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a b s t r a c t

Field oriented control (FOC) is one of the most successful control schemes for electrical machines. In this
article new properties of FOC schemes for induction motors (IMs) are revealed by studying the cross-
coupling of the flux-torque subsystem. Through the use of frequency-based multivariable tools, it is
shown that FOC has intrinsic stator currents disturbance rejection properties due to the existence of a
transmission zero in the flux-torque subsystem. These properties can be exploited in order to select
appropriate feedback loop configurations. One of the major drawbacks of FOC schemes is their high
sensitivity to slip angular velocity perturbations. These perturbations are related to variations of the
rotor time constant, which are known to be problematic for IM control. In this regard, the effect that slip
angular velocity perturbations have over the newly found perturbation rejection properties is also
studied. In particular, although perturbation rejection is maintained, deviations to the equilibrium point
are induced; this introduces difficulties for simultaneous flux and torque control. The existence of
equilibrium point issues when flux and torque are simultaneously controlled is documented for the first
time in this article.

& 2015 The Authors. Published by Elsevier Ltd. ISA. All rights reserved.

1. Introduction

Induction motors (IMs) are widely used as actuators in many
industrial and research applications. Along the last decades the
evolution of digital processing systems and power electronics
made possible the extended use of high-performance IM control
systems such as field oriented control (FOC) and direct torque
control (DTC). Among these control strategies FOC has been shown
to be a viable every-day solution for most applications [1,2]. There
are many kinds of FOC schemes; however, the most successful are
based on rotor flux and torque decoupling [3]. Several recent

schemes proposed in the literature are designed under this
strategy [1,4–9], which aims at modifying the behavior of the IM
into that of a classical direct current (DC) motor. With DC motors it
is easy to manipulate the flux and the torque separately by driving
different physical currents; namely field and armature currents. To
achieve this commodity in IMs, non-linear control elements are
introduced in order to have virtual flux and torque producing
currents. This strategy is commonly implemented following a two-
step procedure [1–3,10]. The first step consists in controlling the
stator currents using a voltage source inverter (VSI) as an actuator.
By controlling the stator currents, the fifth degree non-linear
model of the IM may be simplified into a third order system.
The second step is to design a non-linear flux-torque control law
for this system. It is in this second step that most FOC schemes are
introduced. Control strategies other than FOC may be used in the
second step while preserving the stator currents control loop;
however, they are akin to FOC in this regard [11–15].

After attaining control of the stator currents most IM control
strategies aim at decoupling the flux-torque subsystem. However,
this system has intrinsic dynamical cross-coupling properties
which have not been fully studied. Even when typical FOC
schemes are fairly disseminated, their coupling characteristics
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have not been fully addressed. Following this line, the main focus
of this article is to comprehensively study the intrinsic dynamical
cross-coupling properties of the flux-torque subsystem under typical
FOC schemes. The principal shortcoming of most published works
in this regard is that they are focused on the overall control goals
and only deal with the cross-coupling as a byproduct (normally
direct cancellation methods are applied). For instance, in [16–19]
the flux-torque subsystem is analyzed by using local stability
concepts and bifurcations. In these references, some aspects of
the cross-coupling between the flux and the torque are treated
indirectly. Nonetheless, these studies are limited by considering
solely equilibrium conditions. In [20] additional aspects of the
cross-coupling of this subsystem are used to propose stabilizing
controllers. However, the cross-coupling analysis is also limited to
equilibrium characteristics and neglects the dynamical aspects.
Additional features of flux-torque cross-coupling can be found in
classical vector control literature for IMs, such as in [21,22].
Nonetheless, most of these results suffer the same shortcomings
as explained before. Ref. [15] successfully presents an approach
that considers a current-fed machine and the control of the flux-
torque subsystem; however, neither the resulting coupling nor the
effect of perturbations over this coupling are discussed. Although
the flux-torque subsystem has been extensively studied, the
dynamical aspects of its cross-coupling are yet to be addressed.

Interesting results on the flux-torque control problem have
been reported using passivity analysis. For instance, in [23,24]
multivariable flux-torque controllers and some steady state cross-
coupling characteristics are studied. An important conclusion from
these works is that that by stabilizing the stator currents with a
correct d-q alignment the flux error must converge to zero –which
is the key for flux-torque decoupling as will be also discussed here.
However, the results shown in [23,24] do not allow an easy
assessment of the perturbation rejection characteristics of flux–
torque controllers due to the inherent cross-coupling, something
which is thoroughly covered in this article.

The effects of perturbations on the flux-torque cross-coupling
are also understudied in the available literature. For example in
[28] the flux-torque cross-coupling is successfully eliminated in
the presence of perturbations, but the requirements for this to be
achieved or the even the mechanisms of how it was achieved are
not reported. Fully non-linear controllers have also been devel-
oped for IMs. For instance, in [9] a non-linear controller is
presented and it is shown that stability can be preserved under
certain degree of slip angle deviation. Nonetheless, flux-torque
cross-coupling was observed under perturbations, but no addi-
tional effort was made to characterize it or eliminate it.

On the other hand, there are several recent theoretical devel-
opments for the design of multivariable control systems. For
instance, in [25] an observer is proposed to estimate the cross-
coupling in real time in order to actively compensate and decouple
the system. Following a similar line, in [26] an interesting treat-
ment of active uncertainty compensation and on-line estimation is
presented for a class of systems. These ideas are further developed
in [27] with good theoretical results. Nonetheless, the adaptation
of these theoretical developments to the particular problem at
hand (i.e. analyzing the flux-torque cross-coupling of IMs when
using FOC schemes) requires a significant effort due to the
complexity of the theoretical framework. In this context, a simpler
framework with accessible tools in an engineering environment
would be better suited for a first approach to address this problem.

A widely known tool for studying the cross-coupling of multi-
variable systems is the relative gain array (RGA) matrix [29,30]. The
RGA matrix is normally used for steady state cross-coupling
analysis. That is, an in-depth RGA matrix analysis of the flux-
torque subsystem may reveal the same results as those already
found in the literature. In this context, individual channel analysis
and design (ICAD) is a framework which goes far beyond the RGA
matrix analysis and includes the dynamical effects of the cross-
coupling and of closed loop controllers [31]. In this article, the
cross-coupling of the flux-torque subsystem is studied under the
ICAD framework. By application of ICAD, several novel character-
istics of the flux-torque subsystem are revealed and associated to
known equilibrium point characteristics. For instance, it is shown
that this subsystem has intrinsic stator currents perturbation
rejection capabilities. Moreover it is shown that these capabilities
are due to the existence of a particular transmission zero in the
flux-torque subsystem.

One of the major drawbacks of FOC schemes is their sensitivity
to slip angular velocity perturbations. It is also known that these
perturbations are related in turn to rotor resistance perturbations.
Several studies have been made considering the effect of varia-
tions of this parameter in specific control schemes [10,32–34]. In
this article, slip angular velocity perturbations modeled as rotor
resistance perturbations are considered. The results clearly show
the negative impact of these perturbations over the closed loop
system through the cross-coupling of the flux and torque.

Finally, some of the most relevant equilibrium point conclu-
sions for the flux-torque subsystem, which are normally scattered
among several references, are derived here from first principles
and then extended to their dynamical counterpart. Conditions
where problems with the equilibrium point arise are addressed. It
is shown that these issues appear when flux and torque are

Symbol

Symbol Description
Rr Rotor resistance
Lr Rotor inductance
ids, iqs d and q components of the stator currents
TE Generated torque
ψ Flux magnitude
a1 Rotor flux time constant
ϕ Slip angular velocity
Δx Deviation from nominal/equilibrium value of variable

x
δx Perturbation input in variable x
gTqðsÞ Transfer function ΔTE(s)/Δiqs(s)
gψqðsÞ Transfer function Δψ2ðsÞ=ΔiqsðsÞ
c : in¼ x; out ¼ y
� �

Individual channel using variable y as out-
put and variable x as input.

ST, Sψ Sensitivity functions of torque and flux control loops
Lm Mutual inductance
KT Torque constant
ψdr ; ψ qr d and q components of rotor flux
Tr Torque reference
ψ r Flux magnitude reference
a2¼a1Lm Flux stator current gain
x0 Equilibrium value for variable x
ux Additional control input for variable x
σr Rotor resistance perturbation factor
gTdðsÞ Transfer function ΔTE(s)/ Δids(s)
gψdðsÞ Transfer functionΔψ2ðsÞ=ΔidsðsÞ
γðsÞ Multivariable structure function
hT, hψ Complementary sensitivity of torque and flux

control loops
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simultaneously controlled in the presence of slip angular velocity
deviations. The information presented in this work can help to
establish a global view of the flux-torque cross-coupling problem.
This may be useful for gaining a better understanding of the
process and proposing better control schemes.

2. IM flux-torque model

The well-known IM model expressed in a rotating reference
frame is given by [1,21,28,33]:

vds ¼ Rsidsþ _ψds�ηψ qs

vqs ¼ Rsiqsþ _ψ qsþηψds

0¼ Rrþ idrþ _ψdr� η�ωr
� �

ψ qr

0¼ Rrþ iqrþ _ψ qrþ η�ωr
� �

ψdr ð1Þ

TE ¼ KT ðψdriqs�ψ qridsÞ

_ωr ¼ P
2J

TE�TLð Þ

where η is the angular speed of the arbitrary reference frame, vds,
vqs are the d and q components of the stator voltage, ids, iqs are the
d and q components of the stator current, ψdr ; ψ qr are the d and q
components of rotor flux, ωr is the rotor angular velocity, Rr is the
rotor resistance, J is the rotor inertia, TL is an external torque load,
P is the number of poles, TE is the generated torque and KT ¼ 3

2
P
2

� �Lm
Lr
.

For consistency, it should be noted that the preferred notation for
stationary variables in a number of references employs sub-indices
d-q, whereas variables in a rotating frame are denoted with sub-
indices x–y [22]. However, the notation here presented is also
widely used.

On the other hand, the rotor flux linkages can be expressed as
[1,21,33]:

ψdr ¼ LmidsþLridr

ψ qr ¼ LmiqsþLriqr ð2Þ

where Lr, Lm are the rotor and mutual inductances respectively.
If the machine is current-fed or if a high-bandwidth control loop

over the stator currents is implemented, then the stator currents ids,
iqs can be considered as an input of system (1). In particular, the most
common high-performance FOC strategies consist in using a VSI to
actuate over the stator currents. With this actuator a control loop
over the stator currents is closed with a bandwidth at least one
decade greater than the motor synchronous speed. For instance, an
IM with nominal electrical speed of 376 rad/s would require a stator
currents bandwidth of at least 3700 rad/s. In fact, in [33] it is
discussed how this control loop must be designed with the highest
bandwidth possible. Conversely, the flux dynamics are governed by
the rotor time constant Lr/Rr with bandwidths around 10 rad/s. By
comparing the bandwidth of the stator currents control loop with
that of the rotor flux it is clear that the slower dynamic can be
analyzed separately from the fast dynamic. This strategy is widely
used for both FOC [1–3,10,31] and other IM control schemes [11–15]
and allows neglecting the stator currents dynamics.

Substituting the rotor flux linkages (2) in system (1) and
considering the stator currents as inputs yields:

_ψdr ¼ a2ids�a1ψdr�ðωr�ηÞψ qr

_ψ qr ¼ a2iqs�a1ψ qrþðωr�ηÞψdr ð3Þ

TE ¼ KT ðψdriqs�ψ qridsÞ

_ωr ¼ P
2J

TE�TLð Þ

with a1 ¼ Rr
Lr
and a2 ¼ LmRr

Lr
.

Since system (3) depends on the angular velocity ωr the flux-
torque subsystem cannot be, in principle, separated from the
mechanical equation. However, if ωr is known and a new arbitrary
input variable ϕ such that η¼ωrþϕ is introduced, then the first
three equations of model (3) can be re-written as:

_ψdr ¼ a2ids�a1ψdrþϕψqr

_ψ qr ¼ a2iqs�a1ψ qr�ϕψ dr

TE ¼ KT ðψdriqs�ψ qridsÞ ð4Þ

where ϕ is referred to as the slip angular velocity.
Under this setup the flux-torque subsystem can be studied as a

process independent of the mechanical subsystem. The resulting
system can be analyzed as a multiple-input-multiple-output
(MIMO) system where the stator currents ids, iqs and the slip
angular velocity ϕ act as inputs and the generated torque TE and
rotor fluxes ψdr , ψ qr act as outputs.

3. FOC equilibrium point analysis

The equilibrium point of system (4) is fundamental for design-
ing IM control systems. Indeed, the motivating force and strategy
behind the design of a control scheme are dependent on the
setting of the equilibrium points. For system (4), these are
obtained by setting:

0¼ a2ids0�a1ψdr0þϕψ qr0

0¼ a2iqs0�a1ψ qr0�ϕψ dr0 ð5Þ

where x0 denotes the equilibrium value of variable x (i.e. ids, iqs, ψds

or ψqs).
The main problem arises from the ambiguity of the equilibrium

values. It is necessary to select nominal values for two fluxes, two
currents and the slip angular velocity in order to generate the
torque defined by the last equation of system (4). That is, for the
two equations defined by (5) there are five unknowns. As a
starting point, this set of equations can be solved for the rotor
fluxes in term of the stator currents:

ψdr0 ¼
a2ϕ0iqs0þa1a2ids0

a12þϕ0
2 ; ψqr0 ¼

�a2ϕ0ids0þa1a2iqs0
a12þϕ0

2 ð6Þ

Alternatively, equations in (5) can be also solved for the stator
currents in terms of the rotor fluxes:

ids0 ¼
a1ψdr0�ϕ0ψqr0

a2
; iqs0 ¼

a1ψqr0þϕ0ψdr0

a2
ð7Þ

A possible solution for finding a feasible set of equilibrium
values can be defined by substituting (7) in the last equation of (4);
that is:

TE0 ¼
KTϕ0

a2
ψdr0

2þψ qr0
2

� �
ð8Þ

Let the flux magnitude be defined as ψ ¼ ‖ ψdr ψ qr

h i
‖. By

substituting it in (8), the generated torque in steady state
becomes:

TE0 ¼
KT

a2
ϕ0ψ

2
0 ð9Þ

where both ϕ0 and ψ0 depend on the input variables and can be
potentially manipulated via a closed loop controller. However, it is
important to note that while ψ may be manipulated, it depends on
the flux dynamics of the motor. On the other hand, the slip angular
velocity ϕmay be considered as an input since its dynamics evolve
faster than those of the flux.

Thus, the preferred option for manipulating TE, is to fix ψ (i.e.
ψ (t)¼ ψ0) and use ϕ as an input variable. In reality ϕ is not
directly actuated, but depends on the stator currents control loop
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which has a much higher bandwidth than the flux-torque
subsystem.

3.1. Constant or slowly varying flux magnitude schemes

The flux magnitude can be manipulated in order to improve the
motor performance. This has been achieved in [15,16], where the
motor torque is maximized by adjusting the values of the flux. In
general, the bandwidth of the flux dynamics is lower than that of
the torque. This characteristic can be considered for simplifying
the analysis of the torque production.

In particular, if the flux magnitude is considered equal to a
constant reference ψ r (i.e. ψ0 ¼ψ r), then it is clear from (9) that
the only possible option for delivering the demanded torque in
steady state is by driving the slip angular velocity to:

ϕ¼ a2Tr

ψ r
2KT

ð10Þ

Eq. (10) represents a fundamental relationship of control
schemes based on constant or slowly-varying flux magnitude,
and its relationship with classical indirect FOC (IFOC) will be
shown in the following paragraphs. It is important to note that
most control strategies belong to this classification because the
open loop dynamics of the flux are much slower than the stator
currents and the torque response time. Closed loop modification of
the flux dynamics, for instance by reducing its response time, is
physically limited by the actuator constraints; therefore the flux
dynamics tend to remain slower than stator currents or torque
dynamics even in closed loop operation.

On the other hand, the flux magnitude in steady state condi-
tions is defined by Eq. (6). Therefore, the steady state expression of
ψ results:

ψ0 ¼
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a12þϕ0
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ids0

2þ iqs0
2

q
ð11Þ

Thus, by combining Eqs. (10) and (11) all possible input
combinations satisfying ψ0 ¼ψ r and TE0 ¼ Tr can be calculated
with:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ids0

2þ iqs0
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ r

2a12

a22
þ Tr

2

ψ r
2KT

2

s
ð12Þ

The solutions of Eq. (12) for ids0 and iqs0, in combination with
the slip angular velocity (10), are the set of values for the stator
currents which are able to produce the desired torque and flux in
steady state. This is an important result since it shows that there
are infinite possible combinations and, therefore, an infinite
number of possible control schemes exist. One particular scheme
is obtained by the direct solution of eq. (12):

ids ¼
ψ ra1
a2

; iqs ¼
Tr

ψ rKT
ð13Þ

The combination of (13) and (10) yields the inputs for the classical
IFOC equations. In this case the slip angular velocity reduces to the
well-known:

ϕ¼ a2
ψ r

iqs ð14Þ

Nonetheless, it should be observed that this is not the only stator
currents combination that yields the desired flux magnitude and
torque in steady state. For instance, another possible solution for
Eq. (12) is:

iqs ¼ 0; ids ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ r

2a12

a22
þ Tr

2

ψ r
2KT

2

s
ð15Þ

The inputs defined by Eqs. (10) and (13) are fundamental to
FOC approaches. This alternative is considered as a decoupling
solution since ids depends only on the flux magnitude reference
and iqs depends on the torque reference. That is, IFOC inputs yield
a flux-producing current ids and a torque-producing current iqs that
are seemingly decoupled. Although FOC schemes are devised
specifically for flux-torque decoupling, it will be shown later in
the article that the use of FOC schemes in fact introduces interesting
internal coupling characteristics.

4. Perturbed FOC flux-torque control

In this section the typical IFOC scheme defined by (10) and (13)
while considering perturbations is analyzed. A deviation of the
nominal steady state can be studied by considering deviations on
the system inputs, which for the classical IFOC scheme are given
by the stator currents; that is:

idsðtÞ ¼
~a1
~a2
ψ rþΔids; iqsðtÞ ¼

Tr

ψ r
~KT

þΔiqs ð16Þ

where Δx denotes a small deviation from the equilibrium point of
variable x (i.e. ids or iqs) and ~a denotes the estimation of parameter
a (i.e. a1, a2 or KT). In other words, each input current is decom-
posed into a nominal FOC input plus a deviation. Deviations Δx can
be used to model perturbations and additional control inputs. For
example, variable x (i.e. ids or iqs) could be defined as x¼ ufocþΔx,
where ufoc is the nominal FOC input for this variable; additionally,
Δx¼ uxþδx, where δx is a perturbation signal and ux is an
additional control signal. For the slip angular velocity only para-
metric uncertainty will be considered, therefore:

ϕðtÞ ¼ ~a2Tr

ψ r
2 ~KT

ð17Þ

Inputs (16)–(17) consider parametric uncertainty on the motor
parameters, arbitrary perturbation inputs over the stator currents
and the existence of additional control inputs over the stator
currents.

The rotor resistance represents one of the most important
sources for parametric perturbations because variations of this
parameter are associated to deviations of the ideal slip angular
velocity. Therefore, rotor resistance perturbations will be consid-
ered in this article for the study of the cross-coupling of the flux-
torque subsystem.

Let the rotor resistance perturbation factor σr be defined as
σr ¼ ~Rr=Rr , where ~Rr is the nominal (estimated) rotor resistance
and Rr denotes the real rotor resistance. If the values of a1 ¼ Rr=Lr
and a2 ¼ ðLmRrÞ=Lr are considered in (13), it can be observed that
the stator currents of a FOC controller are not affected by rotor
resistance perturbations –contrary to the slip angular velocity,
which may be affected by these perturbations as it can be easily
noted from (17). In this case, ϕðtÞ ¼ σra2Tr=ðψ r

2KT Þ.
According with the discussion of the last paragraphs, if a FOC

torque controller is employed under the presence of rotor resis-
tance perturbation, perturbation inputs on the stator currents and
additional control inputs for the stator currents, then the inputs
for the flux-torque subsystem can be expressed as:

idsðtÞ ¼
a1
a2
ψ rþδidsþuids; iqsðtÞ ¼ Tr

ψ rKT
þδiqsþuiqs; ϕðtÞ ¼ σra2Tr

ψ r
2KT

ð18Þ

Under these conditions the resulting torque and flux out-
puts can be studied using linear approximations of (4), with
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equilibrium points (6), and also the following equilibrium inputs:

ids0 ¼
a1
a2
ψ r0; iqs0 ¼

Tr0

ψ r0KT
; ϕ0 ¼

σra2Tr0

ψ2
r0KT

ð19Þ

Substitution of eq. (19) into (6) yields the flux equilibrium point
of the FOC controller subjected to rotor resistance perturbations:

ψdr0 ¼
ψ4

r0K
2
T þL2mT

2
r0σr

ψ4
r0K

2
T þL2mT

2
r0σ

2
r

ψ r0; ψ qr0 ¼
ψ3

r0KTLmTr0ð1�σrÞ
ψ4

r0KT
2þL2mT

2
r0σ

2
r

ð20Þ

Fig. 1. Current-fed flux-torque subsystem with perturbed FOC control, stator currents perturbations and external control inputs.

Fig. 2. Current-fed flux-torque subsystem with perturbed FOC control, stator currents perturbations and external flux controller.
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It can be noticed from (20) that if σr ¼ 1(i.e. no perturbation on the
rotor resistance or slip angular velocity) then ψ qr0 ¼ 0, ψdr0 ¼ψ r0
and the steady state flux magnitude is equal to the flux reference.
In the same vein, the steady state torque can be obtained by
substituting (19)-(20) into (8):

TE0 ¼
σrTr0

ψ2
r0

ψ4
r0KT

2þLm
2Tr0

2σr

� �2
ψ2

r0þ ψ3
r0KTLmTr0ð1�σrÞ

� �2
ψ4

r0KT
2þLm

2Tr0
2σr

2
� �2

ð21Þ

Similarly, if σr ¼ 1 then the steady state torque will be equal to the
torque reference, i.e. TE0 ¼ Tr0.

It is also clear that when σra1 the resulting steady state
torque and flux do not converge to the desired references.
However, one may wonder if it is possible to introduce an external
correction through the stator currents so that both the flux and the
torque converge. In the next sections it will be demonstrated that
there is an intricate relationship between flux and torque which

makes it impossible to correct both flux and torque without correct-
ing the slip. This will be shown to be the case not only in steady
state, but also dynamically. In addition, it will be demonstrated
that this phenomena is due to the existence of a transmission zero
present in the flux-torque subsystem. Moreover, this characteristic
introduces unique perturbation rejection characteristics which can
be exploited for controller design.

5. Flux-torque cross-coupling case 1: unperturbed rotor
resistance

The case without rotor resistance perturbation is analyzed first;
that is, σr ¼ 1. Here the equilibrium point corresponds to the
nominal FOC equilibrium defined by ψ qr0 ¼ 0, ψdr0 ¼ψ r0 and
TE0 ¼ Tr0.

As discussed in Section 3, the FOC input currents are considered
as a decoupling solution for the flux-torque subsystem. In parti-
cular, current ids is considered as an input of the flux dynamics
whereas iqs is considered as an input of the torque dynamics. This
fact was confirmed by the equilibrium point analysis of Section 3
(Eqs. (12)–(13) and their discussion). In order to determine the
dynamical effects of such condition the following input-output
pairings will be considered:

c1 : in¼ uids; out ¼ψ2g
n

c2 : in¼ uiqs; out ¼ TE
� � ð22Þ

where c1 and c2 are called individual channels and represent the
input-output relationship between the specified input-output
pairings. In particular, the notation ci : in¼ x; out ¼ y

� �
will be

used along the article to denote that input x is used to drive output
y. In addition, the square of the flux magnitude ψ2 will be used as
an output to simplify the analysis.

A linear approximation of the flux-torque subsystem using the
input-output pairings defined by (22) yields:

_x¼ AxþBu

y¼ CxþDu ð23Þ
where the state, input and output vectors are given by

x¼ Δψdr Δψ qr

h iT
, u¼ Δids Δiqs

h iT
and y¼ Δψ2ΔTE �

T
h

respec-

tively. The state space matrices of system (23) are given by:

A¼
�a1 ϕ0

�ϕ0 �a1

" #
B¼

a2 0
0 a2

" #
C ¼

2ψdr0 2ψ qr0

KTiqs0 �KT ids0

" #

D¼
0 0

�KTψ qr0 KTψdr0

" #
ð24Þ

The equilibrium points for system (23) are obtained considering
the perturbed FOC controller described in Section 4, which can be
calculated using Eqs. (6) and (19).

System (23) is represented in the frequency domain as:

Δψ2ðsÞ
ΔTEðsÞ

#
¼

gψdðsÞ gψqðsÞ
gTdðsÞ gTqðsÞ

" #
ΔidsðsÞ
ΔiqsðsÞ

" #"
ð25Þ

Fig. 1 shows a block diagram of the flux-torque subsystem
using the FOC controller and its linear approximation using system
(25). Note that the transfer function matrix (TFM) (25) is the linear
approximation of the flux-torque subsystem including the per-
turbed FOC controller.

Although the IFOC scheme studied in the last section aims to
manipulate the flux and torque levels directly, it is common
practice to use additional control loops to further regulate these
variables; direct FOC (DFOC) belongs to this kind of schemes. Fig. 2
shows the resulting configuration when an external flux controller

Fig. 3. Flux-torque subsystem with perturbed FOC control, stator currents pertur-
bations and external flux controller using individual channel equivalent.

( ) ( )Tdg s S sψ

( ) ( )qg s S sψ ψ

ETΔ
iqsδ

idsδ

( )(1 ( ) ( ))Tqg s s h sψγ−

Individual channel 2

2ψΔ
( ) ( )dg s S sψ ψ

Fig. 4. Perturbation rejection characteristics of the flux-torque subsystem with
perturbed FOC control, stator currents perturbations and external flux control.

Fig. 5. Perturbation rejection characteristics of the flux-torque subsystem with
perturbed FOC control, stator currents perturbations and external torque control.

L. Amezquita-Brooks et al. / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: Amezquita-Brooks L, et al. Flux-torque cross-coupling analysis of FOC schemes: Novel perturbation
rejection characteristics. ISA Transactions (2015), http://dx.doi.org/10.1016/j.isatra.2015.05.004i

http://dx.doi.org/10.1016/j.isatra.2015.05.004
http://dx.doi.org/10.1016/j.isatra.2015.05.004
http://dx.doi.org/10.1016/j.isatra.2015.05.004


kψ ðsÞ is used for individual channel c1: in¼ uids; out ¼ψ2g
n

. Note
that in this case the additional control input for current iqs is not
used, i.e. uiqs ¼ 0, but there are perturbations present in both stator
currents.

The torque response can be also regulated with an external
torque controller kT(s) using individual channel c2 : in¼ uiqs;

�
out ¼ TEg. The design of the external controllers kψ ðsÞ, kT(s), and
the analysis of the closed loop perturbation rejection character-
istics require the study of the dynamical properties of system (25).

System (25) is a 2�2 MIMO system which can be analyzed in
the context of ICAD. ICAD is a theoretical framework which allows
the analysis of MIMO systems using single input single output
(SISO) and frequency analysis concepts [35,36]. The key element of
ICAD is the multivariable structure function (MSF). This frequency
domain function is inherent to the nature of the process. Its
appropriate interpretation reveals important dynamical character-
istics regarding the cross-coupling of the individual channels,
including the transmission zeros, the existence of stabilizing
controllers and the robustness characteristics of the closed loop
control system. Some examples of the application of ICAD con-
cepts to electrical machines can be found in [37–40].

With no rotor resistance perturbation, i.e. σr¼1, the MSF of (25)
is expressed as:

γðsÞ ¼ gψqðsÞgTdðsÞ
gψdðsÞgTqðsÞ

¼ a22Tr0
2sþ2a1a22Tr0

2

ψ r0
4KT

2s3þð2a1ψ r0
4KT

2Þs2þð2a22Tr0
2þψ r0

4KT
2a12Þsþ2a1a22Tr0

2

ð26Þ
For a 2�2 system, it can be shown that if individual channel

c2 : in¼ uiqs; out ¼ TE
� �

is closed then [35,36]:

Δψ2ðsÞ
ΔidsðsÞ

¼ gψdðsÞ 1�γðsÞ kT ðsÞgTqðsÞ
1þkT ðsÞgTqðsÞ

 !
ð27Þ

Conversely, if individual channel c1 : in¼ uids; out ¼ψ2g
n

is
closed then:

ΔTEðsÞ
ΔiqsðsÞ

¼ gTqðsÞ 1�γðsÞ kψ ðsÞgψdðsÞ
1þkψ ðsÞgψdðsÞ

 !
ð28Þ

It is interesting to note that the closed loop complementary
sensitivity of kT ðsÞgTqðsÞ and kψ ðsÞgψdðsÞ can be easily identified in
eqs. (27)–(28); thus, it is convenient to express them as:

Δψ2ðsÞ
ΔidsðsÞ

¼ gψdðsÞ 1�γðsÞhT ðsÞð Þ; ΔTEðsÞ
ΔiqsðsÞ

¼ gTqðsÞ 1�γðsÞhψ ðsÞ
� � ð29Þ

with hT ðsÞ ¼ kT ðsÞgTqðsÞ= 1þkT ðsÞgTqðsÞ
� �

and hψ ðsÞ ¼ kψ ðsÞgψdðsÞ=
1þkψ ðsÞgψdðsÞ
� �

.

Eq. (29) are the resulting input-output relationships when
either the flux or the torque control loops are closed and are also
denoted as individual channels 1 and 2 respectively. For instance,
if only the flux control loop is closed with an external controller
kψ ðsÞ, and defining Δψ2

r ¼ψ2
r �ψ2

0, then the resulting configuration
shown in Fig. 3 is obtained.

5.1. Perturbation rejection

The perturbation rejection characteristics can be studied by
isolating the effects of the perturbation inputs δids, δiqs and by
defining the sensitivity function as:

Sψ ðsÞ ¼ 1
1þkψ ðsÞgψdðsÞ

ð30Þ

If (30) is considered, the diagram of Fig. 3 can be reformulated as
the one shown in Fig. 4.

From Fig. 4 it is clear that the flux control loop is able to reject
perturbations from both δids and δiqs through the flux control loop
sensitivity function Sψ ðsÞ. Notice that the torque is operating in
open loop and is also subject to the perturbations. Two important
observations can be made. The first one is that the torque is also
able to reject perturbations δids through the sensitivity of the flux
control loop. The second observation, and one of the key results of
the article, is that the open loop variable has also perturbation
rejection characteristics which are defined by the open loop
individual channel Eqs. (27) and (28). Note that in this example
the flux control loop has been closed; alternatively, the torque loop
may be closed and then the flux would operate in open loop. In
this case the resulting perturbation rejection configuration is
summarized by Fig. 5.

It should be emphasized that while the sensitivity function
analysis is well-known and needs no further description, the
analysis of the individual channel characteristics in the context
of open loop perturbation rejection is non-existent in the current
literature. This is assessed in detail next.

The structure of eqs. (27)-(28) has several special character-
istics which are noteworthy. If a high-bandwidth controller (for
either the flux or the torque) is considered then hψ ðsÞ � 1 or
hT ðsÞ � 1. Therefore, the open loop individual channel equations
become gψdðsÞ 1�γðsÞ� �

and gTqðsÞ 1�γðsÞ� �
. In the previous equa-

tions the factor 1�γðsÞ� �
contains information regarding the

maximum attainable perturbation rejection characteristics
through the use flux or torque controllers. For example, if a perfect
control for flux is used then hψ ðsÞ � 1 and Sψ ðsÞ � 0 [30,41]. In this
case, by examining Fig. 4 it is clear that the flux control loop is able
to reject perturbations from both stator currents (i.e. δids and δiqs).
Regarding the torque, perturbations δids are also rejected through

100 101 102 103
−35

−30

−25

−20

−15

−10

−5

Frequency  (rad/s)
10−1 100 101 102 103

Open-Loop Flux Perturbation Rejection Open-Loop Torque Perturbation Rejection

Fig. 6. Comparison of the open loop perturbation rejection characteristics for the flux and torque.
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the flux control loop sensitivity, whereas a perturbation rejection
element for δiqs also exists, given by 1�γðsÞ� �

. Therefore, if a
perfect control for flux is attained, then a perfect perturbation
rejection of δiqs at an arbitrary frequency ω0 for the torque would
require that γðjω0Þ ¼ 1. This conclusion is more relevant in light of
the following facts, which are known through ICAD theory [35]:

� The transmission zeros of a MIMO system are related to γ(s);
note that for a 2�2 MIMO system 1�γ(s)¼det[G(s)]¼g11(s)
g22(s)�g12(s)g21(s).� The condition γðjω0Þ ¼ 1 indicates the existence of a transmission
zero on the imaginary axis at frequency ω0 rad/s.

The transmission zeros are the multivariable equivalent of the
zeros from SISO systems. It is not necessary for the scalar transfer
functions of a TFM to have zeros for the system to have transmis-
sion zeros. In addition, the transmission zeros correspond to the
linearization of the internal dynamics of a non-linear system.
Normally, the transmission zeros are crucial to determine the
existence of stabilizing controllers for a certain set of control
specifications. For instance, transmission zeros in the right half of
the complex plane (non-minimum phase zeros) are indicative of
limitations on the attainable bandwidth. In the context of the
problem at hand, it is notable that the presence of transmission
zeros near the imaginary axis in system (25) are indicative of
increased perturbation rejection characteristics.

Recalling Eq. (26), it is clear that γð0Þ ¼ 1. Therefore, according
to the conclusions of the last paragraph:

� System (25) has a transmission zero at ω0¼0. This can be
confirmed by calculating the Smith-McMillan [30] form of (25)
(omitted here for brevity).

� A stabilizing high steady-state gain controller for either the flux
or the torque channel is sufficient to achieve perfect stator
currents perturbation rejection for both the flux and the torque
in the steady state. For example, if the flux channel is closed
with a controller including integral effect this implies hψ ð0Þ � 1
and Sψ ð0Þ � 0. In addition, γð0Þ ¼ 1 implies that 1�γð0Þhψ ð0Þ

� �
� 0. Considering Fig. 4, then it is clear that both perturbations
δids and δiqs can be rejected for both the flux and the torque.

The previous steady-state conclusions can be extended to all
frequencies using typical Bode diagrams. Fig. 6 shows the resulting
perturbation rejection characteristics of gψdðsÞ 1�γðsÞ� �

and
gTqðsÞ 1�γðsÞ� �

. A typical IM with the parameters described in
Table 1 has been considered, with nominal equilibrium torque and
flux references of 1 Nm and 1 Wb respectively. Fig. 6 also shows
the open loop response to the perturbation inputs, i.e. using only
FOC. The tradeoffs of closing either the flux or the torque control
loop are readily visible in this figure, summarized next:

� Closing the flux control loop results in good perturbation
rejection for the torque only for low frequencies.

� Closing the torque control loop results in good perturbation
rejection for the flux for both low and high frequencies.
However, there is a frequency band in which the perturbations
are amplified.

It is important to note that the open loop perturbation rejection
characteristics shown in Fig. 6 consider either a flux or a torque
controller of infinite bandwidth. That is, it is not possible to make
further improvements by enhancing these controllers. For a more
realistic example consider the following flux and torque control-
lers:

kψ ðsÞ ¼
100ðsþ20Þ
sðsþ50Þ ; kT ðsÞ ¼

21978ðsþ75Þ
sðsþ8Þðsþ350Þ ð31Þ

These controllers were designed using classical Bode shaping
techniques with the specifications indicated in Table 2, which can
be considered as high-performance for typical IMs. The plants

Table 1
Typical IM parameters [42]

Parameter Value Parameter Value

Rs 16.2 Ω Lr 1.49 H
Rr 23 Ω Lm 1.41 H
Ls 1.44 H P 2

Table 2
Control specifications for the external flux and torque controllers

Specification Flux Torque

Bandwidth 40 rad/s 100 rad/s
Phase Margin 4501 4501
Gain Margin 412 dB 412 dB
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Fig. 7. Stator currents perturbations rejection perturbation characteristics of the flux-torque subsystem using external flux or torque controllers (31).
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used for the design of controllers (31) where gψdðsÞ and gTqðsÞ
respectively.

The resulting perturbation rejection characteristics of the flux-
torque subsystem employing controllers (31) are summarized in
Fig. 7. These characteristics can be used to determine which control
scheme is the best suited for a particular set of control specifications
and operating conditions. For example, consider that the torque
loop is closed and the flux is operated in open loop (the second case
of Fig. 7); in this condition the effect of perturbation δids is worst
around 22 rad/s, but for all other cases the perturbation rejection
level is good. On the other hand, recall that δids models a perturba-
tion on the stator currents, and normally the stator currents are
operated by an internal high-bandwidth controller [39]. Therefore,

if the stator currents subsystem is designed so that δids is low
around 22 rad/s then the flux-torque subsystemwill achieve a good
overall level of perturbation rejection. This shows how the flux-
torque subsystem sensitivity characteristics can be translated into
specifications for other IM subsystems in order to achieve better
global results.

5.2. Sensor noise

In general, it is common to consider noise as either input
perturbations or sensor noise. The main focus of the article is to
study the effect of stator currents perturbations, which in this
context act as input perturbations. Nonetheless, the issue of sensor
noise is briefly discussed in this section for completeness.
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Consider the decomposition shown in Fig. 2. If the flux is
operated in closed loop, then the flux and torque responses due

to flux sensor noise are given by kψ ðsÞgψdðsÞ= 1þkψ ðsÞgψdðsÞ
� �

and �kψ ðsÞgTdðsÞ= 1þkψ ðsÞgψdðsÞ
� �

respectively. Conversely, if

the torque loop is closed then the torque and flux responses

due to torque sensor noise yield kT ðsÞgTqðsÞ= 1þkT ðsÞgTqðsÞ
� �

and

�kT ðsÞgψqðsÞ= 1þkT ðsÞgTqðsÞ
� �

. This indicates that the effect of

sensor noise can be modeled with the complementary sensitivity,
which is incidentally the same as in classical SISO configurations
[30,41].

The sensor perturbation rejection characteristics for the
machine characterized in Table 1 with controllers (31) are shown
in Fig. 8. From this figure it can be observed that the effect of
sensor noise on the flux or torque measurements (or observer
estimation error) is akin to the complementary sensitivity func-
tion, which confirms the discussion of the last paragraph. In
particular, the system cannot reject low frequency noise (lower
than the closed loop bandwidth), but is able to reject higher
frequency noise (higher than the closed loop bandwidth). By
observing both Figs. 7 and 8, it can be appreciated that the
classical conclusion of the combined sensitivity and complemen-
tary sensitivity also applies here: the system is most sensible to
perturbations/noise around the bandwidth frequency. It is worth
noticing that the flux sensor noise has an effect over the system
only when the flux control loop is closed whereas the torque
sensor has an effect only when the torque loop is closed. Since the
treatment of sensor noise in these conditions is well-known, no
further discussion is warranted.

5.3. Time domain characteristics

Non-linear digital simulations were carried out to confirm the
perturbation rejection characteristics discussed in the last section.
All simulations were performed using MATLAB-Simulink™ with a
variable-step Dormand-Prince solver and a relative tolerance of
10-6. In addition, initial conditions for all variables were set to zero.
Fig. 9 shows a simulation of the control system of Fig. 2 using the
non-linear model (4), the parameters of Table 1 and flux controller
(31). References of 1 Nm and 1 Wb were used for the torque and
the flux respectively. The torque reference was kept at zero until
t¼1 so that the flux stabilized; this allows to verify the level of

flux-torque coupling. In this case it is clear that the torque is fully
decoupled from the flux since the torque response is almost
instantaneous without affecting the flux. Such a response occurs
since no perturbation in the slip angular velocity was considered;
i.e. σr ¼ 1. Step perturbations to the stator currents ids and iqs were
simulated at 2 and 3 s. The amplitude of these perturbations was a
third of the nominal value for each current.

By observing the results in Fig. 9 it can be concluded that the
perturbation rejection characteristics predicted by the analysis of
the last section have been confirmed. In particular, it can be
noticed that the torque is able to reject perturbations from both
stator currents even if it is operating in open loop.

An additional simulation was carried out with the flux operat-
ing in open loop and the torque operating in closed loop, with
results shown in Fig. 10. Torque controller (31) has been used, with
all other conditions kept as in the previous simulation.

As it can be observed from Fig. 10, the flux is also able to reject
perturbations from both stator currents. In addition, the overall
performance of the system is better due to the higher bandwidth
used in the torque control loop. This allows concluding that it is
recommendable to control the torque channel (i.e. in¼ uiqs;

out ¼ TE) while maintaining the slip angular velocity the closest
possible to (10) (this last requirement will be more evident from
the results of the next section). The design of linear and robust
controllers closing the torque channel has been theoretically and
experimentally studied previously [32].

5.4. Time dependent perturbations

In order to complement the constant perturbation assessment
of the previous section, time dependent perturbations in the
stator currents were considered. This study shows that the
frequency analysis of Section 5.1, which was developed by means
of linear approximations, is fairly accurate in predicting the
perturbation rejection behavior of the non-linear FOC flux-
torque subsystem.

Digital simulations in the same conditions as those summar-
ized by Figs. 9 and 10 were performed. In this case a pseudo white
noise was considered as perturbation in either ids or iqs so as to
isolate the effect of each stator current perturbation. The noise
signal was obtained with a random number generator with normal
distribution, sample time of 0.001 s and an average power of 0.01.
The spectrum of the flux and torque signals was calculated using
the Fast Fourier Transform with a buffer of 14 bits. The resulting

Fig. 11. Magnitude spectrum of the torque and flux using external flux or torque controllers (31) considering pseudo white noise stator currents perturbations.
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magnitude spectra of these simulations are shown in Fig. 11. This
figure is directly comparable with Fig. 7, which shows the
perturbation rejection characteristics predicted by the proposed
linear approximations. By comparing both figures it is clear that
the non-linear system responses of Fig. 11 are adequately embo-
died by Fig. 7. This confirms that the use of the linear approxima-
tions for the study of perturbation rejection is appropriate and
sufficient for this system.

Consider that the stator currents are perturbed by a colored
noise comprised of white noise filtered by the weighting function
GW ðsÞ ¼ 1=ðsþ1Þ; thus the perturbations are mainly low frequency.
Simulations with similar conditions to those of Figs. 9 and 10 were
performed, but in this case the colored noise perturbation was

used in both stator currents at the same time. The resulting
responses are shown in Fig. 12, which also provides the responses
obtained with the standalone FOC controller (19) using the same
perturbation signals. A first observation from this figure is that
closing either the flux or torque control loops increases the
perturbation rejection characteristics of both the flux and the
torque; this confirms the analysis of the past sections. The results
of Fig. 12 are also predicted by the perturbation rejection analysis
developed in Section 5.1 (summarized in Fig. 7). In particular, for
low frequency perturbations such as the ones used in these
simulations, the overall perturbation rejection level for the flux
is similar when closing either the flux or the torque control loop.
In contrast, the overall perturbation rejection level for the torque
is lower when operating the torque in closed loop. It can be
concluded that closing the torque loop yields the best overall
perturbation rejection for both the torque and the flux; this is
confirmed by the responses of Fig. 12, which were obtained using
the non-linear model.

6. Flux-torque cross-coupling case 2: perturbed rotor
resistance

In this section the cross-coupling and perturbation rejection
characteristics studied previously are extended to the perturbed
FOC case. This will also reveal a caveat: it is not possible to use
both a flux and a torque controller at the same time if there are
perturbations in the slip angular velocity.

The main features of the cross-coupling characteristics of the
flux-torque subsystem are contained in the MSF. In the last section
it was found that when σr ¼ 1 the MSF of this system is given by

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
W

b

0 5 10 15 20
−0.5

0

0.5

1

1.5

N
m

FOC + Flux channel closed

ETψ

COF enoladnatSCOF enoladnatS

FOC + Flux channel closed

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20
−0.5

0

0.5

1

1.5

W
b N
m

Time(s)

Standalone FOC Standalone FOC

FOC+ Torque channel closed

TEψ
FOC+ Torque channel closed

Flux: Open loop
Torque: Closed loop

Flux: Closed loop
Torque: Open loop

Fig. 12. Simulated flux and torque responses considering colored noise perturbations in the stator currents.
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(26). In general, when σra1 the MSF of system (25) is:

γðsÞ ¼ gψqðsÞgTdðsÞ
gψdðsÞgTqðsÞ

¼ γðsÞ ¼ k1s3þk2s2þk3sþ2a51a
2
2ψ

8
r0K

4
TσrT

2
r0þ4a31a

4
2ψ

4
r0K

2
Tσ

3
r T

4
r0þ2a1a62σ

5
r T

6
r0

k4s3þk5s2þk6sþ2a51a
2
2ψ

8
r0K

4
TσrT

2
r0þ4a31a

4
2ψ

4
r0K

2
Tσ3

r T
4
r0þ2a1a62σ5

r T
6
r0

ð32Þ
Coefficients k1-k6 have been omitted due to lack of space.

It is common practice to evaluate the MSF through Nyquist plots
when applying the ICAD framework [43]. The Nyquist plot of (32)
using the motor parameters of Table 1 is shown in Fig. 13 for several
values of σr . As it can be observed, this figure confirms that γð0Þ ¼ 1.
This important observation indicates that all perturbation rejection
characteristics found in the last section are preserved even if there are
perturbations on the rotor resistance or the slip angular velocity.

Considering controllers (31), the resulting perturbation rejection
characteristics of the flux-torque subsystem are summarized in Fig. 14
for several levels of rotor resistance perturbation. The only relevant
difference between the perturbed and nominal cases is that the torque
seems to be more sensible to δids perturbations at higher frequencies.
There are no additional significant differences in the perturbation
rejection characteristics when the FOC controller is detuned.

6.1. Closed loop equilibrium point considerations

The introduction of external flux or torque control loops brings
additional equilibrium point considerations. For instance, let a flux
control loop as in Fig. 2 be used, so that the flux magnitude
reaches the desired reference in steady state, i.e. ψ0 ¼ψ r . The
required equilibrium current ids0 so that ψ0 ¼ψ r can be calculated
by solving eq. (11) for ids. Substituting ϕ0 and iqs0 (which are not
modified by the external flux controller) from (19) yields:

ids0 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12ψ4

r0KT
2þa22T

2
r0 σr

2�1
� �q

KTa2ψ r0
ð33Þ

If σr ¼ 1 then ids0 is equal to the nominal FOC input (19);
however, when σra1 the external high-gain flux controller drives
ids into (33). Accordingly, the generated steady state torque is also
modified. By considering that the flux reaches the desired refer-
ence ψ0 ¼ψ r and recalling Eq. (9), the generated torque now
yields:

TE0 ¼ σrTr0 ð34Þ
Eqs. (33)–(34) show that it is not possible to reach the desired

steady state flux and torque at the same time by modifying the
stator current ids in the presence of slip angular velocity perturba-
tions. A similar conclusion can be obtained when the analysis is
made using an external torque control loop. That is, if σra1 and
the stator current iqs is modified so that TE0 ¼ Tr , then ψ0aψ r .

Simulations with the same conditions as those of Figs. 9 and 10
are carried out. However, in this case a rotor resistance

Fig. 14. Stator currents perturbations rejection perturbation characteristics of the flux-torque subsystem using external flux or torque controllers (31) and rotor resistance
perturbations.
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perturbation modeled by σr ¼ 1:2 is introduced, which modifies
the nominal FOC input obtained with (19). Recall that the flux
reference is fixed at 1 Wb, while the initial torque reference is
equal to zero and changed to 1 Nm at t¼1 s. In addition, recall that
a perfectly tuned FOC controller would produce the desired torque
change without affecting the flux.

Fig. 15 shows the flux and torque responses when the flux
control loop is closed with a 20% of rotor resistance perturbation.
The first observation is the well-known loss of flux-torque decou-
pling due to the FOC controller detuning. This is evident at t¼1 s
where the torque reference is changed from 0 to 1 Nm. When the
flux control loop is closed the system converges to the equilibrium
point as discussed in the last paragraphs, i.e. ψ0 ¼ψ r and
TE0 ¼ σrTr0. In addition, it is confirmed that the system is still able
to reject both perturbations δids and δiqs. Note that the torque is
rejecting the stator currents perturbations (it returns to its “previous”
level), but the equilibrium point has deviated from the desired
steady state values due to the rotor resistance perturbations. In a
similar manner Fig. 16 shows the case when the torque loop is
closed. In this condition the flux equilibrium point deviates from
the desired reference. Nonetheless, both flux and torque are able to
reject the stator currents perturbations.

Figs. 15 and 16 confirm that the stator currents perturbation
rejection properties of the flux-torque subsystem are maintained
even in the presence of slip angular velocity deviations (in this
case due to rotor resistance perturbation). However, undesirable
equilibrium point deviations are also introduced. In this context
one may ask: is it possible to modify ids and iqs independently so that
both the flux and torque reach their desired references? The equili-
brium point analysis of Section 3 indicates, through Eq. (9), that it
is possible for the machine to generate the desired flux and torque

levels in steady state only when the slip angular velocity is properly
driven. This can be demonstrated in general by recalling Eq. (11),
which represents the equilibrium value of ids, and solving ids0 so
that ψ2

0 ¼ψ2
r0:

ids0 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2

r0 a12þϕ0
2

� �
a22

� iqs0
2

vuut ð35Þ

On the other hand, substituting (6) into (8) yields:

TE0 ¼
KTϕ0

a2

i2qs0 a22ϕ
2
0þa21a

2
2

� �
þ i2ds0 a21a

2
2þa22ϕ

2
0

� �
a21þϕ2

0

� �2
0
B@

1
CA ð36Þ

It is possible to reach the equilibrium point defined by ψ2
0 ¼ψ2

r0
and TE0 ¼ Tr0 if a solution for Eqs. (35)–(36) exists so that TE0 ¼ Tr0.
This can be proved not to be the case by substituting (35) into (36),

Fig. 17. Current-fed flux-torque subsystem with perturbed FOC control, stator currents perturbations and external flux and torque controllers
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Fig. 18. Flux, torque and control effort responses when both channels are operated in closed loop.

Table 3
Effect of negative stator current levels.

Condition gψdðsÞ gTqðsÞ

Nominal 44:5ðsþ15:4Þ
s2þ30:8sþ493:4

1:4ðs2þ15:4sþ511:8Þ
s2þ30:8sþ493:4

Negative ids0 19:7ðs�5:4Þ
s2þ30:8sþ493:4

18:8ðsþ36:5Þ
s2þ30:8sþ493:4

Negative iqs0 0:61ðs2þ36:3sþ1155Þ
s2þ30:8sþ493:4

0:58ðs2�5:7s�139:2Þ
s2þ30:8sþ493:4
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which yields:

TE0 ¼
KTϕ0

a2

a21þϕ2
0

� �
a21ψ

2
r þϕ2

0ψ
2
r

� �
þ iqs0

2 a21a
2
2þa22ϕ

2
0�a21a

2
2�a22ϕ

2
0

� �
a21þϕ2

0

� �2

¼ KTϕ0

a2

a21ψ
2
r þϕ2

0ψ
2
r

� �
a21þϕ2

0

� � ð37Þ

Eq. (37) indicates that if ids0 is selected so that the desired
equilibrium flux magnitude is reached, then the generated torque
does not depends on iqs0. Note that it is assumed that ids0 exists -i.e.
(35) is real. Substituting the perturbed slip angular velocity ϕ0
from Eq. (19) into (37) yields:

TE0 ¼ σrTr0 ð38Þ
This indicates that for any iqs0 if a ids0 exists such that ψ2

0 ¼ψ2
r0,

then the equilibrium torque will always be σrTr0. Note that the
difference between eqs. (34) and (38) is that an arbitrary value for
iqs0 was considered in (38); however, it is still assumed that ids0
exists.

The fact that it is not possible to reach the equilibrium point
ψ2

0 ¼ψ2
r0 and TE0 ¼ Tr0 when σra1 is also contained in the

dynamical cross-coupling analysis derived in Section 6 (using
individual channels, Eqs. (27)–(28)). Recall that the individual
channels represent the input-output relationship of the open loop
variables when a closed loop controller is used in other channel.
For instance, consider that the flux is operated in closed loop as in
Fig. 2. It is necessary to determine if it is possible to control the
torque by driving the input uiqs (i.e. the external control input over
stator current iqs). In this case the ICAD analysis indicates that the
system may be decomposed as shown in Fig. 3, with the difference
that uiqsa0 is now allowed. The torque response due to any
deviation of the stator current iqs from the FOC nominal input (i.e.
Δiqs) is given by gψdðsÞ 1�γðsÞhT ðsÞ

� �
, whose steady state gain was

determined to be equal to zero. It is important to note that Δiqs
includes both the perturbations δiqs and the external control input
uiqs. Therefore, any modification in uiqs yields the same result as a
perturbation δiqs. This allows concluding that in steady state
constant values for uiqs are rejected in the same manner as constant
δiqs perturbations. Hence, it is not possible to drive the torque by
modifying iqs at the same time as the flux is controlled via ids if the
slip angular velocity is perturbed. A similar conclusion can be
obtained for the case when the torque is operated in closed loop
via iqs; in this case it is not possible to drive the flux by modifying
ids.

To illustrate the discussion of the last paragraph, Fig. 18a shows
a digital simulation when both the flux and the torque control
loops are operated at the same time using the control scheme of

Fig. 17 with 5% of rotor resistance perturbation (i.e. σr ¼ 1:05). No
additional stator current perturbations were included in order to
isolate the equilibrium point problem. All other conditions are
kept as in the simulation of Fig. 9. It can be observed that the
flux and torque are maintained close to the desired references
(1 Wb-1 Nm) until the system becomes unstable around 2.6 s. This
behavior is better understood by looking at the control effort of
the flux and torque controllers shown in Fig. 18b. It is clear that the
controllers diverge due to the steady state gain of the individual
channels, which is equal to zero. In particular, uids is constantly
increasing to maintain the flux level while uiqs is constantly
decreasing to maintain the torque level.

Another observation regarding Fig. 18b is that the system
becomes unstable once uiqs reaches negative values. This is due
to the torque being dependent on the flux magnitude, which is
itself dependent on the magnitude of the stator currents due to the

cross-coupling, i.e. TEαψα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ids0

2þ iqs0
2

q
. Once iqs is negative any

further decrement to this variable tends to increase the flux
magnitude and therefore to increase the torque. This is equivalent
to a sign change within the closed loop. Table 3 shows transfer
functions gψdðsÞ and gTqðsÞ, the diagonal elements of (25), while
considering nominal and negative values for ids0 and iqs0. Note that
in fact iqs can be negative in normal operation conditions if Tro0;
however, in this case ϕwill also be negative and the sign change in
gTqðsÞ is avoided.

An additional characteristic of the equilibrium point can be
observed. Consider that the flux channel is closed; then, by
recalling Eq. (35) it is clear that it is possible for ids0 to not exist
if |iqs0| is sufficiently high. This condition can be brought by either
an excessive δiqs perturbation or by a combination of a high load
factor, defined as LF ¼ ‖Tr‖=‖ψ2

r ‖, and rotor resistance perturba-
tions σro1. The last condition can also be easily derived from
(33). A similar conclusion is obtained when the torque channel is
operated in closed loop. In this case the required steady state level
of iqs so that TE0 ¼ Tr0 can be obtained by substituting TE0 ¼ Tr0 in
(36) and solving for iqs0:

iqs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr0a2 a21þϕ2

0

� �2
� i2ds0KTϕ0 a21a

2
2þa22ϕ

2
0

� �
a22ϕ

2
0þa21a

2
2

� �
KTϕ0

vuuuut ð39Þ

Eq. (39) indicates that a high level of δids perturbations, hence a
greater ids0, will induce equilibrium point problems.

Fig. 19 shows the torque and flux responses when high level of
perturbations are used (100% of the nominal current values). All
other conditions are kept as in previous simulations. It is observed
that a high level of perturbation can be rejected only when the
corresponding loop is closed. For instance, when the flux channel
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Fig. 19. Flux and torque responses for high level of stator currents perturbation.
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is closed a high level of δids can be rejected while a high level of δiqs
induces instability.

A summary of the observed phenomena on the equilibrium
point is presented next:

1. The equilibrium point ψ0 ¼ψ r0 and TE0 ¼ Tr0 exists iff σr ¼ 1.
Hence, if controllers with integral action are used for channels
(22) simultaneously then the closed loop system will not
converge when σra1. It can be concluded that any control
scheme which intends to control the flux magnitude and
torque levels simultaneously requires actively compensating
the slip angular velocity.

2. Sufficiently negative values in iqs or ids will induce a sign change
within either the flux or torque channels; this normally leads to
instability. Note that here iqs is considered negative when
signfiqsgasignfϕg.

3. While operating the flux channel in closed loop, the equili-
brium point ψ0 ¼ψ r0 does not exist when δiqs0 is high and/or
when σro1 and the motor is operated with a high load factor.

4. While operating the torque channel in closed loop, the equili-
brium point TE0 ¼ Tr0 does not exist when δids0 is high.

Other equilibrium point problems have been identified for FOC
controlled IMs in the past [16–19]; however, these reports did not
deal with the multivariable aspect of the flux-torque subsystem.

7. Conclusions

The flux-torque subsystem of the FOC-controlled IM has been
studied using the multivariable control system framework referred to
as ICAD. In particular, the study focus is the cross-coupling of the flux-
torque subsystem considering an IFOC flux-torque controller subject
to stator currents and rotor resistance perturbations.

If stator currents are considered as inputs and the flux magni-
tude and torque as outputs, it has been shown that the system
contains a transmission zero which introduces particular pertur-
bation rejection characteristics. This allows for complete stator
currents perturbation rejection in the steady state closing either
the flux or the torque channels using external controllers. These
steady state results have been extended dynamically using the
MSF, a key component of ICAD. The analysis shows that closing
only the torque channel with an external controller provides
better performance and exploits the aforementioned perturbation
rejection properties. The results also confirm that simultaneous
control of the flux and torque is not possible in the presence of slip
angular velocity perturbations. In particular, it has been shown
that this is due to the same transmission zero, which provides the
system with inherent stator currents perturbation rejection
properties.

An analysis of the equilibrium point characteristics of FOC
schemes has been also included in this article and the dynamical
findings are in line with this analysis. A new set of characteristics
which can lead to problems with the existence of an ideal
equilibrium have been characterized. It has been observed that
bifurcations may arise due to the non-existence of the desired
equilibrium point when flux and torque are controlled simulta-
neously in the presence of slip angular velocity and stator currents
perturbations. In particular, if the slip angular velocity is perturbed
a combination of stator currents so that both flux magnitude and
torque reach their desired reference does not exist. In these
conditions a flux-torque controller could become unstable if, for
instance, integral action is used. In addition, there are also
equilibrium point existence problems in the presence of excessive
stator current or slip angle perturbation that could induce
instability in closed loop. Specifically, with slip angular velocity

perturbations the decoupling of the flux- and torque-producing
currents is lost. In these circumstances a perturbation on the
torque-producing current may cause a flux magnitude perturba-
tion that cannot be rejected by the flux-producing current; instead
instability can be induced.

While the work presented in this article is mainly theoretical,
the characterization of the cross-coupling characteristics, the per-
turbation rejection properties, and the performance of the control
system have been based on classical frequency analysis tools.
Moreover, the main results for the evaluation of the perturbation
rejection characteristics of the flux-torque subsystem have been
elucidated through representative simulations. These examples
show that the findings presented in this work can be easily
incorporated into real-world applications.
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