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Abstract 

Learning aptitude has never been a focus of visuospatial performance studies particularly on 

memory consolidation and reconsolidation. The aim was to determine the consequences of 

learning ability on memory consolidation/reconsolidation following inhibition of glucose 

synthase kinase-3 (GSK-3) by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). 

The anxiety-like nature of rats was characterized in the elevated plus maze. The rats were then 

trained for 4 days in the Morris water maze (MWM) and classified as “superior”, 

“intermediate” or “inferior” learners. There were no major differences between superior, 

intermediate or inferior learners with respect to anxiety which might have influenced learning. 

After training (day-5), TDZD-8 (2.0 mg/kg) was administered and half the cohort was exposed 

to a MWM retrieval trial. Ten days later, animals were subjected to repeated MWM learning. 

TDZD-8 without a retrieval trial impaired subsequent reconsolidation in inferior learners, but 

enhanced it in superior learners. There was no modification of performance in intermediate 

learners. In TDZD-8-treated subjects exposed to retrieval, the pattern of outcomes was 

identical whereby impairment of reconsolidation occurred in inferior learners, enhancement in 

superior learners but there was no modification of performance in intermediate learners. Thus, 

learning ability was a key determinant of the qualitative outcome from GSK-3 inhibition on 

visuospatial memory. 
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Introduction 

 

Cognitive abilities are a universal feature within humans, but rodents need to express their 

learning abilities in novel environmental contexts in order for them to be evaluated. The 

diverse learning abilities of laboratory animals are influenced by a common source of 

variance (Matzel et al., 2003) and these learning aptitudes have been studied using different 

approaches including pharmacological manipulations (Meijer et al., 2004; Sierksma et al., 

2014; Hutchings et al., 2013). In this context, some of the molecular pathways which are 

important for normal brain function and intracellular signalling involve the enzyme glycogen 

synthase kinase-3 (GSK-3) (Grimes and Jope, 2001). 

 

The enzyme GSK-3 is abundant in the central nervous system, particularly in the 

hippocampus (Perez-Costas et al., 2010) and it is implicated in fundamental neuronal 

functions, such as neurodevelopment (Kim et al., 2009), and neurotransmitter function (Li et 

al., 2012). It was originally identified as a regulator of glycogen metabolism and later, its 

significance in protein synthesis, cell proliferation, differentiation, survival and apoptosis was 

established (Grimes and Jope, 2001). Transmembrane signalling mechanisms are critical for 

regulating the plasticity of neuronal connections underlying the establishment of long-lasting 

memory (Chen et al., 2011). The enzyme GSK-3 operates within at least two very different 

signalling pathways, which include insulin and the Wnt cascade. This enzyme is a 

downstream target of insulin stimulation and regulates glycogen synthase, the protein 

translation regulating factor eIF2B and the transcription factor C/EBP (Harwood, 2001). In 

contrast, GSK-3 is also regarded a central element of the Wnt signalling pathway  which has 

been proposed to regulate several developmental processes (Harwood, 2001, Gersten et al., 

2014) and long-term information storage in a behavioural-, cellular-, and isoform-specific 

manner (Tabatadze et al., 2011). In mammals GSK-3 is encoded by two known genes, GSK-

3 alpha (GSK3A) and GSK-3 beta (GSK3B) however, two protein isoforms, alpha (GSK-3α)  

and beta (GSK-3β), show a high degree of amino acid homology. 

It is noteworthy that inactivation of GSK-3β and the resulting stabilization of free β-catenin 

in the Wnt pathway are critical steps in the activation of Wnt target genes. Additionally, it is 

thought that expression of the Wnt cascade increases protein kinase B (Akt) activity 

regulating GSK3 in the phosphatidylinositide 3-OH kinase signalling pathway. Activated Akt 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gersten%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25093834
http://www.ncbi.nlm.nih.gov/pubmed?term=Tabatadze%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22180023
http://en.wikipedia.org/wiki/GSK3A
http://en.wikipedia.org/wiki/GSK3B
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bound to the Axin-GSK3β complex, also phosphorylates GSK3β and increases free β-catenin 

levels. Furthermore, in Wnt-overexpressing PC12 cells, dominant-negative Akt decreases 

free β-catenin and depresses nerve growth factor-induced differentiation (Fukumoto et al., 

2001).Thus, there is a multiprocessing role of GSK-3 in cellular signalling pathways in 

normal conditions and also a critical involvement in the pathophysiology of a number of 

diseases. Accordingly, excessive activation of GSK-3 is thought to cause pro-apoptotic 

effects after brain injury (Dash et al., 2011; Wu et al., 2013), ischemia/reperfusion (Valerio et 

al., 2011) and to phosphorylate tau protein provoking the development of Alzheimer’s 

disease (Cai et al., 2012). It is also believed to be implicated in psychiatric conditions such as 

schizophrenia, bipolar disorder and major depression (Mao et al., 2009; Lipina et al., 2012; 

Luykx et al., 2010, O'Brien and Klein, 2007). Many of these pathologies are accompanied by 

cognitive deficits which clinically exacerbate the patient impact during disease progression.  

Moreover, some investigations have identified a significant role of GSK-3 in normal 

memory mechanisms especially in stabilization (consolidation) and updating 

(reconsolidation) (Alberini, 2005, Alberini and Ledoux, 2013, Alberini et al., 2013)  of 

memory trace or engram (Chen et al., 2011; Hong et al., 2012; Kimura et al., 2008; Wu et al., 

2011).  However, published data on this issue appear to be conflicting and it is interesting to 

note that in heterozygote GSK-3 knockout (GSK-3β +/-) mice, the contribution of the 

enzyme to memory has been detected in the reconsolidation phase but not in consolidation of 

the contextual fear conditioned memory trace (Kimura et al., 2008). On the other hand, GSK-

3 activation is required for insulin-like growth factor II (IGF-II)-dependent memory 

enhancement during memory trace consolidation in the experimental fear model (Chen et al., 

2011). In addition, intrahippocampal injection of the GSK-3β inhibitor, SB 216763 before a 

retention session, blocked memory retrieval but not reconsolidation in a passive avoidance 

task without affecting animal locomotor activity. These results suggest that GSK-3 β 

activation would be essential for memory retrieval in the hippocampus (Hong et al., 2012). 

This inconsistency may be explained by the fact that constitutively activated GSK-3 is 

involved at least in several distinct signalling pathways through a Ser9 phosphorylation 

enzyme-inhibited state (pGSK-3βSer9) or a tyrosine 216 phosphorylation enzyme-activated 

form  (pGSK-3βTyr216) (Noël et al., 2011; Takashima, 2009). It has been pointed out that 

the frequent need to retrieve many memories under conditions when an individual is 

confronted with a new idea or task, leads in time, to over-activation of GSK-3 β. It could also 

http://www.ncbi.nlm.nih.gov/pubmed?term=Luykx%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=20226637
http://www.ncbi.nlm.nih.gov/pubmed?term=Alberini%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
http://www.ncbi.nlm.nih.gov/pubmed?term=Ledoux%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
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be proposed that a frequent need to retrieve (especially, unsuccessful attempts to retrieve 

memory) in persons with mild cognitive decline, could in some cases provoke further 

worsening of memory functions and that GSK-3β is one of the key players in these processes 

(Jope and Roh, 2006, Takashima, 2012). 

 Plurality of regulatory pathways affecting GSK-3 activity may be the source of considerable 

variability of the enzyme inhibitors effects on cognitive function. In particular, lithium, 

directly inhibits GSK-3β activity, but in vivo, it indirectly inhibits the enzyme by regulating 

the formation of a signalling complex comprised of β-arrestin 2 (βArr2) and Akt (Freland and 

Beaulieu, 2012). Hence lithium is regarded as a neuroprotective agent and cognitive enhancer 

(Tsaltas et al., 2009) but conversely, its neurotoxicity has also been reported to mimic rapidly 

progressive dementia (Mignarri et al., 2013). However, it must be borne in mind that such 

discrepancies may at least in part be ascribed to inconsistencies within the mental state of 

those patients studied.   

Animal learning ability and how it may be linked with GSK-3 activity in spatial memory 

consolidation/reconsolidation (Alberini, 2005, Alberini and Ledoux, 2013, Alberini et al., 

2013) is the focus of this study. Hence, a non-ATP competitive GSK-3 inhibitor, namely 

TDZD-8 (which binds to the active site of GSK-3 (Meijer et al., 2004) was employed to 

modify the activity of the enzyme in conditions of weak and strong memory on subjects in 

three classes of learning capacity. TDZD-8 protects the hippocampus from 

ischaemia/reperfusion injury (Collino et al., 2008) but there are no data concerning 

manipulations with this inhibitor on GSK-3 activity during the development of spatial 

performance with respect to varied learning ability. Consequently, the aim was to establish 

whether inherent visuospatial learning ability was influenced by GSK-3 inhibition and the 

retrieval procedure in the phase of learning when long-term spatial memory was being 

formed. Furthermore, task irrelevant anxiety has been hypothesised to compete with ongoing 

cognitive operations localised to the same neural circuitry (Shackman et al., 2006). Hence, it 

was necessary beforehand, to determine whether anxiety had any influence on the learning 

ability of animals in this study.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Alberini%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
http://www.ncbi.nlm.nih.gov/pubmed?term=Ledoux%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
http://www.ncbi.nlm.nih.gov/pubmed?term=Ledoux%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
http://www.ncbi.nlm.nih.gov/pubmed?term=Collino%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18323734
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Materials and Methods 

 

All experimental procedures were carried out in accordance with: the National Institute of 

Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, 

revised 1996); the UK Animals Scientific Procedures Act 1986 and associated guidelines; the 

European Communities Council Directive of 24 November 1986 (86/609/EEC) for care and 

use of laboratory animals. They were also approved by the Animal Care and Use Committee 

of the P. K. Anokhin Institute of Normal Physiology, RAMS, Moscow, Russia. 

 

Chemicals 

Both 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), dimethylsulfoxide 

(DMSO) were obtained from Sigma-Aldrich, USA.  

Subjects  

Adult male Wistar rats weighing 220±20 g (n=96) were used throughout the study. The 

animals were obtained from Stolbavaya Laboratory Animal breeders (Moscow, Russia).  

They were allowed food and water ad libitum and housed in groups of three in standard 

laboratory cages under 12h–12h light-dark conditions at 21.0±1.0
o
C. 

 

TDZD- 8 inhibition of GSK-3β  

 

Hippocampal cell lysate production 

Four equal groups of rats (n=12) were administered (i.p.) with TDZD-8 (1.0, 2.0 and 4.0 

mg/kg) or vehicle.  Animals were decapitated 30 min after drug administration and the 

hippocampus was removed bilaterally on ice and then transferred immediately to liquid 

nitrogen. Hippocampal  tissue samples were  thinly sliced and thawed in  RIPA buffer (Pierce 

Biotechnology Inc., USA) containing 50mM Tris-HCI , pH 7.4, 1% Nonidet NP-40,  0.5% 

Na-deoxycholate, 0.1% SDS, 150 mM NaCI, 2mM EDTA, 50mM NaF, 1mM  PMSF in a 

proportion of 1.0 mg tissue/3.0 ml of precold RIPA buffer. Each sample was individually 

homogenized using a SONOPULS mini20 sonicator (Bandelin Electronic GmbH & Co KG, 

Germany) at +4
o
C and incubated on ice for 30 min. Homogenates were then centrifuged at 
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10,000g for 10 min at +4
o
C (Eppendorf 5810R centrifuge, Germany). The supernatants were 

removed and centrifuged for a second time under the same conditions. The secondary 

supernatant fluids represented the total hippocampal cell lysates in which the protein 

concentration was determined using a Bradford protein assay kit (Pierce Biotechnology Inc., 

USA).   

GSK-3β activity measurement: immunoprecipitation and kinase radioassay 

The measurement of GSK-3 activity was performed on total hippocampal cell lysates using a 

GSK-3β activity assay kit (Sigma/Aldrich, USA, Cat. N CS0990) and ATP, [γ-32
P] 

(PerkinElmer, USA). According to the commercial protocol, 300-600 µl (200 µg of cell 

lysate protein) of hippocampal cell lysate samples were incubated on ice for 3 hours with 

EZview
™

 Red Protein G Affinity Gel beads preliminarily covered with monoclonal anti- 

GSK-3β mouse antibodies. In addition to the protocol for each sample, the following negative 

control assays were employed: Negative Control 1 = kinase activity control without substrate 

and Negative Control 2 = absence of the immunoprecipitating antibody or inhibition reaction. 

Tubes with immobilized antibody-antigen complexes on gel beads (3 repetitions per sample) 

were washed thrice using 0.5 ml of wash buffer. Subsequently, the kinase reaction mixture  

(GSK-3β peptide substrate, 5 µl; assay buffer,  12.5 µl; wash buffer, 7.5 µl;   ATP, [γ-
32

P], 

2.5 µl (with a specific activity of 10 mCi/ml) was added to  each tube, incubated for 30 min at 

22 ± 0.5
o
C and centrifuged at 8,000 x g. Finally, 25 µl of the reaction mixture was spotted 

onto squares of P81 cellulose phosphate paper, dried for 1 min, washed fourfold with 10 ml 

phosphoric acid (5 min)  then once gently with ethanol (1 min) and finally, once with acetone 

(1 min). Cellulose phosphate squares were dried at room temperature and the incorporated 

radioactivity was counted using the Cerenkov method (i.e counting the emission without 

scintillation liquid, using the tritium channel) by means of a 1219 Racbeta Liquid scintillation 

counter (LKB Wallac, Sweden). Results were represented in cpm and % of cpm in samples 

from rats treated with vehicle. 
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Elevated plus maze paradigm (EPM) evaluation of anxiety related behavior in inferior, 

intermediate and superior learner rats in the elevated plus maze 

 

The inherent anxiety level of rats was evaluated using the elevated plus maze as a simple 

method for assessing this condition (Pellow et al., 1985; Walf and Frye, 2007). The apparatus 

(TSE Systems GmbH, Germany) consisted of two opposing open arms (50×10 cm) and two 

facing closed arms (60×10 cm) with 30 cm high, opaque walls. The four arms were connected 

by a central platform (10×10 cm) and the maze was elevated by 72 cm above the floor. Rats 

selected randomly from the whole cohort (n=24) were initially placed in the center of the maze 

facing one of the open arms and were then allowed to investigate the area for 5 min. Their 

behavior was recorded by video-tracking via ETHOVISION (Noldus, Wageningen, 

Netherlands). Entry into each arm was defined when the animals front legs and head were 

entirely in the arm. The number of entries plus the time spent in the open and closed arms 

along with the entry numbers as well as the duration in the center, incidence of peering out of 

closed arms and defecation (bolus number) were measured to assess anxiety-related behavior 

(Geis et al., 20011). Elevated plus maze experiments were performed 12 days before water 

maze training. Subsequently, learning ability classification was retrospectively applied to the 

elevated plus maze performance in individual animals. 

 

Morris water maze paradigm (MWM)   

 

The Morris water maze consisted of a grey circular pool (160 cm in diameter and 60 cm in 

height) filled to a depth of 40 cm with water at a temperature 22.0±1.0
o
C. A transparent 

circular escape platform (12 cm in diameter) was located in the center of one quadrant of the 

pool 2.0 cms beneath the water surface. A videomonitoring system analysed via 

ETHOVISION (Noldus, Wageningen,  

 

Netherlands) was used for recording visuospatial navigation (time to reach the platform i.e. 

swimming/escape latency). The maze was positioned in a well-lit room with several posters 

and other distal visual stimuli on the walls to provide external spatial cues (Sewell et al., 2005; 

Gruden et al., 2013).    

 



                                          Learning ability, GSK-3 inhibition and memory 

8 

 

The rats were brought to a waiting room and kept in holding cages at least 30 min before the 

experiments. They were initially trained to locate spatially the hidden platform on 4 successive 

protocol days (Figure 1).  Each day, individual animals underwent four consecutive training 

swimming trials with a fixed quadrant location of the hidden platform. Each trial was initiated 

by carefully placing the animal into the water facing the wall of the pool at one of three 

random start positions avoiding the quadrant containing the platform. In each trial, the time 

taken to escape onto the hidden platform (swimming latency, sec) was recorded and followed 

by a 15 sec occupation time on the platform. The inter-trial period was 60 sec and any animal 

that did not locate the platform within the 60 sec epoch was gently guided on to it (Sewell et 

al., 2005; Gruden et al., 2013). This model is considered to generate robust short-term working 

and long-term reference memories in rats and there are even time-condensed adaptations of the 

water maze paradigm fulfilling these memory criteria (Gulinello et al., 2009; Feldman et al., 

2010). Examination of mean escape latencies during days 1-4 of training indicated that 

memory consolidation (Rodriguez-Ortiz and Bermúdez-Rattoni, 2007) was initiated on the 3
rd

 

day of learning and extended to 4 th day of training. (Figures 3-5). To study consolidation and 

reconsolidation of spatial memory in one protocol, it is customary to employ models in which 

memory has not been totally consolidated (Nader and Einarsson, 2010) therefore a 4-day 

MWM training schedule was chosen.  

 

After completion of the last trial of the initial
 
training session, animals were returned to home 

cages and on the 5
th 

protocol day, they were divided into three classifications of learning 

performers according to their mean swimming latencies obtained on the 4
th

 day of training 

(Figures 1 and 2). The first class (n=24) of higher performing animals were designated as 

“superior learners” and consisted of those subjects displaying mean escape latencies <8.75 sec. 

A second class, “intermediate learners” (n=48), included rats demonstrating mean escape 

latencies >8.75 but <16.5 sec. A third set, specified as “inferior learners” (n=24), consisted of 

rats exhibiting mean swimming latencies >16.5 sec (Figure 2). 

 

Each designated learning class was further divided into four equal groups on day 5 of the 

protocol (Figure 1): group 1, was administered vehicle (0.1% DMSO, 1.0 ml/kg i.p.) followed 

by exposure to a MWM trial in the absence of the platform. In this non-rewarded probe trial, 

each animal was allowed to swim until it succeeded in attaining the former platform location 
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(always within 60 sec) at which time the animal was immediately lifted from the pool without 

an opportunity to gain platform access and this was termed a “retrieval trial” (Morris et al., 

2006). Group 2 received TDZD-8 (2.0 mg/kg, i.p.) with an exposure to the retrieval trial 

procedure. Vehicle (i.p.) was administered in group 3, while group 4 received TDZD-8 (2.0 

mg/kg, i.p.) and both latter groups were returned to their home cages without a retrieval trial 

(Figure 1). The particular dose of TDZD-8 was selected from the range (1.0-4.0 mg/kg) tested 

in our GSK-3 enzyme inhibition study and was additionally based on data that it caused a near-

maximal effect on Ser
9
GSK-3ß phosphorylation (Collino et al., 2009) with the dose-response 

relationship approaching the asymptote. The dose also concurred with those employed in other 

behavioural studies (Collino et al., 2008; Lipina and Roder, 2010; Lipina et al., 2011; 

Kalinichev and Dawson, 2011). 

 

Animal groups 1 and 2 were exposed to a swimming trial without the platform for 60 sec and 

this stage of the protocol was termed “retrieval” since they always located the former site of 

the platform and this corresponded to the reconsolidation stage of memory (Alberini et al., 

2013). On days 16-19 of the protocol (Figure 1), all animal groups were resubjected to spatial 

navigation training with identical spatial cues plus the same platform location and this process 

was termed “repeated learning”.  The time interval between initial and repeated training was 

chosen based on data concerning the strengthening of memory (in an inhibitory avoidance 

model) during a two week interval after initial training (Inda et al., 2011). 

 

Data analysis 

The results were statistically processed using Statistica 7.0 software and Kruskal-Wallis test, 

Mann-Whitney U test, Wilcoxon matched pairs test and Friedman ANOVA analyses were also 

performed. The elevated plus maze results were presented as medians (interquartile ranges). 

However, the MWM data was presented as means ± standard error for the reason of clarity. 

 

 

 

 

 

 



                                          Learning ability, GSK-3 inhibition and memory 

10 

 

Results  

Dose related inhibition of GSK-3β activity by TDZD-8  

 

The biochemical assay was designed to verify the effects of TDZD-8 at different doses on 

GSK-3β activity. Since GSK-3 is an abundant enzyme in the central nervous system, 

particularly in the hippocampus, the study was performed in samples of hippocampal cell 

lysates in an additional animal cohort. Comparative results of GSK-3β inhibition by TDZD-8 

at three doses were confirmed in comparison with controls. Thus, in the hippocampus of 

control rats, the activity of GSK-3β was determined as 75080±1074 cpm/mg of total protein. 

After administration of 1.0, 2.0 or 4.0 mg/kg TDZD-8, the GSK-3β activity had declined to 

52000±2045 cpm/mg (69.2%); 20900±1700 cpm/mg (27.8%); 17655±1295 (23.5%) cpm/mg 

of total protein respectively which represented a graded inhibition of the enzyme. There was 

no statistical difference between inhibition of enzyme activity at the 2.0 and 4.0 mg/kg doses, 

therefore this justified the use of the 2.0 mg/kg dose in the behavioral experiments. 

Negative controls 1 and 2 determined in control hippocampal samples were ascertained as 

1200±119 cpm/mg and 1350±236 cpm/mg of total protein, respectively. Negative controls 1 

and 2 determined in hippocampal samples after 1.0, 2.0 and 4.0 mg/kg TDZD-8 

administration were disclosed as 950±124 cpm/mg and 1214±201 cpm/mg; 1021±113 

cpm/mg and 1185±169 cpm/mg of total protein; 998±101 cpm/mg and 1098±214 cpm/mg of 

total protein, respectively. The control inhibition reaction, performed according to the 

commercial protocol with the GSK-3β inhibitor working solution revealed a 15.6±2.3 % 

decrease in GSK-3β activity.   

 

Evaluation of anxiety related behavior in inferior, intermediate and superior learner rats in 

the elevated plus maze 

 

The data obtained in the elevated plus maze (Table 1), indicated that the differences between 

animal cohorts in the level of anxiety were negligible. Thus, no significant differences were 

observed in the time spent in the open and closed arms and the center of the maze, in addition 

to the number of open or closed arm entries. The number of transitions between the closed 

arms and exits to the center were higher in the intermediate learners and lower in the superior 

learners. The incidence of gazing out from the closed arms was higher in intermediate learners 
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than superior learners who exhibited a higher level of defecation (Table 1). It was concluded 

that such outcomes in the three cohorts would have had minimal influence on their learning 

ability.  

 

Spatial learning parameters in superior, intermediate and inferior learner rats in the Morris 

water maze memory task under learning and earlier or later protocol retrieval conditions 

 

The distribution of animals in terms of their time to reach the platform on the 4th day of 

training is shown in Figure 2 and this created the basis of the classification of animals as 

superior, intermediate and inferior learners. Thus, those animals displaying latencies >16.5 s 

were in the upper quartile range (inferior learners). Subjects expressing latencies <8.75 s were 

in the lower quartile range (superior learners) whilst the remainder of the cohort encompassed 

8.75 – 16.5 s (intermediate learners).  

Statistical analysis revealed a significant difference between the mean escape latencies within 

all animal groups on the 4
th

 training day (Kruskal-Wallis test: H (2,N=24)=18.16, P =0.0001).  

 

Comparison of group mean escape latencies on the 4
th

 day of training by the Mann-Whitney U 

test exposed highly significant differences between the inferior learners versus intermediate 

(Z(6,12)=4.18, P<0.001) and superior learners (Z(6,6)=4.56, P<0.001). Additionally, on the 

same training day (i.e. day 4), a protracted escape latency was detected between intermediate 

versus superior learners (Z(6,12)=3.18, P<0.01). Moreover, comparison of the same behavioral 

parameters on the 3
rd

 training day unveiled marked differences between the mean escape 

latencies of inferior learners from superior and intermediate learners (Z(6,6)=2.91, P<0.05) 

and (Z(6,12)=2.98, P<0.05) respectively (Table 2). It is interesting to note that comparison of 

task performance in different learner classes on the 4
th

 and 16
th

 trial days (i.e. 11 intervening 

training free days, Fig. 1) by Wilcoxon matched pairs test, revealed that inferior learners 

displayed lower mean escape latencies on the 16
th

 day (start of repeated learning) versus day 4 

(Z(6,6)=2.84), P<0.05). Furthermore, it was perceived that superior learners demonstrated 

lengthier escape latencies in the first trial on the 16
th

 trial day compared with the first trial on 

the 4
th

 day (Z(6,6)=2.76, P<0.05). We also observed that inferior learners, in contrast to 

superior learners, demonstrated significantly shorter escape latencies on the first trial of the 

16
th

 training day compared with the first trial on day 4 (Z(6,6)=2.80, P<0.05) (Table 2).  
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Thus, the outcome differences in spatial learning parameters of the three ability classes of rats 

serve to justify the application of the experimental paradigm for subsequent study of GSK- 3 

inhibition on diverse learning aptitudes in the navigation performance task, especially in the 

consolidation and reconsolidation phases of memory. 

 

Effects of the GSK-3 inhibitor TDZD-8 and recall on superior learner rat navigation 

performance  

 

To initiate examination of TDZD-8 effects with respect to retrieval (Figure 1) in the spatial 

performance task, statistical analysis was instigated firstly on the memory performance of the 

superior learner class. Hence, in all four groups of superior learners (vehicle plus home 

cage/no retrieval trial, TDZD-8 plus home cage/no retrieval trial, vehicle plus retrieval and 

TDZD-8 plus retrieval), escape latencies to the hidden platform on the first trial of the 5
th

 day 

(not graphically shown) were augmented relative to those of the 4
th

 training day (Z(6,6)>2.12, 

P<0.05) (Fig. 3A). Significant differences between the escape latencies of all groups were also 

found on the first trial of the 16
th

 trial day (repeated learning procedure) (Kruskal-Wallis test: 

H (3,N=24)=16.86, P=0.0008), the 17
th

 trial day (Kruskal-Wallis test: H (3,N=24)=10.39, 

P=0.0155) and the 18
th

 trial day (Kruskal-Wallis test: H (3,N=24)=9.78, P=0.0324). 

  

It was noted that after TDZD-8 administration, superior learners kept in their home cages 

showed lower escape latency values than their vehicle controls on the 17
th

 (Z(6,6)=2.96, 

P<0.01) and 18th  training days (Z(6,6)=2.68, P<0.05). Combination TDZD-8 with the 

retrieval protocol increased escape latencies in superior learners on the first trial of the 16
th

 

training day versus the other three animal groups (Z(6,6)>2.18, P<0.05) (Fig. 3B). Throughout 

the duration of the 17
th

-19
th

 training days, no differences in escape latency values were 

detected between superior learners receiving TDZD-8 kept in their home cages (no retrieval 

trial) and those undergoing the retrieval procedure.  

 

Inhibition of GSK-3 twenty-four hours after the last training session at the retrieval trial stage 

(Figure 1, day 5) in superior learners (maintained in their home cages), hastened their latency 
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to reach the platform, whereas the combinative treatment of TDZD-8 with the retrieval 

procedure impaired memory retention and had no significant influence on repeated learning.  

 

Effects of the GSK-3 inhibitor TDZD-8 and recall on intermediate learner rat navigation 

performance 

 

No effects of TDZD-8, retrieval or their combination were found in the experiments with any 

of the intermediate learner groups versus the controls (Figure 4A, B). 

 

Effects of the GSK-3 inhibitor TDZD-8 and retrieval on inferior learner rat navigation 

performance 

 

Statistical analysis of inferior learner escape latency group differences on the 16
th  

(Kruskal-

Wallis test: H (3,N=24)=9.52, P=0.0311), 17
th 

(Kruskal-Wallis test: H (3,N=24)=8.44, 

P=0.036) and 18
th

 (Kruskal-Wallis test: H (3,N=24)=8.05, P=0.043) training days (Figure1) 

was carried out. It was shown that on the 16
th

 day at the repeated learning stage, the mean 

values of escape latency in three groups of the inferior learners (vehicle plus retrieval, TDZD-8 

plus retrieval and TDZD-8 in the home cage) were significantly higher than the vehicle group 

maintained in their home cage (Figure 5A). However, no significant difference in mean escape 

latency was found between inferior learners from the vehicle group plus retrieval trial, TDZD-

8 group plus retrieval and the TDZD-8 group in the home cage (absence of retrieval trial) 

(Figure 5A). Inferior learner animals administered vehicle expressed both mean and first 

escape latencies on the 16
th

 day of training (later protocol retrieval ) which were lower than the 

fourth training day  (Z(6,6)>2.01, P<0.05). In the other inferior learner groups, there were no 

significant differences between mean escape times on the 4
th

 and 16
th

 trial days. However, 

significant intergroup differences were detected between 1
st
 escape latency values on the 16

th
 

trail day (Kruskal-Wallis test: H(3,N=24)=9.68, P=0.0214). Inferior learners from the vehicle 

plus retrieval and  

the TDZD-8 plus home cage groups performed worse than animals in the vehicle plus their 

home cage group (Z(6,6) > 2.73, P<0.05). 
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Inferior learner rats from both groups which underwent the retrieval procedure manifested on 

the 16
th

 day (later protocol retrieval) longer 1
st
 escape latencies in comparison with those in the 

vehicle group returned to their home cage (Figure 5B; (Z(6,6)= 2.84, P<0.05). Scrutiny of the 

behavioral data during the 16-19 day period of repeated training were subjected to Friedman 

ANOVA analysis and inter-sessional differences were identified within the 1
st
 escape latencies 

of the vehicle-home cage group (ANOVA χ2
 (N=6, df=3)=8.00, P< 0.05), the  vehicle + 

retrieval group (ANOVA χ2
(N=6, df=3)=10.22, P< 0.01)  and the TDZD-8-home cage group 

(ANOVA χ2
 (N=6, df=3)=9.74, P<0.05). However, animals after TDZD-8 administration with 

retrieval trials displayed no intersessional differences (ANOVA χ2
 (N=6, df=3)=2.19, P >0.1). 

On the 18
th

 day (i.e. 3
rd

 day of repeated training) inferior learners from the TDZD-8-recall 

group yielded  higher values of first escape latency than subjects from the vehicle as well as 

TDZD-8 plus home cage groups. On the 19
th

 day (i.e the 4
th

 day of repeated training) the 

inferior learners treated with TDZD-8 combined with the retrieval procedure showed higher 

1st escape latencies than animals of the other groups examined.  

 

In summary, TDZD-8 administered in the absence of a retrieval trial impaired subsequent 

reconsolidation performance in inferior learners but enhanced it in superior learners whilst 

there was no modification of performance in the intermediate learner group compared to 

corresponding controls. In TDZD-8-treated subjects exposed to a retrieval trial, the pattern of 

outcomes was identical whereby impairment of reconsolidation occurred in inferior learners, 

enhancement in superior learners but there was no modification of performance in intermediate 

learners. 

 

 

Discussion  

The Morris water maze task, which is a hippocampus-dependent learning and memory test 

typically entailing between 3-14 days of training, was employed as a behavioral model 

(Sewell et al., 2005; Terry, 2009). This methodology has been used to evaluate not only 

navigation performance (Wood, 2011; Meck  et al., 2013) but also a molecular continuum of 

mnestic and amnestic processes in animals. Learning ability on the other hand, has not been a 

primary focus of visuospatial performance studies particularly on consolidation (McGaugh, 

2000) and reconsolidation (Alberini and Ledoux, 2013)  memory phases in animals (Alberini, 

http://www.ncbi.nlm.nih.gov/pubmed?term=Meck%20WH%5BAuthor%5D&cauthor=true&cauthor_uid=24128354
http://www.ncbi.nlm.nih.gov/pubmed?term=Alberini%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
http://www.ncbi.nlm.nih.gov/pubmed?term=Ledoux%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=24028957
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2005; Alberini et al., 2013; Sara, 2000) though some reports have been centered on the ageing 

brain in this respect (Samadani and Moussavi, 2012; Haberman  et al., 2013). Consolidation 

has been regarded for some time as a memory stabilization process executed on newly 

acquired memories in order to store their traces for the long term (McGaugh, 2000; Suzuki et 

al., 2004). Certain studies have demonstrated that after initial retrieval, long term memories 

may once more undergo a consolidation-like process which is termed reconsolidation 

(Debiec et al., 2002;  Rodriguez-Ortiz and Bermúdez-Rattoni, 2007) and this implicates 

independent cellular processes (Debiec et al., 2002;  Lee et al., 2004). The stability of the 

memory trace is a principal indicator of learning ability in animals and humans (Matzel et al., 

2003) since it has been reported that the stability of retrieved memory is inversely correlated 

with the control of behavior by that memory (Eisenberg et al., 2003). Hence, one of the aims 

of this study was to provide an answer to the question of how varied learning ability may be 

associated with stability and strength of memory trace in a spatial performance paradigm. The 

designations “superior”, “intermediate” and “inferior” learners are defined only by the 

parameters specifically imposed in this study and reflect only how fast the stability of the 

memory trace is established in the constant conditions of the chosen behavioral paradigm.  

 

In the total animal cohort studied (n=96), 3 classes of rats with different inherent learning 

abilities were identified. These included superior learners (25%), intermediate learners (50%) 

and inferior learners (25%) and this ability rank was used in subsequent studies. Any differences 

in the elevated plus maze behavioural pattern in the animal cohorts did not focus on the classical 

parameters of open arm versus closed arm entries (Pellow et al., 1985) and only very minor 

measures displayed any difference between groups. Hence it can be concluded that there were no 

major differences between superior, intermediate or inferior learners with respect to anxiety 

which might have influenced learning.  

 

Memory phenomena and different learning abilities stem at least partially from an array of 

underlying molecular mechanisms, including protein synthesis (e.g. in the hippocampus), mRNA 

activation and consequent gene expression (Da Silva et al., 2008;  Haberman  et al., 2013;  

Gruden et al., 2013). It should also be noted that during the course of our experiments, superior 

and inferior learners could be readily differentiated by their speed of trace stabilization.  This 

diversity in onset of memory trace reinforcement during initial training in both of these groups 

http://www.ncbi.nlm.nih.gov/pubmed?term=Haberman%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=24349543
http://www.ncbi.nlm.nih.gov/pubmed?term=Haberman%20RP%5BAuthor%5D&cauthor=true&cauthor_uid=24349543
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and its post-training modification probably arose from an innate variability of cognitive strategy, 

i.e., a balance between strength and flexibility of memory trace. In superior learners, the level of 

memory trace was higher and the retrieval procedure in the absence of the platform did not 

influence the established trace. The process of forgetting in superior learners examined 10 days 

after initial training probably served to increase the flexibility of behavior under a change of 

environment. This could reflect a rapid change of previously acquired habit if the environment 

(for example, visual cue positions) was changed. In inferior learners, an unstable and more 

flexible spatial memory trace was established.  The stability of memory trace increased in the 

control inferior learners (vehicle in home cage i.e., no retrieval trial) during 10-days of rest 

without any changes in environment.  In these rats, the recall procedure without the platform was 

the signal which prevented spatial memory trace stabilization based on greater trace flexibility. It 

could be proposed that in the group of intermediate learners (the majority of the study 

population), an optimal level of strength and flexibility of memory trace was achieved during 

initial training. Thus, neither retrieval without the platform nor 10-days rest, had any effect on 

trace.   It may also be hypothesized that the balance between the flexibility and stability of 

spatial memory trace was not the underlying mechanistic process, but the result of complex 

interactions amongst different signal pathways, for example Wnt and/or the survival and 

apoptosis of newly generated neurons. In addition, long term potentiation (LTP) and long term 

depression (LTD) of hippocampal cells may contribute to these properties of spatial memory 

trace (Whitlock et al., 2006). It is notable that TDZD-8 was implicated in improved task 

acquisition during repeated learning in the superior learner group and the mechanism of this 

learner class phenomenon is the subject of future study.   

Apart from the aforementioned processes which are the basis of novel memory formation, other 

molecular mechanisms can support memory trace stability. The stability of the memory trace is a 

principal indicator of learning ability in animals and humans (Matzel et al., 2003) since it has 

been reported that the stability of retrieved memory is inversely correlated with the control of 

behavior by that memory (Eisenberg et al., 2003).  

In recent times, interest has been concentrated on GSK-3 as a regulator of glycogen 

metabolism, protein synthesis, cell growth, survival and programmed cell death (apoptosis) 

(Grimes et al., 2001; Cai et al., 2012). In normal physiological conditions, GSK-3 is thought 

to be a constitutively active kinase and most GSK-3 substrates are under negative regulation, 
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which is reversed by Ser9 phosphorylation via other kinases such as protein kinase A and C 

(PKA and PKC) and protein kinase B (Akt) (Jope and Johnson, 2004; Kimura et al., 2008). 

Kimura et al., (2008) hypothesized that under normal conditions, GSK-3β is inhibited and as 

such, it does not appear to affect brain function. However, in disease states, the enzyme 

becomes stimulated by the elimination of inactivation signals. Notwithstanding this, there is 

evidence that GSK-3β may participate in learning and memory mechanisms whereby 

reconsolidation requires its activation (Kimura et al., 2008) and it is also involved in 

neuropathological states, where cognitive deficits are present (Jain et al., 2013). This concept 

is additionally supported by the importance of GSK-3 activity during the induction of LTD, 

suggesting that GSK-3 function may contribute to the control of synaptic plasticity coupled 

with learning and memory mechanisms (Peineau et al., 2008). 

Thus, the next target of this study was to probe the effects of GSK-3 inhibition on long-term 

spatial memory dynamics with respect to inherent learning ability. We have therefore 

performed biochemical enzyme assays which have verified that TDZD-8 at a 2.0 mg/kg dose 

is an effective in vivo inhibitor of hippocampal GSK-3β activity. Hence, this particular dose 

of TDZD-8 was chosen for all behavioral investigations in this study. It is important at this 

juncture to appreciate that memory consolidation and reconsolidation have an intricate 

developmental chronology but a single drug exposure at a critical time point before or after 

training or reminding may be inductive (Nadel et al., 2012). Also, it is known that inhibition 

of consolidation by a single exposure to biologically active compounds leads to the 

deterioration of memory trace during long term testing (at least 7 days) (Parfitt et al., 2012). 

In addition, it has been observed that not only exposure to chemical agents, but even space in 

a new environment (e.g., non-associative learning in the hole-board model) may lead to long-

term disruption of the memory trace. Furthermore, the combination of new training with 

memory reactivation (reconsolidation) causes suppression of skill reproduction 21 days after 

exposure (Boccia et al., 2005). Thus, prolongation of memory impairment after a single 

TDZD-8 exposure (i.e. GSK-3 inhibition) in this investigation has also been studied 

elsewhere though data suggests that GSK-3 performs a dual role. Hence, GSK-3 activity 

maintains cognitive function in persons without dementia, whereas excessive activation of 

GSK-3 occurs in cortical and neocortical regions of patients with dementia (Takashima, 

2012).  

http://www.ncbi.nlm.nih.gov/pubmed?term=Jain%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23704876
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An experimental approach involving memory retrieval or its absence, with subsequent 

repeated learning was devised to investigate any possible modification in the consolidation 

and reconsolidation phases. It was found that in superior learners which demonstrated a high 

level of spatial navigation performance at the end of an initial training session, spontaneous 

extinction of memory trace occurred. This phenomenon was not affected by TDZD-8 but 

there was enhanced stable memory trace in the subsequent course of repeated learning in 

animals with no previous reconsolidation. Therefore inhibition of the enzyme at the 

consolidation stage improved subsequent reconsolidation of spatial memory trace (Figure 6). 

Hence, in superior learners, a stable memory trace was destabilized following GSK-3 

inhibition but during a later retrieval procedure on the first day of a repeated learning 

program, it not only underwent stabilization, but also a reinforcement reflected by decreased 

mean escape latency as an expression of memory enhancement.  

 

 Interestingly, the retrieval procedure itself had no influence either on memory trace retrieval 

or the dynamics of memory trace throughout the course of repeated learning (Figure 6). 

Imposition of GSK-3 inhibition on the retrieval procedure significantly impaired memory 

trace retrieval on the 17
th

 protocol day but did not prevent memory restoration in the superior 

learners during the course of repeated learning.  

The capacity of superior learners to boost memory trace after its stabilization provided them 

with the opportunity to improve/enhance spatial memory in the delayed conditions of the 

repeated learning procedure. This may be linked with the net product of a balance between 

enzyme activation and deactivation, the outcome of which may drive different molecular 

events underlying the formation of stable novel memory traces. The functional role of GSK-3 

in the Wnt signalling pathway is pertinent to a GSK-3 involvement in the molecular 

regulation of spatial memory at the reconsolidation stage. Considering the animal learning 

ability data along with TDZD-8 effects, it might be hypothesised that the increased 

performance of superior learners after repeated training is associated with activation of the 

Wnt pathway by augmented expression of Wnt target genes. Moreover, Wnt signalling has a 

greater effect on up-regulated genes in GSK-3α(-) (/) (-); GSK-3β(-) (/) (-) embryonic stem 

cells, whereas PI3K-dependent insulin signalling is more responsible for the down-regulation 

of genes in the same cells. These data emphasise the importance of GSK-3 activity on gene 
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expression and such activity is due to the combined effects of multiple signalling pathways 

(Bartman et al., 2014). 

 

In the light of this, intermediate learners did not exhibit any learning-related changes within 

the experimental protocol employed, so it may be deduced that consolidated memory trace is 

not affected by inhibition of GSK-3. In contrast, inferior learner rats did not express any 

extinction of memory trace and on the 16
th

 protocol day, they performed significantly better 

than on the 4
th

 day of initial training. This finding may be evidence of a “lingering” or 

“prolonged” consolidation phase of spatial memory (Dudai and Eisenberg, 2004) i.e., a time-

dependent spontaneous reinforcement of an unstable memory in this ability class of animals.  

The data indicate that TDZD-8 administration to rats returned to their home cage without the 

retrieval procedure evoked an impairment of prolonged consolidation of an unstable memory 

trace. This finding may be explained by an early GSK-3 participation in delayed memory 

enhancement through mechanisms of LTD which contributed to active synapse selection and 

“sharpening” of memory trace (Ge et al., 2010). Additionally, modified enzyme activity may 

bidirectionally modulate synaptic plasticity, serving as a connecting link between LTD and 

LTP (Peineau et al., 2007; 2008; Dewachter et al., 2009). It has been reasoned that a duality 

of influence on synaptic plasticity may shield synapses from additional NMDA receptor-

dependent input until previous information was either consolidated or erased (Peineau et al. 

2007; Zorumski and Izumi, 2012).  

In inferior learners, TDZD-8 in combination with the recall procedure prevented spatial 

memory trace restoration during repeated learning (Figure 6). These data, to a certain extent, 

may correspond with results obtained by Kimura et al., (2008) which demonstrated that 

knockout (GSK-3β +/-) mice exhibited retrograde amnesia with repeated training in the 

MWM paradigm. In the investigation, swimming with a platform absence impaired 

prolonged consolidation in inferior learners but did not affect spontaneous extinction in the 

superior learning animal class. It may be proposed that the retrieval procedure (Figures 1 and 

6) caused partial memory extinction which interfered with prolonged consolidation of an 

unstable memory trace (Osan et al., 2011). However, non-reinforced retrieval can cause 

reconsolidation if the number of non-reinforced retrieval trials is insufficient to induce long-

lasting extinction (i.e. a single trial) then a hippocampal protein synthesis-dependent 

reconsolidation process recovers the original memory (Rosatto et al., 2006). It should be 
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noted that in this case, there was partial erasure of memory trace which otherwise would have 

been consolidated or even enhanced. Furthermore, in inferior learners which were 

administered TDZD-8 together with a retrieval procedure, the partial erasure of memory trace 

coincided with failure of mechanisms which protect synapses and an untimely activation of 

NMDA-receptor input impairing LTP. This phenomenon may lead to development of a 

pathological form of metaplasticity and cognitive decline (Zorumaski and Izumi, 2012). The 

long-lasting effects of single TDZD-8 administration on spatial memory (especially, on the 

repeated learning end result) are evidence of its influence on continuing processes in the 

brain, such as cell proliferation, differentiation and survival. Moreover, the experimental data 

may suggest that a reduction in GSK-3 activity leads to suppression of intrinsic cell apoptosis 

(Song et al., 2010; Jaeger et al., 2013). Thus, administration of TDZD-8 at a dose 2.0 mg/kg 

may well decrease the rate of apoptosis in cells at an intermediate phase contributing to 

spatial memory formation (Epp et al., 2011). Additionally, there are data confirming that 

spatial learning modifies neurogenesis by stimulating a cascade of events that resembles the 

selective stabilization process characterizing development (Dupret et al., 2007). There are 

three interrelated events mediating spatial learning, that is, promotion of survival of relatively 

mature neurons, apoptosis of more immature cells, and finally, proliferation of neural 

precursors. Thus, blocking apoptosis impairs memory and inhibits learning-induced cell 

survival and cell proliferation. Dupret et al., (2007) concluded that during learning, similar to 

the selective stabilization process, neuronal networks are sculpted by a tightly regulated 

selection and suppression of different populations of newly born neurons. Supportive to this 

view are the findings that hippocampus-dependent learning in the MWM affects survival of 

immature cells even before they are synaptically contacted (Ambrogini et al., 2004; 2010). 

Correspondingly, survival of new born cells is increased during the initial phase of spatial 

learning, and diminished at the asymptotic phase, such phenomena being inculcated in 

stabilization of memory trace. Increased neural survival is therefore a prompt to new learning 

processes (Dupret et al., 2007). The specific dynamics of these processes has been examined 

in different species/strains and may depend on animal learning ability. In particular, survival 

of newly born neurons may be decreased by training on a difficult navigation task compared 

to a control level and relative to a simpler task (Epp et al., 2010). Differences in the effects of 

TDZD-8 in the superior and inferior learners may be associated with dissimilar rates of 

consolidation of spatial skills. In particular, consolidation was not established in inferior 
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learners at the time of inhibitor administration in contrast to superior learners where memory 

trace stability was present.   

 

In this study, the asymptotic phase was most likely achieved prior to TDZD-8 injection in 

superior learners. An increase in cell survival caused by injection of the GSK-3 inhibitor in 

the home cage was probably beneficial to repeated learning in superior learners at least. 

Conversely, inhibitor administration along with spatial memory destabilization (retrieval) in 

the superior learners led to mild impairment of navigation performance during the late recall 

procedure (Figures 1 and 6). Moreover, since the retrieval procedure was brief, it was likely 

that only a small population of newly born neurons was affected by combination of stimulus 

disparity (no retrieval) together with TDZD-8 and thus repeated learning was unimpaired in 

the superior learner group. 

In inferior learners, the asymptotic level of spatial performance was not achieved but only 

began at the time of TDZD-8 injection. Selection of new neurons by apoptosis at this time 

may have occurred to generate further memory strengthening.  If this “sculpturing” apoptosis 

was prevented by the GSK-3 inhibitor, it might have eventuated in consolidation impairment 

but not the prevention of repeated learning (injection in the home cage). Combination of 

retrieval with the action of the inhibitor could conceivably have enhanced the number of 

neuronal cells generated at the time and also after this disparity of training. This would be 

detrimental not only to late recall but also repeated learning.         

 

In conclusion, the data substantiates the participation of GSK-3 in prolonged consolidation of 

an unstable spatial memory trace. Inhibition of this enzyme also impairs the process of 

reconsolidation in animals with a relatively stable spatial memory and prevents the 

restoration of disrupted habit in repeated learners with an unstable memory trace. In 

particular, subjects with superior learning ability exhibited improved reconsolidation 

following enzyme inhibition. These findings may aid the development of a strategy to use 

GSK-3 inhibitors for amelioration of cognitive deficits in different pathological states. 
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Figure 1 - Scheme showing the experimental protocol initiated by Morris water maze 

(MWM) training on days 1-4, then on day 5, learning ability classification (inferior, 

intermediate or superior learners), intraperitoneal (i.p.) injection of vehicle or TDZD-8 (2.0 

mg/kg) followed by either a retrieval trial or no retrieval trial before return of animals to the 

home cage. Then on days 16-19, repeated MWM training. 
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Figure 2 - Distribution of superior, intermediate and inferior learner rats based on their 

platform escape latencies (s) on the 4
th

 protocol training day.  

 

 

Figure 3 - (A) Daily overall trial- and (B) first trial-swimming escape latencies (s, mean ± 

sem) of superior learner rats in the Morris water maze on protocol days 1-4 and 16-19. 

Animals received i.p. on day 5: vehicle and no retrieval trial before home cage return 

(circles), TDZD-8 (2.0 mg/kg) and no retrieval trial before home cage return (squares), 

vehicle with a retrieval trial (diamonds) and TDZD-8 (2.0 mg/kg) with a retrieval trial 

(triangles) before home cage return. 
#
P<0.05 compared to control rats (circles).   
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Figure 4 – (A) Daily overall trial- and (B) first trial-swimming escape latencies (s, mean ± 

sem) of intermediate learner rats in the Morris water maze on protocol days 1-4 and 16-19. 

Animals received i.p. on day 5: vehicle and no retrieval trial before home cage return 

(circles), TDZD-8 (2.0 mg/kg) and no retrieval trial before home cage return (squares), 

vehicle with a retrieval trial (diamonds) and TDZD-8 (2.0 mg/kg) with a retrieval trial 

(triangles) before home cage return.  

 

 

Figure 5 - (A) Daily overall trial- (B) and first trial-swimming escape latencies (s, mean ± 

sem) of inferior learner rats in the Morris water maze on protocol days 1-4 and 16-19. 

Animals received i.p. on day 5: vehicle and no retrieval trial before home cage return 

(circles), TDZD-8 (2.0 mg/kg) and no retrieval trial before home cage return (squares), 

vehicle with a retrieval trial (diamonds) and TDZD-8 (2.0 mg/kg) with a retrieval trial 

(triangles) before home cage return. 
#
P<0.05 relative to control rats (circles). *P<0.05 

compared to day 4 latency. 
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Figure 6 - Scheme summarizing the experimental results in superior, intermediate and 

inferior learner rats trained to spatial memory formation and its consolidation (protocol days 

1-4) and after i.p. administration of vehicle or TDZD-8 (2.0 mg/kg) followed by a Morris 

water maze retrieval trial with reconsolidation of spatial memory or animal return to the 

home cage without retrieval trial on protocol day 5. Subsequent visuospatial performance 

outcomes during repeated learning protocol days 16-19 are shown as: an upwards arrow – 

performance enhancement; downwards arrow – impairment; double horizontal arrow – no 

modification of visuospatial performance in the water maze. 


