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Abstra
t

We study the impa
t of sto
hasti
 lead times with order 
rossover on inventory


osts and safety sto
ks in the order-up-to (OUT) poli
y. To motivate our resear
h we

present global logisti
s data whi
h violates the traditional assumption that lead time

demand is normally distributed. We also observe that order 
rossover is a 
ommon

and important phenomena in real supply 
hains. We present a new method for

determining the distribution of the number of open orders. Using this method we

identify the distribution of inventory levels when orders and the work-in-pro
ess

are 
orrelated. This 
orrelation is present when demand is auto-
orrelated, demand

fore
asts are generated with non-optimal methods, or when 
ertain ordering poli
ies

are present. Our method allows us to obtain exa
t safety sto
k requirements for

the so-
alled proportional order-up-to (POUT) poli
y, a popular, implementable,

linear generalization of the OUT poli
y. We highlight that the OUT replenishment

poli
y is not 
ost optimal in global supply 
hains, as we are able to demonstrate

the POUT poli
y always outperforms it under order 
rossovers. We show that

unlike the 
onstant lead-time 
ase, minimum safety sto
ks and minimal inventory

varian
e do not always lead to minimum 
osts under sto
hasti
 lead-times with

order 
rossover. We also highlight an interesting side e�e
t of minimizing inventory


osts under sto
hasti
 lead times with order 
rossover with the POUT poli
y�an

often signi�
ant redu
tion in the order varian
e.
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1 Introdu
tion

Global sour
ing often allows a

ess to low-
ost supply but is frequently asso
iated with

long and variable lead times. These longer and more variable lead times bring with them a

number of 
ompli
ations and potential pitfalls, from both a 
ost and a servi
e perspe
tive

(Stalk 2006). In parti
ular, inventory planners must now a

ount for un
ertainty in both

demand and lead time when determining safety sto
k levels (Warburton & Stratton 2002).

We add to the literature on planning with sto
hasti
 lead times by formulating and

testing a 
al
ulation of safety sto
k that re�e
ts these real-world 
ompli
ations. Our

method allows for order 
rossover and 
orrelation between pipeline inventory and re-

plenishment orders, a fa
tor often ignored. We introdu
e a novel approa
h to better

understand the distribution of outstanding orders when lead times are un
ertain.

This resear
h was motivated by both pra
ti
al and analyti
al issues. Pra
ti
ally,

we have tra
ked and analyzed logisti
s data for global supply 
hains for both major

forwarders and retailers, and were stru
k by the violations of the lead time normality

assumption see Fig. 1. Furthermore, most inventory models do not allow for order


rossover where shipments are re
eived in a di�erent sequen
e from whi
h they were

dispat
hed, yet variable shipment delays, 
leri
al errors, and random 
ustom inspe
tions


an easily delay a shipment long enough for others to pass it. Robinson et al. (2001) also

provide real-world examples of order 
rossover. Another investigation we have 
ondu
ted

is summarised in Figs. 2 and 3. Fig. 2 shows the distribution lead time between a supplier

in Colorado, USA and a 
ustomer in Shenzhen, China. Fig. 3 tra
ks how many queue

positions ea
h shipment gained or lost between the date-sorted list of dispat
hes and the

date-sorted list of arrivals. There are 
learly a signi�
ant amount of order 
rossovers

nearly 40% of orders 
ross.

From the analyti
al perspe
tive, two pres
riptions for inventory management are

widely disseminated. These approa
hes use either an average (or maximum) lead time

in the 
onstant lead time reorder point solution or assume that the demand during the

lead time is normally distributed and then use the mean and varian
e of a random sum

of random variables to determine the reorder point. Neither approa
h is well-suited to

global supply 
hains with long transit times and multiple hand-o�s. Rationalizations

have been made for what is 
learly a suspe
t assumption (Chopra et al. 2004, Eppen &

Martin 1988, Tyworth & O'Neill 1997).

This paper develops an exa
t theoreti
al treatment of the impa
t of the sto
hasti


lead times with order 
rossover on the probability density fun
tion (pdf) of the net sto
k

levels. As we progressed in our investigations, we also began questioning the well-known

assertion (Kaplan 1970) that the order-up-to (OUT) model is always a good �t for global

supply 
hains. We �nd that, when there is order 
rossover, lower average inventories are

possible when the ordering strategy follows the linear proportional order-up-to (POUT)
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then study the POUT poli
y and present a new method for determining the pdf of the

inventory levels in Se
tion 4.3. This method allows for order 
rossover and is required

as the orders and the WIP be
ome 
orrelated in the POUT poli
y. Se
tion 5 presents a

numeri
al example. Se
tion 6 applies our theory to the empiri
al lead time distributions

in Fig. 1 and Fig. 2. Se
tion 7 
on
ludes.

2 Literature Review

As with other re
ent treatments of these issues, we work in the periodi
 review, base

sto
k inventory management framework (Bis
hak et al. 2014, Muharremoglu & Yang

2010, Srinivasan et al. 2011). Several streams of resear
h are parti
ularly relevant to our

goal of better understanding the e�e
ts of sto
hasti
 lead times that are virtually 
ertain

to 
ome up in global supply 
hains.

1. Determining order quantities: Simon (1952) outlined a me
hanism for determining

order quantities based on information about demand, inventory, WIP, lead times,

and demand variability. Later, Kaplan (1970) proved that the so-
alled base sto
k

or OUT inventory pro
edures were 
ost-optimal for sto
hasti
 lead times with no

order 
rossover and independen
e between lead times and the number and size of

open orders. This result is still widely 
ited and used today. In this paper, we

suggest an alternative pro
edure for sizing orders based on a linear generalization

of the OUT poli
y (Dejon
kheere et al. 2003).

2. Determining safety sto
ks: Replenishment systems require safety sto
k targets, T ,

to be spe
i�ed; T is the average inventory level. This is usually a
hieved with

T = Φ−1[α]σ
√
1 + k, where σ is the standard deviation of demand, k is the replen-

ishment lead time, and Φ−1[α] is the inverse of the normal 
umulative distribution

fun
tion the `safety fa
tor' that a
hieves an availability of α. This mainstream

formula expli
itly in
orporates demand variability, but does not do the same for

lead time variability. As lead times lengthen and pro
ess 
omplexity in
reases

with globalization, ignoring lead time variability seems ill-advised at best. Order


rossover and 
orrelation between orders and WIP, in parti
ular, are real possibili-

ties (Bradley & Robinson 2005, Muharremoglu & Yang 2010, Robinson et al. 2001,

2008, Srinivasan et al. 2011).

3. Chara
terizing variability : Reorder points and safety sto
k levels in a variable lead

time setting are often based on the varian
e of a random sum of random vari-

ables. This se
ond order moment is then used to set safety sto
k requirements via

T = Φ−1[α]
√

k̄σ2 + µ2σ2
k where {k̄, σ2

k} is the mean and varian
e of the lead time

and {µ, σ2} is the mean and varian
e of the demand. This approa
h assumes that
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the inventory levels are normally distributed. It is also a popular approa
h, despite

having been shown to result in 
lear errors for even simple systems (Chopra et al.

2004, Eppen & Martin 1988, Tadikamala 1984, Tyworth & O'Neill 1997) and some-

what more sophisti
ated treatments being available (Ca
hon & Terwies
h 2009,

Silver et al. 1998).

Textbooks treatments of inventory planning and ordering poli
ies generally start with

purely deterministi
 models, su
h as the e
onomi
 order quantity model, that posit 
on-

stant demand and lead times. Typi
ally, they then progress to `probabilisti
' models,

su
h as Reorder Point, (Q,R) and OUT models, that a

ount for demand variability

and fore
ast errors by in
orporating safety sto
k 
al
ulations into the setting of reorder

points.

A few textbooks then try to add provisions for understanding lead time variability,

usually through the well-known formula for 
omputing the varian
e of a random sum of

random numbers (Brown 1963, Feller 1966). Textbooks often then emphasize the need

to have su�
ient inventory on hand and on order, to 
over 
ustomer demands until the

next order arrives. Thus, they 
all out the 
riti
al issue of the demand during the lead

time. Unfortunately, many texts simply assume that lead times are stable enough to

be 
onsidered 
onstant or that an un
ertain demand 
ombined with an un
ertain lead

time will result in a normal distribution of demand during the lead time. This has the

advantage of resulting in a fairly simple safety sto
k 
al
ulation, but its reliability is

in question. Others, (Axsäter 2000, for example) separate the problem into two 
lasses:

those without order 
rossover, whi
h 
an be modeled using queuing theory, and those with


rossover whi
h 
an be approximated by the random sum of random variables approa
h.

With longer global supply 
hains, these assumptions be
ome less tenable. Robinson

et al. (2001) 
laimed that order 
rossover is a
tually fairly 
ommon, and our experien
e

is 
onsistent with their assertion (see Fig. 3). They found that using the shortfall

distribution for planning purposes, rather than the distribution of lead time demand,

results in better inventory performan
e. Although in later papers they a
knowledge the

usefulness of approximations (Robinson et al. 2008, Bradley & Robinson 2005), their

fundamental insight is one that we build on in this resear
h. Another important stream

of resear
h on order 
rossover involves the 
on
ept of an e�e
tive lead time (Hayya et al.

2011). This refers to the fa
t that the order 
rossover has the e�e
t of redu
ing the

average lead time.

There are pra
ti
al issues that introdu
e un
ertainty and variability into lead times

from multiple sour
es. These in
lude: o
ean issues (Saldanha et al. 2009), import issues

(Lea
hman & Jula 2012, Jula & Lea
hman 2011), transit reliability (Capli
e & Kalkan
i

2012, Kalkan
i & Capli
e 2012), 
ontainers (Fransoo & Lee 2012), and general issues

(Stalk 2006).
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There are also a number of 
ommon inventory approa
hes to studying the sto
hasti


lead time problem. They 
an be 
lassi�ed as follows:

1. Lead times des
ribed by distribution fun
tions (Bag
hi et al. 1986, Bis
hak et al.

2014, Chopra et al. 2004, Eppen & Martin 1988, Hayya et al. 2008, 2011, Kim et al.

2006, Mentzer & Krishnan 1985).

2. OUT and base sto
k poli
ies and pro
edures (Bis
hak et al. 2014, Hayya et al. 2011,

Kaplan 1970).

3. Correlated and non-i.i.d. lead times (Bis
hak et al. 2014, Muharremoglu & Yang

2010).

4. Order 
rossovers (Bis
hak et al. 2014, Hayya et al. 2011, Muharremoglu & Yang

2010, Robinson et al. 2001, 2008, Srinivasan et al. 2011).

5. E�e
tive lead times with order 
rossover (Bis
hak et al. 2014, Hayya et al. 2011).

6. Sto
hasti
 lead times and the bullwhip e�e
t (Chat�eld et al. 2004, Kim et al.

2006).

7. Endogenous lead times, where there may also be 
orrelation between the orders and

the WIP (Boute et al. 2014, So & Zheng 2003).

3 Safety Sto
ks, Lead Times and Demand

Kaplan (1970) found that the OUT poli
y will result in an optimal inventory 
ost if

in
oming orders do not 
ross. A natural question then arises: Is this still the 
ase when

the OUT poli
y is used in the presen
e of sto
hasti
 lead times with 
rossovers? We

show that it is not as we are able to �nd a linear poli
y that outperforms the OUT

poli
y. Whilst our poli
y may not be the optimal poli
y itself (see Srinivasan et al. 2011,

where 
hara
teristi
s of the optimal non-linear poli
y are dis
ussed), it is a linear poli
y

that is well understood and implementable.

Our obje
tive is always to minimise the sum of the unit inventory holding 
ost (h)

and the unit ba
klog 
ost (b) as given J ,

J = h(It)
+ + b(−It)

+, (1)

where It is the inventory levels at time t. It is well known that this 
ost is minimised

when the safety sto
k is set so availability equals b/(h + b) (Brown 1963). The term

availability is de�ned as:

Availability =
Number of periods without a sto
k-out

Total number of periods

. (2)
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Availability targets vary widely by produ
t type. Basi
 produ
ts with no inventory

risk 
an be sold over long periods and tend to have high availability. On the other hand,

produ
ts with short life 
y
les may have sto
k-out rates of 50% or more (Warburton

& Stratton 2002). Low availability does not ne
essarily imply a low �ll rate, whi
h

dire
tly measures the proportion of 
ustomer demand ful�lled from sto
k (Chopra et al.

2004). The �ll rate is probably a more popular metri
, espe
ially in high-volume settings.

However, due to its analyti
al 
omplexity resulting from the double a

ounting of ba
klogs

and the 
orrelation between demand and the net sto
k (Disney et al. 2015), we have not

pursued this approa
h herein.

3.1 Lead Times

From a pra
ti
al perspe
tive, the de�nition of the lead time deserves some thought. While

it is straightforward to de�ne lead time as the time from order to re
eipt, in the real-

world this in
ludes many fa
tors. The lead time may in
lude manufa
turing, shipment to

port, ship transit time, unloading (possibly with transfer to another ship), transfer to rail

and/or tru
k, and unloading. Within that pro
ess are often 
ustoms 
learan
es, both at

outbound export and inbound import. Any of these fa
tors 
an introdu
e variation into

the lead time. If the produ
t is not too bulky, many 
ompanies order some fra
tion to be

delivered qui
kly via air, with the remainder to be delivered by sea. It is hoped that the

availability of air transport for emergen
y shipments 
an redu
e the risk of a sto
k-out.

Real-world logisti
s data typi
ally in
lude the time taken by all of the above a
tivities,

and any analysis is 
ompli
ated by additional issues. Companies typi
ally ship produ
ts

in individual 
ontainers, but a ship transports many su
h 
ontainers, whi
h then all

experien
e the same transit time and, possibly, delays. Also, 
ustoms 
learan
e depends

on the type of 
argo, random inspe
tions, and the port at whi
h it o

urs. For example,


learan
e in a busy port (e.g., Los Angeles) 
an take a week, while in a small port (e.g.,

Providen
e) it may take less than a day. This is further exa
erbated by the extremely

large (and growing) 
ontainer liner ships that frequent the busier ports. In addition,

industrial a
tion 
an have a major impa
t on port performan
e (O'Marsh 2014).

Fig. 1 presents a 
olle
tion of data on lead times for shipments of produ
t in 
ontainers

from a port in China to a port in the United States. The �gure plots the time from the

COB to COT dates, highlighting the variability of the shipping delay. The COB is the

date a 
ontainer was 
on�rmed on-board a ship at the port of origin. The COT refers to

the 
ontainer out date, whi
h is the time that a 
ontainer leaves its destination port. The

key observation from Fig. 1 is that the lead time distribution is rarely normal, or even


lose to normal, and it often has a long tail. Also, this lead time a
tually represents only a

part of the total lead time between a fa
tory in China and the 
ustomer's warehouse in the

U.S. The time required to get the produ
ts from the fa
tory, into a 
ontainer, delivered
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to the port, through port operations, and onto a ship is not in
luded. Also not in
luded

are the a
tivities needed to get the 
ontainer from the destination port to the 
ustomer's

warehouse and to unload the 
ontainer. These in-bound and out-bound a
tivities may

take a 
onsiderable amount of time, and may also be quite variable. As there is little

reason to suspe
t that this variability is in any way 
orrelated to the variability in the

COB to COT lead times, we 
an only suppose that this variability will add to the shipping

variability.

Another 
ompli
ation in the de�nition of the lead time that o

urs in global supply


hains is the in
lusion of the time to manufa
ture produ
ts `to order'. For example, many

Chinese manufa
turers will not s
hedule the produ
tion of an order until it has been paid

for. In that 
ase, the replenishment lead time may in
lude the time to s
hedule and

manufa
ture the produ
t.

Rather than just the port-to-port lead times shown in Fig. 1, Fig. 2 gives the door-

to-door lead times between a supplier in Colorado and a manufa
turer in Shenzhen,

China. This is the 
omplete lead time from the moment the produ
t leaves the fa
tory

in Colorado to the time it arrives and is booked in at the Shenzhen fa
tory. This gives

a more 
omplete view of the lead time than that given by Fig. 1. We were also able to


arefully investigate the timing of the dispat
hes and arrivals, and determined that order


rossovers were a
tually quite frequent. In Fig. 3, we have illustrated how many queue

positions ea
h shipment gained or lost in sequen
es of dispat
hes and arrivals. Note that

when one order gains (or loses) one position in the queue another must have lost (or

gained) a position. However, if one order gains (or loses) several positions in the queue,

one or more orders may have lost (or gained) one or more positions in the queue.

3.2 Demand

While some question the use of the normal distribution to represent demand (see Stri-

jbos
h et al. (2002)) the assumption of normally distributed demand has been adopted

frequently in inventory management literature (S
hneeweiss 1974, Disney & Towill 2003,

Sobel 2004). We later show that under sto
hasti
 lead times the inventory distribution

is made up of a weighted sum of sub-pro
esses. The normally distributed demand, to-

gether with a linear system assumption means that these sub-pro
esses are also normally

distributed. If we further assume that demand is i.i.d., then the equations des
ribing the

�rst and se
ond moments of the inventory levels are relatively simple.

Although most real demand patterns are likely to be auto
orrelated over time, i.i.d.

demands are observed in pra
ti
e. Fig. 4 shows a demand series that we have 
ol-

le
ted from an industrial equipment manufa
turer and it is both normally distributed

and temporally independent. This series of data has passed the K-S test for normality

hypothesis at signi�
an
e of 0.1 (p = 0.1326). The property of independen
e 
an be veri-

9
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orre
ted. This approa
h is 
ommon in hardware 
ontrol and has a long history in both

physi
al systems and inventory 
ontrol systems (Simon 1952, Nise 2011). 0 ≤ β < 2 is

required for stability. When β = 1 the POUT poli
y degenerates into the OUT poli
y.

The POUT poli
y has been shown to attenuate the bullwhip e�e
t (Disney & Towill

2003, Dejon
kheere et al. 2003, Disney et al. 2004), and is relatively easy to implement

in real supply 
hains; see Potter & Disney (2010) and Disney et al. (2013) for two 
ase

studies reporting how it has been implemented in pra
ti
e. We 
an arrange (5) into the

following form

Ot = β(Dt − µ) + (1− β) (Ot−1 − µ) + µ. (6)

showing that the POUT poli
y generates orders that are a 
onvex 
ombination of the

sto
hasti
 
omponent of the demand and the previous order (Balakrishnan et al. 2004,

Boute & Van Mieghem 2014).

The term T in (5) is the target net sto
k the safety sto
k the average inventory

level. T is a de
ision variable to be optimized to minimize inventory holding and ba
klog


osts via the newsvendor prin
iple. k̄ is the average lead time (when a 
onstant lead

time exists, k̄ = k). The WIP is the inventory on order the orders pla
ed but not yet

re
eived, the in-transit inventory and is given by

Wt =
k
∑

i=1

Ot−i = Wt−1 +Ot−1 − Rt. (7)

When k = 0, there is no WIP, as orders are re
eived before the next order is generated.

With the POUT poli
y, with arbitrary but 
onstant lead-times, i.i.d. demand and MMSE

fore
asting the following expressions hold for the varian
e of the orders,

σ2
O =

σ2β

2− β
(8)

and the net sto
k varian
e,

σ2
I = σ2

(

k +
1

β(2− β)

)

, (9)

Disney & Towill (2003). Fig. 6 plots the bullwhip ratio (σ2
O/σ

2), and the net sto
k

varian
e ratio, NSAmp (σ2
I/σ

2), minus k as the in�uen
e of k is independent of β. The

bullwhip ratio is unity at β = 1, zero at β = 0,∞ at β = 2, stri
tly in
reasing, and 
onvex

in β. Note that the bullwhip ratio and order varian
e are not a�e
ted by the (possibly

sto
hasti
) lead time. The inventory varian
e is minimal (and equal to 1+k) when β = 1,

∞ at β = {0, 2}, and 
onvex in β. As the lead time k in�uen
es the inventory varian
e,

the sto
hasti
 lead time will have an e�e
t on the inventory distribution. However, for

12
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(T ∗

POUT |α<0.5) < (T ∗

OUT |α<0.5) < 0. (13)

Note that when α > 0.5 (α < 0.5), the safety sto
k is positive (negative). The


onsequen
es of (12) and (13) will mean that there will be levels of availability where

tighter 
ontrol of inventory varian
e redu
es safety sto
ks and levels of availability where

tighter 
ontrol of inventory varian
e in
reases safety sto
k requirements. Redu
tions in

safety sto
k result from minimising varian
e when the 
riti
al fra
tile lays on a leading

(in
reasing) edge of the pdf; when the 
riti
al fra
tile lays on a trailing (falling) edge of

the pdf, one should not minimise varian
e to redu
e safety sto
k. Later we will show

that the inventory pdf is multi-modal and this will lead to 
ases when the the 
riti
al

fra
tile swaps from leading to trailing edges (and vi
e versa) of the pdf. This e�e
t was

also noti
ed by Chopra et al. (2004).

4.2 The State of the WIP Pipeline

In the sto
hasti
 lead time 
ase the probability of a lead time of k periods is denoted by

pk. The minimum lead time is k = 0 and the maximum lead time is k+
. The average

lead time (Zalkind 1978) is given by

k̄ =

k+
∑

k=0

pkk. (14)

The key to understanding the impa
t of the sto
hasti
 lead time is to 
onsider the

number of open replenishment orders in the WIP pipeline. Open orders are those that

have been pla
ed but not yet re
eived. Noti
e that we are not des
ribing the quantity of

produ
ts on order, but the number of open orders. All orders pla
ed k+
or more periods

ago are guaranteed to have been re
eived. However, those pla
ed later than k+−1 periods

ago may either be open (not yet re
eived, denoted by a `1') or 
losed (re
eived, denoted

by `0'). Sin
e ea
h of the k+
positions in the pipeline is either open or 
losed, this means

that there are 2k
+

possible states of the WIP pipeline.

The probability that the pipeline is in state i is denoted qi. The relationship between

pk and qi is rather 
omplex. To explain the relationship, 
onsider a 
ase where the lead

time possibilities are p0 = 0, p1 = 1/3, p2 = 1/2 and p3 = 1/6. Note that the probabilities

sum to unity and the maximum lead time is k+ = 3.

Table 1 des
ribes all of the eight possible states to the WIP pipeline. The �rst 
olumn

lists the state index, i. The next 4 
olumns denote the probability that order pla
ed in

period t− x has been re
eived. The �nal 
olumn is the produ
t of the four probabilities

and denotes the probability that the WIP pipeline is in a parti
ular state, qi.

Consider state 1. In this state all four positions in the WIP pipeline have been 
losed.

This is denoted by mi,j and made spe
i�
 in the �rst row with binary digits. In the se
ond
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row we have enumerated qi,j whi
h is the probability of that binary state o

urring. This

means that the probability of the last order (pla
ed in period t−1) being re
eived is zero,

q1,1 = 0 as p0 = 0. The probability of the order pla
ed two periods ago (at t− 2) being

re
eived is q1,2 = p0 + p1, the probability of the order pla
ed three periods ago being

re
eived is q1,3 = p0 + p1 + p2. The order pla
ed four period ago, at t− 4 are guaranteed

to be 
losed as q1,4 = p0 + p1 + p2 + p3 = 1. These probabilities are listed in the se
ond

row of information about the state. As there is no 
han
e that the lead time k = 0 (as

p0 = 0), then q1, the probability of the pipeline being in state one is zero. This is also

true for states two through four.

Now 
onsider state 8. In this state the �rst three positions of the pipeline are open,

the fourth is 
losed. Re
all, an open order has yet to be re
eived, a 
losed order has been

re
eived. The probability of the �rst position being open is q8,1 = 1 − p0, the se
ond

position being open is q8,2 = 1− (p0+p1), the third being open is q8,3 = 1− (p0+p1+p2).

The order pla
ed four periods ago is still guaranteed to be 
losed, q8,4 = 1 as before. The

probability that the pipeline is in state 8 is q8 = (1 + p0)(1 − (p0 + p1))(1 − (p0 + p1 +

p2))(p0 + p1 + p2 + p3) =
1
9
.

The 
omplete set of pipeline states are shown in Table 1. It should also be 
lear from

the pro
ess that leads to Table 1, that the sequen
e in whi
h the orders a
tually arrive

does not a�e
t the 
al
ulation of probabilities, revealing that qi is independent of the

state of the pipeline.

We now formalize our methodology des
ribed above. Re
all, qi is the probability that

the pipeline is in state i. Let M be a binary matrix with j = 1 to k+

olumns and i = 1

to 2k
+

rows. Assign the (i, j) element of M a value a

ording to

mi,j =
1 + (−1)υ

2
(15)

where υ =
⌈

2j−k+i
⌉

. Ea
h row of the M matrix represents a k+
-tuple of binary digits

that des
ribes the state of the WIP pipeline. A zero in elementmi,j of matrixM indi
ates

that for state i, the order pla
ed j−1 periods ago has been re
eived (the order is 
losed),

unity indi
ates that the order pla
ed j − 1 periods ago has not yet been re
eived (it is

open). Note, the order pla
ed k+
periods ago is always 
losed, thus j indexes through 1

to k+
to represent the lead times k = 0 to k+ − 1. There are 2k

+

rows to M, one for ea
h

possible state of the order pipeline. The probability that the WIP pipeline is in state i

is given by

qi =
1

2k+

k+
∏

j=1

[

1 + (−1)υ

(

2
k+
∑

k=j

pk − 1

)]

(16)

One 
an derive (16) by observing that in the ith pipeline state, the probability that

an order pla
ed j periods ago is open/
losed 
an be expressed universally as
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Table 1: The 
ombinations of open orders and their asso
iated probabilities.

State i t− 1, j = 1 t− 2, j = 2 t− 3, j = 3 t− 4, j = 4
Probability,

qi =
∏4

j=1 qi,j

1

0 0 0 0

q1 = 0
0 0 + 1

3
0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

2

0 0 1 0

q2 = 0
0 0 + 1

3
1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

3

0 1 0 0

q3 = 0
0 1− (0 + 1

3
) 0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

4

0 1 1 0

q4 = 0
0 1− (0 + 1

3
) 1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

5

1 0 0 0

q5 =
5
18

1− 0 0 + 1
3

0 + 1
3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

6

1 0 1 0

q6 =
1
18

1− 0 0 + 1
3

1− (0 + 1
3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

7

1 1 0 0

q7 =
5
9

1− 0 1− (0 + 1
3
) 0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

8

1 1 1 0

q8 =
1
9

1− 0 1− (0 + 1
3
) 1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6
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qi,j = mi,j

k+
∑

k=j

pk + (1−mi,j)

j−1
∑

k=1

pk =
1

2

[

1 + (−1)υ
(

2

k+
∑

k=j

pk − 1

)]

, (17)

and that qi is the produ
t of qi,j over j.

Robinson et al. (2001) provided an iterative algorithm for determining the distribution

of the number of open orders. It produ
es exa
tly the same results as (16) for �nitely

dimensioned dis
rete distributions.

4.3 The pdf of the Inventory Levels with Sto
hasti
 Lead Times

and Order Crossover.

We de�ne a pro
ess as the sequen
e of a variable over time ({It}, {Wt} et
). A sub-

pro
ess is a subset of the pro
ess where the pipeline states (the 
ompletion status of

previous orders, the rows in the M matrix) are the same. Ea
h sub-pro
ess is normally

distributed (as the demand is normally distributed and ea
h sub-pro
ess is the output

of a linear system) and the distribution of the entire pro
ess 
an be multi-modal. We

now require the mean and varian
e of the inventory levels in ea
h of the sub-pro
esses.

We obtain this by �rst determining the distribution of the WIP in ea
h sub-pro
ess and

then ea
h WIP sub-pro
ess is 
ombined with a s
aled replenishment order to obtain

something we 
all the s
aled shortfall distribution. A weighted sum of the s
aled shortfall

distributions in ea
h sub-pro
ess then forms the 
omplete inventory distribution.

We 
an rearrange (5) to obtain

It = T + µ
(

k̄ + 1
/

β
)

− (Wt +Ot/β) . (18)

For OUT poli
y (that is, when β = 1) we 
an see that the inventory distribution is a

re�e
ted shortfall distribution, (Wt + Ot), translated by T + µ(k̄ + 1/β) (Zalkind 1978;

Robinson et al. 2001). When β 6= 1 the Ot 
omponent has be
ome s
aled by Ot/β, in

whi
h 
ase we 
all the distribution of (Wt+Ot/β) the s
aled shortfall distribution. We now

require the mean and the varian
e of the s
aled shortfall distribution for ea
h sub-pro
ess.

The 
ompli
ating fa
tors are that Ot is auto-
orrelated and that the distributions of Wt

and Ot/β are 
orrelated with ea
h other. As the system is linear the simplest way to

pro
eed is to exploit the z-transform, whi
h is de�ned by

F (z) = Z {f [t]} =

∞
∑

t=0

f [t] z−t. (19)

To determine the varian
e of the WIP in sub-pro
ess i, we �rst note that the varian
e

of the orders maintained by the POUT poli
y is independent of the lead-time, as
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σ2
O

σ2
=

∞
∑

t=0

(

Z−1

{

zβ

z + β − 1

})2

=

∞
∑

t=0

(

(1− β)tβ
)2

=
β

2− β
, (20)

Disney & Towill (2003). Here, z is the z-transform operator,

Z−1 {F (z)} =
1

2πj

∮

C

F (z) zt−1dz = f [t] , (21)

f [t] is the inverse z-transform of the transfer fun
tion, F (z). zβ(z + β − 1)−1
is the

transfer fun
tion of the orders maintained by the POUT poli
y under i.i.d. demand and

minimum mean squared error fore
asting (Disney and Towill 2003). The relationship

between the varian
e ratio and the sum of the squared impulse response is known as

Tsypkin's (1964) relationship.

The pdf of the normal distribution with an argument of x, a mean of µ, and a standard

deviation of σ, is de�ned by

φ [x|µ, σ] = e−(x−µ)2/2σ2

√
2πσ

. (22)

Using this notation, (9) leads to an order pro
ess des
ribed by the pdf,

φO = φ

[

x|µ,
√

σ2β
/

(2− β)

]

. (23)

The varian
e of WIP sub-pro
ess i, is given by the varian
e of the sum of the impulse

responses of the open orders,

σ2
W,i

σ2
=

∞
∑

t=0

k+
∑

j=1

(

mi,jZ
−1

{

βz1+j

z + β − 1

})2

. (24)

wheremi,j is an element of the binary matrixM that 
aptures whether an order is open or


losed. The distribution of the s
aled orders, Ot/β, for all sub-pro
esses, 
an be obtained

using

σ2
O/β

σ2
=

∞
∑

t=0

(

Z−1 {z/(z + β − 1)}
)2

=
∞
∑

t=0

(

(1− β)t
)2

=
(

2β − β2
)

−1
=

σ2
O

σ2β2
, (25)

whi
h leads to the following expression for its pdf,

φO/β = φ

[

x|µ/β,
√

σ2
/

(2β − β2)

]

. (26)

The 
ovarian
e between the WIP sub-pro
ess and the s
aled orders sub-pro
ess is

given by
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cov (Wi, O/β) =

∞
∑

t=0

(

Z−1

{

∑k+

j=1
mi,j

βz1−j

z + β − 1

}

Z−1

{

z

z + β − 1

})

= cov (Wi, O) /β.

(27)

σ2
I,i, the varian
e of sub-pro
ess i in the inventory distribution, is equal to the varian
e

of the shortfall distribution,

σ2
I,i = σ2

W,i + σ2
O

/

β2 + 2cov (Wi, O) /β. (28)

The mean of the ea
h of the sub-pro
esses of the inventory distribution 
an be shown

to be

µI,i = T + µ

(

k̄ −
∑k+

j=1
mi,j

)

. (29)

The 
omplete pdf inventory distribution is then given by

φI =
2k

+

∑

i=1

qiφ
[

x|µI,i,
√

σ2σ2
I,i

]

. (30)

We emphasize that φI is a multi-modal pdf as it is a 
ombination of the normally

distributed pdfs with di�erent means and varian
es weighted by qi. The average inventory

is given by T and this 
an be set arbitrarily. However, if one wishes to minimise inventory

holding and ba
klog 
osts, T be
omes a fun
tion of β. The varian
e of the 
omplete,

multi-modal, inventory is given by

σ2
I =

∞
∫

−∞

φI(T − x)2dx =

2k
+

∑

i=1

qi





(

k+
∑

j=1

mi,j

)2

µ2 + σ2σ2
I,i



 . (31)

Equation (31) shows that the inventory varian
e 
ontains a weighted sum of the

varian
es of individual sub-pro
esses. Equation (31) also shows that the mean demand

has an in�uen
e on the varian
e of the inventory levels, an e�e
t that does not happen with


onstant lead times. An in�uen
e of the mean demand 
an be also seen in the standard

random sum of random variables varian
e equation, k̄σ2 + µ2σ2
k. However, we note that

(31) has a di�erent stru
ture from this formula, and will produ
e signi�
antly di�erent

guidan
e for the inventory varian
e and safety sto
k. One should not be surprised at this

be
ause the random variables in the random sum are drawn from di�erent distributions

in the (P)OUT poli
y.

When simulating this s
enario in a spreadsheet for veri�
ation of our analyti
al ap-

proa
h, we found that it is 
onvenient to generate alongside the order, Ot, a random

number used to determine the lead time for that order. We 
an then determine with a

simple logi
al test the time at whi
h the order is re
eived. This ensures that 
omplete
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orders are re
eived, i.e. they are not split ea
h individual order is re
eived all at on
e.

As we allow for orders to 
ross some periods re
eive more than one order; in other peri-

ods there 
ould be no re
eipts. This is 
onsistent with our pra
ti
al experien
e dis
ussed

earlier. Noti
e that we also assumed that the random lead times are independent of all

the other system states.

5 A numeri
al example when k+ = 4

Consider the situation when k+ = 4. Table 2 details the pipeline states (M), the varian
e

of the net sto
k, and the mean of ea
h of the 2k
+

= 16 individual sub-pro
esses to the

inventory distribution. It 
an be easily shown that ea
h of the expressions for the varian
e

(and the standard deviations) of the inventory sub-pro
esses is in�nite at β = {0, 2}.
Furthermore, ea
h sub-pro
ess has a single unique minimum, β∗

i , whi
h is also detailed

in Table 2. We 
an see that β∗

i = 1 exists only in the sub-pro
esses that do not 
ontain

order 
ross-overs. All of the sub-pro
esses that 
ontain order-
rossover have β∗

i < 1.

An intuitive explanation of this is as follows (to avoid unne
essary notation assume,

for this paragraph only, that σ = 1). Re
all, the varian
e of ea
h of the inventory sub-

pro
esses is given by (28) and σ2
O/β

2
is in�nite at β = {0, 2}, minimised to unity at

β = 1, and 
onvex in β. For the sub-pro
esses without order 
rossover then σ2
W,i +

2cov(Wi, O)/β =
∑k+

j=1mi,j , a 
onstant. The varian
e of the sub-pro
esses without order


rossover are then 
learly minimised at β = 1. However, for sub-pro
esses with order


ross-over then σ2
W,i + 2cov(Wi, O)/β is 
onvex in β between β = 0 and β = 1 and

equal to

∑k+

j=1mi,j at β = {0, 1}. This implies there will be a minimum in σ2
I,i between

0 ≤ β < 1. As the 
omplete inventory pdf is a weighted sum of independent varian
es,

some minimised with β = 1, some minimised with β < 1, then the β that minimises

the varian
e of the 
omplete inventory distribution is β∗

σ < 1. Also, the proportion of

states with order 
rossover in
reases in k+
as the number of states with order 
rossovers

is given by 2k
+ − (k+ + 1). This suggests that the role of β be
omes more important as

k+
in
reases.

Table 2 details the �rst and se
ond order moments of ea
h of the subpro
esses for

a maximum lead time of k+ = 4. To identify the probability of the pipeline being

in state i, we now need to make the results in Table 2 spe
i�
 by enumerating the lead

time probabilities. Assume

{

p0 =
1
2
, p1 = p2 = p3 = 0, p4 =

1
2

}

whi
h we have 
hosen as it

allows us to better reveal the impa
t of the order 
rossovers. It may also be representative

of a supply 
hain where 50% of orders are sent via ship with a lead time of four and 50%

are sent by air with a lead time of zero. That is, the air shipments arrive before the next

order is made. The maximum lead time is k+ = 4 and the average lead time is k̄ = 2.

Using (5) we are then able to determine the probability that the pipeline is in state i, is

∀i, qi = 0.0625. Note that in general, the probability that the pipeline is in a parti
ular
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Table 2: The 
ombinations of open orders and their asso
iated varian
e, mean and vari-

an
e minimizing feedba
k 
ontroller.

M j
σ2
I,i

σ2
µI,i β∗

i

i 1 2 3 4

1 0 0 0 0

1
β(2−β)

T + µk̄ 1

2 0 0 0 1

−2β5+8β4
−12β3+7β2

−2β−1
β(2−β)

T + µ(k̄ − 1) 0.656633

3 0 0 1 0

2β4
−6β3+5β2

−2β−1
β(2−β)

T + µ(k̄ − 1) 0.689845

4 0 0 1 1

2β5
−10β4+16β3

−10β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.60974

5 0 1 0 0

2β3
−3β2+2β+1
β(2−β)

T + µ(k̄ − 1) 0.751274

6 0 1 0 1

2β5
−6β4+10β3

−8β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.676129

7 0 1 1 0

−2β4+6β3
−6β2+4β+1

β(2−β)
T + µ(k̄ − 2) 0.689845

8 0 1 1 1

−2β5+8β4
−12β3+9β2

−6β−1
β(2−β)

T + µ(k̄ − 3) 0.656633

9 1 0 0 0

β2
−β−1

β(2−β)
T + µ(k̄ − 1) 1

10 1 0 0 1

−2β4+6β3
−6β2+4β+1

β(2−β)
T + µ(k̄ − 2) 0.689845

11 1 0 1 0

2β3
−4β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.751274

12 1 0 1 1

2β4
−6β3+7β2

−6β−1
β(2−β)

T + µ(k̄ − 3) 0.689845

13 1 1 0 0

−2β2+4β−1
β(2−β)

T + µ(k̄ − 2) 1

14 1 1 0 1

2β3
−5β2+6β+1
β(2−β)

T + µ(k̄ − 3) 0.751274

15 1 1 1 0

−3β2+6β+1
β(2−β)

T + µ(k̄ − 3) 1

16 1 1 1 1

−4β2+8β+1
β(2−β)

T + µ(k̄ − 4) 1

Overall - - - - Eq (31) T β∗

σ = 0.73
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and in both we have set the safety sto
k, T, to minimize J when h=1, b=9. In the

�rst 
ase µ = 100 and we 
an 
learly see that there are �ve modes in the inventory pdf.

Although the probability of being in ea
h of the 16 states is equal in this 
ase, the 16

states have only �ve unique means. This leads to the di�eren
es in the size of ea
h mode

but, ultimately, they are all fun
tions of µ, σ, and the lead time probabilities. In the

other 
ase, µ = 40 and the distributions of the sub-pro
esses overlap more. Furthermore,

the 
omplete pdf of the µ = 40 
ase has less varian
e, and requires less safety sto
k, than

the µ = 100 
ase.

When µ = 100, the inventory levels have a varian
e of 10,300 for the OUT poli
y.

Numeri
al experiments reveal that there is a single minimum inventory varian
e (or stan-

dard deviation) at β∗

σ = 0.73 and the net sto
k varian
e is 10,280 0.2% less than the

OUT varian
e. For the µ = 40 
ase, the inventory varian
e maintained by the OUT

poli
y is 1900, the numeri
ally optimised feedba
k parameter is the same, β∗

σ = 0.73, and

the net sto
k varian
e is 1879 a 1% redu
tion.

Using numeri
al te
hniques we 
an �nd the optimal proportional feedba
k 
ontroller

β∗
, and safety sto
k T, that minimizes the inventory 
ost. When we have set {β∗, T} op-

timally, Fig. 8 des
ribes the per
entage e
onomi
 gain

(

(JOUT − JPOUT )J
−1
OUT × 100%

)

,

from using the POUT poli
y. While the improvement is rather small (note that 0.8 means

0.8% not 80%), the POUT is always more e
onomi
al than the OUT poli
y. These 
ost

redu
tions are indu
ed by a redu
tion in the inventory varian
e. The varian
e 
onsists

of two parts, one with di�erent modes whi
h depend on µ, but independent of β; the

other one is a fun
tion of the varian
es of ea
h sub-pro
ess whi
h does depend on β. The

former part is dominant, hen
e the inventory 
ost bene�t of the POUT poli
y is limited

and de
reases in µ.

Fig. 9 plots β∗
for di�erent 
ost ratios and di�erent mean demands. We see that

β∗
is near unity when the availability target is (very) near 0% or 100%, but for most

availability targets β∗ ≈ 0.725. Interestingly, almost always, β∗ 6= β∗

σ implying that the

tightest inventory 
ontrol does not always lead to the minimal 
ost. The abrupt 
hanges

in β∗
that we see in Fig. 9 are a result of the 
riti
al fra
tile moving from leading to

trailing edges of the modes in the inventory pdf. When the 
ost ratios are su
h that the


riti
al fra
tile lies on the leading edge, β∗
tends towards unity; when they are on a falling

edge β∗
redu
es. The sharp 
hanges o

ur when the 
riti
al fra
tile o

urs at a peak of

a mode.

Fig. 10 shows the safety sto
k requirements when β∗
is used for di�erent 
ost ratios.

The multi-modal nature of the µ = 100 
ase results in rapid in
reases in the safety sto
k

requirement at predi
table points on the availability s
ales. These are also related to the

multi-modal pdf of the inventory levels as the safety sto
k requirements are a fun
tion of

the 
df of inventory. Furthermore, between 40-60% availability, the two demand settings

require very similar amounts of safety sto
k. As it is not possible to visually distinguish
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Table 3: Poli
y 
omparison for the real-world lead time distributions between China and

the USA.

Case

OUT Poli
y POUT Poli
y % bene�t

σ2
O/σ

2

T ∗ J T ∗ β∗ J in J

1 44.8623 62.8224 44.8442 0.9156 62.7996 0.0363 0.8443

2 42.8846 60.3743 42.8547 0.9147 60.348 0.0436 0.8428

3 41.3303 60.0697 41.3313 0.845 59.968 0.1693 0.7316

4 39.1185 56.1142 39.1223 0.8962 56.0718 0.0756 0.8119

5 49.5645 69.04 49.4522 0.8524 68.9504 0.1298 0.7427

6 43.8723 60.8159 43.8569 0.9027 60.781 0.0574 0.8226

7 48.0291 68.6473 47.9623 0.8223 68.5191 0.1868 0.6982

8 46.0299 65.3138 45.9663 0.8197 65.1635 0.2301 0.6944

9 42.1678 59.6323 42.1636 0.9605 59.6278 0.0075 0.924

10 30.4934 43.1683 30.4933 0.9946 43.1682 0.0002 0.9892

11 56.3319 79.0999 56.1169 0.7722 78.8626 0.3 0.6289

12 39.1313 56.4232 39.1244 0.9356 56.41 0.0234 0.8789

13 47.793 66.7626 47.7706 0.8837 66.7453 0.0259 0.7916


osts (J) from optimising the safety sto
k (T ∗
) in the OUT poli
y. Re
all, the varian
e

of the orders in the OUT poli
y is always equal to the demand varian
e (σO = σ = 10).

For the POUT poli
y we note the minimised 
osts (J) from optimising both the safety

sto
k (T ∗
) and the feedba
k 
ontroller (β∗

). We also 
al
ulate the varian
e of the orders

and the per
entage redu
tion in the inventory 
osts from using the POUT poli
y.

The POUT poli
y is always more e
onomi
al than the OUT poli
y, and the optimal

β∗ < 1. Usually, the safety sto
k requirements of the POUT poli
y is less than the OUT

poli
y, but not for 
ase 3 and 4. In 
ase 10, the probability of order 
rossovers is very small

and the β is very 
lose to unity. However in these pra
ti
al examples, the optimal β is

generally around 0.8 to 0.9. Whilst the inventory 
ost bene�t is very small, the redu
tion

in the order varian
e is more signi�
ant and 
omes without 
ost under sto
hasti
 lead

times. The order was redu
ed by 37% in 
ase 11, and just 1% in 
ase 10, but the average

redu
tion in order varian
e is 20%.
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7 Con
lusions

As globalization a

elerates, lengthening supply 
hains bring 
ompli
ations and pitfalls

asso
iated with in
reasing un
ertainty in both demand and lead time. We determined

how these 
hara
teristi
s a
tually impa
t the safety sto
k required to minimise inventory

holding and ba
klog 
osts. We began by presenting global logisti
s data that violated

the traditional normality assumption about lead times. We also provided a real-world

example of order 
rossover.

We introdu
ed a new approa
h for 
al
ulating the distribution of open orders. This

allowed us to formulate and test a method that resulted in an exa
t solution for the

safety sto
k 
al
ulation. Sin
e the enumeration of open orders is 
ombinatori
 in nature,

it expli
itly allowed for order 
rossover. We showed that using the POUT strategy al-

ways results in lower inventory 
osts when sto
hasti
 lead times with order 
rossover are

present. Our model settings were motivated by real-world settings and 
onsisted of a

dis
retely distributed lead time and a 
ontinuously distributed demand pro
ess.

Our novel 
ontribution is a new method to obtain the distribution of the inventory

levels in the presen
e of 
orrelation between the WIP and orders, via the so-
alled s
aled

shortfall distribution. This builds upon another unique 
ontribution the M-matrix

and the asso
iated method to determine the probability of the pipeline being in ea
h of

its possible 2k
+

states. Furthermore, we 
onsidered the impa
t of 
orrelation in orders

and the 
ovarian
e between orders and WIP in a sto
hasti
 lead time setting with order


rossovers. Our methodology 
an be used to investigate the impa
t of auto-
orrelated

demand, non-MMSE fore
asting methods, more sophisti
ated replenishment poli
ies, and

information sharing strategies.

In the 
onstant lead time 
ase, or the non-
rossover sto
hasti
 lead time 
ase, β = 1

will minimize the varian
e (or equivalently the standard deviation) of the inventory levels

and result in the minimum inventory 
osts when the safety sto
k is set to the 
riti
al

fra
tile (Brown 1963). However, in the sto
hasti
 lead time with order 
rossover 
ase,

minimizing the varian
e of the inventory levels, by tuning β, will not always result in

minimal 
osts. While the optimal β∗
, may be near unity, it is never unity and 
hanges

signi�
antly with the availability target, see Fig. 9.

The sto
hasti
 lead time 
ase with order 
rossover results in a surprising paradox.

Minimizing inventory 
osts does not always lead to minimum safety sto
ks. However, the

relationship between holding and ba
klog 
osts and the availability a
hieved at the most

e
onomi
al solution does still hold. This leads to an important insight: Costs should be

used to design the system be
ause fo
using on minimizing inventory varian
e, or safety

sto
ks, 
an lead to an in
orre
tly spe
i�ed system. We 
on
lude that 
are must be taken

when determining safety sto
k requirements under a sto
hasti
 lead time with order


rossovers. One 
annot simply use the �rst two moments of the inventory distribution;
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one needs to use whole pdf be
ause the distribution of the inventory levels is multi-modal.

We have demonstrated that the OUT poli
y is not the optimal poli
y when order


rossover exists, as the linear POUT e
onomi
ally outperforms it. We have not proven

the optimality of the POUT poli
y itself. Indeed it is known that the optimal poli
y is

non-linear, see Srinivasan et al. (2011). However, the POUT poli
y has a long history

and has been su

essfully implemented in pra
ti
e. See Potter & Disney (2010) for details

of an implementation at the UK gro
ery retailer, Tes
o and Disney et al. (2013) for an

implementation in a global printer manufa
turer.

We note that our model / approa
h takes no a

ount of state dependent or auto
or-

related lead times. Seasonal 
ongestion in ports is a well observed phenomena and this

would lead one to suspe
t that lead times are positively auto-
orrelated. Furthermore,

in order to avoid an imminent sto
k-out, 
ompanies may air-freight 
argo leading to a

lead time that is a fun
tion of the state of the supply 
hain. We have also not 
onsid-

ered the 
onsequen
es of non-normal demands. If demand is not normally distributed,

then the 
omplete pdf of ea
h sub-pro
ess has to be obtained. Presumably this 
ould

be a
hieved with 
onvolution but this it is beyond the s
ope of the paper. These issues

remain interesting areas for future work.
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