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Nonuniqueness of algebraic first-order density-matrix functionals
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By explicit construction of counterexamples having the same eigenvalue spectrum of one-matrix, but different
two-matrix, we show that density-matrix functionals for the electronic energy that are based solely on the
eigenvalues of the one-matrix cannot be unique in functional representation of the two-matrix. The one-to-many
mapping may be understood either through the number of independent parameters or the contraction relation.
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The one-particle reduced density matrix, or one-matrix, is
defined as

γ (x,x′) =
∑
ij

〈�|a†
i aj |�〉φ∗

i (x)φj (x′), (1)

where x stands for both the spatial (r) and the spin (s)
coordinates, and a

†
i and aj are the creation and annihilation

operators for the one-particle basis {φi} that generates an
N -particle product space in which the wavefunction � lives.
Since the one-matrix is Hermitian, one can always diagonalize
it and obtain its spectral form γ (x,x′) = ∑

i niχ
∗
i (x)χi(x′).

The eigenvectors {χi} are called the natural orbitals, and the
eigenvalues {ni} are their occupation numbers.

Similarly the two-particle reduced density matrix, or two-
matrix, can be defined as

�(x1,x2,x′
1,x

′
2) =

∑
ijkl

�ij,kl φ
∗
i (x1) φ∗

j (x2) φk(x1) φl(x2),

(2)
�ij,kl = 〈�|a†

i a
†
j al ak|�〉.

Using natural orbitals, the exact energy of an electronic
system can be written as

E = Z +
∑

i

hiini + 1
2

∑
ijkl

�ij,kl 〈ij |kl〉, (3)

where hij and 〈ij |kl〉 are the usual one- and two-electron
integrals in the natural orbital basis, and Z is the bare-nucleus
Coulomb energy. In reduced density-matrix functional theory
(RDMFT) [1], one tries to model the two-electron part of
the potential energy by representing the two-matrix � as a
functional of the one-matrix (or of, equivalently, the natural
orbitals and their occupation numbers). Note that in contrast to
Kohn-Sham density-functional theory, all of the kinetic energy
is represented exactly. Commonly used functionals assume
�ij,kl in the natural orbital basis as an explicit functional of
{ni} only, for example, depending on

√
ni [2–5], or more

general powers, nα
i with α ≈ 0.656 [6,7]. Although simple in

form, these functionals have been successful in describing both
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molecular and condensed-phase electronic structure, and offer
the potential to systematically advance beyond the ubiquitous
Kohn-Sham density-functional framework.

In this paper, we demonstrate by counterexample that such
functionals of �ij,kl , based on occupation numbers alone, can-
not be generally correct. The demonstration has implications
for the design of improved descriptions of electronic structure
in both free molecules and condensed phases; it also provides
new insight on assessing the validity of existing functionals.

The square-root functional is potentially exact in the
two-electron system [8] provided that one can overcome the
problem of phase uncertainty, coming from the coefficients
of wave-function expansion in terms of the natural orbitals,
ci = ±√

ni . It is typically the case that all other phases take
the opposite sign with respect to the dominant configuration
in H2 when the bond length R2 is small [9]. As R2 → ∞,
the phase pattern changes to half positive and half negative
[10,11]. A functional of one-matrix reproducing the correct
phases in all case is still missing. One may take the phase as
additional variables [12], then this will go beyond Gilbert’s
original variable set: the natural orbitals and their occupation
numbers. The two-matrix �ij,kl has some known properties that
approximations to it should satisfy. Since it is the expectation
value of the operator a

†
i a

†
j alak , where {ai} are the annihilation

operators, it is both Hermitian and antisymmetric via the Pauli
principle, �ij,kl = −�ji,kl . In the natural orbital basis, the
partial trace of two-matrix reduces to

∑
j

�ij,kj = (N − 1) ni δik, (4)

where N is the number of electrons in the system. Most
functionals [2,3,7] fail to satisfy these requirements; such
failure can be viewed as the introduction of unphysical self
interaction, or more generally as undesirable departure from
N -representability of the two-matrix.

In case of single determinant wave function or Hartree-Fock
approximation, ni = 1 for each orbital. When the number
of orbitals increases, some are more likely to occupy than
others, so the eigenvalue spectrum of one-matrix can be taken
as a measure of electron correlation [13,14]. The occupation
numbers are constrained by 0 � ni � 1 and

∑
i ni = N due to

the normalization requirement of the wave function [15]. The
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antisymmetrical requirement of the wave function imposes
additional constraints on the one-matrix. A clear example
is that of three electrons in six orbitals [16,17], where the
six eigenvalues of one-matrix in nonincreasing order satisfy
additional conditions: n1 + n6 = 1,n2 + n5 = 1,n3 + n4 = 1,
and n5 + n6 − n4 � 0. These lesser-known conditions are
the N -representability conditions for the one-matrix, which
sensitively depend on the system, especially the number of
electrons and the number of orbitals [18]. The occupation num-
bers ni have the tendency to pin to these N -representability
conditions (or the generalized Pauli constraints) [19–21]. It is
difficult to build all known N -representability conditions into
a functional model, but one can always get N -representable
density matrices from any available accurate wave function to
compare with those implicit in any given functional.

Our purpose is to highlight that there are systems having the
same one-matrix eigenvalue spectrum but different two-matrix
spectrum; a functional for �ij,kl based on {ni} only is thus
nonunique. For three-electron systems, the one-matrix and
two-matrix are always isospectral [22], so we investigate
four-electron cases. Two systems are selected, the first is the
hydrogen molecule H2 with a bond length R2, together with
two H atoms placed very far away; the second system is four
H atoms placed on the corners of a square with side length
R4. In both cases, the ground-state singlet wave function is
calculated. For illustrative purposes, we choose a minimal
basis set (STO-3G), so that each system has four spatial orbitals
or eight spin orbitals. The first system has two completely
uncoupled electron pairs and can therefore be treated exactly
by any method that is extensive and that is exact for two
electrons, whereas the square-planar H4 has frustrated covalent
bonds and contains true static electron correlation. For both
systems, a closed-shell single-determinant description is far
from the exact ground-state wave function. Comparison of
these models is expected to shed light on the approximate
electronic structure theories.

For the D4h square-planar H4 system, the normalized 1B1g

ground-state wave function can be expressed in terms of Slater
determinants built from the four symmetry-adapted orbitals
[23]: a1g, eux, euy , and b2g ,

�4 = c1
(∣∣a2

1ge
2
ux

∣∣ − ∣∣a2
1ge

2
uy

∣∣)

+ c2
(∣∣b2

2ge
2
ux

∣∣ − ∣∣b2
2ge

2
uy

∣∣)

+ c3

∣∣a1geuxeuyb2g
1

2
√

3
[ααββ + ββαα

+αβαβ + βαβα − 2(αββα + βααβ)]
∣∣, (5)

with c3 =
√

1 − 2c2
1 − 2c2

2. The eigenvalues of the one-matrix
are then, for σ = α or β,

naσ
1g

= 1
2 + c2

1 − c2
2, (6)

nbσ
2g

= 1 − naσ
1g
, (7)

neσ
ux

= neσ
uy

= 1
2 . (8)

For the H2 + 2H system, in terms of the molecular σg,σu and
isolated-atom A,B orbitals, the wave function is

�2 = ∣∣(cgσ
2
g + cuσ

2
u

)
AB

√
1
2 (αβ − βα)

∣∣, (9)

with cu = −
√

1 − c2
g , and the one-matrix eigenvalues are

nσσ
g

= c2
g, (10)

nσσ
u

= 1 − nσσ
g
, (11)

nAσ = nBσ = 1
2 . (12)

For both systems, the degenerate eigenvalue is 1
2 , and this

leaves only one independent eigenvalue since the sum of one-
matrix eigenvalues from both spins should be N = 4. Both nσσ

g

and naσ
1g

approach 1
2 monotonically from above as the atoms are

separated, and one can then easily tune either R2 or R4 to make
the one-matrix eigenvalues equal for both systems; this occurs
whenever c2

g = 1
2 + c2

1 − c2
2. For example, at R4 = 2.0 Å, c1 =

0.5833788, c2 = −0.247637, naα
1g

= 0.779007, and at R2 =
1.79326407 Å, cg = 0.882614, nσα

g
= 0.779007.

For the above two wave functions, one may calculate
�ij,kl as the expectation value of the operator a

†
i a

†
j alak . The

nonredundant same spin block of �ij,kl , with i < j,k < l, is

�σσ
ij,kl =

12 13 14 23 24 34

12

13

14

23

24

34

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2c2

g

1
2c2

g

0

0
1
2c2

u

1
2c2

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

for the H2 + 2H system, and for the 4H square system,

� σσ
ij,kl =

⎛
⎜⎜⎜⎜⎜⎝

12 13 14 23 24 34
12 c2

1 + e f

13 c2
1 + e f

14 4e

23 4e

24 f c2
2 + e

34 f c2
2 + e

⎞
⎟⎟⎟⎟⎟⎠

,

(14)

where e = 1
12c2

3 and f = 1
2
√

3
(c2 − c1)c3. The labeling

above and on the left of the matrix shows the the in-
dices ij , kl, with the orbitals ordered as σg,A,B, σu

(H2 + 2H) and a1g, eux, euy, b2g (H4). For the H2 + 2H
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system, the opposite-spin block of �ij,kl is

�
αβ

ij,kl =

11̄ 12̄ 13̄ 14̄ 21̄ 22̄ 23̄ 24̄ 31̄ 32̄ 33̄ 34̄ 41̄ 42̄ 43̄ 44̄
11̄

12̄

13̄

14̄

21̄

22̄

23̄

24̄

31̄

32̄

33̄

34̄

41̄

42̄

43̄

44̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2
g −cgcu

1
2c2

g

1
2c2

g

0
1
2c2

g

1
2 − 1

2

0
1
2c2

u

1
2c2

g

0

− 1
2

1
2

1
2c2

u

0
1
2c2

u

1
2c2

u

−cgcu c2
u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

and for the H4 square system,

�
αβ

ij,kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11̄ 12̄ 13̄ 14̄ 21̄ 22̄ 23̄ 24̄ 31̄ 32̄ 33̄ 34̄ 41̄ 42̄ 43̄ 44̄
11̄ 2c2

1 2c1c2

12̄ a 4e 2f f

13̄ a 2f 4e f

14̄ 2e −2e

21̄ 4e a f 2f

22̄ c2
1 + c2

2 −c2
1 − c2

2
23̄ 2e −2e

24̄ 2f b f 4e

31̄ 4e f a 2f

32̄ −2e 2e

33̄ −c2
1 − c2

2 c2
1 + c2

2
34̄ 2f f b 4e

41̄ −2e 2e

42̄ f 4e 2f b

43̄ f 2f 4e b

44̄ 2c1c2 2c2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

where e = 1
12c2

3, a = c2
1 + 5e, b = c2

2 + 5e, and f = 1
2
√

3
(c2 − c1)c3. Here, the indices with bars indicate β-spin
orbitals.

The matrices are quite sparse, especially all the elements
�ij,kj = 0 when i 
= k, and one can easily verify the conditions
set by Eq. (4). Algebraic one-matrix functionals are typically
two-index JK type [24], i.e., only elements with indices (ij,ij )
and (ij,j i) are included. Allowing complex orbitals, JKL-type
functional is also possible with only two indices, where (ij,j i)
elements will be different from that of (ii,jj ) [25,26]. For the
square H4 system, there are additional off-diagonal elements
such as �12,34, �12̄,34̄. Those elements are caused by excitations
from or to the configuration involving a1geuxeuyb2g , i.e., the c3

term in Eq. (5). Those elements with four different indices
contribute to the correlation energy, but they are missing
in JK-type functionals; however, those functionals include
different factors than the exact two-matrix for the J and K

integrals, and these can be considered to partly compensate
for the missing contributions. Some of this compensation
can be understood for this example by considering the limit
R4 → ∞. One can show that the simple square-root functional
[8] produces the exact energy, including cancelation of all
long-range R−1

4 contributions, in the regime where the atoms
no longer overlap, despite the fact that the two-matrix from the
functional is completely different to that of the exact ground
state.
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TABLE I. Eigenvalues of the two-matrix for the H2 + 2H and H4

models. Geometries: R2 = 1.79326407 Å, R4 = 2.0 Å. The numbers
in parentheses are the degeneracies.

H2 + 2H H4

1.0000000000 (2) 0.8033100415 (2)
0.3895033775 (8) 0.6966765951 (2)
0.1104966225 (8) 0.3926620486 (6)
0.0000000000 (10) 0.0655633195 (6)

0.0417746319 (6)
0.0000133634 (2)
0.0000000000 (4)

Table I displays the eigenvalue spectra of the two-matrix
�ij,kl , normalized to N (N − 1)/2 = 6, for the two model
systems. These quantities are invariant to orbital rotations
and serve to demonstrate further that the two-matrices are
inherently different for the two systems. One effect of the
off-diagonal elements in the square H4 system is to lift
some of the degeneracy in the eigenvalues. For example, the
off-diagonal elements in the �

αβ

ij,kl block,

⎛
⎜⎜⎝

12̄ 21̄ 34̄ 43̄
12̄ a 4e 2f f

21̄ 4e a f 2f

34̄ 2f f b 4e

43̄ f 2f 4e b

⎞
⎟⎟⎠, (17)

lift the degeneracy in a and b when e 
= 0 or f 
= 0. For
R4 = 2.0 Å, this block leads to the eigenvalues 0.6966765951,
0.3926620486, 0.0417746319, and 0.0000133634 shown in
Table I.

One may easily find many other possible pairs of R2 and
R4 resulting in the same one-matrix eigenvalue spectrum, but
different two-matrix �ij,kl . This can be true for any type of
basis function (Gaussian type, or Slater type, or numerical type
[27]) as long as there are eight spin orbtials. This throws into
question the reliability of a model for �ij,kl-based on only the
one-matrix eigenvalues, which will give identical two-matrix
for the models presented above. The problem stems from the
fact that the mapping from the one-matrix eigenvalues to the
two-matrix is one-to-many—there is no unique two-matrix
that can be constructed using a simple algebraic functional of
the orbital occupation numbers.

These findings do not challenge the general result, via the
Hohenberg-Kohn and Gilbert theorems [1,28,29], that the total
energy is a universal upper-bound functional of the one-matrix;
i.e., both the natural orbitals and their occupation numbers
should be taken as functional variables. Those theorems,
however, do not require the density-matrix functional to have
an easily computable algebraic form. The findings are of rele-
vance for any situation where covalent bonds are being broken
or partially broken; this includes many reaction transition
states, and the computation of vibrational frequencies.

Equation (10) implies the square-root functional, the H2 +
2H system is thus essentially a two-electron correlated system.
For the square H4 system, Eq. (6) indicates that there are two
independent variables in the wave function: c1 and c2, but only

one variable in the one-matrix eigenvalue spectrum. So the
information of the one-matrix spectrum is not enough to fix the
wave function. Functional based on the one-matrix eigenvalues
thus cannot generate a N -representable two-matrix for the
square H4 system. The origin of the one-to-many mapping can
also be understood through the contraction relation, Eq. (4),
since contraction of different sets of two-matrix elements can
easily result in the same one-matrix. Since the three-index and
four-index elements of � are neglected in the two-index JK-
or JKL-type functional, one cannot remedy its representation
deficiency simply by increasing the number of basis functions.

For the wave function of superconductor, Yang [30,31]
found the one-matrix eigenvalue spectrum is trivially uniform
with its value subject to the normalization condition

∑
i ni =

N , while the spectra for the two-matrix is highly structured
and dominated by a single eigenvalue. This demonstrates that
the one-matrix eigenvalues alone are unable to convey certain
information in the two-matrix or the wave function

In principle, one can always start from an approximate form
of wave function, use the coefficients of the wave-function
expansion as the parameters, and express the two-matrix
elements to obtain a parameterized energy functional, as we
have demonstrated here. Previous examples of such a strategy
include the direct use of geminals [32–35], the approximation
of the variational energy expression using the coupled cluster
method [36] or configuration interaction method [37], and the
full configuration interaction Monte Carlo method [38]. An
advantage of such an approach is that N -representability is
considered from the outset.

As well as providing a framework for the analysis of
one-matrix functionals, the result also can serve for the
evaluation of other theoretical methods based on one-matrix
and/or two-matrix, such as density-cumulant functional theory
[39], intracule functional models [40], and the density-matrix
approach based on the N -representability conditions [41–43].
Our result suggests that the correlation measures [13] based
on the one-matrix eigenvalue spectrum have to be viewed
critically: the von Neumann entropy, S = −∑

i ni ln ni , does
not distinguish between the very different electron correlation
effects of the two model systems we have considered. Alterna-
tive measures for electron correlation have been discussed in
Refs. [44,45], and our result suggests that measures based on
the the eigenvalue spectrum of the two-matrix are likely to be
more successful than those that depend only on the one-matrix.

In summary, two model systems with equal one-matrix
eigenvalues but different two-matrix are presented, the
examples lead automatically to the question on the uniquesness
for algebraic one-matrix functional or correlation measure
based solely on the eigenvalues of one-matrix. In Gilbert’s
original theorem, the functional variable is the one-matrix; i.e.,
both the eigenvalues and eigenvectors of one-matrix should be
taken into account. Reduction of functional variables to only
the eigenvalues shrinks the variational space of the functional,
which causes the representation problem.

We acknowledge discussions with S. Leoni and E. J.
Baerends. J.W. is supported by National Natural Science
Foundation of China Grant No. 11274109.

012520-4



NONUNIQUENESS OF ALGEBRAIC FIRST-ORDER . . . PHYSICAL REVIEW A 92, 012520 (2015)

[1] M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
[2] A. M. K. Müller, Phys. Lett. A 105, 446 (1984).
[3] S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866

(1998).
[4] D. R. Rohr, K. Pernal, O. V. Gritsenko, and E. J. Baerends,

J. Chem. Phys. 129, 164105 (2008).
[5] M. Piris, Int. J. Quantum Chem. 113, 620 (2013).
[6] S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U.

Gross, Phys. Rev. B 78, 201103 (2008).
[7] S. Sharma, J. K. Dewhurst, S. Shallcross, and E. K. U. Gross,

Phys. Rev. Lett. 110, 116403 (2013).
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