
SCUOLA NORMALE SUPERIORE DI PISA

Perfezionamento in Matematica

XVIII ciclo, anni 2003-2005

PhD Thesis

Federica Dragoni

CARNOT-CARATHÉODORY
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3.3 Carnot-Carathéodory inf-convolutions and ultraparabolic

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.3.1 Heat kernels for hypoelliptic operators. . . . . . . . . . 141

3.3.2 Limiting behavior of solutions of subelliptic heat equa-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A The Legendre-Fenchel transform. 157

Bibliography. 165



Introduction.

Sub-Riemannian geometries have many interesting applications in very dif-

ferent settings, as optimal control theory ([17, 26, 27]), calculus of variations

([2, 4]) or stochastic differential equations ([16]). Many physical phenomena

seem to induce in a natural way an associated sub-Riemannian structure, for

example, one can think of Berry’s phase problem, a swimming microorgan-

ism (studied in [75]), the optimal control in laser-induced population transfer

(see [20]) and the perceptual completion in the visual cortex ([35]). Sub-

Riemannian geometries (known also as Carnot-Carathéodory spaces) arise

whenever there are privileged and prohibited paths. In fact, the main differ-

ence between these geometries and the Riemannian geometries is the need to

move along some prescribed vector fields. A Sub-Riemannian metric is in-

deed a Riemannian metric defined only on a subbundle of the tangent bundle

to the manifold. More precisely, let X = {X1, ..., Xm} be a family of vector

fields, defined on a n-dimensional manifold M (with in general m ≤ n), a

sub-Riemannian metric is a Riemannian metric
〈
,
〉

defined on the fibers of

H := Span(X ) ⊂ TM . A subbundle H is usually called distribution.

For sake of simplicity, from now on we will always assume thatM = Rn. This

in particular implies that the tanget space at any point x is equal to Rn and

the tangent bundle is isomorphic to R
2 n. An admissible (or X -horizontal)

curve is any absolutely continuous curve γ : [0, T ] → Rn, such that

γ̇(t) ∈ Span(X1(γ(t)), ..., Xm(γ(t))), a.e. t ∈ [0, T ].

Since the Riemannian metric
〈
,
〉

is defined along the fibers of H, for the

horizontal curves and, only for the horizontal curves, we can introduce a
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length-functional as follows:

l(γ) =

∫ T

0

〈
γ̇(t), γ̇(t)

〉 1
2dt.

A sub-Riemannian (or Carnot-Carathéodory) distance on Rn can be de-

fined, for any x, y ∈ Rn, as

d(x, y) = inf{l(γ) | γ admissible curve joiningx to y}. (1)

It is obvious that, whenever there are not admissible curves joining x to y,

then d(x, y) = +∞. For this purpose the Hörmander condition is introduced.

In fact, in Carnot-Carathéodory spaces satisfying the Hörmander condition,

it is always possible to join two given points by an admissible curve (Chow’s

Theorem, [17, 75]). Then the associated Carnot-Carathéodory distance is

finite. The Hörmander condition (known also as bracket generating condi-

tion) is satisfied if the Lie algebra associated to the distribution H = Span(X )

spans the whole tangent space at any point of the manifold (that in this par-

ticular case is at any point equal to Rn). We recall that the bracket between

two vector fields X and Y is the vector field defined as [X, Y ] = XY − Y X,

acting by derivation on smooth real functions. The Lie algebra L(X ) associ-

ated to X = {X1, ..., Xm} is the set of all the brackets between elements of

X , so the Hörmander condition holds, if and only if,

Span
(
L(X1(x), ..., Xm(x))

)
= TxM = R

n, for any x ∈ R
n.

The first chapter is dedicated to the study of sub-Riemannian geometries

and topological and metric implications of the Hörmander condition.

In the second chapter, we are interested in solving some first-order

nonlinear partial differential equations (PDEs) related to the Hörmander

condition. Therefore we will introduce the theory of viscosity solutions

for continuous and discontinuous functions. Later we concentrate on the

two particular nonlinear PDEs: The eikonal equation and an evolution

Hamilton-Jacobi equation.

We first solve the generalized eikonal equation:

H0(x,Du) = 1, (2)
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with vanishing condition at some fixed point y ∈ Rn and where H0(x, p) is

the geometrical Hamiltonian defined by

H0(x, p) = |σ(x)p|, (3)

with σ(x) Hörmander-matrix (i.e. a m × n real-valued matrix with smooth

coefficiente and such that its rows satisfy the Hörmander condition).

Later we consider an evolution Hamilton-Jacobi equation of the form:

ut + Φ(H0(x,Du)) = 0 (4)

where Φ is a suitable positive and convex function and H0(x, p) satisfies the

structural assumpiton (2). The main model for the PDE (4) is

ut +
1

α
|σ(x)Du|α = 0, with α > 1. (5)

We solve both the previous PDEs by using the Hörmander condition and

suitable representative formulas. In order to solve the eikonal equation, fixed

the point y ∈ R
n, we define the minimal-time function

d(x, y) = inf
X(·)∈Fx,y

T (X(·)), (6)

where Fx,y is the set of all the trajectories joining x to y in a time T (X(·))
which are solutions of the differential inclusion

Ẋ(t) ∈ ∂H0(X(t), 0) = σT (X(t))B1(0),

with B1(0) unit Euclidean ball in Rm centered at the origin.

It is possible to show under very weak assumptions that a minimal-time

distance is a generalized distance (i.e. a distance not always symmetric)

solving a Dynamical Programming Principle:

d(x, y) = inf
X(·)∈Fx,y

[t+ d(X(t), y)], for any 0 < t < d(x, y).

For our particular Hamiltonian in (3), the minimal-time distance turns out to

be equivalent to the Carnot-Carathéodory distance associated to the matrix

σ(x). By using the Dynamical Programming Principle, we prove that u(x) =

d(x, y) solves in the viscosity sense the corresponding eikonal equations on
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Rn\{y}. By a sub-Riemanninan generalization of the Rademacher’s Theorem

(see [75, 77, 80]), the viscosity result implies that the Carnot-Carathéodory

distance is a almost everywhere solution, too (at least in Carnot groups).

To solve the eikonal equation is the key-point in order to solve the Cauchy

problem for Eq. (4) with lower semicontinuous initial data g(x). To get

the existence of a viscosity solution for this class of PDEs, we use a suitable

representative formula: the metric Hopf-Lax formula given by

u(t, x) = inf
y∈Rn

[
g(y) + tΦ∗

(
d(x, y)

t

)]
, (7)

where Φ∗ is the Legendre-Fenchel transform:

Φ∗(t) = sup
s≥0

{st− Φ(s)}, for any t > 0.

When H0(x,Du) = |Du|, (7) is exactly the classic Hopf-Lax formula

studied in [7, 8, 47] in the continuous viscosity setting, and in [3] in the

semicontinuous case. The metric Hopf-Lax formula was first introduced by

Lu-Manfredi-Stroffolini [73] in the particular case of the Heisenberg group

and then generalized to general metric spaces by Capuzzo Dolcetta and Ishii

in [27] (see also [26, 25]).

We investigate some properties of function (7) and show that, whenever

g : Rn → R is lower semicontinuous, u(t, x) lower converges to g as t → 0+,

and it is locally Lipschitz continuous in x w.r.t the metric d(x, y). Moreover,

if the function g is bounded, the infimum in (7) is a minimum and the metric

Hopf-Lax function is locally Lipschitz continuous in t (in the Euclidean

sense) and non decreasing in t. The main result proved in the second chapter

is that u(t, x) given in (7) is a viscosity solution of the Cauchy problem for

Eq. (4) with lower semicontinuous initial data g(x).

The third chapter is devoted to investigating the metric inf-convolution.

The metric inf-convolution of some function g(x) is defined as the Hopf-Lax

function whenever Φ(t) = 1
2
t2, i.e.

gt(x) = inf
y∈Rn

[
g(y) +

d(x, y)2

2t

]
. (8)
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We show that functions (8) give a monotonously Lipschitz continuous ap-

proximation of the function g(x), as t → 0+ (assuming that g(x) is lower

semicontinuous and bounded in Rn), similarly to the known Euclidean case

(see [7, 24]). In particular we are interested in the limiting behavior of the

logarithm-transform for the solutions of some subelliptic heat problems:





wε
t − ε

n∑

i,j=1

ai,j(x)
∂2wε

∂xi∂xj
= 0, x ∈ R

n, t > 0,

wε(0, x) = e−
g(x)
2ε , x ∈ R

n,

where A(x) =
(
ai,j(x)

)n
i,j=1

= σt(x)σ(x) and σ(x) is a m×n-Hörmander ma-

trix (with m ≤ n). It is well-known that, if σ(x) is a Hörmander-matrix, then

the second-order differential operator Lu =
∑n

i,j=1 ai,j(x)
∂2u

∂xi∂xj
is hypoellip-

tic, which means that, whenever f is smooth, the solutions of Lu = f are

smooth, too. Let d(x, y) be the Carnot-Carathéodory distance associated to

the Hörmander-matrix σ(x), then the logarithm-transform of the solutions wε

converge to the Carnot-Carathéodory inf-convolution defined by (8). More

precisely, we show that

lim
ε→0+

−2ε logwε(t, x) = gt(x),

for any g : Rn → R bounded and continuous. In order to prove the previous

limit, we use the integral representation (by heat kernel) of the solutions wε

and then we apply the Large Deviation Principle ([94]). The difficulty is to

verify the applicability of the Large Deviation Principle in the hypoelliptic

case. In particular, we need to generalize the result proved by Varadhan in

the uniformly elliptic setting in [93] to the subelliptic case. We give a new

proof which uses methods of measure theory and covers any known results

extending them up to the Hörmander-case.

For the metric Hopf-Lax function and the metric inf-convolution, many

problems are still open. For example it would be very useful to find some

horizontal C1,1-approximation for continuous (or even semicontinuous)

functions, by using both the metric inf-convolutions and the corresponding

metric sup-convolutions, as it happens in the Euclidean case (see e.g. [24]).
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Unfortunatelly nothing is at the moment known about the semiconcavity

or/and the semiconvexity for the metric inf/sup-convolutions functions. It

is even not known is the Carnot-Carathéodry distance or a power of the

distance could be semicovex or semiconcave in some suitable sense.

To find an horizontal C1,1-regularization by metric inf/sup-convolutions

would lead to many interesting applications in the study of uniqueness and

regularity for nonlinear first-order and second-order PDEs related to the

Hörmander condition.

Acknowledgements. I want to express my gratitude towards my advi-

sor Prof. Italo Capuzzo Dolcetta and to Prof. Juan Manfredi who helped to

correct the first version of this thesis and suggested improvements.

I also like to thank Prof. Luigi Ambrosio for the many useful suggestions,

in particular concerning the proof of the Large Deviation Principle.



Chapter 1

Sub-Riemannian geometries.

In this first chapter we introduce and study a particular kind of degenerate

Riemannian geometries: the so called sub-Riemannian geometries.

The main characteristic of these geometries is that there are non-admissible

curves. Roughly speaking, one can think of a sub-Riemannian geometry as a

Riemannian metric on a manifold, with some constraints on the direction of

the motion. In fact, only the curves whose velocity belongs to a some given

subbundle of the tangent bundle are admissible.

1.1 Basic definitions and main properties.

1.1.1 Historical introduction and Dido’s problem.

To give a clear and complete historical overview of sub-Riemannian geome-

tries is impossible. In fact, these geometries have been developed in the

last hundred years in many different setting and by using various names.

Hence it is very hard to go back its origin to some particular work or

author: we just quote some of the most significant steps. A key result for

the sub-Riemannian geometries is given by the Chow’s Theorem, proved in

the end of thirties, independently by Chow’s [30] and by Rashevskii [82].

This result ensures that, under the bracket generating condition, it is always

possible to join any pair of points by a horizontal curve. So these two

authors can be considered as the “fathers” of the sub-Riemannian theory.

Nevertheless, Carathéodory have already got a version of Chow-Rashevskii’s
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result in 1909 for corank-one distributions (see [28]).

Indeed Carathéodory proved the reverse implication: the author showed that

in a connected manifold endowed with an analytic corank-one distribution if

there exist two points that cannot be connected by a horizontal curve, then

the distribution is integrable. We recall that an integrable distribution is

the opposite case to the bracket generating condition. In fact, a distribution

is bracket generating if and only if the associated Lie algebra spans all the

tangent space, at any point. A distribution is instead integrable if and

only if at any point there exists a hypersurface tangent everywhere to the

distribution. Therefore the distributions satisfying the bracket generating

condition are called completely non-integrable.

Carathéodory’s result is considered the first theorem in the sub-Riemannian

theory. Carathéodory applied this theorem to Carnot’s work about ther-

modynamics, getting the existence of integrating factors for the Pfaffian

equation. Many years after, Gromov and others started to use the name of

Carnot-Carathéodory metrics to indicate the sub-Riemannian case. One can

also find Sub-Riemannian metrics with the name of singular Riemannian

metrics (see, for example, [21, 53]) or nonholonomic metrics ([95]).

We want also to recall that sub-Riemannian theory is linked to the hypoel-

liptic PDEs theory. The origin of this theory can be traced back to a work

of Hörmander published in 1967 ([55]) and so usually the bracket generating

condition is called the Hörmander condition. Nevertheless in the seventies

hypoellipticity has been used in many works of Stein ([88]) and others,

without giving it a specific name.

The most famous example of a sub-Riemannian geometry is the Heisen-

berg group. Next we present a very famous problem for the calculus of

variation: the isoperimetric problem, known also ad Dido’s problem. This

minimizing problem in the plane can be in fact used to introduce the

1-dimensional Heisenberg group.

First let us tell something about this Phoenician myth of the foundation

of Carthage (in [18], you can find one of the most complete treatment of this

myth). The myth of Dido has been made famous by Virgil in the Aeneid
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(IV) but it is much more ancient: in fact the first reference to this myth can

be found in the literary work of Timeo di Tauromenio (Storie, IV-V century

B.C.).

Elissa (that is the Phoenician name of Dido) was the daughter of the

Phoenician king Tiro. Her brother Pygmalion, after the death of their

father, killed her husband who was a rich and powerful priest of the God

Melkart. So she decided to leave with some followers and docked at the

African North coast. There she bought from Jarbas, the king of Messitania,

as much land as could be contained by an ox-skin. Dido cut the ox-skin in

many thin strips and then she stringed them together in order to get a very

long strip. Using this strip and the African coast she bounded her future

kingdom: Carthage (i.e. Qart Hashdat that, in Phoenician, means “ new

city”). Dido’s great idea consists in understanding that the biggest area can

be obtained using an arc of a circle.

Dido’s problem is the first example of a minimizing problem of calculus

of variations. Its dual formulation is the well-known isoperimetric problem.

Next we show that the isoperimetric problem in the plane can be easily solved

by the introduction of the (1-dimensional) Heisenberg group.

The isoperimetric problem can be easily rewritten in the following way.

Let γ : [0, T ] → R2 be a curve on the plain, that for sake of simplicity we

assume smooth closed and bounded, which we write as γ(t) = (x(t), y(t)). In

this simple case, the “perimeter” of the set delimited by the curve γ is the

Euclidean length of the curve, which is

l(γ) =

∫ T

0

‖γ̇(t)‖ dt,

with ‖γ̇(t)‖ =
√
ẋ2(t) + ẏ2(t).

To solve the isoperemetric problem means to minimize the previous length-

function with the constraint of a constant area.

Therefore, we fix a constant C > 0: the area of the domain in the plane,

delimited by the curve γ is given by the Stokes’ formula:

(A)
1

2

∫ T

0

(x(t)ẏ(t) − y(t)ẋ(t))dt = C.
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The isoperemetric problem in the plane can be expressed by the minimization

problem:

min {l(γ) | γ closed rectifiable curve, satisfying (A)} (1.1)

The idea is now to define a “third dimension” z by lifting the constraint of

the constant area. This leads to a new constraint:

ż =
1

2
(−yẋ+ xẏ). (1.2)

Note that the third dimension z is not a free dimension (i.e. it does not lead

to an independent variable) but it is related to x and y by Eq. (1.2). In other

words this means that only the curves whose derivatives satisfy (1.2) will be

considered. Any curve γ : [0, T ] → R
3 satisfying (1.2) is called admissible

(or horizontal).

As we will see better in Sec.1.3, the kernel of the 1-form η(x, y, z) :=

dz − 1
2
(xdy − ydx) gives rise to a sub-Riemannian geometry called the 1-

dimensional Heisenberg group.

We know, as Dido knew almost three-thousand years ago, that the solutions

of the isoperimetric problem in the plane are the arcs of circle. Using the

Heisenberg group we can easily verify this result (see Remark 1.117).

Proposition 1.1. The solutions of the isoperimetric problem (1.1) are the

projections on the two first-components of the geodesics (that are the hori-

zontal curves with minimal length) of the 1-dimensional Heisenberg group.

By looking at this example, we can sum up the following general idea: the

original constrained minimization problem can be written as a minimization

problem without any constraint but living in a higher-dimension space,

where constraints on the geometry have been introduced.

This is one of the most useful application of the theory of sub-Riemannian

geometries to the calculus of variations.

More information on the links between the Dido-isoperimetric problem

and the Heisenberg group can be found in [2] or also in [75], Sections I.1.1-

I.1.3.
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1.1.2 Some new development: the visual cortex.

Recently Citti and Sarti introduced a very interesting new application (see

[33, 31, 32, 34, 35]). In particular by using of a sub-Riemannian geometry,

the so called roto-traslation geometry, they got important mathematical as

well as numerical results in the study of the image completion.

Let us briefly introduce the phenomenon: look at the picture in Fig. 1.1.

It is possible to discern two different fishes even though the two fishes are

not fully portrayed. This happens since the human visual cortex completes

automatically the internal objects and in this way new contours arise (called

apparent or also subjective contours).

Figure 1.1: The two Kanizsa’s fishes.

The perceptual completion can be modal (to extend contours as in Fig. 1.2)

or amodal (to reconstract the shape of partially occluded objects as in Fig.

1.3).

Figure 1.2: Kanizsa’s triangle: example of modal completion.
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Figure 1.3: Example of amodal completion.

Mathematical models of this phenomenon have to take into account many

different facts. All the classical models involve the minimizing of the elastic-

functional, which is defined by

E(γ) =

∫

γ

(
1 + k2

)
dγ, (1.3)

where γ(t) = (x(t), y(t)) is a curve in the plane and k indicates the curvature

of γ, i.e.

−k(t) :=
ÿ(t)ẋ(t) − ẍ(t)ẏ(t)

(ẋ2(t) + ẏ2(t))
3
2

.

The functional E is very difficult to study, in particular numerically, since it

depends on the curvature which is a second-order differential operator.

Without giving details on the biologic models for the visaul cortex, we like

just to recall that the orientation sensitive simple cells induce a fibration of

orientations. So the natural space to study this phenomenon seems to be

the 3-dimensional image-orientation manifold. Increasing the dimension of

the space with the introduction of a suitable third component, it is possible

to reduce the order of the function to study. Hence, we consider as third-

component the “orientation” θ(t), which leads to:

ẋ(t) = cos θ(t) ẏ(t) = sin θ(t).

where we assumed the curve γ parametrized by length-arc.

We can so associate to any curve γ(t) = (x(t), y(t)) a 3-dimensional curve

γ̂(t) = (x(t), y(t), θ(t)) where θ̇(t) = k(t).

The corresponding length-functional can be written as

l(γ̂) =

∫

bγ

√
ẋ2 + ẏ2 + θ̇2 dγ̂ (1.4)
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It is possible to show that solving the minimization problem (1.3) is equiva-

lent to the minimization problem (1.4), assuming the following condition on

the admissible curves:

˙̂γ(t) = (cos θ(t), sin θ(t), k(t)). (1.5)

This means that one can study a model for image completion by looking at

the geodesics of the roto-traslation (sub-Riemannian) geometry.

1.1.3 Riemannian metrics.

Before introducing the sub-Riemannian geometries, it is useful to recall some

basis notions about Riemannian metrics. For more details we refer to [22,

46, 48].

Definition 1.2. Let M be a generic set and suppose that there exist {Uα}α

open subsets of Rn and {xα : Uα → M}α injective maps, such that

(i)
⋃

α xα(Uα) = M .

(ii) For any α, β such that xα(Uα) ∩ xβ(Uβ) = W 6= ∅, then x−1
α (W ) and

x−1
β (W ) are open sets in R

n and x−1
β ◦ xα are smooth maps.

(iii) The family {(Uα, xα)} is maximal w.r.t. the assumptions (i)-(ii).

Then we say that {(Uα, xα)} is a smooth structure on the set M .

Remark 1.3 (Induced topology). A smooth structure defined on a set M

induces in a natural way a topology on the set. In fact, we can say that

A ⊂M is an open subset of M whenever x−1
α (A∩ xα(Uα)) is an open subset

of Rn, for any α. M endowed with this topology is a paracompact, Hausdorff

topological space (see [46]). Moreover, for any α and Uα, xα(Uα) is an open

set and xα is a continuous map.

To introduce the notion of curves on a smooth manifold, we first need to

recall the following definitions.

Definition 1.4. Let M be a smooth manifold, a local parametrization (or

system of coordinates) at a point p ∈ M is a map y defined on some neigh-

borhood U of p, such that y is a diffeomorfism on its range.
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Definition 1.5. Let M1 and M2 be smooth manifolds with dimension n and

m respectively. A map φ : M1 → M2 is differentiable if and only if for any

p ∈M1 and for any local parametrization (V, y) at φ(p) ∈M2, there exists a

local parametrization (U, x) at p ∈M1 such that

(i) φ(x(U)) ⊂ y(V ),

(ii) y−1 ◦ φ ◦ x : U ⊂ Rn → V ⊂ Rm is a smooth map in x−1(p).

Next we introduce the notion of a curve on a smooth manifold.

Definition 1.6. Let M be a smooth manifold and I a real interval, then any

differentiable map γ : [0, T ] →M is a curve on M .

Let be γ(0) = p ∈ M and D be the set of all the functions which are

differentiable at the point p, then the following real functional

γ̇(0) : D −→ R

f 7−→ γ̇(0)f :=
d(f ◦ γ)
dt

∣∣
t=0

(1.6)

is a tangent vector at the point p ∈M .

Definition 1.7. We call tangent space to the smooth manifold M at a point

p the set of all the tangent vectors at the point p, i.e.

TpM := {γ̇(0)| γ̇(0) satisfying (1.6) and γ(0) = p}. (1.7)

Remark 1.8. If M is a n-dimensional smooth manifold, then for any point

p ∈M the tangent space TpM is a n-dimensional space.

Definition 1.9. Let M be a smooth manifold, we call tangent bundle of M

the following 2n-dimensional vector space:

TM := {(p, v)| p ∈M, v ∈ TpM}. (1.8)

Let M1 and M2 be two different smooth manifolds and let φ : M1 → M2

be a differentiable map between the two manifolds. By definition, for any

p ∈ M1 and v ∈ TpM1 there exists a curve γ : I → M1 such that γ(0) = p

and γ̇(0) = v, so β := φ ◦ γ defines a curve on the smooth manifold M2
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with β(0) = φ(p) ∈ M2. We can so define a linear map between the two

corresponding tangent bundles TM1 and TM2 by considering

dφp : TpM1 −→ Tφ(p)M2

v 7−→ dφp(v) := β̇(0)
. (1.9)

The previous map is well-defined, since it does not depend on the chosen

curve. More details on this remark can be found in [46].

Definition 1.10. Let M1 and M2 be two smooth manifolds and φ : M1 →M2

a differentiable map, the linear map dφp defined by (1.9) is called differential

of φ at the point p.

We now introduce the notion of a Riemannian metric, by using a system

of local coordinates.

Definition 1.11 (Riemannian metric). A Riemannian metric on a smooth

manifold M is an application from a point p ∈ M to an inner product 〈 , 〉p
defined on the tangent space TpM , which “changes in a differentiable way”,

i.e. such that, given a local coordinate map x : U ⊂ Rn → M around

p ∈ M and given a point q = x(x1, ..., xn) ∈ x(U), then, set ∂
∂xi

(q) =

dxq(0, ..., 1, ..., 0), the following function

gi j(x1, ..., xn) :=

〈
∂

∂xi
(q),

∂

∂xj
(q)

〉

q

,

is differentiable on whole U .

The function gi j is called local representation of the Riemannian metric

w.r.t. the system of local coordinates x : U ⊂ Rn →M .

Note also that a smooth manifold with a Riemannian metric defined on is

usually called Riemannian manifold.

Remark 1.12. In general we indicate an inner product simply as
〈
,
〉

(i.e.

omitting the base-point).

Remark 1.13. To characterize a Riemannian metric, we can equivalently

require that for any couple of differential vector fields X, Y defined on the

smooth manifold M the function 〈X, Y 〉 is (locally) differentiable on M .
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The following theorem is one of the main result on the theory of Rieman-

nian manifolds.

Theorem 1.14 ([46]). On any Hausdorff, smooth manifold with a countable

basis, it is always possible to define a Riemannian metric on.

In order to introduce a notion of geodesics, we need first to define the

length of curves.

Definition 1.15. Let
(
M, 〈 , 〉

)
be a Riemannian manifold and γ : [0, T ] →

M an absolutely continuous curve, we call length of the curve γ the following

real functional

l(γ) :=

∫ T

0

〈
γ̇(t), γ̇(t)

〉 1
2dt. (1.10)

Definition 1.16. Let
(
M, 〈 , 〉

)
be a Riemannian manifold and p, q ∈ M ,

the (Riemannian) distance between these two points is defined as

d(p, q) := inf{l(γ) | γ a.c. curve, joining p to q}. (1.11)

The geodesics are usually defined as the curves with vanishing acceler-

ation. To make formal this definition, we have to say what we mean by

acceleration, and so we need to introduce the so called Levi-Civita connec-

tion and covariant derivatives. Nevertheless, it is possible to show that all

the curves with minimum-length (i.e. curves realizing the distance (1.11)) are

geodesics. The inverse claim is not true. In fact, if one thinks of a sphere and

two its no-antipodal points, there are two different arcs of maximum-circle

joining them. Since any maximum-circle has vanishing acceleration, there

are two different geodesics joining these two points but only one realizes the

distance. Usually, the curves, minimizing the length are called minimizing

geodesics. By geodesics we will always refer to these minimizing curves.

Theorem 1.17 (Existence and uniqueness). Let M be a Riemannian man-

ifold and p0 ∈ M , for any ε > 0, there exists a neighborhood U of p0 such

that for any p ∈ U there exists a unique (minimizing) geodesic, joining p0 to

p with length less or equal to ε.

Moreover, if the Riemannian manifold M is complete, then there exists at

least a geodesic joining any pair of points.
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In order to get some global existence-result, the assumption of complete-

ness is necessary. In fact, if one looks at R\{0} with the Euclidean metric

there are not geodesics joining two opposite points p and −p.

1.1.4 Carnot-Carathéodory metrics and the Hörman-

der condition.

The main difference between Riemannian and sub-Riemannian geometries is

that in the sub-Riemannian case not every curve is admissible. In this section

we want to introduce a rigorous mathematical defintion of sub-Riemannian

geometry and study their main properties.

Definition 1.18. Let M be a n-dimensional smooth manifold and r ≤ n,

a r-dimensional distribution H is a subbundle of the tangent bundle, i.e.

H := {(p, v) | p ∈ M, v ∈ H(p)}, where H(p) is a r-dimensional subspace of

the tangent space at the point p.

Remark 1.19. Note that sometimes the dimension of the distribution (which

can be called also rank) can depend on the point p (see Example 1.22).

Nevertheless the main sub-Riemannian geometries are associated to rank-

constant distributions. E.g. the Heisenberg group and more in general any

Carnot group (see Sec.1.3 and Sec.1.2).

Definition 1.20 (Sub-Riemannian metric). Let M be a smooth manifold and

H ⊂ TM a distribution, a sub-Riemannian metric on M is a Riemannian

metric defined on the fibers of the subbundle H.

Definition 1.21 (Sub-Riemannian geometry). A sub-Riemannian geometry

is a tern
(
M,H, 〈 , 〉

)
, where M is a smooth manifold, H is a distribution,

and 〈 , 〉 is a Riemannian metric defined on H.

From now on, we indicate by X1, ..., Xm the vector fields spanning the

distribution H, i.e.

H(p) = Span(X1(p), ..., Xm(p)),

at any point p ∈M .
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Example 1.22. The Grušin plane is the sub-Riemannian geometry defined

on R2 by the distribution spanned by the two 2-dimensional vector fields

X(p) = (1, 0)t and Y (p) = (0, x1)
t, with p = (x1, x2) ∈ R2, endowed with

the real Euclidean metric. Note that r(p) = 1, at the origin, while r(p) = 2,

otherwise.

It is possible to introduce a weak-linear-independent condition which

includes both the rank-constant distributions and the Grušin-type spaces

(which generalizes Example 1.22), assuming that for any p ∈ M there exist

1 ≤ r(p) ≤ m and 1 ≤ j1 < ... < jr(p) ≤ m such that

rank{Xj1(p), ..., Xjr(p)
(p)} = r(p), and Xj(p) = 0, ∀ j /∈ {j1, ..., jr(p)}.

(1.12)

The fact that
〈
,
〉

is defined only on H implies that we can define a notion

of length only for a particular class of curves.

Definition 1.23 (Horizontal curves). Let
(
M,H, 〈 , 〉

)
be a sub-Riemannian

geometry and γ : [0, T ] → M an absolutely continuous, we say that γ is a

horizontal (or also admissible) curve if and only if

γ̇(t) ∈ Hγ(t), for a.e. t ∈ [0, t],

or equivalently, if there exists a measurable function h : [0, T ] → Rm such

that

γ̇(t) =
m∑

i=1

hi(t)Xi(γ(t)), for a.e. t ∈ [0, t],

where h(t) = (h1(t), . . . , hm(t)).

For the horizontal curves and only for those, it is possible to define a

length-functional as

l(γ) :=

∫ T

0

‖γ̇(t)‖ dt, (1.13)

where ‖γ̇(t)‖ = 〈γ̇(t), γ̇(t)〉 1
2 .

Exactly as in the Riemannian case, by using the length for the horizontal

curves we can introduce a notion of distance on the manifold.
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Definition 1.24 (Carnot-Carathéodory distance). We call sub-Riemannian

distance or also Carnot-Carathéodory distance the function d : M ×M →
[0,+∞], defined by

d(p, q) := inf{l(γ)| γ horizontal curve joining p to q}. (1.14)

Theorem 1.25. The function d(p, q) defined by (1.14) induces a distance on

the whole manifold M .

Proof. The symmetry is easy to show. In fact for any horizontal curve γ

which joins p to q in a time T , we can define the inverse curve γ̃(t) := γ(T−t).
The curve γ̃ is a horizontal curve joining q to p. Moreover l(γ) = l(γ̃) .

To show the triangular inequality, let us fix two points p, q ∈ M . First,

we consider the case d(p, q) < +∞. Given a third point z ∈ M , we can

always assume that d(p, z)d(z, q) < +∞. In fact, whenever d(p, z) = +∞
or d(z, q) = +∞, the triangular inequality is trivially satisfied. Then, given

two horizontal curves γ1 and γ2 joining respectively p to z and z to q, we can

consider the attached path γ := γ1 ∨ γ2.

It is immediate to note that γ is still an horizontal curve. Moreover, γ joins

p to q and l(γ) ≤ l(γ1) + l(γ2). Therefore

d(p, q) ≤ d(p, z) + d(z, q). (1.15)

The remaining case d(p, q) = +∞ is trivail to prove. One has just to remark

that, for any third point z ∈ M , then d(p, z) = +∞ or d(z, q) = +∞. In

fact, if we assume that d(p, z)d(z, q) < +∞, then there exist two horizontal

curves γ1 and γ2, both having a finite length, joining respectively p to z and

z to q. So the attached curve γ (defined as above) is an horizontal curve

joining p to q and with l(γ), which implies d(p, q) ≤ l(γ) < +∞, which leads

to a contradiction.

Note that, since the length-functional is non-negative, then it d(p, q) ≥ 0

for any p, q ∈ M . We only remain to prove that d(p, q) = 0 if and only if

p = q. This result is a consequence of the local Euclidean estimate for Carnot-

Caratéodory distances, which we are going to prove in the next subsection
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(see Lemma 1.44 and Remark 1.45). Therefore, so far we omit the proof of

this property.

Nevertheless it could happen that there is not any horizontal curve joining

two given points. In this case the sub-Riemannian distance between these

points is infinite. So we need to introduce a condition ensuring that the

distance between two points is always finite.

At this purpose, let us recall that given two vector fields X, Y defined on

some manifold M , the bracket between X and Y is the vector field defined

as [X, Y ] := XY − Y X, i.e. actioning on smooth functions f : M → R by

derivation as

[X, Y ](f) = X(Y (f)) − Y (X(f)).

Example 1.26. Let be M = R2, we set p = (x, y) ∈ R2, and consider the

two vector fields X(x, y) = (1, 0)t and Y (x, y) = (0, x)t. Then

[X, Y ](f) = x
∂2

∂x∂y
f(x, y) − ∂

∂y
f(x, y) − x

∂2

∂y∂x
f(x, y) = − ∂

∂y
f(x, y).

By induction, a k-length bracket is a vector field defined as [Zi, Z
(k−1)
j ],

where Zi ∈ {X, Y } and Z
(k−1)
j is a bracket between X and Y with length

less or equal to k− 1. For example the 2-length-brackets between two vector

fields X and Y are given by [X, [X, Y ]], [X, [Y,X]], [Y, [X, Y ]], [Y, [Y,X]].

Note that [X, Y ] = −[Y,X], hence [X, Y ] = [Y,X] if and only if

[X, Y ] = 0, i.e. if and only if the two vector fields commute.

Let us consider a family of vector fields X = {X1, ..., Xm} spanning some

distribution H ⊂ TM , the associated Lie algebra is the set of all the brackets

between the vector fields of the family, i.e.

L(X ) := {[Xi, X
(k)
j ] | X(k)

j k − length bracket ofX1, ..., Xm, k ∈ N}.

Definition 1.27. Let M be a smooth manifold and H a distribution defined

on M . We say that the distribution is bracket-generating if and only if, at

any point, the Lie algebra L(X ) spans the whole tangent space.
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Definition 1.28 (Hörmander condition). We say that a sub-Riemannian

geometry satisfies the Hörmander condition if and only if the associated dis-

tribution is bracket generating.

Theorem 1.29 (Chow’s Theorem). Let M be a smooth manifold and H a

bracket generating distribution defined on M . If M is connected, then there

exists a horizontal curve joining two given points of M .

From Chow’s Theorem it follows that, whenever a sub-Riemannian ge-

ometry satisfies the Hörmander condition, the distance defined by (1.14) is

finite at any pair of points. In the Subsection 1.1.6, we are going to give

more details on Chow’s Theorem and show an easy proof in the particular

case of the Heisenberg group.

To introduce the notion of step of a bracket generating distribution, let us

introduce the following notion. Let H be a family of vector fields, we write:

L1 := Span({Z = X |X ∈ H}),
L2 := Span({Z = [X, Y ] |X, Y ∈ L1}),
. . . . . . . . . . . . . . . . . . . . .

Li = Span({Z = [X, Y ] |X ∈ H, Y ∈ Li−1}).

(1.16)

Moreover, we indicate by Li(p) the vector space corresponding to Li evalu-

ated at the point p ∈M .

Definition 1.30 (Step of a distribution). Let X = {X1, ..., Xm} be a family

of vector fields defined on a smooth manifold M and H the distribution gen-

erated by X1, ..., Xm. Given p ∈ M , we call step of the distribution H at the

point p, and we indicate by k(p), the smallest natural number such that

k(p)⋃

i=1

Li(p) = TpM.

Example 1.31. Any Riemannian geometry is bracket generating with step

equal to 1 at any point. In fact
(
M,H,

〈
,
〉)

is a Riemannian manifold if

and only if H = TM (which means L1(p) = TpM for any p ∈M).

Example 1.32. The Heisenberg group is associated to a bracket generating

with step equal to 2 at any point (see Definition 1.106).
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Example 1.33. The Grušin plane is associated to a bracket generating with

step 2 at the origin, and with step 1 otherwise (see Definition 1.22).

The reverse implication of Chow’s Theorem (“finite distance implies the

Hörmander condition”) holds only for analytic distributions but it is in gen-

eral false for smooth distributions, see the following counter-example.

Example 1.34. Look at the sub-Riemannian metric generated by the 2-

dimensional vector fields X = (1, 0)t and Y = (0, a(x))t, with a ∈ C∞(R)

such that a(x) = 0, if x ≤ 0, and a(x) > 0, if x > 0, so that X, Y are

smooth vector fields. The corresponding sub-Riemannian distance is finite.

Nevertheless, the associated distribution is not bracket generating. In fact, if

x ≤ 0, then Y = (0, 0)t and so Span(L(X, Y )(p)) = Span(X(p)) 6= R2.

Example 1.35. Let X and Y be as in the Example 1.34, but with a(x) = 1

if x ≥ 0, and a(x) = 0 if x < 0. In this case a 6∈ C∞(R), however, we can

use this example in order to investigate the previous one.

On the half-plane x < 0, we can move only in one direction, then the spanned

distribution is not bracket generating.

Nevertheless, it is easy to write explicitly the associated Carnot-Carathéodory

distance, that is

d((x, y), (x′, y′)) =





√
|x− y|2 + |x′ − y′|2, x1 ≥ 0 x′ ≥ 0,

|x| + |x′| + |y − y′|, x < 0 x′ < 0,

|x| +
√
|x′|2 + |y − y′|2, x < 0 x′ ≥ 0,

|x′| +
√

|x|2 + |y − y′|2, x ≥ 0 x′ < 0.

It is immediate to note that d(x, y) is a finite distance.

Remark 1.36 (Involutive distributions). The opposite case to the bracket

generating distributions is given by the so called involutive distributions. We

recall that a distribution H is said involutive if and only if [X, Y ] ∈ H, for

any X, Y ∈ H. By the Frobenius Theorem (see [50]), it is known that, if

M is a n-dimensional smooth manifold and H is a r-dimensional involutive

distribution defined on M , then, given p ∈ M , the set of all the horizontal

curves through a fixed point p, is an immerse r-dimensional submanifold,
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called leaf. Therefore, if q ∈ M does not belong to the lift of p, there is not

any horizontal curve joining p to q. So, in this case, d(p, q) = +∞.

In particular, if r < n such a point q always exists.

1.1.5 Notions equivalent to the Carnot-Carathéodory

distance.

Next we want to intorduce a notion of distance equivalent to the Carnot-

Carathéodory distance. This new distance is very used in control theory and

so it is often called control distance (or also minimal time distance). Let

X = {X1, ..., Xm} be smooth vector fields generating a distribution H, we

recall that an absolutely continuous curve γ : [0, T ] →M is horizontal if and

only if

γ̇(t) =
m∑

i=1

hi(t)Xi(γ(t)), a.e. t ∈ [0, T ], (1.17)

for suitable hi(t) measurable functions. We can think of (1.17) as a control

system, which we know to be well-posed whenever hi ∈ L1([0, T ]). We like

to recall that in control theory the functions hi are usually called control

functions while the solutions of (1.17) are called control paths.

Remark 1.37. If the vector fields X1, ..., Xm are linearly independent at any

point, then the coordinates hi are unique. Moreover the uniqueness still holds

if we assume the weak-linearly-independent-condition (1.12).

Under assumption (1.12), we can define the length of a horizontal curve

γ : [0, T ] →M , by using the local coordinates hi, i.e.

l(γ) =

∫ T

0

(
h2

1(t) + ... + h2
m(t)

) 1
2dt. (1.18)

Remark 1.38. In general, the control functions hi can be non-unique. In

such a case, we define the length-functional taking the infimum of (1.18) over

all the admissible coordinates hi. More precisely, h1, ..., hm are admissible

coordinates if and only if they satisfy (1.17) and, moreover, h1, ..., hm ∈
L1([0, T ]) (otherwise the corresponding integral is equal to +∞). This implies

l(γ) = inf

{∫ T

0

(
(h1(t))

2 + ... + (hm(t))2) 1
2 dt

∣∣∣∣hi ∈ L1([0, T ]) satisfying (1.17)

}
.



28 Chapter 1. Sub-Riemannian geometries.

We so can re-write the sub-Riemannian distance defined in (1.14) by us-

ing the local expression (1.18).

Next we introduce a definition of sub-Riemannian distance as suitable mini-

mal time function.

Definition 1.39. We say that a horizontal curve γ : [0, T ] → M is subunit

if and only if the coordinates given by (1.17) are such that

m∑

i=1

h2
i (t) ≤ 1, a.e. t ∈ [0, T ].

Definition 1.40. For any x, y ∈ M , we look at the following minimal time

function:

d̂(x, y) = inf{T | ∃ γ : [0, T ] →M a.c. subunit hor. curve joining x to y}.
(1.19)

Proposition 1.41 ([76], Proposition 1.1.10). The function d̂(x, y) defines a

distance on the smooth manifold M .

We want to show that the minimal time distance d̂(x, y) is equivalent

to the Carnot-Carathódory distance. This is a consequence of the following

result.

Theorem 1.42 ([76]). Let γ be a horizontal curve and, let us assume for

sake of simplicity that T = 1. If h = (h1, ..., hm)t are the local coordinates of

γ̇ w.r.t. X1, ..., Xm, then for any 1 ≤ p ≤ +∞ we can define a distance on

M by

dp(x, y) = inf{lp(γ) | γ : [0, 1] →M a.c. hor. curve joining x to y}, (1.20)

with

lp(γ) := ‖h‖p =





(∫ 1

0

|h(t)|pdt
) 1

p

, if 1 ≤ p < +∞,

ess. sup
t∈[0,1]

|h(t)|, if p = +∞,

where the essential supremum of h(t) is defined by

ess. sup
t∈[0,1]

|h(t)| = inf
{
M ≥ 0 | |h(t)| ≤M, a.e. t ∈ [0, 1]

}
.

Then dp(x, y) = d̂(x, y) for any x, y ∈M and for any 1 ≤ p ≤ +∞.
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Proof. For sake of completeness, since the equivalence between the Carnot-

Carathédory distance and the control distance is a key point for the study of

nonlinear PDEs related to the Hörmander condition, we quote give a proof

of this theorem.

First note that by the Hölder inequality it follows that

‖h‖1 ≤ ‖h‖p ≤ ‖h‖∞ ,

for any h ∈ [L∞(0, 1)]m and 1 ≤ p ≤ +∞. Hence

d1(x, y) ≤ dp(x, y) ≤ d∞(x, y). (1.21)

The second step is to prove that

d̂(x, y) = d∞(x, y). (1.22)

Let γ : [0, T ] → M be a subunit horizontal curve such that γ(0) = x and

γ(T ) = y defined by

γ̇(t) =

m∑

i=1

hi(t)Xi(γ(t)), (1.23)

where h = (h1, ..., hm)t and ‖h‖∞ ≤ 1.

We consider the rescaled curve γ̃ : [0, 1] → M defined by γ̃(t) := γ(T t),

which is still horizontal and such that

h̃(t) =
∥∥∥h̃
∥∥∥
∞

≤ T.

Then d∞(x, y) ≤ d̂(x, y).

To prove the reverse inequality one can proceed similarly.

Hence (1.22) is verified.

The third step consists in proving that

d∞(x, y) ≤ d1(x, y). (1.24)

This step is the most difficult one. Let γ : [0, 1] → M be a horizontal curve

such that γ(0) = x and γ(1) = y and let h = (h1, ..., hm) be defined by

(1.23). We need to build a new horizontal curve γ̃ such that l∞(γ̃) ≤ ‖h‖1.
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Suppose that ‖h‖1 > 0 and let φ : [0, 1] → [0, 1] be the following absolutely

continuous function:

φ(t) =
1

‖h‖1

∫ t

0

|h(τ)|dτ,

φ is non decreasing and its “inverse function” ψ : [0, 1] → [0, 1] defined as

ψ(s) = inf{t ∈ [0, 1]|φ(t) = s}

is a monotone function, too. So it is differentiable a.e. s ∈ [0, 1].

We want to prove that

φ̇(ψ(s))ψ̇(s) = 1, a.e. s ∈ [0, 1]. (1.25)

Therefore we define

B = {t ∈ [0, 1] |φ is not differentiable in t}

and

D = {t ∈ [0, 1] |φ is not differentiable inψ(t)}.
Since φ is an absolutely continuous function, it is such that vanishing-measure

sets go into vanishing-measure sets, i.e. |B| = 0 implies |φ(B)| = 0.

Moreover D ⊂ φ(B), so |D| = 0 and then we have (1.25).

So we can define γ̃(s) := γ(ψ(s)). Now, let be

E = {t ∈ [0, 1] | γ is not differentiable inψ(t)},

γ is absolutely continuous, then the previous argument shows also that |E| =

0. Hence

˙̃γ(s) = γ̇(ψ(s))ψ̇(s) =
m∑

i=1

hi(ψ(s))ψ̇(s)Xi(γ̃(s)), a.e. s ∈ [0, 1].

If |h(ψ(s))| 6= 0, it is trivial to remark that

ψ̇(s) =
1

φ̇
(ψ(s)) =

‖h‖1

|h(s)| .

We can define

h̃i(s) =





‖h‖1

hi(ψ(s))

|h(ψ(s))| , if |h(ψ(s))| 6= 0,

0, if |h(ψ(s))| = 0.
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Setting

˙̃γ(s) =

m∑

i=1

h̃i(s)Xi(γ̃(s)), a.e. s ∈ [0, 1],

we get a horizontal curve such that
∥∥∥h̃
∥∥∥
∞

≤ ‖h‖1 ,

so that (1.24) holds. Hence, by estimate (1.21), we can conclude

d∞(x, y) = d1(x, y) = dp(x, y),

for any 1 ≤ p ≤ +∞, and, therefore, by (1.22), we get d̂(x, y) = dp(x, y), for

any x, y ∈M .

Corollary 1.43. The Carnot-Carathéodory distance d(x, y) defined by (1.14)

is equivalent to the minimal time distance d̂(x, y) defined by (1.19).

Proof. The Theorem 1.42 with p = 1 implies that d1(x, y) = d̂(x, y). We need

only to recall that the Euclidean norm of Rm is equivalent to the norm defined

as |(h1, ..., hm)| = |h1|+ ...+ |hm|. This implies that d1(x, y) is equivalent to

d(x, y) and then d̂(x, y) is so.

To conclude this subsection, we show an Euclidean estimate from be-

low for the sub-Riemannian distance d̂(x, y). Note that, since the distances

d̂(x, y) and d(x, y) are equivalent, the same estimate holds for d(x, y).

Lemma 1.44. Let M be a smooth manifold and X = {X1, ..., Xm} smooth

vector fields generating a distribution H and satisfying the Hörmander condi-

tion with step equal to k ≥ 1. If d̂(x, y) is the minimal time distance defined

by (1.19), then for any K ⊂ M compact there exists a constant C > 0 such

that

C|x− y| ≤ d̂(x, y), for any x, y ∈ K. (1.26)

Proof. Let us fix a compact set K and choose 0 < ε << 1 such that

Kε =

{
z ∈ M

∣∣∣∣ min
x∈K

|z − x| ≤ ε

}
⊂⊂ M.

At any point x ∈M we can define a n×m-matrix by

A(x) := [X1(x), ..., Xm(x)],



32 Chapter 1. Sub-Riemannian geometries.

and

M = sup
x∈Kε

‖A(x)‖ ,

where by ‖ ‖ we indicate the usual norm of matrices.

Fix x, y ∈ K and let γ : [0, T ] → M be a subunit horizontal curve such that

γ(0) = x and γ(T ) = y.

Note that, by the Hörmander condition, such a curve γ always exists. Then

we set r = min{ε, |x− y|} so that TM ≥ r (one can find a detailed proof of

this claim in [76], Lemma 1.1.8).

Therefore, if we choose r = ε and consider the diameter D of K defined as

D := sup{|x− y| | x, y ∈ K},

we get

T ≥ ε

M
≥ ε

MD
|x− y|. (1.27)

While, if we choose r = |x− y|, we find

T ≥ |x− y|
M

. (1.28)

Since γ is an arbitrary subunit horizontal curve joining x to y, from (1.27)

and (1.28) it follows that

d̂(x, y) ≥ min

{
1

M
,
ε

MD

}
|x− y|.

Passing to the limit, as ε → 0+ we get estimate (1.26).

Remark 1.45. From the previous estimate, it follows that the sub-

Riemannian distance d(x, y) is positive definite, so this remark concludes

the proof of Proposition 1.25.

In Sec.1.1.7 we will show that there exists also an Euclidean estimate

from above but it is an Hölder-estimate while the estimate from below is

Lipschitz-estimate.
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1.1.6 Chow’s Theorem.

Chow’s Theorem is the main result for bracket generating distributions. In

this subsection we want to give a sketch of the non-trivial proof of this re-

sult. Nevertheless, before proving the theorem in the general case, we like

to quote a very simple and nice proof by Gromov in [51], which holds in the

particular case of the 1-dimensional Heisenberg group. So we need to intro-

duce briefly the 1-dimensional Heisenberg group (more details will be given

in Sec.1.3). We call (1-dimensional) Heisenberg group the sub-Riemannian

geometry defined on R3 by the distribution H, associated to the vector fields

X =




1

0

−y
2


 , Y =




0

1
x
2


 , for any (x, y, z) ∈ R

3,

and endowed with the standerd Euclidean metric (on R2).

Note that, if we consider the 1-form

η := dz − 1

2
(xdy − ydx),

then H = ker(η).

We indicate the n-dimensional Hiesenberg group by H
n and by H

1 the 1-

dimensional Hiesenberg group.

Note that a curve γ : [0, T ] → R3 is H1-horizontal, if and only if, η(γ(t)) =

0, a.e. t ∈ [0, T ]. This definition is called the canonical definition of 1-

dimensional Heisenberg group.

There is also another definition: the polarized Heisenberg group. In Sec.1.3.3

we will show that these two definitions are indeed equivalent.

Gromov uses this second definition but we prefer to rewrite the Gromov’s

proof using the canonical definition.

Next we rewrite Chow’s Theorem in the particular case of the 1-dimensional

Heisenberg group.

Theorem 1.46. Given two points in R3, there exists an absolutely continuous

H1-horizontal curve joining them.

Proof. Let p = (x1, y1, z1) and q = (x2, y2, z2) be two given points of R3.

Let γ̃(t) = (x(t), y(t)) be a plane curve joining (x1, y1) to (x2, y2). For sake
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of simplicity we assume T = 1.

Remark that we can look only at the absolutely continuous curves with con-

stant curvature, i.e. we can assume that
∫

eγ

xdy =

∫ 1

0

x(t)ẏ(t)dt =
1

2

∫ 1

0

(
x(t)ẏ(t) − y(t)ẋ(t)

)
dt = C,

for some C ∈ R.

Then we can define a curve in R3, setting γ(t) = (x(t), y(t), z(t)), where the

third-coordinate is given by

z(t) = z1 +
1

2

∫ t

0

(
x(s)ẏ(s) − y(s)ẋ(s)

)
ds.

Obviously γ is an absolutely continuous curve in R3. Moreover, since z(0) =

z1 and z(1) = z1 − C, choosing C = z1 − z2, then γ joins p to q.

In order to conclude the proof, we need only to observe that, for a.e. t ∈ [0, 1],

it holds η(γ(t)) = 0 and so γ is a H
1-horizontal curve.

To prove Theorem 1.29 in the general case is more difficult.

The general result was proved, almost contemporaneously but indipendently,

by Rashevsky in [82] (1938) and by Chow in [30] (1939). There are many

different proofs of this result. We choose to briefly sketch the proof given

in [17], by using the point-of-view of control theory. First we need to recall

some definitions. From now on we indicate by Bd
R(p) the open ball centered

at p with radius R, w.r.t. the metric d(x, y), i.e.

Bd
R(p) = {q ∈M | d(p, q) < R}.

Definition 1.47. Let M be a connected sub-Riemannian manifold and p ∈
M , the accessible set Ap is the set of all the points of M joined to p by a

horizontal curve.

Definition 1.48. An immersed submanifold of a manifold M is a subset

A ⊂M endowed with a manifold structure such that

(i) the inclusion map i : A→M is an immersion,

(ii) any continuous map f : P → M , where P is a manifold, is continuous

when we consider the restriction map f : P → A, where A is endowed

with its manifold topology.
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To prove Chow’s Theorem is equivalent to show that, under the Hörman-

der condition, the accessible set of any points of the manifold coincides with

the manifold itself. The key is the following property for the accessible sets.

Theorem 1.49 (Sussmann-Stefan’s Theorem, [17]). Let M be a connected

smooth manifold, then for any p ∈ M the accessible set Ap is an immersed

submanifold.

By using Sussemann-Stefan’s Theorem, Chow’s Theorem follows imme-

diately.

Proof of Theorem 1.29. Fix p ∈M and look at the accessible set Ap.

Note that q ∈ Ap if and only if d(p, q) < +∞, so we can write Ap as union

of the open balls Bd
R(p). Then Ap is an open subset of M .

Moreover by Sussemann-Stefan’s Theorem we know that Ap is an immersed

submanifold of M , therefore the vectors fields X1, ...Xm can be seen also as

tangent bundles to the immersed submanifold, i.e.

X1, ...Xm ∈ TAp.

Remember that, if some vector fields belong to a tangent space, then also

their brackets belong to it. So

[Xi, Xj], [[Xi, Xj], Xk], ... ∈ TAp.

By the bracket generating condition, we have that TAp = TM , which in

particular implies that the two spaces have the same dimension. Since Ap is

an open immersed submanifold of M , whenever it has the same dimension

of the manifold, it must coincide with a connected component of M . M is

connected, so Ap = M and this conclude the proof of Chow’s Theorem.
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1.1.7 Relationship between the Carnot-Carathéodory

distance and the Euclidean distance.

Now we want to study the relationship between any sub-Riemannian

distance satisfying the Hörmander condition and the Euclidean distance.

First, we show that both of these distances induce on Rn the same topology.

Then we prove the main (local) estimates for Carnot-Carathéodory distances.

One can find a proof of this topological result in [75] (Theorem 2.3,

Sec.I.2.5). There, the Author gets the equivalence of the two topologies,

directly from the Ball-box Theorem (Theorem 2.10, pages 29-30), fixing a

neighborhood basis in the sub-Riemannian topology and building a suitable

neighborhood basis in the original topology of the manifold. Nevertheless,

we choose to follow the approach given in [17].

So look at the control system (1.17) and let p be an initial point and Up T an

open neighborhood of the origin in L1([0, T ],Rm).

Definition 1.50. We call end-point map the function Ep : Up T → M ,

defined as h 7−→ xh(T ), where xh a solution of (1.17), w.r.t. the control

function h.

We quote the following result without giving any proof.

Theorem 1.51 (End-point mapping Theorem, [17]). Let M be a smooth

manifold, H a bracket generating distribution and d(x, y) the associated sub-

Riemannian distance. Then the end-point map is open.

By the End-point mapping Theorem, we can deduce the following result.

Theorem 1.52. Let M , H and d(x, y) be as in Theorem 1.51, then d(x, y)

induces on M the original topology defined on the manifold.

Proof. Note that Bd
R(p) is the image of the ball BR(0) in L1 under the end-

point map, then by the End-point mapping Theorem Bd
R(p) is an open set

in M .

In order to prove the inverse result, we need to fix a point p ∈ M and a

neighborhood U of p. Since the end-point map Ep is continuous at 0, so
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there exists R > 0 such that Ep maps the ball BR(0) ⊂ L1 into U . Hence

any neighborhood U contains a ball Bd
R(p) and this concludes the proof.

The previous theorem applied in Rn endowed with the Euclidean topology

implies the compactness of the sub-Riemannian balls, whenever the associ-

ated distribution is bracket generating.

Corollary 1.53. Let H be a bracket generating distribution defined on Rn

and d(x, y) the associated sub-Riemannian distance. Then a closed d-ball

Bd
R(x) := {y ∈ R

n | d(x, y) ≤ R}, for some R > 0 and x ∈ R
n,

is compact in the n-dimensional Euclidean space.

Proof. Let τ1 be the topology induced by the metric d(x, y) and τ2 the Eu-

clidean topology. They are equivalent, if and only if, for any fixed x ∈ Rn,

there exist B1 and B2 neighborhood-basis, w.r.t. τ1 and τ2, respectively, such

that for all B ∈ B1 there exist U, V ∈ B2 with U ⊂ B ⊂ V .

We can set B1 = {Bd
ε (x) | ε > 0} and B2 = {Bε(x) | ε > 0}, where we indicate

by Bd
ε (x) the ball w.r.t. the sub-Riemannian metric d(x, y), and by Bε(x)

the usual Euclidean ball, both of them centered at x, with radius ε. Then,

the equivalency of the two topologies implies that, for any x ∈ R
n and ε > 0,

there exist r, R > 0 such that

Br(x) ⊂ Bd
ε (x) ⊂ BR(x).

Therefore the d-balls are bounded sets, then Bd
ε (x) are compact w.r.t. the

Euclidean topology, for any ε > 0.

Remark 1.54. Remember that the two metrics induce the same topology but

they are not equivalent. In fact fixed y ∈ Rn, we get that the radii depend on

x and y. Hence, the two metrics in general are not equivalent.

Remark 1.55. Note that the Hörmander condition is very important in order

to get the equivalence of the two topologies. In Example 1.35, we introduced

a finite sub-Riemannian distance, which does not satisfy the Hörmander con-

dition. It is very easy to see that such a distance is discontinuous w.r.t. the

Euclidean topology. In fact, for any x < 0

lim
|y|→0

d((x, 0), (x, y)) = 2|x| 6= 0.
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We give now the main estimates for Carnot-Carathéodory distances sat-

isfying the Hörmander condition.

Theorem 1.56. Let d(x, y) be a sub-Riemannian distance defined on a

smooth manifold M and satisfying the Hörmander condition with step k.

Then, for any compact K ⊂ M , there exist two constants C1 = C1(K) > 0

and C2 = C2(K) > 0 such that

C1|x− y| ≤ d(x, y) ≤ C2|x− y| 1
k , (1.29)

for any x, y ∈ K.

Proof. The estimate from below is given in Lemma 1.44.

We remain to show the estimate from above using the Hörmander condition

and introdusing a new distance equivalent to the Carnot-Carathéodory dis-

tance.

Let us recall that, thanks to the Hörmander condition, any absolutely con-

tinuous curve γ satisfies

γ̇(t) =

n∑

i=1

hi(t)Yi(γ(t)), a.e. t, (1.30)

where hi are measurable functions and Yi is a basis of the tangent bundle

TM , where only brackets between the elements X1, ..., Xm and with length

less or equal to k, appear (for more details see e.g. [17]).

Let C(δ) be the set of all the absolutely continuous curves γ : [0, 1] → M

such that (1.30) holds with |hi(t)| < δs for i = 1, ..., n and Yi ∈ Ls (i.e. Yi is

a bracket with length equal to s). Then we define a distance ρ by

ρ(x, y) = inf{δ > 0| ∃ γ ∈ C(δ) : γ(0) = x, γ(1) = y}.

Fixed a compact K and two points x, y ∈ K, there exists an absolutely

continuous curve γ : [0, 1] →M , joining x to y and such that |γ̇(t)| ≤ C|x−y|,
for suitable constant C = C(K) and for a.e. t ∈ [0, 1].

From (1.30), it follows that

|hi(t)| ≤ C1|γ̇(t)| ≤ C2|x− y| = C2

(
|x− y| 1s

)s
,
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whenever Yi ∈ Ls. Since 0 < s ≤ k, we have proved that

ρ(x, y) ≤ C|x− y| 1
k .

The distance ρ is equivalent to the Carnot-Carathéodory distance d(x, y) (see

[78], Theorem 4) and this concludes the proof.

Remark 1.57. Estimate (1.29) implies that the two metrics are equivalent

whenever k = 1, that is the Riemannian case.

1.1.8 Sub-Riemannian geodesics.

In this subsection we are going to intorduce and study sub-Riemannian

geodesics.

Definition 1.58 (Geodesic). A minimizing geodesic (or simply geodesic)

between two points x and y is any absolutely continuous horizontal curve

which realizes the distance (1.14).

As we have briefly remarked in the section about the Dido’s problem and

the perceptual visual completion, sub-Riemannian geodesics can be used in

order to solve minimization problems of the calculus of variations.

Exactly as in the Riemannian case, the geodesics can be found also min-

imizing the energy E among all the horizontal curves instead of the length-

functional (1.13). Let us give more details on this point.

Definition 1.59. Let γ : [0, T ] → M be an absolutely continuous horizontal

curve, we call energy of γ the following functional:

E(γ) =

∫ T

0

1

2
‖γ̇(t)‖2 dt =

1

2

∫ T

0

〈
γ̇(t), γ̇(t)

〉
dt. (1.31)

By the Cauchy-Schwartz inequality, it follows that

∫
fg ≤

√∫
f 2

√∫
g2,
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with the identity true if and only if f = cg for some constant c.

If we apply the previous inequality to the functions f = ‖γ̇‖ and g = 1, we

get that, for any horizontal curve γ : [0, T ] → M , it holds

l(γ) =

∫ T

0

‖γ̇(t)‖ dt ≤
√
T

√∫ T

0

‖γ̇(t)‖2 dt =
√
T
√

2E(γ).

From this remark, we find the following result.

Proposition 1.60 ([75]). A curve γ minimizes the energy-functional E

among all the horizontal curves joining q to p in a time T if and only if

γ minimizes the length-functional among all the horizontal curves joining q

to p, parameterized by the constant-time c = d(p, q)/T .

Since the length of a curve does not depend on the chosen parametriza-

tion, we can always restrict to looking at the infimum only among the curves

with the previous constant parametrization. Therefore, by Proposition

(1.60) it follows that minimizing the energy or minimizing the length is

equivalent.

We now introduce equations to compute the geodesics in sub-Riemannian

geometries. At this purpose, we need to associate a Hamiltonian to a given

sub-Riemannian geometry.

We define the map β : T ∗M → TM acting as p(βx(q)) = 〈〈p, q〉〉x, for any

p, q ∈ T ∗M and x ∈M , where by 〈〈 , 〉〉 we indicate the cometric associated

to the sub-Riemannian metric
〈
,
〉

Remark 1.61 ([75]). The map β associated to a sub-Riemannian geometry(
M,H,

〈
,
〉)

is uniquely defined by the following two conditions:

1. Im(βx) = Hx,

2. p(v) = 〈βx(p), v〉 for any v ∈ Hx and any p ∈ T ∗M .

Definition 1.62 (Hamiltonian). The quadratic form

H(x, p) =
1

2
〈p, p〉x (1.32)

is called sub-Riemannian Hamiltonian (or also kinetic energy).
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Suppose that γ is a horizontal curve, then there exists p ∈ T ∗M such that

γ̇(t) = βγ(t)(p) and
1

2
‖γ̇‖2 = H(γ(t), p). (1.33)

By the uniqueness of the map β, we get the following characterization for

sub-Riemannian geometries.

Proposition 1.63 ([75], Proposition 1.10). Any sub-Riemannian geometry

is uniquely determinate by its Hamiltonian. Conversely, any non-negative

quadratic Hamiltonian with constant rank k ≥ 1 defines a unique sub-

Riemannian structure associated to a k-rank-constant distribution.

To get the equations of geodesics, we introduce the momentum.

Definition 1.64. Let X be a vector field defined on a smooth manifold M ,

we call momentum of X the following functional defined on the cotangent

space:

PX(x, p) = p(X(x)), (1.34)

for any p ∈ T ∗M and x ∈M .

Let {Xα}α be a family of vector fields spanning the distribution H. If

we look at some system of local coordinates xi defined on M , then we know

that it is possible to express the vector fields Xα as

Xα(x) =
n∑

i=1

X i
α(x)

∂

∂xi

.

The corresponding momentum can be written as

PXα(x, p) =

n∑

i=1

X i
α(x)P ∂

∂xi

,

where P ∂
∂xi

are the momenta w.r.t. the coordinates vector fields.

Set pi = P∂/∂xi
, (xi, pi) is a system of local coordinates on the cotangent

bundle T ∗M , usually called canonic coordinates.

We define the matrix (gα δ)α,δ as

gα δ = 〈Xα(x), Xδ(x)〉x
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and we indicate by gαδ the coefficients of the inverse matrix.

We get so the following explicit formulation for the Hamiltonian H in (1.32):

H(x, p) =
1

2

∑

α, δ

gαδ(x)Pα(x, p)Pδ(x, p). (1.35)

Remark 1.65. In particular, if {Xα}α is an orthonormal system w.r.t. the

sub-Riemannian metric
〈
,
〉
, then (1.35) can be simplified as

H(x, p) =
1

2

∑

α

P 2
α(x, p), (1.36)

or equivalently, using the canonic coordinates, as

H(x, p) =
1

2

∑

α

〈Xα(x), p〉2 . (1.37)

By (1.37) we get the following system of first-order differential equations

(defined on the cotangent bundle T ∗M):





ẋi =
∂H

∂pi
,

ṗi = −∂H
∂xi

.

(1.38)

Definition 1.66. The Hamiltonian system (1.38) is called equations of the

normal geodesics.

Theorem 1.67. Let ζ(t) =
(
γ(t), p(t)

)
be a solution of the Hamiltonian

system (1.38). Then, any short enough arc of γ(t) is a geodesic.

Definition 1.68 (Normal geodesics). Let ζ(t) =
(
γ(t), p(t)

)
be a solution

of the Hamiltonian system (1.38), γ(t) is called (sub-Riemannian) normal

geodesic.

Exactly as in the Riemannian case, not all the normal geodesics are (min-

imizing) geodesics.

Nevertheless in the Riemannian geometries, all the (minimizing) geodesics

satisfy the equations of normal geodesics, while in the sub-Riemannian case,

there exists geodesics that are not normal geodesics.
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Remark 1.69 (Singular geodesics). In the sub-Riemannian case, there are

geodesics that are not normal geodesics, i.e. that cannot be found as solutions

of the Hamiltonian system (1.38). Note that, if ζ(t) solves the system (1.38),

then H(γ(t), p(t)) is constant. Any geodesic γ(t) solving

H(γ(t), p(t)) = 0,

is called singular geodesic. Such a geodesic does not solves the system (1.38).

(Recall that by p(t) we indicate the dual variable of γ(t)).

Singular geodesics are usually more difficult to study than normal

geodesics. Nevertheless, in the case of contact distributions, all the geodesics

are normal. We recall that a distribution H is a contact distribution if and

only if it is defined by the kernel of a single one-form η with the property

that the restriction on any vector space H(p), dη
∣∣
H(p)

, is symplectic (i.e. non

degenerate) for any point p ∈ M . E.g. the Heisenberg group is a contact

distribution. So the Heisenberg group does not have any singular geodesic.

Next we give two examples of distributions admitting singular geodesics.

Example 1.70. Let us assume M = R3, we define H as the distribution

spanned at any point (x, y, z) ∈ R3 by X1 = (1, 0, 0)t and X2 = (0, 1−x, x2)t.

We look at the horizontal curve γ : [0, T ] → R3 defined as γ(t) = (0, t, 0).

The associated Hamiltonian is

H((x, y, z), (p1, p2, p3)) = −1

2

(
p2

1 + (p2(1 − x) + p3x
2)2
)
.

So it is easy to verify that γ does not satisfy the equation of normal geodesics.

Nevertheless, if the interval is small enough, then γ is a geodesic (see [72],

Sec.2.3).

Example 1.71 (Martinet distribution). Let be M = R3 and X1 =

(1, 0,−y2)t and X2 = (0, 1, 0) for (x, y, z) ∈ R3. The distribution H
spanned by the vector fields X1 and X2 is known as Martinet distribu-

tion. It is a bracket generating distribution with step equal to 3 (in fact,

[X1, X2] = (1, 0,−2y)t and [[X1, X2], X2] = (0, 0,−2)t). The existence of sin-

gular geodesics in the Martinet distribution is given in [75], Theorem III.3.4.
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To conclude this subsection, we recall a result of local and global existence

for sub-Riemannian geodesics (see e.g. [75]).

Theorem 1.72. Let M be a smooth manifold and H a bracket generating

distribution. Then

• local existence: for any p ∈M there exists a neighborhood U of p such

that, for any q ∈ U , there exists a geodesic joining p to q;

• global existence: if moreover M is connected and complete w.r.t. the

sub-Riemannian metric induced by H, for any pair of points p, q ∈ M

there exists a geodesic joining p to q.

In the Riemannian case, it is also well-known that geodesics are locally

unique. Some uniqueness results about sub-Riemannian geodesics can be

found in [89] or also in [75]. Nevertheless in sub-Riemannian geometries the

geodesics are in general not unique, even locally. We will show that in the

next subsection.

1.1.9 The Grušin plane.

In this subsection we study in detail the easiest example of a sub-Riemannian

geometry with non-constant-rank: the Grušin plane.

Definition 1.73. Sub-Riemannian geometries of Grušin-type are defined on

Rn (for n ≥ 2) by vector fields given, for any (x, y) ∈ Rn = Rm × Rk, as

X1(x, y) = ∂x1 , ..., Xm(x, y) = ∂xm , Y1(x, y) = |x|α∂y1 , ..., Yk(x, y) = |x|α∂yk
,

with 1 ≤ m ≤ n− 1, k = n−m and α > 0, endowed with the m-dimensional

Euclidean metric.

The Grušin plain G2 corresponds to the case n = 2 and m = α = 1. More

precisely, G2 is the sub-Riemannian geometry induced on R
2 by the vector

fields

X =

(
1

0

)
, Y =

(
0

x

)
, for (x, y) ∈ R

2.
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Note that, at the origin (0, 0), Span(X, Y ) = Span(X) 6= R2.

Nevertheless [X, Y ] = (0, 1)t, so Span(X, Y, [X, Y ]) = R2 at any point

(x, y) ∈ R2. Therefore G2 satisfies the Hörmander condition with step 2.

The associated sub-Riemannian metric can be explicitly written as

ds2 = dx2 +
dy2

x2
, (1.39)

whenever x 6= 0 (see [17]).

A curve across the y-axis has a finite length if and only if its velocity vector

is parallel to the x-axis.

In fact, the length of a horizontal curve γ : [0, T ] → R2 w.r.t. the Grušin

metric (1.39) can be written as

l(γ) =

∫ T

0

(
ẋ(t)2 +

ẏ(t)2

x(t)2

)1/2

dt, (1.40)

with γ(t) = (x(t), y(t)).

Therefore if x(t0) = 0 for some t0 ∈ [0, T ], we get l(γ) < +∞ if and only

if ẏ(t0) = 0, i.e. if and only if the velocity vector γ̇(t0) is parallel to the x-axis.

By (1.39) we can define a family of dilations w.r.t. the Grušin metric.

Definition 1.74 (Dilations). For any λ ∈ R, we define a family of dilations

δλ : G2 → G2 as

δλ(x, y) = (λx, λ2y).

Remark 1.75. For general sub-Riemannian geometries of Grušin-type (Def-

inition 1.73), a family of dilations is given by δλ(x, y) = (λx, λα+1y) for

(x, y) ∈ R
m × R

k.

We indicate by dG2(x, y) the sub-Riemannian distance defined minimizing

(1.40) over all the G2-horizontal curves, so it is easy to verify that, for any

(x, y), (x′, y′) ∈ G2 and λ ∈ R, it holds

dG2

(
δλ(x, y), δλ(x

′, y′
)
) = |λ|dG2

(
(x, y), (x′, y′)

)
. (1.41)

By (1.41) we can deduce deduce the following “exact” estimate.
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Theorem 1.76 ([17]). Let G2 be the Grušin plane and dG2 the associated

sub-Riemannian distance then, for any (x, y) ∈ R2,

1

2

(
|x| + |y| 12

)
≤ dG2

(
(0, 0), (x, y)

)
≤ 3
(
|x| + |y| 12

)
. (1.42)

Remark 1.77. The norm ‖(x, y)‖ = |x|+ |y| 12 is usually called the homoge-

neous norm of the Grušin plane.

Estimate (1.42) tells that the homogenous norm is equivalent to the Carnot-

Carathéodory norm ‖(x, y)‖C = dG2((0, 0), (x, y)).

Remark 1.78. Form estimate (1.42) it follows that the structure of the

Grušin plane is not isotropic. In fact, the ball centered at the origin and

with radius r > 0 is equivalent to the Euclidean rectangle (−r, r)× (−r2, r2).

to conclude the study of the Grušin plane, we compute explicitly the

geodesics starting from the origin.

Theorem 1.79. The geodesics starting from the origin in the Grušin plane

can be parameterized as





x(t) =
a

b
sin(b t),

y(t) =
a2

b

(
t

2
− sin(2b t)

4b

)
,

(1.43)

for any a ∈ R and b 6= 0, and by

{
x(t) = at,

y(t) = 0,
(1.44)

for any a ∈ R.

Proof. Using (1.37) we can write the Hamiltonian associated to G2:

H(x, y, p1, p2) = p2
1 + x2p2

2.

Then we get the following equations for the normal geodesics:

{
ẋ = p1,

ẏ = x2p2,
(1.45)
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and {
ṗ1 = −xp2

2,

ṗ2 = 0,
(1.46)

with initial data {
x(0) = 0

y(0) = 0

{
p1(0) = a

p2(0) = b
(1.47)

for any a, b ∈ R.

ṗ2 = 0 implies p2 = b. By replacing this in the first equation of system (1.46),

we get

ṗ1 = −b2x. (1.48)

By deriving (1.48) and using the first equation in (1.45) we find:

p̈1 = −b2p1. (1.49)

Assume b 6= 0, the solutions of (1.49) are

p1(t) = A cos(b t) +B sin(b t),

with A and B suitable real-constants.

By substituting the expression for p1(t) in (1.48), we get

x(t) = − ṗ1(t)

b2
=
A sin(b t) − B cos(b t)

b
.

Assumptions (1.47) imply that A = a and B = 0, so

x(t) =
a

b
sin(b t). (1.50)

Moreover, by (1.45) we can write

ẏ(t) = bx2(t) =
a2

b
sin2(b t). (1.51)

By integratining with y(0) = 0, we can conclude

y(t) =
a2

b

(
t

2
− sin(2b t)

4b

)
. (1.52)

It remains only to solve the case b = 0, which means ẏ = 0, with initial

condition y(0) = 0: hence y(t) = 0.

Similarly p1(t) = a, which implies ẋ(t) = a and x(0) = 0, then x(t) = at.
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Remark 1.80. Note that all the curves parameterized by (1.43) are horizon-

tal. In fact

γ̇(t) = a cos(b t)X(γ(t)) + a sin(b t)Y (γ(t)).

Remark 1.81. Using geodesics (1.43), we can parametrize the unit ball of

the Grušin plane. If we assume that the geodesics are all parameterized in

the unit interval [0, 1], then l(γ) = 1 whenever ‖Xγ(t)‖2 = a2 = 1. So the

unit ball can be written as




x(t) = ± sin(b t)

b
,

y(t) =
2bt− sin(2b t)

4b2
,

with 0 < b ≤ 2π and 0 ≤ t < 1.

Next we show that geodesics starting from the origin are not locally

unique in the Grušin plane.

Look at a point (0, h) ∈ R2 with h 6= 0, we write the geodesics joining the ori-

gin to that point. As usually, we assume that the geodesics are parameterized

in [0, 1]. Therefore

0 = x(1) =
a

b
sin(b)

and

h = y(1) =
a

b

(
1

2
− sin(2b t)

4b

)
.

Hence we find b = kπ and a = ±
√

2kπh for k ∈ N, which implies

γ±k (t) =





xk(t) = ±
√

2h

kπ
sin(kπ t),

yk(t) = h

(
t− sin(2kπ t)

2kπ

)
.

(1.53)

All the curves parameterized by (1.53) (see Fig. 1.4), satisfy the equations

of normal geodesics in G2.

Note that l(γ±k ) =
√

2kπh, so γ±k (t) minimize the length-functional only

when k = 1. This means that there exist two different (minimizing) geodesics

joining the origin to the point (0, h), for h 6= 0, i.e. γ+
1 and γ−1 . This behavior

is very different from the Riemannian case.
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Figure 1.4: Some of the curves given in (1.53): the case k =

1, 2, 4.

1.2 Carnot groups.

1.2.1 Nilpotent Lie groups.

Carnot groups are particular nilpotent Lie groups. So we first need to recall

some basic notions about Lie groups.

The literature about Lie groups is very large, for example, one can see [1, 29,

79]. In particular we refer to a paper of J. Heinonen [52], where a very short

but clear treatment on the Carnot groups can be found. We start giving the

definition of Lie group.

Definition 1.82. A Lie group is a smooth manifold with a group structure

such that the inner operation and the inversion are smooth maps.

We indicate by G a Lie group and by · : G × G → G, (g, h) 7−→ gh and

i : G → G, g 7−→ g−1 the inner operation and the inversion, respectively.

Note that, when we require the smoothness of the inversion, we mean that

it have to be smooth w.r.t. the product-topology induced by G on G × G.

Definition 1.83. Let G be a Lie group, the associated Lie algebra g is the

set of all the left-invariant vector fields defined on G.

To get a Lie algebra according to the classic definition, we need to show

that g is a vector space where an antisymmetric bilinear form, satisfying the

Jacobi identity, is defined on. We recall that a bilinear form [ , ] defined on a
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vector space V satisfies the Jacobi identity, if and only if, for any X, Y, Z ∈ V

the following identity holds:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (1.54)

Proposition 1.84. The set g of all the left-invariant vector fields (see Def-

inition 1.83) is a Lie algebra.

Proof. Let e be the unit-element of the group G, we can identify the Lie

algebra g with the tangent space at the point e, that we indicate by TeG,

associating to a vector X ∈ TeG, the left-invariant vector field Xg := LgX,

where Lg is the left translation w.r.t. the element g ∈ G. Therefore we can

see the Lie algebra g like a vector space and dim g = dim TeG = dim G.

It is trivial to check that the bracket [X, Y ] = XY − Y X defines on TeG an

antisymmetric bilinear form, which satisfies the Jacobi identity (1.54).

So we can conclude that g has the structure of a Lie algebra.

Proposition 1.85. If X ∈ g, there exists a unique 1-parameter subgroup

ΦX(t), called vector flux , defined on G, for all t ∈ R, by the system





d

dt
ΦX(t)

∣∣
t=0

= X,

ΦX(0) = e.

Definition 1.86. Let G be a Lie group, the exponential map is the smooth

function given by

exp : g −→ G

X 7−→ ΦX(1).
(1.55)

We recall some basic properties of the exponential map.

Theorem 1.87 ([91]). Let G be a Lie group and g the associated Lie algebra,

the exponential map defined by (1.55) is an analytic function. Moreover, it

is a diffeomorphism in a neighborhood of the origin.

Remark 1.88. The exponential map satisfies the following properties:

1. exp
(
(t+ s)X

)
= exp tX exp sX,

2. exp(−tX) = (exp tX)−1,
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3. exp(X + Y ) 6= expX + exp Y .

The next result is very useful, since gives a formula in order to explicitly

compute many exponential maps.

Proposition 1.89 (Campbell-Hausdorff formula, [52]). For any X, Y ∈ g

the following formula holds:

expX exp Y = exp

(
X + Y +

1

2
[X, Y ] +R(X, Y )

)
, (1.56)

where R(X, Y ) is a remainder polynomial for a nilpotent Lie group, written

by all the possible non-vanishing k-brackets of X and Y with k ≥ 2.

Example 1.90 (Heisenberg group). The Heisenberg group is a Lie group

and the associated distribution is bracket generating with step 2.

Therefore R(X, Y ) = 0 for any X, Y ∈ g, and so formula (1.56) can be

rewritten as

expX exp Y = exp

(
X + Y +

1

2
XY − 1

2
Y X

)
. (1.57)

Example 1.91 (Group of matrices). If G is a group of matrices, the expo-

nential map is the usual exponential matrix.

Definition 1.92 (Nilpotent groups). A group G is nilpotent if and only if

its central series defined as

{
G

(1) = G,

G
(i+1) = [G,G(i)] = {ghg−1h−1| g ∈ G, h ∈ G

(i)}, i ≥ 1,
(1.58)

is finite, i.e. if and only if there exists k ∈ N such that

G
(k+1) = {0} 6= G

(k).

Moreover, in this case we say that G is nilpotent with step equal to k.

Remark 1.93. A group is nilpotent with step 1 if and only if it is an Abelian

group.
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Definition 1.94 (Nilpotent Lie algebra). A Lie algebra g is nilpotent with

step equal to k if and only if, setting

{
g(1) = g,

g(i+1) = [g, g(i)] = {[X, Y ]|X ∈ g, Y ∈ g(i)}, i ≥ 1,
(1.59)

there exists k ∈ N such that g(k+1) = {0} 6= g(k).

Remark 1.95. Given a Lie group G, the associated Lie algebra is nilpotent

with step equal to k if and only if G is so.

Remark 1.96 (Nilpotent groups and sub-Riemannian geometries). Remark

that a Lie group is nilpotent with step k if and only if the associated Lie

algebra has a bracket generating sub-Riemannian structure with step k.

The following result is one of the main properties of the exponential map.

Proposition 1.97 ([52]). Let G be a Lie group, nilpotent and simply con-

nected, then the exponential map exp : g → G is a diffeomorphism.

Conversely, if g is a Lie algebra with finite dimension, then there exists a

unique Lie group G, simply connected, such that g is its associated Lie alge-

bra.

Remark 1.98. If G is a Lie group, nilpotent and simply connected, then it

is isomorphic to a closed unipotent subgroup of GL(n,R), where GL(n,R) is

the set of matrices with eigenvalues equal to 1. Then, there exists a system of

local coordinates where we can express it is an upper triangular matrix with

all the diagonal-elements equal to 1.

Using the Campbell-Hausdorff formula and the exponential map, we get

an easy interpretation for Lie groups.

Corollary 1.99. Let G be a Lie group, simply connected and nilpotent, then

by the exponential map we can identify G with the associated Lie algebra g

and, consequently, with Rn endowed with the polynomial operation, given by

the Campbell-Hausdorff formula, i.e. X ∗ Y := X + Y + 1
2
[X, Y ] +R(X, Y ).

We are so able to give a geometric characterization for Abelian groups.
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Remark 1.100. A group G is Abelian if and only if it is isomorphic to Rn

endowed with the usual (Euclidean) structure of group.

The coordinates defined by using the exponential map are usually called

canonic coordinates.

1.2.2 Calculus on Carnot groups.

In this subsection we study Carnot groups, refering to [52].

Definition 1.101 (Carnot group). A Carnot group is a Lie group, nilpotent

and simply connected, whose Lie algebra g admits a stratification, i.e. there

exist V1, ...Vk vector spaces such that

g = V1 ⊕ ...⊕ Vk.

Moreover g is endowed with the Carnot-Carathéodory metric associated to

V1.

A Lie group as in Definition 1.101 is also called homogeneous group or

stratified group. Moreover, we say that V1 generates the Lie algebra g, while

the vector spaces Vi for i ≥ 2 are called slices of g.

We now introduce a family of dilations on any Carnot group. Dilations imply

that any Carnot group is self-similar.

Definition 1.102. For λ > 0, a family of dilations on g is a family of

smooth maps δλ : g → g defined as dilations

δλ(X) = λiX, whenever X ∈ Vi. (1.60)

Applying the exponential map, we can rewritten the dilations given by

(1.60) as automorphisms of G, by setting δ̃λ = exp−1 δλ exp. For sake of

simplicity, we still indicate δ̃λ simply by δλ.

Note that we will indicate by dC(x, y) the Carnot-Carathéodory distance as-

sociated to a Carnot group G.

Since a Carnot-Carathéodory distance is defined minimizing the length-

functional over all the V1-horizontal curves (Definition 1.14), it follows im-

mediately that

dC(δλ(x), δλ(y)) = λdC(x, y), (1.61)
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for any x, y ∈ G and λ > 0.

Let G be a Carnot group and dC(x, y) the associated Carnot-Carathéodory

distance. Using the family of dilations δλ, we can define a norm on G, setting

‖x‖C := dC(0, x).

Moreover it is immediate to verify that:

‖x‖C = 0 ⇐⇒ x = 0,

‖λx‖C = dC(0, δλ(x)) = dC(δλ(0), δλ(x)) = λdC(0, x) = λ ‖x‖C .

It is possible to introduce a new norm on G equivalent to the Carnot-

Carathéodory norm ‖ ‖C but easier to compute, using the stratification-

property characterizing a Carnot group. In fact, we can write any point

x ∈ G as x = (x1, ..., xk) where xi ∈ Vi.

Definition 1.103. Let G be a Carnot group with stratification V1, ..., Vk, the

homogeneous norm is defined as

‖x‖ :=

(
k∑

i=1

|xi|
2k!
i

) 1
2k!

, (1.62)

where |xi| is the usual r-dimensional Euclidean norm defined on the space

vector Vi with r = dimVi.

Example 1.104 (Homogeneous norm in the Heisenberg group). Since the

n-dimensional Heisenberg group H
n is a Carnot group with k = 2, by (1.62)

we get

‖(z, t)‖ =
(
|z|4 + t2

) 1
4 , z ∈ R

2n, t ∈ R. (1.63)

Note that

‖δλ(x)‖ = λ ‖x‖ , (1.64)

and ∥∥x−1
∥∥ = ‖x‖ , (1.65)

where by x−1 we indicate the inverse element in the group G.

Using the homogeneous norm, we can define a left-invariant distance on G,

simply by taking for any x, y ∈ G

d(x, y) =
∥∥x−1y

∥∥ . (1.66)
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The function (1.66) is a distance on G and moreover it is left-invariant.

In fact, for any h ∈ G

d(hx, hy) =
∥∥(hx)−1hy

∥∥ =
∥∥x−1h−1hy

∥∥ =
∥∥x−1y

∥∥ = d(x, y).

W.r.t. the dilations, the new distance defined in (1.66) has the same behavior

as the original Carnot-Carathéodory distance, i.e. for any x, y ∈ G

d(δλ(x), δλ(y)) = λd(x, y). (1.67)

We conclude by remarking that all the distances defined on a Carnot group

and satisfying (1.67) are equivalent.

The advantage of using the homogeneous distance instead of the Carnot-

Carathéodory distance is that the homogeneous distance is much simpler to

compute.

The main problem is that in some cases the homogeneous distance does not

satisfy a triangular inequality and so it does not induce a metric space on G.

Note that in the particular case of the Heisenberg group the homogeneous

norm (1.63) does satisfy the standard triangular inequality.

Remark 1.105 (Non-Euclidean nature of Carnot groups). There is a very

famous result by Stephen Semmes ([85]), which shows that a bi-Lipschitz

embedding of the Heisenberg group into an Euclidean space does not ex-

ist. The non-Euclidean behavior of the Carnot spaces is related to the non-

commutativity of the associated Lie algebras. In fact, if we assume that a

bi-Lipschitz emending exists, then the corresponding differential is an injec-

tive application between the two corresponding tangent spaces.

By the identification of a tangent space with the Lie algebra and using the

exponential map, we would find an isomorphism between a non-Abelian group

and an Abelian one, which gives the contradiction.
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1.3 The Heisenberg group.

The Heisenberg group is the most famous and the most studied sub-

Riemannian geometry.

The 1-dimensional Heisenberg algebra is the Lie algebra spanned by a

basis X, Y, Z satisfying the bracket-relations:

[X, Y ] = Z, [X,Z] = [Y, Z] = 0.

The origin of the name goes back to the fact that Heisenberg wrote down

the previous bracket-relations in his works about quantum mechanics.

x Some information on “Heisenberg’s quantum mechanics theory” can be

found in [75] (Chapter 13).

Next we give a formal definition of the n-dimensional Heisenberg group,

which is usually indicate by Hn.

Definition 1.106. Hn is the 2n + 1-dimensional Carnot group defined on

R2n+1 = Cn × R, by the following composition law

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2
Im 〈z, z′〉

)
,

where Im 〈z, z′〉 is the imaginary part of the standard hermitian inner product

of Cn between z and z′.

In the next example we show that the operation defined above is non-

Abelian.

Example 1.107. Note that (1, 0, 0) · (0, 1, 0) = (1, 1, 1/2), while (0, 1, 0) ·
(1, 0, 0) = (1, 1,−1/2).

The Heisenberg group is a bracket generating sub-Riemannian geometry

with step 2. Next we give two different definitions of this particular Carnot

group and we show that the two given definitions are indeed equivalent.
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1.3.1 The polarized Heisenberg group.

Definition 1.108 (The polarized Heisenberg group). We call 1-dimensional

polarized Heisenberg group the sub-Riemannian geometry spanned on R3 by

the vector fields

X =




1

0

0


 Y =




0

1

−x


 (1.68)

endowed with the usual 2-dimensional Euclidean metric.

The bracket between X and Y gives the third dimension of the space: for

any smooth function f : R3 → R,

Zf := [X, Y ]f = X(Y f) − Y (Xf) = fxy − fz − xfxz − fyx + xfzx = −fz,

so that Z = (0, 0,−1)t.

This means that Span{X(p), Y (p), Z(p)} = R
3, for any p = (x, y, z) ∈ R

3,

which means that the distribution spanned by the vector fields (1.68) is

bracket generating with step 2.

Remark 1.109 ([17]). The associated sub-Riemannian metric can be written

as

ds2 = dx2 + dy2 +
dz2

x2
. (1.69)

By the family of dilations defined on this Carnot group, it is possible to

deduce the following estimate for the Carnot-Carathéodory.

Theorem 1.110. Let d(x, y) be the Carnot-Carathéodory distance defined

by (1.69), then for any (x, y, z) ∈ R
3

1

3
(|x| + |y| + |z| 12 ) ≤ d((0, 0, 0), (x, y, z)) ≤ 4(|x| + |y| + |z| 12 ). (1.70)

For a proof of the theorem see [17].

Remark 1.111. Estimate (1.70) shows that the sub-Riemannian ball cen-

tered at the origin with radius r > 0 is equivalent to the Euclidean hyper-

rectangle (−r, r) × (−r, r) × (−r2, r2).

This means that the Heisenberg geometry is an anisotropic geometry.
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By using the geodesic equations (1.38), we can compute the geodesics

starting from the origin. Applying (1.37), we find that the associated Hamil-

tonian is given by

H(x, y, z, p1, p2, p3) =
1

2

(
p2

1 + (p2 − xp3)
2
)
.

Recall that in the Heisenberg group there are not singular geodesics, the

geodesics in the polarized Heisenberg group are solutions of





ẋ = p1

ẏ = (p2 − xp3)

ż = −x(p2 − xp3)

(1.71)

and 



ṗ1 = p3(p2 − xp3)

ṗ2 = 0

ṗ3 = 0

(1.72)

with initial data 



x(0) = 0

y(0) = 0

z(0) = 0





p1(0) = a

p2(0) = b

p3(0) = c

(1.73)

for a, b, c ∈ R.

By (1.72) we get

p2 = b, p3 = c.

So the other equations can be rewritten as





ẋ = p1,

ẏ = b− cx,

ż = −x(b − cx),

ṗ1 = c(b− cx).

(1.74)

Deriving the first-equation in (1.74) and replacing that in the last equation,

we find:

ẍ+ c2x− bc = 0. (1.75)
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Assuming c 6= 0, the solutions of (1.75) with initial condition x(0) = 0 and

ẋ(0) = p1(0) = a are

x(t) =
a

c
sin(c t) +

b

c
(1 − cos(c t)). (1.76)

From (1.76), it follows a first-order equation for the second-component of the

geodesics, more precisely

ẏ = b− cx = b cos(c t) − a sin(c t).

By integrating with y(0) = 0, we get

y(t) =
b

c
sin(c t) − a

c
(1 − cos(c t)).

By the knowledge of x(t), we can also deduce an equation for the third-

component of the geodesics, i.e.

ż = −x(b− cx) = −1

c
(a sin(c t)+ b− b cos(c t))(b−a sin(c t)− b+ b cos(c t))

=
a2

c
sin2(c t) +

b2

c
cos2(c t) − ab

c
sin(2c t) +

ab

c
sin(c t) − b2

c
cos(c t).

By integrating the previous equation with z(0) = 0, we find

z(t) =
a2 + b2

2c
t−a

2 − b2

4c2
sin(2c t)+

ab

2c2
cos(2c t)−ab

c2
cos(c t)−b

2

c2
sin(c t)+

ab

2c2
.

We remain to solve the case c = 0. If c = 0 the system (1.74) can be rewritten

as 



ẋ = p1,

ẏ = b,

ż = −bx,
ṗ1 = 0.

It is easy to see that p1(t) = a and so
{
x(t) = at,

y(t) = bt.

The third-component is deduced integrating ż = −abt, i.e.

z(t) = −ab
2
t2.

To sum up, we have proved the following result.
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Theorem 1.112. The geodesics of the polarized Heisenberg group starting

from the origin are curves γ(t) = (γ1(t), γ2(t), γ3(t)) parameterized by




γ1(t) =
a

c
sin(c t) +

b

c
(1 − cos(c t)),

γ2(t) =
b

c
sin(c t) − a

c
(1 − cos(c t)),

γ3(t) =
a2 + b2

2c
t− a2 − b2

4c2
sin(2c t) +

ab

2c2
cos(2c t) − ab

c2
cos(c t) − b2

c2
sin(c t) +

ab

2c2
,

(1.77)

for any a, b ∈ R and c 6= 0, and




γ1(t) = at,

γ2(t) = bt,

γ3(t) = −ab
2
t2,

(1.78)

for any a, b ∈ R.

Remark 1.113. The geodesics given in Theorem 1.112 are horizontal: in

fact γ̇3(t) = −γ1(t)γ̇2(t) for any t > 0.

1.3.2 The canonical Heisenberg group.

Definition 1.114 (Canonical Heisenberg group). We call 1-dimensional ex-

ponential Heisenberg group or also canonical Heisenberg group, the sub-

Riemannian geometry induced by the vector fields

X =




1

0

−y
2


 Y =




0

1
x
2


 (1.79)

endowed with the usual 2-dimensional Euclidean metric.

Also in this case it is easy to note that the distribution is bracket

generating with step 2, since Z = [X, Y ] = (0, 0, 1)t.

Also for the canonical Heisenberg group we compute the geodesics. The

associated Hamiltonian is

H(x, y, z, p1, p2, p3) =
(
p1 −

y

2
p3

)2

+
(
p2 +

x

2
p3

)2

. (1.80)
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The equations of the geodesics are





ẋ = p1 −
y

2
p3,

ẏ = p2 +
x

2
p3,

ż =
x

2
p2 −

y

2
p1 +

1

4
(x2 + y2)p3,

(1.81)

and 



ṗ1 = −p3

2

(
p2 +

x

2
p3

)
,

ṗ2 =
p3

2

(
p1 −

y

2
p3

)
,

ṗ3 = 0,

(1.82)

with initial data (1.73).

It is immediate that p3 = c, hence




p1 = −c
2

(
p2 +

c

2
x
)

= −c
2
ẏ,

p2 =
c

2

(
p1 −

c

2
y
)

=
c

2
ẋ.

(1.83)

By deriving (1.81) and using (1.83), we can deduce

{
ẍ+ cẏ = 0,

ÿ − cẋ = 0.
(1.84)

We assume c 6= 0 and, for sake of simplicity, we set p = ẋ and q = ẏ.

So we have to study the first-order system

{
ṗ+ cq = 0,

q̇ − cp = 0.
(1.85)

By the first-equation, we find q = −ṗ/c, which implies q̇ = −p̈/c.
Replacing this in the second-equation of (1.85), we find

p̈+ c2p = 0. (1.86)

The solutions of (1.86) are

p(t) = k1 sin(c t) + k2 cos(c t),
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with k1 and k2 suitable constants. Since q = −ṗ/c, then

q(t) = −k1 cos(c t) + k2 sin(c t).

Using the initial data (1.73), it follows that a = p1(0) = ẋ(0) = p(0) and

b = q(0), so k1 = −b and k2 = a.

To sum up, the solutions of system (1.85) are given by

{
ẋ(t) = −b sin(c t) + a cos(c t),

ẏ(t) = b cos(c t) + a sin(c t).
(1.87)

Simply integrating, we can conclude





x(t) =
a

c
sin(c t) − b

c
(1 − cos(c t)),

y(t) =
b

c
sin(c t) +

a

c
(1 − cos(c t)).

(1.88)

To find the third-component of the normal geodesics is not difficult. In fact,

by (1.88) we can write

ż(t) =
a2 + b2

2c
(1 − cos(c t)), (1.89)

with z(0) = 0, which means

z(t) =
a2 + b2

2c2
(ct− sin(c t)). (1.90)

It remains only to solve (1.83) when c = 0. In this case the two first-

components are x(t) = at and y(t) = bt. So the equation for the third-

component can be written as

ż = ab
t

2
− ab

t

2
= 0,

with vanishing initial condition z(0) = 0, which means z(t) = 0. Therefore

if c = 0 we have found that the usual Euclidean lines are geodesics.

In short, we have proved the following result.
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Theorem 1.115. The geodesics of the canonical Heisenberg group starting

from the origin can be parameterized by





γ1(t) =
a

c
sin(c t) − b

c
(1 − cos(c t)),

γ2(t) =
b

c
sin(c t) +

a

c
(1 − cos(c t)),

γ3(t) =
a2 + b2

2c2
(ct− sin(c t)),

(1.91)

whenever c 6= 0, and by 



γ1(t) = at,

γ2(t) = bt,

γ2(t) = 0,

(1.92)

for any a, b ∈ R.

Remark 1.116. It is immediate that all the previous curves are horizontal

and they are parameterized by arc-length whenever a2 + b2 = 1.

By the previous remark, we can give a parametrization for the unit ball in

the Heisenberg group. Looking at the geodesics parametrized by arc-length,

we can set a = cosφ and b = sinφ. The unit ball in the Heisenberg group

can be written as




x(t) =
cos φ

c
sin(c t) − sin φ

c
(1 − cos(c t)),

y(t) =
sin φ

c
sin(c t) +

cosφ

c
(1 − cos(c t)),

z(t) =
ct− sin(c t)

2c2
,

with 0 ≤ t < 1, 0 ≤ φ ≤ 2π and −2π ≤ c ≤ 2π.

Remark 1.117. To show Proposition 1.1, we only need to observe that the

projections of the Heisenberg geodesics (1.91) are circles, whenever they are

parameterized by arc-length (Fig. 1.6).
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Figure 1.5: Unit ball of the canonical Heisenberg group.

1.3.3 Equivalence of the two definitions.

In this subsection we want to show that the polarized Heisenberg group and

the canonical Heisenberg group are the same Lie group, i.e. there exists

an isomorphism between which respects the topology. Later we conclude

studying the behavior of the geodesics via this isomorphism.

To write the isomorphism, we are going to use the exponential maps.

Recall that the exponential map goes from a Lie algebra to the original Lie

group. Moreover, for any Lie group G, the Lie algebra is isomorphic to the

tangent space at the unit element, so the exponential map can be seen as an

application from the tangent space TeG to G.

Since G = Rn, the tangent space at any point is the same Rn. Therefore, the

exponential map can be interpreted as a change of coordinates in Rn.

Let be n = 3, we indicate by TeR
3, R3 as tangent space at some point of R3

(note that in this case the point is meanless).

Fixed a basis X, Y, Z for the tangent space TeR
3, we consider the function of

coordinates defined as

θ(v) := (α, β, γ),

for any v = αX + βY + γZ ∈ TeR
3.

Note that θ(v) is an element of R3 read w.r.t. the standard basis e1, e2, e2.
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Figure 1.6: Heisenberg ball and the corresponding projections on

the horizontal plane.

In short, we have

R3

dexp

��

TeR
3

exp

��

θ

OO

R3

where exp is the usual exponential map.

When we interpret the exponential map as a change of coordinates in R3, we

are indeed looking at the map êxp := exp ◦ θ−1.

Since θ is a linear application between two vector spaces, then êxp has the

same regularity-properties as the original exponential map: in particular, it

is analytic. Moreover, this map is a diffeomorphism near the origin (Theorem

1.87). From now on, we identify the two notations and we will use exp to

mean êxp.

We now indicate by G1 the canonical Heisenberg group (Definition 1.114)

and by G2 the polarized Heisenberg group (Definition 1.108) and we use the

indexes 1 and 2 in order to express the corresponding objects, for example

expi is the exponential map of the group Gi, for i = 1, 2.

Note that g1 = g2 = R3, so we can define the following application F between
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the two groups:

R3

exp1

����
��

��
��

��
��

��

exp2

��:
::

::
::

::
::

::
::

G1 = R3 F // G2 = R3

We know that F := exp2 ◦ exp−1
1 is a local diffeomorphism. Now we want

to show explicitly that it is a isomorphism (which implies directly that teh

function respects the topology). Therefore we only need to prove that:

• F is invertible,

• F is an homomorphism, i.e. for any p, q ∈ G1,

F (π1(p, q)) = π2(F (p), F (q)),

where πi is the composition law for the group Gi with i = 1, 2.

The first step consists in computing the two exponential maps.

Remember that the basis associated to G1 is given by the vector fields

X =




1

0

−y
2


 , Y =




0

1
x
2


 , Z =




0

0

1


 . (1.93)

To write the exponential map exp1, we need to calculate the vector flux in

the origin at the time 1. Therefore, fixed α, β, δ ∈ R, we must solve the

following first-order differential system:




γ̇1(t) = α,

γ̇2(t) = β,

γ̇3(t) =
βγ1

2
− αγ2

2
+ δ,

(1.94)

with initial data γi(0) = 0 for i = 1, 2, 3.

By the two first-equations of (1.94), we get trivially γ1(t) = αt and γ2(t) = βt.

So the third-equation becomes

γ̇3(t) =
αβ

2
t− αβ

2
t+ δ = δ.
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Then the vector flux is γ(t) = (αt, βt, δt).

Hence the exponential map is

exp1(α, β, δ) = (α, β, δ),

for any (α, β, δ) ∈ R
3.

In particular exp1 is invertible and exp−1
1 = exp1.

Remark 1.118. Note that starting from Definition 1.68 the corresponding

exponential map is the identity. This is the reason in order to choose the

exponential Heisenberg group as canonical definition.

As above, we calculate the exponential map of the polarized Heisenberg

group. We recall that the basis associated to G2 is given by

X =




1

0

0


 , Y =




0

1

−x


 , Z =




0

0

−1


 . (1.95)

So in this case the system for the vector flux is





γ̇1(t) = α,

γ̇2(t) = β,

γ̇3(t) = −βγ1 − δ.

(1.96)

Solving the system, we find

exp2(α, β, δ) =

(
α, β,−δ − αβ

2

)
.

Also in this case, the exponential map is invertible and it is equal to its

inverse (i.e. exp−1
2 = exp2).

Therefore we can now explicitly write the isomorphism F = exp2 ◦ exp−1
1 ,

which is

F (α, β, δ) =

(
α, β,−δ − αβ

2

)
.

Note that F is invertible and coincides with its inverse, too.
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We remain only to prove that F is an homomorphism from G1 to G2.

We need to find explicitly the two composition laws, by using the Campbell-

Hausdorff formula (1.57). First we calculate π1.

Let be p = (p1, p2, p3) and q = (q1, q2, q3), we set Xp = exp−1
1 p and Xq =

exp−1
1 q, then

Xp = p1X1 + p2Y1 + p3Z1

and analogously

Xq = q1X1 + q2Y1 + q3Z1.

Applying formula (1.57), we get

π1(p, q) = exp1Xp exp1Xq = exp1

(
Xp +Xq +

1

2

[
Xp, Xq

])

= exp1

(
p1X1 + p2Y1 + p3Z1 + q1X1 + q2Y1 + q3Z1 +

p1q2
2
Z1 −

p2q1
2
Z1

)

= exp1

(
(p1 + q1)X1 + (p2 + q2)Y1 +

(
p3 + q3 +

p1q2
2

− p2q1
2

)
Z1

)
,

i.e.

π1(p, q) =

(
p1 + q1, p2 + q2, p3 + q3 +

1

2
(p1q2 − p2q1)

)
. (1.97)

Remark 1.119. Note that the composition law (1.97) is exactly the law given

in Definition 1.106.

To find the composition law of G2, we start from Xp = exp−1
2 p and

Xq = exp−1
2 q, which gives

Xp = p1X2 + p2Y2 +
(
−p3 −

p1p2

2

)
Z2

and

Xq = q1X2 + q2Y2 +
(
−q3 −

q1q2
2

)
Z2.

In this case, formula (1.57) gives

π2(p, q) = exp2 Xp exp2 Xq = exp2

(
Xp + Xq +

1

2

[
Xp,Xq

])
= exp2

(
p1X2+p2Y2

+

(
−p3 −

p1p2

2

)
Z2 + q1X2 + q2Y2 +

(
−q3 −

q1q2

2

)
Z2 +

p1q2

2
Z2 −

p2q1

2
Z2

)

= exp2

(
(p1 + q1)X2 + (p2 + q2)Y2 +

(
−p3 −

p1p2

2
− q3 −

q1q2

2
+

p1q2

2
− p2q1

2

)
Z2

)

=

(
p1 + q1, p2 + q2, p3 + q3 +

p1p2

2
+

q1q2

2
− p1q2

2
+

p2q1

2
− 1

2
(p1 + q1)(p2 + q2)

)
.
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Hence

π2(p, q) = (p1 + q1, p2 + q2, p3 + q3 − p1q2). (1.98)

By (1.97) and (1.98), it is easy to check that F is an homomorphism between

G1 and G2, in fact:

F
(
π1(p, q)

)
= F

(
p1 + q1, p2 + q2, p3 + q3 +

1

2
(p1q2 − p2q1)

)

=

(
p1 + q1, p2 + q2,−p3 − q3 −

1

2
(p1q2 − p2q1) −

1

2
(p1 + q1)(p2 + q2)

)

=
(
p1 + q1, p2 + q2,−p3 − q3 −

p1p2

2
− q1q2

2
− p1q2

)
.

On the other side,

π2

(
F (p), F (q)

)
= π2

((
p1, p2,−p3 −

p1p2

2

)
,
(
q1, q2,−q3 −

q1q2
2

))

=
(
p1 + q1, p2 + q2,−p3 − q3 −

p1p2

2
− q1q2

2
− p1q2

)
.

Therefore

F
(
π1(p, q)

)
= π2

(
F (p), F (q)

)

and so F is the isomorphism between G1 and G2 which we are looking for.

We conclude showing that, by the application of F , the geodesics (1.91)

go into the geodesics (1.76) and, analogously, the geodesics (1.92) goes into

the geodesics (1.78).

It is immediate to note that F fixes the first-component and the second-

component of any curve. Nevertheless the two first-components of the cor-

responding geodesics are not the same. In fact, the parameter c depends on

the orientation of the vector field Z. So, if we want to compute the range

of geodesics associated to the same parameters, we must start by geodesic-

equations (1.91), rewritten w.r.t. −c, i.e.

γ(t) =





γ1(t) =
a

c
sin ct+

b

c
(1 − cos ct),

γ2(t) =
b

c
sin ct− a

c
(1 − cos ct),

γ3(t) = −a
2 + b2

2c2
(ct− sin ct).
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Now the two first-components coincide with the corresponding ones in (1.76).

Set γ̂(t) the image by F of the geodesic γ(t), it remains only to calculate the

image of the third-component, i.e.

γ̂3(t) = −γ3(t) −
1

2
γ1(t)γ2(t) =

a2 + b2

2c
t − a2 + b2

2c2
sin(c t)

− 1

2c2
(a sin(c t)+b−b cos(c t))(b sin(c t)−a+a cos(c t)) =

a2 + b2

2
t− a2 + b2

2c2
sin(c t)

− 1

2c2

(
ab sin2(c t) − a2 sin(c t) + (a2 − b2) sin(c t) cos(c t) + b2 sin(c t) − ab + ab cos(c t) + ab

−ab cos2(c t)
)

=
a2 + b2

2c
t−a2 − b2

4c2
sin(2c t)+

ab

2c2
cos(2c t)−ab

c2
cos(c t)−b2

c2
sin(c t)+

ab

2c2
,

Hence γ̂3 is exactly the third-component of (1.77) and this verifies the case

c 6= 0. The case c = 0 is trivial. In fact, the image of the third-component

of (1.92) is simply γ̂3(t) = γ3(t) + 1
2
γ1(t)γ2(t) = 0 − ab

2
t2. We have so proved

that geodesics go into geodesics, as it is natural to expect.

By using the equation of geodesics for the canonical Heisenberg group, it

is also possible to draw the graph of the Carnot-Carathéodory distance

from the origin. Since the Heisenberg group is invariant by rotation in the

(x, y)-plane, we can assume x = y. In this way the graph of the distance

d((0, 0, 0), (x, x, z)) can be expressed by
√

2 z c2

c−sin c
where the parameter c and

the variables x and z are related by the equation x =
√

4 z (1−cos c)
c−sin c

.



Chapter 2

Viscosity solutions and metric

Hopf-Lax formula.

2.1 An introduction to the theory of viscosity

solutions.

Let us start by a simple example: the 1-dimensional eikonal equation. We

consider the following Dirichlet problem:

{
|u′(x)| = 1, x ∈ (−1, 1),

u(−1) = u(1) = 0.
(2.1)

It is easy to note that there are not classical solutions for Dirichlet problem

(2.1). In fact, given a function u ∈ C1([−1, 1]) such that u(−1) = u(1) = 0,

by Rolle’s Theorem there exists a point x0 ∈ (−1, 1) such that

u′(x0) =
u(1) − u(−1)

2
= 0.

So the euquation is not satisfied at the point x0. Moreover by continuity of

u′(x), |u′(x)| < 1 in some open neighborhood of x0. The condition u ∈ C1 is

clearly too strong to get general existence results for nonlinear PDEs.

Therefore the idea of looking at weaker notions of solutions for nonlinear

PDEs as the eikonal equation.

For example, if we look at the function u(x) = −|x|+ 1 (which is continuous
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in the interval (−1, 1) but not differentiable at the point x0 = 0), we can note

that u satisfies the eikonal equation at any point exept the point x0 = 0. Then

the idea of looking at functions differentiable “except in some points”, which

satisfy the PDE just where the derivatives exist. By the Rademacher’s The-

orem, we know that locally Lipschitz continuous functions are differentiable

almost everywhere. Then we call almost everywhere solution for a first-order

PDE, any locally Lipschitz continuous function satisfying the equation at

almost points.

Going back to the eikonal problem (2.1), we can note that any saw-tooth

function (known also as Rademacher functions)

uk(x) =





x+ 1 − i

2k−1
, if x ∈

[
−1 +

i

2k−1
,−1 +

2i+ 1

2k

)
,

−x− 1 +
i+ 1

2k−1
, if x ∈

[
−1 +

2i+ 1

2k
,−1 +

i+ 1

2k−1

)
,

(2.2)

with i = 0, 1, ..., 2k − 1 and k ∈ N, is an almost everywhere solution.

−1 1

1

−1

0

−|x|+1

|x|−1

Figure 2.1: Some different almost everywhere solutions of the

eikonal problem (2.1).

This example shows that almost everywhere solutions usually exist but are

not unique. Moreover, as k → +∞, uk(x) converges uniformly to the zero

function that satisfies the eikonal equation nowhere. So almost everywhere

solutions are not stable w.r.t. uniform convergence.
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We are going to introduce a different notion of weak solutions which leads

to existence, uniqueness and stability for a large class of nonlinear PDEs:

the so called viscosity solutions.

Viscosity solutions for Hamilton-Jacobi first-order PDEs have been intro-

duced in the early ’80 by M.G. Crandall and P.L. Lions in [39] (see [40] for

the English version). In the following years, many authors have been worked

to develop this new theory, hence many results for existence, uniqueness

and regularity for first-order and second-order nonlinear PDEs have been

proved. Here we will concentrate in particular on first-order equations, for

more datails on the second-order case, we suggest to look at [23, 38].

2.1.1 Viscosity solutions for continuous functions.

We now introduce the classical theory of viscosity solutions for continuous

functions. This theory has been introduced by M.G. Crandall and P.L. Lions

in [39, 40] and then developed by H. Ishii, G. Barles, L.C. Evans and many

others. In particular, we suggest to see [7, 11, 47, 71] for a very useful and

clear treatment of viscosity theory for the Hamilton-Jacobi equations.

We begin giving the main definitions.

Definition 2.1. Let Ω ⊂ Rn be an open set and u : Ω → R a continuous

function and let us consider the first-order PDE

H(x, u(x), Du(x)) = 0, x ∈ Ω. (2.3)

(i) We say that u is a viscosity subsolution of (2.3) at a point x0 ∈ Ω if

and only if for any test function ϕ ∈ C1(Ω) such that u−ϕ has a local

maximum at x0, then

H(x0, u(x0), Dϕ(x0)) ≤ 0; (2.4)

(ii) We say that u is a viscosity supersolution of (2.3) at a point x0 ∈ Ω,

if and only if, for any test function ϕ ∈ C1(Ω) such that u − ϕ has a

local minimum at x0, then

H(x0, u(x0), Dϕ(x0)) ≥ 0; (2.5)
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(iii) We say that u is a viscosity solution in the open set Ω if u is a viscosity

subsolution and a viscosity supersolution at any point x0 ∈ Ω.

Remark 2.2. An analogous definition holds for second-order PDEs.

Remark 2.3. If u(x) − ϕ(x) has a local maximum (resp. minimum) at x0,

we can assume that the maximum (resp. minimum) is zero and moreover, by

adding a suitable quadratic perturbation, we can suppose that the maximum

(resp. minimum) is strict (see [36], Lemma 1.1).

Example 2.4. We want to show that u(x) = |x| is the unique viscosity

solution of the eikonal equation

−|Du(x)| + 1 = 0, x ∈ (−1, 1). (2.6)

For the uniqueness see [7].

Note that, whenever x0 6= 0, x0 is an extremal-point for u − ϕ where the

function is differentiable, then D(ϕ− u)(x0) = 0, which means

Dϕ(x0) = Du(x0) = 1.

The problem occurs only at the point x0 = 0, where the modulus is not

differentiable. Let us first consider the subsolution property, i.e. x0 local

(strict) maximum point and assume u(0) = ϕ(0); then −|x| ≤ u(x)− u(0) ≤
ϕ(x) − ϕ(0), near 0, which implies

1 ≥ ϕ(x) − ϕ(0)

x
, for x < 0 and

ϕ(x) − ϕ(0)

x
≥ −1, for x > 0.

Since ϕ ∈ C1, passing to the limit as x → 0, we can conclude |ϕ′(0)| ≤
1. Therefore the subsolution condition (2.4) is satisfied at any point x0 ∈
(−1, 1). To verify the supersolution condition, we assume that u−ϕ attends

a local maximum (equal to 0) at the point 0. Proceeding as above we find

D−ϕ(0) ≥ 1 and D+ϕ(0) ≤ −1, which means D−ϕ(0) 6= D+ϕ(0). Therefore

there cannot be C1-functions touching u(x) = −|x| + 1 from below, which

means the condition (2.5) is trivially verified.

Example 2.5. Similarly to the previous example, one can show that v(x) =

−u(x) = −|x| is a viscosity solution of

|Du(x)| − 1 = 0, x ∈ (−1, 1). (2.7)
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Remark 2.6. Note that while u(x) = |x| does not satisfy Eq. (2.7) in the

viscosity sense. In fact, the function ϕ(x) = −x2+1 is a C1 function touching

u from above at 0. Nevertheless −|ϕ′(0)|+1 = 1 > 0, therefore the subsolution

property is not satisfied.

In fact, the equations H(x, u,Du) = 0 and −H(x, u,Du) = 0 are not in

general equivalent in the viscosity sense. It is very easy to show that, if u(x)

is a viscosity solution of H(x, u,Du) = 0, then v(x) = −u(x) is a viscosity

solution of −H(x,−v,−Dv) = 0.

In the next propositions we show that the definition of viscosity solutions

is consistent with the notion of classical solutions: in fact classical solutions

are viscosity solutions, too, and C1-viscosity solutions are also classic solu-

tions.

Proposition 2.7. Let Ω be an open set and u ∈ C1(Ω). Then u is a viscosity

solution if and only if u is a classical solution.

Proof. To prove that C1-viscosity solutions are also classical solutions is triv-

ial. In fact, we can choose, as test function, u itself and, therefore, it satisfies

the equation in the classical sense.

In order to get the inverse implication, we can observe that, for any test

function ϕ, if x0 is an extremal point of u − ϕ where both of the functions

are differentiable, then Du(x0) = Dϕ(x0). So if u satisfies the equation, any

test function does so and, therefore, u is a viscosity solution.

Remark 2.8. For second-order PDEs the consistence with classical solutions

is not always true. In this case, one has to assume that the equation is non-

increasing in the second-order variables (e.g. elliptic or degenerate elliptic

PDEs). Moreover, to ensure uniqueness at least of classical solutions, usually

we assume also a monotone-increasing dependence w.r.t. u.

The previous proposition can be written punctually, as follows.

Remark 2.9. If u is a viscosity solution at a point where it is differentiable,

then u satisfies the equation in the classical sense at that point (see [47],

Theorem 10.1.1 for a proof of this result).
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Viscosity solutions are also consistent with almost everywhere solutions,

in the sense that any locally Lipschitz continuous viscosity solution satisfies

the PDE almost everywhere.

Proposition 2.10. Let Ω be an open set and u be a viscosity solution in Ω.

If u is Lipschitz in Ω (briefly u ∈ Lip(Ω)), then u is an almost everywhere

solution, too.

Proof. The result follows immediately by Remark 2.9 and the Rademacher’s

Theorem.

Remark 2.11. The reverse implication of Proposition 2.10 is in general not

true, as we have seen in the case of the eikonal equation.

Now we want to investigate the stability properties for viscosity solutions.

Proposition 2.12. Let Ω be an open set and u ∈ C(Ω) and suppose x0 is a

maximum point (resp. minimum point) for u − ϕ in Br(x0) ⊂ Ω, for some

ϕ ∈ C1(Ω). If un ∈ C(Ω) are such that

lim
n→∞

un(x) = u(x),

for any x ∈ Ω, let xn be a sequence of minimum points for un −ϕ in Br(x0),

then xn → x, as n→ ∞, and moreover

lim
n→∞

un(xn) = u(x0).

From the previous result the stability follows imediately.

Proposition 2.13. Let Hn and H be continuous in all the variables and such

that Hn → H, as n→ ∞. Let un be viscosity solutions of Hn(x, un, Dun) = 0

and

u(x) = lim
n→+∞

un(x).

If u is continuous, then u is a viscosity solution of H(x, u,Du) = 0.

The proofs of the two previous results are here omitted and we will give

those later directly in the semicontinuous case (see Proposition 2.23 and

Proposition 2.25).
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Another important property of viscosity solutions is the behavior w.r.t.

the operations of infimum and supremum. Let us start by the easy case of

only two (or a finite number of) continuous functions.

Proposition 2.14.

1. Let u, v ∈ C(Ω) be two viscosity subsolutions of H(x, u,Du) = 0, then

u ∨ v is a viscosity subsolution of the same equation.

2. Let u, v ∈ C(Ω) be two viscosity supersolutions of H(x, u,Du) = 0,

then u ∧ v is a viscosity supersolution of the same equation.

The proof of the previous result is pretty easy (e.g. [7], Proposition 2.1).

The previous result can be generalized to inifinitly many functions.

Proposition 2.15.

1. Let F be a family of viscosity subsolutions of H(x, u,Du) = 0,

and define

u(x) := sup
v∈F

v(x).

If u is continuous, then u is a viscosity subsolution of the equation.

2. Let F be a family of viscosity supersolutions of H(x, v,Dv) = 0,

and define

u(x) := inf
v∈F

v(x).

If u is continuous, then it is a viscosity supersolutions of the same

equation.

We now omit the proof since we are going to give that directly for lower

semicontinuous viscosity solutions (see Proposition 2.26).

The behavior w.r.t. to the infimum (and the supremum respectively) is the

key point to get existence of viscosity solutions by the so called Perron’s

method [81]. In 1987 H. Ishii used for the first time the Perron’s method to

solve nonlinear first-order equations (Perron’s method for Hamilton-Jacobi

equations, Duke Math. J. 55). This method had been introduced in 1923

by Oskar Perron in order to find solutions for the Laplace equation and con-

sists in building a solution as the supremum of a suitable family of viscosity
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subsolutions. Since the supremum of viscosity subsolutions is a viscosity sub-

solution, one has just to prove that it is a viscosity supersolution, too.

The Perron’s method can be sketched, as follows:

Theorem 2.16 (Perron’s Method). Let us assume that

1. Comparison principle for the equation holds, i.e. given u viscosity sub-

solution and v viscosity supersolution satisfying the same boundary con-

dition, then u ≤ v.

2. Suppose that there exist u and u which are, respectively, a viscosity

subsolution and a viscosity supersolution, satisfying the same boundary

condition.

We define

W (x) = sup{w(x) | u ≤ w ≤ u and w viscosity subsolution},

Then W (x) is a viscosity solution of the same equation, which satisfies the

same boundary condition satisfied by u and u.

The Perron’s method is one of the most used method in order to get

existence of solutions in the classical sense as well as in the viscosity sense.

However we quote the result without giving any proof since we will apply

a different method to prove existence for our class of PDEs, by the use of

a suitable representative formula, the so called Hopf-Lax function (we will

give many datails on this formula in Sec. 2.3).

Another method to get existence for nonlinear PDEs is the so called method

of the characteristics. We refer to [47] for more details on this method.

A last method for existence of viscosity solution we like to quote is the so

called vanishing viscosity approximation, which consists in adding to the

equation a “viscosity term”, i.e. a term of the form −ε∆u, for any ε > 0.

This leads often to an elliptic or parabolic PDE, which is usually easier to

solve than the starting Hamilton-Jacobi equation. Several times it is even

possible to get classical solutions for the family of approximating PDEs.

The limit of those classical solutions solves in the viscosity sense the starting

Hamilton-Jacobi equation. The name “viscosity solutions” comes exactly
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from this idea. We will go back on the vanishing viscosity approximation in

the last section. More information can be found in [71] (Sec. 1.4 and Sec.

8), [47] (Sec. II.7.3), [36] (Theorem 3.1.) or [13, 87, 40]. See also [9] for a

similar method.

We conclude quoting some results conerning uniqueness. Whenever the

Hamiltonian satisfies some a coercive assumption or a Lipschitz assumption

w.r.t. the gradient-variable, uniqueness for the the Dirichlet problem or

the Cauchy problem can be found in [7, 11, 37, 41, 47, 71] and, only for

the evolution equation, in [36, 58], too. In particular, we like to quote a

pretty recent by A. Cutŕı and G. Da Lio ([42]), which holds for the Cauchy

problem and Hamiltonians satisfying a very general Hörmander condition

(which means for the kind of degenerate Hamiltonians we are going to treat

in this Thesis, see Sec. 2.4.2).

2.1.2 Discontinuous viscosity solutions.

There are different ways to define a notation of viscosity solutions, for discon-

tinuous functions. By Weirstrass Theorem, we know that in R
n any contin-

uous function attends maximum and minimum in a closed ball. This means

that it is sufficient to require lower semicontinuity for viscosity supersolution

(where we test at minimum points) and upper semicontinuous for viscosity

subsolutions (where instead we test at maximum points). If the function is

not continuous we can consider the right semicontinuous regularization of

the function to test the supersolution and subsolution conditions. This leads

to the following notion.

Definition 2.17. Let Ω ⊂ R
n be an open set and u : Ω → R be locally

bounded function.

1. We say that u is a (discontinuous) viscosity subsolution of

H(x, u,Du) = 0 if, defined the upper semicontinuous envelop of u

u∗(x) := inf{v(x)|v ∈ C(Ω) and v ≥ u in Ω} = lim sup
r→0+

{u(y)| |y−x| ≤ r},

u∗ is a viscosity subsolution of the equation.
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2. We say that u is a (discontinuous) viscosity supersolution of

H(x, u,Du) = 0 if, defined the lower semicontinuous envelop of u

u∗(x) := sup{v(x)|v ∈ C(Ω) and v ≤ u in Ω} = lim inf
r→0+

{u(y)| |y−x| ≤ r},

u∗ is a viscosity supersolution of the equation.

3. We say that u is a (discontinuous) viscosity solution of H(x, u,Du) = 0

if u∗ is a viscosity subsolution of the equation and u∗ is a viscosity

supersolution of the equation.

Remark 2.18. Note that u∗ and u∗ are locally bounded and upper and lower

semicontinuous, respectively. Moreover u∗ ≤ u ≤ u∗.

This notion of discontinuous viscosity solutions is used in [57, 56, 12]

to get existence and uniqueness for a pretty large class of Hamilton-Jacobi

equations.

In this thesis we istead follow a different notion of discontinuous viscosity

solutions, which has been introduced by Barron and Jensen in [14, 15] and

then applied to Dirichlet problem by Barles in [10] and to the Cauchy problem

for bounded equations in infinite-dimensional spaces by Ishii in [59]. Some

objections concerning the use of upper and lower semicontinuous envelopes

to solve problems with discontinuous initial data can be found in [14]. We

only remark that we are going to look at lower semicontinuous initial data.

The easiest idea is so to apply directly the standard definition but testing

only at the minimum points. For Hamiltonian which are convex w.r.t. the

gradient, there is a very consistent way to do this. Let us give more details.

Definition 2.19. Let Ω be an open set and u be a lower semicontinuous

(briefly u ∈ LSC(Ω)), we say that u is a lower semicontinuous viscosity

solution (shorthly LSC-viscosity solutions) for Eq. (2.3) at some point x0 ∈ Ω

if and only if for any test function ϕ ∈ C1(Ω) such that u−ϕ attends a local

minimum at x0, then

H(x0, ϕ(x0), Dϕ(x0)) = 0. (2.8)

Remark 2.20. Note that Definition 2.19 differs from the standard viscosity

supersolution requirement because of the identity instead of the inequality.
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Therefore Definition 2.19 is also called strong viscosity supersolution condi-

tion.

LSC-viscosity solutions satisfy almost all of the properties that we have

seen for continuous viscosity solutions. Moreover Definition 2.19 is consistent

with the standard definition of viscosity solutions (Definition 2.1).

A very nice proof of this result can be found in [10] (Theorem 2.1).

In [14] the authors have proved the consistence for evolution Hamitlon-Jacobi

equations of the form

ut(t, x) +H(x, u,Du) = 0, (2.9)

where by Du we indicate the gradient w.r.t. x, by assumeing that the Hamil-

tonian is Lipschitz w.r.t. the gradient. We will show that this assumption is

indeed not necessary for the consistence.

Theorem 2.21. Let be Ω = [0,+∞) × Rn and let H(x, z, p) = H(x, p) be

continuous in both of the variables and convex w.r.t. p. We assume that for

R > 0 there exists a family of modulus of continuity ωR(·) and a continuous

function f : [0,+∞) → [0,+∞) such that

|H(x, p) −H(y, p)| ≤ ωR(|x− y|)f(|p|) ∀x, y ∈ BR(0). (2.10)

Then, if u ∈ C(Ω) is a LSC-viscosity solution of Eq. (2.9), then u is a

standard viscosity solution (Definition 2.1).

Proof. It is immediate that if u ∈ C(Ω) is a strong viscosity supersolution

(i.e. Definition 2.19 holds) then u is in particular a viscosity supersolution.

So we need only to check that it is a viscosity subsolution, too, by using the

convexity of H w.r.t. the gradient.

So let ϕ ∈ C1(Ω) be such that u−ϕ attends a local maximum at (t0, x0), we

have to prove that

ϕt(t0, x0) +H(x0, Dϕ(t0, x0)) ≤ 0. (2.11)

Define φ = u − ϕ, we apply Theorem 1.1 in [14]: for any ε > 0 there exist

ψ ∈ C∞(Ω), αk and (tk, xk), with k = 1, ..., N < +∞, such that
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(i) αk ≥ 0, for any k = 1, ..., N and
∑N

k=1 αk = 1,

(ii) φ−ψ attends a minimum equal to 0 at any point (tk, xk), for k = 1, ..., N .

(iii) (tk, xk) ∈ Boε(1)ε1/2(s, y) for some (s, y) ∈ Boε(1)(t0, x0), where by oε(1)

we indicate a quantity going to 0 as ε → 0+.

(iv)
∑N

k=1 αkψt(tk, xk) = 0 =
∑N

k=1 αkDψ(tk, xk).

Since (tk, xk) are minimum points for u−ϕ−ψ and u satisfies the equation,

then ϕ̃ = ϕ+ ψ is a test function touching from above at (tk, xk), hence

ϕt(tk, xk)+ψt(tk, xk)+H(xk, Dϕ(tk, xk)+Dψ(tk, xk)) = 0, for any k = 1, .., N.

We add and subtract ±ϕt(s, y), ±H(y,Dϕ̃(tk, xk)) and ±H(y,Dϕ(s, y) +

Dψ(tk, xk)), and we estimate the corresponding differences. By property

(iii) and using that ϕ ∈ C1(Ω), we get

ϕt(tk, xk) − ϕt(s, y) ≥ −oε(1)ε
1
2 = −oε(1).

Moreover

|H(xk, Dϕ̃(tk, xk)) −H(y,Dϕ̃(tk, xk))| ≤ ω(|xk − y|)f(|Dϕ̃(tk, xk)|).

By property (iii) we know that (tk, xk) ∈ Boε(1)(s, y) and (s, y) ∈
Boε(1)(t0, x0); hence (tk, xk) ∈ K compact subset of [0,+∞) × Rn for any

k = 1, ..., N . Since f and Dϕ̃ are continuous, then f(|Dϕ̃(tk, xk)|) ≤ C for

any k = 1, ..., N , which implies

|H(xk, Dϕ̃(tk, xk)) −H(y,Dϕ̃(tk, xk))| ≤ Cω(|xk − y|) = oε(1).

We remain to estimate the last term, using the convexity ofH(x, p) w.r.t. the

gradient which implies that the Hamiltonian is locally Lipschitz continuous

w.r.t. the gradient. Note that (tk, xk), (s, y) ∈ Br(t0, x0), so by the local

Lipschitz continuity of H , we find

|H(y,Dϕ(tk, xk) +Dψ(tk, xk) −H(y,Dϕ(s, y) +Dψ(tk, xk)|
≤ C|Dϕ(tx, xk) −Dϕ(s, y)| = oε(1).
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To sum up, we have found the following estimate

oε(1) ≥ ϕt(s, y) + ψt(tk, xk) +H(y,Dϕ(s, y) +Dψ(tk, xk)).

Multiplying by αk ≥ 0 and summing over k = 1, ..., N , we can use the

convexity of H w.r.t. p, so that

N∑

k=1

αkoε(1) ≥
N∑

k=1

αkϕt(s, y) +

N∑

k=1

αkψt(tk, xk)

+H

(
y,

N∑

k=1

αkDϕ(s, y) +

N∑

k=1

αkDψ(tk, xk)

)
.

Using property (iv), we get

oε(1) ≥ ϕt(s, y) +H(y,Dϕ(s, y));

using that ϕ ∈ C1(Ω) and (s, y) ∈ Boε(1)(t0, x0), passing to the limit as

ε → 0+, we find (2.11).

Remark 2.22. The Hamiltonian H(x, p) = 1
α
|σ(x)p|α for α ≥ 1 satisfies all

the assumptions of Theorem 2.21 hold whenever σ(x) has smooth coefficients.

We now show some properties for LSC-viscosity solutions.

Proposition 2.23. Let u be a lower semicontinuous function, ϕ ∈ C1 and

x0 a minimum point for u − ϕ in Br(x0). Let un be a sequence of lower

semicontinuous functions such that

lim inf
n→∞

un(x) = u(x).

If xn is a sequence of minimum points for un −ϕ in Br(x0), then xn → x as

n→ ∞ and moreover

lim inf
n→∞

un(xn) = u(x0).

Proof. Without loss of generality, we can assume that the minimum in Br(x0)

is strict. Moreover Br(x0) is a compact set and so there exists a subsequence

of xn (which we still indicate by xn) which converges to some point y ∈
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Br(x0).

We need only to check that y = x0. Note that

un(xn) − ϕ(xn) ≤ un(x) − ϕ(x), ∀x ∈ Br(x0).

Since un is lower semicontinuous for any n ∈ N and xn → y, passing to the

lower limit in the previous inequality, we find

u(y) − ϕ(y) ≤ lim inf
n→+∞

un(xn) − ϕ(y) ≤ u(x) − ϕ(x). (2.12)

Therefore y is a minimum point for u−ϕ in Br(x0). Since we have assumed

that the minimum is strict, then y = x0.

Moreover, writing (2.12) at the point x = x0, we get

u(x0) − ϕ(x0) ≤ lim inf
n→+∞

un(xn) − ϕ(x0) ≤ u(x0) − ϕ(x0).

We can so conclude that

lim inf
n→+∞

un(xn) = u(x0).

Remark 2.24. Without loss of generality we can assume un(xn) = ϕ(xn)

for any n, which implies u(x0) = ϕ(x0).

The previous lemma can be used to show the stability of LSC-viscosity

solutions.

Proposition 2.25. Let Hn(x, z, p) and H(x, z, p) be continuous Hamiltoni-

ans and assume that Hn(x, z, p) → H(x, z, p) as n → ∞. Let un be LSC-

viscosity solutions of Hn(x, un, Dun) = 0. Define

u(x) = lim inf
n→+∞

un(x).

If u is a lower semicontinuous function, then u is a LSC-viscosity solution

for the limit-equation H(x, u,Du) = 0.

Proof. Let ϕ ∈ C1 be such that u− ϕ attends a local strict minimum at x0,

which means there exists r > 0 such that

u(x0) − ϕ(x0) < u(x) − ϕ(x), ∀x ∈ Br(x0)\{x0}.
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Since un are lower semicontinuous functions, there is a sequence of points xn

where un − ϕ attends minimum in Br(x0).

By Proposition 2.23 xn → x0; hence there exists n ∈ N such that for any

n > n, xn ∈ Br(x0) and

lim inf
n→+∞

un(xn) = u(x0).

We recall that ϕ(xn) = un(xn) and ϕ(x0) = u(x0) (see Remark 2.24): un are

LSC-viscosity solutions of Hn(x, un, Dun) = 0, so

Hn(xn, ϕ(xn), Dϕ(xn)) = 0.

Moreover ϕ ∈ C1 and H(x, z, p) continuous; hence passing to the limit as

n→ ∞, we get

H(x, ϕ(x0), Dϕ(x0)) = 0.

Next we study the behavior of LSC-viscosity solutions w.r.t. the infimum

and the supremum.

Proposition 2.26. Let v ∈ F be a family of LSC-viscosity solutions of

H(x, v,Dv) = 0 and u(x) = infv∈F v(x). If u is a lower semicontinuous

function, then it is a LSC-viscosity solution of the same equation.

Proof. Let ϕ ∈ C1 be such that u− ϕ has a local strict minimum at x0, i.e.

there exists r > 0 such that

u(x0) − ϕ(x0) < u(x) − ϕ(x), ∀x ∈ Br(x0)\{x0}.

Since u(x0) = inf{v(x0) | v ∈ F}, for any n ∈ N there exists vn ∈ F such

that

vn(x0) < u(x0) +
1

n
.

Let xn be a sequence of minimum points for vn − ϕ in Br(x0), i.e.

vn(xn) − ϕ(xn) ≤ vn(x) − ϕ(x), ∀x ∈ Br(x0), (2.13)



86 Chapter 2. Viscosity solutions and metric Hopf-Lax formula.

we know that (up to a subsequence) xn → y for some point y ∈ Br(x0).

Writing (2.13) at the point x = x0, we find

u(xn) − ϕ(xn) ≤ vn(xn) − ϕ(xn) ≤ vn(x0) − ϕ(x0) < u(x0) +
1

n
− ϕ(x0).

Passing to the lower limit as n → +∞, and using the lower semicontinuity

of u and the continuity of test function ϕ, we conclude

u(y) − ϕ(y) ≤ u(x0) − ϕ(x0).

Therefore y is a minimum point of u− ϕ in Br(x0). Since x0 is a strict pint

of minimum, then x0 = y.

We now use that vn are LSC-viscosity solutions (with ϕ(xn) = un(xn)), i.e.

H(xn, ϕ(xn), Dϕ(xn)) = 0.

Passing to the limit as n→ +∞ and, recalling that ϕ(x0) = u(x0), we find

H(x0, u(x0), Dϕ(x0)) = 0.

We are going to look in particular at the Cauchy problem for an evolution

Hamilton-Jacobi equation:

{
ut +H(t, x, u,Du) = 0, in R

n × (0,+∞),

u = g, in R
n × {0},

(2.14)

with a lower semicontinuous initial data g.

For sake of simplicity, we prefer to re-write Definition 2.19 explicitly in the

evolution case

Definition 2.27. Let Ω be an open subset of R
n×(0,+∞) and u ∈ LSC(Ω),

u is a LSC-viscosity solution for the Hamilton-Jacobi equation (2.9), at the

point (t0, x0) if and only if, for any test function ϕ ∈ C1(Ω) such that u− ϕ

attends a local minimum at (t0, x0),

∂ϕ

∂t
(t0, x0) +H(t0, x0, u(t0, x0), Dϕ(t0, x0)) = 0. (2.15)
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In [14] the authors have proved that upper semicontinuous viscosity solu-

tions (defined testing the subsolution-property at the maximum points) for

a terminal-time Cauchy problem are unique, under suitable assumptions on

the Hamiltonians. In particular the Hamiltonian is assumed to be globally

Lipschitz w.r.t. the gradient. By this result, the uniqueness for LSC-viscosity

solutions of (2.14) follows immediately.

We like to quote also [10], where a uniqueness result for the stationary equa-

tion is proved, under almost the same conditions on the Hamiltonian. In the

same paper, it is possible to find a counter-example for the uniqueness in the

case of non-convex Hamiltonians. In particular the author explicitly builds

two different solutions for the following Cauchy problem:




∂u

∂t
+ (x− t)

∣∣∣∣
∂u

∂x

∣∣∣∣ = 0, in (0,+∞) × R

u(0, x) =

{
1, x ∈ (α, β)

−1, otherwise

with α, β ∈ R constants chosen in a suitable way.

The existence for LSC-viscosity solutions for the Cauchy problem (2.14) has

been proved in [3] in the simple case when H = H(p), by using the classic

Hopf-Lax formula.

To generalize the previous result we need first to solve the associated

eikonal equation.

2.2 The generalized eikonal equation.

In this section we study a generalized eikonal equation, with Hamiltonian of

Hörmander’s type.

Generalized solutions and, in particular, viscosity solutions of eikonal equa-

tions have been studied by P.L. Lions in [71] for convex geometrical Hamil-

tonian, and by A. Siconolfi in [86] in the non convex case.

The easiest example of eikonal equation is |Du| = 1: the viscosity solutions

are Euclidean distances (see Example 2.4 for the 1-dimensional case).

For more general eikonal equations, it can be very difficult to write explicitly
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the viscosity solutions. Nevertheless, under suitable assumptions, we can

build the viscosity solutions as minimal-time functions. We will in particular

show that these functions satisfy the definition of generalized distance.

Definition 2.28. A generalized distance is a non negative function d : Rn ×
R

n → [0,+∞) satisfying

d(x, y) ≥ 0, ∀x, y ∈ R
n, d(y, y) = 0, ∀ y ∈ R

n, (2.16)

d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ R
n. (2.17)

In the previous definition we do not require neither the symmetry nor

the non-degenery (i.e. d(x, y) = 0 implies that x = y). E.g. the degenerate

distance associated to a Finsler metric is a generalized distance in the sense

of Definition 2.16 (see [43] for some details on Finsler metrics).

It is trivial that any finite distance is a generalized distance, too.

We now look at an eikonal equation

H0(x,Du(x)) = 1, (2.18)

where H0 is a geometrical Hamiltonian, i.e. H0 : R
2n −→ [0,+∞) continuous

in both of the variables, convex and positively homogeneous of degree 1,

w.r.t. the gradient-variable.

Moreover we assume that there exists a smooth m×n-matrix σ(x) satisfying

the Hörmander condition and such that

σt(x)B1(0) ⊂ ∂H0(x, 0), for any x ∈ R
n (2.19)

where σt(x) is the transpose matrix of σ(x), ∂H0(x, 0) is the subgradient of

the convex function p 7−→ H0(x, p) at the point (x, 0), and B1(0) is the closed

Euclidean unit ball in R
m (with m ≤ n).

Remark 2.29. For details on the Hörmander condition we refer to Sec.

1.1. We recall that a matrix σ(x) = [X1(x), ..., Xm(x)]t satisfies the

Hörmander condition if and only if the associated Lie algebra L
(
σ
)
(x) =

L
(
X1, ..., Xm

)
(x) is equal to Rn at any x ∈ Rn.
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Under the Hörmander condition and assumprion (2.19), fixed a point

y ∈ Rn, we can build a generalized distance which is a viscosity solution of

the vanishing Dirichlet eikonal problem in Rn\{y}, i.e.
{
H(x,Du(x)) = 1, R

n\{y},
u(y) = 0.

We look at the differential inclusion

Ẋ(t) ∈ ∂H0(X(t), 0), t ∈ (0,+∞). (2.20)

We recall that a solution of (2.20) is an absolutely continuous function

X : (0,+∞) → R
n satisfying (2.20) almost everywhere (see [6, 5]).

We indicate by Fx,y the set of all the solutionsX(·) of the differential inclusion

(2.20), joining x to y in some finite time, i.e. X(0) = x and X(T ) = y, for

some 0 ≤ T = T (X(·)) < +∞.

First note that assumption (2.19) implies that Fx,y 6= ∅, for any couple of

points x, y ∈ Rn. In fact, the set of all the solutions of (2.20) includes in

particular any solution of the following family of control systems
{
Ẋ(t) = σt(X(t))α(t), t ∈ (0,+∞),

X(0) = x,
(2.21)

where the control α is a t-measurable function, with |α(t)| ≤ 1 for a.e. t > 0.

So, by Chow’s Theorem 1.29, we know that there exists a solution of (2.21),

joining x to y in a finite time, and then Fx,y 6= ∅.
We define

d(x, y) := inf
X(·)∈Fx,y

T (X(·)), (2.22)

and show that the previous minimal-time function is a generalized distance.

Lemma 2.30. Let H0(x, p) be a geometrical Hamiltonian satisfying (2.19),

the minimal-time function defined by (2.22) is a generalized distance and

induces on Rn the Euclidean topology.

Proof. We have already remarked that the Hörmander condition implies that

d(x, y) is finite in any couple of points. Also property (2.16) is immediate.

We must only check the triangle inequality (2.17). Let be

Ex,y := {T = T (X(·)) |X(·) ∈ Fx,y}.
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For any T1 ∈ Ex,y and T2 ∈ Ey,z, for i = 1, 2 we indicate by Xi(·) the

trajectory w.r.t. Ti, and look at the path defined as

X(t) :=

{
X1(t), 0 ≤ t ≤ T1,

X2(t− T1), T1 ≤ t ≤ T1 + T2.

Then the path X(·) satisfies the differential inclusion (2.20) with X(0) = x

and X(T1 + T2) = z. So X(·) ∈ Fx,z, which means that T1 + T2 ∈ Ex,z.

Then d(x, z) ≤ T1 + T2 and, taking the infimum over Ex,y and Ey,z, we can

conclude that

d(x, z) ≤ d(x, y) + d(y, z).

By the Hörmander-inclusion (2.19) d(x, y) induces on Rn the Euclidean topol-

ogy. The proof of this claim is very simlar to prove Theorem 1.52.

Remark 2.31. In general d(x, y) is not symmetric. In fact, let be X(·) ∈
Fx,y, then the inverse path X̃(t) := X̃(T − t) may not satisfy (2.20).

Remark 2.32. The topological property tells that d(x, y) is continuous in

Rn, for any fixed y. This fact is very important in order to use d(x, y) for

solving a Hamilton-Jacobi-Cauchy problem (see Sec. 2.4.2).

Example 2.33. Without the Hörmander condition the topology induced by

the distance may be different from the original one. E.g. the distance intro-

duced in Example 1.35) is finite but it is not continuous w.r.t. the Euclidean

topology defined on R
2, and in fact the Hörmander condition is not satisfied.

The Hörmander condition implies always the topological property above (see

Theorem 1.52).

To prove that d(x, y) is a viscosity solution of the eikonal equation (2.18)

in Rn\{y}, we proceed as in [7], showing an associated Dynamical Program-

ming Principle.

Lemma 2.34 (Dynamical Programming Principle). Under the assumptions

of Lemma 2.30

d(x, y) = inf
X(·)∈Fx,y

[t+ d(X(t), y)], (2.23)

for any x, y ∈ Rn and 0 ≤ t ≤ d(x, y).
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Proof. First we prove that

d(x, y) ≤ inf
X(·)∈Fx,y

[t+ d(X(t), y)]. (2.24)

Let be y ∈ Rn and be X(·) ∈ Fx,y, we fix z = X(t).

Since d(z, y) = infX(·)∈Fz,y T (X(·)), for any ε > 0 there exists X̃(·) ∈ Fz,y

such that

d(z, y) > T (X̃(·)) − ε.

We define

X(s) :=

{
X(s), 0 < s ≤ t,

X̃(s− t), t < s.

Note that X(·) ∈ Fx,y. So for any ε > 0

d(x, y) ≤ T (X(·)) = t+ T (X̃(·)) < t+ d(z, y) + ε.

Passing to the limit as ε → 0+, we find

d(x, y) ≤ t+ d(z, y) = t+ d(X(t), y).

Taking the infimum over X(·) ∈ Fx,y, we get (2.24).

We remain to prove the reverse inequality, i.e.

inf
X(·)∈Fx,y

[t+ d(X(t), y)] ≤ d(x, y). (2.25)

Fix y ∈ Rn and remark that for anyX(·) ∈ Fx,y and for any 0 ≤ t ≤ d(x, y) ≤
T (X(·))

T (X(·)) ≥ t+ d(X(t), y).

Taking the infimum over X(·) ∈ Fx,y, we get (2.25) and therefore identity

(2.23).

Next we present some examples of geometrical Hamiltonians satisfying

our assumptions.

Note that any geometrical Hamiltonian H0(x, p) ≥ |σ(x)p| is such

that (2.19) holds. In fact, whenever H1(x, p) ≤ H2(x, p) and H1(x, 0) =

H2(x, 0) = 0, then ∂H1(x, 0) ⊂ ∂H2(x, 0). Using this remark we can build a

lot of interesting examples.
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Example 2.35. The Hamiltonian H0(x, p) = |σ(x)p|m + λ|p|n is continuous

in all the variables, positively homogeneous of degree 1 and convex w.r.t. p

and satisfying (2.19), for any λ ≥ 0. More in general, given an invertible

n × n-matrix A(x), those assumptions are satisfied by any Hamiltonian like

H0(x, p) = |σ(x)p|m + λ|A(x)p|n .

Example 2.36. For ε > 0, the Hamiltonian

H0(x, p) =
(
|σ(x)p|2m + ε2|p|2n

) 1
2 ,

verifies our assumptions. In fact, it is continuous w.r.t. x and p, positively

homogeneous w.r.t. p and satisfying (2.19), since H0(x, p) ≥ |σ(x)p|m. We

have only to prove that it is convex w.r.t. p.

So let be λ ∈ [0, 1] and look at

H0(x, λp+ (1 − λ)q) =[λ2(|σ(x)p|2m + ε2|p|2n) + (1 − λ)2(|σ(x)q|2m + ε2|q|2n)
+ 2λ(1 − λ)(

〈
σ(x)p, σ(x)q

〉
m

+ ε2
〈
p, q
〉

n
)]

1
2

=[λ2H0(x, p)
2 + (1 − λ)2H0(x, q)

2 + 2λ(1 − λ)I]
1
2 ,

with I =
〈
σ(x)p, σ(x)q

〉
m

+ ε2
〈
p, q
〉

n
. Note that

2λH0(x, p)(1 − λ)H0(x, q) =

2λ(1 − λ)[|σ(x)p|2m|σ(x)q|2m + ε2|σ(x)p|2m|q|2n + ε4|p|2n|q|2n + ε2|σ(x)q|2m|p|2n]
1
2

≥ 2λ(1 − λ)[|σ(x)p|2m|σ(x)q|2m + ε4|p|2n|q|2n + 2ε2|σ(x)p|m|σ(x)q|m|p|n|q|n]
1
2 ,

since A2 + B2 ≥ 2AB, for any A,B ≥ 0 (setting A = ε|σ(x)p|m|q|n and

B = ε|σ(x)q|m|p|n).
Applying the Cauchy-Schwartz inequality, we get

2λ(1−λ)H0(x, p)H0(x, q) = 2λ(1−λ)[(|σ(x)p|m|σ(x)q|m +ε2|p|n|q|n)2]
1
2 ≥ I,

which gives

H0(x, λp + (1 − λ)q) ≤ λH0(x, p) + (1 − λ)H0(x, q).

To calculate the subdifferential of the previous examples is not trivial.

Looking at Example 2.35, we can be sure that σt(x)Bm
1 (0) ∪ λBn

1 (0) ⊂
∂H0(x, 0) but we are not able to get the identity.

While in the next example is easy to calculate the subdifferential, neverthe-

less we get a Hamiltonian not really interesting.
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Example 2.37. Look at ∂H0(x, 0) = σt(x)Bm
1 (0) ⊕ λ

(
Bn

1 (0) ∩ Ker(σ(x))
)
,

if we indicate by πKer(σ) the projection-map on the Ker(σ(x)), the associated

Hamiltonian is

H0(x, p) = |σ(x)p|m + λ|πKer(σ)(p)|n = |σ(x)p|m + λ|p− σt(x)p|n.

In order to prove, that we proceed exactly as in Lemma 2.38.

The main model of the generalized eikonal equation that we are going to

study is the horizontal eikonal equation:

|σ(x)Du(x)| = 1, x ∈ R
n, (2.26)

where σ(x) is a smooth m× n-matrix satisfying the Hörmander condition.

We show that in this particular case the minimal-time distance defined by

(2.22) coincides with the Carnot-Carathéodory distance associated to the

matrix σ(x). We indicate by | · |m the Euclidean norm in Rm and by〈
· , ·
〉

m
the inner product in Rm.

Lemma 2.38. Let be H0(x, p) = |σ(x)p|m where σ(x) is a smooth m × n-

matrix satisfying the Hörmander condition with rank equal to m, then

σt(x)B1(0) = ∂H0(x, 0),

for any x ∈ Rn. Therefore d(x, y) = dσ(x, y) for any x, y ∈ Rn.

Proof. Let be p ∈ σt(x)B1(0), then there exists α ∈ B1(0) such that p =

σt(x)α. By the Cauchy-Schwartz inequality, for any q ∈ Rn we get

〈
p, q
〉

n
=
〈
σt(x)α, q

〉
n

=
〈
α, σ(x)q

〉
m
≤ |α|m |σ(x)q|m ≤ |σ(x)q|m = H0(x, q).

Hence p ∈ ∂H(x, 0) and so we can conclude that σt(x)B1(0) ⊂ ∂H(x, 0).

In order to prove the reverse inequality, we fix x and omit to write the

dependence on it. Since rank(σ) = m, we can write Rn = Ker(σ) ⊕ Im(σt).

If v ∈ ∂H0(x, 0), then

〈
v, p
〉

n
≤ H0(x, 0) = |σ(x) p|m, ∀ p ∈ R

n.

Choosing p ∈ Ker(σ) we get
〈
v, p
〉

n
≤ 0, that implies v ∈ Im(σt). So there

exists w ∈ Rm such that v = σtw. Hence

〈
σt(x)w, p

〉
n

=
〈
w, σ(x) p

〉
m
≤ |σ p|m, ∀ p ∈ R

n.
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Since rank(σ) = m, there exists a p ∈ Rn such that σ(x) p = w, so

〈
w,w

〉
m

= |w|2m ≤ |w|m,

that implies w ∈ B1(0) ⊂ Rm.

Therefore v ∈ σt(x)B1(0), which concludes ∂H0(x, 0) ⊂ σt(x)B1(0).

Corollary 2.39. Under assumptions of Lemma 2.38, the minimal-time func-

tion (2.22) coincides with the Carnot-Carathéodory distance associated to the

matrix σ(x) (see Sec. 1.1.5, Definition 1.40)

We are going to prove that the Carnot-Carathéodory distance u(x) =

dσ(x, y) is a viscosity solution (and then an almost everywhere solution, too)

of the horizontal eikonal problem
{
|σ(x)Du(x)| = 1, in R

n\{y},
u(y) = 0,

(2.27)

for any fixed y ∈ Rn.

We now give one of the main results of this section.

Theorem 2.40 ([44]). Let σ(x) be a smooth m × n-matrix as in Lemma

2.38, then the associated Carnot-Carathéodory distance dσ(x, y) is a viscosity

solution of the eikonal problem (2.27), for any fixed y ∈ Rn.

Proof. In order to prove the theorem, we use the expression of dσ(x, y) as

minimal-time function and the Dynamical Programming Priciple (Lemma

2.34).

We define u(x) = d(x, y) and prove first that u is a viscosity subsolution in

Rn\{y}.
At this purpose, let be x 6= y and ϕ ∈ C1(Rn) be such that u−ϕ has a local

maximum at x, i.e. there exists R > 0 such that

ϕ(x) − ϕ(z) ≤ d(x, y) − d(z, y), ∀ z ∈ BR(x).

Let be α ∈ B1(0) and let Xα(·) be a solution of a control system with

constant control α, i.e.

{
Ẋα(t) = σt(Xα(t))α

Xα(0) = x
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Note that, since σ ∈ C∞ andXα(·) ∈ C∞, then in particular Ẋα(0) = σt(x)α.

For time t small enough, then Xα(t) ∈ BR(x). Hence

ϕ(x) − ϕ(Xα(t)) ≤ d(x, y) − d(Xα(t), y) ≤ t+ d(Xα(t), y) − d(Xα(t), y) = t,

which implies
ϕ(x) − ϕ(Xα(t))

t
≤ 1.

Since Xα(·) is smooth, we can pass to the limit as t→ 0+, and get

−
〈
Dϕ(x), Ẋα(0)

〉
n

= −
〈
Dϕ(x), σt(x)α

〉
n

=
〈
σ(x)Dϕ(x),−α

〉
m
≤ 1,

(2.28)

for any |α|m ≤ 1. Taking the infimum for α ∈ B1(0), we can conclude

|σ(x)Dϕ(x)|m ≤ 1.

We remain to prove that u is a viscosity supersolution, too.

Fixed x 6= y, by Dynamical Programming Principle we know that for any

ε > 0 there exists Xε(·) ∈ Fx,y such that

d(x, y) > d(Xε(t), y) + t− εt. (2.29)

Let ϕ ∈ C1(Rn) be such that u − ϕ has a local minimum at x, i.e. there

exists R > 0 such that

d(x, y) − d(z, y) ≤ ϕ(x) − ϕ(z), ∀ z ∈ BR(x).

Xε is absolutely continuous, so for t small enough, Xε(t) ∈ BR(x), which

implies

d(x, y) − d(Xε(t), y) ≤ ϕ(x) − ϕ(Xε(t)). (2.30)

By using (2.29) in (2.30), we find

ϕ(x) − ϕ(Xε(t))

t
≥ 1 − ε. (2.31)

Note that in general Xε is not differentiable so in order to conclude, we

cannot pass directly to the limit as t→ 0+.

Nevertheless by the absolutely continuity we can write

ϕ(x) − ϕ(Xε(t))

t
= −1

t

∫ t

0

〈
Dϕ
(
Xε(s)

)
, Ẋε(s)

〉
n
ds

= −1

t

∫ t

0

〈
Dϕ
(
Xε(s)

)
, σt(Xε(s))α(s)

〉
n
ds
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Now we add and subtract ±
〈
Dϕ
(
Xε(s)

)
, σt(x)α(s)

〉
n

and

±
〈
Dϕ(x), σt(x)α(s)

〉
n
. Since the coefficients of σ(x) are smooth and

ϕ ∈ C1, and the absolutely continuity of Xε(s), for 0 < t << 1 we have

−1

t

∫ t

0

〈
Dϕ
(
Xε(s)

)
, σt(Xε(s))α(s)

〉
n
ds ≤ −1

t

∫ t

0

〈
Dϕ(x), σt(x)α(s)

〉
n
ds+o(1)

= −1

t

∫ t

0

〈
σ(x)Dϕ(x), α(s)

〉
m
ds+ o(1) ≤ |σ(x)Dϕ(x)|m + o(1), (2.32)

(in fact |α(s)|m = 1 a.e. s ∈ [0, T ]).

From (2.31) and (2.32), it follows that

1 − ε ≤ |σ(x)Dϕ(x)|m + o(1)

Passing to the limit as t→ 0+, we find

|σ(x)Dϕ(x)|m ≥ 1 − ε.

Passing then to the limit as ε → 0+, we can conclude |σ(x)Dϕ(x)|m ≥ 1.

Corollary 2.41. Note that σ(x)Du is the horizontal gradient Xu, made

w.r.t. the sub-Riemannian geometry induced by the lines of σ(x).

So whenever Rademacher’s Theorem holds, we get that the Carnot-

Carathéodory distance is an almost everywhere solution too, which means

that for any fixed y ∈ Rn,

|Xdσ(x, y)| = 1, a.e. x ∈ R
n.

Remark 2.42. In order to get the a.e. existence of the horizontal gradient

Xu starting from the local d-Lipschitz continuity, we need to use a suitable

sub-Riemannian generalization of Rademacher’s Theorem. Rademacher’s

Theorem was generalized by Pansu in 1989 ([80]) to the Carnot groups. In

[77] Monti and Serra-Cassano proved the same result under more general as-

sumptions on the vector fields Rademacher’s Theorem holds also in Carnor-

Carathéodory spaces. In particular they require that the vector fields have the

following structure:

Xj(x) = ∂j +
n∑

i=m+1

αi j(x)∂i, for any j = 1, ..., m, (2.33)

which includes any Carnot groups but also Grušin-type spaces.
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By using the same techniques applied in the proof of Theorem 2.40, we

can get the existence whenever the subdifferential of the Hamiltonian has the

form

∂H0(x, 0) = σt(x)Bm
1 (0) + λAt(x)Bn

1 (0),

with A(x) invertible n× n matrix.

Moreover there exists a paper by Stefania Bortoletto ([19]) where a

Dynamical Programming Principle is used in order to prove that the

minimal-time function is an viscosity solution for the associated eikonal

equation. That work covers our case whenever the subdifferential of the

Hamiltonian is a global Lipschitz multi-function w.r.t. the space variable.

2.3 The Hopf-Lax function.

The Hopf-Lax formula has been introduced by Hopf, in 1965, in order to

solve a Cauchy problem for nonlinear first-order equations, in the context of

the almost everywhere solutions.

As we remarked in Sec. 2.1.1, the Hopf-Lax formula is also very useful to

prove existence of viscosity solutions for a Cauchy-Hamilton-Jacobi problems

as (2.14). This method is in particular very used in optimal control theory.

where the authors show that the formulas, introduced by Hopf, are viscosity

solutions of problem (2.14), in the simple case when H = H(p).

2.3.1 Optimal control theory and Hopf-Lax formula.

Let us start looking at a Hamilton-Jacobi-Bellman equation, which mans to

consider Hamiltonians of the form

H(x, p) = sup
a∈A

[−F (x, a) · p− L(x, a)], (2.34)

where A ⊂ Rm is a closed set, F : Rn × A → Rn and L : Rn × A → R are

Lipschitz continuous functions in the variable x, uniformly w.r.t. a ∈ A.

Remark 2.43. Since the Hamiltonian (2.34) is defined as envelope of func-

tions affine w.r.t. the gradient-variable p, then H(x, p) is convex w.r.t. p.
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Starting from H(x, p) as in (2.34), we can associate to this a functional

in the following way: for any fixed function g : Rn → R,

J(t, x;α) :=

∫ t

0

L(y(s, x;α), α)ds+ g(y(t, x;α)), (2.35)

where y(t, x;α) are the solutions of the family of control systems
{
ẏ(t) = F (y(t), α(t)),

y(0) = x,

with α : [0,+∞) → A measurable function. Note that α(t) is usually called

control function.

Definition 2.44. The value function associated to the functional J is

v(t, x) = inf
α∈A

J(t, x;α). (2.36)

We are interested in studying the value function (2.36) and show that this

is a viscosity solution for the Cauchy problem (2.14) with H(x, p) defined as

in (2.34).

Let us recall the following result of existence and uniqueness.

Theorem 2.45. Let H(x, p) be as in (2.34) and let us assume that the initial

data g is bounded and uniformly continuous. Then the value function (2.36)

is a viscosity solution for the Cauchy problem (2.14). Moreover, v(t, x) is the

unique continuous and bounded viscosity solution.

For a proof of the previous result we refer to [7] (Proposition I.3.5 and

Theorem I.3.7). We just point out that the following semigroup identity is

key, i.e. one needs first to prove that for any x ∈ Rn and 0 < τ ≤ t

v(t, x) = inf
α∈A

{∫ τ

0

L(y(s, x;α), α(s))ds+ v(y(τ, x;α), t− τ)

}
.

We now consider a general Hamiltonian H = H(p), depending only on the

gradient variable and convex. We can represent H(p) as (2.34) by using

the Legendre-Fenchel transform (see Appendix A). The Legendre-Fenchel

transform is defined as

H∗(p) = sup
q∈Rn

[q · p−H(q)]. (2.37)
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Whenever the Hamiltonian is convex, the Legendre-Fenchel transform is in-

volutive, which means H∗∗(p) = H(p). This implies

H(p) = sup
q∈Rn

[q · p−H∗(q)]. (2.38)

By using (2.37) we can associate to H(p) the following functional

J(t, x;α) =

∫ t

0

H∗(y(s, x;α))ds+ g(y(t, x;α)),

where y(t, x;α) are solutions of the family of control systems

{
ẏ(t) = α(t),

y(0) = x,

i.e.

y(t, x;α) = x+

∫ t

0

α(s)ds.

To sum up we get the following (formal) representative formula, for the

solution of the Cauchy problem (2.14)

v(t, x) = inf
α∈A

{∫ t

0

H∗(y(s, x;α))ds+ g(y(t, x;α))

}
. (2.39)

The difficulty in using directly formula (2.39) is that the formula is given by

an infumum in an infinite dimensional space.

Definition 2.46. We call Hopf-Lax function the following marginal func-

tion:

u(t, x) = inf
y∈Rn

[
g(y) + tH∗

(
x− y

t

)]
. (2.40)

M. Bardi and L.C. Evans in [8] starting from a work by E. Hopf [54]

proved that the value function (2.39) coincides with the Hopf-Lax function

(2.40) and solves the Cauchy problem (2.14) in the viscosity sense, whenever

the Hamiltonian depends only on the gradient and it is convex. We briefly

mention that in [54] Hopf started by remarking that the solution of the

Cauchy problem with an affine initial data g(x) = α · x + β, (with α ∈ Rn

and β ∈ R) is given by the affine function

u(t, x) = g(x) − tH(Dg(x)).
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So the idea is that whenever we start from a generic initial data g, we can

look for affine solutions of the form

vy,z(t, x) = g(z) + y · (x− z) − tH(y), (2.41)

varying y, z ∈ Rn.

For any y and z chosen, the function vy,z satisfies the evolutive equation

ut + H(Du) = 0 but not the initial data g(x). Hopf’s idea is to look as

candidate solutions at the envelopes of the affine functions (2.41), i.e.

u1(t, x) = inf
z∈Rn

sup
y∈Rn

vy,z(t, x) (2.42)

u2(t, x) = sup
y∈Rn

inf
z∈Rn

vy,z(t, x) (2.43)

and he proved that u1 and u2 are almost everywhere solutions (so called

L-solutions to indicate that they are Lipschitz continuous) for the Cauchy

problem (2.14) under suitable assumptions on the Hamiltonian and on the

initial datum (see Theorems 5a and 5b).

Using the formulas suggested by Hopf Bardi and Evans have proved the

following results.

Theorem 2.47 ([8], Theorem 2.1). If the Hamiltonian H = H(p) is a convex

function and g is uniformly Lipschitz continuous, then the function u1 defined

by (2.42) is the unique uniformly continuous viscosity solution for the Cauchy

problem (2.14).

Proof. We give only a sketch of this proof. First we can note (see [8], Lemma

2.1) that, set

x(t) = x−
∫ t

0

z(s)ds,

for any z ∈ L1 = L1([0, t]; Rn) the unique uniformly continuous viscosity

solution of (2.14) is given by

û(t, x) = inf
z∈L1

{∫ t

0

H∗(z(s))ds+ g(z(t))

}
= u(t, x). (2.44)

To get the result, it is sufficient to show that u1(t, x) = û(t, x).

We remark that the function defined in (2.42) can be rewritten as

u1(t, x) = inf
z∈Rn

[
g(z) + tH∗

(
x− z

t

)]
. (2.45)
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Choosing z = x(t) and by Jensen’s inequality, it follows that

û(t, x) ≥ u1(t, x).

On the other side, set z(s) = x−z
t

for 0 ≤ s ≤ t, we get

û(t, x) ≤ inf
z∈Rn

[
tH∗

(
x− z

t

)
+ g(z)

]
= u1(t, x).

Therefore we can conclude u1 = û = u.

The proof of the next result is a bit more complicate and so we omit that

and refer directly to [8].

Theorem 2.48 ([8], Theorem 3.1). Assuming that the Hamiltonian

H(x, z, p) = H(p) is continuous and g is uniformly Lipschitz continuous

and convex, then the function u2 defined by (2.43) is the unique uniformly

continuous viscosity solution for the Cauchy problem (2.14).

From the two previous theorems, it is possible to deduce the following

result.

Theorem 2.49 ([8], Proposition 4.1). Let H(x, z, p) = H(p) be a continuous

and convex Hamiltonian and g a uniformly Lipschitz and convex initial da-

tum, then u1 = u2 =: u is the unique uniformly continuous viscosity solution

for the Cauchy problem (2.14).

Moreover, if we assume

|D2u| ∈ L∞(Rn),

then u is a classic solution of (2.14) and its second-order derivatives D2u,

Dut and utt are bounded in [0,+∞) × Rn+1.

We conclude remarking that the Hopf-Lax function (2.40) gives a repre-

sentative formula whenever the Hamiltonian depends only on the gradient

and the initial datum is continuous and bounded (see [7, 47]), or also if the

initial datum is merely lower semicontinuous (see [3]).

Our aim is to generalize this last result to Hamiltonians depending also on

the space (see Sec. 2.4.2).
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2.3.2 Some properties of the Euclidean Hopf-Lax func-

tion.

In this subsection we recall some properties of the classic Hopf-Lax function

(2.40), refering mainly to [3, 47]. Since |x − y| is the Euclidean distance

between x and y, sometimes we call (2.40) Euclidean Hopf-Lax function.

First we remark that, for bounded and lower semicontinuous data g

(briefly g ∈ BLSC(Rn)), the infimum (2.40) is indeed a minimum.

Lemma 2.50. Let be g ∈ BLSC(Rn) (i.e. bounded and lower semicontinu-

ous), then for any x ∈ Rn and t > 0 the infimum in (2.40) is a minimum and

it is attended inside a closed ball centered at x and with radius R(t), depend-

ing only on the Hamiltonian. Moreover R(t) is a non-decreasing function for

t > 0.

So far we omit the proof and give this directly for the general metric

Hopf-Lax function (Lemma 2.63).

The idea to get most of the properties of the Hopf-Lax function is to play

in a suitable way with the point where the minimum is attended. Next we

will skip the proofs when they are similar to the corresponding metric result,

showing those directly in the general case.

First by simply choosing y = x in (2.40) we can observe that

u(t, x) ≤ g(x),

for any x ∈ Rn and t ≥ 0.

Moreover for any g ∈ LSC(Rn) (i.e. lower semicontinuous)

u(0, x) = g(x), ∀ x ∈ R
n,

and, if we assume that there exists some constant C > 0 such that

g(x) ≥ −C(1 + |x|),

then an analogously superlinear-estimate holds for the Hopf-Lax function:

More precisely, there exists a constant C ′ > 0 such that

u(t, x) ≥ −C ′(1 + t+ |x|).
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For a proof of the previous results we refer to [3] (Theorem 5.2).

Then, using the geodesics, that in the Euclidean case are the straight

lines, it is possible to prove the following functional identity.

Lemma 2.51 ([47], Lemma 3.3.1). For any x ∈ Rn and 0 ≤ s < t, the

Hopf-Lax function u(t, x) defined by (2.40) satisfies

u(t, x) = min
y∈Rn

{
u(s, y) + (t− s)H∗

(
x− y

t− s

)}
. (2.46)

Remark 2.52. From the functional identity (2.46) it follows that the Hopf-

Lax function is non-increasing in t > 0.

Moreover identity (2.46) is very useful in order to prove the local Lipschitz

continuity of u(t, x) in time (while the same regularity in space much easier

to get).

Proposition 2.53. Let be g ∈ BC(Rn) (i.e. bounded and continuous in R
n)

and let us assume that the Hamiltonian H(x, z, p) = H(p) is convex, then

the Hopf-Lax function (2.40) is locally Lipschitz continuous in [0,+∞)×Rn.

Proof. We first show the local Lipschitz continuity in space.

By Lemma 2.50 we can choose a point y where the Hopf-Lax function u(t, y)

attends the minimum, then

u(t, x) − u(t, y) ≤ g(y) + tH∗

(
x− y

t

)
− g(y) − tH∗

(
y − y

t

)

= t

[
H∗

(
x− y

t

)
−H∗

(
y − y

t

)]
.

Since H∗(p) is convex, we can use that convex functions are always local

Lipschitz continuity to get the same regularity for the Hopf-Lax function.

The main problem is that the point y depends on t. Nevertheless, using the

non decreasing-property of the radius R(t) (see Lemma 2.50), it is possible

to show that, fixed a compact subset of (0,+∞)×Rn, there exists a compact

K ⊂ Rn which does not depend on t and such that x−y
t

and y−y
t

belong to K
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(we will give more details on this claim proving the analogous result in the

general metric setting). Therefore

u(t, x) − u(t, y) ≤ tLiploc(H
∗)

∣∣∣∣
x− y − y + y

t

∣∣∣∣ = Liploc(H
∗)|x− y|.

Swapping x and y, we get the local Lipschitz continuity in space. In order

to get the same regularity in time, we use the functional identity proved in

Lemma 2.51 and the local Lipschitz continuity w.r.t. x.

Without using the local Lipschitz continuity of the convex function H(p),

it is possible to get a global Lipschitz continuity starting from Lipschitz

initial data. The proof of this result is very easy and seems very close to the

previous one. Nevertheless, it is not applicable to the general metric case.

Proposition 2.54. Let be g ∈ Lip(Rn), then the Hopf-Lax function (2.40)

is locally Lipschitz continuous in [0,+∞) × Rn.

Proof. As above, we prove only the Lipschitz continuity in space. In fact, to

get the same regularity in time we only need to use Lemma 2.51.

To get the Lipschitz continuity w.r.t. x, we choose a point y ∈ Rn where the

minimum in u(t, y) is attended, so that

u(t, x) − u(t, y) ≤ g(z) + tH∗

(
x− z

t

)
− g(y) − tH∗

(
y − y

t

)
,

for any z ∈ Rn.

Set z = x− y + y and using the Lipschitz continuity of g, we get

u(t, x)−u(t, y) ≤ g(x−y+y)−g(y) ≤ Lip(g)|−y+x−y+y| = Lip(g)|x−y|.

Swapping x and y we can conclude.

Remark 2.55. Proposition 2.54 still holds if the Hopf-Lax function is defined

starting from a generic function Φ = H∗ not necessary convex.

The previous proof cannot be applied to a non Euclidean setting. In fact

to delete the unknown point y, the commutativity of the operation plays an

important role.
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We next recall a well-known link between the Hopf-Lax function and

problems of calculus of variations, using essentially the geodesic-properties

of the Euclidean space. We define

v(t, x) = inf

{∫ t

0

H∗(γ̇(s))ds+ g(y)

∣∣∣∣γ : (0, t) → R
n a.c. with γ(0) = x

}
.

(2.47)

Proposition 2.56 ([47], Theorem 3.3.4). If x ∈ Rn and t > 0, then the

solution of the minimization problem (2.47) is the Hopf-Lax function (2.40).

We conclude the section recalling that for the Hopf-Lax function (2.40)

several properties of semiconcavity hold (see for example Lemma 3.3.3

and Lemma 3.3.4 in [47] or [24] Sec. 1.6). To generalize these properties

to the Carnot-Carathéodory case is not immediately. In fact, first one

would need to define a suitable notion of convexity (e.g. see [73] for a

definition of horizontal convexity) and investigate the property of the

Carnot-Carathéodory distance w.r.t. this notion.

In the next section we define the metric Hopf-Lax function and we

stuady the main properties of this formula

2.4 The metric Hopf-Lax function.

Now we want to define a metric Hopf-Lax formula associated to a generalized

distance d(x, y) (see Definition 2.28).

Definition 2.57. Let be g : R
n → R and Φ : [0,+∞) −→ [0+∞) be convex,

non-decreasing and such that Φ(0) = 0. The metric Hopf-Lax function (as-

sociated to the generalized distance d(x, y) and the function g(x)) is defined

as

u(t, x) = inf
y∈Rn

[
g(y) + tΦ∗

(
d(x, y)

t

)]
, (2.48)

where Φ∗ is the Legendre-Fenchel transform of Φ, i.e.

Φ∗(t) = sup
s≥0

{ts− Φ(s)}.
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Remark 2.58. Note that the Legendre-Fenchel transform of Φ is a posi-

tive function Φ∗ : [0,+∞) → [0,+∞] convex, non decreasing and such that

Φ∗(0) = 0 (see Appendix A, for more details).

2.4.1 Properties of the metric Hopf-Lax function.

We begin starting from an easy upper bound.

Remark 2.59. Set y = x in (2.48), we get u(t, x) ≤ g(x) for any t > 0.

Then we can deduce the behavior for large times of u(t, x)/t, in fact

lim sup
t→+∞

1

t
u(t, x) ≤ 0.

From now on, we look at lower semicontinuous data g.

Moreover we indicate simply by d(x) the generalized distance from the origin

of Rn to a point x.

The next properties are very important in order to get the existence-result

proved in Sec. 2.4.2. To get these we need to require a d-superlinear estimate

for the datum g, i.e. we assume that there exists a constant C > 0 such that

g(x) ≥ −C(1 + d(x)), x ∈ R
n. (2.49)

Lemma 2.60. Let d(x, y) be a generalized distance inducing the Euclidean

topology on Rn and g ∈ LSC(Rn) be such that (2.49) holds. The metric

Hopf-Lax function (2.48) weak lower converges to g in the sense of Barles-

Perthame (see [3, 11]) i.e.

lim inf
(t,x)→(0+,x)

u(t, x) = inf
{

lim inf
n→∞

u(tn, xn) | (tn, xn) → (0+, x)
}

= g(x). (2.50)

Proof. We begin remarking that the Hopf-Lax function (2.48) can be rewrit-

ten as

u(t, x) = inf
y∈Rn

[
g(y) + sup

p≥0
[pd(x, y) − tΦ(p)]

]
. (2.51)

Using that Φ is non decreasing, it is easy to see that for any r ≥ 0

sup
p≥0

[d(x, y) p− tΦ(p)] ≥ max
p∈[0,r]

[d(x, y) p− tΦ(p)]

≥ d(x, y) max
p∈[0,r]

p− t max
p∈[0,r]

Φ(p) = d(x, y) r− tΦ(r). (2.52)
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So (2.51) becomes

u(t, x) ≥ inf
y∈Rn

[g(y) + r d(x, y) − tΦ(r)] , ∀ r ≥ 0. (2.53)

We have assumed that the initial datum g satisfies the d-superlinear estimate

(2.49) from below; therefore using the triangle inequality

d(0, y) ≤ d(0, x) + d(x, y),

we get

u(t, x) ≥ inf
y∈Rn

[−C(1 + d(y)) + rd(x, y) − tΦ(r)]

≥ inf
y∈Rn

[(r − C) d(x, y) − C − C d(x) − tΦ(r)] , ∀ r ≥ 0. (2.54)

Moreover g is lower semicontinuous, so for any fixed ε > 0 there exists δ > 0

such that if d(x, y) < 2δ then

g(y) ≥ g(x) − ε. (2.55)

We can first choose r > C such that

(
r − C

)
δ − C(d(x) + δ) − C ≥ g(x)

and then τ > 0 such that

τΦ(r) ≤ ε.

Therefore for 0 < t ≤ τ and x ∈ Bd(x, δ) we get the following estimate:

(
r − C

)
d(x, y) − C − C d(x) − tΦ(r)

≥
(
r − C

)
δ − C − C d(x) − Cδ − tΦ(r)

≥ g(x) − ε, ∀ y ∈ R
n\Bd

2δ(x).

Setting B = Bd
2δ(x), we can conclude

inf
y∈Rn\B

[
g(y) + tΦ∗

(
d(x, y)

t

)]
≥ g(x) − ε.

It remains to estimate the infimum inside the open ball B.

If we write (2.52) with r = 0, we get

g(y) + tΦ∗

(
d(x, y)

t

)
≥ g(y) − tΦ(0) = g(y),
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since Φ(0) = 0.

Moreover we know that y ∈ B, i.e. d(x, y) < 2δ, then

g(y) ≥ g(x) − ε.

Therefore we can conclude that for any x ∈ Bd
δ (x) and 0 ≤ t ≤ τ

u(t, x) ≥ g(x) − ε.

This means that

lim inf
(t,x)→(0+,x)

u(t, x) ≥ g(x). (2.56)

To check the reverse inequality is not difficult. In fact, if we look at a sequence

(tn, x) with tn → 0+, we have

lim inf
(t,x)→(0+,x)

u(t, x) ≤ lim inf
n→∞

u(tn, x). (2.57)

Since Φ ≥ 0, we note that

u(tn, x) = inf
y∈Rn

sup
p≥0

[
g(y) + d(x, y)p− tnΦ(p)

]
≤ inf

y∈Rn
sup
p≥0

[
g(y) + d(x, y)p

]

≤ sup
p≥0

[
g(x) + d(x, x)p

]
= g(x).

So u(t, x) ≤ g(x) and then we can conclude that (2.57) holds.

Lemma 2.61. Under the assumptions of Lemma 2.60, there exists a constant

C ′ > 0 such that

u(t, x) ≥ −C ′(1 + d(x) + t). (2.58)

Proof. In order to prove this lemma, we need only to write the estimate

(2.54) with r = C > 0, i.e.

u(t, x) ≥ inf
y∈Rn

[−C d(x) − C − tΦ(C)] = −C d(x) − C − tΦ(C),

which gives (2.58) with C ′ = max{C,Φ(C)}.

Lemma 2.62. Under the assumptions of Lemma 2.60, the metric Hopf-Lax

function (2.48) is lower semicontinuous in [0,+∞) × Rn.
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Proof. In order to prove that u is a lower semicontinuous function, we have

to show that its sublevel sets are closed.

We consider a sequence (tk, xk) such that u(tk, xk) ≤ γ for some γ ∈ R.

Assuming that (tk, xk) → (t, x), we have to prove that u(t, x) ≤ γ.

By Lemma 2.60 and using that g is lower semicontinuous, we can look only

at t > 0.

Let {yn
k} be a minimizing sequence for the Hopf-Lax function u(tk, xk).

Since g and Φ∗ are lower semicontinuous functions and applying (2.54) with

r = 1 + C, we get the following inequality-chain

γ ≥ u(tk, xk) = lim inf
n→∞

[
g(yn

k ) + tkΦ
∗

(
d(xk, y

n
k )

tk

)]

≥ lim inf
n→∞

d(xk, y
n
k ) − C − C d(xk) − tkΦ(C). (2.59)

We want to show that the sequence {yn
k} converges to some point yk, as

n→ +∞ for any fixed k > 0. Set K := C +Cd(xk) + tkΦ(C), by (2.59) and

using the definition of lower limit, we find that for any ε > 0 there exists

n(ε) ∈ N such that

d(xk, y
n
k ) ≤ K + γ + ε, ∀n ≥ n(ε).

We can choose ε = 1, then we have yn
k ∈ Bk = Bd

R(xk) with R := K + γ + 1

for any n ≥ n(1). We have assumed that d(x, y) induces on Rn the Euclidean

topology, hence by Corollary 1.53 for any k > 0 fixed the closed d-ball Bk is

a compact set. This implies that {yn
k}n attends a subsequence convergent to

some point yk ∈ Bk.

Remember that by assumptions xk → x and tk → t. Then, there exists

k ∈ N such that for any k > k we have xk ∈ Bd
1(x) and tk < t+ 1. Therefore

yk ∈ Bd
R(x), where R = 1+ γ+C(d(x)+ 1)+C+Φ(C)(t+1)+1, for k > k.

Then there exists a subsequence, which we still indicate by yk, and a point

y ∈ Bd
R(x) such that yk → y, as k → +∞. In order to conclude the proof,

we need only to use the lower semicontinuity of g, Φ∗ and d(x, y).

In fact

γ ≥ u(tx, xk) = lim inf
k→+∞

[
g(yk) + tkΦ

∗

(
d(xk, yk)

tk

)]
≥ g(y) + tΦ∗

(
d(x, y)

t

)

≥ inf
y∈Rn

[
g(y) + tΦ∗

(
d(x, y)

t

)]
= u(t, x),
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so that the sublevels of u are closed sets.

Next we investigate the Lipschitz properties of the metric Hopf-Lax func-

tion (2.48). First, we show that for any datum g, bounded and lower semi-

continuous, the infimum in formula (2.48) is a minimum.

Lemma 2.63. Let d(x, y) be a generalized distance and g ∈ BLSC(Rn).

Then for any x ∈ Rn and t > 0 the infimum in (2.48) is a minimum.

Moreover, it is attended in a closed d-ball centered at x and with radius R(t)

depending on Φ and g and non decreasing w.r.t. t > 0.

Proof. We need only to prove that, for any x ∈ R
n and t > 0 fixed, there

exists a radius R(t) large enough so that

g(y) + tΦ∗

(
d(x, y)

t

)
≥ ‖g‖∞ , ∀ y ∈ R

n\Bd
R(t)(x). (2.60)

Then, since

u(t, x) ≤ g(x) ≤ ‖g‖∞ ,

the infimum is attended inside the closed d-ball Bd
R(t)(x) and so, by the lower

semicontinuity of the function f(y) = g(y) + tΦ∗
(

d(x,y)
t

)
, it is a minimum.

In order to prove (2.60), remark that Φ∗(τ) is convex, then there exists a

supporting line mτ + q. Moreover Φ∗(0) = 0 which implies q ≤ 0 and, by the

non-decreasing property of Φ∗, we can also assume m > 0. Chosen

R(t) =
2 ‖g‖∞ − tq

m
,

for any y ∈ R
n\Bd

R(t)(x) we have

g(y) + tΦ∗

(
d(x, y)

t

)
≥ g(y) +md(x, y) + tq ≥ −‖g‖∞ + 2 ‖g‖∞ = ‖g‖∞ .

Since q ≤ 0 and m > 0, we can conclude that R(t) is non-decreasing w.r.t.

t > 0.

Remark 2.64. When the convex function Φ is a power-function, i.e. Φ(t) =
1
α
tα with α ≥ 1, then Φ∗(t) = 1

β
tβ with β = α

α−1
if α > 1, while if α = 1

Φ∗(t) =

{
0, 0 ≤ t ≤ 1,

+∞, t > 1.
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So for (convex) power-functions, the Hopf-Lax function is given by

u(t, x) = inf
y∈Rn

[
g(y) +

1

β

d(x, y)β

tβ−1

]
, (2.61)

whenever α > 1, and by

u(t, x) = inf {g(y) | d(x, y) < t} , (2.62)

whenever α = 1.

Moreover by simple calculations it is possible to show that infimum (2.61)

and infimum (2.62) are attended in the closed d-ball centered at x and with

radius R(t) = (2β)
1
β t

β−1
β ‖g‖

1
β
∞ and R(t) = t, respectively.

Lemma 2.63 is very useful in order to prove the local Lipschitz continuity

for the metric Hopf-Lax function.

Recall that a function f : Rn → R is d-Lipschitz continuous w.r.t. a non

symmetric distance d(x, y), if and only if, there exists C > 0 such that

|f(x) − f(y)| ≤ Cmax{d(x, y), d(y, x)}.

Proposition 2.65. For any generalized distance d(x, y), fixed t > 0, the

metric Hopf-Lax function (2.48) is locally d-Lipschitz continuous w.r.t. x.

Proof. By Lemma 2.63, we can choose y such that

u(t, y) = g(y) + tΦ∗

(
d(y, y)

t

)
.

Remark that Φ∗ is convex and so locally Lipschitz continuous. Hence, for

any K ⊂ Rn compact, there exists a constant C(K) > 0 such that

u(t, x) − u(t, y) ≤ C(K)|d(x, y) − d(y, y)|, ∀x, y ∈ K. (2.63)

From the triangle inequality (2.17), it follows that

|d(x, y) − d(y, y)| ≤ max{d(x, y), d(y, x)}.

So (2.63) becomes

u(t, x) − u(t, y) ≤ C(K) max{d(x, y), d(y, x)}.

Swapping x with y we conclude the proof.
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In order to prove the local Lipschitz continuity w.r.t. t, we need to use

the geodesics. Therefore the next results hold in any length-space.

Nevertheless we look only at the Carnot-Carathéodory distances, so that we

do not need to define the length of curves by the variation, inside general

metric spaces.

We briefly recall that we call geodesics any absolutely continuous horizontal

curves which realize the minimum (1.14) (see Chapter 1, Definition 1.24).

In particular, for Carnot-Carathéodory distances satisfying the Hörmander

condition, (Rn, d) is a length spaces, which means for any x, y ∈ R
n there

exists a geodesic γ joining x to y and such that l(γ) = d(x, y) (see Theorems

1.72). As in any length space we can assume that the geodesic γ : [0, T ] → R
n

is parameterized by arc-length, so l(γ) = T and d(γ(t), γ(s)) = |t − s| for

s, t ∈ [0, l(γ)] (see [89], Lemma 3.3).

In order to show the local Lipschitz continuity in t, we proceed as in [47].

First we prove a suitable functional identity.

Lemma 2.66 (Functional identity). Let d(x, y) be a Carnot-Carathéodory

distance satisfying the Hörmander condition and g ∈ BLSC(Rn), then for

any 0 ≤ s < t the Hopf-Lax function (2.48) satisfies

u(t, x) = inf
y∈Rn

[
u(s, y) + (t− s)Φ∗

(
d(x, y)

t− s

)]
. (2.64)

Proof. By the usual triangle inequality (2.17) and using the non decreasing-

property and the convexity of Φ∗, we get

Φ∗

(
d(x, z)

t

)
≤ Φ∗

(
d(x, y) + d(y, z)

t

)
= Φ∗

(
t− s

t

d(x, y)

t− s
+
s

t

d(y, z)

s

)

≤
(
1 − s

t

)
Φ∗

(
d(x, y)

t− s

)
+
s

t
Φ∗

(
d(y, z)

s

)
,

for any x, y, z ∈ Rn.

Fixed x, then for any y we choose a minimum point z for u(s, y) (that exists,

by Lemma 2.63). Using such a point z, we get

u(t, x) ≤ g(z) + tΦ∗

(
d(x, z)

t

)
≤ u(s, y) + (t− s)Φ∗

(
d(x, y)

t− s

)
.
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Taking the infimum over y ∈ Rn, we find the following inequality

u(t, x) ≤ inf
y∈Rn

[
u(s, y) + (t− s)Φ∗

(
d(x, y)

t− s

)]
.

In order to prove the reverse inequality, we choose a minimum point w for

u(t, x). Let be T = d(x, w), there exists γ : [0, T ] → Rn such that γ(0) = x,

γ(T ) = w and d(γ(s), γ(t)) = t− s, for any 0 ≤ s ≤ t ≤ T .

We define y := γ
(

T (t−s)
t

)
so that

d(x, y)

t− s
=
d(x, w)

t
=
d(y, w)

s
,

getting the other required inequality. In fact,

inf
y∈Rn

[
u(s, y) + (t− s)Φ∗

(
d(x, y)

t− s

)]
≤ u(s, y)+(t−s)Φ∗

(
d(x, y)

t− s

)
≤ g(w)

+ sΦ∗

(
d(y, w)

s

)
+(t−s)Φ∗

(
d(x, y)

t− s

)
= g(w)+ tΦ∗

(
d(x, w)

t

)
= u(t, x).

Remark 2.67. Choosing y = x in (2.64), by Lemma 2.66 we deduce that

the metric Hopf-Lax function (2.48) is non-increasing in t.

Proposition 2.68. Let be g ∈ BLSC(RN ) and let us assume that tΦ∗
(

1
t

)

is convex and non-increasing for t > 0. Then the Hopf-Lax function (2.48)

associated to a Carnot-Carathéodory distance satisfying the Hörmander con-

dition is locally Lipschitz continuous in t > 0.

Proof. Since u(t, x) is non increasing in t, for any 0 ≤ s ≤ t

u(t, x) − u(s, x) ≤ 0.

So we only need to check the estimate from below.

Choosing a minimum point y = y(t) for u(t, x), then for any T1 ≤ s ≤ t ≤ T2

we find

0 ≥ u(t, x) − u(s, x) ≥ tΦ∗

(
d(x, y)

t

)
− sΦ∗

(
d(x, y)

s

)
= λ.
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Fix t and let s be free.

If d(x, y) = 0, then u(t, x) = u(s, x) and so we have concluded.

Therefore we can assume d(x, y) 6= 0 and set

τ =
t

d(x, y)
and σ =

s

d(x, y)
,

so that

λ = d(x, y)

[
τΦ∗

(
1

τ

)
− σΦ∗

(
1

σ

)]
.

Using the local Lipschitz continuity, which is true for any convex function,

then for any T̃ > 0 there exists C = C(T̃ ) > 0 such that

λ ≥ −Cd(x, y)(τ − σ) = −C(t− s), T̃ ≤ σ ≤ τ.

If we choose T̃ = T1

R(T2)
, whenever s, t ∈ [T1, T2], then σ, τ ∈ [T̃ ,+∞) (by

Lemma 2.63 and the non decreasing-property of the radius R(t),) so that

0 ≥ u(t, x) − u(s, x) ≥ −C
(

T1

R(T2)

)
(t− s),

for any T1 ≤ s ≤ t ≤ T2, and this concludes the proof.

Remark 2.69. If we look at Φ(t) = 1
α
tα with α > 1, by Remark 2.64, it is

immediate that tΦ∗
(

1
t

)
is convex and non-increasing. More in general, this

property holds whenever Φ is strictly convex and there exists (Φ∗)′′(t). In

fact, from the dual formula for the first-order derivatives of strictly convex

functions the non-increasing property follows trivially. Moreover

(
tΦ∗

(
1

t

))′′

= (Φ∗)′′
(

1

t

)
1

t2
,

since Φ∗ is strictly convex, then

(
tΦ∗

(
1

t

))′′

> 0.

An example of this kind of functions is Φ(t) = et − 1.

The case Φ(t) = t instead does not satisfy both the requirements.
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In order to conclude the study of the properties of the metric Hopf-Lax

function, we point out a link with a problem of calculus of variations, exactly

as known in the Euclidean case (see Proposition 2.56).

Therefore we consider the minimization problem

v(t, x) = inf

{∫ t

0

Φ∗(|γ̇(s)|)ds+ g(γ(t))

∣∣∣∣ γ a.c., horizontal, with γ(0) = x

}
.

(2.65)

Proposition 2.70. Let be g ∈ LSC(Rn) and d(x, y) be a Carnot-

Carathéodory distance satisfying the Hörmander condition then the infimum

(2.65) coincides with the metric Hopf-Lax function (2.48).

Proof. By Jensen’s inequality, it follows immediately that

Φ∗

(
1

t

∫ t

0

|γ̇(s)|ds
)

≤ 1

t

∫ t

0

Φ∗(|γ̇(s)|)ds.

So for t > 0 and for all the a.c. horizontal curve γ : [0, t] → Rn joining x to

a point y ∈ R
n

g(y) + tΦ∗

(
d(x, y)

t

)
≤ g(y) + tΦ∗

(
l(γ)

t

)
≤ g(y) +

∫ t

0

Φ∗(|γ̇(s)|)ds.

Taking the infimum over y, we get u(t, x) ≤ v(t, x).

To prove the reverse inequality, we must use the length-structure of

the space.

Fix t > 0 and y ∈ Rn, there exists a geodesic γ parameterized by arc-length

and joining x to y.

Set T = d(x, y) and define γ̃(s) := γ(Ts
t

), then | ˙̃γ(s)| = T
t
|γ̇(s)| = T

t
, which

implies ∫ t

0

Φ∗(| ˙̃γ(s)|)ds =

∫ t

0

Φ∗

(
T

t

)
ds = tΦ∗

(
d(x, y)

t

)
.

Adding g(y), we get

v(t, x) ≤ g(y) + tΦ∗

(
d(x, y)

t

)
.

We can conclude by taking the infimum over y ∈ Rn.
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Remark 2.71. By Lemma 2.63 and Proposition 2.70, for a Carnot-

Carathéodory distance satisfying the Hörmander condition and g ∈
BLSC(Rn), it is possible to express the value function of the minimization

problem (2.65) as a minimum in Rn.

Remark 2.72. It is not clear how to use the properties of the datum g in

order to get some regularity results for the Hopf-Lax function; in fact the

ideas used in [47] in the Euclidean case do not work in this is more general

case. In particular, we do not know if starting from a global d-Lipschitz

continuous datum g, then the Hopf-Lax function has the same regularity.

The Euclidean Hopf-Lax function is called inf-convolution of the function

g whenever H(t) = 1
2
t2 and it is used to approximate the function g as

t→ 0+. Analogously, when Φ(t) = 1
2
t2 we call the metric Hopf-Lax function

(2.48) metric inf-convolution with kernel the distance d(x, y). We will study

this special case in Chapter 3, looking in particular at Carnot-Carathéodory

distances satisfying the Hörmander condition.

In Remark 2.64 we have explicitly calculate the metric Hopf-Lax function

for the convex power-functions Φ(t) = 1
α
tα, α > 1.

We conclude this subsection giving another example.

Example 2.73. Let us consider Φ(t) = et−1 for t ≤ 0. It is immediate that

Φ is a convex, positive, non-decreasing function, with Φ(0) = 0. In order to

write the associated metric Hopf-Lax function, we need only to calculate the

Legendre-Fenchel transform Φ∗(t), i.e. the supremum over s ∈ [0,+∞) of

the function

f(s) = st− es + 1,

for any t ≥ 0 fixed. First, we can note that

f(0) = 0 and lim
s→+∞

f(s) = −∞.

Moreover f ′(s) = t− es and so there exists s > 0 such that f ′(s) = 0 if and

only if t > 1. This implies sups≥0 f(s) = 0 whenever 0 ≤ t ≤ 1, and s = ln t

for t > 1. Then for t > 1

sup
s≥0

f(s) = f(ln t) = t ln t− t+ 1.
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To sum up, the Hopf-Lax function is given by (2.48), where

Φ∗(t) =

{
0, 0 ≤ t ≤ 1,

t ln t− t+ 1, t > 1.

2.4.2 The Hopf-Lax solution for the Cauchy problem.

In this subsection we consider the Cauchy problem (2.14) for a Hamilton-

Jacobi equation, where the Hamiltonian depends on both the space-variable

and the gradient-variable, i.e.

{
ut +H(x,Du) = 0, in R

n × (0,+∞),

u = g, in R
n × {0}.

(2.66)

with g ∈ LSC(Rn) and H(x, p) Hamiltonian with the form

H(x, p) = Φ(H0(x, p)),

where H0 is a geometrical Hamiltonian and Φ is a convex function.

More precisely, we assume that

(H1) H0 : R2n −→ [0,+∞) is continuous w.r.t. both of the variables, convex

and positively homogeneous of degree 1 w.r.t. p.

(H2) Φ : [0,+∞) −→ [0 +∞) is convex, C1, non-decreasing, with Φ(0) = 0

and limt→0+ Φ′(t) = 0.

The model is

Φ(H0(x, p)) =
1

α
|σ(x)p|α, (2.67)

with α > 1 and σ(x) m× n-matrix of Hörmander-type.

Remark 2.74. The assumption limt→0+ Φ′(t) = 0 implies that Φ∗ is strictly

increasing (we will give more details on this claim in Appendix A).

In this subsection we want to prove that the metric Hopf-Lax function

(2.48) is a lower semicontinuous viscosity solution of the Hamilton-Jacobi-

Cauchy problem (2.66).
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Theorem 2.75 ([44]). Assume that d(x, y) is a generalized distance inducing

on Rn the Euclidean topology. Assume also that, for any y, x 7→ d(x, y) is a

viscosity solution of the eikonal equation H0(x,Du(x)) = 1 in Rn\{y}.
Let g ∈ LSC(Rn) be such that (2.49) holds and Φ satisfying (H2), then the

metric Hopf-Lax function (2.48) is a lower semicontinuous viscosity solution

of the Cauchy problem (2.66) and moreover the estimate (2.58) holds.

Proof. By Lemma 2.62 and Lemma 2.60, we know that u(t, x) is lower semi-

continuous in [0,+∞)× Rn and u assumes the initial datum g (in the lower

semicontinuous sense). Moreover by Lemma 2.61 estimate (2.61) holds. In

order to prove the theorem, it remains only to check that u satisfies Defini-

tion 2.27.

We show that u is a LSC-viscosity solution because it is infimum of LSC-

viscosity solutions of (2.9). So we must prove that, fixed y ∈ Rn, the following

function

vy(t, x) := g(y) + tΦ∗

(
d(x, y)

t

)
(2.68)

is a LSC-viscosity solution of the evolutive Hamilton-Jacobi equation (2.9).

First we need to introduce a strictly convex approximation of the convex

function Φ. To understand why we must proceed so, one can look at an

heuristic proof. In fact, we can compute the derivatives of vy assuming at

the everything is smooth. Then we can replace the derivatives in (2.9) and

search for the necessary conditions, so that vy satisfying the equation.

Set τ = d(x,y)
t

> 0, then

vy
t (t, x) = Φ∗(τ) − τ

(
Φ∗
)′

(τ); Dvy(t, x) =
(
Φ∗
)′

(τ)Dd(x, y).

Using the homogeneous property of the eikonal Hamiltonian H0(x, p), we find

0 = Φ∗(τ) − τ
(
Φ∗
)′

(τ) + Φ
((

Φ∗
)′

(τ)H0(x,Dd(x, y))
)
.

Since d(x, y) is a solution of (2.18), we can write H0(x,Dd(x, y)) = 1 and so

the function vy is a solution of (2.9) if and only if the following dual formula

holds:

−Φ
((

Φ∗
)′

(τ)
)

= Φ∗(τ) − τ
(
Φ∗
)′

(τ). (2.69)

Formula (2.69) is always true when Φ is a strictly convex function.

So we introduce a strictly convex approximation Φδ of the original convex
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function Φ. Set

Φδ(s) := Φ(s) +
δ

2
s2, for δ > 0,

we prove that vy
δ , defined replacing Φ∗

δ to Φ∗ in (2.68), is a lower semicontin-

uous viscosity solution of the corresponding Hamilton-Jacobi equation, that

is

vt(t, x) + Φδ

(
H0(x,Dv(t, x)

)
= 0, in (0,+∞) × R

n. (2.70)

It is immediate that vy
δ is lower semicontinuous.

Let ϕ ∈ C1 be such that vy
δ −ϕ has local minimum (of 0) at (t0, x0), i.e. there

exists r > 0 and 0 < t < t0 such that for any x ∈ Br(x0) and t0−t < t < t0+t

vy
δ (t, x) − ϕ(t, x) ≥ vy

δ (t0, x0) − ϕ(t0, x0) = 0. (2.71)

Writing (2.71) at x = x0 , we get that T (t) := vy
δ (t, x0)− ϕ(t, x0) has a local

minimum at t = t0. Moreover T ∈ C1, then Ṫ (t0) = 0, i.e.

ϕt(t0, x0) =
(
vy

δ (t, x)
)

t
(t0, x0) = Φ∗

δ

(
d(x0, y)

t0

)
− t0

(
Φ∗

δ

)′
(
d(x0, y)

t0

)
d(x0, y)

t20
.

(2.72)

Since Φδ is strictly convex, the dual formula (2.69) holds. Writing this for-

mula at the point s = d(x0,y)
t0

, (2.72) becomes

ϕt(t0, x0) = −Φδ

(
(Φ∗

δ)
′

(
d(x0, y)

t0

))
. (2.73)

We assume x0 6= y and check the requirement for viscosity solutions using

(2.73), i.e. we need to verify that

(
Φ∗

δ

)′
(
d(x0, y)

t0

)
= H0(x0, Dϕ(t0, x0)). (2.74)

Since x0 6= y, we can use the fact that d(x, y) is a viscosity solution of the

associated eikonal equation (2.18) at the point x0.

So, fixed t = t0 > 0, by (2.71) we have that for any x ∈ Br(x0)

Φ∗
δ

(
d(x, y)

t0

)
− 1

t0
ϕ(t0, x) ≥ Φ∗

δ

(
d(x0, y)

t0

)
− 1

t0
ϕ(t0, x0) = 0. (2.75)

Note that in the previous inequality we have replaced the starting test func-

tion ϕ by the translated function ϕ̃ = ϕ − t0g(y). In fact the equation
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depends only on the derivatives of the solutions so testing by a function or

by a constant translation of the same funtion gives the same result. For sake

of simplicity, we call the translated test function still ϕ. Since Φ∗
δ(t) is strictly

increasing for any t ≥ 0 (see Proposition A.6), then it is invertible and its

inverse function is still strictly increasing. Therefore by (2.75) we get

(Φ∗
δ)

−1

(
Φ∗

δ

(
d(x, y)

t0

))
≥ (Φ∗

δ)
−1

(
ϕ(t0, x)

t0

)
,

or equivalently

d(x, y) − t0
(
Φ∗

δ

)−1
(
ϕ(t0, x)

t0

)
≥ 0, (2.76)

where we have extended (Φ∗)−1 by setting (Φ∗)−1(t) = 0 for any t ≤ 0.

Set k(x) := d(x, y) − t0
(
Φ∗

δ

)−1(ϕ(t0,x)
t0

)
, (2.76) implies that k(x) has a local

minimum at x0. Let be

ψ(x) := t0
(
Φ∗

δ

)−1
(
ϕ(t0, x)

t0

)
,

we can use ψ as test function for the eikonal viscosity solution d(x, y), at the

point x0 (in fact ψ ∈ C1), so that

H0(x0, Dψ(x0)) = 1. (2.77)

By (2.75) we can remark that ϕ(t0, x0) = t0Φ
∗
(

d(x0,y)
t0

)
> 0. Since x0 6= y,

we can deduce that ϕ(t0, x) > 0 near x0, so that
(
Φ∗

δ

)−1
(s) is strictly positive

and we are able to write

Dψ(x0) = t0D

[(
Φ∗

δ

)−1
(
ϕ(t0, x)

t0

)]∣∣∣∣
x=x0

=

[(
Φ∗

δ

)′
(
d(x0, y)

t0

)]−1

Dϕ(t0, x0).

(2.78)

Replacing (2.78) in (2.77), we get

H0

(
x0,

[(
Φ∗

δ

)′
(
d(x0, y)

t0

)]−1

Dϕ(t0, x0)

)
= 1.

Since H0(x, p) is positively homogeneous w.r.t. p, we get (2.74).

Now we remain to check identity (2.70) whenever x0 = y. By (2.73) it is

trivial that ϕt(t0, x0) = 0 so, using the homogeneous property of H0, we have
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to prove that Dϕ(t0, x0) = 0.

In such a particular case, (2.71) at t0 becomes

g(x0) + t0Φ
∗
δ

(
d(x, x0)

t0

)
− ϕ(t0, x) ≥ g(x0) − ϕ(t0, x0) = 0.

We can translate ϕ of a constant g(x0) so that ϕ̃(x0) = g(x0)−ϕ(t0, x0) = 0.

Moreover subtracting a suitable quadratic perturbation, we can assume that

the test-function is strictly positive in Br(x0)\{x0}. In fact, if we look at

ψ(x) = ϕ̃(t0, x) − C|x− x0|2,

with C > maxBr(x0) ϕ̃(t0, x), then ψ(x0) = 0 and ψ(x) ≤ 0,

so ψ attends maximum at x0 and moreover ψ ∈ C1. Hence

Dψ(x0) = 0 but Dψ(x0) = Dϕ(t0, x0), so we can conclude that

−H0(x0, Dϕ(t0, x0)) = 0 = ϕt(t0, x0).

Therefore vy
δ is a LSC-viscosity solution of the equation (2.70).

Now remark that vy is lower semicontinuous and is a pointwise-limit

of LSC-viscosity solutions of (2.70), in fact vy
δ (t, x) → vy(t, x), as δ → 0+,

for any (t, x) ∈ (0,+∞) × Rn.

Set Hδ(x, p) = Φδ ◦ H0(x, p), it is immediate that Hδ → H , as δ → 0+.

Therefore, by Proposition 2.25, vy is a lower semicontinuous viscosity

solution of (2.9).

Recall that the metric Hopf-Lax function (2.48) is lower semicontinu-

ous (see Lemma 2.62). Then, since it is infimum of LSC-viscosity solutions

of (2.9), by Proposition 2.26 we can conclude that it is a LSC-viscosity

solution of the Hamilton-Jacobi equation (2.9).

Example 2.76. Examples of positive convex functions, satisfying all the as-

sumptions (H2) are Φ(t) = 1
α
tα (with α > 1) and Φ(t) = et − t − 1. While

the functions Φ(t) = t and Φ(t) = et −1 do not satisfy the assumptions since

limt→0+ Φ′(t) = 1, in both the cases. For some details on these examples see

Appendix A (Examples A.8, A.13, A.9 and A.11, respectively).

Using the eikonal solution built in Sec. 2.2 (Theorem 2.40), Theorem 2.75

gives the following general result for the existence.
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Theorem 2.77 ([44]). Let be H(x, p) = Φ(|σ(x)p|), with σ(x) m × n

Hörmander-matrix with smooth coefficients and Φ satisfying assumptions

(H2). If g ∈ LSC(Rn) is such that (2.49) holds, then the Hopf-Lax function

(2.48) is a viscosity solution of the Hamilton-Jacobi-Cauchy problem (2.66)

and moreover the d-superlinear estimate (2.58) holds.

2.4.3 Examples and applications.

We show that, whenever the initial datum g is continuous, the metric Hopf-

Lax function is so.

Proposition 2.78. If g ∈ C(Rn), then the Hopf-Lax function defined in

(2.48) is a continuous function in [0,+∞) × Rn.

Proof. By Lemma (2.62) we know that the Hopf-Lax function u(t, x) is lower

semicontinuous in [0,+∞)×Rn. So we only need to show that u(t, x) is also

upper semicontinuous, i.e. we want to prove that its upperlevel sets are

closed.

Fixed γ ∈ R, and let (tx, xk) be a sequence in the γ-upperlevel.

We must check that, if (tk, xk) → (t, x), as k → +∞, then u(t, x) ≥ γ.

As in the proof of Lemma 2.62, we can assume t > 0. By definition (2.48),

for any y ∈ Rn

u(tk, xk) ≤ g(y) + tkΦ
∗

(
d(xk, y)

tk

)
. (2.79)

The second member of (2.79) is continuous, so passing to the upper-limit,

we get

lim sup
k→+∞

u(tk, xk) ≤ g(y) + tΦ∗

(
d(x, y)

t

)
. (2.80)

Taking the infimum of (2.80) over y ∈ Rn, we can conclude

γ ≤ lim sup
k→+∞

u(tk, xk) ≤ u(t, x).

Remark 2.79. By Theorem 2.21 it follows that, whenever the initial datum

g is continuous, the metric Hopf-Lax function is a classic viscosity solution,

following the usual definition of Crandall and Lions.
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Now we show that when the Hamiltonian depends only on the gradient,

we find back the known (Euclidean) Hopf-Lax formula.

In fact, if we consider the Hamilton-Jacobi equation

ut +H(|Du|) = 0,

with H(p) continuous and convex, then we can set Φ = H .

The associated eikonal equation is |Du| = 1. We have already observed

that the (unique) viscosity solution of the previous eikonal equation (with

condition u(y) = 0) is the Euclidean distance d(x, y) = |x− y| (see Example

2.4).

Therefore in this case we can write formula (2.48) as

u(x, y) = inf
y∈Rn

[
g(y) +H∗

( |x− y|
t

)]
,

finding back the classic Hopf-Lax formula.

We apply now formula (2.48) to the model (2.67).

By Lemma 2.38, we know that the minimal-time function (2.22) is the

Carnot-Carathéodory distance d(x, y) associated to the matrix σ(x).

In particular, whenever σ(x) is a n × n-matrix (invertible and symmetric),

we get a Riemannian distance.

Now we want to pay particular attention to m × n- matrix of Hörmander-

type. In this case we can observe that σ(x)Du is a different way to write

the horizontal gradient Xu, where Xu = (X1u, . . . , Xmu)
T and σ(x) is the

matrix with rows Xi(x) for i = 1, . . . , m.

By Remark 2.64 we know that the metric Hopf-Lax function for the model

(2.67) (with α > 1) is given by (2.61).

To sum up, the Hopf-Lax function (2.61) solves (2.67) in the viscosity sense,

whenever α > 1, and the initial datum g is lower semicontinuous in Rn and

satisfies (2.49).

Moreover by Propositions 2.65 and Proposition 2.68 we know that

there exist ut and Xu for a.e. t > 0 and a.e. x ∈ Rn, whenever
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g ∈ BLSC(Rn) and the Rademacher’s Theorem holds (see Remark 2.42 for

more details on this point). In fact,by using the local Lipschitz properties,

we get that the Hopf-Lax viscosity solution of (2.66) satisfies the equa-

tion a.e. (t, x) ∈ (0,+∞)×Rn and so it is an almost everywhere solution, too.

Finally, we look at the model problem (2.67) with α > 1 in a special

sub-Riemannian case: the 1-dimensional Heisenberg group.

We recall that the matrix σ(x) associated to the Heisenberg group can be

written as

σt(x, y) =




1 0

0 1

−y
2

x
2


 .

We show that, for the Heisenberg group, the metric Hopf-Lax function (2.61)

coincides with the formula proved by Manfredi and Stroffolini in [74].

First note that

σ(x, y)Du =
(
ux −

y

2
uz, uy +

x

2
uz, uz

)t

= Xu,

where Xu is the usual horizontal gradient for the Heisenberg group H1.

So, in this case, the explicit expression for the Cauchy problem (2.66) is




ut +

1

α

((
ux −

y

2
uz

)2
+
(
uy −

x

2
uz

)2
)α

2

= 0, in R
n × (0,+∞),

u = g, in R
n × {0}.

Since H
1 is a Carnot group, there is a group of dilations which are usually

indicated by δλ, for λ > 0 (see Sec. 1.2).

We want only to recall that, in the particular case of the Heisenberg group

H1, the dilations are

δλ(x, y, z) = (λx, λy, λ2z)

and the operation is defined by

(x, y, z) · (x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)

and so the inverse element is (x, y, z)−1 = (−x,−y,−z).
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Then we get

1

t
dH1

(
(x, y, z), (x1, y1, z1)

)
=

= dH1

(
δ 1

t
(x, y, z), δ 1

t
(x1, y1, z1)

)
= dH1

((
x

t
,
y

t
,
z

t2

)
,

(
x1

t
,
y1

t
,
z1
t2

))
. (2.81)

Moreover, we know that

dH1

(
(x, y, z), (x1, y1, z1)

)
= |(x, y, z)−1(x1, y1, z1)|H1,

where the Heisenberg norm is defined as |(x, y, z)|H1 := dH1((0, 0, 0), (x, y, z)).

By this remark, (2.81) gives us

1

t
dH1

(
(x, y, z), (x1, y1, z1)

)
=

∣∣∣∣
(
x1 − x

t
,
y1 − y

t
,
z1 − z + 1

2
(x1y − xy1)

t2

)∣∣∣∣
H1

.

To sum up, in the case of the 1-dimensional Heisenberg group, we can write

the Carnot-Carathéodory Hopf-Lax function (2.61), as

u(x1, y1, z1, t) =

= inf
R3

[
g(x, y, z) +

t

β

( ∣∣∣∣
(
x1 − x

t
,
y1 − y

t
,
z1 − z + 1

2
(x1y − xy1)

t2

)∣∣∣∣
H1

)β]

getting the same formula found by Manfredi and Stroffolini.
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Chapter 3

Carnot-Carathéodory

inf-convolutions.

3.1 Definition and basic properties.

The approximation by inf-convolutions is known, in semigroup theory, as

Yosida’s regularization and, in optimization theory, as Moreau’s regulariza-

tion. It very useful in order to prove many results in nonlinear analysis. For

example, we want to recall that the inf-convolutions are used by Barron and

Jensen in [14], in order to get the uniqueness of (upper semicontinuous) v.

solution of terminal-time Cauchy problems for evolutive Hamilton-Jacobi

equations, under a (global) Lipschitz assumption on the Hamiltonian, w.r.t.

the gradient.

We begin by defining the inf-convolutions in the classical setting and

quoting some related properties.

Definition 3.1. For any g : Rn → R, the inf-convolutions is the Hopf-Lax

function (2.40) with H(p) = 1
2
|p|2 = H∗(p), that is

gt(x) = inf
y∈Rn

[
g(y) +

|x− y|2
2t

]
. (3.1)

Sometime, speaking about function (3.1), we say Euclidean inf-

convolution, since |x− y| means the Euclidean distance between x and y.
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For function (3.1) many properties holds. We recall only the main

ones. We assume that the function g is bounded and lower semicontinuous

(see [7], Lemma V.5.6).

Lemma 3.2. Let be g ∈ BLSC(Rn) and t > 0, then

(i) gt is locally Lipschitz continuous in Rn.

(ii) For any x ∈ Rn, gt(x) → g(x) as t→ 0+.

(iii) For any x ∈ Rn and t > 0, the infimum in (3.1) is a minimum and

it is attended in a closed ball centered at x and with radius R(t) =

t(2 ‖g‖∞)
1
2 .

(iv) Let Mt(x) be the set of all the minimum-points of gt(x), then the sub-

differential ∂gt(x) is empty whenever Mt(x) is not a singleton while,

whenever Mt(x) = {yt}, then ∂gt(x) =
{
2x−yt

t2

}
.

Remark 3.3. The results proved in [7] are more general than the previous

lemma. In fact, the authors study an approximation by inf-convolutions w.r.t.

both the space-variable and the time-variable. More precisely, for any ε, C >

0, the approximating function is defined as

gε(x, t) = inf
y∈Rn

[
g(y) + e−Ct |x− y|2

ε2

]
.

Analogously, it is possible to study a more general definition of inf-

convolution, adding a quadratic perturbation in the time-variable, too, i.e.

gε(x, t) = inf

{
g(y) + e−Ct |x− y|2

ε2
+

|t− s|2
ε2

∣∣∣∣ y ∈ R
n, s ∈ (T1, T2)

}
,

given 0 < T1 < T2.

Both the previous marginal-functions are Lipschitz approximations of the

function g. Nevertheless, we are interested in studying only the simple ver-

sion defined by formula (3.1).
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Remark 3.4 (sup-convolutions). For any function g : Rn → Rn, it is possible

to define the sup-convolution, that is

gt(x) = sup
y∈Rn

[
g(y) − |x− y|2

2t

]
. (3.2)

For the (Euclidean) sup-convolution, one can show the analogous properties

of the ones given in Lemma (3.2) (see for example [24]).

A first generalization of the Euclidean inf-convolution and sup-

convolution has been given by J.M. Lasry and P.L. Lions in [66]. There,

the authors are interested in finding a method to approximate bounded and

uniformly continuous functions, defined in an infinite-dimensional Hilbert

space H. In particular, setting | · |H the norm in the Hilbert space H, it is

possible to prove that for any t > 0

g
t
(x) = sup

z∈H

inf
y∈H

[
g(y) +

1

2t
|z − y|2

H
− 1

t
|z − x|2

H

]

and

gt(x) = inf
z∈H

sup
y∈H

[
g(y)− 1

2t
|z − y|2

H
+

1

t
|z − x|2

H

]

are elements of BC1,1(H) satisfying

sup
H

|∇gt|H ≤ Ct sup
H

|g|H,

sup
H

|∇gt(x) −∇gt(y)|H|x− y|−1
H

≤ Ct sup
H

|g|H,

inf
H

g ≤ gt ≤ sup
H

g,

sup
H

|∇gt|H ≤ sup
z 6=y

|g(x) − g(y)|H|x− y|−1
H

≤ +∞,

where gt is equal to g
t
and gt, respectively, and Ct > 0.

As t → 0+, both these approximations converge uniformly to g on H

and moreover g
t
≤ g ≤ gt. Finally, in [66], it is remarked that, if one

is interested in getting Lipschitz continuous regularizations (and not C1,1

regularizations), then it is sufficient to look at formulas (3.1) and (3.2) with

| · | = | · |H.
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We are interested in generalizing the inf-convolutions to bounded and

lower semicontinuous functions in finite-dimensional metric spaces. In

particular, we want to look at Rn endowed with a Carnot-Carathéodory

distance (satisfying the Hörmander condition).

As we have already remarked, the Carnot-Carathéodory distances satisfying

the Hörmander condition are finite distances on Rn.

To define a suitable metric approximations in this setting we need

only to apply the metric Hopf-Lax formula (2.48) with Φ(s) = 1
2
s2 = Φ∗(s).

Definition 3.5. Let d(x, y) be a Carnot-Carathéodory distance satisfying

the Hörmander condition, for any g : Rn → R and t > 0, we call

Carnot-Carathéodory inf-convolution (or simply Carnot-Carathéodory inf-

convolution) the function gt : Rn → R, defined as

gt(x) = inf
y∈Rn

[
g(y) +

d(x, y)2

2t

]
. (3.3)

Remark 3.6. Note that function (3.3) can be defined also by starting form

a generalized distance d(x, y) (and many of the properties still wiill be still

true). In the general metric case, (3.3) is called metric inf-convolution.

By applying the properties proved in Sec. 2.4.1 for the metric Hopf-Lax

formula, we can sum-up the following theorem.

Theorem 3.7. Let be g ∈ LSC(Rn), then the Carnot-Carathéodory inf-

convolution gt satisfies the following properties:

(i) gt ≤ g for any t > 0.

(ii) gt is locally d-Lipschitz w.r.t. x for t > 0. Hence gt is locally (Euclidean)

Hölder continuous with exponent 1/k where k is the step of the Carnot-

Carathéodory distance d(x, y).

(iii) gt lower-converges to g, as t→ 0+.

(iv) If g(x) ≤ −C(1 + d(0, x)) for some constant C > 0, then

gt(x) ≤ −C ′(1 + t+ d(0, x)),

for any x ∈ Rn and t > 0, where C ′ = max{C, 1
2
C2}.
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(v) If g ∈ BLSC(Rn), then the infimum in (3.3) is attended at a point

which belongs to the closed Carnot-Carathéodory ball centered at x and

with radius R(t) = t
1
2 ‖g‖ 1

2
∞. Moreover gt is locally Lipschitz continuous

w.r.t. t > 0.

Proof. Property (i) has been proved in Remark 2.59.

Moreover by Proposition 2.65 gt is d-Lipschitz continuous w.r.t. x. Then,

by using the estimate (1.29) for Carnot-Carathéodory distances satisfying

the Hörmander condition (see Chapter 1, Theorem 1.56), we can conclude

property (ii).

Property (iii) is given by Lemma 2.60 and property (iv) by Lemma 2.61.

Property (v) follows from Lemma 2.63 and Proposition 2.68.

To sum up, we want to point out that Carnot-Carathéodory inf-

convolutions given by (3.3) are Lipschitz functions (in the suitable metric)

and monotone approximations of the original bounded and lower semicon-

tinuous function.

Moreover, whenever the Rademacher’s Theorem holds (see 2.42), the Carnot-

Carathéodory inf-convolutions are almost everywhere horizontal differen-

tiable. More precisely, set u(t, x) = gt(x), ut and Xu = σ(x)Dxu exist

a.e. t > 0 and x ∈ Rn.

3.2 Inf-convolutions and logarithms of heat

kernels.

In this section we generalize to the Carnot-Carathéodory inf-convolutions a

convergence-result known in the corresponding Euclidean case. We follow an

idea recently introduced by I. Capuzzo Dolcetta [26].

More precisely the inf-convolution can be approximated by the logarithms of

suitable integral convolutions of the datum, i.e.

lim
ε→0+

−2ε log

(
(4πεt)−

n
2

∫

Rn

e−
|x−y|2

4εt e−
g(y)
2ε dy

)
= inf

y∈Rn

[
g(y) +

|x− y|2
2t

]
.

In other words, this means to investigate the limiting behavior of solu-

tions wε of subelliptic heat equations (with conductivity ε > 0), and prove
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that −2ε logwε converges, as ε → 0+, to the Carnot-Carathéodory inf-

convolutions of the initial datum.

3.2.1 The Euclidean approximation and the Large De-

viation Principle.

Here we recall in details the result of convergence proved by Capuzzo Dolcetta

in [26]. We start looking at the Cauchy problem for the following Hamilton-

Jacobi equation




ut +

1

2
|Du|2 = 0, x ∈ R

n, t > 0,

u(x, 0) = g(x), x ∈ R
n.

(3.4)

The idea is to regularize the problem (3.4) in a suitable way in order to get

a family of Cauchy problems for heat equations: in fact we know that heat

equations are solved by integral convolutions of the fundamental solutions

and the initial datum.

The first step consists in adding a (so called viscosity) term −ε∆ u with

ε > 0.

We so find a family of Cauchy problems for second-order PDEs with initial

data g: 


uε

t − ε∆uε +
1

2
|Duε|2 = 0, x ∈ R

n, t > 0,

uε(x, 0) = g(x), x ∈ R
n.

(3.5)

Using the Hopf-Cole transform wε := e−
uε

2ε , it is possible to linearize the pre-

vious nonlinear equations. In fact, computing the corresponding derivatives,

we find that, whenever uε solves problem (3.5), its Hopf-Cole transform wε

solves the following Cauchy problems for the heat equation (with conductiv-

ity ε > 0): {
wε

t − ε∆wε = 0, x ∈ R
n, t > 0,

wε(x, 0) = gε(x), x ∈ R
n.

(3.6)

It is well-known that the solutions of problems (3.6) are given by convolutions

of the fundamental solution and the initial datum gε(x) (see for example [47],
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Section 2.3), i.e.

wε(t, x) = (4πεt)−
n
2

∫

Rn

e−
|x−y|2

4εt e−
g(y)
2ε dy.

So by applying the anti-transform of Hopf-Cole and using the explicit formula

for the solutions of the heat problems (3.6), we can deduce the following

logarithmic representative formula for the solutions of the Cauchy problems

(3.5):

uε(t, x) = −2ε log

(
(4πεt)−

n
2

∫

Rn

e−
|x−y|2

4εt e−
g(y)
2ε dy

)
. (3.7)

It is natural to expect that as ε → 0+ the solutions uε(t, x) given in (3.7)

converge to the unique solution of the starting Cauchy problem (3.4).

By the Hopf-Lax formula (see [47] or [7]) we know that the (unique) solution

of the Cauchy problem (3.4) is the inf-convolution of the initial datum. In

[26], Capuzzo Dolcetta shows directly that

lim
ε→0+

uε(t, x) = gt(x), (3.8)

where gt(x) is defined by (3.1) and g ∈ BC(Rn).

This means that the (Euclidean) inf-convolution can be seen as limit of

logarithms of suitable integral convolutions.

Limit (3.8) follows trivially from a Laplace-Varadhan’s type result,

which is an application of the Large Deviation Principle ([94]).

Let us give some details.

Definition 3.8 (Large Deviation Principle). Let P ε be a family of probability

measures defined on the Borel sets of some complete and separable metric

space X. We say that the family of probability measures P ε satisfies the

Large Deviation Principle if there exists a function (called rate function)

I : X → [0,+∞] such that

(i) I ∈ LSC(X),

(ii) for any k < +∞, the sublevel set {x ∈ X | I(x) ≤ k} is compact,

(iii) for any A ⊂ X open set, it holds

lim inf
ε→0+

ε logP ε(A) ≥ − inf
x∈A

I(x),
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(iv) for any C ⊂ X closed set, it holds

lim sup
ε→0+

ε logP ε(C) ≤ − inf
x∈C

I(x).

Theorem 3.9. Let X be a complete and separable metric space and P ε be a

family of probability measures satisfying the Large Deviation Principle, then

for any F ∈ BC(X)

lim
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
= sup

x∈X
[F (x) − I(x)]. (3.9)

Proof. Let be F ∈ BC(Rn) and I(x) ≥ 0, then

sup
x∈X

[F (x) − I(x)] ≤
∑

x∈X

F (x) < +∞.

So by the definition of supremum, for any δ > 0 there exists a point y ∈ X

such that

F (y) − I(y) ≥ sup
x∈X

[F (x) − I(x)] − δ

2
.

F (x) is a continuous function, then we can find a neighborhood U of y such

that F (x) ≥ F (y)− δ
2
, which implies

lim inf
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
≥ lim inf

ε→0+
ε log

(∫

U

exp

[
F (x)

ε

]
dP ε

)

≥ lim inf
ε→0+

ε log

(
exp

[
F (y)

ε
− δ

2ε

]
P ε(U)

)
.

By applying property (iv) of the Large Deviation Principle (Definition 3.8),

we find

lim inf
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
≥ − inf

x∈U
I(x) + F (y) − δ

2

≥ F (y) − I(y) − δ

2
≥ sup

x∈X
[F (x) − I(x)] − δ.

Passing to the limit as δ → 0+, we get

lim inf
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
≥ sup

x∈X
[F (x) − I(x)].
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We remain to show the reverse inequality for the upper limit.

Since X is a separable space and F ∈ BC(X), then for any δ > 0 there exists

a finite number of closed sets K1, ..., KNδ
covering X and such that

max
x,y∈Ki

|F (x) − F (y)| < δ.

Hence

∫

X

exp

[
F (x)

ε

]
dP ε ≤

Nδ∑

i=1

∫

Ki

exp

[
F (x)

ε

]
dP ε ≤

Nδ∑

i=1

∫

Ki

exp

[
Fi + δ

ε

]
dP ε,

where Fi = infx∈Ki
F (x) > −∞. Therefore

lim sup
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)

≤ sup
i=1,...,Nδ

lim sup
ε→0+

ε log

(∫

X

exp

[
Fi + δ

ε

]
dP ε

)

= sup
i=1,...,Nδ

lim sup
ε→0+

[Fi + δ + ε logP ε(Ki)].

Applying property (iii) of the Large Deviation Principle

sup
i=1,...,Nδ

lim sup
ε→0+

[Fi + δ + ε logP ε(Ki)] ≤ sup
i=1,...,Nδ

[− inf
x∈Ki

I(x) + Fi + δ]

≤ sup
i=1,...,Nδ

sup
x∈Ki

[F (x) − I(x)] + δ ≤ sup
x∈X

[F (x) − I(x)] + δ

passing to the limit as δ → 0+, we get

lim sup
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
≤ sup

x∈X
[F (x) − I(x)].

By the two found inequalities we can deduce

sup
x∈X

[F (x) − I(x)] ≤ lim inf
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)

≤ lim sup
ε→0+

ε log

(∫

X

exp

[
F (x)

ε

]
dP ε

)
≤ sup

x∈X
[F (x) − I(x)],

which concludes the proof.
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If we can apply the limit (3.9) to the function F = −g/2, starting form

the gaussian measures

dP ε
t,x = (4πεt)−

n
2 e−

|x−·|2

4εt dLn,

with rate function

It,x(y) =
|x− y|2

4t
,

then we get exactly the convergence result (3.8).

So we need only to show the applicability of the Large Deviation Principle.

Properties (i) and (ii) are trivially satisfied, then we must only verify the

estimates for the upper and lower limits in the closed and the open sets,

respectively. These are not trivial to prove. In the next subsection we re-

call briefly a paper of Varadhan [93] published in 1967, where the author

proved the applicability of the Large Deviation Principle but only up to the

Riemannian case.

3.2.2 Applicability of the Large Deviation Principle:

the proof of Varadhan for the Riemannian case.

To show properties (iii) and (iv) of Definition 3.8 is difficult even in the simple

Euclidean case. The difficulties arrise whenever the sets are unbounded.

Before recalling the ideas in the proof of Varadhan, we like to give an easy

proof for bounded sets, in the Euclidean case.

Lemma 3.10. Let B ⊂ Rn be a Borel and bounded set, then

lim
ε→0+

ε log

[
(4πεt)−

n
2

∫

B

e−
|x−y|2

4εt dy

]
= − inf

y∈B

|x− y|2
4t

.

Proof. In order to prove the limit, we use the convergence in the bounded

sets of Lq-norms to the L∞-norm, as q → +∞.

Therefore, set q = 1/ε and note that
(∫

B

e−
|x−y|2

4εt dy

)ε

=

∥∥∥∥e−
|x−·|2

4t

∥∥∥∥
q, B

.

For any B Borel and bounded set, it is well-known (see, for example, [70])

that

lim
q→+∞

∥∥∥∥e−
|x−·|2

4t

∥∥∥∥
q, B

=

∥∥∥∥e−
|x−·|2

4t

∥∥∥∥
+∞, B

= sup
y∈B

e−
|x−y|2

4t .
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By the continuity of the logarithm function, it follows that

lim
ε→0+

log

(∫

B

e−
|x−y|2

4εt dy

)ε

= lim
q→+∞

log

∥∥∥∥e−
|x−·|2

4t

∥∥∥∥
q, B

= − inf
y∈B

|x− y|2
4t

.

Moreover, it is easy to show that limε→0+ ε log(4πεt)−
n
2 = 0 and this remark

concludes the proof.

Next we quote the result proved by Varadhan in [93], recalling briefly

the main ideas. Later investigating the Carnot-Carathéodory case, we will

show how it could be possible to generalize these ideas in the more general

case. Nevertheless we will give a very different but simpler proof, following

the remarks from the proof of Lemma 3.10.

Let us define

Lεf = ε

n∑

i,j=1

ai,j(x)
∂2f

∂xi∂xj
,

and we indicate by pε(t, x, y) the heat kernel associated to the parabolic

equation
∂pε

∂t
= Lεpε. (3.10)

Moreover, we indicate by L and p(t, x, y) the operator Lε and the heat kernel

pε(t, x, y) when ε = 1. So in particular Lε = εL.

We assume that L is an uniformly elliptic operator, which means that for

any x ∈ Rn A(x) := (ai,j(x))i,j=1,...,n is a symmetric and positive definite

n× n-matrix, satisfying the following uniformly elliptic condition, i.e.

C1

n∑

i=1

ξ2
i ≤

n∑

i,j=1

ai,j(x) ξi · ξj ≤ C2

n∑

i=1

ξ2
i , (3.11)

for suitable positive and finite constants C1 and C2.

We also assume that the coefficients satisfy an uniform Hölder-condition:

|ai,j(x) − ai,j(y)| ≤ M |x− y|h,

for some M > 0 and 0 < h ≤ 1.

Next, we need to define the family of probability measures and the
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distance associated to the equation (3.10).

So, for any B ⊂ Rn Borel set, we define

P ε
t,x(B) =

∫

B

pε(t, x, y)dy. (3.12)

Then, let Γ(x, y) be the set of all the curves joining x to y in some finite time

T , for any γ ∈ Γ(x, y), the length can be defined as

l(γ) =

∫ T

0

√[
γ̇(t)

]T
A−1(γ(t)) γ̇(t) dt. (3.13)

Remark 3.11. Note that for any x the inverse matrix A−1(x) exists since

we have assumed that A(x) is a positive definite matrix.

The distance associated to the operator L =
∑m

i,j=1 ai,j(x)
∂2

∂xi∂xj
can be

written as

d(x, y) = inf{l(γ) | γ ∈ Γ(x, y)}. (3.14)

Whenever L is an uniformly elliptic operator, then the associated distance is

a Riemannian distance.

We now quote the result of Varadhan.

Theorem 3.12. Let be x ∈ Rn and t > 0. Let P ε
t,x be the probability measures

defined by (3.12) and d(x, y) be distance defined in (3.14), then

(i) for any open set A ⊂ Rn

lim inf
ε→0+

ε logP ε
t,x(A) ≥ − inf

y∈A

d(x, y)2

4t
,

(ii) for any closed set C ⊂ Rn

lim sup
ε→0+

ε logP ε
t,x(C) ≤ − inf

y∈C

d(x, y)2

4t
.

Sketch of the proof [92].

The idea of the proof of Vardhan is to use the asymptotic behavior of

−4tp(t, x, y), as t→ 0+.

We need first to go from the behavior of the heat kernel pε(t, x, y) for small

conductivity ε to the behavior of the heat kernel p(t, x, y) for small times.

Then the next result holds.
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Lemma 3.13. For any ε, t > 0 and x, y ∈ Rn, we have

pε(t, x, y) = p(εt, x, y).

Proof. The proof follows form the uniqueness of solutions for the following

Cauchy problems. In fact, if the coefficients ai,j(x) do not depend on the

time-variable, for any x ∈ Rn fixed the function wε(t, x, y) := p(εt, x, y)

satisfies




∂wε

∂t
− ε

n∑

i,j+1

ai,j(x)
∂2f

∂yi∂yj
wε = 0, y ∈ R

n, t > 0,

wε(0, x, y) = δx(y), y ∈ R
n.

(3.15)

So, by the uniqueness for Cauchy problems (3.15), we get the identity

pε(t, x, y) = p(εt, x, y).

The next step consists in using the theory of Markov processes.

In fact, it is possible to show that the following semigroup property (also

known as Chapman-Kolmogorov equation) holds:

pε(t+ s, x, y) =

∫

Rn

pε(t, x, z)pε(s, z, y)dz,

whenever pε is the heat kernel associated to an uniformly elliptic operator.

So, fixed a strictly increasing N -partition t1, ..., tN of [0, T ], one can define

the probability of a cylinder A = {γ ∈ Γ(x, y) | γ(t1), ..., γ(tN) ∈ B} as

P ε
t,x(A) =

∫

B

pε(t1, x, y1)p
ε(t2 − t1, y1, y2)...p

ε(tN − tN−1, yN−1, yN)dy1...dyN .

The Markov’s property let us show a link between the distance (3.14) and

the energy-functional

I(γ) =
1

2

∫ T

0

[
γ̇(t)

]T
A−1(γ(t)) γ̇(t) dt. (3.16)

The functional (3.16) depends on the parametrization chosen for the curve γ

but it is minimum whenever the velocity is constant.

Instead the length-functional (3.13) does not depend on the chosen

parametrization: so to minimize this, we can look only at parameterizations

with constant velocity.
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Lemma 3.14. Let d(x, y) be defined by (3.14) and I be the energy-functional

(3.16), then for any 0 ≤ α < β ≤ T

inf{I(γ) | γ ∈ Γ(x, y), with γ(α) = x, γ(β) = y} =
d(x, y)2

2(β − α)
.

Proof. Let γ(t) be a curve joining x to y in a time β − α > 0 and set

γ̇(t) = (α1(t), ..., αn(t)). We have already remarked that it is possible to look

only at γ(t) such that
∑n

i=1 αi(t)
2 = C, for some C > 0.

This makes easy to calculate the corresponding functionals l(γ) and I(γ), i.e.

l(γ) = (β − α)C, I(γ) =
1

2
(β − α)C2.

Then I(γ) = l(γ)2

2(β−α)
: by taking the infimum, we conclude the proof.

By induction, it is easy to generalize the previous lemma to a generic

N -partition of [0, T ].

Lemma 3.15. Let d(x, y) be the distance defined by (3.14) and I be the

energy-functional (3.16) then, for any N-partition of [0, T ] 0 ≤ t1 < t2 <

... < tN ≤ T ,

it holds

inf{I(γ) | γ continuous curve : γ(ti) = xi, i = 1, .., N} =
1

2

N∑

i=1

d(xi+1, xi)
2

tj+1 − tj
.

To conclude the sketch of this proof, we recall the following pointwise-

limit of −2tp(t, x, y) as t→ 0+.

Theorem 3.16 ([92]). Let p(t, x, y) be the heat kernel associated to the

parabolic equation (3.10) with ε = 1 and d(x, y) be the Riemannian distance

defined by (3.14), then for any x and y punctually,

lim
τ→0+

4τ log p(τ, x, y) = −d(x, y)2. (3.17)

Moreover the previous convergence is uniform whenever d(x, y) is bounded.

Lemma 3.15 and Theorem 3.16 are used in order to prove the estimate

for the upper limit in closed and bounded sets.
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Then, Varadhan investigates the limiting behavior outside large balls (see

[93], Lemma 3.2) and shows that this limit is small.

This leads to the estimate for the upper limit in closed set (Theorem 3.3)

and then we deduce the corresponding estimate for the lower limit in open

sets (Lemma 3.4. and Theorem 3.5).

In this chapter we study the Carnot-Carathéodory distance and we generalize

the result of Varadhan to hypoellitic operators.

3.3 Carnot-Carathéodory inf-convolutions

and ultraparabolic equations.

3.3.1 Heat kernels for hypoelliptic operators.

Before giving a representative formula for the solutions of (3.28), we recall

what a hypoelliptic operator is.

It is well-known that the solutions (in distributional sense) of an uniformly

elliptic equation Lu = f are smooth whenever f is so. Nevertheless, the

previous property holds for more general operators.

Definition 3.17. A differential operator L is hypoelliptic (or also subellip-

tic) if and only if the solutions of Lu = f are smooth, whenever f ∈ C∞.

The main example of hypoelliptic operators are the sums of squares of

Hörmander vector fields, that are

L =

m∑

i=1

X2
i , (3.18)

where X1, ..., Xm are smooth vector fields, satisfying the Hörmander condi-

tion (see [55], Theorem 1.1).

The theory of hypoelliptic operators has been developed in many dif-

ferent setting. In particular we are interested in studying the heat kernel

associated to the subelliptic heat equation

∂u

∂t
= Lu. (3.19)
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Definition 3.18. Whenever the operator L is hypoelliptic, the equation

(3.19) is usually called ultraparabolic.

It is well-known that the heat kernel p(t, x, y) for the heat equation ut =

∆u in Rn, is given by the following formula:

p(t, x, y) =
1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
. (3.20)

Moreover, when L is uniformly elliptic, the equation (3.19) is parabolic and

so there exists an associated heat kernel. In general, it is not possible to write

an explicit formulation of the elliptic heat kernels but they satisfy almost the

same properties than (3.20).

From now on we indicate an heat kernel (in both the uniformly elliptic case

and the hypoelliptic one) by p(t, x, y).

Remark that any parabolic equations can be seen as an heat equation on a

Riemannian manifold M = (Rn, d), where d(x, y) is a suitable associated Rie-

mannian distance. So by Li-Yau’s Theorem ([69]), we know that in particular

the following exponential estimates hold

c

Ln(Bd(x,
√
t))

exp

(
−d(x, y)

2

ct

)
≤ p(t, x, y) ≤ C

Ln(Bd(x,
√
t))

exp

(
−d(x, y)

2

Ct

)
,

(3.21)

with c, C > 0 suitable constants.

All the previous remarks about the uniformly elliptic heat kernels are

still true in the hypoelliptic case.

Next we introduce the definition of heat kernels and then we show exponen-

tial estimates similar to (3.21) for the hypoelliptic case (for details see [60]).

Let µ be a smooth, non-vanishing, measure on Rn.

We indicate by Ht the semigroup generated by L w.r.t. the measure µ, i.e.

Ht is the unique continuous family of operators defined on L1(dµ) and such

that, for any s, t > 0, all the following properties hold:

(i) Ht ·Hs = Ht+s,

(ii) Ht is semi-positive definite (i.e. f ≥ 0 implies Htf ≥ 0),
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(iii) Ht1 = 1,

(iv) limt→0+ ‖t−1(Htf − f) −H0f‖L∞(Rn) = 0, for any f ∈ C2(Rn).

The heat kernel p(t, x, y) can be defined as the unique function such that

Htf(x) =

∫

M

p(t, x, y)f(y)dµ(y), for any t > 0 and f ∈ L1(dµ),

i.e. p(t, x, y) is the fundamental solution of the operator Lx =
∑m

i=1X
2
i (x),

that is the unique solution of

Lx p(t, x, y) = δ(0,y)(t, x)

in [0,+∞) × Rn in the distribution sense.

An explicit formula for the heat kernel in the Heisenberg group is

given in [49]. For the general hypoelliptic case, one can find many details

about the properties of the fundamental solution in [62, 61]. There exists

also a more recent paper [65] by E. Lanconelli and A. Pascucci in the general

case where the operator depends on both the space and the time.

Remark 3.19. Recall that any hypoelleptic fundamental solution is smooth

outside the diagonal, then the corresponding heat kernel is smooth for any

t > 0 and x, y ∈ Rn.

We are now interested in giving some exponential estimates for the heat

kernel of sum of squares of Hörmander vector fields.

Since we look at the usual Lebesgue measure on Rn, from now to on by µ

we will always mean the Lebesgue measure Ln. Nevertheless, most of the

next results hold also for general smooth non-vanishing measures defined on

connected manifolds.

Then, let d(x, y) be the Carnot-Carathéodory distance induced by

X1, ..., Xm on Rn, we indicate by Bd(x, r) the open ball in the metric d(x, y)

and by B(x, r) the usual Euclidean ball, both centered at x and with radius

equal to r > 0.

In [84] there is remarked that, by the Campbell-Hausdorff formula (1.56),
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if k ≥ 1 is the step of the distribution associated to X1, ..., Xm, then there

exists c > 0 such that for any r > 0 and x ∈ Rn the following inclusion

holds:

B(x, crk) ⊂ Bd(x, r). (3.22)

Exponential estimates for hypoelliptic heat kernels in the case of the horizon-

tal Lapalcian have been proved first by A. Sánchez-Calle in [84] for 0 < t ≤ 1

and d(x, y) < t
1
2 , and then generalized by D.S. Jerison and A. Sánchez-Calle

in [60] for 0 < t ≤ 1 and x, y ∈ K compact, and, finally, by S. Kusuoka and

D. Stroock in [63], for 0 < t ≤ 1 and any x, y ∈ Rn.

We recall the most general result by S. Kusuoka and D. Stroock, which tells

that there exists M ∈ [1,+∞) such that

1

Mµ(Bd(x,
√
t))

e−M
d(x,y)2

t ≤ p(t, x, y) ≤ M

µ(Bd(x,
√
t))

e−
d(x,y)2

Mt . (3.23)

By the previous estimate and the inclusion (3.22), we can deduce an upper-

bound for hypoelliptic heat kernels, which will turn out to be very useful to

generalize the result of Varadhan, by using methods of measure theory.

Corollary 3.20. Let p(t, x, y) be the heat kernel associated to the hypoelliptic

operator (3.18) and k ≥ 1 be the step of the corresponding distribution. Then

there exist two constants C1, C2 > 0 such that

p(t, x, y) ≤ C1t
− kn

2 e−C2
d(x,y)2

t , (3.24)

for 0 < t ≤ 1 and x, y ∈ Rn.

Proof. By the inclusion (3.22) and the monotonicity of the Lebesgue measure,

we can deduce

µ(B(x, ct
k
2 )) ≤ µ(Bd(x, t

1
2 )).

Therefore the upper bound given in (3.23) implies (3.24) with C1 = M
ωncn ,

where ωn is the measure of the unit Euclidean ball in Rn, and C2 = 1/M .
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3.3.2 Limiting behavior of solutions of subelliptic heat

equations.

The aim of this section is to generalize the known Euclidean convergence to

the Carnot-Carathéodory case, following the ideas introduced by Capuzzo

Dolcetta in [26], and recalled in Sec. 3.2.1.

Therefore we start looking at the Cauchy problem for the Hamilton-Jacobi

equation: 


ut +

1

2
|σ(x)Du|2 = 0, x ∈ R

n, t > 0,

u(0, x) = g(x), x ∈ R
n.

(3.25)

with g ∈ BC(Rn) and σ(x) m × n-matrix (with m ≤ n), satisfying the

Hörmander condition.

In Theorem 2.77 we have proved that the metric Hopf-Lax function

(2.48) is a LSC-viscosity solution (and an almost everywhere solution, too)

for the Hamilton-Jacobi-Cauchy problem (3.25). In this particular case, the

Hopf-Lax function coincides with the Carnot-Carathéodory inf-convolution.

Moreover g ∈ BC(Rn), by applying Proposition 2.78 and Remark 2.79, the

Carnot-Carathéodory inf-convolutions is a viscosity solution in the classical

viscosity sense introduced by Crandall and Lions.

Moreover, whenever the initial data is continuous in Rn, the comparison

principle proved in [42] implies that the Carnot-Carathéodory inf-convolution

(3.3) is the unique viscosity solution of the Cauchy problem (3.25).

Next we approximate problem (3.25) by second-order PDEs. Let us

define

A(x) := σt(x)σ(x) = (ai,j(x))i,j,

for i, j = 1, ..., n. We introduce the following second-order operator:

Lu =
n∑

i,j=1

ai,j(x)
∂2u

∂xi∂xj

. (3.26)

Since σ(x) is am×n-matrix of Hörmander-type, the operator L is hypoelliptic

and, it is usually known as horizontal Laplacian.
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By adding a second-order term −εLu, we can approximate (3.25) by the

following family of Cauchy problems:




uε
t − ε

n∑

i,j=1

ai,j(x)
∂2uε

∂xi∂xj

+
1

2
|σ(x)Duε|2 = 0, x ∈ R

n, t > 0,

uε(x, 0) = g(x), x ∈ R
n.

(3.27)

Using the Hopf-Cole transform wε = e−
uε

2ε , we can linearize the Cauchy

problems (3.27). We first compute the derivatives of the Hopf-Cole transform:

wε
t − ε

n∑

i,j=1

ai,j(x)
∂2wε

∂xi∂xj

=

= −w
ε

2ε

(
uε

t − ε

n∑

i,j=1

ai,j(x)
∂2uε

∂xi∂xj
+

1

2

n∑

i,j=1

ai,j(x)
∂uε

∂xi

∂uε

∂xj

)
.

Note that

|σ(x)Duε|2 = σ(x)Duε · σ(x)Duε = σt(x)σ(x)Duε ·Duε

and using that A(x) = σt(x)σ(x), we can deduce

|σ(x)Duε|2 = A(x)Duε ·Duε =
n∑

i,j=1

ai,j(x)
∂uε

∂xi

∂uε

∂xj

.

Therefore, if uε is a solution of the Cauchy problem (3.27), then its Hopf-

Cole transform wε solves the following family of Cauchy problems for ultra-

parabolic second-order PDEs:




wε
t − ε

n∑

i,j=1

ai,j(x)
∂2wε

∂xi∂xj
= 0, x ∈ R

n, t > 0,

wε(x, 0) = e−
g(x)
2ε := gε(x), x ∈ R

n.

(3.28)

By the theory for ultraparabolic equations recalled in the previous subsection,

we know that for any ε > 0 there exists an heat kernel pε(t, x, y) associated

to the hypoelliptic operator L. Then we can write the solution wε of the

Cauchy problem (3.28) as

wε(t, x) =

∫

Rn

pε(t, x, y)e−
g(y)
2ε dy. (3.29)
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Applying the anti-transform of Hopf-Cole, we formally get the following so-

lutions for the approximating Cauchy problems (3.27):

uε(t, x) = −2ε log

(∫

Rn

pε(t, x, y)e−
g(y)
2ε dy

)
. (3.30)

One can expect that, as ε→ 0+, the previous formalas converge to the unique

solution of the original Hamilton-Jacobi-Cauchy problem (3.25), i.e. to the

Carnot-Carathéodory inf-convolution of g(x).

Exactly as in the Euclidean case, we are going to show this converge by

applying the Theorem 3.9.

The difficulty consists again in proving the properties for the lower limit and

the upper limit in Definition 3.8.

To this purpose, we fix x ∈ Rn and t > 0 and define the following probability

measures

P ε
t,x(B) :=

∫

B

pε(t, x, y)dy, (3.31)

for any B ⊂ Rn Borel set.

We want to show that the family of probability measures (3.31) satis-

fies the Large Deviation Principle with rate function

It,x(y) =
d(x, y)2

4t
. (3.32)

So we need to generalize the result proved by Varadhan in [93] for uniformly

elliptic operators (see Sec. 3.2.2).

We first give an idea how to generalize to the hypoelliptic case the

key-steps in the proof of the Varadhan.

We begin remarking that Lemma 3.13 still holds since the solution of

the Cauchy problem (3.15) is unique also starting from hypoelliptic opera-

tors (see for example [65]).

Moreover, the Markov’s property is true in the hypoelliptic case, too.

We then define the horizontal objects that we need. Let γ : [0, T ] → R
n be
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a σ-horizontal curve, we know that for i = 1, ..., m there exist measurable

functions hi such that

γ̇(t) =

m∑

i=1

hi(t)Xi(γ(t)), a.e. t ∈ [0, T ].

So we indicate by Γ(x, y) the set of all the absolutely continuous horizontal

curves joining x to y in a finite time T . The length-functional (3.13) and the

energy-functional (3.16) act on Γ(x, y), respectively, as

l(γ) =

∫ T

0

√
h2

1(t) + ... + h2
m(t)dt,

and

I(γ) =
1

2

∫ T

0

[h2
1(t) + ...+ h2

m(t)]dt.

Then the distance defined by (3.14) is the Carnot-Carathéodory distance

associated to the matrix σ(x).

Remark that Lemma 3.14 and Lemma 3.15 hold in the Riemannian

case as well as in the sub-Riemannian case. In fact in both the cases

minimizing the energy-functional or the length-functional is exactly the

same thing (see [75]).

Theorem 3.16 is the main result in order to get the estimates for the

upper limit and the lower limit. That result has been generalized to the

hypoelliptic case first by Leandre in [67, 68], using probabilistic methods,

and then by S. Kusuoka and D. Stroock in [64], by a different and simpler

analytic proof. We quote the result below.

Theorem 3.21 ([67, 68, 64]). Let p(t, x, y) be the heat kernel of an hypoel-

liptic operator L and d(x, y) be the associated sub-Riemannian distance, then

for any x, y ∈ Rn

lim
τ→0+

4τ log p(τ, x, y) = −d(x, y)2. (3.33)

Moreover the previous limit is uniform whenever d(x, y) is bounded.
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Using Lemma 3.13 and Theorem 3.21, we are able to show the applica-

bility of the Large Deviation Principle in the hypoelliptic case.

The proof of Varadhan seems to be applicable also in the sub-Riemannian

case. Nevertheless that proof is very technical and probabilistic. We want

to give a different and much shorter proof, using the same idea as one in

Lemma 3.10 and standard methods of measure theory.

So we are going to prove first the limit in bounded sets and then use that

result to investigate the limiting behavior in unbounded sets.

Lemma 3.22. Let pε(t, x, y) be the heat kernel associated to the hypoel-

liptic operator Lε u = ε
∑n

i,j=1 ai,j(x)
∂2 u

∂xj∂xi
, where A(x) = (ai,j(x))

n
i,j=1 =

σt(x)σ(x) and σ(x) is a m × n-matrix satisfying the Hörmander condition.

If P ε
t,x and It,x are the family of probability measures and the rate function

defined in (3.31) and (3.32), then for any B ⊂ Rn bounded and Borel set

lim
ε→0+

[P ε
t,x(B)]ε = e− infy∈B It,x(y). (3.34)

Proof. We fix t > 0, x ∈ Rn and a bounded and Borel set B ∈ Rn.

Since the exponential function is continuous, we can write the locally uniform

limit (3.33) as

lim
τ→0+

p(τ, x, y)τ = e−
d(x,y)2

4 . (3.35)

Moreover (∫

B

p(τ, x, y)dy

)τ

=

(∫

B

[p(τ, x, y)τ ]
1
τ dy

)τ

,

so we set q = 1
τ

and define

fq(y) := p

(
1

q
, x, y

)1
q

.

We can then write

(∫

B

[p(τ, x, y)τ ]
1
τ dy

)τ

=

(∫

B

[
p

(
1

q
, x, y

)1
q

]q

dy

)1
q

= ‖fq‖q,B ,

where by ‖ ‖q,B we indicate the usual Lq-norm in the set B with q ≥ 1.

By Lemma 3.13 and setting τ = εt, we easily get

lim
ε→0+

[P ε
t,x(B)]ε = lim

τ→0+

(∫

B

p(τ, x, y)dy

)τ
t

= lim
q→+∞

‖fq‖
1
t
q,B . (3.36)
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Note that, as ε → 0+, i.e. as q → +∞, the Lq-norm converges to the cor-

responding L∞-norm in bounded sets. Hence by limit (3.35) we can deduce

that

lim
q→+∞

fq(y) = f(y) := e−
d(x,y)2

4 , local uniformly.

By the triangle inequality for the Lq-norm, it follows that

‖fq‖q,B ≤
(∫

B

|fq(y) − f(y)|qdy
)1

q

+

(∫

B

|f(y)|qdy
)1

q

. (3.37)

Note that, if B is bounded, then

lim
q→+∞

(∫

B

|f(y)|qdy
)1

q

= ‖f‖∞,B = sup
y∈B

|f(y)| = e− infy∈B
d(x,y)2

4 .

It remains to show that the first term of (3.37) goes to zero as q → +∞.

Using the locally uniform limit (3.35), this is immediate to prove. In fact,

0 ≤
(∫

B

|fq(y) − f(y)|qdy
) 1

q

≤ ‖fq − f‖∞,B [Ln(B)]
1
q −→ 0,

To sum up, we have proved that

lim
q→+∞

‖fq‖
1
t
q,B ≤ e− infy∈B

d(x,y)2

4t .

In order to get the reverse inequality, we proceed analogously remarking that

‖fq‖q,B ≥
(∫

B

|fq(y) − f(y)|qdy
)1

q

−
(∫

B

|f(y)|qdy
)1

q

. (3.38)

From that we deduce

lim
q→+∞

‖fq‖
1
t
q,B ≥ e− infy∈B

d(x,y)2

4t ,

getting so limit (3.34).

It is known that for general measures the convergence in bounded sets

gives directly the corresponding estimate for the lower limit in the opens sets.

The corresponding estimate for the upper limit in closed sets is instead much

more difficult to prove. Also in our case it is very easy to study the limiting

behavior in open unbounded sets, as we state in the following theorem.
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Theorem 3.23. Let pε(t, x, y) be the heat kernel associated to the hypoelliptic

operator Lε = ε
∑n

i,j=1 ai,j(x)
∂2

∂xj∂xi
, with A(x) = (ai,j(x))

n
i,j=1 = σt(x)σ(x)

and σ(x) m × n-matrix satisfying the Hörmander condition. If P ε
t,x and It,x

are the family of probability measures and the rate function defined in (3.31)

and (3.32), then for any A ⊂ Rn open set

lim inf
ε→0+

[P ε
t,x(A)]ε ≥ e− infy∈A It,x(y). (3.39)

Proof. Let A ⊂ Rn be an open set, we want to prove that (3.39) holds.

We show this by approximation. In fact, if we set

AR := A ∩ BR(0),

then AR is a bounded open set and so we can apply the convergence result

proved in Lemma 3.22. Therefore

lim inf
ε→0+

[P ε
t,x(A)]ε ≥ lim inf

ε→0+
[P ε

t,x(AR)]ε = e− infy∈AR
d(x,y)2

4t .

Taking the supremum over R > 0 and using the semicontinuity of the char-

acteristic function of open sets, we can immediately conclude that

lim inf
ε→0+

[P ε
t,x(A)]ε ≥ sup

R>0
e− infy∈AR

d(x,y)2

4t ≥ e− infy∈A
d(x,y)2

4t .

To get the corresponding estimate for the upper limit in closed unbounded

sets, one needs in general some equi-tight property.

Definition 3.24. We recall that a family of probability measures P ε is equi-

tight, if and only if, for any δ > 0 there exists a compact set K, such that

P ε(Rn\K) < δ.

It is easy to see that the probability power-measures µε = P ε
t,x are equi-

tight. Nevertheless the powers [P ε
t,x]

ε are not so. Therefore we need to

investigate the limiting behavior µε outside “large balls”.

To this purpose, it is useful the following “upper limit version” of De l’Hôpital

Theorem.
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Lemma 3.25. Let f and g be two real-valued differentiable functions such

that

lim
x→0+

f(x) = lim
x→0+

g(x) = 0

(or equivalently = ±∞), then

lim sup
x→0+

f(x)

g(x)
≤ lim sup

x→0+

f ′(x)

g′(x)
. (3.40)

Proof. Let be δ > 0 and x ∈ (0, δ), by the Cauchy Theorem, there exist two

points ξ(x), ζ(x) ∈ (0, δ) such that

f(x)

g(x)
=
f ′(ξ(x))

g′(ζ(x))
.

Therefore

lim sup
x→0+

f(x)

g(x)
= inf

δ>0
sup

x∈(0,δ)

f(x)

g(x)
= inf

δ>0
sup

x∈(0,δ)

f ′(ξ(x))

g′(ζ(x))

≤ inf
δ>0

sup
x∈(0,δ)

f ′(x)

g′(x)
= lim sup

x→0+

f ′(x)

g′(x)
.

The following lemma gives an equi-upper limit which plays the role of an

equi-tight property.

Lemma 3.26. For any δ ∈ (0, 1), there exists Rδ > 0 such that

lim sup
τ→0+

(∫

Rn\Bd
Rδ

(x)

p(τ, x, y)dy

)τ

< δ.

Proof. Set B−
R = Rn\Bd

R(x) with R > 0, we use the exponential estimate

(3.24), so that

lim sup
τ→0+

(∫

B−
R

p(τ, x, y)dy

)τ

≤ lim sup
τ→0+

Cτ
1 τ

−nk
2

τ

(∫

B−
R

e−C2
d(x,y)2

τ dy

)τ

.

It is trivial that

lim
τ→0+

(C1τ
−nk

2 )τ = 1.
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Hence, it remains only to estimate

LR = lim sup
τ→0+

(∫

B−
R

e−C2
d(x,y)2

τ dy

)τ

.

By using the continuity of the logarithm function, we can look at logLR

instead of LR and apply Lemma 3.25 to the limit, so that we find

logLR = lim sup
τ→0+

log
∫

B−
R

e−C2
d(x,y)2

τ dy

1
τ

≤ lim sup
τ→0+

−τ 2

∫
B−

R
e−C2

d(x,y)2

τ C2
d(x,y)2

τ2 dy
∫

B−
R

e−C2
d(x,y)2

τ dy

= lim sup
τ→0+

−C2

∫
B−

R
e−C2

d(x,y)2

τ d(x, y)2dy
∫

B−
R

e−C2
d(x,y)2

τ dy
.

Since y ∈ R
n\Bd

R(x), then d(x, y) ≥ R. Therefore we get

logLR ≤ lim sup
τ→0+

−C2R
2

∫
B−

R
e−C2

d(x,y)2

τ dy
∫

B−
R

e−C2
d(x,y)2

τ dy
= −C2R

2.

We can conclude that for any R > 0

lim sup
τ→0+

(∫

B−
R

p(τ, x, y)dy

)τ

≤ e−C2R2

.

Now let us take 0 < δ < 1, we can choose Rδ >
√

− log δ
C2

such that e−C2R2
δ < δ

and this concludes the proof.

By the previous lemma, it is not difficult to show the upper limiting

estimate in closed unbounded sets.

Theorem 3.27. Let pε(t, x, y) be the heat kernel associated to the hypoelliptic

operator Lε = ε
∑n

i,j=1 ai,j(x)
∂2

∂xj∂xi
, with A(x) = (ai,j(x))

n
i,j=1 = σt(x)σ(x)

and σ(x) m × n-matrix satisfying the Hörmander condition. If P ε
t,x and It,x

are the family of probability measures and the rate function defined in (3.31)

and (3.32), then for any C ⊂ Rn closed set

lim sup
ε→0+

[P ε
t,x(C)]ε ≤ e− infy∈C It,x(y). (3.41)
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Proof. Let C be a closed set; by using Lemma 3.13, we can take τ = εt.

Then proving (3.41) is the same as proving that

lim sup
τ→0+

(∫

C

p(τ, x, y)dy

)τ

≤ e− infy∈C
d(x,y)2

4 . (3.42)

Then we fix δ ∈ (0, 1) and choose Rδ > 0 as in Lemma 3.26.

Since τ ∈ (0, 1), we can decompose C = Cδ ∪ Cδ with Cδ = C ∩ Bd

Rδ
(x) and

Cδ = C\Bd

Rδ
(x). This gives

lim sup
τ→0+

(∫

C

p(τ, x, y)dy

)τ

≤ lim sup
τ→0+

(∫

Cδ

p(τ, x, y)dy

)τ

+ lim sup
τ→0+

(∫

C−
δ

p(τ, x, y)dy

)τ

.

By applying Lemma 3.22 in Cδ and Lemma 3.26 in C−
δ , we can deduce the

following estimates:

lim sup
τ→0+

(∫

C

p(τ, x, y)dy

)τ

≤ e− infy∈Cδ
d(x,y)2

4 + δ ≤ e− infy∈C
d(x,y)2

4 + δ.

Passing to the limit in the previous inequality as δ → 0+, we find exactly

(3.42).

Using both Theorems 3.23 and 3.27, we can finally give the following

result.

Theorem 3.28 ([45]). Let be g ∈ BC(Rn) and d(x, y) be the Carnot-

Carathéodory distance associated to the Hörmander-matrix σ(x). If

pε(t, x, y) is the heat kernel associated to the hypoelliptic operator Lε =

ε
∑n

i,j=1 ai,j(x)
∂2

∂xj∂xi
, with A(x) = (ai,j(x))

n
i,j=1 = σt(x)σ(x) and σ(x)

Hörmander-matrix, then

lim
ε→0+

−2ε log

∫

Rn

pε(t, x, y)e−
g(y)
2ε dy = inf

y∈Rn

[
g(y) +

d(x, y)2

2t

]
. (3.43)

Proof. In order to prove the result, we need only to apply Theorem 3.9

to the continuous and bounded function F = −g/2, w.r.t. the family of

probability measures defined by (3.31) and the rate function (3.32).
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Properties (i) and (ii) hold, since d(x, y) is a Carnot-Carathéodory

distance satisfying the Hörmander condition and so d(x, y) induces on

Rn the Euclidean topology (Theorem 1.52). This means that d(x, y) is

continuous and the sublevels are compact sets.

In order to get properties (iii) and (iv), it remains only to apply the

logarithm function (which is continuous and non decreasing) to the limiting

estimates given by Theorem 3.23 and Theorem 3.27.

We conclude the section remarking that Theorem 3.28 generalizes the

Euclidean result proved by I. Capuzzo Dolcetta to the hypoelliptic case.

Moreover, Theorem 3.28 let us also find back the known Euclidean and Rie-

mannian result of Varadhan by using a new analytic proof.
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Appendix A

The Legendre-Fenchel

transform.

In this appendix we want to study some properties of the Legendre-Fenchel

transform, looking in particular at positive and convex functions. This allows

us to point out the meaning of assumptions (H2) in order to prove Theorem

2.75.

Definition A.1. Let F : R → R be a real-valued function, then the Legendre-

Fenchel transform (or LF transform) F ∗ : R → R is defined as

F ∗(t) = sup
s∈R

{st− F (s)}. (A.1)

We like to recall that in physics, sometimes, formula (A.1) is called sim-

ply Legendre transform but this is not very exact. In fact, Legendre studied

such a formula using a very different formulation, which holds only for dif-

ferentiable (or, at least, convex) functions. More precisely, for differentiable

functions we can equivalently define formula (A.1) by setting

F ∗(t) = tx(t) − F (x(t)), (A.2)

where x(t) is found solving F ′(t) = t.

Nevertheless the main results in the non-differentiable and non-convex case

were developed by Fenchel by using exactly formula (A.1), hence the name.



158 Appendix A. The Legendre-Fenchel tranform.

The main property of the LF transform is given in the following trivial

result.

Remark A.2. The LF transform is a convex function.

We indicate by F ∗∗(t) the double LF transform (F ∗)∗(t).

Note that F ∗∗(t) = F (t) if and only if F (t) is convex. In such a case one can

say that the LF transform is involutive.

For the LF transform, many other properties hold. One can find more

information in [83, 90]. We want only to recall that the LF transform can

been defined also for functions F : Rn → R, simply by using the inner

product s · t in formula (A.1), but we are not interested in this kind of

generalization. Indeed we want to investigate the behavior of formula (A.1)

whenever F (t) is defined on some real result.

So let us take F : [a, b] → R with [a, b] ⊂ R, it is possible to extend the

function F (t) by setting F (t) = +∞, for any t ∈ R\[a, b]. This implies that,

whenever F (t) is convex in [a, b], the extended function F is convex in the

whole R. Moreover, the LF transform F
∗
(t) vanishes in R\[a, b] and so we

can look only at the restriction of F
∗

on [a, b]. If we apply the previous

remarks to a function Φ(t) defined only for non-negative numbers, we find

the definition of Φ∗(t) used in studying the Hopf-Lax function (2.48). More

precisely we give the next definition.

Definition A.3. For any function Φ : [0,+∞) → [0,+∞), we call LF

transform of Φ(t) the function Φ∗ : [0,+∞) → R defined by

Φ∗(t) = sup
s≥0

{st− Φ(s)}. (A.3)

Next we show some properties for the LF transform, which hold whenever

Φ(t) satisfies assumptions (H2). In particular we have used these properties

in order to prove Theorem 2.75.

Lemma A.4. Let Φ : [0,+∞) → [0,+∞) be non-decreasing, convex and

such that Φ(0) = 0, then the LF transform Φ∗(t) defined by formula (A.3) is

convex, non-negative and non decreasing with Φ∗(0) = 0.
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Proof. We know that any LF transform is convex.

We can note that Φ(0) implies that Φ∗(t) ≥ 0 and Φ∗(0) = 0.

So we can conclude remarking that, punctually,

t1s− Φ(s) ≤ t2s− Φ(s),

for any s ≥ 0 and t1 ≤ t2; hence the non decreasing property follows.

Now we remain to explain the requirement on the derivative Φ′(t) at the

origin. To this purpose, we introduce a different way in order to extend the

original function Φ(t).

Remark A.5. For functions as in (H2), we can define the extended function

to the whole R by setting

Φ(t) =

{
Φ(t), t ≥ 0,

0, t < 0.

Φ is convex in the whole R, whenever Φ(t) is convex in [0,+∞). Then, the

LF transform Φ
∗

is the same than (A.3) in [0,+∞), and it is eqaul to +∞
otherwise.

The extended function Φ given in Remark A.5 is a continuous function,

since Φ ∈ C([0,+∞)) and Φ(0) = 0.

Moreover, starting from a function Φ ∈ C1(([0,+∞)), the extended function

Φ is C1 if and only if limt→0+ Φ′(t) = 0.

Form now on, by Φ we will always mean the extended function given in

Remark A.5 and we write Φ′(0) meaning limt→0+ Φ′(t).

The next proposition gives the key-property of the LF transform for strictly

convex functions satisfying assumptions (H2). Such a property has been

applied to the strictly convex regularization Φδ(t), in order to prove that the

metric Hopf-Lax function solves, in the viscosity sense, the Cauchy problem

(2.66) (Theorem 2.75).

Proposition A.6. Assume that Φ : [0,+∞) → [0,+∞) is C1, non decreas-

ing, strictly convex, such that Φ(0) = 0 and Φ′(0) = 0, then the LF transform

Φ∗(t), defined by formula (A.3), is strictly increasing in [0,+∞).
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Proof. We need only to show that for any t > 0, we have Φ∗(t) > 0.

Hence this implies the proposition by using the other assumptions on Φ(t).

First we recall that Φ ∈ C1(R). Let us define ψ(s) = ts − Φ(s) and look at

t > 0, we can note that ψ ∈ C1(R) and ψ(0) = 0.

Moreover Φ′(0) = 0 implies that ψ′(0) = t > 0. Since Φ(t) is strictly convex,

then the function is superlinear, so that lims→+∞ ψ(s) = −∞. Therefore we

can conclude that for any fixed t > 0,

Φ∗(t) = sup
s≥0

ψ(s) > 0.

From the previous proposition the next result follows immediately.

Corollary A.7. Under assumptions of Proposition A.6, then the LF trans-

form Φ∗(t) is invertible in [0,+∞) and its inverse is strictly increasing, too.

Proof. By Proposition A.6 Φ∗(t) is invertible. We need only to remark that

since Φ∗(t) is strictly increasing, its inverse function is so: in fact

((Φ∗)−1)′(t) = ((Φ∗)′)−1(t) > 0.

We want to conclude pointing out the behavior of the LF transform (A.1)

at the non-differentiability points, in order to better understand the rule of

assumption Φ′(0) = 0 in geting a LF transform strictly monotone (and so

invertible).

First we remark that, whenever a convex function Φ(t) is differentiable at

some point x, then the subdifferential ∂Φ(x) is a single point. This means

that there exists a unique supporting line at the point x (ses Fig. A.1).
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x

k

k

x

Figure A.1: LF transform at a point of differentiability.

Instead, whenever x is a point where the function is not differentiable,

there are infinite supporting lines at x. Let be l and k, respectively, the

minimum-slope and the maximum-slope of the supporting lines at x, then

the LF transform is a straight-line from l to k, with slope exactly equal to x

(see Fig. A.2).

x

slope=l slope=k

k−l

x

l k

Figure A.2: LF transform at a non-differentiability point.

Note that in our case the function Φ(t) can be not differentiable only at the

point x = 0. Then for non-negative points the LF transform is an horizontal

straight-line exactly in [0, k], with k = limt→0+ Φ′(t) ≥ 0. Hence, if we assume

k = 0, Φ∗(t) does not have any horizontal straight-line piece and therefore

Φ∗(t) is strictly increasing.

We conclude giving some examples and some counter-examples.

Example A.8. For any strictly convex power Φ(t) = 1
α
tα with α > 1 it is

immediate that all the previous assumptions are satisfied. In the following

pictures (Fig. A.3 and Fig. A.4), there are two different examples of strictly



162 Appendix A. The Legendre-Fenchel tranform.

convex powers, on the left-hand side, and the corresponding LF transforms

on the right-hand side.
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Figure A.3: Case α = 2.
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Figure A.4: Case α = 3.

Note that in both these cases the LF transform is strictly increasing.

Example A.9. The linear function Φ(t) = t does not satisfy all the previous

assumptions. In fact, the function is not strictly convex and Φ′(t) = 1 for

any t ∈ R.

Therefore the corresponding LF transform vanishes from 0 to 1, and it is not

invertible (see Fig. A.5).

10

+ 8 8+

Figure A.5: The function Φ(t) = t (on the left-hand side) and the

corresponding LF transform (on the right-hand side).

Remark A.10. If we look at the strictly convex approximations of Φ(t) = t

given in Theorem 2.75, that is Φδ(t) = t+ δ
2
t2, we get Φ′(0) = limt→0+ 1+δt =

1 for any δ > 0. So assumptions (H2) are not satisfied.

Example A.11. A strictly convex function, satisfying all the assumptions

except Φ′(0) = 0 is the exponential function translated in the origin, that is

Φ(t) = et − 1. Also in this case we get Φ′(0) = limt→0+ et = 1 and so, as one
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Figure A.6: The translated exponential function (on the left-hand

side) and its LF transform (on the right-hand side).

can see in Fig. A.6, the LF transform is not invertible in the interval [0, 1].

Remark A.12. For the functions given in Examples A.9 and A.11 the proof

of Theorem 2.75 does not hold.

Example A.13. We conclude giving an example of a non-standard function

satisfying (H2). So, let Φ(t) = et − t − 1, it is trivial that Φ(0) = 0 and

Φ′(0) = 1 − 1 = 0. Moreover Φ′(t) = et − 1 ≥ 0 and Φ′′(t) = et ≥ 1 > 0 for

any t ≥ 0, then Φ(t) is non decreasing and strictly convex.
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Figure A.7: Φ(t) = et − t − 1 (on the left-hand side) and its LF

transform (on the right-hand side).
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