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Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in
full configuration interaction quantum Monte Carlo with the introduction of a second, “replica”
ensemble of walkers, whose population evolves in imaginary time independently from the first, and
which entails only modest additional computational overheads. The matrices obtained from this
approach are shown to be representative of full configuration-interaction quality, and hence provide
a realistic opportunity to achieve high-quality results for a range of properties whose operators
do not necessarily commute with the hamiltonian. A density-matrix formulated quasi-variational
energy estimator having been already proposed and investigated, the present work extends the
scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments and
polarisabilities, with extensive comparison to exact results where possible. These new results confirm
the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve
close agreement with experimental values, expanding the scope of the method to new areas of
investigation.

INTRODUCTION

The full configuration interaction quantum Monte
Carlo method (FCIQMC) and its initiator adaptation
(i-FCIQMC) are projector QMC techniques, capable of
providing near-exact, systematically improvable descrip-
tions of correlated wavefunctions expressed as linear com-
binations of Slater determinants.[1, 2] This convergence
is achieved by stochastically sampling the exponentially
large (though finite) Hilbert spaces of configuration inter-
action theory via a population dynamics performed on an
ensemble of signed walkers. Annihilation processes pro-
vide a means of combating the ill effects of the fermion
sign problem which plagues projector approaches,[3–5]
exploiting the sparsity of the wavefunction induced by
a judicious choice of orbital basis. The approach re-
quires substantially less computational effort than an
iterative diagonalisation technique, and has thus found
considerable success in studies of atomic and molecular
systems,[6–12] model systems such as the homogeneous
electron gas and the Hubbard model,[13–15] and solid-
state systems.[16]
The principal focus of many of these studies has

been to derive properties based upon total energies,
for which an unbiased projected estimator is readily
available, and which have included excitation and dis-
sociation energies,[8–10] electron affinities,[7] ionisation
potentials,[6, 12] and equations of state.[16] Despite their
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success, however, the extension to include the calcula-
tion of a greater range of properties — expectation val-
ues of operators which do not necessarily commute with
the hamiltonian — remains highly desirable. This focus
has been the subject of considerable interest for the QMC
community in general, and has posed a considerable chal-
lenge for decades.[17–29] These properties, which include
static correlation functions and entropy estimators as
well as the forces, multipole moments, and polarisabil-
ities considered here, may be deduced from the effect of
a perturbation from the corresponding operator, P̂ , upon
the hamiltonian,

Ĥ ′ = Ĥ + λP̂ , (1)

with λ the perturbation strength, such that the expecta-
tion value, 〈P̂ 〉, is given by the derivative of the energy
with respect to λ, evaluated at λ = 0:

〈P̂ 〉 =
∂E

(

H ′)

∂λ

∣

∣

∣

∣

∣

λ=0

. (2)

In accordance with the Hellmann–Feynman theorem,[30]
applicable to converged (normalised) i-FCIQMC wave-
functions by analogy with deterministic and strictly vari-
ational FCI, this expression reduces to

〈P̂ 〉 = 〈Ψ|P̂ |Ψ〉, (3)

or equivalently to the trace of P̂ with the appropriate
rank of reduced density matrix.[31] It is worth noting
that unconverged i-FCIQMC wavefunctions need not rig-
orously obey the Hellmann–Feynman theorem, and so in
this work we ensure that we are working in the large
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walker limit, such that systematic errors in the sampled
distribution due to insufficient walker numbers have been
minimized to the FCI-limit.
The effective stochastic acquisition of these reduced

density matrices, therefore, has the capacity to broaden
the scope of i-FCIQMC significantly, and motivates the
present work. We begin with a brief overview of the
i-FCIQMC algorithm, including its extension to non-
integer walker weights,[32] before recapitulating some
of the details of the “replica” density-matrix sampling
technique.[29, 33, 34] Building upon that previous work,
our discussion turns to consider the calculation of nuclear
forces, molecular dipole moments, and atomic dipole po-
larisabilities, and in so doing confirms the high quality of
the sampled one- and two-body reduced density matrices
which is now achievable.

METHODOLOGY

i-FCIQMC

Initiator full configuration interaction quantum Monte
Carlo provides stochastic integration of the N -electron,
imaginary-time Schrödinger equation, yielding wavefunc-
tions expressed as a linear combination of the set of Slater
determinants, {|Di〉}, formed from the underlying one-
particle (most often Hartree–Fock) basis:

Ψ =
∑

i

Ci |Di〉 . (4)

The coefficients of this wavefunction expansion are ob-
tained by iterative application of the equations

Ci (τ + δτ) = Ci (τ)−δτ (Hii − µ)Ci (τ)−
∑

j6=i

δτHijCj (τ) ,

(5)
representing the evolution of the coefficients over a
timestep δτ in imaginary time. This evolution is
achieved by subjecting an ensemble of signed walkers to
a three-step population dynamics algorithm of “spawn-
ing”, “death”, and “annihilation” steps, the walker pop-
ulations, {Ni}, becoming proportional to the coefficients.
The full details of this approach have been expounded in
previous papers,[1, 2, 6, 8, 9, 11, 12, 16, 35], and what
follows should be regarded only as a brief summary.
Typically initialised with a single walker placed upon

the Hartree–Fock determinant, |D0〉, a simulation us-
ing integer walkers proceeds with a coupled determinant,
∣

∣Dj

〉

, being randomly selected for each walker on parent

determinant, |Di〉, with a probability pgen
(

Dj|Di

)

. The
determinant selected, the parent walker then attempts to
spawn a child on to it, with a probability

ps
(

Dj|Di

)

=
δτ

∣

∣Hij

∣

∣

pgen
(

Dj|Di

) . (6)

If the attempt is successful, the sign of the spawned
walker matches that of its parent if Hij < 0 and is in-
verted if Hij > 0. The initiator adaptation, i-FCIQMC,
modifies the spawning step by introducing a parameter,
na, which specifies a lower population threshold under
which a parent determinant is prevented from spawning
on to unoccupied determinants. Each walker next at-
tempts to die, with a probability given by

pd (Di) = δτ (Hii − µ) , (7)

in which µ is a population control parameter — known
as the “shift” — which tends to the ground-state energy
in the long-τ limit.

These two steps are themselves sufficient to describe
Eq. 5 fully, but are insufficient to provide convergence to
a fermionic wavefunction. Instead, a third step — “an-
nihilation” — is required in order to suppress the dele-
terious effects of the fermion sign problem.[3, 36] After
each iteration, walkers of opposite sign on the same de-
terminant annihilate, and in so doing ensure that each
determinant is populated by walkers of only one sign for
the next iteration. The success of these processes re-
lies on the sparsity of the wavefunction induced by the
underlying basis — typically chosen to be Hartree–Fock
orbitals — which confines it to a generally small region
of the Hilbert space. In so doing, it ensures that annihi-
lation events are numerous enough to maintain the sign
structure of the sampled wavefunction accurately.

Although the walkers of (i)-FCIQMC were initially
conceived as an ensemble of discrete particles, there
is some merit in instead positing a set of non-integer
walkers.[29, 32] Such an approach reduces the amount
of random number generation required, reduces the in-
stantaneous fluctuations in the populations on a given
determinant, and hence the fluctuations in the energy
estimators in imaginary time.

This formulation is achieved by applying the spawning,
death, and annihilation steps introduced earlier contin-

uously, rather than discretely. Thus, instead of spawn-
ing a walker of signed integer weight from a determinant
|Di〉 to a coupled determinant

∣

∣Dj

〉

with a probability

ps
(

Dj|Di

)

, a walker of weight ps is spawned with prob-
ability 1. Likewise, the death step is remodelled such
that it simply involves reducing the population on a de-
terminant |Di〉 by pd (Di). Annihilation is achieved by
taking the signed sum of walkers on each determinant on
a given iteration as the residual population for the next
iteration. For i-FCIQMC calculations, the parameter na

is recast as a continuous variable rather than an integer.

The continuous nature of the spawned walkers in this
approach does not, however, imply that the number of
spawning events becomes continuous. As in the inte-
ger formulation, where there are exactly Ni spawning at-
tempts from determinant |Di〉 with a population Ni on
each iteration, there are a discrete number of attempts
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per determinant per iteration. For practical purposes,
a continuous spawning threshold, κ, is introduced such
that if ps < κ, κ walkers are spawned with a probability
ps/κ. This implementation is designed to alleviate the
significant cost of low-weighted spawnings compared to
their effect on the overall wavefunction, as well as ensur-
ing that the wavefunction remains compact and express-
ible instantaneously by a number of walkers far smaller
than the size of the space.
Whilst the death step requires no extra modification

of this kind, some additional considerations must be ad-
dressed for annihilation. In order that determinants can
become completely depopulated, and we are not forced to
store large numbers whose populations are very close to,
but not exactly, zero, a minimum occupation threshold,
Nocc, is imposed upon them. If, after annihilation, the
population on a determinant Ni < Nocc, its population
is set either to Nocc with probability Ni/Nocc, or else to
0 with probability 1−Ni/Nocc.
As a final practical means of alleviating the compu-

tational burden of this approach, it is possible to treat
only a subspace of the full Hilbert space with non-integer
walkers, continuing to describe the remainder in a dis-
cretised fashion. In order to preserve the benefits of the
non-integer approach on the fluctuations of the energy
estimators, the truncation is specified by an excitation
level, χ, with only χ-fold and lower excitations from the
reference included in the non-integer subspace. A typical
choice of parameters Nocc = 1, 2 ≤ χ ≤ 4 (4 is used
here), and κ = 0.01 entails only a modest increase in the
computational cost of the calculation over the integer im-
plementation, while retaining many of the benefits of the
full non-integer approach.
i-FCIQMC provides two essentially independent en-

ergy estimators, which, taken together, provide a use-
ful confirmation of the validity of the obtained result.
The first, to which we have already alluded, is the shift,
µ. This is initially held constant (typically at zero) to
facilitate an exponential growth in the number of walk-
ers, before being allowed to vary dynamically to keep the
population constant. At convergence, this variation fluc-
tuates around the energy of system, and thus provides
an energy on the basis of the growth rate of the entire
ensemble of walkers. A projected energy estimator, of
the form

Eproj (τ) =
〈D0|Ĥ|Ψ(τ)〉

〈D0 |Ψ(τ)〉
, (8)

on the other hand, depends only upon the populations
of the determinants coupled to the reference state, |D0〉.
Whilst the error in this projection is formally first-order
in the wavefunction error, its non-variationality tends to
mean that it converges rather faster to the exact, infinite-
walker limit than does a variational estimator, owing
to favourable cancellation of errors. The projected en-
ergy is thus typically preferred when the wavefunction

is dominated by the Hartree–Fock determinant, but a
projection on to a multi-reference trial wavefunction or
the variational estimator provided by the density matri-
ces (which is second-order in the wavefunction error) are
often more useful in more strongly-correlated cases.[29]
Once the ensemble has equilibrated, the simulation is al-
lowed to evolve in imaginary time until the statistical
errors in both µ and Eproj have been satisfactorily re-
duced, upon which a Flyvbjerg–Petersen blocking anal-
ysis is performed to estimate the error in the obtained
result.[37]

Stochastic density-matrix sampling

In terms of the wavefunction ansatz of i-FCIQMC
(Eq. 4) and the creation and annihilation operators, the
one- and two-body reduced density matrices, γ and Γ,
may be formulated in terms of the wavefunction expan-
sion and the conventional creation and annihilation op-
erators, â† and â, as

γpq = 〈Ψ|â†pâq|Ψ〉 (9)

=
∑

ij

CiCj〈Di|â
†
pâq|Dj〉, (10)

and,

Γpqrs = 〈Ψ|â†pâ
†
q âsâr|Ψ〉 (11)

=
∑

ij

CiCj〈Di|â
†
pâ

†
q âsâr|Dj〉, (12)

respectively,[38, 39] and an important recent develop-
ment of the theory allows these objects to be sampled
in an efficient, stochastically unbiased fashion.[29, 40]
The diagonal elements of these objects, of the form

Γpqpq =
∑

i∋{p,q}

C2
i , (13)

may be calculated straightforwardly, as each determi-

nant, |Di〉, contributes C
2
i to each of the N(N−1)

2 matrix
elements involving its occupied orbitals. The correspond-
ing explicit generation of all the required determinant
pairs for the off-diagonal elements is not practical, but
the observation that the relevant pairs are at most dou-
ble excitations of one another allows both γ and Γ to be
sampled via the spawning steps.[40] Thus, the existing
computational effort required for the communication of
the spawning event need only be slightly accentuated (by
the need now to convey both the amplitude and the iden-
tity of the parent determinant to the child) to allow the
contributions to the off-diagonal matrix elements from
determinant pairs to be calculated on the fly.
As these off-diagonal contributions are only added

upon a successful spawning event, it is necessary that
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they be rescaled according to the probability of such an
event taking place. That is, a contribution CiCj will in-
stead be accumulated as

CiCj

〈

Di

∣

∣

∣
â†pâ

†
q âsâr

∣

∣

∣
Dj

〉

pc
(

Dj|Di

) , (14)

with pc
(

Dj|Di

)

the probability that at least one spawn-

ing attempt from |Di〉 to
∣

∣Dj

〉

is successful on a given
iteration. Depending on whether integer or non-integer
walkers are considered, this probability is given by

pc =

{

1− λNi Ni ∈ Z

1− (⌈Ni⌉ −Ni) λ
⌊Ni⌋ − (Ni − ⌊Ni⌋)λ

⌈Ni⌉ Ni /∈ Z,

(15)

with Ni the instantaneous walker population residing on
|Di〉 and λ the probability that no walker is spawned
between |Di〉 and

∣

∣Dj

〉

in a single attempt. For an integer
spawning event, this probability is

λint = 1−min
(

δτ
∣

∣Hij

∣

∣ , pgen
(

Dj|Di

))

, (16)

but this must be modified in the case of continuous
spawning to

λcont =

{

1−
δτ |Hij|

κ
ps < κ

1− pgen
(

Dj|Di

)

otherwise,
(17)

where κ is the continuous spawning threshold, if used.

A näıve implementation of the above sampling is satis-
factory for the accumulation of approximate density ma-
trices, but is beset by a number of shortcomings which
should be considered.[29] As contributions to the off-
diagonal matrix elements are only added upon a suc-
cessful spawning attempt, problems can arise when the
spawning events are discretised. In this case, the proba-
bility that such an event occurs is proportional to the cou-
pling hamiltonian matrix element, Hij, and pairs of de-
terminants which are connected by large matrix elements
are correspondingly sampled more often than pairs which
are only weakly coupled. Thus, if two highly-weighted
determinants contained in the stochastically-sampled, in-
teger walker space are connected by a small hamiltonian
element, their contribution to the density matrices may
be severely under-represented, or neglected entirely.

This problem is most notably in evidence in the case of
single excitations of the reference determinant, for which
the coupling matrix elements are strictly zero accord-
ing the Brillouin’s theorem. This is countered in the
present implementation by accounting for these contribu-
tions to the density matrices explicitly, and hence remov-
ing the dependence upon a successful spawning event.
Other contributions, however, whose sampling will still
be proportional to the reduced hamiltonian,[41] defined

in terms of the one- and two-electron integrals,
{

hpq

}

and
{

gpqrs
}

, as

kpqrs =
1

2N − 2
(hprδqs + hqsδpr) + gpqrs, (18)

will give rise to an biasing error in density matrices in the
long-τ limit for determinant pairs where kpqrs ≈ 0, but
whose amplitudes are both significantly non-zero. How-
ever, modifications to the algorithm to treat the bias re-
maining beyond that already defined by Brillouin’s theo-
rem explicitly — such as introducing additional events to
spawn walkers proportionally to the inverse of the hamil-
tonian element — have been shown to be of little addi-
tional benefit due to the negligible nature of this bias in
numerical studies to date.[29]

In a separate difficulty, it has been shown previously
that a straightforward implementation of the above sam-
pling gave rise to a convergence of the density matrices
with increasing Nw which was rather slower than that
of, say, the projected energy. This behaviour stems not
simply from undersampling, but rather from a bias in
the statistical sampling technique itself. In particular,
appropriate contributions to the matrix elements are ap-
proximated by

〈Ni (τ)〉τ 〈Nj (τ)〉τ = 〈Ni(τ)Nj(τ)〉τ − σ(Ni(τ), Nj(τ))

(19)

≈
〈

Ni (τ)Nj (τ)
〉

τ
, (20)

ignoring the potentially significant covariance, σ, be-
tween the two amplitudes and introducing a bias,
whether or not the averaged walker populations are
themselves unbiased. It is, to that end, unsurprising that
this problem is at its greatest for diagonal elements, for
which the “two” amplitudes are perfectly correlated, and
— the error being of a single sign — there is no possibility
of error cancellation.

This problem is rather more serious than the previous
concerns over discretised spawning, but one for which a
rather simple solution exists. Unbiased density matri-
ces can be calculated with the introduction of a second,
uncorrelated walker ensemble, to which the stochastic
spawning, death, and annihilation steps are applied inde-
pendently, and whose statistics are acquired separately,
from the first.[29] This adaptation, known as replica sam-
pling, achieves the unbiasing by ensuring that all the
products of determinant amplitudes are calculated us-
ing populations from both simulations, and has previ-
ously found application in the stochastic sampling of
the N -electron density matrix known as density matrix
quantum Monte Carlo,[42] and the recently-introduced
Krylov-projected quantum Monte Carlo.[34] That is, for
example, a successful spawning event from |Di〉 to

∣

∣Dj

〉

in replica 1, occurring with a probability p(1)c

(

Dj|Di

)

,
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gives rise to a contribution of:

N
(1)
i N

(2)
j

p(1)c

(

Dj|Di

)
+

N
(2)
i N

(1)
j

p(2)c

(

Dj|Di

)
. (21)

This approach bears some conceptual similarity with the
bilinear sampling algorithm in Green’s function Monte
Carlo, introduced by Zhang and Kalos, in that both seek
a means of finding expectation values of operators which
do not commute with the hamiltonian, via two sets of
independent walker distributions.[33] The main differ-
ence, though, is that the bilinear approach transforms
the Schrödinger equation such that there are two related
wavefunctions to sample, while in the present work the
walker ensembles are independent samples of the same
underlying object. In providing a stochastically unbi-
ased route to the density matrices, the replica sampling
technique thus provides the first realistic opportunity to
achieve high-accuracy ab initio results for the sizeable
suite of properties that can be derived therefrom.

NUCLEAR FORCES

The force acting on a nucleus in a molecule or cluster is
defined as the negative gradient of the molecular energy
with respect to the nuclear coordinates:

F = −
∂E

∂R
. (22)

In Eq. (22) the symbol F denotes the nuclear force vec-
tor, E the energy of a molecule at a fixed geometry in
the electronic ground state, and R refers to the vector of
nuclear coordinates in the centre of mass frame of refer-
ence. A comprehensive review of techniques and explicit
expressions to compute derivatives of the electronic en-
ergy with respect to nuclear coordinates is available in the
literature.[43–45] The following discussion is thus limited
to the basic concepts for the calculation of nuclear forces
using all-electron FCI wavefunctions as obtained as a sta-
tistical average using the i-FCIQMC method, once the
calculation has been converged with respect to the num-
ber of walkers. In the present work, we have adjusted
the total number of walkers to achieve a walker popu-
lation of 50000 at the reference (i. e. highest populated)
determinant. Preceding work confirmed that, at such
a population levels, noise arising from small stochastic
populations of random determinants is sufficiently sup-
pressed and the wavefunction converged.
The first derivative of the electronic energy of a CI

wavefunction generally depends on the derivatives of the
atomic orbitals (AOs) and the molecular-orbital (MO)
and CI coefficients. All these terms depend upon the nu-
clear coordinates, and the computation of nuclear forces
requires knowledge of the first derivatives with respect
to all considered degrees of freedom. However, electronic

wave functions obtained from i-FCIQMC optimizations
are variational with respect to the CI coefficients and
a component Fx of the nuclear force vector can be ex-
pressed in terms of the reduced density matrices as

Fx = −
MO
∑

pq

γpq
∂hpq

∂x
−

∂hnu

∂x
−

MO
∑

pqrs

Γpqrs

∂ (pq|rs)

∂x
, (23)

in which the terms
{

hpq

}

represent the one-electron in-
tegrals from the hamiltonian, and hnu is the contribution
from the fixed nuclei. Moreover, all-electron FCI wave-
functions considered in this work are also invariant un-
der variation of the MO coefficients. The nuclear forces
can thus be expressed solely in terms of the one- and
two-electron density matrices and the skeleton derivative
integrals of the basis functions:

Fx = −
MO
∑

pq

AO
∑

µν

γpqCµpCνq

∂hµν

∂x
−

∂hnu

∂x

−
MO
∑

pqrs

AO
∑

µνρσ

ΓpqrsCµpCνqCρrCσs

∂ (µν|ρσ)

∂x

+
MO
∑

pq

AO
∑

µν

XpqCµpCνq

∂Sµν

∂x
,

(24)

where

Xpq =

MO
∑

r

γprhqr + 2

MO
∑

rst

Γprst (qr|st) (25)

is an element of the lagrangian and Sµν is an element of
the overlap matrix. In particular, neither the computa-
tion of derivatives of the CI hamiltonian matrix nor the
solution of the coupled-perturbed Hartree–Fock equation
for the derivatives of the MO coefficients are required.
We have implemented an interface to MOLPRO to compute
the integrals and nuclear forces from the i-FCIQMC den-
sity matrices.[46]
As a first benchmark, we have applied the i-FCIQMC

methodology to compute the nuclear forces at several
points along the dissociation curve of molecular nitro-
gen, as the electronic wavefunction changes from single-
to strong multi-reference character. Figure 1 (top) com-
pares the potential energy computed with i-FCIQMC
and the FCI program in MOLPRO using a small 6-31G ba-
sis set to allow for comparison to exact (FCI) results.
The accuracy of the i-FCIQMC methodology for the
computation of total energies was already evaluated [2],
and we generally find excellent agreement between the
i-FCIQMC and FCI data set.
In Figure 1 (bottom), the nuclear forces for the same

geometries are illustrated. Comparison with FCI results
obtained from numerical gradients provides a direct mea-
sure of the quality of the reduced density matrices com-
puted from the replica algorithm based on i-FCIQMC,
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FIG. 1. Top: Potential energy profile for the N-N bond dis-
sociation of N2 relative to the energy of two isolated nitrogen
atoms in the electronic ground state. Bottom: corresponding
forces at one nitrogen atom computed using analytic gradients
from i-FCIQMC reduced density matrices, compared to FCI
with numerical differentiation. Results are identical within
the accuracy of the numerical differentiation. The respective
minimum energy (Emin = -0.2685 a.u.) and force (Fmin =
0.0 a.u.) at an internuclear distance of 2.144 a.u. is indicated
by the blue symbols. All results were obtained with a 6-31G
basis set.

and, once again, the data shows excellent agreement be-
tween the analytic i-FCIQMC forces and the FCI results
for all geometries.

As second example for the calculation of analytic gra-
dients and nuclear forces, we considered symmetric dis-
placements of the atoms in a water molecule along the
OH bonds. In a small 6-31G basis set, exact (FCI) di-
agonalisation of the hamiltonian matrix is still feasible
and Figure 2 illustrates results from FCI reference and
i-FCIQMC calculations. The nuclear forces as shown in
Figure 2 have been obtained from the Cartesian force
vectors as the absolute force acting on either a hydro-
gen or the oxygen atom with the sign taken from the z-
component of the force vector, which has been aligned
with the symmetry principal axis. Although there is
no computational advantage over direct diagonalisation
methods for basis sets as small as the 6-31G basis, the
replica algorithm implemented in i-FCIQMC can be ap-
plied to much larger molecules and basis sets, providing
essentially numerically exact nuclear forces. In order to
demonstrate the scope of the i-FCIQMC replica technol-
ogy, we have also computed the all-electron forces within
a cc-pVTZ basis set, evidently an infeasible task for cur-
rent deterministic FCI algorithms, where the many-body
basis now spans O[1013] determinants. Figure 2 (dashed
lines) illustrates the notably larger forces at intermediate

FIG. 2. Absolute forces acting on the oxygen and hydrogen
atoms in a H2Omolecule computed using i-FCIQMC and FCI
with a 6-31G and cc-pVTZ basis set (the sign corresponds to
the z-component of the force vector). The data were acquired
for symmetric displacements of the hydrogen atoms from the
equilibrium geometry. The abscissa indicates the OH bond
length of the respective molecular geometry.

stretching of the OH bonds if accurate cc-pVTZ basis set
are combined with this level of theory in the calcula-
tions. This would have implications for dynamics calcu-
lations, as well as providing the basis for highly accu-
rate geometry optimisations for systems with electronic
ground states of strong multi-reference character.

THE DIPOLE MOMENT OF CO

The interaction of an electronic system of charge q with
an external electric field, ξ, in an external potential, V ,
may be expressed as an expansion in terms of multipoles,

E = qV − µ · ξ −
1

2
Θ ·

∂ξ

∂r
− . . . , (26)

with µ the rank-1 dipole moment, Θ the rank-2
quadrupole moment, and so on. It is the dipole moment
itself with which we are presently concerned, and which
may be calculated according to:

µ = 〈Ψ | µ̂ |Ψ〉 (27)

= 〈Ψ|

N
∑

i

qiri|Ψ〉 (28)

= −

N
∑

i

〈Ψ | ri |Ψ〉 , (29)
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where, in the last line, the substitution qi = −1 (for
electrons) has been made. Applying the Slater–Condon
rules,[47, 48] this expression can be recast in terms of
the one-body reduced density matrix and one-electron
molecular-orbital integrals for an arbitrary Cartesian
component, w, as,

µw = −
∑

pq

γpq
〈

φp

∣

∣w
∣

∣φq

〉

+
∑

I

ZIR
(w)
I , (30)

to which the contribution from the (fixed) nuclei with
charges {ZI} and positions {RI} has been added. Thus,
given the molecular-orbital integrals,

{〈

φp

∣

∣ x
∣

∣φq

〉}

,
{〈

φp

∣

∣ y
∣

∣φq

〉}

, and
{〈

φp

∣

∣ z
∣

∣φq

〉}

, which are readily
available,[46, 49] the one-body reduced density matrix
obtained from i-FCIQMC provides direct access to the
dipole moment, and, more generally, to multipole mo-
ments of arbitrary rank.
As an interesting application of this approach, we con-

sider the well-known problem of the dipole moment of
CO at its equilibrium bond length, 2.1316 a0.[50] This
system, with its subtle combination of σ and π effects, is
difficult to predict intuitively a priori, and Hartree–Fock
theory notably suggests the polarity to be C+O−, while
it is experimentally known to be C−O+.
We use the large aug-cc-pVXZ-DK basis sets for

this study and adopt the second-order Douglas–Kroll–
Hess hamiltonian.[51–55] Although relativistic effects are
small for these comparatively light atoms, the calculation
of the dipole moment tends to be strongly basis-set de-
pendent, and the use of a large set becomes correspond-
ingly desirable. To that same end, it is desirable to be
able to extrapolate finite-basis dipole moments to the
complete-basis-set limit, as such extrapolations have pre-
viously been useful in i-FCIQMC studies.[12] It has been
shown that the asymptotic convergence of the correla-
tion part of the dipole moment with the cardinality of
the basis set, X , is suitably described by the form

µ
(X)
corr = µ

(CBS)
corr + aX−3, (31)

in much the same way as the correlation energy itself.[56,
57] The complete-basis-set limit correlation contribution

to the dipole moment, µ(CBS)
corr , may thus be derived from

two consecutive finite-basis results, of cardinality X − 1
and X , according to

µ
(CBS)
corr =

X3
µ

(X)
corr − (X − 1)

3
µ

(X−1)
corr

X3 − (X − 1)3
, (32)

to which the Hartree–Fock contribution in a suitably
large basis (aug-cc-pV5Z-DK is used here, for which
µz,HF = −0.10355 ea0) may then be added to obtain the
total dipole moment.
Table I presents the results of this approach, with the

extrapolations performed from the double- and triple-ζ
and the triple- and quadruple-ζ basis sets, alongside the

µz/ea0

aug-cc-pVXZ-DK CBS
X =D X =T X =Q (DT) (TQ)

HF -0.10135 -0.10435 -0.10369 - -

MRCI 0.07175 0.07203 0.07066 0.07419 0.06929

CCSD 0.06829 0.05594 0.05087 0.05278 0.04681

i-FCIQMC 0.05893(3) 0.05200(4) 0.0474(4) 0.05112 0.0437

TABLE I. Calculated dipole moments, µz, for CO at the
HF, MRCI (using a 10-electron, 8-orbital active space),[58–
60] CCSD,[49] and i-FCIQMC levels of theory, with the
complete-basis-set limit obtained from two-point, inverse-
cube extrapolations.[57] The standard error (in brackets) is
derived as the standard deviation of the results from three in-
dependent i-FCIQMC calculations. The experimentally ob-
tained bond length, 2.1316 a0, is used,[50] and the 1σ

2
1σ

∗2

electrons are held frozen and neither relaxed nor optimised
for the response of an electric field. The signs are arranged
such that µz < 0 indicates a C

+
O

−
polarity, and thus all

the post-Hartree–Fock methods successfully reproduce qual-
itative agreement with the observed dipole’s direction. The
i-FCIQMC calculations were performed for 24 hours on 400

cores (X =D and T) or 600 cores (X =Q) using O

(

10
8
)

walkers, with the adjustable parameters Nocc = 1, χ = 4,
κ = 0.01, and na = 3.0, and the timstep allowed to vary
dynamically to limit noisy walker growth. The sizes of the
full orbital spaces for the double-, triple-, and quadruple-ζ
calculations are 44, 90, and 158, respectively.

analogous results from coupled-cluster theory and multi-
reference CI. The rapid convergence of µz with number of
walkers in the i-FCIQMC dynamic is also demonstrated
in Figure 3.

0 10 20 30 40 50 60 70 80

Nw/10
6

0.0584

0.0585

0.0586

0.0587

0.0588

0.0589

0.0590

0.0591

0.0592

µ
z
/e
a
0

FIG. 3. Calculated dipole moments for CO in an aug-cc-
pVDZ-DK basis as a function of the number of walkers. In-
creasing the walker population is beneficial in reducing the
stochastic error in the final result, but a qualitative descrip-
tion of the system is achieved at rather modest Nw, as indi-
cated by the fineness of the scale presented here.

By comparison with the experimental dipole moment,
variously given as 0.044 ea0 and 0.048 ea0,[61–64] it is
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apparent that i-FCIQMC performs rather better than
MRCI, and is comparable to CCSD. However, it can be
seen that CCSD actually overestimates the dipole mo-
ment compared to i-FCIQMC, which can be taken as
close to exact in each of the finite basis sets, and this
feature of CCSD allows for favourable cancellation of er-
rors with the basis-set incompleteness, yielding the fortu-
itously accurate extrapolated result. The remaining dis-
parity between these results and experiment should not
be ascribed to an inadequacy of the i-FCIQMC density
matrices, but is rather largely attributable to basis-set
incompleteness error. Indeed, the larger (TQ) extrapo-
lations are rather more satisfactory than the correspond-
ing (DT) results, highlighting the sensitivity of such ap-
proaches to the adequacy of the choice of basis. This
effect has been previously observed in the context of ion-
isation potentials,[12] but is magnified in this instance
by the stronger basis-set dependence of dipole moments
than correlation energies. It is also worth noting that
a small vibrational contribution to the dipole moment
is expected,[65] but the results of this study support the
view expounded in that work by Luis and coworkers, that
an accurate treatment of electron correlation in a suffi-
ciently large basis set is adequate for close agreement
with experiment.

The quality of the i-FCIQMC density matrices may be
illustrated by considering the CO problem in a small cc-
pVDZ basis, for which deterministic FCI results can be
obtained. In this case, whose results are summarised in
Table II, i-FCIQMC reproduces the FCI dipole moment
to within 0.06%, whilst the CCSD and MRCI results are
in error by 10% and 8%, respectively. Also of note is
that, whilst the quoted i-FCIQMC result was obtained

using O

(

108
)

walkers, it can be obtained just as well,

and with apparently negligible initiator error, with only

O

(

107
)

.

These results, therefore, bear out the supposed
high quality of the sampled density matrices, and in
demonstrating the compatibility of i-FCIQMC with the
Hellmann–Feynman theorem, suggest that future studies
of energy derivatives and their associated properties may
well prove fruitful.

ATOMIC DIPOLE POLARISABILITIES

The previous section began by noting the dependence
upon the permanent dipole moment of a system’s inter-
action with an applied electric field as given by −µ · ξ.
Of course, the application of such a field will, in reality,
affect the distribution of charge, and hence the dipole mo-
ment itself. Expanding the dipole moment as a function
of the field, therefore, we may write a given component,

µz/ea0 Abs. relative error (%)

HF -0.0915 201.10

MRCI 0.0973 7.61

CCSD 0.0996 9.94

CCSDT 0.0931 2.87

CCSDTQ 0.0906 0.11

CCSDTQP 0.0905 -

i-FCIQMC 0.09045(3) 0.06

FCI 0.0905 -

TABLE II. Comparison of obtained dipole moments of CO in
a small cc-pVDZ basis to the deterministic FCI result. As in
Table I, at all levels of theory, the two core orbitals were held
frozen, and neither relaxed nor optimised for the response of
an electric field. The i-FCIQMC result being in error by less
than 0.1%, the density matrices derived therefrom are thus
shown to be of near-FCI quality. The coupled-cluster results
— obtained by finite differentiation (±2 × 10

−5
Eh e

−1
a
−1
0 )

using the MOLPRO[46, 66] and MRCC[67] codes — are slow to
converge to the FCI limit, with quadruple excitations needed
for high accuracy.

µi, as

µi = µ
(0)
i +

∑

j

αijξj +
1

2

∑

jk

βijkξjξk + . . . , (33)

where αij and βijk represent elements of the polarisabil-
ity and first hyperpolarisability tensors, respectively.[68]

µ
(0) is the zero-field permanent dipole, which is always

zero for atomic species. Whilst the effect of the induced
dipole moment is generally less significant for polar sys-
tems, it is the leading-order term in the expansion of
the dipole moment for atoms which has no static dipole.
It is thus crucial in accounting for the dipole-dipole dis-
persion interactions which often bind such species, and
indeed will be the first-order response not only to static,
but also to dynamic fields.[69] The calculation of α thus
provides an interesting study in and of itself, as well as
a probing test of the calculation of reduced density ma-
trices with i-FCIQMC. We here consider the noble-gas
atoms, Ne, Ar, and Kr, as archetypal examples of the
problem.

It is apparent from Eq. 33 that the polarisability may
be thought of as the derivative of the dipole with respect
to the field,

αij =
∂µi

∂ξj

∣

∣

∣

∣

ξ=0

, (34)

evaluated at ξ = 0. As for many response properties,
this may be calculated by solution of the coupled per-
turbed Hartree–Fock equations,[70] but for our purposes
it is convenient to suppose that a particular component,
αij , might be effectively calculated by a finite-difference
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αzz/e
2
a
2
0E

−1
h

aug-cc-pVTZ-DK

System Analytic Finite-field Abs. relative error

Ne 2.438384 2.437962 1.73×10
−4

Ar 10.841398 10.842952 1.43×10
−4

Kr 16.674939 16.680012 3.04×10
−4

aug-cc-pVQZ-DK

Analytic Finite-field Abs. relative error

Ne 2.620174 2.619806 1.40×10
−4

Ar 11.128300 11.131348 2.74×10
−4

Kr 16.792296 16.799500 4.29×10
−4

TABLE III. Analytic MP2 dipole polarisabilities, αzz, for the
noble gases Ne, Ar, and Kr, in aug-cc-pVTZ-DK and aug-cc-
pVQZ-DK basis sets compared with the corresponding finite-
field results, calculated with an electric field strength of 0.005
Eh/ea0.

approach,

αij =
µi

(

δξj
)

− µ
(0)
i

δξj
=

µi

(

δξj
)

δξj
, (35)

in which δξj is a small field applied in the j direction,
and µi

(

δξj
)

is the ith component of the dipole moment
induced by so doing. The second equality holds for the
spherically-symmetric atomic systems under considera-

tion here since µ(0) = 0, and the errors resulting formula
are second-order since it is now equivalent to a central-
difference approximation.
Straightforward and appealing though this implemen-

tation is, it is useful before proceeding to have some no-
tion of its performance relative to analytic gradient meth-
ods. In particular, analytic gradients are readily and
rapidly available from MP2 theory,[49] and this approach
thus provides a useful framework in which to assess the
suitability of the finite-field method.
The results of this comparison, with the finite-field

polarisabilities performed in a field of strength 0.005
Eh/ea0, are summarised in Table III. The mean abso-
lute percentage error inherent in the approach is found
to be of the order of 0.02%, demonstrating both its suit-
ability for the purpose, and also that the field chosen
is sufficiently small to establish the pseudo-linear depen-
dence of the induced dipole upon the field. That this
dependence is established without having to use a very
small field is encouraging, since in the stochastic formu-
lation provided by i-FCIQMC, the stochastic error in the
induced dipole must be divided by the field strength to
obtain the equivalent error bounds in the polarisability.
This behaviour is illustrated for Ne in the aug-cc-VTZ-
DK basis in Figure 4, which highlights the balance which
must be achieved between minimising second-order ef-

fects and maintaining a suitable level of stochastic error.

0.00 0.02 0.04 0.06 0.08 0.10

ξz/Eh (ea0)
−1

2.40

2.42

2.44

2.46

2.48

2.50

α
zz
/
(e
a
0
)2
E

−
1

h

FIG. 4. Calculated dipole polarisabilities for the Ne atom
in an aug-cc-pVTZ-DK basis with different applied field
strengths, ξz. As in the previous section, the i-FCIQMC cal-

culations were performed using O

(

10
8
)

walkers, a dynamic

timestep, and the adjustable parameters Nocc = 1, χ = 4,
κ = 0.01, and na = 3.0. Sufficiently small fields establish the
required pseudo-linear relationship between the polarisability
and the applied field, but too small a field gives rise to large
stochastic errors. This initial study prioritises the elimination
of non-linear effects, and a field strength of ξz = 0.005Eh/ea0

is thus chosen as suitable for the remainder of this work, where
the random errors can be systematically controlled. It is en-
couraging to note, however, that this choice may be somewhat
conservative, and that a slightly larger field may be permissi-
ble in future work.

Secure in the knowledge of the suitability of the finite-
field approach, we may proceed with an assessment of the
performance of i-FCIQMC compared with other meth-
ods. Specifically, as in the previous section, we cal-
culate the polarisabilities using CCSD and MRCI for
comparison,[49, 58–60] though in this case the extrap-
olations are performed from results at the triple- and
quadruple-ζ basis sizes, reflecting the increased sensitiv-
ity to basis set incompleteness error which this quantity
entails.

As might have been expected, the error incurred by
extrapolating is somewhat reduced upon including the
larger quadruple-ζ treatment, and the i-FCIQMC results
given in Table IV bear correspondingly close agreement
with experiment. The remaining errors — in the region
of 0.5 to 3% — are nonetheless still likely to be artefacts
of the basis sets, as the application of a field accentu-
ates the importance of describing the intricacies of the
more diffuse regions of electron density. Thus, although
“augmented” basis sets are employed, there is likely still
something to be gained from a more complete description
of this behaviour. This suggestion is, once again, further
strengthened by the fact that i-FCIQMC is able to re-
cover FCI-quality results for basis sets in which direct
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αzz/e
2
a
2
0E

−1
h

System aug-cc-pVTZ-DK aug-cc-pVQZ-DK CBS Experiment

Ne 2.42(1) 2.596(2) 2.65 2.57

Ar 10.855(5) 11.092(3) 11.08 11.23

Kr 16.81(4) 16.86(6) 16.82 16.73

TABLE IV. i-FCIQMC polarisabilities of the noble gases Ne,
Ar, and Kr, obtained in aug-cc-pVTZ-DK and aug-cc-pVQZ-
DK basis sets, along with the extrapolated complete-basis-set
limit results. The number in brackets indicates the error in
the preceding digit, obtained as the standard deviation of the
results of three independent calculations. The experimen-
tal results are shown for comparison.[71, 72] The i-FCIQMC

calculations were performed using O

(

10
8
)

walkers, the ad-

justable parameters Nocc = 1, χ = 4, κ = 0.01, and na = 3.0,
and run for 48 hours on 320 cores.

αzz/e
2
a
2
0E

−1
h

aug-cc-pVTZ-DK aug-cc-pVQZ-DK CBS

System HF CCSD MRCI HF CCSD MRCI CCSD MRCI

Ne 2.20 2.42 2.41 2.33 2.59 2.58 2.64 2.64

Ar 10.45 10.81 10.36 10.72 11.03 11.53 11.00 12.20

Kr 16.21 16.78 17.15 16.36 16.81 17.22 16.74 17.18

TABLE V. Polarisabilities of the noble gases Ne, Ar, and Kr,
computed using Hartree–Fock, coupled-cluster, and multi-
reference CI (with an 8-electron, 8-orbital active space) the-
ories. As in Table IV, the extrapolations to the complete-
basis-set limits are also shown.[71, 72]

comparison is possible, reproducing the polarisability of
Ne in a small cc-pVDZ basis to within 0.005%, for in-
stance.
The same results, computed using Hartree–Fock the-

ory, CCSD,[49] and MRCI,[58–60] are listed in Table V.
The mean (absolute) error for the MRCI calculations is
4.7%, whilst that for i-FCIQMC, and coupled-cluster the-
ory, is around 1.6%. The comparability is unsurprising,
given the ascription of much of the error to finite-basis
effects. However, it is now necessary to investigate the
impact of stronger correlation on this quantity in more
challenging systems, where we expect more significant
advantages to come from i-FCIQMC.

CONCLUSIONS

The results presented in this work serve to confirm
the high quality of the stochastically-obtained reduced
density matrices available via replica sampling in i-
FCIQMC, capable as they are of reproducing FCI-quality
results for nuclear forces, dipole moments, and polaris-
abilities, and in some cases close agreement with exper-
imental values. In so doing, they cement the place of
the replica technique as an important extension to the

theory, and widen its scope considerably.

In addition to the most obvious extension of an abil-
ity to compute a larger range of properties for a wider
variety of systems, there remain a number of theoretical
and technical challenges to be addressed in future stud-
ies. Perhaps the most pressing task is to extend this
work to encompass results from open-shell systems, in
which correlation effects are likely to be more important.
Moreover, if comparisons to experimental results are to
be further sought and achieved for dipole moment prop-
erties, there is some motivation to explore larger basis
sets with multiple levels of augmentation,[73, 74] which
may be of particular use in better describing the more
diffuse electron densities of finite-field calculations, and
more generally in describing larger and heavier atoms of
interest.

ACKNOWLEDGEMENTS

The authors would like to thank Gerald Knizia for
helpful discussions. The authors gratefully acknowledge
Trinity College, Cambridge, and the Royal Society via a
University Research Fellowship for funding. This work
was also supported through a research fellowship of the
Deutsche Forschungsgemeinschaft (D.O.) and by EPSRC
under Grant No. EP/J003867/1. The calculations made
use of the facilities of the Max Planck Society’s Rechen-
zentrum Garching.

[1] G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem.
Phys. 131, 054106 (2009).

[2] D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem.
Phys. 132, 041103 (2010).

[3] J. S. Spencer, N. S. Blunt, and W. M. C. Foulkes, J.
Chem. Phys. 136, 054110 (2012).

[4] J. J. Shepherd, G. E. Scuseria, and J. S. Spencer, Phys.
Rev. B 90, 155130 (2014).

[5] F. Arias de Saavedra, M. H. Kalos, and F. Pederiva,
Mol. Phys. 109, 2797 (2011).

[6] G. H. Booth and A. Alavi, J. Chem. Phys. 132, 174104
(2010).

[7] D. M. Cleland, G. H. Booth, and A. Alavi, J. Chem.
Phys. 134, 024112 (2011).

[8] G. H. Booth, D. M. Cleland, A. J. W. Thom, and
A. Alavi, J. Chem. Phys. 135, 084104 (2011).

[9] D. M. Cleland, G. H. Booth, C. Overy, and A. Alavi, J.
Chem. Theory Comput. 8, 4138 (2012).

[10] C. Daday, S. D. Smart, G. H. Booth, A. Alavi, and
C. Filippi, J. Chem. Theory Comput. 8, 4441 (2012).

[11] R. E. Thomas, C. Overy, G. H. Booth, and A. Alavi, J.
Chem. Theory Comput. 10, 1915 (2014).

[12] R. E. Thomas, G. H. Booth, and A. Alavi, Phys. Rev.
Lett. 114, 033001 (2015).

[13] J. J. Shepherd, G. H. Booth, and A. Alavi, J. Chem.
Phys. 136, 244101 (2012).



11

[14] J. J. Shepherd, G. H. Booth, A. Grüneis, and A. Alavi,
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B. Ladóczki, and G. Samu, “MRCC, a quantum chem-
ical program suite,” See also Z. Rolik, L. Szegedy, I.
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