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Abstract

We study the impact of stochastic lead times with order crossover on inventory
costs and safety stocks in the order-up-to (OUT) policy. To motivate our research we
present global logistics data which violates the traditional assumption that lead time
demand is normally distributed. We also observe that order crossover is a common
and important phenomena in real supply chains. We present a new method for
determining the distribution of the number of open orders. Using this method we
identify the distribution of inventory levels when orders and the work-in-process
are correlated. This correlation is present when demand is auto-correlated, demand
forecasts are generated with non-optimal methods, or when certain ordering policies
are present. Our method allows us to obtain exact safety stock requirements for
the so-called proportional order-up-to (POUT) policy, a popular, implementable,
linear generalization of the OUT policy. We highlight that the OUT replenishment
policy is not cost optimal in global supply chains, as we are able to demonstrate
the POUT policy always outperforms it under order crossovers. We show that
unlike the constant lead-time case, minimum safety stocks and minimal inventory
variance do not always lead to minimum costs under stochastic lead-times with
order crossover. We also highlight an interesting side effect of minimizing inventory
costs under stochastic lead times with order crossover with the POUT policy—an

often significant reduction in the order variance.

Keywords: Stochastic lead-times; Safety stock; Order cross-over; Order-Up-To policy;
Global supply chains.
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1 Introduction

Global sourcing often allows access to low-cost supply but is frequently associated with
long and variable lead times. These longer and more variable lead times bring with them a
number of complications and potential pitfalls, from both a cost and a service perspective
(Stalk 2006). In particular, inventory planners must now account for uncertainty in both
demand and lead time when determining safety stock levels (Warburton & Stratton 2002).

We add to the literature on planning with stochastic lead times by formulating and
testing a calculation of safety stock that reflects these real-world complications. Our
method allows for order crossover and correlation between pipeline inventory and re-
plenishment orders, a factor often ignored. We introduce a novel approach to better
understand the distribution of outstanding orders when lead times are uncertain.

This research was motivated by both practical and analytical issues. Practically,
we have tracked and analyzed logistics data for global supply chains for both major
forwarders and retailers, and were struck by the violations of the lead time normality
assumption see Fig. 1. Furthermore, most inventory models do not allow for order
crossover where shipments are received in a different sequence from which they were
dispatched, yet variable shipment delays, clerical errors, and random custom inspections
can easily delay a shipment long enough for others to pass it. Robinson et al. (2001) also
provide real-world examples of order crossover. Another investigation we have conducted
is summarised in Figs. 2 and 3. Fig. 2 shows the distribution lead time between a supplier
in Colorado, USA and a customer in Shenzhen, China. Fig. 3 tracks how many queue
positions each shipment gained or lost between the date-sorted list of dispatches and the
date-sorted list of arrivals. There are clearly a significant amount of order crossovers
nearly 40% of orders cross.

From the analytical perspective, two prescriptions for inventory management are
widely disseminated. These approaches use either an average (or maximum) lead time
in the constant lead time reorder point solution or assume that the demand during the
lead time is normally distributed and then use the mean and variance of a random sum
of random variables to determine the reorder point. Neither approach is well-suited to
global supply chains with long transit times and multiple hand-offs. Rationalizations
have been made for what is clearly a suspect assumption (Chopra et al. 2004, Eppen &
Martin 1988, Tyworth & O’Neill 1997).

This paper develops an exact theoretical treatment of the impact of the stochastic
lead times with order crossover on the probability density function (pdf) of the net stock
levels. As we progressed in our investigations, we also began questioning the well-known
assertion (Kaplan 1970) that the order-up-to (OUT) model is always a good fit for global
supply chains. We find that, when there is order crossover, lower average inventories are

possible when the ordering strategy follows the linear proportional order-up-to (POUT)
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Figure 1: Real-world lead time distributions for port-to-port shipping from China to the
USA during March September, 2011.
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Figure 2: Door-to-door lead time distribution for Colorado-to-Shenzhen shipments.
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Figure 3: Order crossovers between Colorado and Shenzhen.

policy (Disney & Lambrecht 2008). We also became aware that the orders and work-in-
progress (WIP) are cross-correlated, an effect that does not happen under the assumptions
of independently and identically distributed (i.i.d.) demand, minimum mean square error
forecasting, and OUT replenishment. However, whenever any one of these assumptions
is relaxed. there is a co-variance term that must be accounted for. We believe this is the
first treatment of this effect in the literature and this innovation allows one to relax a
wide range of modeling assumptions in the study of order crossovers.

In the constant lead time case it is known that piecewise linear convex inventory hold-
ing and backlog costs are minimised when the safety stock is set to the critical newsvendor
fractile. In this case, the replenishment polices should be selected and designed to min-
imise inventory variance and the optimal policy is the OUT policy. The minimal cost
design also leads to minimal safety stock requirements. We will show that in the stochas-
tic lead time case with order crossovers these insights do not always hold. While it
remains true that optimal availability is the critical fractile, we find a linear policy that is
always more economical than the OUT policy which sometimes requires less, sometimes
more, safety stock. The inventory levels under our policy have less variance than the
OUT policy. As an additional side benefit, our solution significantly reduces the variance
of the replenishment orders even though our objective function is only concerned with
inventory related costs.

The structure of the paper is as follows. After a review of the relevant literature
(Section 2), we discuss some of the major assumptions and choices that we make in
Section 3. We discuss the POUT/OUT policy with a constant lead time in Section 4.1.
This establishes the notation for the stochastic lead time analysis. Developing further
the approach of Robinson et al. (2001), we provide a new method to determine the

distribution of the number of open orders for the stochastic lead time in Section 4.2. We
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then study the POUT policy and present a new method for determining the pdf of the
inventory levels in Section 4.3. This method allows for order crossover and is required
as the orders and the WIP become correlated in the POUT policy. Section 5 presents a
numerical example. Section 6 applies our theory to the empirical lead time distributions

in Fig. 1 and Fig. 2. Section 7 concludes.

2 Literature Review

As with other recent treatments of these issues, we work in the periodic review, base
stock inventory management framework (Bischak et al. 2014, Muharremoglu & Yang
2010, Srinivasan et al. 2011). Several streams of research are particularly relevant to our
goal of better understanding the effects of stochastic lead times that are virtually certain

to come up in global supply chains.

1. Determining order quantities: Simon (1952) outlined a mechanism for determining
order quantities based on information about demand, inventory, WIP, lead times,
and demand variability. Later, Kaplan (1970) proved that the so-called base stock
or OUT inventory procedures were cost-optimal for stochastic lead times with no
order crossover and independence between lead times and the number and size of
open orders. This result is still widely cited and used today. In this paper, we
suggest an alternative procedure for sizing orders based on a linear generalization
of the OUT policy (Dejonckheere et al. 2003).

2. Determining safety stocks: Replenishment systems require safety stock targets, T,
to be specified; T is the average inventory level. This is usually achieved with
T = & '[a]ov/1 + k, where o is the standard deviation of demand, k is the replen-
ishment lead time, and ®~1[a] is the inverse of the normal cumulative distribution
function the ‘safety factor’ that achieves an availability of a. This mainstream
formula explicitly incorporates demand variability, but does not do the same for
lead time variability. As lead times lengthen and process complexity increases
with globalization, ignoring lead time variability seems ill-advised at best. Order
crossover and correlation between orders and WIP, in particular, are real possibili-
ties (Bradley & Robinson 2005, Muharremoglu & Yang 2010, Robinson et al. 2001,
2008, Srinivasan et al. 2011).

3. Characterizing variability: Reorder points and safety stock levels in a variable lead
time setting are often based on the variance of a random sum of random vari-
ables. This second order moment is then used to set safety stock requirements via
T = & '[a]\/ko? + 202 where {k, 02} is the mean and variance of the lead time

and {u, 0%} is the mean and variance of the demand. This approach assumes that
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the inventory levels are normally distributed. It is also a popular approach, despite
having been shown to result in clear errors for even simple systems (Chopra et al.
2004, Eppen & Martin 1988, Tadikamala 1984, Tyworth & O’Neill 1997) and some-
what more sophisticated treatments being available (Cachon & Terwiesch 20009,
Silver et al. 1998).

Textbooks treatments of inventory planning and ordering policies generally start with
purely deterministic models, such as the economic order quantity model, that posit con-
stant demand and lead times. Typically, they then progress to ‘probabilistic’ models,
such as Reorder Point, (@, R) and OUT models, that account for demand variability
and forecast errors by incorporating safety stock calculations into the setting of reorder
points.

A few textbooks then try to add provisions for understanding lead time variability,
usually through the well-known formula for computing the variance of a random sum of
random numbers (Brown 1963, Feller 1966). Textbooks often then emphasize the need
to have sufficient inventory on hand and on order, to cover customer demands until the
next order arrives. Thus, they call out the critical issue of the demand during the lead
time. Unfortunately, many texts simply assume that lead times are stable enough to
be considered constant or that an uncertain demand combined with an uncertain lead
time will result in a normal distribution of demand during the lead time. This has the
advantage of resulting in a fairly simple safety stock calculation, but its reliability is
in question. Others, (Axséter 2000, for example) separate the problem into two classes:
those without order crossover, which can be modeled using queuing theory, and those with
crossover which can be approximated by the random sum of random variables approach.

With longer global supply chains, these assumptions become less tenable. Robinson
et al. (2001) claimed that order crossover is actually fairly common, and our experience
is consistent with their assertion (see Fig. 3). They found that using the shortfall
distribution for planning purposes, rather than the distribution of lead time demand,
results in better inventory performance. Although in later papers they acknowledge the
usefulness of approximations (Robinson et al. 2008, Bradley & Robinson 2005), their
fundamental insight is one that we build on in this research. Another important stream
of research on order crossover involves the concept of an effective lead time (Hayya et al.
2011). This refers to the fact that the order crossover has the effect of reducing the
average lead time.

There are practical issues that introduce uncertainty and variability into lead times
from multiple sources. These include: ocean issues (Saldanha et al. 2009), import issues
(Leachman & Jula 2012, Jula & Leachman 2011), transit reliability (Caplice & Kalkanci
2012, Kalkanci & Caplice 2012), containers (Fransoo & Lee 2012), and general issues
(Stalk 2006).
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There are also a number of common inventory approaches to studying the stochastic

lead time problem. They can be classified as follows:

1. Lead times described by distribution functions (Bagchi et al. 1986, Bischak et al.
2014, Chopra et al. 2004, Eppen & Martin 1988, Hayya et al. 2008, 2011, Kim et al.
2006, Mentzer & Krishnan 1985).

2. OUT and base stock policies and procedures (Bischak et al. 2014, Hayya et al. 2011,
Kaplan 1970).

3. Correlated and non-i.i.d. lead times (Bischak et al. 2014, Muharremoglu & Yang
2010).

4. Order crossovers (Bischak et al. 2014, Hayya et al. 2011, Muharremoglu & Yang
2010, Robinson et al. 2001, 2008, Srinivasan et al. 2011).

5. Effective lead times with order crossover (Bischak et al. 2014, Hayya et al. 2011).

6. Stochastic lead times and the bullwhip effect (Chatfield et al. 2004, Kim et al.
2006).

7. Endogenous lead times, where there may also be correlation between the orders and
the WIP (Boute et al. 2014, So & Zheng 2003).

3 Safety Stocks, Lead Times and Demand

Kaplan (1970) found that the OUT policy will result in an optimal inventory cost if
incoming orders do not cross. A natural question then arises: Is this still the case when
the OUT policy is used in the presence of stochastic lead times with crossovers? We
show that it is not as we are able to find a linear policy that outperforms the OUT
policy. Whilst our policy may not be the optimal policy itself (see Srinivasan et al. 2011,
where characteristics of the optimal non-linear policy are discussed), it is a linear policy
that is well understood and implementable.

Our objective is always to minimise the sum of the unit inventory holding cost (h)

and the unit backlog cost (b) as given J,

J = h(]t)+ + b(_It)+a (1)

where [; is the inventory levels at time ¢. It is well known that this cost is minimised
when the safety stock is set so availability equals b/(h 4+ b) (Brown 1963). The term

availability is defined as:

Number of periods without a stock-out

(2)

Availability =
vaaory Total number of periods

7
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Availability targets vary widely by product type. Basic products with no inventory
risk can be sold over long periods and tend to have high availability. On the other hand,
products with short life cycles may have stock-out rates of 50% or more (Warburton
& Stratton 2002). Low availability does not necessarily imply a low fill rate, which
directly measures the proportion of customer demand fulfilled from stock (Chopra et al.
2004). The fill rate is probably a more popular metric, especially in high-volume settings.
However, due to its analytical complexity resulting from the double accounting of backlogs
and the correlation between demand and the net stock (Disney et al. 2015), we have not

pursued this approach herein.

3.1 Lead Times

From a practical perspective, the definition of the lead time deserves some thought. While
it is straightforward to define lead time as the time from order to receipt, in the real-
world this includes many factors. The lead time may include manufacturing, shipment to
port, ship transit time, unloading (possibly with transfer to another ship), transfer to rail
and /or truck, and unloading. Within that process are often customs clearances, both at
outbound export and inbound import. Any of these factors can introduce variation into
the lead time. If the product is not too bulky, many companies order some fraction to be
delivered quickly via air, with the remainder to be delivered by sea. It is hoped that the
availability of air transport for emergency shipments can reduce the risk of a stock-out.

Real-world logistics data typically include the time taken by all of the above activities,
and any analysis is complicated by additional issues. Companies typically ship products
in individual containers, but a ship transports many such containers, which then all
experience the same transit time and, possibly, delays. Also, customs clearance depends
on the type of cargo, random inspections, and the port at which it occurs. For example,
clearance in a busy port (e.g., Los Angeles) can take a week, while in a small port (e.g.,
Providence) it may take less than a day. This is further exacerbated by the extremely
large (and growing) container liner ships that frequent the busier ports. In addition,
industrial action can have a major impact on port performance (O’Marsh 2014).

Fig. 1 presents a collection of data on lead times for shipments of product in containers
from a port in China to a port in the United States. The figure plots the time from the
COB to COT dates, highlighting the variability of the shipping delay. The COB is the
date a container was confirmed on-board a ship at the port of origin. The COT refers to
the container out date, which is the time that a container leaves its destination port. The
key observation from Fig. 1 is that the lead time distribution is rarely normal, or even
close to normal, and it often has a long tail. Also, this lead time actually represents only a
part of the total lead time between a factory in China and the customer’s warehouse in the

U.S. The time required to get the products from the factory, into a container, delivered
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to the port, through port operations, and onto a ship is not included. Also not included
are the activities needed to get the container from the destination port to the customer’s
warehouse and to unload the container. These in-bound and out-bound activities may
take a considerable amount of time, and may also be quite variable. As there is little
reason to suspect that this variability is in any way correlated to the variability in the
COB to COT lead times, we can only suppose that this variability will add to the shipping
variability.

Another complication in the definition of the lead time that occurs in global supply
chains is the inclusion of the time to manufacture products ‘to order’. For example, many
Chinese manufacturers will not schedule the production of an order until it has been paid
for. In that case, the replenishment lead time may include the time to schedule and
manufacture the product.

Rather than just the port-to-port lead times shown in Fig. 1, Fig. 2 gives the door-
to-door lead times between a supplier in Colorado and a manufacturer in Shenzhen,
China. This is the complete lead time from the moment the product leaves the factory
in Colorado to the time it arrives and is booked in at the Shenzhen factory. This gives
a more complete view of the lead time than that given by Fig. 1. We were also able to
carefully investigate the timing of the dispatches and arrivals, and determined that order
crossovers were actually quite frequent. In Fig. 3, we have illustrated how many queue
positions each shipment gained or lost in sequences of dispatches and arrivals. Note that
when one order gains (or loses) one position in the queue another must have lost (or
gained) a position. However, if one order gains (or loses) several positions in the queue,

one or more orders may have lost (or gained) one or more positions in the queue.

3.2 Demand

While some question the use of the normal distribution to represent demand (see Stri-
jbosch et al. (2002)) the assumption of normally distributed demand has been adopted
frequently in inventory management literature (Schneeweiss 1974, Disney & Towill 2003,
Sobel 2004). We later show that under stochastic lead times the inventory distribution
is made up of a weighted sum of sub-processes. The normally distributed demand, to-
gether with a linear system assumption means that these sub-processes are also normally
distributed. If we further assume that demand is i.i.d., then the equations describing the
first and second moments of the inventory levels are relatively simple.

Although most real demand patterns are likely to be autocorrelated over time, i.i.d.
demands are observed in practice. Fig. 4 shows a demand series that we have col-
lected from an industrial equipment manufacturer and it is both normally distributed
and temporally independent. This series of data has passed the K-S test for normality
hypothesis at significance of 0.1 (p = 0.1326). The property of independence can be veri-
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Figure 4: A real-world normally distributed i.i.d. demand pattern for industrial equip-
ment.

fied through the autocorrelation function (ACF) and the partial autocorrelation function
analysis (PACF), see Fig. 4. The two horizontal lines in the ACF and PACF diagrams
show the critical values for the null hypothesis of independence. For a visual verification,
Fig. 4 plots a normal pdf with a mean 197.1 and a standard deviation of 59.9. These
parameters were chosen as they minimized the mean absolute error to the real data.
This particular demand pattern consists of integer units of demand as it is a discrete
product. However given the large demand numbers, the relative error introduced by the
continuous normal distribution is rather small. We also note that many other products

can be sold in continuous units, especially those sold by weight, length or volume.

4 The Proportional Order-Up-To Policy

We first specify the discrete time POUT policy with constant lead times in Section 4.1 as
it defines notation and introduces the policy. The POUT policy is a linear generalisation
of the OUT policy, so studying the POUT policy allows us to also understand the OUT
policy ‘for free’. We then move on to study the POUT policy with stochastic lead times

and order crossover in Sections 4.2 4.3.

4.1 The Proportional Order-Up-To Policy with Constant Lead

Times

We assume a sequence of events as shown in Fig. 5. We satisfy the demand and receive

previously ordered product during the period. We observe the inventory and place a new

10
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Demand satisfied from inventory during period

Figure 5: Sequence of events in the discrete time OUT policy.

order at the end of the period. At the end of the period we also determine the service
level achieved with the availability metric. Note that if the physical lead time k = 0,
then the order will be received in the next period and information about this receipt will
be used in the next period’s replenishment decision.

As the POUT policy operates on a discrete time basis, the lead time, k, must be an
integer. Thus, an order with a physical lead time of 0.5 time periods, placed at the end
of period t = 0 will influence the inventory that will be observed at the end of period
t = 1. That is, if the lead time is a decimal number then it must be rounded down to the
integer. It is for this reason that we presented the real-world lead time data in Section
3.1 as discrete lead times (we will also make the assumption that the order lead times are
uncorrelated and independent of the orders and all other system states). Furthermore,
note the POUT policy has a sequence-of-events delay (the +1 in the ‘k+ 17 of Fig. 5).

The inventory balance equation is given by

ILi=1L 1+ R:— D, (3)

Here I; is the inventory at time ¢, Dy is the demand at time t and the variable R; is used to
keep track of the receipts. The receipts are merely the orders placed in period (t —k—1),
so Ry = O;__1, where k is a discrete (possibly random) variable that represents the time
delay in the completion of orders (O;), which we leave undefined at the moment (see Fig.
5).

We assume that the demand is an i.i.d. random variable drawn from a normal distri-
bution with a mean of g and standard deviation of o. The minimum mean square error
forecast of the demand for all periods ahead is given by its conditional expectation. For

our i.i.d. demand process, this is

Dt:t+k = K. (4)

The POUT replenishment policy can be formulated (Disney & Lambrecht 2008) as

O = p+ B(T + kp — (I + Wr)). (5)

Here, B is the proportional feedback controller that we can tune to regulate the speed

at which deviations of the inventory position (I + W;) from the target (T + kpu) are
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corrected. This approach is common in hardware control and has a long history in both
physical systems and inventory control systems (Simon 1952, Nise 2011). 0 < 8 < 2 is
required for stability. When g = 1 the POUT policy degenerates into the OUT policy.
The POUT policy has been shown to attenuate the bullwhip effect (Disney & Towill
2003, Dejonckheere et al. 2003, Disney et al. 2004), and is relatively easy to implement
in real supply chains; see Potter & Disney (2010) and Disney et al. (2013) for two case
studies reporting how it has been implemented in practice. We can arrange (5) into the

following form

Op = B(Dy = p) + (1= B) (Or1 — ) + po. (6)

showing that the POUT policy generates orders that are a convex combination of the
stochastic component of the demand and the previous order (Balakrishnan et al. 2004,
Boute & Van Mieghem 2014).

The term T in (5) is the target net stock the safety stock the average inventory
level. T'is a decision variable to be optimized to minimize inventory holding and backlog
costs via the newsvendor principle. k is the average lead time (when a constant lead
time exists, ¥ = k). The WIP is the inventory on order the orders placed but not yet

received, the in-transit inventory and is given by
k
W, = ZOtfi =Wi1+ 01 — Ry (7)
i=1

When k£ = 0, there is no WIP, as orders are received before the next order is generated.
With the POUT policy, with arbitrary but constant lead-times, i.i.d. demand and MMSE

forecasting the following expressions hold for the variance of the orders,

o?B
=53 ®)
and the net stock variance,
o2 = o2 (k: + #) (9)
! B2-p))"

Disney & Towill (2003). Fig. 6 plots the bullwhip ratio (02 /0?), and the net stock
variance ratio, NSAmp (0?/0?), minus k as the influence of k is independent of 3. The
bullwhip ratio is unity at 5 = 1, zero at § = 0, oo at 8 = 2, strictly increasing, and convex
in 8. Note that the bullwhip ratio and order variance are not affected by the (possibly
stochastic) lead time. The inventory variance is minimal (and equal to 1+ k&) when 8 = 1,
oo at = {0,2}, and convex in 5. As the lead time k influences the inventory variance,

the stochastic lead time will have an effect on the inventory distribution. However, for
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Figure 6: Bullwhip and net stock amplification (—k) under a constant lead time of k for
different f.

constant lead times, S = 1 minimizes the net stock variance, safety stock requirements,
and inventory costs. Also note that in this constant lead time setting, the influence of k
on the inventory variance is independent of f.

When 8 = 1, the MMSE forecasting assumption (4) has a number of consequences.
The most important consequence is that the orders in each period are simply the demand
in that period, Oy = D;. That is, the OUT policy acts as a ‘one-for-one’ or ‘pass-on-
orders’ policy, a strategy often advocated by the lean production community.

In the constant lead time case the standard newsvendor critical fractile means that

linear, convex inventory holding costs, h, and backlog costs, b, are minimized when

b+h

for the OUT policy. In the constant lead time case of the POUT policy,

b
Tour = or,00r®™" [ ] (10)

b
pour = 01,pouT® [—b+ h] - (11)

For constant lead times, when B # 1 then o7 pour > Orour. Also when b > h,
0.5<a=0b/(b+h)<1. soTHyr < Tpour- In other words, when the availability target,
a, is greater than 50% for a constant lead time, the OUT policy will require less safety

stock, because

0 < (Tourlas0s) < (Throur|asos). (12)

However, when b < h, 0 < a =0b/(b+h) < 0.5, so Thopr < Toyr. That is, when the

availability target is less than 50% then
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(Trovrla<os) < (Tourla<os) < 0. (13)

Note that when o > 0.5 (o < 0.5), the safety stock is positive (negative). The
consequences of (12) and (13) will mean that there will be levels of availability where
tighter control of inventory variance reduces safety stocks and levels of availability where
tighter control of inventory variance increases safety stock requirements. Reductions in
safety stock result from minimising variance when the critical fractile lays on a leading
(increasing) edge of the pdf; when the critical fractile lays on a trailing (falling) edge of
the pdf, one should not minimise variance to reduce safety stock. Later we will show
that the inventory pdf is multi-modal and this will lead to cases when the the critical
fractile swaps from leading to trailing edges (and vice versa) of the pdf. This effect was
also noticed by Chopra et al. (2004).

4.2 The State of the WIP Pipeline

In the stochastic lead time case the probability of a lead time of k periods is denoted by
pr. The minimum lead time is & = 0 and the maximum lead time is k*. The average
lead time (Zalkind 1978) is given by

k=0

The key to understanding the impact of the stochastic lead time is to consider the
number of open replenishment orders in the WIP pipeline. Open orders are those that
have been placed but not yet received. Notice that we are not describing the quantity of
products on order, but the number of open orders. All orders placed k™ or more periods
ago are guaranteed to have been received. However, those placed later than k™ —1 periods
ago may either be open (not yet received, denoted by a ‘1’) or closed (received, denoted
by ‘0’). Since each of the & positions in the pipeline is either open or closed, this means
that there are 28" possible states of the WIP pipeline.

The probability that the pipeline is in state ¢ is denoted ¢;. The relationship between
pr and ¢; is rather complex. To explain the relationship, consider a case where the lead
time possibilities are pg = 0, p; = 1/3, po = 1/2 and p3 = 1/6. Note that the probabilities
sum to unity and the maximum lead time is k* = 3.

Table 1 describes all of the eight possible states to the WIP pipeline. The first column
lists the state index, ¢. The next 4 columns denote the probability that order placed in
period t — x has been received. The final column is the product of the four probabilities
and denotes the probability that the WIP pipeline is in a particular state, g;.

Consider state 1. In this state all four positions in the WIP pipeline have been closed.

This is denoted by m; ; and made specific in the first row with binary digits. In the second
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row we have enumerated ¢; ; which is the probability of that binary state occurring. This
means that the probability of the last order (placed in period ¢ — 1) being received is zero,
¢1.1 = 0 as pp = 0. The probability of the order placed two periods ago (at t — 2) being
received is q1 2 = po + p1, the probability of the order placed three periods ago being
received is q; 3 = po + p1 + p2. The order placed four period ago, at t — 4 are guaranteed
to be closed as q14 = po + p1 + p2 + p3 = 1. These probabilities are listed in the second
row of information about the state. As there is no chance that the lead time k = 0 (as
po = 0), then ¢y, the probability of the pipeline being in state one is zero. This is also
true for states two through four.

Now consider state 8. In this state the first three positions of the pipeline are open,
the fourth is closed. Recall, an open order has yet to be received, a closed order has been
received. The probability of the first position being open is gs;1 = 1 — po, the second
position being open is gs» = 1 — (po+ p1), the third being open is gs 3 = 1 — (po +p1 + pa2)-
The order placed four periods ago is still guaranteed to be closed, gs4 = 1 as before. The
probability that the pipeline is in state 8 is gs = (1 + po)(1 — (po + p1))(1 — (po + p1 +
p2))(po + 1+ P2+ p3) = 3.

The complete set of pipeline states are shown in Table 1. It should also be clear from
the process that leads to Table 1, that the sequence in which the orders actually arrive
does not affect the calculation of probabilities, revealing that ¢; is independent of the
state of the pipeline.

We now formalize our methodology described above. Recall, g; is the probability that
the pipeline is in state 7. Let M be a binary matrix with § = 1 to k" columns and 7 = 1

to 2¥" rows. Assign the (7, j) element of M a value according to

1+ (—-1)"

- (15)

mij =

where v = [27*’#2}. Each row of the M matrix represents a k*-tuple of binary digits
that describes the state of the WIP pipeline. A zero in element m; ; of matrix M indicates
that for state i, the order placed j — 1 periods ago has been received (the order is closed),
unity indicates that the order placed j — 1 periods ago has not yet been received (it is
open). Note, the order placed k* periods ago is always closed, thus j indexes through 1
to k* to represent the lead times k = 0 to k™ — 1. There are 28" rows to M, one for each

possible state of the order pipeline. The probability that the WIP pipeline is in state ¢

is given by
T k+
inQWHl 1+ (=1)" (2;%—1)] (16)
J= =J

One can derive (16) by observing that in the ith pipeline state, the probability that

an order placed j periods ago is open/closed can be expressed universally as
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Table 1: The combinations of open orders and their associated probabilities.

: . . _ _ Probability,
State¢ |t —1,7=1|t—2,5 =2 t—3,7=3 t—4,7=4 \
Qi:szl%',j
0 0 0 0
1 quO
0 0+ 3 O+1+21 |O0+3+5+14
0 0 1 0
0 | 043 |1-@+ieplorieie
0 1 0 0
3 3=10
0 1—(0+3)| O0+3+3 |0+i+1+3
0 1 1 0
4 Q4:0
0 1—(0+3) [1-0+5+3) | 0+5+5+5
1 0 0 0 .
5 1 1 1 1 1 1 Q5:E
1-0 O—Fg 0+§+§ O+§+§+6
1 0 1 0 )
6 1 1 1 1 1 1 Q6:E
1-0 O+5 |[1-O+5+3) |0+5+5+5
7 1 1 0 0 5
— — 1 11 11,1 =9
1-0 1-(0+3) 0+35+3 O+5+5+5
q 1 1 1 0 .
N a1t 11,1 ® =9
1-0 1—(0+3)|1=0+35+3)|0+35+5+5
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kt -1

Qij = My Zpk + (L =mij) ) pk=
1

<.

1
2

e
Il

1+ (-1)° (zzpk—lﬂ o)

k=j
and that g; is the product of ¢; ; over j.

Robinson et al. (2001) provided an iterative algorithm for determining the distribution
of the number of open orders. It produces exactly the same results as (16) for finitely

dimensioned discrete distributions.

4.3 The pdf of the Inventory Levels with Stochastic Lead Times

and Order Crossover.

We define a process as the sequence of a variable over time ({I;},{W;} etc). A sub-
process is a subset of the process where the pipeline states (the completion status of
previous orders, the rows in the M matrix) are the same. Each sub-process is normally
distributed (as the demand is normally distributed and each sub-process is the output
of a linear system) and the distribution of the entire process can be multi-modal. We
now require the mean and variance of the inventory levels in each of the sub-processes.
We obtain this by first determining the distribution of the WIP in each sub-process and
then each WIP sub-process is combined with a scaled replenishment order to obtain
something we call the scaled shortfall distribution. A weighted sum of the scaled shortfall
distributions in each sub-process then forms the complete inventory distribution.

We can rearrange (5) to obtain

L=T+p(k+1/8) = (Wi +0./B). (18)

For OUT policy (that is, when 5 = 1) we can see that the inventory distribution is a
reflected shortfall distribution, (W; + O,), translated by T + u(k + 1/3) (Zalkind 1978;
Robinson et al. 2001). When 5 # 1 the O, component has become scaled by O/, in
which case we call the distribution of (W;+0;/3) the scaled shortfall distribution. We now
require the mean and the variance of the scaled shortfall distribution for each sub-process.
The complicating factors are that O, is auto-correlated and that the distributions of W;
and O/ are correlated with each other. As the system is linear the simplest way to

proceed is to exploit the z-transform, which is defined by

F(z)=2Z{fltly=) fl=" (19)

To determine the variance of the WIP in sub-process i, we first note that the variance

of the orders maintained by the POUT policy is independent of the lead-time, as
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th;(2_1{%})2:§:((1—5)t5)2:%, (20)

t=0

Disney & Towill (2003). Here, z is the z-transform operator,

2 (2)) = — fF (2) 2Nz = f 1], (21)
277
c

f[t] is the inverse z-transform of the transfer function, F (z). z8(z+ 8 —1)"" is the
transfer function of the orders maintained by the POUT policy under i.i.d. demand and
minimum mean squared error forecasting (Disney and Towill 2003). The relationship
between the variance ratio and the sum of the squared impulse response is known as

Tsypkin’s (1964) relationship.
The pdf of the normal distribution with an argument of z, a mean of u, and a standard

deviation of o, is defined by

Sl o] =
x|y, o] = ————
H \2mo

Using this notation, (9) leads to an order process described by the pdf,

0= el [o5/ 2= 5)|. (23)

The variance of WIP sub-process 4, is given by the variance of the sum of the impulse

(22)

responses of the open orders,

oo k+ 1+ ; 2
Owi -1 pz
D3P (mmZ {m : (24)
where m; ; is an element of the binary matrix M that captures whether an order is open or

closed. The distribution of the scaled orders, O,/f, for all sub-processes, can be obtained

using

2

ZZ {z/+6-1})" =Y (1 —(28-47) " =22 (25)

2327
= K

which leads to the following expression for its pdf,

boss = ¢ {x| w/B, 725 - ﬂQ)] | (26)

The covariance between the WIP sub-process and the scaled orders sub-process is

given by
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> ket 21 z
cov (W;,0/B) = tz:; (Z ! {Zjl mm%} zZ! {m}) = cov (W;,0) /8.
(27)
a%i, the variance of sub-process ¢ in the inventory distribution, is equal to the variance
of the shortfall distribution,

a?ﬂ. = U%/V,i + 0%/62 + 2cov (W;,0) /5. (28)

The mean of the each of the sub-processes of the inventory distribution can be shown
to be

_ K+
pri=T+p (k - ijl mi,j) : (29)
The complete pdf inventory distribution is then given by

¢r = %Qiﬁb [$| s \/020?71} : (30)
i=1

We emphasize that ¢; is a multi-modal pdf as it is a combination of the normally
distributed pdfs with different means and variances weighted by ¢;. The average inventory
is given by T and this can be set arbitrarily. However, if one wishes to minimise inventory
holding and backlog costs, T becomes a function of 5. The variance of the complete,

multi-modal, inventory is given by

o0 ok Kkt 2
oF = / (T — x)’da = Z i (Z mi7j> e+ crza%i : (31)
e i=1 j=1

Equation (31) shows that the inventory variance contains a weighted sum of the
variances of individual sub-processes. Equation (31) also shows that the mean demand
has an influence on the variance of the inventory levels, an effect that does not happen with
constant lead times. An influence of the mean demand can be also seen in the standard
random sum of random variables variance equation, ko? + p202. However, we note that
(31) has a different structure from this formula, and will produce significantly different
guidance for the inventory variance and safety stock. One should not be surprised at this
because the random variables in the random sum are drawn from different distributions

in the (P)OUT policy.
When simulating this scenario in a spreadsheet for verification of our analytical ap-
proach, we found that it is convenient to generate alongside the order, O;, a random
number used to determine the lead time for that order. We can then determine with a

simple logical test the time at which the order is received. This ensures that complete
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orders are received, i.e. they are not split each individual order is received all at once.
As we allow for orders to cross some periods receive more than one order; in other peri-
ods there could be no receipts. This is consistent with our practical experience discussed
earlier. Notice that we also assumed that the random lead times are independent of all

the other system states.

5 A numerical example when k™ =4

Consider the situation when k* = 4. Table 2 details the pipeline states (M), the variance
of the net stock, and the mean of each of the 2¥" = 16 individual sub-processes to the
inventory distribution. It can be easily shown that each of the expressions for the variance
(and the standard deviations) of the inventory sub-processes is infinite at 5 = {0, 2}.
Furthermore, each sub-process has a single unique minimum, /;, which is also detailed
in Table 2. We can see that 3 = 1 exists only in the sub-processes that do not contain
order cross-overs. All of the sub-processes that contain order-crossover have 37 < 1.

An intuitive explanation of this is as follows (to avoid unnecessary notation assume,
for this paragraph only, that ¢ = 1). Recall, the variance of each of the inventory sub-
processes is given by (28) and ¢2/3? is infinite at 8 = {0,2}, minimised to unity at
£ = 1, and convex in . For the sub-processes without order crossover then J‘ZW +
2cov(W;,0)/8 = Zf; m; ;, a constant. The variance of the sub-processes without order
crossover are then clearly minimised at § = 1. However, for sub-processes with order
cross-over then oy, + 2cov(W;,0)/f is convex in  between § = 0 and f = 1 and
equal to Zf; m;; at f = {0,1}. This implies there will be a minimum in ‘7?,@' between
0 < 8 < 1. As the complete inventory pdf is a weighted sum of independent variances,
some minimised with § = 1, some minimised with § < 1, then the S that minimises
the variance of the complete inventory distribution is 8; < 1. Also, the proportion of
states with order crossover increases in k* as the number of states with order crossovers
is given by 2¢" — (k™ +1). This suggests that the role of 5 becomes more important as
kT increases.

Table 2 details the first and second order moments of each of the subprocesses for
a maximum lead time of kT = 4. To identify the probability of the pipeline being
in state 7, we now need to make the results in Table 2 specific by enumerating the lead
time probabilities. Assume {po = %,pl =py=p3=0,py = %} which we have chosen as it
allows us to better reveal the impact of the order crossovers. It may also be representative
of a supply chain where 50% of orders are sent via ship with a lead time of four and 50%
are sent by air with a lead time of zero. That is, the air shipments arrive before the next
order is made. The maximum lead time is k* = 4 and the average lead time is k = 2.
Using (5) we are then able to determine the probability that the pipeline is in state i, is
Vi, q; = 0.0625. Note that in general, the probability that the pipeline is in a particular
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Table 2: The combinations of open orders and their associated variance, mean and vari-
ance minimizing feedback controller.

1\:[ 15 d 212 ojg’i i B;
1 00010 ] T + pk 1
2 | 0]0|0]|1 | 2EEEl TR0 [Ty (k — 1) | 0.656633
3 |0lo|1]0 S T+ p(k—1) | 0.689845
4 |ofo| 1|1 | RSO IOSHSEL | Ty — 2) | 0.60974
5 |of1]0]0 2t T+ p(k—1) | 0.751274
6 |0 |1|0|1| 2ESOSHOEISEHIEL |y (F — 2) | 0.676129
70| 1|1 |0 2EESESEESEL Ty (k- 2) | 0.689845
8 0| 1|1 |1 | IRl (- 3) | 0.656633
9 [1]0]0]0 S T+ p(k —1) 1
10 | 1{0|o]|1| =2EHOROEHIE T g (k- 2) | 0.689845
11 |1]0]|1]0 A T+ p(k—2) | 0.751274
12 |1/0]1]|1 S T + u(k —3) | 0.689845
13 |1]1]0]0 NS T+ pu(k —2) 1
14 [1|1]0]|1 S T + u(k —3) | 0.751274
15 |[1/1]1]0 B T + pu(k — 3) 1
16 |1]1|1]1 A T+ u(k — 4) 1
Overall | - | - | - | - Eq (31) T B =0.73

21



Disney, S.M., Maltz, A., Wang, X., and Warburton, R.D.H., (2016), “Inventory management for stochastic lead times with order crossovers”,
European Journal of Operational Research, 248, 473-486. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2015.07.047.

0014

Probability

0 004

0002

p=40,T=57.63

10% stock-out
probabiiity

p =100, T=102.72

0
-200

-100

00 00 400
Inventory

Figure 7: Distribution of the inventory levels maintained by the OUT policy for 90%

availability

0.8

=4
o
P

0.4

Percentage cost benefit of POUT (%)

T T T T
1 Backlog cost

9 8
10 20

T
3
7

30

T T T

4 5 6 7 8 9 10
6 Holding cost 4 3 2 1 0
40 50 60 Availability (%) 90 100
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state need not be, and almost never is, the same as the probability that the pipeline is

another state.

Assigning costs to the inventory holding and backlog positions with (1) it is possible

to show that

4J Vo2 (b+ k) o~ (T+p)* [40° (6 + 3/2e(T*+6Tu+u?) [8% | 4. /G0 (T*+6Tu+3u%) /1202)

Egzl_

0
64/7 >
(32)

implying that, for all cost combinations, the OUT policy is never optimal as there always

exists a B < 1 which is more economical.

Together with the variances of the individual sub-processes detailed in Table 2, (4)

and (18) we are now able to obtain an expression of the pdf of the inventory levels, which

we plot in Fig. 7. Fig. 7 illustrates two cases of the OUT policy (that is when 8 = 1,
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and in both we have set the safety stock, T, to minimize J when h=1, b=9. In the
first case pu = 100 and we can clearly see that there are five modes in the inventory pdf.
Although the probability of being in each of the 16 states is equal in this case, the 16
states have only five unique means. This leads to the differences in the size of each mode
but, ultimately, they are all functions of i, o, and the lead time probabilities. In the
other case, u = 40 and the distributions of the sub-processes overlap more. Furthermore,
the complete pdf of the u = 40 case has less variance, and requires less safety stock, than
the p = 100 case.

When p = 100, the inventory levels have a variance of 10,300 for the OUT policy.
Numerical experiments reveal that there is a single minimum inventory variance (or stan-
dard deviation) at 5% = 0.73 and the net stock variance is 10,280 0.2% less than the
OUT variance. For the p = 40 case, the inventory variance maintained by the OUT
policy is 1900, the numerically optimised feedback parameter is the same, 5 = 0.73, and
the net stock variance is 1879 a 1% reduction.

Using numerical techniques we can find the optimal proportional feedback controller
p*, and safety stock T, that minimizes the inventory cost. When we have set {5*, T} op-
timally, Fig. 8 describes the percentage economic gain ((JOUT — Jpour) Jopr X 100%),
from using the POUT policy. While the improvement is rather small (note that 0.8 means
0.8% not 80%), the POUT is always more economical than the OUT policy. These cost
reductions are induced by a reduction in the inventory variance. The variance consists
of two parts, one with different modes which depend on p, but independent of 3; the
other one is a function of the variances of each sub-process which does depend on 5. The
former part is dominant, hence the inventory cost benefit of the POUT policy is limited
and decreases in p.

Fig. 9 plots g* for different cost ratios and different mean demands. We see that
[* is near unity when the availability target is (very) near 0% or 100%, but for most
availability targets * ~ 0.725. Interestingly, almost always, 8* # (2 implying that the
tightest inventory control does not always lead to the minimal cost. The abrupt changes
in $* that we see in Fig. 9 are a result of the critical fractile moving from leading to
trailing edges of the modes in the inventory pdf. When the cost ratios are such that the
critical fractile lies on the leading edge, 5* tends towards unity; when they are on a falling
edge * reduces. The sharp changes occur when the critical fractile occurs at a peak of
a mode.

Fig. 10 shows the safety stock requirements when §* is used for different cost ratios.
The multi-modal nature of the ;1 = 100 case results in rapid increases in the safety stock
requirement at predictable points on the availability scales. These are also related to the
multi-modal pdf of the inventory levels as the safety stock requirements are a function of
the cdf of inventory. Furthermore, between 40-60% availability, the two demand settings

require very similar amounts of safety stock. As it is not possible to visually distinguish
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Figure 9: The inventory cost optimal 8* in the POUT policy
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Figure 10: Safety stock with the inventory cost optimal POUT policy

between the optimal POUT safety stock, Trour . and the optimal safety stock for the
OUT policy, Tour, we have plotted the difference, Trour — Tour. in Fig. 11. Here we
can see that, although the POUT policy is economically superior, minimum safety stock
does not always coincide with least costs, even when the service level is high. This is
an insight that is contrary to the constant lead time case where the least cost solution
always has the smallest safety stocks.

An intuitive explanation of this is as follows. Consider a constant lead time where the
cost ratio is such that the optimal availability is less than 50%. In order to minimise the
safety stock requirements then we should set 8 =0 to make o5 = 0o and the safety stock
required is then 7" = —oo. However, in this case the inventory costs J = co. Under
a stochastic lead time, due to the multi-modality of the inventory distribution, these
trailing edge effects can happen in the whole range of availability targets (over 0 < a < 1,

not just for a < 0.5).
Fig. 12 highlights the bullwhip ratio achieved when B* is used in the POUT policy. We
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Figure 11: Safety stock difference between the OUT policy and the inventory cost optimal
POUT policy (Trour — Tour)
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Figure 12: Bullwhip with the inventory cost optimal 3*

can see that a 40% reduction in order variance is possible between 8% to 92% availability.
This is interesting as the objective function consists only of inventory related costs. If
costs are associated with order variability are also present, these will also be reduced.
This is an important result as order variance costs are somewhat harder to quantify, even
though the bullwhip effect is widely recognized as having a negative effect on supply chain

performance (Lee et al. 2000).

6 Revisiting the empirical lead time distributions

Table 3 revisits the 12 empirical lead time distributions in Fig. 1 (case 1 to 12) and the
case in Fig. 2 (case 13). A demand with a mean of g = 40 and a standard deviation of
o = 10 was assumed. The availability target is held constant at 90% with a unit backlog

cost per period of b =9 and a unit holding cost of h = 1. We take note of the minimised
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Table 3: Policy comparison for the real-world lead time distributions between China and
the USA.

Case OUT Policy POUT Policy % benefit 02 /0?
T 7 T 3 J in J
1 44.8623 | 62.8224 | 44.8442 | 0.9156 | 62.7996 0.0363 0.8443
2 42.8846 | 60.3743 | 42.8547 | 0.9147 | 60.348 0.0436 0.8428
3 41.3303 | 60.0697 | 41.3313 | 0.845 | 59.968 0.1693 0.7316
4 39.1185 | 56.1142 | 39.1223 | 0.8962 | 56.0718 0.0756 0.8119
) 49.5645 | 69.04 | 49.4522 | 0.8524 | 68.9504 0.1298 0.7427
6 43.8723 | 60.8159 | 43.8569 | 0.9027 | 60.781 0.0574 0.8226
7 48.0291 | 68.6473 | 47.9623 | 0.8223 | 68.5191 0.1868 0.6982
8 46.0299 | 65.3138 | 45.9663 | 0.8197 | 65.1635 0.2301 0.6944
9 42.1678 | 59.6323 | 42.1636 | 0.9605 | 59.6278 0.0075 0.924
10 | 30.4934 | 43.1683 | 30.4933 | 0.9946 | 43.1682 0.0002 0.9892
11 | 56.3319 | 79.0999 | 56.1169 | 0.7722 | 78.8626 0.3 0.6289
12 | 39.1313 | 56.4232 | 39.1244 | 0.9356 | 56.41 0.0234 0.8789
13 47.793 | 66.7626 | 47.7706 | 0.8837 | 66.7453 0.0259 0.7916

costs (J) from optimising the safety stock (7) in the OUT policy. Recall, the variance
of the orders in the OUT policy is always equal to the demand variance (0o = o = 10).
For the POUT policy we note the minimised costs (J) from optimising both the safety
stock (T7) and the feedback controller (5*). We also calculate the variance of the orders
and the percentage reduction in the inventory costs from using the POUT policy.

The POUT policy is always more economical than the OUT policy, and the optimal
£* < 1. Usually, the safety stock requirements of the POUT policy is less than the OUT
policy, but not for case 3 and 4. In case 10, the probability of order crossovers is very small
and the (8 is very close to unity. However in these practical examples, the optimal [ is
generally around 0.8 to 0.9. Whilst the inventory cost benefit is very small, the reduction
in the order variance is more significant and comes without cost under stochastic lead
times. The order was reduced by 37% in case 11, and just 1% in case 10, but the average

reduction in order variance is 20%.
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7 Conclusions

As globalization accelerates, lengthening supply chains bring complications and pitfalls
associated with increasing uncertainty in both demand and lead time. We determined
how these characteristics actually impact the safety stock required to minimise inventory
holding and backlog costs. We began by presenting global logistics data that violated
the traditional normality assumption about lead times. We also provided a real-world
example of order crossover.

We introduced a new approach for calculating the distribution of open orders. This
allowed us to formulate and test a method that resulted in an exact solution for the
safety stock calculation. Since the enumeration of open orders is combinatoric in nature,
it explicitly allowed for order crossover. We showed that using the POUT strategy al-
ways results in lower inventory costs when stochastic lead times with order crossover are
present. Our model settings were motivated by real-world settings and consisted of a
discretely distributed lead time and a continuously distributed demand process.

Our novel contribution is a new method to obtain the distribution of the inventory
levels in the presence of correlation between the WIP and orders, via the so-called scaled
shortfall distribution. This builds upon another unique contribution the M-matrix
and the associated method to determine the probability of the pipeline being in each of
its possible 257 states. Furthermore, we considered the impact of correlation in orders
and the covariance between orders and WIP in a stochastic lead time setting with order
crossovers. Our methodology can be used to investigate the impact of auto-correlated
demand, non-MMSE forecasting methods, more sophisticated replenishment policies, and
information sharing strategies.

In the constant lead time case, or the non-crossover stochastic lead time case, § = 1
will minimize the variance (or equivalently the standard deviation) of the inventory levels
and result in the minimum inventory costs when the safety stock is set to the critical
fractile (Brown 1963). However, in the stochastic lead time with order crossover case,
minimizing the variance of the inventory levels, by tuning 3, will not always result in
minimal costs. While the optimal 8*, may be near unity, it is never unity and changes
significantly with the availability target, see Fig. 9.

The stochastic lead time case with order crossover results in a surprising paradox.
Minimizing inventory costs does not always lead to minimum safety stocks. However, the
relationship between holding and backlog costs and the availability achieved at the most
economical solution does still hold. This leads to an important insight: Costs should be
used to design the system because focusing on minimizing inventory variance, or safety
stocks, can lead to an incorrectly specified system. We conclude that care must be taken
when determining safety stock requirements under a stochastic lead time with order

crossovers. One cannot simply use the first two moments of the inventory distribution;
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one needs to use whole pdf because the distribution of the inventory levels is multi-modal.

We have demonstrated that the OUT policy is not the optimal policy when order
crossover exists, as the linear POUT economically outperforms it. We have not proven
the optimality of the POUT policy itself. Indeed it is known that the optimal policy is
non-linear, see Srinivasan et al. (2011). However, the POUT policy has a long history
and has been successfully implemented in practice. See Potter & Disney (2010) for details
of an implementation at the UK grocery retailer, Tesco and Disney et al. (2013) for an
implementation in a global printer manufacturer.

We note that our model / approach takes no account of state dependent or autocor-
related lead times. Seasonal congestion in ports is a well observed phenomena and this
would lead one to suspect that lead times are positively auto-correlated. Furthermore,
in order to avoid an imminent stock-out, companies may air-freight cargo leading to a
lead time that is a function of the state of the supply chain. We have also not consid-
ered the consequences of non-normal demands. If demand is not normally distributed,
then the complete pdf of each sub-process has to be obtained. Presumably this could
be achieved with convolution but this it is beyond the scope of the paper. These issues

remain interesting areas for future work.
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