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ABSTRACT 

 

Introduction:  
It has been recently shown that the WISP proteins (Wnt-inducted secreted proteins), a group of 

intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression 

of variety types of tumours including colorectal and breast cancer. However, the role of WISP 

proteins in gastric cancer (GC) cells and clinical implication in gastric cancer has not yet been fully 

elucidated. 

 

Materials and methods:  
The expression of the WISP transcript and proteins in a cohort of GC patients was analysed using 

real-time quantitative PCR and immunohistochemistry, respectively. The expression of a panel of 

recognised EMT (epithelial-mesenchymal transition) markers were quantified (Q-PCR) in paired 

tumour and normal gastric tissues. WISP-2 knockdown sublines using anti-WISP-2 ribozyme 

transgenes were created in GC cell lines AGS and HGC27. Using the cell models and proteins 

extracted from gastric tissue samples, protein microarray was used to search for potential protein 

partners and signalling pathways involved with WISP-2. Subsequently, the biological functions, 

namely, cell growth, adhesion, migration and invasion, were studied. Potential mechanisms related 

with EMT, extracellular matrix and MMP (Matrix metalloproteinases) and signalling pathways 

were investigated. 

 

Results:  
Expression of WISP-2 was frequently detected in GC tissues. Levels of WISP-2, not WISP-1 and 

WISP-3, was significantly correlated with early TNM staging and differentiation status. High levels 

of WISP-2 were associated with a favourable clinical outcome and survival of the patients. We also 

found that WISP-2 expression inversely correlated with Twist and Slug in the paired gastric 

samples. Knockdown of WISP-2 expression increased the rate of proliferation, migration and 

invasion of GC cells and influenced expression of EMT biomarkers including Twist, Slug and E-

cadherin. Using an antibody based protein microarray, ERK, JNK as well as AKT proteins were 

found to be co-precipiated with WISP-2 protein from human gastric tissue proteins. Furthermore, 

WISP-2 knockdown gastric cell lines also demonstrated a change in the ERK and JNK 

phophorylation. Mechanistically, WISP-2 suppressed GC cell metastasis through reversing 

epithelial-mesenchymal transition and suppressing the expression and activity of MMP-9 and 

MMP-2 via JNK and ERK. Cell motility analysis indicated that WISP-2 knockdown contributed 

to GC cells’ motility, an effect attenuated by PLC-γ and JNK small inhibitors.  

 

Conclusions:  

WISP-2 transcript and protein expressions are inversely linked to disease progression and linked to 

the survival of patients with gastric cancer.  WISP-2 has a profound influence on the migration 

and adhesion of gastric cancer cells and is a powerful factor to reverse the EMT process in these 

cells. These effects of WISP-2 are via its involvement in the ERK and JNK pathways, which in 

turn modulate the MMP activities. Together, WISP-2 is an important regulator of the cellular 

function and an important factor in the progression of gastric cancer. It acts as a potential tumour 

suppressor in gastric cancer.  
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cadherin, Twist, Slug and Vimentin) in AGS and HGC27 cells 

by RT-PCR. 
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Figure 8.1 Suggested mechanism of action by WISP-2 in gastric cancer 

cells. 
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1.1 Gastric cancer 

 

1.1.1 Introduction 

Gastric cancer is one of the leading causes of cancer death all over the world and remains the 

second and fourth most common cancer in men and women respectively [1]. This is in spite of 

the fact that the incidence and mortality have decreased markedly over the last 50 years in most 

countries [2]. The incidence of gastric cancer varies in different areas of the world and among 

a variety of ethnic groups, especially high occurrence rate in Eastern Asian populations [3]. The 

lowest mortality rates include most countries of Northern Europe, in North America, and also 

in several Central American countries, namely Mexico, Cuba and Puerto Rico [4]. While the 

areas with persistently high incidence rates are observed in the Russian Federation and other 

countries of central and Eastern Asian (i.e. China, Japan and the Republic of Korea) and some 

countries of Latin America [5]. Globally, gastric cancer accounts for 1 million new cases and 

738,000 deaths annually [5]. Despite advances in diagnosis and treatment, gastric cancer is 

usually, and unfortunately, detected after invasion of the muscularis propria [6]. The 5-year 

survival rate of gastric cancer is less than 30% in developed countries and around 20% in 

developing countries and the case: fatality ratio of gastric cancer is higher than that for most 

other commonly seen malignancies including colorectal, breast, and prostate cancers [6].    

 

Most patients with gastric cancer underwent nonspecific symptoms in the early stages whilst 

anaemia, weight loss, and refusal of meat-based foods are mostly observed in advanced stages 

[7]. Furthermore, traditional treatment (i.e. surgery and chemotherapy) has limited value in 

advanced disease and there is a lack of molecular markers for targeted therapy [7].  
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Gastric cancer can be classified into intestinal and diffuse types based on epidemiological and 

clinico-pathological features [8]. The intestinal type of gastric cancer is thought to arise from a 

series of progressive changes of gastric epithelial cells, which their transformation is from 

normal mucosa to chronic atrophic gastritis [8], intestinal metaplasis (IM), dysplasia (DYS) and 

eventually cancer [9]. 

 

The aetiology of gastric cancer is multi-factorial and categorized as either dietary or non-dietary 

factors [4]. The major risk factors of dietary implicated in the development of gastric cancer 

include high content of nitrates, nitrosamine and high salt intake. Accumulating evidence has 

also clearly linked the role of Helicobacter Pylori (H. Pylori) infection to the pathogenesis of 

gastric cancer [5]. The oncogenesis of gastric cancer is a complex, multistep process including 

various genetic and epigenetic alterations of tumour suppressor genes, oncogenes, cell cycle 

regulators, signalling molecules and DNA repair genes [5]. 

 

A reasonable programme for gastric cancer prevention contains intake of a balanced diet (i.e. 

fruits and vegetables), improved sanitation and hygiene, screening and treatment of H. Pylori 

infection, and follow-up of precancerous lesions [10]. Diet is suggested as an important role in 

the aetiology of gastric cancer, which can offer scope for nutritional prevention [11]. Animal 

models have been extensively contributed in analyses of stepwise evolution of gastric 

carcinogenesis and detected dietary chemopreventative agents [11]. How to develop the multi-

targeted preventive and therapeutic strategies for gastric cancer will be a major challenge in 

future. 
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1.1.2 Anatomy of the stomach 

The stomach starts at the gastroesophageal (GE) junction and ends at the pylorus [12]. The 

stomach is covered with peritoneum of the lesser sac or omental bursa [13]. In general, the 

stomach is divided into four major anatomic sites, including the gastric cardia (the region 

around the superior opening of the stomach connected with the GE junction), the fundus, the 

body (central portion of the stomach), and the Pyloric canal (links to the duodenum) [12]. The 

pylorus is made up of two parts: the Pyloric antrum linking to the body of the stomach, and the 

Pyloric canal which proceeds to the duodenum (Figure 1.1) [14].  

 

The pylorus connects with the duodenum of the small intestine through the Pyloric sphincter 

[14]. The Pyloric sphincter is a valve between the stomach and duodenum which guards against 

back flow of duodenal contents [14].  

 

Peritoneum of the greater sac covers the anterior surface of the stomach and it adjoins left of 

the diaphragm and cranially. It is worth noting that there is either no, or variable, visceral 

peritoneal covering at the most proximal portion of the GE junction giving rise to the enhancive 

incidence of gastric cancer at the GE junction. Positive radial, which has a margin at this site, 

is in fact the most “true” positive margins, whilst many others in the stomach belong to free 

serosal margins only if the tumour is adherent to an adjacent structure. 

  

The right segment of the anterior surface of stomach is adjacent to the left lobe of the liver and 

the anterior abdominal wall. The stomach is the junction of many visceral structures; from the 

direction of superior to inferior, it is adjacent to the spleen, left superarenal gland, upper kidney, 
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ventral part of the pancreas and transverse colon. The hepato-gastric ligament or lesser 

omentum is attached to the lesser curvature and includes the right gastric branch of the hepatic 

artery and the left gastric artery.  

 

The stomach wall contains five layers: the mucosa, the submucosa, muscular layer, subserosa, 

and serosa. The muscularis layer consists of longitudinal layer, circular muscle layer, and inner 

oblique layer muscle in the outer to inner. 

 

1.1.3 Epidemiology 

The incidence rates of gastric cancer vary widely in different regions of the world (Table1.1 

and 1.2 for males and females respectively). Global cancer statistics reported that the highest 

incidences of gastric cancer are observed in Japan, Southeast Asia and Eastern Europe, in which 

incidence rates reached 30 to 85 cases per 100,000 people.  

 

1.1.3.1 Morbidity and mortality 

Globally approximately 737,000 deaths are caused by gastric cancer each year (Figure 1.2), 

making it the third leading cause of cancer deaths in men and the fifth in women [15]. This is 

despite a global decrease in incidence and death rates over the last 50 years [16]. In general, the 

incidence rate in men is almost double that in women [16]. Survival is poor in most countries, 

although 5-year survival rates are as high as 50% in Japan, where screening for gastric cancer 

has been well developed [17]. 
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Figure 1.1 The anatomy of stomach.  

Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: 
Principles & Practice of Oncology, 9th Edition. Copyright © 2011 by LIPPINCOTT 

WILLIAMS & WILKINS, a WOLTERS KLUWER business. 
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Table 1.1 Stomach - Estimated incidence, all ages: male. Source:  http://globocan.iarc.fr/ 

Stomach - Estimated incidence, all ages: male 

POPULATION *Quality Numbers Crude Rate ASR (W) Cumulative risk 

World    631293 17.7 17.4 2.01 

More developed 

regions 
   175117 28.9 15.6 1.86 

Less developed regions    456176 15.5 18.1 2.05 

Very High Human 

Development 
   168036 29.5 16.0 1.90 

High Human 

Development 
   84594 16.5 16.1 1.94 

Medium Human 

Development 
   358122 19.7 20.9 2.34 

Low Human 

Development 
   20414 3.1 5.6 0.67 

WHO Africa region 

(AFRO) 
   10496 2.4 4.7 0.54 

WHO Americas region 

(PAHO) 
   51704 11.0 9.2 1.09 

WHO East 

Mediterranean region 

(EMRO) 

   14951 4.7 7.2 0.81 

WHO Europe region 

(EURO) 
   97679 22.3 14.0 1.66 

WHO South-East Asia 

region (SEARO) 
   60299 6.4 8.0 0.97 

WHO Western Pacific 

region (WPRO) 
   396078 41.9 33.4 3.75 

IARC membership (24 

countries) 
   231832 17.6 14.6 1.72 

Middle-East and 

Northern Africa 

(MENA) 

   13498 5.9 8.3 0.98 

Africa    13216 2.5 4.5 0.52 

Sub-Saharan Africa    9845 2.3 4.5 0.53 

Eastern Africa    4357 2.5 5.2 0.61 
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Table 1.2 Stomach - Estimated incidence, all ages: Female. Source:  http://globocan.iarc.fr/ 

Stomach - Estimated incidence, all ages: female 

POPULATION *Quality Numbers Crude Rate ASR (W) Cumulative risk 

World    320301 9.2 7.5 0.82 

More developed 

regions 
   99392 15.5 6.7 0.75 

Less developed 

regions 
   220909 7.7 7.8 0.85 

Very High Human 

Development 
   88224 15.1 6.7 0.73 

High Human 

Development 
   56419 10.6 8.2 0.97 

Medium Human 

Development 
   160877 9.3 8.5 0.90 

Low Human 

Development 
   14703 2.3 3.7 0.43 

WHO Africa region 

(AFRO) 
   8614 2.0 3.4 0.40 

WHO Americas 

region (PAHO) 
   33650 7.0 5.0 0.56 

WHO East 

Mediterranean 

region (EMRO) 

   8503 2.8 3.9 0.45 

WHO Europe region 

(EURO) 
   64167 13.8 6.8 0.79 

WHO South-East 

Asia region 

(SEARO) 

   30259 3.3 3.7 0.42 

WHO Western 

Pacific region 

(WPRO) 

   175061 19.5 13.1 1.39 

IARC membership 

(24 countries) 
   123667 9.5 6.3 0.70 

Middle-East and 

Northern Africa 

(MENA) 

   9365 4.3 5.1 0.60 

Africa    10590 2.0 3.2 0.38 

Sub-Saharan Africa    8257 1.9 3.4 0.40 

Eastern Africa    3679 2.1 3.9 0.47 
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Figure 1.2 Number of cancer cases and deaths for the top ten cancer sites by sex, worldwide, 

and by level of economic development in 2008. 

Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: 
Principles & Practice of Oncology, 9th Edition. Copyright © 2011 by LIPPINCOTT 

WILLIAMS & WILKINS, a WOLTERS KLUWER business. 
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Gastric cancer shows the highest incidence rate in Eastern Asia and Central and Eastern Europe 

(Figure 1.3). The incidence rates (per 100,000) range from 2.4 cases in Gabon to 62.2 in Korea 

for men and from 1.3 in the Central African Republic to 25.9 in Guatemala. Factors which 

contribute to the geographic patterns contain variation in rifeness of chronic Helicobacter 

Pylori infection and dietary habits (e.g. high-salt diets, low in fresh vegetables and fruit) [18]. 

Both of these are considered to be the main factors which  contribute to the geographic patterns 

[19]. H. Pylori infection makes up about around 61% of stomach cancer cases in developed 

countries and 64% in developing countries [20]. In addition, among Eastern European countries, 

the rifeness of H. Pylori infection is reportedly up to 80% in adults [21].  

 

Mortality rates of gastric cancer have dropped more than 80% in most industrialised countries 

over the past 50 years [22]. Similar trends have been observed in a number of  less developed 

countries, namely China, although the decline is smaller and the rates remains high in some 

regions [22]. Improved dietary habit (e.g. increase of fresh fruits and vegetables and decrease 

of salted and preserved foods) and a reduction in chronic H. Pylori infection, based on the 

development of good sanitation and antibiotics, are suggested to be the factors that have 

contributed to these distinct decreases in  subsequent risk of gastric cancer [23]. 
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Figure 1.3 Incidence rates of Age-standardized Gastric cancer by World Health 

isationorganisation region and sex in 2008.  Source: DeVita VT, Lawrence TS, Rosenberg SA: 

DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology, 9th Edition. 

Copyright © 2011 by LIPPINCOTT WILLIAMS & WILKINS, a WOLTERS KLUWER 

business.  
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1.1.3.2 Survival rate  

Relative 5-year survival for all stages of gastric cancer is 27%. However, this improves to 59% 

when disease is localised [24]. The 5-year survival rate has improved over the last five decades 

by 11% [25].  

 

1.1.3.3 Aetiology and risk factors 

 

1.1.3.3.1 Aetiology 

Development of gastric cancer can be induced by the interaction of both genetic and 

environmental factors in complex ways (Table 1.3) [26]. Based on the incidence of gastric 

cancer in the female and male populations and its close relationship with blood group A, the 

diffuse type of gastric cancer is considered to have a stronger genetic link compared  to other 

cancers [27]. There is also a two- to three- fold increased risk among first-degree relatives in 

familial clustering caused by familial and hereditary factors [28]. Gastric cancer is known to 

have a high incidence in inherited syndromes (e.g. familial adenomatous polyposis, Gardner 

syndrome, hereditary nonpolyposis colon cancer and Peutz-Jeghers syndrome) [29]. Two 

molecular phenotypes are correlated with distinct genomic destabilisation pathways [29]. One 

reveals high-level microsatellite instability and the other displays intrachromosomal and 

chromosomal instability [29]. High levels of genetic abnormality have been detected in up to 

59% gastric cancers in Western society [30]. Interestingly, phenotypic microsatellite instability- 

tumours have a positive correlation with the presence of H. Pylori- induced chronic gastritis 

alongside gastric cancer [31]. 
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Interleukin-1β and N-acetyl cystine 1 genes have been reported to be consistently related with 

gastric cancer [29]. In addition, an Interleukin-1β polymorphism has been suggested to be 

involved in hypochlorhydria associated with H. Pylori infection [32]. Hence, host genetic 

factors are likely to be strongly linked  to the development of gastric cancer in H. 

Pylori  infected individuals [33]. The risk of noncardia gastric cancer may be conferred as more 

than a twofold increase by the polymorphisms of pro-inflammatory cytokine gene clusters, 

which include numerous additional interleukins and tumour necrosis factors [33].  

 

Mutations in the p53 gene resulting in the loss of heterozygosity is well described in gastric 

cancer, as with the majority of other tumours which also contain the loss of heterozygosity and 

one or more mutations [33]. The mechanisms of  dysfunction and telomerase reactivation of the 

p53 tumour suppressor are likely to trigger gastric cancer in conjunction with an H. Pylori-

induced decrease in enhanced cellular proliferation combined with apoptosis [34]. The gastric 

metaplasia and dysplasia related with p53 and the p53 mutation appear to spring from the 

increase of mucosal free radical levels that conjugate H. Pylori infection [35]. 

 

Only 5% to 10% of all cases  are the diffuse type of gastric cancer, which appears to depend on 

an autosomal dominant, incomplete penetrance pattern of inheritance [36]. Helicobacter Pylori 

infection, lifestyle, tobacco, alcohol and genetic susceptibility all belong to the aetiological 

factors of gastric cancer. Modified risk factors  may explain approximate 60% of cancer deaths 

in China related to dietary factors, chronic H. Pylori infection and tobacco smoking, which 

could offer a basis for cancer prevention and control programs with the purpose of decreasing 

cancer risk in other countries [37, 38]. 
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Table 1.3 Environment and genetic factors related with gastric adenocarcinoma. 

Environmental Genetic 

Helicobacter Pylori infection Familial tumour syndromes 

Tobacco smoking Familial adenomatous polyposis 

Vitamin C deficiency  

Low dietary fruits/ vegetables Gardner syndrome 

High dietary Hereditary nonpolyposis colon cancer 

Salt  

Fat Peutz- Jeghers syndrome 

Nitrates Blood group A 

Polycyclic hydrocarbons Genetic abnormalities 

 Interleukin-1β 

 N-acetyl cystine 1 

 Adenomatous polyposis coli 

 E-cadherin 

 β-catenin 

 Cyclin E 

 Transforming growth factor-βIIR 

 p 53 

 BAX 

 K- ras 

 bcl-2 

 c- met 

Source: Principles and Practice of Surgical Oncology: Multidisciplinary Approach to Difficult 

Problems. Copyright © 2011 by LIPPINCOTT WILLIAMS & WILKINS, a WOLTERS 

KLUWER business. 
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1.1.3.3.1.1 Dietary factor 

The decline in gastric cancer mortality rates is partly attributed to improved diet, including diet 

variety and food preservation. Particularly, a diet-rich in fruits and vegetables and diet-low in 

fat and salty foods may play a protective role. There is approximate 2-fold difference in the 

risk of gastric cancer between a  diet high in fruits and vegetables and a  diet-rich in salty foods 

and fats [4]. Vitamins participate in the progression of gastric carcinogenesis. Low dietary 

vitamin C may conduce to the progression of pre-cancerous lesions to gastric cancer. This is 

demonstrated in a Chinese high-risk population-Linqu county, a rural area of China with one 

of the world’s highest rates of gastric cancer [39]. This finding is verified the results of previous 

studies of gastric cancer and pre-cancer lesions in Linqu [40] as well as reports in other 

countries [41]. In addition, others report that there are the similar concentration of vitamin C 

being detected in gastric juice between patients with metaplasia and patients with gastric cancer. 

This demonstrates that low concentration of  vitamin C in gastric juice may have a role in the 

earliest stage of carcinogenesis [42]. It is already known that a high concentration of vitamin C 

induces apoptosis in tumour cells and recently, researchers have discovered that vitamin C 

increases the susceptibility of tumour cells to anti-Fas Abs and the expression of Fas (CD95) 

and MHC class I on tumour cells [43].  Studies in America indicated that the use of vitamin 

supplementation may not virtually reduce risk of gastric cancer mortality in North American 

populations in which the rates of gastric cancer are relatively low, while the influence of vitamin 

supplementation in areas of high rate of gastric cancer, cannot be ignored. 

 

The relationship between the lack of intake of fresh vegetables and fruits resulted in a deficiency 

of vitamin C and gastric cancer, a condition known to be exacerbated by the reduction of H. 

Pylori of systemic bioavailability of the vitamin and H. Pylori infection [44]. In industrialised 
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countries, the decrease of gastric cancer is not only attributed to the declining prevalence of H. 

Pylori infection  but also the availability of fresh produce through modern methods of 

refrigeration [45].  

 

1.1.3.3.1.2 Tobacco 

Cancer deaths related with smoking in males occupied approximate 9% of all global male 

cancer deaths  [16]. Although not all epidemiologic studies of gastric cancer verified a direct 

relationship between cigarette smoking and gastric cancer, the majority of evidence 

demonstrates that the risk of gastric cancer is moderately increased among smokers [46, 47].  

Tobacco smoking is the predominant cancer cause among men in China. A long term follow-

up study by You et al indicated that cigarette smoking is a risk factor for development to 

dysplasia or gastric cancer [39].  

 

1.1.3.3.1.3 Alcohol intake 

Tong et al. reported that there were statistically significant dose-dependent effects of alcohol 

on gastric cancer (p< 0.05). It was associated with over 50% added risk of gastric cancer in the 

Chinese population [48]. 

 

1.1.3.3.1.4 H. Pylori 

Helicobacter Pylori (H. Pylori) infection has been established as a major risk factor for gastric 

cancer [49]. IARC (International Agency for Research on Cancer) monograph classifies H. 

Pylori as a carcinogen to humans based on epidemiological evidence [50]. Although over 50% 

of the world population is infected with H. Pylori, less than 2% develop to gastric cancer [51]. 

Therefore, host genetic polymorphisms, lifestyle and even environmental and epigenetic factors 
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may also play a role in occurrence of H. Pylori [52]. The relationship between H. Pylori 

infection and gastric cancer stands for a typical model of a multistep process, characterised by 

atrophic gastritis, intestinal metaplasia and dysplasia, which belong to pre-neoplastic lesions 

with a high risk of progression [53].  

 

In addition, H. Pylori also has an oncogenic role in the development of mucosa-associated 

lymphoid tissue (MALT) lymphoma, which occupies approximate 3% of all gastric cancers. 

Hyperplastic polyps are often detected in patients with atrophic gastric mucosa and H. 

Pylori -associated gastritis, while their malignant transformation is rare (<3% of cases). A 

number of trials showed the H. Pylori screening and eradication, particularly in high-risk 

populations, is an effective means of cancer prevention, however cost-effectiveness of 

screening is worth discussing in low risk areas [54].  

 

In a Chinese follow-up study in Linqu county, You et al found that the infection rate of H. 

Pylori account for 65% among 3 to 12 years old children in Linqu County, which is much 

higher than among children of similar ages in another neighbouring county Cangshan (29%) 

[39].  This illustrated that acquisition of H. Pylori infection in early age plays an important role 

in the development of gastric cancer. The population infected H. Pylori at least occupied 70%, 

of which approximate 32.9% of these cases developed to dysplasia or gastric cancer in the 4.5-

year period studied [39]. In conclusion, these findings suggests that eradication of H. Pylori in 

subjects with superficial gastritis, intestinal metaplasia or chronic atrophic gastritis possibly 

suppress disease development to dysplasia or gastric cancer [39]. 
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1.1.3.3.1.5 Familial gastric cancer 

The incidence rate of familial gastric cancer occupies approximately 10% of all patients with 

gastric cancer [36]. Epidemiological studies have demonstrated that the risk of gastric cancer 

in first-degree grows two-three fold in the normal population [55]. As yet, however, the 

underlying genetic causes remain mostly unclear for majority of the patients with familial 

gastric cancer. CDH1, which occupies 1-3% of gastric cancers, is suggested as the most 

important gastric cancer susceptibility gene [56]. Mutations of CDH1 have been encountered 

in about one-third of strictly selected Hereditary Diffuse Gastric Cancer (HDGC) families [57, 

58], but the genetic cause still remains unknown in at least two thirds of strictly selected HDGC 

families. Most of these families might carry mutations in other, which are identified as gastric 

cancer susceptibility genes. Moreover, familial intestinal type gastric cancer exhibiting an 

autosomal dominant inheritance pattern might also have genetic susceptibility genes. No gene 

has been related with this type of gastric cancer yet [28]. Application of novel gastric cancer 

susceptibility genes will be an important stage towards additional options for gastric cancer 

prevention and indeed therapies. Therefore, identification of new genetic gastric cancer 

predisposing factors is one of the important goals in the near future. 

 

1.1.3.3.1.6 Other risk factors 

Very early studies have demonstrated an excessive risk of gastric cancer associated with blood 

group type A [8, 59]. There is also a tendency for gastric cancer to show familial aggregation 

[60]. However, in a Chinese survey which aimed to examine the correlation between ABO 

blood types and gastric cancer, a history of gastric cancer in a parent or sibling and the presence 

of precancerous gastric lesions among the 3400 cases studied revealed that the increased 

probability of gastric cancer among subjects with blood type A were similar to magnitude (30%-
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40%) for metaplasia (IM) and dysplasia (DYS) after adjusting for parental history of gastric 

cancer [61]. This suggests that type A is primarily correlated with transitions from gastritis to 

metaplasia with little additional influence on development to dysplasia. In contrast, parental 

history of gastric cancer, after adjusting for blood type, was associated mainly with dysplasia, 

indicating that blood type A and familial tendency may affect different stages of the 

carcinogenesis process but are not directly related with gastric cancer [62]. However, in another 

study, the risk of gastric cancer in non type-A groups was dramatically lower than that in blood 

group type A (O, B and AB) (odd ratio, OR1.34; 95% confidential interval, CI 1.25-1.44). 

Compared with blood group O, individuals with non type-O groups (A, B and AB) 

demonstrated an increased risk of gastric cancer (OR = 0.80; 95% CI 0.72-0.88). The proportion 

of H. Pylori infection in blood group type A individuals was significantly higher than that in 

non type-A blood groups (OR = 1.42; 95% CI 1.05-1.93). Along with the other published data 

and reference, it suggested that the risk of gastric cancer in the blood type A group was higher 

than that in the non type-A groups (OR = 1.11; 95% CI 1.07-1.15), and that blood type O 

individuals invariably displayed decreased risk of (OR = 0.91; 95% CI 0.89-0.94). the 

corollaries of these studies was that firstly a slightly increased risk of gastric cancer can be 

observed in individuals with blood group type A. Secondly, people with blood type A even 

more trend to be infected by H. Pylori than other ABO blood type individuals. Thirdly, a mildly 

decreased risk of gastric cancer was observed in blood type O individuals [63]. 

 

Pernicious anaemia (PA), also known as Biermer’s disease, is suggested as an autoimmune 

disorder, which is distinguished by atrophic damage to the gastric body mucous membrane. 

Consequently, the damage is resulted in the loss of parietal cells, which normally secrete an 

intrinsic factor, a protein that stably combines with dietary vitamin B12 and supports its 
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transport through the terminal ileum mucosal wall [64]. Patients with PA can develop long-

term complications including gastric cancer [65]. A systematic review between 1950 and 2011 

showed a pooled gastric cancer incidence-rate in PA of 0.27% per business year,  an estimated 

7-fold relative risk of gastric cancer [2]. 

 

Table 1.4 Risk factors of gastric cancer 

Risk factors Specific exposures Comments Ref 

Tobacco smoking Ever smoked A risk factor for progression 

to dysplasia or gastric 

cancer 

[39] 

Alcohol drinking Ever drank Association with over 50% 

risk of gastric cancer in the 

Chinese population 

[48] 

Infectious agents Helicobacter Pylori A carcinogen to humans 

based on epidemiological 

evidence 

International 

Agency for 

Research on 

Cancer 

Diet Nitrite, high salt intake The decrease of gastric 

cancer is attributed to the 

availability of fresh produce 

[45] 

Familial  

inheritance 

Any types gastric 

cancer 

The risk of GC in first-

degree relatives is increased 

2-3 fold 

[55] 

Other risk factor H. Pylori infection or 

dysplasia 

Gastric cancer risk in the 

blood A group was higher 

than that  in the non-A 

groups 

[63] 

 

 

1.1.4 Early gastric cancer: diagnosis and treatment 

Early diagnosis and treatment is suggested as an important strategy improving the prognosis of 

gastric cancer. The rapid advance in the diagnosis and management of early gastric cancer 

(EGC) has been witnessed over the past few decades: endoscopy has played an increasingly 

important character. Laparoscopic techniques have also been introduced for the treatment of 
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early gastric cancer treatment. Worldwide, however the ratio of early gastric cancer is gradually 

increasing, and this condition is rapidly developing into a hot topic of research. 

 

1.1.4.1 Ambiguities in the diagnosis of early gastric cancer 

 

1.1.4.1.1 Ambiguity of definition 

Early gastric cancer is defined as a stomach  lesion,  which is restricted to the mucosa and/or 

submucosa  regardless of whether its location within the stomach or level of lymph node 

metastasis on the basis of the Japanese Gastric Cancer Association [66]. The Japanese 

classification of early gastric cancer is an endoscope-based clinical diagnosis. Early gastric 

cancer is classified as type I (protruded), type II (superficial), type III (excavated), and the 

mixed type based on its morphological appearance through the analysis of endoscope.  The type 

II lesions are further subdivided into IIa (elevated), IIb (superficial spread), and IIc (depressed) 

[67].  

 

So far, the TMN system is also the most common staging system for gastric cancer, which is 

on the basis of post-operative pathology. However, early gastric cancer is not defined by the 

TNM system. Early gastric cancer of the Japanese “gastric cancer” classification is generally 

equivalent to a T1 gastric cancer scoring in the TNM system. The diagnosis, prognosis and 

treatment of early gastric cancer needs to be based on both clinical diagnosis and pathological 

staging [68]. 
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1.1.4.1.2 Differences in diagnostic criteria in early gastric cancer 

The criteria for the pathological diagnosis of early gastric cancer differs between China and 

Japan. The Vienna classification of gastrointestinal epithelial neoplasia is adopted in China; for 

instance, a gastric cancer is diagnosed only when the tumour has invaded deeper than the lamina 

propria mucosae. By comparison in Japan, gastric cancer is diagnosed on the basis of cellular 

or structural atypia rather than the degree of tumour invasion. Hence, several early gastric 

cancer cases are possibly either the atypical hyperplasia in Japan or high-grade 

adenoma/dysplasia in China. Therefore, we should pay particular attention to those citing 

literatures, which are authored by Japanese colleagues.  

 

1.1.4.2 Accuracy of clinical staging 

Treatment plans depend on tumour stage. So far we are incapable of accurately determining 

early gastric cancer. The infiltration of early gastric cancer [localized within the mucosa layer 

(T1a) or cancer which had already invaded the submucosa layer (T1b)] as well as lymph node 

metastatic status required accurate identification before the application of endoscopic treatment. 

Given the intervention that endoscopic diagnosis and intervention has provided further work 

into the classification of early gastric cancer is now required. 

 

1.1.4.3 Various treatment options 

The 5-year survival rate of patients with early gastric cancer exceed 90% through the treatment 

of standard radical surgery. However, the quality of life for patients is harmed ineluctably by 

radical surgery. Currently, how to minimize surgical intervention and improve quality of life 



The role of WISPs in Gastric Cancer  2015 PhD 

    

 

23 

 

with regard to gastric cancer is becoming a topic of attention. Up until now endoscopic resection 

and modified radical surgery have been on the list of the standard treatments. 

 

Endoscopic resection has become the standard treatment for early gastric cancer over recent 

decades. Endoscopic mucosal resection (EMR) is routine for differentiated mucosal cancer, 

when smaller than 2 cm, and without the presence of an ulcer(s). On the contrary, endoscopic 

submucosal dissection (ESD) enables the en bloc resection of the lesion, has wider resection 

potential and can be applied in patients with ulcer(s). Hence, ESD is better than EMR [69]. The 

clinical study of a multicenter prospective phase III trial demonstrated that laparoscopic 

procedures was superior to early gastric cancer surgery. As a viable and safe technique, 

laparoscopic short-term efficacy precedes open surgery [70]. 

 

1.1.4.4 Challenges associated with new techniques 

Globally the rate of diagnosed early gastric cancer remains low. Both laparoscopy and 

endoscopy require high level of technology, and require a long period of time on training 

medical professionals. The Endoscopic or laparoscopic treatment is highly dependent on 

accurate clinical staging, with endoscopy being the required technique for clinical diagnosis of 

early gastric cancer. These new procedures could not be introduced without the support of 

experienced endoscopy experts. Investigations into the new techniques for early gastric cancer 

diagnosis should only be performed in large scale hospitals, in which several correlative clinical 

trials may be conducted. The application of these new techniques in the detection of early 

gastric cancer requires the close co-operation amongst medical specialists from the departments 

of endoscopy, pathology, and surgery [68]. 
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1.1.5 Pathology and biology 

Gastrointestinal stromal tumours (GISTs), lymphomas, or soft tissue sarcomas make up the 

majority of stomach malignancies in children, whose carcinomas are fewer than 5% [71-74]. In 

contrast, adenocarcinomas account for approximately 95% of stomach tumours of all other age 

groups. Less than 1% of all gastrointestinal malignancies are primary gastric adenocarcinoma 

in children [75]. Gastric adenocarcinomas are classified based on the degree of histological 

differentiation. More than half of all stomach neoplasms occur in the distal stomach [76, 77]; 

whilst nodal and omental involvement are possible to be encountered. Squamous cell carcinoma, 

carcinoid tumour, leiomyosarcoma, teratoma, and liposarcoma belong to other less frequently 

occurring gastric tumours [78-80].  

 

Gastric carcinomas which spread include lymphaic and haematogenous metastasis, by direct 

extension, and through seeding of the peritoneal surfaces. These lesions may infiltrate the 

submucosa, extend directly, and involve the duodenum, oesophagus, colon, liver and even 

pancreas. Haematogenous (or systemic) metastases of gastric  cancer frequently involve the 

lungs, liver, and skin [81]. 

 

1.1.5.1 Biology data 

 

1.1.5.1.1Histogenesis of early gastric carcinoma 

The digestive system is a long and tubular organ with multi-layered walls and a number of 

sphincters. The mucosa in the digestive system that causes adenocarcinomas is similar for 

stomach, small intestine, colon, and rectum after the upper digestive system passes the 

oesophagus [82]. The mucosa, which is covered by a simple layer of columnar epithelium, has 
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specific variation in villus size, which descends in size and cell kinetic turnover time  from 

stomach to rectum [82].  

 

The gastrointestinal canal includes the sections of the digestive tract from the stomach to the 

anus. It is housed within the abdominopelvic cavity that extends from the hemidiaphragm to 

the pelvic diaphragm. The abdominal cavity is lined by peritoneum, which is covered with a 

single layer of mesothelial cells. The peritoneal cavity is a complex structure containing fluid 

and protein secretions. The abdominal cavity is composed of numerous sacs and folds, in which 

fluids and peritoneal surface protective protein layers lubricate bowel surfaces. In general, the 

peritoneal cavity is a powerful system in fluid absorption. However, during cancer spread, 

peritoneal seeding in the cavity is a significant clinical concern.  

 

A two-layer peritoneum connects the stomach with the lesser omentum (from the lesser 

curvature) and the greater omentum (from the greater curvature) respectively. A number of 

peritoneal folds consist of mesenteriums for the arteries, veins and gut. Peritoneal fossae and 

gutters determine initial pathways of tumour spread both for bowel cancer and ovarian cancer 

[83]. Figure 1.4 demonstrates overviews of the histological structural differences throughout 

gastrointestinal and the majority of digestive organ systems.  
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Figure 1.4 Overview of histogenesis of major digestive organ systems. 

Source: TNM Staging Atlas with Oncoanatomy, Second Edition by Philip Rubin, John T. 

Hansen. Copyright © 2012 by LIPPINCOTT WILLIAMS & WILKINS, a WOLTERS 

KLUWER business.  
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1.1.5.2 Histopathology 

The morphologic features of gastric tumours have been suggested as a standard reference in 

several staging schemes. For example, gastric cancer is divided into five types depending on 

macroscopic appearance in the Borrmann classification [84].  

-Type I stands for polypoid or fungating cancers,  

-Type II contains ulcerating lesions surrounded by elevated borders,  

-Type III represents ulcerated lesions invading the gastric wall,  

-Type IV are diffusely infiltrating tumours, and  

-Type V gastric cancers are unclassifiable cancers [84].   

Another histo-morphological staging system was proposed  when gastric cancer could be 

divided into either a prognostically favourable expansive type or a poor prognosis infiltrating 

type [85]. Based on the analysis of numerous gastric cancer samples,  infiltrative tumours were 

almost diffuse on gross appearance, whilst the expansive-type tumours were uniformly 

polypoid [86].  

 

Broder’s classification for gastric cancer classified tumours in the organizational structure, from 

1 (well-differentiated) to 4 (anaplastic). Bearzi and Ranaldi have associate the degree of 

histological differentiation with the gross appearance of 41 primary gastric cancers 

endoscopically [87]. Approximately 90% of superficial tumours were well differentiated 

(Broder’s grade 1), while more than 50% of ulcerated tumours were poorly differentiated or 

diffusely infiltrating (Broder’s grades 3 and 4) [87]. 

 

The most commonly used classification of gastric cancer is by Laurén in 1965 [88]. According 

to the Lauren's scale, gastric cancers are divided into either intestinal or diffuse forms. On the 
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basis of tumour histology, two varieties of gastric adenocarcinomas are characterised. This 

classification scheme demonstrated distinctively different pathology, epidemiology, genetics, 

and etiologies of gastric cancer [88]. The intestinal form demonstrated a differentiated cancer 

with a tendency to form glands in the gastrointestinal tract, especially the colon type. In contrast, 

the diffuse form demonstrated  little cell cohesion, which tended to incur extensive submucosal 

spread and early metastases [88]. The diffuse-type cancers are correlated with a worse outcome 

than the intestinal type, based on relationship analysis between the two forms and TNM stage. 

In addition, the molecular pathogenesis of the two distinct forms is also different [88]. The main 

carcinogenic event of the diffuse type is loss of E-cadherin expression  (a protein product of the 

CDH1 gene), which is a molecule involved in cell-to-cell adhesion and results in non-cohesive 

cell growth [89].  

 

1.1.6 Staging 

Proper staging of gastric cancer allows the clinician to choose the appropriate treatment 

modalities whilst viably evaluating and predicting outcomes of disease management, and 

uniformly documenting cancer cases worldwide. Although there are several classification 

systems for gastric cancer, globally the Cancer Staging Manual developed by the American 

Joint Committee on Cancer (AJCC) with support from the International Union for Cancer 

Control (UICC), the American Cancer Society, American College of Surgeons, American 

Society of Clinical Oncology, and International Union against Cancer, is the generally accepted 

classification system. The cancer-staging criteria have been continually refined since 1959, with 

the combined efforts of medical community, and multiple medical and oncology organisations. 

The latest edition (7th edition) of the AJCC Cancer Staging Manual was published in early 2010. 



The role of WISPs in Gastric Cancer  2015 PhD 

    

 

29 

 

In the new edition, the AJCC and UICC used large datasets and emerging evidence to support 

changes in the cancer staging criteria in general, and they used data sets from Asia, Europe, and 

the United States on the gastric cancer staging system in particular. 

 

1.1.6.1 Classification 

Patients with gastric cancer, who require surgery, should be classified by both pathological 

staging (American Joint Committee on Cancer/International Union against Cancer 

[AJCC/UICC] or Japanese system) and classification of the completeness of resection (R 

classification). Collection of additional prognostic factors including tumour location, serum 

CEA CA 19.9, histopathologic grade and type is recommended by the AJCC [90].  

 

1.1.6.1.1 AJCC/UICC Tumour, Node, Metastasis Staging 

The AJCC/UICC TNM staging system for gastric cancer is described in table 1.5- 

continued. The stage-stratified survival rates of 10,601 AJCC/UICC of patients treated by 

surgical resection from SEER 1973–2005 public-use file diagnosed since 1991 to 2000 are 

shown in figure 1.5. 

 

Tumours appearing at the oesophago-gastric junction (EGJ) including Siewert type I or arising 

in the stomach 5 cm or less from the EGJ and crossing into the EJG including Siewert types II 

and III are classified using the TNM system for oesophageal adenocarcinoma [90]. If gastric 

tumours do not cross the EGJ into the oesophagus, they should be staged as gastric cancer [90]. 
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In the AJCC/UICC staging system, tumour (T) stage is defined by depth of tumour invasion 

into the stomach wall and extension into nearby organs (Figure 1.5). The correlation between 

T stage and survival is well determined (Figure 1.6). Nodal stage (N) is determined by the 

number of involved lymph nodes, which is suggested to evaluate outcome more precisely than 

the location of involved lymph nodes [91]. Tumours with one to two involved nodes are staged 

as pN1, involvement of three to six involved nodes is staged as pN2, whilst involvement of 

more than seven involved nodes is staged as pN3 (N3a has 7–15 nodes and N3b has ≥16 nodes) 

[92, 93].  
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Table 1.5 TNM Staging Classfication for Carcinoma of the Stomach (7th ed., 2010) 

Primary Tumour (T) 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ: intraepithelial tumour without invasion of the lamina propria 

T1 Tumour invades lamina propria, muscularis mucosae or submucosa 

T1a Tumour invades lamina propria or muscularis mucosae  

T1b Tumour invades submucosa 

T2 Tumour invades muscularis propria1 

T3 Tumour penetrates subserosal connective tissue without invasion of visceral 

peritoneum or adjacent structures2,3 

T4 Tumour invades serosa or adjacent structures2,3 

T4a Tumour invades serorosa 

T4b Tumour invades adjacent structures 

Regional Lymph Nodes (N) 

NX Regional lymph node(s) cannot be assessed 

N0 No regional lymph node metastasis4 

N1 Metastasis in 1-2 regional lymph nodes 

N2 Metastasis in 3-6 regional lymph nodes 

N3 Metastasis in seven or more regional lymph nodes 

N3a Metastasis in 7-15 regional lymph nodes 

N3b Metastasis in 16 or more regional lymph nodes 

Distant Metastasis (M) 

M0 No distant metastasis 

M1 Distant metastasis 

Histologic Grade (G) 

GX Grade cannot be assessed 

G1 Well differentiated 

G2 Moderately differentiated 

G3 Poorly differentiated 

G4 Undifferentiated 
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Table 1.5- continued. American Joint Committee on Cancer (AJCC) TNM Staging 

Classification for Carcinoma of the Stomach (7th ed., 2010) 

Anatomic Stage/ Prognostic Groups 

Stage 0 Tis N0 M0 

Stage ⅠA T1 N0 M0 

Stage ⅠB T2 N0 M0 

 T1 N1 M0 

Stage ⅡA T3 N0 M0 

 T2 N1 M0 

 T1 N2 M0 

Stage ⅡB T4a N0 M0 

 T3 N1 M0 

 T2 N2 M0 

 T1 N3 M0 

Stage ⅢA T4a N1 M0 

 T3 N2 M0 

 T2 N3 M0 

Stage ⅢB T4b N0 M0 

 T4b N1 M0 

 T4a N2 M0 

 T3 N3 M0 

Stage ⅢC T4b N2 M0 

 T4b N3 M0 

 T4a N3 M0 

Stage Ⅳ Any T Any N M1 
1A tumour may penetrate the muscularis propria with extension into the gastro-colic or gastro-

hepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral 

peritoneum covering these structures. In this case, the tumour is classified T3. If there is 

perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the 

tumour should be classified T4. 

2The adjacent structures of the stomach include the spleen, transverse colon, liver, diaphragm, 

pancreas, abdominal wall, adrenal gland, kidney, small intestine, and retroperitoneum. 

3Intramural extension to the duodenum or oesophagus is classified by the depth of the greatest 

invasion in any of these sites, including the stomach. 

4A designation of pN9 should be used if all examined lymph nodes are negative, regardless of 

the total number removed and examined. 

Source: NCCN Guidelines Version 2.2013 Gastric Cancer. The original and primary source for 

this information is the AJCC Cancer Staging Manual, Seventh Edition (2010) published by 

Springer Science and Business Media LLC (SBM) www.springer.com. 

  

http://www.springer.com/
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Figure 1.5 Disease-specific survival on Cancer stage grouping by American Joint Committee. 

Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: 
Principles& Practice of Oncology, 9th Edition. Copyright © 2011 by Lippincott Williams& 

Wilkins, a Wolters Kluwer business.  
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Figure 1.6 Cancer T stage defined by depth of penetration of the gastric wall by American Joint 

Committee on Cancer (AJCC). Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, 

Hellman, and Rosenberg’s Cancer: Principles& Practice of Oncology, 9th Edition. Copyright © 

2011 by Lippincott Williams& Wilkins, a Wolters Kluwer business.  
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1.1.6.2 Japanese Staging System 

The most latest Japanese classification for gastric cancer was published in 1998 [94]. The 

Japanese classification and staging system is more emphasized on the difference between 

surgical, pathologic and “final” staging (prefixes “c,” “s,” “p,” and “f,” respectively) compared 

with the AJCC/UICC staging system [94, 95]. For instance, a surgical patient with locally non-

metastatic gastric tumour may be classified as sH0, sM0 or stage f-IIIB (H0 represents no 

hepatic metastases and the “f” prefix stands for final clinic-pathological stage). Furthermore, 

the Japanese classification system contains a classification system for early gastric cancer 

(Figure 1.7) [96]. 

 

In the Japanese classification system, primary tumour (T) stage is defined on the depth of 

invasion and extension to adjacent tissue, similarly to the AJCC staging system (Table 1.6). 

Whilst the assignment of lymph node (N) stage is more detailed than the AJCC staging based 

on rigorous pathological examination. Eighteen regions of lymph nodes are classified into four 

N categories (N0 to N3) depending on their correlation with the primary tumour and anatomical 

location.  However, some lymph nodes, even peri-gastric nodes for specific tumour locations, 

can be considered as M1 disease. This is because their involvement shows a poor prognosis 

[97]. 
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Figure 1.7 Japanese classification system for early stage gastric carcinoma. Source: DeVita VT, 

Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: Principles& Practice 
of Oncology, 9th Edition. Copyright © 2011 by Lippincott Williams& Wilkins, a Wolters 

Kluwer business.  
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Table 1.6 Japanese Gastric Cancer Association Staging System for Gastric carcinoma. 

Tumour stage 

T1 Tumour invasion of mucosa and/ or muscularis muscosa (M) or 

submucosa (SM) 

T2 Tumour invasion of muscularis propria (MP) or subserosa (SS) 

T3 Tumour penetration of serosal (SE) 

T4 Tumour invasion of adjacent structures (SI) 

TX Unknown 

Nodal stage 

N0 No evidence of lymph node metastasis 

N1 Metastasis to group 1 lymph nodes, but no metastasis to groups 2 

to 3lymph nodes 

N2 Metastasis to group 2 lymph nodes, but no metastasis to group 2 

lymph nodes 

N3 Metastasis to group 3 lymph nodes 

NX Unkown 

Hepatic metastasis stage 

H0 No liver metastasis 

H1 Liver metastasis 

HX Unknown 

Peritoneal metastasis stage 

P0 No peritoneal metastasis 

P1 Peritoneal metastasis 

PX Unkown 

Peritoneal cytology stage (CY) 

CY0 Benign/ indeterminate cells on peritoneal cytology 

CY1 Cancer cells on peritoneal cytology 

CYX Peritoneal cytology was not performed 

Other distant metastasis (M) 

M0 No other distant metastases (although peritoneal, liver, or 

cytological metastases may be present)) 

M1 Distant metastases other than the peritoneal, liver, or cytological 

metastases 

MX Unknown 

Stage grouping 

 N0 N1 N2 N3  

T1 ⅠA ⅠB Ⅱ   

T2 ⅠB Ⅱ ⅢA   

T3 Ⅱ ⅢA ⅢB  Ⅳ 

T4 ⅢA ⅢB    

H1, P1, CY1, M1      
                                                                                                                                                       Table 1.6 to be continued on next page..... 
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Table 1.6 Table 1.6 continuing from previous page: 

aCytology beliwved to be “suspicious for malignancy” should be staged as CY0 

Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: 
Principles& Practice of Oncology, 9th Edition. Copyright © 2011 by Lippincott Williams& 

Wilkins, a Wolters Kluwer business. 

 

1.1.7. Gastric cancer diagnosis strategy 

 

1.1.7.1 Signs and Symptoms 

Because non-specific symptoms can describe early gastric cancer, many patients are diagnosed 

in advanced stage disease. A combination of signs and symptoms e.g. weight loss, anorexia, 

fatigue, epigastric discomfort, pain, postprandial fullness, indigestion and vomiting may be 

detected in patients with gastric cancer. Whilst none of these can unequivocally manifest in 

gastric cancer, weight loss and abdominal pain are considered as the most common initial 

symptoms [98, 99]. In addition up to 17% of patients may be asymptomatic  [100].  

 

Dewys et al., reported that in an investigation of 179 advanced gastric cancer patients more 

than 80%  had a dramatic decrease in body weight  (> 10%) prior to diagnosis  [101]. In addition,  

Maconi et al., found that patients with weight loss had a dramatically shorter survival than those 

without weight loss [99].  

 

1.1.7.2 Screening 

Successful screening programs for gastric cancer have been established in high-risk areas, such 

as Japan [102]. Numerous screening tests have been trialed in patients with gastric cancer in 

Japan, with a sensitivity and specificity of around 90% [103]. Serology for H. Pylori, which 
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double-contrast barium radiographs or upper endoscopy with risk stratification is one typical 

screening technique (OLGA staging system for gastric cancer risk) [104]. Phata et al., reported 

a study with  a  7.7 year follow-up period of 4,655 asymptomatic patients, in which, with a 

cohort average age of 50 years old, 2,341 (52%) were H. Pylori-positive with non-atrophic 

gastritis, 967 (21%) were H. Pylori-negative without atrophic gastritis, 1,316 (28%) were H. 

Pylori-positive with atrophic gastritis, and 31 (0.7%) had severe atrophic gastritis. [105].  

 

1.1.7.3 Biomarkers 

Serum markers are not applied for early cancer screening, but they are suitable for detection of 

recurrence and distant metastasis, prediction of patient survival and also postoperative monitor. 

The most frequently used serum tumour markers for clinical auxiliary diagnosis are CEA, 

CA19-9, and CA72-4.  A systematic literature search before the end of November 2012 showed 

that these markers had remarkable association with tumour stage and survival time of the 

patients. Tumour marker monitoring may be useful for patients after surgery, as the positive 

conversion of tumour markers approximately recurs 2 months before the abnormal formation. 

Alpha-faetoprotein (AFP) is applicable to detect and predict liver metastases. Furthermore, 

CA125 and sialyl Tn antigens (STN) are used to detect peritoneal metastases. Although no 

prospective trial has yet completely assessed the clinical significance of these tumour markers, 

this literature search indicates that a combination of CEA, CA19-9, and CA72-4 is the most 

effective way for clinical staging before surgical therapy or chemotherapy. The increased level 

of monitoring tumour markers before surgery or chemotherapy is particularly useful for 

detection of recurrence or evaluation of treatment response [106]. 
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In a large review in which 410 manuscripts were retrieved, and 7 manuscripts of high quality 

including 652 patients were of high quality in this meta-analysis, MG7-Ag is found to be a 

potential biomarker for the diagnosis of gastric cancer [107]. 

 

Systematic review and meta analysis suggests that circulating tumour cells (CTCs) detection 

alone cannot be recommended as a screening test for gastric cancer. However, it is possibly 

applied as a non-invasive method for making a prognosis of gastric cancer [108]. 

 

1.1.7.3.1 Analysis of Molecular Markers 

Numerous reports demonstrate that analysis of various molecular markers is likely to be a guide 

to designing therapeutic agents and treatment regime, an effective way leading to personalised 

medicine [109]. For example, through the evaluation of microsatellite alterations 

and p53 mutation status in biopsy material obtained from gastric cancer prior to any therapy, a 

high level of chromosomal instability would define a subset of patients who may  benefit from 

cisplatin-based neo-adjuvant chemotherapy. In contrast, p53 mutation status was not an 

effective marker for response prediction [110]. 

 

In addition, the gene expression of the enzyme thymidylate synthase (TS) in gastric cancer had 

a negative correlation with survival of patients required 5-FU-based chemotherapy [111]. 

Hence, those patients with express high expression of TS did not possibly benefit from 

irinotecan (CPT-11), while tumours expressing low TS levels maybe benefit from 5-FU-based 

chemotherapy [112]. The University of Southern California group reported that the relative 
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level of mRNA of the excision repair cross-complementing (ERCC1) gene had an adverse 

relationship with response and survival in an independent function to cisplatin efficacy [112]. 

 

In a study to  investigate the expression of the erbB-2 oncogene, which was expressed in more 

than 20% of gastric cancer and had a significant correlation with poor prognosis, Kasprzyk et 

al. indicated that a combination of two anti-erbB-2-specific antibodies had an inhibitory effect 

on the growth of human gastric cancer cells in vitro. This combinational antibody therapy also 

suppressed the growth of human gastric cancer cells growing as xenografts in athymic nude 

mice in vivo and was significant in the reduction of established tumours [113]. 

 

1.1.7.4 Diagnosis 

The cure rate of gastric adenocarcinoma is high in patients who are diagnosed at an early stage 

however based on the aggressive biological nature of gastric cancer this rate declines with later 

diagnosed disease stages. The incidence of gastric cancer is low in most Western countries, so 

aggressive screening is not cost-effective [114]  therefore alarm symptoms and signs (e.g. 

anorexia, early satiety, weight loss, fatigue, emesis or haematemesis, melena, anaemia, and a 

palpable abdominal mass) are considered as the key to early diagnosis of gastric cancer [115]. 

Dyspeptic pain unresponsive to standard anti-secretory therapy should also prompt for 

investigation into the possibility of early gastric cancer [116].  

 

Flexible fibreoptic oesophago-gastro-duod-enoscopy is considered as first-line diagnostic 

procedure when a patient is suspected of having gastric cancer. Diagnostic accuracy for gastric 
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malignancy is approximately 95% based on multiple biopsies of any gastric mucosal 

abnormality, ulceration, or mass lesion [117]. Barium upper gastrointestinal radiological studies 

are no longer routinely performed for diagnostic purposes because early gastric cancer and 

sessile non-bulky tumours are easily missed through use of this technique and radiological 

discrimination between benign and malignant gastric ulcers is relatively poor. Because any 

mucosal abnormality identified on upper gastrointestinal series requires endoscopic biopsy for 

definitive diagnosis radiological diagnosis is inherently redundant or not cost-effective. 

 

1.1.8 Tumour metastasis  

The stomach, a distensible organ, is located in the left upper abdomen and is classically divided 

into four parts (cardia, fundus, body and pylorus). Gastric tumour metastasis includes four 

pathways:- 

lymphatic metastasis 

direct spread, 

hematogenous metastasis and  

peritoneal seeding.  

Amongst these pathways lymphatic metastasis is the most common method of metastatic spread.  

Lymph node involvement is the most common route of metastasis in gastric cancer and is likely 

due to the extensive distribution of the lymphatic network within the stomach. Maruyama et al., 

reported that the most common site of lymph node involvement was along the lesser and greater 

curvature (11%- 40%) [118]. Lymph node involvement around the cardia was common for 

proximal tumours (13%- 31%), but not for distal stomach tumours (<7%). In addition, infra-

pyloric lymph node involvement was unusual for proximal tumours (3%), but common for 
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distant gastric cancers (49%). Other lymph node involvement was commonly detected along 

the left gastric artery (19%- 23%), hepatic artery (7%- 25%, most for distal tumours), and celiac 

axis (8%- 13%) [118-120]. 

 

After lymph node metastasis, peritoneal seeding is the second most common site for metastasis 

in gastric cancer [121]. Up to 20% of patients with gastric cancer have peritoneal deposits. 

Peritoneal metastasis can develop in almost 60% of T3 and T4 tumour cases [122]. Extensive 

studies into peritoneal seeding from gastric cancer conducted in Japan and Korea have shown  

that survival rates for patients with heated intra-peritoneal chemotherapy at the time of 

gastrectomy increased from 10% to 43% [123, 124].  

 

1.1.9 Prognosis 

 

1.1.9.1 Prognosis and factors 

The survival rates are also influenced by the number of lymph nodes involved [125-128]. The 

finding of either in isolation lymph node involvement or complete wall penetration is usually 

not as predictive as the presence of both [126, 128, 129] (Table 1.7). A poor performance status, 

elevated alkaline phosphatase levels and ethnicity are also suggested as prognostic indicators 

[130]. Byfield et al., reported that Asian and Pacific Islander (API) were more likely than non-

Hispanic white (NHW) diagnosed at an early stage of gastric cancer, and foreign-born APIs 

rather than US-born APIs had more favourable survival outcome than NHWs [131]. Flow 

cytometry is also of prognostic significance. Aneuploidy is related to unfavourable tumour 
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location, primary tumour invasion and lymph node metastasis [132-134]. A poor prognosis has 

correlation with unfavourable DNA flow cytometry [132].  The gross pathological appearance 

of the primary tumour also provides important prognostic information, although there is 

uncertainty on whether this factor is independent of tumour stage. Patients with Borrmann type 

I and II tumours have relatively favourable 5-year survival rates, on the contrary, patients with 

type IV (linitis plastica) fare adversely [135-137].  
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Table 1.7 Survival rates compared with extent of initial disease for gastric cancer. 

 5-year survival rate 

(%) 

≥ 5-year survival 

rate (%) 

Extent of disease [138] [129] 

Negative lymph nodes   

Mucosa only 100 - 

Beyond mucosa but 

within wall 

61 - 

Through wall 44 - 

Positive lymph nodes   

Nodal extent 15 19 

Regional only - - 

Nonregional - - 

Extent of primary   

Within wall - 40 

Through wall - 12 

Copyright © Lippincott Williams & Wilkins 
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1.1.9.2 Biological prognostic factors 

Mutations in two  genes, hMSH3 and hMLH1 on chromosomes 2 and 3 respectively, are 

reported to be implicated in cancer family syndromes and hereditary non-polyposis colorectal 

cancer, which is a disease related to  a tendency for the development of gastric cancers 

[139]. Mutations in these genes generate genetic instability and have the potential to trigger 

further alterations in oncogenes. 

 

Two proto-oncogenes, c-MET and k-sam, have association with scirrhous gastric carcinoma. 

c-MET encodes hepatocyte growth factor, which is a potent endogenous promoter of growth 

of gastric epithelial cells [140]. Overexpression of c-MET is associated with tumour 

metastasis [139, 141]. K-sam encodes a group of tyrosine kinase receptor family proteins 

[142]. There is a tendency for c-MET to be activated in men >50 years of age and k-sam to be 

amplified in women (<40 years of age) [142]. Genetic alterations, including p53 gene 

inactivation, CD44 expression, telomerase activation, dysfunction of hMSH3 and hMLH1, 

overexpression of proto-oncogenes (Erb-B2, Bcl-2, c-MET and k-sam) and oestrogenic 

receptor expression, are all  associated with a poor prognosis [143].  

 

1.2 Therapy 

 

1.2.1 Overall therapeutic strategies for gastric cancer 

To date there is sufficient evidence to support the use of adjuvant chemotherapy and 

radiotherapy either post-operatively or peri-operatively, especially when cancers are in their 

advanced stages, as  commonly practiced  in Europe, North America, and some parts of Asia. 
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Surgery alone is not any more the standard therapy for patients with resectable gastric cancer 

[144]. Randomised controlled trials and meta-analyses should contribute to explore the 

indications, dosage regimen, and opportunitiy of adjuvant therapy for gastric cancer. 

 

1.2.2 Peri-operative adjunctive therapy 

Over the past decade, there has been more extensive surgical treatment focus on gastric 

carcinoma, which progressively includes subtotal gastrectomy, total gastrectomy, radical 

gastrectomy with splenectomy, distal pancreatectomy and recently extended nodal dissections. 

More recently  efforts in designing and testing multi-modality and peri-operative strategies with 

a vision to  achieving the same favourable clinical outcome as seen in the treatment of other 

solid tumours, namely breast cancer.  Some good examples include external-beam irradiation 

(ERBT), combined with chemotherapy, hypothermia, intraperitoneal chemotherapy, 

immunotherapy, intra-operative radiotherapy (IORT), anti-angiogenesis agents and oncogene 

function suppressors. 

 

1.2.3 Surgery 

For patients with early stage gastric cancer (T1/T2, N0, M0 tumours), laparoscopic gastric 

resection with lymphadenectomy has been suggested as the most commonly practised 

procedure [145]. Kitano reported  short-term benefits following laparoscopic procedures 

included faster recovery, shorter hospital stay, and less pain whilst long-term benefits after the 

procedure included favourouable 5-year disease-free survival rates, for example  99.8% (Stage 

ⅠA), 98.7% (Stage ⅠB), and 85.7% (Stage Ⅱ) [146]. However, in a randomised controlled 
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clinical trial of subtotal gastrectomy by Cristiano et al.,, the rates of 5-year overall and disease-

free survival did not show the significant difference for the two operative approaches [147].  

 

In a recent randomised trial (164 patients in the two groups, with 82 patients each) which 

compared laparoscopic distal gastrectomy with open distal gastrectomy, patients who had 

undergone laparoscopic distal gastrectomy had an improved quality of life (QOL). This was 

seen through improved physical functions including appetite loss, sleep disturbance, anxiety, 

and body image, as well as intra-operative blood loss, reduced post-operative narcotic use and 

hospital stay [148].  

 

1.2.4 Neo-adjuvant therapy 

Auxiliary intraperitoneal chemotherapy 

The clinical data regarding the integration of intraoperative radiation therapy (IORT) as a 

component of combined-modality treatment for resectable gastric cancer was recently 

summarised in detail. Three randomised prospective trials of IORT have been reported. In 1988, 

M. Abe from Kyoto University, Japan, reported a randomised trial in which more than 200 

patients with stage I-IV stomach cancer (using the Japanese Surgical Staging System) were 

grouped  into surgery alone versus surgery + IORT (28 to 35 Gy). A non–statistically significant 

trend toward improved 5-year overall survival was seen in stage II-IV patients. However, two 

smaller phase 3 studies did not show a survival benefit. At the National Cancer Institute, 40 

stage III and IV (American Joint Committee on Cancer) patients were randomised to surgery + 

IORT (20 Gy) versus surgery + EBRT (50 Gy), whereas at the University of Freiburg (Freiburg, 

Germany), 115 patients were randomised to surgery versus surgery + IORT (28 Gy) [149, 150].  
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Data from other single-institution, nonrandomised studies suggest a benefit from IORT or IORT 

+ EBRT compared with surgery alone [151]. The present standard of care for locally advanced 

(node positive and/or margin positive) gastric cancer includes post-operative chemo-radiation 

or peri-operative chemotherapy alone, based on recent phase 3 trial data [152, 153]. Thus, any 

future trial testing the integration of IORT in locally advanced gastric cancer must include these 

approaches.  

 

1.2.5 Molecular-targeted therapy 

Molecular-targeted therapy is defined as any inhibitor or monoclonal antibody which 

selectively suppresses a specific molecule, or molecular pathways, involved in the progression 

or metastasis of cancers [154]. Numerous biological anti-cancer agents mediating different 

pathways have been trialled over the past decade, examples including anti-angiogenesis agents, 

growth factor receptor inhibitors/antagonists, matrix metalloproteinase inhibitors and inhibitors 

to mammalian target of rapamycin (mTOR) [155, 156].  

 

Based on the outcome of the Transtuzumab for gastric cancer (ToGA)  trial, only trastuzumab, 

an anti-HER2 monoclonal antibody, has been approved for clinical use in combination with 

chemotherapy to treat HER2-positive advanced gastric and oesophago-gastric junction cancer 

[157]. Immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH) or dual 

colour silver- enhanced in situ hybridisation (DISH) is the main molecular diagnosis of HER2 

status (Figure 1.8). DISH, which has the same accuracy (concordance rate reaches 97%) as 

FISH, can be observed under conventional light microscopy [158]. Because of the significant 

heterogeneity of HER2 status in gastric cancer, it has been recommended that the  order of 

testing for HER2 should be IHC and then FISH/DISH [158].  
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Figure 1.8 Evaluation of HER2 in gastro-oesophgeal junctional and gastric cancer. 

Source: DeVita VT, Lawrence TS, Rosenberg SA: DeVita, Hellman, and Rosenberg’s Cancer: 
Principles& Practice of Oncology, 9th Edition. Copyright © 2011 by Lippincott Williams& 

Wilkins, a Wolters Kluwer business.  

 

 

1.3 EMT 

  

1.3.1 Introduction 

Epithelial–mesenchymal transitions (EMTs) was firstly perceived as a feature of embryonic 

development in mammal [159]. The formation of mesenchymal and non-epithelial cells loosely 

implanting in an extracellular matrix, from a primitive epithelium is an important characteristic 

of most metazoans [160]. During this transition, mesenchymal cells have a spindle-shaped 

morphology, which is applicable to migrate in an extracellular environment and move in areas 

involving in organ formation. Mesenchymal cells are also able to involve in the formation of 

epithelial organs through a reverse process of EMT, known as mesenchymal–epithelial 

transition [112]. 

 



The role of WISPs in Gastric Cancer  2015 PhD 

    

 

51 

 

In late 1960s, Elisabeth Hay reported a description of the formation of the chick primitive streak 

[161] - a structure that is in need of the transformation of epithelial to mesenchymal cells – 

while EMT was not acknowledged as an explicit process until 1982  by Elisabeth Hay and 

Garry Greenburg [162]. After that Michael Stocker and Michael Perryman showed that  Madin–

Darby canine kidney (MDCK) cells, a kind of epithelial cell line from mink kidney, were 

capable to transform into migratory fibroblasts from cultured fibroblasts through  incubation 

with conditioned medium [163]. A factor participated in this conversion was specific scatter 

factor and was defined as hepatocyte growth factor (HGF) afterwards [164-166]. 

 

EMT was approved to be recognised as a potential mechanism of carcinoma process after a 

long time. The definition of carcinomas (tumours of epithelial origin) and sarcomas (tumours 

of mesenchymal origin) have been identified under numerous criterion by pathologists. These 

two separate entities are not thought to overlapping, unless in a very unusual tumour type 

namely sarcomatoid carcinoma [167-169]. However, various carcinoma cell lines expressed 

segmental or complete EMT. Furthermore, carcinomas can show a variety of phenotypes and 

malignant potential and most of their epithelial characteristics would be absent during 

progression. This phenomenon is considered in the classical tumour staging methods  [160]. 

 

The mechanisms of EMT are now being illuminated, in the meantime, many parallels are being 

found among this process in embryo development, tissue culture and tumour. A number of 

signalling pathways have been disclosed that are common to the EMT development in 

progression of carcinoma. The definition of EMT, hence provides a new means of recognizing 

genes which are essential for the tumour progression towards undifferentiated and more 
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malignant states. Studying the cellular and developmental biology of the EMT process might 

provide insights into crucial mechanisms involved in tumour progression [160]. 

 

EMT has been intensively studied by cancer researchers in recent decades. It represents one of 

the major mechanisms by which tumour cells gain critical metastatic features including 

enhanced motility, invasiveness and resistance to apoptotic stimuli [170, 171].  While the EMT 

process has been well characterised in tumour cells in culture, there is accumulating evidence 

that EMT is involved in metastasis in vivo as well. Using an intravital imaging technique, 

Giampieri et al. showed that single breast cancer cells gained molility for hematogenous 

metastasis by activating EMT-promoting TGF-β–Smad2/3 signalling [172]. Indeed, EMT was 

also observed in metastasis from spontaneous tumour models in mice. The disseminated tumour 

cells in the lungs of MMTV-PyMT transgenic mice expressed a mesenchymal marker, FSP-1, 

suggesting a role for EMT in tumour metastasis [173].  Direct evidence of EMT was also found 

in Myc-initiated breast tumours [174] and K-Ras-mediated pancreatic tumours [175] by using 

a lineage-specific tracing strategy. 

 

However, the simple EMT model does not explain the observation that metastatic lesions 

commonly resemble the epithelial phenotypes of the primary tumours. EMT in tumour cells 

appears to be transient – once a metastatic cell has invaded a new tissue, the mesenchymal 

features disappear. For instance, the disseminated MMTV-PyMT tumour cells shifted back to 

an Fsp-1-negative epithelial phenotype as metastatic lesions expanded [173]. Studies with 

patient cancer samples also showed that metastases in the liver, lung and brain expressed 

epithelial markers as highly as the primary breast tumours [176, 177]. Similarly, liver 

metastases from prostate cancer showed epithelial morphology in the majority of cases studied 
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[178] . These observations suggest that tumour cells may revert back to the epithelial phenotype 

during metastatic lesion growth through mesenchymal to epithelial transition (MET) [112]. 

MET, as the reverse process of EMT, has been characterised as an essential developmental 

process, especially in the organogenesis of the kidney. Despite observations in clinical studies, 

the evidence for MET in metastasis is very limited. By using an experimental metastasis model 

in mice, Gao et al., found that tail vein injection of metastatic breast cancer cells (MDA-MB-

231), which showed a mesenchymal phenotype with no detectable E-cadherin expression, 

resulted in E-cadherin (+) metastatic lesions in the lung, indicating MET may have occurred 

during metastasis formation [179].  Interestingly, recent studies have suggested that MET plays 

an active promoting role in metastasis along with EMT. For instance, the miR-200 family that 

enforces the epithelial phenotype by targeting ZEB1/2 [180] was surprisingly found to be pro-

metastatic. Over-expression of miR-200s is associated with increased risk of metastasis in 

breast cancer and promotes metastatic colonisation in mouse models [181] . On the other hand, 

tumour cells that were trapped in the mesenchymal stage by constitutive activation of TGF-

β/Smad2 signalling, failed to develop into metastatic lesions, although they were capable of 

disseminating into the secondary organs [172]. Taken together, current data suggests that both 

the EMT and MET processes are critical at different stages of tumour metastasis. Tumour cells 

need to exhibit EMT/MET plasticity to successfully establish metastatic lesions. The 

EMT/MET plasticity of these tumour cells may be regulated by both intrinsic and extrinsic 

factors. However, genomic analysis of primary tumours and distant metastases have found a 

high degree of similarity at several levels including total  gene copy numbers, loss of 

heterozygosity and single nucleotide polymorphisms [182-184], indicating that intrinsic 

genomic alterations are not the driver of the EMT/MET cascade during metastasis formation 

(Figure 1.9). Instead, it is more likely that metastatic tumour cells exhibit their EMT/MET 
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plasticity to adapt to the changing microenvironments they encounter at either the primary or 

secondary site.   
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Figure 1.9 Sites of EMT and MET in the emergence and progression of carcinoma. Normal 

epithelial lined by a basement membrane can proliferate locally to give rise to an adenoma. 

Further transformation by epigenetic changes and genetic alterations leads to a carcinoma in 

situ, still outlined by an intact basement membrane. Further alterations can induce local 

dissemination of carcinoma cells, possibly through an epithelial-mesenchymal transition 

(EMT), and the basement membrane becomes fragmented. The cells can intravasate into lymph 

or blood vessels, allowing their passive transport to distant organs. At secondary sites, solitary 

carcinoma cells can extravasate and either remain solitary (micrometastasis) or they can form 

a new carcinoma through a mesenchymal-epithelial transition [112]. (Source: Epithelial 

mesenchymal transition in tumour progression, Nature reviews,2002,2,442-454)  
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1.3.2 EMT markers and transcriptional factors 

 

1.3.2.1 EMT/MET biological markers 

On the basis of the morphological, biological and biochemical changes of the cell during the 

EMT process, a considerable number of biomarkers have been reported and summarised 

recently as shown in Figure 1.10 (Zeisberg and Neilson 2010).  The majority of markers are 

associated to the morphological and functional changes of cells during the EMT process and 

are grouped into three categories: the first category is related to cell surface (e.g. cadherins); 

the second one is related to cytoskeletal proteins (e.g. vimentin); the third one is related to 

extracellular proteins (e.g. fibronectin). Some of the key transcription regulators, namely Snail, 

Twist, LEF1, have also been suggested as valuable markers. Some markers are up-regulated 

during EMT, while the others are down-regulated (e.g. E-cadherin). More interestingly, some 

of the microRNA have also been considered to be useful markers for EMT, namely miR10B 

and miR21. The most valuable pair of these identified biomarkers is the switch between E-

cadherin and N-cadherin. During the EMT transition, E-cadherin which belongs to the Class-1 

cadherin family is reduced or even lost, conversely, N-cadherin expression which belongs to 

the Class-2 cadherin family is increased. 
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Figure 1.10 EMT biomarkers. Adapted from Zeisberg and Neilson 2010. 

 

1.3.2.2 E-cadherin 

The E-cadherin gene at human chromosome 16q22.1 encodes E-cadherin. This gene is a 

classical cadherin belonging to the cadherin superfamily. Its encoded protein is a calcium 

dependent cell-cell adhesion glycoprotein, which is composed of five extracellular cadherin 

repeats, a highly conserved cytoplasmic tail and a transmembrane region. Mutations of this 

gene are associated with gastric, breast, colorectal, thyroid and ovarian cancer. Loss of function 
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is deemed to promote to cancer development by improving proliferation, invasion, and 

metastasis. Bacterial adhesion to mammalian cells is regulated by the ectodomain of the protein 

of E-cadherin and the cytoplasmic domain is essential for internalisation. Transcript variants 

have been identified which arise from mutations at consensus splice sites. Familial diffuse type 

gastric cancer occurs due to germ-line mutations of the E-cadherin gene. Down-regulation of 

E-cadherin function due to mutation, deletion, CpG hyper-methylation, and SNAIL1 - or SIP1-

mediated transcriptional repression of the E-cadherin gene has also been shown to lead to EMT 

in gastric cancer [185].  

 

A number of studies of the human E-cadherin promoter, primarily carried out by Cano et al 

[186-188]  displayed regulatory elements located in the 5’-proximal sequence. Amongst them 

the E-pal element (including two E-boxes) which serves as a repressor can even exceed the 

influences of positive factors acting on the proximal promoter [186]. 

 

Cell adhesion mediated by Cadherin plays an important role in early embryonic development, 

where a lot of phenotypic changes arise through the EMT process. The acquisition of a 

fibroblastic phenotype is accompanied by the deletion of E-cadherin and allows cells to separate 

from epithelial tissue and migrate freely. This is a crucial event during gastrulation movements 

and the formation of neural crest, but has also been supposed to play a fundamental role during 

early stages of invasion and metastasis of cancer cells.  

 

EMT participating in down-regulation of E-cadherin is suggested to play an essential role 

during early stages of invasion and metastasis of cancer cells, namely gastric cancer. Gastric 

carcinoma cells with fibroblastoid morphological changes demonstrate increased motility and 
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invasiveness based on decreased cell-cell adhesion, which is reminiscent of EMT during 

embryonic development.  

 

Amplification of ERBB2, MET, FGFR2, PIK3CA, AKT1 genes, up-regulation of WNT2, 

WNT2B, WNT8B, and down-regulation of SFRP1 have been shown to lead to EMT in gastric 

cancer through GSK3β inhibition and following SNAIL-mediated CDH1 repression. Claudin 

(CLDN) and the PAR3/PAR6/aPKC complex at tight junctions are other key molecular targets 

of EMT. CLDN23 gene is down-regulated in intestinal type gastric cancer. Down-regulation of 

PAR3/PAR6/aPKC complex also leads to EMT. Single nucleotide polymorphisms (SNPs) and 

copy number polymorphisms (CNPs) of genes encoding EMT signalling molecules will be 

identified as novel risk factors of gastric cancer. 

 

1.4 WISP family members 

 

1.4.1 Introduction 

WISP proteins [WNT1 (wingless-type MMTV integration site family, member 1)-inducible 

signalling pathway proteins)] are a subfamily of the CCN family [189]. WNT1 is a member of 

the family of cysteine-rich, glycosylated signalling proteins that mediate diverse developmental 

processes [190], such as the control of cell proliferation, adhesion, cell polarity, and the 

establishment of cell death pathways. Members of the CCN family were initially defined as 

secreted proteins whose complex was deregulated in transformed cells or induced by mitogenic 

growth factors or oncogenes. The first three members described – CYR61 (cysteine-rich 61; 

CCN1) [191], CTGF (connective tissue growth factor; CCN2) [192], and NOV 
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(nephroblastoma overexpressed; CCN3) [193] – provided the acronym for the CCN family. The 

three other family members WISP-1, WISP-2 and WISP-3 are designated CCN4, CCN5 and 

CCN6 [194]. Recent studies reported that CCN proteins are crucial regulators of embryonic 

development, and in adults they play essential roles in inflammation, injury repair, fibrotic 

diseases and cancer. The CCN proteins have a molecular structure with up to four distinct and 

highly conserved functional domains. They are specifically correlated with the ECM and are 

induced by growth factors (i.e. transforming growth factor (TGF)-β, cytokines like endothelin) 

and events that lead to cellular stress, namely hypoxia. They have also been thought to be over 

expressed in pathological conditions that influence connective tissue, namely scarring, fibrosis, 

and cancer. The CCN family as a whole seemingly promote adhesion, ECM production and 

migration as well as influencing cell cycle through the mediation of mitosis, growth arrest and 

apoptosis [194]. The diversity of cell functions affected is  generally on the basis of the families 

capability to combine with and activate numerous of cell-surface integrins and intracellular 

signalling molecules, containing S100A4, Notch1, fibulin 1C and ion channels [195]. CCNs 

have also been shown to modulate the activity of different growth factors such as TGF-β. Cyr61 

(CCN1) and Nov (CCN2) have been indicated as being pro-angiogenic [196]  (Figure 1.11). 

 

 WISP-2 (rCop-1 /CCN5) was first identified as being down-regulated following transformation 

of rat embryo fibroblasts through  inactivation of p53 and associated activation of H-ras [197].   

Almost simultaneously, WISP-1 and WISP-2 were identified as an indirect response to WNT1 

but not WNT4 induction in C57MG mouse mammary epithelial cells. After sequence alignment, 

human WISP-1, WISP-2 and WISP-3 were found homologous and cloned in 1998 [189]. These 

WISP proteins exhibited the modular structure of the CCN family, characterised by four 
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conserved cysteine-rich domains and believed to be homologous to the CTGF family of proteins 

of the CCN family.  Another group analysed a human osteoblast cDNA library and identified 

an EST that contained an IGF binding domain, and based on sequence homology to the CCN 

family member CTGF, they named the presumed gene product CTGF-like protein or CTGF-L 

[198]. CTGF-L (CCN5), encoding a 250 amino acid (aa) single chain polypeptide of 26kDa 

protein which lacks the C-terminal domain implicated in dimerisation and heparin binding. 

 

These early discoveries has laid the foundation for about 200 publications on WISP-1, WISP-

2, WISP-3 and their role in cell signalling, proliferation, adhesion, invasion, wound healing, 

fibrosis, skeletal development, implantation, epithelial-mesenchymal-transition and 

angiogenesis, as well as in cancers. 
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Figure 1.11 CCN nomenclature. 
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1.4.2 Chromosome location and structure of WISP family members 

 

Clones encoding full-length human WISP-1 were disassociated by screening lung and fetal 

kidney cDNA libraries with the same probe at low stringency. The murine WISP-1 gene is 

located on chromosome 15 and the human WISP-1 gene is located on chromosome 8q24.1–

q24.3. Both consist of five exons and four introns. The length of the murine and human cDNA 

is 1766bp and 2830bp, respectively, and predicted relative molecular mass of 40kDa. Murine 

and human WISP-1 proteins are composed of 38 conserved cysteine residues and four potential 

N-linked glycosylation sites [189]. 

 

Clones encoding full-length mouse and human WISP-2 were isolated by screening a 

C57MG/Wnt-1 or human fetal lung cDNA library with a probe, which is consistent with 

nucleotides 1463–1512. Human WISP-2 is located on chromosome 20q13.12 and comprise of 

3 exons. The length of Full-length cDNA clones of human WISP-2 are 1293bps, and encode a 

protein of 250aa, with predicted proportional molecular masses of 26kDa [189]. The 

consistencies of mouse and human WISP-2 reach 73% at the aa level and are homologous to 

rat gene, rCop-1[197]. 

 

Full length cDNA encoding WISP-3 was cloned from human bone marrow and fetal kidney 

libraries [189]. A full-length human WISP-3 cDNA of 1,371bp was isolated corresponding to 

those ESTs that encode a 354aa sequence resulting in a protein with a predicted molecular mass 

of 39.3kDa.  Human WISP-3 is located on chromosome 6q22–6q23, a locus which displays 

high rates of loss of heterozygosity in breast cancer [199, 200]. 
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An alignment of the three human WISP proteins demonstrated that WISP-1 and WISP-3 are 

the most similar (42% consistencies), whilst WISP-2 has 37% consistencies with WISP-1 and 

32% consistencies with WISP-3. WISP proteins exhibit the molecular architecture of CCN 

family members that are characterised by four conserved and discrete  cysteine-rich domains 

that act both independently and in concert: The N-terminal domain, which includes the first 

twelve cysteine residues, contains a consensus sequence (GCGCCXXC) conserved in most 

insulin-like growth factor (IGF)- binding proteins (BP) (IGF-BP). This sequence is conserved 

in WISP-2 and it has been found that a truncated nov protein lacking the IGF-BP domain in 

chicken embryo fibroblasts was sufficient to induce their malignant transformation [193]. The 

von Willebrand factor type C module (VWC) covers the next ten cysteine residues, and is 

thought to participate in protein complex formation and oligomerisation [201]. A short variable 

region following closely to the VWC domain is highly susceptible to proteolytic degradation 

by matrix metalloproteases (MMPs) [202]. It has been shown that a wide variety of MMPs (1, 

2, 3, 7, 9 ,13) target this central linker region and additional proteases such as elastase and 

plasmin could attack linkers that connect domains 1 and 2 or domains 3 and 4 [203]. The third 

domain, thrombospondin (TSP)  domain is implicated in binding with sulphated glyco-

conjugates and contains six cysteine residues and a conserved WSxCSxxCG motif first 

identified in TSP [204] and necessary for the regulation of endothelial cell proliferation and 

promotion of cell attachment [205, 206]. The C-terminal cysteine knot-like (CT) domain is 

present in all CCN family members described to date while WISP-2-encoded protein lacks this 

domain which is implicated in receptor binding and  dimerisation [207]. These receptors include 

heparin [208] , matrix molecules, integrins and signalling molecules such as Notch 1 and LRP1 

[209].  Because the CT domain is important for receptor binding, WISP-2 may bind its receptor 
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through other domains, like IGFBP domain [198]. Heparin-binding growth factor (HBGFs) 

from pig uterine luminal flushings were finally identified as highly truncated form of CTGF 

and showed that the N-terminal two-thirds of the CTGF primary translation product is not 

required for mitogenic activity or heparin binding, and for mitogenic activity of 10kDa 

truncated form of CTGF is heparin-dependent [208]. Other growth factors, such as platelet-

derived growth factor, TGF-β, and nerve growth factor, which contain a cystine knot motif and 

exist as dimers. It leads to speculation that WISP-1 and WISP-3 may exist as dimers, whereas 

WISP-2 exists as a monomer [189]. This has also led some to hypothesise that WISP-2 might 

act as a dominant negative regulator of other CCN family members [210]. Furthermore, the 

existence of a putative signal sequence in front of the N-terminal IGF-BP domain and the 

absence of a transmembrane domain suggest that WISP proteins are secreted proteins (See 

Figure 1.12) 
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Figure 1.12 Structure of WISP proteins. (A), Exon-intron structure and domain location of 

WISP-2 gene. IGFBP: 37bp, VWC: 61bp, TSP: 44bp. (B), Schematic representation of the 

WISP proteins showing the domain structure. WISP-2 lacks the CT domain. (C), Sequence 

alignment of WISP proteins, identity=33.68%, with DNAman software).  
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1.4.3 WISP-1, WISP-2 and WISP-3 expression and clinical significance in human cancers 

Following the identification of WISP proteins as Wnt1-inducible, a number of researchers 

focused on the roles and regulation for these three family molecules in human disorders, 

especially in cancers.  

 

1.4.3.1 WISP-1, WISP-2 and WISP-3 expression detected jointly in cancer 

Differential expression profiles and prognostic implications of WISP-1, WISP-2, and WISP-3 

were detected in human colorectal cancer [211] and human breast cancer [212]. Davies et al 

found that WISPs may play essential, but reverse, roles in colorectal cancer with WISP-1 

appearing to act as a factor promoting aggressiveness, WISP-2 as a tumour suppressor and 

WISP-3 having no explicitly beneficial or detrimental role. However, in breast cancer, they 

indicated that WISP-1 was thought to act as a tumour suppressor and WISP-2 as a factor that 

promotes aggressiveness; whereas WISP-3 has no precisely beneficial or detrimental role. The 

contrasting roles of WISP-1 and WISP-2 in colorectal and breast cancer implied that their roles 

may be tissue specific. 

  

1.4.3.2 WISP-2 and cancer 

Clinical studies have shown different expression profiles and roles in cancers for WISP-2. The 

inconsistency between the results in multiple cancer types has raised uncertainty concerning 

the role of WISP proteins in carcinogenesis. For example, induction of WISP-2 by IGF-1 or 

EGF is required for the mitogenic action in oestrogen-receptor-positive, non-invasive breast 

tumour cells [213-215], while it acts as a growth arrest specific (gas) gene in vascular smooth 
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muscle cells and prostate cancer cells [216]. In addition, it is most likely that WISP-2 plays a 

preventive role in the progression of pancreatic cancer as it participates in morphological 

alterations from mesenchymal to epithelial transition [112] of pancreatic adenocarcinoma cells 

[217] and breast cancer cells [218]. 

 

The first study in tumour cells was reported in 2000. WISP-2 was found to be markedly 

increased in 17 beta-oestradiol-treated MCF-7 human breast cancer cells compared with control 

cells and was directly regulated by the oestrogen receptor [219]. The induction of secreted 

WISP-2 protein by E2 in culture supernatant was dose-dependent at a certain range [220, 221] 

and thus was believed to be an oestrogen response gene. Soon afterwards, several intensive 

investigations relevant to WISP-2, oestrogen, breast and other cancers (cancer cells) have been 

carried out and, till now, the most studied and controversial was breast cancer. 

 

Breast Cancer 

More than 20 studies from several laboratories suggest that elevated WISP-2 has a particular 

relevance to human breast disease in vitro and in vivo [211, 217, 218, 221-223], and WISP-2 

has been indicated as a useful indicator of breast cancer progression  [223]. In these studies, 

WISP-2 mRNA and protein levels were found to be elevated in different human breast tumour-

derived cell lines, such as MCF-7, ZR-75, T-47D and SKBR2 [222, 224], in node-positive 

breast tumours with metastatic potential and in breast tumours from patients with a poor 

prognosis [211], These studies also showed that WISP-2 was either undetectable or minimally 

detectable in normal breast epithelial cells. Similar reports from Banerjee et al showed that 

WISP-2 was upregulated in non-invasive MCF-7 cells by EGF, and was believed to be linked 

to poor prognosis in breast cancer  [221], Silencing of the function of the WISP-2 gene 
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minimized serum-induced breast tumour cell proliferation  [213]. Banerjee et al found that 

WISP-2 expression in breast samples was biphasic; a marked increase was noted in 

non-invasive breast lesions but a significant decrease was found as cancers progressed from a 

non-invasive to an invasive type [218]. WISP-2 became almost undetectable in poorly 

differentiated cancers when compared with moderately or well-differentiated samples including 

testing with micro-dissected sections. This indicated a possible protective function of WISP-2 

in non-invasive breast tumour cells. In contrast, the same group also reported that in hormone-

related tumours, including breast cancer, the activation of WISP-2 expression by ooestrogen 

promoted cancer progression, and disruption of WISP-2 signalling by use of antisense 

oligomers in MCF-7 cells caused a significant reduction in tumour cell proliferation   [221]. 

 

Pancreatic adenocarcinoma 

Pancreatic adenocarcinoma exhibit greatly decreased levels of WISP-2 expression compared 

with adjacent normal pancreatic tissue and chronic pancreatitis, and the loss of WISP-2 mRNA 

was associated with overexpression of p53. Dhar et al revealed a strong correlation between the 

degree of differentiation and progression of pancreatic adenocarcinoma,  decreased expression 

of the WISP-2 signalling protein indicated that the development of pancreatic adenocarcinoma 

was associated with the silencing of WISP-2 signalling  [217]. It is suggested that WISP-2 may 

have a role in maintaining an epithelial-like phenotype in pancreatic adenocarcinoma cells 

thereby decreasing their invasive potential. 
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Colorectal cancer 

Research has shown that WISP-2 is a potential tumour-suppressor in colorectal cancer. WISP-

2 DNA was amplified in colon tumours, but its transcription was significantly reduced in the 

majority of tumours when compared with that in paired normal colonic mucosa [189]. The gene 

for human WISP-2 was localized to chromosome 20q13, in a region frequently amplified and 

associated with poor prognosis in node-negative breast cancer and colon cancers, suggesting 

the existence of 1 or more oncogenes at this locus  [225, 226]. It is possible that the apparent 

amplification observed for WISP-2 may be caused by another gene in this amplicon [189]. In 

another cohort, comprised of 94 human colorectal tumours and 80 normal colorectal tissues, 

WISP-2 showed a significantly lower level of expression in colorectal cancer cells when 

compared with that in normal cells. Although no significant differences were found within the 

cancer group when indices of a more aggressive tumour were compared with the normal tissue, 

a significant reduction in expression was associated with Dukes' stage, poor differentiation, 

lower TNM stage and node-positive disease  [212]. 

 

Hepatocarcinoma 

Research found that the WISP-2 transcript was not expressed in the 4 hepatocellular carcinoma 

(HCC)-derived cell lines HepG2, HuH-6, HuH-7 and HA22T/VGH  [227], however, 

overexpression of the hepatitis C viral core protein in Huh-7 cells caused up-regulation of Wnt-

1 and WISP-2 and increased proliferation of these cells  [228]. As 1 of the 13 genes activated 

by the Wnt/β-catenin signalling pathway, T-cell transcription factor 4J isoform in HCC cells, 

WISP-2 was also up-regulated in HCC tumours when compared with that in adjacent peri-

tumour tissues  [229]. 
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Skin cancer 

WISP-2 is one of the most abundantly expressed mRNAs of the CCN family members in 

normal human skin. Following exposure to UV irradiation, WISP-2 expression was found to be 

decreased by 50% at 24hrs and returned to a basal level at 48 hrs (37). [230]. 

 

Pituitary tumours 

WISP-2 was found over-expressed in ACTH-secreting pituitary tumours compared with normal 

pituitaries, None- secretory (NS) pituitary tumours and GH-secreting tumours [231].  But there 

was no association between WISP-2 and gender, age at diagnosis, tumour size, altered visual 

field, remission of the disease, or tumour progression in any subtype of the pituitary tumours. 

 

Gastric cancer 

The expression of the 3 WISP molecules in a cohort of 316 cases of human gastric cancers and 

normal gastric tissues were analysed using q-PCR and IHC, respectively, and were correlated 

with the clinic-pathological features and outcome of the patients by our group. Knockdown of 

WISP-2 in human gastric cancer cell lines HGC27 and AGS was also carried out. The WISP 

family of proteins, in particular WISP-2, was a significant independent prognostic indicator for 

gastric cancer patients. WISP-2 knockdown resulted in significant changes in the growth rate 

and in vitro invasiveness, with little effect on the adhesive capability, when compared with its 

transfection controls. This was found to be linked to the MMP activities, mediated by the JNK 

pathway. 
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Table 1.8 Expression and roles of WISP-1, WISP-2 and WISP-3 in cancers compared with corresponding normal tissues. 

  

WISP-1 WISP-2 WISP-3 

Expression Role Ref. Expression Role Ref. Expression Role Ref. 

Colorectal 

cancer  

1) localisation 

2 ) Stimulating 

aggressiveness 

3) Diagnosis and 

prognosis marker 

1)[189] 

2)[212] 

3)[232] 

 

Tumour 

suppressor 

[212] No difference No definable 

beneficial or 

detrimental role 

[212] 

Breast 

cancer  

Tumour 

suppressor 

[211] 
 

Stimulating 

aggressiveness; 

Indicator of 

breast cancer 

progression 

[211, 223] No difference No definable 

beneficial or 

detrimental role 

[211] 

Gastric 

cancer 

      
 

A promising 

prognostic factor 

for gastric cancer  

[233] 

NSCLC 
 

1) Suppressing 

motility and 

invasion 

2) Associated 

with tumour 

histology and 

age 

1)[234] 

 

2) [235] 
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Table 1.8- continued Expression and roles of WISP-2 in cancers compared with corresponding 

normal tissues. 

  WISP-2 

Expression Role Ref. 

Pancreatic 

adenocarcinom

a 

 

Tumour 

suppressor 

[217] 

Hepatocarcino

ma 

No expression, up-regulation caused 

by overexpression of the hepatitis C 

viral core protein 

 [227] 

Skin cancer 
 

Tumour 

suppressor 

[230] 

Pituitary 

tumours 

Upregulation in ACT- secreting 

pituitary tumours  

 [231] 
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1.4.4 Signalling regulation of WISP proteins in cancers 

 

1.4.4.1 WSP-1  

WISP-1 was confirmed by many studies to be a Wnt-1 induced protein, but it was not clear 

whether it was a Wnt/β-catenin pathway regulated target gene [189]. The study of Xu et al not 

only suggested WISP-1 as a downstream target gene transcriptionally activated by Wnt-1 and 

β-catenin, but also demonstrated that Wnt/β-catenin pathway  transcriptional factor TCF/LEF 

sites played only a peripheral role, whilst the CREB site played an essential role in regulating 

the observed β-catenin-dependent transcriptional activation of WISP-1 [236]. Furthermore, 

they indicated that WISP-1 maybe contribute to β-catenin-mediated tumourigenesis. WISP-1 

was deemed to act in an autocrine fashion as its overexpression in normal fibroblasts induces 

morphological transformation, stimulates cell growth, strengthens saturation density, and 

induces tumour formation in a xenograft mouse model [236]. A summary of the signalling 

event is given in Figure 1.13. 

 

1.4.4.2 WISP-2 and signalling 

WISP-2 expression can be regulated by various factors. For example, WNT1 was found to 

regulate WISP-2 in the mouse mammary epithelial cell line C57MG [189]; Similarly, WNT 

signalling-activated aβ-catenin in synovial fibroblasts [237]. In cancer cells, much effort has 

focused on the roles of Wnt signalling, oestrogen signalling, serum and hormones [238]. 
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Figure 1.13 Potential WISP-1 signalling A: Wnt/β-catenin pathway. When there was no Wnt1 

or β-catenin signal, transcription of Wnt/β-catenin pathway target genes was inactivated. B: 

Presence of Wnt1 induces the transcription of WISP-1 through canonical TCF/Lef transcription 

factor activation, while TCF/Lef sites played only a minor role. C: Accumulation of β-catenin 

in the cytoplasm might cause an increase in cAMP levels. Elevated levels of cAMP activate 

protein kinase A [58], which phosphorylates the CREB protein and induces transcription of 

downstream genes through the CREB-binding site.  
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Wnt signalling 

The Wingless (Wg)/Wnt family of secreted signalling molecules and the downstream 

components of Wnt signal transduction are highly conserved among animal species. Canonical 

and non-canonical pathway transductions result in tissue-specific cell survival decisions during 

embryogenesis and regulates cell proliferation as well as proper alignment and bundling of 

actin filaments in adult tissues [228, 239]. Wnt-protein kinase A (PKA) and Wnt- protein 

kinase C(PKC) are both non-canonical Wnt signalling pathways [240]. Treatment with PKA 

[58] activators CT/IBMX induced WISP-2 mRNA expression in the MCF-7 human breast 

cancer cell line by a direct mechanism. Simultaneous treatment with PKC activators, 12-O-

tetradecanoylphorbol-13-acetate (TPA) and oestrogen E2 completely prevented WISP-2 

induction by E2 [241].  The Wnt/β-catenin signalling pathway regulates genes involved in cell 

proliferation, survival, migration and invasion through regulation by T-cell factor (TCF)-4 

transcription factor proteins.  

 

Oestrogen signalling 

Several studies revealed that WISP-2 is oestrogen inducible in human breast cancer MCF-7 

cells and is implicated in tumour cell proliferation [219-221]. Inadera et al found that WISP-2 

induction was highly specific for hormones that interact with the oestrogen receptor in MCF-7 

cells [220]. The oestrogen receptor α (ER-α) appears to be directly responsible for oestrogen 

induction of WISP-2 expression, as cultured human mammary epithelial cells that lack ER-α 

do not respond to oestrogen stimulation. However, stable transfection of ER-α into these cells 

rendered the ability of oestrogen to induce WISP-2 expression [221]. There is some evidence 

to suggest that oestrogen may also function to stabilise WISP-2 mRNA. Banerjee et al reported 

that WISP-2 was upregulated by progesterone (PR) through a PR-dependent mechanism in 
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MCF-7 cells, although the induction of PR was rapid and transient. When used in combination 

with oestradiol, PR acted as an antagonist to inhibit the expression of WISP-2, indicating a 

dual action of PR [221].  In addition, PLK1, a key regulator of cell division, was found to be 

overexpressed in many types of human cancers, mediating ER-regulated gene transcription by 

co-activating WISP-2 and suggesting a mechanism for the tumour-suppressive role of PLK1 

in MCF7 cells as an interphase transcriptional regulator of WISP-2 [242]. 

 

Signalling pathway crosstalk within oestrogen/WISP-2 signalling has also been the subject of 

several investigations. Treatment of MCF-7 cells with TPA completely blocked oestrogen-

induced WISP-2 mRNA transcription [241]. EGF has been shown to induce expression of 

WISP-2 mRNA in MCF-7 cells in a dose- and time-dependent manner and can act 

synergistically with oestrogen to raise WISP-2 expression levels, possibly through the PI3K 

and MAPK signalling pathways [213]. A similar study was carried out by the same group using 

IGF-1 and reported a similar result. IGF-1 induced WISP-2 mRNA expression in a dose- and 

time-dependent manner, and knockdown of WISP-2 abrogated the ability of IGF-1 to stimulate 

MCF-7 cell proliferation. The IGF-1 induction of CCN5 expression was blocked by a pure 

anti-oestrogen drug, but unlike EGF the signalling crosstalk appeared to function through 

PI3K/AKT signalling [214]. 

 

Other regulators: Serum, hormone and transcription factors 

WISP-2 is serum-inducible during the process of mitogen-induced tumour cell proliferation 

[222]. WISP-2 was found to be overexpressed in ACTH-secreting pituitary tumours when 

compared with that in normal pituitaries, NS pituitary tumours and GH-secreting tumours [231], 

However, there were no differences in expression of genes in the canonical and non-canonical 

Wnt pathways between all studied subtypes of pituitary tumours and normal pituitaries. It has 
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been suggested that the elevated glucocorticoid levels observed in ACTH-secreting pituitary 

tumours activate WISP-2 transcription since WISP-2 has a glucocorticoid-responsive region in 

its promoter [243].  The same phenomenon was found in ER-negative breast cancer cells. 

MDA-MB-231 cells exposed to glucocorticoids underwent morphological alterations, 

decreased invasiveness and attenuated expression of mesenchymal markers. These results thus 

indicate that the induction of the WISP-2 gene promoter probably requires the agonist-activated 

glucocorticoid receptor. Taken together, these results indicate that glucocorticoid treatment of 

ER-negative breast cancer cells induces high levels of WISP-2 expression and is accompanied 

by a more differentiated and less invasive epithelial phenotype. These findings propose a novel 

therapeutic strategy for high-risk breast cancer patients [243].   In addition, Stiehl et al found 

that amphiregulin (AREG) and WISP-2 expression was strongly dependent on hypoxia 

inducible factor (HIF-2α and their promoters were particularly responsive to HIF-2α in breast 

cancer. A strong correlation among HIF-2α/AREG/WISP-2 protein levels in breast cancer 

samples provides evidence that the HIF-2α-specific transcriptional pathway could have an 

important role in maintaining a non-invasive phenotype [244], as it has been reported for 

tumours expressing WISP-2 before [218, 245]. 

 

WISP-2 in other pathophysiological processes  

WISP-2 is also very important in many other patho-physiological processes except in cancer 

progression, including apoptosis, anti-proliferation and osteogenic differentiation. Retroviral 

overexpression of rCop-1 (WISP-2) was found to induce apoptosis in transformed rat 

fibroblasts, but was unable to affect normal fibroblasts [246]. Cop-1 mRNA is expressed at 

high levels in quiescent vascular smooth muscle cells (VSMC) and in heparin treated VSMC 

but at low levels in proliferating VSMC, indicating that COP-1 may play a role in the anti-
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proliferative mechanism of action of heparin [246]. Other reports provided functional evidence 

that WISP-2 is a growth arrest-specific gene that is temporally and spatially expressed and can 

inhibit VSMC proliferation, motility, and invasiveness, however, adhesion and apoptosis are 

unaffected by WISP-2 in VSMC [216].  In addition,WISP-2 is  relevant to the  low osteogenic 

differentiation capacity of placenta mesenchymal stromal cells (pMSC) compared with 

mesenchymal stromal cells from bone marrow (bmMSC) [247]. Large-scale analysis of 

transcripts in non-familial, isolated (ACTH) -independent macronodular adrenal hyperplasia 

(AIMAH) confirmed clinical heterogeneity and revealed WISP-2 can be used as clinical 

indices of GIP-dependent AIMAH [248]. 

 

1.4.5 Mechanism  

 

1.4.5.1 WISP-1 

Wnt-induced-secreted-protein-1 (WISP-1 or CCN4) is a member of a family of cysteine-rich, 

glycosylated signalling proteins that play an important role in embryogenesis and 

organogenesis by modulating diverse developmental processes such as the control of cell 

proliferation, cell adhesion, cell polarity and the establishment of cell death pathways (Cadigan 

et al 1997, Dale 1998). WISP-1 is overexpressed in breast (Dong et al 2001), colorectal 

(Pennica et al., 1998) and lung cancers (Soon et al 2003). Furthermore, overexpression of 

WISP-1 has been shown to inhibit the motility, invasiveness and metastasis of H460 lung 

cancer cells grown in culture (Soon et al., 2003). In contrast, overexpression of WISP-1 has 

been reported to inhibit the growth and malignant transformation of NRK-49F fibroblast cells 

grown in culture (Igarashi 1993). Collectively, the results of these studies suggest that WISP-

1 expression varies between, and within, various types of human solid malignancies and that 

overexpression of WISP-1 may suppress tumour progression, invasion and metastasis or 
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promote differentiation. However, previously there have been no published studies on the 

expression WISP-1 in prostate cancer. 

 

Motility and invasion: Overexpression of WISP-1 inhibited invasion and motiliuty of lung 

cancer cells through suppression of Rac activation [234]. 

 

Effect of indomethacin on Bfl-1: The influence of  WISP-1 and proliferating cell nuclear antigen 

on colon cancer cell line HCT116 cells [249] 

 

1.4.5.2 WISP-2 with proliferation, motility, invasiveness, adhesion and EMT 

In vitro and in vivo studies have indicated the potential roles of WISP-2 in regulating cell 

proliferation, motility, invasiveness, adhesion and EMT. 

 

Proliferation 

Overexpression of WISP-2 has been shown to inhibit serum-induced proliferation of highly 

invasive ER-negative breast cancer cell line MDA-MB-231 [245]. However, in the less 

invasive ER-positive MCF-7 cell line, the effect of WISP-2 is not consistent. Some have 

suggested an inhibitory role in serum-induced proliferation of MCF-7 cells (51). Others have 

suggested a promoting role in MCF-7 cell proliferation [245]. Moreover, the ability of PMA, 

EGF or IGF-1 alone to induce MCF-7 cell proliferation was blocked by WISP-2 knockdown 

[221] or had no effect [218]. Knockdown of WISP-2 in MCF-7 cells was found to eliminate 

the oestrogen-dependent growth requirement of these cells. More studies are needed to clarify 

the biochemical and biological basis of the contrasting role of WISP-2 in these cells. 
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Motility, invasiveness, and metastasis 

Overexpression of WISP-2 was found to inhibit both motility and invasiveness in the highly 

aggressive breast carcinoma cell line, MDA-MB-231 [245]. The inhibitory effect of WISP-2 

on motility was also observed in MCF-7 cells where knockdown of WISP-2 expression 

increased the IGF-1-induced motility of MCF-7 cells. WISP-2 knockdown in MCF-7 cells also 

induced expression of pro-motility enzymes such as MMP-2 and -9 [218, 245]. Induced mutant 

p53 overexpression in MCF-7 cells resulted in increased invasiveness which was inhibited by 

treatment with recombinant WISP-2 protein [250]. 

 

Adhesion 

Little is known concerning the role of WISP-2 in cell adhesion. Kumar et al observed that 3 

different osteoblastic cell lines, primary human osteoblasts, osteosarcoma MG63 cells, and rat 

osteoblast-like osteosarcoma Ros 17/2.8 cells, attached to immobilized CCN5 in a dose-

dependent manner [198]. Recent data from our laboratory revealed that WISP-2 knockdown in 

gastric cancer cells resulted in little effect on the adhesive capability, compared with its 

transfection controls  [251]. 

 

EMT: Epithelial-mesenchymal transition 

Phenotypical alterations including EMT are a hallmark of the progression of cancer and provide 

a new basis for understanding the progression of cancer toward a more malignant state. 

Mesenchymal cells are also implicated in the formation of epithelial organs through 

mesenchymal-epithelial transition [112]. Cellular plasticity, the ability to undergo EMT and 

subsequently MET in the appropriate microenvironments are key features of a successful 

metastatic cell [252]. The process of EMT plays an important role during foetal, postnatal 
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development, invasion and metastases and is regulated by transcription factors such as Twist1, 

Snai1 and Slug, which inhibit E-cadherin expression [253]. 

 

Current evidence suggests that WISP-2 may suppress EMT in different cancers and that EMT 

in turn can suppress WISP-2 expression. Human pancreatic adenocarcinoma is associated with 

the silencing of WISP-2/CCN5 signalling. Functional analysis studies demonstrated that 

exposure of pancreatic cancer MIA-PaCa-2 cells to WISP-2 recombinant protein for 48hrs 

markedly altered the phenotype of these cells from a spindle shape (mesenchymal type) to a 

cobblestone-like shape (epithelial type) and also markedly reduced the expression of vimentin, 

a mesenchymal marker, in these cells, suggesting that WISP-2 may play a critical role in 

reversing EMT (or inducing MET) [217]. Although mitogen-induced up-regulation of WISP-

2 participates in cell proliferation events of ER-positive breast cancer cells, the basal level of 

WISP-2 does not exert a mitogenic response in these cells [213-215], Instead, it protects cells 

from gaining invasive phenotypes. For example, silencing of WISP-2 in MCF-7 non-invasive 

carcinoma cells significantly enhanced motility and EMT, and it modulated the expression of 

several genes associated with invasive phenotypes of cancer cells [218, 245, 250, 254], while 

ectopic Snail expression suppressed WISP-2 transcripts and down-regulated WISP-2 gene 

promoter expression in transfected cells [254]. In WISP-2-knockout ER-α-positive breast 

cancer cells, IGF-1 and EGF lost their mitogenic effect [213, 214] but possibly gained 

aggressive phenotypes. Sabbah et al showed that WISP-2 silencing promoted EMT via 

activation of the TGF-β signalling cascade known to promote EMT in breast cancer [255]. 

Recently, Ferrand et al discovered that glucocorticoid treatment of ER-negative breast cancer 

cells induced high levels of WISP-2 expression and this was accompanied by marked changes 

in the cellular morphology. Cells were found to grow as groups of flattened cells consistent 

with a normal epithelial cell phenotype. This morphological change was correlated with a 
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reduction in cell motility and invasion, characteristic of a more differentiated and less invasive 

epithelial phenotype. Meanwhile, WISP-2 expression repressed cadherin 11, vimentin and 

ZEB1 expression [243]. 

 

1.4.5.3 WISP-3 

In humans the Wnt-induced secreted protein 3 (WISP-3/CCN6) appears to be involved in 

skeletal growth and cartilage homeostasis and a relationship has been observed between 

functional mutations of CCN6 and progressive pseudo-rheumatoid dysplasia (Hurvitz et al 

1999). There is also evidence to suggest that WISP-3/CCN6 acts as a tumour suppressor gene 

in breast cancer (Kleer et al 2004 and 2005). In contrast, in colorectal cancer, WISP-3 appears 

to function as an oncogene (Pennica 1998). However, the role of WISP-3 in prostate cancer 

has yet to be investigated. 

 

1.4.6 A summary of WISP-2 in cancer 

WISP-2 is a unique member of the CCN family that lacks the CT domain and exhibits different 

functions in multiple cellular processes. However, similar to the other CCN family members, 

WISP-2 is a protein with important roles in embryonic development, normal cell function and 

disease, particularly in cancers. The functions of WISP-2 in human cancers include effects on 

cell proliferation, adhesion, motility, invasiveness, metastasis and epithelial-mesenchymal 

transition (EMT); however these functions are dependent upon the cell and tissue type and the 

microenvironment. Several independent studies have shown the expression pattern of WISP-2 

and a link with patient clinical course in breast cancer, pancreatic cancer, hepato-carcinoma, 

colorectal and gastric cancer. However, the results are inconsistent and somewhat conflicting 
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in certain tumour types. Further clinical research requires studies using larger clinical cohorts 

and scientific investigation into the cellular functions in more than 2 cell lines together, which 

would allow for more powerful statistical conclusions and further insight into the action of 

WISP-2. Studies to decipher the myth of its domain binding in relation to the differential 

response in different cell types to different stimuli would also be important. Together, WISP-

2 is a potential regulator and a novel therapeutic target in cancer and warrants further 

investigation at the cellular and clinical levels. 
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1.5 Aims and objects 

The aims of this study were: 

1. To screen and identify the expression profiles of WISP family members, WISP-1, WISP-2 

and WISP-3 on mRNA and protein levels in gastric cancer and normal gastric mucosa and 

carry out a clinical cohort study. 

2. To investigate the expression of EMT markers and the association with WISP-1, WISP-2 

and WISP-3 in paired gastric cancer tissues and normal gastric mucosa 

3. To construct hammer-head ribozyme transgenes targeting human WISP-2 and establish 

WISP-2 knockdown cell lines for examining the influence of WISP-2 on the biological 

functions of cancer cells. 

4. To understand how WISP-2 regulates growth, motility and invasiveness in gastric cancer, 

and to elucidate the potential pathways involved in the effect by WISP-2 using small inhibitors. 
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Chapter 2 

 

 

Methodology 
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2.1 Materials 

 

2.1.1 Cell lines 

Two gastric cell lines, AGS and HGC27 [256] were acquired from the European Collection of 

Animal Cell Culture (ECACC, Salisbury, UK) and used in this study. Full details of these two 

cell lines are supplied in Table 2.1. Cells were maintained in DMEM-F12 medium 

supplemented with 10% foetal bovine serum (FBS) and antibiotics. 

  

2.1.2 Collection of human gastric cancer and adjacent gastric tissues 

Fresh tissue samples were collected immediately after surgery at Peking University Cancer 

Hospital and stored in liquid nitrogen and then transferred to a -80°C freezer at Peking 

University Cancer bank until use. The collection took place between 2004 and 2007, with 

approval of the ethics committee of Peking University Cancer Hospital. All patients were 

informed and participated with written consent being obtained. All the specimens were verified 

by two consultant pathologists. Clinical and pathological information was collected and 

centrally stored in the Cancer Bank's database. Fellow up was carried out routinely in the clinics 

of Peking Cancer Hospital. 

 

2.1.3 Primers 

All the primers used in the current study were designed with the use of the Beacon Design 

Programme (Biosoft International, Palo Alto, California, USA) and were synthesised by either 

Invitrogen (Paisley, UK) or Sigma (Poole, Dorset, UK). Details of the primers used for 

conventional RT-PCR and Quantitative PCR (qPCR) are provided in Table 2.2. Details of the 

primers used for generating hammerhead ribozymes and testing orientation of inserts in ligation 

are found in Table 2.3. 
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2.1.4 Antibodies 

2.1.4.1 Primary antibodies 

Full details of primary antibodies used in this study are provided in Table 2.4. 

2.1.4.2 Secondary antibodies   

The secondary antibodies used for Western blotting were horseradish peroxidase (HRP) 

conjugated anti-goat IgG, goat anti-rabbit IgG, and rabbit anti-mouse IgG antibodies, all 

supplied by Sigma (Poole, Dorset, UK). 

 

Table 2.1 Details of cell lines used in the current study. 

Cell   

line 

Origin Cell 

moprphology 

Tissue type Features 

AGS derived from an 

adenocarcinoma of the 

stomach of a 54 year-

old Caucasian female 

with no prior anti-

cancer treatment 

epithelial adenocarcinoma isolation date:1979 

growth:adherent 

organ:stomach 

Doubling time: 20 

hours 

HGC27 derived from an 

metastatic lymph node 

of a Japanese gastric 

cancer patient 

diagnosed 

histologically as 

undifferentiated 

carcinoma. 

epithelial lymph node of 

undifferentiated, 

mucinous 

adenocarcinoma 

isolation date:1976 

growth:adherent 

organ:stomach 

Doubling time:   17 

hours 
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Table 2.2 Primers for conventional RT-PCR and Q-PCR (Primers were designed using 

Beacon Design programme (Palo Alto, California, USA) and were synthesised by Invitrogen 

(Paisley, UK) and Sigma (Poole, Dorset, UK)).  

Gene Primer name Primer sequence (5’-3’) 

WISP-1 WISP-1F CAAGAGGCCACGCAAGAC 

WISP-1ZR ACTGAACCTGACCGTACAGTAGGCTATGCAGTTCCTGT 

WISP-2 WISP-2F AGTGGGGCTGGAAGGTCT 

WISP-2ZR ACTGAACCTGACCGTACACTCTTGGCAGAGGACGAC 

WISP-3 WISP-3F ACAAAACAAATGCCAGCTTAT 

WISP-3ZR ACTGAACCTGACCGTACACATTGGTCACCCTGTTAGAT 

CK19 CK19-F CAGGTCCGAGGTTACTGAC 

CK19-ZR ACTGAACCTGACCGTACACACTTTCTGCCAGTGTGTCT

TC 

GAPDH GAPDHF8 GGCTGCTTTTAACTCTGGTA 

GAPDHR8 GACTGTGGTCATGAGTCCTT 

GAPDH GAPDHF2 CTGAGTACGTCGTGGAGTC 

GAPDHZR2 ACTGAACCTGACCGTACACAGAGATGATGACCCTTTTG 

PDPL 
PDPL-F  

PDPL-ZR  

E-

cadherin 

E-cadherinF22 CAGGCGCCACACACATTTAT 

E-

cadherinZR22 

ACTGAACCTGACCGTACAGTTCTTCACGTGCTCAAAAT 

N-

cadherin 

N-cadherinF22 CAACGACGGGTTAGTCAC 

N-

cadherinZR22 

ACTGAACCTGACCGTACAGCTAATGGCACTTGATTTTC 

Snail SnailF11 CGCTCTTTCCTCGTCAG 

SnailZR11 ACTGAACCTGACCGTACACTGCT 

Slug SlugF12 CGAACTGGACACACATACAG 

SlugZR12 ACTGAACCTGACCGTACAGGATCTCTGGTTGTGGTATG 
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Table 2.2 continued to Primers for conventional RT-PCR and Q-PCR. 

Zeb1 Zeb1F1 CTTGTGATTTGTGTGACAAGA 

Zeb1ZR1 ACTGAACCTGACCGTACAATGCCTTTTTACAGATTCCA 

Twist TwistZF11 ACTGAACCTGACCGTACAACCCAGTCTCTGAACGAG 

TwistR11 GAGGACCTGGTAGAGGAAGT 

Vimenti

n 

VimentinF1 ATACCAAGACCTGCTCAATG 

VimentinZR1 ACTGAACCTGACCGTACAAGAGAAATCCTGCTCTCCTC 

Zol ZolF TGGGTATGACACATGGTA 

ZolZR ACTGAACCTGACCGTACAGGTGGTACTTGCTCGTAA 

DDR2 DDR2F1 GTGTCAATACCATTTTGCAG 

DDR2ZR1 ACTGAACCTGACCGTACAAGGGCTTCAGAGTTGTTGTA 

Fsp1 Fsp1F1 AGAACTAAAGGAGCTGCTGA 

Fsp1ZR1 ACTGAACCTGACCGTACACAGGACAGGAAGACACAGTA 

MMP1 

MMP1F1 GGATGCTCATTTTGATGAAG 

MMP1ZR ACTGAACCTGACCGTACATAGAATGGGAGAGTCCAAGA 

MMP-2 

MMP-2F1 TTTGATGACGATGATGAGCTATG 

MMP-2R1 TGCAGCTCTCATATTTGTTG 

MMP3 

MMP3F2 TCATTTTGGCCATCTCTTCC 

MMP3R2 GTGCCCATATTGTGCCTTCT 

MMP7 

MMP7F3 CTACAGTGGGAACAGGCTCAG 

MMP7ZR ACTGAACCTGACCGTACAATCTCCTTGAGTTTGGCTTC 

MMP-9 

MMP-9F1 AACTACGACCGGGACAAG 

MMP-9R1 ATTCACGTCGTCCTTATGC 
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Table 2.3 Primers used for generating hammerhead ribozymes and testing orientation of inserts 

in ligation. 

Gene 

Primer 

name Primer sequence (5’-3’) 

WISP-2 

Ribozyme 1 

WISP-2 

Rib1F CTGCAGGAGGCAGAGGAGGGACTGATGAGTCCGTGAGGA 

WISP-2 

Rib1R ACTAGTACCCACCTCCTGGCCTTTTCGTCCTCACGGACT 

WISP-2 

Ribozyme 2 

WISP-2 

Rib2F CTGCACTCCTCGCAGCGGCAGCGCRGATGAGTCCGTGAGGA 

WISP-2 

Rib2R ACTAGTTCCAGCCCCACTGCAGCATTTCGTCCTCACGGACT 

pEF/His 

TOPO TA 

plasmid 

vector 

T7F TAATACGACTCACTATAGGG 

BGHR TAGAAGGCAGTCGAGG 

Ribozyme 

clone 

verification 

RbBMR TTCGTCCTCACGGACTCATCAG 

RbTPF CTGATGAGTCCGTGAGGACGAA 
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Table 2.4 Primary and secondary antibodies used in the present study. 

Antibody name 

Molecular 

weight (kDa) Supplier Product code 

Rabbit anti-WISP-

2 (for WB) 26 

SANTA CRUZ 

Biotechnology SC-25443 

Mouse anti-

GAPDH(for WB) 36 

SANTA CRUZ 

Biotechnology SC-47724 

Rabbit anti-WISP-

1 (for IHC) -- Abcam AP6255a 

Rabbit anti-WISP-

2 (for IHC) -- Abcam AP6256a 

Rabbit anti-WISP-

3 (for IHC) -- Abcam AP6257a 

Rabbit anti-JNK 44/48 

SANTA CRUZ 

Biotechnology SC-571 

Mouse anti-p-JNK 44/48 

SANTA CRUZ 

Biotechnology SC-6254 

Rabbit anti-

ERK1/2 42/44 

SANTA CRUZ 

Biotechnology SC-93 

Mouse anti-p-

ERK1/2 42/44 

SANTA CRUZ 

Biotechnology SC-136521 

 

Rabbit anti-

mouse(whole 

molecule) IgG 

peroxidase 

conjugate 

Dependent on 

primary Sigma-Aldrich A-9044 

 

Goat anti-rabbit 

(whole molecule) 

IgG peroxidase 

conjugate 

Dependent 

on primary Sigma-Aldrich A-9169 

 

Rabbit anti-goat 

(whole molecule) 

IgG peroxidase 

conjugate 

Dependent 

on primary Sigma-Aldrich A-5420 
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2.2 Standard reagents and solutions 

 

2.2.1 Solutions for use in cell culture 

0.05M EDTA 

One gram of KCl (Fisons Scientific Equipment, Loughborough, UK), 5.72g Na2HPO4 (BDH 

Chemical Ltd., Poole, England, UK), 1g KH2PO4 (BDH Chemical Ltd., Poole, England, UK), 

40g NaCl (Sigma-Aldrich, Inc., Poole, Dorset, England, UK) and 1.4g EDTA (Duchefa 

Biochemie, Haarlem, The Netherlands) were dissolved in 5L distilled water, adjusted pH value 

to 7.4, autoclaved, and stored until use. 

 

Trypsin (25mg/ml) 

Five hundred milligrams of trypsin were dissolved in 0.05M EDTA and then filtered through 

a 0.2μm minisart filter (Sartorius, Epsom, UK). This solution was aliquoted and stored at -

20⁰C until further use. When trypsin was required for cell culture work, 250μl of the trypsin 

stock was diluted in 10ml 0.05M EDTA and used to detach the cells. 

 

Balanced Saline Solution (BSS) 

Seventy-nine point five grams of NaCl, 2.1g KH2PO4, 2.2g KCl and 1.1g of Na2PO4 were 

dissolved in 10L of distilled water, and the pH value was adjusted to 7.2 using NaOH (Sigma-

Aldrich, Inc., Poole, Dorset, England, UK). 
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100X Antibiotics 

Five grams of streptomycin, 3.3g penicillin and 12.5mg amphotericin B in DMSO were 

dissolved in 0.5L of BSS and filtered. 5ml of the antibiotics was then added to a 500ml bottle 

of DMEM medium. 

 

2.2.2 Solutions for use in molecular biology 

 

Tris-Boric-Acid-EDTA (TBE) 

TBE solution (5X) (1.1M Tris; 900mM Borate; 25mM EDTA; pH 8.3) was made by dissolving 

540g Tris-HCl (Melford Laboratories Ltd, Suffolk, UK), 275g Boric acid (Melford 

Laboratories Ltd, Suffolk, UK) and 46.5g of EDTA in 10L of distilled water. The pH was 

adjusted to 8.3 using NaOH and then stored at room temperature. It was diluted in distilled 

water to 1X TBE for preparing agarose gels and DNA electrophoresis. 

 

DEPC water 

Two hundred and fifty millilitres of Diethyl Pryoncarbonate (DEPC) (Sigma-Aldrich, Inc., 

Poole, Dorset, England, UK) was added to 4.75ml of distilled water and then autoclaved . 

 

Loading buffer (used for DNA electrophoresis) 

Twenty-five milligrams of bromophenol blue (Sigma-Aldrich, Inc., Poole, Dorset, England, 

UK) and 4g sucrose (Fisons Scientific Equipment, Loughborough, UK) were dissolved in 10ml 

of distilled water and stored at 4°C. 
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Sybgreen staining 

Five microliter of Sybgreen stain was added to 100 ml of distilled water and used to stain 

agarose gels for half to one hour on a horizontal shaker. 

 

2.2.3 Solutions for gene cloning 

LB agar 

LB agar was prepared by dissolving 10g tryptone (Duchefa Biochemie, Haarlem, Netherlands), 

5g yeast extract (Duchefa Biochemie, Haarlem, Netherlands), 15g agar, and 10g NaCl, in 1L 

of distilled water then adjusting the pH to 7.0 and autoclaving the solution. The solution was 

melted, antibiotics added and the solution poured into 10cm2 Petri dishes (Bibby Sterilin LTd., 

Staffs, UK). These dishes of agar were left to cool and harden, inverted and stored at 40C before 

use. 

 

LB broth 

Ten grams tryptone, 10g NaCl and 5g yeast extract were dissolved in 1L of distilled water. The 

pH of the solution was adjusted to 7.0 and then autoclaved. After cooling down, antibiotics 

were added and the solution stored at 4°C until use. 

 

2.2.4 Solutions for Western blot 

Lysis Buffer 

This was made up by dissolving NaCl 150mM (8.76g), Tris 50mM (6.05g), Sodium azide 0.02% 

(200mg), Sodium deoxycholate 0.5% (5g), Triton X-100 1.5% (15ml), Aprotinin 1μg/ml (1mg), 

Na3VO4 5mM (919.5mg), Leupeptin 1μg/ml (1mg) in 1 litre of distilled water. The solution 

was then stored at 4°C for further use.  



The role of WISPs in Gastric Cancer  2015 PhD 

96 

 

10% Ammonium Persulphate (APS) 

One gram APS was dissolved in 10ml distilled water and then stored at 4oC for further use. 

 

Tris Buffered Saline (TBS) 

10X TBS (0.5M Tris, 1.38 M NaCl, pH 7.4) was prepared by dissolving 24.228g of Tris and 

80.06g of NaCl (Melford Laboratories Ltd., Suffolk, UK) in 1L of distilled water to provide a 

stock solution. The pH was adjusted to 7.4 using HCl and stored at room temperature. 

 

Running buffer (10X) (for SDS-PAGE) 

Ten times running buffer (0.25M Tris, 1.92M glycine, 1% SDS, pH8.3) was prepared by 

dissolving 303g Tris, 1.44kg of glycine (Melford Laboratories Ltd., Suffolk, UK) and 100g 

SDS (Melford Laboratories Ltd., Suffolk, UK) in 10L distilled water. Prior to use this solution 

was diluted to 1X running buffer with distilled water. 

 

Transfer buffer 

Fifteen point five grams of Tris and 72g glycine were dissolved in 4L distilled water. 1L of 

methanol (Fisher Scientific, Leicestershire, UK) was added to make a final volume of 5L. 

 

Blocking milk 

Two gram of skimmed milk was added into 1000 ml of TBS with 0.1% Tween 20. The solution 

was mixed fully on a roller mixer (Stuart, Wolf-Laboratories, York, UK). 

 

Ponceau S stain 

Supplied by Sigma. 
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Luminata fotre western HRP substrate 

Supplied by Millipore. 

 

2.2.5 Solutions for use in immunocytochemical staining 

Secondary antibody 

Supplied by DAKO. 

 

Diaminobenzidine [42] chromagen 

Two drops (approximately 50μl) of wash buffer, 4 drops of DAB (Vector Laboratories, Inc., 

Burlingame, USA) and 2 drops of H2O2 were added to 5ml of distilled water and mixed well 

before use. 

 

2.2.6 Solutions for use in gelatine zymography 

Wash buffer 

This was made up by 2.5% Triton X-100 and 0.02% NaN3. 

 

Incubation buffer 

This was made up by 50mM Tris-HCl, 5mM CaCl2 and 0.02% NaN3. The pH was adjusted to 

8.0 and stored at room temperature. 

 

Destain buffer 

This was made up by 100ml Acetic acid and 250ml Ethanol in 1 litre of distilled water. 
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2.3 Cell culture, maintenance, and storage 

 

2.3.1 Preparation of growth media and cell maintenance 

• Dulbecco’s Modified Eagle’s medium (DMEM/ Ham’s F-12 with L-Glutamine; Sigma-

Aldrich, Inc., Poole, Dorset, England, UK), pH 7.3 containing 2mM L-glutamine and 4.5mM 

NaHCO3, supplemented with 10% heat inactivated Foetal Bovine Serum (Sigma-Aldrich, Inc., 

Poole, Dorset, England, UK) and antibiotics, was used to routinely culture the cells. 

• Cell lines transfected with the pEF6/His plasmid or constructed plasmid vectors were 

subjected to a selection period of 2 weeks using 5-7.5μg/ml blasticidin (Melford laboratories 

ltd, Suffolk, UK), the resultant transfectants were then cultured in medium supplemented with 

0.5μg/ml blasticidin for maintenance purposes. The transfectants were then verified and used 

for subsequent studies. 

• All the cell lines were cultured in 25cm2 and 75cm2 culture flasks (Greiner Bio-One Ltd, 

Gloucestershire, UK) with a loosed cap in an incubator at 37°C, 95% humidity, and 5% CO2. 

• Cell confluence was visually measured with a light microscope and the percentage of cells 

covering the surface of the tissue culture flasks was estimated. If needed for experimental work, 

the cells were left to grow until they reached sub-confluency (2-3 days). All handling of cells 

was carried out using a Class II Laminar Flow Cabinet with autoclaved and sterile equipment 

(manufacturor). Cells were routinely sub-cultured when they had reached a confluency of 80-

90% as explained in section 2.3.2. 

 

2.3.2 Trypsinisation (detachment) of adherent cells and cell counting 

Once the cells had reached a confluency of approximately 80-90%, the medium was aspirated 

and the cells briefly rinsed with sterile EDTA BSS buffer in order to remove any remaining 

serum which would have an inhibitory effect on the action of trypsin. 
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• Adherent cells were then detached from the tissue culture flask using 1-2ml of Trypsin/ EDTA 

(0.01% trypsin and 0.05% EDTA in BSS buffer) and incubating the cells at 370C for 

approximately 5 minutes. 

• Once detached, the cell suspension was then collected into 30ml universal containers (Greiner 

Bio-One Ltd, Gloucestershire, UK) and centrifuged at 1,780rpm for 8 minutes in order to 

collect the cell pellet. 

• The supernatant was removed and the cell pellet resuspended in an appropriate amount of 

medium. Cells were either counted for immediate use in experiments, or transferred into fresh 

tissue culture flasks for re-culturing. 

• Cells were counted with a Neubauer haemocytometer counting chamber (Mod-Fuchs 

Rosenthal, Hawksley, UK) using a light microscope at a magnification of 10 x 10 (Reichert, 

Austria). A haemocytometer allows for the calculation of the number of cells in a 

predetermined volume of fluid in order to obtain the quantity of cells per millilitre, and an 

accurate estimation of cell density for use in in vitro and in vivo cell function assays. 

• The haemocytometer chamber is divided into 9 squares with dimensions of 1mm x 1mm x 

0.2mm. For consistency of cell density, five of these 9 squared areas were counted. This 

allowed for determination of cell number by using the following equation: 

Cell number/ml= (number of cells in five of nine squares÷ 10) x (1 x 104). 

 

2.3.3 Storing cells in liquid nitrogen and cell resuscitation 

Cell stocks of low passage number that needed to be stored were done so in liquid nitrogen. 
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• Cells were trypsinised as described in section 2.3.2 and resuspended in medium with 10% 

Dimethylsulphoxide (DMSO; Fisons, UK) at a cell density of 1x106cells/ml. 

• This cell suspension was then divided into 1ml aliquots and transferred into pre-labelled 1ml 

CRYO.STM tubes (Greiner Bio-One, Germany) and the tubes were wrapped in protective 

tissue paper, stored overnight at -80°C, and then transferred to liquid nitrogen tanks for long 

term storage. 

• In order to resuscitate the cells, they were removed from liquid nitrogen and left to rapidly 

thaw before being transferred into a universal container containing 5ml pre-warmed medium 

and incubated for 10 minutes at 37°C. 

• This was followed by centrifugation at 1,600 rpm for 5 minutes to remove any excess DMSO, 

before resuspending the cells in 5ml medium. The cell suspension was then transferred into a 

fresh 25cm2 tissue culture flask and kept in an incubator. 

 

2.4 Methods for RNA detection 

 

2.4.1.1 Total RNA isolation 

• The protocol followed for RNA isolation was using the Tri Reagent kit (Sigma-Aldrich, Inc., 

Poole, Dorset, England, UK). 

• For cells: cells were grown in a monolayer of 85-90% confluency before the medium was 

aspirated and replaced with TRI reagent (1ml per 5-10 x 105 cells), in order to induce cell lysis. 

•For tissues: tissues were taken out from -80°C refrigerator and put into liquid nitrogen 

immediately and homogenized with a liquid nitrogen-precooled ceramic mortar and pestle. 
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• The homogenate was transferred into a 1.5ml eppendorf tubes, and incubated at 4°C for 5 

minutes. 

• This was followed by the addition of 0.2ml (per 1ml of TRI reagent) chloroform (Sigma-

Aldrich, Inc., Poole, Dorset, England, UK), 15 seconds of shaking, and incubation at 4°C for 5 

minutes. 

• The resulting homogenate was centrifuged at 12,000rpm for 15 minutes at 4°C (Boeco, Wolf 

laboratories, York, UK). Under these acidic conditions, the homogenate separated into three 

phases; a lower pink organic phase containing protein, an inter phase containing DNA, and an 

upper aqueous phase containing RNA. 

• The aqueous phase should constitute around 40-50% of the total volume, and was carefully 

transferred into a fresh 1.5ml eppendorf tube, then an equal volume of isopropanol was added 

(Sigma-Aldrich, Inc., Poole, Dorset, England, UK) and incubated for 10 minutes at 4°C. After 

centrifuging the samples at 12,000rpm for 10 minutes at 4°C, the RNA precipitated as a white 

pellet on the bottom of the eppendorf tube. 

• The supernatant was discarded, and the RNA pellet was washed twice with 75% ethanol 

(Fisher Scientific, Leicestershire, UK) in DEPC water. Each wash was carried out by adding 

1ml 75% ethanol, vortexing and centrifuging the samples at 7,500rpm for 5 minutes at 4°C. 

• After the final wash, the RNA pellet was briefly dried at 55°C for 5-10 minutes, in a Techne 

Hybridiser HB-1D drying oven (Wolf laboratories, York, UK), to remove any remaining traces 

of ethanol. 

• The final step was to dissolve the RNA pellet in 50-100μl (dependent on pellet size) of DEPC 

water. DEPC was used as it is a histidine specific alkylating agent and inhibits the effect of 

RNAases, which require histidine active sites to carry out their function. 
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2.4.2 RNA Quantification 

• Once RNA isolation was completed, the concentration and purity of the resulting RNA was 

measured with the use of a UV1101 Biotech Photometer (WPA, Cambridge, UK). This 

spectrophotometer had been previously set to detect single strand RNA (μg/μl) at a dilution of 

1:10, measuring the difference of absorbance between the RNA sample and DEPC water at a 

wavelength of 260nm. 

• By using a ratio of A260nm/A280nm, an estimation of the purity of the RNA was determined. 

Pure RNA reaching an optical density of 2.0, and RNA contaminated with ethanol or protein, 

reaching optical density values less than 1.5. 

• The samples were measured using Starna glass cuvettes (Optiglass limited, Essex, UK). The 

RNA samples were used immediately for reverse transcription (RT) or placed at -80°C for long 

term storage. 

 

2.4.3 Reverse Transcription--- from RNA to cDNA 

Reverse transcription (RT) is a simple and sensitive technique for mRNA analysis and acts as 

an enhanced and more rapid alternative to the more conventional methods of RNA examination. 

• In this study, RT was carried out by converting 0.5μg/μl of RNA into complementary DNA 

(cDNA) using the iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, California, USA). 

The protocol carried out is outlined below: 

• Each reaction was set up in thin-walled 200μl PCR tubes (ABgene, Surrey, UK) as follows: 
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Component Volume per reaction 

5X iScript Reaction Mix 4μl 

iScript Reverse Transcriptase 1μl 

Nuclease-free water xμl 

RNA template (0.5μg/μl) xμl 

Total Volume 20μl 

 

• The complete reaction was mixed and then incubated in a T-Cy Thermocycler (Creacon 

Technologies Ltd, The Netherlands) at the following temperatures: 

5 minutes at 25°C 

30 minutes at 42°C 

5 minutes at 85°C 

• Once the process was completed, the cDNA was diluted at the ratio of 1:4 or 1:8 with PCR 

water, and either used immediately as a template for conventional PCR, or stored at -20°C for 

further use. 

 

2.4.4 Polymerase Chain Reaction (PCR) 

The Polymerase Chain Reaction (PCR) was initially devised in 1983 by Karey Mullis as a 

method for detecting and amplifying a specific target sequence of nucleic acids. 



The role of WISPs in Gastric Cancer  2015 PhD 

104 

 

• In this study, a particular gene of interest was amplified by PCR using the GreenTaq™ 

ReadyMix PCR Reaction mix (Sigma-Aldrich, Inc., Poole, Dorset, England, UK). The 

reactions were set up in PCR tubes in aliquots of 16μl as follows: 

Component Volume 

cDNA template 2μl 
Forward primer 1μl(working concentration of 1 μM) 
Reverse primer 1μl(working concentration of 1 μM) 

2X green TaqTMReadyMix 8μl 
PCR H2O 4μl 

 

A negative control containing PCR water instead of the template (cDNA) was run alongside 

the test samples to ensure there was no contamination. 

• The PCR reactions were then briefly mixed before being placed in a 2720 Thermo Cycler 

(Applied Biosystems) set to the following conditions; 

Initial denaturation: 94°C for 5-10 minutes 

Followed by 28-36 cycles of: 

Denaturation: 94°C for 30 seconds 

Annealing: gene/primer specific temperature (55 °C) for 30 seconds 

Extension: 72°C for 40 seconds 

And finally: 

Final extension: 72°C for 7-10 minutes 

The cycling conditions were dependent on different sets of primers and the size of the PCR 

products. 



The role of WISPs in Gastric Cancer  2015 PhD 

105 

 

• The products were stained with Sybrgreen and visualised using an agarose gel electrophoresis 

system (section 2.4.5). In order to demonstrate a representative and reliable expression pattern, 

each RT-PCR was repeated at least three times. 

 

2.4.5 Agarose gel electrophoresis and DNA visualisation 

Agarose gel electrophoresis is the simplest and the most common method of DNA separation 

and analysis. It works by using an electrical current to separate the amplified DNA according 

to charge and size. Depending on the product size, the samples were either run on a 0.8% 

agarose gel (used for large DNA fragments 1-10kb) or a 2% gel (used for smaller fragments 

less than 1kb). 

• The agarose gels were prepared by adding the required amount of agarose (Melford 

Chemicals, Suffolk, UK) to 400ml of (1x) TBE solution before being heated to completely 

dissolve the agarose. An appropriate amount of this solution was then poured into 

electrophoresis cassettes (Scie-Plas Ltd., Cambridge, UK) containing well forming combs, 

before the gel was left to set at room temperature for 30-40 minutes. 

• Once the gel was set, (1X) TBE buffer was poured over the gel until it reached to a level of 

5mm above the gel surface. The comb was removed, and approximately 5μl of 1Kb DNA 

ladder (Cat No. M106R; GenScript USA Inc.), or 8-10μl of each PCR reaction, was loaded into 

the well by placing the gel loading tip just over the well and dispensing the product into it. 

• A power pack (Gibco BRL, Life Technologies Inc.) was then used to run the samples 

electrophoretically through the gel at a constant voltage of around 100V for approximately 30-

50 minutes until the samples had migrated to as far as required for that particular product size. 



The role of WISPs in Gastric Cancer  2015 PhD 

106 

 

• The DNA was then visualised by the addition of Sybrgreen which acts as a DNA intercalator 

and fluoresces once intercalated, thereby absorbing invisible UV light and transmitting the 

energy into visible orange light. The gel was placed in Sybrgreen stain diluted in the ddH2O 

and left for 15 minutes with constant agitation to ensure even staining, before being visualised 

under UV light using a VisiDoc-It imaging system (UVP). 

• Images were captured with the use of an UV camera imaging system (UVP), and printed with 

a SONY thermo printer (SONY UK, London, UK) or saved as a TIFF file. If insufficient 

staining was found, the gel was returned to the Sybrgreen stain for additional staining or 

destaining in water to remove any background staining if required. 

 

2.4.6 Quantitative RT-PCR (Q-PCR) 

Unlike conventional RT-PCR, which only allows for semi-quantification, Q-PCR is a method 

of detecting extremely small amounts of cDNA template within a sample while also 

determining an accurate and reliable value of the template copy number in each sample. This 

method works due to the use of a sequence specific DNA based fluorescent reporter probe 

which only quantifies the levels of DNA containing the probe sequence, thereby greatly 

increasing specificity. 

 

This current study used the Ampliflour™ Uniprimer™ Universal system (Intergen company®, 

New York, USA) to quantify transcript copy number. The ampliflour probe consists of a 3’ 

region specific to the Z-sequence (ACTGAACCTGACCGTACA) present on the target 

specific primers and a 5’ hairpin structure labelled with a flourophore (FAM). When in this 
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hairpin structure, the flourophore is linked to an acceptor moiety (DABSYL) which acts to 

quench the fluorescence emitted by the flourophore, preventing any signal from being detected. 

 

During PCR, the probe becomes incorporated and acts as a template for DNA polymerisation 

in which DNA polymerase uses its 5’-3’ exonuclease activity to degrade and unfold the hairpin 

structure, thereby disrupting the energy transfer between flourophore and quencher, allowing 

sufficient fluorescence to be emitted and hence detected. The fluorescent signal emitted during 

each PCR cycle can then be directly correlated to the amount of DNA that has been amplified. 

• Each reaction to be amplified was set up as follows: 

Component Volume per reaction 

Forward primer 0.3μl (10pmol/μl) 

Reverse Z primer 0.3μl (1pmol/μl) 

Ampliflour probe 0.3μl (10pmol/μl) 

2X iQTM Supermix 5μl 

cDNA and PCR H2O 4μl 
 

• Each sample was then loaded into a 96 well plate (BioRad laboratories, Hemel Hampstead, 

UK), alongside standards (ranging from copy numbers of 101-108), covered with optically clear 

Microseal® (Biorad laboratories, California, USA) and this was placed in an iCyclerIQ thermal 

cycler  (Figure-2.1) and detection software (BioRad laboratories, Hemel Hampstead, UK) at 

the following conditions: 
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Initial denaturation: 94°C for 5 minutes 

Followed by 80-90 cycles of: 

Denaturation: 94°C for 10 seconds 

Annealing: 55°C for 35 seconds 

Extension: 72°C for 20 seconds 

• The fluorescent signal is detected at the annealing stage by a camera where its geometric 

increase directly correlates with the exponential increase of product. This is then used to 

determine a threshold cycle (TC) for each reaction and the transcript copy number depends on 

when fluorescence detection reaches a specific threshold. 

• The degree of fluorescence emitted by a range of standards with a known transcript copy 

number was used to compare the amount emitted by each sample, allowing for the transcript 

copy number in each sample to be accurately calculated. 

• Furthermore, the transcript copy number of each sample was normalised against the detection 

of GAPDH copy numbers. The procedure was repeated at least three times, and representative 

date is demonstrated as expressional trends. 
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Figure 2.1 ICycler-IQ thermocycler used for quantitative Q-PCR. 

 

2.5 Methods for protein detection 

 

2.5.1 Protein extraction and preparation of cell lysates 

• Once cells reached an adequate confluency, the cell monolayer was scraped off in BSS using 

a cell scraper. The cell suspension was then transferred into a universal tube. 

• This was followed by centrifugation at 1,780rpm for 8 minutes before the supernatant was 

poured off, and the cell pellet was lysed in 200-300μl of lysis buffer (depending on total cell 

number, approximately 100μl/106 cells), before being transferred into a 1.5ml eppendorf tube 

and placed for an hour at room temperature on a Labinco rotating wheel (Wolf laboratories, 

York, UK) to allow for cell lysis. 
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• The resulting suspension was then centrifuged at 13,000rpm for 15 minutes so any unwanted 

cell debris formed a pellet. The supernatant was transferred to a fresh eppendorf tube and the 

pellet discarded. 

• The protein samples were then either quantified for SDS-PAGE as explained below, or stored 

at -20°C until further use. 

 

2.5.2 Protein quantification and preparation of samples for SDS-PAGE 

In order to standardise the protein sample concentration for western blotting, the amount of 

protein in each sample was quantified following the protocol outlined in the Bio-Rad DC 

Protein Assay kit (Bio-Rad laboratories, Hemel Hampstead, UK). 

• In a 96 well plate, 50mg/ml of bovine serum albumin (BSA) standard (Sigma, Dorset, UK) 

was serially diluted from 10mg/ml to 0.005mg/ml in lysis buffer and used to set up a standard 

curve of protein concentration. 

• Five microlitres of either protein sample or standard was added into each well, before adding 

25μl of ‘working reagent A’ (prepared by adding 20μl of reagent S per millilitre of reagent A), 

followed by 200μl of reagent B to each well. 

• After samples were mixed, the plate was left at room temperature for 30-45 minutes to allow 

the colorimetric reaction to take place. Once this was complete, the absorbance of each sample 

was measured at 620nm using the ELx800 plate reading spectrophotometer (Bio-Tek, Wolf 

laboratories, York, UK). 

• A standard curve and an equation to calculate protein concentration based on absorbance were 

established using the scatter line chart in Microsoft Excel. Protein concentration of each sample 
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was determined using the corresponding absorbance and the equation of the standard curve. 

The samples were then diluted in an appropriate amount of lysis buffer in order to normalise 

them to the required final concentration of 1.0-2.0mg/ml. 

• This was then further diluted with 2x Lamelli sample buffer concentrate (Sigma-aldrich, St 

Louis, USA) in a ratio of 1:1 before the samples were denatured by boiling at 100°C for 5-10 

minutes and either loaded onto a SDS-PAGE gel or stored at -20°C until further use. 

 

2.5.3 Preparing immunoprecipitates 

Immunoprecipitation (IP) can be used for analysing intracellular phosphorylation that occurs 

in downstream signalling cascades. The process involves adding a specific antibody targeting 

a protein of interest within a cell lysate. This is then mixed with sepharose or agarose bonded 

staphylococcal protein A, protein G, or both, in order to collect the resulting protein-antibody 

complexes. These complexes are then centrifuged to precipitate the protein-IgG-protein A/G 

beads. After being denatured at 100°C for 10 minutes, the samples were separated on an SDS-

PAGE gel, and evaluated using immunoprobing. The process was carried out as follows: 

• Antibody targeted against a protein of interest was added to the cell lysate samples before 

being incubated at 4°C for 1 hour on a Labinco rotating wheel. 

• Following incubation, 20μl of conjugated A/G protein agarose beads (Santa Cruz 

Biotechnology, supplied by Insight Biotechnologies Inc, Surrey, England, UK) were added to 

each sample and placed back on the wheel for another hour to allow for the antibody-protein 

complexes to bind to the beads. 

• Centrifugation at 8,000rpm for 5 minutes was carried out to remove any unbound protein or 

excess antibodies present in the supernatant. The protein pellet was subsequently washed twice 
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with 300μl of lysis buffer before being resuspended in 40-60μl of 1x sample buffer and boiled 

for 10 minutes. The resulting samples were then run on SDS-PAGE gels as explained below. 

 

2.5.4 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

• The system used to carry out SDS-PAGE in this study was the Omni PAGE VS10 vertical 

electrophoresis system. Resolving gels of a required percentage (depending on protein size) 

were prepared in 15ml aliquots, in a universal container, (enough for 2 gels) by adding all the 

constituents at the amounts indicated in Table 2.5: 

• The resulting mixture was then poured in between two glass plates held in place by a loading 

cassette, until at a level 1.5cm below the top edge of the plate, to prevent gel oxidation the top 

of the resolving gel was covered with a 0.1% SDS solution. 

• The gels were then left to polymerise at room temperature for approximately 30 minutes, or 

until fully set. The excess SDS solution was then poured off before adding a sufficient amount 

of stacking gel in its place, prepared as Table 2.6: 
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Table 2.5 Ingredients for resolving gel. 

Component 

8% Resolving gel       

(proteins size over 

100kDa) 

10% Resolving gel     

(proteins size below 

100kDa) 

Distilled water 6.9ml 5.9ml 

30% acrylamide mix 

(Sigma-Aldrich, St Louis, 

USA) 

4.0ml 5.0ml 

1.5M Tris (pH 8.8) 3.8ml 3.8ml 

10% SDS 0.15ml 0.15ml 

10% Ammonium 

persulphate 
0.15ml 0.15ml 

TEMED (Sigma-Aldrich, St 

Louis, USA) 
0.009ml 0.006ml 

 

 

Table 2.6 Ingredients for stacking gel. 

Component Stacking gel 

Distilled water 3.4ml 

30% acrylamide mix (Sigma-Aldrich, St Louis, 

USA) 

0.83ml 

1.0M Tris (pH 6.8) 0.63ml 

10% SDS 0.05ml 

10% Ammonium persulphate 0.05ml 

TEMED (Sigma-Aldrich, St Louis, USA) 0.005ml 

 

• After the addition of the stacking gel, a well forming Teflon comb was inserted before 

allowing the gel to polymerise at room temperature for around 20 minutes. 
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• Once set, the loading cassette was transferred into an electrophoresis tank and covered with 

1X running buffer before the well comb was removed, and by use of a 50μl syringe (Hamilton), 

10μl of Broad range markers were loaded (Santa Cruz Biotechnology, supplied by Insight 

Biotechnologies Inc, Surrey, England, UK), followed by 10-15μl of the required protein 

samples. 

• The gels were then run at 100-120V, 50mA, and 50W for a length of time appropriate for the 

size of the protein of interest, in order to separate the proteins according to charge and 

molecular weight. 

 

2.5.5 Western blotting: transferring proteins from gel to nitrocellulose membrane 

• Once SDS-PAGE was completed, the protein samples were transferred onto a nitrocellulose 

membrane by western blotting. The electrophoresis equipment was disassembled and the gel 

removed from the two glass plates before discarding the stacking gel. The resolving gel was 

then placed on an SD10 Semi Dry Maxi System blotting unit (Semi DRY, Wolf Laboratories, 

York, UK) on top of 3 pieces of 1X transfer buffer pre-soaked filter paper (Whatman 

International Ltd., Maidstone, UK), and 1 sheet of Hybond nitrocellulose membrane 

(Amersham Biosciences UK Ltd., Bucks, UK). 

• An additional 3 sheets of pre-soaked filter paper were placed on top of the gel to form a 

sandwich arrangement in order from anode to cathode: filter papers- membrane- gel- filter 

papers, as shown in Figure 2.3. Electroblotting was then carried out at 15V, 500mA, and 8W 

for 20-60 minutes (depending on protein size. 
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2.5.6 Protein staining 

 

2.5.6.1 Staining membranes in Ponceau S 

Ponceau S is a reversible and re-usable protein stain that does not interfere with any subsequent 

immuno-probing. Its main use is to confirm a successful transfer of proteins from the 

polyacrylamide gel onto the nitrocellulose membrane, but can also be used to aid in membrane 

sectioning for multiple immune-probing. The protocol was carried out as follows: 

• After the transfer was completed and before probing began, the membrane was immersed in 

Ponceau S solution for a few minutes at room temperature. 

• The solution was then washed off with distilled water until the bands become visible. If 

required, the membrane was then cut into several sections using a sharp and sterile scalpel. 

• Once the staining was completely washed off the membrane was placed in 0.2% milk solution. 

 

2.5.6.2 Coomasie blue staining of polyacrylamide gels 

Coomasie blue is used to stain polyacrylamide gels following SDS-PAGE or transfer. This 

allows for visualisation of protein bands if no immuno-probing is required or observation of 

transfer efficiency and can be used as a way of semi-quantifying the volume of the protein 

bands. The protocol was carried out as follows: 

• The gel was immersed in Coomassie blue stain solution for approximately 30 minutes before 

being repeatedly washed in destaining solution until the background staining disappeared, and 

the protein appeared as blue bands. The gel was then photographed or analysed. 
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2.5.7 Protein detection using specific immuno-probing 

• Once staining was completed, the blocking and immuno-probing were carried out with a 

WBAVDBASE-SNAP i.d. protein detection system (Merck Millipore, USA, Figure 2.2).  The 

blotted membrane was placed in the centre of a pre-wet blot holder and flattened gently with a 

roller to remove any air bubbles. A spacer was then added on top of the membrane and rolled 

again before the holder was securely closed and placed within the system. Blocking solution 

(10-30ml dependent on holder size) was added and a vacuum applied.  

• Approximately 1-3ml (dependent on holder size) of primary antibody diluted 1:500 in 5ml of 

0.2% milk in TBS with 0.1% Tween 20 solution was then added and left to incubate for 15 

minutes at room temperature. 

• After the probing with primary antibody, any remaining unbound antibody was then removed 

by applying the vacuum and the holder was washed 3 times with TBS with 0.1% Tween 20. 

• The membranes were further incubated with 5ml of 1:5000 HRP conjugated secondary 

antibody diluted in 0.2% milk for 15minutes. 

• This was followed by 3 washes with TBS with 0.1% Tween 20 using the vacuum in order to 

wash off any unbound secondary antibody. 

• The membrane was then removed and chemiluminescent detection carried out. 

 

2.5.8 Chemiluminescent protein detection 

Chemiluminescent protein detection was carried out using the chemiluminescence detection 

kit (Luminata, Millipore), which consists of a highly sensitive chemiluminescent substrate that 
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detects the horseradish peroxidise (HRP) used during the western blot procedure. The protocol 

was carried out as follows: 

• One millilitre of reagent was added onto the membrane and incubated for 5 minutes at room 

temperature in the dark with constant agitation. 

• Excessive solution on the membrane was then drained off using a pasteur pipette and the 

membrane was transferred into a plastic tray. The chemiluminescent signal was detected using 

an UVITech Imager (UVITech Inc., Cambridge, UK) which contains both an illuminator and 

a camera linked to a computer (Figure 2.3). 

 

Figure 2.2 Overview of the SNAP i.d.® 2.0 Protein Detection System. 



The role of WISPs in Gastric Cancer  2015 PhD 

118 

 

 

Figure 2.3 Imager used in the Western blot study. 

 

• Each membrane was subjected to varying exposure times until the protein bands were 

sufficiently visible. These images were then captured and further analysed with the UVI band 

software package (UVITEC, Cambridge, UK), which allows for protein band quantification. 

• In this study, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a loading 

control and ran alongside any other proteins to be detected, so as to allow for additional 

normalisation of the samples and to compensate for any other negligible inaccuracies which 

may have occurred during the process. The GAPDH is used due to its highly abundant and 

conserved nature within eukaryotic cells, and is one of the most widely employed and accepted 

internal controls in determining mRNA and protein expression. 

• In order to verify the results, each western blot was carried out three times and the protein 

bands quantified and standardised separately. 
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2.5.9 Immunohistochemical staining 

•Briefly, 4~5μm sections from formalin-fixed, paraffin-embedded tissues were mounted on 

poly-L-lysine-coated glass slides and placed into an incubator of 62°C for 2 hours. 

•The sections were de-waxed in xylene and rehydrated through alcohol to distilled water. 

Endogenous peroxidase activity was blocked with 3% hydrogen peroxide for 15 min at room 

temperature. 

•After pressure cooking the sections in 10 mmol/l EDTA (pH 8.0) for 3 minutes, the sections 

were incubated at room temperature with mouse monoclonal anti-WISP-1,WISP-2 and WISP-

3 antibodies (1:50, 1:100 and 1:50  dilution respectively) for 3 hrs. Slides were given 3 x 5 

minute washes with PBS. 

•This was followed by incubation of HRP-conjugated secondary antibody for 1h. Slides were 

given 3 x 5 minute washes with PBS. 

 

•Development of slides was performed using peroxidase substrate (diaminobenzidine 

tetrahydrochloride) solution, followed by counterstaining with hematoxylin for approximately 

1 minute.  After three washes with distilled water, slides were dehydrated for 5 minutes in each 

of 50% ethanol, 70% ethanol, 90% ethanol, 100% ethanol, 50% ethanol/ 50% xylene, 100% 

xylene. Slides were then mounted with DPX and left to dry in an incubator. 

 

• Normal breast epithelia were used as positive controls. Normal gastric mucosa stained with 

PBS as primary antibody was used as negative controls. Slides were analysed independently 

by two observers using light microscopy. Photographs were recorded on an Olympus CKX41 

microscope (Figure 2.4). 
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Figure 2.4 Microscope used in the imaging of the current study. 
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2.5.10 Gelatine zymography 

•3x106 cells were counted and seeded in a tissue culture flask and incubated overnight. 

• Following incubation, samples were washed once with 1x BSS followed by a wash with 

serum-free DMEM and then either incubated in serum-free DMEM control or treated medium 

for 4 hours. 

• After 6 hours, the conditioned medium was collected and samples were prepared in non-

reducing sample buffer. 

• Protein samples were separated using SDS-PAGE on gels containing 1% gelatine (Sigma-

Aldrich Inc, USA). 

• After SDS-PAGE, gels were renatured for 1 hour at room temperature in wash buffer and 

then incubated at 37°C in incubation buffer for 36 hours. 

• Following incubation, the gels were stained with coomassie blue for 1 hour and washed in 

destain buffer for another 1 hour. The brightness of clear bands where MMP-2 and MMP-9 

were located and gelatine was degraded. 

 

2.6 Genetic manipulation of gene expression 

 

2.6.1 Knocking down gene expression using ribozyme transgenes 

In order to knockdown the expression of WISP-2, hammerhead ribozyme transgenes which 

specifically target and cleave the WISP-2 mRNA transcript were employed (Figure 2.6). The 

hammerhead ribozyme was first described by Forster and Symons in 1987 as a self-cleaving 
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region in the RNA genome of various plant viroids and virusoids. The hammerhead motif was 

subsequently integrated into short synthetic oligonucleotides, transforming it into a turnover 

catalyst capable of cleaving various RNA targets [257, 258] . 

 

Hammerhead motifs contain a conserved secondary structure that consists of three helical 

stems (I, II, and III) enclosing a junction known as the catalytic core, typified by various 

invariant nucleotides. The best codons demonstrated to be suitable for cleavage are AUC, GUC 

and UUC. In order to generate a ribozyme transgene specific to WISP-2, primers were designed 

using Zuker’s RNA mFold programme [259] according to the secondary structure of the gene 

(Figure 2.6). Subsequently, an appropriate GUC ribozyme target site was chosen according to 

the secondary structure of WISP-2 mRNA and the ribozyme created to specifically bind the 

sequence adjacent to this GUC codon. This made it possible for the hammerhead catalytic 

region of the ribozyme to bind to and specifically cleave the GUC sequence within the target 

mRNA transcript. 

 

Following ribozyme design, the sequences were ordered from Invitrogen as sense/antisense 

strands (as shown in Table 2.3) and the transgenes were then synthesised using touchdown 

PCR using the following conditions: 

Initial denaturation: 94°C for 5 minutes 

Followed by 8 cycles of each annealing temperature (total of 48 cycles): 

Denaturation: 94°C for 10 seconds 

Various annealing steps: 70°C for 15 seconds, 65°C for 15 seconds, 
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60°C for 15 seconds, 57°C for 15 seconds, 54°C for 15 seconds and 50°C for 15 seconds. 

Extension: 72°C for 20 seconds 

Final extension: 72°C for 7 minutes 

• Subsequently, the transgenes were run on a 2% agarose gel in order to verify their presence 

as well as size before being cloned into the pEF6/His plasmid in the TOPO cloning reaction. 

 

2.6.2 TOPO TA gene cloning and generation of stable transfectants 

The TOPO TA expression system provides a highly efficient and simple one step cloning 

approach without the requirement of ligases, specific PCR primers, or any post PCR procedures. 

The process involves the direct insertion of Taq polymerase amplified PCR products into a 

plasmid vector suited for high level and constitutive expression in mammalian host cell lines, 

following transfection. 

 

The current study used the pEF6/V5-His-TOPO plasmid vector (Invitrogen Inc., Paisley, 

UK).,which allows linearisation with a single 3’ Thymidine (T) overhang for TA cloning, and 

a covalently bound Topoisomerase (Figure 2.5).  Due to its template independent terminal 

transferase activity, Taq polymerase catalyses the addition of a single deoxyadenosine (A) to 

the ends of PCR products, which allows for efficient ligation of the PCR product into the 

plasmid vector due its 3’ T overhang mentioned above.       
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(From http://tools.lifetechnologies.com/content/sfs/manuals/pef6v5histopo_man.pdf) 

Figure 2.5 Schematic of pEF6/V5 His TOPO expression plasmid. 

 

 

 

 

 

http://tools.lifetechnologies.com/content/sfs/manuals/pef6v5histopo_man.pdf
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Figure 2.6 The predicted secondary structure of human WISP-2 mRNA. 

 

2.6.3 TOPO cloning reaction 

• The following reagents were placed in a pre-labelled eppendorf tube and mixed gently before 

being incubated for 5 minutes at room temperature. 

4ul of PCR product 

1ul salt solution 

1ul TOPO vector 
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2.6.4 Transformation of chemically competent E. coli 

• A 6μl cloning reaction was set up (section 2.6.3) and mixed in a vial with chemically 

competent One Shot™ TOP10 E.coli (Invitrogen Inc., Paisley, UK) before being incubated on 

ice for 30 minutes. 

• To transform the E.coli bacteria the mixture was heat-shocked at 42°C for 30 seconds in a 

water bath, and immediately placed back onto ice for 2 minutes. 

• SOC medium (250μl warmed to room temperature) was then added to the cell suspension and 

left to shake horizontally at 200rpm on an orbital shaker (Bibby Stuart Scientific, UK) at 37°C 

for an hour. 

• Following this incubation period, the E.coli mixture was spread onto pre-warmed selective 

LB-agar plates (with 100μg/ml ampicillin) at high and low seeding densities, before being 

incubated at 37°C overnight. 

• As the pEF6 plasmid contains antibiotic resistance genes to both ampicillin and blasticidin, 

only the cells that contain the plasmid are capable of growing on the agar. This is a way of 

selecting only the colonies positive for the plasmid containing a gene of interest. However, to 

confirm that the gene sequence has been inserted in the correct orientation, the colonies need 

to be further tested (explained in section 2.6.5) (Figure 2.7) 
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Figure 2.7 E.coli colonies from the cloning. 
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2.6.5 Colony selection and analysis 

• In order to confirm that the correct product would be produced, the colonies were analysed 

to verify that the gene sequence had been ligated into the vector in the correct orientation. 

• Two PCR reactions were performed to analyse each of 10 isolated colonies. The first reaction 

used a forward primer T7F and a reverse primer specific for the plasmid vector (RbTOPF) for 

incorrect insertion.  The second reaction contained T7F and a reverse primer RbBMR. If a 

product was seen in the second reaction, it indicated the insert was ligated in the right 

orientation. If a band was seen for both reactions then the colonies contained a mixture of 

plasmids with both correctly and incorrectly inserted sequences. 

• Individual colonies were examined by lightly touching a labelled colony with a pipette tip, 

and mixing it into each PCR reaction before specific amplification of the desired sequence. The 

thermal cycler was set to the following conditions: 

Initial denaturation: 94°C for 10 minutes 

Followed by 35 cycles of: 

Denaturation: 94°C for 30 seconds 

Annealing: 56°C for 40 seconds 

Extension: 72°C for 1.5 minutes 

And finally: Final extension: 72°C for 7 minutes 
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2.6.6 Plasmid DNA purification and amplification 

• Following colony analysis, colonies exhibiting the correct orientation were picked from the 

plate and inoculated in 10ml of LB broth with 100μg/ml ampicillin and then incubated at 37oC 

over night with constant agitation. 

• The amplified E.coli were then pelleted by centrifugation at 4°C for 15 minutes at 6,000rpm, 

and then used for plasmid extraction. This was carried out using the Sigma GenElute Plasmid 

MiniPrep Kit (Sigma-Aldrich, USA) according to the provided protocol, outlined below. 

• The bacterial pellet was resuspended in 200μl of resuspension fluid (containing RNase A) 

before being mixed thoroughly and transferred into the provided 2ml collection tubes. 

• This was followed by the addition of 200μl lysis solution and gentle mixed by inverting the 

tubes 5-6 times. The resulting mixture was left at room temperature for 5 minutes before adding 

350μl of neutralisation solution. 

• The tubes were inverted several times, and centrifuged at 12,000rpm for 10 minutes. The 

resulting supernatant was then transferred into a fresh collection tube containing a Mini Spin 

Column, which bound the plasmid DNA after centrifugation at 12,000rpm for 1 minute. 

• The flow through was discarded before the column was washed with 700μl of wash solution 

(containing ethanol) and centrifuged at 12,000rpm for 1 minute. The flow through was 

discarded once more, before the column was dried by another centrifugation at 12,000rpm for 

one minute. 

• The column was then transferred into a fresh collection tube for elution. This was carried out 

by adding 100μl of elution solution and centrifuging at 12,000rpm for 1 minute. The resulting 

flow through containing the purified plasmid was collected, and around 4μl was run on a 0.8% 
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agarose gel using electrophoresis in order to confirm the presence and purification of the 

plasmid. 

 

2.6.7 Transfection of mammalian cells using electroporation 

• Following plasmid extraction, the empty plasmid, and the plasmid containing the ribozyme 

transgene was used to transfect both AGS and HGC27 gastric cancer cell lines. 

• The method of transfection used in this study was electroporation using an Easyjet 

electroporator (Easyjet, Flowgene, Surrey, UK). 

• Once the cells had reached confluency they were detached from their tissue culture flasks, 

counted, and approximately 1x106 cells were resuspended in 1ml of normal medium. 

• One millilitre of the cell suspension was then added into an electroporation cuvette 

(Eurgenetech, Southampton, UK), and following the addition of 5-10μl of plasmid, left at room 

temperature for 5-10 minutes. 

• The cuvette was placed into the electroporator and subjected to an electrical pulse of 290-

310V before immediately being transferred into a fresh tissue culture flask containing normal 

medium. 

 

2.6.8 Establishment of a stable expression mammalian cell line 

• Following transfection, in order to obtain a stable cell line carrying the constructed vector, 

the electroporated and cultured cells needed to be selected. 
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• As previously mentioned, the pEF plasmid contains a resistance gene against blasticidin and 

this is used as a selection of mammalian cells. Therefore, the cells were cultured in selection 

medium containing 5-7.5μg/ml blasticidin for around 1-2 weeks which only allowed the cells 

containing the plasmid to survive. 

• After selection, the cells were transferred into maintenance medium containing 0.5μg/ml 

blasticidin. In order to verify the knockdown of the gene of interest, the cells were analysed 

using RT-PCR and western blotting. 

• Once the cells had been verified to stably express the desired molecule, they were subjected 

to various in vitro assays in order to test the effect of altering the expression of that molecule 

on the biological properties of the cells. These assays are outlined in section 2.7 Figure 2.12 

summarises the experimental steps in this chapter. 

 

2.7 In vitro cell function assays 

 

2.7.1 In vitro cell growth assay 

• The protocol by Jiang et al. was followed [260]. Two hundred microlitres of medium 

containing 3,000 cells was seeded into three 96 well plates and if required, cells were treated 

with a protein of interest in serum free media. 

• These plates were then left to incubate at 37°C, with 5% CO2, for a period of 24 hours, 72 

hours and 120 hours respectively. 
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• After the incubation, the cells were fixed with 4% formalin for 10-20 minutes, before being 

subsequently stained with 0.5% crystal violet for 10 minutes. The dye was washed off with 

water, and the plates left to dry. 

• The dye was then solubilised using 200μl acetic acid, and cell growth was assessed by 

measuring the absorbance at 540nm using a spectrophotometer (BIO-TEK, Elx800, UK) 

(Figure 2.8). The growth rate was calculated as a percentage, using the absorbance taken at 24 

hours as a baseline. 

 

Figure 2.8 Multiple plate reader. 
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2.7.2 In vitro adhesion assay 

• Wells in a 96 well plate were coated with 100μl of serum free medium with 5μg (stock 

concentration 0.05μg /μl) Matrigel (BD Matrigel™ Matrix, Matrigel™ Basement Membrane 

Matrix, Biosciences). The Matrigel was then left to dry for 2 hours at 55oC. 

• To rehydrate the Matrigel, 200µl of sterile water was added to each well and left for 45 

minutes at room temperature. 

• The medium was aspirated and 20,000 cells diluted in 200μl media, were seeded into each 

well and left to adhere to the Matrigel over a 40minute culture at 37°C, with 5% CO2. 

• After the incubation, the wells were washed with BSS to remove any non-adherent cells. The 

adherent cells were fixed with 4% formalin for 10-20 minutes, and then stained with 0.5% 

crystal violet for 10 minutes. Following substantial washes, the plates were left to dry before 

counting the adherent cells and taking photos under a microscope. Due to the fluid dynamics 

within the small sized wells of a 96 well plate, Matrigel sets unevenly, causing cell aggregation 

around the edges of the well. Therefore, in order to avoid these areas, only the cells which had 

adhered to the central area of the well were counted. 

 

2.7.3 In vitro invasion assay 

• Transwell inserts containing 8μm pores(FALCON®, pore size 8.0μm, 24 well format, Greiner 

Bio-One, Germany) were placed into wells of a 24 well plate (NUNC™, Greiner Bio-One, 

Germany), using sterile forceps in order to prevent contamination. 

• Each insert was subsequently coated with 100μl serum free medium containing 50μg Matrigel, 

and left to dry for 2 hours at 55°C. 
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• The Matrigel was then rehydrated with 100μl sterile water for an hour at room temperature. 

• The water was discarded, and 20,000 cells in 200μl medium were seeded into each insert. Six 

hundred microliters of medium was then added to the lower chamber of each well (outside the 

inserts) and the cells were incubated for a maximum of 96 hours, with 5% CO2 at 37°C. 

• After 72 hours incubation, the invasive cells migrated through the Matrigel, and the porous 

membrane to the other side of the insert. The Matrigel layer and the non-invasive cells were 

then removed from inside the insert using tissue paper. If this step is not carried out, the 

Matrigel would also be stained with crystal violet, making it difficult to distinguish between 

the background and invading cells. 

• The invasive cells were then fixed with 4% formalin for 10-20 minutes, and then stained with 

0.5% crystal violet for 10 minutes. The crystal violet was washed off, the plates left to dry, and 

the stained cells photographed and counted under a microscope. 

 

2.7.4 In vitro motility assay 

• The protocol by Jiang et al. was followed [261].  Seven hundred microlitres of medium 

containing 200,000-300,000 cells were seeded into a 24 well plate and cells were treated with 

the protein of interest in serum free medium if required. 

• These plates were then left to incubate at 37°C, with 5% CO2, for a period of 24 hours to 

allow cells to form a confluent monolayer. The cells were then wounded and photographs taken 

using EVOS system (Life Technologies Ltd, Paisley, UK) at 0.25, 1, 2, and 3 hours after 

wounding. Migration distances were measured using Image J software (National Institutes of 

Health, USA). 
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Figure 2.9 EVOS system used in cell migration study. 
 

2.7.5 Electric Cell-substrate Inpedence Sensing (ECIS) 

• Electric Cell-substrate Impedance Sensing (ECIS) is a novel method used as an alternative to 

the conventional function assays mentioned above (Figure 2.10). It works using an array of 96 

wells, each containing two gold electrodes. These measure the current and voltage across this 

electrode, calculating the impedance and resistance. From the impedance changes, effects on 

cell attachment and motility can be examined [262].  Using 96W1E+ arrays (ECIS™ 

cultureware, Applied Biophysics, Inc., NY, USA), each well was stabilised at room 

temperature for around 20 minutes using 200μl electrode stabilising solution (ECIS™, Applied 

Biophysics, Inc., NY, USA) (Figure 2.11). 

• The solution was then aspirated and replaced with 200μl DMEM F12 media containing Hepes 

buffer (Lonza, Verviers, Belgium) and left until needed. 
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• The medium was aspirated, and 40,000 cells diluted in 200μl DMEM were seeded into each 

well, and treated with a protein of interest if required. 

• The array was then placed into an ECIS™ CO2 incubator (RS biotech 9600, R galaxy R+) s 

connected to the ECIS™ Model 9600 Controller (Applied Biophysics, Inc., NY, USA). The 

software was set up so that resistance to the current flow was measured at 4000Hz. Cell 

adhesiveness was assessed within the first 40 minutes and electric wounding was set at the 14th 

hour when the resistance reached a platform and migration data could be obtained over 6 hours. 

Data was normalised using resistance from the first time point.   

 

This instrument provides researchers with automated, non-invasive mechanism capable of 

monitoring cell behaviour in real-time without the use of labels. The ECIS® Zθ measures the 

complex impedance spectrum (Z, R, C) of adherent cells growing on gold electrodes. 

 

Each of the 96 wells in a standard plate configuration contains two circular 350 μm diameter 

active electrodes on a transparent PET substrate. As with other 1E arrays, a major use of this 

array is for the ECIS wound-healing assays where the small size of the electrodes assures the 

high current pulse will result in complete cell killing. Only a small population of cells is 

monitored on the small electrodes resulting in a fluctuating impedance signal due to the random 

like movement of the cells (micromotion). 

 

http://www.biophysics.com/impedance.php
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Figure 2.10 The ECIS® Zθ (theta) instrument. 

 

Figure 2.11 ECIS 96W1E+ PET plate. 

(From official website http://www.biophysics.com/cultureware.php#link1) 
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Figure 2.12 Flow chart outlining the experimental steps necessary to clone, express PCR 

product and follow test. 
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2.8. Protein arrays for detecting proteins interacting with WISP-2 

 

2.8.1 Tissue and sample preparation 

Fresh tissues were obtained immediately after surgery. One piece of normal gastric mucosa 

(10cm away from the tumour margin) and one piece of tumour tissue was obtained from the 

same patients. This was carried out under the ethics approval from Peking University 

Research Ethics Committee. 

Tissues were immediately placed in a universal tube, filled with ice cold protein extraction 

buffer with a mixture of protease inhibitors (BD Biosciences, San Jose, USA). The tissues 

were then subject to homogenisation using a handheld homogenizer. The homogenates were 

dispensed into 1.5ml eppendorf tubes and subsequently spun at 12,000g for 10 minutes. 

Supernatants were carefully collected and placed in new tubes and stored at -20oC until use. 

 

2.8.1.1 Immunoprecipitation 

Protein preparations were first subject to protein quantitation, using a colorimetric protein 

quantitation Kit (Chapter 2.5.2). The concentrations were subsequently standardised at 

2mg/ml. Small amounts of the proteins were set aside as a total protein preparation for 

verification purpose. 

 

Equal volumes of protein from each sample were placed into universal tubes. Equal amounts 

of Anti-WISP-2 antibodies were added to each protein sample. The tubes were then placed 

onto a spinning wheel, which was placed into the cold room (4oC) at 100rpm. After 24 hours, 
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protein A/G conjugates were added to the mixture, which again was placed in the cold room 

at 100rpm for 4 hours. 

 

The protein-antibody-agarose mixture was dispensed into eppendorf tubes which were 

microfuged at 4oC, 5,000g for 10 minutes. After carefully discarding the supernatants, three 

washings were carried out, by adding the same lysis buffer to the immunoprecipitates 

followed by centrifugation. 

 

After removal of the washing solutions, an extraction buffer (Chapter 2.5.2) was added to the 

immunoprecipitate and then subject to boiling at 100oC for 5 minutes. After cooling down, 

the mixture was spun at 12,000g for 10 minutes. The supernatant, which contains the proteins 

precipitated by the antibody was then carefully collected and stored at -20oC, ready for 

protein array analysis.  

 

2.8.1.2 Antibody microarrays 

We chose an antibody based protein array, namely KAM850, which has 854 capture 

antibodies spotted on to each array slides (Kinexus Bioinformatics Ltd, Vancouver, Canada). 

Each array slide has two array spots (Figure 2.13).  
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Figure 2.13 Antibody layout on the KAM850 protein microarray.  

 

Figure 2.14 An example of close up examination of the antibody array. Image obtained from 

Kinexus Bioinformatics Ltd. 
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Figure 2.15 An illustration to demonstrate the procedure of KAM850 protein 

microarrays.Image obtained from Kinexus Bioinformatics Ltd. 

 

 

Figure 2.16 The antibodies used in the KAM850 antibody protein microarrays Image 

obtained from Kinexus Bioinformatics Ltd.  
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2.8.1.3 Key parameters in the protein microarray analyses 

The following are the key parameters collected and used for the data analyses: 

Globally Normalized Signal Intensity - Background corrected intensity values are globally 

normalized.  The Globally Normalized Signal Intensity is calculated by summing the 

intensities of all the net signal median values for a sample.  

 

Flag - An indication of the quality of the spot, based on its morphology and background. The 

flagging codes used in the reports are as follows: 

0: acceptable spots; 

1: spots manually flagged for reasons and may not be very reliable; 

3: poor spots defined by various parameters; 

 

%CFC - The percentage change of the treated sample in Normalized Intensity from the 

specified control. 

Calculation = (Globally Normalized Treated – Globally Normalized Control) /Globally 

Normalized Control)*100 

 

% Error Range - A parameter to show how tightly the “Globally Normalized Net Signal 

Intensity” varies for adjacent duplicate spots of the same protein in the sample compared to 

each other. 

Calculation = ABS (Globally Normalized Spot 1- Globally Normalized Spot 2) /Globally 

Normalized Spot 2*100 
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Log2 (Intensity Corrected) - Spot intensity corrected for background is log transformed with 

the base of 2. 

Calculation = LOG (Average Net Signal Median, 2) 

 

Z Scores - Z score transformation corrects data internally within a single sample.  

 

Z Score Difference - The difference between the observed protein Z scores in samples in 

comparison. 

 

Z Ratios - Divide the Z Score Differences by the SD of all the differences for the 

comparision. 

 

2.8.1.4 Antibody array analysis of WISP-2 interacting proteins 

The immunoprecipitates from normal and tumour tissues of the same patient were applied to 

the same slide, to reduce the inter-assay variance. 

The proteins samples were labelled, applied to the microarray, and images subsequently 

scanned using a Perkin-Elmer ScanArray Reader laser array scanner, according to 

manufacturer's instructions. 

Analysis was carried out using the ImaGene 9.0 from BioDiscovery (El Segundo, CA). 

Here, our analysis had focused on the Globally Normalized Signal Intensity, %CFC and the 

Z-scores.  
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2.8.2 Protein array based analyses for screening potential signalling events associated 

with WISP-2 in gastric cancer cell lines 

Here, we determined the potential signalling pathways that are influenced by WISP-2 in 

gastric cancer cells. We used the WISP-2 knock down cell model and compared the 

knockdown cells and control cells. 

 

2.8.2.1 Cell and sample preparation 

AGS/pEF6 (control transfected cells) and AGS/WISP-2KD (WISP-2 knockdown cells) at 

90% confluence each in two T75 tissue culture flasks were washed with BSS buffer, then 

placed with a fresh batch of DMEM supplemented with 5% FCS. After 5 hours, cells were 

removed from the flasks with a cell scraper. The cells were pelletted using a centrifuge at 

2,500rpm for 5 minutes.  

Lysis buffer was added to the cell pellets and placed on a spinning wheel for 1 hour at 4oC. 

The lysates were then spun at 12,000g for 10 minutes at 4oC. The supernatant were carefully 

collected and insolubles discarded. 

 

2.8.2.2 Protein concentration 

Based on absorbance the protein concentration in the cell lysates was quantified using the 

scatter line chart of Microsoft Excel and then adjusted to 2mg/ml. The samples were stored at 

-20oC until use. 
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2.8.2.3 KAM850 protein microarray analysis 

We used an antibody based protein array (KAM850, Kinexus Bioinformatics Ltd, Vancouver, 

Canada), which has 854 capture antibodies spotted on to each array slide, and applied the 

samples, pairwise, on the sample array slides, for the sake of reducing the inter-assay 

variance and ease of comparative analysis. 

In this case, we were focused on comparing the difference between the two comparable cell 

types, by emphasising the Z-difference and Z-ratio. 

 

2.9 Clinical cohort study 

 

2.9.1 Gastric cancer 

A total of 502 stomach tissues samples were collected and used in the present study. The cohort 

included 320 gastric cancer tissues and 182 background normal gastric tissues (Table 2.7). All 

the specimens were verified by pathologists and a routine follow-up period of at least 60 

months was carried out after surgery. Ethics approval was obtained from the Peking University 

Cancer Hospital Ethics Committee (Ethics approval reference number: 2006021) and consents 

were obtained from all the patients.  

 

2.10 Statistical analysis 

Statistical analysis was performed using SPSS18 (SPSS Inc., Chicago, USA). IHC data was 

cross-tabulated and a Chi-square test performed. Survival analysis was evaluated using life 

tables constructed from survival data with Kaplan-Meier plots and analysed using log-rank 
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statistics. Overall survival was measured from date of initial surgery to date of death, counting 

death from any cause as the end point, or the last date of information as the end point if no 

event was documented. The association of the expression of genes was analysed using 

Spearman Rank Order Correlation analysis. Other data sets were analysed using Student’s t-

test for normally distributed data and Mann-Whitney U-test for non-normally distributed data. 

P-value＜0.05 was considered statistically significant. 
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Table 2.7 Sample numbers of cohort study. 

Clinical/pathological features Sample numbers 

Tissue sample  

Normal 182 

Tumour 320 

Gender  

Male 230 

Female 90 

Tumour Depth  

T1 15 

T2 26 

T3 41 

T4 230 

Lymph node  

Negative 69 

Positive 245 

Metastasis  

M0 278 

M1 41 

TNM staging  

TNM1 24 

TNM2 59 

TNM3 219 

TNM4 9 

Differentiation  

High 1 

High-Medium 6 

Medium 60 

Medium-low 81 

Low 137 

Clinical outcome  

Alive 133 

Died 184 

Disease free 118 

Metastasis 15 

Died of GC 184 
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Chapter 3 

 

WISPs expression in gastric tissues and 

gastric cancer cell lines 
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3.1 Introduction 

Cancer development is a multistep process, during which the cell acquires new phenotypic 

traits (overriding growth controls, induction of angiogenesis, evasion from host anti-tumour 

responses, extravasation and growth at metastatic sites etc.) as a result of successive genetic 

alterations. The main threat and the reason for most cancer deaths are not the primary tumours, 

but secondary tumours, the metastasis [263]. Tumours are heterogeneous populations 

composed of different cells types: stem cells with the capacity for self-renewal and more 

differentiated cells lacking such ability. The overall growth behaviour of a developing primary 

tumour  is largely determined  by the combined cell-cell interactions. The dominating influence 

of migration on tumour growth leads to unexpected dependencies of tumour growth on 

proliferation capacity and cell death [264]. During metastasis, cells from primary neoplasias 

follow a number of seemingly separate but highly related steps in order to acquire properties 

necessary for successful metastasis, namely, EMT, migration and invasion, anoikis resistance, 

extravasation and organ colonisation. 

 

WISP proteins are a subfamily of the CCN family [189]. The CCN family of proteins is a 

crucial group of signalling molecules found in eukaryotic organisms, whose nomenclature is 

due to the first three members of the family: Cyr61 (Cysteine rich protein 61), CTGF 

(Connective tissue growth factor) and NOV (Nephroblastoma overexpressed gene) [206], 

which are now designated CCN1, CCN2 and CCN3, and three other family members WISP-1, 

WISP-2 and WISP-3  are designated  CCN4, CCN5 and CCN6 [194]. It has been shown that 

WISP proteins were up-regulated in Wnt-1 transformed cells [189]. 

WISPs are secreted matricellular proteins, which are a subset of the ECM modulating cellular 

responses, such as cell growth, differentiation, invasion, migration and survival [265]. WISP-

1 expression has been found in several cell types and it is implicated in cellular and tissue 
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homeostasis by a variety of autocrine and paracrine effects, thereby representing a highly 

attractive therapeutic target for medical applications. Elevated WISP-1 expression has recently 

been reported in several cancers, including hepatocellular carcinoma [266], colon 

adenocarcinoma [212, 232], lung carcinoma [234, 235] and breast cancer [211, 267]. But the 

functions WISP-1 plays in cancer development and progression are controversial. WISP-2 is 

structurally similar to other members of the CCN family, except for the carboxyl-terminal (CT) 

domain, which is absent in this protein [194, 238]. WISP-2 is relevant to tumourigenesis and 

malignant transformation, especially in breast cancer [211, 222], colorectal cancer [212] and 

heptocarcinoma [227]. But its function varies depending on cell types and the 

microenvironment. The striking difference in structure with other two family members may 

contribute to its difference in functions and WISP-2 might act as a dominant negative regulator 

of other CCN family members, although to date there is little evidence to support this 

hypothesis. Of the WISPs, WISP-3 is probably the least-studied, a secreted protein that 

modulates the insulin-like growth factor-1 (IGF-1) signalling pathway. This matricellular 

protein was found to have inhibitory functions on tumour growth, proliferation and invasion in 

inflammatory breast cancer and aggressive non-inflammatory breast cancer [268]. 

 

Clinical studies showed different expression profiles and roles of WISPs in cancers. The 

inconsistency between the results in multiple cancers has raised uncertainty concerning the role 

of WISPs in carcinogenesis and metastasis. It is now increasingly apparent that the relative 

abundance of individual WISPs members, which often have contradictory activities, has a 

profound effect on tumour progression.  It is also suggested that the relative abundance of 

WISP-1, WISP-2 and WISP-3 may be a novel therapeutic approach to highly invasive cancers. 

These observations attracted us to explore the expression status at mRNA and protein levels of 
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WISP family members in gastric cancer samples and their adjacent normal tissues and different 

gastric cancer cell lines. 

 

3.2 Materials and methods 

 

3.2.1 Gastric cancer tissues 

Gastric cancer tissues were collected immediately after surgery and stored in liquid nitrogen 

and then transferred into -80°C freezer until further use, with approval of the Peking University 

Cancer Hospital Research Ethics Committee. All patients were informed and participated with 

written consent. All the specimens were verified by a consultant pathologist. 

 

3.2.2 Antibodies and primers 

Polyclonal rabbit anti-WISP-1, WISP-2 and WISP-3 antibodies were obtained from Abcam 

Company listed in Table 2.4. All the primers used were synthesised and provided by Sigma 

(Paisley, UK). Primer sequences are shown in Tables 2.2 and 2.3. 

 

3.2.3 Cell lines 

AGS and HGC27 cells were routinely cultured in DMEM-F12 medium as described in section 

2.3. AGS is derived from an adenocarcinoma of the stomach of a 54 year-old Caucasian female 

with no prior anti-cancer treatment. HGC27 is derived from a lymph node of a Japanese patient 

with undifferentiated mucinous gastric adenocarcinoma. 
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3.2.4 RNA isolation, cDNA synthesis, and RT-PCR 

RNA was isolated from cells using Tri Reagent (Sigma-Aldrich, Inc., Poole, Dorset, England, 

UK), and converted into cDNA by reverse transcription using the iScript™ cDNA Synthesis 

Kit (Bio-Rad Laboratories, California, USA), as described in section 2.4. RT-PCR was carried 

out at the following conditions; 94˚C for 5 minutes, followed by 26 to 30 cycles of 94˚C for 30 

seconds, 56˚C for 30 seconds, and 72˚C for 1 minute and a final extension of 7 minutes at 72˚C. 

The products were run on a 2% agarose gel and visualised using Sybrgreen under UV light 

using a VisiDoc-It imaging system (UVP). 

 

3.2.5 Immunochemical staining of WISP-1, WISP-2 and WISP-3 

Immunochemical staining of WISP-1, WISP-2 and WISP-3 in gastric cancer cells and tissues 

were carried out using specific primary antibody for the protein, followed by secondary 

antibody. For the detailed procedure refer to Section 2.5.9. 

 

3.2.6 Statistical analysis 

Statistical analysis was performed using SPSS18 (SPSS Inc., Chicago, USA). IHC data was 

cross-tabulated and a Chi-square test performed. Survival analysis was evaluated using life 

tables constructed from survival data with Kaplan-Meier plots and analysed using log-rank 

statistics. Overall survival was measured from date of initial surgery to date of death, counting 

death from any cause as the end point, or the last date of information as the end point if no 

event was documented. The association of the expression of genes was analysed using 

Spearman Rank Order Correlation analysis. Mann-Whitney U-test for non-normally distributed 

data was used for Q-RT-PCR data. P-value＜0.05 was considered statistically significant. 
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3.3 Results 

 

3.3.1 RNA extraction of gastric tissues 

Using Tri-reagent, tissue RNA was extracted from samples stored in the tissue bank of Peking 

University Cancer Bank. Figure 3.1 showed representative images from 502 cases of RNA. 

 

Figure 3.1 Representative images of RNA samples 

 

3.3.2 Gastric tissues screening for WISPs expression 

Analysed by Q-RT-PCR, WISP-2 transcripts showed a higher level in tumours than in normal 

tissues (P=0.0028) but WISP-1 and WISP-3 showed no significant difference between normal 

tissues and tumours (P=0.0642 and P=0.9076, respectively). Figure 3.2 showed the bar graph 
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of the expression of WISP-1 and WISP-2 in tumours and normal tissues. For WISP-3, the 

median values in both groups were very low, thus it was not possible to display the data in a 

bar graph. Instead, the result is given in Table 3.3 

 

Figure 3.2 Expression of WISPs in gastric tissues (Median). A: WISP-1 expression in gastric 

cancer and normal gastric tissues. It was seen that there was a big difference between tumours 

and normal tissues, although it was not significant (P=0.0642). B: there was significant 

difference of WISP-2 expression in gastric cancer and normal gastric tissues (P=0.0028).  

 

However, levels of the WISP-1 were highly expressed in tumours without distant metastasis at 

diagnosis compared to those with metastatic diseases (P=0.0168). Levels of the WISP-2 

transcript were found significantly higher in TNM1 and TNM2 stage tumours (P =0.0249) than 

in TNM3 and TNM4 stages and also higher in T1 and T2 than in T3 and T4 (P=0.1817); higher 

in node negative than in node positive tumours (P=0.128); higher in tumours without distant 

metastasis than those with (P=0.39), and much higher in the patients alive than in those who 

died before the follow-up end time (P=0.1698) although without statistical significance (See 
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Table 3.1, 3.2 and 3.3).  Table 3.1, 3.2 and 3.3 showed the association of WISP-1, WISP-2 and 

WISP-3 mRNA expression with clinic-pathological parameters in gastric cancer patients.  
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Table 3.1 Association of WISP-1 mRNA expression with clinic-pathological parameters in 

gastric cancer patients. 

Clinicolpathological 

Parameters 

WISP-1 

Cases Nα Median (Q1,Q3) P 

Tissue sample     

Normal 158 31 5(0,243) 0.0642 

Tumour 260 64 0(0,135)  

Gender     

Male 185 46 0(0,126) 0.12 

Female 75 18 3(0,501)  

Infiltration depth    

T1+T2 40 2 2(0,611) 0.3487 

T3+T4 213 61 0(0,130)  

Lymph node status    

N0 55 16 0(0,468) 0.716 

N1+2+3 201 46 0(0,126)  

M-staging     

M0 227 55 1(0,269) 0.0168* 

M1 33 8 0(0,11)  

TNM staging     

TNM1+2 70 15 1(0,759)  

TNM3+4 183 47 0(0,110) 0.3029 

Differentiation     

High 0 1   

High-Medium 5 1 0(0,1232)  

Medium 52 10 0(0,230) 0.592Δ 

Medium-Low 61 21 1(0,737) 0.3264Δ 

Low 112 26 1(0,82) 0.5091Δ 

Clinical outcome    

Alive 106 28 1(0,440)  

Died 152 35 0(0,71) 0.227 

Disease Free 94 25 0(0,440)  

Metastasis 12 3 1(0.873) 0.8341# 

Died of GC 152 35 0(0,71) 0.2529# 

Notes : Cases: the total number of cases; Nα: missing cases; median is the middle on from 

lowest value to highest value of WISP-1 mRNA expression; *:P<0.05, Δ: Compared with 

“High-medium”, #: Compared with “Disease Free ” 
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Table 3.2 Association of WISP-2 mRNA expression with clinic-pathological parameters in 

gastric cancer patients. 

Clinicolpathological 

Parameters 

WISP-2 

Cases Nα Median (Q1,Q3) P 

Tissue sample    

Normal 182 7 1.3(0.1,58.9)  

Tumour 320 4 4.9(0,28) 0.0028** 

Gender     

Male 230 1 4.9(0.1,55)  

Female 90 3 5.1(0.2,69.6) 0.8387 

Infiltration depth    

T1+T2 41 1 15.9(1.1,116.9)  

T3+T4 271 3 4.6(0.1,58.9) 0.1817 

Lymph node status    

N0 69 2 14.8(0.4,83.4)  

N1+2+3 133 1 4(0.1,55) 0.128 

M-staging     

M0 278 4 5.4(0.2,63.1)  

M1 41 0 4(0,45) 0.39 

TNM staging     

TNM1+2 83 2 15.9(1.4,77.7)  

TNM3+4 228 2 3.2(0.1,50.5) 0.0249* 

Differentiation    

High 1 0   

High-Medium 6 0 0.9(0.2,52.9)  

Medium 60 2 5.3(0.1,76.4) 0.7464Δ 

Medium-Low 81 1 15.9(0.2,49.6) 0.5028Δ 

Low 137 1 5.2(0.2,78.4) 0.5525Δ 

Clinical outcome    

Alive 133 1 9.1(0.2,92.4)  

Died 184 3 3.8(0.1,41.7) 0.1698 

Disease Free 118 1 10.5(0.2,95.5)  

Metastasis 15 0 1.9(0.1,31.6) 0.4747# 

Died of GC 184 3 3.8(0.1,41.7) 0.1236# 

Notes : Cases: the total number of cases; Nα: missing cases; median is the middle on from 

lowest value to highest value of WISP-2 mRNA expression; *:P<0.05, Δ: Compared with 

“High-medium”, #: Compared with “Disease Free ” 
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Table 3.3 Association of WISP-3 mRNA expression with clinic-pathological parameters in 

gastric cancer patients. 

Clinicolpathological 

Parameters 

WISP-3 

Cases Nα Median (Q1,Q3) P 

Tissue sample    

Normal 155 34 0(0,499)  

Tumour 227 97 0(0,257) 0.9076 

Gender     

Male 159 72 0(0,327)  

Female 68 25 0(0,2241) 0.7591 

Infiltration depth    

T1+T2 32 10 1(0,7706) 0.1337 

T3+T4 191 83 0(0,281)  

Lymph node status    

N0 51 20 0(0,537)  

N1+2+3 173 74 0(0,363) 0.5634 

M-staging     

M0 192 84 0(0,651)  

M1 29 12 0(0,0) 0.103 

TNM staging     

TNM1+2 62 23 1(0,9690)  

TNM3+4 161 69 0(0,79) 0.136 

Differentiation    

High 1 0   

High-Medium 4 2 0(0,37978)  

Medium 40 22 0(0,407) 0.7907Δ 

Medium-Low 59 23 0(0,4211) 0.9663Δ 

Low 100 38 0(0,427) 0.8724Δ 

Clinical outcome    

Alive 93 41 0(0,1074) 0.2984 

Died 132 55 0(0,231)  

Disease Free 82 37 0(0,1985)  

Metastasis 11 4 0(0,5) 0.8724# 

Died of GC 132 55 0(0,231) 0.2548# 

Notes : Cases: the total number of cases; Nα: missing cases; median is the middle on from 

lowest value to highest value of WISP-3 mRNA expression; *:P<0.05, Δ: Compared with 

“High-medium”, #: Compared with “Disease Free ” 
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3.3.3 Immunohistochemistry staining analysis of WISPs on pathological slides 

Table 3.4~3.6 showed expression levels of WISP-1, WISP-2 and WISP-3 in gastric cancer 

tissues and normal gastric mucosas using IHC staining and Chi-square test to analyse the 

staining intensity. 

 

IHC staining of WISP-1, WISP-2 and WISP-3 in corresponding gastric cancer pathological 

slides showed a much stronger staining intensity of WISP-2 in tumour tissues than in normal 

background, whereas, no statistically difference in WISP-1 and WISP-3 expression was seen 

in Figure 3.3 and 3.7. Expression of WISP-2 was found in a relatively higher level in well and 

medium differentiated tumours than in poor differentiated tumours (P=0.024). Survival 

analysis using Kaplan-Meier plot showed patients with a high expression of level of WISP-2 

had higher overall survival compared with patients with a low expression of level of WISP-2 

(Figure 3.6A). In regards to disease free survival, a poor survival rate was observed in the group 

with low expression levels of WISP-2 compared with the high expression levels (Figure 3.6B). 

However, the data of WISP-1 and WISP-3 did not demonstrated statistical significance 

respectively in figure 3.4 and 3.8 (P> 0.05).  
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Figure 3.3 Protein expression of WISP-1 in gastric cancer and normal gastric mucosa. Figure 

A and B, representative images of WISP-1 staining in normal gastric mucosa (A and B 

represent the same image of 100×and 200×, respectively). Figure C and D, representative 

images of WISP-1 staining in diffuse gastric cancer and adenocarcinoma (Figure E and F). 

Figure G: positive control in breast epithelium, and H: negative control using PBS as primary 

antibody in normal gastric mucosa. 
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Figure 3.4 Survival analysis of WISP-1 expression in gastric cancer with Kaplain-Meier plots 

and analysed using log-rank statistics. A. The Kaplan-Meier survival model of correlation 

between WISP-1 protein levels and overall survival [(+) group: n= 120; (-) group: n=85, P= 

0.573]. B. The Kaplan-Meier survival model of correlation between WISP-1 protein levels and 

disease-free survival. (+) represents for the high level of expression of WISP-1; (-) stands for 

the low level of expression of WISP-1 [(+) group: n= 136; (-) group: n=95, P= 0.628]. 
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Table 3.4 Association of WISP-1 protein expression with clinico-pathological parameters in 

gastric cancer patients. 

Variables 

 WISP-1 expression 

Cases WISP-1- WISP-1+ P 

 (n=123) (n=114)  

Gender     

Male 172 89 83 0.938 

Female 65 34 31  

Age (y)     

<=60 114 60 54 0.686 

>60 122 61 61  

Depth of Wall Invasion    

T1+T2 35 20 15 0.437 

T3+T4 190 95 95  

Differentiation    

Well 

&Moderated 40 16 24 0.097 

Poorly 146 80 66  

Lymph Node Metastasis   

negative 46 26 20 0.373 

positive 173 85 88  

Liver metastasis    

M0 185 94 91 0.808 

M1 35 17 18  

Vascular Invasion    

V(-) 126 69 57 0.348 

V(+) 109 53 56  

TNM stages    

I+II 72 39 33 0.441 

III+IV 144 70 74  

Notes: Cases: the total number of cases; *:P< 0.05. 
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Figure 3.5 Expression of WISP-2 in gastric cancer and normal gastric mucosa. 

In gastric cancer, WISP-2 protein was immunoreactive in the cytoplasm of malignant cells. 

The intensity of WISP-2 immunoreactivity was remarkably higher in primary gastric 

carcinoma when compared with matched normal mucosa. Figure A and B, representative 

images of WISP-2 staining in normal gastric mucosa showed absent or weak cytoplasmic 

reactivity (A and B represent the same image of 100×and 200×, respectively). Figure C and D, 

representative images of WISP-2 staining in diffuse gastric cancer and adenocarcinoma (Figure 

E and F). Figure G: positive control in breast epithelium, and H: negative control using PBS as 

primary antibody in normal gastric mucosa. 

 

 



The role of WISPs in Gastric Cancer  2015 PhD 

165 

 

 

 

 

Figure 3.6 Survival analysis of WISP-2 expression in gastric cancer with Kaplain-Meier plots 

and analysed using log-rank statistics. A. The Kaplan-Meier survival model of correlation 

between WISP-2 protein levels and overall survival [(+) group: n= 127; (-) group: n=120, P= 

0.032]. B. The Kaplan-Meier survival model of correlation between WISP-2 protein levels and 

disease-free survival. (+) represents for the high level of expression of WISP-2; (-) stands for 

the low level of expression of WISP-2 [(+) group: n= 89; (-) group: n=105, P=0.039]. 
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Table 3.5 Association of WISP-2 protein expression with clinic-pathological parameters in 

gastric cancer patients. 

Variables 

 WISP-2 expression  

Cases 
WISP-2- WISP-2+ 

P 
(n=128) (n=101) 

Gender 

Male 161 87 74 

0.384 Female 68 41 27 

Age (y) 

<=60 114 67 47 

0.32 >60 113 59 54 

Depth of Wall Invasion 

T1+T2 35 20 15 

0.904 T3+T4 182 102 80 

Differentiation 

Well 

&Moderated 37 14 23 

0.024* Poorly 140 82 58 

Lymph Node Metastasis 

negative 47 30 17 

0.216 positive 164 88 76 

Liver metastasis 

M0 179 97 82 

0.184 M1 33 22 11 

Vascular Invasion 

V(-) 121 75 46 

0.069 V(+) 106 53 53 

TNM stages 

I+II 72 43 29 

0.43 III+IV 137 74 63 

Notes: Cases: the total number of cases;*:P< 0.05. 
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Figure 3.7 Expression of WISP-3 in gastric cancer and normal gastric mucosa. Figure A and 

B, representative images of WISP-3 staining in normal gastric mucosa (A and B represent the 

same image of 100×and 200×, respectively). Figure C and D, representative images of WISP-

3 staining in diffuse gastric cancer and adenocarcinoma (Figure E and F). Figure G: positive 

control in breast epithelium, and H: negative control using PBS as primary antibody in normal 

gastric mucosa. 
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Figure 3.8 Survival analysis of WISP-3 expression in gastric cancer with Kaplain-Meier plots 

and analysed using log-rank statistics. A. The Kaplan-Meier survival model of correlation 

between WISP-3 protein levels and overall survival [(+) group: n= 87; (-) group: n=103, P= 

0.491]. B. The Kaplan-Meier survival model of correlation between WISP-3 protein levels and 

disease-free survival. (+) represents for the high level of expression of WISP-3; (-) stands for 

the low level of expression of WISP-3 [(+) group: n= 94; (-) group: n=81, P= 0.527]. 
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Table 3.6 Association of WISP-3 protein expression with clinicopathological parameters in 

gastric cancer patients. 

Variables 

 WISP-3 expression  

Cases 
WISP-3- WISP-3+ 

P 
(n=56) (n=185) 

Gender 

Male 174 39 135 

0.626 Female 67 17 50 

Age (y) 

<=60 117 31 86 

0.198 >60 123 24 99 

Depth of Wall Invasion 

T1+T2 38 7 31 

0.499 T3+T4 192 45 147 

Differentiation 

Well 

&Moderated 41 8 33 

0.562 Poorly 147 35 112 

Lymph Node Metastasis 

negative 45 31 14 

0.307 positive 121 65 56 

Liver metastasis 

M0 190 41 149 

0.415 M1 36 10 26 

Vascular Invasion 

V(-) 126 31 95 

0.651 V(+) 113 25 88 

TNM stages 

I+II 78 17 61 

0.8 III+IV 146 34 112 

Notes: Cases: the total number of cases; *:P<0.05. 
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3.3.4 WISP-2 expression in gastric cancer cells 

Due to the high expression of WISP-2 in gastric cancer tissues both in mRNA and protein 

levels, we planned to regulate genetic expression and investigate the subsequent events. The 

first step was to select cell lines for further targeting. The expression of WISP-2 was examined 

in AGS and HGC27 cell lines, and both showed a strong expression using PCR for 30 cycles 

(See Figure 3.9). 

 

 

Figure 3.9 Cell lines screening for WISP-2 mRNA expression. Two gastric cancer cell lines 

were screened for mRNA expression of WISP-2 using conventional RT-PCR techniques.  Both 

showed high levels of WISP-2 transcripts after 30 cycles of PCR reaction. GAPDH was used 

as an internal control. AGS WT: AGS wild type cell; HGC27 WT: HGC27 wild type cell; NC: 

negative control. 
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3.4 Discussion 

Q-PCR analysis showed that there was a significant difference in WISP-2 expression between 

normal gastric tissue and tumours, however this pattern was not one seen with WISP-1 or 

WISP-3 expression. Using Kaplan-Merier plot and log rank test, WISP-2 was found to be 

positively related with overall survival and disease free survival of gastric cancer patients. 

Expression of WISP proteins were analysed using immunohistochemical method for whichall 

three proteins were found to be located in the cytoplasmic region. Representative images 

showed that WISP-2 protein staining in normal gastric tissues was largely negative. In a clear 

contrast and supporting the Q-PCR data, the staining in gastric tumour tissues was highly 

positive and cytoplasmic. In addition, higher levels of WISP-2 staining was seen in well and 

medium differentiated tumours than in poor differentiated tumours (P=0.024). Semi-

quantitative analysis has shown that also in line with Q-PCR findings, no differences were seen 

with WISP-1 and WISP-3.  

 

WISP family members have been shown to play multiple roles in a number of patho-

physiological processes, including cell proliferation, adhesion, invasiveness, wound healing, 

ECM regulation, and EMT. Previous studies have shown that WISP family members were de-

regulated and related with cancer metastasis in plenty of clinical cohort studies [221, 222, 238, 

269]. From the publised studies of our group, WISP-1 appeared to act as a factor stimulating 

aggressiveness and WISP-2 as a tumour suppressor in colorectal cancer , while in breast cancer, 

the role of WISP-1 and WISP-2 were the other way around.  WISP-3 has no determined role 

in both colorectal and breast cancers [211, 212]. Of the most studied molecules, WISP-2 

exhibits divergent roles in a tissue-specific manner  and is constitutively expressed in less 

aggressive human breast cancer cells (i.e. MCF-7 and ZR-75-1), whereas its expression is 
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minimally detected in moderately aggressive breast cancer cell lines (i.e. SKBR-3), and it is 

undetected in the highly aggressive breast cancer cell line (i.e. MDA-MB-231) [213, 215]. This 

screening process also helped determine which molecules and cell lines should be used for the 

reminder of this study. As previously mentioned, WISP-2 exhibited divergent roles in a tissue-

specific manner , we should clarify by which manner WISP-2 exerts its cell functions on gastric 

cancer cells. The two gastric cell lines, which have different race origin, have similar mRNA 

expression levels and therefore we chose both for transfection with WISP-2 ribozyme 

transgenes in order to determine the consequences of WISP-2 knockdown on in vitro cellular 

functions. The findings of the functional based studies are presented in the next chapter. 
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Chapter 4 

 

Knockdown of WISP-2 and the effect on 

the functions of gastric cancer cells 
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4.1 Introduction 

WISP-2 is a secreted matricellular protein, which is a subset of the ECM modulating cellular 

responses. Matricellular proteins have been classified as a family of non-structural matrix 

proteins capable of modulating a variety of biological processes within the ECM. These 

proteins are expressed dynamically and their cellular functions are highly dependent upon cues 

from the local environment.  The most important functional changes may be in cell growth, 

adhesion, invasion and migration. Some genes have important roles on these processes. In vitro 

and in vivo studies indicated potential roles for WISP-2 in regulating cell proliferation, motility, 

invasiveness and adhesion. Overexpression of WISP-2 has been shown to inhibit serum-

induced proliferation of the highly invasive, oestrogen receptor negative breast cancer cell line, 

MDA-MB-231 [245]. However, in the poorly invasive oestrogen receptor positive MCF-7 cell 

line, the effect of WISP-2 is not consistent. Some have suggested an inhibitory role in serum-

induced proliferation of MCF-7 cells [245]. Others have suggested a promoting role in MCF-

7 cell proliferation [221] or no effect [218]. Moreover, the ability of PMA, EGF or IGF-1 alone 

to induce MCF-7 cell proliferation was blocked by WISP-2 knockdown [213, 215, 217], and 

knockdown of WISP-2 in MCF-7 cells was found to eliminate the oestrogen dependent growth 

requirement of these cells. Overexpression of WISP-2 inhibited both motility and invasiveness 

in highly aggressive breast carcinoma cell line, MDA-MB-231 [245]. The inhibitory effect of 

WISP-2 on motility was also observed in MCF-7 cells where knockdown of WISP-2 expression 

increased the IGF-1-induced motility of MCF-7 cells. WISP-2 knockdown in MCF-7 cells also 

induced expression of pro-motility enzymes such as MMP-2 and MMP-9 [218, 245]. Mutant 

p53 overexpression induced MCF-7 exhibiting increased invasiveness expression was 

inhibited by treatment with recombinant WISP-2 protein [250]. Little is known about the role 

WISP-2 plays in cell adhesion. Kumar et al., observed that three different osteoblastic cell 

lines:- primary human osteoblasts, osteosarcoma MG63, and rat osteoblast-like osteosarcoma 
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Ros 17/2.8- attached to immobilized CCN5 in a dose dependent manner [198]. More studies 

are needed to find out if it is the differences in the cell types tested or the different assays 

accounts for the conflicting role reported of WISP-2 in cancers. 

 

 In this chapter, WISP-2 was knocked down in AGS and HGC27 cells using a ribozyme 

transgene and the effect on cellular functions was subsequently investigated. 

 

4.2 Materials and methods 

 

4.2.1 Cell lines 

AGS and HGC27 gastric cancer cell lines were used in this chapter, including empty plasmid 

control and transfected sublines. Cells were continuously maintained in normal DMEM media 

with 10% FBS and antibiotics. For ribozymes selection, cells were maintained in normal media 

supplemented with 5～7.5 µg/ml blasticidin (5µg/ml for HGC27 and 7.5µg/ml for AGS 

selection). The stable transfected cells were maintained in normal media supplemented with 

0.5 μg/ml blasticidin. 

 

4.2.2 Generation of WISP-2 ribozyme transgenes 

Hammerhead ribozymes targeting WISP-2 were designed using Zuker’s mRNA Fold 

programme [259], based on the predicted secondary structure of WISP-2 mRNA. Primers 

containing restriction sites were then generated (Table 2.3). The ribozymes were then 

synthesised using a touch-down PCR procedure with the following conditions: 94˚C for 5 

minutes, followed by 8 cycles at each annealing temperature (total of 48 cycles): 94˚C for 10 

seconds, 70˚C, 65˚C, 60˚C, 57˚C, 55˚C, and 50˚C for 15 seconds, 72˚C for 20 seconds and a 
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final extension of 7 minutes at 72˚C. Subsequently, the transgenes were run on a 2% agarose 

gel in order to verify their presence as well as size, before being cloned into a pEF6/V5-His-

TOPO plasmid vector. 

 

4.2.3 TOPO TA cloning of WISP-2 fragments or transgenes into pEF6/V5-His-TOPO 

plasmid vector 

Following verification, the WISP-2 transgenes were cloned into a pEF6/V5-His-TOPO 

plasmid (Invitrogen Inc., Paisley, UK), followed by transformation of constructed plasmid into 

E.Coli. The correct constructs were then amplified and purified using the Sigma GenElute 

Plasmid MiniPrep Kit (Sigma-Aldrich, USA). We also used a plasmid in which the ribozyme 

transgene was inserted in the wrong direction (namely sense direction) and a control. Multiple 

clones were combined and grown as a new population of sublines.  RT-PCR and Q-RT-PCR 

and Western blotting were used to verify the efficiency of knock down in the new sublines. 

 

4.2.4 Gastric cancer cell transfection and generation of stable transfectants 

Following plasmid verification using DNA electrophoresis, the plasmids were transfected into 

target cells using electroporation at 290V. The transfectants were then selected with 5μg/ml 

blasticidin for a period of two to three weeks. Empty plasmid vectors were also used to transfect 

the same cells as a control for the following experiments. After the selection, the cells were 

verified for WISP-2 knockdown using RT-PCR, Q-PCR, and western blotting. Full details of 

the cloning process have been given in section 2.7. 
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4.2.5 RNA isolation, cDNA synthesis, RT-PCR, and Q-RT-PCR 

RNA was isolated from the cells using the Tri Reagent kit (Sigma-Aldrich, Inc., Poole, Dorset, 

England, UK) and converted into cDNA by reverse transcription using the iScript™ cDNA 

Synthesis Kit (Bio-Rad Laboratories, California, USA), as described in section 2.4. RT-PCR 

was carried out with the following conditions: 94 ˚C for 5 minutes, followed by 28 to 35 cycles 

of 94 ˚C for 30 seconds, 55 ˚C for 30 seconds, and 72 ˚C for 30 seconds, and a final extension 

of 7 minutes at 72 ˚C. The products were run on an agarose gel and visualised using sybrgreen. 

Q-RT-PCR was performed following the conditions:  94˚C for 5 minutes, followed by 90 cycles 

of 94˚C for 10 seconds, 55˚C for 15 seconds, and 72˚C for 20 seconds. 

 

4.2.6 Protein extraction, SDS-PAGE, and Western blot analysis 

Protein was extracted and then quantified using the DC Protein Assay kit (BIO-RAD, USA). 

After SDS-PAGE, proteins were transferred onto nitrocellulose membranes which were then 

blocked and probed with specific primary (anti-WISP-2 1:200) and the corresponding 

peroxidise-conjugated secondary antibodies (1:1000). All of the antibodies used in this study 

are listed in Table 2.4. The protein bands were eventually visualised using the 

chemiluminescence detection kit (Luminata, Millipore). 

 

4.2.7 In vitro cell growth assay 

Cells were seeded into three 96 well plates, and incubated for 1, 3 and 5 days respectively, as 

described in section 2.7.1. Following incubation, the cells were fixed with 4% formalin and 

stained with crystal violet before the absorbance was measured. 
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4.2.8 In vitro cell Matrigel adhesion assay 

The cells were seeded into a 96 well plate coated with Matrigel as described in section 2.7.2. 

The cells were left to adhere for a period of 40 minutes, and then fixed and stained with crystal 

violet. Photos were taken using a microscope with camera. 

 

4.2.9 In vitro cell motility assay 

The protocol followed is described by Jiang [270]. Cells are seeded into a 24-well plate and 

cells were treated with a protein of interest in serum free media if required. These plates were 

then left to incubate at 37˚C, with 5% CO2, for a period of 24 hours to allow cells to form a 

confluent monolayer then the cells were wounded with a sterile tip and photos were taken using 

EVOS system at 0.25, 1, 2, 3 and 4 hours after wounding. Migration distances were measured 

using Image J software (National Institutes of Health, USA).  

 

4.2.10 In vitro cell Matrigel invasion assay 

The cells were seeded into transwell inserts with 8μm pores coated with 50μg Matrigel in a 24-

well plate and were incubated for a period of 3 days. Following incubation, the cells which had 

migrated through the Matrigel to the other side of the insert were fixed in 4% formalin, stained 

with crystal violet and counted. 

 

4.2.11 The effects of different small inhibitors on the cell motility 

Using 96W1E+ array, cell adhesion and wounding assay were also conducted with ECIS 

instrument. Cells were seeded into each ECIS plate well as described in section 2.7.5, and 

treated with a protein of interest. In this study, we treated the cells respectively with different 

concentrations of PLC-γ inhibitor U73122, FAK inhibitor PF573228, JNK inhibitor SP100625 
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and N-WASP inhibitor Wiskostatin, respectively. Inhibitors were first dissolved in DMSO to 

1mM and then diluted with serum free medium to different concentrations (0.4µM, 0.75µM, 

1µM, 1.5µM, 3µM). For the control group, identical volume of serum free medium was added 

into wells.  Cell adhesiveness was assessed within the first 40 minutes and electric wound was 

set at the 14th hour when the resistance reached maximum levels and migration data could be 

gathered for a further continuous 6 hours. 

 

4.2.12 Electric Cell-Substrate Impedance Sensing 

ECIS (Electric Cell-Substrate Impedance Sensing) is a novel method used as an alternative to 

the conventional function assays. It works with an array of 96 wells, each containing a gold 

electrode. These measure the current and voltage across this electrode, calculating the 

impedance and resistance. From the impedance changes, effects on cell attachment and motility 

can be examined [262]. Using 96W1E+ array, cell adhesion and wounding assay were also 

conducted with ECIS instrument. 40,000 cells diluted in 200μl DMEM were seeded into each 

ECIS plate well, and treated with a protein of interest. 

 

4.3 Results 

 

4.3.1 Generation of a WISP-2 ribozyme transgene 

In order to knockdown the expression of WISP-2 in gastric cancer cells, two ribozyme 

transgenes targeting WISP-2 were generated based on the secondary structure of human WISP-

2 mRNA (Figure 2.6) and cloned into a pEF6/His plasmid vector. It depicts the series of PCR 

reactions carried out to construct a plasmid containing a WISP-2 ribozyme transgene in Chapter 
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3. Based on the secondary structure of WISP-2, an appropriate targeting site for the ribozyme 

was first ascertained. 

 

This was followed by ribozyme synthesis through touchdown PCR, and cloning into a 

pEF6/His plasmid. In order to verify correct orientation of the ribozyme transgenes, primers 

RbTPF and RbBMR were paired with T7F, respectively. These primers were specific to the 

ribozyme transgenes. If the transgene is correctly orientated, a PCR product of around 140bp 

(T7F promoter starts 90bp before insert and ribozyme sequence is around 50bp) should arise 

for the T7F+RbBMR reaction. However, if it is incorrectly orientated, a product of a similar 

size should appear for the T7F+RbTPF reaction. Following colony analysis, all those found to 

be positive for the transgenes underwent further amplification and finally, plasmid extraction. 

Ribozyme 1 colony 5 and ribozyme 2 colony 3 were shown to have the highest levels of 

correctly orientated ribozyme transgene. The plasmids were then verified using DNA 

electrophoresis, in order to demonstrate successful isolation of correctly sized plasmids (Figure 

4.1). 

 

4.3.2 Verification of WISP-2 knockdown in AGS and HGC27 cells 

To examine the function of WISP-2 on gastric cancer cells, we established WISP-2 knockdown 

cell lines (AGS WISP-2kd and HGC27 WISP-2kd) and control cell lines (AGS pEF and 

HGC27 pEF) from two gastric cancer cell lines. Q-PCR, RT-PCR and western blotting were 

carried out to ensure that the knockdown of WISP-2 was successful at both mRNA and protein 

levels in AGS and HGC27 cells (Figure 4.2-4.7). Figure 4.2 and 4.3 shows the WISP-2 mRNA 

transcript numbers of three repeats which were normalised against corresponding internal 

control (GAPDH) using quantitative real time PCR. WISP-2 expression was decreased in 

WISP-2 knockdown cells compared with empty plasmid pEF controls in AGS and HGC27 cell 
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lines. Figure 4.4 and 4.5 showed knockdown of WISP-2 in mRNA level using RT-PCR. Figure 

4.6 and 4.7 showed WISP-2 protein bands using western blotting. WISP-2 expression was 

decreased in WISP-2 knockdown cells compared with pEF control. 
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Figure 4.1 Ribozyme transgene synthesis. A. The ribozymes were generated using touchdown 

PCR and run on a 2% agarose gel. B. After transformation into E.coli cells, the colonies were 

analysed using PCR in order to verify correct orientation of the transgene. P stands for correct 

orientation (T7F promoter starts 90bp before insert and ribozyme sequence is around 50bp) 

arised from the T7F+ RbBMR reaction, and N stands for incorrect orientation of a similar size 

which arised from the T7F+RbTPF reaction. C. The plasmids were extracted from the correct 

colonies and verified with DNA electrophoresis. 
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Figure 4.2 Verification of knockdown (kd) of WISP-2 in AGS cells. Quantitative real time 

PCR showing WISP-2 mRNA volume of three repeats which was normalised against 

corresponding internal control (GAPDH). WISP-2 expression was decreased in AGS WISP-2 

kd compared with corresponding pEF plasmid control cells and anti-sense plasmid control cells 

(*: P< 0.05).  

 

Figure 4.3 Verification of knockdown (kd) of WISP-2 in HGC27 cells. Quantitative real time 

PCR showing WISP-2 mRNA volume of three repeats which was normalised against 

corresponding internal control (GAPDH). WISP-2 expression was decreased in HGC27 WISP-

2 kd compared with corresponding pEF plasmid control cells and anti-sense plasmid control 

cells. Asterisk represented P< 0.005. 
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Figure 4.4 Verification of knockdown (kd) of WISP-2 in AGS cells. RT-PCR displayed 

reduced level of WISP-2 mRNA in AGS WISP-2 kd cells compared with control cells (AGS 

pEF and AGS sense plasmid cells). 

 

 

Figure 4.5 Verification of knockdown (kd) of WISP-2 in HGC27 cells. RT-PCR displayed 

reduced level of WISP-2 mRNA in HGC27 WISP-2 kd cells compared with control cells 

(HGC27 pEF and HGC27 sense plasmid cells). 
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Figure 4.6 Confirmation of WISP-2 knockdown in AGS cells. WISP-2 protein bands volume 

was normalised against corresponding internal control (GAPDH). The expression of WISP-2 

showed a significant decrease in AGS WISP-2 kd cells compared with AGS pEF cells. 

 

 

Figure 4.7 Confirmation of WISP-2 knockdown in HGC27 cells. WISP-2 protein bands 

volume was normalised against corresponding internal control (GAPDH). The expression of 

WISP-2 showed a significant decrease in HGC27 WISP-2 kd cells compared with HGC27 pEF 

cells 
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4.3.3 Effect of WISP-2 knockdown on the growth of gastric cancer cells 

The cell lines displaying knockdown of WISP-2 were used in an in vitro cell growth assay 

along with the empty plasmid controls. There was a significant increase in the growth of the 

AGS WISP-2kd cells (Figure 4.8). The growth rate increased significantly in the AGSWISP-2kd 

cells (23.961±4.11, p<0.001) compared with the control AGS pEF (13.199±5.63). There was 

also a significant increase in the growth seen in the HGC27WISP-2kd cells (Figure 4.9). The 

growth rate increased significantly in the HGC27WISP-2-kd cells (27.635±2.51, p<0.001) 

compared with the control HGC27pEF (15.939±4.95). 

 

4.3.4 Effect of WISP-2 knockdown on in vitro cell-matrix adhesion 

The AGS and HGC27 cells were further analysed for their adhesive capacity using an in vitro 

Matrigel adhesion assay and ECIS assay. The cells with WISP-2 knockdown displayed no 

significant difference in adhesive capability compared with its controls in both AGS and 

HGC27 cells (Figures 4.10 and 11 respectively). Similarly, there was no significant difference 

in adhesion between WISP-2 knockdown cells and pEF cells in both AGS and HGC27 cells 

through the analysis of ECIS assay (Figure 4.12). 
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Figure 4.8 Knockdown of WISP-2 has a significant increase in the growth of the AGS WISP-

2 knockdown cells. After 5 days’ incubation, there was a significant increase in the AGS WISP-

2kd cells (23.961±4.11) compared with the control AGS pEF cells (13.199+5.63) (p<0.001). 

Data shown is representative of at least 6 independent repeats. Error bars represent standard 

deviation. The data of day 1 time point was used as a baseline to normalise the data.  

 

Figure 4.9 Knockdown of WISP-2 has a significant increase in the growth of the HGC27 

WISP-2 knockdown cells. After 5 days’ incubation, there was a significant increase in the 
HGC27 WISP-2kd cells (27.635±2.51) compared with the control HGC27 pEF cells 

(15.939±4.95) (p<0.001). Data shown is representative of at least 6 independent repeats. Error 

bars represent standard deviation. The data of day 1 time point was used as a baseline to 

normalise the data. 
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Figure 4.10 Representative images of adhered AGS cells.  There was no significant effect in 

cell adhesion of AGS WISP-2kd cells compared with the control AGSpEF (P> 0.05). 
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Figure 4.11 Representative images of adhered HGC27 cells. It demonstrated that there was not 

significant effect in cell adhesion with HGC27WISP-2kd cells compared with the control 

HGC27pEF (p> 0.05). 
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Figure 4.12 The effect of WISP-2 on cell adhesion of AGC and HGC27 cell lines through the 

analysis of ECIS assay. ECIS results also showed that there were no significant differences in 

adhesiveness in the first 45 minutes of knock down groups compared to the respective pEF 

controls in AGS and HGC27 cells (P> 0.05 respectively). 
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4.3.5 Effect of knockdown of WISP-2 in the cell motility  

The cells were further analysed for their motility using scratch or wounding assay. The cells 

with knockdown of WISP-2 displayed a significant increase in motility compared with control 

cells. Figure 4.13 and 4.14 respectively show that there was a significant increase in cell 

motility of WISP-2 knockdown cells compared with pEF cells in both AGS and HCG27 cell 

lines (p<0.05). 

 

4.3.6 Effect on invasion of AGS cells by WISP-2 knockdown 

WISP-2 knockdown cells displayed a significant increase of invasion compared with the 

controls in both AGS and HGC27 cell lines. The number of invaded cells was 207.36±19.71 

after WISP-2 knockdown compared with that of the control (133.58±18.8) in AGS cell lines 

(Figure 4.17). The number of invaded cells of HGC27 WISP-2 kd was 153.66±10.01 compared 

with that of HGC27 pEF cells (88.66±27.43) (Figure 4.18).  
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AGS pEF 

(mean ±SD) 

N=3 

AGS WISP-2 kd 

(mean ±SD) 

N=3 

62.5±7.09 97.14±10.11 

 

Figure 4.13 Knockdown of WISP-2 had a discernible effect on the migration of AGS cells. 

After 1 hour the significant difference in cell motility of AGS WISP-2 knockdown was 

visualized compared with the control AGS pEF. Data shown is representative of 3 repeats of 

experiment. Error bars represent standard deviation. *** stand for p< 0.001, analysed by T-test 

(AGS WISP-2 kd vs AGS pEF : p= 0.00063). 
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HGC27 pEF 

(mean ±SD) 

N=3 

HGC27 WISP-2 kd 

(mean ±SD) 

N=3 

61.7±6.51 89.3±10.62 

Figure 4.14 Knockdown of WISP-2 had a marked influence on the migration of HGC27 cells. 

There was a consistent difference in cell motility of WISP-2 knockdown cells compared with 

pEF cells since 1st hour. Data shown is representative of 3 repeats of experiment. Error bars 

represent standard deviation. Three asterisks stand for p< 0.001 analysed by T-test (HGC27 

WISP-2 kd vs HCG27 pEF : p= 0.00089). 
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Figure 4.15 Four representative images of cell migration of AGS pEF and WISP-2 kd cells at 

0 hour and 4th hour photoed by EVOS system. 

 

 

Figure 4.16 Four representative images of cell migration of HGC27 pEF and WISP-2 kd cells 

at 0 hour and 4th hour photoed by EVOS system. 
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Figure 4.17 WISP-2 knockdown has an increased effect on the invasiveness of AGS cells after 

3 days incubation of the cells on an artificial Matrigel basement membrane. Two representative 

images of cells following staining are shown in the top. Data shown is representative of 3 

repeats of experiment. Error bars represent standard deviation. Two asterisks stand for P< 0.01. 
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Figure 4.18 Knockdown of WISP-2 has a significant increase in the invasiveness of HGC27 

cells. WISP-2 knockdown has an increased effect on the invasiveness of HGC27 cells after 3 

days incubation of the cells on an artificial Matrigel basement membrane. Two representative 

images of cells following staining are shown in the top. Data shown is representative of 3 

repeats of experiment. Error bars represent standard deviation. Two asterisks stand for P< 0.01. 
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4.4 Discussion 

Metastasis involves the spread of cancer cells from the primary tumour to surrounding tissues 

and to distant organs and is the primary cause of cancer morbidity and mortality. In order to 

complete the metastatic cascade, cancer cells must detach from the primary tumour, intrude 

into the circulatory and lymphatic systems, evade immune attack, extravasate at distant 

capillary beds, and invade and proliferate in distant organs. However, the influence and 

function of WISP-2 in the metastatic cascade of some cancers, including gastric cancer, is not 

clear. For this purpose, we used transfected AGS and HGC27 cells with WISP-2 knockdown 

and empty plasmid (pEF) to deduce the influence of WISP-2 on the function of gastric cancer 

cells (AGS and HGC27). Through the comparison between the control group and the 

knockdown groups, we wanted to verify if WISP-2 may transform the function of gastric cancer 

cells. The in vitro function assays included growth, adhesion, invasion and migration assays, 

we repeated each assays more than three times to avoid artificial errors and ensure stability and 

accuracy of the results. The general trend of all repeats manifested consistency. 

 

Targeting of WISP-2 resulted in significant increases in gastric cell proliferation, migration 

and invasion in vitro all of which are functions necessary for successful tumour progression 

and metastatic spread. Interestingly there was no statistically significant effect on cell-matrix 

adhesion after successful targeting of WISP-2 expression.  These results suggest that WISP-2 

may act in a tumour suppressive role in gastric cancer. 
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Proteins and Potential Signalling Pathways 

Associated with WISP-2 
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5.1. Introduction  

Results presented in the previous chapters have suggested an important role for WISP-2 in the 

clinical course, disease progression and the survival of patients with gastric cancer. In vitro 

experimental results have further demonstrated that manipulating the expression of WISP-2 

has a direct impact on the cellular functions of gastric cancer cells, including that of 

invasiveness, migration and to some degree the growth of the cells. Collectively, this data 

argues an important and critical role for WISP-2 in gastric cancer cells and in shaping the 

clinical course of the patients with the cancer type. 

 

WISP-2 is an intracellular protein that can be regulated by external factors such as 

glucocoricoids and IGF-1 [243, 271], though the function of the WISP-2 protein is not clear. 

We have hypothesised that the cellular protein plays important roles by interacting with other 

cellular and signalling proteins, by which it regulates the complex signalling and functions of 

the cells.  

 

Although previous studies have preliminarily indicated that the WISP-2 protein may be 

involved in events including acting as a transcription repressor for EMT related molecules in 

breast cancer cells [243, 272, 273]. It has been shown that WISP-2 may form a protein complex 

with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc 

finger protein 423 (Zfp423) in adipocytes [274]. It has also been shown that exogenous WISP-

2 is able to activate the AKT1 pathway, by inducing the phosphorylation of AKT1 [275]. 

 

Thus, the interacting proteins and potential pathways associated with WISP-2 are less well 

known. To address this, we took an approach using an established protein array. We chose an 

antibody based protein array by aiming to: 1: Determine the proteins that are 
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associated/interacted with WISP-2, by way of precipitating WISP-2 protein and analysing the 

proteins co-precipitated with WISP-2; 2: To determine the changes of protein phosphorylation 

of certain key signalling pathways. Combining this with the results of Chapter 4, we tried to 

detect the effect of WISP-2 on cell motility of HGC27 cells through the signalling pathways 

which may be interested after the analysis of protein array. 

 

5.2 Materials and Methods 

 

5.2.1 Protein arrays for searching for interacting proteins with WISP-2 

i. Tissue and sample preparation 

Two pairs of fresh human stomach tissues (Pair 1 and pair 2) were obtained immediately after 

surgery. One piece of normal stomach tissue (N) (10cm away from the tumour margin) and 

one piece of matched tumour tissues (T) were obtained from the same patient. Of the normal 

tissues, we collected the mucosal tissues after stripping the tissues with a scalpel. The 

remaining tissues, primarily muscular and serosa were discarded. Tumour tissues were 

obtained by section a small portion of the tumour under direct visualisation.  

 

Both normal and tumour tissues, approximately 1-2 grams from each tissue were immediately 

placed in a universal tube, which was pre-filled with an aliquot of ice cold protein extraction 

buffer which also contained a mixture of protease inhibitors (BD Biosciences, San Jose, USA) 

(1ml). The tissue containing tubes were placed on ice and then subject to homogenisation using 

a handheld homogeniser, at 150 rpm, for 30 seconds. The homogenates were dispensed into 

1.5ml EEppendrof vials and subsequently spun at 12,000g for 10 minutes. Supernatants were 
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carefully collected and placed in new tubes and stored at -20ºC until use. The insolubles were 

discarded. 

 

ii. Immunoprecipitation of WISP-2 interacting proteins 

Protein preparations were first subject to protein quantitation, using a colorimetric protein 

quantitation kit. The concentrations were subsequently adjusted to 2mg/ml, using the same 

protein extraction buffer. A small amount of the proteins were set aside as a total protein 

preparation for verification purposes by subsequent Western blotting analysis. 

 

Using a WISP-2 specific antibody that is suitable for immunoprecipitation, namely a mouse 

monoclonal antibody to WISP-2 (SC-514070, Santa Cruz Biotechnologies Inc.,), 2 mg of total 

protein from each sample was added to 1.5ml (contained 300g) of anti-WISP-2 IgG in a small 

universal tube. After careful mixing, the tubes were then placed onto a blood wheel. The blood 

wheel was placed into a cold room (4ºC) with the speed set at 100rpm.  

 

Twenty four hours after the antibody-antigen reaction, the tubes were taken out and each tube 

(now containing 2mg of total protein and 300g anti-WISP-2 antibody) was added to 2ml 

protein A/G agarose conjugates (SC-2003). The agarose was pre-loaded with a mixture of 

Protein-A and Protein G. The tubes were placed back onto the blood wheel and were again 

placed in cold room to be spun at 100rpm for 4 hours. 
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After four hours, the protein-antibody-agarose mixture was dispenses into 1.5ml Eppendrof 

vials. The vials were spun at 5,000g, 4oC, for 10 minutes in a refrigerated microfuge. After 

carefully discarding the supernatants (which contained proteins not precipitated by the anti-

WISP-2 antibody), the remaining pellets now would have the agarose-Protein A/G and the 

WISP-2/anti-WISP-2 complex and of course proteins interacted with WISP-2. Each pellet was 

washed three times by using the same protein extraction buffer. 

 

After removal of the washing solutions, the agarose protein complex from each sample was 

combined to one Eppendrof vial, to which 0.5ml of an extraction buffer was added. This was 

then boiled at 100ºC for 5 minutes, to allow proteins (antibody, WISP-2 protein, and proteins 

co-precipitated with WISP-2) to be dissociated from the agarose beads. After cooling down, 

the mixture was spun at 12,000g for 10 minutes. The supernatant, which contains the proteins 

(WISP-2 and WISP-2 interacting proteins) precipitated by the antibody and then was carefully 

collected, stored at -20ºC, ready for protein array analysis.  

 

5.2.2 Protein preparation from gastric cancer cell line, AGS, for screening potential 

signalling events associated with WISP-2 

i. Cell and sample preparation.  

AGS/pEF6 (control transfected cells) and AGS/WISP-2KD (WISP-2 knockdown cells) were 

that prepared in the previous experiments (Chapter 4 and Chapter 5). In AGS/WISP-2KD cells, 

WISP-2 expression was markedly reduced/ lost by way of the anti-WISP-2 transgene. The 

AGS/pEF6 cells, transfected with a pEF6 plasmid as a control, had regular level of WISP-2. 
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Both cells (two T75 tissue culture flasks for each) were grown to 90% confluence. The flasks 

were washed with BSS buffer, and then placed with a fresh batch of DMEM supplemented 

with 5% FCS. After 5 hours, cells were removed from the flasks with a rubber policeman. The 

cells were pelleted using a centrifuge at 2,500rpm for 5 minutes.  

 

Cell pellets were added with a lysis buffer (0.6ml) and then subsequently placed on a blood 

wheel for 1 hour at 4ºC. The lysates were then spun at 12,000g for 10 minutes at 4ºC. The 

supernatant were carefully collected and discarded. 

 

ii. Protein concentration. 

The protein concentration in the cell lysates were quantified and then adjusted to 3.5 mg/ml 

final concentration. The samples were stored at -20ºC until use. 

 

5.2.3 Antibody microarrays 

We chose an antibody based protein array, namely KAM850, which have more than 850 

capture antibodies spotted on to each array slides (Kinexus Bioinformatics Ltd, Vancouver, 

Canada). Each array slide has two array spotted.  

 

5.2.4 Key parameter in the protein microarray analyses 

The following are the key parameters collected and used for the data analyses: 
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Globally Normalised Signal Intensity - Background corrected intensity values are globally 

normalised.  The Globally Normalised Signal Intensity is calculated by summing the intensities 

of all the net signal median values for a sample.  

 

Flag - An indication of the quality of the spot, based on its morphology and background. The 

flagging codes used in the reports are as follows: 

0: acceptable spots; 

1: spots manually flagged for reasons and may not be very reliable; 

3: poor spots defined by various parameters; 

 

%CFC - The percentage change of the treated sample in Normalised Intensity from the 

specified control. 

Calculation = (Globally Normalised Treated – Globally Normalised Control)/Globally 

Normalised Control)*100 

 

% Error Range - A parameter to show how tightly the “Globally Normalised Net Signal 

Intensity” for adjacent duplicate spots of the same protein in the sample compare to each other. 

Calculation = ABS (Globally Normalised Spot 1- Globally Normalised Spot 2)/Globally 

Normalised Spot 2*100 

 

Log2 (Intensity Corrected) - Spot intensity corrected for background is log transformed with 

the base of 2. 

Calculation = LOG (Average Net Signal Median,2) 

 

Z Scores - Z score transformation corrects data internally within a single sample.  
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Z Score Difference - The difference between the observed protein Z scores in samples in 

comparison. 

 

Z Ratios - Divide the Z Score differences by the SD of all the differences for the comparison. 

 

5.2.5 Antibody array analysis of WISP-2 interacting proteins 

The immuno-precipitates from normal and tumour tissues of the same patient were applied to 

the same slide, to reduce the inter-assay variance. 

The proteins samples were labelled, applied to the microarray, and image subsequently scanned 

using Perkin-Elmer ScanArray Reader laser array scanner, according to manufacturer's 

instructions. Analysis was carried out using the ImaGene 9.0 from BioDiscovery (El Segundo, 

CA). Here, our analyses had focused on the Globally Normalised Signal Intensity, %CFC and 

the Z-scores.  

 

iii. KAM850 protein microarray analysis. 

We used KAM850 protein microarray and applied the samples, pairwise, on the sample array 

slides, for the sake of reducing the inter-assay variance and ease of comparative analyses. 

 

In this case, we were focused on comparing the difference between the two comparable cell 

types, by emphasising the Z-difference and Z-ratio. 
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5.2.6 Cell lines 

AGS and HGC27 gastric cancer cell lines were used in this chapter, including empty plasmid 

control and transfected sublines. Cells were continuously maintained in normal DMEM media 

with 10% FBS and antibiotics. For ribozymes selection, cells were maintained in normal media 

supplemented with 5～7.5µg/ml blasticidin (5µg/ml for HGC27 and 7.5µg/ml for AGS 

selection). The stable transfected cells were maintained in normal media supplemented with 

0.5μg/ml blasticidin. 

 

5.2.7 The effects of different small inhibitors on the cell motility 

Using 96W1E+ array, cell adhesion and wounding assay were also conducted with ECIS 

instrument. Cells were seeded into each ECIS plate well as described in Chapter 2 and treated 

with a protein of interest. In this study, we treated the cells respectively with different 

concentrations of FAK inhibitor PF573228, JNK inhibitor SP100625 and N-WASP inhibitor 

Wiskostatin, respectively. For the control group, identical volume of serum free medium was 

added into wells. Cell adhesiveness was assessed within the first 40 minutes and electric wound 

was set at the 14th hour when the resistance reached maximum levels and migration data could 

be gathered in the continuous 6 hours. 

 

5.2.8 Electric Cell-Substrate Impedance Sensing 

ECIS (Electric Cell-Substrate Impedance Sensing) is a novel method used as an alternative to 

the conventional function assays. It works with an array of 96 wells, each containing a gold 

electrode. These measure the current and voltage across this electrode, calculating the 

impedance and resistance. From the impedance changes, effects on cell attachment and motility 
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can be examined [262]. Using 96W1E+ array, cell adhesion and wounding assay were also 

conducted with ECIS instrument. 40,000 cells diluted in 200μl DMEM were seeded into each 

ECIS plate well, and treated with a protein of interest. 

 

5.3 Results 

 

5.3.1 Proteins interacted with WISP-2 in normal gastric tissues 

We first verified the presence of WISP-2 protein in the protein samples prepared from gastric 

tissues, by way of Western blotting. As shown in Figure 5.1, both normal and tumour tissues 

expressed WISP-2 proteins which echoes well with what was observed from the immuno-

histochemical analysis (Chapter 3). 

 

Our antibody microarray tests revealed that all the protein preparations and the reactions were 

successful, with all the sample reaction Flagged as '0'. 

KAM850 antibody array had detected a number of proteins that have been co-precipitated by 

the anti-WISP-2 antibody (Figure 5.2). Given the nature of the study, namely searching for 

proteins that interacted with WISP-2 in a given tissue, we focused our analyses by using:  

 

i. Globally Normalised Signal Intensity, which is the signalling with background corrected 

intensity values are globally normalised. The Globally Normalised Signal Intensity is 

calculated by summing the intensities of all the net signal median values for a sample. 
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ii. Log2 (Intensity Corrected). This was the Spot intensity corrected for background is log 

transformed with the base of 2. 

 

Calculation = LOG (Average Net Signal Median 2) 

 

iii.Z Scores. The Z score transformation corrects data internally within a single sample. The 

background corrected spot intensity values for individual proteins are expressed as a unit of 

standard deviation (SD) from the normalised mean of zero. Since the transformation is done 

before sample-to-sample comparison, it is therefore comparison-independent, and would allow 

evaluation of the degree of proteins pooled out by the anti-WISP-2 antibody. 

 

 

Figure 5.1 The protein expression of WISP-2 in two pairs of stomach tissues from two patients 

with gastric cancer (one piece of normal tissue and matched tumour tissue). GAPDH was used 

as house keeping control. 
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Figure 5.2 Images of the antibody microarray for normal (Left: 1A and 2A) and tumour (Right: 

1B and 2B) from patients ( ID1 and ID2). 
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5.3.1.1 ERK Proteins interacted with WISP-2 in normal gastric mucosa 

From the cell function changes as presented in Chapter-4, we have focused on the ERK family 

protein kinases that are widely involved in the functions seen after WISP-2 modification. We 

aimed at first looking at the ERK proteins precipitated by WISP-2 in the tissues. Here, we 

chose the globally normalised signal, the Log2 transformed signal and the Z-score, all the 

parameters indicate the level of the protein precipitated and are independent of the sample 

comparison. 

 

WISP-2 interacted with ERK1. As shown in Figure 5.3, high levels of ERK1 protein was 

precipitated from antibodies recognised in the total WISP-2 protein (namely the pan-antibody). 

WISP-2 also interacted with the phosphorylated WISP-2 whether the phophorylation was on 

serine-74, threonine-207 or tyrosine-204.  

 

WISP-2 interacted with ERK5. As shown in Figure-5.4, WISP-2 also interacted strongly with 

ERK5 total proteins, although the three antibodies delivered varying degree of interaction. It is 

very interesting to observe that WISP-2 strongly interacted with ERK5 which had strongly 

phosphorylated on tyrosine-221. 

 

Interaction between WISP-2, ERK2 and ERK3. WISP-2 was also detected to interact with 

ERK2 (Figure-5.5). On this antibody array, there was no antibody to detect phosphorylated 

ERK2, thus the data only provides support that these two proteins are associated with each 

other. The similar pattern was observed with ERK3 (Figure 5.6). 
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Figure 5.3 ERK1 protein interacted with WISP-2 in normal stomach mucosa. Pan-specific 

antibodies recognised the total ERK1 protein (phosphorylated and non-phosphorylated). The 

vertical bars shows the levels of the ERK1 protein precipiated by anti-WISP-2 antibody after 

normalisation. The red line shows the levels of the signal in Log2 transformation and the green 

line shows the transformation that corrects data internally within a single sample. Top: first 

sample (1A); Bottom: the second sample (2A). 
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Figure 5.4 ERK5 protein interacted with WISP-2 in normal stomach mucosa. The layout is 

similar to Figure-5.2, except that the detected proteins are ERK5. 
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5.3.1.2 Interaction between JNK protein kinases and WISP-2 in normal gastric mucosa 

Three panels of antibodies were available to capture the JNK proteins. Shown in Figure-5.6 are 

the panel of antibody that recognised a common domain of JNK1/2/3. It was clear that one set 

antibody has shown a strong signal that JNK1/2/3 proteins were co-precipitated by WISP-2. It 

is also interesting to note that the antibody recognising T183/Y185 sites on JNK1/2/3 also 

recognised the presence of phosphorylated JNK1/2/3 from the WISP-2 precipitate. 

A respective panel of antibodies to pan-JNK2 (Figure 5.7) and pan-JNK3 (Figure 5.8) proteins 

had identified the presence of JNK2 and JNK3 proteins in the precipitates of WISP-2 from the 

normal tissues. Captured antibodies to phosphorylated JNK2 and JNK3 proteins are otherwise 

not available on the KAM850 microarray. 

 

  



The role of WISPs in Gastric Cancer  2015 PhD 

215 

 

 

 

 

Figure 5.6 Interaction between WISP-2 and the JNK proteins in normal stomach mucosal 

tissues.  
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5.3.2 Proteins interacted with WISP-2 in gastric cancer tissues 

In a similar matter to the analyses on normal stomach mucosa, the interaction between WISP-

2 and co-precipitated proteins were analysed on the gastric cancer tissues. 

 

5.3.2.1 ERK Proteins interacted with WISP-2 in gastric cancer tissues 

WISP-2 strongly interacted with ERK1 in gastric cancer tissues (Figure 5.9), in a similar 

fashion to that observed in normal mucosal tissues (Figure 5.3). Again, antibodies recognising 

Y204 showed that WISP-2 appears to co-precipitated well with the ERK1 protein 

phosphorylated on this tyrosine site. 

ERK5 also strongly co-precipitated with WISP-2 (Figure-5.10) and that antibodies recognising 

Y204 displayed a particularly strongly signal, indicating that WISP-2 may interact with 

tyrosine phosphorylated ERK5 proteins.  

A strong interaction was also observed between WISP-2 and ERK2 and ERK3 proteins 

(Figure 5.11 and 5.12).  
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Figure 5.9 Interaction between WISP-2 and the ERK1 protein in gastric cancer tissues. Results 

from phospho-specific antibodies and pan-specific antibodies recognised the total ERK1 

protein (phosphorylated and non-phosphorylated) were plotted. The vertical bars show the 

levels of the ERK1 protein precipitated by anti-WISP-2 antibody after normalisation. The red 

line shows the levels of the signal in Log2 transformation and the green line shows the 

transformation that corrects data internally within a single sample. Top: first sample (BA); 

Bottom: the second sample (2B). 
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Figure 5.10 Interaction between WISP-2 and the ERK5 protein in gastric cancer tissues. 
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5.3.2.2 JNK Proteins interacted with WISP-2 in gastric cancer tissues 

Antibodies recognising the pan-JNK-1, -2 and -3 proteins have displayed a strong signal in the 

WISP-2 protein precipitate from gastric cancer tissues (Figure 5.13). Again, it was shown that 

WISP-2 protein interacted with the JNK proteins that had been phosphorylated on T183/Y185 

sites.  

Likewise, WISP-2 interacted strongly with the JNK2 and JNK3 proteins (Figure 5.14 and 5.15). 

Information on the phosphorylation status of JNK2 and JNK3 proteins are not available on the 

protein microarray. 
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Figure 5.13 Interaction between WISP-2 and the JNK-1/2/3 proteins in gastric cancer tissues. 

The layout of the graph is similar to that of Figure-5.9.  
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5.3.3 The difference between normal and tumour tissues in WISP-2 interacting proteins 

In order to have a preliminary estimation of the difference in WISP-2 interacting proteins 

between normal and tumour tissues, we have used the Z-Score Difference, Z-Ratio between 

the same pair of normal tissues and the tumour tissues from the same patients. These two 

parameters reflected the difference in the paired samples.  

 

Figure 5.17 has shown that WISP-2 in tumour tissues strongly interacted with ERK5 which 

was phosphorylated at the Y221 site, but showed reduced interaction with T219 phosphorylated 

ERK5, when compared with that in normal tissues. In contrast, the pattern of differences 

between the interaction of WISP-2, ERK1 (Figure 5.16), ERK2 and ERK3 (Figure 5.18 and 

Figure 5.19) in tumour and normal tissues are not consistent.  

 

When comparing the difference in JNK1 interaction with WISP-2 proteins, it is indicated that 

tumour tissues had a more profound interaction pattern when T183/Y185 phosphorylated 

antibody was used (Figure 5.20). A similar pattern was seen with ERK3 (Figure 5.22), although 

the pattern with ERK2 was not consistent (Figure 5.21). 
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Figure 5.16 WISP-2 and ERK1 interaction in gastric tissues. The difference between cancer 

and normal tissues. Vertical bars are the Z-Ratio and greens are the Z-Score Difference between 

normal and tumour tissues. Top: patient ID1; Bottom: patient ID2. 
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Figure 5.17 WISP-2 and ERK5 interaction in gastric tissues. The difference between cancer 

and normal tissues. Vertical bars are the Z-Ratio and greens are the Z-Score Difference between 

normal and tumour tissues. Top: patient ID1; Bottom: patient ID2. 
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Figure 5.20 WISP-2 and JNK1/2/3 interaction in gastric tissues. The difference between cancer 

and normal tissues. Vertical bars are the Z-Ratio and greens are the Z-Score Difference between 

normal and tumour tissues. Top: patient ID1; Bottom: patient ID2. 
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5.3.4 Interaction of WISP-2 with AKT proteins 

 

Previously, AKT1 has been shown to either response to WISP-2 challenge or be a potential 

downstream event of WISP-2 activation. Here, we analysed the potential interaction between 

WISP-2 and AKT protein in the paired normal and tumour gastric tissues.  

WISP-2 interacted strongly with AKT1, in a similar fashion in normal and tumour tissues 

(Figure-5.23 and Figure-5.24). This was particularly so when pan-antibodies were used. Of the 

phospho-specific antibodies, WISP-2 seemed to interacted well with AKT1 phosphorylated on 

Y236 residue. The difference in comparing the interaction between the paired tissues proved 

inconclusive (Figure-5.25).  
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Figure 5.23 WISP-2 and AKT1 in normal tissues. The vertical bars show the levels of the 

AKT1 protein precipitated by anti-WISP-2 antibody after normalisation. The red line shows 

the levels of the signal in Log2 transformation and the green line shows the transformation 

that corrects data internally within a single sample. Left: first sample (1A); Right: the second 

sample (2A). 

 

Figure 5.24 WISP-2 and AKT1 interaction in gastric tumour tissues. The layout is the same 

as Figure-5.23. Left: first sample (1B); Right: the second sample (2B). 
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Figure 5.25 WISP-2 and AKT1 interaction in gastric tissues. The difference between cancer 

and normal tissues. Vertical bars are the Z-Ratio and greens are the Z-Score Difference between 

normal and tumour tissues. Left: patient ID1; Right: patient ID2. 
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Figure 5.26 Possible interaction between WISP-2 and the p53 protein in gastric tissues. Results 

from phospho-specific antibodies and pan-specific antibodies recognised the total p53 protein 

(phosphorylated and non-phosphorylated) were plotted. The vertical bars show the levels of 

the p53 protein precipiated by anti-WISP-2 antibody after normalisation. The red line shows 

the levels of the signal in Log2 transformation and the green line shows the transformation that 

corrects data internally within a single sample. Top: Normal stomach mucosa; Bottom: gastric 

cancer tissues from both patients. 
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5.3.5 WISP-2 had little interaction with p53 protein 

P53 is a well-established tumour suppressive protein. We also analysed the potential interaction 

between WISP-2 and p53. As shown in Figure-5.26, WISP-2 had very little interactions with 

p53, with the strength of the signal virtually below detection limit and Z-Score below zero.  

 

5.3.6 Changes of key signalling event after WISP-2 knock down from gastric cancer cells 

From the earlier section, we have identified some key proteins and phospho-specific proteins 

that potentially interacted with WISP-2 protein. In order to further explore if the signalling 

events associated with WISP-2 protein in a living cancer cells, we have used the cell models 

created in the early chapters, namely a WISP-2 knockdown model from gastric cancer cell lines. 

Here, we employed the AGS cell model, in which WISP-2 was knocked down by way of anti-

WISP-2 transgene (Chapter-4). Using the protein microarray, we compared the difference in 

these key signalling molecules between the control cells and WISP-2 knockdown cells (Figure-

5.27). 

 

Change of ERK1 after WISP-2 knockdown. As shown in Figure-5.28 and Figure-5.29, knocking 

down WISP-2 resulted in a reduction in the total amount of ERK1 and indeed ERK1 

phosphorylated on T202/Y204.  

 

Change of ERK5 after WISP-2 knockdown. Different from ERK1, the difference in ERK5 

levels between control and WISP-2 knockdown cells were not markedly different (Figure 5.30 

and Figure 5.31). 
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Change of JNK1 after WISP-2 knockdown. Although knocking down WISP-2 had not changed 

the total levels of JNK1, it is however interesting to note that WISP-2 knockdown resulted in 

a marked increase in phosphorylation of JNK1 on T183/Y185 (Figure 5.32 and Figure 5.33). 

 

Change of p53 after WISP-2 knockdown.  It is interesting to observe that AGS cells had a good 

level of p53 protein (Figure 5.34). Knocking down WISP-2 from the cells resulted in a rise of 

p53 phosphorylation on the S37 as S6 sites (Figure 5.34 and Figure 5.35). 
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Figure 5.27 Images of the antibody microarray for AGS cell line (3A-Control cell; 3B- WISP-

2 knock down cells). 
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Figure 5.28 Levels of the ERK1 protein detected by KAM850 protein microarray in AGS 

human gastric cancer cells. AGS cells after WISP-2 knockdown (3B) and control transfected 

cells (3A) were compared. Top: Globally normalised signals of both cells detected by a panel 

of antibodies. Bottom: the difference between the two cells as defined as %CFC. Both cells 

had good levels of ERK1, although the total levels of ERK1 were reduced after the WISP-2 

knockdown (bottom).   
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Figure 5.29 Change of levels of the ERK1 protein after WISP-2 knockdown. Z-Ratio has 

indicated that knocking down WISP-2 resulted in reduction of ERK1 and indeed  ERK1 

phosphorylated on T202/Y204 sites.  
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Figure 5.30 Levels of the ERK5 protein detected by KAM850 protein microarray in AGS 

human gastric cancer cells. AGS cells after WISP-2 knockdown (3B) and control transfected 

cells (3A) were compared. Top: Globally normalised signals of both cells detected by a panel 

of antibodies. Bottom: the difference between the two cells as defined as %CFC. 
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Figure 5.31 Change of levels of the ERK5 protein after WISP-2 knockdown, as shown by the 

Z-Ratio.  
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Figure 5.32 Levels of the JNK1 protein detected by KAM850 protein microarray in AGS 

human gastric cancer cells. AGS cells after WISP-2 knockdown (3B) and control transfected 

cells (3A) were compared. Top: Globally normalised signals of both cells detected by a panel 

of antibodies. Bottom: the difference between the two cells as defined as %CFC. 
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Figure 5.33 Change of levels of the JNK1 protein after WISP-2 knockdown, as shown by the 

Z-Ratio.  
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Figure 5.34 Levels of the p53 protein detected by KAM850 protein microarray in AGS human 

gastric cancer cells. AGS cells after WISP-2 knockdown (3B) and control transfected cells (3A) 

were compared. Top: Globally normalised signals of both cells detected by a panel of 

antibodies. Bottom: the difference between the two cells as defined as %CFC. 
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Figure 5.35 Change of levels of the p53 protein after WISP-2 knockdown, as shown by the Z-

Ratio.  
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5.3.7 WISP-2 knockdown (kd) affected migration of HGC27 cell treated with JNK and 

FAK inhibitors 

 

From the data obtained in the KAM850 antibody protein microarray assay, it was clear that 

first, WISP-2 interacted with the JNK protein in the protein preparations from human gastric 

cancer tissues and second, knockdown WISP-2 from human gastric cancer cell lines had a 

marked effect on  JNK pathway. On this observation, here we further evaluated cell's response 

to JNK inhibitor in control and WISP-2 knockdown cancer cells. 

 

After small inhibitor JNKⅡ(1.5µM)  was added into the cells, the motility of HGC27 WISP-

2 kd decreased obviously than the control cells (P <0.05) (Figure 5.36).  

 

The protein microarray demonstrated that WISP-2 did not interact with WISP-2, or at least not 

at a high level and that WISP-2 knockdown from AGS cells did not result in significant change 

with FAK. As a negative control, FAK small inhibitor (1.5µM) was also tested. As shown in 

Figure 5.37, there was no effect on both cells (P>0.05).  
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Figure 5.36 The knockdown of WISP-2 in HGC27 cells resulted in increased cell motility via 

JNK pathways (1.5 µM JNK inhibitor). Overall changes of resistance on the sixth hour with 

statistical analysis. *, p < 0.05. 

 

Figure 5.37 The knockdown of WISP-2 in HGC27 cells had no effect on cell motility via FAK 

pathways.   
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5.4 Discussion 

Following the findings from the earlier chapters that WISP-2 has a significant link to the 

disease stage, patients survival and, in particular to the cells functions in gastric cancer, one of 

the key questions arising was how WISP-2 participated in the regulations of the cellular 

functions, which in turn contributed to the clinical links.  

 

WISP-2 is protein present both intracellularly and extracellularly. As discussed in Chapter-1, 

the protein has a IGF binding domain, a cystine knot-like domain, a von Willebrand factor type 

C and a thrombospondin domain. The protein has been implicated in the regulation of cell 

growth, cell migration and cell adhesion, as indeed shown in the study presented in Chapter-4. 

Here, we attempted to explore the proteins and siganalling molecules that are potentially 

associated with WISP-2, by way of an antibody based protein microarray, namely KAM850. 

KAM850 is a recently developed protein microarray with over 850 antibodies spotted on the 

slides.  

 

We have first used an immunoprecipitation method, with a specific antibody to human WISP-

2, to pull out the proteins from gastric tissues that are interacted with WISP-2. From the data 

available on the array, we have focused on the potential pathways/proteins that are associated 

with the key cell functions, shown to be altered by WISP-2, namely cell growth, adhesion and 

migration as presented in Chapter-4. We found the levels of the ERK protein family, namely 

ERK1 and ERK5, and JNK1 protein are highly associated with WISP-2, as demonstrated by 

the level of fluorescence signal on these proteins. Furthermore, the other protein known to be 

associated with WISP-2, namely AKT1 has also been found to be highly associated with WISP-

2. Thus, the ERK pathway, the JNK pathway and AKT pathway appear to be key to the function 

of WISP-2 in gastric cancer. This is indeed confirmed in the cell based study, in which after 
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knocking down WISP-2 in AGS cells, the levels of these proteins have changed in a similar 

fashion.  The link between WISP-2, ERK or JNK proteins has been further strengthened by the 

observation that the changes of the protein interactions are also seen with the changes in the 

interaction with phosphorylated proteins.  

 

ERK, JNK and AKT pathways are essential pathways in cells. Within the cells, they coordinate 

a complex framework of intracellular pathways, which participate a rather wide range of cell 

functions. Shown in Figures-5.38-5.41 are examples plotted based on the current data set at the 

Kinexus Phosphonet website (www.phosphonet.ca). These pathways would warrant further 

investigation.  WISP-2 has multiple phosphorylation sites at shown in Figure 4.42. With which 

sites of WISP-2 protein that the newly identified proteins remain to be further investigated.   

 

We also attempted to compare if the interaction between WISP-2 and the partner proteins 

differs in normal and tumour gastric tissues. In general, the interaction pattern does not vary 

very much in normal and tumour gastric tissues. This is interesting, as one would argue that 

the changed protein expression profile in tumour tissues may cause a difference in the 

interaction. This has not been proven to be a firm case, which may be due to the possibility that 

this has no difference in reality, that expression level in WISP-2 protein differs in normal and 

tumour (as shown in Chapter 3), and/or that that the study would require a substantially larger 

cohort to test this possibility. Limited by the time and resource on this expensive technique, it 

is not possible to clearly answer this question. We have a follow on study planned for the 

immediate future. 



The role of WISPs in Gastric Cancer  2015 PhD 

249 

 

 

Figure 5.38 The potential interaction between phospho-JNK proteins with other signalling 

proteins, namely MAKP8/JIP and MKK7. Figure generated by KinexusTM, based on the 

KAM850 phosphoprotein array (www.phosphonet.ca).  

 

 

Figure 5.39 The potential interaction between phospho-ERK proteins with other signalling 

proteins, namely, MSK2, ATF and Creb, a group of transcription factors. Figure generated by 

KinexusTM, based on the KAM850 phosphoprotein array (www.phosphonet.ca).  
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Figure 5.40 The potential interaction between phospho-AKT proteins with other signalling 

proteins, namely IKK and other signalling proteins. Figure generated by KinexusTM, based on 

the KAM850 phosphoprotein array (www.phosphonet.ca). 

  

 

 

 

Figure 5.41 The potential interaction between phospho-p53 proteins with other signalling 

proteins. Figure generated by KinexusTM, based on the KAM850 phosphoprotein array 

(www.phosphonet.ca).  
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Figure 5.42 The potential phosphorylation sites of WISP-2, generated from 

(www.phosphonet.ca). 

 

WISP-2 modification has an influence on cell growth. We have analysed another available set 

of information on p53, a tumour suppressor protein and known to widely regulate cell growth 

and death. To our surprise, the level of p53 interacted with WISP-2 was very low, about one 

hundredth of that seen with ERK, JNK and AKT. This could suggest that there is no direct or 

indirect interaction between WISP-2 and p53. 

 

It is interesting to note that WISP-2 did not have significant interaction with FAK. Modification 

of expression of WISP-2 in gastric cancer cells clearly resulted in changes in cell migration 

and cell adhesion as demonstrated in chapter-4. Both cellular migration and matrix adhesion 

require the participation of integrins, a group of transmembrane proteins that mediate the 

interaction between cells and extracellular matrix. Central to the regulation of integrin mediated 

cell-matrix adhesion and migration is FAK, a protein kinase mediating the extracellular and 

intracellular events within the cells. Upon the interaction between matrix proteins and integrins, 

FAK is activated by way of phosphorylation. Via the interaction with the downstream 

signalling molecules, it regulates the cytoskeletal and cytoskeletal associated proteins which in 

turn mediate the adhesion and migration of the cells. The data presented here suggests that the 



The role of WISPs in Gastric Cancer  2015 PhD 

252 

 

WISP-2 influence on adhesion and migration either are not involved in FAK or may be 

involved in the downstream of FAK. For example, both AKT and JNK pathways are 

downstream of FAK and both interact with WISP-2 and is markedly affected after WISP-2 

knockdown. It is plausible therefore that the impact of WISP-2 on cell adhesion and migration 

are via the pathways downstream of FAK.     

 

From the foregoing, this part of the investigation has revealed that WISP-2 strongly interacts 

with JNK pathway. We tried to detect the difference of cell migration between the HGC27 cells 

treated with JNK inhibitor and the cells without treatment. Through the analysis of ECIS assays, 

we focused on the investigation of the involvement of the JNK, ERK and FAK on cell 

migration. As shown in Figures 4.17 and 4.18, the WISP-2 knockdown cells treated with JNK 

inhibitor showed a significant decrease of migration ability compared with the control groups. 

It validated again the previous conclusion of the inhibitory effect of WISP-2 on the migration 

ability of gastric cancer cells using wounding assays. What is more, it pointed out the inhibitory 

influence of WISP-2 on cell migration via the JNK pathway. Furthermore, there was not any 

significant difference between the cells treated with FAK inhibitor and the control cells.  

 

Given that there has been previous report on the role of AKT in the action of WISP-2, we 

decided to focus on the next stage study on the ERK and JNK pathway in gastric cancer cells, 

in the context of WISP-2. The results are presented in the next two Chapters. The nature and 

implications of these two pathways are also to be discussed in the following two chapters. 
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Chapter 6 

Knockdown of WISP-2 increased the 

expression and activity of MMPs via JNK 

and ERK pathways 
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6.1 Introduction 

Metastasis is the most life-threatening complication of solid tumours [276]. The multistep 

process of tumour development involves the cell acquiring new phenotypic traits, including 

overriding growth controls, induction of angiogenesis, evasion from host anti-tumour 

responses, extravasation and growth at metastatic sites etc. under the influences of successive 

genetic alterations and environmental impact. In patients with solid tumours, the main cause of 

death is not the primary neoplasm, but its metastasis in vital organs [263]. The overall growth 

behaviour of a developing neoplasm is a net result of the combined kinetic interactions among 

of the heterogenous tumour cells. Intriguingly, the dominating influence of migration on 

tumour growth is dependent on the balance between tumour cell proliferation and death [264]. 

During metastasis, a number of process occurs, including EMT, migration and invasion, 

anoikis resistance, extravasation and organ colonisation. Therefore, a clear understanding of 

tumour metastasis and the role played by metastasis suppressor genes in regulating this cascade 

are important [277]. WISP proteins (WNT1-inducible signalling pathway proteins) are a 

subfamily of the CCN super family [189]. As a subset of the extracellular matrix (ECM), WISP 

proteins modulate various cellular activities, such as cell growth, differentiation, invasion, 

migration [265]. WISP-2 has been related to tumorigenesis and malignant transformation, 

especially in breast cancer [211, 222], colorectal cancer [212] and heptocarcinoma [227]. 

However, it appears that the WISP-2 functions are tissue-specific and influenced by the tumour 

microenvironment. Furthermore, it has been speculated that WISP-2 is acting as a dominant 

negative regulator of other CCN family members, due to its structural difference with other 

WISP members. However, the mechanism of the metastasis suppressor function of WISP-2 

remains unknown. Sengupta et al [215] found that the upregulation of WISP-2 by phorbol ester 

is mediated through a complex PKCα-MAPK/ERK and MAPK/JNK signaling pathway, which 

leads to growth stimulation of MCF-7 breast tumour cell. 
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In Chapter-4, it was shown that there was a significant effect of WISP-2 knockdown on the 

migration and invasion of gastric cancer cells. Chapter-5 demonstrated an intimate link 

between WISP-2 protein and the JNK, ERK and AKT pathways. In the light of previous 

study, the current chapter investigated if WISP-2 had an impact on MMP-9 and MMP-2, 

known as the most important protease related with the invasion and cellular migration of 

cancer cells and JNK/ERK pathway [278], and explored how JNK and ERK signaling 

pathway played a role in the regulation of MMP expression.  

 

6.2 Materials and methods 

 

6.2.1 Cell lines 

AGS and HGC27 cell lines were routinely cultured in DMEM-F12 medium as described in 

Chapter 2. 

 

6.2.2 Chemicals 

Anti-GAPHD antibody was from Santa Cruz Biotechnologies Inc. A PLC-γ specific inhibitor 

STK-870702, also known as3-amino-N-(3-chlorophenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-

b]quinoline-2-carboxamide was purchased from Vitas-M Laboratory, Ltd (Cat number: 

STK870702) (Leung et al 2014) and a generic PLC inhibitor, U73122 was from Tocris (Bristol, 

UK); The FAK inhibitor (PF573228, Cat Number: 3239) was from Tocris Bioscience;  JNKII 

inhibitor (SP600125, Cat Number: 420119) was from Merck; N-WASP inhibitor (Wiskostatin, 

Cat Number: 681525) was from Calbiochem. The MMP-9 inhibitor (Marimastat, Cat number: 

2631) and MMP-2 inhibitor (ARP100, Cat number: 2621) were both from Tocris Bioscience; 

Matrigel was from BD Bio-Science (Cat Number: 354234, BD Bio-Science, Oxford, UK). 
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6.2.3 Generation of WISP-2 ribozyme transgenes 

Hammerhead ribozymes targeting WISP-2 were designed on basis of the secondary structure 

of WISP-2 mRNA and synthesized following the method described in Chapter 2. 

 

6.2.4 Generation of WISP-2 knockdown in gastric cancer cell lines 

The plasmids were transfected into gastric cells through by the electroporation at 310V. 

Subsequently, the cells were placed into 5 μg/ml blasticidin selection for a sufficient period 

to kill cells which did not contain the plasmid. Empty plasmid vectors were used to transfect 

the cells as control. The verification of WISP-2 in the transfected cells was done using RT-

PCR, Q-PCR and Western blotting as described in Chapter 4. 

 

6.2.5 Gelatin zymography assay 

To test the activity of type IV collagenases MMP-2 and MMP-9, which are of the most 

important type of MMPs, 1x106 Cells were seeded into a 25 cm2 culture flask and incubated 

overnight.  Following incubation, cells were washed once with sterile 1x BSS followed by a 

wash with serum-free DMEM and then either incubated in serum-free DMEM control or 

treated medium for 6 hours. In this study, we treated cells with 200nM of JNKII or ERKII 

small inhibitors respectively. After 6 hours, the conditional medium was collected and samples 

were prepared in non-reducing sample buffer and separated using SDS-PAGE gels containing 

1% gelatine (Sigma-Aldrich Inc, USA). After renatured for 1 hour at room temperature in 

washing buffer containing  2.5% Triton X-100 and 0.02% NaN3, the gels were then incubated 
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at 37°C in incubation buffer for 36 hours. Following incubation, the gels were stained with 

Coomassie blue for 1 hour and washed in destained buffer for another 1 hour. The gels were 

analysed using densitometry.  

 

6.3 Results 

 

6.3.1 The expression of MMPs in HGC cells 

RT-PCR showed the expression of MMP1, 2, 3 and 9 were  increased in HGC27 WISP-2 kd 

cells and there was no obvious difference of MMP7 compared with controls. Expression of 

MMP7 was downregulated in AGS WISP-2 kd cells, MMP1, 2, 3 and 9 were upregulated, 

however, there was no obvious expression of MMP-2 in AGS WISP-2 kd cells compared with 

controls (Figure 6.1). 

 

6.3.2 WISP-2 knockdown resulted in increased enzymatic activity of MMPs via JNK 

and/or ERK pathways 

MMPs (matrix metalloproteinases) are key proteins implicated in ECM remodelling and 

degradation by metastatic cells [279]. WISP-2 Knockdown resulted in an up-regulation of 

MMP-9 in AGS WISP-2 kd cells, and MMP-9 and MMP-2 in HGC27 WISP-2 kd cells, which 

were consistent with increased invasiveness in both cells. We further treated both cells with 

200 nM JNKII and ERKII small inhibitor, respectively. The elevated MMP-9 activity in AGS 

WISP-2 kd cells was reduced after treatment with ERK and JNK inhibitors. However, the 

elevated MMP-9 and MMP-2 activity in HGC27 WISP-2 kd cells was reduced only by JNK 

inhibitor, but not ERK inhibitor (Figure 6.2 and 6.3).  
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6.3.3 WISP-2 knockdown (kd) affected invasion of AGS cell treated with MMPs 

inhibitors 

WISP-2 knockdown influenced invasiveness of AGS cells treated with MMPs inhibitors. 

Figure 6.4 shows AGS cells with WISP-2 knockdown after treatment with MMP-9 inhibitor 

(Marimastat) significantly decreased in invasiveness (p= 0.025) compared with AGS WISP-2 

knockdown cells with no treatment. While the group treated with ARP100 did not demonstrate 

a significant change on cell invasion compare with the control group (p> 0.05).   
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Figure 6.1 The increased transcript expression of MMP1, 2, 3 and 9 in HGC27 WISP-2 kd 

cells compared with controls.  
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Figure 6.2 The enzyme activity of MMP-9  in AGS pEF and WISP-2 knockdown cells, with 

or without treatment of ERK inhibitor and JNK inhibitor. Gelatin zymography indicated the 

reduced enzyme activity of MMP-9 in AGS WISP-2 kd cells treated with ERK and JNK 

inhibitors and reduced MMP-9 in HGC27 WISP-2 kd cells treated with JNK inhibitors. 1: pro-

MMP-9, 2: MMP-9. 
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Figure 6.3 The enzyme activity of MMP-9 and MMP-2 in HGC27 pEF and WISP-2 

knockdown cells, following treatment with ERK inhibitor and JNK inhibitor. Gelatin 

zymography indicated the reduced emzyme activity of  MMP-9/2 in HGC27 WISP-2 kd cells 

treated with JNK inhibitors. 1: pro-MMP-9, 2: MMP-9, and 3: MMP-2. 
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Figure 6.4 AGS cells with WISP-2 knockdown after the treatment with MMP-9 inhibitor 

(Marimastat) significantly decreased in invasiveness (p= 0.025, compared with AGS WISP-2 

knockdown cells with no treatment). While the group treated with MMP-2 inhibitor (ARP100) 

did not demonstrate a significant change on cell invasion when compared with the control 

group (Asterisk represents for p> 0.05). 
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6.4 Discussion 

Suppression of WISP-2 expression leads to the upregulation of the matrix metalloproteinases, 

MMP-2 and MMP-9, which are often found to be highly expressed in the invasive breast cancer 

phenotype [218]. The expression of MMP-1, MMP-2, MMP-9, and MMP-13 have been shown 

to be linked to the aggressiveness of tumours and their expressions are mediated by p38 in 

various  tissues including prostate, breast, bladder, liver, and skin keratinocyte cell lines. 

Recently, several reports have shown that MMP-9 was up-regulated via the ERK signalling 

pathway in different human cells [280]. However, the mechanism by which WISP-2 deficiency 

enhances the invasiveness of cancer cells has not been elucidated and remains poorly 

understood [281].  

 

In the present study, we have discovered that WISP-2 may suppress the expression of MMPs 

as well as activities of MMP-2 and MMP-9 in gastric cancer cells. Our study further 

demonstrates a role for JNK and ERK in this regulation，partly owing to the observation that 

treatment with JNKII and ERKII small inhibitors blocked the effects seen by knocking down 

WISP-2. This indicates that JNK pathway is one pathway that is suppressed by WISP-2. Our 

results echoes a recent report in which Twist has been linked to the expression of MMP1 [282]. 

It is thus argued therefore that loss of WISP-2 result in activation process for MMPs in cancer 

cells.   

 

Based on the inhibitory effect of WISP-2 on MMPs, we further went back to compare the cell 

invasion of cells treated with MMPs inhibitor with that of control cells. WISP-2 knockdown 

influeced invasiveness of AGS cells treated with MMPs inhibitors. Figure 4C shows AGS cells 

with WISP-2 knockdown after the treatment with MMP-9 inhibitor (Marimastat) significantly 
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decreased in invasiveness (p= 0.025) compare with AGS WISP-2 knockdown cells with no 

treatment. While the group treated with ARP100 did not demonstrate a significant change on 

cell invasion compare with the control group (p> 0.05).  

 

Taken together, the experimental evidence has shown that WISP-2 is a negative regulator of 

MMP expression and protein activities in cancer cells and that  the JNK and ERK pathways 

are pivotal cellular events in this action. 
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Chapter 7 

 

 

WISP-2 and Epithelial to Mesenchymal 

Transition (EMT) in gastric cancer and its 

clinical application 
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7.1 Introduction 

Gastric cancer is originating from the epithelium [283]. Most patients with gastric cancer are  

diagnosed with advanced stage [54, 284]. Metastasis from gastric cancer not only represents 

the progression of the disease, but the key reason for treatment failure or death [285]. Hence, 

how to suppress cancer metastasis is the direction of research for gastric cancer treatment. 

 

Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell-

cell adhesion and obtain the properties of migratory and invasion, so that to form a migratory 

(mesenchymal) phenotype [286]. Interestingly, the expression of mesenchymal markers, 

namely N-cadherin and vimentin, are upregulated, while the expression of epithelial marker 

proteins, such as E-cadherin and keratin, are downregulated during the process of  EMT 

[287]. Hence, EMT has been widely suggested as an important process during tumour 

metastasis of solid tumours, including gastric cancer [288]. The suppression of EMT may 

result in the restraint of the metastasis of gastric cancer, therefore EMT markers could be 

promising therapeutic targets.  

 

WISP proteins, as a part of the extracellular and intracellular signalling molecules,  modulate 

various cellular activities, namely cell growth, differentiation, invasion, migration and 

survival as shown here and in the literature [265]. Our study also revealed that WISP-2 has a 

significantly inhibitory effect on cell invasion and migration of gastric cancer cells (Chapter 

4). Furthermore, data presented in Chapter 5 suggested that WISP-2 downregulate cellular 

motility of gastric cancer cells via JNK/ERK signalling pathway. Several studies suggested 

that EMT in cancer cell is mediated via JNK pathway [289, 290]. Dhar et al reported that a 
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significant correlation between the degree of differentiation and progression of pancreatic 

adenocarcinoma and decreased expression of the WISP-2 signalling protein. Pancreatic 

cancer cell line, MIA-PaCa-2, when treated with recombinant WISP-2 protein downregulated 

the expression of the mesenchymal cell marker vimentin and altered the morphological 

appearance of the cells to a cobble stone, epithelial-like phenotype [217]. These results 

suggest that WISP-2 may have a role in maintaining an epithelial-like phenotype in 

pancreatic adenocarcinoma cells thereby decreasing their invasive potential. In the present 

study, we determined the expression of EMT (Twist, N-cadherin, Vimentin, E-cadherin and 

Slug) markers in gastric tumour tissues and gastric cancer cells (HGC25 and AGS), and 

attempted to analyse the possible correlation between the EMT markers and WISP-2. The 

data presented in this chapter will show that loss of WISP-2 signalling is a crucial permissive 

event for epithelial-mesenchymal-transition (EMT) and extracellular matrix degradation and 

cell migration in gastric cancer. 

 

7.2 Materials and methods 

 

7.2.1 Human gastric tumour tissues 

324 patients (Male: 231 cases, female: 93 cases; mean age, 59.8 years; range: 23-87 years, 

median survival age: 24 months) with gastric cancer, who were diagnosed and surgically 

treated in Peking University Cancer Hospital between 2004 and 2007, were enrolled in this 

study. The study was approved by the local ethics committee (Ethics Number: 2006021) and 

consents were obtained from patients. Some of the patients had received chemotherapy or 

radiation therapy preoperatively. The following histopathological information was obtained:  
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the depth of tumour invasion, histological grade, and status of lymph node metastasis, liver 

metastasis and vascular invasion. Stage of gastric adenocarcinoma was classified according to 

1997 tumour node-metastasis (TNM) classification recommended by the International Union 

against Carcinoma. All patients were followed up until June 2012. 

 

7.2.2 Quantitative analysis of Epithelial to Mesenchymal Transition (EMT) markers in 

tissues 

The mRNA level of EMT markers (E-cadherin, Slug and Twist) from the above prepared 

cDNA was determined by real-time quantitative PCR using IcyclerIQ™ (Bio-Rad, Hemel 

Hempstead, UK), based on the Amplifluor™ technology [291] modified from a previously 

reported method [292]. Cytokeratin-19 (CK19) was used as a house keeping control for the 

epithelial/cancer cell content. The reaction was carried out under the following conditions: 

94˚C for 5 min, 96 cycles of: 94˚C for 15 sec, 55˚C for 35 sec and 72˚C for 20 sec. The levels 

of the transcripts were generated using an internal standard that was simultaneously amplified 

with the samples, and are shown here in two ways: levels of transcripts based on equal amounts 

of RNA, and as a target/CK19 ratio [212].  

 

7.2.3 Gastric cancer cell lines 

The two human gastric cell lines, AGS and HGC27 were acquired from the European 

Collection of Animal Cell Culture (ECACC, Salisbury, UK). Cells were maintained in DMEM-

F12 medium supplemented with 10% foetal bovine serum (FBS) and antibiotics. 
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7.2.4 Quantitative analysis for Epithelial to Mesenchymal Transition (EMT) markers in 

cell lines 

The levels of mRNA expression of EMT markers, E-cadherin, N-cadherin, Twist, Slug and 

Vimentin were determined by real-time quantitative PCR and RT-PCR in WISP-2 knockdown 

and control cells. Here, GAPDH was used as an internal control.  

 

7.2.5 Statistical analysis  

Statistical analysis was performed using SPSS18 (SPSS Inc., Chicago, USA). The association 

of the expression of WISPs and EMT markers was analysed using Spearman Rank Order 

Correlation analysis. Each assay was performed at least three times. The relationship between 

EMT markers and clinical parameters was analyzed using Mann-Whitney U rank test or 

Kruskal-Wallis rank test, where appropriate. P-value < 0.05 was considered statistically 

significant. 

 

7.3 Results 

 

7.3.1 Expression of EMT markers in gastric tissues and the association with 

clinicopathological characteristics 

In the clinical cohort, Slug and Twist transcripts were lower in normal tissues than in tumour 

(P=0.015 and P<0.0001 respectively), by contrast, E-cadherin and N-cadherin expression 

decreased in the tumour tissues compared with the normal tissues (P<0.0001) (Figure 7.1 and 

Table 7.1). The markers individually did not appear to be significantly correlated with the 

histological type nor other clinical parameters (Tables 7.2 and 7.3). 
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However, the trio of the markers, namely, E-cadherin, Slug and Twist were significantly 

correlated with the incidence free survival (p=0.005) and overall survival (p=0.008), based on 

the Kaplan-Meier survival model (Figure 7.2). Likewise, patients with the trio EMT marker 

abnormalities had a lower five-year survival rate.  

 

7.3.2 Correlation between WISP-2 and EMT markers in gastric cancer 

Levels of the WISP-2 transcripts significantly and inversely correlated with TWIST and SLUG. 

The correlation between WISP-2 and E-cadherin and N-Cadherin was not significant (Table-

7.4a). WISP-1 did not appear to have significant correlations with the EMT markers. However, 

WISP-3, similar to WISP-2, had a significant reverse correlation with TWIST (Table 7.4a).  It 

was interesting to note that the expression of all the WISPs was highly correlated with each 

other (Table 7.4b). 
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Figure 7.1 Expression of Slug, Twist and E-Cadherin in gastric cancer and paired normal 

samples. A, Expression of Slug was higher in gastric cancer than in paired normal samples; B, 

Expression of Twist was higher in gastric cancer than in paired normal samples; 

C,  Expression of E-Cadherin was much lower in gastric cancer than in paired normal samples. 

(**: P<0.01);  D, Expression of N-Cadherin was significantly lower in gastric cancer than in 

paired normal samples. (**: P<0.01)  

 

Table 7.1 Expression of the transcript of EMT markers Twist, Slug and E-cadherin in gastric 

tissues. 

 Twist Slug E-cadherin N-cadherin 

Normal tissuesa 0.056(0.027,0.081) 4.3(0.2,35.3) 39 (3,284) 532 (3,10777) 

Tumour tissuesa 7.98(3.99,32.3) 7.8(1.9,41.5) 3 (0,53) 5 (0,381) 

P valuea P<0.0001 P=0.0015 P<0.0001 P<0.0001 

a: Shown are median (IQR) level of the transcript (copies/ul) 

b: by Mann-Whitney U test  
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Table 7.2 The correlation of the expression of ECAD and NCAD and clinical parameters. 

Red colouration is used to indicate statistical significance (P< 0.05).  

Clinicolpatho

logical 

Parameters 

  ECAD  NCAD  

Case Nα Median 

(Q1,Q3

) 

P P Ca

se 

Nα Median 

(Q1,Q3) 

P P 

           

           

           

Gender           

Male 207 24 2(0,1)   20

1 

30 10   

Female 80 13 3(0,0) 0.75

17 

 84 9 4 0.0

804 

 

Infiltration 

depth 

          

T1 14 2 8.1(0,1.

07) 

  14 2 7   

T2 25 1 1(0,0.0

1) 

0.39

59 

 22 4 0 0.4

555 

 

T3 34 7 5(0,8) 0.17

00 

0.00

091 

36 5 10 0.6

269 

 

T4 208 25 2(0,1) 0.88

21 

0.84

561 

20

7 

26 9 0.3

377 

 

Nodal status           

N0   5   62 9 1   

N1+2+3   1.7 0.97

15 

 21

7 

30 10 0.2

318 

 

TNM staging           

TNM1 23 2 4.6(0,3

8.3) 

  21 4 1   

TNM2+3+4 254 36 3(0,55) 0.90

16 

 25

7 

33 5 0.2

666 

 

Table 7.2 continued on next page... 
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Table 7.2 continuing from previous page. 

Differentiati

on 

          

High 1 0 934207   1 0 11970   

High-

Medium 

6 0 0.5(0,2

9.9) 

  6 0 0   

Medium 

55 7 5(1,79) 0.11

83 

 52 10 3 0.4

287 

 

Medium-Low 

72 10 3(0,54) 0.19

90 

0.56

092 

73 9 45 0.2

082 

 

Low 

120 18 2(0,55) 0.28 0.20
2 

12

3 

15 4 0.6

3 

0.006

72 

Clinical 

outcome 

          

Alive 

117 17 2(0,36)   12

2 

12 4   

Died 

164 23 3(0,80) 0.35

97 

 16

0 

27 12 0.2

655 

 

Disease Free               

104 15 2(0,37)   10

9 

10 3   

Metastasis             

13 2 0.5(0,9.

1) 

0.19

48 

 13 2 15 0.4

477 

 

Died of GC         

164 23 3(0,80) 0.56

21 

 16

0 

27 12 0.1

976 

 

1: Compared with T2 stage; 2: Compared with medium differentiation. 
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Table 7.3 The correlation of the expression of SLUG and TWIST and clinical parameters. 

Red colouration is used to indicate statistical significance (P< 0.05). 

Clinicolpathol

ogical 

Parameters 

SLUG TWIST  

Cas

e 

N
α 

Median 

(Q1,Q3

) 

P Ca

se 

Nα Median 

(Q1,Q3

) 

P P 

          

          

          

Gender          

Male 229 2 2(2,42)  22

8 

3 13.45   

Female 92 1 3(2.6,4

0) 

0.324

4 

92 1 18.92 0.1244  

Infiltration 

depth 

         

T1 16 0 8.1(4.4,

40.9) 

 16 0 9.64   

T2 26 0 1(1.2,4

1.0) 

0.331

4 

26 0 10.412 0.5514  

T3 41 0 5(0.6,3

9.5) 

0.210

6 

41 0 6.6 0.0610 0.0034
1 

T4 230 3 2(2,42) 0.247

9 

22

9 

4 8.88 0.6172 0.0141
2 

Nodal status          

N0 70 1 5(2.9,4

2.3) 

 68 3 9.38   

N1+2+3 245 2 1.7(2,4

0) 

0.299

3 

24

6 

1 7.58 0.2199  

TNM staging          

TNM1 25 0 4.6(3.7,

40.5) 

 25 0 9.70   

TNM2+3+4 287 3 3(1.8,4

1.3) 

0.371

0 

28

6 

4 7.81 0.1045  

   Table 7.3 to be continued on next page.... 
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 Table 7.3 continuing from the previous page 

Differentiation          

High 1 0 1647.9  1 0 6.0683   

High-Medium 

6 0 4.48(1.

92,21.4

1) 

 6 0 5.78   

Medium 

62 0 4.9(1.0,

26.7) 

0.888

2 

61 1 8.432 0.3564  

Medium-Low 

82 0 8(2,50) 0.492

1 

82 0 9.07 0.3758  

Low 

13

5 

3 8.1(2.1,

41.3) 

0.584

8 

13

5 

3 8.08 0.3095  

Clinical 

outcome 

         

Alive 

13

4 

0 7.2(2.7,

41.7) 

 13

3 

1 9.64   

Died 

18

4 

3 8(2,40) 0.359

7 

18

4 

3 7.24 0.2655  

Disease Free               

11

9 

0 7.9(2.7,

43.7) 

 11

8 

1 9.88   

Metastasis              

15 0 6.4(2.6,

15.1) 

0.194

8 

15 0 8.85 0.4477  

Died of GC         

18

4 

3 8(2,40) 0.562

1 

18

4 

3 7.24 0.1976  

1: Compared with T2 stage; 2: Compared with T3 stage. 
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Figure 7.2 The Kaplan-Meier survival model demonstrated the impact of the selective trio of 

Slug, Twist and E-Cadherin expression in gastric cancer. The trio of Slug, Twist and E-

Cadherin were significantly correlated with the disease-free survival (p=0.005) (A)  ((-) 

group, n=82); (+) group, n=118) and overall survival (p=0.009) (B) ((-) group, n=95; (+) 

group, n=85). 
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Table 7.4a Correlation between the WISP-2 transcript and that of EMT markers in human 

gastric cancer tissues.* 

  SLUG TWIST SNA1 N-Cadherin E-cadherin 

WISP-1 

r= -0.0305 0.113 0.049 0.0487 0.0398 

p= 0.594 0.0693 0.483 0.46 0.55 

WISP-2 

r= -0.231 -0.416 0.102 -0.1 0.0465 

p= 0.0000355 <0.000001 0.11 0.0935 0.438 

WISP-3 

r= 0.0375 -0.275 0.109 -0.122 -0.0478 

p= 0.71 0.0000296 0.138 0.0832 0.495 

* by Spearman Rank correlation test. Shown in the table are correlation coefficients (r) 

between WISP-2 and the respective EMT markers and the level of significance (p). 

 

Table7.4b Correlation between the transcript levels of three WISP family memberss in 

human gastric cancer tissues.* 

  WISP-2 WISP-3 

WISP-1 

r= 0.24 0.409 

p= 0.000107 <0.000001 

 

* by Spearman Rank correlation test. Shown in the table are correlation coefficients (r) 

between WISP-2 and the respective EMT markers and the level of significance (p). 

 

 

 

 

 

7.3.3 Expression of EMT markers in cell lines 



The role of WISPs in Gastric Cancer  2015 PhD 

278 

 

Based on the interesting correlation between WISP-2 and some of the EMT markers in the 

clinical cohort, the relationship between WISP-2 and EMT markers was further investigated 

in gastric cancer cell lines.  After WISP-2 knockdown, there was a significant decrease on the 

expression of E-cadherin (P<0.05) and increase on the expression of Twist, N-cadherin and 

Vimentin (P<0.01, P<0.05 and P<0.01, respectively). Expression of Slug was found of no 

statistical difference between the two cells. Representative images of Q-RT-PCR and RT-

PCR verification of the expression of E-cadherin, N-cadherin, Twist, Slug and Vimentin in 

cell lines are shown in Figure 7.3 and 7.4.   
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Figure 7.3 Expression of EMT markers (E-cadherin, N-cadherin, Twist, Slug and Vimentin) 

in AS (top) and HGC27 (bottom) cells by Q-RT-PCR following WISP-2 knockdown (WISP-

2kd). EMT markers expression differed after WISP-2 knockdown in AGS and HGC27 cells 

in that the expression of Twist, N-cadherin and Vimentin were increased and E-cadherin were 

decreased whereas there was no difference in Slug expression. (*: P< 0.05; **: P< 0.01) 
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Figure 7.4 Verification of expression of EMT markers (E-cadherin, N-cadherin, Twist, Slug 

and Vimentin) in AGS and HGC27 cells by RT-PCR. EMT markers expression differences 

after WISP-2 knockdown in AGS and HGC27 cells. Expression of Twist, N-cadherin and 

Vimentin were increased and E-cadherin were decreased. And there was no difference in 

Slug expression. 
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7.4 Discussion 

Twist and Slug are transcription EMT markers, activation of which have been shown to 

suppress the expression of E-cadherin (Yang et al 2004, Lombaets et al 2006, Vesuna et al 

2008). The host laboratory of the present study was the first to report a link between over-

expression of Twist and Slug and patients long term survival (Martin et al 2005). Slug has been 

reported to be over-expressed in gastric cancer such as that seen in the present study (Rosivatz 

et al , 2002, Castro-Alves et al 2007). The present study has also indicated that a trio of the 

EMT markers, Twist, Slug and E-cadherin had a significant prediction power of the survival 

of the patients with gastric cancer. 

 

Previous studies have suggested that WISP-2 is able to reverse the epithelial-mesenchymal 

transition (EMT) processes [217, 218] as well as recover the  function of the mutant p53 [250], 

which are important in the invasion and metastatic growth of breast cancer cells. The present 

study has firstly clarified the association of WISP mRNAs and proteins expression with 

clinicolpathological parameters and outcome in gastric cancer patients as well as the 

association with those of EMT markers. Here we showed WISP-2, but not WISP-1, was 

inversely correlated with two of the EMT markers namely Twist and Slug. WISP-3 also 

significantly correlated, in a reverse order, with Twist.  

 

Thus, the observations on the clinical cohort suggest that low levels of WISP-2 are linked to 

highly raised Twist and Slug, which in turn lead to a reduction in E-cadherin expression. 

Further supporting informtion for the WISP-2/EMT link comes from the in vitro experiments 

of our study. At cellular level, knockdown of WISP-2, in both AGS and HGC27 cell lines, led 

to increased cell proliferation, motility and invasiveness, hallmarks of EMT in cells including 

cancer cells. At transcription and translation levels, WISP-2 knockdown in gastric cancer cells 



The role of WISPs in Gastric Cancer  2015 PhD 

282 

 

triggers an up-regulation of Twist, N-cadherin and Vimentin, markers of mesenchymal 

genotype (Zeisberg and Neilson, 2009).  

 

Collectively, it is suggested that WISP-2 is an EMT regulator and that WISP-2 expression 

support an epithelial phenotype. This link has provided a plausible explanation for WISP-2 to 

be potential suppressor of EMT (or an inducer of MET).  
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General discussion  
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As a complex multistep process, tumour metastasis undergone a series of complex multistep 

process, which includes impairment of cell-cell adhesion in neoplastic epithelium, invasion of 

adjacent tissues and dissemination of cancer cells through the lymphatics and via the 

haematogenous route both leading to distant metastasis [293, 294]. Therefore, one part of this 

present study was to identify metastasis related genes, which may have the potential to regulate 

the metastasis process of cancer cells. WISP family members have been shown to play multiple 

roles in a number of pathophysiological processes, including cell proliferation, adhesion, 

invasiveness, wound healing, extracellular matrix regulation, and epithelial-mesenchymal-

transition (EMT). A number of recent clinical studies have shown that WISP family members 

are deregulated in a variety of solid tumours and have bearings on the metastases and clinical 

outcome of the patients [221, 222, 238]. However,  the cellular functions of WISPs proteins 

are not yet fully extablished, which forming the other aim of the study. Previous published 

work from the host laboratory and others have demonstrated that WISP proteins may have 

different effects on tumour progression and cell functions, depending on  tumour and cell types. 

 

WISP-2 and its clinical significance in human gastric cancer pointing to a putative 

tumour suppressor role  

The present study has demonstrated that WISP proteins are detectable in gastric tissues. 

However, it is WISP-2 that has the most significant links to clinical and pathological features 

of the clinical cohort. This study has shown that expression of WISP-2 at mRNA and protein 

levels are aberrant in gastric cancer. Furthermore, the aberration is inversely correlated with 

disease progression and survival of the patients. This  would support the hypothesis that 

WISP-2 is a candidate biomarker for disease progression in this cancer type. Indeed, WISP-2 

is the most studied of the WISP molecules in different tumour and tiussue types. Higher 

WISP-2 expression has been detected in less aggressive human breast cancer cells (i.e. MCF-
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7 and ZR-75-1). Moderately aggressive breast cancer cell lines (i.e. SKBR-3) express a basal 

level of WISP-2, whereas WISP-2  expression is not detected in the highly aggressive breast 

cancer cell line MDA-MB-231 [213, 215]. Growing experimental evidence demonstrates that 

WISP-2 plays an anti-invasive role in breast carcinogenesis through controlling adhesion and 

cell motility [218, 245]. Taken together, these observations suggest that WISP-2 is a 

candidate tumour and metastasis suppressor in solid tumours, particularly in human gastric 

cancer. 

 

Effect of WISP-2 on the functions (proliferation, adhesion, invasion and migration) of 

gastric cancer cells and its potential signalling pathway. 

The data obtained from our present study suggest that WISP-2 significantly suppresses the 

growth, invasion and migration of AGS and HGC27 gastric cancer cells, but has no influence 

on the adhesion of both two gastric cancer cells. Our results are consistent with finding from 

previous reports in pancreatic adenocarcinoma and colorectal cancer [189, 217]. From the 

results that downregulation of WISP-2 results in reduction of cellular motility of gastric cancer 

cells, we hypothesised that this might be linked to the signalling pathways that are central to 

cell migration. Hence, we screened the proteins and signalling molecules that are potentially 

related with WISP-2, by way of an antibody based protein microarray, namely KAM850. From 

the antibodies and data available on the array, we found the high levels of ERK1 and ERK5 

proteins,  JNK1 protein and AKT protein are significantly associated with WISP-2.  This data 

set is particularly interesting, as it is coherently seen from both human gastric tissues and from 

gastric cancer cell lines: protein interactions from WISP-2 precipitation using proteins of 

human gastric tissues and verified by the WISP-2 knockdown of human gastric cancer cell 

lines.  Thus, the JNK, ERK and AKT pathway are considered  key to the function of WISP-2 

in gastric cancer. The importance of these pathways in the WISP-2 regulated cell functions are 
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further strengthened by the data when the small inhibitors to these pathways were used: 

significant suppression of cell migration was observed in HGC27 WISP-2 knockdown cells 

treated with JNKⅡ compared with pEF control cells. 

 

Another interesting finding was that FAK has no interaction with the WISP-2 protein and 

blocking FAK did not influence the action of WISP-2.  FAK is essential to cell-matrix adhesion 

and cell migration. JNK, ERK and AKT pathways are very important pathways in particular to 

cell motility of cancer cells, however, these are downstream of FAK.    Collectively, WISP-2 

plays an important role in the regulation of cellular migration of gastric cancer cells. This role 

is independent of FAK and is via intracellular events downstream of FAK, primarily involving 

JNK, ERK and AKT pathways. 

 

WISP-2 and expression of MMPs, a role for the JNK pathway.  

WISP-2 has markedly suppressed the invasion and motility of gastric cancer cells. From the 

data presented here, it is clear that this action is at least partly mediated by regulating the 

activity of MMPs, namely MMP-2 and MMP-9. WISP-2 expression upregulates  the 

expression and enzymatic activities of MMP-2 and MMP-9, two MMPs frequently found  

highly expressed in aggressive tumours, for example in invasive breast cancer phenotypes 

[218]. The expression of MMP-1, MMP-2, MMP-9, and MMP-13 is associated with the 

aggressiveness of tumours and their expression is mediated by p38 in various tissues including 

prostate, breast, bladder, liver, and skin keratinocyte cell lines. Several reports have revealed 

that MMP-9 is up-regulated by the ERK signalling pathway in different human cells [280]. 

However, the mechanism by which WISP-2 deficiency enhances the invasiveness of cancer 

cells remains poorly understood [281]. In the present study, we have discovered that WISP-2 

suppresses the expression of MMPs as well as activities of MMP-2 and MMP-9 in gastric 
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cancer cells. Our study also describes a role for JNK and ERK in this regulation, partly owing 

to the observation that  treatment with JNKII and ERKII small inhibitors blocked the effects 

seen by knocking down WISP-2 and partly owing to the finding that WISP-2 interacts with 

these signalling proteins. Together, it is suggested that WISP-2 inhibits JNK activation and 

consequently influences expression and  enzymatic activity of MMP-2 and MMP-9.  

 

Expression of WISP-2 and Epithelial to Mesenchymal Transition (EMT) in gastric cancer. 

The findings that WISP-2 has a profound impact on the migration and adhesion of gastric 

cancer cells, hallmarks of EMT, prompted further investigation into if and how WISP-2 may 

act as an EMT regulator in gastric cancer cells. Indeed, in an early study, Banerjee et al reported 

that WISP-2 was able to reverse some features of the epithelial-mesenchymal transition (EMT) 

process [218]. The present study first focused on analyzing the association of WISP mRNA 

and proteins expression with clinicol and pathological parameters and outcome in gastric 

cancer patients as well as the association with those of EMT markers.  WISP-2, but not WISP-

1 nor WISP-3, was inversely correlated with two of the EMT markers namely Twist and Slug. 

Twist and Slug are transcription EMT markers, the activation of which has been shown to 

suppress the expression of E-cadherin [295, 296]. We were the first to report a link between 

the over-expression of Twist and Slug and long term survival in patients with breast cancer 

[297]. Slug has been reported to be over-expressed in gastric cancer similar to that seen in the 

present study [298, 299]. Thus, the observations on the clinical cohort suggest that low levels 

of WISP-2 are linked to raised Twist and Slug, which in turn leads to a reduction in E-cadherin 

expression. 

 

Further supporting information for the WISP-2/EMT link comes from the cell function 

experiments. At transcription and translation levels, WISP-2 knockdown in gastric cancer cells 
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triggers an up-regulation of Twist, N-cadherin and Vimentin, markers of mesenchymal 

genotype  [300].  

 

Collectively, these results suggest that WISP-2 is an EMT regulator and that WISP-2 

expression supports an epithelial phenotype. This link has provided a plausible explanation for 

WISP-2 to be potential suppressor of EMT (or an inducer of MET). The suggested link and 

interaction pathway is summarised in Figure 8.1. 

 

In conclusion, the present thesis, using both in vitro and clinical models of gastric cancer, has 

presented evidence that WISP-2 is a putative tumour suppressor molecule in human gastric 

cancer. This is seen by its inhibitory influence on the growth, invasion and migration of gastric 

cancer cells, on actions achieved by downregulating the enzyme activities of MMP-2 and 

MMP-9. In the meantime, WISP-2 also activates E-cadherin and reduces Twist and Slug, 

potentially via its regulation of the ERK/JNK pathway.  

 

Future directions: 

The present study has further shown that the pivotal role of WISP-2 in human gastric cancer. 

However, the study has also raised new directions for future research. 

 

1. The role of WISP-2. Although the present study has demonstrated that WISP-2 regulates 

the expression and activity of MMP-2 and MMP-9, the exact mechanism of the 

intermediate processes by which WISP-2 resulted to this regulation remains largely 

unknown. For example, it will be important to investigate if the interaction between WISP-

2 and EMT markers also takes place. It will be useful in the future to investigate 
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transcriptional regulation and possible post-translation regulation for MMP-2 and MMP-9 

in this context. 

2. The potential therapeutic implications of WISP-2 in cancer. In most cancer types, WISP-2 

has been shown to act as a tumour suppressor. Two areas should be further explored: 1. 

Mechanism of WISP-2 downregulation: can this be via methylation of the gene 

transcription? 2. It will be highly useful to investigate if specific activation of WISP-2 may 

have therapeutic implications.  

3. The antibody array has indicated a number of other pathways that would be of potential 

interest to explore, namely how the JNK/ERK proteins interacts with WISP-2, at what point 

WISP-2 bypassing the FAK protein in the regulation of cell migration, if and how p53 

which interacts with WISP-2 plays a role with WISP-2 in gastric cancer. They will be vital 

directions to pursue in order to fully understand the biology of WISP-2 in cancer.  
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Figure 8.1 Suggested mechanism of action by WISP-2 in gastric cancer cells. In cells in 

which WISP-2 is well expressed (possibly induced by Wnt proteins), it acts as an inhibitory 

mechanism to the ERK/JNK pathway and PLC-gamma pathway, thus preventing, to some 

degree, the activation of transcription event for EMT regulating proteins and MMPs. 

However, in cells where WISP-2 is reduced/ lost, ERK/JNK pathway is activated, leading to 

the transcription activation of EMT transcription factors including Twist and Slug. This leads 

to the reduction of E-cadherin which in turn triggers the EMT process. Similarly, PLC-

gamma and JNK activations lead to activation of MMP synthesis. These two pathways 

collectively contribute to the increase in cellular migration and tissue invasion. Dash lines 

indicate where gaps exist and require further work.  
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