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Large variability between individual response times, even in identical conditions, is a ubiquitous property of animal
behavior. However, the origins of this stochasticity and its relation to action decisions remain unclear. Herewe focus
on the state of the perception–action network in the pre-stimulus period and its influence on subsequent saccadic
response time and choice in humans. We employ magnetoencephalography (MEG) and a correlational source re-
construction approach to identify the brain areaswhere pre-stimulus oscillatory activity predicted saccadic response
time to visual targets.We find a relationship between future response time and pre-stimulus power, but not phase,
in occipital (including V1), parietal, posterior cingulate and superior frontal cortices, consistently across alpha, beta
and low gamma frequencies, each accounting for between 1 and 4% of the RT variance. Importantly, these correla-
tions were not explained by deterministic sources of variance, such as experimental factors and trial history. Our
results further suggest that occipital areas mainly reflect short-term (trial to trial) stochastic fluctuations, while
the frontal contribution largely reflects longer-term effects such as fatigue or practice. Parietal areas reflect fluctua-
tions at both time scales.We found no evidence of lateralization: these effects were indistinguishable in both hemi-
spheres and for both saccade directions, and non-predictive of choice — a finding with fundamental consequences
for models of action decision, where independent, not coupled, noise is normally assumed.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

The extent to which apparently random fluctuations in behavior are
predictable is of fundamental theoretical and practical interest. The time
taken to initiate even the most basic responses to highly salient stimu-
lations typically varies four- to five-fold (Fig. 1A). It remains largely un-
known why and when this variability occurs: how much is related to
the experimental design (experimental factors, trial history, fatigue,
practice etc.) and how much is stochastic; and to what extent it is pre-
dicted by pre-stimulus brain states. Although historically attributed to
‘noise’ (an unavoidable limitation of neural systems) and averaged
away rather than investigated, variability is crucial to free an organism
from predictable and stereotypic behavior. Indeed, models of sensori-
motor decisions make an explicit link between variability in response
time (RT) and variability in choice/decision (Brown and Heathcote,
2005; Carpenter, 2004; Rouder et al., 1998; Usher and McClelland,
2001).
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After stimulus appearance, associations between neuronal activity
and response time on each trial are clearly detectable both through
monkey single unit and human whole-brain electrophysiology (Lee
et al., 2010; Papadopoulou et al., 2010; Schall, 2001; Smyrnis et al.,
2011). However, evidence for predicting response time variability
from pre-stimulus neural markers is much less consistent, even though
this time-period is increasingly thought to contain the seeds of the var-
iance in electrophysiological responses to a stimulus (Arieli et al., 1996;
Nikulin et al., 2007).

Our central interest lies in better understanding the sources of the
large spontaneous variability observed in the speed of simple actions,
such as an orienting response toward salient visual stimuli (Sumner,
2011). The present work focuses on characterizing and quantifying
the contribution of pre-stimulus oscillatory activity to this variability.
Existing literature directly related to this question only provides a
fragmented, sometimes inconsistent, picture. In monkey, local field po-
tentials suggest a complex pattern of positive and negative correlations
of spontaneous alpha/beta fluctuations over dorsal areas with manual
latency in a go–no go discrimination task (Zhang et al., 2008). Unfor-
tunately, inconsistency across monkeys and the multi-component na-
ture of the task make these data difficult to interpret. In humans,
fluctuations in visuo-manual detection speed have been linked to
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1.A. Reaction timedistribution fromoneobserver. B.A sketchof the sensory-motor saccade network, fromwheremost of the oculomotor response variabilitymust somehowarise. C. The
simple tasks employed here. High-contrast Gabor patches were used as saccade targets. After a fixation period of between 3 and 4 s, the patch appeared in periphery either on the left or the
right (single target trials) or on both sides simultaneously (choice trials).
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increased fronto-parietal gamma power (Gonzalez Andino et al.,
2005), while auditory-manual oddball detection speed has been linked
to decreased fronto-centro-parietal gamma power (Reinhart et al.,
2011). Saccadic speed has been linked to a slowly rising pre-stimulus
EEG potential (Everling et al., 1997), and with the phase of alpha/
beta oscillations either in occipital (Hamm et al., 2010) or
frontocentral areas (Drewes and VanRullen, 2011). However, the anal-
yses in EEG sensor space in Drewes and VanRullen (2011) and
Everling et al. (1997) do not allow concurrent independent assess-
ment of the contribution of each cortical area in the saccade genera-
tion network (Fig. 1B) to RT variability, while the absence of
temporal jitter in the inter-trial-interval in Hamm et al. (2010) does
not allow a distinction to be made between components related to
motor response and target processing. Moreover, the actual predic-
tive power of these markers has not been quantified to assess their
contributions to predicting behavioral variability. Last, in most
existing studies, trial-to-trial variance is assumed to represent
spontaneous variance only, and the contribution from non-
spontaneous sources (experimental conditions, trial order etc.) was
not considered.

A related field of research relies on empirical modulations (rather
than spontaneous variations) of pre-stimulus alpha power via senso-
ry stimulation, and has suggested both positive (Kirschfeld, 2008)
and negative (Del Percio et al., 2007) correlations with subsequent
RT. However, beyond this apparent inconsistency, there is currently
no evidence to tell us whether such empirical modulations in oscilla-
tory activity should even be expected to have similar effects to spon-
taneous variability. Another related field of research focuses on the
relationship between spontaneous pre-stimulus oscillatory activity
and the visibility of near-threshold stimuli (Busch et al., 2009;
Mathewson et al., 2009; van Dijk et al., 2008). However, the sources
of visibility variation of near-threshold stimuli are unlikely to be
identical to the sources of action variability to salient stimuli, as
there has been long-term debate on the extent to which perception
and action rely on dissociated neural pathways (see Milner and
Goodale, 2008, for a review on this debate). There are certainly ex-
amples where factors with clear influence on RT do not affect percep-
tion (e.g. we respond slower to color changes than to luminance
changes, but we do not perceive color changes as occurring later
than luminance changes — Bompas and Sumner, 2008).
For all these reasons, to what extent MEG activity before stimulus
onset predicts the spontaneous variance in action speed to clearly visi-
ble stimuli is still largely an open question. Our study aimed to resolve
this question, by investigating both amplitude and phase of oscillatory
activity, while also addressing related fundamental questions: Is vari-
ance correlated across the brain and across response options? How
does such variance relate to choice outcome?

We therefore use a very simple task that maps a highly visible stim-
ulus (no added noise and no perceptual uncertainty), presented alone
or in pairs (free-choice trials) with temporal jitter, onto a highly prac-
ticed motor response (saccadic eye movements are among the quickest
and most common sensorimotor actions we make, and the visuo-
oculomotor network is well established, Fig. 1B), without further ma-
nipulation (Fig. 1C). We then searched for the MEG predictors of both
saccadic reaction time in the no-choice trials and decision outcome in
choice trials, using the pre-target period at which time the participants
did not knowwhich type of trialwas about to appear.Weuse a variation
of the beamformer source reconstruction approach to identify those
areas where pre-stimulus amplitude predicted subsequent reaction
time and quantify their contributions.

To characterize the contribution of spontaneous vs non-spontaneous
sources, we compare our results when using, as regressors, the raw reac-
tion times on each trial, or the reaction times corrected for main effects
due to inter-trial-interval, experimental conditions or blockwise trends
such as fatigue and practice. To further characterize the temporal dynam-
ics and frequency spectra of this relationship, we reconstruct the activity
at each step of cortical processing: in anatomical primary visual cortex
(V1), intra-parietal sulcus (IPS), frontal eyefield (FEF) and supplementary
eye field (SEF). We then use the activity in V1 to assess correlations and
independent contributions to RT across the brain. We also searched for
predictors of choice outcome in two-target trials, and for a relationship
between phase and reaction times.

Materials and methods

Observers

Twelve volunteers (4 female), with normal (or corrected to normal)
vision participated (and received payment). The study received ethical
approval from an independent local ethics board.
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Materials

The visual stimuli were presented on a Mitsubishi Diamond Pro
2070 monitor driven at 100 Hz, sitting outside the magnetically
shielded room and viewed directly through a cut-away portal in the
shield at a viewing distance of 215 cm. Participants were sitting in the
dark; their head movements were restrained by a chin rest.

Stimuli and procedure

Throughout the experiment the background of the display was
set to mid-gray (25 cd/m2). At the start of each trial a small white fix-
ation cross was presented (60 cd/m2; 0.1 × 0.1°). This was followed,
after a non-aging fore period with a minimum of 3 s and a maximum
of 4 s, by the presentation of the target display.With a non-aging fore
period, the probability of target onset remains constant over time.
The use of such a fore period results in the observer's expectation
of when the target onset will occur remaining relatively constant
throughout the fore period (Oswal et al., 2007).

There were three possible target displays (Fig. 1C): a single target
in the lower left quadrant; a single target in the lower right; and two
targets, one in the lower left and one in the lower right. Note that
presenting stimuli in the lower quadrant rather than on the horizon-
tal line means that the return saccade from the previous trial is not
the same vector as either of the possible target directed saccades,
thus reducing the relative importance of order effects (i.e. one source
of deterministic variance) compared to spontaneous variability. All
targets were a small Gabor patch presented close to 100% contrast
with a spatial frequency of 4 c/° and an envelope with a standard de-
viation of 0.4°. Such stimuli are particularly salient targets for a sac-
cadic response (Ludwig et al., 2004). After 800 ms the target display
was followed by the fixation display for the next trial.

Trial types were randomly interleaved and participants were
instructed to generate a saccade to a target as quickly as possible.
On trials where two targets were presented, which we refer to as
choice trials below, participants were allowed to saccade to either
target, and instructed to avoid any conscious strategy, such as to al-
ternate or balance the number of saccades to each side. 800 trials
were collected from each participant in 4 successive sessions.

Magnetoencephalography (MEG) hardware and recordings

Whole-head MEG recordings were sampled at 600 Hz (0–150 Hz
band-pass), using the CTF-Omega 275 channel radial gradiometer
system (VSMMedTech). Three sensors were turned off due to exces-
sive noise. MEG data were manually screened trial-by-trial to
reject all trials affected by artifacts such as head movements and
muscle clenches. MEG/MRI coregistration was performed by placing
fiduciary markers at fixed distances from anatomical landmarks
identifiable in participants' anatomical MRIs (tragus, eye center). Fi-
duciary locations were verified afterwards using high-resolution
digital photographs.

Eye movement recording

Bipolar vertical and horizontal electrooculograms (EOG) were re-
corded at 600 Hz concurrently with the MEG signals. Signals were
smoothed using a polynomial Savitzky–Golay filter with an order of
3 and a window size of 31 samples. Saccadic eye movement onset
was automatically detected offline as the point in time where the ab-
solute differential of the horizontal EOG signal was maximal, and vi-
sually checked in every trial. The vertical EOG traces were sometimes
used to help clarify saccade onset. Trials were excluded when: the
participant blinked or was not fixating well enough during the 1 s
pre-stimulus baseline; the amplitude of the first saccade did not
reach half the stimulus eccentricity; the saccade was directed away
from the target on single target trials (directional errors); the latency
was not between 75 and 500 ms or could not be determined with
sufficient accuracy. Combining all these factors resulted in excluding
12% of the trials on average, with exclusion rates varying from 1% to
37% across observers depending on compliance and quality of the
EOG signals.

MR recordings

Structural MRI data for each participant were acquired on a 3-T
General Electric HDx scanner using an eight-channel receive only
head RF coil (Medical Devices). A 3D Fast Spoiled Gradient Recalled
(FSPGR) scan was obtained in an oblique-axial orientation, with a
256 × 256 × 192 matrix at 1 mm isotropic voxel resolution (TR/TE =
7.9/3.0 ms; inversion time = 450 ms; flip angle = 20°).

SAM source reconstruction

To reconstruct source activity we used synthetic aperture magne-
tometry (SAM) analysis (Robinson and Vrba, 1999; Van Veen et al.,
1997; Vrba and Robinson, 2001). Our source reconstruction volumes
were constrained to the individual brain volumes identified by FSL's
Brain Extraction Tool and a multiple local spheres forward model
(Huang et al., 1999) was used. For all analyses we used global covari-
ance matrices and corresponding beamformer weight vectors.

For single left and right target trials separately, we performed a
correlational SAM analysis. Since the whole visuo-oculomotor cortical
network contains visually responsive cells, and oculomotor responses
can be very fast, we restricted our analysis to the pre-stimulus baseline
period, in order to avoid a confound of the stimulus and response locked
activity. Beamformer weight vectors were calculated for each voxel in
the source volume for timewindows [−1 s 0] and [−0.2 s 0], in the fol-
lowing frequency bands: 5–15, 15–25, 25–35, 35–70 and 70–100 Hz.
We then computed volumetric correlation images by linearly correlat-
ing, across trials, the saccadic latency of correct responses with the
source amplitude activity in each frequency band during the trial base-
line period (Figs. 2A–E). For choice trials, SAM analyseswere performed
for the same frequency bands and timewindow, contrasting all leftward
with rightward choices.

Isolation of truly spontaneous variance

The above analyses were repeated with reaction times individu-
ally corrected for sources of variance directly linked to the experi-
mental design (dark gray bars in Fig. 2D). We first corrected the RT
for the linear effects of inter-trial-interval, and then for main effects
of condition (left single, right single or choice) on the present trial
and on the preceding trial, so that all nine combinations had the
same mean RT (Figs. 3A–B). This correction thus included repetition
and alternation effects (de Lange et al., 2013). Note that we could not
also correct according to the choice made on the preceding choice
trial (which would have produced 12 combinations) because for
many participants there were not enough trials in every category
to obtain reliable estimates of the means.

Correction for long-term trends

A third type of regressor was computed, which further corrected
for linear trends across time within each block (Fig. 3C), in order to
account for fatigue and practice effects in direct relation to the de-
sign (light gray bars, Fig. 2D). We opted for the correction of all
trends and effects, despite some being significant only on some par-
ticipants or some conditions, rather than using a p b 0.05 arbitrary
criterion. Since non-significant effects were small in amplitude,
correcting for them only introducedminor changes to the regressors.



Fig. 2. Saccade latency is significantly butweakly predicted by oscillatory power in the dorsal pathway during the 1 s pre-target period in alpha, low and high beta and low gamma. A. Each
voxel represents the unthresholded Pearson coefficient (r value) between oscillatory power and saccade latency, averaged across left and right single target trials (which showed no dif-
ference). B. Correlations between oscillatory power and reaction times are displayed separately for three bilateral regions of interest (ROIs) along the dorsal pathway: a frontal region
(Brodmann 6, including human FEF and SEF, top row), a parietal region (Brodmann 7, including superior parietal lobules and precuneus, middle row) and an occipital region (Brodmann
17 and 18, corresponding to visual areas V1 and V2, bottom row). C. Pearson correlation coefficient (peak r-value of the group-average within each ROI) between saccade latency and
oscillatory power across trials during the 1 s pre-target period within 4 frequency bands, averaged across left and right single targets, for the left (black bars) and right (gray bars) hemi-
spheres. D. Strength of correlations between oscillatory power and RT compared when using either raw RTs (black bars, averaged across the left and right hemispheres for clarity, i.e. the
values correspond to themean of the black and gray bars in panels C–D), RTs corrected for non-spontaneous variance only (dark gray) and RTs also corrected for linear trends within each
block (light gray). Asterisks correspond to the peak p-value from the group statistics within each ROI, reflecting both the robustness of the effect and its spatial consistency across partic-
ipants: */**/***p b 0.05/0.01/0.001 (corrected for multiple comparisons across voxels, ROIs and frequency bands using an FDR criterion).
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Localization of V1, SEF, FEF and IPS

To further characterize the time–frequency properties of the rela-
tionship betweenRT and oscillatory power, and to test for a relationship
with phase, we reconstructed the MEG signal in multiple locations
within the dorsal network. We wanted to avoid the circularity of defin-
ing virtual electrodes from the correlational beamformer analysis. We
first tried to define functional localizers by contrasting post-stimulus
and pre-stimulus time windows to reveal areas visually responsive or
involved in saccade planning. However, probably because our task in-
volved reflexive saccades to small peripheral visual targets, frontal
and occipital contrasts were weak and not reliably present across indi-
viduals. In contrast, parietal activations were extended, making the se-
lection of one peak for each individual difficult. We therefore used
anatomically-driven locations. For primary visual cortex (V1), cortical
reconstruction and volumetric segmentation for each participant were
performedwith the Freesurfer image analysis suite, which is document-
ed and freely available (http://surfer.nmr.mgh.harvard.edu/). The auto-
matic extraction and quantification of V1 were performed using a
previously validated morphometric-based heuristic approach (Hinds
et al., 2008). These mesh-based definitions of both left and right V1
were then split into 10 areas of equal length along an axis from central
to peripheral vision in order to check for spatially selective effects
(Fig. 4A). Parietal and frontal virtual electrodes were localized from
the MNI coordinates provided in the literature (Fig. 4B): SEF [0 −9
70.5] (Amiez and Petrides, 2009), left FEF [−40 0 44], right FEF [28
−6 50], left IPS [−30 −54 52] and right IPS [36 −58 58] (Mort et al.,
2003) and projected onto each individual. The center of each area was
used as a virtual electrode (0–100 Hz bandpass) for the time–frequency
(Figs. 5–8) and phase (Fig. 9) analyses.

Time–frequency analysis of MEG power

To assess the relationship between oscillatory amplitude and sac-
cade latency, we reconstructed theMEG signal on each trial for each vir-
tual electrode. Virtual sensor weights were estimated using a 0–100 Hz
optimal filter, and the 0–150 Hz signal was then projected through
these weights. We calculated the analytic amplitude of the Hilbert

http://surfer.nmr.mgh.harvard.edu/
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Fig. 3. Illustration of the reaction time correction procedure of one participant. A. Raw
reaction time on each trial across the 4 blocks. B. Reaction times after correction
(renormalization) for the effects of: inter-trial-interval (ITI), current trial condition (single
left, single right and bilateral) and preceding trial condition. Straight lines represent re-
maining blockwise linear trends across time. C. Reaction times further corrected
(detrended) for these blockwise linear trends across time.
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transform between 5 and 100 Hz at 1 Hz frequency step intervals, using
a ±4 Hz Butterworth filter, from 2.7 s before to 0.7 s after target onset.
We then post-decimated with a factor of 2. This was done for each trial
type separately, left targets, right targets, choice trialswith leftward sac-
cade and choice trials with rightward saccades. For single target trials,
we used the Pearson product–moment correlation coefficient to assess
linear correlation across trials between the response latency and the
power at each virtual electrode, each frequency and each 50 ms time
window. The left column of Fig. 5 represents the mean across virtual
electrodes (all 20 for V1, and left and right for IPS and FEF) and across
left and right single target trials, since therewas no evidence of spatially
selective effects. For choice trials, we contrasted leftward with right-
ward choices. The same procedure was repeated on MEG channel to
confirm our main result in sensor space (results are not shown).

Inter-trial coherence analysis

Our analysis is copied from Drewes and VanRullen (2011). In brief,
we sorted correct single target trials in each direction according to sac-
cadic latency, split them into quintiles and calculated the amount of
inter-trial coherence (ITC)within each quintile, using the phase compo-
nent of the Hilbert transform described above. If the phase of ongoing
A B 

FEF 
IPS 

V1 

SEF 

Fig. 4. Anatomical V1, SEF, FEF and IPS used for defining virtual electrodes. A. Left V1 and
right V1 were extracted individually and were each divided into 10 regions. In the center
of each region was placed a virtual electrode, providing a sampling of MEG activity across
V1. The extracted V1 regions on the right hemisphere are illustrated on one observer,
color-coded from green (region corresponding to central visual field) to pink (peripheral).
B. SEF, FEF and IPS on the template brain using theMNI coordinates provided byMort et al.
(2003) and Amiez and Petrides (2009), projected on the brain surface for illustration.
oscillations has a direct effect on RT, then trials within a given quintile
will have phases that are more similar than would be expected if
there were no such relationship, yielding a greater ITC value. To assess
the significance of any relationship between the phase of oscillations
and RT in our data, we therefore calculated the ITC on non-sorted
data, shuffling the trials randomly into quintiles and repeated this pro-
cedure 100 times to obtain themean and SD of the null distribution, and
thus derive t and p-values.
Group analyses

Group analyses on SAM images were performed using permutation
testing across participants (Nichols and Holmes, 2002; Singh et al.,
2003) and p-values were corrected for multiple comparisons across
voxels using the statistical omnibus. p-Values associated with the
power and phase analyses from the virtual electrodes were obtained
using a t-test comparing r-values (for amplitude) or t-values (for
phase) from each participant to zero, independently for each frequency,
time bin and ROI. All p-valueswere then corrected formultiple compar-
isons according to a standard false discovery rate calculation, taking into
account frequency or frequency bands, ROIs, time bins within the time
window of interest and regressor types, whenever relevant.
Results

Behavior

Saccade latency distributions were as expected. They typically
showed a single mode around 250–300 ms, with hardly any saccadic
responses before 150 ms or after 500 ms. Median saccade latency in
single target trials ranged from 208 to 284 ms across participants,
with a grand mean of 262 ms (264 ms on the left and 260 ms on
the right, not significantly different). The mean of the standard devi-
ation was 48 ms. Median latencies in free choice trials ranged from
220 to 310 ms, with a grand mean of 276 ms (276 ms for leftward
choices and 278 ms on rightward choices, not different), and were
significantly higher than in single target trials (mean difference
14 ms, t(11) = 5.03, p b 0.01). In choice trials, there was no overall
bias toward one direction or the other: participants choose the left
target on 51% of trials on average, but this proportion varied across
individuals, ranging from 21 to 82%. Individual choice biases were
correlated with latency differences between leftward and rightward
saccades in single target trials, as predicted in accumulation models
of decision (see Bompas et al., 2008, for a discussion).

ITI had a significant effect on RT for 5 subjects, but the direction
was subject-specific, resulting in no overall tendency on the group
(mean r = −0.002, p = 0.95). Individually correcting for ITI
accounted on average for 1.2% of variance (from 0.04 to 4% across in-
dividuals). Individually correcting for differences across all nine
combinations of present and previous trial conditions (left, right,
dual target) further reduced the variance by 7.9% (2.4 to 14.9% across
individuals). Therefore together ITI, current and previous trial type
accounted for 9% of the variance.

Blockwise differences and linear trends in each of the 4 blocks per
participantwere also block- and subject-specific; 20 of the 48 individual
linear regressions (4 blocks and 12 subjects) were significant, but there
were no overall tendencies (all p N 0.25). Arguably blockwise differ-
ences and trends are spontaneous, but they are at a larger time scale
than trial-to-trial spontaneous fluctuations in brain states. Correcting
for differences between, and trends within, each block for each individ-
ual mopped up another 8.6% of the variance on average (2.1 to 17%
across subjects). Therefore, correcting for all these factors that do not re-
flect spontaneous short-term fluctuations accounted for 17% of the var-
iance (8 to 25%).



Fig. 5. Time–frequency representation of the correlation coefficient (mean r-values across 12 observers, left column) between raw RT and oscillatory power and associated statistical sig-
nificance (p-values, right column). p-Values were corrected for multiple comparisons and thresholded so that p-values below significance threshold appear in black, and p-values above
threshold are color-coded according to their significance level. Time is averaged by bins of 50ms. The FEF and IPS r-values are averaged across theleft and right electrodes. The V1 r-values
are averaged across all 20 electrodes. The zero point indicates target onset. Spectral power from 5 to 40 Hz is positively correlatedwith RT during thewhole 1-s baseline in V1 and IPS, and
to a lesser extent in FEF and SEF.
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Contributions of broadband MEG power across the dorsal stream to
saccadic RT

Areas showing significant correlation between MEG oscillatory
power and RT were the whole of the posterior parietal lobe, extending
into the brain to include the posterior cingulate cortex, most of the
A B

Fig. 6. Power spectrum and time course compared for the fast (black) and slow (gray) halves
respectively significant andnon-significant differences between fast and slowRTs at the group lev
period, normalized so that themean power from 5 to 70 Hz across all single target trials is equal
power from−2 to−1 s across all single target trials equals zero.
occipital lobe, the temporal–occipital junction and frontal areas corre-
sponding to the anatomical definition of FEF (Fig. 2A). These correlations
were consistently observed for frequency bands 5–15, 15–25, 25–35 and
35–70 Hz, but were not significant in the 70–100 Hz band. Note that os-
cillatory activity in the eye-balls was not predictive of subsequent RT,
suggesting that the effect captured here does not merely reflect micro-
of the reaction time distribution, mean of all V1 electrodes. Thick and thin lines indicate
el after correction formultiple comparisons. A. Power spectrumduring the 1-s pre-stimulus
to 0. B. Time course of oscillatory power in 4 frequency bands, normalized so that the mean



Fig. 7. Time course of the correlation between oscillatory power and RT. Each line represents the group average of the r-values between RT andmean oscillatory powerwithin an ROI and a
frequency band, at each point in time between −2 s and 0 with respect to target onset. Black and gray lines indicate the use of raw RT or RT renormalized and detrended as regressors.
Thick portions indicate time bins where the r-values on the group were significantly above zero (after correction for multiple comparisons across ROIs, frequency bands, time points and
regressor types). The asterisks next to the arrows indicate the significance of the increase of r-values across time: */**/*** p b 0.05/0.01/0.001 (corrected for multiple comparisons).
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saccades during fixation (Carl et al., 2012). Using a 200 ms or 1-s pre-
stimulus time window gave the same results, but with increased
power in the latter.

All these predictors of saccadic RT were nonspecific for target
position or saccade direction. Nothing approached significance (all
r b 0.1, p N 0.2) when subtracting the SAM images for left and right
A

Fig. 8. Correlation of oscillatory power across the dorsal pathway and estimated specific contr
tween anatomical V1 and theparietal and frontal ROIs. Eachbar represents the peak r-values of t
and the 4 ROIs (left ROI in black and right ROI in gray), for the same frequency bands. B. Specifi
compares the strength of correlations between oscillatory power and RT using either raw RTs
Fig. 2D), RTs corrected for linear correlation with V1 power (dark gray bars) and RTs correct
peak p-value from the group statistics within each unilateral ROI (A) or within each bilatera
ROIs and frequency bands).
saccades, either with 1 s or 200 ms baseline. This interestingly con-
trasts with the lateralized effects observed in MEG during covert
orienting of attention (Siegel et al., 2008), saccade preparation in
delayed response paradigms (Hinkley et al., 2011; Van der Werf
et al., 2008) and hand movement planning (de Lange et al., 2013;
Donner et al., 2009).
B

ibutions from parietal and frontal areas. A. Correlation of pre-target oscillatory power be-
he correlation between oscillatory powerwithin V1 (averaged across 10 virtual electrodes)
c contributions of parietal and frontal regions to variability in saccadic latency. The graph
(black bars, averaged across the left and right hemispheres, same values as black bars in
ed for V1 power, deterministic effects and blockwise trends. Asterisks correspond to the
l ROI (B): */**/***p b 0.05/0.01/0.001 (corrected for multiple comparisons across voxels,



Fig. 9. Results of the bootstrapping ITC analysis on RT quintiles across time and frequency. The left and right columns represent respectively the mean t-values across the 12 participants
and 5 quintiles and the associated significance at the group level (p-values). p-Values were corrected for multiple comparisons and thresholded (black below threshold and color-coded
above threshold). The FEF and IPS t-values are averaged across left and right electrodes. The V1 t-values are averaged across all 20 electrodes. The zero point indicates target onset.
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To produce a figure summarizing our main result, we chose 6 re-
gions of interest (ROIs) known to be involved in visuo-oculomotor
decisions and comprising most of the areas revealed by the correla-
tional SAM analysis (Fig. 2B). The 6 ROIs are: left and right Brodmann
17/18 (visual areas V1 and V2), left and right Brodmann 7 (including
superior parietal lobules and precuneus) and left and right
Brodmann 6 (including human FEF).

Peak r-values on each SAM image varied from −0.03 to 0.34
across individuals, ROI and frequency band (hence a contribution
to individual RT variance ranging from 0 to 12%). Each bar in Fig. 2C
represents the peak value on the group-average of the parametric
SAM images within one of these 6 large ROIs. Note that this consti-
tutes a lower bound estimate of the contribution of these ROIs to
RT variance because this measure is inherently sensitive to the spa-
tial reliability at the voxel level across participants. The highest r-
values were 0.13 (thus explaining around 1.7% of the variance in
RT) and were found in parietal alpha and beta, closely followed by
occipital alpha. An upper bound estimate is to consider the group-
average of the individual peak r-values within each marker (defined
as a combination of ROI and frequency band), leading to an estimated
contribution from the occipital and parietal alpha and beta between
3 and 4% of the RT variance.

The strength of correlations was slightly reduced in frontal regions,
as well as significance levels, possibly reflecting the reduced anatomical
consistency of functional sources between individuals.

Effect of RT corrections

Renormalizing RT for the effect of ITI and current and previous con-
ditions did not affect the results (Fig. 2D, dark gray bars). This strongly
suggests that correlations capture mainly endogenous variance. In
contrast, detrending for blockwise trends reduced the strengths of cor-
relation with oscillatory power consistently across all frequency bands,
particularly in the frontal ROI, to a lesser extent in the parietal ROI and
marginally in occipital areas (Fig. 2D, light gray bars). This suggests
that these areas are differentially responsible for (or sensitive to) the
various sources of variance that contribute to overall trial-to-trial vari-
ance (see section “Parietal and frontal contributions independent of
V1”). In particular, frontal areas may reflect mainly long-term variance
rather than trial-to-trial fluctuations.

Power in V1, IPS, FEF and SEF and saccadic latency

The time–frequency analysis of single target trials in the 20 virtual
electrodes in V1 and in IPS revealed that frequencies between 5 and
40 Hz during the whole 1 s baseline period were predictive of subse-
quent response time (Fig. 5). Similar but weaker patterns of correlation
were observed in FEF and SEF. The predictive powerwasmaximal in the
alpha and beta ranges, but did not appear specific to any given narrow
frequency bands. Rather, it consistently included the whole 5–40 Hz
band in all participants. Beyond 40 Hz, correlations between amplitude
and RT turned negative in some participants, while they remained pos-
itive in others, resulting overall in positive but not significant correla-
tions. We replicated this analysis in sensor space across all sensors and
obtained equivalent results.

A more traditional – though less powerful– way of visualizing
data is provided in Fig. 6, where the pre-stimulus power oscillatory
spectra and time courses in V1 are compared for the fast and slow
halves of the RT distributions. Oscillatory power at all frequencies
between 5 and 38 Hz was significantly higher in trials leading to
long RT compared to short RT (Fig. 6A), peaking in the alpha range
(with slow responses showing a 5% power increase compared to
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fast responses, t(11) = 5, p b 0.001). The effect built up over time,
starting to be significant around −1 s and reaching its maximum
amplitude and statistical power around 100–200 ms before the tar-
get in all 3 lower frequency bands (Fig. 6B, all max t(11) N 5 and
p b 0.001).

A more powerful way of assessing the time course of this effect is
provided in Fig. 7.We observe a clear increase of correlation coefficients
(r-values) over time from−2 s to target onset in V1 and IPS, but not in
FEF. In V1, mean r-values were about 0 at −2 s and steadily increased
until shortly before target onset, using either raw RTs or RTs corrected
for longer-term trends. In contrast, r-values in IPS or FEF tended to be
positive during the whole baseline period when using raw RTs. Using
corrected RTs as regressors did lower the r-values throughout the
timewindow (consistentwith the results presented in Fig. 2B), bringing
them down at the start of the time window, without affecting the time
course of the effect.

Predictive power actually extends after target onset (Figs. 5 and 6),
but here we focus our analysis on the baseline period. The very strong
correlation at 500 ms post-target likely results from visual transients
when the peripheral target is foveated, which only ever occur this late
for long latency saccades (for shorter latency saccades the visual tran-
sient occurs earlier), consistent with the reversed correlation at this
time.

No difference was observed between the 20 V1 virtual electrodes
or between left and right target trials. In particular, this means that
the virtual electrodes centered in the area of V1 containing receptive
fields for the target or fixation point locations were not more predic-
tive than the other virtual electrodes. A similar lack of spatial selec-
tivity reported in the effect of temporal expectation on V1 activity
using invasive recordings in monkey (Lima et al., 2011) suggests
that this null finding may not simply reflect the limits of MEG spatial
resolution but also the highly correlative nature of short-term fluctu-
ations within the brain.

Parietal and frontal power correlates with V1 power

We then investigated the independence of the different sources of
variance identified in the correlational SAM analysis. We repeated the
correlational SAM analysis using the oscillatory amplitude in V1 as
regressors (instead of saccade latency). We did this analysis for the 5–
15, 15–25, 25–35 and 35–70 Hz bands, using the mean V1 oscillatory
power across all 20 electrodes in the same frequency band (Fig. 8A).
This revealed high levels of correlation in oscillatory amplitude between
anatomical V1 and the whole posterior half of the brain, including the
occipital and parietal lobes, and up to FEF (Fig. 8A), as well as the cere-
bellum and the posterior temporal lobes (not represented), but not the
rest of the cortex (lateral temporal or anterior frontal lobe).

Parietal and frontal contributions independent of V1

To estimate independent contribution to RT variance from parietal
and frontal areas, beyond that already accounted for byV1,we corrected
RT for the linear trend of its associationwithmean V1 oscillatory power
and used these corrected RT values as regressors in a new correlational
SAM analysis. The analysis was repeated for the 5–15, 15–25, 25–35 and
35–70 Hz bands, using themean V1 oscillatory power across all 20 elec-
trodes in the same frequency band (Fig. 8B).

Correcting for the influence of V1 amplitude led to a reduction of
mean r-values and associated significance levels in parietal and frontal
areas. Predictive power remained significant across participants around
anatomical FEF at 15–25 Hz and in the superior parietal lobule in the
15–25 and 25–35 Hz bands (all p b 0.05). Correcting for non-
spontaneous effects and blockwise trends as well as V1 power (light
gray bars, Fig. 8B) further reduced the mean r-values in both frontal
and parietal ROIs. These results suggest that, although activity in the pa-
rietal and frontal areas is highly correlated across trials with activity in
V1, parietal and frontal areas also make an independent contribution
to RT variance, which mainly reflects longer-term trends, while short-
term stochastic variance is mainly shared with V1.

Phase and RT

Drewes and VanRullen (2011) reported an increased inter-trial co-
herence for trials leading to similar saccadic latencies than for trials ran-
domly chosen independent of subsequent latency. This relationshipwas
mainly observed in frontocentral areas between 11 and 17 Hz peaking
250 ms before target onset. In contrast, we see no evidence for such re-
lationship between saccade latency and the phase of oscillations at any
frequency between 5 and 35 Hz, any time point within the 0.6 s pre-
stimulus period and in any considered area (V1, parietal, FEF and SEF,
Fig. 9), except possibly for one small cluster (defined as at least two ad-
jacent frequencies and time bins) in V1 (at 13–14Hz, −0.240 to
−0.155 s, p = 0.004). Although this cluster matches in frequency and
timing to that reported by Drewes and VanRullen, it is visible in V1,
not in FEF or SEF and its strength is much reduced. Our analysis relies
on about 530 trials per subjectswhen pooling across left and right single
trials, which is comparable to Hamm et al. (2010), while Drewes and
VanRullen used about 1800 trials per subject and per task. On the
other hand, MEG with source reconstruction is known to offer better
signal to noise ratio compared to sensor space analysis of EEG signal.
In any case, rather than concluding that we have a non-replication of
this previousfinding,wewill restrict our conclusion to stating that oscil-
latory power is a much stronger predictor of RT than phase in our
dataset, since the former can be clearly identified on 500 trials, while
the latter cannot.

Predictors of choice

Although individual analyses often revealed predictors of subse-
quent choice when contrasting the baseline period preceding left and
right choices, either with virtual electrodes or with the SAM analysis,
these were not reliable at the group level. With the 1-s baseline period,
group analysis identified 2marginally significant clusters, in left middle
occipital at 35–70 Hz, and in left inferior parietal lobule at 70–10 Hz
(both p = 0.045). These clusters did not appear when we used the
200 ms baseline period and would not survive correction for multiple
comparison across frequency bands and time windows.

We repeated this comparison in the −100 to 80 ms time window
(which most likely remains free from stimulus-related activity), and
this analysis revealed other clusters for 15–25 Hz in the left post-central
region, left middle frontal region and central precuneus (p-values =
0.02, uncorrected for frequency bands and time windows). We hypothe-
sized that choice outcomewould bemore closely related to baseline state
for shorter reaction times. However, replicating the analyses on the
shorter half of the choice RT distribution also failed to reveal consistent
predictors of choice. Furthermore, inter-trial coherence was not stronger
across trials leading to the same response (left or right), than across trials
randomly chosen independent of subsequent choice. The choice analyses
relied on 266 trials, split between left and right choices, and we conclude
that this was insufficient to successfully link subsequent choice to base-
line oscillatory amplitude or phase.

Discussion

Summary of key results

1) The experiment presents clear evidence that broadband pre-
stimulus oscillatory amplitude is positively correlatedwith response
time to those stimuli, throughout, but restricted to the visuo-
oculomotor cortical network, starting as early as V1, despite the
stimuli being clearly supra-threshold. These correlations consistent-
ly extend from alpha to low-gamma.
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2) These correlations capture between 1 and 4% of the RT variance
and are not driven by deterministic sources of variance such as
inter-trial-interval or stimulus side on the current and previous
trials.

3) Although oscillatory amplitude is highly correlated between V1 and
the rest of the network, parietal and frontal areas still make indepen-
dent contributions: While correlations in occipital areas capture
mainly short-term fluctuations, frontal and parietal contributions
appear partly driven by longer-term sources of variance.

4) The results were indistinguishable for left and right responses, and
left and right hemispheres; there was no hint of lateralization in
the predictors of RT and no reliable predictor of chosen direction in
free-choice trials.

5) We found no clear evidence for a relationship between latency and
the phase of baseline oscillations. Our data thus suggest that oscilla-
tory power is a stronger predictor of RT than phase.
The whole dorsal pathway

The areas we identified perfectly match those known to be involved
in visuo-oculomotor processing (e.g. Fig. 1B). Within this system, the
cells in the occipital cortex are visually responsive and strongly inter-
connected with the parietal cortex, which has itself strong connections
with frontal areas such as the frontal eye fields. As wemove from occip-
ital to parietal and frontal areas, the cells becomemore responsive to the
task relevance of the particular visual stimuli andmore tuned to the na-
ture of the motor response required.

Our result thus suggests that response speed can be affected by both
visual and premotor variability. The former is normally assumed to con-
tribute mainly when the target is difficult to see or discriminate. For
clearly visible unambiguous stimuli, as used here, motor variance is
often assumed to dominate (Carpenter et al., 2009). However, we find
that pre-target activity in striate cortex (V1) is clearly correlated to re-
sponse time variability on a trial-by-trial basis, indicating that, even
for supra threshold stimuli, an important component of the variability
comes from differences in the state of basic perceptual processes. This
finding is in linewith a previous report that saccadic latency is predicted
by the time of first spike elicited by the target onset in V1 (Lee et al.,
2010) and implies that oscillatory power before stimulus appearance
may influence (or reflect a process that influences) visual processing
speed.

More fundamentally, oscillatory activity in V1was strongly correlat-
ed with the rest of the dorsal pathway, suggesting that it may be the
state of the whole sensorimotor system before stimulus onset that de-
termines response readiness, rather than distinct perceptual or motor
sources. This being said, correcting for oscillatory power in V1 did reveal
independent contributions from parietal and frontal ROIs, even though
these were not always spatially consistent enough across participants
to reach significance at the group level.

The concurrent involvement of precuneus, inferior parietal and pos-
terior cingulate cortices at all frequency bands from 5 to 70 Hz is possi-
bly consistent with their being part of the default-mode network, in
which BOLD activity has been found to correlate with cognitive perfor-
mance in general, and reaction times in particular (Weissman et al.,
2006). However, our analysis did not reveal the other areas in this net-
work, such as inferior temporal or anterior medial prefrontal cortices.

Broadband pre-stimulus oscillatory power

Accumulating evidence supports the idea that a large part of the var-
iability in the behavior of neurons or individuals in response to a stimu-
lus depends on the state of ongoing activity of the sensory and motor
networks before the stimulus appears (Arieli et al., 1996; Mazaheri
and Jensen, 2008; Nikulin et al., 2007). Previous attempts to relate
pre-stimulus oscillatory power to response latency in visuomotor
tasks have sometimes detected different subsets of the global pattern
we find.

Reduced alpha amplitude around the occipital and/or parietal areas,
whether spontaneous or resulting from attentional modulations, has
been fairly consistently associated with better performance, either
faster RT in easy tasks or improved perceptual discrimination for
difficult-to-see stimuli (Kirschfeld, 2008; Klimesch et al., 1998;
Makeig and Jung, 1995; Thut et al., 2006; van Dijk et al., 2008; Wyart
and Tallon-Baudry, 2009; Zhang et al., 2008), though not always (Del
Percio et al., 2007; Gonzalez Andino et al., 2005; Hammet al., 2012). In-
creased alpha power has also been linked to better inhibition of
distracting stimuli in a working memory task, and hence to faster RT
to subsequent target (Bonnefond and Jensen, 2012). Moreover, reduced
baseline alpha amplitude is thought to increase both the mean value of
ongoing electrophysiological activity and the amplitude of subsequent
visual evoked responses (Mazaheri and Jensen, 2008; Nikulin et al.,
2007), both of which are linked with faster saccades (Everling et al.,
1997; Papadopoulou et al., 2010; Smyrnis et al., 2011).

Beta amplitude in sensorimotor or frontal areas has also been associ-
ated with response times, although the direction of this association
seems very much task and modality specific (Hamm et al., 2012;
Linkenkaer-Hansen et al., 2004; Makeig and Jung, 1995; Perfetti et al.,
2011; Zhang et al., 2008).

The amplitude of pre-stimulus gamma oscillations has been shown
to be modulated by covert attention, although the direction of these as-
sociations seems to be design-specific (Fries et al., 2001; Siegel et al.,
2008). Direct evidence that its spontaneous fluctuations are predictive
of performance in visuomotor tasks is scarce and leads to unclear pre-
dictions. Hamm et al. (2012) observed that errors in an antisaccade
task were associated with increased gamma power. On the one hand,
this result can be seen as an inverse relationship between performance
and gamma power, consistent with our result. On the other hand, since
errors (prosaccades) are also faster than correct antisaccades, their re-
sult can also be thought to predict an inverse correlation between RT
and gamma power. Gonzalez Andino et al. (2005) observed a negative
correlation between RT and gammapower in amanual visuo-motor de-
tection task, while Reinhart et al. (2011) reported a positive correlation
in an auditory oddball task. Importantly, in these three previous studies,
no significant correlation was reported in the dorsal pathway for lower
frequencies (alpha or beta). Thus, contrary to stimulus-induced oscilla-
tions, where gamma shows opposite effects to alpha/beta, previous lit-
erature does not indicate that this reversal should also happen for
spontaneous oscillatory power in relation to behavior. In our study,
the direction of correlation was common across alpha, beta and
low gamma (up to 45 Hz). Beyond 45 Hz though, we observed strong
individual differences, with some participants showing strong posi-
tive correlations between gamma and lower frequencies, and some
showing strong anticorrelations, resulting in no significant correla-
tion overall.

In contrast to these previous studies, the signatures we report here
are not restricted to one area or one frequency band. Rather, we observe
consistent predictors of response time from alpha to low gamma (up to
45 Hz) and throughout the dorsal pathway. We suggest that the broad
network is best revealed using a very simple task uncontaminated by
other potential cognitive factors, combinedwith the parametric analysis
approach we adopted.

It is possible that this consistent correlation from 5 to 45 Hz actually
reflects a correlation with broadband power (Miller et al., 2014), which
has recently been linked to local neurons' firing rates (Manning et al.,
2009). Thiswould offer the interesting possibility that lowneuronal activ-
ity duringbaseline allows faster response to subsequent targets. However,
wewould then expect the correlations to extendup tohigher frequencies,
which we did not see. One possible reason for this is the reduced SNR of
MEG signalswhen compared to intra-cranial recordings in these previous
references, and the increasing relative contribution of non-brain signals
such as instrumentation noise with increasing frequency.
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Quantifying contributions

Our aimwasnot only to identify neuralmarkers in relation to behav-
ioral variability, but also to quantify their predictive power. Our best
predictors (amplitude of alpha and beta oscillations in parietal and oc-
cipital cortices) account, on average on the group, for 2% or 4% of the
RT variance, depending on whether we pick the most reliable voxel at
the group level or we allow the peak location to vary across participants
within each ROI. The partial independence across ROIsmakes it conceiv-
able that predictive power could be improved by combining several
markers and this will be the purpose of future work.

The literature does not offer estimates straightforwardly comparable
to ours. To assess the relevance of a neural marker, most authors divide
their data into categories (correct vs incorrect, fast vs slow RT, express
saccades vs main mode) and only report the associated significance
levels. In one study, the amplitude of pre-stimulus oscillations has
been reported to account for 12% of the “response variability” in near-
threshold visual discrimination (Busch et al., 2009). However, the au-
thors mean something very different from what we are presently
reporting: this 12% figure relates to a modulation in hit rate, rather
than the proportion of variance explained.

A possible comparison of our figures is with respect to behavioral ef-
fects. For instance, in our study choice RTs to two-target trials are 18ms
longer on average than single target RTs, an effect highly significant (p b

0.001) and clearly expected from the literature (Leach and Carpenter,
2001). Using the same calculation as above, we can show that the vari-
ance of our RT vector is reduced by 2.8% if we renormalize for this effect,
and thus this effect captures 2.8% of our overall behavioral variance.We
may thus conclude that pre-stimulus amplitude of MEG oscillations ac-
counts for RT variance to the same extent as any robust behavioral effect
introducing a latency difference within the range of 15 to 20 ms.

Spontaneous long-term and trial-to-trial fluctuations

When they are not simply ignored or averaged away, trial-to-trial
fluctuations in performance or electrophysiological responses are usual-
ly considered to be i) endogenous and ii) independent across trials.
However, all studies would necessarily involve sources of deterministic
variance instrumental for the standard structure of experimental test-
ing, such as inter-trial-interval or trial history. By correcting RTs for
the estimated influence of such deterministic sources, we were able to
safely conclude that the correlations we report capture truly endoge-
nous variance.

Furthermore, brain activity is characterized by temporally correlated
fluctuations that contribute to trial-to-trial variability but typically un-
fold at a larger time-scale (Hasegawa et al., 2000; Leopold et al., 2003;
Menzer et al., 2010; Monto et al., 2008). By correcting RTs for the esti-
mated effects of blockwise trends,we observed that correlations in fron-
tal and parietal areas are partly driven by these long-term trends, while
occipital contributions appear to capture mainly short-term fluctua-
tions. Furthermore, the contribution from frontal areas that is not driven
by longer-term trends appears to be mainly shared with V1.

Yoked variability between left and right responses

Trial by trial variability plays a central role in contemporary models
of perceptual-motor decision making (Bompas and Sumner, 2011;
Brown and Heathcote, 2005; Carpenter et al., 2009; Ratcliff and
Rouder, 1998; Rolls and Deco, 2011; Usher and McClelland, 2001). The
neural origins of this ‘noise’ are assumed to account for both latency
and outcome variability (choosing sometimes one option and some-
times another, or making correct versus error responses). At the core
of these models is the idea that activity levels representing alternative
possible responses race or interactively compete to reach a criterion
threshold.Within thesemodels, trial-to-trial noise in the baseline activ-
ity of the response options, the rate at which support for a particular
response is accumulated and, potentially, the threshold level that
leads to a response, combine to deliver latency variability and at the
same time determine whether one response is generated over another.

Each of these factors could be reflected in or influenced by the pre-
target activity we detect. Baseline and threshold variation would be ex-
pected to correspond to pre-stimulus activity in motor planning areas,
while the pre-stimulus state of the perceptual system would affect the
accumulation rate of visual ‘evidence’.

Crucially, however, to achieve variability in outcome (decision) the
sources of ‘noise’ must either be independent between response op-
tions, or act in a directly push–pull manner, where any activity that fa-
vors one response will disfavor (or inhibit) the opposing or alternative
response. In contrast to this assumption, all the pre-stimulus activity
we detect to be associated with latency is positively yoked for both
left and right responses. Such yoked sources of variability are irrelevant
for choice/decision as theywould not provide differential activity favor-
ing one response over another.

Our results suggest that, in the absence of empirical manipulation in-
troducing an overall bias, such as attention cues, unbalanced probability
of appearance or reward, choice is mostly determined after stimulus
onset. This result echoes the conclusions from previous studies showing
distinct post-stimulus signatures in free choice compared to externally
driven choices (Guggisberg et al., 2007; Pesaran et al., 2008). Although
electrophysiological signals can be used for above chance decoding of co-
vert intentions during free behavior (Jerbi et al., 2011), especially when
participants are asked to withhold their response (Coe et al., 2002;
Haynes et al., 2007), predicting free choice before it is explicitly made
did not prove feasible with our design. Of course, it is possible that addi-
tional, spatially-specific, sources of noise are cryptic to MEG, but equally
theremay be other sources of yoked noise that are cryptic toMEG.What
is clear is that the dominant portion of trial-to-trial pre-target activity
variation visible to MEG is common to response alternatives.

Phase and RT

Drewes and VanRullen (2011) reported a relationship between sac-
cadic latency and the phase of EEG signals at frontocentral electrodes
peaking250msbefore target onset (50msbefore afixedduration gappe-
riod), which they replicated on three different designs. We thus aimed to
replicate their finding for frontocentral areas (expected to be close to our
SEF electrode) and clarify the role of occipital and parietal areas. However,
such relationshipwas not present in our data, in any considered area (V1,
parietal, FEF and SEF, Fig. 9). This absence contrastswith the robust role of
pre-stimulus alpha phase in visual perception for near-threshold stimuli
(Busch et al., 2009; Dugue et al., 2011; Mathewson et al., 2009) and
may be due to differences in task requirements or statistical power issues.
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