{BL}), the urothelium by 5 compartments (C_1 - C_5), the lamina propria by 5 compartments (C_6 - C_{10}), the detrusor muscle by 6 compartments (C_{11} - C_{16}) and the peritoneum by one compartment (C_{Peri}). \(k \) is the drug transfer coefficient (s^{-1}) calculated according to equations 1 - 6.
Underlying equations

(i) **Bladder lumen**
At T = 0, all drug resides in the bladder lumen compartment (C_{BL}). Drug movement out of the bladder lumen and into the first compartment of the urothelium (C_1) is described by the equation

\[k_{BL,1} = \frac{K_{m1} \times D_1}{h_{BL} \left(\frac{h_1}{n_1} \right)} \]

where, \(k_{BL,1} \) is the transfer coefficient of drug into compartment C_1 (s^{-1}), \(K_{m1} \) is the partition coefficient of the drug between the urothelium and the bladder lumen (unitless), \(D_1 \) is the drug diffusion coefficient in the urothelium (cm^2 s^{-1}), \(h_{BL} \) is the effective thickness of the bladder contents (cm), \(h_1 \) is the thickness of the urothelium (cm), \(n_1 \) the number of compartments in the urothelium, \(V_{BL} \) is bladder lumen volume (cm^3) and \(A_{BL} \) is the surface area of the bladder lumen (cm^2).

(ii) **Urothelium**
Drug transfer between compartments of the urothelium (C_1 - C_5, C_5 - C_{BL}, bidirectional) is described by the equation

\[k_{i,i+1} \text{ or } k_{i+1,i} = \frac{D_1}{\left(\frac{h_1}{n_1} \right)^2} \]

where \(k_{i,i+1} \) is the transfer coefficient between adjacent urothelial compartments down the concentration gradient (e.g. C_2 to C_3) (s^{-1}) and \(k_{i+1,i} \) is the transfer coefficient against the concentration gradient (e.g. C_3 to C_2, C_1 to C_{BL}) (s^{-1}).
At the urothelium / lamina propria boundary (C₅ to C₆), drug transfer into the first compartment of the lamina propria (C₆) is described by the equation

\[
k_{5,6} = \frac{K_{m2}}{K_{m1}} \times \frac{D_2}{\left(\frac{h_1}{n_1}\right) \times \left(\frac{h_2}{n_2}\right)}
\]

where \(k_{5,6}\) is the transfer coefficient of drug from C₅ into C₆ (s⁻¹), \(K_{m2}\) is the partition coefficient of the drug between the lamina propria and the urothelium (unitless), \(D_2\) is the drug diffusion coefficient in the lamina propria (cm² s⁻¹), \(h_2\) is the thickness of the lamina propria (cm) and \(n_2\) is the number of compartments in the lamina propria.

(iii) Lamina propria

Drug transfer between compartments of the lamina propria (C₆ - C₁₀, C₁₀ - C₅, bidirectional) is described by the equation

\[
k_{i,i+1} \text{ or } k_{i+1,i} = \frac{D_2}{\left(\frac{h_2}{n_2}\right)^2}
\]

At the lamina propria / detrusor muscle boundary (C₁₀ to C₁₁), drug transfer into the first compartment of the detrusor muscle (C₁₁) is described by the equation

\[
k_{10,11} = \frac{K_{m3}}{K_{m2}} \times \frac{D_3}{\left(\frac{h_2}{n_2}\right) \times \left(\frac{h_3}{n_3 + 1}\right)}
\]

where \(k_{10,11}\) is the transfer coefficient of drug from C₁₀ into C₁₁ (s⁻¹), \(K_{m3}\) is the partition coefficient of the drug between the detrusor muscle and the lamina propria (unitless), \(D_3\) is the drug diffusion coefficient in the detrusor muscle (cm² s⁻¹), \(h_3\) is the thickness of the detrusor muscle (cm) and \(n_3\) is the number of compartments in the detrusor muscle.
(iv) **Detrusor muscle**

Drug transfer between compartments of the detrusor muscle (C\textsubscript{11} - C\textsubscript{16}, C\textsubscript{16} - C\textsubscript{10} bidirectional) is described by the equation

\[
 k_{i,i+1} \text{or} \ k_{i+1,i} = \frac{D_3}{\left(\frac{h_3}{(h_3 + 1)}\right)^2}
\]

(6)

Drug transfer into the peritoneum at the detrusor muscle / peritoneum boundary (C\textsubscript{16} to C\textsubscript{Perit}) is also described by equation (6). In the peritoneum there is no drug transfer back into the detrusor muscle as sink conditions are assumed.

Geometric assumption

The bladder exists in pseudo spherical geometry. The outer layer of the bladder wall (represented by C\textsubscript{16}) is further from the bladder lumen than the inner surface (represented by C\textsubscript{1}) and as such has a greater surface area (Figure 4.3A). To allow easier modelling, the model treats the bladder as if it were in flat geometry (Figure 4.3B). Although the model allows the thickness of each layer (urothelium, lamina propria and detrusor muscle) to be varied (h\textsubscript{1} - h\textsubscript{3}), the surface area of the different layers (A\textsubscript{BL}) is assumed constant. The switch from spherical to flat geometry assumes bladder wall thickness to be small relative to the bladder lumen surface area. Consequently any differences between the surface area of the inner and outer bladder wall will be small, allowing easier modelling of the bladder. This assumption was investigated:

Consider a bladder with a maximum volume of 400 ml (a reasonable assumption seeing as the urge to void is usually initiated at \(\sim 300 - 400 \text{ ml}^8\)). Assuming the bladder to be spherical, the internal surface area can be calculated by the equation

\[
 A = 4\pi r^2 \quad \text{where,} \quad r = \left(\frac{3V}{4\pi}\right)^{\frac{1}{2}}
\]

(7)

where A is the luminal surface area of the bladder (cm2), r is the radius of the bladder lumen (cm) and V is the volume of the bladder lumen (cm3).
Using equation 7 the internal bladder surface area is calculated to be 262.5 cm2 and the radius 4.57 cm (Figure 4.3A). Bladder wall thickness is normally distributed around the bladder9 and has been shown to be 0.335 cm on average9. Assuming a constant bladder wall thickness (regardless of luminal volume), the radius of the external surface of the bladder is calculated as $4.57\text{ cm} + 0.335\text{ cm} = 4.905\text{ cm}$. The surface area of the outer surface of the bladder is therefore 302.3 cm2 (Figure 4.3A). There is a 15.1 % difference in the surface area of the bladder at the inner and outermost surface. This difference was considered acceptable for the purpose of this model.
Figure 4.3. Comparing the spherical geometry of the bladder (A) with the flat geometry assumed in the multi-compartment PK model (B). With a luminal volume of 400 ml, the outer layer of the bladder has a greater surface area (302.3 cm²) than the inner surface (262.5 cm²) (A). Under the flat geometry assumption, this 15.1% difference is ignored and all layers of the bladder wall are considered to have a constant surface area (B).
4.2.2.2. Step 2: Incorporating drug clearance from the bladder wall

Once in the bladder wall, drug is cleared into systemic circulation by capillaries. The microvascular architecture of the human bladder has been characterised in fine detail by corrosion casting and subsequent SEM analysis. The bladder wall consists of two distinct capillary networks; the suburothelial capillaries located in the lamina propria and the muscular capillaries located in the detrusor. The urothelium does not contain a capillary network. Subsequently the PK model incorporates drug elimination from the lamina propria and detrusor muscle layers only (Figure 4.4). Eliminated drug collects in a separate compartment representing systemic circulation (C_{Blood}). The rate of drug elimination (k_{Elim}) is described by the equation

$$k_{Elim} = Q_B \times \rho$$

where k_{Elim} is the elimination rate constant (s$^{-1}$), Q_B is blood flow rate per gram of bladder tissue (ml s$^{-1}$ g$^{-1}$) and ρ is the density of bladder tissue (assumed to be 1 g ml$^{-1}$). The model assumes clearance to be solely blood flow limited and does not consider capillary resistance to the partitioning of drug into the bloodstream.

Figure 4.4. Schematic overview of the multilayered diffusion model with drug clearance from the lamina propria and detrusor muscle incorporated. k_E is the elimination rate constant from the bladder wall into systemic circulation (s$^{-1}$).
Blood flow to the human bladder during filling has been investigated using Doppler ultrasound11. As the bladder fills, blood flow steadily increases before slightly dropping once 100 % capacity is achieved. An average blood flow rate over the 0 – 100 % capacity range was used in the model (0.00102 ml s-1 g-1)11.

\textbf{4.2.2.3. Step 3: Incorporating urine dilution}

To closer mimic the IDD process, urine production by the kidneys and subsequent dilution of the instilled dose was incorporated into the PK model. Urine moves into the bladder lumen at a specified urine production rate (U_R). Urine accumulation in the bladder is described by the equation

$$V_{BL} = V_{BL}0 + (U_R \times t)$$

(9)

where V_{BL} is the volume in the bladder lumen (ml) at time t (min), $V_{BL}0$ is the volume in the bladder lumen at time zero (ml) and U_R is the urine production rate (ml min-1). A constant urine production rate of 1 ml min-1 (an accepted normal rate12) was used in the model.

\textbf{4.2.2.4. Step 4: Moving from a ‘mass’ to ‘concentration’ - based model}

To aid the design process, the STELLA® model was originally built to describe drug movement in terms of mass. However drug concentrations are more valuable when investigating the efficiency of intravesical regimens. Given tissue layer depth was already incorporated within the model, the switch from mass terms enabled the generation of predictive concentration - depth profiles. Concentration terms were generated by normalising the mass of drug in each compartment to the tissue weight of that compartment.
The concentration of drug in each compartment is described by the equation

$$
\text{conc}_i = \frac{M_i}{W_i}
$$

where \(\text{conc}_i\) is the concentration of drug in the compartment (mg g\(^{-1}\)), \(M_i\) is the mass of drug in the compartment (mg) and \(W_i\) is the compartment tissue weight (g).

4.2.2.5. Step 5: Allowing for multiple intravesical doses

The PK model was initially designed to represent the typical intravesical regimen; that is a single drug instillation voided after a set period of time (typically 1 - 2 h). This type of regimen design is largely empirical. Given the dilution effect urine will have on the instilled dose, a double dosing regimen may be advantageous. Double dosing refers to a secondary instillation of drug administered shortly after voiding of the primary dose. For example, two patients receive a 2 h intravesical regimen:

Patient #1

Patient 1 receives a single instillation of 50 ml drug solution (20 mg ml\(^{-1}\)) and is instructed to hold their bladder for 2 h (after which the dose is voided).

Patient #2

Patient 2 receives a single instillation of 50 ml drug solution (20 mg ml\(^{-1}\)). In this case the patient is instructed to hold their bladder for 1 h after which the dose is voided. Following a two - minute interlude to allow for dose reconstitution, a second 50 ml dose is instilled (20 mg ml\(^{-1}\)). Again the patient is instructed to hold their bladder for 1 h completing the 2 h intravesical treatment. Patient 2 has received two 50 ml doses over the 2 h treatment period.

4.2.2.6. Step 6: Incorporating post - void residual (PVR) volume

Post - void residual (PVR) volume describes the volume of urine remaining in the bladder immediately post - micturition. PVR volume can vary greatly; generally in adults it is close to zero (0.09 - 2.24 ml\(^{13}\)), however for diagnostic purposes < 50 ml and < 100 ml is considered normal when assessing urinary retention in young and elderly patients respectively\(^{14}\). Patients with lower urinary tract symptoms often
exhibit higher PVR values, sometimes > 100 ml15-17. Draining post-void residual urine with a catheter has been suggested to improve the efficacy of IDD18. However, the technique is not commonplace and even when performed may only reduce, rather than completely remove, residual urine18. Multiple catheter drains whilst repositioning the catheter and patient are usually required18.

To account for PVR volume in the bladder lumen, equation 9 was extended to the equation

\[
V_{BL} = V_{BL0} + (U_R \times t) \quad \text{where,} \quad V_{BL0} = V_{\text{Drug}} + V_{PVR}
\]

(11)

where \(V_{\text{Drug}}\) is the volume of drug solution instilled in the bladder (ml) and \(V_{PVR}\) is the PVR volume in the bladder at the point of drug instillation (ml).

4.3. Results and Discussion

Two PK models of IDD have previously been reported. Wientjes \textit{et al} used computer-based PK simulations19 to suggest an improved dosing strategy for the IDD of MMC18. Their model is based on MMC urine PK20 and bladder wall concentrations21 determined from \textit{in vivo} IDD studies. Suggested regimen improvements included minimising PVR volume, reducing the urine production rate and increasing the dose from 20 mg to 40 mg. Their model was designed specifically to investigate the IDD of MMC and used a multitude of experimentally determined values specific to the drug (e.g. absorption rate constant, elimination rate constant and relationships between the concentration of drug in the urine and urothelium). More recently Grabnar \textit{et al} developed a kinetic model of IDD to simulate the permeability enhancing effects of chitosan and polycarbophil on pipemidic acid concentrations achieved in the bladder wall22. Their model was constructed as an advanced compartmental diffusion model similar to the one described here (Section 4.2.2.1, Figure 4.2), but does not take into consideration the differing partition of the drug between the various tissue layers (\(K_m\), equations 3 and 5).
In contrast to these previous approaches, which were built using high-level coding language, the user-friendly STELLA® model delivers high resolution PK predictions with a far higher degree of flexibility. This allows the rapid generation of a wide range of PK simulations by varying determinants such as the rate of urine production, PVR volume and volume of instillation etc. The graphical capabilities of STELLA® allow simulations to be explored in ‘real time’, simultaneously displaying how each part of the model (e.g. bladder lumen volume, drug concentrations in the urothelium) changes with time. This allows for a faster and more thorough understanding of the dynamic processes underlying IDD. Subsequently the STELLA® model allows for the realisation of novel and often counterintuitive dosing strategies, which would not have been elicited using other approaches. Furthermore previously described models have sought to investigate a specific hypothesis for a particular drug. This model was designed to investigate the IDD process as a whole and to be applicable to any drug solution instilled into the bladder.

4.3.1. Validating the model with PYTHON®

To validate the outputs generated by STELLA®, the PK model was simultaneously built using PYTHON™. This was done in collaboration with Yuri Anissimov, an associate professor in mathematical modelling at Griffith University, Brisbane Australia. Dr Anissimov has published extensively in the field of mathematical modelling of biological processes23-26 and has used multi-compartment diffusion models, such as the one described here, to model the transdermal permeation of drugs7,27. PYTHON™ is a widely used, scripting programming language. Whereas STELLA® allows users to design models visually, PYTHON™ uses code to incorporate the many layers of equations necessary to build the model. Considering the different methodology used by these packages to construct the same model, similar outcomes would validate the appropriateness of the underlying approach. To be clear, outputs generated by PYTHON™ do not validate the ‘accuracy’ of the model in terms of clinical results predicted in vivo; this would require clinical studies. It does however validate that the model has been constructed correctly using the STELLA® software. Steps 1 – 3 of the PK model development were validated with PYTHON™. Further steps represented
interpretations (rather than new coding) of the existing model and subsequently were analysed with STELLA® only.

4.3.1.1. **Validating Step 1: Transfer of drug from bladder lumen into the bladder wall**

Step 1 design of the PK model was validated by comparing model outputs generated with STELLA® and PYTHON™ (Figure 4.5, Table 4.2). Table 4.1 lists the parameter values input into the model. Early stage model development used arbitrary input values with physiologically relevant values introduced later (4.3.1.4). For all simulations performed, STELLA® and PYTHON™ outputs were identical to 2 decimal places.
Figure 4.5. A) Mass of drug accumulated in the peritoneum over 100 min. B) Mass of drug accumulated in each compartment of the model after 60 min. STELLA® and PYTHON™ model outputs were identical to 2 decimal places. The increase between compartments 5 and 6 does not represent a decrease in concentration gradient as values represent mass, rather than concentration, of drug.
Table 4.1. Parameter values used to validate Step 1 design of the PK model. ‘Uro’, ‘LP’, ‘DM’ and ‘Perit’ refer to the urothelium, lamina propria, detrusor muscle and peritoneum respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uro</th>
<th>Uro / LP boundary</th>
<th>LP</th>
<th>LP / DM boundary</th>
<th>DM</th>
<th>DM / Perit boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{s1}</td>
<td>K_{m1}</td>
<td>5</td>
<td>K_{m2}</td>
<td>1</td>
<td>D_{v1}</td>
<td>1.0</td>
</tr>
<tr>
<td>V_{e1}</td>
<td>50 ml</td>
<td>6</td>
<td>V_{e2}</td>
<td>1.5</td>
<td>D_{v2}</td>
<td>1.5</td>
</tr>
<tr>
<td>$S_{A_{e1}}$</td>
<td>30 cm2</td>
<td>0.01 cm</td>
<td>h_{e1}</td>
<td>0.02 cm</td>
<td>km$^{-1}$</td>
<td>1</td>
</tr>
<tr>
<td>D_{v1}</td>
<td>1.67 cm</td>
<td>5</td>
<td>h_{e2}</td>
<td>0.01 cm</td>
<td>D_{v2}</td>
<td>1.60 cm2s$^{-1}$</td>
</tr>
<tr>
<td>h_{e1}</td>
<td>0.01 cm</td>
<td>5</td>
<td>h_{e2}</td>
<td>0.01 cm</td>
<td>D_{v2}</td>
<td>1.60 cm2s$^{-1}$</td>
</tr>
<tr>
<td>K_{i1}</td>
<td>0.002 cm</td>
<td>5</td>
<td>K_{i2}</td>
<td>0.02 cm</td>
<td>D_{v2}</td>
<td>1.60 cm2s$^{-1}$</td>
</tr>
<tr>
<td>K_{i1}</td>
<td>0.025 s$^{-1}$</td>
<td>5</td>
<td>K_{i2}</td>
<td>0.02 cm</td>
<td>D_{v2}</td>
<td>1.60 cm2s$^{-1}$</td>
</tr>
<tr>
<td>K_{i1}</td>
<td>0.1875 s$^{-1}$</td>
<td>5</td>
<td>K_{i2}</td>
<td>0.02 cm</td>
<td>D_{v2}</td>
<td>1.60 cm2s$^{-1}$</td>
</tr>
</tbody>
</table>

Table 4.2. Example outputs generated with the STELLA® (red) and PYTHON™ (green) model over 30 min. Data shows drug accumulated (mg) in each compartment over 30 min. STELLA® and PYTHON™ model outputs were identical to 2 decimal places.
4.3.1.2. **Validating Step 2: Incorporating drug clearance from the bladder wall**

Step 2 was validated by comparing model outputs generated with STELLA® and PYTHON™ (Figure 4.6, Table 4.3). Input parameters are detailed in table 4.1 with the addition of $k_{\text{Elim}} = 0.00102 \text{ s}^{-1}$. For all simulations performed, STELLA® and PYTHON™ model outputs were identical to 2 decimal places. The incorporation of clearance decreased the amount of drug accumulating in each compartment, exemplified by the peritoneum compartment (Figure 4.6A). Mass balance analysis of the STELLA® model showed all drug in the bladder lumen at time zero is accountable at the end of the simulation (Figure 4.7).
Figure 4.6. A) Mass of drug accumulated in the peritoneum over 100 min with and without the incorporation of drug clearance. B) Mass of drug accumulated in each compartment of the model after 60 min. STELLA® and PYTHON™ model outputs were identical to 2 decimal places.
Figure 4.7. Mass balance analysis of the STELLA® model showing 100% of drug is accountable throughout a 100 min simulation. Input parameters are the same as for figure 4.6. C_{BL} is mass of drug in the bladder lumen and $C_{(1-16)+(Blood)+(Perit)}$ is the sum of the mass of drug in the bladder wall compartments (C_{1-16}), the blood compartment (C_{Blood}) and the peritoneum compartment (C_{Perit}).
Table 4.3. Example outputs generated with the STELLA® (red) and PYTHON™ (green) model over 30 min. Data shows drug accumulated (mg) in each compartment. STELLA® and PYTHON™ model outputs were identical to 2 decimal places.
4.3.1.3. **Validating Step 3: Incorporating urine dilution**

Step 3 design was validated by comparing model outputs generated with STELLA® and PYTHON™ (Figure 4.8, Table 4.4). Input parameters are detailed in table 4.1 with the addition of $U_R = 1 \text{ ml min}^{-1}$, $k_{\text{Elim}} = 0.00102 \text{ s}^{-1}$ and a change in the bladder surface area from 30 cm2 to 260 cm2 (an accurate figure for the human bladder28, Figure 4.3). For all simulations performed, STELLA® and PYTHON™ model outputs were identical to 2 decimal places (Table 4.4). Urine dilution of the instilled dose reduced the mass of drug accumulating in the peritoneum over time (Figure 4.8).

![Figure 4.8. Results of STELLA® simulations showing the mass of drug accumulating in the peritoneum compartment over 100 min with and without the incorporation of urine production.](image-url)
Table 4.4. Example outputs generated with the STELLA® (red) and PYTHON™ (green) model over 30 min. Data shows drug accumulated (mg) in each compartment. STELLA® and PYTHON™ model outputs were identical to 2 decimal places.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>C₄</th>
<th>C₅</th>
<th>C₆</th>
<th>C₇</th>
<th>C₈</th>
<th>C₉</th>
<th>C₁₀</th>
<th>C₁₁</th>
<th>C₁₂</th>
<th>C₁₃</th>
<th>C₁₄</th>
<th>C₁₅</th>
<th>C₁₆</th>
<th>C₁₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>974.639</td>
<td>7.382</td>
<td>5.444</td>
<td>3.797</td>
<td>2.188</td>
<td>0.711</td>
<td>1.575</td>
<td>1.139</td>
<td>0.802</td>
<td>0.548</td>
<td>0.356</td>
<td>0.295</td>
<td>0.191</td>
<td>0.120</td>
<td>0.073</td>
<td>0.041</td>
<td>0.018</td>
</tr>
<tr>
<td>10</td>
<td>963.036</td>
<td>6.981</td>
<td>5.543</td>
<td>4.064</td>
<td>2.573</td>
<td>1.090</td>
<td>2.688</td>
<td>2.182</td>
<td>1.744</td>
<td>1.368</td>
<td>1.044</td>
<td>1.014</td>
<td>0.772</td>
<td>0.570</td>
<td>0.400</td>
<td>0.254</td>
<td>0.123</td>
</tr>
<tr>
<td>10</td>
<td>963.028</td>
<td>6.981</td>
<td>5.544</td>
<td>4.065</td>
<td>2.574</td>
<td>1.091</td>
<td>2.690</td>
<td>2.184</td>
<td>1.746</td>
<td>1.370</td>
<td>1.045</td>
<td>1.015</td>
<td>0.773</td>
<td>0.570</td>
<td>0.400</td>
<td>0.254</td>
<td>0.123</td>
</tr>
<tr>
<td>15</td>
<td>953.527</td>
<td>6.441</td>
<td>5.185</td>
<td>3.878</td>
<td>2.540</td>
<td>1.190</td>
<td>3.031</td>
<td>2.549</td>
<td>2.118</td>
<td>1.732</td>
<td>1.385</td>
<td>1.404</td>
<td>1.114</td>
<td>0.855</td>
<td>0.620</td>
<td>0.403</td>
<td>0.198</td>
</tr>
<tr>
<td>15</td>
<td>953.520</td>
<td>6.441</td>
<td>5.185</td>
<td>3.879</td>
<td>2.541</td>
<td>1.190</td>
<td>3.032</td>
<td>2.551</td>
<td>2.120</td>
<td>1.734</td>
<td>1.386</td>
<td>1.406</td>
<td>1.115</td>
<td>0.856</td>
<td>0.620</td>
<td>0.403</td>
<td>0.199</td>
</tr>
<tr>
<td>20</td>
<td>945.080</td>
<td>5.949</td>
<td>4.815</td>
<td>3.633</td>
<td>2.418</td>
<td>1.184</td>
<td>3.057</td>
<td>2.609</td>
<td>2.201</td>
<td>1.830</td>
<td>1.489</td>
<td>1.534</td>
<td>1.235</td>
<td>0.960</td>
<td>0.703</td>
<td>0.461</td>
<td>0.228</td>
</tr>
<tr>
<td>20</td>
<td>945.072</td>
<td>5.949</td>
<td>4.815</td>
<td>3.633</td>
<td>2.418</td>
<td>1.184</td>
<td>3.058</td>
<td>2.610</td>
<td>2.202</td>
<td>1.831</td>
<td>1.490</td>
<td>1.535</td>
<td>1.236</td>
<td>0.960</td>
<td>0.704</td>
<td>0.461</td>
<td>0.228</td>
</tr>
<tr>
<td>25</td>
<td>937.374</td>
<td>5.513</td>
<td>4.472</td>
<td>3.388</td>
<td>2.272</td>
<td>1.136</td>
<td>2.951</td>
<td>2.534</td>
<td>2.153</td>
<td>1.803</td>
<td>1.478</td>
<td>1.533</td>
<td>1.242</td>
<td>0.970</td>
<td>0.714</td>
<td>0.470</td>
<td>0.233</td>
</tr>
<tr>
<td>25</td>
<td>937.366</td>
<td>5.513</td>
<td>4.472</td>
<td>3.388</td>
<td>2.272</td>
<td>1.136</td>
<td>2.952</td>
<td>2.535</td>
<td>2.154</td>
<td>1.803</td>
<td>1.479</td>
<td>1.533</td>
<td>1.242</td>
<td>0.970</td>
<td>0.714</td>
<td>0.470</td>
<td>0.233</td>
</tr>
<tr>
<td>30</td>
<td>930.244</td>
<td>5.129</td>
<td>4.164</td>
<td>3.159</td>
<td>2.126</td>
<td>1.073</td>
<td>2.795</td>
<td>2.407</td>
<td>2.052</td>
<td>1.723</td>
<td>1.418</td>
<td>1.475</td>
<td>1.198</td>
<td>0.938</td>
<td>0.692</td>
<td>0.456</td>
<td>0.226</td>
</tr>
<tr>
<td>30</td>
<td>930.235</td>
<td>5.129</td>
<td>4.164</td>
<td>3.159</td>
<td>2.126</td>
<td>1.073</td>
<td>2.795</td>
<td>2.408</td>
<td>2.052</td>
<td>1.723</td>
<td>1.418</td>
<td>1.475</td>
<td>1.198</td>
<td>0.938</td>
<td>0.692</td>
<td>0.456</td>
<td>0.226</td>
</tr>
</tbody>
</table>
4.3.1.4. **Validating Step 4: Moving from a ‘mass’ to ‘concentration’-based model**

The introduction of ‘concentration’ is simply an interpretation of the existing model (Equation 10) and was therefore investigated using STELLA® only. Further steps in the model development were not validated with PYTHON™ as the underlying model has been shown to work consistently between the two packages. Model simulations were to this point generated using arbitrary input parameters. For completeness, physiologically relevant parameters were input into the model according to table 4.5. Diffusion coefficients22, partition coefficients29, tissue layer thickness9,21,30, total bladder weight28,31, urine production rate12 and bladder wall blood flow rate11 were sourced from the literature. A constant bladder surface area of 260 cm2 was assumed regardless of intravesical volume. The mass of the different bladder wall layers was calculated from total bladder weight and bladder layer thickness according to the equation

\[
W_i = \frac{h_i}{h_{Total}} \times W_{Total}
\] \hspace{1cm} (12)

where \(W_i\) is the weight of the bladder wall layer (g), \(h_i\) is the thickness of the bladder wall layer (cm), \(h_{Total}\) is the total thickness of the bladder wall (cm) and \(W_{Total}\) is the total weight of the empty bladder (g). It is assumed that the different layers of the bladder wall are of equal density.

Step 4 was investigated with the STELLA® model. Input parameters are detailed in table 4.5. Figure 4.9 shows concentration - depth profiles generated by the model 15, 30, 45 and 60 min post - instillation of the intravesical dose. The profile is representative of those reported in the literature21 with the highest drug - tissue concentration achieved in the urothelium followed by a relatively sharp decline across the deeper tissue layers.
Table 4.5. Parameter values used in Step 4 design of the PK model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sub>BL</sub></td>
<td>Mass of drug in bladder lumen</td>
<td>mg</td>
</tr>
<tr>
<td>V<sub>BL</sub></td>
<td>Volume of drug in bladder lumen</td>
<td>ml</td>
</tr>
<tr>
<td>SA<sub>BL</sub></td>
<td>Luminal surface area of the bladder</td>
<td>cm<sup>2</sup></td>
</tr>
<tr>
<td>U<sub>BL</sub></td>
<td>Urine production rate</td>
<td>ml min<sup>-1</sup></td>
</tr>
<tr>
<td>Km<sub>1</sub></td>
<td>Drug partition coefficient</td>
<td>Unitless</td>
</tr>
<tr>
<td>D<sub>1</sub></td>
<td>Drug diffusion coefficient</td>
<td>cm<sup>2</sup> s<sup>-1</sup></td>
</tr>
<tr>
<td>h<sub>BL</sub></td>
<td>Effective thickness of the bladder contents</td>
<td>cm</td>
</tr>
<tr>
<td>n<sub>1</sub></td>
<td>Thickness of tissue layer</td>
<td>cm</td>
</tr>
<tr>
<td>K<sub>u1</sub>, K<sub>u2</sub>, K<sub>u3</sub></td>
<td>Drug transfer coefficient</td>
<td>s<sup>-1</sup></td>
</tr>
<tr>
<td>W<sub>1/6</sub></td>
<td>Weight of tissue layer</td>
<td>g</td>
</tr>
<tr>
<td>K<sub>Elim</sub></td>
<td>Drug elimination rate constant</td>
<td>s<sup>-1</sup></td>
</tr>
</tbody>
</table>
Figure 4.9. Results of STELLA® simulations showing the drug concentration achieved at different tissue depths (concentration - depth profile) at 15, 30, 45 and 60 min post instillation of the intravesical dose.
4.3.1.5. **Validating Step 5: Allowing for multiple intravesical doses**

To validate the introduction of multiple-dose functionality, the volume and drug concentration in the bladder lumen throughout an example intravesical regimen was investigated (Section 4.2.2.5, Figure 4.10A - B). With the exception of the double dosing technique, all other model inputs were unchanged (Table 4.5). Bladder volume at the end of the 2 h treatment (V_{BL2h}) is described by equation 11 (PVR volume is assumed to be 0 ml for both patients).

Patient #1 (single 50 ml drug instillation for 2 h)

$$V_{BL2h} = 50 + (1 \times 120) = 170 \text{ ml}$$

Patient #2 (two 50 ml drug instillations over the 2 h period)

For patient 2, V_{BL0} is replaced with V_{BL62} min, representing the volume in the bladder at the time of the second dose (50 ml drug solution plus 2 ml urine production since voiding of the first dose).

$$V_{BL2h} = 52 + (1 \times 60) = 112 \text{ ml}$$

Simulations show the model is working with respect to final bladder volumes of 170 ml and 112 ml predicted for patient 1 and 2 respectively (Figure 4.10A). This variation in bladder volume translates into higher bladder lumen drug concentrations from 62 min onwards for patient 2 (Figure 4.10B). Bladder lumen drug concentration is described by the equation

$$Lumen_{Conc} = \frac{Lumen_{Mass}}{V_{BL}}$$

(13)

where $Lumen_{Conc}$ is the concentration of drug in the bladder lumen (mg ml$^{-1}$) and $Lumen_{Mass}$ is the mass of drug in the bladder lumen (mg).
The increased luminal drug concentration from 60 – 120 min (for patient 2 as compared to patient 1) would be expected to result in more drug being delivered transurothelially. Consequently, final bladder wall drug concentrations achieved in patient 2 are expected to be higher. To investigate this, bladder tissue concentrations and tissue – drug exposure (AUC) in compartment 3 of the urothelium (100 µm median depth) were compared for the two regimens. AUC values were calculated from tissue drug concentration - time graphs (Figure 4.10C - D) in GraphPad Prism using the trapezoid rule. Over the 2 h treatment period, the double dosing regimen resulted in greater overall exposure of drug to the urothelium; AUC values of 1,028 and 1,305 mg min g⁻¹ for the single and double dosing regimens respectively (Figure 4.10C - D). The double dosing technique also resulted in higher final drug urothelial concentrations compared to the standard regimen (Figure 4.10C - D, 9.28 versus 5.51 mg g⁻¹ respectively).
Figure 4.10. Results of STELLA® simulations comparing bladder lumen volume (A), bladder lumen drug concentration (B) and urothelial concentrations at a median depth of 100 μm over a 2 h intravesical regimen for patient 1 (C, standard regimen) and patient 2 (D, double dosing regimen).
4.3.1.6. **Validating Step 6: Incorporating post - void residual (PVR) volume**

Simulations were performed comparing luminal volume and luminal drug concentration for different PVR volumes (0, 10 and 20 ml) (Figure 4.11). All other parameters were kept constant. Luminal volume at the start of the instillation increased by the value of the PVR volume (Equation 11, Figure 4.11A). Increases in PVR volume decreased the starting luminal drug concentration (Equation 13, Figure 4.11B).

![Figure 4.11. Results of STELLA® simulations comparing luminal volume (A) and luminal drug concentration (B) for different PVR volumes (0, 10 and 20 ml).](image)

4.3.2. Investigating the effect of individual variables on the efficacy of intravesical drug delivery

The validated PK model was used to investigate the effect of individual variables on the efficacy of the IDD process. The major limitation cited for IDD is the inability to achieve sufficient drug concentrations in the bladder wall\(^{132}\). For the purpose of this exercise, efficacy will be measured on bladder wall drug concentrations achieved and bladder wall drug exposure (AUC). The greater the tissue drug concentration and AUC achieved, the more effective the intravesical regimen. It is however acknowledged that higher drug tissue concentrations may not always be the aim of optimised intravesical regimens.

The range of values considered clinically relevant for the variables associated with an intravesical regimen can vary significantly. A high urine production rate may be
an order of magnitude higher than that of a low one, however a long instillation
time is unlikely to be more than 2 or 3 times that of a short one. An approach
which multiples all variables by a common factor and then assess individual
contribution to the efficacy of the delivery process is unsuitable. Instead variables
were investigated within a clinically relevant range. Apart from the variable under
investigation, all other variables (model inputs) were kept constant. These
baseline variables represent physiologically relevant values as introduced in
section 4.3.1.4.

The following variables were investigated: drug diffusion coefficient, concentration
of drug instillation, volume of drug instillation, instillation time, urine production
rate, and dosing regimen (single versus double dosing).

4.3.2.1. Drug diffusion coefficient (D)

The transurothelial diffusion coefficient (D, cm2 s$^{-1}$) represents the ability of a drug
to permeate across the urothelium and penetrate into the bladder wall. For an
infinite dose (when approximately $\geq 90 - 95\%$ of the applied dose remains in the
donor chamber of the diffusion apparatus during the steady-state period of
permeability studies (Section 2.2.5)), transurothelial permeation is described by
Fick's first law33 and the equation

$$
J = -D \frac{\Delta C}{\Delta h}
$$

(14)

where J is diffusive flux (mg cm$^{-2}$ s$^{-1}$), D is the transurothelial diffusion coefficient
(cm2 s$^{-1}$), ΔC is the concentration gradient across the urothelium (mg cm$^{-3}$) and Δh
is the linear distance travelled (thickness of urothelium, cm). D is independent of
drug concentration and unique to the drug in question. In contrast to other fields
of pharmaceutics such as transdermal delivery, mathematical modelling and in
vitro / ex vivo transurothelial permeability data is scarce with only two studies
reporting D values (both for pipemidic acid)22,34. Ex vivo transurothelial
permeability coefficients (k_P) have been determined for several drugs (Section
2.3.3.2 and 3.3.2.1)35,36.

175
k_p is related to D by the equation

\[k_p = \frac{K_m D}{\Delta h} \] \hspace{1cm} \text{rearranged to} \hspace{1cm} D = \frac{k_p \Delta h}{K_m} \tag{15} \]

where \(k_p \) is the transurothelial permeability coefficient (cm s\(^{-1}\)), \(\Delta h \) is the thickness of the urothelium (cm), and \(K_m \) is the partition coefficient of the drug between the urothelium and the donor chamber of the diffusion apparatus\(^{27}\).

Using equation 15, D values were derived from experimentally determined \(k_p \) values (Table 4.6). Owing to the lack of data in the literature, diffusion coefficients for the lamina propria and detrusor muscle were derived from urothelial D values (Table 4.8). The urothelium is the rate-limiting barrier to the movement of drug into the bladder wall\(^{37-39}\). It is assumed therefore that diffusion coefficients in the lamina propria and detrusor muscle layers will be greater than that in the urothelium. These assumptions are consistent with results presented by Grabnar et al who reported a large increase in diffusion coefficient in the sub-urothelial layers compared to the urothelium\(^{22}\). Although not available for all layers of the bladder wall, there are detrusor muscle\(^{29,35}\) and combined lamina propria / detrusor muscle\(^{22}\) \(K_m \) values for a range of drugs in the literature. These in combination with literature sourced \(K_m \) values for similar tissue matrixes, such as the dermis\(^{7}\) for the lamina propria, allowed good estimation of suitable values for the different layers of the bladder wall (Table 4.8). Based on experimentally determined values (Table 4.6), the effect of varying D values in the range 0.1 – 5.0 x \(10^{-6} \) cm\(^2\) s\(^{-1}\) was investigated. An overview of the intravesical regimen is provided in table 4.7 and a complete list of inputs used in the model detailed in table 4.8.

From a clinical standpoint, investigating the ability of a drug to diffuse into the bladder wall is highly relevant. It is common knowledge that the urothelium is a significant barrier to IDD\(^{40}\). Additionally clinicians are aware that a drug’s physiochemical properties are important to the attainment of therapeutically drug concentrations in target tissues\(^{41}\). Early stage screening of drug-like properties is routine in the development of candidate drug molecules\(^{42}\). For these reasons a
drug's D value might be considered the principal factor determining whether or not a drug can be successfully delivered intravesically.

Figure 4.13 shows that increasing a drug’s D value results in greater drug exposure to each of the bladder wall layers over the course of the treatment regimen (Figure 4.13A - C). Based on the k_P values determined experimentally in this thesis, the comparison between 0.1 and $1.0 \times 10^{-0.7}$ cm2 s$^{-1}$ is the most relevant. Concentration - depth profiles show that the increase in D results in higher drug - tissue concentrations at all depths of the bladder wall (Figure 4.12B) and markedly higher exposure of the urothelium (155 % increase in AUC), lamina propria (18,700 % increase) and detrusor muscle (>178 x 10^6 %) to the drug (Figure 4.13A - C). Interestingly, final urothelium concentrations at 60 min (Figure 4.12A, 50.0 % higher when $D = 1.0 \times 10^{-0.7}$ cm2 s$^{-1}$) do not accurately represent the increased exposure of the urothelium to the drug over the course of the treatment (Figure 4.13A, 154.5 % increase in AUC). The shape of the tissue concentration - time profile shows the higher D value results in a steeper rise in tissue concentrations and a higher peak concentration in the urothelium (Cmax) (Figure 4.13A); after Cmax is achieved concentrations in the urothelium decline. An explanation may be that the higher D value means more drug permeates into the urothelium subsequently reducing the drug concentration gradient between the bladder lumen and the urothelium as the instillation progresses. As a result drug permeation into the urothelium is superseded by drug clearance from the lower bladder wall layers and final urothelium concentrations are lower than the Cmax. This also explains the counterintuitive observation that final urothelium concentrations with a D value of $5.0 \times 10^{-0.7}$ cm2 s$^{-1}$ are actually lower than those with a D value of $1.0 \times 10^{-0.7}$ cm2 s$^{-1}$ (Figure 4.12A).

The drug D value is significant to the IDD process. Higher values result in higher drug tissue concentrations and greater exposure of the tissue to the drug. These effects are more pronounced in the deeper bladder wall layers (lamina propria and detrusor muscle) than the urothelium. It may therefore be particularly important to consider a drug's D value when the therapeutic target is located in the lower bladder wall layers e.g. T1 bladder cancer43.

177
Table 4.6. Transurothelial diffusion coefficients (D) derived from experimentally determined transurothelial permeability coefficients (kₚ) for a range of drugs according to equation 15. Values of 0.02 cm¹⁹ and 1²²,²⁹ were used for urothelium thickness (h) and urothelium partition coefficient (Km) respectively.

<table>
<thead>
<tr>
<th>Drug</th>
<th>kₚ (x 10⁻⁶ cm s⁻¹)</th>
<th>D (x 10⁻⁷ cm² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketorolac tromethamine</td>
<td>2.63³⁹</td>
<td>0.53</td>
</tr>
<tr>
<td>Oxybutynin chloride</td>
<td>13.60³⁶</td>
<td>2.72</td>
</tr>
<tr>
<td>Tamsulosin hydrochloride</td>
<td>0.86³⁵</td>
<td>0.17</td>
</tr>
<tr>
<td>Terazosin hydrochloride</td>
<td>1.53³⁵</td>
<td>0.31</td>
</tr>
<tr>
<td>Doxazosin mesylate</td>
<td>5.33³⁵</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Intravesical regimen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 mg ml⁻¹</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>50 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>60 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min⁻¹</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, D</td>
<td>0.1 – 5.0 x 10⁻⁷ cm² s⁻¹</td>
</tr>
</tbody>
</table>

Table 4.7. Overview of the dosing regimen used to investigate the effect transurothelial diffusion coefficient has on the efficacy of the intravesical delivery process.
Table 4.8. Overview of the PK model inputs used to investigate the effect of transurothelial diffusion coefficient (D). Parameter units are the same as detailed in table 4.5.
Figure 4.12. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration-depth profiles (B) following 60 min intravesical instillation with drugs of different transurothelial diffusion coefficients (0.1 - 5.0 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}).
Figure 4.13. Results of PK model simulations showing average drug concentrations in the urothelium (A), lamina propria (B), detrusor muscle (C), and bladder lumen (D) over the course of a 60 min intravesical instillation with drugs of different transurothelial diffusion coefficients (0.1 - 5.0 x 10^{-7} cm² s⁻¹).
4.3.2.2. Concentration of drug instillation

In practice, drugs are instilled into the bladder at a range of concentrations. For instance, mitomycin C (MMC) is typically administered at a concentration of 1 mg ml\(^{-1}\)\(^{44}\), whilst oxybutynin at 0.16 mg ml\(^{-1}\)\(^{45}\). These concentrations are often extrapolated from oral\(^{45}\) or systemic doses\(^{46}\) and are not based on bladder wall target concentrations. Furthermore, owing to the limited adverse effects associated with IDD, a range of instillation concentrations for the same drug is not uncommon (oxybutynin has been used clinically in the range 0.05\(^{47}\) - 1 mg ml\(^{-1}\)\(^{48}\)). On this basis the influence of drug concentrations in the range 0.1 - 10 mg ml\(^{-1}\) was investigated. An overview of the intravesical regimen is provided in table 4.9. With the exception of concentration of drug instillation, all other model inputs are consistent with table 4.8.

PK simulations show that drug concentrations achieved throughout the bladder wall are proportional to the concentration of the drug solution instilled (Figure 4.14A). After 60 min, drug tissue concentrations achieved with the 10 mg ml\(^{-1}\) solution are ten times higher than those achieved with the 1 mg ml\(^{-1}\), which in turn are ten times higher than those achieved with the 0.1 mg ml\(^{-1}\) solution for each layer of the bladder wall (Figure 4.14B). This linear relationship between bladder lumen concentration and bladder wall bioavailability was predictable, given the underlying diffusion equations (Equations 1 - 13). Consequently urothelium, lamina propria and detrusor muscle exposure to drug over the instillation period was proportional to the concentration of drug instillation (Figure 4.15A - C). Dosing concentration has a strong influence on the efficacy of IDD.

<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>0.1 - 10 mg ml(^{-1})</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>50 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>60 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min(^{-1})</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, D</td>
<td>1.0 x 10(^{-07}) cm(^{2}) s(^{-1})</td>
</tr>
</tbody>
</table>

Table 4.9. Overview of the dosing regimen used to investigate the effect of concentration of drug instillation.
Figure 4.14. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration - depth profiles (B) following 60 min intravesical instillation with different concentrations of drug solution (0.1 - 10 mg ml$^{-1}$).
Figure 4.15. Results of PK model simulations showing average drug concentrations in the urothelium (A), lamina propria (B) and detrusor muscle (C) over the course of a 60 min intravesical instillation with different concentrations of drug solution (0.1 - 10 mg ml⁻¹).
4.3.2.3. Volume of drug instillation

Although drug is normally instilled in volumes of 40 - 50 ml49,50, the literature provides examples from 10 to 100 ml51,52 and therefore this range was investigated. The human bladder has a maximum capacity of \sim800 ml when fully distended although an urge to void initiated at \sim300 – 400 mls8. A 100 ml instillation may seem like a large volume, however given a urine production rate of 1ml min-1 the final bladder volume is well below the normal micturition threshold after 60 min. An overview of the intravesical regimen is provided in table 4.10. With the exception of volume of drug instillation, all other model inputs were consistent with table 4.8.

The volume of drug instillation is often dictated by the solubility of the drug and / or the volume capacity of the bladder. Little consideration is given to the dilution effect urine will have on different volumes of drug instillation. Figure 4.17D shows that despite starting at the same intravesical concentration (1 mg ml-1), the luminal concentration of drug decreases at different rates according the volume of drug solution instilled. The lower the instillation volume, the greater the urine dilution effect and the faster the luminal drug concentration decreases. Drug concentrations achieved in the bladder wall are proportional to the concentration of the drug in the bladder lumen (Figure 4.14 - 15). Consequently the greater the initial volume of drug instillation, or more accurately the wider the differential between the volume of instillation and the rate of urine production, the higher the drug concentration achieved at each depth of the bladder wall (Figure 4.16B). Increasing the volume of drug instillation from 10 ml to 50 ml resulted in a 216.3 \% increase in the final urothelial drug concentration after 60 min (Figure 4.16A). Once the drug instillation exceeds a certain volume, further increases have a lesser effect on bladder wall drug concentrations as the dilution effect of urine is negated. Increasing the volume of instilled drug solution from 50 ml to 100 ml resulted in a much lower 35.9 \% increase in the final urothelial concentration of drug after 60 min (Figure 4.16A).
<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 mg ml⁻¹</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>10 - 100 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>60 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min⁻¹</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, D</td>
<td>1.0×10^{-07} cm² s⁻¹</td>
</tr>
</tbody>
</table>

Table 4.10. Overview of the dosing regimen used to investigate the effect of instilled drug volume.
Figure 4.16. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration - depth profiles (B) following 60 min intravesical instillation with different volumes of instilled drug solution (10 - 100 ml).
Figure 4.17. Results of PK model simulations showing average drug concentrations in the urothelium (A), lamina propria (B), detrusor muscle (C), and bladder lumen (D) over the course of a 60 min intravesical instillation with different volumes of drug solution (10 - 100 ml).
4.3.2.3.a. Solving the ideal volume of intravesical instillation

It follows that for any given urine production rate, micturition threshold and suggested intravesical treatment length, there must be an ideal volume of drug instillation for the drug in question (V\textsubscript{ideal}) that maximises the concentration of drug achieved in the bladder wall. A volume below \(V_{\text{ideal}} \) will result in excessive dilution of the luminal drug concentration (Figure 4.17D), whilst a volume above \(V_{\text{ideal}} \) will result in the micturition threshold being reached prematurely. \(V_{\text{ideal}} \) would be independent of drug concentration and apply to any concentration of a drug as long as urine production rate, micturition threshold and intravesical treatment length are fixed. \(V_{\text{ideal}} \) was investigated by calculating urothelium – drug exposure (AUC) over the instillation period. The AUC was then plotted against volume of drug instillation to illicit \(V_{\text{ideal}} \) (Figure 4.18). \(V_{\text{ideal}} \) was investigated for a 1 h and 2 h intravesical regimen (Table 4.11, Figure 4.18). All other model inputs were consistent with table 4.8.

Maximising urothelium drug exposure can be described as ‘instillation time limiting’ or ‘micturition threshold limiting’. PK simulations demonstrated that, regardless of the concentration of drug instilled, a \(V_{\text{ideal}} \) of 140 ml and 87.5 ml was predicted for the 1 h and 2 h regimens respectively (Figure 4.18). In the case of the 1 h instillation the \(V_{\text{ideal}} \) corresponds to the maximum volume of drug that can be instilled when taking into consideration the instillation time and assumed micturition threshold of 200 ml. For the 2 h regimen this was not the case and a \(V_{\text{ideal}} \) of 87.5 ml, 7.5 ml greater than the maximum volume of drug that should be instilled following the assumption of the 1 h regimen, was calculated. In this example it is more effective to instil 87.5 ml for a shorter period of time (110 min, \(\text{AUC} = 1,233 \text{ mg min g}^{-1} \)) than it is to instil 80 ml for the full 2 h (\(\text{AUC} = 1,228 \text{ mg min g}^{-1} \)).

\(V_{\text{ideal}} \) is unique to the drug (permeability characteristics), patient (micturition threshold and urine production rate) and regimen (instillation time) under investigation. Figure 4.18 shows that minor changes in the regimen (1 h versus 2 h) lead to significant variation in \(V_{\text{ideal}} \). The concept of there being an optimal volume for a given instillation is not considered in practice, rather the same
volume of drug would be instilled for both regimens. This leads to suboptimal dosing (using a 140 ml instillation for the 2 h regimen results in a 37% decrease in the AUC achieved (Figure 4.18)) and potentially a reduced therapeutic effect compared to the V_{ideal} of 87.5 ml. Although calculated based on drug exposure to the urothelium in this example, V_{ideal} can be calculated based on maximum tissue concentration using the same modelling technique.

<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 – 20 mg ml$^{-1}$</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>25 - 200 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>1 h / 2 h or micturition threshold reached</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min$^{-1}$</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, D</td>
<td>1.0×10^{-07} cm2 s$^{-1}$</td>
</tr>
<tr>
<td>Micturition threshold</td>
<td>200 ml</td>
</tr>
</tbody>
</table>

Table 4.11. Overview of the dosing regimen used to investigate V_{ideal}.
Figure 4.18. Total exposure of urothelium to drug (AUC) for the 1 h (A) and 2 h (B) regimen or at the micturition threshold following instillation with 1, 5, 10 and 20 mg ml\(^{-1}\) drug solution (volume of drug instillation varied). For all concentrations of drug instillation the maximum AUC was achieved with an instillation volume of 140 ml and 87.5 ml for the 1 h and 2 h regimens respectively.
4.3.2.4. **Instillation time**

Instillation time refers to the time difference between the point of instillation and the point at which the instilled dose is voided. Interestingly, regardless of the therapy, recommended instillation times are usually 1 h. The recommended instillation time for MMC is 1 h\(^5^3\). Similarly intravesical gemcitabine is retained for 1 h\(^5^4\) as is intravesical oxybutynin\(^5^5^5^6\). There are examples where instillations are retained for shorter periods of time such as DMSO (30 - 40 min)\(^5^7\). Intravesical Bacillus Calmette – Guérin (BCG) is a notable exception with a longer instillation time of 2 h\(^5^8\). Based on this information the effect of varying instillation time between 30 and 90 min was investigated. An overview of the intravesical regimen is provided in table 4.12. With the exception of instillation time, all other model inputs are consistent with table 4.8.

Results from PK simulations show that prolonging instillation time increases the bladder wall drug exposure for all tissue layers (Figure 4.20A - C). Owing to the narrow range of realistic instillation times, variations in AUC are not as significant as they are for other variables such as instillation concentration (Section 4.3.2.2, Figure 4.15). Interestingly final drug concentrations in the urothelium and lamina propria are higher after 30 min than they are after 90 min (Figure 4.19A). The prolonged instillation time results in increased dilution of the instilled dose, which in turn means the permeation rate of drug into the urothelium, and hence the lamina propria, is superseded by drug clearance from the bladder wall (tissue concentration - time curve plateaus and declines (Figure 4.20A - B). Although cumulative exposure continues to increase in these layers, drug tissue concentration decreases. This observation is counterintuitive and not something that is considered clinically; patients are often told to hold the instillation for as long as possible. There may be scenarios where a longer instillation time is of no additional clinical benefit. For example if the aim of this intravesical regimen was to reach therapeutic concentrations in the urothelium and the disease - specific IC\(_{50}\) for the drug is 0.45 mg g\(^{-1}\), a therapeutic tissue concentration is established after 6 min but is lost by 58 min (Figure 4.21). After this point the concentration of drug in the urothelium is sub - therapeutic and of no clinical benefit. The 60 min instillation is equally as effective as the longer 90 min regimen but is more efficient.
(e.g. less clinic time and resources) and less uncomfortable for the patient. This may not be the case for the detrusor muscle where after 90 min drug concentrations are only just beginning to plateau and have not yet started to decline (Figure 4.20C). It is important therefore when designing the length of an instillation to consider the drugs site of action in the bladder wall and the target concentrations desired.

<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 mg ml⁻¹</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>50 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>30 - 90 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min⁻¹</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, D</td>
<td>1.0 x 10⁻⁰⁷ cm² s⁻¹</td>
</tr>
</tbody>
</table>

Table 4.12. Overview of the dosing regimen used to investigate the effect of instillation time.
Figure 4.19. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration-depth profiles (B) following 30, 60 and 90 min instillation time.
Figure 4.20. Results of PK model simulations showing average drug concentrations in the urothelium (A), lamina propria (B) and detrusor muscle (C) over the course of a 30 (orange), 60 (red) and 90 min (green) instillation.
Figure 4.21. Results of PK model simulations showing average drug concentrations in the urothelium over the course of a 30, 60 and 90 min instillation period. Exposure of the urothelium to therapeutic drug concentrations is shaded grey ($IC_{50} = 0.45$ mg g$^{-1}$).
4.3.2.5. Urine production rate

A commonly cited limitation of IDD is the continual dilution of the instilled dose by urine\(^{32}\). Although often stated as \(\sim 1 \text{ ml min}^{-1}\) \(^{12,59}\), adult urine production rate varies widely and can be as high as \(20 \text{ ml min}^{-1}\) \(^{60}\). Considering this, a urine production rate range of \(1 - 10 \text{ ml min}^{-1}\) was investigated. An overview of the intravesical regimen is provided in table 4.13. With the exception of urine production rate, all other model inputs are consistent with table 4.8.

In contrast to other variables such as volume of instillation (Section 4.3.2.3) or instillation time (Section 4.3.2.4), urine production rate is difficult to alter. Some specialist clinics advise patients to fast the morning of their treatment\(^{53}\) and this has been shown to reduce urine production rate by \(\sim 30 \%\)\(^{61}\). Additionally a single 200 \(\mu\text{g}\) dose of desmopressin 1 h before treatment has been shown to reduce urine production rate by \(\sim 50 \%\)\(^{61}\), although this is not currently recommended.

Figure 4.22B shows that as urine production rate increases, tissue drug concentrations at each depth of the bladder wall decrease. The same is true for bladder tissue drug exposure over the course of the instillation period (Figure 4.23A - C). This results from the decrease in luminal drug concentration caused by urine dilution (Figure 4.23D). Increasing the urine production rate from 1 to 5 ml min\(^{-1}\) results in a 64.6 \% reduction in AUC for the urothelium (Figure 4.23A) and a 47.7 \% reduction in the final tissue concentration achieved at the end of the instillation period (Figure 4.22A). PK predictions confirm the important role that urine production rate plays in the efficacy of IDD.

<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 mg ml(^{-1})</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>50 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>60 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1(- 10 \text{ ml min}^{-1})</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Standard, single instillation</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, (D)</td>
<td>(1.0 \times 10^{-67} \text{ cm}^2 \text{ s}^{-1})</td>
</tr>
</tbody>
</table>

Table 4.13. Overview of the dosing regimen used to investigate the effect of urine production rate.
Figure 4.22. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration-depth profiles (B) following 60 min intravesical instillation with a urine production rate of 1, 5 and 10 ml min⁻¹.
Figure 4.23. Results of PK model simulations showing average drug concentrations in the urothelium (A), lamina propria (B), detrusor muscle (C), and bladder lumen (D) over the course of a 60 min intravesical instillation with a urine production rate of 1, 5 or 10 ml min$^{-1}$.
4.3.2.6. **Dosing regimen: Single versus double dosing**

Double dosing is a novel concept that refers to the instillation of a second dose immediately after voiding of the primary dose (Section 4.2.2.5). From a practical standpoint the concept is simple and feasible. The catheter would be left *in situ* after the first instillation and a second pre-prepared dose administered halfway through the treatment regimen following first dose voiding. The catheter is then removed following instillation of the second dose. Double dosing is perhaps most applicable to longer instillation regimens such as the 2 h treatment period used for BCG. Two instillations over the 120 min treatment period (with a 2 min change over period) were compared to a standard single instillation. An overview of the intravesical regimen is provided in Table 4.14. With the exception of dosing pattern, all other model inputs are consistent with Table 4.8.

Concentration-depth profiles show that the double dosing strategy results in higher drug concentrations throughout the bladder wall at the end of the treatment period (Figure 4.24B). After 60 min, increases in bladder lumen drug concentration (Figure 4.25A) lead to a 27.2 % increase in the overall exposure of the urothelium to drug (Figure 4.25B) and a 66.6 % increase in the final urothelial drug concentration (Figure 4.24A).

<table>
<thead>
<tr>
<th>Intravesical regimen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1 mg ml$^{-1}$</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>50 ml</td>
</tr>
<tr>
<td>Instillation time</td>
<td>120 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>1 ml min$^{-1}$</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>Double dosing. Two 60 min instillations</td>
</tr>
<tr>
<td></td>
<td>over the 120 min treatment period</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient</td>
<td>1.0×10^{-7} cm2 s$^{-1}$</td>
</tr>
</tbody>
</table>

Table 4.14. Overview of the dosing regimen used to investigate the effect of double dosing.
Figure 4.24. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration-depth profiles (B) following a 2 h standard and double dosing regimen.
Figure 4.25. Results of PK model simulations showing bladder lumen concentrations (A) and average drug concentrations in the urothelium (B) over the course of a 2 h standard (gold) or double dosing (blue) regimen.
4.3.3. Using the PK model to optimise an IDD regimen

Having investigated the key physiological / clinical variables associated with IDD, the possible advantages such modelling could have in the clinical setting was explored. Using a study sourced from the literature, the PK model was used to optimise an intravesical regimen.

Beiko et al conducted a double-blind randomised controlled trial assessing the safety and efficacy of intravesical agents in reducing ureteral stent-related discomfort (SRD) (Section 2.1.1)63. One of the drugs investigated was oxybutynin. The reported / estimated parameters of the study and the suggested optimised regimen are listed in table 4.15. Other model inputs such as bladder blood flow rate and drug partition coefficients in the different layers of the bladder wall are reported in table 4.8. These parameters were kept constant between the reported and optimised IDD regimens.

Three adjustments were made; the single 120 min instillation was changed to two 60 min instillations (double dosing); urine production rate was reduced by 30% from 2 ml min-1 to 1.4 ml min-1 by asking the patient to fast on the morning of their treatment61; finally using V_{ideal} theory, the volume of instillation was increased from 9 ml to 115 ml. The concentration of drug instillation was not altered.

Increasing the instilled drug volume, reducing urine output and using the double dosing technique resulted in markedly higher luminal drug concentrations throughout the treatment period (Figure 4.26A). As a result the optimised regimen significantly increased oxybutynin concentrations achieved at all depths of the bladder wall (Figure 4.27B). Final drug concentrations in the urothelium, lamina propria and detrusor muscle were increased by 1,967 %, 1,757 % and 1,329 % respectively after instillation of the optimised regimen. Maximum drug concentrations in the urothelium, lamina propria and detrusor muscle were increased by 116 %, 253 % and 307 % (Figure 4.26B - D). Over the treatment period, drug exposure (AUC) of the urothelium, lamina propria and detrusor muscle was greatly increased (Figure 4.26B - D). Changes to the reported intravesical regimen are simple and practically easy to implement. The treatment
duration was not altered, neither was the formulation or concentration of the instilled drug solution. Requesting patients to abstain from fluids (and omitting diuretic doses if applicable) is already recommended by some clinics64. The optimisation of the regimen reported by Beiko et al is a good example of the flexibility and potential usefulness of the PK model. It also serves to highlight the empirical nature of IDD regimen design to date. Improving the design of IDD regimens by implementing changes highlighted by the model should lead to improved clinical outcomes and importantly maximise the potential of this delivery route.
Table 4.15. Intravesical parameters used to compare the original and optimised oxybutynin instillation reported by Beiko et al.\(^{63}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regimen reported by Beiko et al</th>
<th>Regimen optimised using PK model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of drug instillation</td>
<td>1.1 mg ml(^{-1}), reported</td>
<td>1.1 mg ml(^{-1}), reported</td>
</tr>
<tr>
<td>Volume of drug instillation</td>
<td>9 ml, reported</td>
<td>115 ml, calculated as (V_{\text{ideal}})</td>
</tr>
<tr>
<td>Instillation time</td>
<td>120 min, rounded from a reported 117.8 min</td>
<td>120 min, rounded from a reported 117.8 min</td>
</tr>
<tr>
<td>Urine production rate</td>
<td>2 ml min(^{-1}), estimated from reported voided volumes</td>
<td>1.4 ml min(^{-1}), 30 % reduction achieved by morning fasting</td>
</tr>
<tr>
<td>Dosing pattern</td>
<td>One single 9 ml instillation over the treatment period</td>
<td>Two 115 ml instillations over the treatment period</td>
</tr>
<tr>
<td>Transurothelial diffusion coefficient, (D)</td>
<td>(2.72 \times 10^{-07} \text{ cm}^2 \text{s}^{-1}), determined \textit{ex vivo} (Table 4.6)</td>
<td>(2.72 \times 10^{-07} \text{ cm}^2 \text{s}^{-1}), determined \textit{ex vivo} (Table 4.6)</td>
</tr>
</tbody>
</table>
Figure 4.26. Results of PK model simulations showing average drug concentrations in the bladder lumen (A), urothelium (B), lamina propria (C), and detrusor muscle (D) over the course of a 2 h instillation with the original (grey) and optimised (pink) intravesical regimen.
Figure 4.27. Results of PK model simulations showing average drug concentrations in the different layers of the bladder wall (A) and full concentration-depth profiles (B) following a 2 h instillation with the original (grey) and optimised (pink) IDD regimen.
4.4. Conclusions

A PK model of IDD has been developed. The model is highly flexible, allowing key variables to be altered in order to explore their role in the IDD process. Novel modelling techniques and dosing concepts such as V_{ideal} and double dosing have been identified and their usefulness investigated. Additionally, counterintuitive realisations, such as the marginal benefits associated with extending instillation time, have been elicited. The model has many potential applications including but not limited to the design of future IDD regimens and the optimisation of existing ones and may be valuable to investigators wishing to explore different permutations of IDD dosing regimens in the future.
4.5. Reference List

1. iSEESYSTEMS. Frequently asked questions about STELLA [Internet]. iSEE systems. 2013 [cited 2013 Oct 25]. Available from: http://www.iseesystems.com/community/support/FAQs.aspx#0

Chapter Four: Development of a PK Model of IDD

Chapter Four: Development of a PK Model of IDD

Chapter Four: Development of a PK Model of IDD

45. Lose G, Nørgaard JP. Intravesical oxybutynin for treating incontinence resulting from an overactive detrusor. BJU Int. 2001 Jun;87(9):767–73.

Trial of the Japanese Urological Cancer Research Group (JUCRG): a randomized trial of intravesical epirubicin at dose of 20mg/40ml, 30mg/40ml, 40mg/40ml. Eur Urol. 2004 May;45(5):600–5.

Chapter Four: Development of a PK Model of IDD

Chapter Five: Comparison of Upper and Lower Urinary Tract Permeability to Mitomycin C
Chapter Five: Upper and Lower Tract Permeability to MMC

5.1. Introduction

Urothelial carcinoma is the fourth most common tumour type and can occur in the lower (bladder) or upper (ureter and kidney) urinary tract\(^1\)-\(^3\). Bladder cancer accounts for 90 – 95% of all urothelial carcinomas\(^1\)-\(^3\), whilst those originating in the upper urinary tract (UTUC) represent 5 – 10%\(^4\)-\(^5\). Although rare, the incidence of UTUC has increased over the last three decades and now stands at ~ 2 cases per 100,000 person-years\(^6\). Owing to restricted symptomology, disease is commonly advanced at diagnosis. Consequently prognosis is poor with an overall 5-year survival rate of < 50%\(^7\). Although the urinary tract is lined by one continuous urothelium, UTUC exhibit a different pathology to urothelial carcinoma of the bladder; most importantly UTUC are significantly more aggressive and invasive\(^8\).

Regardless of tumour location, European Association of Urology (EAU) guidelines state the gold standard treatment for UTUC is radical nephroureterectomy (RNU), that is surgical removal of the kidney and ureter\(^3\). For certain patients, endoscopic management has emerged as a new treatment option and in 2009 it accounted for > 10% of all UTUC surgical interventions in England\(^7\). This conservative approach allows preservation of the kidney, whilst sparing the patient the complications and morbidity associated with major surgery\(^3\). Endoscopic cases fall into two distinct groups; those for whom endoscopic treatment is imperative and those for which it is elective. Imperative indications include renal insufficiency, solitary kidney, bilateral UTUC and those patients for whom major surgery is unsuitable\(^3\)-\(^8\)-\(^9\). Elective indications are stringent (Figure 5.1) and are limited to highly specific, low-grade tumours in patients whose contralateral kidney is functioning normally\(^3\).
Although no randomised controlled trials comparing endoscopic management with RNU have been performed, a systematic review of oncological outcomes suggested that, for specific favourable low-grade UTUC elective cases, endoscopic management can yield effective oncological control and renal preservation\(^9\). This is supported by comparable 5-year disease specific survival between immediate RNU and endoscopic management\(^9,10\). Unfortunately these benefits come at the expense of unfavourable tumour progression and recurrence\(^9\), with one study reporting recurrence in 68% of the cohort\(^10\).
It has been proposed that recurrence after endoscopic management may be reduced by post-operative, adjuvant topical administration of chemotherapeutic agents such as mitomycin C (MMC)10-13 or Bacillus Calmette - Guérin (BCG)14-18. The rationale behind this stems from the established efficacy of these agents in the management of bladder cancer19,20. There are three main techniques used to deliver drugs to the upper urinary tract: Firstly, drug can be delivered in an antegrade fashion percutaneously via a nephrostomy tube. This delivery method is often used following percutaneous resection when access is already available. Secondly, drug can be administered in a retrograde manner using an open-ended ureteric catheter; this technique is favoured after ureteroscopic ablation3,9. Thirdly, although less common, drug can be administered intravesically through an indwelling double-J stent. This technique relies on vesicoureteral reflux of the drug solution from the bladder up into the ureter and renal pelvis21. The renal pelvis is the central, hollow structure of the kidney where urine collects prior to passage down the ureter (Figure 5.2).

Figure 5.2. Bird’s – eye view (A) and cross – sectional tunnel view (B) of the renal pelvis from an ex vivo porcine kidney. Urine moves from the medulla through the renal calyces to the renal pelvis. From the renal pelvis urine passes down the ureter to the bladder.
The efficacy of topical chemotherapy in UTUC is not proven. The poor quality of the studies (small, retrospective studies with limited follow up and no control arms) prevents results from demonstrating unequivocal benefit. If topical drug delivery is to be of benefit in reducing the recurrence of UTUC, then efficacious concentrations of drug must be achieved in the target tissue.

The urothelium forms a continual lining of the renal pelvis, ureter, bladder and proximal urethra. Currently, the accepted dogma is that urothelial permeability is consistent throughout the urinary tract. This is largely based on the assumption that histologically the urothelium is unchanged in the upper and lower urinary tract. To date, no study has sought to investigate the relative permeability of the bladder, ureter and renal pelvis urothelium. However evidence suggests that despite apparent histological homology, protein expression on the surface of the urothelial umbrella cells is not consistent. Given the important role the umbrella cells play in maintaining barrier function, we hypothesise that this may give rise to varying transurothelial permeation at these distinct locations. This chapter investigated the relative permeability and drug-tissue concentrations achieved in the bladder, ureter and kidney following topical instillation with MMC.
5.1.1. Aims and Objectives of Chapter Five

To aim of this chapter was to investigate the relative permeability of the upper and lower urinary tract urothelium to MMC.

The key objectives were:

1. To topically instill a single concentration of MMC to isolated *ex vivo* porcine bladder, ureter and kidney.

2. To construct concentration - depth profiles of MMC in the different urinary tract tissues.

3. To normalise the total amount of permeated drug to the surface area of urothelium and investigate the relative permeability of the upper and lower urinary tract to MMC.
5.2. Materials and Methods

5.2.1. Materials

All chemicals were purchased from Sigma - Aldrich, Poole, UK and were used as received unless otherwise stated. All organic solvents were of HPLC grade and were obtained from Fisher Scientific, Loughborough, UK unless otherwise stated.

5.2.2. Topical instillation of MMC to isolated porcine bladder, ureter and kidney

En bloc porcine urinary tracts, from pigs weighing 70 - 90 kg, were obtained fresh from a local abattoir as described (Section 2.2.5). Working in a shallow bed of Krebs, excess perivesical fat was trimmed and the bladder, ureters and kidneys dissected out. Ureters (~ 10 cm) were dissected out so as to leave ~ 2 cm attached to the bladder and kidney. Organs were rinsed with saline to remove any residual urine and then filled using an open - ended ureteral catheter (Section 3.2.5) with MMC solution (1 mg ml\(^{-1}\) in normal saline) (mitomycin - C 40 mg powder for solution for injection, Prostrakan, UK). The bladder, kidney and ureter were filled through the urethra, ureteral orifice and directly into the ureter respectively. Since the volume of the renal pelvis is variable, pre - experimental test instillations with methylene blue (1 mg ml\(^{-1}\) in normal saline) were carried out to ensure adequate contact with the renal pelvis urothelium was achieved. Post - instillation, entry orifices were sutured and the organs submerged in oxygenated Krebs maintained at 37 °C in a waterbath for 60 min (Section 3.2.5). Four experiments, each representing a different ex vivo porcine urinary tract, were performed.
5.2.3. Investigating total permeation of MMC into the bladder, ureter and kidney wall: Preliminary studies

Following 60 min instillation, organs were removed, emptied and opened with a single vertical incision. To remove surface-adsorbed drug the urothelium was thoroughly rinsed with saline. Tissue samples from areas of drug contact (observed due to purple staining conferred by MMC) were excised and their apparent surface area measured. For kidney samples the renal pelvis was isolated from the underlying cortex by cutting along the natural plane of the tissue with a scalpel (Figure 5.3). The separated cortex was then cut in half representing cortex proximal and distal to the renal pelvis. For all tissues, samples were weighed, homogenised and the drug extracted in 1 ml of mobile phase as described (Section 2.2.6.1). Extracted drug was quantified using HPLC (Section 5.2.3.1). Average drug concentrations were calculated by dividing the total amount of drug recovered by the total weight of tissue. Transurothelial permeation was calculated by normalising the total amount of drug extracted from the tissue to the surface area of the tissue sample.

Figure 5.3. Stepwise dissection (left to right) of the renal pelvis wall (white) from the underlying renal cortex (brown). The renal cortex was subsequently cut in half representing tissue proximal (P) and distal (D) to the renal pelvis.
Chapter Five: Upper and Lower Tract Permeability to MMC

5.2.3.1. Analysis of MMC

MMC was analysed by HPLC (Section 2.2.2). The mobile phase consisted of 80 % 5 mM phosphate buffer (pH 7) : 20 % ACN, with UV detection at 365 nm. The injection volume was 20 µl and flow rate 1ml min⁻¹.

5.2.4. Investigating the distribution of MMC into the bladder, ureter and kidney wall: Concentration - depth studies

Following 60 min instillation, organs were removed, instilled drug emptied and tissue samples taken as described (Section 5.2.3). In this instance the renal pelvis was not isolated from the underlying renal cortex. Tissue samples were immediately snap frozen and the tissue sectioned using a cryostat (Section 2.2.6.1). Samples were serially sectioned parallel to the urothelial surface at 50 µm thickness and sections collected in pre - weighed 1.5 ml eppendorf tubes. Two 50 µm tissue sections between 0 and 100 µm were grouped for analysis, as were the two 50 µm sections between 100 and 200 µm. Groups of six 50 µm tissue sections between 200 and 1,400 µm and groups of twelve 50 µm tissue sections between 1,400 and 7,400 µm were also grouped. MMC was extracted and quantified using HPLC (Section 5.2.3.1). Average drug concentrations at different tissue depths were calculated as described (Section 2.2.7.2). Transurothelial permeation was calculated by normalising the total amount of drug extracted from all tissue sections to the surface area of the tissue sample.

5.2.4.1. Validating extraction of MMC

Deionised water (0.5 ml) was added to the tissue homogenate of sectioned urinary tract tissue (previously extracted according to Section 5.2.3). Samples were then immediately vortexed, centrifuged and the supernatant discarded. Ethyl acetate (0.25 ml) was added to the homogenate and MMC extracted for 24 h with 10 min sonication per sample. Samples were then centrifuged and the supernatant isolated for analysis by HPLC (Section 5.2.3.1).

5.2.4.2. Quantifying tissue layers depths of the ureter, bladder and kidney wall

Samples of ureter, bladder and kidney were taken from porcine urinary tracts excised immediately post - sacrifice on site at the abattoir. Samples were fixed,
sectioned and stained with Masson’s trichrome prior to examination by light microscopy (Section 3.2.6). The mean depths of the different tissue layers for the ureter, bladder and kidney were measured directly from photomicrographs using NIS - Elements Basic Research imaging software (Nikon Instruments Europe B.V, Amsterdam, Netherlands).

5.2.5. Statistical analysis

All statistical analyses were performed using GraphPad Prism version 6.0c (GraphPad Software, Inc, San Diego, California, USA). For all comparisons, one – way ANOVA with Tukey’s post – hoc test for multiple comparisons was used.

5.3. Results and Discussion

5.3.1. Investigating total permeation of MMC into the bladder, ureter and kidney wall: Preliminary studies

Using a ureteral catheter, 1 mg ml\(^{-1}\) MMC was instilled into isolated porcine bladder, ureter and kidney. Owing to natural intra - species variation, urinary organs varied in size and subsequently the volume of MMC instilled varied (Table 5.1). Pre - experimental test instillations with methylene blue showed filling of the kidney through the ureteral orifice resulted in complete exposure of the renal pelvis urothelium (Figure 5.4). Coincidently, MMC stained the urothelium purple making it easy to identify tissue areas exposed to drug solution (Figure 5.5).

<table>
<thead>
<tr>
<th>Prelim Studies</th>
<th>Organ</th>
<th>Weight (g)</th>
<th>Size (cm)</th>
<th>Instillation (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract 1</td>
<td>Bladder</td>
<td>37.3</td>
<td>Whole</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.2 / 3.4</td>
<td>10.6 / 10.6</td>
<td>2 / 2</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>109.3 / 108.1</td>
<td>Whole</td>
<td>7 / 7</td>
</tr>
<tr>
<td>Urinary tract 2</td>
<td>Bladder</td>
<td>23.4</td>
<td>Whole</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.9 / 2.7</td>
<td>12 / 13</td>
<td>4 / 4</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>128.5 / 119.3</td>
<td>Whole</td>
<td>15 / 12</td>
</tr>
<tr>
<td>Urinary tract 3</td>
<td>Bladder</td>
<td>35.2</td>
<td>Whole</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.2 / 2.5</td>
<td>12 / 13</td>
<td>2.5 / 3</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>106.4 / 104.2</td>
<td>Whole</td>
<td>5 / 6</td>
</tr>
<tr>
<td>Urinary tract 4</td>
<td>Bladder</td>
<td>35.9</td>
<td>Whole</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.1 / 1.7</td>
<td>13.4 / 13</td>
<td>3.5 / 3.5</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>71.8 / 75.8</td>
<td>Whole</td>
<td>4 / 4</td>
</tr>
</tbody>
</table>

Table 5.1. Individual organ dimensions and volumes of MMC instilled in each of the four ex vivo porcine urinary tracts. (*Prelim* – preliminary).
Chapter Five: Upper and Lower Tract Permeability to MMC

Figure 5.4. Porcine kidney instilled through the ureteral orifice with methylene blue (1 mg ml⁻¹) using an open-ended ureteral catheter. The technique resulted in complete exposure of the renal pelvis urothelium to the instilled solution.

Figure 5.5. Ex vivo porcine bladder (A), kidney (B) and ureter (C) following 60 min instillation with MMC (1 mg ml⁻¹). Purple staining of the tissue urothelium enables easy identification of the areas of drug contact.
5.3.1.1. **Analysis of MMC**

HPLC analysis of MMC produced sharp, near-symmetrical peaks that eluted at a stable retention time (Figure 5.7). Analyte quantitation was calculated using an external standard solution (section 2.3.3.1) ranging in concentration from 0.01 to 10 µg ml\(^{-1}\). Calibration curves were run in triplicate and showed high linearity (R\(^2\) value = 0.9999) across the expected analyte concentration range (Figure 5.6). The LLOD and LLOQ was 0.003 and 0.01 µg ml\(^{-1}\) respectively, with good sensitivity shown in homogenised urinary tract tissue (Figure 5.7D - E).

![Figure 5.6. External standard calibration curve used in the HPLC analysis of MMC. Inset, a clearer plot of the calibration values between 0 and 0.1 µg ml\(^{-1}\).](image-url)
Figure 5.7. Example HPLC chromatograms showing the analysis of MMC calibration standards (A - C) and drug recovered from bladder (D) and kidney (E) tissue samples near the LLOQ.
Considering the large variation in thickness of the bladder, ureter and kidney, drug recovered from the tissue was normalised to surface area allowing a more accurate comparison of permeation. For the kidney, amounts of MMC recovered from the renal cortex were frequently below the LLOQ and as such permeation represents drug recovered from the renal pelvis only. Interestingly, after 60 min, permeation of MMC across ureteral urothelium (4.29 µg cm⁻²) was significantly greater than bladder urothelium (0.66 µg cm⁻²) or kidney urothelium (0.84 µg cm⁻²) (p < 0.001) (Figure 5.8B). There was no significant difference between permeation across the kidney and bladder urothelium (p > 0.05). This pattern of increased ureteral permeability was observed consistently in each of the four urinary tracts investigated (Figure 5.8A). When expressing drug recovered as a total concentration per weight of the tissue, concentrations of MMC in the ureter (20.44 µg g⁻¹) were significantly greater than that of the bladder (1.07 µg g⁻¹) or kidney (5.32 µg g⁻¹) (p < 0.001 and 0.05 respectively) (Figure 5.9B). MMC tissue concentrations in the kidney were markedly higher than those in the bladder for three of the four urinary tracts investigated (Figure 5.9A), however overall this was not statistically significant (p > 0.05). As was the case with transurothelial permeation, the pattern of increased ureteral MMC concentrations was consistent across the four urinary tracts investigated (Figure 5.9A).
Figure 5.8. A) Transurothelial permeation of MMC into urinary tract tissue following 60 min instillation of 1 mg ml\(^{-1}\) MMC for each of the four urinary tracts investigated. For each urinary tract, bars show mean ± SD of all the raw data (tissue samples analysed per urinary tract: bladder (n = 5), ureter (n = 10), kidney (n = 6). B) Average transurothelial permeation of MMC into urinary tract tissue following 60 min instillation of 1 mg ml\(^{-1}\) MMC. (n = 4 urinary tracts ± SEM, ** p < 0.01 for the ureter versus the bladder and the ureter versus the kidney, calculated by one-way ANOVA with Tukey’s post-hoc test for multiple comparisons).
Figure 5.9. A) Drug – tissue concentrations achieved in urinary tract tissue following 60 min instillation of 1 mg ml⁻¹ MMC for each of the four urinary tracts investigated. For each urinary tract, bars show mean ± SD of all the raw data (tissue samples analysed per urinary tract: bladder (n = 5), ureter (n = 10), kidney (n = 6). B) Average drug – tissue concentrations achieved in urinary tract tissue following 60 min instillation of 1 mg ml⁻¹ MMC. (n = 4 urinary tracts ± SEM, ** p < 0.01 for the ureter versus the bladder, * p < 0.05 for the ureter versus the kidney, calculated by one – way ANOVA with Tukey’s post – hoc test for multiple comparisons).
5.3.1.2. **Quantifying tissue layers depths of the ureter, bladder and kidney wall**

Although the relative thickness of tissue layers within the bladder wall is well established, the upper urinary tract is less well characterised. Sections of tissue were stained with Masson's trichrome (Figure 5.10) and tissue layer depths measured directly from photomicrographs using NIS - Elements imaging software (Figure 5.10D). Measurements (calculated as the distance between the top and base of the layer) were taken across the whole of the micrograph and the mean thickness of the tissue layers determined (Table 5.2).

![Photomicrographs of bladder (A), kidney (B) and ureter (C - D) sections stained with Masson’s trichrome. All samples were taken from a single *ex vivo* porcine urinary tract. Example of ureteral smooth muscle layer measurements calculated with NIS - Elements imaging software (D).](#)
Chapter Five: Upper and Lower Tract Permeability to MMC

Table 5.2. Tissue layer measurements for *ex vivo* porcine ureter, bladder and kidney. Values represent mean of 20 measurements for each layer from 2 whole porcine urinary tracts.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Thickness of tissue layer (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urothelium</td>
</tr>
<tr>
<td>Ureter</td>
<td>186.9</td>
</tr>
<tr>
<td>Bladder</td>
<td>182.6</td>
</tr>
<tr>
<td>Kidney</td>
<td>176.5</td>
</tr>
</tbody>
</table>

5.3.2. Investigating the distribution of MMC into the bladder, ureter and kidney wall: Concentration - depth studies

Preliminary studies looked only at total MMC permeated (Figure 5.8), treating the urothelium, lamina propria and detrusor muscle as a single compartment. Consequently results report average concentrations across the whole of the tissue wall (Figure 5.9B). When comparing drug penetration into tissues of differing thickness, average drug concentrations can misrepresent the data. The bladder wall is considerably thicker than the ureteral wall (Table 5.2); consequently areas deep in the bladder wall (where drug may not have not reached) will drive down the average tissue concentration expressed as microgram per gram of tissue. To extend and improve upon these preliminary studies, concentration - depth profiles were constructed to more closely examine MMC permeation and concentrations achieved in the different layers of the urinary tract tissues (Figure 5.11A and 5.12).

Again the volume of MMC instilled varied (Table 5.3), however organ weights, dimensions and instillation volumes were similar to the preliminary study (Table 5.1).
Table 5.3. Individual organ dimensions and volumes of MMC instilled in each of the four ex vivo porcine urinary tracts. (‘CDP’, concentration – depth profile).

<table>
<thead>
<tr>
<th>CDP Studies</th>
<th>Organ</th>
<th>Weight (g)</th>
<th>Size (cm)</th>
<th>Instillation (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary tract 1</td>
<td>Bladder</td>
<td>26.32</td>
<td>Whole</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>0.87 / 1.13</td>
<td>5 / 6</td>
<td>1 / 1.9</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>147.5 / 151.5</td>
<td>Whole</td>
<td>8.5 / 9.5</td>
</tr>
<tr>
<td>Urinary tract 2</td>
<td>Bladder</td>
<td>29.13</td>
<td>Whole</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>1.64 / 2.22</td>
<td>10 / 10</td>
<td>1.8 / 2.0</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>104.94 / 103.86</td>
<td>Whole</td>
<td>7.1 / 10.9</td>
</tr>
<tr>
<td>Urinary tract 3</td>
<td>Bladder</td>
<td>40.56</td>
<td>Whole</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.24 / 2.31</td>
<td>10 / 10</td>
<td>2.25 / 2.75</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>159.5 / 143.9</td>
<td>Whole</td>
<td>14 / 14.5</td>
</tr>
<tr>
<td>Urinary tract 4</td>
<td>Bladder</td>
<td>32.9</td>
<td>Whole</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Ureters</td>
<td>2.2 / 2.3</td>
<td>10 / 10</td>
<td>2 / 3.3</td>
</tr>
<tr>
<td></td>
<td>Kidneys</td>
<td>145.2 / 144.5</td>
<td>Whole</td>
<td>11 / 16.25</td>
</tr>
</tbody>
</table>

Figure 5.11A shows average concentration - depth profiles for MMC in the different urinary tract tissues. Profiles resembled those constructed for other molecules in this thesis (Sections 2.3.3.2, 3.3.2.2) with drug concentrations highest in the superficial (urothelial) tissue sections, followed by a comparatively steep decline in concentration as tissue depth increased. Average concentrations of MMC in the ureter and kidney were markedly higher than those achieved in the bladder at all tissue depths investigated (Figure 5.11A). This was the case in each of the four urinary tracts investigated (Figure 5.12). Variation in the relative proportion and composition of tissue layers of the upper and lower urinary tract makes comparison of drug concentrations in the lamina propria and detrusor muscle difficult. The urothelium of the upper and lower porcine urinary tract however is of a similar thickness (Table 5.2). Urothelial MMC concentrations (calculated at 150 µm tissue depth) were > 6.5 fold higher in the ureter and kidney compared to the bladder (Figure 5.11B, p < 0.01).

To validate the MMC extraction protocol, a second extraction in ethyl acetate was carried out on samples from each tissue type (two 50 µm sections between 100 and 200 µm tissue depth for each of the four urinary tracts). Prior to the addition of ethyl acetate, a washing step was included to remove any adsorbed MMC from the surface of the tissue homogenate. MMC is highly soluble in ethyl acetate and the solvent has been used to extract MMC from bladder tissue by other groups. For all tissue sections the amount of MMC extracted in the secondary step was
below the LLOD, suggesting complete extraction of MMC had been achieved in the analytical extraction.

MMC permeation across ureteral urothelium (9.07 µg cm\(^{-2}\)) was significantly greater than that across bladder urothelium (0.94 µg cm\(^{-2}\), \(p < 0.001\), Figure 5.11C). Transurothelial permeation across kidney urothelium (3.61 µg cm\(^{-2}\)) was significantly greater than bladder urothelium (~4 fold higher) however this was not statistically significant (\(p = 0.086\), Figure 5.11C). Ureteral permeation was significantly greater than kidney urothelium (\(p < 0.01\), Figure 5.11C) and at tissue depths beyond 350 µm MMC concentrations in the ureter were greater than those in the kidney (Figure 5.11A, 5.12). Although results from the concentration-depth study yielded higher transurothelial permeation results that those in the preliminary studies, the pattern of the ureter exhibiting significantly increased MMC permeability remained consistent.

Bladder wall concentrations are similar to those reported by other groups\(^{26}\) (Figure 5.13A), especially when comparing median bladder wall concentrations (4.3 versus 5.6 µg g\(^{-1}\) in the urothelium for this data and that reported by Wientjes \textit{et al} respectively, Figure 5.13B). However owing to differences in experimental design it is not reasonable to make direct comparisons. Unfortunately, no previous study has sought to investigate MMC concentrations achieved in the upper urinary tract following local delivery and therefore no ureteral or renal pelvis values are available with which compare. Indeed, this is the first study to compare urothelial permeability between the upper and lower urinary tract for any molecule.
Figure 5.11. A) Average concentration - depth profiles of MMC in *ex vivo* porcine bladder, ureter and kidney wall following 60 min instillation of 1 mg ml\(^{-1}\) MMC. B) Average urothelium concentrations (calculated at 150 µm depth) following 60 min instillation of 1 mg ml\(^{-1}\) MMC (** p < 0.01 for the ureter and kidney versus the bladder, calculated by one-way ANOVA with Tukey's post-hoc test for multiple comparisons). C) Transurothelial permeation of MMC in *ex vivo* porcine bladder, ureter and kidney wall following 60 min instillation of 1 mg ml\(^{-1}\) MMC (*** p < 0.001 for the ureter versus the bladder, ** p < 0.01 for the ureter versus the kidney, calculated by one-way ANOVA with Tukey's post-hoc test for multiple comparisons). (For all figures, n = 4 urinary tracts ± SEM).
Figure 5.12. Concentration-depth profiles for each of the four urinary tracts investigated, showing drug concentrations achieved in *ex vivo* porcine bladder, ureter and kidney wall following 60 min instillation of 1 mg ml⁻¹ MMC. Symbols show mean ± SD of all raw data (tissue samples analysed, n = ‘Urinary Tract 1’: 6 bladder, 5 ureter and 5 kidney replicates, ‘Urinary Tract 2’: 5 bladder, 8 ureter and 5 kidney replicates, ‘Urinary Tract 3’: 4 bladder, 8 ureter and 3 kidney replicates and ‘Urinary Tract 4’: 6 bladder, 4 ureter and 5 kidney replicates respectively).
Figure 5.13. Comparison of MMC concentration-depth profiles in bladder wall from this study (blue symbols, 60 min instillation of 1 mg ml$^{-1}$ MMC to ex vivo porcine bladder) and that of Wientjes et al26 (purple symbols, 60 - 120 min instillation of 0.5 mg ml$^{-1}$ MMC to in vivo human bladder). Figure A shows mean values ± SD and figure B shows median values from the same data. (n = 4 bladders ± SD and 7 bladders ± SD for this work and that of Wientjes et al respectively).
Chapter Five: Upper and Lower Tract Permeability to MMC

The greater permeability of porcine ureter might be explained by the relative uroplakin (UP) content of the different regions of the urinary tract24. It was generally believed that the upper and lower urinary tracts were lined by one homogenous urothelium24. Urothelia at these different regions are morphologically similar in terms of thickness and were presumed to perform a similar barrier function23. Indeed, histology of the \textit{ex vivo} porcine urinary tract showed no discernable difference in the thickness of the urothelium of the upper or lower urinary tract (Table 5.2). However recently it has been shown that, based on ultrastructure and UP content, the urothelium of the mammalian urinary tract can be divided into at least three different cell lineages: renal pelvis / ureter, bladder / trigone and proximal urethra24. Immunofluorescence and transmission electron microscopy of bovine urothelium indicates urothelial cells of the bladder contain more UP than those of the ureter24. Immunoblotting analysis of these isolated urothelia indicated the bladder UP content to be \textasciitilde{} 10 times higher than that of the ureter24. Additionally, immunoblot analysis of bovine urothelia cultured \textit{in vitro} showed the bladder to contain \textasciitilde{} 10 times more UP than either the ureter or renal pelvis. When maintained under identical \textit{in vitro} conditions, bovine urothelia from the bladder and ureter exhibited very different proliferative potential and formed morphologically distinct colonies24. Conversely, \textit{in vitro} cultured urothelia from the renal pelvis showed indistinguishable growth potential from that of the ureter. Preliminary work by the same group suggested the concept of urothelial heterogeneity also extended to monkey and human24.

Following on from this work Riedel et al showed that, with respect to UP composition, urothelial heterogeneity was indeed more prominent in umbrella cells of the human ureter than those of the bladder25 (the renal pelvis was not investigated). Immunohistochemical staining revealed that 15 of the 18 ureters investigated possessed a significant subpopulation of ureteral umbrella cells lacking UPIII and UP\textsubscript{1b}. The authors concluded that the UPIII / UP\textsubscript{1b} pair may in fact be completely absent from the ureters. In comparison, only 2 of the 10 bladder samples investigated lacked UPIII and UP\textsubscript{1B} and both of these samples were taken from the ureteral orifice or its immediate surrounding; suggesting the urothelium may have been of ureteral origin. UPIII is integral to the formation of an effective urothelial barrier24,27. UPIII knockout mice exhibit a more permeable urothelium.
demonstrated by the increased penetration of methylene blue into umbrella cells and a higher transurothelial permeability to water and urea27,28. Similar to findings in the human ureter, UPIII knockout mice exhibit reduced production of the UPIII partner protein UPIb. It is possible the lack of the UPIII / UPIb pair in the human ureter might render human ureteral urothelium more permeable than that of the bladder. Interestingly the authors also found that umbrella cell - associated cytokeratin 20, an additional marker of urothelial differentiation29, showed a more extended expression among umbrella cells of the bladder than among those of the ureter. Evidence therefore suggests that mammalian ureteral urothelium is less differentiated than that of the bladder. Although the UP content of the human renal pelvis was not investigated, bovine data24 and evidence that the renal pelvis and ureter are from the same cell lineage suggests it may exhibit a similar heterogeneity and increased permeability. Although preliminary studies found no discernable difference between the permeability of the renal pelvis and bladder (Figure 5.8B), more detailed concentration – depth analysis found the renal pelvis to be consistently more permeable than the bladder, although statistical significance was not achieved (p = 0.086, Figure 5.11C). The reason for the disparity between the results is unclear; it is possible that drug extraction from the kidney was more complete in the concentration – depth study owing to the thinness of the sectioned tissue. This would also explain the higher transurothelial permeation results determined versus the preliminary study. Although the mammalian renal pelvis and ureter are now believed to originate from the same cell lineage, results from this work suggest the two tissues may be different in terms of their permeability to MMC. In both preliminary and concentration – depth studies, the ureter was significantly more permeable than the renal pelvis, suggesting an underlying difference in barrier function.

It should be pointed out that UP expression studies have not been carried out in the pig. Urothelial heterogeneity is suggested to be an explanation for the results observed in this study based on results from other mammalian species in the literature as discussed. Furthermore pigs are established and well characterised models of the human urinary tract30–32, exhibiting similar physiology33–35, tissue structure and composition to that of humans36–38.
5.4. Conclusions

Ex vivo porcine ureter is significantly more permeable to MMC than bladder urothelium and consequently higher MMC tissue concentrations can be achieved after topical application. The renal pelvis was also found to be consistently more permeable than the bladder, although significance was not demonstrated. The data presented in this chapter correlates with the theory that the mammalian ureter represents a different cell lineage to the bladder and that it is innately more permeable. A less differentiated urothelium may have no major functional consequences for the ureter as, in comparison to the bladder, upper tract urothelia have less barrier requirements (lower intraluminal pressure, less distension and storage requirements) and therefore the presence of fully functional UPs may not be essential. However there may be distinct advantages when considering the topical administration of drug to the upper urinary tract. Increased urothelial permeability to chemotherapeutics such as MMC would potentially allow higher drug concentrations to be achieved in the ureteral wall. Unfortunately, unlike urothelial carcinoma of the bladder to our knowledge MMC concentrations necessary to effectively treat UTUC have not been established. Nonetheless, if delivered to the upper urinary tract in an effective manner, the increased permeability of the ureter and renal pelvis could have important ramifications for the conservative treatment of UTUC.
5.4.1. Future Studies

Suggestions for future studies include:

- Immunohistochemical analysis of porcine urinary tract to determine UP content.

- Comparing upper and lower urinary tract permeability to MMC in human tissue.

- Further investigations to ascertain whether the urothelium of the renal pelvis is more permeable than that of the bladder to MMC.

- Additional studies to investigate whether this pattern of increased upper tract permeability is seen for other clinically relevant molecules such as BCG17.

- Investigating the homogeneity of the GAG layer throughout upper and lower urinary tract urothelia. The GAG layer is crucial to the barrier function of the urothelium (1.1.2.1.c)43,44, however no groups have investigated its relative distribution at the different anatomical sites of the urinary tract.
5.5. Reference List

Chapter Five: Upper and Lower Tract Permeability to MMC

Chapter Six: General Discussion
6.1. General Overview of Thesis

Intravesical drug delivery (IDD) offers a unique opportunity to target pathology of the lower urinary tract. High concentrations of drug can be delivered directly to the bladder with minimal systemic absorption and significantly improved adverse effect profiles compared to alternative administration routes. Despite its advantages, IDD has several inherent limitations including the low permeability of the urothelium, the continual dilution of the instilled dose by urine and the limited capacity of the bladder and hence low residence time of the dose. IDD has been used successfully to manage a wide range of conditions such as bladder cancer, interstitial cystitis / painful bladder syndrome and overactive bladder (OAB) and continues to be investigated for novel indications. Despite this the majority of IDD regimens remain empirically designed and as a result its potential largely unfulfilled.

When researching this project it became apparent that there was limited information available in the literature regarding bladder wall drug concentrations achieved following IDD. Although there were many IDD clinical studies, there was no information detailing desired target tissue concentrations in the bladder wall. There continues to be very few groups working in this field. Such shortcomings underpinned the motivation for Boston Scientific Corporation (BSC) to instigate this research project. BSCs ketorolac – eluting ureteral stent (Lexington™) unexpectedly failed to meet its primary clinical endpoint, despite preliminary IDD studies showing the agent was effective in the management of ureteral stent – related discomfort. It was theorised that drug release from the stent was likely insufficient to establish effective target tissue concentrations. Subsequently BSC decided a bottom – up approach to investigate the viability of delivering ketorolac locally to the urinary tract was necessary. The original aims of this project were to investigate the local delivery of ketorolac to the urinary tract, determine drug release characteristics from the Lexington™ stent and investigate / suggest improved techniques for stent formulation.

Chapter two of this thesis focused on the development of an ex vivo porcine model to investigate the transurothelial permeability and bladder wall distribution of...
drugs after their local application to the urothelium. This research group had limited experience in the urology area and subsequently new experimental techniques and procedures were devised. This provided many challenges including: how to obtain and efficiently transport the porcine tissue, how to ensure and evaluate that the barrier function of urothelium was maintained during experimental conditions, how to generate drug permeability parameters, how to investigate drug distribution in the bladder wall and how to extract and analyse low concentrations of drug in complex tissue medium. *Ex vivo* porcine tissue was chosen owing to the history of pigs being used as animal models in urology\(^\text{10}\). A wide range of techniques were used to validate the integrity of the urothelial barrier including: investigating markers of permeation, measuring transepithelial resistance (TEER) and examining the urothelial surface using scanning electron microscopy (SEM). In line with similar work carried out in the transdermal field, early transurothelial permeation studies were performed on isolated bladder mucosa (urothelium and lamina propria). Ideally, isolated urothelium would be the tissue of choice, however owing to the thickness of the urothelium (~ 200 µm) and the delicate nature of the single layer of umbrella cells, this was not feasible. The mucosal protocol was then superseded by a simpler technique that used full thickness bladder wall followed by washing of the urothelial surface. Using this technique any remaining surface - adsorbed drug was within error of the amount of drug extracted from the tissue. It also negated the need to manipulate and potentially damage the urothelium that was necessary to isolate the mucosa. This then lead to further experimental development focused on drug extraction and analysis from the bladder wall. Extracting and quantifying drug in tissue medium is inherently more complicated and challenging than doing so in ‘clean’ environments such as saline or Krebs. Potential problems include incomplete drug extraction and interfering peaks / reduced sensitivity during HPLC – UV analysis. Consequently significant time and effort went into the design and optimisation of HPLC methods during this thesis. At this time a concentration – depth profiling technique was optimised that allowed the determination of drug concentrations throughout the bladder wall. Although this technique had been reported in the literature, it had only been used by a small number of groups and was new to this research group. Mimicking the dosing concentration of ketorolac shown to be clinically effective *in vivo*, concentration – depth profiles were generated in the
bladder wall and compared to literature sourced IC$_{50}$ values. Results suggested intravesical ketorolac would result in efficacious target concentrations in the bladder wall11. Considering this, it is likely that the Lexington™ stent failed owing to poor drug release from the device rather than an incorrect choice of drug. Follow up studies planned to investigate different techniques of drug – stent loading and determine drug release profiles over the course of stent use.

Approximately one year into this project the focus of BSC’s research and development division shifted and drug release studies from the Lexington™ stent were postponed. The overarching aim of this project evolved to focus on investigating the transurothelial delivery of clinically relevant molecules and developing strategies to maximise the potential of IDD.

In chapter three *ex vivo* work was extended to include a whole bladder setup allowing the incorporation of urine dilution. This was the first time urine production had been incorporated into *ex vivo* IDD studies. Artificial urine was added to the bladder at a physiological rate and concentration – depth profiles determined following the IDD of oxybutynin. A significant challenge in this work concerned the analysis of oxybutynin. Originally HPLC was used as the detection method, however oxybutynin has a poor chromophore and shows maximum absorbance at 210 nm12. At this wavelength there is significant interference from other molecules in homogenised tissue and consequently UV detection was unsuitable for sensitive quantification12. Consequently oxybutynin was measured by HPLC – MS, which significantly increased the sensitivity at which the drug could be quantified (LLOQ of 3 ng ml$^{-1}$ compared to ~ 250 ng ml$^{-1}$ using HPLC – UV detection).

Intravesical oxybutynin is highly efficacious in the management of OAB in patients refractory to oral treatment13 and is used extensively for this indication14. Despite this, the mechanism of action (MOA) is unclear. Originally believed to act by directly inhibiting M$_3$ muscarinic receptors in the detrusor muscle, there is now significant evidence that antimuscarinics activate muscarinic receptors at the urothelial and / or suburothelial level to modulate the afferent arc of the micturition cycle15. *Ex vivo* studies showed that despite permeating the urothelium at a high rate in comparison to ketorolac, oxybutynin concentrations achieved in
the detrusor muscle were significantly lower than reported IC_{50} values suggesting target concentrations achieved post – IDD would not be sufficient to directly inhibit detrusor contraction. Unfortunately this work did not concomitantly investigate detrusor muscle contractility with drug concentrations achieved in the bladder wall. This was a real shame and had it been feasible would have contributed to the impact of this work. Looking forward, the incorporation of concomitant pharmacology studies, whether performed in - house or in collaboration with partners, is essential to eliciting the MOA in studies such as these.

Chapter four documented the design of a computer – based pharmacokinetic (PK) model of IDD. Originally the model was designed to incorporate drug clearance from the bladder wall into the ex vivo studies. However it became clear that the usefulness of the model was actually its ability to compare the efficacy of different IDD regimens. It was evident from the literature that the majority of regimens were designed without consideration of the variables associated with IDD such as instillation volume, concentration or length. The model provided a platform for these variables to be investigated. The model was built using STELLA® which allows mathematical models to be designed diagrammatically rather than by high – level programming code. This work was in part assisted by Yuri Anissimov, a mathematician who has published extensively in the field of mathematical modelling of biological processes^{16–20}. This collaboration was initiated after the original design of the PK model. It was deemed important to consult the expertise of a mathematician who is at the forefront of this niche area of research. Yuri was able assist with the choice of the underlying diffusion equations and validate outputs generated by the STELLA® model using PYTHON™, a widely used programming language. Using the model, the key variables associated with IDD were investigated and their contribution to the efficacy of the IDD process evaluated. To demonstrate the usefulness of the model an IDD regimen from the literature was optimised using techniques highlighted by the model and significant improvements predicted. Currently the value of the model lies not in its ability to predict in vivo bladder concentrations achieved after IDD, but rather to highlight comparative differences between regimens and dosing variables. In the future, validation of the models ability to predict in vivo bladder wall concentrations could
only be achieved through *in vivo* pig studies. Urine concentrations however could be validated clinically using patient urine samples from IDD regimens.

The final chapter of this thesis extended transurothelial permeability studies to the upper urinary tract. In addition to treating urothelial carcinoma of the bladder, topical mitomycin C (MMC) is suggested to be efficacious in reducing the recurrence of upper tract urothelial carcinoma (UTUC)21–24. Interestingly despite evidence that protein expression on the surface of the urothelial umbrella cells is not consistent25,26, no groups had previously investigated the hypothesis that urothelium barrier function differs at these distinct locations. *Ex vivo* studies showed conclusively that the urothelium of the ureter was significantly more permeable to MMC than the bladder and that urothelial concentrations achieved in the upper urinary tract were significantly higher. The reasoning for this disparity might be explained by the relative distribution and density of uroplakin plaques in the upper and lower porcine urinary tract as has been shown in other mammals. This research is particularly interesting as a more permeable urothelium may provide higher target tissue concentrations after local delivery and subsequently a significant opportunity to manage UTUC conservatively. Ideally future work would mirror these studies in human tissue, however owing to the ethical approval necessary and the limited supply of whole urinary tract organs this is extremely unlikely. *In vivo* studies in large mammals such as pigs require substantial resources, however if feasible they would be an exciting next step in which to take this research.

The bladder offers a unique opportunity for the local delivery of therapies. It is one of a small number of organs that can conveniently and minimally invasively be accessed. IDD is seemingly well placed as a method for delivering high concentrations of drug directly to the bladder and has been used to manage a wide range of bladder conditions. It was therefore surprising to discover that very little was known about the permeability and tissue distribution of drugs following topical application. Whereas other significant barriers to drug delivery, such as the stratum corneum and blood brain barrier, had been extensively studied, information on the urothelium was extremely limited. This project originally set out to evaluate the potential of drug eluting ureteral stents for delivering drugs
out to evaluate the potential of drug eluting ureteral stents for delivering drugs directly to the urinary tract. However it soon became clear that rational device design, in particular drug loading and release rates, was hampered by the paucity of information defining the urothelial barrier. Therefore the project naturally evolved to explore the fundamental issues of transurothelial permeability and drug distribution following topical delivery. From here several novel *ex vivo* and *in silico* methods were developed to investigate IDD. These techniques can be used to rationally inform on the design of new, or optimisation of existing, IDD regimens and in doing so maximise the potential of what remains a poorly understood drug delivery technique.
6.2. Reference List

2. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol. 2000;278(6):F867.

10. Crowe R, Burnstock G. A histochemical and immunohistochemical study of the autonomic innervation of the lower urinary tract of the female pig. Is the pig a

